Practical

Node.|s

Building Real-World Scalable Web Apps

LEARN TO BUILD COMPLEX WEB APPS
WITH NODE.JS

Azat Mardan

Apresse

http://www.allitebooks.org

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks
and Contents at a Glance links to access them.

Apress*

vww allitebooks.conl

http://www.allitebooks.org

Contents at a Glance

About the AUthOr ... ———————————— Xv
About the Technical ReVIEWETcvsssvsmssssssmsmsmssssssssmssssmssssssssssssssssssssssnssssnssssssnsssnssnsnss xvii
AcknOowIedgmEeNnts.......cccciiiisssssnmmnnmmmmmmsssssssssssnnnmesssssssssnnnnnnsessssssssssnnnnnnsessssssssnnnnnnnnnessssssns Xix
INtrodUCTiONceiiieesissannsssannssssnnnsssnnnsssnnnsssnnnsssnnnsssnnnsssannsssnnnsssnnnsssannsssnnnssssnnenssnnnsssnnnsssnnns xxi
Chapter 1: Setting up Node.js and Other Essentials........c.ccccssmrmssmsmssnsmsssnnssssssssssnnssssanas 1
Chapter 2: Using Express.js 4 to Create Node.js Web AppS....c..cccciurmmsennmmssssssnssssssssnnsnans 33
Chapter 3: TDD and BDD for Node.js with Mochaccccccmnnnnemmmmmsssssnmmmsssssnmsssssssnnns 57
Chapter 4: Template Engines: Jade and Handlebarsccccuccmrnnsemmmsssmsmsssnsssssssssssssssanns A
Chapter 5: Persistence with MongoDB and MongosKin.........ccuussmsesmsssmsssmsssssssasssasssnnnns 103

Chapter 6: Using Sessions and OAuth to Authorize and Authenticate
Users in NOUE.JS APPS..uuuurtturmmmmmssnnnsnnsmmsssnnsssssssssssssnnnnnsssssss 129
Chapter 7: Boosting Your Node.js Data with the Mongoose ORM Librarycccccurereas 149
Chapter 8: Building Node.js REST API Servers with Express.js and Hapi......c..cccuuiuennuns 173
Chapter 9: Real-Time Apps with WebSocket, Socket.l0, and DerbyJsSccunememnnnnnnnns 195
Chapter 10: Getting Node.js Apps Production Ready.........ccccussmmmmmmssssnnnsssssnnsssssssansnnsans 215
Chapter 11: Deploying NOde.jS APPS «ueursssamssssssssssanssssanssssanssssansessansesssnsesssnsesssnsssssnnssss 243
Chapter 12: Publishing Node.js Modules and Contributing to Open Source..........ccuvuu.. 261
11 . 269
v

[vww allitebooks.cond

http://www.allitebooks.org

Introduction

There are more and more books and online resources being published that cover Node.js basics (e.g., how-to’s of
Hello World and simple apps). For the most part, these tutorials rely on core modules only or maybe one or two

Node Package Manager (NPM) packages. This “sandbox” approach of tutorials is easy and doesn’t require many
dependencies, but it can’t be further from the actual Node.js stack. This is especially true with Node.js, the core of
which—by design—is kept lean and minimal. At the same time, the vast “userland” (i.e., NPM) provides an ecosystem
of packages/modules to serve specific granular purposes. Therefore, there is a need to show effectively how Node.js

is used in the industry and to have it all in one place—the all-encompassing practical resource that can be used as a
learning tool, a code cookbook, and a reference.

What This Book Is

Practical Node.js: Building Real-World Scalable Web Apps is a hands-on manual for developing production-ready
web applications and services by leveraging the rich ecosystem of Node.js packages. This is important because real
applications require many components, such as security, deployment, code organization, database drivers, template
engines, and more. This is why we include extensive 12-chapter coverage of third-party services, command-line tools,
NPM modules, frameworks, and libraries.

Just to give you some idea, Practical Node.js is a one-stop place for getting started with Express.js 4, Hapi.js,
Derby]S, Mongoskin, Mongoose, Everyauth, Mocha, Jade, Socket.IO, TravisCI, Heroku, Amazon Web Services (AWS),
and many others. Most of these items are vital for any serious project.

In addition, we create a few projects by building, step by step, from a straightforward concept to a more
complicated application. These projects can also serve as a boilerplate for jump-starting your own development
efforts. Also, the examples show industry best practices to help you avoid costly mistakes.

Last but not least, many topics and chapters serve as a reference to which you can always return later when
you're faced with a challenging problem.

Practical Node.js aims to save you time and make you a more productive Node.js programmer!

What You’ll Learn

Practical Node.js takes you from an overview of JavaScript and Node.js basics, installing all the necessary modules to
writing and deploying web applications, and everything in between. We cover libraries including, but not limited to,
Express.js 4 and Hapi.js frameworks, Mongoskin and the Mongoose object-relational mapping (ORM) library for the
MongoDB database, Jade and Handlebars template engines, OAuth and Everyauth libraries for OAuth integrations,
the Mocha testing framework and Expect test-driven development/behavior-driven development language, and the
Socket.IO and Derby]S libraries for WebSocket real-time communication.

xxi

[vww allitebooks.cond

http://www.allitebooks.org

INTRODUCTION

In the deployment chapters (10 and 11), the book covers how to use Git and deploy to Heroku, as well as
examples of how to deploy to AWS, daemonize apps, and use Nginx, Varnish Cache, Upstart, init.d, and the forever
module.

The hands-on approach of this book walks you through iterating on the Blog project in addition to many other
smaller examples. You'll build database scripts, representational state transfer (RESTful) application programming
interfaces (APIs), tests, and full-stack apps all from scratch. You'll also discover how to write your own Node.js
modules and publish them on NPM.

Practical Node.js will show you how to do the following:

e Build web apps with Express.js 4, MongoDB, and the Jade template engine
e Use various features of Jade and Handlebars

e Manipulate data from the MongoDB console

e Use the Mongoskin and Mongoose ORM libraries for MongoDB

e Build REST API servers with Express.js 4 and Hapi.js

e Test Node.js web services with Mocha, Expect, and TravisCI

e Use token and session-based authentication

e Implement a third-party (Twitter) OAuth strategy with Everyauth

e Build WebSocket apps using Socket.IO and Derby]S libraries

e Prepare code for production with Redis, Node.js domains, and the cluster library using tips
and best practices

e Deploy apps to Heroku using Git

e Install necessary Node.js components on an AWS instance

e Configure Nginx, Upstart, Varnish, and other tools on an AWS instance
e Write your own Node.js module and publish it on NPM

You already know what Node.js is; now, learn what you can do with it and how far you can take it.

What This Book Is Not

Although the entire first chapter is dedicated to installations and a few important differences between Node.js and
browser JavaScript, we didn’t want to dilute the core message of making production-ready apps, or make

Practical Node.js even larger and more convoluted. Therefore, the book is not a beginner’s guide and there is no
extensive immersion into the inner workings of the Node.js platform and its core modules.

We also can’t guarantee that each component and topic are explained to the extent you need, because the nature
of your project might be very specific. Most chapters in the book help you to get started with the stack. There is simply
no realistic way to fit so many topics in one book and cover them comprehensively.

Another caveat of this book (or virtually any other programming book) is that the versions of the packages we
use will eventually become obsolete. Often, this isn’t an issue because, in this book, versions are stated and locked
explicitly. So no matter what, the examples will continue to work with our versions.

Even if you decide to use the latest versions, in many cases this still might not be an issue, because essentials
remain the same. However, if you go this off-path route, once in a while you might be faced with a breaking change
introduced by the latest versions.

xxii

[vww allitebooks.cond

http://www.allitebooks.org

INTRODUCTION

Who Can Benefit from This Book

Practical Node.js is an intermediate- to advanced-level book on programming with Node.js. Consequently, to get the
most out of it, you need to have prior programming experience and some exposure to Node.js. We assume readers’
prior knowledge of computer science, programming concepts, web development, Node.js core modules, and the
inner workings of HTTP and the Internet.

However, depending on your programming level and ability to learn, you can fill in any knowledge gaps very
quickly by visiting links to official online documentations and reading external resources referenced in this book. Also,
if you have a strong programming background in some other programming language, it would be relatively easy for
you to start Node.js development with Practical Node.js.

As mentioned earlier, Practical Node.js is written for intermediate and advanced software engineers. For this
reason, there are three categories of programmers who can benefit from it the most:

1. Generalist or full-stack developers including development operation (DevOps) and quality
assurance (QA) automation engineers

2. Experienced front-end web developers with a strong background and understanding of
browser JavaScript

3. Skilled back-end software engineers coming from other languages such as Java, PHP, and
Ruby, who don’t mind doing some extra work get up to speed with the JavaScript language

Source Code

Learning is more effective when we apply our knowledge right away. For this reason, virtually every chapter in
Practical Node.js ends with a hands-on exercise. For your convenience, and because we believe in open source and
transparency, all the book’s examples are available publicly (i.e., free of charge) for exploration and execution on
GitHub at https://github.com/azat-co/practicalnode.

Errata and Contacts

If you spot any mistakes or typos (and I'm sure you will), please open an issue or, even better, fix it and make a pull
request to the GitHub repository of the book’s examples at https://github.com/azat-co/practicalnode. For all
other updates and contact information, the canonical home of Practical Node.js on the Internet is
http://practicalnodebook.com.

Notation

This book follows a few formatting conventions. Code is in monospace font—for example, var book = {name:
'Practical Node.js'};.If the code begins with $, this code is meant to be executed in the terminal/command line.
However, if the code line starts with >, the code is meant for the virtual environment (a.k.a., console—either for
Node.js or MongoDB). If the Node.js module name is in code font, this is the NPM name and you can use it with NPM
and the require() method, such as superagent.

xxiii

[vww allitebooks.cond

https://github.com/azat-co/practicalnode
https://github.com/azat-co/practicalnode
http://practicalnodebook.com
http://www.allitebooks.org

INTRODUCTION

Why You Should Read This Book

Practical Node.js was designed to be one stop for going from Hello World examples to building apps in a professional
manner. You get a taste of the most widely used Node.js libraries in one place, along with best practices and
recommendations based on years of building and running Node.js apps in production. The libraries covered in
Practical Node.js greatly enhance the quality of code and make you more productive. Also, although the material in
this book is not groundbreaking, the convenience of the format saves hours of frustration researching the Internet.
Therefore, Practical Node.js is here to help you to jump-start your Node.js development!.

XXiv

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 1

Setting up Node.js and Other
Essentials

As with many technologies, it’s vital to have the proper foundation set up first, before moving on to solving more
complex problems. In this chapter, we cover the following:

¢ Node.js and (NPM) Node Package Manager installation

e Node.js script launches

e Node.js syntax and basics

e Node.js integrated development environments (IDEs) and code editors
e Awareness of file changes

e Node.js program debugging

Installing Node.js and NPM

Although your operating system (OS) might have Node.js installed on it already, you should update to at least 0.10.x.
In the following subsection, we examine a few different approaches to installing Node.js:

e One-click installers: probably the easiest and fastest way to get started with the platform
e Installing with HomeBrew or MacPorts: straightforward installation for Max OS X users
e Installing from a tar file: an alternative installation from an archive file

o Installing without sudo: the best way to avoid needing sudo (admin rights) when using the
node and npm commands

e Installing from a Git repo: an option for advanced developers who need the latest version
and/or contribute to the project

e Multiversion setup with Nave: a must-have for developers contributing to projects that use
different Node.js versions

e Multiversion setup with Node Version Manager (NVM): alternative to Nave (see previous entry)

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 1~ SETTING UP NODE.JS AND OTHER ESSENTIALS

One-Click Installers

First, let’s go to http://nodejs.org and download a one-click installer for your OS (Figure 1-1) by clicking on the
Install button. Don’t choose binaries or source code unless you know what to do with them or your OS is not present
there (i.e., not Windows or Mac).

800.) node js 9 "ﬂa
&« = C [nodejs.org @ =

Node.js is a platform built on
applications. Node

efficient, perfect for dat

SpanjshD!ct r& Irir Couch

Figure 1-1. One-click installers for Node.js

The installers come with NPM (Node Package Manager)— an important tool for managing dependencies.
If there’s no installer for your OS (page http://nodejs.org/download/), you can get the source code and
compile it yourself (Figure 1-2).

vww allitebooks.conl

http://nodejs.org/
http://nodejs.org/download/
http://www.allitebooks.org

CHAPTER 1~ SETTING UP NODE.JS AND OTHER ESSENTIALS

©00 | & 2 -]

- C' | [nodejs.org/download/ ® s

. . s

Figure 1-2. Multiple options for downloading

Note For older Mac OS X machines, you can pick 32-bit versions.

Installing with HomeBrew or MacPorts

If you already have HomeBrew (brew) installed, run the following in a straightforward manner:

$ brew install node
$ brew install npm

Similarly, for MacPorts, run

$ sudo port install nodejs

vww allitebooks.conl

http://www.allitebooks.org

CHAPTER 1 © SETTING UP NODE.JS AND OTHER ESSENTIALS

If your Mac OS X does not have HomeBrew, go to http://brew.sh/ or install it with the following command:

$ ruby -e "$(curl -fsSL https://raw.github.com/Homebrew/homebrew/go/install)"

Installing from a Tar File

To install from a tar file (which is type of archive), set up a folder for the latest Node.js as follows:

$ echo 'export PATH=$HOME/local/bin:$PATH' >> ~/.bashrc
$. ~/.bashrc

$ mkdir ~/local

$ mkdir ~/node-latest-install

$ cd ~/node-latest-install

Note Advanced users who choose to make their own Node.js builds need to have certain compilers installed first. For
more information, refer to the official documentation (https://github.com/joyent/node/wiki/Installation).

Download the tar file with CURL and unpack it:

$ curl http://nodejs.org/dist/node-latest.tar.gz | tar xz --strip-components=1
$./configure --prefix="/local

Build Node.js and install it:

$ make install
$ curl https://npmjs.org/install.sh | sh

Tip If you find yourself getting errors when trying to install the module globally via NPM ($ npm install -g
<packagename>), reinstall Node.js and NPM with the “Installing Without sudo” solution below to eliminate the need
to use sudo with the installation command. For more solutions for advanced users, there’s a Gist from Isaac Z. Schlueter:
https://gist.github.com/isaacs/579814.

Installing Without sudo

Sometimes, depending on your configuration, NPM asks users for sudo— root user permissions. To avoid using sudo,
advanced developers can use the following::

$ sudo mkdir -p /usr/local/{share/man,bin,lib/node,include/node}
$ sudo chown -R $USER /usr/local/{share/man,bin,lib/node,include/node}

Note Please be sure you are comfortable with the functionality of the chown command before you run it.

http://brew.sh/
https://raw.github.com/Homebrew/homebrew/go/install
https://github.com/joyent/node/wiki/Installation
http://nodejs.org/dist/node-latest.tar.gz
https://npmjs.org/install.sh
https://gist.github.com/isaacs/579814

CHAPTER 1~ SETTING UP NODE.JS AND OTHER ESSENTIALS

Then, proceed with a normal installation:

$ mkdir node-install

$ curl http://nodejs.org/dist/node-v0.4.3.tar.gz | tar -xzf - -C node-install
$ cd node-install/*

$./configure

$ make install

$ curl https://npmjs.org/install.sh | sh

Installing from a Git Repo

If you want to use the latest core Node.js code, and maybe even contribute to the Node.js and NPM projects, it’s possible
to build the installation from the cloned Git repo. (This step requires Git. To install it, go to http://git-scm.com/

and click Download.) For basic Git commands, refer to Chapter 11, where we explore deployment; otherwise, do the
following:

1. Make the folders and add the path:

$ mkdir ~/local
$ echo 'export PATH=$HOME/local/bin:$PATH' >> ~/.bashrc
$. ~/.bashrc

To clone the original Node.js repo from Joyent (alternatively, you can fork it and clone your own repository),
do the following:

$ git clone git://github.com/joyent/node.git
$ cd node
$./configure --prefix=~/local

2. Make the build:

$ make install
$cd..

3. Repeat for NPM:
$ git clone git://github.com/isaacs/npm.git
$ cd npm
$ make install

For a more cutting-edge NPM version, use

$ make link

Multiversion Setup with Nave

If you plan to run multiple versions of Node.js, use Nave (https://github.com/isaacs/nave), which is a virtual
environment for Node.js. First, make a folder:

mkdir ~/.nave
cd ~/.nave

http://nodejs.org/dist/node-v0.4.3.tar.gz
https://npmjs.org/install.sh
http://git-scm.com/
https://github.com/isaacs/nave

CHAPTER 1 © SETTING UP NODE.JS AND OTHER ESSENTIALS

Then, download Nave and set the link to the PATH-ed folder:

$ wget http://github.com/isaacs/nave/raw/master/nave.sh
$ sudo 1In -s $PWD/nave.sh /usr/local/bin/nave

An example of switching to Node.js version 0.4.8 with Nave in a virtual environment is as follows:
$ nave use 0.4.8
To use NPM in this particular virtual environment, use
$ curl https://npmjs.org/install.sh | sh
It is now possible to install something via NPM:
$ npm install express
Last, exit the virtual environment with
exit

More approaches to install Node.js and NPM are in gist (https://gist.github.com/isaacs/579814).

Multiversion Setup with NVM

Another option to Nave is NVM—Node Version Manager (GitHub, https://github.com/creationix/nvm). Install
NVM as follows:

$ curl https://raw.github.com/creationix/nvm/master/install.sh | sh

or

$ wget -g0- https://raw.github.com/creationix/nvm/master/install.sh | sh
Then, harness NVM’s install:

$ nvm install 0.10
To switch to the 0.10 version, apply the use command. For example:

$ nvm use 0.10

Alternative Multiversion Systems

Alternatives to Nave and NVM include the following:
e neco (https://github.com/kuno/neco)
e n(https://github.com/visionmedia/n)

http://github.com/isaacs/nave/raw/master/nave.sh
https://npmjs.org/install.sh
https://gist.github.com/isaacs/579814
https://github.com/creationix/nvm
https://raw.github.com/creationix/nvm/master/install.sh
https://raw.github.com/creationix/nvm/master/install.sh
https://github.com/kuno/neco
https://github.com/visionmedia/n

CHAPTER 1~ SETTING UP NODE.JS AND OTHER ESSENTIALS

Checking the Installation

To test your installation, run the following commands in your Terminal app (command line cmd. exe in Windows):

$ node -v
$ npm -v

You should see the latest versions of Node.js and NPM that you just downloaded and installed, as shown in
Figure 1-3.

® 00 ¢ azat — bash w
Azats-Air:~ azat$ node -v

v0.10.12

Azats-Air:~ azat$ npm -v

1.2.32

Azats-Air:~ azat$

Figure 1-3. Checking Node.js and NPM installations

That’s it! You now have Node.js and NPM installed, and you should be ready to dig deeper into using the platform.
The simplest way to run Node.js is through its virtual environment, which is often called read-eval-print-loop, or REPL.

Node.js Console (REPL)

Like most platforms/languages (e.g., Java, Python, Ruby, and PHP), Node.js comes with a virtual environment: REPL.
Using this shell program, we can execute pretty much any Node.js/JavaScript code. It's even possible to include modules
and work with the file system! Other REPL use cases involve controlling nodecopters (http://nodecopter.com/)

and debugging remote servers (more about this in Chapter 10). To start the console, run the following command in
your terminal:

$ node

http://nodecopter.com/

CHAPTER 1 © SETTING UP NODE.JS AND OTHER ESSENTIALS

The prompt should change from $ to > (or something else, depending on your shell). From this prompt, we can
run any JavaScript/Node.js (akin to the Chrome Developer Tools console) we want. For example:

1+1

"Hello"+" "+"World"
a=1;b=2;a+b

17+29/2*7

f = function(x) {return x*2}
(b)

VvV V V V VvV Vv

The result of the previous snippet is shown in Figure 1-4.

® 0O 0O 43 azat — node e

Azats-Air:~ azat$ node
> 1+1

2

> "Hello"+" "+"World"
'Hello World'

> o=1;b=2;a0+b

3

> 17+429/2%7

118.5

> f = function(x) {return x*2}
[Function]

> f(b)

4

>

Figure 1-4. Executing JavaScript in Node.js REPL

There are slight deviations in ECMAScript implementations in Node.js and browsers such as the Chrome
Developer Tools console. For example, {}+{} is ' [object Object][object Object]' in Node.js REPL, whereas the
same code is NaN in the Chrome console because of the automatic semicolon insertion (ASI) feature. However, for the
most part, Node.js REPL and the Chrome/Firefox consoles are similar.

Launching Node.js Scripts

To start a Node.js script from a file, simply run $ node filename—for example, $ node program.js.If all we need is
a quick set of statements, there’s a -e option that allows us to run inline JavaScript/Node.js—for example, $ node -e
"console.log(new Date());".

CHAPTER 1~ SETTING UP NODE.JS AND OTHER ESSENTIALS

If the Node.js program uses environmental variables, it’s possible to set them right before the node command.
For example:

$ NODE_ENV=production API_KEY=442CC1FE-4333-46CE-80EE-6705A1896832 node server.js

Preparing your code for production is discussed later in Chapter 10.

Node.js Basics and Syntax

Node.js was built on top of the Google Chrome V8 engine and its ECMAScript, which means most of the Node.js
syntax is similar to front-end JavaScript (another implementation of ECMAScript), including objects, functions,
and methods. In this section, we look at some of the most important aspects; let’s call them Node.js/JavaScript
Jundamentals:

e Loose typing

e Buffer—Node.js super data type
e Objectliteral notation

e Functions

e Arrays

e Prototypal nature

o Conventions

Loose Typing

Automatic typecasting works well most of the time. It’s a great feature that saves a lot of time and mental energy!
There are only a few types of primitives:

e String

e Number (both integer and real)
e Boolean

e Undefined

e Nul

e RegExp

Everything else is an object (i.e., mutable keyed collections, read Stackoverflow on “What does immutable
mean?’;! if in doubt).

Also, in JavaScript, there are String, Number, and Boolean objects that contain helpers for the primitives,
as follows:

'a' === new String('a') //false

but

'http://stackoverflow.com/questions/3200211/what-does-immutable-mean

http://stackoverflow.com/questions/3200211/what-does-immutable-mean

CHAPTER 1 © SETTING UP NODE.JS AND OTHER ESSENTIALS

a' === new String('a").toString() //true

a' == new String('a') //true

By the way, == performs automatic typecasting whereas === does not.

Buffer—Node.js Super Data Type

Buffer is a Node.js addition to four primitives (boolean, string, number, and RegExp) and all-encompassing objects
(array and functions are also objects) in front-end JavaScript. Think of buffers as extremely efficient data stores. In
fact, Node.js tries to use buffers any time it can, such as when reading from file systems and when receiving packets
over the network.

Object Literal Notation

Object notation is super readable and compact:

var obj = {
color: "green",
type: "suv",
owner: {
}

}

Remember, functions are objects:

var obj = function () {
this.color: "green",
this.type: "suv",
this.owner: {

}
}

Functions

In Node.js (as well as in JavaScript), functions are first-class citizens, and we treat them as variables, because they are
objects! Yes, functions can even have properties/attributes. First, let’s learn how to define a function.

Define/Create a Function

The three most common ways to define/create a function are to use a named expression, an anonymous expression
assigned to a variable, or both. The following is an example of a named expression:

function f () {
console.log('Hi');
return true;

}
10

CHAPTER 1~ SETTING UP NODE.JS AND OTHER ESSENTIALS

An anonymous function expression assigned to a variable looks as follows (note that it must precede the
invocation, because the function is not hoisted, unlike the previous example):

var f = function () {
console.log('Hi');
return true;

}

The following is an example of both approaches:

var f = function f () {
console.log('Hi");
return true;

}

A function with a property (remember, functions are just objects that can be invoked/initialized) is as follows:
var f = function () {console.log('Boo"');}
f.boo = 1;

)
f(); //outputs Boo
console.log(f.boo); //outputs 1

Note The return keyword is optional. When it is omitted, the function returns undefined on invocation.

Pass Functions as Parameters

JavaScript treats functions like any other objects, so we can pass them to other functions as parameters (usually,
callbacks in Node.js):

var convertNum = function (num) {
return num + 10;

}

var processNum = function (num, fn) {
return fn(num);
}

processNum(10, convertNum);

Function Invocation vs. Expression

The function definition is as follows:

function £ () {};

11

CHAPTER 1 © SETTING UP NODE.JS AND OTHER ESSENTIALS

On the other hand, the function invocation looks like

fO);
Expression, because it resolves to some value (which could be a number, string, object, or boolean), is as follows:

function f() {return false;}
fO;

A statement looks like

function f(a) {console.log(a);}

Arrays

Arrays are also objects that have some special methods inherited from the Array.prototype? global object.
Nevertheless, JavaScript arrays are not real arrays; instead, they are objects with unique integer (usually 0 based) keys.

var arr = [];

var arr2 = [1, "Hi", {a:2}, function () {console.log('boo');}];

var arr3 = new Array();

var arr4 = new Array(1,"Hi", {a:2}, function () {console.log('boo');});

Prototypal Nature

There are no classes in JavaScript because objects inherit directly from other objects, which is called prototypal
inheritance. There are a few types of inheritance patterns in JavaScript:

e (lassical
e Pseudoclassical
e Functional

This is an example of the functional inheritance pattern:

var user = function (ops) {

return { firstName: ops.name || 'John'
, lastName: ops.name || 'Doe’
, email: ops.email || 'test@test.com'
, name: function() { return this.firstName + this.lastName}
}
}
var agency = function(ops) {
ops = ops || {}

var agency = user(ops)
agency.customers = ops.customers || 0
agency.isAgency = true

return agency

*https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/prototype

12

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/prototype

CHAPTER 1~ SETTING UP NODE.JS AND OTHER ESSENTIALS

Conventions
It’s important to follow the most common language conventions. Some of them are listed here:
e Semicolons
e camelCase
e Naming
e Commas
¢ Indentations
e Whitespace

These JavaScript/Node.js conventions (with semicolons being an exception) are stylistic and highly preferential.
They don’t impact the execution; however, it’s strongly suggested that you follow one style consistently, especially if
you are a developer working in teams and/or on open-source projects. Some open-source projects might not accept
pull requests if they contain semicolons (e.g., NPM) or if they don’t use comma-first style (e.g., request).

Semicolons
The use of semicolons is optional, except for two cases:
1. Inforloop construction: for (var i=0; i++; i<n)

2. When a new line starts with parentheses, such as when using an immediately invoked
function expression (IIFE): ; (function(){...}())

camelCase

camelCase is the main naming pattern in JavaScript, except for class names, which are CapitalCamelCase. An example
follows:

var MainView = Backbone.View.extend({...})
var mainView = new MainView()

Naming

_and $ are perfectly legitimate characters for literals (jQuery and Underscore libraries use them a lot). Private
methods and attributes start with _ (and it does nothing by itself?).

Commas

An example of a comma-first approach is as follows:

var obj = { firstName: "John"
, lastName: "Smith"
, email: "johnsmith@gmail.com"

}

13

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 1 © SETTING UP NODE.JS AND OTHER ESSENTIALS

Indentation

Indentation is usually done using either a tab, or four- or two-space indentation, with supporting camps split almost
religiously between the two options.

Whitespace

Usually, there is a space before and after the =, +, {, and } symbols. There is no space on invocation (e.g., arr.push(1);),
but there’s a space when we define an anonymous function: function () {}.

Node.js Globals and Reserved Keywords

Despite being modeled after one standard, Node.js and browser JavaScript differ when it comes to globals. This was
done intentionally because when var is omitted, browser JavaScript leaks variables infamously to the global space,
thus polluting it. This has been dubbed as one of the bad parts of JavaScript in the canonical book JavaScript: The
Good Parts by Douglas Crockford (2008 O'Reilly).

As you might know, in browser JavaScript we have a window object. However, in Node.js, it is absent (obviously we
don’t deal with a browser window), but developers are provided with new objects/keywords:

e process
e global
e module.exports and exports

So, let’s take a look at the main differences between Node.js and JavaScript.

Node.js Process Information

Each Node.js script that runs is, in essence, a process. For example, ps aux | grep 'node' outputs all Node.js
programs running on a machine. Conveniently, developers can access useful process information in code with the
process object (e.g., node -e "console.log(process.pid)"), as shown in Figure 1-5.

14

CHAPTER 1~ SETTING UP NODE.JS AND OTHER ESSENTIALS

e 00 1. azat.mardanov@DSA002579: ~/code (zsh) o
: bash] (nod ~/code (zsh)

¢ code $ node -e
41270

¢ code $ node -e "console.log(process.cwd())"
/Users/azat.mardanov/code

¢ code $ node -e "console.log(process.pid)”
41280

¢ code $ node -e "console.log(process.pid)”
41284

¢ code $§

L 4

Figure 1-5. Node.js process examples using pid (process ID) and cwd (current working directory)

Accessing Global Scope in Node.js

As you know, browser JavaScript, by default, puts everything into its global scope. On the other hand, Node.js was
designed to behave differently, with everything being local by default. In case we need to access globals, there is a
global object. And, when we need to export something, we should do so explicitly.

In a sense, the window object from front-end/browser JavaScript metamorphosed into a combination of global
and process objects. Needless to say, the document object, which represents the DOM (Document Object Model) of
the web page, is nonexistent in Node.js.

Exporting and Importing Modules

Another bad part in browser JavaScript is that there is no way to include modules. Scripts are supposed to be
linked together using a different language (HTML), but dependency management is lacking. Common]S
(http://www.commonjs.org/) and Require]S (http://requirejs.org/) solve this problem with the AJAX-y
approach. Node.js borrowed many things from the Common]JS concept.

To export an object in Node.js, use exports.name = object;. An example follows:

var messages = {
find: function(req, res, next) {

b

add: function(req, res, next) {

b

format: 'title | date | author'
}

exports.messages = messages;

15

http://www.commonjs.org/
http://requirejs.org/

CHAPTER 1 © SETTING UP NODE.JS AND OTHER ESSENTIALS

While in the file where we import the aforementioned script (assuming the path and the file name is
route/messages.js), write the following:

var messages = require('./routes/messages.js');

However, sometimes it’s more fitting to invoke a constructor, such as when we attach properties to the Express.js
app (which is explained in detail in Express.js FUNdamentals: An Essential Overview of Express.js [2013],
http://webapplog.com/express-js-fundamentals/). In this case, module.exports is needed:

module.exports = function(app) {
app.set('port', process.env.PORT || 3000);
app.set('views', dirname + '/views');
app.set('view engine', 'jade');
return app;

In the file that includes the previous sample module, write

var app = express();
var config = require('./config/index.js');
app = config(app);

The more succinct code is var = express(); require('./config/index.js")(app);.

The most common mistake when including modules is creating a wrong path to the file. For core Node.js
modules, use the name without any path—for example, require('name'). The same goes for modules in the
node_modules folder (more on this when we examine NPM later in the chapter).

For all other files (i.e., not modules), use . with or without a file extension. An example follows:

var keys = require('./keys.js'),
messages = require('./routes/messages.js');

In addition, for including files, it’s possible to use longer statements with __dirname and path.join()—for
example, require(path.join(__dirname, ,'routes', 'messages'));.Thisis a recommended approach, because
path. join() will produce a path with valid slashes (forward or backward depending on your OS).

If require() points to a folder, Node.js attempts to read the index. js file in that folder.

__dirname vs. process.cwd

__dirname is an absolute path to the file in which the global variable is called, whereas process.cwd is an absolute
path to the process that runs the script. The latter might not be the same as the former if we started the program from
a different folder, such as $ node ./code/program. js.

16

http://webapplog.com/express-js-fundamentals/

CHAPTER 1~ SETTING UP NODE.JS AND OTHER ESSENTIALS

Browser Application Programming Interface Helpers

There are myriad helper functions in Node.js from the browser JavaScript application programming interface (API).
The most useful come from String, Array, and Math objects. To make you aware of their existence, or to remind you,
here is a list of the most common functions and their meanings:

e Array

some() and every(): assertions for array items
join() and concat(): convertion to a string

pop(), push(), shift(), and unshift(): working with stacks and queues
map (): model mapping for array items

filter(): querying array items

sort(): ordering items

reduce(), reduceRight(): computing

slice(): copying

splice(): removing

index0f(): lookups of finding the value in the array
reverse(): reversing the order

The in operator: iteration over array items

e Math

random(): random real number less than one

e String

substr() and substring(): extracting substrings
length: length of the string
index0f(): index of finding the value in the string

split(): converting the string to an array

In addition, we have setInterval(), setTimeout(), forEach(), and console methods in Node.js. For the
complete list of methods and examples, visit the following sites:

e String (https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Global Objects/String)

e Array (https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Global Objects/Array)

e Math (https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Global Objects/Math)

17

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math

CHAPTER 1 © SETTING UP NODE.JS AND OTHER ESSENTIALS

Node.js Core Modules

Unlike other programming technologies, Node.js doesn’t come with a heavy standard library. The core modules of
node.js are a bare minimum, and the rest can be cherry-picked via the NPM registry. The main core modules, classes,
methods, and events include the following:

e http (http://nodejs.org/api/http.htmlithttp_http)

e util (http://nodejs.org/api/util.html)

e querystring (http://nodejs.org/api/querystring.html)
o url (http://nodejs.org/api/url.html)

o fs (http://nodejs.org/api/fs.html)

hitp (http://nodejs.org/api/http.html)
http is the main module responsible for the Node.js HTTP server. The main methods are as follows:
e http.createServer(): returns a new web server object
e http.listen(): begins accepting connections on the specified port and hostname
e http.createClient():is a client and makes requests to other servers
e http.ServerRequest(): passes incoming requests to request handlers
e data: emitted when a part of the message body is received
¢ end: emitted exactly once for each request
e request.method(): the request method as a string
e request.url(): request URL string

e http.ServerResponse(): creates this object internally by an HTTP server — not by
the user— and is used as an output of request handlers

e response.writeHead(): sends a response header to the request
e response.write(): sends aresponse body

e response.end(): sends and ends a response body

util (http://nodejs.org/api/util.html)

The util module provides utilities for debugging. One method is as follows:

e util.inspect(): returns a string representation of an object, which is useful for debugging

querystring (http://nodejs.org/api/querystring.html)
The querystring module provides utilities for dealing with query strings. Some of the methods include the following:
e querystring.stringify(): serializes an object to a query string

e querystring.parse(): deserializes a query string to an object

18

http://nodejs.org/api/http.html%23http_http
http://nodejs.org/api/util.html
http://nodejs.org/api/querystring.html
http://nodejs.org/api/url.html
http://nodejs.org/api/fs.html
http://nodejs.org/api/http.html
http://nodejs.org/api/util.html
http://nodejs.org/api/querystring.html

CHAPTER 1~ SETTING UP NODE.JS AND OTHER ESSENTIALS

url (http://nodejs.org/api/url.html)

The url module has utilities for URL resolution and parsing. One method is as follows:

e parse(): takes a URL string and returns an object

fs (http://nodejs.org/api/fs.html)

fs handles file system operations such as reading to and writing from files. There are synchronous and asynchronous
methods in the library. Some of the methods include the following:

e fs.readFile():reads files asynchronously
o fs.writeFile(): writes data to files asynchronously
There is no need to install or download core modules. To include them in your application, all you need is to use
the following syntax:

var http = require('http');

A list of noncore modules is found at the following locations:
e npmjs.org (https://npmjs.org): for the NPM registry

e GitHub hosted list (https://github.com/joyent/node/wiki/Modules): for Node.js modules
maintained by Joyent

¢ nodetoolbox.com (http://nodetoolbox.com/): for a registry based on stats
e Nipster (http://eirikb.github.com/nipster/): for NPM search tools for Node.js
e Node tracking (http://nodejsmodules.org): for a registry based on GitHub stats

If you want to know how to code your own modules, take a look at the article “Your First Node.js Module®”

Handy Node.js Utilities

Although the core of the Node.js platform was, intentionally, kept small, it has some essential utilities, including
the following:

e Crypto(http://nodejs.org/api/crypto.html): has randomizer, MD5, HMAC-SHA1L, and
other algorithms

e Path(http://nodejs.org/api/path.html): handles system paths

e Stringdecoder(http://nodejs.org/api/string_decoder.html): decodes to and from buffer
and string types

The method we use throughout is path. join and it concatenates the path using an appropriate folder
separator (/ or \\).

*http://cnnr.me/blog/2012/05/27/your-first-node-dot-js-module/

19

http://nodejs.org/api/url.html
http://nodejs.org/api/fs.html
https://npmjs.org
https://github.com/joyent/node/wiki/Modules
http://nodetoolbox.com/
http://eirikb.github.com/nipster/
http://nodejsmodules.org
http://nodejs.org/api/crypto.html
http://nodejs.org/api/path.html
http://nodejs.org/api/string_decoder.html
http://cnnr.me/blog/2012/05/27/your-first-node-dot-js-module/

CHAPTER 1 © SETTING UP NODE.JS AND OTHER ESSENTIALS

Reading to and Writing from the File System in Node.js

Reading from files is done via the core fs module (http://nodejs.org/api/fs.html). There are two sets of reading
methods: async and sync. In most cases, developers should use async methods, such as fs.readFile:

var fs = require('fs');

var path = require('path');

fs.readFile(path.join(__dirname, '/data/customers.csv'), {encoding: 'utf-8'}, function (err, data) {
if (err) throw err;

console.log(data);

1;

To write to the file, execute the following:

var fs = require('fs');

fs.writeFile('message.txt', 'Hello World!', function (err) {
if (err) throw err;
console.log('Writing is done."');

B;

Streaming Data in Node.js

Streaming data is a phrase that means an application processes the data while it’s still receiving it. This feature is
useful for extra large datasets such as video or database migrations.
Here’s a basic example of using streams that output the binary file content back:

var fs = require('fs');
fs.createReadStream('./data/customers.csv').pipe(process.stdout);

By default, Node.js uses buffers for streams. For more immersive instruction, take a look at stream-adventure
(http://npmjs.org/stream-adventure) and Stream Handbook (https://github.com/substack/stream-handbook).

Installing Node.js Modules with NPM

NPM comes with the Node.js platform and allows for seamless Node.js package management. The way npm install
works is similar to Git in the way it traverses the working tree to find a current project (https://npmjs.org/doc/
files/npm-folders.html). For starters, keep in mind that we need either the package.json file or the node_modules
folder to install modules locally with $ npm install name. For example, $ npm install superagent;in the program.
js write: var superagent = require('superagent');.

The best thing about NPM is that it keeps all the dependencies local, so if module A uses module B v1.3, and
module C uses module B v2.0 (with breaking changes compared with v1.3), both A and C will have their own localized
copies of different versions of B. This proves to be a more superior strategy than that of Ruby and other platforms that
use global installations by default.

The best practice is not to include a node_modules folder in the Git repository when the project is a module that
is supposed to be used in other applications. However, it's recommended to include node_modules for deployable
applications to prevent breakage caused by unfortunate dependency updates.

Note The NPM creator likes to call it npm (lowercase, http://npmjs.org/doc/misc/npm-faq.html).

20

http://nodejs.org/api/fs.html
http://npmjs.org/stream-adventure
https://github.com/substack/stream-handbook
https://npmjs.org/doc/files/npm-folders.html
https://npmjs.org/doc/files/npm-folders.html
http://npmjs.org/doc/misc/npm-faq.html

CHAPTER 1~ SETTING UP NODE.JS AND OTHER ESSENTIALS

Taming Callbacks in Node.js

Callbacks (https://github.com/maxogden/art-of-node) are able to make Node.js code asynchronous, yet
programmers unfamiliar with JavaScript, who work with Java or PHP, might be surprised when they see Node.js code
described on Callback Hell (http://callbackhell.com/):

fs.readdir(source, function(err, files) {
if (err) {
console.log('Error finding files: ' + err)
} else {
files.forEach(function(filename, fileIndex) {
console.log(filename)
gm(source + filename).size(function(err, values) {
if (err) {
console.log('Error identifying file size: ' + err)
} else {
console.log(filename + + values)
aspect = (values.width / values.height)
widths.forEach(function(width, widthIndex) {
height = Math.round(width / aspect)
console.log('resizing ' + filename + 'to
this.resize(width, height).write(destination + 'w' + width +
if (err) console.log('Error writing file: ' + err)
1)
}.bind(this))
}
)
1))
}

+ height + 'x' + height)
' ' + filename, function(err) {

1)

There’s nothing to be afraid of here as long as two-space indentation is used. ;-) However, callback code can be
rewritten with the use of event emitters or promises, or by using the async library.

Hello World Server with HTTP Node.js Module

Although, Node.js can be used for a wide variety of tasks, it’s used primarily for building web applications. Node.js
thrives in the network as a result of its asynchronous nature and built-in modules such as net and http.

Here’s a quintessential Hello World example in which we create a server object, define the request handler
(function with req and res arguments), pass some data back to the recipient, and start up the whole thing (hello. js):

var http = require('http');

http.createServer(function (req, res) {
res.writeHead(200, {'Content-Type': 'text/plain'});
res.end('Hello World\n');

}).listen(1337, '127.0.0.1');

console.log('Server running at http://127.0.0.1:1337/");

Let’s break it down a bit (if you know this already, skip to the next section). The following loads the core http
module for the server (more on the modules later):

var http = require('http');
21

https://github.com/maxogden/art-of-node
http://callbackhell.com/
http://127.0.0.1:1337/

CHAPTER 1 © SETTING UP NODE.JS AND OTHER ESSENTIALS

This snippet below creates a server with a callback function which contains the response handler code:
var server = http.createServer(function (req, res) {
To set the right header and status code, use the following:
res.writeHead(200, {'Content-Type': 'text/plain'});
To output Hello World with the line end symbol, use

res.end('Hello World\n');
D;

The req and res arguments have all the information about a given HTTP request and response correspondingly.
In addition, req and res can be used as streams (see previous section).

To make the server accept requests, use the following:
... listen(1337, '127.0.0.1');

From the folder in which you have server.js, launch in your terminal the following command:

$ node server.js

Open localhost:1337 or 127.0.0.1:1337 or any other address you see in the terminal as a result of the console.log()
function and you should see Hello World in a browser. To shut down the server, press Control + ¢ (on Mac OS X).

Note The name of the main file could be different from server.js (e.g., index.js or app.js). In case you need to launch
the app.js file, just use $ node app.js.

Debugging Node.js Programs

Modern-day software developers, especially those who use compiled languages such as Java, get accustomed to rich
tool sets for debugging purposes. Back in the day, before JavaScript and AJAX apps were starting to gain momentum
(~2005-2007), the only way to debug was to put a bunch of alert () statements everywhere. Now, there are amazing
environments such as Chrome Developer Tools and Firefox Firebug! Also, because Node.js has a lot of things in common
with the browser JavaScript environment, we have plenty of options for debugging in Node.js, including the following:

e Core Node.js Debugger: a nongraphic user interface (non-GUI) minimalistic tool that works
everywhere

e Node Inspector: port of Google Chrome Developer Tools

e WebStorm and other IDEs (covered in the next section)

Core Node.js Debugger

The best debugger is console.log(), because it doesn’t break/interrupt the flow, and it is fast and informative. However,
to use it, we first need to know where to put it. Sometimes, we just don’t know where to put the logs! Other times, we
need to see the call stack and orient ourselves in the async code a bit more. To do this, put debugger statements in your
code and use $ node debug program.js to start the debugging process (http://nodejs.org/api/debugger.html).

22

http://nodejs.org/api/debugger.html

CHAPTER 1~ SETTING UP NODE.JS AND OTHER ESSENTIALS

For example, the Hello World from the previous section can be enhanced with debugger in two places: when an
instance is created and when a request is made (hello-debug. js):

var http = require('http');

debugger;

http.createServer(function (req, res) {
res.writeHead(200, {'Content-Type': 'text/plain'});
debugger;
res.end('Hello World\n');

}).listen(1337, '127.0.0.1");

console.log('Server running at http://127.0.0.1:1337/");

Now, if we run the previous snippet (hello-debug. js), just like we did earlier ($ node hello-debug.js), nothing
changes, because we need to use $ node debug hello-debug.js. And only then, the execution halts at the first line,
and then again on the next debugger statement if we use the cont command.

The main node debug commands are as follows:

e next, n: step to the next statement

e cont, c: continue until the next debugger/break point
e step, s:step inside the function call

e out, o: step outside the function call

e watch(expression): watch the expression

The full list of commands is available through the help command or on the official web site
(http://nodejs.org/api/debugger.html).

So, in our example (hello-debug. js), after we start the debugger client and execute cont or ¢ twice (first for
the first line and second for our debugger on the second line), the server will be up and running. After that, we can
open the browser at (http://localhost:1337/) or execute $ curl "(http://localhost:1337/)" in the Terminal/
Command line, and the debugger client stops inside the request handler (line 5). Now we can use repl and console.
log(req) to inspect the HTTP response object dynamically.

Debugging with Node Inspector

The built-in Node.js debugger client is extensive, but it’s not intuitive because of the lack of a GUI Therefore, for a
more developer-friendly interface than the core Node.js debugger provides, node-inspector (https://github.com/
node-inspector/node-inspector) comes to the rescue!

To download and install Node Inspector, we use our beloved NPM in the global mode (-g or --global):
$ npm install -g node-inspector

Then, we start Node Inspector with the following (Figure 1-6):

$ node-inspector

23

[vww allitebooks.cond

http://127.0.0.1:1337/
http://nodejs.org/api/debugger.html
http://localhost:1337/
http://localhost:1337/
https://github.com/node-inspector/node-inspector
https://github.com/node-inspector/node-inspector
http://www.allitebooks.org

CHAPTER 1~ SETTING UP NODE.JS AND OTHER ESSENTIALS

® O 0O || practicalnode — node 2
Azats-Air:practicalnode azat$ node-inspector

Node Inspector v0.6.1
info - socket.io started
Visit http://127.0.0.1:8080/debug?port=5858 to start debugging.

Figure 1-6. Running the Node Inspector tool

Now start the program in a new terminal window/tab/session with - -debug or - -debug-brk flags (not just debug;
Figure 1-7). For example:

$ node --debug-brk hello-debug.js

or

$ node --debug hello-debug.js

24

CHAPTER 1~ SETTING UP NODE.JS AND OTHER ESSENTIALS

® O 0O || practicalnode — node 2

Azats-Air:practicalnode azat$ node --debug hello-debug.js
debugger listening on port 5858
Server running at http://127.0.0.1:1337/

Figure 1-7. Running node server in --debug mode

Open http://127.0.0.1:8080/debug?port=5858 or http://localhost:8080/debug?port=5858 in Chrome
(it must be Chrome and not another browser because Node Inspector uses the Web Developer Tools interface).
You should be able to see the program halted at a break point. Clicking the blue play button resumes the execution,

as shown in Figure 1-8.

25

http://127.0.0.1:8080/debug?port=5858
http://localhost:8080/debug?port=5858

CHAPTER 1 * SETTING UP NODE.JS AND OTHER ESSENTIALS

00)/ Iinwsempecor x Ll — B
€ - C [J127.0.0.1:8080/debug?port=5858 =
[P]| hello-debug.js * BOuj I, A ¥ T ph Paused
1[[function (exports, require, module, _ filename, _ dirname) { var http = require("http'); » Watch Expressions + c
2
3 http.createServer(function (reg, res) { S ack
4| res.writeHead(200, {'Content-Type': 'text/plain'}); (anonymous hello-debug js:1
5 debugger; function)
6| res.end('Hello Worldin' .
7|}).listen(1337, *127.0.0.1'); Module._compile module js:456
B console.log('Server running at http://127.8.8.1:1337/'); module 5474
9|31 Module._extensions..]s
Module.load module.j5:356
Module._load module.j5:312
Module.runMain module.j5:497
listOnTimeout timers.js:110
¥ Scope Variables
¥ Local
—dirname: "/Users/azat/Do.
filename: "/Users/azat/D.
» exports: Object
http: undefined
» module: Module
» reguire: function require.
» this: Object
> Global Object
¥ Breakpoints
No Breakpoints
» DOM Breakpoints
» XHR Breakpoints +
» Event Listener Breakpoints
2= @ {} Lnel,Columnl FY

Figure 1-8. Resuming execution in Node Inspector

If we let the server run and open http://localhost:1337/ in a new browser tab, this action pauses the execution
on the second break point, which is inside the request handler. From here, we can use Node Inspector’s right GUI and
add a res watcher (Figure 1-9), which is way better than the terminal window output!

26

http://localhost:1337/

CHAPTER 1

SETTING UP NODE.JS AND OTHER ESSENTIALS

OO " Node Inspector _New

€< > C ,& 127.0.0.1:8080/debug?port=5858

[[*]| hello-debug.js x

ED)

o] |1 |pe Paused |

{function (exports, require, module, __filename, __dirname) { var http = require('http');
debugger;

lain'});

console. log(Server running ;t http://127.0.9.1:1337/');

)

D00~ O R B N

¥ Watch Expressions
¥ res: ServerResponse
» _events: Object
hangupClose: false
hasBody: true
header: "HTTP/1.1 200 OK.Content-Type: text/plain.Date: .

+ e |

headerSent: false
last: false
maxListeners: 10
trailer: ""

chunkedEnceding: true

» connection: Socket
domain: null
finished: false

» output: Array[e]

» outputEncodings: Array[®]
sendDate: true
shouldKeepAlive: true

» socket: Socket
statusCode: 200
useChunkedEncodingByDefault: true
writable: true

¥ Call Stack
(anonymous function) hello-debug -5
EventEmitter.emit events.js:98
parser.onincoming http.js:2045
parserOnHeadersComplete http.js:119
socket.ondata http.j5:1935
onread net.js:525
v Scope Variables)
s -
» req: IncomingMessage
» res: ServerResponse
> this: Object
* Global Object
¥ Breakpoints
No Breakpoints
» DOM Breakpoints |
| . . » XHR Breakpoints + I
> @ {} Lnes, Columnl £y

Figure 1-9. Inspecting res object in Node Inspector

In addition, we can follow the call stack, explore scope variables, and execute any Node.js command in the

console tab (Figure 1-10)!

27

CHAPTER 1 © SETTING UP NODE.JS AND OTHER ESSENTIALS

Node Inspector X
C [J 127.0.0.1:8080/debug?port=5858

Sources | Console |

res.end('no no no')
true

® 00 localhost:1337 X

& C [localhost:1337

no no no

Figure 1-10. Writing to response (i.e., the res object) from the Node Inspector console

Node.js IDEs and Code Editors

One of the best things about Node.js is that you don’t need to compile the code, because it’s loaded into memory and
interpreted by the platform! Therefore, a lightweight text editor is highly recommended, such as Sublime Text (Figure 1-11),
vs. a full-blown IDE. However, if you are already familiar and comfortable with the IDE of your choice, such as Eclipse
(http://www.eclipse.org/), NetBeans (http://netbeans.org/), or Aptana (http://aptana.com/), feel free to stick with it.

-~
A B Sutsne Tear Tre e
c wwwsublmatet.com

Homa Deownload Buy Blog Forum Support

Sublime Text

Sublime Text is 8 sophisticated text editor for code, markup and prose.
You'll leve the slick user interface, extraordinary features and amazing performance.

ann Damontratian

Rergth) 7 datalsrc_idw +

Elish & @

Use ple Selections to i = 4 1/6 &
Here MO is used to select the next occurrence of the current word.

Download for 05 X

Figure 1-11. Sublime Text code editor home page

28

http://www.eclipse.org/
http://netbeans.org/
http://aptana.com/

CHAPTER 1~ SETTING UP NODE.JS AND OTHER ESSENTIALS

The following is a list of the most popular text editors and IDEs used in web development:

e TextMate (http://macromates.com/): Mac OS X version only, free 30-day trial for v1.5, dubbed
The Missing Editor for Mac OS X

e Sublime Text (http://www.sublimetext.com/): Mac OS X and Windows versions are available,
an even better alternative to TextMate, with an unlimited evaluation period

e Coda (http://panic.com/coda/): an all-in-one editor with an FTP browser and preview, has
support for development with an iPad

e Aptana Studio (http://aptana.com/): a full-size IDE with a built-in terminal and many other tools

e Notepad ++ (http://notepad-plus-plus.org/): a free, Windows-only lightweight text editor
with the support of many languages

e WebStorm IDE (http://www. jetbrains.com/webstorm/): a feature-rich IDE that allows for
Node.js debugging, developed by JetBrains and marketed as “the smartest JavaScript IDE”
(Figure 1-12)

ann Astana | Bownlosd Wi The beat JavaScrion 1DEme =

4 C [www,etbrains.com/webstorm

8 Support Community Company q

JBRAINS

“ WebStorm

Overview What's New Features & Screenshots Docs & Demos Quickstart Guide Download Buy & Upgrade

WebStorm — The smartest JavaScript IDE

WebStorm 6 Released!

TypeScript coding suppart
Detugging with source maps

& Convenient to use [libraries.

® Frash IDE ook and feel & dark Ul

Learn more and try WebSzorm & =

Create great web sites in a great IDE. Check out more JetBrains IDEs for:
The best JavaScript IDE and HTML editor is at your fingertips. p
L @ 4 @
TAThar wron wrant to trir INahStarm.
¥ WabStors-5.0.2a.dmg . % Actana Stutio 3 St demq . #+ Show A1

© L7556 1A, 3 mins left 7 4857136 M3, 3 mins left

Figure 1-12. WebStorm IDE home page

For most developers, a simple code editor such as Sublime Text 2, TextMate, or Emacs is good enough. However, for
programmers who are used to working in IDEs, there’s WebStorm by JetBrains (http: //www. jetbrains.com/webstorm).
For an example of the WebStorm work space, see Figure 1-13.

29

http://macromates.com/
http://www.sublimetext.com/
http://panic.com/coda/
http://aptana.com/
http://notepad-plus-plus.org/
http://www.jetbrains.com/webstorm/
http://www.jetbrains.com/webstorm

CHAPTER 1~ SETTING UP NODE.JS AND OTHER ESSENTIALS

T

NodeE)52 [OJpublic [stylesheets main.styl
g7 " 3 5 E] index.ejs E] header.ejs E footer.ejs

v [NodeE)S2 (~/
» [node_modules
¥ OJpublic
[images
[javascripts

div.container divido-to-list div.to-do-item

input" placeholde

] ndex.ejs
Erapp.Js

Node.js interpreter: | fusr/local /bin/node

Version: v0.10.18

fonts = helvetica, arial, sans-serif

ius()
arguments Packages
arguments

Package Version Latest
arguments

0.8.4 4 Install

]

«header

Cancel Help
.container

% 6:TODO [-] Terminal &, EventLog

1 Nodejs settings 7 : UTF-B: B

Figure 1-13. Webstorm IDE work space

Watching for File Changes

If you are familiar with watching for file changes or it’s not an issue for you, feel free to skip this section.

Node.js applications are stored in memory, and if we make changes to the source code, we need to restart the
process (i.e., node). We do this manually by killing the process and starting a new one (Control + ¢ on Macs and Ctrl
+ ¢ on Windows). However, it’s faster for development if this constant sequence of restarts is automated. There are
brilliant tools that leverage the watch method from the core Node.js fs module and restart servers when we save
changes from an editor:

e forever (http://npmjs.org/forever) (GitHub, http://github.com/nodejitsu/forever)
usually used in production (we examine this topic in Chapter 11)

e node-dev (https://npmjs.org/package/node-dev) (GitHub, https://github.com/fgnass/node-dev)

30

http://npmjs.org/forever
http://github.com/nodejitsu/forever
https://npmjs.org/package/node-dev
https://github.com/fgnass/node-dev

CHAPTER 1~ SETTING UP NODE.JS AND OTHER ESSENTIALS

e nodemon (https://npmjs.org/package/nodemon) (GitHub, https://github.com/remy/nodemon)

e supervisor (https://npmjs.org/package/supervisor) (GitHub, https://github.com/
isaacs/node-supervisor)

e up (https://npmjs.org/package/up) (GitHub, https://github.com/LearnBoost/up), now a
deprecated module

Any one of these tools is as easy to use as installing globally with $ npm install -g node-dev, then running the
Node.js script with $ node-dev program. js. Just replace node-dev with another module name.©

For a comparison between these tools, refer to Comparison: Tools to Automate Restarting Node.js Server After
Code Changes (http://strongloop.com/strongblog/comparison-tools-to-automate-restarting-node-js-
server-after-code-changes-forever-nodemon-nodesupervisor-nodedev/).

Tip It’'s good to know that Express.js reloads a template file for every new request by default. So, no server restart
is necessary. However, we can cache templates by enabling the view cache setting. For more Express.js setting, take a
look at Pro Express.js 4 [2014, Apress].

Summary

In this chapter, we explored Installing Node.js and NPM, and launching Node.js scripts from the command line.
We also looked at the essential concepts of Node.js syntax and the platform. Last, lists of Node.js IDEs and libraries
for development were provided.

In the next chapter, we dive deep into using the most popular Node.js framework for creating web apps.

31

https://npmjs.org/package/nodemon
https://github.com/remy/nodemon
https://npmjs.org/package/supervisor
https://github.com/isaacs/node-supervisor
https://github.com/isaacs/node-supervisor
https://npmjs.org/package/up
https://github.com/LearnBoost/up
http://strongloop.com/strongblog/comparison-tools-to-automate-restarting-node-js-server-after-code-changes-forever-nodemon-nodesupervisor-nodedev/
http://strongloop.com/strongblog/comparison-tools-to-automate-restarting-node-js-server-after-code-changes-forever-nodemon-nodesupervisor-nodedev/

CHAPTER 2

Using Express.js 4 to Create Node.js
Web Apps

It's only logical that, by using frameworks, software engineers become more productive and can achieve results faster.
Often, the results are of a better quality because the frameworks are used and maintained by many other developers
and contributors. Even if developers build everything from scratch, they end up with their own framework in the end.
It's just a very customized one!

Node.js is a relatively young platform when it comes to frameworks (unlike Ruby or Java), but there’s already a
leader that has become a de facto standard used in the majority of Node.js projects: Express.js.

Express.js is an amazing framework for Node.js projects, and it’s used in the majority of web apps, which is why
this second chapter is dedicated to getting started with this framework.

In this chapter we cover the following topics, which serve as an introduction to Express.js:

e What Express.js is

e How Express.js works

e Express.js Installation

e Express.js scaffolding (command-line tool)
e The Blog Project overview

e Express.js 4 Hello World example

What Is Express.js?

Express.js is a web framework based on the core Node.js http module and Connect (http://www.senchalabs.org/
connect/) components. The components are called middleware and they are the cornerstones of the framework
philosophy configuration over convention. In other words, Express.js systems are highly configurable, which allows
developers to pick freely whatever libraries they need for a particular project. For these reasons, the Express.js
framework leads to flexibility and high customization in the development of web applications.

