
Alex Young
Marc Harter

FOREWORD BY
Ben Noordhuis

M A N N I N G

INCLUDES 115 TECHNIQUES

www.allitebooks.com

http://www.allitebooks.org

Node.js in Practice

ALEX YOUNG
MARC HARTER

M A N N I N G
SHELTER ISLAND

www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2015 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

Manning Publications Co. Development editor: Cynthia Kane
20 Baldwin Road Technical development editor: Jose Maria Alvarez Rodriguez
PO Box 761 Copyeditor: Benjamin Berg
Shelter Island, NY 11964 Proofreader: Katie Tennant

Typesetter: Gordan Salinovic
Cover designer: Marija Tudor

ISBN 9781617290930
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 19 18 17 16 15 14

www.allitebooks.com

http://www.allitebooks.org

iii

brief contents
PART 1 NODE FUNDAMENTALS ...1

1 ■ Getting started 3

2 ■ Globals: Node’s environment 15

3 ■ Buffers: Working with bits, bytes, and encodings 39

4 ■ Events: Mastering EventEmitter and beyond 64

5 ■ Streams: Node’s most powerful and misunderstood
feature 82

6 ■ File system: Synchronous and asynchronous approaches
to files 114

7 ■ Networking: Node’s true “Hello, World” 136

8 ■ Child processes: Integrating external applications with
Node 174

PART 2 REAL-WORLD RECIPES ..197

9 ■ The Web: Build leaner and meaner web applications 199

10 ■ Tests: The key to confident code 260

www.allitebooks.com

http://www.allitebooks.org

BRIEF CONTENTSiv

11 ■ Debugging: Designing for introspection and resolving
issues 293

12 ■ Node in production: Deploying applications safely 326

PART 3 WRITING MODULES ...359

13 ■ Writing modules: Mastering what Node is all about 361

www.allitebooks.com

http://www.allitebooks.org

v

contents
foreword xiii
preface xv
acknowledgments xvi
about this book xviii
about the cover illustration xx

PART 1 NODE FUNDAMENTALS...1

1 Getting started 3
1.1 Getting to know Node 4

Why Node? 4 ■ Node’s main features 6

1.2 Building a Node application 8
Creating a new Node project 9 ■ Making a stream class 9
Using a stream 10 ■ Writing a test 12

1.3 Summary 13

2 Globals: Node’s environment 15
2.1 Modules 16

TECHNIQUE 1 Installing and loading modules 16
TECHNIQUE 2 Creating and managing modules 17

www.allitebooks.com

http://www.allitebooks.org

CONTENTSvi

TECHNIQUE 3 Loading a group of related modules 19
TECHNIQUE 4 Working with paths 21

2.2 Standard I/O and the console object 22
TECHNIQUE 5 Reading and writing to standard I/O 22
TECHNIQUE 6 Logging messages 24
TECHNIQUE 7 Benchmarking a program 25

2.3 Operating system and command-line integration 27
TECHNIQUE 8 Getting platform information 27
TECHNIQUE 9 Passing command-line arguments 28
TECHNIQUE 10 Exiting a program 29
TECHNIQUE 11 Responding to signals 31

2.4 Delaying execution with timers 32
TECHNIQUE 12 Executing functions after a delay with

setTimeout 32
TECHNIQUE 13 Running callbacks periodically with

timers 34
TECHNIQUE 14 Safely managing asynchronous APIs 35

2.5 Summary 38

3 Buffers: Working with bits, bytes, and encodings 39
3.1 Changing data encodings 40

TECHNIQUE 15 Converting buffers into other formats 40
TECHNIQUE 16 Changing string encodings using buffers 41

3.2 Converting binary files to JSON 44
TECHNIQUE 17 Using buffers to convert raw data 44

3.3 Creating your own binary protocol 58
TECHNIQUE 18 Creating your own network protocol 58

3.4 Summary 63

4 Events: Mastering EventEmitter and beyond 64
4.1 Basic usage 65

TECHNIQUE 19 Inheriting from EventEmitter 65
TECHNIQUE 20 Mixing in EventEmitter 68

4.2 Error handling 69
TECHNIQUE 21 Managing errors 69
TECHNIQUE 22 Managing errors with domains 71

4.3 Advanced patterns 73
TECHNIQUE 23 Reflection 73
TECHNIQUE 24 Detecting and exploiting EventEmitter 75
TECHNIQUE 25 Categorizing event names 77

www.allitebooks.com

http://www.allitebooks.org

CONTENTS vii

4.4 Third-party modules and extensions 78
TECHNIQUE 26 Alternatives to EventEmitter 78

4.5 Summary 80

5 Streams: Node’s most powerful and misunderstood feature 82
5.1 Introduction to streams 83

Types of streams 83 ■ When to use streams 84 ■ History 85
Streams in third-party modules 85 ■ Streams inherit from
EventEmitter 87

5.2 Built-in streams 88
TECHNIQUE 27 Using built-in streams to make a static

web server 88
TECHNIQUE 28 Stream error handling 90

5.3 Third-party modules and streams 91
TECHNIQUE 29 Using streams from third-party modules 91

5.4 Using the stream base classes 94
TECHNIQUE 30 Correctly inheriting from the stream

base classes 94
TECHNIQUE 31 Implementing a readable stream 96
TECHNIQUE 32 Implementing a writable stream 99
TECHNIQUE 33 Transmitting and receiving data with duplex

streams 101
TECHNIQUE 34 Parsing data with transform streams 103

5.5 Advanced patterns and optimization 105
TECHNIQUE 35 Optimizing streams 105
TECHNIQUE 36 Using the old streams API 108
TECHNIQUE 37 Adapting streams based on their

destination 109
TECHNIQUE 38 Testing streams 111

5.6 Summary 113

6 File system: Synchronous and asynchronous approaches
to files 114

6.1 An overview of the fs module 115
POSIX file I/O wrappers 115 ■ Streaming 117 ■ Bulk file I/O 117
File watching 118 ■ Synchronous alternatives 118

TECHNIQUE 39 Loading configuration files 119
TECHNIQUE 40 Using file descriptors 120
TECHNIQUE 41 Working with file locking 121
TECHNIQUE 42 Recursive file operations 125

www.allitebooks.com

http://www.allitebooks.org

CONTENTSviii

TECHNIQUE 43 Writing a file database 128
TECHNIQUE 44 Watching files and directories 132

6.2 Summary 134

7 Networking: Node’s true “Hello, World” 136
7.1 Networking in Node 137

Networking terminology 137 ■ Node’s networking modules 141
Non-blocking networking and thread pools 142

7.2 TCP clients and servers 143
TECHNIQUE 45 Creating a TCP server and tracking

clients 143
TECHNIQUE 46 Testing TCP servers with clients 145
TECHNIQUE 47 Improve low-latency applications 147