If you write serious apps using only core Node.js modules (refer to the following snippet for an example), you most
likely find yourself reinventing the wheel by writing the same code continually for similar tasks, such as the following:

e Parsing of HTTP request bodies
e Parsing of cookies

e Managing sessions

33

http://www.senchalabs.org/connect/
http://www.senchalabs.org/connect/

CHAPTER 2 * USING EXPRESS.JS 4 TO CREATE NODE.JS WEB APPS

e Organizing routes with a chain of if conditions based on URL paths and HTTP methods of
the requests

¢ Determining proper response headers based on data types

To illustrate my point, here is an example of a two-route representational state transfer:
http://en.wikipedia.org/wiki/Representational state_transfer

(REST) API server, i.e., we have only two end points and they are also called routes. In this application, we use
only core Node.js modules for server functions. A single “userland”/external native MongoDB driver module is used
for persistence. This example is taken from beginner-friendly Rapid Prototyping with JS (http://xpjs.co/):
Agile JavaScript Development by Azat Mardan [2013]:

var http = require('http');

var util = require('util');

var querystring = require('querystring');
var mongo = require('mongodb');

var host = process.env.MONGOHQ URL ||
'mongodb://@127.0.0.1:27017";
//MONGOHQ_URL=mongodb://user :pass@server.mongohq.com/db_name
mongo.Db.connect(host, function(error, client) {
if (error) throw error;
var collection = new mongo.Collection(
client,
"test_collection’
)s
var app = http.createServer(
function (request, response) {

if (
request.method === 'GET' &&
request.url === '/messages/list.json’
) o

collection.find().toArray(function(error, results) {
response.writeHead(
200,
{'Content-Type': 'text/plain'}
);
console.dir(results);
response.end(JSON. stringify(results));
1;
};
if (
request.method === "POST" &&
request.url === "/messages/create.json"
)
request.on('data’, function(data) {
collection.insert(
querystring.parse(data.toString('utf-8')),
{safe: true},
function(error, obj) {
if (error) throw error;
response.end(JSON.stringify(obj));

}
34

[vww allitebooks.cond

http://en.wikipedia.org/wiki/Representational_state_transfer
http://rpjs.co/
http://www.allitebooks.org

CHAPTER 2 * USING EXPRESS.JS 4 TO CREATE NODE.JS WEB APPS

);
s
};

;s

var port = process.env.PORT || 5000;
app.listen(port);
b

Asyou can see, developers have to do a lot of manual work themselves, such as interpreting HTTP methods and
URLs into routes, and parsing input and output data.

Express.js solves these and many other problems as abstraction and code organization. The framework
provides a model-view-controller-like (MVC-like) structure for your web apps with a clear separation of concerns
(views, routes, models).

For the models (M in MVC), we need to use Mongoose (http://mongoosejs.com/) or Sequelize
(http://sequelizejs.com/) libraries in addition to Express.js— more on this later in the book in Chapter 7. In this
chapter we'll cover the basics of Express.js. Built on top this framework, Express.js applications can vary from bare-bones,
back-end-only REST APISs to full-blown, highly scalable, full-stack with jade-browser (https://npmjs.org/package/
jade-browser) and Socket.IO (http://socket.io/), real-time web apps. To give some analogies to developers who
are familiar with Ruby—Express.js is often seen as Sinatra, which has a very different approach to the Ruby on Rails
framework. Express.js and Sinatra promote the configurability while Ruby on Rails convention over configuration.

Although Express.js is the most starred library on NPM (as of May 2014), and the most mature and used Node.
js framework, the playing field is still relatively level with many different frameworks, and new ones are released
every month. Some of them, such as Meteor (http://meteor.com/) and Derby]S (http://derbyjs.com/), show
an interesting trend in attempts to merge front-end and back-end code bases. For a handpicked list of Node.js
frameworks, refer to the Node Framework (http://nodeframework.com/) resource.

When evaluating a Node.js framework for your project, use these easy steps to guide you:

e Build a sample app which is usually provided by the creators of frameworks on GitHub or
official web sites. See how the app feels in terms of styles and patterns.

e Consider the type of application you're building: prototype, production app, minimum viable
product (MVP), small scale, large scale, and so on.

e Consider the libraries already familiar to you and determine whether you can or plan to reuse
them, and whether your framework plays nicely with them. Provide out-of-the-box solutions:
template engines, database object-relational mapping (http://en.wikipedia.org/wiki/
Object-relational _mapping) libraries (ORMs) / drivers, cascading style sheets
(http://en.wikipedia.org/wiki/Cascading_Style Sheets) (CSS) frameworks.

e Consider the nature of your application: REST API (with a separate front-end client), a
traditional web app, or a traditional web app with REST API end points (such as Blog).

e Consider whether you need the support of reactive templates with WebSocket from the
get-go. (the Meteor framework, anyone?)

e Evaluate the number of stars and follows on NPM and GitHub to judge the popularity of the
framework. More popular typically means more blog posts, books, screencasts, tutorials, and
programmers exist; less popular means this is a newer framework, a niche/custom choice, or a
poor choice. With newer frameworks, there is a greater chance that contributing back to them
will be valued, so pick your comfortable spot.

e Evaluate NPM, GitHub pages, and a framework’s website for the presence of good API
documentation with examples or open issues/bugs. If there are more than a few hundred,
depending on popularity, this may not be a good sign. Also, determine the date of the last
commit on the GitHub repository. Anything older than six months is not a good sign.

35

http://mongoosejs.com/
http://sequelizejs.com/
https://npmjs.org/package/jade-browser
https://npmjs.org/package/jade-browser
http://socket.io/
http://meteor.com/
http://derbyjs.com/
http://nodeframework.com/
http://en.wikipedia.org/wiki/Object-relational_mapping
http://en.wikipedia.org/wiki/Object-relational_mapping
http://en.wikipedia.org/wiki/Cascading_Style_Sheets

CHAPTER 2 * USING EXPRESS.JS 4 TO CREATE NODE.JS WEB APPS

How Express.js Works

Express.js usually has an entry point—aka, a main file. Most of the time, this is the file that we start with the node
command; or export as a module, in some cases. And in this file, we do the following:

1. Include third-party dependencies as well as our own modules, such as controllers, utilities,
helpers, and models

Configure Express.js app settings such as template engine and its file extensions
Connect to databases such as MongoDB, Redis, or MySQL (optional)

Define middleware such as error handlers, static files folder, cookies, and other parsers
Define routes

Start the app

N o o &~ e Db

Export the app as a module (optional)

When the Express.js app is running, it’s listening to requests. Each incoming request is processed according to
a defined chain of middleware and routes, starting from top to bottom. This aspect is important in controlling the
execution flow. For example, routes/middleware that are higher in the file have precedence over the lower definitions.
Because we can have multiple middleware functions processing each HTTP request, some of the functions are in
the middle (hence the name middleware). Here are some examples of middleware purposes:

1. Parse cookie information and put it in req object for following middleware/routes
2. Parse parameters from the URL and put it in req object for following middleware/routes

3. Getthe information from the database based on the value of the parameter if the user is
authorized (cookie/session) and put it in req object for following middleware/routes

4. Authorize users/requests, or not.

5. Display the data and end the response

Express.js Installation

The Express.js package comes in two flavors:

1. express-generator: a global NPM package that provides the command-line tool for rapid
app creation (scaffolding)

2. express:alocal package module in your Node.js app’s node_modules folder

Express.js Version

Before we proceed with installations, let’s check the Express.js versions. We'll use an exact version 4.1.2 to avoid
confusion resulting from potential future changes to the Express.js skeleton-generating mechanism and the
module APL

For the Express.js Generator, which is a separate module, we'll use version 4.0.0, which is compatible with
Express.js 4.x. If you have a version other than 4.0.0 ($ express -V to check), you can uninstall it using$ sudo npm
uninstall -g express-generator.Or$ sudo npm uninstall -g express for Express.js 2.x and 3.x. Before, version
4.x, Express.js Generator was a part of the Express.js module itself. After you've uninstalled the older versions, install
the proper version with the next section’s commands.

36

CHAPTER 2 * USING EXPRESS.JS 4 TO CREATE NODE.JS WEB APPS

Express.js Generator

To install the Express.js Generator as global package, run $ npm install -g express-generator@4.0.0 from
anywhere on your computer. This downloads and links the $ express terminal command to the proper path, so that
later we can access its command-line interface (CLI) for the creation of new apps.

Note For Max OS X and Linux users, if there is an error installing globally, most likely your system requires root/
administrator rights to write to the folder. In this case, $ sudo npm install -g express-generator@4.0.0 might be
needed. Refer to Chapter 1 for more information on changing NPM ownership.

Of course, we can be more vague and tell NPM to install the latest version of express-generator: $ npm install
-g express-generator. Butin this case your results might be inconsistent with the book’s examples.

The Figure 2-1 shows us results of running the aforementioned command. Please notice the path in Figure 2-1:
/usr/local/lib/node_modules/express-generator. This is where, on Max OS X / Linux systems, NPM puts global
modules by default. We verify the availability of Express.js CLI by running $ express -V.

D
®)

[_] practicalnode — bash "

pause®9.@.1 No repository field.

send®d.1.0 No repository field.

cookie-signoture@d..1 No repository field.

bytes@9.2.1 No repository field.

batch@9.5.0 No repository field.

uid289.0.3 Mo repository field.

css81.0.8 No repository field.

assert-plus@d,.1.Z No repository field.

ctype®9.5.2 No repository field.

bytes@d.1.8 No repository field.

omdefine®d.0.4 No repository field.

css-parse@1.0.4 No repository field.

css-5tringify@1.0.5 No repository field.
fusr/local/1ib/node_modules/wintersaith/node_modules/n

pm/node_modules/npm-registry-client requires semver®'A2.2.1' but will load

fusr/local/1ib/node_modules/wintersaith/node_modules/n

fiffffigsggiiio

npm
po/node_modules/semver,
which is version 2.2.1
express-generator@4.0.8 /usr/local/lib/nod dules/expr generator
— mkdirp@9.3.5

— cosmander®l.3.2 (keypress@.1.8)

Azats-Air:practicalnode azat$ express -V

4.0.0

Azats-Air:practicalnode azat$

i

Figure 2-1. The result of running NPM with -g and $ express -V

Local Express.js

For the local Express.js 4.1.2 module installation, let’s create a new folder express-cli somewhere on your computer:
$ mkdir express-cli. This will be our project folder for the chapter. Now we can open it with $ cd express-cli.
When we are inside the project folder, we can create package. json manually in a text editor or with the $ npm init
terminal command (Figure 2-2).

37

CHAPTER 2 * USING EXPRESS.JS 4 TO CREATE NODE.JS WEB APPS

8ano [l express-cli — bash '
ge. json:

"nome”: “express-cli®,
": "0.0.9",

“outhor: "
"license™: "BSD"
}

Is this ok? (yes) yes

npm express-cli®d. 8.8 Mo repository field.
npm express-cli@.0.9 No readme data.
Azaots-Air;express-cli azat$ 1s -lah

total 8

drvcrwxr-x 3 azat odwin 1028 Moy 9
drar-xr-x 18 ozot odein 3408 Moy 9 1
-rw-rw-r-- 1 azot odein 2078 May 9
Azots-Air:express-cli azot$

Figure 2-2. The result of running$ npm init

The following is an example of the package. json file with vanilla $ npm init options:

"name": "express-cli",
"version": "0.0.1",
"description": "",
"main": "index.js",
"scripts": {

"test": "echo \"Error: no test specified\" && exit 1"
1
"author":
"license": "BSD"

un
)

Lastly, we install the module using NPM:
$ npm install express@4.1.2 --save
Or, if we want to be less specific, which is not recommended for this example, use:

$ npm install express

Note If you attempt to run the aforementioned $ npm install express command without the package. json file
or the node_modules folder, the smart NPM will traverse up the directory tree to the folder that has either of these two
things. This behavior mimics Git’s logic somewhat. For more information on the NPM installation algorithm, please refer to
the official documentation at https://npmjs.org/doc/folders.html.

38

https://npmjs.org/doc/folders.html

CHAPTER 2 * USING EXPRESS.JS 4 TO CREATE NODE.JS WEB APPS

Alternatively, we can update the package. json file by specifying the dependency ("express": "4.1.2" or

"express": "4.x")andrun$ npm install.

The following is the package. json file with an added Express.js v4.1.2 dependency (the latest as of May 2014):

"name": "expressjsguide",
"version": "0.0.1",
"description": "",
"main": "index.js",
"scripts": {

"test": "echo \"Error: no test specified\" && exit 1"

1

"dependencies": {
"express": "4.1.2"

1

"author": "",

"license": "BSD"

}
$ npm install

In Figure 2-3, we show the result of install Express.js v4.1.2 locally, into the node_modules folder. Please notice the
path after the express@4.1.2 string in Figure 2-3 is now local and not global, as in the case of express-generator.

800 (] express-cli — bash p
npm hittp https://registry.npmjs.org/negotiator

npm http https://registry.npmjs.org/debug/0.8.0

npm htty https://registry.npmjs.org/mime/1.2.11

express@4. 1.2 node_modules/express

— methods®0.1.0

— escape-htm1€1.0.1

— debugl®.8.1

— cookie-signature@1.0.3
range-parser®1.0.9

3

ffer-crc3200.2.1

rve-static®l.1.9

~to-regexp@d. 1,2

.3.0 (debug®.8.0, mime€1.2.11)
-i501.1.0 (mime@1.2.11)

— accepts®l1.0.1 (negotiotor@.4.3, mimef1,2.11)
Azats-Air:express-cli azat$ 1s

node_modules package. json
Azats-Air:express-cli azat$

H

TTTTTTTT
a g

3

Figure 2-3. The result of running$ npm install

If you want to install Express.js to an existing project and save the dependency (smart thing to do!) into the
package. json file, which is already present in that project’s folder, run $ npm install express@4.1.2 --save.
To double-check the installation of Express.js and its dependencies, we can run the $ npm 1s command, as

shown in Figure 2-4.

39

CHAPTER 2 * USING EXPRESS.JS 4 TO CREATE NODE.JS WEB APPS

e 0o (L] express—cli — bash)
Azats-Air:express-cli azat$ npm 1s

npm express-cli®d.9.9 No repository field.

npm express-cli®d.9.8 No readme data,

express-cli®d.0.0 /Users/azot/Documents/Code/practicalnode/chZ/express-cli
—r express@4,1.2

b accepts#l.8.1

| — mimef1.2,11

| “— negotiatord.4.3

— buffer-crc3200.2.1

T
Tkt
g?abﬁ 2
SREE

ITTTTT

Figure 2-4. The result of running$ npm 1s

Express.js Scaffolding

So far, we've covered Expres.js installation. When it comes to prototyping, it’s vital to be able to get started quickly with
the solid app skeleton, which is why many modern frameworks provide some type of scaffolding. Now is the time to
explore its rapid app creation mechanism— Express.js Generator!

Comparable with Ruby on Rails and many other web frameworks, Express.js comes with a CLI for jump-starting
your development process. The CLI generates a basic foundation for the most common cases.

If you followed the global installation instructions in the installation section, you should be able to see the
version number 4.0.0 if yourun $ express -V from anywhere on your machine. If we type $ express -hor $
express --help, we should get the list of available options and their usage. The list of options is broken down below
to serve readers as a reference.

To generate a skeleton Express.js app, we need to run a terminal command— express
[options] [dir|appname]—the options for which are the following:

e -e --ejs:add EJS (http://embeddedjs.com/) engine support (by default, Jade
(http://jade-lang.com/tutorial/)is used)

e -H, --hogan: add Hogan.js engine support

e -c <engine>, --css <engine>: add stylesheet <engine> support, such as LESS
(http://lesscss.org/), Stylus (http://learnboost.github.io/stylus/) or Compass
(http://compass-style.org/) (by default, plain CSS is used)

e -, --force: force app generation on a nonempty directory

If the dir/appname option is omitted, Express.js creates files using the current folder as the base for the project.
Otherwise, the application is in the folder with the name provided.
Now that we're clear with the command and its options, let’s go step by step to create an app with the scaffolding:

1. Check the Express.js version, because the app-generating code is prone to changes.
2. Execute the scaffolding command with options.

3. Run the application locally.

40

http://embeddedjs.com/
http://jade-lang.com/tutorial/
http://lesscss.org/
http://learnboost.github.io/stylus/
http://compass-style.org/

4,
5.

Express.js Command-Line Interface

CHAPTER 2 * USING EXPRESS.JS 4 TO CREATE NODE.JS WEB APPS

Understand the different sections, such as routes, middleware, and configuration.

Peek into the Jade template (more on this in Chapter 3).

Now we can use the CLI to spawn new Express.js apps. For example, to create an app with Stylus support, type the

following:

$ express -c styl express-styl

Then, as the instructions in the terminal tell us (Figure 2-5), type:

$ cd express-styl 8% npm install
$ DEBUG=my-application ./bin/www

8 00

[ch2 — bash

create
create :
create @
create
create :
create :
create :
create :
create
create :
create
create
create
create
create :
create

Figure 2-5. The result of using Express.js Generator

: express-styl/package.json

express-styl/app.js
express-styl/public

: express-styl/public/jovascripts

express-styl/public/images
express-styl/public/stylesheets
express-styl/public/stylesheets/style.css
express-styl/routes

: express-styl/routes/index. js

express-styl/routes/users, js

: express-styl/views

: express-styl/views/index. jode
: express-styl/views/layout. jade
: express-styl/views/error. jode

express-styl/bin

1 express-styl/bin/ww

install dependencies:
$ cd express-styl && npm install

run the app:
$ DEBUGmmry-application ./bin/www

Azats-AirichZ azat$

Open the browser of your choice at http://localhost:3000.
If you don’t have computer in front of your right now, here’s the full code of express-styl/app.js using Express.
js Generator v4.0.0:

var express = require('express');

var path

var favicon = require('static-favicon');

= require('path');

var logger = require('morgan');

var cookieParser = require('cookie-parser');
var bodyParser = require('body-parser');

var routes = require('./routes/index"');
var users = require('./routes/users');

41

http://localhost:3000

CHAPTER 2 * USING EXPRESS.JS 4 TO CREATE NODE.JS WEB APPS

var

app = express();

// view engine setup

app.
app.

app.
.use(logger('dev'));
app.
app.
.use(cookieParser());
app.

app

app

app

11/

app.

1

11/

set('views', path.join(__dirname, 'views'));
set('view engine', 'jade');
use(favicon());

use(bodyParser.json());
use(bodyParser.urlencoded());

use(express.static(path.join(__dirname, 'public')));

.use('/", routes);
app.

use('/users', users);

catch 404 and forwarding to error handler
use(function(req, res, next) {

var err = new Error('Not Found');
err.status = 404;

next(err);

error handlers

// development error handler
// will print stacktrace
if (app.get('env') === 'development') {

}

app.use(function(err, req, res, next) {
res.status(err.status || 500);
res.render('error', {
message: err.message,
error: err
D;
D;

// production error handler
// no stacktraces leaked to user

app.

1

use(function(err, req, res, next) {
res.status(err.status || 500);
res.render('error', {

message: err.message,

error: {}

1

module.exports = app;

42

CHAPTER 2 * USING EXPRESS.JS 4 TO CREATE NODE.JS WEB APPS

Routes in Express.js

When you open express-styl/app.js, you see two routes in the middle:

app.use('/', routes);
app.use('/users', users);

The first one basically takes care of all the requests to the home page, such as http://localhost:3000/. The
second takes care of requests to /users, such as http://localhost:3000/users. Both of the routes process URLs in a
case-insensitive manner and in a same way as with trailing slashes.

By default, Express.js doesn’t allow developers to route by query string arguments, such as the following:

GET: www.webapplog.com/?1d=10233
GET: www.webapplog.com/about/?author=10239
GET: www.webapplog.com/books/?id=108ref=201

However, it’s trivial to write your own middleware. It might look like this:

app.use(function (req, res, next) {
if (req.query.id) {
// process the id, then call next() when done
else if (req.query.author) {
// same approach as with id
else if (req.query.id && req.query.ref) {
// process when id and ref present
} else {
next();
}
1;

app.get('/about', function (req, res, next) {
// this code is executed after the query string middleware

1

The request handler itself (index. js, in this case) is straightforward. Everything from the HTTP request is in req
and it writes results to the response in res:

exports.list = function(req, res){
res.send('respond with a resource');

};

Middleware as the Backbone of Express.js

Each line/statement above the routes in app. js is middleware:

var favicon = require('static-favicon');
var logger = require('morgan');

var cookieParser = require('cookie-parser');
var bodyParser = require('body-parser');
/...

app.use(favicon());

43

CHAPTER 2 * USING EXPRESS.JS 4 TO CREATE NODE.JS WEB APPS

app.use(logger('dev'));

app.use(bodyParser.json());
app.use(bodyParser.urlencoded());
app.use(cookieParser());
app.use(express.static(path.join(__dirname, 'public')));

The middleware includes pass-through functions that either do something useful or add something helpful to the
request as it travels along each of them. For example, bodyParser () and cookieParser() add HTTP request payload
(req.body) and parsed cookie data (req.cookie), respectively. And in our app. js, app.use(logger('dev')); is
tirelessly printing in the terminal pretty logs for each request. In Express.js 3.x, many of these middleware were part of
the Express.js module, but not in version 4.x. For this reason, the generator declared and included, and we installed
additional modules like static-favicon, morgan, cookie-parser and body-parser

Configuration of an Express.js App

Here is how we define configuration statements in a typical Express.js app (the app. js file):

app.set('views', path.join(__dirname, 'views'));
app.set('view engine', 'jade');

And in bin/www:
app.set('port', process.env.PORT || 3000);

An ordinary setting involves a name, such as views, and a value, such as path.join(__dirname, 'views'),a
path to the folder where the templates/views live.

Sometimes there is more than one way to define a certain setting. For example, app.enable('trust proxy") for
Boolean flags is identical (aka, sugar-coating) to app.set('trust proxy', true).The Chapter 11 explains why we
might need to trust proxy.

Jade Is Haml for Express.js/Node.js

The Jade template engine is akin to the Ruby on Rails’ Haml in the way it uses whitespace and indentation, such as
layout. jade:

doctype html
html
head
title= title
link(rel="stylesheet', href='/stylesheets/style.css")
body
block content

Other than that, it’s possible to use a full-blown JavaScript code inside of Jade templates with the - prefix. More
information on Jade and Handlebars template engines is in Chapter 4.

44

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 2 * USING EXPRESS.JS 4 TO CREATE NODE.JS WEB APPS

Conclusion About Scaffolding

Asyou've seen, it’s effortless to create web apps with Express.js. The framework is splendid for REST APIs as well.

If you feel like the settings and other methods mentioned in this chapter just flew over your head, don’t despair! Pro
Express.js 4 [2014 Apress] is dedicated solely to Express.js and its interface which can serve as a good reference.

For now, the next step is to create a foundation for our project: the Blog app.

The Blog Project Overview

Our Blog app consists of five main parts from the user perspective:

e Ahome page with a list of articles (Figure 2-6)

< blog-express 5

&= C f [localhost:3000 ERaE -

blog-express

Welcome to example from Express.js Experience by @azat_co. Please enjoy.
. [

Node.js FUNdamentals: A Concise Overview of The
Main Concepts

Express.js Experience

Node is a movement

Life is good

Copyright © 2014 | Issues? Submit to GitHub.

Figure 2-6. The home page of the Blog app

e Anindividual article page with the full-text article
e Anadmin page for publishing and removing content
e Alogin page for accessing the aforementioned admin page

e Apostarticle page for adding new content
45

CHAPTER 2 * USING EXPRESS.JS 4 TO CREATE NODE.JS WEB APPS

From a developer’s point of view, the app has the following elements:

e Main file app. js: settings, inclusions of routes, and other important logic. This is where we run
when we start the server.

e Routes: all the logic related to pages and abstracted from app. js based on functional meaning,
such as getting the data from the database and compiling the data into HTML

e Node.js project file package . json: dependencies and other meta data

e Dependencies in node_modules: third-party modules installed via package.json

e Database: an instance of MongoDB and some seed data

o Templates: the *. jade files

e Static files: such as *. css or browser *. js

e Configuration file config. json: security-insensitive applicationwide settings, such as app title

Although somewhat primitive, this application contains all the create, read, update, and delete (CRUD,
http://en.wikipedia.org/wiki/Create, read, update_and_delete) elements of modern web development.
In addition, we use two approaches in Blog when sending the data to the server:

1. Submit data via traditional forms with full page refresh
2. Submit data via REST API (AJAX HTTP requests) without page refresh

The source code for this mini-project is under ch2/hello-world folder of practicalnode GitHub repository:
https://github.com/azat-co/practicalnode.

Submitting the Data

The first approach is traditional and is considered more search engine optimization friendly, but it takes longer for
users (especially on mobile) and is not as smooth as the second approach (Figure 2-7).

| Traditional server-side approach |

| User | | Browser | | Server|

Url

3
>

Url

Y

Find data

Generate HTML
__ Full HTML page

Full DOM

| User | | Browser | | Server|

Figure 2-7. Traditional server-side approach

46

http://en.wikipedia.org/wiki/Create,_read,_update_and_delete
https://github.com/azat-co/practicalnode

CHAPTER 2 * USING EXPRESS.JS 4 TO CREATE NODE.JS WEB APPS

Sending and receiving data via REST API/HTTP requests and rendering HTML on the client side is used with
front-end frameworks such as Backbone.js, Angular, Ember, and many others (http://todomvc.com/) (Figure 2-8).
The use of these frameworks is becoming more and more common nowadays because it allows for more efficiency
(HTML is rendered on the client side and only the data are transmitted) and better code organization.

| RESTAPVAJA approach |
| User | | Browser| Server
Url N
Url o
_ Static HTML
__ Static page
Page sans data
(Loading...)
AJAX request
Find data
. JSON
<« JSON
Full DOM

| User | |Browser| Server

Figure 2-8. REST API approach diagram

Under the hood, virtually all front-end frameworks use jQuery’s ajax() method. So, to give you a realistic
example, the admin page uses REST API end points via jQuery $.ajax() calls to manipulate the articles, including
publish, unpublish, and remove (Figure 2-9).

47

http://todomvc.com/

CHAPTER 2 * USING EXPRESS.JS 4 TO CREATE NODE.JS WEB APPS

«# blog-express X

- C # [localhost:3000/admin 7 B =

blog-express

Welcome to example from Express.js Experience by @azat_co. Please enjoy.
Home Post m Log out

Actions Post Title

n Node.js FUNdamentals: A Concise Overview of The Main Concepts
Express.js Experience

n Node is a movement

n Life is good

Copyright © 2014 | Issues? Submit to GitHub.

Figure 2-9. The admin page of Blog

Unlike the previous section of this chapter, which dealt with scaffolding with CLI, in this practical exercise we
intentionally wanted to show how to create an Express.js app manually, because it gives us a better understanding of
how things really work together in the framework.

Let’s wait no more, and start by creating our project folders.

Express.js 4 Hello World Example

This is the first and the last hello world example in this book! :-) The goal is to show readers how easy is it to create
Express.js apps from scratch without generators, fancy modules and middleware. We'll go through these sections:

e Setting up folders

e NPMnit and package.json
e Dependency declaration

e Theapp.jsfile

e MeetJade

e Running the app
48

CHAPTER 2 * USING EXPRESS.JS 4 TO CREATE NODE.JS WEB APPS

Setting up Folders

Express.js is very configurable and almost all folders can be renamed. However, there are certain conventions that

might help beginners to find their way through many files. Here is a list of the main folders that we use in this chapter,

and their meaning:

e node_modules: dependencies (third-party modules) live here as well as Express.js and
Connect libraries

e views: Jade (or any other template engine) files

That’s it for now, but if you want to create a few more folders for other examples (that we'll cover in the later
chapters), be my guest:

e routes: Node.js modules that contain request handlers

e db:seed data and scripts for MongoDB

e public: all the static (front-end) files, including HTML, CSS, JavaScript (browser), and Stylus
(or any other CSS-language framework files)

Let’s choose a project folder hello-world, and create these directories with Finder or the following terminal

command (Figure 2-10):

mkdir {public,public/css,public/img,public/js,db,views,views/includes,routes}

800] hello-world — bash e

Azats-Air:chZ azat$ cd hello-world

Azats-Air:hello-world azat$ mkdir {public,public/css,public/img,public/js,db,vie
ws,views/includes, routes}

Azats-Air:hello-world ozat$ 1s

db public routes wviews

Azats-Air:hello-world azat$

Figure 2-10. Setting up folders

Now we're all set to add project metadata with NPM.

NPM Init and package.json

For this example we will be creating the Express.js app from scratch, i.e., without Express.js Generator. We'll start with

defining dependencies with package.json and NPM.

49

CHAPTER 2 * USING EXPRESS.JS 4 TO CREATE NODE.JS WEB APPS

NPM is used not only as a registry, but also as a dependency management tool. Therefore, it’s essential to set up
the project file—package. json. Although it’s possible to create the package. json file manually in a text editor, we
can use the $ npm init command. Run this command in your project folder and answer all the questions (or leave
them blank):

$ npm init

After the wizard has finished and the package. json file is there (don’t worry if there’s not much information there
yet), we can install modules conveniently and add entries to package.json at the same time with $ npm install
<package-name> --save—for example:

$ npm install express --save

The previous command uses the latest stable version (4.1.2 as of May 2014). We recommend being more
specific—which is more robust in the land of the rapidly growing Node.js community—and ask for a specific version:

$ npm install express@4.1.2 --save

For the Blog app, we need the following modules, which are the latest as of this writing:
e Express.js:4.1.2
e Jade:1.3.1
e Mongoskin: 0.6.1
e Stylus: 0.44.0

Warning Feel free to update to newer versions. However, your results might vary, because it’s very common in the
Node.js ecosystem (“userland”) to see breaking changes introduced by new versions. This usually happens unintentionally
by the dependency of a dependency. For example, even if we include a specific version of Express.js such as 3.4.5,
that module includes Jade with a wildcard *, and then on Jade’s breaking update, our app will suffer damage. The cure
is to commit your node_modules folder along with the rest of the source code to a Git repository and use that instead of
fetching modules according to package. json each time on deployment. Or use NPM's shrinkwarp feature. Read more
about this issue in Chapter 12.

Dependency Declaration: npm install

Another way to create a package. json file (without using $ npm init) is to type or copy and paste package.json and
run$ npm install:

{
“name": "hello-world",
"version": "0.0.1",
"private": true,
"scripts": {
"start": "node app.js"
1

"dependencies": {

50

CHAPTER 2 * USING EXPRESS.JS 4 TO CREATE NODE.JS WEB APPS

"express": "4.1.2",
"jade": "1.3.1",
"mongoskin": "1.4.1",
"stylus": "0.44.0"

In the end, the node_modules folder should be filled with the corresponding libraries.
If you noticed, one of the questions npm init asked was about the so-called entry point. In our case, it’s the
app. js file, and it’s the home for most of the application’s logic. To run it, simply use one of the following commands:

e $ node app.js
e $ node app
e % npm start

Another approach is to name the entry point index. js. In this case, we get the benefit of running the script with
the $ node . command.
Let’s create the first iteration of app. js.

The App.js File

The app. js file is the main file for this example. A typical structure of the main Express.js file consists of the following
areas (this may be a partial repeat from an earlier section, but this is important, so bear with me):

1. Require dependencies
Configure settings

Connect to database (optional)
Define middleware

Define routes

Start the server

N o e & Db

Start workers with clusters (a term spawn workers is also used for this) (optional)

The order here is important, because requests travel from top to bottom in the chain of middleware.

Let’s perform a quintessential programming exercise: writing the Hello World application. This app transitions
smoothly into the Blog example project, so no effort is wasted!

Open app. js in a code editor of your choice and start writing or just copy the code from GitHub at
http://github.com/azat-co/blog-express.

First, all the dependencies need to be included with require():

var express = require('express');
var http = require('http');
var path = require('path');

Then, the Express.js object is instantiated (Express.js uses a functional pattern):

var app = express();

51

http://github.com/azat-co/blog-express

CHAPTER 2 * USING EXPRESS.JS 4 TO CREATE NODE.JS WEB APPS

One of the ways to configure Express.js settings is to use app.set (), with the name of the setting and the value.
For example:

app.set('appName', hello-world');

Let’s define a few such configurations in app. js:
e port:anumber on which our server should listen to requests
e views: absolute path to the folder with template (views in our example)
e view engine: file extension for the template files (for example, jade, html)

If we want to use the port number provided in the environmental variables (env vars), this is how to access it:
process.evn.PORT.
So let’s write the code for the settings we listed earlier:

app.set('port', process.env.PORT || 3000);
app.set('views', path.join(__dirname, 'views'));
app.set('view engine', 'jade');

Next comes the middleware section of the application. Middleware is the backbone of the Express.js framework
and it comes in two flavors:

1. Defined in external (third-party) modules, such as bodyParser. json from Connect/
Express.js body-parser: app.use(bodyParser.json());

2. Defined in the app or its modules, such as app.use(function(req, res, next){...});

Middleware is a way to organize and reuse code, and, essentially, it is nothing more than a function with three
parameters: request, response, and next. We'll use more middleware (for example, for authorization and for
persistence) in Chapter 6, but for now, its use is minimal.

The next components in the app. js file are routes. Routes are processed in the order they are defined. Usually,
routes are put after middleware, but some middleware may be placed following the routes. A good example of such
middleware, found after a routes, is error handler.

An illustration in Figure 2-11 shows how an HTTP request is processed.

52

CHAPTER 2 * USING EXPRESS.JS 4 TO CREATE NODE.JS WEB APPS

| Following a simple request in an Express.js app. |

Browser

Give me a resource

|App| | dp | |View|

A

Send HTML

>
Look up URL
in routes

Rule is found

Give me data

Give me a template

Find the template

Compile data and template
into HTML
or JSON/XML/etx

Browser

__ or JSON/XML/etc back

(o] [o0] o]

Figure 2-11. Following a simple request in an Express.js app

The next section is where we define routes themselves (the order in app. js matters). The way routes are defined
in Express.js is with helpers app.VERB(url, fni, fn2, ..., fn), where fnNs are request handlers, urlis ona
URL pattern in RegExp, and VERB values are as follows:

all: catch every request (all methods)
get: catch GET requests

post: catch POST requests

put: catch PUT requests

del: catch DELETE requests

Note del and delete methods are aliases, just remember that delete is a valid operator in JavaScript/ECMAScript,
and therefore in Node.js. The operator removes a property from an object, e.g., delete books.nodeInAction.

Figure 2-11 shows how a trivial request might travel across the web and the Express.js app, with the dotted lines
being the connection inside it.

53

CHAPTER 2 * USING EXPRESS.JS 4 TO CREATE NODE.JS WEB APPS

In this Hello World example a single route is used to catch requests of all methods on all URLs (* wildcard):
app.all('*', function(req, res) {
1))

Inside the request handler, a template is rendered (res.render () function) with a message msg (property of the
second argument):

app.all('*', function(req, res) {
res.render('index', {msg: 'Welcome to the Practical Node.js!'})
1)

The res.render(viewName, data, callback(error, html)) where parameters mean following:
e viewName: a template name with filename extension orif view engine is set without the extension

e data: an optional object that is passed as locals; for example, to use msg in Jade, we need to
have {msg: "..."}

e callback: an optional function that is called with an error and HTML when the compilation is
complete

res.render() is not in the Node.js core and is purely an Express.js addition that, if invoked, calls core res.end(),
which ends/completes the response. In other words, the middleware chain doesn’t proceed after res.render().
res.render is highlighted in chapter 4.

Last but not least are the instructions to start the server, which consist of the core http module and its
createServer method. In this method, the system passes the Express.js app object with all the settings and routes:

http.createServer(app).listen(app.get('port'), function(){
console.log('Express server listening on port ' + app.get('port'));
1);
Here’s the full source code of the app. js file for your reference:
var express = require('express');

var http = require('http');
var path = require('path');

var app = express();

app.set('port', process.env.PORT || 3000);
app.set('views', path.join(__dirname, 'views'));
app.set('view engine', 'jade');

app.all('*', function(req, res) {
res.render(
'index',
{msg: 'Welcome to the Practical Node.js!'}

)

};

54

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 2 * USING EXPRESS.JS 4 TO CREATE NODE.JS WEB APPS

http
.createServer (app)
.listen(

app.get('port’),
function(){
console.log(
"Express.js server listening on port ' +
app.get('port")

)

}
)s

Before we can run this server, we need to create the index. jade file.

Meet Jade: One Template to Rule Them All

Jade is an absolutely amazing template engine that allows developers to type less code and to execute powerfully
almost all JavaScript functions. It also supports top-to-bottom and bottom-to-top inclusion and other useful
things. Like its brother from the Ruby world, Haml, Jade uses whitespace/indentation as a part of its language. It's a
convention to use two-space indentation.

The Jade syntax and its features are covered more extensively in Chapter 4. For now, just keep in mind that the
way Jade works is that the first word is used as an HTML tag (HTML element) and the text that follows (a.k.a., inner
text), is put inside this element. For example,

h1i hello
p Welcome to the Practical Node.js!

Produces the following HTML code:

hello</h1>
<p>Welcome to the Practical Node.js!</p>

If we want to output a value of a variable (called locals), we use =. For example:
p= msg

For this example, create index. jade in the views folder that outputs a header and a paragraph with the value of
msg variable inside that paragraph (i.e., inner text):

hi hello
p= msg

There are more advanced examples of Jade included later in this book; but for now, everything is set for the
first demo!

Running the Hello World App

When we run the $ node app command and open browsers at http://localhost:3000, we see what appears in
Figure 2-12.

55

CHAPTER 2 * USING EXPRESS.JS 4 TO CREATE NODE.JS WEB APPS

© O O / @ localhost:3000 x \@ e

o

&~ C [localhost:3000

hello

Welcome to the Practical Node.js!

Figure 2-12. The Hello World app in action

Nothing fancy so far, but it’s worth pointing out that it took us just a few lines (the app. js file) to write a fully
functional HTTP server! In the next chapter, we add more new and exciting pages using Jade instructions.

Summary

In this chapter we learned what Express.js is and how it works. We also explored different ways to install it and use

its scaffolding (command-line tool) to generate apps. We went through the Blog example with a high-level overview
(traditional vs. REST API approaches), and proceeded with creating the project file, folders, and the simple Hello World
example, which serves as a foundation for the book’s main project: the Blog app. And then lastly, we touched on a few
topics such as settings, a typical request process, routes, AJAX versus server side, Jade, templates, and middleware.

56

CHAPTER 3

TDD and BDD for Node.js with Mocha/

Test-driven development (TDD), as many of you might know, is one of the main, agile development techniques.
The genius of TDD lies in increased quality of code, faster development resulting from greater programmer
confidence, and improved bug detection (duh!).

Historically, web apps have been hard to autotest, and developers relied heavily on manual testing. But, certain
parts such as standalone services and REST API can be and should be tested thoroughly by the TDD. At the same time,
rich user interface (UI) / user experience (UX) can be tested with headless browsers such as Phantom]S.

The behavior-driven development (BDD) concept is based on TDD. It differs from TDD in language, which
encourages collaboration between product owners and programmers.

Similar to building apps themselves, most of the time software engineers should use a testing framework. To get
you started with the Node.js testing framework, Mocha, in this chapter, we cover the following:

e Installing and understanding Mocha

e TDD with the assert

e BDD with Expect.js

e Project: writing the first BDD test for Blog

The source code for this chapter is in the ch3 folder of the practicalnode GitHub repository
(https://github.com/azat-co/practicalnode).

Installing and Understanding Mocha

Mocha is a mature and powerful testing framework for Node.js. To install it, simply run:

$ npm install -g mocha@1.16.2

Note We use a specific version (the latest as of this writing is 1.16.2) to prevent inconsistency in this book’s
examples caused by potential breaking changes in future versions of Mocha.

If you encounter the lack-of-permissions issue, discussed in Chapters 1 and 2, run:
$ sudo npm install -g mocha@1.16.2

To avoid using sudo, follow the instructions in Chapter 1 on how to install Node.js correctly.

57

https://github.com/azat-co/practicalnode

CHAPTER 3 © TDD AND BDD FOR NODE.JS WITH MOCHA

Tip It's possible to have a separate version of Mocha for each project by simply pointing to the local version of
Mocha, which you install like any other NPM module into node_modules. The command will be:

$./node_modules/mocha/bin/mocha test_name

for Mac OS X/ Linux. For an example, refer to “Putting Configs into a Makefile” later in this chapter.

Most of you have heard about TDD and why it’s a good thing to follow. The main idea of TDD is to do the following:
e Define a unit test
e Implement the unit
e Verify that the test passes

BDD is a specialized version of TDD that specifies what needs to be unit-tested from the perspective of business
requirements. It's possible to just write test with good old plain core Node.js module assert. However, as in many
other situations, using a framework is more preferable. For both TDD and BDD, we’ll be using the Mocha testing
framework because we gain many things for “free” Among them are the following:

e Reporting
e Asynchronous support
¢ Rich configurability

Here is a list of optional parameters (options) that the $ mocha [options] command takes:

e -hor --help: print help information for the Mocha command

e -Vor--version: print the version number that’s being used

e -ror--require <name>:require a module with the name provided

e -Ror--reporter <name>:use areporter with the name provided

e -uor--ui <name>:use the stipulated reporting user interface (such as bdd, tdd)

e -gor--grep <pattern>:run tests exclusively with a matching pattern

e -ior--invert:invertthe - -grep match pattern

e -tor--timeout <ms>:setthe test case time out in milliseconds (for example, 5000)
e -sor--slow <ms>:setthe test threshold in milliseconds (for example, 100)

e -wor --watch: watch test files for changes while hanging on the terminal

e -cor--colors: enable colors
e -Cor--no-colors: disable colors
e -Gor--growl: enable Mac OS X Growl notifications

e -dor --debug: enable the Node.js debugger—$ node --debug
e --debug-brk: enable the Node.js debugger breaking on the firstline—$ node --debug-brk
e -bor--bail: exit after the first test failure

e -Aor--async-only: setall tests in asynchronous mode

58

CHAPTER 3 © TDD AND BDD FOR NODE.JS WITH MOCHA

e --recursive: use tests in subfolders

--globals <names>: provide comma-delimited global names

--check-1eaks: check for leaks in global variables

e --interfaces: print available interfaces
e --reporters: print available reporters
e --compilers <ext>:<module>,...:provide compiler to use

Figure 3-1 shows an example of nyan cat reporter with the command $ mocha test-expect.js -R nyan.

8006 [] test-example — bash .
Azats-Air:test-exomple ozat$ mocha test-expect.js -R nyan

=l AN
@ -_-AI_CA LA

v 2 tests complete (9ms)

Azats-Air;test-exomple azat$

Figure 3-1. Mocha nyan reporter

Usually, when it comes to choosing a type of framework, there are a few options. Mocha is one of the more robust
and widely used. However, the following alternatives to Mocha are worth considering:

e NodeUnit (https://github.com/caolan/nodeunit)
e Jasmine (http://pivotal.github.com/jasmine/)
e Vows (http://vowsjs.org/)

Understanding Mocha Hooks

A hook is some logic, typically a function or a few statements, which is executed when the associated event happens;
for example, in Chapter 7 we'll use hooks to explore the Mongoose library pre hooks. Mocha has hooks that are
executed in different parts of suites—before the whole suite, before each test, and so on.

In addition to before and beforeEach hooks, there are after(), and afterEach() hooks. They can be used to
clean up the testing setup, such as database data?

59

https://github.com/caolan/nodeunit
http://pivotal.github.com/jasmine/
http://vowsjs.org/

CHAPTER 3 © TDD AND BDD FOR NODE.JS WITH MOCHA

All hooks support asynchronous modes. The same is true for tests as well. For example, the following test suite is
synchronous and won’t wait for the response to finish:

describe("homepage', function(){
it('should respond to GET',function(){

superagent
.get('http://localhost: ' +port)
.end(function(res){
expect(res.status).to.equal(200);
b
b))

But, as soon as we add a done parameter to the test’s function, our test case waits for the HTTP request to come back:

describe("homepage', function(){
it('should respond to GET',function(done){

superagent
.get("http://localhost: '+port)
.end(function(res){
expect(res.status).to.equal(200);
done();
1))
b))

Test cases (describe) can be nested inside other test cases, and hooks such as before and beforeEach can be
mixed in with different test cases on different levels. Nesting of describe constructions is a good idea in large test files.
Sometimes, developers might want to skip a test case/suite (describe.skip() or it.skip()) or make them
exclusive (describe.only() or describe.only()). Exclusivity means that only that particular test runs (the
opposite of skip).

As an alternative to the BDD interface’s describe, it, before, and others, Mocha supports more traditional TDD
interfaces:

e suite:analogousto describe

e test:analogoustoit

e setup: analogous to before

e teardown: analogous to after

e suiteSetup: analogous to beforeEach

e suiteTeardown: analogous to afterEach

TDD with the Assert

Let’s write our first tests with the assert library. This library is part of the Node.js core, which makes it easy to access.
It has minimal functionality, but it might be enough for some cases, such as unit tests.
After global Mocha installation is finished, a test file can be created in a test-example folder:

$ mkdir test-example
$ subl test-example/test.js

60

CHAPTER 3 © TDD AND BDD FOR NODE.JS WITH MOCHA

Note subl is a Sublime Text alias command. You can use any other editor, such as Vi (vi) or TextMate (mate).

With the following content:
var assert = require('assert');
describe('String#split', function(){
it('should return an array', function(){
assert(Array.isArray('a,b,c'.split(',")));
b;
H
We can run this simple test. js (inside the test-example folder), which checks for Array type, with:
$ mocha test
or

$ mocha test.js.

The results of these Mocha commands are shown in Figure 3-2.

8ano (] test-example — bash e
Azats-Air:test-example ozat$ mocha test

v 1 test complete (4ms)

Azats-Air:test-exomple azat$

Figure 3-2. Running Array-type test

We can add to our example another test case (it) that asserts equality of array values:

var assert = require('assert');
describe('String#split', function(){
it('should return an array', function(){
assert(Array.isArray('a,b,c'.split(',"')));
D;

61

CHAPTER 3 © TDD AND BDD FOR NODE.JS WITH MOCHA

it('should return the same array', function(){
assert.equal(['a’,'b",'c'].length, 'a,b,c'.split(',"').length, 'arrays have equal length');
for (var i=0; i¢['a','b",'c'].length; i++) {
assert.equal(['a','b",'c'][i], 'a,b,c'.split(',')[i], 1 + 'element is equal');
};
bs
H

As you can see, some code is repeated, so we can abstract it into beforeEach and before constructions:

var assert = require('assert');
var expected, current;
before(function(){
expected = ['a', 'b', 'c'l;
1}
describe('String#split', function(){
beforeEach(function(){
current = 'a,b,c'.split(',");

1)

it('should return an array', function(){
assert(Array.isArray(current));

};

it('should return the same array', function(){
assert.equal(expected.length, current.length, 'arrays have equal length');
for (var i=0; i<expected.length; i++) {
assert.equal(expected[i], current[i], i + 'element is equal');
}

)
)

Chai Assert

In the previous example with test. js and assert, we used the Node.js core module assert. Chai is a subset of that
library. We can modify our previous example to use chai assert with following code:

$ npm install chai@1.8.1
And in test-example/test.js:
var assert = require('chai').assert;

The following are some of the methods from the chai assert library:

e assert(expressions, message):throws an error if the expression is false

e assert.fail(actual, expected, [message], [operator]):throws an error with values of
actual, expected, and operator

e assert.ok(object, [message]):throws an error when the object is not double equal (==) to
true—aka, truthy (0, and an empty string is false in JavaScript/Node.js)

62

CHAPTER 3~ TDD AND BDD FOR NODE.JS WITH MOCHA
e assert.notOk(object, [message]): throws an error when the object is falsy, i.e., false, 0
(zero), “” (empty string), null, undefined or NaN

e assert.equal(actual, expected, [message]):throws an error when actual is not double
equal (==) to expected

e asseret.notEqual(actual, expected, [message]):throws an error when actual is double
equal (==)—in other words, not unequal (!=)—to expected

e .strictEqual(actual, expected, [message]):throws an error when objects are not triple
equal (===

For the full chai assert AP], refer to the official documentation (http://chaijs.com/api/assert/).

Note The chai assert (chai.assert) and the Node.js core assert (assert) modules are not 100% compatible,
because the former has more methods. The same is true for chai expect and a standalone expect.js.

BDD with Expect.js

Expect.js is one of the BDD languages. Its syntax allows for chaining and is richer in features than core module assert.
There are two options to use expect.js:

1. Install as alocal module
2. Install as a part of the chai library

For the former, simply execute the following:

$ mkdir node_modules
$ npm install expect.js@0.2.0

And, use var expect = require('expect.js'); inside a Node.js test file. For example, the previous test can be
rewritten in expect.js BDD style:

var expect = require('expect.js');
var expected, current;
before(function(){

expected = ['a', 'b', 'c'];
)

describe('String#split', function(){
beforeEach(function(){
current = 'a,b,c'.split(',");
1}
it('should return an array', function(){
expect(Array.isArray(current)).to.be.true;

});

63

http://chaijs.com/api/assert/

CHAPTER 3 © TDD AND BDD FOR NODE.JS WITH MOCHA

it('should return the same array', function(){
expect(expected.length).to.equal(current.length);
for (var i=0; i<expected.length; i++) {
expect(expected[i]).equal(current[i]);
}

)
1)

For the chai library approach, run the following:

$ mkdir node_modules
$ npm install chai@1.8.1

And, usevar chai = require('chai'); var expect = chai.expect; inside a Node.js test file. For example:

var expect = require('chai').expect;

Note $ mkdir node_modules is needed only if you install NPM modules in the folder that has neither the
node_modules directory already nor a package. json file. For more information, please refer to Chapter 1.

Expect.js Syntax

The Expect.js library is very extensive. It has nice methods that mimic natural language. Often there are a few ways
to write the same assertion, such as expect(response).to.be(true) and expect(response).equal(true). The
following lists some of the main Expect.js methods/properties:

e ok: checks for truthyness

true: checks whether the object is truthy

e to.be, to: chains methods as in linking two methods

¢ not: chains with a not connotation, such as expect(false).not.to.be(true)
e a/an: checks type (works with array as well)

e include/contain: checks whether an array or string contains an element

e below/above: checks for the upper and lower limits

Note Again, there is a slight deviation between the standalone expect.js module and its Chai counterpart.

For the full documentation on chai expect.js, refer to http://chaijs.com/api/bdd/, and for the standalone, refer
to https://github.com/LearnBoost/expect.js/.

64

vww allitebooks.conl

http://chaijs.com/api/bdd/
https://github.com/LearnBoost/expect.js/
http://www.allitebooks.org

CHAPTER 3 © TDD AND BDD FOR NODE.JS WITH MOCHA

Project: Writing the First BDD Test for Blog

The goal of this mini-project is to add a few tests for Blog (this book’s primary project). We won’t get into headless
browsers and Ul testing, but we can send a few HTTP requests and parse their responses from the app’s REST end
points (see Chapter 2 for a description of the Blog app).

The source code for this chapter is in the ch3/blog-express folder of the practicalnode GitHub repository
(https://github.com/azat-co/practicalnode).

First, let’s copy the Hello World project. It will serve as a foundation for Blog. Then, install Mocha in the Blog
project folder, and add it to the package. json file at the same time with $ npm install mocha@1.16.2 --save-dev.
The --save-dev flag will categorize this module as a development dependency (devDependencies). Modify this
command by replacing package name and version number for expect.js (0.2.0) and superagent (0.15.7) (https://
npmjs.org/package/superagent). The latter is a library to streamline the making of HTTP requests. Alternatives to
superagent include the following:

e request (https://npmjs.org/package/request): the third most-starred NPM module (as of
this writing)

e core http module: clunky and very low level
e supertest: a superagent-based assertions library

Here’s the updated package. json:

"name": "blog-express",

"version": "0.0.1",

"private": true,

"scripts": {
"start": "node app.js",
"test": "mocha test"

1

"dependencies": {
"express": "4.1.2",
"jade": "1.3.1",
"stylus": "0.44.0"

b

"devDependencies": {
"mocha": "1.16.2",
"superagent": "0.15.7",
"expect.js": "0.2.0"

Now, create a test folder with $ mkdir tests and open tests/index. js in your editor. The test needs to start
the server:

var boot = require('../app').boot,
shutdown = require('../app").shutdown,
port = require('../app').port,
superagent = require('superagent'),
expect = require('expect.js');

describe('server', function () {
before(function () {

boot();

D;

65

https://github.com/azat-co/practicalnode
https://npmjs.org/package/superagent
https://npmjs.org/package/superagent
https://npmjs.org/package/request

CHAPTER 3 © TDD AND BDD FOR NODE.JS WITH MOCHA

describe("homepage', function(){
it('should respond to GET',function(done){
superagent
.get('http://localhost: ' +port)
.end(function(res){
expect(res.status).to.equal(200);
done()
)
b))
D;
after(function () {
shutdown();
D;
D;

In app.js, we expose two methods, boot and shutdown, when the file is imported, in our case, by the test.

So, instead of:

http.createServer(app).listen(app.get('port'), function(){
console.log('Express server listening on port ' + app.get('port'));

1

we can refactor into:

var server = http.createServer(app);
var boot = function () {
server.listen(app.get('port'), function(){
console.info('Express server listening on port ' + app.get('port'));
D;
}

var shutdown = function() {
server.close();

}

if (require.main === module) {
boot();

}

else {
console.info('Running app as a module')
exports.boot = boot;
exports.shutdown = shutdown;
exports.port = app.get('port');

}

To launch the test, simply run $ mocha tests. The server should boot and respond to the home page request

(/ route) as shown in Figure 3-3.

66

ano (] ch3 — bash "
Azats-Airich3 azat$ 1s

Makefile db package . json routes views

app.js node_modules public tests

Azats-Air:ch3 azat$ mocha tests
Running app as a module

Express server listening on port 3000

1 passing (431ms)

Azats-Airich3 azat$

Figure 3-3. Running $ mocha tests

Putting Configs into a Makefile

CHAPTER 3 © TDD AND BDD FOR NODE.JS WITH MOCHA

The mocha accepts many options. It’s often a good idea to have these options gathered in one place, which could be a
Makefile. For example, we can have test, test-w test all files in the test folder, and have modes for just the

module-a.js and module-b. js files to test them separately, this way:

REPORTER = list
MOCHA OPTS = --ui tdd --ignore-leaks

test:
clear

echo Starting test *rrkkklkrikiiiribiiiiiiliriiibirbiibiirbbliilibiik

./node_modules/mocha/bin/mocha \
--reporter $(REPORTER) \
$(MOCHA_OPTS) \

tests/*.js

echo Ending test

test-w:
./node_modules/mocha/bin/mocha \
--reporter $(REPORTER) \
--growl \
--watch \
$(MOCHA_OPTS) \
tests/*.js

test-module-a:

mocha tests/module-a.js --ui tdd --reporter list --ignore-leaks

67

CHAPTER 3 © TDD AND BDD FOR NODE.JS WITH MOCHA

test-module-b:

clear
echo Starting test keokesk sk sk ok 3k 3k 3k 3k 3k >k 3k sk >k sk sk sk sk Sk Sk sk ok ok sk sk sk sk sk sk sk sk sk sk 3k >k sk sk >k sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok

./node_modules/mocha/bin/mocha \
--reporter $(REPORTER) \
$(MOCHA_OPTS) \
tests/module-b.js

echo Ending test

.PHONY: test test-w test-module-a test-module-b

To launch this Makefile, run $ make <mode>—for example, $ make test.For more information on a Makefile
please refer to Understanding Make at http://www.cprogramming.com/tutorial/makefiles.html and Using Make
and Writing Makefiles at http://www.cs.swarthmore.edu/~newhall/unixhelp/howto _makefiles.html.

For our Blog app, we can keep the Makefile simple:

REPORTER = list
MOCHA_OPTS = --ui bdd -c

test:
clear
echo Starting test Fkrkkkkskskokkstskokokstokokokstokokokstokokokotokokokokskokokokokokokokskokoskokokokokokokokoskokokokokokok
./node_modules/mocha/bin/mocha \
--reporter $(REPORTER) \
$(MOCHA OPTS) \
tests/*.js
echo Ending test

.PHONY: test

Note We point to the local Mocha in the Makefile, so the dependency needs to be added to package.json and
installed in the node_modules folder.

Now we can run tests with the $ make test command, which allows for more configuration compared with the
simple $ mocha tests (Figure 3-4).

68

http://www.cprogramming.com/tutorial/makefiles.html
http://www.cs.swarthmore.edu/~newhall/unixhelp/howto_makefiles.html

e 0o (] chapter3 — bash "o

echo Starting test
Starting test Makefile app.js db node_modules package.json public routes tests v

iews

./node_modules/mocha/bin/mocha \
--reporter list \
==ui bdd -c \
tests/*.js

Running app as a module

Express server listening on port 3009
. server homepage should respond to GET:

1 passing (518ms)
echo Ending test
Ending test
Azats-Air:chapter3 azat$ mocha tests
Running opp as a module

Express server listeming on port 3000

1 passing (583ms)

Azats-Air:chapter3 azat$

Figure 3-4. Runningmake test

Summary

CHAPTER 3 © TDD AND BDD FOR NODE.JS WITH MOCHA

In this chapter, we installed Mocha as a command-line tool and learned its options, we wrote simple tests with assert
and the expect.js libraries, and we created the first test for the Blog app by modifying app. js to work as a module. In
Chapter 10, we harness TravisCI SaaS by writing a yml config file and using GitHub to trigger continuous multiple tests
in the cloud virtual environments. In the next chapter, proceeds the essence of any web app that outputs
HTML—template engine. We'll dive deep into Jade and Handlebars, and add pages to Blog.

69

CHAPTER 4

Template Engines: Jade
and Handlebars

A template engine is a library or a framework that uses some rules/languages to interpret data and render views.
In the case of web applications, views are HTML pages (or parts of them), but they can be JSON or XML files, or, in
desktop programs, GUIs. For those of you familiar with the model-view-controller concept, templates belong to
the view.

In web apps, it’s beneficial to use templates because we can generate an infinite number of pages dynamically
with a single template! Another side benefit is when we need to change something; we can do it in one place only.

If we go back to the diagrams in the previous chapter (traditional vs. REST API approaches), we can deduce that
templates can be compiled into HTML either server-side (traditional approach) or client-side (REST API approach).
No matter which approach we take, the syntax of the libraries themselves remains intact.

In this chapter we cover the following:

e Jade syntax and features

e Jadestandalone usage

e Handlebars syntax

e Handlebars standalone usage

e Jade and Handlebars usage in Express.js 4

e Project: adding Jade templates to Blog

Jade Syntax and Features

Jade is a Node.js brother of Haml, in the sense that it uses whitespace and indentation as part of its language.
Therefore, we need to be careful to follow the proper syntax.