7.3 UDP clients and servers 149
TECHNIQUE 48 Transferring a file with UDP 149
TECHNIQUE 49 UDP client server applications 153

7.4 HTTP clients and servers 156
TECHNIQUE 50 HTTP servers 156
TECHNIQUE 51 Following redirects 158
TECHNIQUE 52 HTTP proxies 162

7.5 Making DNS requests 165
TECHNIQUE 53 Making a DNS request 165

7.6 Encryption 167
TECHNIQUE 54 A TCP server that uses encryption 167
TECHNIQUE 55 Encrypted web servers and clients 170

7.7 Summary 173

8 Child processes: Integrating external applications
with Node 174

8.1 Executing external applications 175
TECHNIQUE 56 Executing external applications 176

Paths and the PATH environment variable 176 ■ Errors when
executing external applications 177

TECHNIQUE 57 Streaming and external applications 178
Stringing external applications together 179

TECHNIQUE 58 Executing commands in a shell 180
Security and shell command execution 181

www.allitebooks.com

http://www.allitebooks.org

CONTENTS ix

TECHNIQUE 59 Detaching a child process 182
Handing I/O between the child and parent processes 183 ■ Reference
counting and child processes 184

8.2 Executing Node programs 185
TECHNIQUE 60 Executing Node programs 185
TECHNIQUE 61 Forking Node modules 186
TECHNIQUE 62 Running jobs 188

Job pooling 190 ■ Using the pooler module 191

8.3 Working synchronously 192
TECHNIQUE 63 Synchronous child processes 192

8.4 Summary 194

PART 2 REAL-WORLD RECIPES..197

9 The Web: Build leaner and meaner web applications 199
9.1 Front-end techniques 200

TECHNIQUE 64 Quick servers for static sites 200
TECHNIQUE 65 Using the DOM in Node 204
TECHNIQUE 66 Using Node modules in the browser 207

9.2 Server-side techniques 209
TECHNIQUE 67 Express route separation 209
TECHNIQUE 68 Automatically restarting the server 212
TECHNIQUE 69 Configuring web applications 215
TECHNIQUE 70 Elegant error handling 219
TECHNIQUE 71 RESTful web applications 222
TECHNIQUE 72 Using custom middleware 231
TECHNIQUE 73 Using events to decouple functionality 236
TECHNIQUE 74 Using sessions with WebSockets 238
TECHNIQUE 75 Migrating Express 3 applications

to Express 4 242
9.3 Testing web applications 246

TECHNIQUE 76 Testing authenticated routes 246
TECHNIQUE 77 Creating seams for middleware

injection 248
TECHNIQUE 78 Testing applications that depend on

remote services 250

9.4 Full stack frameworks 256

9.5 Real-time services 257

9.6 Summary 258

www.allitebooks.com

http://www.allitebooks.org

CONTENTSx

10 Tests: The key to confident code 260
10.1 Introduction to testing with Node 261

10.2 Writing simple tests with assertions 262
TECHNIQUE 79 Writing tests with built-in modules 263
TECHNIQUE 80 Testing for errors 265
TECHNIQUE 81 Creating custom assertions 268

10.3 Test harnesses 270
TECHNIQUE 82 Organizing tests with a test harness 270

10.4 Test frameworks 273
TECHNIQUE 83 Writing tests with Mocha 273
TECHNIQUE 84 Testing web applications with Mocha 276
TECHNIQUE 85 The Test Anything Protocol 280

10.5 Tools for tests 282
TECHNIQUE 86 Continuous integration 283
TECHNIQUE 87 Database fixtures 285

10.6 Further reading 291

10.7 Summary 292

11 Debugging: Designing for introspection and resolving issues 293
11.1 Designing for introspection 294

Explicit exceptions 294 ■ Implicit exceptions 295 ■ The error
event 295 ■ The error argument 296

TECHNIQUE 88 Handling uncaught exceptions 296
TECHNIQUE 89 Linting Node applications 299

11.2 Debugging issues 300
TECHNIQUE 90 Using Node’s built-in debugger 300
TECHNIQUE 91 Using Node Inspector 306
TECHNIQUE 92 Profiling Node applications 308
TECHNIQUE 93 Debugging memory leaks 311
TECHNIQUE 94 Inspecting a running program with

a REPL 316
TECHNIQUE 95 Tracing system calls 322

11.3 Summary 325

12 Node in production: Deploying applications safely 326
12.1 Deployment 327

TECHNIQUE 96 Deploying Node applications to
the cloud 327

TECHNIQUE 97 Using Node with Apache and nginx 332

CONTENTS xi

TECHNIQUE 98 Safely running Node on port 80 335
TECHNIQUE 99 Keeping Node processes running 336
TECHNIQUE 100 Using WebSockets in production 338

12.2 Caching and scaling 342
TECHNIQUE 101 HTTP caching 342
TECHNIQUE 102 Using a Node proxy for routing and

scaling 344
TECHNIQUE 103 Scaling and resiliency with cluster 347

12.3 Maintenance 351
TECHNIQUE 104 Package optimization 351
TECHNIQUE 105 Logging and logging services 353

12.4 Further notes on scaling and resiliency 356

12.5 Summary 357

PART 3 WRITING MODULES...359

13 Writing modules: Mastering what Node is all about 361
13.1 Brainstorming 363

A faster Fibonacci module 363

TECHNIQUE 106 Planning for our module 363
TECHNIQUE 107 Proving our module idea 366

13.2 Building out the package.json file 370
TECHNIQUE 108 Setting up a package.json file 370
TECHNIQUE 109 Working with dependencies 373
TECHNIQUE 110 Semantic versioning 377

13.3 The end user experience 379
TECHNIQUE 111 Adding executable scripts 379
TECHNIQUE 112 Trying out a module 381
TECHNIQUE 113 Testing across multiple Node versions 383

13.4 Publishing 385
TECHNIQUE 114 Publishing modules 385
TECHNIQUE 115 Keeping modules private 387

13.5 Summary 388

appendix Community 391
index 395

xiii

foreword
You have in your hands a book that will take you on an in-depth tour of Node.js. In the
pages to come, Alex Young and Marc Harter will help you grasp Node’s core in a deep
way: from modules to real, networked applications.

 Networked applications are, of course, an area where Node.js shines. You, dear
reader, are likely well aware of that; I daresay it is your main reason for purchasing this
tome! For the few of you who actually read the foreword, let me tell you the story of
how it all began.

 In the beginning, there was the C10K problem. And the C10K problem raised this
question: if you want to handle 10,000 concurrent network connections on contempo-
rary hardware, how do you go about that?