You can follow the Jade syntax examples in this section, online, at the official web site’s demo page
(http://jade-1ang.com/demo) or at the @naltatis resource (http://naltatis.github.io/jade-syntax-docs/), or by
writing standalone Node.js scripts (examples are presented in “Jade Standalone Usage,” which appears later in this chapter).

Tags

Any text at the beginning of a line—by default—is interpreted as an HTML tag. The main advantage of Jade is that this
text renders both closing and opening tags for the HTML element, as well as the <></>symbols. Therefore, we save
many keystrokes as developers writing in Jade!

71

http://jade-lang.com/demo
http://naltatis.github.io/jade-syntax-docs/

CHAPTER 4 © TEMPLATE ENGINES: JADE AND HANDLEBARS

The text following a tag and a space (e.g., tag <text>) is parsed as the inner HTML (i.e., content inside the
element). For example, if we have the following Jade code:

Body
div
h1 Practical Node.js
p The only book most people will ever need.
div
footer © Apress

The output of the template above will be:

<body>
<div>
<h1>Practical Node.js</h1>
<p>The only book most people will ever need.</p>
</div>
<div>
<footer>© Apress</footer>
</div>
</body>

Variables/Locals

Data that are passed to the Jade template are called locals. To output the value of a variable, use =. See the following
examples:
Jade code:

hi= title
p= body

Locals:

{

title: "Express.js Guide",
body: "The Comprehensive Book on Express.js"

}

HTML output:

<h1>Express.js Guide</h1>
<p>The Comprehensive Book on Express.js</p>

72

CHAPTER 4 © TEMPLATE ENGINES: JADE AND HANDLEBARS

Attributes

Attributes are added by putting them into parentheses right after the tag name. They follow name=value format.
In addition, multiple attributes need to be separated by a comma. For example,

div(id="content", class="main"
a(href="http://expressjsguide.com”, title="Express.js Guide", target="_blank") Express.js Guide
form(action="/login")
button(type="submit, value="save"
div(class="hero-unit") Lean Node.js!

turns into

<div id="content" class="main"><a href="http://expressjsguide.com" title="Express.js Guide"
target="_blank">Express.js Guide
<form action="/login">
<button type="submit" value="save"></button>
</form>
<div class="hero-unit">Learn Node.js</div>
</div>

Sometimes, the value of an attribute needs to be dynamic. In this case, just use the variable name! The pipe, or [,
allows us to write the content of the HTML node on the new line—in other words, the line with the pipe becomes
inner text an example is as follows:

a(href=url, data-active=isActive)

label
input(type="checkbox", checked=isChecked)
| yes / no

The template above is provided with locals:

{

url: "/logout",
isActive: true,
isChecked: false

}

And they both, i.e., template and locals data, produce output:

<label>

<input type="checkbox"/>yes / no
</label>

Note that the attribute with the value false is omitted from the HTML output. However, when no value is passed,
true is assumed—for example,

input(type='radio', checked)
input(type='radio', checked=true)
input(type="radio', checked=false)
<input type="radio" checked="checked"/>
<input type="radio" checked="checked"/>
<input type="radio"/>

73

http://expressjsguide.com/
http://expressjsguide.com/

CHAPTER 4 © TEMPLATE ENGINES: JADE AND HANDLEBARS

Literals

For convenience, we can write classes and IDs right after tag names. For example, we can then apply lead and center
classes to a paragraph, and create a div element with the side-bar ID and pull-right class (again, the pipe signifies
an inner text):

div#content
p.lead.center
| webapplog: where code lives
#side-bar.pull-right
span.contact.span4
a(href="/contact") contact us
<div id="content">
<p class="lead center">
webapplog: where code lives
<div id="side-bar" class="pull-right"></div>

contact us

</p>
</div>

Note that if the tag name is omitted, div is used instead.

Text

Outputting raw text is done via | —for example,

div
| Jade is a template engine.
| It can be used in Node.js and in the browser JavaScript.

Script and Style Blocks

Sometimes, developers want to write chunks of content for script or style tags in the HTML! This is possible with a
dot. For example, we can write inline front-end JavaScript like this:

script.
console.log('Hello Jade!")
setTimeout (function(){
window.location.href="http://rpjs.co’
},200))
console.log('Good bye!")
<script>
console.log('Hello Jade!")
setTimeout (function(){
window.location.href="http://rpjs.co’
},200))
console.log('Good bye!")
</script>

74

http://rpjs.co/
http://rpjs.co/

CHAPTER 4 © TEMPLATE ENGINES: JADE AND HANDLEBARS

JavaScript Code
Contrary to the previous example, if we want to use any JavaScript at template compilation time—in other words,
to write executable JavaScript code that manipulates the output of the Jade (i.e., HTML)—we can use the -, =, or !=

symbols. This might come in handy when we output HTML elements and inject JavaScript. Obviously, these types of
things should be done carefully to avoid cross-site scripting (XSS) attacks. For example, if we want to define an array
and output <> symbols, we can use !=.

- var arr = ['<a>','",'<c>']
ul
- for (var i = 0; i< arr.length; i++)
1i
span= 1
span!="unescaped:
span= "escaped: "

+ arr[i] + " vs.
+ arr[i]

produces this:

0unescaped: <a> vs. escaped: <adgt;</1i>
1unescaped: vs. escaped: &1t;b8gt;</1i>
2unescaped: <c> vs. escaped: &1t;c8gt;</1i>

Tip One of the main differences between Jade and Handlebars is that the former allows pretty much any JavaScript
in its code whereas the latter restricts programmers to only a handful of built-in and custom-registered helpers.

Comments

When it comes to comments, we have a choice to output them or not. For the former, use JavaScript style //; for the
latter, use //-. For example,

// content goes here

p Node.js is a non-blocking I/0 for scalable apps.
//- @todo change this to a class

p(id="footer") Copyright 2014 Azat

outputs
<!-- content goes here-->

<p>Node.js is a non-blocking I/O for scalable apps.</p>
<p id="footer">Copyright 2014 Azat</p>

75

CHAPTER 4 © TEMPLATE ENGINES: JADE AND HANDLEBARS

Conditions (if)

Interestingly enough, in addition to the standard JavaScript code where the if statement can be used by prefixing it
with -, we can use a minimalistic Jade alternative with no prefix and no parentheses—for example,

- var user = {}
- user.admin = Math.random()>0.5
if user.admin
button(class="launch") Launch Spacecraft
else
button(class="login") Log in

There’s also unless, which is equivalent to not or !.

Iterations (each loops)

Similar to conditions, iterators in Jade can be written simply with each—for example,

- var languages = ['php', 'node', 'ruby']
div
each value, index in languages
p= index + ". " + value

The HTML output is as follows:

<div>
<p>0. php</p>
<p>1. node</p>
<p>2. ruby</p>
</div>

The same construction works with objects as well:

- var languages = {'php': -1, 'node': 2, 'ruby':1}
div
each value, key in languages
p= key + ": " + value

The Jade above is compiled into the HTML output:

<div>
<p>php: -1</p>
<p>node: 2</p>
<p>ruby: 1</p>
</div>

76

CHAPTER 4 © TEMPLATE ENGINES: JADE AND HANDLEBARS

Filters

Filters are used when there are blocks of texts written in a different language. For example, the filter for Markdown
looks like this:

p
:markdown

Practical Node.js

[This book](http://expressjsguide.com) really helps to grasp many components needed for
modern-day web development.

Note The Markdown modules still need to be installed. The marked and markdown NPM packages are often used for
this. There’s no need for an additional configuration, just install them in the project's local node_modules folder.

Interpolation

Interpolation in Jade is achieved via #{name}. For example, to output title in a paragraph, do the following:

- var title = "Express.js Guide"
p Read the #{title} in PDF, MOBI and EPUB

The interpolation is processed at template compilation; therefore, don’t use it in executable JavaScript (-).:

Case

Here’s an example of the case statement in Jade:

- var coins = Math.round(Math.random()*10)
case coins
when 0
p You have no money
when 1
p You have a coin
default
p You have #{coins} coins!

Mixins
Mixins are functions that take parameters and produce some HTML. The declaration syntax is mixin name(param,
param2,...), and the usage is +name(data). For example,

mixin row(items)
tr
each item, index in items
td= item

77

http://expressjsguide.com/

CHAPTER 4 © TEMPLATE ENGINES: JADE AND HANDLEBARS

mixin table(tableData)
table
each row, index in tableData
+row(row)

- var node = [{name: "express"}, {name: "hapi"}, {name: "derby"}]
+table(node)

- var js = [{name: "backbone"}, {name: "angular"}, {name: "ember"}]
+table(js)

The template and data above produce this HTML:

<table>
<tr>
<td>express</td>
</tr>
<tr>
<td>hapi</td>
</tr>
<tr>
<td>derby</td>
</tr>
</table>
<table>
<tr>
<td>backbone</td>
</tr>
<tr>
<td>angular</td>
</tr>
<tr>
<td>ember</td>
</tr>
</table>

Include

include is a way to split logic into a separate file for the purpose of reusing it across multiple files. It’s a top-to-bottom
approach; we dictate what to use in the file that includes another file. The file that includes is processed first (we can
define locals there), then the included file is processed (we can use earlier defined locals).

To include a Jade template, use include /path/filename. For example, in file A:
include ./includes/header

Notice there’s no need for double or single quotes for the template name and its path.
It’s possible to traverse up the tree:

include ../includes/footer

But, there’s no way to use a dynamic value for the file and path (use a variable), because includes/partials are
handled at compilation (not at runtime).

78

CHAPTER 4 © TEMPLATE ENGINES: JADE AND HANDLEBARS

Extend

extend is a bottom-to-top approach (as oppose to include), in the sense that the included file commands which parts
of the main file it wants to replace. The way it works is with extend filename and block blockname statements:
In file a:

block header

p some default text
block content

p Loading ...
block footer

p copyright

In file_b:

extend file_a
block header
p very specific text
block content
.main-content

Standalone Jade Usage

Template engines are not always used with Node.js (and frameworks like Express.js). Sometimes, we might just want
to use Jade in a standalone manner. The use cases include generating an e-mail template, precompiling Jade before
deployment, and debugging. In this section, we do the following:

e Install aJade module

e Create our first Jade file

e Create a Node.js program that uses the Jade file

e Compare jade.compile, jade.render, and jade.renderFile

To add a jade dependency to your project, or if you're starting from scratch from an empty project folder, do the
following:

e Create an empty node_modules folder with $ mkdir node_modules

e Installand add jade to package.jsonwith $ npm install jade -save. See the results
in Figure 4-1.

79

CHAPTER 4 © TEMPLATE ENGINES: JADE AND HANDLEBARS

e 00 (] practicalnode — bash '

packoge. json css-parse@l1.0.4 No repository field.
http GET https://registry.npmjs.org/uglify-to-browserify
http GET https://registry.npmjs.org/async
http 202 https://registry.npmjs.org/optimist
http 202 https://registry.npmjs.org/source-map
http 200 https://registry.npmjs.org/uglify-to-browserify
http GET https://registry.npmjs.org/wordwrap
GET https://registry.npmjs.org/1ru-cache
http GET https://registry.npmjs.org/sigmund
http GET https://registry.npmjs.org/omdefine
http 202 https://registry.npmjs.org/sigmund
http 200 https://registry.npmjs.org/wordwrap
http 202 https://registry.npmjs.org/lru-cache
http 202 https://registry.npmjs.org/omdefine
http 202 https://registry.npmjs.org/async
ade®d.35.0 node_modules/jade
— character-parser@l.2.0

gIfddgggggdiig

(=)

— transformers82.1.0 (promisef?.0.0, css@1.0.8, uglify-js€z2.2.5)
— with@1.1.1 (uglify-js@2.4.0)

L— constantinople®1.0.2 (uglify-js2.4.8)
Azats-Air:practicalnode azat$

Figure 4-1. Installing Jade

Let’s say we have some Node.js script that sends e-mail and we need to use a template to generate HTML
dynamically for e-mail. This is how it might look (file jade-example.jade):

.header
hi= title
P
.body
p= body
.footer
div= By
a(href="http://twitter.com/#{author.twitter}")= author.name
ul
each tag, index in tags
li= tag

In this case, our Node.js script needs to hydrate, or populate, this template with the following data:
e title:string
e body: string
e author:string
e tags:array

We can extract these variables from multiple sources (databases, file systems, user input, and so on). For
example, in the jade-example. js file, we use hard-coded values for title, author, tags, but pass through a
command-line argument for body:

var jade = require('jade'),
fs = require('fs');

80

http://twitter.com/%23%7bauthor.twitter%7d

CHAPTER 4

var data = {
title: "Practical Node.js",
author: {
twitter: "@azat_co",
name: "Azat"
b
tags: ['express', 'node', 'javascript']

}

data.body = process.argv[2];

fs.readFile('jade-example.jade', 'utf-8', function(error, source){
var template = jade.compile(source);
var html = template(data)

console.log(html)

1;

TEMPLATE ENGINES: JADE AND HANDLEBARS

In this way, when we run $ node jade-example.js 'email body', we get the output shown in Figure 4-2.

e 00 (] practicalnode — bash =
Azats-Air:practicalnode azat$ node jade-example.js "email body"

<div class="header"><h1>Practical Node.js</hl><p></pr</diveediv class="body"><p>
email body</p></divaediv class="footer"s<divs<a href="http://twitter.com/@azat_c
o">Azat</m</diveail> <lisexpress</lis<lisnode</lisjavascripte/li></div
>

Azats-Air:practicalnode azat$

Figure 4-2. The result of jade-example output
The “prettified” HTML output is as follows:

<div class="header">
<h1>Practical Node.js</h1>
<p></p>

</div>

<div class="body">
<p>email body</p>

</div>

81

CHAPTER 4 © TEMPLATE ENGINES: JADE AND HANDLEBARS

<div class="footer">
<div> Azat
</div>

express</1i>
node</1i>
javascript</1li>

</div>

In addition to jade.compile(), the Jade API has the functions jade.render() and jade.renderFile().
For example, the previous file can be rewritten with jade.render():

var jade = require('jade'),
fs = require('fs');

var data = {
title: "Practical Node.js",
author: {
twitter: "@azat co",
name: "Azat"

1

tags: ['express', 'node', 'javascript']
data.body = process.argv[2];

//jade.render

fs.readFile('jade-example.jade', 'utf-8', function(error, source){
var html = jade.render(source, data)

console.log(html)

1;

Furthermore, with jade.renderFile, the jade-example. js file is even more compact:

var jade = require('jade'),
fs = require('fs');

var data = {
title: "Practical Node.js",

author: {
twitter: "@azat_co",
name: "Azat"
1
tags: ['express', 'node', 'javascript']
}

data.body = process.argv[2];
//jade.renderFile

jade.renderFile('jade-example.jade', data, function(error, html){
console.log(html)

1);
82

http://twitter.com/@azat_co

CHAPTER 4 © TEMPLATE ENGINES: JADE AND HANDLEBARS

Note Jade can also be used as a command-line tool after installing it with the -g or --global option via NPM.
For more information, run jade -h or see the official documentation (http://jade-lang.com/command-1line/).

To use Jade in a browser, you can use browserify (https://github.com/substack/node-browserify) and its
jadeify (https://github.com/substack/node-jadeify) middleware.

Note To use the same Jade templates on front-end (browser) and server sides, | recommend jade-browser
(https://www.npmjs.org/package/jade-browser) by Storify, for which | was the maintainer for a time during my work
there. jade-browser acts as an Express.js middleware and it exposes server-side templates to the browser along with a
helpful utility functions.

https://github.com/storify/jade-browser

Handlebars Syntax

The Handlebars library is another template engine. It inherits from Mustache and, for the most part, is compatible
with Mustache’s syntax. However, Handlebars adds more features (i.e., a superset).
Unlike Jade, by design, Handlebars was made so that developers can’t write a lot of JavaScript logic inside the
templates. This helps to keep templates lean and related strictly to the representation of the data (no business logic).
Another drastic difference between Jade and Handlebars is that the latter requires full HTML code (<, >, and so
on), and for this reason it could care less about whitespace and indentation.

Variables

A Handlebars expression is {{, some content, followed by }}, hence the name of the library (see the resemblance to
handlebars on a bicycle?). For example, the Handlebars code:

<hi>{{title}}</h1>
<p>{{body}}</p>

with data:

{

title: "Express.js Guide",
body: "The Comprehensive Book on Express.js'

}

renders:

<h1>Express.js Guide</h1>
<p>The Comprehensive Book on Express.js</p>

83

http://jade-lang.com/command-line/
https://github.com/substack/node-browserify
https://github.com/substack/node-jadeify
https://www.npmjs.org/package/jade-browser
https://github.com/storify/jade-browser

CHAPTER 4 © TEMPLATE ENGINES: JADE AND HANDLEBARS

Iteration (each)

In Handlebars, each is one of the built-in helpers; it allows you to iterate through objects and arrays. Inside the block,
we can use @key for the former (objects), and @index for the later (arrays). In addition, each item is referred to as this.
When an item is an object itself, this can be omitted and just the property name is used to reference the value of
that property.

The following are examples of the each helper block in Handlebars:

<div>

{{#each languages}}
<p>{{@index}}. {{this}}</p>

{{/each}}

</div>

The template above is supplied with this data:
{languages: ['php', 'node', 'ruby']}

And output this HTML upon compilation:

<div>
<p>0. php</p>
<p>1. node</p>
<p>2. ruby</p>
</div>

Unescaped Output

By default, Handlebars escapes values. If you don’t want Handlebars to escape a value, use triple curly braces:

{{{and }}}.

As data, let’s use this object that has an array with some HTML tags (angle braces):

{
arr: [
"<avac/ay',
"<iritalicc/i>',
'bold’
]
}

To apply this Handlebars template to our data above (i.e., hydration):

{{#teach arr}}

{{@index}}
unescaped: {{{this}}} vs.
escaped: {{this}}
</1i>

{{/each}}

84

CHAPTER 4

The hydrated template produces this HTML:

0
unescaped: <a»a vs.
escaped: 81t;adgt;a8lt;/a8gt;
</1i>
<1li>
1
unescaped: <i>italic</i> vs.
escaped: 81t;i8gt;italic81t;/i8gt;
</11>
<1i>
2
unescaped: bold vs.
escaped: <strongdgt;bold</strongdgt;
</1i>

Conditions (if)

if is another built-in helper invoked via #. For example, this Handlebars code:

{{#if user.admin}}
<button class="launch">Launch Spacecraft</button>

{{else}}

<button class="login"> Log in</button>

{{7if}}

populated with data:

{
user: {
admin: true

}
}

turns into this HTML output:

<button class="launch">Launch Spacecraft</button>

Unless

TEMPLATE ENGINES: JADE AND HANDLEBARS

Toinverse an if not ... (if ! ...) statement (convert negative to positive), we can harness the unless built-in
helper block. For example, the previous code snippet can be rewritten with unless.

85

CHAPTER 4 © TEMPLATE ENGINES: JADE AND HANDLEBARS

The Handlebars code that check the truthness of the admin flag (property user.admin):

{{#unless user.admin}}
<button class="login"> Log in</button>

{{else}}

<button class="launch">Launch Spacecraft</button>
{{/unless}}

We supply our template with this data that means that the user is the administrator:

{

user: {
admin: true
}

}

The HTML output renders the launch button, which is available only to admins:

<button class="launch">Launch Spacecraft</button>

With

In case there’s an object with nested properties, and there are a lot of them, it’s possible to use with to pass the context.
We have this Handlebars code that is handling a user’s contact and address information:

{{#twith user}}

<p>{{name}}</p>

{{#with contact}}

Twitter: @{{twitter}}

{{/with}}

Address: {{address.city}},
{{/with}}
{{user.address.state}}

Then we merge the template with this data. Notice the properties’ names are the same as in the Handlebar
template, there’s only one reference to the user object:

{user: {
contact: {
email: 'hi@azat.co',
twitter: 'azat co'

b
address: {
city: 'San Francisco',
state: 'California’
b
name: 'Azat’
1}

86

CHAPTER 4 © TEMPLATE ENGINES: JADE AND HANDLEBARS

The snippets above when compiled, produce HTML:

<p>Azat</p>

Twitter: @azat_co
Address: San Francisco, California

Comments

To output comments, use regular HTML <! -- and -->. To hide comments in the final output, use {{! and }} or
{{!-- and --}}. For example,

<!-- content goes here -->

<p>Node.js is a non-blocking I/0 for scalable apps.</p>
{{! @todo change this to a class}}

{{!-- add the example on {{#if}} --}}

<p id="footer">Copyright 2014 Azat</p>

outputs

<!-- content goes here -->
<p>Node.js is a non-blocking I/O for scalable apps.</p>
<p id="footer">Copyright 2014 Azat</p>

Custom Helpers

Custom Handlebars helpers are similar to built-in helper blocks and Jade mixins. To use custom helpers, we need to
create them as a JavaScript function and register them with the Handlebars instance.

This Handlebars template uses our custom helper table which we'll register (i.e., define) later in the
JavaScript/Node.js code:

{{table node}}

Here goes the JavaScript/Node.js that tells the Handlebars compiler what to do when it encounters the custom
table function (i.e., print an HTML table out of the provided array):

Handlebars.registerHelper('table', function(data) {
var str = '<table>';
for (var i = 0; i < data.length; i++) {
str += '<tr>';
for (var key in data[i]) {
str += '<td>' + data[i][key] + '</td>';
};
str += '</t>';
¥

str += '</table>’;

return new Handlebars.SafeString (str);

B;

87

CHAPTER 4 © TEMPLATE ENGINES: JADE AND HANDLEBARS

This is our table data:

{
node: [
{name: 'express', url: 'http://expressjs.com/'},
{name: ‘hapi', url: "http://spumko.github.io/"'},
{name: 'compound', url: ‘http://compoundjs.com/'},
{name: ‘'derby', url: "http://derbyjs.com/"'}
]
}
The resulting HTML output looks like this:
<table>
<tr>
<td>express</td>
<td>http://expressjs.com/</td>
</tr>
<tr>
<td>hapi</td>
<td>http://spumko.github.io/</td>
</tr>
<tr>
<td>compound</td>
<td>http://compoundjs.com/</td>
</tr>
<tr>
<td>derby</td>
<td>http://derbyjs.com/</td>
</tr>
</table>

Includes (Partials)

Includes or partials templates in Handlebars are interpreted by the {{>partial name}} expression. Partials are akin
to helpers and are registered with Handlebars.registerPartial(name, source), where name is a string and source is
a Handlebars template code for the partial.

Standalone Handlebars Usage

Developers can install Handlebars via NPM with $ npm install handlebarsor$ npm install handlebars --save,
assuming there’s either node_modules or package. json in the current working directory (see the results of a sample
installation in Figure 4-3).

88

http://expressjs.com/
http://spumko.github.io/
http://compoundjs.com/
http://derbyjs.com/
http://expressjs.com/
http://spumko.github.io/
http://compoundjs.com/
http://derbyjs.com/

CHAPTER 4 © TEMPLATE ENGINES: JADE AND HANDLEBARS

8 00 (] practicalnode — bash x

http 200 https://registry.npmjs.org/handlebars
http https://registry.npmjs.org/handlebars/-/handlebars-1.1.2.tgz
http 200 https://registry.npmjs.org/handlebars/-/handlebars-1.1.2.tgz
http GET https://registry.npmjs.org/optimist
http GET https://registry.npmjs.org/uglify-js
http 304 https://registry.npmjs.org/optimist
http 304 https://registry.npmjs.org/uglify-js
http GET https://registry.npmjs.org/wordwrap
http GET https://registry.npmjs.org/source-map
http GET https://registry.npmjs.org/async
http 204 https://registry.npmjs.org/wordwrap
http 304 https://registry.npmjs.org/source-map
http 304 https://registry.npmjs.org/async
http https://registry.npmjs.org/andefine
http 304 https://registry.npmjs.org/amdefine
pack .ison ¢ss81.0.8 No repository field.
n uglify-js@2.2.5 'repositories’ (plural) Not supported.
Please pick one as the 'repository’ field
css-stringify@1,0.5 No repository field.
- 1 css-parse@1,0.4 No repository field.
handlebars@1.1.2 node_modules/handlebars
— optimist€0.3.7 (wordwrap€d.0.2)
— uglify-js@2.3.6 (async@@.2.9, source-map@9.1.31)
Azats-Air:practicalnode azat$

S Qdqqgsggsggidd

Figure 4-3. Installing Handlebars

Note Handlebars can be installed via NPM as a command-line tool with the -g or --global options. For more
information on how to use Handlebars in this mode, refer to the $ handlebar command or the official documentation
(https://github.com/wycats/handlebars. js/t#usage-1).

Here's an example of standalone Node.js Handlebars usage from handlebars-example. js:

var handlebars = require('handlebars'),
fs = require('fs');

var data = {
title: 'practical node.js',
author: '@azat co',
tags: ['express', 'node', 'javascript']

data.body = process.argv[2];

fs.readFile('handlebars-example.html', 'utf-8', function(error, source){
handlebars.registerHelper('custom title', function(title){
var words = title.split(' ');
for (var i = 0; i < words.length; i++) {
if (words[i].length > 4) {
words[i] = words[i][0].toUpperCase() + words[i].substr(1);
}
}
title = words.join(' ');
return title;

1)

89

https://github.com/wycats/handlebars.js/#usage-1

CHAPTER 4 © TEMPLATE ENGINES: JADE AND HANDLEBARS

var template = handlebars.compile(source);
var html = template(data);
console.log(html)

D;

And the handlebars-example.html file that uses custom_title helper has this content that calls the helper and
outputs some other properties:

<div class="header">
<h1>{{custom_title title}}</h1>
</div>
<div class="body">
<p>{{body}}</p>
</div>
<div class="footer">
<div>{{autor.name}}
</div>

{{#teach tags}}
{{this}}</1i>
{{/each}}

</div>

To produce this HTML when we run $ node handlebars-example.js 'email body', use the following:

<div class="header">
<h1>Practical Node.js</h1>
</div>
<div class="body">
<p>email body</p>
</div>
<div class="footer">
<div>
</div>

express
node</1i>
javascript</1i>

</div>

To use Handlebars in the browser, download the library in a straightforward manner from the official web site
(http://handlebarsjs.com/) and include it in your pages. Alternatively, it’s possible to use just the runtime version
from the same web site (which is lighter in size) with precompiled templates. Templates can be precompiled with the
Handlebars command-line tool.

90

http://twitter.com/%7b%7bauthor.twitter%7d%7d
http://twitter.com/
http://handlebarsjs.com/

CHAPTER 4 © TEMPLATE ENGINES: JADE AND HANDLEBARS

Jade and Handlebars Usage in Express.js 4

By default, Express.js 4.x (and 3.x) uses either a template extension provided to the res.render method or the
default extension set by the view engine setting, to invoke the require and __express methods on the template
library. In other words, for Express.js to utilize a template engine library out of the box, that library needs to have the
__express method.

When the template engine library doesn’t provide the __express method, or a similar one with
(path, options, callback) parameters, it's recommended that you use Consolidate.js
(https://github.com/visionmedia/consolidate.js/).

Here is a quick example of Consolidate.js for Express.js 4 (version 4.2.0 and Consolidate version is 0.10.0):

var express = require('express'),
cons = require('consolidate'),
app = express()

app.engine('html’, cons.swig)

app.set('view engine', 'html')
app.set('views', dirname + '/views')

var platforms = [
{ name: 'node' },
{ name: 'ruby' },
{ name: ‘'python' }
]

app.get('/', function(req, res){
res.render('index', {
title: 'Consolidate This'
}
1))

app.get('/platforms', function(req, res){
res.render('platforms’, {
title: 'Platforms’,
platforms: platforms
)
1)

app.listen(3000)
console.log('Express server listening on port 3000')

Usually, the source code is in the GitHub repository and the snippet is in the ch4/consolidate folder.
For more information on how to configure Express.js settings and use Consolidate.js, refer to the Pro Express.js 4
book (Apress, 2014).

Jade and Express.js

Jade is compatible with Express.js out of the box (in fact, it’s the default choice), so to use Jade with Express.js, you just
need to install a template engine module jade (https://www.npmjs.org/package/jade) and provide an extension to
Express.js via the view engine setting.).

91

https://github.com/visionmedia/consolidate.js/
https://www.npmjs.org/package/jade

CHAPTER 4 © TEMPLATE ENGINES: JADE AND HANDLEBARS

For example, in the main server file we set the setting:

app.set('view engine', 'jade');

Note Ifyouuse $ express <app_name> command-line tool, you can add the option for engine support, i.e., -e
option for EJS and —H for Hogan. This will add EJS or Hogan automatically to your new project. Without either of these
options, the express-generator (versions 4.0.0-4.2.0) will use Jade.

In the route file, we can call the template—for example, views/page. jade (the views folder name is another
Express.js default, which can be overwritten with the view setting):

app.get('/page', function(req, res, next){
//get the data dynamically
res.render('page’, data);

1;

If we don’t specify the views engine setting, then the extension must be passed explicitly to res.render():

res.render('page.jade’, data);

Handlebars and Express.js

Contrary to Jade, the Handlebars library from http://handlebarsjs.com/ doesn’t come with the __express method,
but there are a few options to make Handlebars work with Express.js:).

e consolidate: a Swiss-army knife of Express.js template engine libraries (shown above)
e hbs (https://github.com/donpark/hbs): wrapper library for Handlebars

e express-Handlebars (file://pchns-f01/TECHNOLOGY/BPR/Techutilities/Apress/
Apress%200utline/express3-handlebars): despite the name, this module should work just
fine with Express.js 4 as well as version 3.x

Here’s how we can use hbs approach (extension hbs). Inside of the typical Express.js app code (i.e., configuration
section of the main file that we launch with the $ node command) write the following statements:

app.set('view engine', 'hbs');
Or, if another extension is preferable, such as html, we see the following:

app.set('view engine', 'html');
pp.engine('html', require('hbs'). express);

92

http://handlebarsjs.com/
https://github.com/donpark/hbs
file://pchns-f01/TECHNOLOGY/BPR/Techutilities/Apress/Apress%2520Outline/express3-handlebars
file://pchns-f01/TECHNOLOGY/BPR/Techutilities/Apress/Apress%2520Outline/express3-handlebars

CHAPTER 4 © TEMPLATE ENGINES: JADE AND HANDLEBARS

The express3-handlebars approach usage is as follows:

app.engine('handlebars', exphbs({defaultLayout: 'main'}));
app.set('view engine', 'handlebars');

Project: Adding Jade Templates to Blog

Last, we can continue with Blog. In this section we add main pages using Jade, plus add a layout and some partials:
e layout.jade: global app-wide template
e index.jade: home page with the list of posts
e article.jade: individual article page
e login.jade: page with alogin form
e post.jade: page for adding a new article
e admin.jade: page to administer articles after logging in

Because the templates in this mini-project require data, we’ll skip the demo until the chapter 5 where we’ll plug
in the MongoDB database. So the source code for the Jade templates is exactly the same as in the ch5 folder of the
GitHub repository practicalnode: https://github.com/azat-co/practicalnode. Feel free to copy it from there or
follow the instructions below.

layout.jade

Let’s open the project where we left off in the previous chapter and add layout. jade with the document type statement:

doctype html

Note doctype 5 was deprecated around v1.0.

Now we can add the main tags of the page:

html
head

The title of the each page is provided from the appTitle variable (aka, local):

title= appTitle

Then, in the head tag, we list all the front-end assets that we need app-wide (on each page):
script(type="text/javascript", src="js/jquery-2.0.3.min.js")
link(rel="stylesheet', href='/css/bootstrap-3.0.2/css/bootstrap.min.css")

link(rel="stylesheet", href="/css/bootstrap-3.0.2/css/bootstrap-theme.min.css")
link(rel="stylesheet", href="/css/style.css")

93

https://github.com/azat-co/practicalnode

CHAPTER 4 © TEMPLATE ENGINES: JADE AND HANDLEBARS

script(type="text/javascript", src="/css/bootstrap-3.0.2/js/bootstrap.min.js")
script(type="text/javascript", src="/js/blog.js")
meta(name="viewport", content="width=device-width, initial-scale=1.0")
The main content lives in body which has the same level indentation as head:
body

Inside the body, we write an ID and some classes for the styles that we’ll add later:

#wrap
.container

The appTitle value is printed dynamically, but the p.lead element only has texts:
h1.page-header= appTitle
p.lead Welcome to example from Express.js Experience by
a(href="http://twitter.com/azat_co") @azat co
|. Please enjoy.
The block sections can be overwritten by the children templates (templates that extend this file):
block page
block header
div
Menu is a partial (i.e., an include) that is stored in the views/includes folder. Note the absence of quotation marks:
include includes/menu

In this block, we can display messages for users:

block alert
div.alert.alert-warning.hidden

Main content goes in this block:

.content
block content

Lastly, the footer looks as follows:
block footer
footer

.container

| Copyright 8copy; 2014 | Issues? Submit to
a(href="https://github.com/azat-co/blog-express/issues") GitHub

94

http://twitter.com/azat_co
https://github.com/azat-co/blog-express/issues

CHAPTER 4 ' TEMPLATE ENGINES: JADE AND HANDLEBARS
The full code of layout. jade is as follows:

doctype html
html
head
title= appTitle
script(type="text/javascript", src="js/jquery-2.0.3.min.js")
link(rel="stylesheet", href="/css/bootstrap-3.0.2/css/bootstrap.min.css")
link(rel="stylesheet", href="/css/bootstrap-3.0.2/css/bootstrap-theme.min.css")
link(rel="stylesheet", href="/css/style.css")
script(type="text/javascript", src="/css/bootstrap-3.0.2/js/bootstrap.min.js")
script(type="text/javascript", src="/js/blog.js")
meta(name="viewport", content="width=device-width, initial-scale=1.0")
body
#wrap
.container
h1.page-header= appTitle
p.lead Welcome to example from Express.js Experience by8nbsp;
a(href="http://twitter.com/azat_co") @azat co
| . Please enjoy.
block page
block header
div
include includes/menu
block alert
div.alert.alert-warning.hidden
.content
block content
block footer
footer
.container

| Copyright © 2014 | Issues? Submit to
a(href="https://github.com/azat-co/blog-express/issues") GitHub

index.jade

Now we can look at the home page template index. jade that extends layout:
extends layout

We set the menu variable to index, so the menu include (i.e., menu. jade) can determine which tab to show as
active:

block page
- var menu = 'index'

95

http://twitter.com/azat_co
https://github.com/azat-co/blog-express/issues

CHAPTER 4 © TEMPLATE ENGINES: JADE AND HANDLEBARS

The main content with the list of articles that comes from locals is as follows:

block content
if (articles.length === 0)
| There's no published content yet.
a(href="/login") Log in
| to post and publish.
else
each article, index in articles
div
h2
a(href="/articles/#{article.slug}")= article.title

The full code of index. jade is as follows:
extends layout

block page
- var menu = 'index’
block content
if (articles.length === 0)
| There's no published content yet.
a(href="/login") Log in
| to post and publish.
else
each article, index in articles
div
h2
a(href="/articles/#{article.slug}")= article.title

Figure 4-4 shows how the home page looks after adding style sheets.

96

CHAPTER 4 © TEMPLATE ENGINES: JADE AND HANDLEBARS

000 | & blog-express x o l_.
& - € [localhost:3000 ' 7 =
blog-express

Welcome to example from Express.js Experience by @azat_co. Please enjoy.
-

Node.js FUNdamentals: A Concise Overview of The Main Concepts
Express.js Experience
Node is a movement

Life is good

Copyright © 2014 | Issues? Submit to GitHub.

Figure 4-4. The home page

article.jade

The individual article page (Figure 4-5) is relatively unsophisticated because most of the elements are abstracted into
layout. jade

extends layout
block content

hi= title
p= text

97

CHAPTER 4 © TEMPLATE ENGINES: JADE AND HANDLEBARS

e oo | ¥ blog-express x L]

<« C [1 localhost:3000/articles /node-fundamentals i

blog-express

Welcome to example from Express.js Experience by @azat_co. Please enjoy.

Home Login

Node.js FUNdamentals: A Concise Overview of The
Main Concepts

Node.js is a highly efficient and scalable non-blocking I/O platform that was build on top of Google Chrome V8 engine and its ECMAScript. This
means that most front-end JavaScript (another implementation of ECMAScript) objects, functions and methods are available in Node.s. Please refer
to JavaScript FUNdamentals if you need a refresher on JS-specific basics.

Copyright © 2014 | Issues? Submit to GitHub.

Figure 4-5. The article page

login.jade
Similarly, the login page contains only a form and a button (with the Twitter Bootstrap classes/markup):

extends layout

block page
- var menu = 'login’

block content
.col-md-4.col-md-offset-4
h2 Log in
div= error
div
form(action="/1login", method="POST")

P
input.form-control(name="email", type="text", placeholder="hi@azat.co")

98

CHAPTER 4 © TEMPLATE ENGINES: JADE AND HANDLEBARS

p
input.form-control(name="password", type="password", placeholder="***")

p
button.btn.btn-1g.btn-primary.btn-block(type="submit") Log in

Figure 4-6 shows how the login page looks.

e oo | <# blog-express x Ny = t
£ C' [3 localhost:3000/login ol =
blog-express

Welcome to example from Express.js Experience by @azat_co. Please enjoy.

Login

hi@azat.co

Copyright © 2014 | Issues? Submit to GitHub.

Figure 4-6. The login page

post.jade

The post page (Figure 4-7) has another form. This time, the form contains a text area element:

extends layout
block page

- var menu = ‘post’
block content

99

CHAPTER 4 © TEMPLATE ENGINES: JADE AND HANDLEBARS

h2 Post an Article
div= error
div.col-md-8
form(action="/post", method="POST", role="form")

div.form-group

label(for="title") Title
input#title.form-control(name="title", type="text", placeholder="JavaScript is good")

div.form-group

label(for="slug") Slug
input#slug.form-control(name="slug", type="text", placeholder="js-good")

span.help-block This string will be used in the URL.
div.form-group

label(for="text") Text

textarea#ttext.form-control (rows= "text", placeholder="Text")

||5||’ name=

p
button.btn.btn-primary(type="submit") Save

x

8006 | <@ blog-express A
€ - C [localhost:3000/post

blog-express

Welcome to example from Express.js Experience by @azat_co. Please enjoy.

Home Admin Log out

Post an Article

Title

it is good

This string will be used in the URL.

Text

Text

Copyright © 2014 | Issues? Submit to GitHub.

Figure 4-7. The post page

100

CHAPTER 4 © TEMPLATE ENGINES: JADE AND HANDLEBARS

admin.jade

The admin page (Figure 4-8) has a loop of articles just like the home page. In addition, we can include a front-end
script (js/admin. js) specific to this page:

extends layout

block page
- var menu = 'admin’

block content
div.admin
if (articles.length === 0)
p
| Nothing to display. Add a new
a(href="/post") article
|.

else

table.table.table-stripped
thead
tr
th(colspan="2") Actions
th Post Title
tbody
each article, index in articles
tr(data-id="#{article. id}", class=(!article.published)?'unpublished':"")
td.action
button.btn.btn-danger.btn-sm.remove(type="button")
span.glyphicon.glyphicon-remove(title="Remove")
td.action
button.btn.btn-default.btn-sm.publish(type="button")
span.glyphicon(class=(article.published)?"glyphicon-pause
title=(article.published)?"Unpublish":"Publish")
td= article.title
script(type="text/javascript", src="js/admin.js")

:"glyphicon-play",

101

CHAPTER 4 © TEMPLATE ENGINES: JADE AND HANDLEBARS

800 <# blog-express x \ "3 @
€« C' [1 localhost:3000/admin 2 =

blog-express

Welcome to example from Express.js Experience by @azat_co. Please enjoy.

Home Post m Log out

Actions Post Title

n Node.js FUNdamentals: A Concise Overview of The Main Concepts
Express.js Experience
n Node is a movement

n Life is good

Copyright © 2014 | Issues? Submit to GitHub.

Figure 4-8. The admin page
We use interpolation to print article IDs as attributes data-id:
tr(data-id="#{article. id}", class=(!article.published)?'unpublished':"")

And, a conditional (ternary) operator (https://github.com/donpark/hbs) is used for classes and title attributes.
Remember, it’s JavaScript!
span.glyphicon(class=(article.published)?"glyphicon-pause":"glyphicon-play",
title=(article.published)?"Unpublish":"Publish")

Summary

You learned about Jade and Handlebars templates (variables, iterations, condition, partials, unescaping, and so forth),
and how to use them in a standalone Node.js script or within Express.js. In addition, the main pages for Blog were
created using Jade.

In the next chapter we examine an important aspect of modern web development and software engineering:
test-driven development. We look at the Mocha module and write some tests for Blog in true TDD/BDD style.
In addition, the next chapter deals with adding a database to Blog routes to populate these templates, and shows you
how to turn them into working HTML pages!

102

https://github.com/donpark/hbs

CHAPTER 5

Persistence with MongoDB
and Mongoskin

NoSQL databases, also called non-relational databases, are more horizontally scalable, usually open source, and
better suited for distributed systems. NoSQL databases deal routinely with larger data sizes than traditional ones.
The key distinction in implementation comes from the fact that relationships between database entities are not
stored in the database itself (no more join queries); they are moved to the application or object-relational mapping
(ORM) levels—in our case, to Node.js code. Another good reason to use NoSQL databases is that, because they are
schemaless, they are perfect for prototyping and Agile iterations (more pushes!).

MongoDB is a document store NoSQL database (as opposed to key value and wide-column store NoSQL
databases, http://nosql-database.org/). It’s the most mature and dependable NoSQL database available thus far.
In addition to efficiency, scalability, and lightning speed, MongoDB uses JavaScript-like language for its interface!
This alone is magical, because now there’s no need to switch context between the front end (browser JavaScript), back
end (Node.js), and database (MongoDB).

The company behind MongoDB (formerly 10gen, http://en.wikipedia.org/wiki/10gen) is an industry leader
and provides education and certification through its online MongoDB University (https://university.mongodb.com/).

To get you started with MongoDB and Node.js, we examine the following in this chapter:

e Easyand proper installation of MongoDB

e How to run the Mongo server

e Data manipulation from the Mongo console

e MongoDB shell in detail

e Minimalistic native MongoDB driver for Node.js example
e Main Mongoskin methods

e Project: storing Blog data in MongoDB with Mongoskin

Easy and Proper Installation of MongoDB

The following steps are better suited for Mac OS X/Linux-based systems, but with some modifications, they can be
used for Windows systems as well (i.e., $PATH variable, or the slashes). Next, we look at MongoDB installation from the
official package, as well as using HomeBrew for Mac OS X users (recommended) . For non-Mac users, there are many
other ways to install (http://docs.mongodb.org/manual/installation/).

The HomeBrew installation is recommended and is the easiest path (assuming Mac OS X users have brew
installed already, which was covered in Chapter 1): $ brew install mongodb. If this doesn’t work, try the manual
path described later./).

103

http://nosql-database.org/
http://en.wikipedia.org/wiki/10gen
https://university.mongodb.com/
http://docs.mongodb.org/manual/installation/

CHAPTER 5 * PERSISTENCE WITH MONGODB AND MONGOSKIN

MongoDB can be downloaded at http://www.mongodb.org/downloads. For the latest Apple laptops, such as
MacBook Air, select the OS X 64-bit version. The owners of older Macs should browse the link: http://d1.mongodb.
org/dl/osx/1386.

Tip If you don’t know the architecture type of your processor when choosing a MongoDB package, type $ uname -p
in the command line to find this information.

Unpack the package into your web development folder (~/*Documents/Development or any other). If you want,
you could install MongoDB into the /usr/local/mongodb folder.

Optional: If you would like to access MongoDB commands from anywhere on your system, you need to add your
mongodb path to the $PATH variable. For Mac OS X, you need the open-system paths file with:

$ sudo vi /etc/paths

Or, if you prefer TextMate:
$ mate /etc/paths

Then, add the following line to the /etc/paths file:
/usr/local/mongodb/bin

Create a data folder; by default, MongoDB uses /data/db. Please note this might be different in newer versions of
MongoDB. To create the data folder, type and execute the following commands:

$ sudo mkdir -p /data/db
$ sudo chown “id -u /data/db

Figure 5-1 shows how this looks onscreen.

eNnO Terminal — bash — 79x6

Last login: Sun Aug 25 17:28:35 on ttys@e@ 8
Azats-Air:~ azat$ sudo mkdir /data/db

Azats-Air:~ azat$ sudo chown ‘id -u" /data/db

Azats-Air:~ azat$

Figure 5-1. Initial setup for MongoDB: create the data directory

If you prefer to use path other than /data/db, you can specify it using the --dbpath option to mongod
(main MongoDB service).

Detailed instructions for MongoDB installation on various OSs are available at MongoDB.org, “Install MongoDB
on OSX” (http://docs.mongodb.org/manual/tutorial/install-mongodb-on-os-x/). For Windows users, there is
a good walk-through article titled “Installing MongoDB” (http://www.tuanleaded.com/blog/2011/10/installing-
mongodb.

104

http://www.mongodb.org/downloads
http://dl.mongodb.org/dl/osx/i386
http://dl.mongodb.org/dl/osx/i386
http://docs.mongodb.org/manual/tutorial/install-mongodb-on-os-x/
http://www.tuanleaded.com/blog/2011/10/installing-mongodb
http://www.tuanleaded.com/blog/2011/10/installing-mongodb

CHAPTER 5 * PERSISTENCE WITH MONGODB AND MONGOSKIN

How to Run the Mongo Server

To run the Mongo server, go to the folder where you unpacked MongoDB. That location should have a bin folder in it.
From that folder, type the following command:

$./bin/mongod
Or, if you added $PATH for the MongoDB location, type the following:

$ mongod

Note Don't forget to restart the terminal window after adding a new path to the $PATH variable (Figure 5-2).

® 00 Terminal — mongod — 122x30

Last login: Sun Aug 25 17:29:16 on ttys00@ 8
Azats-Air:~ azat$ mongod

mongod --help for help and startup options

Sun Aug 25 17:31:00

Sun Aug 25 17:31:00 warning: 32-bit servers don't have journaling enabled by default. Please use --journal if you want dur
ability.

Sun Aug 25 17:31:00

Sun Aug 25 17:31:80 [initandlisten] MongoDB starting : pid=738 port=27017 dbpath=/data/db/ 32-bit host=Azats-Air.local

Sun Aug 25 17:31:00 [initandlisten]

Sun Aug 25 17:31:8@ [initaendlisten] ** NOTE: This is a development version (2.3.@) of MongoDB.

Sun Aug 25 17:31:00 [initandlisten] ** Not recommended for production.

Sun Aug 25 17:31:00 [initandlisten]

Sun Aug 25 17:31:8@ [initandlisten] ** NOTE: This is a 32 bit MongoDB binary.

Sun Aug 25 17:31:00 [initandlisten] ** 32 bit builds are limited to less than 2GB of data (or less with --journal).
Sun Aug 25 17:31:80 [initandlisten Note that journaling defoults to off for 32 bit and is currently off.

Sun Aug 25 17:31:00 [l.mtu'ld'hsten] b See http://wew.mongodb.org/display/DOCS/32+bit

Sun Aug 25 17:31:00 [initandlisten]

Sun Aug 25 17:31:80 [initandlisten] ** WARNING: soft rlimits too low. Number of files is 256, should be at least 1000

Sun Aug 25 17:31:8@ [initandlisten]

Sun Aug 25 17:31:00 [initandlisten] db version v2.3.08, pdfile version 4.5

Sun Aug 25 17:31:00 [initandlisten] git version: Mdb?d&daszfclmnﬁssubus??bﬂfdz&

Sun Aug 25 17:31:00 [initandlisten] build info: Darwin bs-osx-106-1386-1.1ocal 10.8.0 Darwin Kernel Version 10.8.0: Tue Ju
n 7 16:33:36 PDT 2011; root:xnu-15@4,15.3~1/RELEASE_I386 1386 BOOST_LIB_VERSION=1_49

Sun Aug 25 17:31:8@ [initaendlisten] options: {}

Sun Aug 25 17:31:80 [initandlisten] Unable to check for journal files due to: boost::filesystem::directory_iterator::const
ruct: No such file or directory: "/data/db/journal”

Sun Aug 25 17:31:00 [websvr] admin web console waiting for connections on port 28017

Sun Aug 25 17:31:8@ [initandlisten] waiting for connections on port 27017

Figure 5-2. Starting up the MongoDB server

If you see something like
MongoDB starting: pid =7218 port=27017...
this means the MongoDB database server is running. By default, it’s listening to http://localhost:27017. This is the

host and port for the scripts and applications to access MongoDB. However, there’s a web GUI for humans. If you go to
your browser and type http://localhost: 28017, you should be able to see the version number, logs, and other useful

105

CHAPTER 5 © PERSISTENCE WITH MONGODB AND MONGOSKIN

information. In this case, the MongoDB server is using two different ports (27017 and 28017): one is primary (native)
for communications with apps; the other is a web-based GUI for monitoring/statistics. In our Node.js code, we use
27017 only.

Data Manipulation from the Mongo Console

Akin to the Node.js REPL, MongoDB has a console/shell that acts as a client to the database server instance. This
means that we have to keep the terminal window with the server open and running while using the console in a
different window/tab.

From the folder where you unpacked the archive, launch the mongod service with
$./bin/mongod

Oy, if you installed MongoDB globally (recommended), launch the mongod service with
$ mongod

You should be able to see information in your terminal and in the browser at localhost:28017.

For the MongoDB shell, or mongo, launch in a new terminal window (important!) and, in the same folder, type the
following commands:
$./bin/mongo

Open another terminal window in the same folder and execute
$./bin/mongo

Or, if you installed mongo globally (recommended), type
$ mongo

You should see something like this, depending on your version of the MongoDB shell:

MongoDB shell version: 2.0.6
connecting to: test

Then, type and execute

> db.test.save({ a: 1})
> db.test.find()

Figure 5-3 shows this. If you see that your record is being saved, then everything went well.

106

CHAPTER 5 * PERSISTENCE WITH MONGODB AND MONGOSKIN

8006 Terminal — mongo — 79x 14

Last login: Sun Aug 25 17:30:33 on ttys0eo 8
Azats-Air:~ azat$ mongo
MongoDB shell version: 2.3.0
connecting to: test
Welcome to the MongoDB shell.
For interactive help, type "help”.
For more comprehensive documentation, see
http://docs .mongodb .org/
Questions? Try the support group
http://groups.google.com/group/mongodb-user
> db.test.save({ a: 1})
> db.test.find()

Figure 5-3. Running MongoDB client and storing sample data

Commands find and save do exactly what you might think they do. ;-)

Note On Mac OS X (and most Unix systems), to close the process, use control + c. If you use control + z, it puts
the process to sleep (or detaches the terminal window). In this case, you might end up with a lock on data files and then
have to use the “kill” command (e.g., $ killall node) or Activity Monitor and delete the locked files in the data folder
manually. For a vanilla Mac terminal, command + . is an alternative to control + c.

MongoDB Shell in Detail

The most useful MongoDB shell commands are listed here:
e > help: prints a list of available commands

e > show dbs: prints the names of the databases on the database server to which the console is
connected (by default, localhost:27017; but, if we pass params to mongo, we can connect to any
remote instance)

e > use db_name: switches to db_name

e > show collections: prints a list of collections in the selected database

e > db.collection_name.find(query);: finds all items matching query

e > db.collection_name.findOne(query);: finds one item that matches query

e > db.collection_name.insert(document): adds a document to the collection_name
collection

e > db.collection_name.save(document);: saves a document in the collection_name
collection—a shorthand of upsert (no _id) or insert (with _id)

e > db.collection_name.update(query,{$set: data});:updatesitems that match query in
the collection_name collection with data object values

107

CHAPTER 5 © PERSISTENCE WITH MONGODB AND MONGOSKIN

e > db.collection_name.remove(query); removes all items from collection name that
match query criteria

e > printjson(document);: prints the variable document

It's possible to use good old JavaScript, for example, storing in variable:

var a = db.messages.findOne();
printjson(a);

a.text = "hi";

printjson(a);
db.messages.save(a);

vV VvV V VvV Vv

For the purpose of saving time, the API listed here is the bare minimum to get by with MongoDB in this book and
its projects. The real interface is richer and has more features. For example, update accepts options such asmulti:
true, and it’s not mentioned here. A full overview of the MongoDB interactive shell is available at mongodb.org,
“Overview— The MongoDB Interactive Shell” (http://www.mongodb.org/display/DOCS/Overview +- +The+MongoDB+
Interactive+Shell).

Minimalistic Native MongoDB Driver for Node.js Example

To illustrate the advantages of Mongoskin, let’s use Node.js native driver for MongoDB (https://github.com/
christkv/node-mongodb-native) first. We need to write a basic script that accesses the database.
First, however, let’s install the MongoDB native driver for Node.js with:

$ npm install mongodb@1.3.23

Don’t forget to include the dependency in the package. json file as well:

{
"name": "node-example",
"version": "0.0.1",
"dependencies": {
"mongodb":"1.3.23",
1
"engines": {
"node": ">=0.6.x"
}
}

This small example tests whether we can connect to a local MongoDB instance from a Node.js script and run a
sequence of statements analogous to the previous section:

1. Declare dependencies
Define the database host and port
Establish a database connection

Create a database document

LA

Output a newly created document/object

108

http://www.mongodb.org/display/DOCS/Overview%20%2b-%20%2bThe%2bMongoDB%2bInteractive%2bShell
http://www.mongodb.org/display/DOCS/Overview%20%2b-%20%2bThe%2bMongoDB%2bInteractive%2bShell
https://github.com/christkv/node-mongodb-native
https://github.com/christkv/node-mongodb-native

CHAPTER 5 * PERSISTENCE WITH MONGODB AND MONGOSKIN

Here is the code to accomplish these five steps:

var mongo = require('mongodb'),
dbHost '127.0.0.1",
dbPort = 27017;

var Db = mongo.Db;

var Connection = mongo.Connection;

var Server = mongo.Server;

var db = new Db ('local', new Server(dbHost, dbPort), {safe:true});

db.open(function(error, dbConnection){
if (error) {
console.error(error);
process.exit(1);

console.log('db state: ', db. state);
item = {
name: 'Azat’
}
dbConnection.collection('messages').insert(item, function(error, item){
if (error) {
console.error(error);
process.exit(1);

console.info('created/inserted: ', item);
db.close();
process.exit(0);

s
};

The full source code of this script is in the mongo-native-insert. js file. Another mongo-native-insert.js
script looks up any object and modifies it:

1. Getoneitem from the message collection
Print it

Add a property text with the value hi

Eal A

Save the item back to the message collection
After we install the library, we can include the MongoDB library in our mongo-native. js file:

var util = require('util');
var mongodb = require ('mongodb');

This is one of the ways to establish a connection to the MongoDB server, in which the db variable holds a
reference to the database at a specified host and port:

var mongo = require('mongodb'),
dbHost = '127.0.0.1",
dbPort = 27017;

109

CHAPTER 5 © PERSISTENCE WITH MONGODB AND MONGOSKIN

var Db = mongo.Db;

var Connection = mongo.Connection;

var Server = mongo.Server;

var db = new Db ('local', new Server(dbHost, dbPort), {safe:true});

To open a connection, type the following:

db.open(function(error, dbConnection){
//do something with the database here
// console.log (util.inspect(db));
console.log(db. state);

db.close();

1;

It's always a good practice to check for any errors and exit gracefully:

db.open(function(error, dbConnection){
if (error) {
console.error(error);
process.exit(1);

console.log('db state: ', db. state);

Now we can proceed to the first step mentioned earlier—getting one item from the message collection.
This document is in the item variable:

dbConnection.collection('messages').findOne({}, function(error, item){
if (error) {
console.error(error);
process.exit(1);

}

The second step, print the value, is as follows:

console.info('findOne: ', item);
Asyou can see, methods in the console and Node.js are not much different.
So let’s proceed to the remaining two steps: adding a new property and saving the document:

item.text = 'hi';

var id = item._ id.toString(); // we can store ID in a string

console.info('before saving: ', item);

dbConnection.collection('messages').save(item, function(error, item){
console.info('save: ', item);

To double-check the saved object, we use the ObjectID that we saved before in a string format (in a variable id)
with the find method. This method returns a cursor, so we apply toArray() to extract the standard JavaScript array:

dbConnection.collection('messages').find({_id: new mongo.ObjectID(id)}).

toArray(function(error, items){
console.info('find: ', items);

110

CHAPTER 5 * PERSISTENCE WITH MONGODB AND MONGOSKIN

db.close();
process.exit(0);
1)
D;
h
D;

The full source code of this script is available in the mongo-native-insert. js and mongo-native. js files. If we
run them with $ node mongo-native-insert and, respectively, $ node mongo-native, while running the mongod
service, the scripts should output something similar to the results in Figure 5-4. There are three documents. The first is
without the property text; the second and third documents include it.

8096 (] practicalnode — bash =

Azats-Air:practicalnode azat$ node mongo-native-insert

db state: connected

created/inserted: [{ name: 'Azat', _id: 533@adfd159337cd57825dch }]
Azats-Air:practicalnode azat$ node mongo-native.js

db state: connected

findOne: { name: 'Azat', _id: 5330adfd159337cd57825dch }

before saving: { name: ‘Azot', _id: 5330adfd159337cd57825dcbh, text: ‘hi’ }
save: 1

find: [{ name: 'Azat', _id: 5330adfd159337cd57825dcb, text: 'hi' }]
Azats-Air:practicalnode azat$

Figure 5-4. Running a simple MongoDB script with a native driver

The full documentation of this library is available at http://mongodb.github.com/node-mongodb-native/
api-generated/db.html and on the MongoDB web site (http://docs.mongodb.org/ecosystem/drivers/node-7js/).

Main Mongoskin Methods

Mongoskin provides a better API than the native MongoDB driver. To illustrate this, compare this code with the
example written using native MongoDB driver for Node.js. As always, to install a module, run NPM with install—for
example, $ npm install mongoskin@0.6.1.

The connection to the database is a bit easier:

var mongoskin = require('mongoskin'),
dbHost = '127.0.0.1',
dbPort = 27017;

var db = mongoskin.db(dbHost + ':' + dbPort + '/local', {safe:true});

111

http://mongodb.github.com/node-mongodb-native/api-generated/db.html
http://mongodb.github.com/node-mongodb-native/api-generated/db.html
http://docs.mongodb.org/ecosystem/drivers/node-js/

CHAPTER 5 © PERSISTENCE WITH MONGODB AND MONGOSKIN

We can also create our own methods on collections. This might be useful when implementing a model-
view-controller-like (MVC-like) architecture by incorporating app-specific logic into these custom methods:

db.bind('messages’, {
findOneAndAddText : function (text, fn) {
db.collection('messages').findOne({}, function(error, item){
if (error) {
console.error(error);
process.exit(1);

console.info('findOne: ', item);
item.text = text;
var id = item. id.toString(); // we can store ID in a string
console.info('before saving: ', item);
db.collection('messages').save(item, function(error, count){
console.info('save: ', count);
return fn(count, id);
D;
b))
}
D;

Lastly, we call the custom method in a straightforward manner (presumably also used in many other places):

db.collection('messages').findOneAndAddText('hi', function(count, id){
db.collection('messages').find({
_id: db.collection('messages').id(id)
}) . toArray(function(error, items){
console.info("find: ", items);
db.close();
process.exit(0);

};
1

Mongoskin is a subset of the native Node.js MongoDB driver, so most of the methods from the latter are available
in the former. Here is the list of the main Mongoskin-only methods:

e findItems(..., callback):finds elements and returns an array instead of a cursor

e findEach(..., callback):iterates through each found element

e findById(id, ..., callback):findsby idin a string format

e updateById(id, ..., callback):updates an element with a matching id

e removeById(id, ..., callback):removes an element with a matching id
Alternatives to the native MongoDB driver and Mongoskin include:

e mongoose (http://mongoosejs.com/): an asynchronous JavaScript driver with optional
support for modelling

e mongolia (https://github.com/masylum/mongolia): a lightweight MongoDB ORM/driver
wrapper

e monk (https://github.com/LearnBoost/monk): a tiny layer that provides simple yet
substantial usability improvements for MongoDB use within Node.js

112

http://mongoosejs.com/
https://github.com/masylum/mongolia
https://github.com/LearnBoost/monk

CHAPTER 5 * PERSISTENCE WITH MONGODB AND MONGOSKIN

For data validation, these modules often use:
e node-validator (https://github.com/chriso/node-validator): validates data

e express-validator (https://github.com/ctavan/express-validator): validates data in
Express.js 3/4

Project: Storing Blog Data in MongoDB with Mongoskin

Let’s now return to our Blog project. I've split this feature of storing Blog data in MongoDB with Mongoskin into the
following three subprojects:

1. Adding MongoDB seed data
2. Writing Mocha tests

3. Adding persistence

Project: Adding MongoDB Seed Data

First of all, it’s not much fun to enter data manually each time we test or run an app. So, in accordance with the Agile
principles, we can automate this step by creating a Bash seed data script db/seed. sh:

mongoimport --db blog --collection users --file ./db/users.json -jsonArray
mongoimport --db blog --collection articles --file ./db/articles.json --jsonArray

This script uses MongoDB’s mongoimport feature, which inserts data conveniently into the database straight from
JSON files.
The users. json file contains information about authorized users:

[{
"email": "hi@azat.co",
"admin": true,
"password": "1"

1]

The articles. json file has the content of the blog posts:

"title": "Node is a movement",

"slug": "node-movement",

"published": true,

"text": "In one random deployment, it is often assumed that the number of scattered sensors are
more than that required by the critical sensor density. Otherwise, complete area coverage may not
be guaranteed in this deployment, and some coverage holes may exist. Besides using more sensors to
improve coverage, mobile sensor nodes can be used to improve network coverage..."

1 A

"title": "Express.js Experience",

"slug": "express-experience",

"text": "Work in progress",

"published": false
1

"title": "Node.js FUNdamentals: A Concise Overview of The Main Concepts",

113

https://github.com/chriso/node-validator
https://github.com/ctavan/express-validator

CHAPTER 5 © PERSISTENCE WITH MONGODB AND MONGOSKIN

"slug": "node-fundamentals"”,

"published": true,

"text": "Node.js is a highly efficient and scalable nonblocking I/0 platform that was built on top
of a Google Chrome V8 engine and its ECMAScript. This means that most front-end JavaScript (another
implementation of ECMAScript) objects, functions, and methods are available in Node.js. Please refer
to JavaScript FUNdamentals if you need a refresher on JS-specific basics.”

1

To populate our seed data, simply run $./db/seed.sh from the project folder.

Project: Writing Mocha Tests

We can import test data from seed files via require because it’s a JSON format:
var seedArticles = require('../db/articles.json');
Let’s add this test to the home page suite to check whether our app shows posts from seed data on the front page:

it('should contain posts', function(done) {
superagent
.get('http://localhost: '+port)
.end(function(res){
seedArticles.forEach(function(item, index, list){
if (item.published) {
expect(res.text).to.contain('<h2>' +
item.title);
} else {
expect(res.text).not.to.contain('<h2>' +
item.title);

i/ console.log(item.title, res.text)
)
done()
3]
D;

In a new-article page suite, let’s test for presentation of the text with contains:

describe('article page', function(){
it('should display text', function(done){
var n = seedArticles.length;
seedArticles.forEach(function(item, index, list){
superagent
.get('http://localhost:'+port + '/articles/' + seedArticles[index].slug)
.end(function(res){
if (item.published) {
expect(res.text).to.contain(seedArticles[index].text);
} else {
expect(res.status).to.be(401);

}

114

CHAPTER 5 * PERSISTENCE WITH MONGODB AND MONGOSKIN

// console.log(item.title)

if (index + 1 ===n) {
done();

}

To make sure that Mocha doesn’t quit earlier than when superagent calls the response callback, we implemented
a countertrick. Instead of it, you can use async (https://www.npmjs.org/package/async). The full source code is in
the file tests/index. js under ch5 folder.

Running tests with either $ make testor$ mocha test should fail miserably, but that’s expected because we
need to implement persistence and then pass data to Jade templates, which we wrote in the previous chapter.

Project: Adding Persistence

This example builds on the previous chapter, with the chapter 3 having the latest code (chapter 4 code is in ch5).
Let’s go back to our ch3 folder, and add the tests, duplicate them, and then start adding statements to the app. js file.

The full source code of this example is available under chs folder. First, the dependencies inclusions need to be
reformatted to utilize Mongoskin:

var express = require('express'),
routes = require('./routes'),
http = require('http'),
path = require('path'),
mongoskin = require('mongoskin'),
dbUrl = process.env.MONGOHQ URL || 'mongodb://@localhost:27017/blog",
db = mongoskin.db(dbUrl, {safe: true}),
collections = {
articles: db.collection('articles'),
users: db.collection('users")

};
These statements are needed for the Express.js 4 middleware modules:

var session = require('express-session'),
logger = require('morgan'),
errorHandler = require('errorhandler'),
cookieParser = require('cookie-parser'),
bodyParser = require('body-parser'),
methodOverride = require('method-override');

Then, our usual statements follow, i.e., creating of Express.js instance and assigning the title:

var app = express();
app.locals.appTitle = 'blog-express';

115

https://www.npmjs.org/package/async

CHAPTER 5 © PERSISTENCE WITH MONGODB AND MONGOSKIN

Now, we add a middleware that exposes Mongoskin/MongoDB collections in each Express.js route via
the req object:

app.use(function(req, res, next) {
if (!collections.articles || ! collections.users) return next(new Error('No collections.'))
req.collections = collections;
return next();

1

Don'’t forget to call next () in the previous middleware; otherwise, each request stalls.
We set up port number and template engine configurations:

app.set('port', process.env.PORT || 3000);
app.set('views', path.join(__dirname, 'views'));
app.set('view engine', 'jade');

The configs now include more Connect/Express middleware, the meanings of most of which is to log requests,
parse JSON input, use Stylus and server static content:

app.use(logger('dev'));

app.use(bodyParser.json());

app.use(bodyParser.urlencoded());

app.use(methodOverride());
app.use(require('stylus').middleware(__dirname + '/public'));
app.use(express.static(path.join(__dirname, 'public')));

For development, we use the standart Express.js 4 error handler that we imported earlier with require:

if ('development' == app.get('env')) {
app.use(errorHandler());

}

The next section of the app. js file deals with the server routes. So, instead of a single catch-all * route in the ch3
examples, we have the following GET, and POST routes (that mostly render HTML from Jade templates):

//PAGES&ROUTES

app.get('/', routes.index);

app.get('/login', routes.user.login);
app.post('/login', routes.user.authenticate);
app.get('/logout’, routes.user.logout);
app.get('/admin', routes.article.admin);
app.get('/post', routes.article.post);
app.post('/post', routes.article.postArticle);
app.get('/articles/:slug', routes.article.show);

REST API routes are used mostly for the admin page. That's where our fancy AJAX browser JavaScript will need
them. They use GET, POST, PUT and DELETE methods and don't render HTML from Jade templates, but instead
output JSON:

//REST API ROUTES
app.get('/api/articles', routes.article.list)
app.post('/api/articles’, routes.article.add);

116

CHAPTER 5 * PERSISTENCE WITH MONGODB AND MONGOSKIN

app.put('/api/articles/:id", routes.article.edit);
app.del('/api/articles/:id', routes.article.del);

In the end, we have a 404 catch-all route. It's a good practice to account for the cases when users type a wrong
URL. If the request makes to this part of the configuration (top to bottom order), we return the “not found” status:

app.all('*', function(req, res) {
res.send(404);
b

The way we start the server is the same as in Chapter 3:

var server = http.createServer(app);
var boot = function () {
server.listen(app.get('port'), function(){
console.info('Express server listening on port ' + app.get('port'));
D;
}

var shutdown = function() {
server.close();

}

if (require.main === module) {
boot();

}

else {
console.info('Running app as a module')
exports.boot = boot;
exports.shutdown = shutdown;
exports.port = app.get('port');

}

Again, for your convenience, the full source code of app. js is under ch5 folder.

We must add index. js, article.js, and user. js files to the routes folder, because we need them in app. js.
The user. js file is bare bones for now (we add authentications in Chapter 6).

The method for the GET users route, which should return a list of existing users (which we will implement later)
is as follows:

exports.list = function(req, res){
res.send('respond with a resource');

1
The method for the GET login page route that renders the login form (login. jade) is as follows:

exports.login = function(req, res, next) {
res.render('login');

};

The method for the GET logout route that eventually destroys the session and redirects users to the home page
(to be implemented) is as follows:

exports.logout = function(req, res, next) {
res.redirect('/");

};

117

CHAPTER 5 © PERSISTENCE WITH MONGODB AND MONGOSKIN

The method for the POST authenticate route that handles authentication and redirects to the admin page (to be
implemented) is as follows:

exports.authenticate = function(req, res, next) {
res.redirect('/admin');

};
The full code of user. js is:
/*
* GET users listing.
*/

exports.list = function(req, res){
res.send('respond with a resource');

};

/*
* GET login page.
*/

exports.login = function(req, res, next) {
res.render('login');

};

/*
* GET logout route.
*/

exports.logout = function(req, res, next) {

res.redirect('/");

};

/*
* POST authenticate route.
*/

exports.authenticate = function(req, res, next) {
res.redirect('/admin');

};

The most database action happens in the article. js routes.
Let's start with the GET article page where we call findOne with the slug from the req. params object:

exports.show = function(req, res, next) {
if (!req.params.slug) return next(new Error('No article slug.'));
req.collections.articles.findOne({slug: req.params.slug}, function(error, article) {
if (error) return next(error);

118

CHAPTER 5 * PERSISTENCE WITH MONGODB AND MONGOSKIN

if (larticle.published) return res.send(401);
res.render('article', article);
D;
};

The GET articles API route (used in the admin page), where we fetch all articles with the find method and
convert the results to an array before sending them back to the requester, is as follows:

exports.list = function(req, res, next) {
req.collections.articles.find({}).toArray(function(error, articles) {
if (error) return next(error);
res.send({articles:articles});
¥
};

The POST article API routes (used in the admin page), where the insert method is used to add new articles to
the articles collection and to send back the result (with _id of a newly created item) is:

exports.add = function(req, res, next) {
if (!req.body.article) return next(new Error('No article payload.'));
var article = req.body.article;
article.published = false;
req.collections.articles.insert(article, function(error, articleResponse) {
if (error) return next(error);
res.send(articleResponse);
D;
};

The PUT article API route (used on the admin page for publishing), where the updateById shorthand (the same
thing can be done with a combination of update and _id query) method is used to set the article document to the
payload of the request (req.body):

exports.edit = function(req, res, next) {
if (!req.params.id) return next(new Error('No article ID.'));
req.collections.articles.updateById(req.params.id, {$set: req.body.article},
function(error, count) {
if (error) return next(error);
res.send({affectedCount: count});
D;
};

The DELETE article API (used on the admin page) for removing articles in which, again, a combination of remove
and _id can be used to achieve similar results:

exports.del = function(req, res, next) {
if (!req.params.id) return next(new Error('No article ID.'));
req.collections.articles.removeById(req.params.id, function(error, count) {
if (error) return next(error);
res.send({affectedCount: count});
b;
};

119

CHAPTER 5 © PERSISTENCE WITH MONGODB AND MONGOSKIN

The GET article post page (page is a blank form):

exports.post = function(req, res, next) {
if (!req.body.title)
res.render('post');

};

Next, there's the POST article route for the post page form (the route that actually handles the post addition).
In this route we check for the non-empty inputs (req.body), construct article object and inject it into the database
viareq.collections.articles object exposed to us by middleware. Lastly, we render HTML from the post template:

exports.postArticle = function(req, res, next) {
if (!req.body.title || !req.body.slug || !req.body.text) {
return res.render('post', {error: 'Fill title, slug and text.'});
}
var article = {
title: req.body.title,
slug: req.body.slug,
text: req.body.text,
published: false
b
req.collections.articles.insert(article, function(error, articleResponse) {
if (error) return next(error);
res.render('post’, {error: 'Artical was added. Publish it on Admin page.'});

};
};

The GET admin page route in which we fetch sorted articles ({sort: {_id:-1}})and manipulate them:

exports.admin = function(req, res, next) {
req.collections.articles.find({},{sort: { id:-1}}).toArray(function(error, articles) {
if (error) return next(error);
res.render('admin',{articles:articles});

};
}

Note In real production apps that deal with thousands of records, programmers usually use pagination by fetching
only a certain number of items at once (5, 10, 100, and so on). To do this, use the 1imit and skip options with the find
method (e.g., HackHall example: https://github.com/azat-co/hackhall/blob/master/routes/posts.js#L37).

Here is the full article. js file:

/*
* GET article page.
*/

exports.show = function(req, res, next) {

if (!req.params.slug) return next(new Error('No article slug.'));
req.collections.articles.findOne({slug: req.params.slug}, function(error, article) {

120

https://github.com/azat-co/hackhall/blob/master/routes/posts.js#L37

CHAPTER 5 * PERSISTENCE WITH MONGODB AND MONGOSKIN

if (error) return next(error);
if (larticle.published) return res.send(401);
res.render('article', article);
D;
};

/*
* GET articles API.
*/

exports.list = function(req, res, next) {
req.collections.articles.find({}).toArray(function(error, articles) {
if (error) return next(error);
res.send({articles:articles});
D;
};

/*
* POST article API.
*/

exports.add = function(req, res, next) {
if (!req.body.article) return next(new Error('No article payload.'));
var article = req.body.article;
article.published = false;
req.collections.articles.insert(article, function(error, articleResponse) {
if (error) return next(error);
res.send(articleResponse);
D;
b

/*
* PUT article API.
*/

exports.edit = function(req, res, next) {
if (!req.params.id) return next(new Error('No article ID.'));
req.collections.articles.updateById(req.params.id, {$set: req.body.article},
function(error, count) {
if (error) return next(error);
res.send({affectedCount: count});
D;
};

/*

* DELETE article API.
*/

121

CHAPTER 5 © PERSISTENCE WITH MONGODB AND MONGOSKIN

exports.del = function(req, res, next) {
if (!req.params.id) return next(new Error('No article ID.'));
req.collections.articles.removeById(req.params.id, function(error, count) {
if (error) return next(error);
res.send({affectedCount: count});
D;
b

/*
* GET article POST page.
*/

exports.post = function(req, res, next) {
if (!req.body.title)
res.render('post');

};

/*
* POST article POST page.
*/

exports.postArticle = function(req, res, next) {
if (!req.body.title || !req.body.slug || !req.body.text) {
return res.render('post', {error: 'Fill title, slug and text.'});
}
var article = {
title: req.body.title,
slug: req.body.slug,
text: req.body.text,
published: false
};
req.collections.articles.insert(article, function(error, articleResponse) {
if (error) return next(error);
res.render('post’, {error: 'Article was added. Publish it on Admin page.'});

h;
};

/*
* GET admin page.
*/

exports.admin = function(req, res, next) {
req.collections.articles.find({},{sort: { id:-1}}).toArray(function(error, articles) {
if (error) return next(error);
res.render('admin',{articles:articles});
¥
}

122

CHAPTER 5

From the project section in Chapter 4, we have the jade files under the views folder. Last, the package.json

file looks as follows:

{

"name": "blog-express",

"version": "0.0.5",

"private": true,

"scripts": {
"start": "node app.js",
"test": "mocha test"

1

"dependencies": {
"express": "4.1.2",
"jade": "1.3.1",
"stylus": "0.44.0",
"mongoskin": "1.4.1",
"cookie-parser": "1.0.1",
"body-parser": "1.0.2",
"method-override": "1.0.0",
"serve-favicon": "2.0.0",
"express-session": "1.0.4",
"morgan": "1.0.1",
"errorhandler": "1.0.1"

1

"devDependencies": {
"mocha": "1.16.2",
"superagent": "0.15.7",
"expect.js": "0.2.0"

For the admin page to function, we need to add some AJAX-iness in the form of the js/admin. js file under

the public folder.
In this file, we use ajaxSetup to configure all requests:

$.ajaxSetup({
xhrFields: {withCredentials: true},
error: function(xhr, status, error) {
$('.alert").removeClass("hidden");
$('.alert').html('Status: ' + status + ', error: ' + error);
}
D;

The function findTr is a helper that we can use in our event handlers:

var findTr = function(event) {
var target = event.srcElement || event.target;
var $target = $(target);
var $tr = $target.parents('tr');
return $tr;

};

PERSISTENCE WITH MONGODB AND MONGOSKIN

123

CHAPTER 5 © PERSISTENCE WITH MONGODB AND MONGOSKIN

Overall, we need three event handlers to remove, publish, and unpublish an article. This code snippet that
follows, is for removing, and it simply sends a request to our Node.js API route /api/articles/:id, which we wrote a
page or two ago

var remove = function(event) {
var $tr = findTr(event);
var id = $tr.data('id");
$.ajax({
url: '/api/articles/' + id,
type: 'DELETE',
success: function(data, status, xhr) {
$('.alert').addClass("hidden');
$tr.remove();
}
)
};

Publishing and unpublishing are coupled together, because they both send PUT to /api/articles/:id:

var update = function(event) {
var $tr = findTr(event);
$tr.find('button').attr('disabled', 'disabled');
var data = {
published: $tr.hasClass('unpublished"')

};
var id = $tr.attr('data-id");
$.ajax({
url: '/api/articles/' + id,
type: 'PUT',

contentType: 'application/json',
data: JSON.stringify({article: data}),
success: function(dataResponse, status, xhr) {
$tr.find('button').removeAttr('disabled');
$('.alert').addClass(hidden');
if (data.published) {
$tr.removeClass('unpublished').find("'.glyphicon-play').removeClass('glyphicon-play").
addClass('glyphicon-pause');
} else {
$tr.addClass('unpublished").find('.glyphicon-pause").removeClass('glyphicon-pause').
addClass('glyphicon-play');
}

}
3]
};

Then, we attach event listeners in the ready callback:

$(document) .ready(function(){
var $element = $('.admin tbody');
$element.on('click', 'button.remove', remove);
$element.on('click', 'button', update);

H

124

CHAPTER 5

The full source code of the front-end admin. js file is as follows:

$.ajaxSetup({
xhrFields: {withCredentials: true},
error: function(xhr, status, error) {
$('.alert"').removeClass('hidden');
$('.alert').html('Status: ' + status + ', error: ' + error);
}
D;

var findTr = function(event) {
var target = event.srcElement || event.target;
var $target = $(target);
var $tr = $target.parents('tr');
return $tr;

};

var remove = function(event) {
var $tr = findTr(event);
var id = $tr.data('id");
$.ajax({
url: '/api/articles/' + id,
type: 'DELETE',
success: function(data, status, xhr) {
$('.alert').addClass(hidden');
$tr.remove();
}
)
};

var update = function(event) {
var $tr = findTr(event);
$tr.find('button').attr('disabled', 'disabled');
var data = {
published: $tr.hasClass('unpublished")

};
var id = $tr.attr('data-id");
$.ajax({
url: '/api/articles/' + id,
type: 'PUT',

contentType: 'application/json',

data: JSON.stringify({article: data}),

success: function(dataResponse, status, xhr) {
$tr.find('button').removeAttr('disabled');
$('.alert').addClass('hidden');
if (data.published) {

PERSISTENCE WITH MONGODB AND MONGOSKIN

$tr.removeClass('unpublished').find("'.glyphicon-play').removeClass('glyphicon-play").

addClass('glyphicon-pause');
} else {

125

CHAPTER 5~ PERSISTENCE WITH MONGODB AND MONGOSKIN

$tr.addClass('unpublished"').find(".glyphicon-pause').removeClass('glyphicon-pause').
addClass('glyphicon-play');
}

}
3]
};

$(document) .ready(function(){
var $element = $('.admin tbody');
$element.on('click', 'button.remove', remove);
$element.on('click', 'button', update);

1

Running the App

To run the app, simply execute $ node app, but if you want to seed and test it, execute $ make dband $ make test,
respectively (Figure 5-5). Don't forget that $ mongod service must be running on the localhost and port 27017. The
expected result is that all tests now pass (hurray!), and if users visit http://localhost:3000, they can see posts and
even create new ones on the admin page (http://localhost:3000/admin) as shown in Figure 5-6.

e 00 (] chS — bash 6

Azats-Air:ch5 azat$ make test
clear

echo Starting test
Starting test Makefile app.js db node_modules packoge.json public readme.md rout
es tests views
./node_modules/mocha/bin/mocha \

--reporter list \

--ui bdd -c \

tests/*.js
Running app as a module

Express server listenming on port 3000
server homepage should respond to GET: GET / 20@ 453ms - 1,34kb
. server homepage should respond to GET:
server homepage should contain posts: GET / 200 62ms - 1.34kb
. server homepage should contain posts:
server article page should display text: GET /articles/node-movement 200 67m
s - 2.46kb
GET /articles/express-experience 491 67ms - 12b
GET /articles/node-fundamentals 200 119ms - 1.57kb
. server article page should display text:

3 passing (684ms)
echo Ending test

Ending test
Azats-Air:chS azat$

Figure 5-5. The results of running Mocha tests

126

CHAPTER 5 * PERSISTENCE WITH MONGODB AND MONGOSKIN

800 || ¥ blog-express X N A
= C' [} localhost:3000/admin s

blog-express

Welcome to example from Express.js Experience by @azat_co. Please enjoy.
Home Post m Log out

Actions Post Title

n n Nodejs FUNdamentals: A Goncise Overview of The Main Concepts

>
n u Nodeisa movement

Copyright ® 2014 | Issues? Submit toGitHub.

Figure 5-6. The admin page with seed data

Of course, in real life, nobody leaves the admin page open to the public. Therefore, in Chapter 6 we'll implement
the session-based authorization, and then the password and OAuth authentications.

Summary

In this chapter we learned how to install MongoDB, and use its console and native Node.js driver, for which we wrote
a small script and refactored it to see Mongoskin in action. Last, we wrote tests, seeded scripts, and implemented the
persistence layer for Blog. In the next chapter, we'll implement authorization and authentication.

127

CHAPTER 6

Using Sessions and OAuth
to Authorize and Authenticate Users
in Node.js Apps

Security is an important aspect of any real-world web application. This is especially true nowadays, because our apps
don’t function in silos anymore. We, as developers, can and should leverage numerous third-party services
(e.g., Twitter, GitHub) or become service providers ourselves (e.g., provide a public API).

We can makes our apps and communications secure with the usage of various approaches, such as token-based
authentication and/or OAuth (http://oauth.net). Therefore, in this practical guide, I dedicate the whole chapter to
matters of authorization, authentication, OAuth, and best practices. We’ll look at the following topics:

e Authorization with Express.js middleware

e Token-based authentication

e Session-based authentication

e Project: adding e-mail and password login to Blog
¢ Node.js OAuth

e Project: Adding Twitter OAuth 1.0 sign-in to Blog with Everyauth (https://github.com/
bnoguchi/everyauth)

Authorization with Express.js Middleware

Authorization in web apps usually means restricting certain functions to privileged clients. These functions can either
be methods, pages, or REST API end points.

Express.js middleware allows us to apply certain rules seamlessly to all routes, groups of routes (namespacing),
or individual routes.

e Allroutes: app.get('*', auth)
e Groups of routes: app.get('/api/*", auth)

e Individual routes: app.get('/admin/users', auth)

129

http://oauth.net
http://github.com/bnoguchi/everyauth
http://github.com/bnoguchi/everyauth

CHAPTER 6 * USING SESSIONS AND OAUTH TO AUTHORIZE AND AUTHENTICATE USERS IN NODE.JS APPS

For example, if we want to protect all /api/ endpoints, we execute the following:

app.all('/api/*', auth);
app.get('/api/users', users.list);
app.post('/api/users’, users.create);

Another way of doing the same thing is to execute:

app.get('/api/users', auth, users.list);
app.post('/api/users’, auth, users.create);

In the previous examples, auth() is a function with three parameters: req, res, and next—for example,

var auth = function(req, res, next) {
//authorize user
//if auth failed, then exit is next(new Error('Not authorized'));
//or res.send(401);
return next();
}

The next() part is important, because this is how Express.js proceeds to execute subsequent request handlers
and routes (if there’s a match in a URL pattern).

Token-Based Authentication

For applications to know which privileges a specific client has (e.g., admin), we must add an authentication step.
In the previous example, this step goes inside the auth() function.

The most common authentication is a cookie & session-based authentication, and the next section deals with
this topic. However, in some cases, more REST-fulness is required, or cookies/sessions are not supported well
(e.g., mobile). In this case, it’s beneficial to authenticate each request with a token (probably using the OAuth2.0
(http://tools.ietf.org/html/rfc6749) scheme). The token can be passed in a query string or in HTTP request
headers. Alternatively, we can send some other authentication combination of information, such as e-mail/username
and password, or API key, or API password instead of a token.

So, in our example of token-based authentication, each request can submit a token in a query string (accessed via
req.query.token). And, if we have the correct value stored somewhere in our app (database, or in this example just a
constant SECRET_TOKEN), we can check the incoming token against it. If the token matches our records, we call next ()
to proceed with the request executions, if not then we call next (error) which triggers Express.js error handlers
execution (see the note below):

var auth = function(req, res, next) {
if (req.query.token && token === SECRET_TOKEN) {
// Client is fine, proceed to the next route
return next();
} else {
return next(new Error('Not authorized'));
// or res.send(401);
}
};

130

http://tools.ietf.org/html/rfc6749

CHAPTER 6 © USING SESSIONS AND OAUTH TO AUTHORIZE AND AUTHENTICATE USERS IN NODE.JS APPS

In a more realistic example, we use API keys and secrets to generate HMAC-SHA1 (hash-based message
authentication code-secure hash algorithm strings, then compare them with the value in req. query.token.

Note Calling next() with an error argument is analogous to throwing in the towel (i.e., to give up). The Express.js
app enters the error mode and proceeds to the error handlers.

We just covered token-based authentication, which is often used in REST APIs. However, the user-facing web
apps (i.e., browser-enabled users & consumers) come with cookies. We can use cookies to store and send session IDs
with each request. Cookies are similar to tokens, but require less work for us, the developers!. This approach is the
cornerstone of session-based authentication. The session-based method is the recommended way for basic web apps,
because browsers already know what to do with session headers. In addition, in most platforms and frameworks, the
session mechanism is built into the core. So, let’s jump straight into session-based authentication with Node.js.

Session-Based Authentication

Session-based authentication is done via the session object in the request object req. A web session in general is a
secure way to store information about a client so that subsequent requests from that same client can be identified.

In the Express.js 4.x (versions 4.1.2 and 4.2.0 as of this writing), we’'ll need to import (require()) these modules
manually, because Express.js 4.x separated these and some other middleware out of its package. For example, to
include and use cookie-parser and express-session:

var cookieParser = require('cookie-parser');
var session = require('express-session');

app.use(cookieParser());
app.use(session());

Needless to say, cookie-parser and express-session must be installed via NPM into the project’s
node_modules folder.
To use the session in a typical Express.js 3.x app, two pieces of middleware need to be added to the configuration:

1. express.cookieParser(): allows for parsing of the client/request cookies.

2. express.session(): exposes the res.session object in each request handler, and stores
data in the app memory or some other persistent store like MongoDB or Redis.

In later examples don’t mention Express.js version, assume that it works for both 3.x and 4.x.

The rest is trivial; we can store any data in req. session and it appears automagically on each request from the
same client (assuming their browser supports cookies). Hence, the authentication consists of a route that stores some
flag (true/false) in the session and of an authorization function in which we check for that flag (if true, then proceed;
otherwise, exit). For example,

app.post('/login', function(req, res, next) {
// This function checks for credentials
// passed in the request's payload
if (checkForCredentials(req)) {
req.session.auth = true;
res.redirect('/dashboard'); // Private resource
} else {

131

CHAPTER 6 * USING SESSIONS AND OAUTH TO AUTHORIZE AND AUTHENTICATE USERS IN NODE.JS APPS

res.send(401); // Not authorized

}
B;

Warning Avoid storing any sensitive information in cookies. The best practice is not to store any info in cookies
manually—except session ID, which Express.js middleware stores for us automatically—because cookies are not secure.
Also, cookies have a size limitation (depending on the browser, with Internet Explore being the stringiest) that is very easy
to reach.

By default, Express.js uses in-memory session storage. This means that every time an app is restarted or crashes,
the sessions are wiped out. To make sessions persistent and available across multiple servers, we can use Redis or
MongoDB as session restore.

Project: Adding E-mail and Password Login to Blog

To enable session-based authentication in Blog, we need to do the following:
1. Import and add the session middleware to the configuration part of app. js.

2. Implement the authorization middleware authorize with a session-based authorization
so we can re-use the same code for many routes.

3. Add the middleware from #2 (step above) to protected pages and routes in app. js routes,
e.g., app.get('/api/, authorize, api.index).

4. Implement an authentication route POST /login, and a logout route, GET /logout in
user.js.

Session Middleware

Let’s add the automatic cookie parsing and support for session middleware in these two lines by putting them in the
middle of configurations in app. js:

// Other middleware
app.use(cookieParser('3CCC4ACD-6ED1-4844-9217-82131BDCB239"));
app.use(session({secret: '2C44774A-D649-4D44-9535-46E296EF984F'}));
// Routes

For Express.js 3.x:

// Other middleware
app.use(express.cookieParser('3CCC4ACD-6ED1-4844-9217-82131BDCB239"));
app.use(express.session({secret: '2044774A-D649-4D44-9535-46E296EF984F'}));
// Routes

Warning You should replace randomly generated values with your own ones.

132

CHAPTER 6 © USING SESSIONS AND OAUTH TO AUTHORIZE AND AUTHENTICATE USERS IN NODE.JS APPS

session() must be preceded by cookieParser() because session depend on cookies to work properly. For more
information about these and other Express.js/Connect middleware, refer to Pro Express.js 4 [Apress, 2014].

cookie-session (express.cookieSession() in Express.js 3.x) can be used in some cases, such as var
cookieSession = require('cookie-session'); app.use(cookieSession({secret: process.env.SESSION
SECRET}));. The difference is that express-session uses secure in-memory or Redis storage—and cookies store only
for the session ID, i.e., sid—whereas cookie-session uses browser cookies to store session information. In other
words, the entire session is serialized into cookie-based storage, not just the session key. This approach should be
avoided because of cookie size limitations and security concerns.

It's useful to pass information to the templates regardless of whether the request is authenticated. We can do so
by adding middleware that checks the req.session.admin value for truthyness and adds an appropriate property to
res.locals:

app.use(function(req, res, next) {
if (req.session && req.session.admin)
res.locals.admin = true;

next();

D;

Authorization in Blog

Authorization is also done via middleware, but we won't set it up right away with app.use like we did in the snippet
for res.locals. Instead, we define a function that checks for req. session.admin to be true, and proceeds if it is.
Otherwise, the 401 Not Authorized error is thrown and the response is ended.

// Authorization
var authorize = function(req, res, next) {
if (req.session &3 req.session.admin)
return next();
else
return res.send(401);

};

Now we can add this middleware to certain protected end points:

app.get('/admin', authorize, routes.article.admin);
app.get('/post', authorize, routes.article.post);
app.post('/post', authorize, routes.article.postArticle);

We add the authorize middleware to API routes as well:
app.all('/api', authorize);
app.get('/api/articles', routes.article.list)
app.post('/api/articles', routes.article.add);
app.put('/api/articles/:id", routes.article.edit);
app.del('/api/articles/:id', routes.article.del);

The app.all('/api', authorize); isamore compact alternative to adding authorize to all /api/. .. routes.

133

CHAPTER 6 * USING SESSIONS AND OAUTH TO AUTHORIZE AND AUTHENTICATE USERS IN NODE.JS APPS

The full source code of the app. js file after adding session support and authorization middleware is as follows
(under the ch6/password folder):

var express = require('express'),

routes = require('./routes'),

http = require('http'),

path = require('path'),

mongoskin = require('mongoskin'),

dbUrl = process.env.MONGOHQ URL ||
"mongodb://@localhost:27017/blog’,

db = mongoskin.db(dbUrl, {safe: true}),

collections = {
articles: db.collection('articles'),
users: db.collection('users')

s

// Express.js Middleware

var session = require('express-session'),
logger = require('morgan'),
errorHandler = require('errorhandler'),
cookieParser = require('cookie-parser'),
bodyParser = require('body-parser'),
methodOverride = require('method-override');

var app = express();
app.locals.appTitle = 'blog-express';

// Expose collections to request handlers
app.use(function(req, res, next) {
if (!collections.articles || ! collections.users)
return next(new Error('No collections.'));
req.collections = collections;
return next();

B;

// Express.js configurations

app.set('port', process.env.PORT || 3000);
app.set('views', path.join(__dirname, 'views'));
app.set('view engine', 'jade');

// Express.js middleware configuration

app.use(logger('dev'));

app.use(bodyParser.json());

app.use(bodyParser.urlencoded());
app.use(cookieParser('3CCC4ACD-6ED1-4844-9217-82131BDCB239"));
app.use(session({secret: '2C44774A-D649-4D44-9535-46E296EF984F'}));
app.use(methodOverride());
app.use(require('stylus').middleware(__dirname + '/public'));
app.use(express.static(path.join(__dirname, 'public')));

134

CHAPTER 6 © USING SESSIONS AND OAUTH TO AUTHORIZE AND AUTHENTICATE USERS IN NODE.JS APPS

// Authentication middleware
app.use(function(req, res, next) {
if (req.session && req.session.admin)
res.locals.admin = true;
next();
D;

// Authorization Middleware
var authorize = function(req, res, next) {
if (req.session &3 req.session.admin)
return next();
else
return res.send(401);

};

if ('development' == app.get('env')) {
app.use(errorHandler());

}

// Pages & routes

app.get('/', routes.index);

app.get('/login', routes.user.login);

app.post('/login', routes.user.authenticate);
app.get('/logout’, routes.user.logout);

app.get('/admin', authorize, routes.article.admin);
app.get('/post', authorize, routes.article.post);
app.post('/post', authorize, routes.article.postArticle);
app.get('/articles/:slug', routes.article.show);

// REST API routes

app.all('/api', authorize);
app.get('/api/articles', routes.article.list);
app.post('/api/articles', routes.article.add);
app.put('/api/articles/:id", routes.article.edit);
app.del('/api/articles/:id', routes.article.del);

app.all('*', function(req, res) {
res.send(404);

1

var server = http.createServer(app);
var boot = function () {
server.listen(app.get('port'), function(){
console.info('Express server listening on port ' +
app.get('port'));
D;
}

var shutdown = function() {
server.close();

}

if (require.main === module) {
boot();

}

135

CHAPTER 6 * USING SESSIONS AND OAUTH TO AUTHORIZE AND AUTHENTICATE USERS IN NODE.JS APPS

else {
console.info('Running app as a module')
exports.boot = boot;
exports.shutdown = shutdown;
exports.port = app.get('port');

Authentication in Blog

The last step in session-based authorization is to allow users and clients to turn the req.session.admin switch on and
off. We do this by having a login form and processing the POST request from that form.

For authenticating users as admins we set the appropriate flag (admin=true), in the routes.user.authenticate
in the user. js file. This is done in the POST /login route which we defined in the app.js— a line that has this
statement: app.post('/login', routes.user.authenticate);.

In user.js, expose the method to the importer, i.e., the file that imports this user.js module:

exports.authenticate = function(req, res, next) {

The form on the login page submits data to this route. In general, a sanity check for the input values is always a
good idea. If values are falsy (including empty values), we'll render the login page again with the message error.
The return keyword ensures the rest of the code in this method isn’t executed. If the values are non-empty (or
otherwise truthy), then the request handler will not terminate yet and proceed to the next statements:

if (!req.body.email || !req.body.password)
return res.render('login',{
error: 'Please enter your email and password.'

};

Thanks to the database middleware in app. js, we can access database collections in req.collections. In our
app’s architecture, e-mail is a unique identifier (there are no two accounts with the same e-mail), so we use the
findOne function to find a match of the e-mail and password combination (logical AND):

req.collections.users.findOne({
email: req.body.email,
password: req.body.password
}, function(error, user){

Warning In virtually all cases, we don’t want to store passwords as a plain text; we should store salts and password
hashes instead. In this way, if the database gets compromised, passwords are not seen. For salting, use the core Node.js
module crypto.

findOne returns an error object and the user result object. However, we should still do error processing manually:

if (error) return next(error);
if (luser) return res.render('login', {error: 'Incorrect email8password combination.'});

136

CHAPTER 6 © USING SESSIONS AND OAUTH TO AUTHORIZE AND AUTHENTICATE USERS IN NODE.JS APPS

If the program has made it thus far (avoided a lot of return statements previously), we can authenticate the user
as administrator thus enabling the authentication and the auth (authorization) method:

req.session.user = user;
req.session.admin = user.admin;
res.redirect('/admin');

};

The logout route is trivial. We clear the session by calling destroy() on req.session:

exports.logout = function(req, res, next) {
req.session.destroy();
res.redirect('/");

b
The full source code of user. js for your reference is as follows:

exports.list = function(req, res){
res.send('respond with a resource');
};
exports.login = function(req, res, next) {
res.render('login');
};
exports.logout = function(req, res, next) {
req.session.destroy();
res.redirect('/");
};
exports.authenticate = function(req, res, next) {
if (!req.body.email || !req.body.password)
return res.render('login', {
error: 'Please enter your email and password.'
D;
req.collections.users.findOne({
email: req.body.email,
password: req.body.password
}, function(error, user){
if (error) return next(error);
if (luser) return res.render('login', {
error: 'Incorrect emaildpassword combination.'
H; .
req.session.user = user;
req.session.admin = user.admin;
res.redirect('/admin');
)
};

Running the App

Now everything should be set up properly to run Blog. Contrary to the example in Chapter 5, we see protected
pages only when we're logged in. These protected pages enable us to create new posts, and to publish and unpublish
them. But as soon as we click “Logout” in the menu, we no longer can access the administrator page.

137

CHAPTER 6 * USING SESSIONS AND OAUTH TO AUTHORIZE AND AUTHENTICATE USERS IN NODE.JS APPS

The executable code is under the ch6/password folder of the practicalnode repository:
https://github.com/azat-co/practicalnode.

Node.js OAuth

OAuth—which can be located on NPM (https://www.npmjs.org/package/oauth) and GitHub (https://github.com/
ciaranj/node-oauth)—is the powerhouse of OAuth 1.0/2.0 schemes for Node.js. It's a module that generates
signatures, encryptions, and HTTP headers, and makes requests. We still need to initiate the OAuth dances

(i.e., requests back and forth between consumer, provider and our system), write the callback routes, and store
information in sessions or databases. Refer to the service provider’s (e.g., Facebook, Twitter, Google) documentation for
end points, methods, and parameter names.

It is recommended that node-auth be used when complex integration is needed or when only certain pieces of
OAuth are needed (e.g., header signatures are generated by node-auth, but the request is made by the superagent
library).

To add OAuth version 0.9.11 (the latest as of this writing) to your project, simply run:

$ npm install oauth@o0.9.11

Twitter OAuth 2.0 Example with Node.js OAuth

OAuth 2.0 is less complicated and, some might argue, less secure than OAuth 1.0. The reasons for this are numerous
and better understood when written by Eran Hammer, the person who participated in OAuth2.0 creation: OAuth 2.0
and the Road to Hell.

In essence, OAuth 2.0 is similar to the token-based authorization we examined earlier, for which we have a single
token, called a bearer, that we pass along with each request. To get that token, all we need to do is exchange our app’s
token and secret for the bearer.

Usually, this bearer can be stored for a longer time than OAuth 1.x tokens (depends on the rules set by a specific
service-provider), and can be used as a single key/password to open protected resources. This bearer acts as our
token in the token-based auth.

Here’s an ordinary example from Node.js OAuth docs (https://github.com/ciaranj/node-oauth#oauth20).
First, we create an oauth2 object that has a Twitter consumer key and secret (replace the values with yours):

var OAuth = require('OAuth');
var OAuth2 = OAuth.OAuth2;
var twitterConsumerKey = 'your key';
var twitterConsumerSecret = 'your secret';
var oauth2 = new OAuth2(server.config.keys.twitter.consumerKey,
twitterConsumerSecret,
"https://api.twitter.com/",
null,
'oauth2/token’,
null

);
Then, we request access to the token/bearer from the service provider:
oauth2.getOAuthAccessToken(

)
{'grant_type': 'client_credentials'},
function (e, access token, refresh token, results){

138

https://github.com/azat-co/practicalnode
https://github.com/azat-co/practicalnode
https://www.npmjs.org/package/oauth
https://github.com/ciaranj/node-oauth
https://github.com/ciaranj/node-oauth
https://github.com/ciaranj/node-oauth#oauth20
https://api.twitter.com/

CHAPTER 6 © USING SESSIONS AND OAUTH TO AUTHORIZE AND AUTHENTICATE USERS IN NODE.JS APPS

console.log('bearer:
// Store bearer
// Make OAuth2 requests using this bearer to protected endpoints

}

, access_token);

)5

Now we can store the bearer for future use and make requests to protected end points with it.

Note Twitter uses OAuth2.0 for the so called app-only authorizations which are requests to protected resources.
Those requests are made on behalf of the applications only (not on behalf of users by the apps). Twitter uses OAuth 1.0
for normal auths, i.e., requests made on behalf of the users by the app). Not all endpoints are available via app-only auth,
and quotas/limitations are different. Please refer to the official documentation at http://dev.twitter.com.

Everyauth

The Everyauth module allows for multiple OAuth strategies to be implemented and added to any Express.js app in just
a few lines of code. Everyauth comes with strategies for most of the service providers, so there’s no need to search and
implement service provider-specific end points, parameters names, and so forth. Also, Everyauth stores user objects
in a session, and database storage can be enabled in a findOrCreate callback using a promise pattern.

Tip Everyauth has an e-mail and password strategy that can be used instead of the custom-built auth. More
information about it can be found in Everyauth documentation at the GitHub repository (https://github.com/bnoguchi/
everyauth#fpassword-authentication).

Everyauth submodules that enable service provider-specific authorization strategies (as of this writing, take from
its GitHub repo (https://github.com/bnoguchi/everyauth/blob/master/README.md)) are as follows:

e Password

e Facebook

e Twitter

e Google

e Google Hybrid
e LinkedIn

e Dropbox

e Tumblr

e Evernote

e GitHub

e Instagram
e Foursquare
e Yahoo!

139

http://dev.twitter.com/
https://github.com/bnoguchi/everyauth#password-authentication
https://github.com/bnoguchi/everyauth#password-authentication
https://github.com/bnoguchi/everyauth/blob/master/README.md

CHAPTER 6 * USING SESSIONS AND OAUTH TO AUTHORIZE AND AUTHENTICATE USERS IN NODE.JS APPS

e Justin.tv

e Vimeo

e 37signals (Basecamp, Highrise, Backpack, Campfire)
e Readability

e AngelList

e Dwolla

e OpenStreetMap

e VKontakte (Russian Social Network)

e Mail.ru (Russian Social Network)

e Skyrock
e Gowalla
e Triplt
e 500px

¢ SoundCloud

e mixi

e Mailchimp

e Mendeley

e Stripe

e Datahero

e Salesforce

e Box.net

e Openld

e LDAP (experimental; not production tested)

e Windows Azure Access Control Service

Project: Adding Twitter OAuth 1.0 Sign-in to Blog with Everyauth

A typical OAuth 1.0 flow consists of these three steps (simplified):

1. Users go to a page/route to initiate the OAuth dance. There, our app requests a token via
GET/POST requests using the signed app’s consumer key and secret. For example, /auth/
twitter is added automatically by Everyauth.

2. The app uses the token extracted in step 1 and redirects users to the service-provider
(Twitter) and waits for the callback.

3. The service provider redirects users back to the app which catches the redirect in the
callback route (e.g., /auth/twitter/callback). Then, the app extracts the access token,
the access token secret, and the user information from the Twitter incoming request body
/ payload.

140

CHAPTER 6 © USING SESSIONS AND OAUTH TO AUTHORIZE AND AUTHENTICATE USERS IN NODE.JS APPS

However, because we're using Everyauth, we don’t need to implement requests for the initiate and the callback
routes!

Let’s add a Sign in with Twitter button to our project. We need the button itself (image or a link), app key, and
secret (obtainable at dev.twitter.com), and then we must augment our authorization route to allow for specific
Twitter handlers to be administrated on Blog.

Adding a Sign-in with a Twitter Link

By default, Everyauth uses the /auth/:service_provider_name pattern to initiate the three-legged OAuth 1.0 strategy.
This, of course, can be customized, but to keep it short and simple (KISS), we can just add this link to menu. jade:

li(class=(menu === 'login') ? 'active' : '')
a(href="/auth/twitter') Sign in with Twitter

The whole menu. jade looks like this:

.menu
ul.nav.nav-pills
li(class=(menu === "index') ? 'active' : '')
a(href="/") Home
if (admin)
li(class=(menu === 'post') ? 'active' : '')
a(href="/post") Post
li(class=(menu === 'admin') ? 'active' : '')
a(href="/admin") Admin
1i
a(href="/logout") Log out
else
li(class=(menu === 'login')? 'active' : '')
a(href="/login") Log in
1i

a(href="/auth/twitter') Sign in with Twitter

Configuring the Everyauth Twitter Strategy
To add the Everyauth module (everyauth) to Blog, type the following in the terminal:
$ npm install everyauth@0.4.5 --save

The configuration of the Everyauth Twitter strategy is implemented in app. js, but in larger apps it’s a good
idea to abstract these types of strategies into separate files. The most important thing to remember is that Everyauth
middleware needs to precede the app.route call.

To procure the Twitter app consumer key and secret, we harness environmental variables via process.env:

var TWITTER_CONSUMER_KEY = process.env.TWITTER_CONSUMER_KEY
var TWITTER_CONSUMER_SECRET = process.env.TWITTER_CONSUMER_SECRET

141

CHAPTER 6 * USING SESSIONS AND OAUTH TO AUTHORIZE AND AUTHENTICATE USERS IN NODE.JS APPS

To pass these variables we can use Makefile. In the Makefile, add these lines, substituting ABC and XYZ with
your values:

start:
TWITTER_CONSUMER_KEY=ABCABC \
TWITTER_CONSUMER_SECRET=XYZXYZXYZ \
node app
Also, add the start command to . PHONY:
.PHONY: test db start
As another option, we can create a Bash file start.sh:
TWITTER_CONSUMER_KEY=ABCABC \
TWITTER CONSUMER_SECRET=XYZXYZXYZ \
node app
Now we go back to the app. js file, in which we need to import the Everyauth module:
everyauth = require('everyauth');
It's a good practice to run the module in debug mode the first few times:

everyauth.debug = true;

Each submodule is enabled using chained commands and promises. To define the previously mentioned key
and secret, execute the following:

everyauth.twitter
.consumerKey (TWITTER_CONSUMER KEY)
.consumerSecret (TWITTER_CONSUMER_SECRET)

Then, to tell the module what to do when Twitter sends back the authorized user object
twitterUserMetadata, type

.findOrCreateUser(function (session, accessToken, accessTokenSecret, twitterUserMetadata) {
We can return the user object right away, but to emulate async writing to a database, let’s create a promise
var promise = this.Promise();

and use the process.nextTick call, which is analogous to setTimeout(callback, 0);, and acts in an asynchronous
manner. In a real-world app, you might want to find or save the data to the database:

process.nextTick(function(){
Change Azat’s username to yours:

if (twitterUserMetadata.screen name === 'azat co') {

142

CHAPTER 6 © USING SESSIONS AND OAUTH TO AUTHORIZE AND AUTHENTICATE USERS IN NODE.JS APPS

Store the user object in the in-memory session, just like we did in the /login route:
session.user = twitterUserMetadata;
The most important, set admin flag to true:

session.admin = true;

}

Everyauth expects us to fulfill the promise when it’s ready:

promise.fulfill(twitterUserMetadata);
H

return promise;
// return twitterUserMetadata

1)

After all the steps are done, instruct Everyauth where to redirect the user:
.redirectPath('/admin');

Everyauth is so smart that it automatically adds a /logout route, this means our route (app.get('/logout’,
routes.user.logout);) won't be used. So we need to add some extra logic to the default Everyauth strategy.
Otherwise, the session will always keep admin = true. In the handleLogout step, we clear our session by calling the
exact same method from user. js:

everyauth.everymodule.handleLogout(routes.user.logout);

The next line tells Everyauth how to find a user object based on the user argument, but because we stored the
whole user object in the session and we don’t store user info in findOrCreate, we can just return back the same
object:

everyauth.everymodule.findUserById(function (user, callback) {
callback(user);

D;

Last but not least, the line that follows, enable Everyauth routes and it must go after cookie and session
middleware but must come before normal routes (e.g., app.get(), app.post()):

app.use(everyauth.middleware());
The full source code of the app. js file after adding the Everyauth Twitter OAuth1.0 strategy is as follows:

var TWITTER_CONSUMER_KEY = process.env.TWITTER_CONSUMER_KEY;
var TWITTER_CONSUMER _SECRET = process.env.TWITTER_CONSUMER SECRET;

var express = require('express'),
routes = require('./routes'),
http = require('http'),
path = require('path'),
mongoskin = require('mongoskin'),

143

CHAPTER 6 * USING SESSIONS AND OAUTH TO AUTHORIZE AND AUTHENTICATE USERS IN NODE.JS APPS

dbUrl = process.env.MONGOHQ URL ||
"mongodb://@localhost:27017/blog’,

db = mongoskin.db(dbUrl, {safe: true}),

collections = {
articles: db.collection('articles'),
users: db.collection('users')

}

everyauth = require('everyauth');

// Express.js Middleware

var session = require('express-session'),
logger = require('morgan'),
errorHandler = require('errorhandler'),
cookieParser = require('cookie-parser'),
bodyParser = require('body-parser'),
methodOverride = require('method-override');

everyauth.debug = true;
everyauth.twitter
.consumerKey (TWITTER_CONSUMER KEY)
.consumerSecret(TWITTER _CONSUMER_SECRET)
.findOrCreateUser(function(
session,
accessToken,
accessTokenSecret,
twitterUserMetadata) {
var promise = this.Promise();
process.nextTick(function(){
if (twitterUserMetadata.screen name === 'azat co') {
session.user = twitterUserMetadata;
session.admin = true;

promise.fulfill(twitterUserMetadata);
)

return promise;
}

)

.redirectPath('/admin');
everyauth.everymodule.handlelogout(routes.user.logout);
everyauth.everymodule.findUserById(function (user, callback) {

callback(user);

B;

var app = express();
app.locals.appTitle = 'blog-express';

app.use(function(req, res, next) {
if (!collections.articles || ! collections.users)
return next(new Error('No collections.'));
req.collections = collections;
return next();

1
144

CHAPTER 6 © USING SESSIONS AND OAUTH TO AUTHORIZE AND AUTHENTICATE USERS IN NODE.JS APPS

// Express.js configurations

app.set('port', process.env.PORT || 3000);
app.set('views', path.join(__dirname, 'views'));
app.set('view engine', 'jade');

// Express.js middleware configuration

app.use(logger('dev'));

app.use(bodyParser.json());

app.use(bodyParser.urlencoded());
app.use(cookieParser('3CCC4ACD-6ED1-4844-9217-82131BDCB239"));
app.use(session({secret: '2044774A-D649-4D44-9535-46E296EF984F'}));
app.use(everyauth.middleware());

app.use(methodOverride());
app.use(require('stylus').middleware(_ dirname + '/public'));
app.use(express.static(path.join(__dirname, 'public')));

// Authentication middleware
app.use(function(req, res, next) {
if (req.session &3 req.session.admin)
res.locals.admin = true;
next();
D;

// Authorization
var authorize = function(req, res, next) {
if (req.session && req.session.admin)
return next();
else
return res.send(401);
b

// Development only
if ('development' == app.get('env')) {
app.use(errorHandler());

// Pages and routes

app.get('/', routes.index);

app.get('/login', routes.user.login);

app.post('/login', routes.user.authenticate);
app.get('/logout’, routes.user.logout);

app.get('/admin', authorize, routes.article.admin);
app.get('/post', authorize, routes.article.post);
app.post('/post', authorize, routes.article.postArticle);
app.get('/articles/:slug', routes.article.show);

// REST API routes

app.all('/api', authorize);
app.get('/api/articles', routes.article.list);
app.post('/api/articles’, routes.article.add);
app.put('/api/articles/:id", routes.article.edit);
app.del('/api/articles/:id', routes.article.del);

145

CHAPTER 6 * USING SESSIONS AND OAUTH TO AUTHORIZE AND AUTHENTICATE USERS IN NODE.JS APPS

app.all('*', function(req, res) {
res.send(404);
b))

var server = http.createServer(app);
var boot = function () {
server.listen(app.get('port'), function(){
console.info('Express server listening on port ' +

app.get('port'));
)s
}

var shutdown = function() {
server.close();
}

if (require.main === module) {
boot();

} else {
console.info('Running app as a module');
exports.boot = boot;
exports.shutdown = shutdown;
exports.port = app.get('port');

}

To run the app, execute $ make start, and don’t forget to replace the Twitter username, consumer key, and
secret with yours. Then when you click on “Sign in with Twitter’, you'll be redirected to Twitter to authorize this
application. Then you'll be redirected back to the localhost app and should see the admin page menu. We have been
authorized by a third-party service provider! Also, the user information is available to your app so it can be stored in
the database for future usage. If you already gave permissions, the redirect to and from Twitter might happen very fast.
The terminal output is shown in Figure 6-1 shows each step of Everyauth process such as getting tokens and sending
responses. Each step can be customized to your app’s needs.

146

CHAPTER 6 © USING SESSIONS AND OAUTH TO AUTHORIZE AND AUTHENTICATE USERS IN NODE.JS APPS

® 0 O [_| ch6-everyauth — node e
...Finished step

starting step - fetchOAuthUser
...Finished step

starting step - assignOAuthUserToSession
...Finished step

starting step - findOrCreateUser
...Finished step

starting step - compileAuth

...finished step

starting step - addToSession

...Finished step

starting step - sendResponse

...Finished step

GET /auth/twitter/callback?oauth_token=MsOyzMM3G14KoZj rwltcOT4DRxyMOZKXBab4piVVE
&oauth_verifier=p3ow]FNLaYAi8npriVkPmF1Fb4cUYS6GcDhS7v0sc 303 204ms
GET /admin 304 106ms

GET /js/jquery-2.0.3.min.js 304 4ms

GET /css/bootstrap-3.0.2/css/bootstrap.min.css 304 1ims

GET /css/bootstrap-3.0.2/js/bootstrap.min.js 304 4ms

GET /js/blog.js 304 19ms

GET /css/bootstrap-3.0.2/css/bootstrap-theme.min.css 304 35ms

GET /js/admin.js 304 23ms

GET /css/style.css 304 36ms

GET /js/jquery-2.0.3.min.map 484 4ms - 9

Figure 6-1. Everyauth Twitter strategy with debug mode in action

Summary

In this chapter, we learned how to implement a standard e-mail and password authentication, and used Express.
js middleware to protect sensitive pages and end points in Blog. Then, we covered OAuth 1.0 and OAuth 2.0 with
Everyauth and OAuth modules, respectively.

Now we have a few security options for Blog. In the next chapter we’ll explore Mongoose (http://mongoosejs.com)
object-relational mapping (ORM (http://en.wikipedia.org/wiki/Object-relational mapping)) Node.js library
for MongoDB. This library is a good choice for complex systems with a lot of interdependent business logic between
entities, because it completely abstracts the database and provides developers with tools to operate with data only
via Mongoose objects. The chapter will touch on the main Mongoose classes and methods, explain some of the more
advanced concepts, and re-factor persistence in Blog.

147

http://mongoosejs.com
http://en.wikipedia.org/wiki/Object-relational_mapping

CHAPTER 7

Boosting Your Node.js Data with
the Mongoose ORM Library

Mongoose is a fully developed object relational mapping (ORM) library for Node.js and MongoDB. The advantages of
using ORM are many and go far beyond code organization or the ease of development. Typical ORM is a crucial piece
of modern software engineering.

Mongoose abstracts everything from the database, and the application code interacts only with objects and their
methods. ORM also allows specifying relationships between different types of objects and putting business logic
(related to those objects) in the classes.

In addition, Mongoose has built-in validation and type casting that can be extended and customized according to
needs. When used together with Express.js, Mongoose makes the stack truly adherent to the MVC concept.

Mongoose uses a similar interface to those of Mongo shell, native MongoDB driver, and Mongoskin. For this
reason, main functions such as find, update, insert, save, remove, and so on, look and act the same, which helps us
to get started with Mongoose faster. In this chapter we look at the following:

¢ Mongoose installation

¢ Connection establishment in a standalone Mongoose script
e Mongoose schemas

e Hooks for keeping code organized

e Custom static and instance methods

e Mongoose models

e Relationships and joins with population
¢ Nested documents

e Virtual fields

e Schema type behavior amendment

e Express.js + Mongoose = true MVC

The source code for this chapter is in the ch7/blog-express directory of the practical node GitHub repository
(https://github.com/azat-co/practicalnode).