 You see, for the longest time operating systems were terrible at dealing with large
numbers of network connections. The hardware was terrible in many ways, the software
was terrible in other ways, and when it came to the interaction between hardware and
software … linguists had a field day coming up with proper neologisms; plain terrible
doesn’t do it justice. Fortunately, technology is a story of progress; hardware gets better,
software saner. Operating systems improved at managing large numbers of network
connections, as did user software.

 We conquered the C10K problem a long time ago, moved the goal posts, and now
we’ve set our sights on the C100K, C500K, and C1M problems. Once we’ve comfortably
crossed those frontiers, I fully expect that the C10M problem will be next.

FOREWORDxiv

 Node.js is part of this story of ever-increasing concurrency, and its future is bright:
we live in an increasingly connected world and that world needs a power tool to con-
nect everything. I believe Node.js is that power tool, and I hope that, after reading this
book, you will feel the same way.

BEN NOORDHUIS

 COFOUNDER, STRONGLOOP, INC.

xv

preface
When Node.js arrived in 2009, we knew something was different. JavaScript on the server
wasn’t anything new. In fact, server-side JavaScript has existed almost as long as client-
side JavaScript. With Node, the speed of the JavaScript runtimes, coupled with the event-
based parallelism that many JavaScript programmers were already familiar with, were
indeed compelling. And not just for client-side JavaScript developers, which was our
background—Node attracted developers from the systems level to various server-side
backgrounds, PHP to Ruby to Java. We all found ourselves inside this movement.

 At that time, Node was changing a lot, but we stuck with it and learned a whole lot
in the process. From the start, Node focused on making a small, low-level core library
that would provide enough functionality for a large, diverse user space to grow.
Thankfully, this large and diverse user space exists today because of these design deci-
sions early on. Node is a lot more stable now and used in production for numerous
startups as well as established enterprises.

 When Manning approached us about writing an intermediate-level book on Node,
we looked at the lessons we had learned as well as common pitfalls and struggles we
saw in the Node community. Although we loved the huge number of truly excellent
third-party modules available to developers, we noticed many developers were getting
less and less education on the core foundations of Node. So we set out to write Node in
Practice to journey into the roots and foundations of Node in a deep and thorough
manner, as well as tackle many issues we personally have faced and have seen others
wrestle with.

xvi

acknowledgments
We have many people to thank, without whose help and support this book would not
have been possible.

 Thanks to the Manning Early Access Program (MEAP) readers who posted com-
ments and corrections in the Author Online forum.

 Thanks to the technical reviewers who provided invaluable feedback on the
manuscript at various stages of its development: Alex Garrett, Brian Falk, Chris
Joakim, Christoph Walcher, Daniel Bretoi, Dominic Pettifer, Dylan Scott, Fernando
Monteiro Kobayashi, Gavin Whyte, Gregor Zurowski, Haytham Samad, JT Marshall,
Kevin Baister, Luis Gutierrez, Michael Piscatello, Philippe Charrière, Rock Lee, Shiju
Varghese, and Todd Williams.

 Thanks to the entire Manning team for helping us every step of the way, especially
our development editor Cynthia Kane, our copyeditor Benjamin Berg, our proof-
reader Katie Tennant, and everyone else who worked behind the scenes.

 Special thanks to Ben Noordhuis for writing the foreword to our book, and to
Valentin Crettaz and Michael Levin for their careful technical proofread of the book
shortly before it went into production.

Alex Young
I couldn’t have written this book without the encouragement and support of the DailyJS
community. Thanks to everyone who has shared modules and libraries with me over the
last few years: keeping up to date with the Node.js community would have been impos-
sible without you. Thank you also to my colleagues at Papers who have allowed me to

ACKNOWLEDGMENTS xvii

use my Node.js skills in production. Finally, thanks to Yuka for making me believe I can
do crazy things like start companies and write books.

Marc Harter
I would like thank Ben Noordhuis, Isaac Schlueter, and Timothy Fontaine for all the
IRC talks over Node; you know the underlying systems that support Node in such a
deep way that learning from you makes Node even richer. Also, I want to thank my
coauthor Alex; it seems rare to have such a similar approach to writing a book as I did
with Alex, plus it was fun for a Midwestern US guy to talk shop with an English chap.
Ultimately my heart goes out to my wife, who really made this whole thing possible, if
I’m honest. Hannah, you are loved; thank you.

xviii

about this book
Node.js in Practice exists to provide readers a deeper understanding of Node’s core
modules and packaging system. We believe this is foundational to being a productive
and confident Node developer. Unfortunately, this small core is easily missed for the
huge and vibrant third-party ecosystem with modules prebuilt for almost any task. In
this book we go beyond regurgitating the official Node documentation in order to get
practical and thorough. We want the reader to be able to dissect the inner workings of
the third-party modules they include as well as the projects they write.

 This book is not an entry-level Node book. For that, we recommend reading Man-
ning’s Node.js In Action. This book is targeted at readers who already have experience
working with Node and are looking to take it up a notch. Intermediate knowledge of
JavaScript is recommended. Familiarity with the Windows, OS X, or Linux command
line is also recommended.

 In addition, we’re aware that many Node developers have come from a client-side
JavaScript background. For that reason, we spend some time explaining less-familiar
concepts such as working with binary data, how underlying networking and file sys-
tems work, and interacting with the host operating system—all using Node as a teach-
ing guide.

Chapter roadmap
This book is organized into three parts.

 Part 1 covers Node’s core fundamentals, where we focus our attention on what’s
possible using only Node’s core modules (no third-party modules). Chapter 1 recaps

ABOUT THIS BOOK xix

Node.js’s purpose and function. Then chapters 2 through 8 each cover in depth a dif-
ferent core aspect of Node from buffers to streams, networking to child processes.

 Part 2 focuses on real-world development recipes. Chapters 9 through 12 will help
you master four highly applicable skills—testing, web development, debugging, and
running Node in production. In addition to Node core modules, these sections
include the use of various third-party modules.

 Part 3 guides you through creating your own Node modules in a straightforward
manner that ties in all kinds of ways to use npm commands for packaging, running,
testing, benchmarking, and sharing modules. It also includes helpful tips on version-
ing projects effectively.

 There are 115 techniques in the book, each module covering a specific Node.js
topic or task, and each divided into practical Problem/Solution/Discussion sections.

Code conventions and downloads
All source code in the book is in a fixed-width font like this, which sets it off from
the surrounding text. In many listings, the code is annotated to point out the key con-
cepts, and numbered bullets are sometimes used in the text to provide additional
information about the code.

 This book’s coding style is based on the Google JavaScript Style Guide.1 That
means we’ve put var statements on their own lines, used camelCase to format func-
tion and variable names, and we always use semicolons. Our style is a composite of the
various JavaScript styles used in the Node community.

 Most of the code shown in the book can be found in various forms in the sample
source code that accompanies it. The sample code can be downloaded free of charge
from the Manning website at www.manning.com/Node.jsinPractice, as well as from
GitHub at the following link: https://github.com/alexyoung/nodeinpractice.

Author Online forum
Purchase of Node.js in Practice includes free access to a private web forum run by Man-
ning Publications where you can make comments about the book, ask technical ques-
tions, and receive help from the authors and from other users. To access the forum
and subscribe to it, point your web browser to www.manning.com/Node.jsinPractice.
This page provides information on how to get on the forum once you’re registered,
what kind of help is available, and the rules of conduct on the forum.

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

 You can also contact the authors at the following Google Group URL: https://
groups.google.com/forum/#!forum/nodejsinpractice.

1 https://google-styleguide.googlecode.com/svn/trunk/javascriptguide.xml

www.allitebooks.com

https://github.com/alexyoung/nodeinpractice
http://www.manning.com/Node.jsinPractice
www.manning.com/Node.jsinPractice
https://groups.google.com/forum/#!forum/nodejsinpractice
https://groups.google.com/forum/#!forum/nodejsinpractice
https://google-styleguide.googlecode.com/svn/trunk/javascriptguide.xml
http://www.allitebooks.org

xx

about the cover illustration
The caption for the illustration on the cover of Node.js in Practice is “Young Man from
Ayvalik,” a town in Turkey on the Aegean Coast. The illustration is taken from a collec-
tion of costumes of the Ottoman Empire published on January 1, 1802, by William
Miller of Old Bond Street, London. The title page is missing from the collection and
we have been unable to track it down to date. The book’s table of contents identifies
the figures in both English and French, and each illustration bears the names of two
artists who worked on it, both of whom would no doubt be surprised to find their art
gracing the front cover of a computer programming book ... two hundred years later.

 The collection was purchased by a Manning editor at an antiquarian flea market in
the “Garage” on West 26th Street in Manhattan. The seller was an American based in
Ankara, Turkey, and the transaction took place just as he was packing up his stand for the
day. The Manning editor didn’t have on his person the substantial amount of cash that
was required for the purchase, and a credit card and check were both politely turned
down. With the seller flying back to Ankara that evening, the situation was getting hope-
less. What was the solution? It turned out to be nothing more than an old-fashioned ver-
bal agreement sealed with a handshake. The seller simply proposed that the money be
transferred to him by wire, and the editor walked out with the bank information on a
piece of paper and the portfolio of images under his arm. Needless to say, we transferred
the funds the next day, and we remain grateful and impressed by this unknown person’s
trust in one of us. It recalls something that might have happened a long time ago.

 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the
computer business with book covers based on the rich diversity of regional life of two
centuries ago‚ brought back to life by the pictures from this collection.

Part 1

Node fundamentals

Node has an extremely small standard library intended to provide the
lowest-level API for module developers to build on. Even though it’s relatively
easy to find third-party modules, many tasks can be accomplished without them.
In the chapters to follow, we’ll take a deep dive into a number of core modules
and explore how to put them to practical use.

 By strengthening your understanding of these modules, you’ll in turn
become a more well-rounded Node programmer. You’ll also be able to dissect
third-party modules with more confidence and understanding.

3

Getting started

Node has quickly become established as a viable and indeed efficient web develop-
ment platform. Before Node, not only was JavaScript on the server a novelty, but
non-blocking I/O was something that required special libraries for other scripting
languages. With Node, this has all changed.

 The combination of non-blocking I/O and JavaScript is immensely powerful: we
can handle reading and writing files, network sockets, and more, all asynchronously
in the same process, with the natural and expressive features of JavaScript callbacks.

 This book is geared toward intermediate Node developers, so this chapter is a
quick refresher. If you want a thorough treatment of Node’s basics, then see our
companion book, Node.js in Action (by Mike Cantelon, Marc Harter, TJ Holoway-
chuk, and Nathan Rajlich; Manning Publications, 2013).

 In this chapter we’ll introduce Node, what it is, how it works, and why it’s some-
thing you can’t live without. In chapter 2 you’ll get to try out some techniques by
looking at Node’s globals—the objects and methods available to every Node process.

This chapter covers
■ Why Node?
■ Node’s main features
■ Building a Node application

4 CHAPTER 1 Getting started

1.1 Getting to know Node
Node is a platform for developing network applications. It’s built on V8, Google’s
JavaScript runtime engine. Node isn’t just V8, though. An important part of the Node
platform is its core library. This encompasses everything from TCP servers to asynchro-
nous and synchronous file management. This book will teach you how to use these
modules properly.

 But first: why use Node, and when should you use it? Let’s look into that question
by seeing what kinds of scenarios Node excels at.

1.1.1 Why Node?

Let’s say you’re building an advertising server and distributing millions of adverts per
minute. Node’s non-blocking I/O would be an extremely cost-effective solution for
this, because the server could make the best use of available I/O without you needing
to write special low-level code. Also, if you already have a web team that can write
JavaScript, then they should be able to contribute to the Node project. A typical,
heavier web platform wouldn’t have these advantages, which is why companies like
Microsoft are contributing to Node despite having excellent technology stacks like
.NET. Visual Studio users can install Node-specific tools1 that add support for Intelli-
Sense, profiling, and even npm. Microsoft also developed WebMatrix (http://
www.microsoft.com/web/webmatrix/), which directly supports Node and can also be
used to deploy Node projects.

 Node embraces non-blocking I/O as a way to improve performance in certain
types of applications. JavaScript’s traditional event-based implementation means it has
a relatively convenient and well-understood syntax that suits asynchronous program-
ming. In a typical programming language, an I/O operation blocks execution until it
completes. Node’s asynchronous file and network APIs mean processing can still occur
while these relatively slow I/O operations finish. Figure 1.1 illustrates how different
tasks can be performed using asynchronous network and file system APIs.

 In figure 1.1, a new HTTP request has been received and parsed by Node’s http
module B. The ad server’s application code then makes a database query, using an
asynchronous API—a callback passed to a database read function C. While Node
waits for this to finish, the ad server is able to read a template file from the disk D.

1 See https://nodejstools.codeplex.com/.

Preflight check
Node In Practice is a recipe-style book, aimed at intermediate and advanced Node
developers. Although this chapter covers some introductory material, later chapters
advance quickly. For a beginner’s introduction to Node, see our companion book,
Node.js in Action.

http://www.microsoft.com/web/webmatrix/
http://www.microsoft.com/web/webmatrix/
https://nodejstools.codeplex.com/

5Getting to know Node

This template will be used to display a suitable web page. Once the database request
has finished, the template and database results are used to render the response E.

 While this is happening, other requests could also be hitting the ad server, and they’ll
be handled based on the available resources F. Without having to think about threads
when developing the ad server, you’re able to push Node to use the server’s I/O
resources very efficiently, just by using standard JavaScript programming techniques.