149

https://github.com/azat-co/practicalnode

CHAPTER 7 © BOOSTING YOUR NODE.JS DATA WITH THE MONGOOSE ORM LIBRARY

Mongoose Installation

First, we should install Mongoose with NPM. Among many variations, this is one of the ways we can install
Mongoose 3.8.4 into an empty folder:

$ mkdir node_modules
$ npm install mongoose@3.8.4

Connection Establishment in a Standalone Mongoose Script

Mongoose can be used as a standalone MongoDB library. To illustrate this, here’s a banal script that establishes a
connection, creates a Mongoose model definition, instantiates the practicalNodeBook object, and then saves it to the
database.

To have access to the library, we need to include the mongoose module in our program:

var mongoose = require('mongoose');

Unlike the Node.js native MongoDB driver, which requires us to write a few lines of code, Mongoose can connect
to the database server in one line. Mongoose requests are buffered, so we don’t have to wait for the established
connection (vs. native driver, which usually requires a callback). To do this, just call mongoose. connect (uri(s),
[options], [callback]). The uniform resource identifier (URI) or connection string is the only required parameter,
and it follows a standard format of type://username:password@host:port/database_name.In our simple example,
the host is localhost, the port is 27017 (default), and the database name is test:

mongoose.connect('mongodb://localhost/test");

For situations that are more advanced, options and callbacks can be passed to connect. The options object
supports all properties of the native MongoDB driver (http://mongodb.github.io/node-mongodb-native/driver-
articles/mongoclient.html#fmongoclient-connect-options).

Note It’s a common practice in Node.js apps (and Mongoose) to open a database connection once, when the
program starts, and then to keep it open until termination. This applies to web apps and servers as well.

This is easy so far, right? The next step is an important distinction that Mongoose introduces compared with
Mongoskin and other lightweight MongoDB libraries. The step creates a model with the model () function by passing a
string and a schema (more on schemas later). The model is usually stored in a capitalized literal:

var Book = mongoose.model('Book', { name: String });

Now the configuration phase is over and we can create a document that represents a particular instance of the
model Book:

var practicalNodeBook = new Book({ name: 'Practical Node.js' });

Mongoose documents come with very convenient built-in methods (http://mongoosejs.com/docs/api.
html#document-js) such as validate, isNew, update, and so on. Just keep in mind that these methods apply to this
particular document, not the entire collection or model. The difference between documents and models is that a
document is an instance of a model; a model is something abstract. It’s like your real MongoDB collection, but it is

150

http://mongodb.github.io/node-mongodb-native/driver-articles/mongoclient.html%23mongoclient-connect-options
http://mongodb.github.io/node-mongodb-native/driver-articles/mongoclient.html%23mongoclient-connect-options
http://mongoosejs.com/docs/api.html%23document-js
http://mongoosejs.com/docs/api.html%23document-js

CHAPTER 7 © BOOSTING YOUR NODE.JS DATA WITH THE MONGOOSE ORM LIBRARY

supported by a schema and is presented as a Node.js class with extra methods and attributes. Collections in Mongoose
closely resemble collections in Mongoskin or native driver. Strictly speaking, models, collections, and documents are
different Mongoose classes.

Usually we don’t use Mongoose collections directly, and we manipulate data via models only. Some of the
main model methods look strikingly familiar to the ones from Mongoskin or native MongoDB driver, such as find,
insert(), save, and so forth.

To finish our small script and make it write a document to the database, let’s use one of the document
methods—document. save():

practicalNodeBook.save(function (err, results) {
if (err) {
console.error(e);
process.exit(1);
} else {
console.log('Saved: ', results);
process.exit(0);
}
D;

Here is the full source code for the mongoose. js file:

var mongoose = require('mongoose');
mongoose.connect('mongodb://localhost/test");

var Book = mongoose.model('Book', { name: String });

var practicalNodeBook = new Book({ name: 'Practical Node.js' });
practicalNodeBook.save(function (err, results) {
if (err) {
console.error(e);
process.exit(1);
} else {
console.log('Saved: ', results);
process.exit(0);
}
1

To run this snippet, execute the $ node mongoose.js command (MongoDB server must be running in parallel).
The results of the script should output the newly created object, as seen in Figure 7-1.

151

CHAPTER 7 © BOOSTING YOUR NODE.JS DATA WITH THE MONGOOSE ORM LIBRARY

e 00 (] ch7 — bash e
Azats-Air:ch? azat$ node mongoose.js
Saved: { _wv: @,

name: 'Practical Node.js',

_id: 536d76fccc32bbb673e9b791F }
Azats-Air:ch? azat$ node mongoose.js
Saved: { _wv: 0,

name: 'Practical Node.js',

-id: 536d76ffa5ffaf683ef3ifsSal }
Azats-Air:ch? azat$ node mongoose.js
Saved: { _v: 0,

name: ‘'Practical Node.js’,

-id: 536d7700040243693eab443a }
Azats-Air:ch? azat$

Figure 7-1. Running a standalone Mongoose script that creates objects

Mongoose Schemas

Schema is a JSON-ish class that has information about properties/field types of a document. It also can store
information about validation and default values, and whether a particular property is required. Schemas can contain
business logic and other important information. In other words, schemas serve as blueprints for documents. They are
needed for model creation (i.e., schemas are compiled into models). So, before we can use models properly, we need
to define their schemas, e.g., the book schema with the name property of string type:

var bookSchema = mongoose.Schema({
name: String

1)

Warning Mongoose ignores those properties that aren’t defined in the model’s schema.

Mongoose Schema supports these data types:

152

String: a standard JavaScript/Node.js string (a sequence of characters) type

Number: a standard JavaScript/Node number type up to 253 (64-bit); larger numbers with
mongoose-long (https://www.npmjs.org/package/mongoose-1long) (Git (https://github.com/
aheckmann/mongoose-1long))

Boolean: a standard JavaScript/Node Boolean type—true or false
Buffer: a Node.js binary type (images, PDFs, archives, and so on)
Date: an ISODate formatted date type, such as 2014-12-31T12:56:26.009Z

Array: a standard JavaScript/Node array type

https://www.npmjs.org/package/mongoose-long
https://github.com/aheckmann/mongoose-long
https://github.com/aheckmann/mongoose-long

CHAPTER 7 © BOOSTING YOUR NODE.JS DATA WITH THE MONGOOSE ORM LIBRARY

e Schema.Types.ObjectId a typical, MongoDB 24-character hex string of a 12-byte binary
number (e.g., 52dafa354bd71b30fal2c441)

e Schema.Types.Mixed: any type of data (i.e., flexible free type)

Warning Mongoose does not listen to mixed-type object changes, so call markModified() before saving the object
to make sure changes in the mixed-type field are persistent.

ObjectIdis added automatically as a primary _id key if omitted in the insert or save methods; _id key can
be used to sort documents chronologically (http://docs.mongodb.org/manual/reference/object-id/). They are
available through Schema. Types or mongoose.Schema.Types (e.g., Schema.Types.Mixed).

We have a great deal of flexibility in defining our document schemas—for example,

var ObjectId = mongoose.Schema.Types.ObjectId,
Mixed = mongoose.Schema.Types.Mixed;
var bookSchema = mongoose.Schema({
name: String,
created at: Date,
updated at: {type: Date, default: Date.now},
published: Boolean,
authorId : { type: ObjectId, required: true },
description: { type: String, default: null },
active: {type: Boolean, default: false},
keywords: { type: [String], default: [] }
description: {
body: String,
image: Buffer
b
version: {type: Number, default: function() {return 1;}},
notes: Mixed,
contributors: [ObjectId]

1))

It's possible to create and use custom types (e.g., there’s a module mongoose-types, https://github.com/
bnoguchi/mongoose-types) that already have the rules for the ubiquitous e-mail and URL types.

Mongoose schemas are pluggable, which means, by creating a plugin, certain functionality can be extended
across all schemas of the application.

For better code organization and code re-use, in the schema, we can set up static and instance methods, apply
plugins, and define hooks.

Tip For validation in Node.js, consider using the validatior. js and express-validator modules.

153

http://docs.mongodb.org/manual/reference/object-id/
https://github.com/bnoguchi/mongoose-types
https://github.com/bnoguchi/mongoose-types

CHAPTER 7 © BOOSTING YOUR NODE.JS DATA WITH THE MONGOOSE ORM LIBRARY

Hooks for Keeping Code Organized

In a complex application with a lot of interrelated objects, we might want to execute certain logic before saving an
object. Hooks are a good place to store such logic. For example, we might want to upload a PDF to the web site before
saving a book document:

bookSchema.pre('save', function(next) {
//prepare for saving
//upload PDF
return next();

1

On the other hand, before removing, we need to make sure there are no pending purchase orders for this book:

bookSchema.pre('remove', function(next) {
//prepare for removing
return next(e);

b

Custom Static and Instance Methods

In addition to dozens of built-in Mongoose model methods, we can add custom ones. For example, to initiate a
purchase, we can call the buy method on the document practicalNodeBook after we implement the custom instance
method buy():

bookSchema.method({
buy: function(quantity, customer, callback) {
var bookToPurchase = this;
//create a purchase order and invoice customer
return callback(results);
b
refund: function(customer, callback) {
//process the refund
return callback(results);
}
D;

Static methods are useful when we either don’t have a particular document object or we don’t need it:

bookSchema.static({
getZeroInventoryReport: function(callback) {
//run a query on all books and get the ones with zero inventory
return callback(books);
1
getCountOfBooksById: function(bookId, callback){
//run a query and get the number of books left for a given book
return callback(count);
}
j3)

154

CHAPTER 7 © BOOSTING YOUR NODE.JS DATA WITH THE MONGOOSE ORM LIBRARY

Note Hooks and methods must be added to the schemas before compiling them to models—in other words, before
calling the mongoose.model() method.

Mongoose Models

As in many other ORMs, in Mongoose, the cornerstone object is a model. To compile a schema into a model, use
mongoose.model(name, schema)—for example,

var Book = mongoose.model('Book', bookSchema)

The first parameter is just a string, which we can use later to pull the instance of this model. Usually, this string is
the same as the object literal for the model (e.g., Book).
Models are used to create documents (actual data). To do so, call new ModelName(data)—for example,

var practicalNodeBook = new Book({ name: 'Practical Node.js' });
var javascriptTheGoodPartsBook = new Book({ name: "JavaScript The Good Parts"});

It’s better to assign the initial value through the constructor versus using the document.set () method, because
Mongoose has to process less function calls and our code remains more compact and better organized. Of course, this
is possible only if we know the values when we create the instances.

Don’t confuse static with instance model methods. If we call a method on practicalNodeBook, it’s an instance
method; if we call it on the Book object, it’s a static class method.

Models have static built-in methods that are very similar to Mongoskin and native MongoDB methods, such as
find(), create(), and update().

Alist of the static Mongoose model methods (invoked on a capitalized object, e.g., Book) along with their
meaning follows:

e Model.create(data, [callback (error, doc)]): creates a new Mongoose document and
saves it to the database

e Model.remove(query, [callback(error)]): removes documents from the collection that
match the query; when finished, calls callback with error

e Model.find(query, [fields], [options], [callback(error, docs)]):finds documents
that match the query (as a JSON object); possible to select fields (http://mongoosejs.com/
docs/api.html#query Query-select)and use options (http://mongodb.github.io/node-
mongodb-native/api-generated/collection.html#find)

e Model.update(query, update, [options], [callback(error, affectedCount, raw)]):
updates documents, similar to native update

e Model.populate(docs, options, [callback(error, doc)]): populates documents using
references to other collections; an alternative to another approach described in the next section

e Model.findOne(query, [fields], [options], [callback(error, doc)]):finds the first
document that matches the query

e Model.findById(id, [fields], [options], [callback(error, doc)]): finds the first
element for which _id equals the id argument (cast based on the schema)

e Model.findOneAndUpdate([query], [update], [options], [callback(error, doc)]):
finds the first document that matches the query (if present) and updates it, returning the
document; uses findAndModify (http://mongodb.github.io/node-mongodb-native/api-
generated/collection.html#findandmodify)

155

http://mongoosejs.com/docs/api.html%23query_Query-select
http://mongoosejs.com/docs/api.html%23query_Query-select
http://mongodb.github.io/node-mongodb-native/api-generated/collection.html%23find
http://mongodb.github.io/node-mongodb-native/api-generated/collection.html%23find
http://mongodb.github.io/node-mongodb-native/api-generated/collection.html%23findandmodify
http://mongodb.github.io/node-mongodb-native/api-generated/collection.html%23findandmodify

CHAPTER 7 © BOOSTING YOUR NODE.JS DATA WITH THE MONGOOSE ORM LIBRARY

e Model.findOneAndRemove(query, [options], [callback(error, doc)]):finds the first
document that matches the query and removes it when returning the document

e Model.findByIdAndUpdate(id, [update], [options], [callback(error, doc)]):similar
to findOneAndUpdate using only the ID

e Model.findByIdAndRemove(id, [options], [callback(error, doc)]): similarto
findOneAndRemove using only the ID

Warning Not all the Mongoose model methods trigger hooks. Some of them are executed directly. For example,
calling Model . remove () does not trigger the remove hook, because no Mongoose documents are involved (instances of
Model that use lowercase literals, e.g., practicalNodeBook).

The complete list of the methods is extensive; therefore, refer to the official Mongoose API documentation
(http://mongoosejs.com/docs/api.html#model-js). The most used instance methods are as follows:

e doc.model(name): returns another Mongoose model
e doc.remove([callback(error, doc)]):removes this document
e doc.save([callback(error, doc, affectedCount)]): saves this document

e doc.update(doc, [options], [callback(error, affectedCount, raw)]):updates the
document with doc properties, and options parameters, and then upon completion fires a
callback with error, number of affectedCount and the database output

e doc.toJSON([option]): converts a Mongoose document to JSON (options are listed later)

e doc.toObject([option]): converts a Mongoose document to a plain JavaScript object
(options are listed later)

e isModified([path]): true/false, respectively, if some parts (or the specific path) of the
document are or are not modified

e markModified(path): marks a path manually as modified which is useful for mixed
(Schema.Types .Mixed) data types because they don't trigger the modified flag automatically

e doc.isNew: true/false, respectively, whether the document is new or not new
e doc.id: returns the document ID
e doc.set(path, value, [type], [options]):setsvalue atapath

e doc.validate(callback(error)): checks validation manually (triggered automatically
before save())

Options for toObject () and toJSON() are as follows:
e getters: true/false, calls all getters including path and virtual types
e virtuals: true/false, includes virtual getters and can override the getters option
e minimize: true/false, removes empty properties/objects (defaults to true)
e transform: transforms the function called right before returning the object

For more methods, visit the Mongoose document API (http://mongoosejs.com/docs/api.html#document-7js).

156

http://mongoosejs.com/docs/api.html%23model-js
http://mongoosejs.com/docs/api.html%23document-js

CHAPTER 7 © BOOSTING YOUR NODE.JS DATA WITH THE MONGOOSE ORM LIBRARY

Relationships and Joins with Population

Although, there are no relationships stored in a NoSQL database such as MongoDB, we can do so in the application
layer. Mongoose provides a feature called population. It allows us to fill certain parts of the document from a different
collection. Let’s say we have posts and users collections. We can reference posts in the user schema:

var mongoose = require('mongoose'),
Schema = mongoose.Schema

var userSchema = Schema({
_id : Number,
name: String,
posts: [{ type: Schema.Types.ObjectId, ref: 'Post' }]

};

var postSchema = Schema({
_creator: { type: Number, ref: 'User' },
title: String,
text: String

D;

var Post = mongoose.model('Post’, postSchema);
var User = mongoose.model('User', userSchema);
User.findOne({ name: /azat/i })
.populate('posts")
.exec(function (err, user) {
if (err) return handleError(err);
console.log('The user has % post(s)', user.posts.length);

1

Note ObjectId, Number, String, and Buffer are valid data types to use as references.

In the previous query, we used a regular expression (RegExp), this feature is not exclusive to Mongoose. In fact,
the native driver and its other wrappers, along with the mongo console all support RegExps. The syntax is the same
as in normal JavaScript/Node.js RegExp patterns. Therefore, in a way, we perform a join query on our Post and User
models.

It’s possible to return only a portion of populated results. For example, we can limit the number of posts to the
first 10 only:

.populate({
path: 'posts',
options: { limit: 10, sort: 'title' }

1)

157

CHAPTER 7 © BOOSTING YOUR NODE.JS DATA WITH THE MONGOOSE ORM LIBRARY

Sometimes it’s more practical to return only certain fields instead of the full document. This can be done
with select:

.populate({
path: 'posts’,
select: 'title',
options: { limit: 10, sort: 'title' }

b

In addition, Mongoose can filter the populated results by a query! For example, we can apply RegExp for
“node.js” to the text (a match query property):

.populate({
path: 'posts’,
select: '_id title text’,
match: {text: /node\.js/i},
options: { limit: 10, sort: ' id' }

b))

Here, it takes selected properties (select and then the field names of _id, title, text) and can be as customized
as you want it to be. The best practice is to populate only the required fields because this avoids potential leakage of
sensitive information and reduces overhead on the system.

The populate method also works on multiple document queries. For example, we can use find instead of findOne:

User.find({}, {limit: 10, sort:{ _id: -1}})
.populate('posts")
.exec(function (err, user) {
if (err) return handleError(err);
console.log('The user has % post(s)', user.posts.length);

1

Tip For custom sorting, we can add properties using name: -1 or name: 1 patterns and can pass the resulting object
1o the sort option. Again, this is a standard MongoDB interface and is not exclusive to Mongoose.

Nested Documents

The document storage model in NoSQL databases is well-suited to use nested documents. For example, instead
of having two collections—posts and users—we can have a single collection (users), with each item of that
collection having posts.

The decision of whether to use separate collections or nested documents is more of an architectural question,
and its answer depends on usage. For example, if posts are used only in the context of users (their authors)—say, on
the users’ profile pages—then it’s best to use nested documents. However, if the blog features multiple users’ posts
that need to be queried independently of their user context, then separate collections fit better.

158

CHAPTER 7 © BOOSTING YOUR NODE.JS DATA WITH THE MONGOOSE ORM LIBRARY

To implement nested documents, we can use the type Schema. Types .Mixed in Mongoose schemas (Schema,
e.g., bookSchema or postSchema) or we can create a new schema for the nested document. An example of the former
approach is as follows:

var userSchema = new mongoose.Schema({
name: String,
posts: [mongoose.Schema.Types.Mixed]
1;
//attach methods, hooks, etc.
var User = mongoose.model('User', userSchema);

However, the latter approach of using a distinct new subschema is more flexible and powerful:

var postSchema = new mongoose.Schema({
title: String,
text: String
D;
//attach methods, hooks, etc., to post schema
var userSchema = new mongoose.Schema({
name: String,
posts: [postSchema]
D;
//attach methods, hooks, etc., to user schema
var User = mongoose.model('User', userSchema);

To create a new user document or to save a post to an existing user when working with a nested posts document,
treat the posts property as an array and just use the push method from the JavaScript/Node.js AP], or use the
MongoDB $push operand (http://docs.mongodb.org/manual/reference/operator/update/push/). For example,
we can add a post (newPost) to a user object, which is found by a matching ID (_id is userId):

User.update(
{_id: userId},
{$push: {posts: newPost}},
function(error, results) {
//handle error and check results

};

Virtual Fields

Virtuals are fields that don’t exist in the database but act just like normal fields in a Mongoose document. To
oversimplify, virtual fields are mock or fake fields that pretend to act and be normal ones.

Virtual fields are awesome for creating aggregate fields. For example, if our system requires to have first name,
last name and the full name (which is just a concatenation of the first two names)—there’s no need to store the full
name values in addition to the first and last name values! All we need to do is concatenate the first and last name in a
full name virtual.

Another use case is to make the database backward compatible. For example, we might have thousands of user
items in a MongoDB collection and we want to start collecting their locations. We have two options: run a migration
script to add the default location (“none”) to the thousands of old user documents or use a virtual field and apply
defaults at runtime!

159

http://docs.mongodb.org/manual/reference/operator/update/push/

CHAPTER 7 © BOOSTING YOUR NODE.JS DATA WITH THE MONGOOSE ORM LIBRARY

To define a virtual we need to

1. Call the virtual(name) method to create a virtual type (Mongoose API,
http://mongoosejs.com/docs/api.htmli#schema_Schema-virtual)

2. Apply a getter function with get (fn) (Mongoose API, http://mongoosejs.com/docs/api.
html#virtualtype VirtualType-get)

Gravatar (http://en.gravatar.com/) for example, is a service that hosts profile images. The URL is always
an md5 hash (http://en.gravatar.com/site/implement/hash/) of the user’s e-mail. Therefore, we can get the
virtual value (gravatarUrl) on the fly by hashing instead of storing the value (less overhead!). In this example, we
intentionally made the input email mixed cased and with a trailing space, and then applied crypto:

Identity.virtual('gravatarUrl')
.get(function() {
if (!this.email) return null;
var crypto = require('crypto'),
email = "Hi@azat.co ";
email = email.trim();
email = email.tolowerCase();
var hash = crypto
.createHash('md5")
.update(email)
.digest('hex")
var gravatarBaseUrl = 'https://secure.gravatar.com/avatar/';
return gravatarBaseUrl + hash;

1;

Or, the case mentioned earlier—getting a full name out of first and last—is as follows:

userSchema.virtual('fullName')
.get(function(){
return this.firstName +

1)

Another scenario is when only a subset of the full document is exposed. For example, if the user model has
tokens and passwords, we omit these sensitive fields by whitelisting only the fields we want to expose:

+ this.lastName;

userSchema.virtual('info")
.get(function() {
return {
service: this.service,
username: this.username,
name: this.name,
date: this.date,
url: this.url,
avatar: this.avatar
};
1

Schema Type Behavior Amendment

Mongoose allows us to define/write getters (get), setters (set), and defaults (default) right in the Schema! Same goes
for validate and some other useful methods.

160

http://mongoosejs.com/docs/api.html%23schema_Schema-virtual
http://mongoosejs.com/docs/api.html%23virtualtype_VirtualType-get
http://mongoosejs.com/docs/api.html%23virtualtype_VirtualType-get
http://en.gravatar.com/
http://en.gravatar.com/site/implement/hash/
https://secure.gravatar.com/avatar/

CHAPTER 7 © BOOSTING YOUR NODE.JS DATA WITH THE MONGOOSE ORM LIBRARY

Here's an examples of defining set (transform to lower case when the value is assigned), get (when the number
is extracted the “thousands” commas are added to it), default (brand new ObjectID is generated), and validate
(checks for e-mail patterns and is triggered upon save()) all right in a JSON-like structure of the Schema:

postSchema = new mongoose.Schema({
slug: {
type: String,
set: function(slug) {
return slug.tolLowerCase();
}

b
numberOfLikes: {

type: Number,
get: function(value) {
return value.toString().replace(/\B(?=(\d{3})+(?!\d))/g, ",");
}
1
posted at: {
type: String,
get: function(value) {
if (!value) return null;
return value.toUTCString();
}

}
authorId: {

type: Objectld,
default: function() {
return new mongoose.Types.ObjectId()
}
}
email: {
type: String,
unique: true,
validate: [
function(email) {
return (email.match(/[a-z0-9!#$%&" *+\/=2" “{|}~-1+(?:\.[a-20-9!#$%8 " *+\/=2" “{|}~-]+)*
@(?:[a-20-9](?:[a-20-9-]*[a-20-9])?\.)+[a-20-9](?:[a-20-9-]*[a-20-9])?/1) != null)},
'Invalid email’
]
}
D;

If defining custom methods in the Schema definition is not an option for some reason (maybe our system requires
us to do it dynamically), there’s another approach to amending Schema behavior—to use chained methods:

1. Use Schema.path(name) to get SchemaType (official docs, http://mongoosejs.com/docs/
api.html#schema_Schema-path).

2. Use SchemaType.get(fn) to set the getter method (official docs, http://mongoosejs.com/
docs/api.html#schematype SchemaType-get).

161

http://mongoosejs.com/docs/api.html%23schema_Schema-path
http://mongoosejs.com/docs/api.html%23schema_Schema-path
http://mongoosejs.com/docs/api.html%23schematype_SchemaType-get
http://mongoosejs.com/docs/api.html%23schematype_SchemaType-get

CHAPTER 7 © BOOSTING YOUR NODE.JS DATA WITH THE MONGOOSE ORM LIBRARY

For example,

userSchema.path('numberOfPosts")
.get(function(value) {
if (value) return value;
return this.posts.length;

};

Path is just a fancy name for the nested field name and its parent objects, for example if we have ZIP code (zip) as
a child of contact.address such as user.contact.address.zip, the contact.address.zip is a path.

Express.js + Mongoose = True MVC

To avoid rebuilding all other components unrelated to ORM, such as templates, routes, and so forth, we can factor
the existing Blog from the previous chapter by making it use Mongoose instead of Mongoskin. This requires minimal
effort but produces an abstraction layer between MongoDB and the request handlers. As always, the fully functional
code is available on GitHub, in the ch7 folder (https://github.com/azat-co/practicalnode/tree/master/ch7).

The process of refactoring starts with the creation of a new branch: mongoose. You can use the final solution in
the GitHub repository (https://github.com/azat-co/blog-express/tree/mongoose). First, we need to remove
Mongoskin and install Mongoose:

$ npm uninstall mongoskin -save
$ npm install mongoose@3.8.4 --save

package.jsonis amended to something like this:

"name": "blog-express",

"version": "0.0.1",

"private": true,

"scripts": {
"start": "node app.js",
"test": "mocha test"

1

"dependencies": {
"express": "4.1.2",
"jade": "1.3.1",
"stylus": "0.44.0",
"everyauth": "0.4.5",
"mongoose": "3.8.4",
"cookie-parser": "1.0.1",
"body-parser": "1.0.2",
"method-override": "1.0.0",
"serve-favicon": "2.0.0",
"express-session": "1.0.4",
"morgan": "1.0.1",
"errorhandler": "1.0.1"

1

"devDependencies": {
"mocha": "1.16.2",

162

https://github.com/azat-co/practicalnode/tree/master/ch7
https://github.com/azat-co/blog-express/tree/mongoose

CHAPTER 7 © BOOSTING YOUR NODE.JS DATA WITH THE MONGOOSE ORM LIBRARY

"superagent": "0.15.7",
"expect.js": "0.2.0"

Now, in the app. js file, we can remove the Mongoskin inclusion (mongoskin = require('mongoskin'),)
and add a new one for Mongoose:

r;u‘)r‘\goose = require('mongoose'),
Let’s create a folder models ($ mkdir models) and include it:
models = require('./models"),
Substitute the connection, and articles and users collections statements:

db = mongoskin.db(dbUrl, {safe: true}),
collections = {
articles: db.collection('articles'),
users: db.collection('users')

}

With just the connection statement leaving out the collections:
db = mongoose.connect(dbUrl, {safe: true}),
In the collection middleware, we remove collections:

if (!collections.articles || ! collections.users) return next(new Error('No collections."'))
req.collections = collections;

Then, add the models:

if (!models.Article || ! models.User) return next(new Error('No models.'))
req.models = models;

That's it! The upgrade from Mongoskin to Mongoose is complete. ;-) Just for your reference, here’s the full code of
the resulting app. js:

var TWITTER_CONSUMER _KEY = process.env.TWITTER_CONSUMER KEY ||
'MY_TWITTER_CONSUMER_KEY ABC'

var TWITTER CONSUMER SECRET = process.env.TWITTER CONSUMER SECRET ||
"MY_TWITTER_CONSUMER_SECRET_XYZXYZ'

var express = require('express'),
routes = require('./routes'),
http = require('http'),
path = require('path'),
mongoose = require('mongoose'),
models = require('./models"'),

163

CHAPTER 7 © BOOSTING YOUR NODE.JS DATA WITH THE MONGOOSE ORM LIBRARY

dbUrl = process.env.MONGOHQ URL || 'mongodb://@localhost:27017/blog’,
db = mongoose.connect(dbUrl, {safe: true}),
everyauth = require('everyauth');

var session = require('express-session'),
logger = require('morgan'),
errorHandler = require('errorhandler'),
cookieParser = require('cookie-parser'),
bodyParser = require('body-parser'),
methodOverride = require('method-override');

everyauth.debug = true;

everyauth.twitter
.consumerKey (TWITTER_CONSUMER_KEY)
.consumerSecret (TWITTER_CONSUMER_SECRET)

.findOrCreateUser(function (session, accessToken, accessTokenSecret, twitterUserMetadata) {

var promise = this.Promise();
process.nextTick(function(){
// replace with your Twitter username
if (twitterUserMetadata.screen name === 'azat co') {
session.user = twitterUserMetadata;
session.admin = true;
}
promise.fulfill(twitterUserMetadata);
b

return promise;

b
.redirectPath('/admin');

//we need it because otherwise the session will be kept alive
everyauth.everymodule.handlelLogout(routes.user.logout);

everyauth.everymodule.findUserById(function (user, callback) {
callback(user);

1;

var app = express();
app.locals.appTitle = 'blog-express';

app.use(function(req, res, next) {
if (!models.Article || ! models.User)
return next(new Error('No models.'));
req.models = models;
return next();

1

app.set('port', process.env.PORT || 3000);
app.set('views', path.join(__dirname, 'views'));
app.set('view engine', 'jade');

164

CHAPTER 7 © BOOSTING YOUR NODE.JS DATA WITH THE MONGOOSE ORM LIBRARY

app.use(logger('dev'));

app.use(bodyParser.json());
app.use(cookieParser('3CCC4ACD-6ED1-4844-9217-82131BDCB239"));
app.use(session({secret: '2044774A-D649-4D44-9535-46E296EF984F'}));
app.use(everyauth.middleware());

app.use(bodyParser.urlencoded());

app.use(methodOverride());
app.use(require('stylus').middleware(_ dirname + '/public'));
app.use(express.static(path.join(__dirname, 'public')));

app.use(function(req, res, next) {
if (req.session &3 req.session.admin) {
res.locals.admin = true;

}
next();

1

var authorize = function(req, res, next) {
if (req.session &3 req.session.admin)
return next();
else
return res.send(401);

};

if ('development' === app.get('env')) {
app.use(errorHandler());

}

app.get('/', routes.index);

app.get('/login', routes.user.login);

app.post('/login', routes.user.authenticate);
app.get('/logout’, routes.user.logout);

app.get('/admin', authorize, routes.article.admin);
app.get('/post', authorize, routes.article.post);
app.post('/post', authorize, routes.article.postArticle);
app.get('/articles/:slug', routes.article.show);

app.all('/api', authorize);
app.get('/api/articles', routes.article.list);
app.post('/api/articles', routes.article.add);
app.put('/api/articles/:id", routes.article.edit);
app.del('/api/articles/:id', routes.article.del);

app.all('*', function(req, res) {
res.send(404);

1)

165

CHAPTER 7 © BOOSTING YOUR NODE.JS DATA WITH THE MONGOOSE ORM LIBRARY

var server = http.createServer(app);
var boot = function () {
server.listen(app.get('port'), function(){
console.info('Express server listening on port ' + app.get('port'));
D;
}

var shutdown = function() {
server.close();

}

if (require.main === module) {
boot();

}

else {
console.info('Running app as a module')
exports.boot = boot;
exports.shutdown = shutdown;
exports.port = app.get('port');

}

There are three files in the models folder:
1. index.js: exposes models to app.js
2. article.js:includes article schemas, methods, and models
3. user.js:includes the user schema and its model

The index. js file is as follows:

exports.Article = require('./article');
exports.User = require('./user');

The article. js file starts with the inclusion:
var mongoose = require('mongoose');
Then, the schema itself is:

var articleSchema = new mongoose.Schema({
title: {
type: String,
required: true,
validate: [
function(value) {
return value.length<=120

b

'Title is too long (120 max)'
I
default: 'New Post'
s
text: String,
published: {
type: Boolean,
default: false
s
166

CHAPTER 7 © BOOSTING YOUR NODE.JS DATA WITH THE MONGOOSE ORM LIBRARY

slug: {
type: String,
set: function(value) {
return value.tolLowerCase().replace(' ', '-')
}
}
D;

In the schema above, title is required and it’s limited to 120 characters with validate. The published defaults
to false if not specified upon object creation. The slug should never have spaces due to the set method.

To illustrate code reuse, we abstract the find method from the routes (routes/article. js) into the model
(models/article. js). This can be done with all database methods:

articleSchema.static({
list: function(callback){
this.find({}, null, {sort: { id:-1}}, callback);
}
1))

The, we compile the schema and methods into a model:
module.exports = mongoose.model('Article’, articleSchema);
The full source code of article. js is as follows:
var mongoose = require('mongoose');

var articleSchema = new mongoose.Schema({
title: {
type: String,
required: true,
validate: [
function(value) {
return value.length<=120

1

'Title is too long (120 max)'

I
default: 'New Post'

1

text: String,

published: {
type: Boolean,
default: false

1

slug: {
type: String,
set: function(value){

return value.toLowerCase().replace(' ', '-")

}

}

1

167

CHAPTER 7 © BOOSTING YOUR NODE.JS DATA WITH THE MONGOOSE ORM LIBRARY

articleSchema.static({
list: function(callback){
this.find({}, null, {sort: { id:-1}}, callback);
}
b

module.exports = mongoose.model('Article’, articleSchema);
The models/user. js file also begins with an inclusion and a schema:
var mongoose = require('mongoose');

var userSchema = new mongoose.Schema({
email: {
type: String,
required: true,
set: function(value) {return value.trim().toLowerCase()},
validate: [
function(email) {
return (email.match(/[a-z0-9!#$%&" *+\/=2~ “{|}~-1+(2:\.[a-20-9!#$%&" *+\/=2" “{|}~-1+)*
@(?:[a-20-9](?:[a-20-9-]*[a-20-9])?\.)+[a-20-9](?:[a-20-9-]*[a-20-9])?/1) != null)},
'Invalid email’

]

}s
password: String,
admin: {

type: Boolean,
default: false

}
D;
module.exports = mongoose.model('User’, userSchema);
The e-mail field is validated with RegExp, then is trimmed and forced to lowercase when it’s set.
The routes/article. js file now needs to switch to Mongoose models instead of Mongoskin collections.
So, in the show method, this line goes away:
req.collections.articles.findOne({slug: req.params.slug}, function(error, article) {
Then, this line comes in:
req.models.Article.findOne({slug: req.params.slug}, function(error, article) {
In the 1ist method, remove:
req.collections.articles.find({}).toArray(function(error, articles) {

and replace it with:

req.models.Article.list(function(error, articles) {

168

CHAPTER 7 © BOOSTING YOUR NODE.JS DATA WITH THE MONGOOSE ORM LIBRARY

In the exports.add method,

req.collections.articles.insert(
article,
function(error, articleResponse) {

is replaced with:
req.models.Article.create(article, function(error, articleResponse) {

The exports.edit method is trickier, and there are a few possible solutions:
1. Find a Mongoose document (e.g., findById) and use document methods (e.g., update)
2. Use the static model method findByIdAndUpdate

In both cases, this Mongoskin piece of code goes away:

req.collections.articles.updateById(
req.params.id,
{$set: req.body.article},
function(error, count) {

We'll use the former two-step approach (i.e., find then update), because it’'s more versatile. So the above snippet
isreplaced by this code:

req.models.Article.findById(
req.params.id,
function(error, article) {
if (error) return next(error);
article.update({$set: req.body.article}, function(error, count, raw) {
if (error) return next(error);
res.send({affectedCount: count});
)
b;

Just to show you a more elegant one-step approach (the latter from the new exports.edit implementation
list above):

req.models.Article.findByIdAndUpdate(
req.params.id,
{$set: req.body.article},
function(error, doc) {
if (error) return next(error);
res.send(doc);
}
);

169

CHAPTER 7 © BOOSTING YOUR NODE.JS DATA WITH THE MONGOOSE ORM LIBRARY

Similarly, with the exports.del request handler:

exports.del = function(req, res, next) {
if (!req.params.id) return next(new Error('No article ID.'));
req.models.Article.findById(req.params.id, function(error, article) {
if (error) return next(error);
if (larticle) return next(new Error('article not found'));
article.remove(function(error, doc){
if (error) return next(error);
res.send(doc);
D;
D;
};

The exports.postArticle and exports.admin functions look like these (the functions’ bodies are the same):
req.models.Article.create(article, function(error, articleResponse) {

req.models.Article.list(function(error, articles) {

Again, that’s all we have to do to switch to Mongoose for this route. However, to make sure there’s nothing
missing, here’s the full code of the routes/article. js file:

exports.show = function(req, res, next) {
if (!req.params.slug) return next(new Error('No article slug.'));
req.models.Article.findOne({slug: req.params.slug}, function(error, article) {
if (error) return next(error);
if (larticle.published 8& !req.session.admin) return res.send(401);
res.render('article', article);
D;
};

exports.list = function(req, res, next) {
req.models.Article.list(function(error, articles) {
if (error) return next(error);
res.send({articles: articles});
b;
};

exports.add = function(req, res, next) {
if (!req.body.article) return next(new Error('No article payload.'));
var article = req.body.article;
article.published = false;
req.models.Article.create(article, function(error, articleResponse) {
if (error) return next(error);
res.send(articleResponse);
D;
};

170

CHAPTER 7 © BOOSTING YOUR NODE.JS DATA WITH THE MONGOOSE ORM LIBRARY

exports.edit = function(req, res, next) {
if (!req.params.id) return next(new Error('No article ID.'));
req.models.Article.findById(req.params.id, function(error, article) {
if (error) return next(error);
article.update({$set: req.body.article}, function(error, count, raw){
if (error) return next(error);
res.send({affectedCount: count});

3]
s
};

exports.del = function(req, res, next) {
if (!req.params.id) return next(new Error('No article ID.'));
req.models.Article.findById(req.params.id, function(error, article) {
if (error) return next(error);
if (larticle) return next(new Error('article not found'));
article.remove(function(error, doc){
if (error) return next(error);
res.send(doc);
D;
D;
};

exports.post = function(req, res, next) {
if (!req.body.title)
res.render('post');

};

exports.postArticle = function(req, res, next) {
if (!req.body.title || !req.body.slug || !req.body.text) {
return res.render('post', {error: 'Fill title, slug and text.'});
}
var article = {
title: req.body.title,
slug: req.body.slug,
text: req.body.text,
published: false
¥
req.models.Article.create(article, function(error, articleResponse) {
if (error) return next(error);
res.render('post’, {error: 'Article was added. Publish it on Admin page.'});

b;
};

exports.admin = function(req, res, next) {
req.models.Article.list(function(error, articles) {
if (error) return next(error);
res.render('admin',{articles:articles});

};

171

CHAPTER 7 © BOOSTING YOUR NODE.JS DATA WITH THE MONGOOSE ORM LIBRARY

The routes/index. js file, which serves the home page, is as follows:

exports.article = require('./article');
exports.user = require('./user');

exports.index = function(req, res, next){
req.models.Article.find({published: true}, null, {sort: { id:-1}}, function(error, articles){
if (error) return next(error);
res.render('index', { articles: articles});
)
};

Lastly, routes/user. js has a single line to change. Instead of:
req.collections.articles.find({}).toArray(function(error, articles) {

Now, we have:
req.models.User.findOne({

To check if everything went well, simply run Blog as usual with $ node app and navigate the pages on
http://localhost:3000/. In addition, we can run Mocha tests with $ mocha test.

Summary

In this chapter, we learned what Mongoose is, how to install it, how to establish a connection to the database, and how
to create Mongoose schemas while keeping the code organized with hooks and methods. We also compiled schemas
into models and populated references automatically, and used virtual fields and custom schema type properties. Last,
we refactored Blog to use Mongoose and made our app gain a true MVC architecture.

Next, we’ll cover how to build REST APIs with the two Node.js frameworks: Express.js and Hapi. This is an
important topic, because more and more web developments shift towards heavy front-end logic and thin back-
end. Some systems even go as far as building/using free-JSON APIs or back-as-a-service services. This tendency
allows teams to focus on what is the most important for end-users: user interface, features, as well as what is vital for
businesses: reduced iteration cycles, lower costs of maintenance and development.

Another essential piece in this puzzle is test-driven practice. To explore it, we’ll cover Mocha, which is a widely
used Node.js testing framework. To REST APIs and TDD onward.

172

CHAPTER 8

Building Node.js REST API Servers
with Express.js and Hapi

Modern-day web development is moving increasingly toward a structure for which there’s a thick client, usually built
with frameworks such as Backbone.js, (http://backbonejs.org/) Anglers]S, (https://angularjs.org/) Ember.js,
(http://emberjs.com/) and the like, and a thin back-end layer typically represented by a representational state
transfer (REST) web application programing interface (API) service. This model has become more and more popular,
and we've seen services such as Parse.com and many others pioneer the back end as a service niche. The advantages
of this approach are as follows:

The same back-end REST API can serve multiple client apps/consumers, with web
applications being just one of them (mobile and public third-party apps are examples of
others).

There is a separation of concerns, i.e., the clients can be replaced without compromising the
integrity of the core business logic, and vice versa.

User interface / user experience (UI/UX) are inherently hard to test, especially with event-driven,
single-page apps, and then there’s an added complexity of cross-browser testing; but, with
separation of business logic into the back-end REST AP], that logic becomes easy to test in
both unit and functional testing.

Therefore, the majority of new projects take the REST API and clients approach. Development teams may take
this approach even if they have just one client for the time being which is typically a web app, because they realize that
otherwise, when they eventually add more apps, they’ll have to redo their work.

To get started with Node.js REST servers, in this chapter we cover the following:

RESTful API basics
Project dependencies

Test coverage with Mocha (http://visionmedia.github.io/mocha/) and superagent
(http://visionmedia.github.io/superagent/)

REST API server implementation with Express and Mongoskin
(https://github.com/kissjs/node-mongoskin)

Refactoring: Hapi.js (http://hapijs.com/) REST API Server

The REST API server is able to process the creation of objects, retrieval of objects and collections, make
changes to objects and remove objects. For your convenience, all the source code is in the ch8 folder in
github.com/azat-co/practicalnode (https://github.com/azat-co/practicalnode).

173

http://backbonejs.org/
https://angularjs.org/
http://emberjs.com/
http://visionmedia.github.io/mocha/
http://visionmedia.github.io/superagent/
https://github.com/kissjs/node-mongoskin
http://hapijs.com/
https://github.com/azat-co/practicalnode

CHAPTER 8 ' BUILDING NODE.JS REST API SERVERS WITH EXPRESS.JS AND HAPI

Note In this chapter, our examples use a semicolonless style. Semicolons in JavaScript are absolutely optional
(http://blog.izs.me/post/2353458699/an-open-letter-to-javascript-leaders-regarding) except in two cases:
in the for loop and before expressions/statements that start with a parenthesis (e.g., immediately invoked function
expression (http://en.wikipedia.org/wiki/Immediately-invoked function_expression) (IIFE)). The reason this
style is used, is to give you an alternative perspective. Typing fewer semicolons improves speed, looks better and is more
consistent because developers tend to miss semicolons from time to time (perfectly running code allows for such
sloppiness). Also, some programmers find semicolonless code more readable.

RESTful API Basics

RESTful API' became popular because of the demand in distributed systems in which each transaction needs to

include enough information about the state of the client. In a sense, this standard is stateless, because no information

about the clients’ states is stored on the server, making it possible for each request to be served by a different system.
Distinct characteristics of RESTful API (i.e., if APIis RESTful, it usually follows these principles) are as follows:

e RESTful API has better scalability support because different components can be deployed
independently to different servers.

e Itreplaced the Simple Object Access Protocol (SOAP?) because of the simpler verb and noun
structure.

e Ituses HTTP methods such as GET, POST, DELETE, PUT, OPTIONS, and so forth.

e JSON is not the only option (although it is the most popular). Unlike SOAP, which is a protocol,
the REST methodology is flexible in choosing formats. For example alternative formats might
be Extensible Markup Language (XML) or comma-separated values formats (CSV).

In Table 8-1 is an example of a simple create, read, update and delete (CRUD?) REST API for message collection.

Table 8-1. Example of the CRUD REST API Structure

Method URL Meaning

GET /messages.json Return list of messages in JSON format

PUT /messages.json Update/replace all messages and return status/error in JSON

POST /messages.json Create a new message and return its ID in JSON format

GET /messages/{id}.json Return message with ID {id} in JSON format

PUT /messages/{id}.json Update/replace message with id {id}; if {id} message doesn’t exist, create it

DELETE /messages/{id}.json Delete message with ID {id}, return status/error in JSON format

'http://en.wikipedia.org/wiki/Representational_state_transfer#Applied_to_web_services.
*http://en.wikipedia.org/wiki/SOAP.
Shttp://en.wikipedia.org/wiki/Create, read, update_and_delete.

174

http://blog.izs.me/post/2353458699/an-open-letter-to-javascript-leaders-regarding
http://en.wikipedia.org/wiki/Immediately-invoked_function_expression
http://en.wikipedia.org/wiki/Representational_state_transfer#Applied_to_web_services
http://en.wikipedia.org/wiki/SOAP
http://en.wikipedia.org/wiki/Create,_read,_update_and_delete

CHAPTER 8 * BUILDING NODE.JS REST API SERVERS WITH EXPRESS.JS AND HAPI

REST is not a protocol; it’s an architecture in the sense that it's more flexible than SOAP, which we know is a
protocol. Therefore, REST API URLSs could look like /messages/1ist.html or /messages/1list.xml, in case we want to
support these formats.

PUT and DELETE are idempotent methods,* which means that if the server receives two or more similar requests,
the end result is the same.

GET is nullipotent; POST is not idempotent and might affect the state and cause side effects.

More information on REST API° can be found at Wikipedia and in the article “A Brief Introduction to REST
(http://www.infoq.com/articles/rest-introduction).”

In our REST API server, we perform CRUD operations and harness the Express.js middleware
(http://expressjs.com/api.html#middleware) concept with the app.param() and app.use() methods. So, our
app should be able to process the following commands using the JSON format (collectionName is the name of the
collection, typically pluralized nouns, e.g., messages, comments, users):

e POST/collections/{collectionName}: request to create an object; responds with the of
newly created object ID

e GET/collections/{collectionName}/{id}: request with ID to retrieve an object

e GET/collections/{collectionName}/: request to retrieve any items from the collection
(items); in our example we’ll have this query options: up to 10 items and sorted by ID

e PUT/collections/{collectionName}/{id}: request with ID to update an object

e DELETE /collections/{collectionName}/{id}: request with ID to remove an object

Project Dependencies

To get started with our project, we need to install packages. In this chapter, we use Mongoskin
(https://github.com/kissjs/node-mongoskin), a MongoDB library, which is a better alternative to the plain,
good-ol’ native MongoDB driver for Node.js (https://github.com/mongodb/node-mongodb-native). In addition,
Mongoskin is more lightweight than Mongoose and it is schemaless. For more insights on the library, please check
out this Mongoskin comparison blurb, https://github.com/kissjs/node-mongoskin#comparation.

Express.js (http://expressjs.com/)is a wrapper for core Node.js http module (http://nodejs.org/api/http.html)
objects. The Express.js framework is built on top of the Connect (https://github.com/senchalabs/connect)
middleware library and it provides myriads of convenience. Some people compare the Express.js framework with
Ruby’s Sinatra because it’s non-opinionated and configurable.

First, we need to create a ch8/rest-express folder (or download the source code):

$ mkdir rest-express
$ cd rest-express

As mentioned in the previous chapter, Node.js/NPM provides multiple ways to install dependencies, including
the following:
e Manually, one by one

e Asapartofpackage.json

e Bydownloading and copying modules

*http://en.wikipedia.org/wiki/Hypertext_Transfer Protocol#Idempotent_methods_and_web_application.
Shttp://en.wikipedia.org/wiki/Representational state transfer.

175

http://www.infoq.com/articles/rest-introduction
http://expressjs.com/api.html%23middleware
https://github.com/kissjs/node-mongoskin
https://github.com/mongodb/node-mongodb-native
https://github.com/kissjs/node-mongoskin%23comparation
http://expressjs.com/
http://nodejs.org/api/http.html
https://github.com/senchalabs/connect
http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol%23Idempotent_methods_and_web_application
http://en.wikipedia.org/wiki/Representational_state_transfer

CHAPTER 8 ' BUILDING NODE.JS REST API SERVERS WITH EXPRESS.JS AND HAPI

To keep things simple, let’s just use the package. json approach. You can create the package. json file, or copy the
dependencies section or the whole file:

{

"name": "rest-express",

"version": "0.0.1",

"description": "REST API application with Express, Mongoskin, MongoDB, Mocha and Superagent"”,

"main": "index.js",

"directories": {

"test": "test"

b

"scripts": {

"test": "mocha test -R spec"

1

"author": "Azat Mardan",

"license": "BSD",

"dependencies”: {
"express": "4.1.2",
"mongoskin": 4.1",
"body-parser": "1.0.2
"morgan": "1.0.1" },
"devDependencies": {

"mocha": "1.16.2",
"superagent": "0.15.7",
"expect.js": "0.2.0"

}

1.
||1.

Then, simply run this command to install modules for the application:
$ npm install

As a result, the node_modules folder should be created with the superagent, express, mongoskin, and expect
libraries. If you change the versions specified in package. json to the later ones, please make sure to update the code
according to the packages’ change logs.

Test Coverage with Mocha and Superagent

Before the app implementation, let’s write functional tests that make HTTP requests to our soon-to-be-created REST
API server. In a TDD manner, let’s use these tests to build a Node.js free JSON REST API server using the Express.js
framework and Mongoskin library for MongoDB.

In this section we walk through the writing of functional tests using the Mocha (http://visionmedia.github.io/
mocha/) and superagent® libraries. The tests need to perform basic CRUD by posting HTTP requests to our server.

If you know how to use Mocha or just want to jump straight to the Express.js app implementation, feel free to do
so. You can use CURL terminal commands for testing, too.

Shttp://visionmedia.github.io/superagent/.

176

http://visionmedia.github.io/mocha/
http://visionmedia.github.io/mocha/
http://visionmedia.github.io/superagent/

CHAPTER 8 * BUILDING NODE.JS REST API SERVERS WITH EXPRESS.JS AND HAPI

Assuming we already have Node.js, NPM, and MongoDB installed, let’s create a new folder (or, if you wrote the
tests, use that folder). Let’s use Mocha as a command-line tool, and Expect.js and superagent as local libraries.
To install the Mocha CLI (if it’s not available via $ mocha -V), run this command from the terminal:

$ npm install -g mocha@1.16.2

Expect.js and superagent should be available already as part of the installation done in the previous section.

Tip Installing Mocha locally gives us the ability to use different versions at the same time. To run tests, simply point to
./node_modules/mocha/bin/mocha. A better alternative is to use Makefile, as described in Chapter 6.

Now let’s create a test/index. js file in the same folder (ch8/rest-express), which will have six suites:
1. Create a new object

Retrieve an object by its ID

Retrieve the whole collection

Update an object by its ID

LA

Check an updated object by its ID
6. Remove an object by its ID

HTTP requests are a breeze with SuperAgent’s chained functions, which we can put inside each test suite.
So, we start with dependencies:

var superagent = require('superagent')
var expect = require('expect.js')

Then, we write our first test case wrapped in the test case (describe and its callback). The idea is simple.
We make an HTTP request to a local instance of the server. When we send the request, we pass some data and, of
course, the URL path changes from test case to test case. The main thing happens in the request (made by superagent)
callback. There, we put multiple assertions that are the bread and butter (or meat and veggies for paleo readers) of
TDD. To be strictly correct, this test suite uses BDD language, but this difference is not essential for our project.

describe('express rest api server', function(){
var id
it('post object', function(done){
superagent.post('http://localhost:3000/collections/test")

.send({ name: 'John',
email: ‘john@rpjs.co’

1))

.end(function(e,res){
expect(e).to.eql(null)
expect(res.body.length).to.eql(1)
expect(res.body[0]. id.length).to.eql(24)
id = res.body[0]. id
done()

1))

b

177

CHAPTER 8 ' BUILDING NODE.JS REST API SERVERS WITH EXPRESS.JS AND HAPI

As you may have noticed, we're checking for the following:
e The error object should be null (eq1(null))
e Theresponse body array should have one item (to.eql(1))

e The first response body item should have the _id property, which is 24 characters long, i.e.,
a hex string representation of the standard MongoDB Objectld type

To finish, we save the newly created object’s ID in the id global variable so we can use it later for retrievals,
updates, and deletions. Speaking of object retrievals, we test them in the next test case. Notice that the superagent
method has changed to get() and the URL path contains the object ID. You can “uncomment” console.log to
inspect the full HTTP response body:

it('retrieves an object', function(done){
superagent.get('http://localhost:3000/collections/test/"+id)
.end(function(e, res){
expect(e).to.eql(null)
expect(typeof res.body).to.eql('object")
expect(res.body. id.length).to.eql(24)
expect(res.body. id).to.eql(id)
done()
H
H

The done() callback allows us to test async code. Without it, the Mocha test case ends abruptly, long before the
slow server has time to respond.

The next test case’s assertion is a bit more interesting because we use the map () function on the response results
to return an array of IDs. In this array, we find our ID (saved in id variable) with the contain method. The contain
method is a more elegant alternative to native index0f (). It works because the results, which are limited to 10 records,
come sorted by IDs, and our object was created just moments ago.

it('retrieves a collection', function(done){
superagent.get('http://localhost:3000/collections/test")
.end(function(e, res){
expect(e).to.eql(null)
expect(res.body.length).to.be.above(0)
expect(res.body.map(function (item){
return item._id
})).to.contain(id)
done()
b
1))

When the time comes to update our object, we actually need to send some data. We do this by passing an object
to superagent’s function. Then, we assert that the operation was completed with (msg=success):

it('updates an object', function(done){
superagent.put('http://localhost:3000/collections/test/"'+id)
.send({name: 'Peter’,
email: 'peter@yahoo.com'})

178

CHAPTER 8 * BUILDING NODE.JS REST API SERVERS WITH EXPRESS.JS AND HAPI

.end(function(e, res){
expect(e).to.eql(null)
expect(typeof res.body).to.eql('object")
expect(res.body.msg).to.eql("'success")
done()
)
)

The last two test cases, which assert retrieval of the updated object and its deletion, use methods similar to those
used before. Here is the full source code for the ch8/rest-express/test/index. js file:

var superagent = require('superagent')
var expect = require('expect.js")

describe('express rest api server', function(){
var id
it('post object', function(done){
superagent.post('http://localhost:3000/collections/test")

.send({ name: 'John’,
email: 'john@rpjs.co'

)

.end(function(e,res){
expect(e).to.eql(null)
expect(res.body.length).to.eql(1)
expect(res.body[0]. id.length).to.eql(24)
id = res.body[0]. id
done()

)

b

it('retrieves an object', function(done){
superagent.get('http://localhost:3000/collections/test/'+id)
.end(function(e, res){
expect(e).to.eql(null)
expect(typeof res.body).to.eql('object")
expect(res.body. id.length).to.eql(24)
expect(res.body. id).to.eql(id)
done()
1
1)

it('retrieves a collection', function(done){
superagent.get('http://localhost:3000/collections/test")
.end(function(e, res){
expect(e).to.eql(null)
expect(res.body.length).to.be.above(0)
expect(res.body.map(function (item){
return item. id
})).to.contain(id)
done()
D
)

179

CHAPTER 8 ' BUILDING NODE.JS REST API SERVERS WITH EXPRESS.JS AND HAPI

it('updates an object', function(done){
superagent.put('http://localhost:3000/collections/test/"'+id)
.send({name: 'Peter',
email: 'peter@yahoo.com'})
.end(function(e, res){
expect(e).to.eql(null)
expect(typeof res.body).to.eql('object")
expect(res.body.msg).to.eql('success")
done()
)
D

it('checks an updated object', function(done){
superagent.get('http://localhost:3000/collections/test/'+id)
.end(function(e, res){
expect(e).to.eql(null)
expect(typeof res.body).to.eql('object")
expect(res.body. id.length).to.eql(24)
expect(res.body. id).to.eql(id)
expect(res.body.name).to.eql('Peter")
done()
D
)

it('removes an object', function(done){
superagent.del("http://localhost:3000/collections/test/"'+id)
.end(function(e, res){
expect(e).to.eql(null)
expect(typeof res.body).to.eql('object")
expect(res.body.msg).to.eql("'success")
done()
b))
D
H

To run the tests, we can use the $ mocha test command, $ mocha test/index.js, ornpm test. For now, the
tests should fail because we have yet to implement the server!

For those of you who require multiple versions of Mocha, another alternative, which is better, is to run your
tests using local Mocha binaries: . /node_modules/mocha/bin/mocha ./test. This, of course, assumes that we have
installed Mocha locally into node_modules.

Note By default, Mocha doesn’t use any reporters, and the result output is lackluster. To receive more explanatory
logs, supply the -R <name> option (e.g., $ mocha test -R spec or $ mocha test -R list).

180

CHAPTER 8 * BUILDING NODE.JS REST API SERVERS WITH EXPRESS.JS AND HAPI

REST API Server Implementation with Express and Mongoskin

Create and open ch8/rest-express/index. js, which will be the main application file.
First things first. Let’s import our dependencies into the application:

var express = require('express'),
mongoskin = require('mongoskin'),
bodyParser = require('body-parser'),
logger = require('morgan')

After version 3.x, Express.js streamlined the instantiation of its app instance so that the following line gives us a
server object:

var app = express()

To extract parameters and data from the requests, let’s use bodyParser.urlencoded() and bodyParser.json()
middleware. We apply them with app.use(), and the code looks more like configuration statements:

app.use(bodyParser.urlencoded())
app.use(bodyParser.json())

app.use(logger())

express.logger() is optional middleware that allows us to monitor requests. Middleware (in this
(http://expressjs.com/api.html#fapp.use) and other forms (http://expressjs.com/api.html#middleware))is a
powerful and convenient pattern in Express.js and Connect to organize and reuse code.

As with the express.urlencoded() and express.json() methods, which save us from the hurdles of parsing a
body object of an HTTP request, Mongoskin makes it possible to connect to the MongoDB database in one effortless
line of code:

var db = mongoskin.db('mongodb://@localhost:27017/test', {safe:true})

Note If you wish to connect to a remote database (e.g., MongoHQ (https: //www.mongohq.com/home)), substitute
the string with your username, password, host, and port values. Here is the format of the uniform resource identifier (URI)
string (no spaces): mongodb://[username:password@] hosti[:port1][,host2[:port2],... [,hostN[:portN]]]
[/[database][?options]]

The next statement is a helper function that converts hex strings into MongoDB ObjectID data types:
var id = mongoskin.helper.toObjectID

The app.param() method is another form of Express.js middleware. It basically says: Do something every time
there is this value in the URL pattern of the request handler. In our case, we select a particular collection when a
request pattern contains a string collectionName prefixed with a colon (we see this when we examine routes):

app.param('collectionName', function(req, res, next, collectionName){
req.collection = db.collection(collectionName)
return next()

1)

181

http://expressjs.com/api.html%23app.use
http://expressjs.com/api.html#middleware

CHAPTER 8 ' BUILDING NODE.JS REST API SERVERS WITH EXPRESS.JS AND HAPI

To be user friendly, let’s include a root route with a message that asks users to specify a collection name in
their URLs:

app.get('/', function(req, res, next) {
res.send('Select a collection, e.g., /collections/messages"')
1))

Now the real work begins. Here is how we retrieve a list of items sorted by _id that has a limit of 10:

app.get('/collections/:collectionName', function(req, res, next) {
req.collection.find({},{
limit:10, sort: [[' id',-1]]
}).toArray(function(e, results){
if (e) return next(e)
res.send(results)
)
b

Have you noticed a : collectionName string in the URL pattern parameter? This and the previous app.param()
middleware are what give us the req.collection object, which points to a specified collection in our database.