 Other scenarios where Node excels are web APIs and web scraping. If you’re down-
loading and extracting content from web pages, then Node is perfect because it can
be coaxed into simulating the DOM and running client-side JavaScript. Again, Node
has a performance benefit here, because scrapers and web spiders are costly in terms
of network and file I/O.

 If you’re producing or consuming JSON APIs, Node is an excellent choice because
it makes working with JavaScript objects easy. Node’s web frameworks (like Express,
http://expressjs.com) make creating JSON APIs fast and friendly. We have full details
on this in chapter 9.

 Node isn’t limited to web development. You can create any kind of TCP/IP server
that you like. For example, a network game server that broadcasts the game’s state to

1

2

5

3

4

HTTP server runs
your callback

Asynchronous response
from the database

Web page rendered based
on database values

HTTP
request

Wait:
database I/O

Wait:
database I/O

HTTP
request

Access disk

HTTP
request

HTTP
request

1 An HTTP request is received from
a browser.

3 While the query callback waits to run, some
of your other code reads from an HTML template file.

4 The web page is then rendered based on the
template and database values.

5 Meanwhile, other requests can be
handled as well.

2 After Node parses the request, your code
executes a database query.

Figure 1.1 An advertising server built with Node

http://expressjs.com

6 CHAPTER 1 Getting started

various players over TCP/IP sockets can perform background tasks, perhaps maintain-
ing the game world, while it sends data to the players. Chapter 7 explores Node’s net-
working APIs.

1.1.2 Node’s main features

Node’s main features are its standard library, module system, and npm. Of course,
there’s more to it than that, but in this book we’ll focus on teaching you how to use
these parts of Node. We’ll use third-party libraries where it’s considered best practice,
but you’ll see a lot of Node’s built-in features.

 In fact, Node’s strongest and most powerful feature is its standard library. This is
really two parts: a set of binary libraries and the core modules. The binary libraries
include libuv, which provides a fast run loop and non-blocking I/O for networking
and the file system. It also has an HTTP library, so you can be sure your HTTP clients
and servers are fast.

 Figure 1.2 is a high-level overview of Node’s internals that shows how everything
fits into place.

 Node’s core modules are mostly written in JavaScript. That means if there’s any-
thing you either don’t understand or want to understand in more detail, then you can
read Node’s source code. This includes features like networking, high-level file system
operations, the module system, and streams. It also includes Node-specific features
like running multiple Node processes at once with the cluster module, and wrapping
sections of code in event-based error handlers, known as domains.

 The next few sections focus on each core module in more detail, starting with the
events API.

When to use Node
To get you thinking like a true Nodeist, the table below has examples of applications
where Node is a good fit.

Node’s strengths

Scenario Node’s strengths

Advertising
distribution

■ Efficiently distributes small pieces of information

■ Handles potentially slow network connections

■ Easily scales up to multiple processors or servers

Game server ■ Uses the accessible language of JavaScript to model business logic

■ Programs a server catering to specific networking requirements without
using C

Content manage-
ment system, blog

■ Good for a team with client-side JavaScript experience

■ Easy to make RESTful JSON APIs

■ Lightweight server, complex browser JavaScript

7Getting to know Node

EVENTEMITTER: AN API FOR EVENTS

Sooner or later every Node developer runs into EventEmitter. At first it seems like
something only library authors would need to use, but it’s actually the basis for most of
Node’s core modules. The streams, networking, and file system APIs derive from it.

 You can inherit from EventEmitter to make your own event-based APIs. Let’s say
you’re working on a PayPal payment-processing module. You could make it event-
based, so instances of Payment objects emit events like paid and refund. By designing
the class this way, you decouple it from your application logic, so you can reuse it in
more than one project.

 We have a whole chapter dedicated to events: see chapter 4 for more. Another
interesting part of EventEmitter is that it’s used as the basis for the stream module.

STREAM: THE BASIS FOR SCALABLE I/O

Streams inherit from EventEmitter and can be used to model data with unpredict-
able throughput—like a network connection where data speeds can vary depending
on what other users on the network are doing. Using Node’s stream API allows you to
create an object that receives events about the connection: data for when new data
comes in, end when there’s no more data, and error when errors occur.

 Rather than passing lots of callbacks to a readable stream constructor function,
which would be messy, you subscribe to the events you’re interested in. Streams can be
piped together, so you could have one stream class that reads data from the network
and then pipe it to a stream that transforms the data into something else. This could
be data from an XML API that’s transformed into JSON, making it easier to work with
in JavaScript.

 We love streams, so we’ve dedicated a whole chapter to them. Skip to chapter 5 to
dive right in. You might think that events and streams sound abstract, and though
that’s true, it’s also interesting to note that they’re used as a basis for I/O modules, like
fs and net.

Core modules

C++ bindings

C-Ares

V8

The operating system

libuv http

app.js

Figure 1.2 Node’s key parts in context

8 CHAPTER 1 Getting started

FS: WORKING WITH FILES

Node’s file system module is capable of reading and writing files using non-blocking
I/O, but it also has synchronous methods. You can get information about files with
fs.stat, and the synchronous equivalent is fs.statSync.

 If you want to use streams to process the contents of a file in a super-efficient man-
ner, then use fs.createReadStream to return a ReadableStream object. There’s more
about this in chapter 6.

NET: CREATE NETWORK CLIENTS AND SERVERS

The networking module is the basis for the http module and can be used to create
generalized network clients and servers. Although Node development is typically
thought of as web-based, chapter 7 shows you how to create TCP and UDP servers,
which means you’re not limited to HTTP.

GLOBAL OBJECTS AND OTHER MODULES

If you have some experience making web applications with Node, perhaps with the
Express framework, then you’ve already been using the http, net, and fs core mod-
ules without necessarily realizing it. Other built-in features aren’t headline-grabbing,
but are critical to creating programs with Node.

 One example is the idea of global objects and methods. The process object, for
example, allows you to pipe data into and out of a Node program by accessing the
standard I/O streams. Much like Unix and Windows scripting, you can cat data to a
Node program. The ubiquitous console object, beloved by JavaScript developers
everywhere, is also considered a global object.

 Node’s module system is also part of this global functionality. Chapter 2 is packed
with techniques that show you how to use these features.

 Now that you’ve seen some of the core modules, it’s time to see them in action.
The example will use the stream module to generate statistics on streams of text, and
you’ll be able to use it with files and HTTP connections. If you want to learn more
about the basics behind streams or HTTP in Node, refer to Node.js in Action.

1.2 Building a Node application
Instead of wading through more theory, we’ll show you how to build a Node applica-
tion. It’s not just any application, though: it uses some of Node’s key features, like
modules and streams. This will be a fast and intense tour of Node, so start up your
favorite text editor and terminal and get ready.

 Here’s what you’ll learn over the next 10 minutes:

■ How to create a new Node project
■ How to write your own stream class
■ How to write a simple test and run it

Streams are great for processing data, whether you’re reading, writing, or transform-
ing it. Imagine you want to convert data from a database into another format, like CSV.
You could create a stream class that accepts input from a database and outputs it as a

9Building a Node application

stream of CSV. The output of this new CSV stream could be connected to an HTTP
request, so you could stream CSV directly to a browser. The same class could even be
connected to a writable file stream—you could even fork the stream to create a file
and send it to a web browser.

 In this example, the stream class will accept text input, count word matches based
on a regular expression, and then emit the results in an event when the stream has fin-
ished being sent. You could use this to count word matches in a text file, or pipe data
from a web page and count the number of paragraph tags—it’s up to you. First we
need to create a new project.

1.2.1 Creating a new Node project

You might be wondering how a professional Node developer creates a new project.
This is a straightforward process, thanks to npm. Though you could create a
JavaScript file and run node file.js, we’ll use npm init to make a new project with a
package.json file. Create a new directory B, cd C into it, and then run npm init D:

mkdir first-project
cd first-project
npm init

Get used to typing these commands: you’ll be doing it often! You can press Return
to accept the defaults when prompted by npm. Before you’ve written a line of
JavaScript, you’ve already seen how cool one of Node’s major features—npm—is. It’s
not just for installing modules, but also for managing projects.

Now it’s time to write some JavaScript. In the next section you’ll create a new
JavaScript file that implements a stream.

1.2.2 Making a stream class

Create a new file called countstream.js and use util.inherits to derive from
stream.Writable and implement the required _write method. Too fast? Let’s slow
down. The full source is in the following listing.

Create a new
directory.

B
Change
into it.

C

Create the project’s
manifest file.D

When to use a package.json file
You may have an idea for a small script, and may be wondering if a package.json file
is really necessary. It isn’t always necessary, but in general you should create them
as often as possible.

Node developers prefer small modules, and expressing dependencies in package
.json means your project, no matter how small, is super-easy to install in the future,
or on another person’s machine.

www.allitebooks.com

http://www.allitebooks.org

10 CHAPTER 1 Getting started

var Writable = require('stream').Writable;
var util = require('util');

module.exports = CountStream;

util.inherits(CountStream, Writable);

function CountStream(matchText, options) {
Writable.call(this, options);
this.count = 0;
this.matcher = new RegExp(matchText, 'ig');

}

CountStream.prototype._write = function(chunk, encoding, cb) {
var matches = chunk.toString().match(this.matcher);
if (matches) {
this.count += matches.length;

}
cb();

};

CountStream.prototype.end = function() {
this.emit('total', this.count);

};

This example illustrates how subsequent examples in this book work. We present a
snippet of code, annotated with hints on the underlying code. For example, the first
part of the class uses the util.inherits method to inherit from the Writable base
class B. This example won’t be fully fleshed-out here—for more on writing your own
streams, see technique 30 in chapter 5. For now, just focus on how regular expressions
are passed to the constructor C and used to count text as it flows into instances of the
class D. Node’s Writable class calls _write for us, so we don’t need to worry about
that yet.

STREAMS AND EVENTS In listing 1.1 there was an event, total. This is one we
made up—you can make up your own as well. Streams inherit from
EventEmitter, so they have the same emit and on methods.

Node’s Writable base class will also call end when there’s no more data E. This
stream can be instantiated and piped as required. In the next section you’ll see how to
connect it using pipe.

1.2.3 Using a stream

Now that you’ve seen how to make a stream class, you’re probably dying to try it out.
Make another file, index.js, and add the code shown in the next listing.

Listing 1.1 A writable stream that counts

Inherit from the
Writable stream.

B

Create a RegExp object that
matches globally and ignores case.

C

Convert the current
chunk of input into
a string and use it
to count matches.D

When the stream has
ended, “publish” the total
number of matches.E

11Building a Node application

var CountStream = require('./countstream');
var countStream = new CountStream('book');
var http = require('http');

http.get('http://www.manning.com', function(res) {
res.pipe(countStream);

});

countStream.on('total', function(count) {
console.log('Total matches:', count);

});

You can run this example by typing node index.js. It should display something like
Total matches: 24. You can experiment with it by changing the URL that it fetches.

 This example loads the module from listing 1.1 B and then instantiates it with the
text 'book' C. It also downloads the text from a website using Node’s standard http
module D and then pipes the result through our CountStream class E.

 The significant thing here is res.pipe(countStream). When you pipe data, it
doesn’t matter how big it is or if the network is slow: the CountStream class will duti-
fully count matches until the data has been processed. This Node program does not
download the entire file first! It takes the file—piece by piece—and processes it.
That’s the big thing here, and a critical aspect to Node development.

 To recap, figure 1.3 summarizes what you’ve done so far to create a new Node proj-
ect. First you created a new directory, and ran npm init B, then you created some
JavaScript files C, and finally you ran the code D.

 Another important part of Node development is testing. The next section wraps
up this example by testing CountStream.

Listing 1.2 Using the CountStream class

Load the
countstream.js file.B

Instantiate a
CountStream
class that counts
text matching
“book.” C

Download
www.manning.com. D

Pipe the data from
the website to
countStream, thereby
counting the text E

index.js

$ mkdir new-project
$ cd new-project
$ npm init

$ node index.js
$ npm start

1 Create a new directory,
and run npm init.

3 Run the code.
2 Create a JavaScript file.

Figure 1.3 The three steps to creating a new Node project

12 CHAPTER 1 Getting started

1.2.4 Writing a test

We can write a short test for CountStream without using any third-party modules.
Node comes with a built-in assert module, so we can use that for a quick test. Open
test.js and add the code shown next.

var assert = require('assert');
var CountStream = require('./countstream');
var countStream = new CountStream('example');
var fs = require('fs');
var passed = 0;

countStream.on('total', function(count) {
assert.equal(count, 1);
passed++;

});

fs.createReadStream(__filename).pipe(countStream);

process.on('exit', function() {
console.log('Assertions passed:', passed);

});

This test can be run with node test.js, and you should see Assertions passed: 1
printed in the console. The test actually reads the current file and passes the data
through CountStream. It might invoke Ouroboros, but it’s a useful example because it
gives us content that we know something about—we can always be sure there is one
match for the word example.

ASSERTIONS Node comes with an assertion library called assert. A basic test
can be made by calling the module directly -- assert(expression).

The first thing the test does is listen for the total event, which is emitted by instances
of CountStream B. This is a good place to assert that the number of matches should
be the same as what is expected C. A readable stream that represents the current file
is opened and piped through our class D. Just before the end of the program, we
print out how many assertions were hit E.