The object-creating end point (POST /collections/:collectionName) is slightly easier to grasp because we just
pass the whole payload to the MongoDB.

app.post('/collections/:collectionName', function(req, res, next) {
req.collection.insert(req.body, {}, function(e, results){
if (e) return next(e)
res.send(results)
b))
H

This approach, or architecture, is often called free JSON REST API, because clients can throw data structured
in any way and the server handles it perfectly (a good example is a back-end as a service called Parse.com, recently
acquired by Facebook).

Single-object retrieval functions are faster than find(), but they use a different interface (they return an object
directly instead of a cursor—please be aware). We're also extracting the ID from the :id part of the path with
req.params. id Express.js magic:

app.get('/collections/:collectionName/:id", function(req, res, next) {
req.collection.findOne({
_id: id(req.params.id)
}, function(e, result){
if (e) return next(e)
res.send(result)
1))
H

The PUT request handler gets more interesting because update() doesn’t return the augmented object. Instead,
itreturns a count of affected objects. Also, {$set:req.body} is a special MongoDB operator (operators tend to start
with a dollar sign) that sets values.

The second {safe:true, multi:false} parameter is an object with options that tell MongoDB to wait for the
execution before running the callback function and to process only one (the first) item.

182

http://parse.com/

CHAPTER 8 * BUILDING NODE.JS REST API SERVERS WITH EXPRESS.JS AND HAPI

app.put('/collections/:collectionName/:id", function(req, res, next) {
req.collection.update({
_id: id(req.params.id)
}, {$set:req.body}, {safe:true, multi:false},
function(e, result){
if (e) return next(e)
res.send((result === 1) ? {msg:'success'} : {msg:'error'})
}
)5
H

Last, the DELETE method, which also outputs a custom JSON message (JSON object with msg equals either a
success string or the encountered error message):

app.del('/collections/:collectionName/:id", function(req, res, next) {
req.collection.remove({
_id: id(req.params.id)
1
function(e, result){
if (e) return next(e)
res.send((result === 1) ? {msg:'success'} : {msg:'error'})
}
)5
b

Note app.del() is an alias for app.delete() method in Express.js.

The last line that actually starts the server, on port 3000 in this case, is

app.listen(3000, function(){
console.log ('Server is running')
)

Just in case something is not working well, here is the full code of the Express.js 4.1.2 REST API server from the
ch8/rest-express/index. js file

var express = require('express'),
mongoskin = require('mongoskin'),
bodyParser = require('body-parser'),
logger = require('morgan')

var app = express()

app.use(bodyParser.urlencoded())
app.use(bodyParser.json())

app.use(logger())

var db = mongoskin.db('mongodb://@localhost:27017/test', {safe:true})
var id = mongoskin.helper.toObjectID

183

CHAPTER 8 ' BUILDING NODE.JS REST API SERVERS WITH EXPRESS.JS AND HAPI

app.param('collectionName', function(req, res, next, collectionName){
req.collection = db.collection(collectionName)
return next()

H

app.get('/', function(req, res, next) {
res.send('Select a collection, e.g., /collections/messages")

1

app.get('/collections/:collectionName', function(req, res, next) {
req.collection.find({}, {1limit: 10, sort: [['_id', -1]1})
.toArray(function(e, results){
if (e) return next(e)
res.send(results)
}
)
H

app.post('/collections/:collectionName', function(req, res, next) {
req.collection.insert(req.body, {}, function(e, results){
if (e) return next(e)
res.send(results)
)
b

app.get('/collections/:collectionName/:id", function(req, res, next) {
req.collection.findOne({_ id: id(req.params.id)}, function(e, result){
if (e) return next(e)
res.send(result)
)
b

app.put('/collections/:collectionName/:id"', function(req, res, next) {
req.collection.update({ id: id(req.params.id)},
{$set: req.body},
{safe: true, multi: false}, function(e, result){
if (e) return next(e)
res.send((result === 1) ? {msg:'success'} : {msg:'error'})
)
H

app.del('/collections/:collectionName/:id", function(req, res, next) {
req.collection.remove({ id: id(req.params.id)}, function(e, result){
if (e) return next(e)
res.send((result === 1) ? {msg:'success'} : {msg:'error'})
)
b

app.listen(3000, function(){
console.log ('Server is running')

1

184

CHAPTER 8 * BUILDING NODE.JS REST API SERVERS WITH EXPRESS.JS AND HAPI

Exit your editor and run this command in your terminal:
$ node .

This is equivalent to $ node index.
Then, in a different terminal window (without closing the first one), execute the tests:

$ mocha test
A slightly better execution is as follows (Figure 8-1):

$ mocha test -R nyan

8 00 (] ch8 — bash 2
Azats-Air:ch8 azat$ mocha test -R nyan
6

6 passing (165ms)

Azats-Air:ch8 azat$

Figure 8-1. Who wouldn't like a library with Nyan Cat?
If you really don’t like Mocha and/or BDD (and TDD), CURL is always there for you. :-) For example, CURLing is
done with the following, as shown in Figure 8-2:

curl http://localhost:3000/collections/curl-test

185

http://localhost:3000/collections/curl-test

CHAPTER 8 * BUILDING NODE.JS REST API SERVERS WITH EXPRESS.JS AND HAPI

8 00 £} azat — bash e
Azats-Air:~ azat$ curl http://localhost:3000/collections/curl-test
L

{

"name™: “peter”,
"email”: "peter337@rpjs.co”,
"_id": "52f682ab2398506565000008"

}
JAzats-Air:~ azat$

Figure 8-2. A GET request made with CURL

Note GET requests also work in the browser. For example, open http://localhost:3000/test while your server
is running.

CURLing data to make a POST request is easy (Figure 8-3):

$ curl -d "name=peter&email=peter337@rpjs.co"” http://localhost:3000/collections/curl-test

186

http://localhost:3000/test
http://localhost:3000/collections/curl-test

CHAPTER 8 * BUILDING NODE.JS REST API SERVERS WITH EXPRESS.JS AND HAPI

8 00 ¢ azat — bash e

Azats-Air:~ azat$ curl -d "name=peterfemail=peter337@rpjs.co” http://localhost:3
208/ collections/curl-test
L
{
"nome®: "peter”,
“"emgil”: “peter337@rpjs.co”,
"_id": "52f682ab23985a6565000008"

}
JAzats-Air:~ azat$

Figure 8-3. The result of sending a POST request via CURL

DELETE or PUT can be sent with --request NAME and the ID in the URL, such as:
$ curl --request DELETE http://localhost:3000/collections/curl-test/5216828a23985a6565000008

For a short, nice tutorial on the main CURL commands and options, take a look at CURL Tutorial with Examples
of Usage (http://www.yilmazhuseyin.com/blog/dev/curl-tutorial-examples-usage/).

In this chapter, our tests are longer than the app code itself, so abandoning TDD might be tempting, but believe
me, the good habits of TDD save you hours and hours of work during any serious development, when the complexity of
the application on which you are working is high.

You might wonder: Why spend time on TDD in the chapter about REST APIs? The answer is mainly because
REST APIs don’t have Uls in the form of web pages. APIs are intended for consumption by other programs
(i.e., consumers or clients). We, as developers, don’t have much choice when it comes to using APIs. We either have
to write a client application, or manually send execute CURLs (or jQuery $.ajax() calls from the browser console).
But, the best way is to use tests, which act as small client apps, if we think categorically!

However, this is not the whole story. TDD is great when it comes to refactoring. The next section is spent
changing from Express.js to Hapi. And after we're done, we can rest assured, by running the same tests, that the
functionality isn’t broken or changed.

Refactoring: Hapi RESP API Server

Hapi (http://spumko.github.io/) (NPM (https://www.npmjs.org/package/hapi) and GitHub
(https://github.com/spumko/hapi)) is an enterprise-grade framework. It's more complex and feature rich than
Express.js, and it’s easier to develop in large teams (http://hueniverse.com/2012/12/hapi-a-prologue/). Hapi is
maintained by Eran Hammer (http://hueniverse.com/) of Walmart Labs.

187

http://localhost:3000/collections/curl-test/52f6828a23985a6565000008
http://www.yilmazhuseyin.com/blog/dev/curl-tutorial-examples-usage/
http://spumko.github.io/
https://www.npmjs.org/package/hapi
https://github.com/spumko/hapi
http://hueniverse.com/2012/12/hapi-a-prologue/
http://hueniverse.com/)%20

CHAPTER 8 ' BUILDING NODE.JS REST API SERVERS WITH EXPRESS.JS AND HAPI

The goal of this section is to show you alternative patterns in implementing the REST API server in Node.js. Now,
because we have Mocha tests, we can refactor our code with peace of mind. Here’s the package. json for this project:

{
"name": "rest-hapi",
"version": "0.0.1",
"description": "REST API application with Express, Mongoskin, MongoDB, Mocha and Superagent",
"main": "index.js",
"directories": {
"test": "test"
1
"scripts": {
"test": "mocha test -R spec"
b
"author": "Azat Mardan",
"license": "BSD",
"dependencies": {
"good": "2.0.0",
"hapi": "2.1.2",
"mongoskin": "1.4.1"
1
"devDependencies": {
"mocha": "1.16.2",
"superagent": "0.15.7",
"expect.js": "0.2.0"

You can either use package.jsonwith $ npm install or, for Hapi installation only, simply run $ npm install
hapi@2.1.2 good@2.0.0 --save from the ch8/rest-hapi folder. hapi is the framework’s module and good is its
logger. This downloads the modules and unpacks them in the node_modules folder. Next, we need to create a
hapi-app.js file and open it in the editor.

As usual, at the beginning of a Node.js program (ch8/rest-hapi/hapi-app.js), we import dependencies:

var hapi = require('hapi'),
mongoskin = require('mongoskin'),

Then, we create the Hapi server object:
server = hapi.createServer('localhost', 3000),
and the database (just like in the Express.js example):

var db = mongoskin.db('mongodb://@localhost:27017/test’, {safe:true})
var id = mongoskin.helper.toObjectID

This function loads the database collection asynchronously based on the provided name argument. Note that
loadCollection takes the URL param and gives us the corresponding database collection:

var loadCollection = function(name, callback) {
callback(db.collection(name))
}

188

CHAPTER 8 * BUILDING NODE.JS REST API SERVERS WITH EXPRESS.JS AND HAPI

This part is the most distinct compared with Express.js. Developers use properties for methods and paths, and
instead of res (or response) we use reply inside of the handler property. Every route is an item in the array passed to
server.route(). The first such route is for the home page (“/”):

server.route([
{
method: 'GET',
path: '/',
handler: function(req, reply) {
reply('Select a collection, e.g., /collections/messages')

b

Next item in the array, that is the argument to the route method, is the route that returns a list of items as a
response to a GET /collection/:collectionName request. The main logic happens in the handler function again,
where we call the loadCollection method, find any objects (find({})), and output limited (up to 10 items) and
sorted results:

{
method: 'GET',

path: '/collections/{collectionName}"',
handler: function(req, reply) {
loadCollection(req.params.collectionName, function(collection) {
collection.find({}, {
limit:10,
sort: [[' id', -1]]}).toArray(function(e, results){
if (e) return reply(e)
reply(results)

)
1
}
1

The third route handles the creation of new objects (POST /collections/collectionName). Again, we use
loadCollection and then call the insert method with a request body (req.paylod):

{
method: 'POST',

path: '/collections/{collectionName}"',
handler: function(req, reply) {
loadCollection(req.params.collectionName, function(collection) {
collection.insert(req.payload, {}, function(e, results){
if (e) return reply(e)
reply(results)
}
b
}
b

189

CHAPTER 8 ' BUILDING NODE.JS REST API SERVERS WITH EXPRESS.JS AND HAPI

Please note that each URL parameter is enclosed in {}, unlike the :name convention that Express.js uses. This
is, in part, because : is a valid URL symbol, and by using it as a parameter identifier, we eliminate it from our URL
addresses.

The next route is responsible for getting a single record by its ID (/collection/collectionName/id). The main
logic of using the findOne method is the same as in the Express.js server example:

{
method: 'GET',

path: '/collections/{collectionName}/{id}",
handler: function(req, reply) {
loadCollection(req.params.collectionName, function(collection) {
collection.findOne({
_id: id(req.params.id)}, function(e, result){
if (e) return reply(e)
reply(result)
}
)
1))
}
b

This route updates documents in the database and, again, most of the logic in the handler remains the same,
as in the Express.js example, except that we call loadCollection to get the right collection based on the URL
parameter collectionName:

{
method: 'PUT',

path: '/collections/{collectionName}/{id}",
handler: function(req, reply) {
loadCollection(req.params.collectionName, function(collection) {
collection.update(
{_id: id(req.params.id)},
{$set:req.payload},
{safe:true, multi:false},
function(e, result){
if (e) return reply(e)
reply((result === 1) ? {msg:'success'} : {msg:'error'})
}
)
H
}
}

The last route handles deletions. First, it gets the right collection via the URL parameter (collectionName). Then,
it removes the object by its ID and sends back the message (success or error):

{

method: 'DELETE',

path: '/collections/{collectionName}/{id}",

handler: function(req, reply) {
loadCollection(req.params.collectionName, function(collection) {

190

CHAPTER 8 * BUILDING NODE.JS REST API SERVERS WITH EXPRESS.JS AND HAPI

collection.remove({
_id: id(req.params.id)}, function(e, result){
if (e) return reply(e)
reply((result === 1) ? {msg:'success'} : {msg:'error'})
}
)
)

The next configuration deals with logging and is optional:

var options = {
subscribers: {
"console': ['ops', 'request', 'log', 'error']
}
};

server.pack.require('good', options, function (err) {

if (lerr) {
// Plugin loaded successfully
}

};

The last line of hapi-app. js starts the server with the server.start() method:

server.start()

The following summarizes what we did differently while switching from Express.js to Hapi:

1. Defined routes in an array.
Used method, path, and handler properties of the route object.

Used the loadCollection method instead of middleware.

>~ e n

Used {name} instead of : name for defining URL parameters.
For your convenience, here’s the full source code of ch8/rest-hapi/hapi-app.js:

var hapi = require('hapi'),
server = hapi.createServer('localhost', 3000)
mongoskin = require('mongoskin')

var db = mongoskin.db('mongodb://@localhost:27017/test",
{safe:true})
var id = mongoskin.helper.toObjectID

var loadCollection = function(name, callback) {
callback(db.collection(name))

}

191

CHAPTER 8 ' BUILDING NODE.JS REST API SERVERS WITH EXPRESS.JS AND HAPI

server.route([{
method: 'GET',
path: '/',
handler: function(req, reply) {
reply('Select a collection, e.g., /collections/messages"')
}
b A
method: 'GET',
path: '/collections/{collectionName}"',
handler: function(req, reply) {
loadCollection(req.params.collectionName,
function(collection) {
collection.find({}, {
limit: 10,
sort: [[' id", -1]]
}).toArray(function(e, results){
if (e) return reply(e)
reply(results)
)
}
)
}

b A
method: 'POST',

path: '/collections/{collectionName}"',
handler: function(req, reply) {
loadCollection(req.params.collectionName,
function(collection) {
collection.insert(req.payload, {}, function(e, results){
if (e) return reply(e)
reply(results)

)
1
}

b A
method: 'GET',

path: '/collections/{collectionName}/{id}",
handler: function(req, reply) {
loadCollection(req.params.collectionName,
function(collection) {
collection.findOne({ id: id(req.params.id)},
function(e, result){
if (e) return reply(e)
reply(result)

192

CHAPTER 8 * BUILDING NODE.JS REST API SERVERS WITH EXPRESS.JS AND HAPI

b A
method: 'PUT',

path: '/collections/{collectionName}/{id}",
handler: function(req, reply) {
loadCollection(req.params.collectionName,
function(collection) {
collection.update({ id: id(req.params.id)},
{$set: req.payload},
{safe: true, multi: false}, function(e, result){
if (e) return reply(e)
reply((result === 1) ? {msg:'success'} : {msg:'error'})
H
)
}

A
method: 'DELETE',

path: '/collections/{collectionName}/{id}",
handler: function(req, reply) {
loadCollection(req.params.collectionName,
function(collection) {
collection.remove({ id: id(req.params.id)},
function(e, result){
if (e) return reply(e)
reply(
(result === 1) ? {msg:'success'} : {msg:'error'}

var options = {
subscribers: {
'console': ['ops', 'request', 'log', 'error']
}
};

server.pack.require('good', options, function (err) {
if (lerr) {
// Plugin loaded successfully
}
D;

server.start()
If we run the newly written Hapi server with $ node hapi-app, and then run tests in a separate tab/window, the

tests pass! If they don’t, for some reason, the source code is in the GitHub repository github.com/azat-co/practicalnode
(http://github.com/azat-co/practicalnode).

193

http://github.com/azat-co/practicalnode

CHAPTER 8 ' BUILDING NODE.JS REST API SERVERS WITH EXPRESS.JS AND HAPI

Summary

The loosely coupled architecture of REST API servers and clients (mobile, web app, or front end) allows for better
maintenance and works perfectly with TDD/BDD. In addition, NoSQL databases such as MongoDB are good at
handling free REST APIs. We don’t have to define schemas, and we can throw any data at it and it is saved!

The Express.js and Mongoskin libraries are great when you need to build a simple REST API server using a few
lines of code. Later, if you need to expand the libraries, they also provide a way to configure and organize your code.

If you want to learn more about Express.js, take a look at Pro Express.js [2014, Apress]. Also, it's good to know that,
for more complex systems, the Hapi server framework is there for you!

In this chapter, in addition to Express.js, we used MongoDB via Mongoskin. We also used Mocha and SuperAgent
to write functional tests that, potentially, save us hours in testing and debugging when we refactor code in the future.
Then, we easily flipped Express.js for Hapi and, thanks to the tests, are confident that our code works as expected! The
differences between the Express and Hapi frameworks that we observed are in the way we defined routes and URL
parameters, and output the response.

194

CHAPTER 9

Real-Time Apps with WebSocket,
Socket.lO, and DerbyJS

Real-time apps are becoming more and more widespread in gaming, social media, various tools, services, and news.
The main factor contributing to this trend is that technologies have become much better. They allow for a greater
bandwidth to transmit data, and for more calculations to process and retrieve the data.

HTMLS5 pioneered the new standard of real-time connections called WebSocket. At the same time, on the server
side, Node.js has a highly efficient, nonblocking input/output platform that is very well suited for the task of being a
back-end pair to the browser JavaScript and WebSocket.

To get you started with WebSocket and Node.js, we'll keep things simple stupid (KISS (http://en.wikipedia.
org/wiki/KISS_principle)) and cover the following:

e What is WebSocket?

Native WebSocket and Node.js with the ws module example

Socket.IO and Express.js example

Collaborative online editor example with Derby]S, Express.js, and MongoDB

What Is WebSocket?

WebSocket is a special communication “channel” between browsers (clients) and servers. It's an HTML5 protocol.
WebSocket’s connection is constant, in contrast to traditional HTTP requests, with the latter usually initiated by the
client. Therefore, there’s no way for a server to notify the client if there are updates. By maintaining a duplex open
connection between the client and the server, updates can be pushed in a timely fashion without clients needing
to poll at certain intervals. This main factor makes WebSocket ideal for real-time apps for which data need to be
available on the client immediately. For more information on WebSocket, take a look at the extensive resource
“About HTML5 WebSocket” (http://www.websocket.org/aboutwebsocket.html).

There’s no need to use any special libraries to use WebSocket in modern browsers. The following StackOverflow
has a list of such browsers: What browsers support HTML5 WebSockets API? (http://stackoverflow.com/
questions/1253683/what-browsers-support-html5-websocket-api) For older browser support, the workaround
includes falling back on polling.

As a side note, polling (both short and long), can also be used to emulate the real-time responsiveness of web
apps. In fact, some advanced libraries (Socket.IO) fall back to polling when WebSocket becomes unavailable as a
result of connection issues or users not having the latest versions of browsers. Polling is relatively easy and we don’t
cover it here. It can be implemented with just a setInterval() callback and an end point on the server. However,
there’s not real-time communication with polling; each request is separate.

195

http://en.wikipedia.org/wiki/KISS_principle
http://en.wikipedia.org/wiki/KISS_principle
http://www.websocket.org/aboutwebsocket.html
http://stackoverflow.com/questions/1253683/what-browsers-support-html5-websocket-api
http://stackoverflow.com/questions/1253683/what-browsers-support-html5-websocket-api

CHAPTER 9 * REAL-TIME APPS WITH WEBSOCKET, SOCKET.IO, AND DERBYJS

Native WebSocket and Node.js with the ws Module Example

Sometimes it’s easier to start from the simplest thing and build things on top of it. With this in mind, our mini project
includes building a native WebSocket implementation that talks with the Node.js server with the help of the ws
module:

e Browser WebSocket implementation
¢ Node.js server with ws module implementation

Let’s examine this with a quick example.

Browser WebSocket Implementation

This is our front-end code (file ch9/basic/index.html) for Chrome version 32.0.1700.77. We start with typical
HTML tags:

<html>
<head>
</head>
<body>

The main code lives in the script tag, where we instantiate an object from global WebSocket:

<script type="text/javascript">
var ws = new WebSocket('ws://localhost:3000");

As soon as the connection is established, we send a message to the server:

ws.onopen = function(event) {
ws.send('front-end message: ABC');

};

Usually, messages are sent in response to user actions, such as mouse clicks. When we get any message from the
WebSocket location, the following handler is executed:

ws.onmessage = function(event) {
console.log('server message: ', event.data);

};

A good practice is to have an onerror event handler:

ws.onerror = function(event) {
console.log('server error message:

};

, event.data);

We then close the tags and save the file:
</script>

</body>
</html>

196

CHAPTER 9 * REAL-TIME APPS WITH WEBSOCKET, SOCKET.I0, AND DERBYJS

To make sure you don’t miss anything, here’s the full source code of ch9/basic/index.html:

<html>

<head>

</head>

<body>

<script type="text/javascript">
var ws = new WebSocket('ws://localhost:3000");
ws.onopen = function(event) {
ws.send('front-end message: ABC');

};
ws.onmessage = function(event) {

console.log('server message: ', event.data);

5
</script>
</body>
</html>

Node.js Server with ws Module Implementation

WebSocket.org provides an echo service for testing the browser WebSocket, but we can build our own small Node.js
server with the help of the ws (http://npmjs.org/ws, GitHub: https://github.com/einaros/ws) library:

$ mkdir node_modules
$ npm install ws@0.4.31

In the ch9/basic/server. js file, we import ws and initialize the server:

var WebSocketServer = require('ws').Server,
wss = new WebSocketServer({port: 3000});

Akin to the front-end code, we use an event pattern to wait for a connection. When the connection is ready, in the
callback we send the string XYZ and attach an event listener on ('message") to listen to incoming messages from the page:

wss.on('connection', function(ws) {
ws.send('XYZ');
ws.on('message’, function(message) {
console.log('received: %s', message);
D;
D;

Again, for reference, here’s the full code of ch9/basic/server.js:

var WebSocketServer = require('ws').Server,
wss = new WebSocketServer({port: 3000});

wss.on('connection', function(ws) {
ws.send('XYZ');
ws.on('message’, function(message) {
console.log('received: %s', message);
D;
D;

197

http://npmjs.org/ws
https://github.com/einaros/ws

CHAPTER 9 * REAL-TIME APPS WITH WEBSOCKET, SOCKET.I0, AND DERBYJS

Start the Node.js server with $ node server. Then, open index.html in the browser and you should see this
message in the JavaScript console (option + command + j on Macs): server message: XYZ (Figure 9-1).

8006 ; index.html ¥ N

€« C [} file:///Users/azat/Documents/Code/practicalnode/ch9/basic/index.html

Q_ Elements Network Sources Timeline Profiles Resources Audits | Console |

® W <topframe>w
server message: XYZ
>

Figure 9-1. Browser outputs a message received via WebSocket

While in the terminal, the Node.js server output is received

Figure 9-2.

198

: front-end message: ABC, which is illustrated in

CHAPTER 9 * REAL-TIME APPS WITH WEBSOCKET, SOCKET.I0, AND DERBYJS

® 00 basic — node "

Azats-Air:basic azat$ node server
received: front-end message: ABC

Figure 9-2. The server outputs the browser message received via WebSocket

Native HTML5 WebSocket is an amazing technology. However, WebSocket is a protocol and an evolving
standard. This means that each browser implementation might vary. And, of course, if support for older browsers is
needed, you should do your research and test.

In addition, often the connection may be lost and may need to be re-established. To handle cross-browser and
backward compatibility, as well as re-opening, a lot of developers depend on the Socket.IO library, which we will
explore in the next section.

Socket.l0 and Express.js Example

Full coverage of the Socket.IO (http://socket.io/) library absolutely deserves its own book. Nevertheless,

because it’s such a popular library, and getting started with it is very easy with Express.js, we include in this chapter an
example that covers the basics. This mini project illustrates duplex-channel communication between browser

and server.

As in most real-time web apps, the communication between a server and a client happens in response either to
some user actions or as a result of updates from the server. So, in our example, the web page renders a form field in
which each character echoes (browser to server and back) in reverse in real time. The example harnesses Express.
js command-line tool scaffolding, Socket.IO, and Jade (see screenshots of the working app in Figures 9-3 and 9-4).

Of course, you can just download the app from github.com/azat-co/practicalnode (http://github.com/azat-co/
practicalnode).

199

http://socket.io/
http://github.com/azat-co/practicalnode
http://github.com/azat-co/practicalnode

CHAPTER 9 * REAL-TIME APPS WITH WEBSOCKET, SOCKET.I0, AND DERBYJS

¥ Express %

& - C ff [localhost:3000 7 B =

Express

Welcome to Sockets!

|IstekeoS

® Elements Resources Network Sources Timeline Profiles Audits | Console |

sending !st to server {index):9
received ts! {index):3
Iste (index):7
sending !ste to server {index):9
received ets! (index):3
!stek (index):7
sending !stek to server index):

received kets! (index):3
Istekec (index):7
sending !stekc to server (index):9
received ckets! (index):3
Istekco {index):7
sending !stekco to server (index):9
received ockets! index):

IstekcoS (index):7
sending !stekcoS to server (index):9
received Sockets! {index):3
!stekcoS {index):7
sending !stekcoS to server (index):9
received Sockets! {index):3

> |
|8,>= Q @ <topframe>v <page context> v ¥ @ | Errors Warnings Logs 'ﬁ',

Figure 9-3. The input of | stekcoS yields Sockets!

200

CHAPTER 9 * REAL-TIME APPS WITH WEBSOCKET, SOCKET.I0, AND DERBYJS

® OO0 || socket — node "

Azats-Air:socket azat$ node app
info - socket.io staorted
Express server listening on port 3000
GET / 200 350ms - 742b
GET /stylesheets/style.css 200 l4ms - 118b
debug - served static content /socket.io.js
debug - client authorized
info - handshake authorized TD@xgHdxH3sr66zM)_Xw
debug - setting request GET /socket.io/l/websocket/TD@xgHdxH3sr66zM)_Xw
debug - set heartbeat interval for client TD@xgHdxH3sr66zM)_Xw
debug - client authorized for
debug - websocket writing 1::
debug - client authorized
info - handshake authorized gVQAUssfFvSxHB8Spl_Xx
debug - setting request GET /socket.io/1/websocket/gV(Q9UssfFv5xH8SpI_Xx
debug - set heartbeat interval for client gVQOUssfFvSxHBSpJ_Xx
debug - client authorized for
debug - websocket writing 1::
{ message: 'lstekcoS' }
debug - websocket writing 5:::{"name":"receive","args":["Sockets!"]}
{ message: 'I' }
debug - websocket writing 5:::{"nome":"receive”,"args":["1"]}
{ message: 'I' }
debug - websocket writing 5:::{"name":"receive”,"args":["1"]}
debug - emitting heartbeat for client TD@xgHdxH3sr66zMJ)_Xw
debug - websocket writing 2::
debug - set heartbeat timeout for client TDOxgHdxH3sr66zM)_Xw
debug - got heartbeat packet
debug - cleared heartbeat timeout for client TD@xgHdxH3sr66zMJ)_Xw
debug - set heartbeat interval for client TD@xgHdxH3sr&6zM]_Xw
{ message: 'Is' }
debug - websocket writing 5:::{"nome":"receive”,"args":["s!"]}
{ message: 'Ist' }
debug - websocket writing 5:::{"name":"receive”,"args":["ts!"]}
message: 'lste' }
debug - websocket writing 5:::{"name":"receive”,"args":["ets!"]}
{ message: 'lIstek' }
debug - websocket writing 5:::{"name":"receive”,"args":["kets!"]}
{ message: 'lstekc' }
debug - websocket writing 5:::{"name":"receive”,"args":["ckets!"]}
{ message: 'lstekco' }
debug - websocket writing 5:::{"name":"receive”,"args":[“ockets!"]}
{ message: 'lIstekcoS' }
debug - websocket writing 5:::{"name”:"receive”,"args":["Sockets!"]}
{ message: '!stekcoS' }
debug - websocket writing 5:::{"name":"receive","args":["Sockets!"]}
debug - emitting heartbeat for client gV(QOUssfFvSxH8SpJ_Xx
debug - websocket writing 2::
debug - set heartbeat timeout for client gV(OUssfFv5xHBSp)_Xx
debug - got heartbeat packet
debug - cleared heartbeat timeout for client gV(QOUssfFvSxH8Sp)_Xx
debug - set heartbeat interval for client gVQOUssfFvSxHBSp] Xx
debug - emitting heartbeat for client TD@xgHdxH3sr66zM)_Xw

Figure 9-4. Express.js server catching and processing input in real time

201

CHAPTER 9 * REAL-TIME APPS WITH WEBSOCKET, SOCKET.IO, AND DERBYJS

To include Socket.IO, we can use $ npm install socket.io@0.9.16 --save and repeat it for every module, or
we can use package.jsonand $ npm install:

{
"name": "socket-express",
"version": "0.0.1",
"private": true,
"scripts": {
"start": "node ./bin/www"
1
"dependencies”: {
"express": "~4.0.0",
"morgan": "~1.0.0",
"cookie-parser": "~1.0.1",
"body-parser": "~1.0.0",
"debug": "~0.7.4",
"jade": "~1.3.0",
"socket.io": "0.9.16"
}
}

Socket.IO, in some way, might be considered another server, because it handles socket connections and not our
standard HTTP requests. This is how we refactor autogenerated Express.js code:

var http = require('http');

var express = require('express');

var path = require('path');

var logger = require('morgan');

var bodyParser = require('body-parser');

The standard Express.js 4.x configuration is as follows:

var routes = require('./routes/index"');
var app = express();

app.set('views', path.join(__dirname, 'views'));
app.set('view engine', 'jade');

app.use(logger('dev'));

app.use(bodyParser.json());
app.use(bodyParser.urlencoded());
app.use(express.static(path.join(__dirname, 'public')));
app.use('/', routes);

Then, the Socket.IO piece is as follows:

var server = http.createServer(app);
var io = require('socket.io").listen(server);

202

CHAPTER 9 * REAL-TIME APPS WITH WEBSOCKET, SOCKET.I0, AND DERBYJS

When the Socket server connection is established, we attach a messageChange event listener that implements
logic that is reversing an incoming string:

io.sockets.on("'connection', function (socket) {
socket.on('messageChange', function (data) {
console.log(data);
socket.emit('receive’,
data.message.split('"').reverse().join("'")
)5
}
D;

We finish by starting the server without standard methods:

app.set('port', process.env.PORT || 3000);
server.listen(app.get('port'), function(){
console.log('Express server listening on port ' + app.get('port'));

1;

Just in case these snippets are confusing, here’s the full content of ch9/socket-express/app.js

var http = require('http');

var express = require('express');

var path = require('path');

var logger = require('morgan');

var bodyParser = require('body-parser');

var routes = require('./routes/index"');
var app = express();

app.set('views', path.join(__dirname, 'views'));
app.set('view engine', 'jade');

app.use(logger('dev'));

app.use(bodyParser.json());
app.use(bodyParser.urlencoded());
app.use(express.static(path.join(__dirname, 'public')));

app.use('/', routes);

var server = http.createServer(app);
var io = require('socket.io').listen(server);

io.sockets.on("'connection', function (socket) {
socket.on('messageChange', function (data) {
console.log(data);
socket.emit('receive’',
data.message.split('"').reverse().join("'")

203

CHAPTER 9 * REAL-TIME APPS WITH WEBSOCKET, SOCKET.IO, AND DERBYJS

app.set('port', process.env.PORT || 3000);
server.listen(app.get('port'), function(){
console.log('Express server listening on port ' +
app.get('port")

)

1

A quick remark about port numbers: by default, WebSocket connections can use the standard ports: 80 for HTTP
and 443 for HTTPS.

Last, our app needs some front-end love in index. jade. Nothing fancy; just a form field and some front-end
JavaScript in the Jade template:

extends layout

block content
hi= title
p Welcome to
span.received-message #{title}
input(type="text', class='message', placeholder='what is on your mind?', onkeyup='send(this)")
script(src="/socket.io/socket.io.js")
script.
var socket = io.connect('http://localhost');
socket.on('receive', function (message) {
console.log('received %s', message);
document
.querySelector('.received-message')
.innerText = message;
1;
var send = function(input) {
console.log(input.value);
var value = input.value;
console.log('sending %s to server', value);
socket.emit('messageChange', {message: value});

};

Again, start the server and open the browser to see real-time communication. Typing text in the browser field
logs data on the server without messing up HTTP requests and waiting. The approximate browser results are shown in
Figure 9-3; the server logs are shown in Figure 9-4.

For more Socket.IO examples, go to socket.io/#how-to-use (http://socket.io/#how-to-use).

Collaborative Online Code Editor Example with DerbyJsS,
Express.js, and MongoDB

Derby (http://derbyjs.com/) is a new, sophisticated MVC' framework designed to be used with Express
(http://expressjs.com/) as its middleware, whereas Express.js (http://expressjs.com/)is a popular node framework
that uses the middleware concept to enhance the functionality of applications. Derby also comes with the support of
Racer (https://github.com/codeparty/racer), a data synchronization engine, and Handlebars (https://github.com/
wycats/handlebars. js/) -like template engine, among many other features (http://derbyjs.com/#features).

'http://en.wikipedia.org/wiki/Model-view-controller.

204

http://socket.io/%23how-to-use
http://derbyjs.com/
http://expressjs.com/
http://expressjs.com/
https://github.com/codeparty/racer
https://github.com/wycats/handlebars.js/
https://github.com/wycats/handlebars.js/
http://derbyjs.com/%23features
http://en.wikipedia.org/wiki/Model%e2%80%93view%e2%80%93controller

CHAPTER 9 * REAL-TIME APPS WITH WEBSOCKET, SOCKET.I0, AND DERBYJS

Meteor (http://meteor.com/) and Sails.js (http://sailsjs.org/) are other reactive (real-time) full-stack MVC
Node.js frameworks comparable with Derby]S. However, Meteor is more opinionated and often relies on proprietary
solutions and packages.

The following example illustrates how easy it is to build a real-time application using Express.js, Derby]JS,
MongoDB, and Redis.

The structure for this DerbyJS mini project is as follows:

e Project dependencies and package. json
e Server-side code

e Derby]S app

e Derby]S view

e Editor tryout

Project Dependencies and package.json

If you haven’t installed Node.js, NPM, MongoDB, or Redis, you can do it now by following instructions in these
resources:

¢ Installing Node.js via package manager (https://github.com/joyent/node/wiki/
Installing-Node.js-via-package-manager)

e Installing npm (http://howtonode.org/introduction-to-npm)
e Install MongoDB (http://docs.mongodb.org/manual/installation/#install-mongodb)
e Redis Quick Start (http://redis.io/topics/quickstart)

Create a project folder, editor, and a file package. json with the following content:

{
"name": "editor",
"version": "0.0.1",
"description”: "Online collaborative code editor",
"main": "index.js",
"scripts": {
"test": "mocha test"
1
"git repository": "http://github.com/azat-co/editor",
"keywords": "editor node derby real-time",
"author": "Azat Mardan",
"license": "BSD",
"dependencies”: {
"derby": "~0.5.12",
"express": "~3.4.8",
"livedb-mongo": "~0.3.0",
"racer-browserchannel": "~0.1.1",
"redis": "~0.10.0"
}
}

205

http://meteor.com/
http://sailsjs.org/
https://github.com/joyent/node/wiki/Installing-Node.js-via-package-manager
https://github.com/joyent/node/wiki/Installing-Node.js-via-package-manager
http://howtonode.org/introduction-to-npm
http://docs.mongodb.org/manual/installation/%23install-mongodb
http://redis.io/topics/quickstart
http://github.com/azat-co/editor

CHAPTER 9 * REAL-TIME APPS WITH WEBSOCKET, SOCKET.IO, AND DERBYJS

This gets us the derby (Derby]S), express (Express.js), 1ivedb-mongo, racer-browserchannel, and redis
(Redis client) modules. Derby]S and Express.js are for routing and they use corresponding frameworks (versions 0.5.12
and 3.4.8). Redis, racer-browserchannel, and 1ivedb-mongo allow Derby]JS to use Redis and MongoDB databases.

Server-side Code

As an entry point for our application, create editor/server. js with a single line of code that starts a Derby server we
have yet to write:

require('derby').run(__dirname + '/server.js');
Create and start adding the following lines to editor/server. js. First, import the dependencies:
var path = require('path'),
express = require('express'),
derby = require('derby'),
racerBrowserChannel = require('racer-browserchannel'),
liveDbMongo = require('livedb-mongo'),
Then, define the Derby app file:
app = require(path.join(__dirname, 'app.js')),
Instantiate the Express.js app:
expressApp = module.exports = express(),
the Redis client:
redis = require('redis').createClient(),
and the local MongoDB connection URI:
mongoUrl = 'mongodb://localhost:27017/editor";

Now we create a 1iveDbMongo object with the connection URI and redis client object:

var store = derby.createStore({
db: liveDbMongo(mongoUrl + '?auto_reconnect', {

safe: true
1,
redis: redis

B;

Define a public folder with static content:

var publicDir = path.join(__dirname, 'public');

206

CHAPTER 9 * REAL-TIME APPS WITH WEBSOCKET, SOCKET.I0, AND DERBYJS

Then, declare Express.js middleware in chained calls:

expressApp
.use(express.favicon())
.use(express.compress())

It’s important to include Derby]S-specific middleware that exposes Derby routes and model objects:

.use(app.scripts(store))
.use(racerBrowserChannel(store))
.use(store.modelMiddleware())
.use(app.router())

Regular Express.js router middleware follows:
.use(expressApp.router);
It's possible to mix Express.js and Derby]S routes in one server—the 404 catchall route:

expressApp.all('*', function(req, res, next) {
return next('404: ' + req.url);

1;
The full source code of server.js is as follows:

var path = require('path'),
express = require('express'),
derby = require('derby'),
racerBrowserChannel = require('racer-browserchannel'),
liveDbMongo = require('livedb-mongo'),
app = require(path.join(__dirname, 'app.js')),
expressApp = module.exports = express(),
redis = require('redis').createClient(),
mongoUrl = 'mongodb://localhost:27017/editor’;

var store = derby.createStore({
db: liveDbMongo(mongoUrl + '?auto_reconnect', {

safe: true
1,
redis: redis

;s
var publicDir = path.join(__dirname, 'public');

expressApp
.use(express.favicon())
.use(express.compress())
.use(app.scripts(store))
.use(racerBrowserChannel(store))

207

CHAPTER 9 * REAL-TIME APPS WITH WEBSOCKET, SOCKET.IO, AND DERBYJS

.use(store.modelMiddleware())
.use(app.router())
.use(expressApp.router);

expressApp.all('*', function(req, res, next) {
return next('404: ' + req.url);

};

Derby]S App

The Derby]S app (app. js) shares code smartly between the browser and the server, so you can write functions and
methods in one place (a Node.js file). However, parts of app. js code become browser JavaScript code (not just Node.
js) depending on the Derby]S rules. This behavior allows for better code reuse and organization, because you don’t
have to duplicate routes, the helper function, and utility methods. One of the places where the code from the Derby]S
app file becomes browser code only is inside app . ready (), which we will see later.

Declare the variable and create an app (editor/app.js):

var app;
app = require('derby').createApp(module);

Declare the root route so that when a user visits it, the new snippet is created and the user is redirected
to the /:snippetId route:

app.get('/', function(page, model, _arg, next) {
snippetId = model.add('snippets', {
snippetName: _arg.snippetName,

code: ‘'var'
1;
return page.redirect('/' + snippetld);
D;

Derby]S uses a route pattern similar to Express.js, but instead of response (res), we use page, and we get data
from the model argument.

The /:snippetId route is where the editor is displayed. To support real-time updates to the Document Object
Model (DOM), all we need to do is to call subscribe:

app.get('/:snippetId', function(page, model, param, next) {
var snippet = model.at('snippets.'+param.snippetId);
snippet.subscribe(function(err){
if (err) return next(err);
console.log (snippet.get());
model.ref(' page.snippet', snippet);
page.render();
D;
1;

The model.at method with a parameter in a collection_name.ID pattern is akin to calling findById()—in other
words, we get the object from the store/database.

208

CHAPTER 9 * REAL-TIME APPS WITH WEBSOCKET, SOCKET.I0, AND DERBYJS

model.ref() allows us to bind an object to the view representation. Usually in the view we would write
{{_page.snippet}} and it would update itself reactively. However, to make the editor look beautiful, we use the Ace
editor from Cloud9 (http://ace.c9.i0/). Ace is attached to the editor object (global browser variable).

Front-end JavaScript code in Derby]S is written in the app . ready callback. We need to set Ace content from the
Derby model on app start:

app.ready(function(model) {
editor.setValue(model.get(' page.snippet.code'));

Then, it listens to model changes (coming from other users) and updates the Ace editor with new text
(front-end code):

model.on('change', ' page.snippet.code', function(){
if (editor.getValue() !== model.get(' page.snippet.code')) {
process.nextTick(function(){
editor.setValue(model.get(' page.snippet.code'), 1);
H
}
D;

process.nextTick is a function that schedules the callback (passed as a parameter to it) in the next event loop
iteration. This trick allows us to avoid an infinite loop when the updated model from one user triggers a change event
on the Ace editor, and that triggers an unnecessary update on the remote model.

The code that listens to Ace changes (e.g., new character) and updates the Derby]S model:

editor.getSession().on("'change', function(e) {
if (editor.getValue() !== model.get(' page.snippet.code')) {
process.nextTick(function(){
model.set(' page.snippet.code', editor.getValue());
D;
}
D;
D;

_page is a special DerbyJS name used for rendering/binding in the views.
For reference, the full source code of editor/app. js is as follows:

var app;
app = require('derby').createApp(module);
app.get('/', function(page, model, arg, next) {

snippetId = model.add('snippets’, {
snippetName: _arg.snippetName,

code: 'var'
D;
return page.redirect('/' + snippetId);

};

209

http://ace.c9.io/

CHAPTER 9 * REAL-TIME APPS WITH WEBSOCKET, SOCKET.IO, AND DERBYJS

app.get('/:snippetld', function(page, model, param, next) {
var snippet = model.at('snippets.'+param.snippetId);
snippet.subscribe(function(err){
if (err) return next(err);
console.log (snippet.get());
model.ref(' page.snippet', snippet);
page.render();
D;
1;

app.ready(function(model) {
editor.setValue(model.get(' page.snippet.code'));
model.on('change', ' page.snippet.code', function(){

if (editor.getValue() !== model.get(' page.snippet.code')) {
process.nextTick(function(){

editor.setValue(model.get(' page.snippet.code'), 1);

D;
}

D;

editor.getSession().on('change', function(e) {
if (editor.getValue() !== model.get(' page.snippet.code')) {
process.nextTick(function(){
model.set(' page.snippet.code', editor.getValue());
D;
}
D;
D;

Derby]S View

The Derby]JS view (views/app.html) is quite straightforward. It contains built-in tags such as <Title:>, but most of
the things are generated dynamically by the Ace editor after the page is loaded.
Let’s start by defining the title and head:

<Title:>
Online Collaborative Code Editor
<Head:>
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>Editor</title>
<style type="text/css" media="screen">
body {
overflow: hidden;

}

#editor {
margin: 0;
position: absolute;
top: Opx;
bottom: 0;

210

CHAPTER 9 * REAL-TIME APPS WITH WEBSOCKET, SOCKET.I0, AND DERBYJS

left: o;
right: 0;
}
</style>

Then, load jQuery and Ace from content delivery networks (CDNs):

<script src="//cdnjs.cloudflare.com/ajax/libs/ace/1.1.01/ace.js"></script>
<script src="//code.jquery.com/jquery-2.1.0.min.js"></script>

Apply a hidden input tag and editor element inside the body tag:

<Body:>
<input type="hidden" value="{ page.snippet.code}" class="code"/>
<pre id="editor" value="{_ page.snippet.code}"></pre>

Initialize the Ace editor object as global (the editor variable), then set the theme and language (of course,
JavaScript!) with setTheme () and setMode(), respectively:

<script>
var editor = ace.edit("editor");
editor.setTheme("ace/theme/twilight");
editor.getSession().setMode("ace/mode/javascript");
</script>

The full source code of views/app.html is as follows:

<Title:>
Online Collaborative Code Editor
<Head:>
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>Editor</title>
<style type="text/css" media="screen">
body {
overflow: hidden;

}

#editor {
margin: 0;
position: absolute;
top: Opx;
bottom: 0;
left: o;
right: o;

}

</style>

<script src="//cdnjs.cloudflare.com/ajax/libs/ace/1.1.01/ace.js"></script>
<script src="//code.jquery.com/jquery-2.1.0.min.js"></script>
<Body:>
<input type="hidden" value="{_page.snippet.code}" class="code"/>
<pre id="editor" value="{ page.snippet.code}"></pre>

211

CHAPTER 9 * REAL-TIME APPS WITH WEBSOCKET, SOCKET.IO, AND DERBYJS

<script>
var editor = ace.edit("editor");
editor.setTheme("ace/theme/twilight");
editor.getSession().setMode("ace/mode/javascript");
</script>

Note It’s vital to preserve the same view name (i.e., app.html) as the DerbyJS app file (app. js), because this is how
the framework knows what to use.

Editor Tryout

If you followed all the previous steps, there should be app. js, index. js, server.js, views/app.html, and
package. json files.

Let’s install the modules with $ npm install. Start the databases with $ mongod and $ redis-server, and leave
them running. Then, launch the app with $ node . or$ node index.

Open the first browser window at http://localhost:3000/ and it should redirect you to a new snippet
(with ID in the URL). Open a second browser window at the same location and start typing (Figure 9-5). You should
see the code updating in the first window! Congratulations! In just a few minutes, we built an app that might have
taken programmers a few months to build back in the 2000s, when front-end JavaScript and AJAX-y web sites were first
gaining popularity.

| ¥ Online Collaborative Code aJ © O O /4 0nline Colaborative Cocr e a

« c] localhost:3000/c9178ba8-631d-4092-b8b3-0ed6647ebbids; = € C | [localhost:3000/c9178ba8-631d-4092-bBb3-Oed6647ebbfd
1 wra=1 1 wvara=1
2 ba-'2' 2 b-2
3 c=ob 3 c=adb

Figure 9-5. Collaborative online code editor

The working project is available on GitHub at https://github.com/azat-co/editor.

212

https://github.com/azat-co/editor

CHAPTER 9 * REAL-TIME APPS WITH WEBSOCKET, SOCKET.I0, AND DERBYJS

Summary

In this chapter, we saw that there’s native support for WebSocket in modern HTML5 browsers, and we learned how to
get started with Socket.IO and Express.js to harness the power of WebSocket in Node.js. In addition, we explored the
mighty full-stack framework of Derby]S in the editor example.

In the next chapter we’ll move to the essential part of any real-world project which is getting Node.js apps to a
production level readiness by adding extra configuration, monitoring, logging and other things.

213

CHAPTER 10

Getting Node.js Apps Production
Ready

Getting Node.js apps to a production-ready state is probably the most under covered and skipped topic in the Node.js
literature, but it’s one of the most important in my humble opinion.

Yes, the apps differ in structures, frameworks they use, and goals they try to achieve; however, there are a few
commonalities worth knowing about, for example, environmental variables, multithreading, logging and error
handling. So, in this chapter we cover the following topics:

¢ Environment variables

e Express.js in production

e Socket.IO in production

e Error handling

e Node.js domains for error handling

e Multithreading with Cluster

e Multithreading with Cluster2

¢ Eventlogging and monitoring

e Building tasks with Grunt

e Gitfor version control and deployments

e Running tests in Cloud with TravisCI

Environment Variables

Before deployment to the production environment, it’s good to prepare our app’s code. Let’s start with information
that needs to be private and can’t be shared in a version control system. Sensitive information such as API keys,
passwords, and database URIs are best stored in environment variables (http://en.wikipedia.org/wiki/
environment_variable), notin the source code itself. Node.js makes it fairly easy to access these variables:

console.log (process.env.NODE_ENV,

process.env.API KEY,
process.env.DB_PASSWORD)

215

http://en.wikipedia.org/wiki/Environment_variable
http://en.wikipedia.org/wiki/Environment_variable

CHAPTER 10 © GETTING NODE.JS APPS PRODUCTION READY

Then, before the application is started, set these variables:

$ NODE_ENV=test API_KEY=XYZ DB_PASSWORD=ABC node envvar.js

Note There’s no space between NAME and value (NAME=VALUE).

Typically, the environment variable setting is a part of the deployment or operations setup. In the next chapter,
we deal with putting these variables on the server.

Express.js in Production

In Express.js 4.x, use if/else statements to check for NODE_ENV values:

var errorHandler = require('errorhandler');
if (process.env.NODE_ENV === 'development') {
app.use(errorHandler ({
dumpExceptions: true,
showStack: true
s
} else if (process.env.NODE_ENV === 'production') {
app.use(errorHandler());

Express.js 3.x provides app. configure(), the so-called sugarcoating methods for different modes: development,
test, stage, production, and so on.

app.configure('development', function(){
app.use(express.errorHandler ({
dumpExceptions: true,
showStack: true
N);
1;

app.configure('production’, function(){
app.use(express.errorHandler());

1;

Each app.configure pattern is equivalent to a series of 1f/else statements:

if (process.env.NODE_ENV === 'development') {
app.use(express.errorHandler ({
dumpExceptions: true,
showStack: true
N);
} else if (process.env.NODE_ENV === 'production') {
app.use(express.errorHandler());

216

CHAPTER 10 © GETTING NODE.JS APPS PRODUCTION READY

To run the server in a specific mode, just set an environment variable. For example,
$ NODE_ENV=production node app.js
or:

$ export NODE_ENV=production
$ node app.js

Note By default, Express.js falls back to development mode as we see in the source code (http://bit.1ly/117UEi6).

When using in-memory session store (the default choice), the data can’t be shared across different processes/
servers (which we want in production mode). Conveniently, Express.js and Connect notify us about this as we see in
this source code (http://bit.1ly/1nnvvhf) with this message:

Warning: connect.session() MemoryStore is not
designed for a production environment, as it will leak
memory, and will not scale past a single process.

This problem is solved easily by using a shared Redis instance as a session store. For example, for Express.js 4,
execute the following:

var session = require('express-session'),
RedisStore = require('connect-redis')(session);

app.use(session({
store: new RedisStore(options),
secret: 'keyboard cat'

D)

The more advanced example with session options is as follows:

var SessionStore = require('connect-redis');
var session = require('express-session');

app.use(session({
key: '92A7-9AC',
secret: '33D203B7-443B',
store: new SessionStore({
cookie: { domain: '.webapplog.com' },
db: 1, // Redis DB
host: 'webapplog.com'

1);

For Express.js 3.x application use this middleware configuration:

var SessionStore = require('connect-redis');

217

http://bit.ly/1l7UEi6
http://bit.ly/1nnvvhf

CHAPTER 10 © GETTING NODE.JS APPS PRODUCTION READY

app.configure(function(){
this.use(express.session({
key: '92A7-9AC',
secret: '33D203B7-443B',
store: new SessionStore({
cookie: { domain: '.webapplog.com' },
db: 1, // Redis DB
host: 'webapplog.com’
1)
N);
D;

Options for connect-redis are client, host, port, ttl, db, pass, prefix, and url. For more information, please
refer to the official connect-redis documentation (https://github.com/visionmedia/connect-redis).

Socket.l0 in Production

Akin to Express.js 3.x, the Socket.IO library has configure () method that can be used to define different rules for
different environments:

var io = require('socket.io').listen(80);

io.configure('production’, function(){
io.enable('browser client etag');
io.set('log level', 1);
io.set('transports', [
'websocket',
"flashsocket',
"htmlfile',
'xhr-polling’,
'jsonp-polling’
D;
D;

io.configure('development', function(){
io.set('transports', ['websocket']);

1

Often, WebSockets data are stored in a high-performance database such as Redis. In this example, you can use
environment variables for values of port and hostname:

var sio = require('socket.io'),
RedisStore = sio.RedisStore,
io = sio.listen();

io.configure(function () {
io.set('store', new RedisStore({ host: "http://webapplog.com' }));

};

var redis = require('redis'),
redisClient = redis.createClient(port, hostname),
redisSub = redis.createClient(port, hostname);

218

https://github.com/visionmedia/connect-redis
http://webapplog.com/

CHAPTER 10 © GETTING NODE.JS APPS PRODUCTION READY

redisClient.on('error', function (err) {
console.error(err);

B;

redisSub.on("error', function (err) {
console.error(err);

};

io.configure(function () {
io.set('store', new RedisStore({
nodeld: function () { return nodeld; },
redisPub: redisPub,
redisSub: redisSub,
redisClient: redisClient
N);
D;

Error Handling

As arule of thumb, listen to all error events from http.Server and https.Server (i.e., always have onerror event
listeners doing something):

server.on('error', function (err) {
console.error(err);

})...

Then, have a catchall event listener (uncaughtException) for unforeseen cases. These cases won’t make it to the
onerror handlers:

process.on('uncaughtException', function (err) {
console.error('uncaughtException: ', err.message);
console.error(err.stack);
process.exit(1);

1

Alternatively, you can use the addListener method:

process.addListener('uncaughtException', function (err) {
console.error('uncaughtException: ', err.message);
console.error(err.stack);
process.exit(1);

};

The following snippet is devised to catch uncaught exceptions, log them, notify development and operations
(DevOps) via e-mail/text messages, and then exit:

process.addListener('uncaughtException', function (e) {
server.statsd.increment('errors.uncaughtexception');
log.sub('uncaughtException').error(e.stack || e.message);
if(server.sendgrid 8& server.set('env') === 'production') {

219

CHAPTER 10 © GETTING NODE.JS APPS PRODUCTION READY

server.notify.error(e);
}
exit();

D;

You might wonder what to do in the event of these uncaught exceptions (the server.notify.error() method).
It depends. Typically, at a minimum, we want them to be recorded, most likely in the logs. For this purpose, later we’ll
cover a more advanced alternative to console.log—the Winston library (https://github.com/flatiron/winston).
At a maximum, you can implement text message alerts effortlessly using the Twilio API (http://www.twilio.com).
The following is an example in which helpers can send HipChat (https://www.hipchat.com) messages via their REST
API and send an e-mail containing an error stack:

var sendHipChatMessage = function(message, callback) {
var fromhost = server
.set("hostname")
.replace('-',"")
.substr(0, 15); //truncate the string
try {
message = JSON.stringify(message);
} catch(e) {}
var data = {
'format': 'json',
auth_token: server.config.keys.hipchat.servers,
room_id: server.config.keys.hipchat.serversRoomld,
from: fromhost,
message: 'v'
+ server.set('version')
+ '\nmessage: '
+ message
};
request({
url:'http://api.hipchat.com/vi/rooms/message’,
method: 'POST',
gs: data}, function (e, r, body) {
if (e) console.error(e);
if (callback) return callback();
D;
};

server.notify = {};
server.notify.error = function(e) {
var message = e.stack || e.message || e.name || e;
sendHipChatMessage(message);
console.error(message);
server.sendgrid.email({
to: 'error@webapplog.com',
from: server.set('hostname') + '@webapplog.com’,
subject: 'Webapp '
+ server.set('version')

+ €rror:
+ €.name
L s

220

https://github.com/flatiron/winston
http://www.twilio.com/
https://www.hipchat.com/
http://api.hipchat.com/v1/rooms/message

CHAPTER 10 © GETTING NODE.JS APPS PRODUCTION READY

category: 'webapp-error’',
text: e.stack || e.message
}, exit);
return;

}

Node.js Domains for Error Handling

Because Node.js allows developers to write asynchronous code, and that’s what we usually do, and because state
changes during different async parts of code, sometimes it’s harder to trace errors and have a meaningful state and
context in which the application was during that exception. To mitigate this, we have domains in Node.js.

Contrary to its more popular homonym (domain as in webapplog.com or google.com), domain is a core Node.
js module (http://nodejs.org/api/domain.html). It aids developers in tracking and isolating errors that could be a
juggernaut task. Think of domains as a smarter version of try/catch statements (https://developer.mozilla.org/
en-US/docs/web/javaScript/reference/statements/try...catch).

When it comes to Express.js (and other frameworks), we can apply domains in error-prone routes. A route
can become error prone if it has pretty much any nontrivial code (i.e., any route can be prone to error), but usually
developers can just analyze logs and determine which URL and path are causing the crashes. Typically, these routes
rely on third-party modules, some communication, or file system/database input/output.