 This is important because if the total event never fires, then assert.equal
won’t run at all. We have no way of knowing whether tests in callbacks are run, so a
simple counter has been used to illustrate how Node programming can require pat-
terns from the other programming languages and platforms that you might be famil-
iar with.

 If you’re getting tired, you can rest here, but there’s a bit of sugar to finish off our
project. Node developers like to run tests and other scripts using npm on the com-
mand line. Open package.json and change the "test" property to look like this:

Listing 1.3 Using the CountStream class

The 'total' event
will be emitted
when the stream
is finished.

B

Assert the count is the
expected amount.

C

Just before the program
is about to exit, display
how many assertions
have been run.E

Create a
readable stream
of the current
file, and pipe
the data through
CountStream.

D

13Summary

"scripts": {
"test": "node test.js"

},

Now you can run tests just by typing npm test. This comes in handy when you have lots
of tests and running them is more complicated. Running tests, test runners, and asyn-
chronous testing issues are all covered in chapter 10.

Depending on your previous experience with Node, this example might have been
intense, but it captures how Node developers think and take advantage of the power-
ful resources that come with Node.

 Now that you’ve seen how a Node project is put together, we’re done with the
refresher course on Node. The next chapter introduces our first set of techniques,
which is the bulk of this book’s format. It covers ways of working with the global fea-
tures that are available to all Node programs.

1.3 Summary
In this chapter you’ve learned about Node.js in Practice—what it covers and how it
focuses on Node’s impressive built-in core modules like the networking module and
file system modules.

 You’ve also learned about what makes Node tick, and how to use it. Some of the
main points we covered were

■ When to use Node, and how Node builds on non-blocking I/O, allowing you to
write standard JavaScript but get great performance benefits.

■ Node’s standard library is referred to as its core modules.
■ What the core modules do—I/O tasks like network protocols, and work with

files and more generic features like streams.
■ How to quickly start a new Node project, complete with a package.json file so

dependencies and scripts can be added.
■ How to use Node’s powerful stream API to process data.
■ Streams inherit from EventEmitter, so you can emit and respond to any events

that you want to use in your application.
■ How to write small tests just by using npm and the assert module—you can test

out ideas without installing any third-party libraries.

npm scripts
The npm test and npm start commands can be configured by editing package.json.
You can also run arbitrary commands, which are invoked with npm run command. All
you need to do is set a property under scripts, just like listing 1.4.

This is useful for specific types of tests or housekeeping routines—for example npm
run integration-tests, or maybe even npm run seed-data.

14 CHAPTER 1 Getting started

Finally, we hope you learned something from our introductory application. Using event-
based APIs, non-blocking I/O, and streams is really what Node is all about, but it’s also
important to take advantage of Node’s unique tools like the package.json file and npm.

 Now it’s time for techniques. The next chapter introduces the features that you
don’t even have to load to use: the global objects.

15

Globals:
Node’s environment

Global objects are available in all modules. They’re universal. Whether you’re writ-
ing network programs, command-line scripts, or web applications, your program
will have access to these objects. That means you can always depend on features like
console.log and __dirname—both are explained in detail in this chapter.

 The goal of this chapter is to introduce Node’s global objects and methods to
help you learn what functionality is available to all Node processes. This will help
you better understand Node and its relationship to the operating system, and how
it compares with other JavaScript environments like browsers.

 Node provides some important functionality out of the box, even without loading
any modules. In addition to the features provided by the ECMAScript language, Node
has several host objects—objects supplied by Node to help programs to execute.

This chapter covers
■ Using modules
■ What you can do without requiring a single module
■ The process and console objects
■ Timers

16 CHAPTER 2 Globals: Node’s environment

 A key global object is process, which is used to communicate with the operating
system. Unix programmers will be familiar with standard I/O streams, and these are
accessible through the process object using Node’s streaming API.

 Another important global is the Buffer class. This is included because JavaScript
has traditionally lacked support for binary data. As the ECMAScript standards evolve,
this is being addressed, but for now most Node developers rely on the Buffer class.
For more about buffers, see chapter 3.

 Some globals are a separate instance for each module. For example, module is
available in every Node program, but is local to the current module. Since Node pro-
grams may consist of several modules, that means a given program has several differ-
ent module objects—they behave like globals, but are in module scope.

 In the next section you’ll learn how to load modules. The objects and methods
relating to modules are globals, and as such are always available and ready to be used.

2.1 Modules
Modules can be used to organize larger programs and distribute Node projects, so it’s
important to be familiar with the basic techniques required to install and create them.

TECHNIQUE 1 Installing and loading modules

Whether you’re using a core module provided by Node or a third-party module from
npm, support for modules is baked right into Node and is always available.

■ Problem
You want to load a third-party module from npm.

■ Solution
Install the module with the command-line tool, npm, and then load the module using
require. The following listing shows an example of installing the express module.

$ npm search express
express Sinatra inspired web development framework
$ npm install express
express@x.x.x ./node_modules/express

methods@x.x.x
(Several more dependencies appear here)

$ node
> var express = require('express');
> typeof express
'function'

■ Discussion
The npm command-line tool is distributed with Node, and can be used to search,
install, and manage packages. The website https://npmjs.org provides another inter-
face for searching modules, and each module has its own page that displays the associ-
ated readme file and dependencies.

Listing 2.1 Using npm

Search for a
module based
on keywords. B

Load the module using
the require method.

C

https://npmjs.org

17TECHNIQUE 2 Creating and managing modules

 Once you know the name of a module, installation is easy: type npm install module-
name B and it will be installed into ./node_modules. Modules can also be “globally”
installed—running npm install -g module_name will install it into a global folder. This
is usually /usr/local/lib/node_modules on Unix systems. In Windows it should be
wherever the node.exe binary is located.

 After a module has been installed, it can be loaded with require('module-name')
C. The require method usually returns an object or a method, depending on how
the module has been set up.

The question of whether to install a module globally is critical to developing maintain-
able projects. If other people need to work on your project, then you should consider
adding modules as dependencies to your project’s package.json file. Keeping project
dependencies tightly managed will make it easier to maintain them in the future when
new versions of dependencies are released.

TECHNIQUE 2 Creating and managing modules

In addition to installing and distributing open source modules, “local” modules can
be used to organize projects.

■ Problem
You want to break a project up into separate files.

■ Solution
Use the exports object.

■ Discussion
Node’s module system provides a solution to splitting code across multiple files. It’s
very different from include in C, or even require in Ruby and Python. The main dif-
ference is that require in Node returns an object rather than loading code into the
current namespace, as would occur with a C preprocessor.

 In technique 1 you saw how npm can be used to install modules, and how require
is used to load them. npm isn’t the only thing that manages modules, though—Node
has a built-in module system based on the CommonJS Modules/1.1 specification
(http://wiki.commonjs.org/wiki/Modules/1.1).