Before defining the routes, we need to define custom handlers to catch errors from domains. In Express.js 4.x we
do the following:

var express = require('express');
var domain = require('domain');
var defaultHandler = require('errorhandler');

In Express.js 3.x, we execute:

var express = require('express');
var domain = require('domain');
var defaultHandler = express.errorHandler();

Then, for Express.js 4.x and 3.x, we add middleware:

app.use(function (error, req, res, next) {
if (domain.active) {
console.info('caught with domain');
domain.active.emit("error", error);
} else {
console.info('no domain');
defaultHandler(error, req, res, next);
}
D;

Here is a “crashy route” in which the error-prone code goes inside the d.run callback:
app.get('/e', function (req, res, next) {
var d = domain.create();

d.on('error', function (error) {
console.error(error.stack);

221

http://nodejs.org/api/domain.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/try%E2%80%A6catch
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/try%E2%80%A6catch

CHAPTER 10 © GETTING NODE.JS APPS PRODUCTION READY

res.send(500, {'error': error.message});
Ds
d.run(function () {
// Error-prone code goes here
throw new Error('Database is down.');
}s
D;

On the other hand, we can call next with an error object (e.g., when an error variable comes from other nested calls):

app.get('/e', function (req, res, next) {
var d = domain.create();
d.on('error', function (error) {
console.error(error.stack);
res.send(500, {'error': error.message});
IOF
d.run(function () {
// Error-prone code goes here
next(new Error('Database is down.'));
b;
D;

After you launch this example with $ node app, go to the /e URL. You should see the following information in
your logs:

caught with domain { domain: null,
_events: { error: [Function] },
_maxListeners: 10,
members: [] }
Error: Database is down.
at /Users/azat/Documents/Code/practicalnode/ch10/domains/app.js:29:10
at b (domain.js:183:18)
at Domain.run (domain.js:123:23)

The stack trace information (lines after Exror: Database is down.) might be very handy in debugging async
code. And the browser should output a nice JSON error message:

"error":"Database is down."}

The working (or should we write crashing) example of Express.js 4.1.2 and domains in routes is in the ch10/
domains folder on GitHub (https://github.com/azat-co/practicalnode/tree/master/ch10/domains). The
package. json for this example looks like this:

{
"name": "express-domains",
"version": "0.0.1",
"private": true,
"scripts": {
"start": "node app.js"
b

222

https://github.com/azat-co/practicalnode/tree/master/ch10/domains

CHAPTER 10 © GETTING NODE.JS APPS PRODUCTION READY

"dependencies": {
"express": "4.1.2",
"jade": "1.3.1",
"errorhandler": "1.0.1"

For your convenience, here’s the full content of practicalnode/ch10/domains/app.js

var express = require('express');

var routes = require('./routes');

var http = require('http');

var path = require('path');

var errorHandler = require('errorhandler');

var app = express();

app.set('port', process.env.PORT || 3000);
app.set('views', dirname + '/views');

app.set('view engine', 'jade');
app.use(express.static(path.join(__dirname, 'public')));

var domain = require('domain');
var defaultHandler = errorHandler();
app.get('/', routes.index);

app.get('/e', function (req, res, next) {
var d = domain.create();
d.on('error', function (error) {
console.error(error.stack);
res.send(500, {'error': error.message});
D;
d.run(function () {
// Error-prone code goes here
throw new Error('Database is down.');
// next(new Error('Database is down.'));
D;
D;

app.use(function (error, req, res, next) {
if (domain.active) {
console.info('caught with domain', domain.active);
domain.active.emit('error', error);
} else {
console.info('no domain');
defaultHandler(error, req, res, next);
}
D;

http.createServer(app).listen(app.get('port'), function () {
console.log('Express server listening on port '

+ app.get('port'));
1

223

CHAPTER 10 © GETTING NODE.JS APPS PRODUCTION READY

For more ways to apply domains with Express.js, take a look at the Node.js domains your friends and neighbors
by Forrest L Norvell (http://twitter.com/othiym23) & Domenic Denicola (http://domenicdenicola.com/)
presentation from NodeConf 2013 slide 4-1(http://othiym23.github.io/nodeconf2013-domains/#/4/1).

Warning The domain module is in the experimental stage, which means that it’s likely that methods and behavior
will change. Therefore, stay updated and use exact versions in the package. json file.

Multithreading with Cluster

There are a lot of opinions out there against Node.js that are rooted in the myth that Node.js-based systems have to
be single threaded. Although a single Node.js process is single threaded, nothing can be further from the truth about
the systems. And with the core cluster module (http://nodejs.org/api/cluster.html), we can spawn many
Node.js processes effortlessly to handle the system’s load. These individual processes use the same source code
and they can listen to the same port. Typically, each process uses one machine’s CPU. There’s a master process that
spawns all other processes and, in a way, controls them (can kill, restart, and so on).

Here is a working example of an Express.js (version 4.x or 3.x) app that runs on four processes. At the beginning of
the file, we import dependencies:

var cluster = require('cluster');

var http = require('http');

var numCPUs = require('os').cpus().length;
var express = require('express');

The cluster module has a property that tells us whether the process is master or child (master controls children).
We use it to spawn four workers (the default workers use the same file, but this can be overwritten with setupMaster
(http://nodejs.org/docs/v0.9.0/api/cluster.html#fcluster cluster setupmaster settings)).In addition, we
can attach event listeners and receive messages from workers (e.g., kill).

if (cluster.isMaster) {

console.log (' Fork %s worker(s) from master', numCPUs)

for (var i = 0; 1 < numCPUs; i++) {
cluster.fork();

b

cluster.on('online', function(worker) {
console.log ('worker is running on %s pid', worker.process.pid)

1

cluster.on('exit', function(worker, code, signal) {
console.log('worker with %s is closed', worker.process.pid);

};

The worker code is just an Express.js app with a twist. Let’s get the process ID:

} else if (cluster.isWorker) {
var port = 3000;
console.log('worker (%s) is now listening to http://localhost:%s’,
cluster.worker.process.pid, port);
var app = express();
app.get('*', function(req, res) {

224

https://twitter.com/othiym23
http://domenicdenicola.com/
http://othiym23.github.io/nodeconf2013-domains/#/4/1
http://nodejs.org/api/cluster.html
http://nodejs.org/docs/v0.9.0/api/cluster.html#cluster_cluster_setupmaster_settings

CHAPTER 10 © GETTING NODE.JS APPS PRODUCTION READY

res.send(200, 'cluser '
+ cluster.worker.process.pid

+ ' responded \n');

by
app.listen(port);

The full source code of practicalnode/ch10/cluster.js is as follows:

var cluster = require('cluster');
var numCPUs = require('os').cpus().length;
var express = require('express');

if (cluster.isMaster) {
console.log (' Fork %s worker(s) from master', numCPUs);
for (var i = 0; 1 < numCPUs; i++) {
cluster.fork();

cluster.on('online', function(worker) {
console.log ('worker is running on %s pid', worker.process.pid);
1;
cluster.on('exit’, function(worker, code, signal) {
console.log('worker with %s is closed', worker.process.pid);
D;
} else if (cluster.isWorker) {
var port = 3000;
console.log('worker (%s) is now listening to http://localhost:%s’,
cluster.worker.process.pid, port);
var app = express();
app.get('*', function(req, res) {
res.send(200, 'cluser '
+ cluster.worker.process.pid
+ ' responded \n');

1
app.listen(port);

As usual, to start an app, run $ node cluster. There should be four (or two, depending on your machine’s
architecture) processes, as shown in Figure 10-1.

225

CHAPTER 10 * GETTING NODE.JS APPS PRODUCTION READY

e 00 __ expressjsguide — node !z:(

Azats-Air:expressjsguide azat$ node cluster.js

Fork 4 worker(s) from master

worker is running on 15279 pid

worker is running on 15277 pid

worker is running on 15280 pid
worker is running on 15278 pid
worker (15277) is now listening to http://localhost:3000
worker (15279) is now listening to http://localhost:3000
worker (15280) is now listening to http://localhost:3000
worker (15278) is now listening to http://localhost:3000

Figure 10-1. Starting four processes with Cluster

When we CURL with $ curl http://localhost:3000, there are different processes that listen to the same port
and respond to us (Figure 10-2).

e 00 £} azat — bash e

Azats-Air:~ azat$ curl http://localhost:3000
cluser 15278 responded

Azats-Air:~ azat$ curl http://localhost:3000
cluser 15278 responded

Azats-Air:~ azat$ curl http://localhost:3000
cluser 15280 responded

Azats-Air:~ azat$ curl http://localhost:3000
cluser 15278 responded

Azats-Air:~ azat$ curl http://localhost:3000
cluser 15278 responded

Azats-Air:~ azat$ curl http://localhost:3000
cluser 15278 responded

Azats-Air:~ azat$ curl http://localhost:3000
cluser 15278 responded

Azats-Air:~ azat$ curl http://localhost:3000
cluser 15278 responded

Azats-Air:~ azat$ curl http://localhost:3000
cluser 15278 responded

Azats-Air:~ azat$ curl http://localhost:3000
cluser 15279 responded

Azats-Air:~ azat$ curl http://localhost:3000
cluser 15278 responded

Azats-Air:~ ozat$

Figure 10-2. Server response is rendered by different processes

Multithreading with Cluster2

If you prefer ready solutions to low-level libraries (such as cluster), check out the real-world production library
created and used by eBay: cluster2 (GitHub (https://github.com/cubejs/cluster2) ,NPM
(https://www.npmjs.org/package/cluster2)) which is a wrapper for the core cluster module. Cluster2 provides
handy utility functions and is battle-tested on a large-scale production deployment.

To install Cluster2, run:

$ npm install cluster2

226

http://localhost:3000/
https://github.com/cubejs/cluster2
https://www.npmjs.org/package/cluster2

CHAPTER 10 © GETTING NODE.JS APPS PRODUCTION READY

To use Cluster2 with Express.js, use listen() on an instance of the cluster object:

var Cluster2 = require('cluster2'),
express = require('express');

var app = express.createServer();

// Other Express.js configurations and routes

app.get('/', function(req, res) {
res.send('hello');

1
var cluster2 = new Cluster2({
port: 3000
// Other Cluster2 options
1)
cluster2.listen(function(callback) {
callback(app);
1

Event Logging and Monitoring

When things go south (e.g., overloads, crashes), there are two things software engineers can do:
1. Monitor via dashboard and health statuses (monitoring and REPL).

2. Analyze postmortems after the events have happened (Winston and Papertrail).

Monitoring

When going to production, software and development operations engineers need a way to get current status quickly.
Having a dashboard or just an end point that spits out JSON-formatted properties is a good idea, including properties
such as the following:

e memoryUsage: memory usage information

e uptime: number of seconds the Node.js process is running
e pid: processID

e connections: number of connections

e loadavg:load average

e sha: Secure Hash Algorithm (SHA) of the Git commit deploy and /or version tag of the deploy
Here’s an example of the Express.js route /status:

app.get('/status', function(req, res){
res.send({
pid: process.pid,
memory: process.memoryUsage(),
uptime: process.uptime()
1)
H

227

CHAPTER 10 © GETTING NODE.JS APPS PRODUCTION READY

A more informative example with connections and other information is as follows:

var os = require('os'),
exec = require('child process').exec,
async = require('async'),
started at = new Date();

module.exports = function(req, res, next) {
var server = req.app;
if(req.param('info')) {
var connections = {},
swap;

async.parallel([
function(done) {
exec('netstat -an | grep :80 | wc -1', function(e, res) {
connections['80'] = parselnt(res,10);
done();
D;
b

function(done) {
exec(
"netstat -an | grep :'
+ server.set('port")
+ " | we -1",
function(e, res) {
connections[server.set('port')] = parseInt(res,10);
done();
}
);
b
function(done) {
exec('vmstat -SM -s | grep "used swap" | sed -E "s/[*0-9]*([0-9]{1,8}).*/\1/"",
function(e, res) {
swap = res;
done();
D;
}1, function(e) {
res.send({
status: 'up’',
version: server.get('version'),
sha: server.et('git sha'),
started_at: started at,
node: {
version: process.version,
memoryUsage: Math.round(process.memoryUsage().rss / 1024 / 1024)+"M",
uptime: process.uptime()
b
system: {
loadavg: os.loadavg(),
freeMemory: Math.round(os.freemem()/1024/1024)+"M"
b

228

CHAPTER 10 © GETTING NODE.JS APPS PRODUCTION READY

env: process.env.NODE_ENV,
hostname: os.hostname(),
connections: connections,

swap: swap
D;
D;
}
else {
res.send({status: 'up'});
}
}
REPL in Production

What can be better than poking around a live process and its context using the REPL tool? We can do this easily with
production apps if we set up REPL as a server:

var net = require('net'),
options = {name: 'azat'};

net.createServer (function(socket) {

repl.start(options.name + "> ", socket).context.app = app;
}).listen("/tmp/repl-app-" + options.name);

Then, connect to the remote machine by using Secure Shell (SSH). Once on the remote machine, run:
$ telnet /tmp/repl-app-azat

You should be prompted with a standard >, which means you're in the REPL.
Or, if you want to connect to the remote server right awayj, i.e., by-passing the SSH step, you can modify the
code to this:

var repl = require('repl');
var net = require('net'),
options = { name: ‘azat' };

app = {a: 1};
net.createServer (function(socket) {

repl.start(options.name + "> ", socket).context.app = app;
}).1listen(3000);

Please use iptable to restrict the Internet protocol addresses (IPs) when using this approach. Then, straight from
your local machine (where the hostname is the IP of the remote box), execute:

$ telnet hostname 3000

229

CHAPTER 10 © GETTING NODE.JS APPS PRODUCTION READY

Winston

Winston provides a way to have one interface for logging events while defining multiple transports, e.g., e-mail, database,
file, console, Software as a Service (SaaS), and so on. The list of transports supported by Winston include the following:

e Console
e TFile

e Loggly (http://www.loggly.com/)

e Riak
e MongoDB
e SimpleDB
e Mail

e Amazon SNS
e Graylog2
e Papertrail
e (Cassandra
It’s easy to get started with Winston:
$ npm install winston
In the code, execute the following:
var winston = require('winston');
winston.log('info', 'Hello distributed log files!');
winston.info('Hello again distributed logs');
To add and remove transporters, use the winston.add() and winston.remove() functions. To add, use:

winston.add(winston.transports.File, {filename: 'webapp.log'});

To remove, use:
winston.remove(winston.transports.Console);

For more information, go to the official documentation (https://github.com/flatiron/
winston#fworking-with-transports).

Papertrail App for Logging

Papertrail (https://papertrailapp.com)is a SaaS that provides centralized storage and a web GUI to search and
analyze logs. To use Papertrail with the Node.js app, do the following:

1. Write logs to a file and remote_sync (https://github.com/papertrail/remote syslog)
them to Papertrail.

2. Sendlogs withwinston (https://github.com/flatiron/winston#working-with-
transports), which is described earlier, and winston-papertrail (https://github.com/
kenperkins/winston-papertrail) directly to the service.

230

https://www.loggly.com/
https://github.com/flatiron/winston#working-with-transports
https://github.com/flatiron/winston#working-with-transports
https://papertrailapp.com/
https://github.com/papertrail/remote_syslog
https://github.com/flatiron/winston#working-with-transports
https://github.com/flatiron/winston#working-with-transports
https://github.com/kenperkins/winston-papertrail
https://github.com/kenperkins/winston-papertrail

CHAPTER 10 © GETTING NODE.JS APPS PRODUCTION READY

Building Tasks with Grunt

Grunt is a Node.js-based task runner. It performs compilations, minifications, linting, unit testing, and other
important tasks for automation.

Install Grunt globally with NPM:
$ npm install -g grunt-cli

Grunt uses Gruntfile. js to store its tasks. For example,

module.exports = function(grunt) {

// Project configuration
grunt.initConfig({
pkg: grunt.file.readJSON('package.json'),
uglify: {
options: {
banner: '/*! <%= pkg.name %> <%= grunt.template.today("yyyy-mm-dd") %> */\n'
1
build: {
src: 'src/<%= pkg.name %>.js',
dest: 'build/<%= pkg.name %>.min.js'
}

}
B

// Load the plugin that provides the "uglify" task
grunt.loadNpmTasks('grunt-contrib-uglify"');

// Default task
grunt.registerTask('default’, ['uglify']);

};
package. json should have plugins required by the grunt. loadNpmTasks () method. For example,

{

"name": "grunt-example",

"version": "0.0.1",

"devDependencies": {
"grunt": "~0.4.2",
"grunt-contrib-jshint": "~0.6.3",
"grunt-contrib-uglify": "~0.2.2",
"grunt-contrib-coffee": "~0.10.1",
"grunt-contrib-concat": "~0.3.0"

Let’s move to the more complex example in which we use jshint, uglify, coffee, and concat plugins in the
default task in Gruntfile.js.

231

CHAPTER 10 © GETTING NODE.JS APPS PRODUCTION READY

Start by defining package. json:
module.exports = function(grunt) {

grunt.initConfig({
pkg: grunt.file.readJSON('package.json'),

And then the coffee task:
coffee: {
compile: {
files: {

The first parameter is the destination and the second is source:

"'source/<%= pkg.name %>.js': ['source/**/*.coffee']
// Compile and concatenate into single file
}
}
1

concat merges multiple files into one to reduce the number of HTTP requests:

concat: {
options: {
separator: ';'
b

This time, our target is in the build folder:

dist: {
src: ['source/**/*.js'],
dest: 'build/<%= pkg.name %>.7js’

}
b
The uglify method minifies our *. js file:
uglify: {
options: {
banner: '/*! <%= pkg.name %> <%= grunt.template.today("dd-mm-yyyy") %> */\n'
1
dist: {
files: {

Again, the first value is the destination; the second dynamic name is from the concat task:

'build/<%= pkg.name %>.min.js': ['<%= concat.dist.dest %>']
}
}
b

jshint is a linter and shows errors if the code is not compliant:

232

CHAPTER 10 © GETTING NODE.JS APPS PRODUCTION READY

jshint: {
files: ['Gruntfile.js', 'source/**/*.js'],
options: {
// options here to override JSHint defaults
globals: {

jQuery: true,
console: true,
module: true,
document: true
}
}
}
bs

Load the modules to make them accessible for Grunt:
grunt.loadNpmTasks('grunt-contrib-uglify');
grunt.loadNpmTasks('grunt-contrib-jshint");
grunt.loadNpmTasks('grunt-contrib-concat"');
grunt.loadNpmTasks ('grunt-contrib-coffee');

Last, define the default task as sequence of subtasks:

grunt.registerTask('default', ['jshint', 'coffee','concat', 'uglify']);
};

To run the task, simply execute $ gruntor$ grunt default.
Gruntfile. js is as follows:

module.exports = function(grunt) {

grunt.initConfig({
pkg: grunt.file.readJSON('package.json'),

coffee: {
compile: {
files: {
"'source/<%= pkg.name %>.js': ['source/**/*.coffee'] // compile and concat
}
}
b
concat: {
options: {
separator: ';'
1
dist: {
src: ['source/**/*.js'],
dest: 'build/<%= pkg.name %>.js'
}

into single file

233

CHAPTER 10 © GETTING NODE.JS APPS PRODUCTION READY

b
uglify: {
options: {
banner: '/*! <%= pkg.name %> <%= grunt.template.today("dd-mm-yyyy") %> */\n’
b
dist: {
files: {
'build/<%= pkg.name %>.min.js': ['<%= concat.dist.dest %>']
}
}
1
jshint: {
files: ['Gruntfile.js', 'source/**/*.js'],
options: {
// options here to override JSHint defaults
globals: {
jQuery: true,
console: true,
module: true,
document: true
}
}
}
D;

grunt.loadNpmTasks ('grunt-contrib-uglify');

grunt.loadNpmTasks('grunt-contrib-jshint");

grunt.loadNpmTasks('grunt-contrib-concat');

grunt.loadNpmTasks('grunt-contrib-coffee');

grunt.registerTask('default', ['jshint', 'coffee','concat', 'uglify']);
};

The results of running $ grunt are shown in Figure 10-3.

234

CHAPTER 10 © GETTING NODE.JS APPS PRODUCTION READY

e OO0 (] grunt — bash 2
Azats-Air:grunt azat$ grunt
i "jishint:files" (jshi k

»= 2 files lint free.

Running "coffee:compile” (coffee) task

Running "concat:dist™ (concat) task

File "build/grunt-example.js” created.
Running "uglify:dist” Lif k

File "build/grunt-example.min,js" created.

Done, without errors,
Azats-Air:grunt azat$

Figure 10-3. The results of the Grunt default task

Git for Version Control and Deployments

Git has become not only a standard version control system, but also—because of its distributed nature—Git has
become the default transport mechanism of deployment (i.e., enables you to send source code).

Platform as a service (PaaS) solutions often leverage Git for deploys, because it’s already a part of many
development flows. Instead of “pushing” your code to GitHub or BitBucket, the destination becomes a PaaS-like
Heroku, Azure, or Nodejitsu. Git is also used for continuous deployment and continuous integration
(e.g., TravisCI, CircleCI).

Even when Iaa$ solutions are used, systems such as Chef (http://docs.opscode.com) can be used.

Installing Git

To install Git for your OS, download a package from the official website (http://git-scm.com/downloads). Then,
follow these steps:

1. Inyour terminal, type these commands, substituting "John Doe" and johndoe@example.com
with your name and e-mail address:

$ git config --global user.name "John Doe"
$ git config --global user.email johndoe@example.com

2. To check the installation, run:

$ git version

235

http://docs.opscode.com/
http://git-scm.com/downloads

CHAPTER 10 © GETTING NODE.JS APPS PRODUCTION READY

3. Youshould see something like the following in your terminal window, as shown in
Figure 10-4 (your version might vary; in our case it’s 1.8.3.2):

git version 1.8.3.2

eno Terminal — bash — 78x8

Last login: Sun Aug 25 16:42:13 on ttys@o0 8
Azats-Air:~ azat$ git config --global user.nome "John Doe"

Azats-Air:~ azat$ git config --global user.email johndoefexample.com

Azats-Air:~ azat$ git version

git version 1.8.3.2

Azats-Air:~ azat$

Figure 10-4. Configuring and testing the Git installation

Generating SSH Keys

SSH keys provide a secure connection without the need to enter username and password every time. For GitHub
repositories, the latter approach is used with HTTPS URLs (e.g., https://github.com/azat-co/rpjs.git) and the
former with SSH URLs (e.g., git@github.com:azat-co/rpjs.git).

To generate SSH keys for GitHub on Mac OS X/Unix machines, do the following:
1. Check for existing SSH keys:

$ cd ~/.ssh
$ 1s -lah

2. Ifyousee some files like id_rsa (please refer to Figure 10-5 for an example), you can
delete them or back them up into a separate folder by using the following commands:

$ mkdir key backup

$ cp id_rsa* key backup
$ rm id_rsa*

236

https://github.com/azat-co/rpjs.git
git@github.com:azat-co/rpjs.git

CHAPTER 10 © GETTING NODE.JS APPS PRODUCTION READY

eno Terminal — bash — 105x28
Azats-Air:~ azat$ ssh-keygen -t rsa -C "johny@example.com" 8
Generating public/private rsa key pair.

Enter file in which to save the key (/Users/azat/.ssh/id_rsa):
Created directory '/Users/azat/.ssh'.

Enter passphrase (empty for no passphrase): T
Enter same passphrase again: !
Your identification has been saved in /Users/azat/.ssh/id_rsa. |
Your public key has been saved in /Users/azat/.ssh/id_rsa.pub. b
The key fingerprint is:

df:08:f9:00:0c:87:ed:e8:38:33:92:11:54:c3:bb:@f johnyBexample.com r
The key's randomart image is: |
+--[RSA 2048]----+

I oo I

I I !
| P I |
| [+] I b
| +0S I

| E*.=o0 I

lo ++ + I

lo +o0 . I

| N I

e e e e LTt + i
Azats-Air:~ azat$ open id_rsa.pub |
The file /Users/azat/id_rsa.pub does not exist.

Azats-Air:~ azat$ open ~/.ssh/id_rsa.pub L
No application knows how to open /Users/azat/.ssh/id_rsa.pub. A
Azats-Air:~ azat$ pbcopy < ~/.ssh/id_rsa.pub -
Azats-Air:~ azat$ y

Figure 10-5. Generating an RSA (Ron Rivest, (http://en.wikipedia.orq/wiki/ron_rivest), Adi Shamir
(http://en.wikipedia.org/wiki/adi_shamir) and Leonard Adleman (http://en.wikipedia.orqg/wiki/leonard_
adleman)) key pair for SSH and copying the public RSA key to a clipboard

3. Now we can generate a new SSH key pair using the ssh-keygen command, assuming we
are in the ~/.ssh folder:

$ ssh-keygen -t rsa -C "your_email@youremail.com"

4. Next, answer the questions. It’s better to keep the default name id_rsa. Then, copy the
content of the id_rsa. pub file to your clipboard:

$ pbcopy < ~/.ssh/id_rsa.pub
Alternatively, you can open the id_rsa.pub file in the default editor:
$ open id_rsa.pub

or in TextMate:

$ mate id_rsa.pub

Tip SSH connections are also used to connect to laaS remote machines.

237

http://en.wikipedia.org/wiki/Ron_Rivest
http://en.wikipedia.org/wiki/Adi_Shamir
http://en.wikipedia.org/wiki/Leonard_Adleman
http://en.wikipedia.org/wiki/Leonard_Adleman

CHAPTER 10 © GETTING NODE.JS APPS PRODUCTION READY

After you have copied the public key, go to github.com (http://github.com), login, go to your account settings,
select “SSH key,” and add the new SSH key. Assign a name (e.g., the name of your computer) and paste the value of
your public key.

To check whether you have an SSH connection to GitHub, type and execute the following command in
your terminal:

$ ssh -T git@github.com
If you see something such as,

Hi your-GitHub-username! You've successfully authenticated,
but GitHub does not provide shell access.

then everything is set up.
While connecting to GitHub for the first time, you may receive the warning “authenticity of host. .. can’t be
established.” Please don’t be confused with this message; just proceed by answering yes, as shown in Figure 10-6.

e N O Terminal — bash — 96x13

Last login: Sun Aug 25 18:47:31 on ttys0@o =]
Azats-Air:~ azat$ ssh -T git@github.com

The authenticity of host 'github.com (204.232.175.90)"' can't be established.

RSA key fingerprint is 16:27:0c:05:76:28:2d:36:63:1b:56:4d:eb:df:06:48.

Are you sure you want to continue connecting (ves/no)? yes

Warning: Permanently added 'github.com,284.232.175.98' (RSA) to the list of known hosts.
Identity added: /Users/azat/.ssh/id_rsa (/Users/azat/.ssh/id_rsa)

Hi alex-d3vl You've successfully outhenticated, but GitHub does not provide shell access.
Azats-Air:~ azat$

Figure 10-6. Testing the SSH connection to GitHub for the very first time

If, for some reason, you have a different message, please repeat steps 3 and 4 from the previous section on SSH
Keys and/or reupload the content of your *. pub file to GitHub.

Warning Keep your id_rsa file private. Don’t share it with anybody!

More instructions are available at GitHub: Generating SSH Keys (https://help.github.com/articles/
generating-ssh-keys). Windows users might find useful the SSH key generator feature in PuTTY
(http://www.putty.org).

In case you've never used Git and/or GitHub, or you've forgotten how to commit code, the next section provides a
short tutorial.

238

http://github.com/
https://help.github.com/articles/generating-ssh-keys
https://help.github.com/articles/generating-ssh-keys
http://www.putty.org/

CHAPTER 10 © GETTING NODE.JS APPS PRODUCTION READY

Creating a Local Git Repository

To create a GitHub repository, go to github.com (http://github.com/), login, and create a new repository. There will
be an SSH address; copy it. In your terminal window, navigate to the project folder to which you would like to push
GitHub. Then, do the following:

1.

Create alocal Git and .git folder in the root of the project folder:
$ git init
Add all the files to the repository and start tracking them:

$ git add

Make the first commit:

$ git commit -m "initial commit"

Pushing the Local Repository to GitHub

You can create a new repository in github.comvia a web interface. Then, copy your newly created repo’s to the Git
SSH URI, which looks something like git@github.com:username/reponame.

1.

Add the GitHub remote destination:

$ git remote add your-github-repo-ssh-url

It might look something like this:

$ git remote add origin git@github.com:azat-co/simple-message-board.git

Now everything should be set to push your local Git repository to the remote destination
on GitHub with the following command:

$ git push origin master

You should be able to see your files at github.com (http://github.com/) under your
account and repository.

Later, when you make changes to the file, there is no need to repeat all these steps. Just execute:
$ git add

$ git commit -am "some message"

$ git push origin master

If there are no new untracked files that you want to start tracking, type the following:

$ git commit -am "some message"
$ git push origin master

239

http://github.com/
http://github.com/

CHAPTER 10 © GETTING NODE.JS APPS PRODUCTION READY

To include changes from individual files, run the following:

$ git commit filename -m "some message"
$ git push origin master

To remove a file from the Git repository, execute:
$ git rm filename
For more Git commands, go to:

$ git --help

Note We advise against committing the node_modules folder to the repository for a project intended to be used
in other applications, i.e., for a module. On the other hand, it’s a good practice to commit that folder along with all the
dependencies for a standalone application, because future updates might break something unintentionally.

Running Tests in Cloud with TravisCl

TravisCl is an SaaS continuous integration system that allows you to automate testing on each GitHub push
(e.g., $ git push origin master). Alternative services include Codeship (https://www.codeship.io), CircleCI
(https://circleci.com), and many others www.quora.com (http://bit.ly/1ipdxxt).

TravisCI is more common among open-source projects and has a similar configuration to other systems,
i.e., a YAML file. In case of Node.js programs, it can look like this:

language: node_js
node_js:

- "0.11"

- "0.10"

In this configuration, 0.11 and 0.10 are versions of Node.js to use for testing. These multiple Node.js versions
are tested on a separate set of virtual machines (VMs). The following configuration file can be copied and used (it’s
recommended by TravisCI):

language: node_js
node_js:

- "0.11"

- "0.10"

- "0.8"

- "0.6"

NPM’s package.json has a property scripts.test thatis a string to execute scripts, so we can put the mocha
command in it:

echo '{"scripts": {"test": "mocha test-expect.js"}}' > package.json

240

https://www.codeship.io/
https://circleci.com/
www.quora.com
http://bit.ly/1ipdxxt

CHAPTER 10 © GETTING NODE.JS APPS PRODUCTION READY

The previous line yields the following package. json file:
{"scripts": {"test": "mocha test-expect.js"}}

Then, we canrun $ npm test successfully.
On the other hand, we can use any other command that invokes the execution of the test, such as the Makefile
command $ make test:

echo '{"scripts": {"test": "make test"}}' > package.json

TravisCI uses this NPM instruction to run the tests.

After all the preparation is done in the form of the YAML file and the package. json property, the next step is to
sign up for TravisCI (free for open-source project/public repositories on GitHub) and select the repository from the
web interface on travis-ci.org (http://travis-ci.org).

For more information on the TravisCI configuration, follow the project in this chapter or see Building a Node.js
project (http://about.travis-ci.org/docs/user/languages/javascript-with-nodejs/) (http://docs.travis-
ci.com/user/languages/javascript-with-nodejs).

TravisCI Configuration

There’s no database in our application yet, but it’s good to prepare the TravisCI configuration right now. To add
a database to the TravisCI testing instance, use:

services:
- mongodb

By default, TravisCI starts the MongoDB instance for us on the local host, port 27017:

language: node_js
node_js:

- "0.11"

- "0.10"

- "0.8"

- "0.6"
services:

- mongodb

That's it! The test build will be synched on each push to GitHub.

If your tests fail even locally right now, don’t despair, because that’s the whole point of TDD. In the next chapter,
we hook up the database and write more tests for fun.

Because of the GitHub hooks to TravisCI, the test build should start automatically. On their completion,
contributors can get e-mail / Internet Relay Chat (IRC) notifications.

Summary

In this chapter, we briefly touched on environment variables, went through the basics of Git, and generated SSH keys.
We used Grunt for predeploy tasks such as concatenation, minification, and compilation; implemented clusters,
monitoring, error handling, and logging; and configured TravisCI to run tests.

In the next chapter, we'll proceed to cover the deployment of the app to PaaS (Heroku) and IaaS (Amazon Web
Services). We'll also show basic examples of Nginx, Varnish Cache and Upstart configurations.

241

https://travis-ci.org/
http://about.travis-ci.org/docs/user/languages/javascript-with-nodejs/
http://docs.travis-ci.com/user/languages/javascript-with-nodejs
http://docs.travis-ci.com/user/languages/javascript-with-nodejs

CHAPTER 11

Deploying Node.js Apps

As we approach the end of the book, there’s a vital step we have to explore: the deployment itself. To help you navigate
between Paa$ and IaaS$ options, and have some scripts you can use on your servers, we cover the following topics:

e Deploying to Heroku (PaaS)

¢ Deploying to Amazon Web Services (AWS)

e Keeping Node.js apps alive with forever, Upstart, and init.d
e Serving static resources properly with Nginx

e Caching with Varnish

Deploying to Heroku

Heroku (http://www.heroku.com) is a polyglot Agile application deployment Platform as a Service (PaaS). The benefits
of using PaaS over other cloud solutions include the following:

1. It’s easy to deploy, i.e., just one Git command to deploy $ git push heroku master.
2. It’seasyto scale, e.g., log in to Heroku.com and click a few options.
3. It’s easy to secure and maintain, e.g., no need to set up startup scripts manually.

Heroku works similarly to Windows Azure (http://azure.microsoft.com/en-us), Nodejitsu
(https://www.nodejitsu.com), and many others in the sense that you can use Git to deploy applications. In other
words, Heroku uses ubiquitous Git as its deployment mechanism. This means that after becoming familiar with
Heroku and comfortable with Git, and after creating accounts with Windows Azure, Nodejitsu, and other PaaSs,
it’s fairly easy to deploy Node.js apps to them as well.

To get started with the process, we need to follow these steps:

1. Install Heroku Toolbelt (https://toolbelt.heroku.com)-a bundle that includes Git and
other tools.

2. Login to Heroku, which should upload a public SSH key file (e.g., id_rsa.pub) to the cloud
(i.e., heroku.com).

243

http://www.heroku.com/
http://azure.microsoft.com/en-us
https://www.nodejitsu.com/
https://toolbelt.heroku.com

CHAPTER 11 © DEPLOYING NODE.JS APPS

To set up Heroku, follow these steps:

1. Signup athttp://heroku.com. Currently, they have a free account. To use it, select all
options as minimum (0) and the database as shared.

2. Download Heroku Toolbelt at https://toolbelt.heroku.com. Toolbelt is a package of
tools, i.e., libraries, that consists of Heroku, Git, and Foreman (https://github.com/
ddollar/foreman). For users of older Macs, get this client (http://assets.heroku.com/
heroku-client/heroku-client.tgz) directly. If you use another OS, browse Heroku
Client GitHub (https://github.com/heroku/heroku).

3. After the installation is done, you should have access to the heroku command. To check it
and log in to Heroku, type:

$ heroku login

The system asks you for Heroku credentials (username and password), and if you've already created the SSH key,
it uploads it automatically to the Heroku web site, as shown in Figure 11-1.

anNnO Terminal — bash — 86x14

Last login: Sun Aug 25 21:04:33 on ttys@g@ =
Azats-Air:~ azat$ cd ~/Downloads/heroku-client/bin

Azats-Air:bin azat$./heroku login

Enter your Heroku credentials.

Email: alex.m4il.box@gmail.com

Password (typing will be hidden):

Authentication successful.

Azats-Air:bin azat$

Figure 11-1. The response to a successful $ heroku login command

4. Ifeverything went well, to create a Heroku application inside your specific project folder,
you should be able to run:

$ heroku create

Official instructions are available at Heroku: Quickstart (https://devcenter.heroku.com/articles/quickstart)
and Heroku: Node.js (https://devcenter.heroku.com/articles/getting-started-with-nodejs).
Then, for each app we need to deploy, perform the following setup steps:

1. Create the local Git repository.

2. Initialize the Heroku app with $ heroku create (adds a Git remote destination to
Heroku cloud).

Last, initial deployment as well as each change is deployed by (1) staging the commit with $ git add, (2)
committing the changes to the local repository with $ git commit, and (3) pushing the changes to the Heroku remote
$ git push heroku master.

244

http://heroku.com/
https://toolbelt.heroku.com/
https://github.com/ddollar/foreman
https://github.com/ddollar/foreman
http://assets.heroku.com/heroku-client/heroku-client.tgz
http://assets.heroku.com/heroku-client/heroku-client.tgz
http://assets.heroku.com/heroku-client/heroku-client.tgz
https://github.com/heroku/heroku
https://devcenter.heroku.com/articles/quickstart
https://devcenter.heroku.com/articles/getting-started-with-nodejs

CHAPTER 11 © DEPLOYING NODE.JS APPS

On deployment, Heroku determines which stack to use (Node.js, in our case). For this reason, we need to provide
the mandatory files package. json, which tells Heroku what dependencies to install; Procfile, which tells Heroku
what process to start; and Node.js app files (e.g., server. js). The content of Procfile can be as minimalistic as web:
node server.js.

Here is a step-by-step breakdown using Git to deploy to Heroku:

1. Create alocal Git repository and .git folder if you haven’t done so already:
$ git init

2. Addfiles:
$ git add

3. Commit files and changes:
$ git commit -m "my first commit"

4. Create the Heroku Cedar stack application (Cedar stack is a special technology that
Heroku uses to create and run its apps) and add the Git remote destination with this
command:

$ heroku create

If everything went well, the system should tell you that the remote has been added and the app has been created,
and it should give you the app name.

5. To look up the remote type and execute (optional), do the following :
$ git remote show
6. Deploy the code to Heroku with:
$ git push heroku master
Terminal logs should tell you whether the deployment went smoothly (i.e., succeeded). If you have a different

branch you'd like to use, you canuse $ git push heroku branch_name, just like you would do with any other Git
destination (e.g., GitHub).

7. To open the app in your default browser, type:
$ heroku open

or just go to the URL of your app and type something like:
http://yourappname-NNNN.herokuapp.com.

8. Tolook at the Heroku logs for this app, type:

$ heroku logs

245

http://yourappname-NNNN.herokuapp.com

CHAPTER 11 © DEPLOYING NODE.JS APPS

To update the app with the new code, type the following only:

$ git add -A
$ git commit -m "commit for deploy to heroku"
$ git push heroku master

Note You'll be assigned a new application URL each time you create a new Heroku app with the command
$ heroku create.

To propagate environment variables to the Heroku cloud, use the heroku config set of commands:
e % heroku config: list of environment variables
e % heroku config:get NAME:value of NAME environment variable
e $ heroku config:set NAME=VALUE: setting the value of NAME to VALUE

e $ heroku config:unset NAME:removal of the environment variable

Note Configuration variable data are limited to 16KB for each app.

To use the same environment variables locally, you can store them in the .env file in the root of your project.
The format is NAME=VALUE. For example:

DB_PASSWORD=F2C9C45
API_KEY=7C311DA3126F

Warning There shouldn’t be any spaces between the name, equal sign, and the value.

After the data are in . env, just use Foreman (part of Heroku Toolbelt):

$ foreman start

Tip Don’t forget to add your .env to .gitignore to avoid sharing it in the version control system.

As an alternative to Foreman and the . env file, it’s possible just to set environment variables before starting an app:
$ DB_PASSWORD=F2C9C45 API_KEY=7C311DA3126F node server
or in your profile file (e.g., ~/.bashrc):

export DB_PASSWORD=F2C9C45
export API_KEY=7C311DA3126F

Needless to say, if you have more than one app and/or API key, then you can use names such as APPNAME_API_KEY.

246

CHAPTER 11 © DEPLOYING NODE.JS APPS

To sync your local . env seamlessly with cloud variables, use the heroku-config plugin
(https://github.com/ddollar/heroku-config). To install it, run:

$ heroku plugins:install git://github.com/ddollar/heroku-config.git
To get variables from the cloud to the local file, type:

$ heroku config:pull
To overwrite cloud data with local variables, type:

$ heroku config:push

For official information on setting up environment variables in Heroku, see Configuration and Config Vars
(https://devcenter.heroku.com/articles/config-vars). The article might require Heroku login.

There are a multitude of add-ons for Heroku (https://addons.heroku.com). Each add-on is like a mini service
associated with a particular Heroku app. For example, MongoHQ (https://addons.heroku.com/mongohq) provides
MongoDB database, while the Postgres add-on (https://addons.heroku.com/heroku-postgresql) does the same
for the PostgreSQL database, and SendGrid (https://addons.heroku.com/sendgrid) allows sending transactional
e-mails. In Figure 11-2, you can see the beginning of the long list of Heroku add-ons:

800 Eltercku add-ons « | [Ellweroku Postgres | Add-or = | [FlsencGrid | Add-ons | Her x x i

| € C' | Heroku, Inc. [US]| https://addons. heroku.com x5

heroku
postgres

RethinkDB Cloud

Data Stores fata

https:/ faddens. hereku.com/rethinkdb-cloud

Figure 11-2. There are a multitude of add-ons for Heroku applications

247

https://github.com/ddollar/heroku-config
https://devcenter.heroku.com/articles/config-vars
https://addons.heroku.com/
https://addons.heroku.com/mongohq
https://addons.heroku.com/heroku-postgresql
https://addons.heroku.com/sendgrid

CHAPTER 11 © DEPLOYING NODE.JS APPS

Most of the add-ons pass information to the Node.js app (and others such as Rails) via environment variables.
For example, the MongoHQ URI is provided in

process.env.MONGOHQ_URL

To make our Node.js apps work locally and remotely, all we need to do is to specify the local URI to which to fall
back (when the environment variable is not set):

var databaseUrl = process.env.MONGOHQ URL || "mongodb://@127.0.0.1:27017/practicalnode”;
The same thing goes for the server port number:

var port = process.env.PORT || 5000;
app.listen(port);

Note It’s possible to copy a database connection string (and other data) from the Heroku web interface. However,
it’s not recommended that you do so.

Some useful Git and Heroku commands are as follows:
e git remote -v:list defined remote destinations

e git remote add NAME URL:add a new remote destination with NAME and URL (usually SSH or
HTTPS protocols)

e heroku start: start the app in the cloud

e heroku info: pull the app’s info

Deploying to Amazon Web Services

Cloud is eating the world of computing. There are private and public clouds. AWS, probably the most popular choice
among the public cloud offerings, falls under the IaaS category. The advantages of using an IaaS such as AWS over
PaaS-like Heroku are as follows:

1. It's more configurable (any services, packages, or operation systems).
2. It’'s more controllable. There are no restrictions or limitations.

3. It's cheaper to maintain. PaaS can quickly cost a fortune for high-performance resources.

In this tutorial, we use 64-bit Amazon Linux AMI (http://aws.amazon.com/amazon-1linux-ami) with CentOS.
It might be easier to use the Extra Packages for Enterprise Linux (EPEL) package manager to install Node.js and NPM.
If you don’t have EPEL, skip to the manual C++ build instructions.

Assuming you have your Elastic Compute Cloud (EC2) instance up and running, make an SSH connection into
it and see if you have yum with EPEL (https://fedoraproject.org/wiki/EPEL). To do so, just see if this command
says epel:

yum repolist

248

http://aws.amazon.com/amazon-linux-ami
https://fedoraproject.org/wiki/EPEL

CHAPTER 11 © DEPLOYING NODE.JS APPS

If there are no mentions of epel, run:

rpm -Uvh http://download-i2.fedoraproject.org/pub/epel/6/i386/epel-release-6-8.noarch.rpm
Then, to install both Node.js and NPM, simply run this command:

sudo yum install nodejs npm --enablerepo=epel

This might take a while. Answer with y as the process goes. In the end, you should see something like this
(your results may vary):

Installed:
nodejs.i686 0:0.10.26-1.el6 npm.noarch 0:1.3.6-4.el6
Dependency Installed:
Dependency Updated:
Complete!
You probably know this, but just in case, to check installations, type the following:

$ node -V
$ npm -v

For more information on using yum, see Managing Software with yum (https://www.centos.org/docs/5/html/yum)
and Tips on securing your EC2 instance (http://aws.amazon.com/articles/1233).

So, if the previous EPEL option didn’t work for you, follow these build steps. On your EC2 instance, install all
system updates with yum:
sudo yum update

Then, install the C++ compiler (again with yum):
sudo yum install gcc-c++ make

Do the same with openssl:

sudo yum install openssl-devel

Then install Git, which is needed for delivering source files to the remote machine. When Git is unavailable,
rsync (http://ss64.com/bash/rsync.html) can be used:

sudo yum install git

249

https://www.centos.org/docs/5/html/yum
http://aws.amazon.com/articles/1233
http://ss64.com/bash/rsync.html

CHAPTER 11 © DEPLOYING NODE.JS APPS

Last, clone the Node repository straight from GitHub:
git clone git://github.com/joyent/node.git
and build Node.js:

cd node

git checkout v0.10.12
./configure

make

sudo make install

Note For a different version of Node.js, you can list them all with $ git tag -1 and check out the one you need.

To install NPM, run:

git clone https://github.com/isaacs/npm.git
cd npm
sudo make install

Relax and enjoy the build. The next step is to configure AWS ports / firewall settings. Here’s a short example of
server.js, which outputs “Hello readers” and looks like this:

var http = require('http')
http.createServer(function(req, res) {
res.writeHead(200, {'Content-Type': 'text/plain'});
console.log ('responding');
res.end('Hello readers!'
+ 'If you see this, then your Node.js server '
+ 'is running on AWS EC2!');
}).listen(80);
console.log ('server is up');

On the EC2 instance, either configure the firewall to redirect connections (e.g., port to Node.js 3000, but this is too
advanced for our example) or disable the firewall (okay for our quick demonstration and development purposes):

$ service iptables save
$ service iptables stop
$ chkconfig iptables off

In the AWS console, find your EC2 instance and apply a proper rule to allow for inbound traffic, as shown in
Figure 11-3. For example,

Type: HTTP

250

CHAPTER 11 © DEPLOYING NODE.JS APPS

Description Inbound QOutbound Tags

Edit

Type (i Protocol (i Port Range (i Source (i
SSH TCP 22 0.0.0.0/0
Al traffic All All 0.0.0.0/0

Figure 11-3. Allowing inbound HTTP traffic on port 80

The other fields fill automatically:
Protocol: TCP
Port Range: 80
Source: 0.0.0.0/0

Or we can just allow all traffic (again, for development purposes only), as shown in Figure 11-4.

Description Inbound Outbound Tags

Edit

Type (i Protocol (i Port Range (i Source (i
S5H TCP 22 0.0.0.0/0
HTTP TCP 80 0.0.0.0/0

Figure 11-4. Allowing all traffic for development mode only

Now, while the Node.js app is running, executing $ netstat -apn | grep 80, the remote machine should show
the process. For example,

tcp 0 0 0.0.0.0:80 0.0.0.0:% LISTEN 1064/node

And from your local machine, i.e., your development computer, you can either use the public IP or the public
DNS (the Domain Name System) domain, which is found and copied from the AWS console under that instance’s
description. For example,

$ curl XXX.XXX.XXX. XXX -v

Or, just open the browser using the public DNS.

251

CHAPTER 11 © DEPLOYING NODE.JS APPS

For the proper iptables setup, please consult experienced development operations engineers and manuals,
because this is an important security aspect and it is out of the scope of this book. However, here are some commands
to redirect traffic to, say, port 3001:

sudo iptables -A PREROUTING -t nat -i etho -p tcp --dport 80 -j REDIRECT --to-port 8080
sudo iptables -t nat -A INPUT -p tcp --dport 80 -j REDIRECT --to-ports 3001
sudo iptables -t nat -A OUTPUT -p tcp --dport 80 -j REDIRECT --to-ports 3001

You can also use commands such as the following:

$ service iptables save
$ service iptables start
$ service iptables restart
$ chkconfig iptables on

It's worth mentioning that AWS supports many other operating systems via its AWS Marketplace
(https://aws.amazon.com/marketplace). Although AWS EC2 is a very popular and affordable choice, some
companies opt for special Node.js tools available in the SmartOS (http://smartos.org), e.g., DTrace
(http://dtrace.org/blogs), built on top of Solaris by Joyent (http://www.joyent.com), the company that
maintains Node.js.

Keeping Node.js Apps Alive with forever, Upstart, and init.d

This section relates only to IaaS deployment—another advantage to PaaS deployments. The reason why we need this
step is to bring the application back to life in case it crashes. Even if we have a master-child system, something needs
to keep an eye on the master itself. You also need a way to stop and start processes for maintenance, upgrades, and so
forth.

Luckily, there’s no shortage of solutions to monitor and restart our Node.js apps:

o forever (https://github.com/nodejitsu/forever): probably the easiest method. The forever
module is installed via NPM and works on almost any Unix OS. Unfortunately, if the server
itself fails (not our Node.js server, but the big Unix server), then nothing resumes forever.

e Upstart (http://upstart.ubuntu.com): the most recommended option. It solves the problem
of starting daemons on startups, but it requires writing an Upstart script and having the latest
Unix OS version support for it. We’ll show you an Upstart script example for CentOS.

e initd(http://www.unix.com/man-page/opensolaris/4/init.d): an outdated analog of
Upstart. init.d contains the last startup script options for systems that don’t have Upstart
capabilities.

forever

forever is a module that allows us to start Node.js apps/servers as daemons and keeps them running forever. Yes,
that’s right. If the node process dies for some reason, it brings it right back up!

forever is a very neat utility because it's an NPM module (very easy to install almost anywhere) and it’s very easy
to use without any extra language. A simple use case is as follows:

$ sudo npm install forever -g
$ forever server.js

252

https://aws.amazon.com/marketplace
http://smartos.org/
http://dtrace.org/blogs
http://www.joyent.com/
https://github.com/nodejitsu/forever
http://upstart.ubuntu.com/
http://www.unix.com/man-page/opensolaris/4/init.d

CHAPTER 11 © DEPLOYING NODE.JS APPS

If you're starting from another location, prefix the file name with the absolute path, e.g., $ forever /var/.A
more complex forever example looks like this:

$ forever start -1 forever.log -o output.log -e error.log server.js
To stop the process, type:

$ forever stop server.js
To look up all the programs run by forever, type:

$ forever list
To list all available forever commands, type:

$ forever --help

Warning The app won’t start on server reboots without extra setup/utilities.

Upstart Scripts

“Upstart is an event-based replacement for the /sbin/init daemon that handles starting of tasks and services during
boot..”—the Upstart web site (http://upstart.ubuntu.com). The latest CentOS (6.2+), as well as Ubuntu and Debian
0Ss, come with Upstart. If Upstart is missing, try typing sudo yum install upstart to install it on CentOS, and try
sudo app-get install upstart for Ubuntu.

A very basic Upstart script—to illustrate its structure—starts with metadata:

author "Azat"
description "practicalnode"
setuid "nodeuser"

We then start the application on startup after the file system and network:
start on (local-filesystems and net-device-up IFACE=etho)

We stop the app on server shutdown:
stop on shutdown

We instruct Upstart to restart the program when it crashes:
respawn

We log events to /var/log/upstart/webapp.log:

console log

253

http://upstart.ubuntu.com/

CHAPTER 11 © DEPLOYING NODE.JS APPS
We include environment variables:
env NODE_ENV=production
Command and file to execute:
exec /usr/bin/node /var/practicalnode/webapp.js
A more useful example from a file webapp . conf in /etc/init follows:

cd /etc/init
sudo vi webapp.conf

The simplistic content of an Upstart script is as follows:

#lupstart
description "webapp.js"
author "Azat"

env PROGRAM_NAME="node"

env FULL_PATH="/home/httpd/buto-middleman/public"
env FILE_NAME="forever.js"

env NODE_PATH="/usr/local/bin/node"

env USERNAME="springloops"

start on runlevel [2345]
stop on shutdown
respawn

This part of the script is responsible for launching the application webapp.js (similar to our local $ node webapp.js
command, only with absolute paths). The output is recorded into the webapp. log file:

script
export HOME="/root"

echo $$ > /var/run/webapp.pid
exec /usr/local/bin/node /root/webapp.js >> /var/log/webapp.log 2>&1

end script

The following piece is not as important, but it provides us with the date in the log file:
pre-
start script

Date format same as (new Date()).toISOString() for consistency

echo "[“date -u +%Y-%m-%dT%T.%3NZ"] (sys) Starting" >> /var/log/webapp.log
end script

254

CHAPTER 11 © DEPLOYING NODE.JS APPS

The following tells us what to do when we’re stopping the process:
pre-stop script

m /var/run/webapp.pid

echo "[“date -u +%Y-%m-%dT%T.%3NZ"] (sys) Stopping" >> /var/log/webapp.log
end script

To start/stop the app, use:

/sbin/start myapp
/sbin/stop myapp

To determine the app’s status, type:

/sbin/status myapp

Tip With Upstart, the Node.js app restarts on an app crash and on server reboots.

The previous example was inspired by Deploy Nodejs app in Centos 6.2 (http://bit.1ly/1qwIeT3]). For more
information on Upstart, see How to Write CentOS Initialization Scripts with Upstart (http://bit.1ly/1pNF1xT) and
Upstart Cookbook (http://upstart.ubuntu.com/cookbook/upstart_cookbook.pdf).

init.d

If Upstart is unavailable, you can create an init.d script. init.d, which is a technology available on most Linux
OSs. Usually, development operations engineers resort to init.d when Upstart is not available and when they need
something more robust than forever. Without going into too much detail, Upstart is a newer alternative to init.d
scripts. We put init.d scripts into the /etc/ folder.

For example, the following init.d script for CentOS starts, stops, and restarts the node process / file home/
nodejs/sample/app.js:

#!/bin/sh

#

chkconfig: 35 99 99

description: Node.js /home/nodejs/sample/app.js
#

. /etc/rc.d/init.d/functions

USER="nodejs"

DAEMON="/home/nodejs/.nvm/v0.4.10/bin/node"
ROOT_DIR="/home/nodejs/sample"

SERVER="$ROOT_DIR/app.js"
LOG_FILE="$ROOT DIR/app.js.log"

255

http://bit.ly/1qwIeTJ
http://bit.ly/1pNFlxT
http://upstart.ubuntu.com/cookbook/upstart_cookbook.pdf

CHAPTER 11 © DEPLOYING NODE.JS APPS

LOCK_FILE="/var/lock/subsys/node-server"

do_start()
{
if [| -f "$LOCK_FILE"] ; then
echo -n $"Starting $SERVER: "
runuser -1 "$USER" -c "$DAEMON $SERVER >> $LOG_FILE &" 8& echo_success || echo_failure

RETVAL=$?
echo
[$RETVAL -eq 0] 8& touch $LOCK FILE
else
echo "$SERVER is locked."
RETVAL=1
fi
}
do_stop()
{
echo -n $"Stopping $SERVER: "
pid="ps -aefw | grep "$DAEMON $SERVER" | grep -v " grep " | awk '{print $2}'"
kill -9 $pid > /dev/null 2581 &8 echo_success || echo failure
RETVAL=$?
echo
[$RETVAL -eq 0] && rm -f $LOCK_FILE
}
case "$1" in
start)
do_start
3
stop)
do_stop
35
restart)
do_stop
do_start
35
*)

echo "Usage: $0 {start|stop|restart}"
RETVAL=1
esac

exit $RETVAL

The init.d script above was borrowed from this GitHub gist (https://gist.github.com/nariyu/1211413).
For more info on init.d, see this detailed tutorial (http://bit.1ly/11DkRGi).

256

https://gist.github.com/nariyu/1211413
http://bit.ly/1lDkRGi

CHAPTER 11 © DEPLOYING NODE.JS APPS

Serving Static Resources Properly with Nginx

Although, it’s fairly easy to serve static files from Node.js applications, and we can use sendFile or Express.js static
middleware, it’s a big no-no for systems that require high performance. In other words, this step is optional but
recommended.

The best option is to use Nginx (http://nginx.org), Amazon S3 (http://aws.amazon.com/s3) or CDNs,
e.g., Akamai (http://www.akamai.com) or CloudFlare (https://www.cloudflare.com), for the purpose for which they
were specifically designed, i.e., serving static content, and let Node.js apps handle interactive and networking tasks
only. This tactic decreases the load on Node.js processes and improves the efficiency of your system.

Nginx is a popular choice among development operations engineers. It's an HTTP and reverse-proxy server.
To install Nginx on a CentOS system (v6.4+), type:

sudo yum install nginx

As a side note, for Ubuntu, you can use the apt packaging tool: sudo apt-get install nginx.For more
information about apt, refer to the docs (https://help.ubuntu.com/12.04/serverguide/apt-get.html).

But, let’s continue with our CentOS example. We need to open the /etc/nginx/conf.d/virtual. conf file for
editing, e.g., using a VIM (Vi Improved) editor:

sudo vim /etc/nginx/conf.d/virtual.conf
Then, we must add this configuration:

server {
location / {
proxy_pass http://localhost:3000;

location /static/ {
root /var/www/webapplog/public;
}

The first Llocation block acts as a proxy server and redirects all requests that are not /static/* to the Node.js
app, which listens on port 3000. Static files are served from the /var/www/webapplog/public folder.

If your project uses Express.js or a framework that’s built on top of it, don’t forget to set the trust proxy to true by
adding the following line to your server configuration:

app.set('trust proxy', true);

This little configuration enables Express.js to display true client IPs provided by proxy instead of proxy IPs. The IP
address is taken from the X-Forwarded-For HTTP header of requests (see next code snippet).

A more complex example with HTTP headers in the proxy-server directive, and file extensions for static
resources, follows:

server {
listen 0.0.0.0:80;
server_name webapplog.com;
access_log /var/log/nginx/webapp.log;

257

http://nginx.org/
http://aws.amazon.com/s3
http://www.akamai.com/
https://www.cloudflare.com/
https://help.ubuntu.com/12.04/serverguide/apt-get.html

CHAPTER 11 © DEPLOYING NODE.JS APPS

location ~* ~.+\.(jpg|]jpeg|gif|png|ico|css|zip|tgz|gz|rar|bz2|pdf|txt|tar|wav|bmp|rtf|js|flv|swf
[html|htm)$ {
root /var/www/webapplog/public;
}

location / {
proxy_set_header X-Real-IP $remote addr;
proxy_set header HOST $http host;
proxy_set header X-NginX-Proxy true;

proxy_pass http://127.0.0.1:3000;
proxy_redirect off;

Note Replace 3000 with the Node.js app’s port number, webapplog.com with our domain name, and webapp. log
with your log’s file name.

Alternatively, we can use upstream try_files (http://wiki.nginx.org/httpCoreModuletitry files). Then, start
Nginx as a service:

sudo service nginx start

After Nginx is up and running, launch your node app with forever or Upstart on the port number you specified in
the proxy-server configurations.
To stop and restart Nginx, use:

sudo service nginx stop
sudo service nginx start

So far, we've used Nginx to serve static content while redirecting nonstatic requests to Node.js apps. We can take
it a step further and let Nginx serve error pages and use multiple Node.js processes. For example, if we want to serve
the 404 page from the 404 .html file, which is located in the /var/www/webapplog/public folder, we can add the
following line inside the server directive:

error_page 404 /404.html;
location /404.html {
internal;
root /var/www/webapplog/public;

If there is a need to run multiple Node.js processes behind Nginx, we can set up location rules inside the server
in exactly the same way we used location for dividing static and nonstatic content. However, in this case, both
destinations are handled by Node.js apps. For example, we have a Node.js web app that is running on 3000, serving
some HTML pages, and its URL path is /, whereas the Node.js API app is running on 3001, serving JSON responses,
and its URL path is /api:

server {

listen 8080;
server_name webapplog.com;

258

http://wiki.nginx.org/HttpCoreModule#try_files

CHAPTER 11 © DEPLOYING NODE.JS APPS

location / {
proxy_pass http://localhost:3000;
proxy set header Host $host;

}

location /api {
proxy_pass http://localhost:3001;
rewrite ~/api(.*) /$1 break;
proxy_set header Host $host;

}

}

In this way, we have the following trafficking:
e The / requests go to http://localhost:3000.
e The /apirequests go to http://localhost:3001.

Caching with Varnish

The last piece of the production deployment puzzle is setting up caching using Varnish Cache
(https://www.varnish-cache.org). This step is optional for Node.js deploys, but, like a Nginx setup, it’s also
recommended, especially for systems that expect to handle large loads with the minimum resources consumed.

The idea is that Varnish allows us to cache requests and serve them later from the cache without hitting Nginx
and/or Node.js servers. This avoids the overhead of processing the same requests over and over again. In other words,
the more identical requests the server has coming, the better Varnish’s optimization.

Here's a nice Varnish Cache video (http://youtu.be/x7t2Sp174eI). It does a good job at summarizing the tool
in just less than three minutes.

Let’s use yum again, this time to install Varnish dependencies on CentOS:

$ yum install -y gcc make automake autoconf libtool ncurses-devel libxslt groff pcre-devel
pckgconfig libedit libedit-devel

Download the latest stable release (as of May 2014):
$ wget http://repo.varnish-cache.org/source/varnish-3.0.5.tar.gz
and build Varnish Cache with the following:

$ tar -xvpzf varnish-3.0.5.tar.gz
$ cd varnish-3.0.5

$./autogen.sh

$./configure

$ make

$ make check

$ make install

259

http://localhost:3000/
http://localhost:3001/
https://www.varnish-cache.org/
http://youtu.be/x7t2Sp174eI

CHAPTER 11 © DEPLOYING NODE.JS APPS

For this example, let’s make only minimal configuration adjustments. In the file /etc/sysconfig/varnish, type:

VARNISH_LISTEN PORT=80
VARNISH_ADMIN_LISTEN_ADDRESS=127.0.0.1
Then, in /etc/varnish/default.vcl, type
backend default {

.host = "127.0.0.1";

.port = "8080";

}

Restart the services with:

$ /etc/init.d/varnish restart
$ /etc/init.d/nginx restart

Everything should be working by now. To test it, CURL from your local (or another remote) machine:
$ curl -I www.varnish-cache.org

If you see “Server: Varnish” this means that requests go through Varnish Cache first, just as we intended.

Summary

In this chapter, we covered deployment using the Git and Heroku command-line interfaces to deploy to PaaS.

Then, we worked through examples of installing and building a Node.js environment on AWS EC2, running Node.js
apps on AWS with CentOS. After that, we explored examples of forever, Upstart, and init.d to keep our apps running.
Last, we installed and configured Nginx to serve static content, including error pages, and split traffic between
multiple Node.js processes. Then, we added Varnish Cache to lighten the Node.js apps’ loads even more.

260

CHAPTER 12

Publishing Node.js Modules
and Contributing to Open Source Y

One of the key factors that contributed to the rapid growth of the Node.js module ecosystem is its open-source
nature and robust packaging systems (with registry). As of April 2013, JavaScript and Node.js had already surpassed
any other language/platform in the number of packages contributed per year (source)
(http://caines.ca/blog/programming/the-node-js-community-is-quietly-changing-the-face-of-open-source/):

e Python: 1351 packages per year (29,720 packages in 22 years)
e Ruby: 3022 packages per year (54,385 packages in 18 years)
e Node.js: 6742 packages per year (26,966 packages in 4 years)

This year’s (2014) numbers are even higher, and expectations are that, by mid 2014, Node.js will surpass other
platforms, in absolute numbers, with Maven and Rubygems being the top dogs (source) (http://modulecounts.com/).
Other factors that attribute to the Node.js popularity include:

e Ability to share code between front-end/browser and server-side (with projects such as
browserify (http://browserify.org/) and ender.js) (https://github.com/ender-js/Ender)

e Philosophy of small (in terms of lines of code and functionality) functional modules vs. large,
standard/core packages (i.e., granularity)

e Evolving ECMAScript standard and expressive nature, and ease of adoption of the JavaScript
language

With this in mind, many Node.js enthusiasts find it rewarding to contribute to the ever-growing open-source
community. When doing so, there are a few conventions to follow as well as concepts to understand:

e Recommended folder structure
e Required patterns

e package.json

e Publishing to NPM

e Locking versions

261

http://caines.ca/blog/programming/the-node-js-community-is-quietly-changing-the-face-of-open-source/
http://modulecounts.com/
http://browserify.org/
https://github.com/ender-js/Ender

CHAPTER 12 © PUBLISHING NODE.JS MODULES AND CONTRIBUTING TO OPEN SOURCE

Recommended Folder Structure

Here is an example of a good, structured NPM module:

Webapp
/1ib
webapp.js
index.js
package.json
README .md

The index. js file does the initialization whereas 1ib/webapp. js has all the principal logic.
If you're building a command-line tool, add the bin folder:

Webapp
/bin
webapp-cli.js
/1ib
webapp.js
index.js
package.json
README . md

Also, for the CLI module, add the following to package. json:

"bin": {
"webapp": "./bin/webapp-cli.js"
b

The webapp-cli. js file starts with the line #! /usr/bin/env node, but then has normal Node.js code.

It’s a good idea to add unit tests to your external module, which increases confidence and the likelihood of other
people using it. Some programmers go as far as not using a module that doesn’t have any tests! The added benefit is
that tests serve as a poor man’s examples and documentation.

TravisCI, which we covered in previous chapters, allows free testing for open-source projects. Its badges, which
turn from red to green, depending on the status of tests (failing or passing), became the de facto standard of quality
and are often seen on the README pages of the most popular Node.js projects.

Required Patterns

There are a few common patterns for writing external (meant for use by other users, not just within your app)
modules:

e module.exports as a function pattern (recommended)
e module.exports as a class pattern (not recommended)
e module.exports as an object pattern

e exports.NAME pattern; which could be an object or a function

262

CHAPTER 12 * PUBLISHING NODE.JS MODULES AND CONTRIBUTING TO OPEN SOURCE

Here is an example of the module.exports as a function pattern:

var _privateAttribute = 'A’;

var _privateMethod = function () {...};

module.exports = function(options) {
//initialize module/object
object.method = function() {...}
return object;

}

And here is an example of an equivalent with a function declaration:

module.exports = webapp;

function webapp (options) {
//initialize module/object
object.method = function() {...}
return object;

}

Tip For info about named function expressions vs. function declarations, visit the comprehensive resource, Named
Function Expressions Demystified. (http://kangax.github.io/nfe/#named-expr)

The file in which we include the module looks like this:

var webapp = require('./lib/webapp.js');
var wa = webapp({...}); // initialization parameters

More succinctly, it looks like this:
var webapp = require('./1lib/webapp.js')({...});

The real-life example of this pattern is the Express.js module (source code) (https://github.com/visionmedia/
express/blob/master/1lib/express.jsi#L26).

The module.exports as a class pattern uses the so-called pseudoclassical instantiating/inheritance pattern
(http://javascript.info/tutorial/pseudo-classical-pattern), which can be recognized by the use of this
and prototype keywords:

module.exports = function(options) {
this. attribute = 'A’";

}...

module.exports.prototype. method = function() {
}
Notice the capitalized name and the new operator in the including file:

var Webapp = require('./lib/webapp.js');
var wa = new Webapp();

263

http://kangax.github.io/nfe/%23named-expr
https://github.com/visionmedia/express/blob/master/lib/express.js%23L26
https://github.com/visionmedia/express/blob/master/lib/express.js%23L26
http://javascript.info/tutorial/pseudo-classical-pattern

CHAPTER 12 © PUBLISHING NODE.JS MODULES AND CONTRIBUTING TO OPEN SOURCE

The example of this module.exports as a class pattern is the OAuth module (source code)
(https://github.com/ciaranj/node-oauth/blob/master/1ib/oauth.js#L9).

The module.exports as an object pattern similar to the first pattern (functional), only without the constructor.
It may be useful for defining constants, locales, and other settings:

module.exports = {
sockets: 10,
limit: 200,
whitelist: [
'azat.co',
'webapplog.com',
'apress.com’

]

The including file treats the object as a normal JavaScript object. For example, we can set maxSockets with
these calls:

var webapp = require('./lib/webapp.js');
var http = require('http');
http.globalAgent.maxSockets = webapp.sockets;

Note The require method can read JSON files directly. The main difference is that JSON standard has mandatory
double quotes (") for wrapping property names.

The exports.NAME pattern is just a shortcut for module.exports.NAME when there’s no need for one constructor
method. For example, we can have multiple routes defined this way:

exports.home = function(req, res, next) {
res.rendexr('index");

}
exports.profile = function(req, res, next) {
res.render('profile', req.userInfo);

}
And we can use it in the including file the following way:
var routes = require('./lib/routes.js');

app.get('/', routes.home);
app.get('/profile’, routes.profile);

264

https://github.com/ciaranj/node-oauth/blob/master/lib/oauth.js%23L9

CHAPTER 12 * PUBLISHING NODE.JS MODULES AND CONTRIBUTING TO OPEN SOURCE

package.json

Another mandatory part of an NPM module is its package. json file. The easiest way to create a new package.json
file, if you don’t have one yet (most likely you do), is to use $ npm init. The following is an example produced by this
command:

"name": "webapp",

"version": "0.0.1",
"description”: "An example Node.js app",
"main": "index.js",
"devDependencies": {},
"scripts": {

"test": "test"

b

"repository": "",

"keywords": [

"math",

"mathematics”,

"simple"

1,

"author": "Azat <hi@azat.co>",
"license": "BSD"

The most important fields are name and version. The others are optional and self-explanatory, by name. The full
list of supported keys is located at the NPM web site. (https://www.npmjs.org/doc/json.html)

Warning package.json must have double quotes around values and property names, unlike native JavaScript
object literals.

It's worth noting that package. json and NPM do not limit their use. In other words, you are encouraged to add
custom fields and devise new conventions for their cases.

Publishing to NPM

To publish to NPM, we must have an account there. We do this by executing the following:
$ npm adduser

Then, simply execute from the project folder:
$ npm publish

Some useful NPM commands are as follows:
e $ npm tag NAME@VERSION TAG:taga version
e $ npm version SEMVERSION: increment a version to the value of SEMVERSION (semver)
(http://semver.org/) and update package.json

265

https://www.npmjs.org/doc/json.html
http://semver.org/

CHAPTER 12 © PUBLISHING NODE.JS MODULES AND CONTRIBUTING TO OPEN SOURCE

e % npm version patch:increment the last number in a version (e.g., 0.0.1 to 0.0.2) and update
package.json

e $ npm version minor:increment a middle version number (e.g., 0.0.1 to 0.1.0 or 0.0.1 to 1.0.0)
and update package.json

e % npm unpublish PACKAGE_NAME: unpublish package from NPM (take optional version with @)
e % npm owner 1s PACKAGE_NAME: list owners of this package
e npm owner add USER PACKAGE_NAME: add an owner

e % npm owner rm USER PACKAGE_NAME: remove an owner

Locking Versions

The rule of thumb is that when we publish external modules, we don’t lock dependencies’ versions. However, when
we deploy apps, we lock versions in package. json. This is a common convention that many projects on NPM follow
(i.e., they don’t lock the versions). So, as you might guess, this may lead to trouble.

Consider this scenario: We use Express.js that depends on, say, Jade of the latest version (*). Everything works
until, unknown to us, Jade is updated with breaking changes. Express.js now uses Jade that breaks our code.

No bueno.

The solution: Commit node_modules! The following article describes nicely why committing your application’s
node_modules folder (not the one for the external module!) to Git repo is a good idea: node_modules in git
(http://www.futurealoof.com/posts/nodemodules-in-git.html).

Why do this? Because, even if we lock dependency A in our package. json, most likely this module A has a wild
card * or version range in its package. json. Therefore, our app might be exposed to unpleasant surprises when an
update to the A module dependency breaks our system.

One significant drawback is that binaries often need to be rebuilt on different targets (e.g., Mac OS X vs. Linux).
So, by skipping $ npm install and not checking binaries, development operations engineers have to use $ npm
rebuild on targets.

On the other hand, the same problem might be mitigated by using $ npm shrinkwrap (official docs)
(https://www.npmjs.org/doc/cli/npm-shrinkwrap.html). This command creates npm-shrinkwrap.json, which has
every subdependency listed/locked at the current version. Now, magically, $ npm install skips package.json and
uses npm-shrinkwrap.json instead!

When running Shrinkwrap, be careful to have all the project dependencies installed and to have only them
installed (run $ npm install and $ npm prune to be sure). For more information about Shrinkwrap and locking
versions with node_modules, see the article by core Node.js contributors: “Managing Node.js Dependencies with
Shrinkwrap”. (http://blog.nodejs.org/2012/02/27/managing-node-js-dependencies-with-shrinkwrap/)

Summary

Open-source factors have contributed to the success and widespread use of the Node.js platform. It’s relatively easy
to publish a module and make a name for yourself (unlike other mature platforms with solid cores). We looked
at the recommended patterns and structures, and explored a few commands to get started with publishing
modules to NPM.

266

http://www.futurealoof.com/posts/nodemodules-in-git.html
https://www.npmjs.org/doc/cli/npm-shrinkwrap.html
http://blog.nodejs.org/2012/02/27/managing-node-js-dependencies-with-shrinkwrap/

CHAPTER 12 * PUBLISHING NODE.JS MODULES AND CONTRIBUTING TO OPEN SOURCE

Practical Node.js Conclusion

Lo and behold, this is the end of the book. There was a study that showed that the majority of programmers read zero
books per year (source) (http://blog.codinghorror.com/programmers-dont-read-books-but-you-should/). So,
pat yourself on the back, because you're on the road to awesomeness when it comes to building Node.js web apps. ©
Regarding the material covered in Practical Node.js, we explored real-world aspects of the Node.js stack. To
do this, many things were essential, and by now you should have an awareness of how pieces fit together. For some
technologies such as Jade and REST API, our coverage was quite extensive. However, most of the packages are very
specific and tailored to our apps’ goals, so those topics were given a brief introduction, with references for further
learning. Here’s a list of topics we covered:

e Node.js and NPM setup and development tools
e Web apps with Express.js

e TDD with Mocha

¢ Jade and Handlebars

¢ MongoDB and Mongoskin

e Mongoose MongoDB ORM

e Session, token authentication, and OAuth with Everyauth
e REST APIs with Express and Hapi

e WebSockets with ws, Socket.IO, and Derby]S

e Best practices for getting apps production ready
¢ Deployment to Heroku and AWS

e Structuring and publishing NPM modules

Further Reading

If you enjoyed this book, you might like the programming blog about software engineering, startups, Agile
development, and Node.js: webapplog.com (http://webapplog.com). You can also follow the author of this book on
Twitter at @azat_co (http://twitter.com/azat_co) for tips and news about Node.js.

Here’s the list of other books by the author Azat Mardan:

e Pro Express.js (Apress, coming 2014)

e Rapid Prototyping with JS: (http://1pjs.co/) Agile JavaScript Development

e Expressjs Guide: (http://expressjsquide.com/) The Comprehensive Book on Express.js

e JavaScript and Node.js FUNdamentails: (http://1leanpub.com/jsfun) A Collection of Essential Basics
e ProgWriter: (http://progwriter.com/) Complete Guide to Publishing Programming Books

Errata and Contacts

If you spotted any mistakes (I'm sure you did), please open an issue or even better fix it and make a pull request to the
GitHub repository of the book’s examples: https://github.com/azat-co/practicalnode. For all other updates and
contact information, the canonical home of the Practical Node.js book on the Internet is http://practicalnodebook.com.

267

http://blog.codinghorror.com/programmers-dont-read-books-but-you-should/
http://webapplog.com/
http://twitter.com/azat_co
http://rpjs.co/
http://expressjsguide.com/
http://leanpub.com/jsfun
http://progwriter.com/
https://github.com/azat-co/practicalnode
http://practicalnodebook.com/

Index

A

addListener method, 219
Amazon Web Services (AWS)
advantages, 248
Domain Name System, 251
EC2 instance, 250
EPEL, 248
HTTP traffic, 251
Node.js build, 250
NPM, 249-250
server.js, 250
yum command, 249
Application programming interface
(API), 17
array objects, 17
Math objects, 17
string objects, 17
Authentication, Blog, 132
destroy(), 137
findOne function, 136
return keyword, 136
Authorization, 129, 133

B

Behavior-driven development (BDD), 57
Blog, 132
authentication
destroy(), 137
findOne function, 136
return keyword, 136
authorization, 133
running the app, 137
session middleware, 132

C

Content delivery networks (CDNs), 211

D

DELETE method, 175, 183
Derby]S, 195
app
app.js code, 209
declaration, 208
DOM, 208
model.ref(), 209
process.nextTick function, 209
snippetld route, 208
editor tryout, 212
package.json, 205
server-side code, 206
structure, 205
usage, 204
views, 210
Document Object Model (DOM), 208
Domain Name System (DNS), 251

E

Editor tryout, 212

Environment variables, 215

Error handling
addListener method, 219
Node.js domains, 221
onerror event listeners, 219
REST API, 220

Event logging, 230

Everyauth, 139

269

INDEX

Express.js, 33

Agile JavaScript Development, 34

app.configure() method, 216
Blog app, 45
admin page, 48
$.ajax() method, 47
elements, 46
REST API approach, 47

traditional server-side approach, 46

hello world creation, 48
app.js file, 51, 54-55
app.set(), 52
folder settup, 49
framework, 52
Jade syntax, 55
$ node app command, 56
node_modules folder, 51

NPM Init and package.json, 50

$ npm install, 50
require() method, 51
res.render(), 54
VERB values, 53
HTTP methods and URLs, 35
if/else statements, 216
installation
Express.js Generator, 37
Express.js Version, 36
node_modules folder, 39

$ npm init terminal command, 38

$ npm Is command, 39-40
package.json file, 38-39
middleware, 33, 36, 217
mongoose, 162
MVC-like, 35
Node.js framework, 35
scaffolding
app.js middleware, 43

command-line interface, 40-41

creation, 40

Express.js App, configuration of, 44

Jade template engine, 44
routes, 43
terminal command, 40
session options, 217
tasks, 33
working principles, 36
Express.js usage, 4, 91
__express method, 91
Handlebars, 92
Jade, 91
res.render method, 91
Express.js middleware, 129
Extra Packages for Enterprise
Linux (EPEL), 248

270

F

Forever, 252

G

GET method, 175, 186

Git, 235
GitHub, 239
installation, 236
local repository creation, 239
PaasS, 235
SSH Keys, 236

Grunt
default task, 235
grunt.loadNpmTasks()

method, 231

HTTP requests, 232
jshint, 232-234
NPM installation, 231
uglify method, 232

H

Handlebars
comments, 87
custom helpers, 87
each iteration, 84
if condition, 85
includes/partials templates, 88
unescaped output, 84
unless statement, 85
usages, 89
With statement, 86
Handlebars expressions, 83
Handlebars syntax, 83
Hapi framework
database collection, 188
findOne method, 190
goals, 188
hapi-app.js coding, 191
hapi-app.js file creation, 188
loadCollection method, 189
server.route(), 189
server.start() method, 191
URL parameter, 190
Heroku
configuration, 246
creation, 244
env file, 246-247
environment variables, 246
Git, 245, 248
$ heroku login command, 244
MongoHQ URI, 248

Paas, 243
transactional e-mails, 247
working principle, 243

init.d script, 255

J, K
Jade, 71
add templates, 93
admin.jade, 101
article.jade, 97
index.jade, 95
layout.jade, 93
login.jade, 98
post.jade, 99
attributes, 73
block blockname, 79
case statement, 77
comments, 75
extend filename, 79
filters, 77
if statement, 76
include, 78
interpolation, 77
iterations, 76
JavaScript code, 75
literals, 74
mixins functions, 77
script/style tags, 74
tags, 71
text, 74
usages, 79
variables/locals, 72
JavaScript fundamentals. See Node. js
JSON, 174

L

Locking versions, 266

map() function, 178
Mocha, 57
BDD test, 65

boot method, 66
$ make test command, 68
$ mkdir tests, 65
$ mocha tests, 66
package.json file, 65
shutdown method, 66
test folder, 67

INDEX

behavior-driven development, 57

Except.jS, BDD, 63
chai library, 64
library, 64

hooks, 59

installation, 57
BDD, 58
node_modules, 58
nyan reporter, 59
optional parameters, 58
TDD, 58

TDD assert, 57, 60
array-type test, 61
chai assert, 62

Mocha hooks, 59
Mocha tool, 57
MongoDB, 103, 113

bin folder, 105
installation, 103
data directory, 104
HomeBrew, 103
mongod service, 106
Node.js native driver, 108
library documentation, 111
mongo-native-insert.js file, 109
package.json file, 108
running sequence, 108
NoSQL database/non-relational databases, 103
shell commands, 107
storing blog, mongoskin, 113
add persistance (see Persistence)
add seed data, 113
admin page, 127
$ make db /$ make test, 126
mocha tests, 114
$ mongod service, 126
$ node app, 126

Mongoose, 149

custom instance method, 154
hooks, 154
installation, 150
instance methods, 156
mongoose.model(name, schema), 155
nested documents, 158
population

populate method, 158

posts and user models, 157
Schema behavior, 161
standalone Mongoose script, 150
static methods, 154
static model methods, 155
True MVC, 162
virtual fields, 159

Mongoskin methods, 111

data validation, 113

271

INDEX

Mongoskin methods (cont.)
model-view-controller-like (MVC-like), 112
native Node.js, 112

Monitoring, 227

Multithreading
cluster, 224
cluster2, 226-227

N

Native WebSocket, 196
Nginx, 257
HTTP header, 257
installation, CentOS system, 257
proxy-server configurations, 258
URL path, 258
VIM editor, 257
Node.js, 1,9
application programming interface, 17
array objects, 17
Math objects, 17
string objects, 17
arrays, 12
Buffer—Node.js, 10
callbacks, 21
code editor, 28
core modules, 18
fs module, 19
http module, 18
querystring module, 18
url module, 19
util module, 18
debugging, 22
alert() statements, 22
console.log(), 22
debug commands, 23
Node inspector, 23
__dirname vs. process.cwd, 16
file changes, 30
functions, 10
creation, 10
definition, 11
invocation vs. expression, 12
parameters, 11
global space, 14
global scope, 15
modules, 15
process.pid, 14
Hello World server, 21
installation, 1
cloned Git repo, 5
HomeBrew/Macports, 3
Nave setup, 5
Node Version Manager (NVM), 6
one-click installer, 2
read-eval-print-loop (REPL), 7

272

Tar File, 4
without sudo, 4
language conventions, 13
camelcase, 13
commas, 13
indentation, 14
naming, 13
semicolons, 13
whitespaces, 14
loose typing, 9
NPM installation, 20
object notation, 10
prototypal inheritance, 12
read and write, 20
streaming data, 20
utilities, 19
web development, IDES and
text editor, 29
webstorm IDE, 29-30
Node.js apps
forever, 252
init.d script, 255
upstart scripts, 253
Node.js OAuth, 138
Everyauth, 139
Twitter, 138
NPM commands, 265

(0

OAuth 1.0, 140
Everyauth Twitter strategy
configuration, 141
with debug mode, 147
run the app, 146
sign-in with Twitter link, 141
Object relational mapping (ORM), 103, 149
Open-source factors, 261
locking versions, 266
NPM commands, 265-266
package.json file, 265
patterns
class, 263
exports.NAME pattern, 264
function, 263
object, 264
recommended folder structure, 262

PQ

Papertrail App, 230
Patterns
class, 263
exports.NAME pattern, 264
function, 263
object, 264

Persistence, 115
Express.js 4 modules, 115
find method, 119
GET admin page route, 120
mongoskin, 115
post method, 119
remove and _id, 119
req objects, 116
updateByld shorthand method, 119
Platform as a Service (PaaS), 235, 243
POST method, 175, 187
prototype keywords, 263
PUT method, 175

R

Read-eval-print-loop (REPL), 7, 229
Recommended folder structure, 262
REST API servers, 173
approach, 173
characteristics of, 174
CRUD structure, 174
Hapi framework
database collection, 188
findOne method, 190
goals, 188
hapi-app.js coding, 191
hapi-app.js file creation, 188
loadCollection method, 189
server.route(), 189
server.start() method, 191
URL parameter, 190
HTTP methods, 175
implementation
app.param() method, 181
coding, 183
DELETE method, 183
express.logger(), 181
find(), 182
GET method, 186
POST method, 187
PUT request handler, 182
TDD, 187
terminal window, 185
Mocha and Superagent, test coverage with
coding, 179
done(), 178
error checking, 178
get(), 178
HTTP request, 177
map() function, 178
test/index.js file, 177
usage, 176
NPM, 175
$ npm install command, 176

S

Scaffolding
app.js middleware, 43
command-line interface, 40-41
creation, 40
Express.js App, configuration of, 44
Jade template engine, 44
routes, 43
terminal command, 40
Session-based authentication, 131
express.cookieParser(), 131
express.session(), 131
setMode() method, 211
setTheme() method, 211
Simple Object Access Protocol (SOAP), 174
Socket.IO, 195, 218
and Express.js
catching and processing, 201
HTTP requests, 202
Jade template, 204
messageChange event listener, 203
package.json and $ npm install, 202
server logs, 200
in production, 218-219

T

Template engines, 71
Handlebars
comments, 87
custom helpers, 87
each iteration, 84
expressions, 83
Express.js 4, 92
if condition, 85
includes/partials templates, 88
syntax, 83
unescaped output, 84
unless statement, 86
usages, 88
With statement, 86
Jade, 71
admin.jade, 101
aticle.jade, 97
attributes, 73
block blockname, 79
case statement, 77
comments, 75
Express.js 4, 91
extend filename, 79
filters, 77
if statement, 76
include, 78
index.jade, 95

INDEX

273

INDEX

Template engines (cont.)

interpolation, 77
iterations, 76
JavaScript code, 75
layout.jade, 93

literals, 74

login.jade, 98

mixins functions, 77
post.jade, 99
script/style tags, 74
syntax and features, 71

U

Upstart scripts, 253

Vv

Varnish cache, 259
Views, 210
Virtual fields, 159

W, XY,Z

tags, 71
text, 74 WebSocket, 195
usages, 79 browser implementation
variables/locals, 72 HTML tags, 196-197
Test-driven development (TDD), 57 script tag, 196
Token-based authentication, 130 definition, 195
TravisCI Node.js Server, 197
configuration file, 240-241 polling, 195
definition, 240 Winston, 230

$ make test command, 241

274

Practical Node.|s

Azat Mardan

Apress

Practical Node.js: Building Real-World Scalable Web Apps
Copyright © 2014 by Azat Mardan

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material

is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-6595-5
ISBN-13 (electronic): 978-1-4302-6596-2

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Publisher: Heinz Weinheimer

Lead Editor: Ben Renow-Clarke

Technical Reviewer: Peter Elst

Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan, Jim DeWolf,
Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham,
Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Christine Ricketts

Copy Editor: Cat Ohala

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science +
Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales-eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers at
www . apress.com. For detailed information about how to locate your book’s source code, go to
WWW.apress.com/source-code/.

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com
http://www.apress.com/source-code/

To Viadimir Nabokov and The Defense

Contents

About the AUtROrcccvciriserss s ————————————————_———— Xv
About the Technical REVIEWETccuserssssssmsssmssmmsssssssssmsssssssssssssssssssssssssssssssssssnsssnsnsnsnss Xvii
ACKNOWIEdgMENTSccuuiiiiemmmmissnnnnmsssssnnnmsssssssnmssssssnnmsssssnnnnsssssnnnssssssnnnsssssnnnnsssssnnnnnssssnnnnss Xix
INtroduction........ccvvernmnim s —————————————— xxi
Chapter 1: Setting up Node.js and Other Essentials...........cousmsssmsssnssmssmsssmssssssssssssasssnnnns 1
Installing Node.js @nd NPM ... sne e snesn e sn s sn s snesn s sn e sn s sn e n e sn e nne e 1
ONE-CliCK INSLAIIBYScciiiiiriririiriir s 2
Installing with HOmeBrew or MacPOMS ... e 3
INStAlliNG frOM @ TAr Fil@ ...t e e e e e e penns 4
INStAlliNG WIthOUL SUTO ...t p e s e p e e e p e e ren s 4
Installing from @ Git REPOccuecciieiieirerr et se s s e bbb e R e e b e R e e epe e nis 5
Multiversion SEtUP WIth NAVE.......ccveiecece s sae s s sa e sae e s s sa e s e sa e s e s aesa e e e sa e e e e e saesaenaenas 5
Multiversion SEtup WIith NVIVM ... sae s e sae s saesa e e sa e sa e sa e e e sa e sa e e e sa e na e naesaesaennenes 6
Alternative MUItIVErSion SYSTEMS ..o s e e bbb e e e e sn e p e e 6
Checking the INSTAllAtion ... ————————————— 7
NOde.jS CONSOIE (REPL)......cuiiecitictt st bbb b bbb 7
Launching NOE.JS SCHIPLS......cucuieeerrerrenrseresseiesssesssse s sse s s s se s sss e s s s e sssssssessssessensanens 8
Node.js BasiCS @aNd SYNTAXccccerrerrerririerieriessessessesses s s ses e ses e s e s e s sesssssesssssnsssssssssssnssasssssssnnns 9
00T T SRS 9
Buffer—No0de.jS SUPEr DAta TYPE.....ccvererrererrererrereerereeserseresersssersssessessssesassessssessesesssssssessssessssessssessssessssassssassens 10

L0 0T=T e I =Y I) LT R 10

LT T 110 10
4 | S SRSSS 12

vii

CONTENTS

ProtOtyPal NALUFE..........coveeeeeee ettt s et e s e p e 12
L1011 0] L 13
Node.js Globals and ReServed KEYWOITSc.oceceererenencrereescsessseese s se s s sessssens 14
__0Iirname VS. PrOCESS.CWccciueierrerirereresessessesesseses e sas e sas s se st s e e se s see st s s e e b e st e Re e e s A et b et e ae e s ae s e e ae e e e es 16
Browser Application Programming Interface HEIPErs ... sessesessens 17
NOGE.JS COIE MOUUIES ...ttt s e e e s se e s b e e e e nrn s 18
Handy NOAE.jS ULIHIES ...ttt 19
Reading to and Writing from the File System in NOUE.JSccovercrirrencnrseeerreece s 20
Streaming Data iN NOGE.JSccceuruieererirccririre et 20
Installing Node.js Modules With NPV ... s 20
Taming CallDACKS iN NOUE.JSccceerurreerererrresirirese et se s e e s e s e ssne e e snnnnnnas 21
Hello World Server with HTTP NOE.JS MOAUIEcccoerereeeeeeerecreres e 21
Debugging NOUE.jS Programs.........cccccveeenseresmssessssssessssesssssssessssssssssssesssssssssssssssssssssssssssssssssens 22
COre NOUE.JS DEDUGGET ... s s s e e s e s Re e e e s s e e e e npn e s 22
Debugging With NOGE INSPECIONc.cveeeererrrierirrreeseresse s e sn s e s sn s nse e e e nsnsnnes 23
Node.js IDES and Code EAITOrSccvververrrrersersersessessesses s sessessessessessssssssssssssssssssasssssssssssssnnns 28
Watching for File ChANQES ..ottt sn e 30
R 111 1P SRS 31
Chapter 2: Using Express.js 4 to Create Node.js Web APPS.....ccccummmsmmmmmnmnmmsssssssssssssnsnnnss 33
WhAL IS EXPIESS.JS? ..eveeeruerrerersersssessessssessessssessssesssssssessssssssssssessssssssssssssssssssssssnsssessssssssnsssesssnsenes 33
HOW EXPIrESS.JS WOIKSceeceieiesiesessessessessessessessessessessessessessssssssssssssssssssssssssssssssssssassnsssssansansans 36
EXpress.js INStallation ..o 36
EXPIESS.JS VEISION.......c.coereieecirereceerisse et e s e e e s e et e s e Re e e s s Re e e e s Re e e e nrannns 36
(LRI R C T 11T £ o] TS 37
LOCAI EXPIBSS. S . cuerrueuerersrueeseressesesesssseesessasssesesssssssesessesssessssasssssssssssssessssessstssssssssssssssssnssssssssssssssssnsnsssnsasenes 37
EXPress.jS SCAffOIAINGcccueereerrerenererinse e sas s ne s r e s nn s 40
Express.js Command-Ling INTEIACE.........ccevererrnererirrsresesessssse s sssessssssssssssssssssssssssasenes 4
ROULES IN EXPIESS.JS cueuererrrresererssseesessssssesesssssssssssssssssssessssssssessssssssssssssssssssssssssnsssssassssssssssnsssssssessssssssssnsssnsesenes 43
Middleware as the BaCKDONE Of EXPIESS.[S....cuuururrrererererrmsesesssssssesssenes 43
Configuration Of @N EXPreSS.iS APP ..ccuureerererrsseserersssesssersssssssessessssssssssssssssasenes 44

viii

CONTENTS

Jade IS Haml for EXPreSss.jS/NOUE.]Scoveucceerereeecrirteectr s 44
Conclusion ADOUE SCATFOIHING........ccccrurueererireeerr e 45
The BIOg ProjECt OVEIVIEWcovceeeeererresessessssessesessesss e ssessssssssssssesassesssssssssssssssessssssssssssssssnsenes 45
SUDMILEING The DALA........cccevereccrirreee e e e e R e s r e e nnns 46
Express.js 4 Hello World EXamPpIe ...t e e e 48
L T 0T o0 510 o [T 49
NPM Init @nd PACKAGE.JSONcvevuereiriiriere s sse e sae s s sae s sae s s a e s e saesa e s ae s s e e e sa e se e sa e e e e e sae e e saesaeseeseesaesaesaennans 49
Dependency Declaration: nNPM iNSTall ..o e sa e e sr e na e 50
TRE APPLJS FIlB .t e e e e e e e e e e e e e e e R e e e e e e e e e e e R e e e e e e e e s 51
Meet Jade: One Template 10 RUIE TREM Alccoeerererererererseressersesessesessesesessssessesessssassesassessssessssessssassssssaens 55
RUNNING the HEHO WOITA ADP ...veeeeecereres e sa e s sa e sa e sa e s e e sa e st sa e b b sa e e e sa e st e e e saesa e e e nnenens 55
BT 111 11T SRS SRS 96
Chapter 3: TDD and BDD for Node.js with Mochaccocccmmmnsssennnmmsssssnsmmssssssssssssssnenns 57
Installing and Understanding MOCRA.............ccoe i n e 57
Understanding MOCHA HOOKS.........cccourueecririiccnirneees s 59
TDD With the ASSEI.......cccceeeeeerererseresrssese e e e s n s as s nn e enennn e nnn e nnis 60
LT T o PP 62
BDD With EXPECL.JS ..eueeiree sttt s e s 63
EXPECLJS SYNTAXueiveiereirerereriereeseseesessesessesassesas e sassesaesesaesassesassessssesasssssssassessssessesessssssensssesassessssesassensesansenansens 64
Project: Writing the First BDD Test for BIOQccccverrernersenses s sne s e snennns 65
Putting Configs int0 @ MAKETIlE...........oueeecrereeeeer e 67
SUMMEAIY ...ttt e s s e ae e R e Re e s Re e e e e Re e aRe e s e e e Re e e e nae e nRensnnennnnnnnes 69
Chapter 4: Template Engines: Jade and Handlebarsccccuusemmmmsssssnnmmsssssssnmssssssnnnnans 71
Jade Syntax and FEATUIES........ccucveriierresrresire e sas e sn s na s 4
L T 71
L1 LT TSI 72
01 73
L) | PP 74
T eSS 74
SCHPE ANA STYIE BIOCKS.....covirieeererrrreererrssesesessssse s ses s e ss s s sssss s e s sssesesssssssssssssssssssssssesssssssssssassnsans 74

ix

CONTENTS

JAVASCHIPE COUE......ueeieire et s e s bR e e e e R e e e A e e R e e e Re e s e e e e R e e e Re e nnis 75
10111 =T 0 75
CONAITIONS (If) ...ceerereeerereeesesere et e s s e s s e e e s R e ae e e R e Re e e e s Re e e nesRa e e e nrannns 76
RErations (BACH I00PS)veucucererecccrerieecre e e e e s R e se e s ae e e e nne s 76
(=T 77
INEEIPOIALION ... e AR e e E e Re A e R e e Re e Re e e Re e eaeas 77
7 77
3 77
INCIUAR ... s 78
EXTENG.... s 79
Standalone Jade USAQE..........cveeeererrenererensirsesessesssssssessssessessssesssssssessssessssssssssssessssssssssssssssssanens 79
Handlebars SYNTAX ..o 83
VEATTADIES ..o 83
1G] s L0y I (T T 1) OSSR 84
L1720 101 R 84
00 o 10§ R 85
] 85
WD <.ttt s s E R AR E AR R AR R 86
00T 31T 87
LTS (0] T (=11 0T R 87
L e LU0 LT (e T 1) OSSR 88
Standalone Handlehars USAQEcccceeeecrrerreesersis s ses s sse s s s s sns s s e s s s snssnnnnas 88
Jade and Handlebars USage in EXPreSS.jS 4ccouuivermserersssessesssessssesssssssesssssssessssesssssssssssssenes 91
JAAC ANU EXPIBSS.[S.eurrreueerrrrrrererersssesessssssssssessssasesessesssssssssssssssasssssssssesssssssesssssnsans 91
HandIEDArS QNG EXPIESS.JS ...cvurrrrererersrreseseresssssessssssesssessssssssessnsssssssessssssssssssssssesenes 92
Project: Adding Jade Templates t0 BIOgccceeirveniirrmniinre s see e sneas 93
F2)01 T U0 L SRS 93
1T (= T oL OSSR 95
L[LT o [SRS 97

0T 1 R Lo [OSSR 98

CONTENTS

010 4 Lo L PSP 99
10011 2T L OO 101
R 111 1P 2SSOSR 102
Chapter 5: Persistence with MongoDB and MongosKin.........ccccuussssssssmssmmssssssssssssssnnns 103
Easy and Proper Installation of MONQGODB...........ccccocveerernsmresrreses e ses e enes 103
How to RuUn the MONQO SEIVEN ..ot s sn s 105
Data Manipulation from the Mongo CONnSOIe.........c.ccucrvrrrcerrerrerss s 106
MongoDB Shell in Detail..........cccvvrvrirrnrnrr s 107
Minimalistic Native MongoDB Driver for Node.js Example.........cccccverrrrrsssnsnssessessessessensenns 108
Main Mongoskin Methods..........cccvcrrrrcnrrr e e 111
Project: Storing Blog Data in MongoDB with Mongoskinccccvvrvrvrnnnnsnsenssses e 113
Project: Adding MongoDB Seed Data............cccceerrrrrienererrnesessrensesesessssssessssssssessses 113
Project: Writing MOCHA TESTScccceerriccrirrreeserirs e nnnn s 114
Project: Adding PersiStENCE........cccceurrrerererrrreseseresrsesesesss s s sse s s s sss s s e e s s s s ssss e s ssssssssssssssssssssssssnes 115
RUNNING ThE APP weovveeeeiririese e e e e se s a e e s e e e A e Re e s e Re e e e s aesn e e nannnnes 126
E3 U111 P2 7SS 127
Chapter 6: Using Sessions and OAuth to Authorize and Authenticate
Users in NOUE.JS APPS..uuuuuutrrrrmssssssnnmnnnmmmsssssssssnssnnnssssssssssssssssnssssssssssssssnnssssssssssssnnnnnnnsess 129
Authorization with Express.js MiddIEWArecccoeeeeeeecc e 129
Token-Based AuthentiCation..........c.ccvceerceresnicns s 130
Session-Based Authentication ... ———— 131
Project: Adding E-mail and Password Login t0 BIOgccccuervrieriersnsesses s ses e 132
SESSION MIAAIBWAIEcveveeecrierire et e e e se e e e e e e e e R e b Re e e Re A et b et e R e e e ae e e aenananas 132
AULNOFZALION N BIOG ...t et s e e e s e e nn e e s 133
AUthentiCation N BIOGcccoeureeeeriiecsirirese st e s s e s e e ae e nn s 136
RUNNING thE ADD ettt e e A e A b e e Re e e Re b et e R et e ae e s aenananas 137
NOGE.JS QAULN ...ttt r e r s ne e nn e s ae e e nrnnnnis 138
Twitter OAuth 2.0 Example With NOA€.jS QAULNcceeeeirrrreccrrr e se e 138
T 1 L1 T 139

xi

CONTENTS

Project: Adding Twitter OAuth 1.0 Sign-in to Blog with Everyauth............cccccoeevvrvrververrenceniene, 140
Adding a Sign-in With @ TWItEEr LINK........cceeverrerrcrererere s reseresserse e ssssessesessesssessssesssssssssassessssesssssssenaes 141
Configuring the Everyauth TWitter STrategy........cocverrrrerrerrererererseree e s re s sessessesessesessesassesassessssesasnanaens 141

RS 1T T 147

Chapter 7: Boosting Your Node.js Data with the Mongoose ORM Librarycceecenneinns 149

Mongo0Se INSLAllALIONcccrercererr e —————— 150

Connection Establishment in a Standalone Mongoose Script..........ccccoveierninesnsesssesesenens 150

MONQO0SE SCREIMASc..crererieririerser sttt se e se e e e se e n e a e n e e e n e nn e na e e e nn e s 152

Hooks for Keeping Code Organized...........cccvcveereersinsessensessessessss s ssssssssssssssssssssssssssssssssssssssnnes 154

Custom Static and Instance Methods...........cccuceeerrernsennsnses s 154

MONQO0SE MOUEISooeeceiriee e se e s sa e s sn e e s sn e s ae s sne s e e nnesanennenns 155

Relationships and Joins with Population ... 157

Nested DOCUMENTES ... e n s 158

VUL FIEIASeeuecererecisieeeecse e sas s se s ss e sesss s s s s s sesensnsasns 159

Schema Type Behavior AMendment............cooceeeceiecesncssse s srssn s sn e snenans 160

Express.js + Mongo0ose = True MVC..........cocrvrirrrrnnrirer s se s ss s e e ss s sns s s s 162

SUMMAIY ...t a e e e ae e A e e e Re e s R e e e ae e e e eRenn e e enernaens 172

Chapter 8: Building Node.js REST API Servers with Express.js and Hapi........ccuseeneiuns 173

RESTIUI API BASICSveueueseereresssssseseesesessssssssssesesssesssnssssssssnens 174

Project DEPENUENCIEScccvcerieriercirir s sr s sr e n e n s r e n e n e nn e nn e nn s 175

Test Coverage with Mocha and Superagent............ccvvvvrvrnrrrsr s 176

REST API Server Implementation with Express and MongoskKinccccceveenieenncnesenscsensennes 181

Refactoring: Hapi RESP APl SEIVEN ... s s s s s s s s 187

E3 1111 1P 2SSOSR 194

Chapter 9: Real-Time Apps with WehSocket, Socket.10, and DerbyJsSccccusueennrnans 195

What IS WEDSOCKEL?.......c.eeeeeeereerceres e s 195

Native WebSocket and Node.js with the ws Module Example...........ccoceerverrenniernscssesessesnnnennes 196
Browser WebSocket IMpIeMENtation...........c.cococeererrerenncrreserereses e sesesesesesesenes 196
Node.js Server with ws Module Implementation............ccccveerererrererere s ree e ra e sae e saesesaesanaens 197

xii

CONTENTS

Socket.I0 and EXPress.jS EXAMPIEccccevvevrerierninieriesser e e s s s s sss s s sassnssnsnnns 199
Collaborative Online Code Editor Example with DerbyJS, Express.js, and MongoDB................ 204
Project Dependencies and PaCKAgE.jSON........cccceierrrrerresesresesessssessssesseses e sss e sss e ssssessesssssssssessssessssessssssssssnnens 205
RS Te T o[- oL 206
DL 401 Y] OO 208
DEIDYJIS VIBW.....c.ctieccctririe et s e a s e e e e e A e e e e e E AR e e bRt e AR e et e R e an s 210
L1 (0] 1 1 | 212
11T OSSR 213
Chapter 10: Getting Node.js Apps Production Ready.......c.cccrsssmmmsssmnmsssnsssssnsssssnsssssansas 215
Environment Variables............cocoriiicnicsnsesss s s sn s 215
EXPress.js in PrOQUCTION.......c.cvcercerrerier ettt se s sn e sn s sn s sn s e nn s 216
SOCKEL.I0 iN ProdUCHIONccceeececeece e sas e srs s sns e 218
Error HANAIINGooceiireccsrir ittt e e s s n e nn e nn e nn e n s 219
Node.js Domains for Error Handlingccccvververnenrnnensennissessessssses s ses e e s ssssssssssssssssssssssssses 221
Multithreading With CIUSTEcececrrr e n e e n s 224
Multithreading With CIUSTEI2..........couecereeirirerrcrr e 226
Event Logging and MONItOriNG.........ccvcerverrersernensensesses s s e s sessssses e sesssssessssssssssssssssssssnsssssssses 227
1111 (0] T 227
REPL iN PFOAUCTION ... se e e seneneenenes 229
L o] 230
Papertrail APP fOr LOGOINGceouvererererrereerereesersesesesssersesessesessessssessssessesesssssssesassessssessenssssssssessssessssesasssssssanaens 230
Building Tasks With GIUNL...........ccocceiiierrierr e sn s 231
Git for Version Control and Deployments..........coeceeecerccccesescse s sns e 235
1 EY 2 T4 T TR SR T 235
GENEIALING SSH KEYS.....eivieeeirireiririre et e e ae e s Re e e e s ne e e e nannn s 236
Creating @ LOCAl Git REPOSITONYccueueerirerreierisieescsisss e se s nsannns 239
Pushing the Local Repository t0 GItHUD ..o 239
Running Tests in Cloud With TraviSCl.........c.ccuvrvrvnrnnenrenir s ses e ss e s s ssenes 240
TraviSCl CONFIGUIALION.........cceeeeerererreree et r e e e e rae e s s e e s s e e s e e sesaesesaerae e s ae e e ae e naenesaesaeneraenenannnnann 241
SUMMEAIY ...ttt e e e s e s Re e A e e e Re b e Re e e Re e et e Rene s e ene e naen 241

CONTENTS

Chapter 11: Deploying NoOde.jS APPS «ueurrsssmrsssssmssssnsssssnssssansesssnsesssnsesssssesssnsesssnnssssanssss 243
DepIoYiNg 10 HBIOKUccveeueeeeeeeerc et sse e sse s s e s e s sn s s sn s sassae s sn e sn e sn e n e sn e snesnesnennennnne s 243
Deploying 10 AMazon WED SEIVICEScccurirererrerrenesses s sss s ses s sssssssssssssssssssasssssssssssassssssnses 248
Keeping Node.js Apps Alive with forever, Upstart, and init.d..........ccooeerereeiececececee e 252
(0] (=3 OO 252
10Ty L T] 0SS 253
ML vvvveeeeeeessseesesssssseessssssesssssssssessssssssesees s e s8R £ 8RR R8RSR RS 255
Serving Static Resources Properly With NginX........ccooceereecrcnsscscr s sessnsnns 257
Caching With VarniSh..........cccoriiinerrrrs s sss e s s e sas s ssssassassssssssassss s s 259
SUMMEAIY ...ttt e s e s Re e e A e e e Re b e e Re e e ae e et e Rene s e nnernaens 260
Chapter 12: Publishing Node.js Modules and Contributing to Open Source..........ccvu. 261
Recommended FOlder STrUCLUIEcccoveceriercrere e 262
Required Patterns........c.ccocvcriiiniinr ittt n s e 262
PACKAGE.JSON ..vevveeereereersereessessessessessesaessessessessessssassaesassasssssssssssssssssassssssssassssssssassasssssssssssssssnnes 265
PUBIISNING 10 NPM ..ot n s s nn e nn s nn e n s 265
LOCKING VEISIONScoveiiiceiirsesinesssss s s sss e e s s s sss s ssssss s sss s sssssssssnssssssssssssnsssnsenns 266
RS 1] 1] P2 2SR 266
Practical Node.jS CONCIUSION...........ccucercerrercirsersr s sn e sn s n s n s 267
g (g TeT g 2= To] o SRR 267
Errata and CONTACTS.........cccoerreererncrire e 267
INA@X..ceiiiisnnnnnssssnnnnsssssnnnnnssssnnnssssssnnnssssssnnnnnssssnnnsnsssnnnssnsssnnnnsnsssnnnnsssssnnnnsssssnnnnnnsssnnnnnnnssnns 269

xiv

About the Author

Azat Mardan has more than a dozen years of experience in web, mobile, and
software engineering. With a Bachelor’s degree in informatics and a Master of
Science degree in information systems technology, Azat possesses deep academic
knowledge as well as extensive practical experience.

Currently, Azat works as a team lead/senior software engineer at DocuSign,
where his team rebuilds 50 million user products (DocuSign web app) using the
technical cutting-edge stack of Node.js, Express.js, Backbone.js, CoffeeScript, Jade,
Stylus, and Redis.

Previously Azat worked as a senior software engineer at Storify.com (acquired
in 2013), National Center for Biotechnology Information, Federal Deposit Insurance
Corporation, Lockheed Martin, and others. He taught programming classes at
Marakana (acquired in 2013), pariSOMA, General Assembly San Francisco, and
Hack Reactor to much acclaim. In his spare time, Azat writes about technology on
his blog webapplog. com. He is also the author of four other books on JavaScript and Node.js, including Amazon’s #1
Best Seller in the Client Server category: Rapid Prototyping with JS: Agile JavaScript Development.

Azat is the creator of open-source Node.js projects: ExpressWorks, mongoui, HackHall, and NodeFramework . com,
as well as a contributor to Express, OAuth, jade-browser, and other Node Package Manager modules.

XV

http://webapplog.com
http://NodeFramework.com

About the Technical Reviewer

Peter Elst is a web standards enthusiast with a multimedia and application
development background. He works as a web solutions engineer in creative
innovation at Google.

With well more than a decade of experience, Elst is a regular technical
reviewer; has co-authored a number of books, including HTML5 Solutions:
Essential Techniques for HTML5 Developers; and is a well-respected speaker at
many industry events. You can find out more about his latest interests and ongoing
projects on his personal blog peterelst.com.

xvii

http://peterelst.com

Acknowledgments

I convey my gratitude to all the wonderful people I have encountered during my software engineering career. These
people supported, mentored, and trusted me with new challenges, helped me to find mistakes, and pushed my limits.
Of course, this book wouldn’t be possible without the assistance, research, and championing done by my Apress
editors. I especially thank Ben Renow-Clarke, Christine Ricketts, James Markham, Cat Ohala, and Peter Elst.
Also, many thanks and appreciation go to the readers who kindly provided feedback to the alpha version of
Practical Node.js, my webapplog.com (http://webapplog.com) blog posts, and my prior books
(http://webapplog.com/books).

Xix

http://webapplog.com
http://webapplog.com/books

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Setting up Node.js and Other Essentials
	Installing Node.js and NPM
	One-Click Installers
	Installing with HomeBrew or MacPorts
	Installing from a Tar File
	Installing Without sudo
	Installing from a Git Repo
	Multiversion Setup with Nave
	Multiversion Setup with NVM
	Alternative Multiversion Systems
	Checking the Installation
	Node.js Console (REPL)

	Launching Node.js Scripts
	Node.js Basics and Syntax
	Loose Typing
	Buffer—Node.js Super Data Type
	Object Literal Notation
	Functions
	Define/Create a Function
	Pass Functions as Parameters
	Function Invocation vs. Expression

	Arrays
	Prototypal Nature
	Conventions
	Semicolons
	camelCase
	Naming
	Commas
	Indentation
	Whitespace

	Node.js Globals and Reserved Keywords
	Node.js Process Information
	Accessing Global Scope in Node.js
	Exporting and Importing Modules

	__dirname vs. process.cwd
	Browser Application Programming Interface Helpers
	Node.js Core Modules
	http (http://nodejs.org/api/http.html)
	util (http://nodejs.org/api/util.html)
	querystring (http://nodejs.org/api/querystring.html)
	url (http://nodejs.org/api/url.html)
	fs (http://nodejs.org/api/fs.html)

	Handy Node.js Utilities
	Reading to and Writing from the File System in Node.js
	Streaming Data in Node.js
	Installing Node.js Modules with NPM
	Taming Callbacks in Node.js
	Hello World Server with HTTP Node.js Module

	Debugging Node.js Programs
	Core Node.js Debugger
	Debugging with Node Inspector

	Node.js IDEs and Code Editors
	Watching for File Changes
	Summary

	Chapter 2: Using Express.js 4 to Create Node.js Web Apps
	What Is Express.js?
	How Express.js Works
	Express.js Installation
	Express.js Version
	Express.js Generator
	Local Express.js

	Express.js Scaffolding
	Express.js Command-Line Interface
	Routes in Express.js
	Middleware as the Backbone of Express.js
	Configuration of an Express.js App
	Jade Is Haml for Express.js/Node.js
	Conclusion About Scaffolding

	The Blog Project Overview
	Submitting the Data

	Express.js 4 Hello World Example
	Setting up Folders
	NPM Init and package.json
	Dependency Declaration: npm install
	The App.js File
	Meet Jade: One Template to Rule Them All
	Running the Hello World App

	Summary

	Chapter 3: TDD and BDD for Node.js with Mocha
	Installing and Understanding Mocha
	Understanding Mocha Hooks

	TDD with the Assert
	Chai Assert

	BDD with Expect.js
	Expect.js Syntax

	Project: Writing the First BDD Test for Blog
	Putting Configs into a Makefile

	Summary

	Chapter 4: Template Engines: Jade and Handlebars
	Jade Syntax and Features
	Tags
	Variables/Locals
	Attributes
	Literals
	Text
	Script and Style Blocks
	JavaScript Code
	Comments
	Conditions (if)
	Iterations (each loops)
	Filters
	Interpolation
	Case
	Mixins
	Include
	Extend

	Standalone Jade Usage
	Handlebars Syntax
	Variables
	Iteration (each)
	Unescaped Output
	Conditions (if)
	Unless
	With
	Comments
	Custom Helpers
	Includes (Partials)

	Standalone Handlebars Usage
	Jade and Handlebars Usage in Express.js 4
	Jade and Express.js
	Handlebars and Express.js

	Project: Adding Jade Templates to Blog
	layout.jade
	index.jade
	article.jade
	login.jade
	post.jade
	admin.jade

	Summary

	Chapter 5: Persistence with MongoDB and Mongoskin
	Easy and Proper Installation of MongoDB
	How to Run the Mongo Server
	Data Manipulation from the Mongo Console
	MongoDB Shell in Detail
	Minimalistic Native MongoDB Driver for Node.js Example
	Main Mongoskin Methods
	Project: Storing Blog Data in MongoDB with Mongoskin
	Project: Adding MongoDB Seed Data
	Project: Writing Mocha Tests
	Project: Adding Persistence
	Running the App

	Summary

	Chapter 6: Using Sessions and OAuth to Authorize and Authenticate Users in Node.js Apps
	Authorization with Express.js Middleware
	Token-Based Authentication
	Session-Based Authentication
	Project: Adding E-mail and Password Login to Blog
	Session Middleware
	Authorization in Blog
	Authentication in Blog
	Running the App

	Node.js OAuth
	Twitter OAuth 2.0 Example with Node.js OAuth
	Everyauth

	Project: Adding Twitter OAuth 1.0 Sign-in to Blog with Everyauth
	Adding a Sign-in with a Twitter Link
	Configuring the Everyauth Twitter Strategy

	Summary

	Chapter 7: Boosting Your Node.js Data with the Mongoose ORM Library
	Mongoose Installation
	Connection Establishment in a Standalone Mongoose Script
	Mongoose Schemas
	Hooks for Keeping Code Organized
	Custom Static and Instance Methods
	Mongoose Models
	Relationships and Joins with Population
	Nested Documents
	Virtual Fields
	Schema Type Behavior Amendment
	Express.js + Mongoose = True MVC
	Summary

	Chapter 8: Building Node.js REST API Servers with Express.js and Hapi
	RESTful API Basics
	Project Dependencies
	Test Coverage with Mocha and Superagent
	REST API Server Implementation with Express and Mongoskin
	Refactoring: Hapi RESP API Server
	Summary

	Chapter 9: Real-Time Apps with WebSocket, Socket.IO, and DerbyJS
	What Is WebSocket ?
	Native WebSocket and Node.js with the ws Module Example
	Browser WebSocket Implementation
	Node.js Server with ws Module Implementation

	Socket.IO and Express.js Example
	Collaborative Online Code Editor Example with DerbyJS, Express.js, and MongoDB
	Project Dependencies and package.json
	Server-side Code
	DerbyJS App
	DerbyJS View
	Editor Tryout

	Summary

	Chapter 10: Getting Node.js Apps Production Ready
	Environment Variables
	Express.js in Production
	Socket.IO in Production
	Error Handling
	Node.js Domains for Error Handling
	Multithreading with Cluster
	Multithreading with Cluster2
	Event Logging and Monitoring
	Monitoring
	REPL in Production
	Winston
	Papertrail App for Logging

	Building Tasks with Grunt
	Git for Version Control and Deployments
	Installing Git
	Generating SSH Keys
	Creating a Local Git Repository
	Pushing the Local Repository to GitHub

	Running Tests in Cloud with TravisCI
	TravisCI Configuration

	Summary

	Chapter 11: Deploying Node.js Apps
	Deploying to Heroku
	Deploying to Amazon Web Services
	Keeping Node.js Apps Alive with forever, Upstart, and init.d
	forever
	Upstart Scripts
	init.d

	Serving Static Resources Properly with Nginx
	Caching with Varnish
	Summary

	Chapter 12: Publishing Node.js Modules and Contributing to Open Source
	Recommended Folder Structure
	Required Patterns
	package.json
	Publishing to NPM
	Locking Versions
	Summary
	Practical Node.js Conclusion
	Further Reading
	Errata and Contacts

	Index