Searching npm
By default, npm searches across several fields in each module’s package.json file.
This includes the module’s name, description, maintainers, URL, and keywords. That
means a simple search like npm search express yields hundreds of results.

You can reduce the number of matches by searching with a regular expression. Wrap
a search term in slashes to trigger npm’s regular expression matching: npm search
/^express$/

However, this is still limited. Fortunately, there are open source modules that improve
on the built-in search command. For example, npmsearch by Gorgi Kosev will order
results using its own relevance rankings.

http://wiki.commonjs.org/wiki/Modules/1.1
http://wiki.commonjs.org/wiki/Modules/1.1

18 CHAPTER 2 Globals: Node’s environment

 This allows objects, functions, and variables to be exported from a file and used
elsewhere. The exports object is always present and, although this chapter specifically
explores global objects, it’s not really a global. It’s more accurate to say that the
exports object is in module scope.

 When a module is focused around a single class, then users of the module will pre-
fer to type var MyClass = require('myclass'); rather than var MyClass =
require('myclass').MyClass, so you should use modules.export. Listing 2.2 shows
how this works. This is different from using the exports object, which requires that
you set a property to export something.

function MyClass() {
}

MyClass.prototype = {
method: function() {
return 'Hello';

}
};

var myClass = new MyClass();

module.exports = myClass;

Listing 2.3 shows how to export multiple objects, methods, or values, a technique that
would typically be used for utility libraries that export multiple things.

exports.method = function() {
return 'Hello';

};

exports.method2 = function() {
return 'Hello again';

};

Finally, listing 2.4 shows how to load these modules with require, and how to use the
functionality they provide.

var myClass = require('./myclass');
var module2 = require('./module-2');

console.log(myClass.method());
console.log(module2.method());
console.log(module2.method2());

Listing 2.2 Exporting modules

Listing 2.3 Exporting multiple objects, methods, and values

Listing 2.4 Loading modules with require

Objects can be exported,
including other objects,
methods, and properties.

Load myclass.js.B

Load module-2.js.C

19TECHNIQUE 3 Loading a group of related modules

Note that loading a local module always requires a path name—in these examples the
path is just ./. Without it, Node will attempt to find a matching module in $NODE
_PATH, and then ./node_modules, $HOME/.node_modules, $HOME/.node_libraries,
or $PREFIX/lib/node.

 In listing 2.4 notice that ./myclass is automatically expanded to ./myclass.js B,
and ./module-2 is expanded to ./module-2.js c.

 The output from this program would be as follows:

Hello
Hello
Hello again

Once a module is loaded, it’ll be cached. That means that loading it multiple times
will return the cached copy. This is generally efficient, and helps you heavily reuse
modules within a project without worrying about incurring an overhead when using
require. Rather than centrally loading all of the dependencies, you can safely call
require on the same module.

In the next technique you’ll learn how to group related modules together and load
them in one go.

TECHNIQUE 3 Loading a group of related modules

Node can treat directories as modules, offering opportunities for logically grouping
related modules together.

■ Problem
You want to group related files together under a directory, and only have to load it
with one call to require.

Which module?
To determine the exact module Node will load, use require.resolve(id). This will
return a fully expanded filename.

Unloading modules
Although automatically caching modules fits many use cases in Node development,
there may be rare occasions when you want to unload a module. The require.cache
object makes this possible.

To remove a module from the cache, use the delete keyword. The full path of the
module is required, which you can obtain with require.resolve. For example:

delete require.cache[require.resolve('./myclass')];

This should return true, which means the module was unloaded.

20 CHAPTER 2 Globals: Node’s environment

■ Solution
Create a file called index.js to load each module and export them as a group, or add a
package.json file to the directory.

■ Discussion
Sometimes a module is logically self-contained, but it still makes sense to separate it
into several files. Most of the modules you’ll find on npm will be written this way.
Node’s module system supports this by allowing directories to act as modules. The eas-
iest way to do this is to create a file called index.js that has a require statement to load
each file. The following listing demonstrates how this works.

module.exports = {
one: require('./one'),
two: require('./two')

};

The group/one.js and group/two.js files can then export values or methods B as
required. The next listing shows an example of such a file.

module.exports = function() {
console.log('one');

};

Code that needs to use a folder as a module can then use a single require statement
to load everything in one go. The following listing demonstrates this.

var group = require('./group');

group.one();
group.two();

The output of listing 2.7 should look like this:

one
two

This approach is often used as an architectural technique to structure web applica-
tions. Related items, like controllers, models, and views, can be kept in separate fold-
ers to help separate concerns within the application. Figure 2.1 shows how to
structure applications following this style.

 Node also offers an alternative technique that supports this pattern. Adding a
package.json file to a directory can help the module system figure out how to load all
of the files in the directory at once. The JSON file should include a main property to
point to a JavaScript file. This is actually the default file Node looks for when loading

Listing 2.5 The group/index.js file

Listing 2.6 The group/one.js file

Listing 2.7 A file loading the group of modules

A module is exported
that points to each file
in the directory.B

The call to require doesn’t need
any special handling to work
with a directory of modules.

21TECHNIQUE 4 Working with paths

modules—if no package.json is present, it’ll then look for index.js. The next listing
shows an example of a package.json file.

{ "name" : "group",
"main" : "./index.js" }

The require API provides many ways to manage files. But what about when you want
to load something relative to the current module, or the directory where the module
is saved? Read on for an explanation in technique 4.

TECHNIQUE 4 Working with paths

Sometimes you need to open files based on the relative location. Node provides tools
for determining the path to the current file, directory, and module.1

■ Problem
You want to access a file that isn’t handled by the module system.

Listing 2.8 A package.json file for a directory containing a module

1 See http://nodejs.org/api/globals.html#globals_require_extensions.

module.exports = {
 assets: require('./assets'),
 documents: require('./documents'),
 users: require('./users')
};

var routes = require('./routes');

routes.users.methodName();

index.js

routes/ App.js

assets.js
documents.js

users.js

Figure 2.1 Folders as modules

This could point to any file.

File extensions
When loading a file, Node is configured to search for files with the .js, .json, and
.node extensions. The require.extensions array can be used to tell require to
load files with other extensions. Node’s module system will take this into account
when treating directories as modules, as well.

This feature is marked as deprecated in Node’s documentation, but the module
system is also marked as “locked” so it shouldn’t go away. If you want to use it,
you should check Node’s documentation first.1 If you’re just trying to load a
JavaScript file from a legacy system that has an unusual extension, then it might be
suitable for experimentation.

http://nodejs.org/api/globals.html#globals_require_extensions

22 CHAPTER 2 Globals: Node’s environment

■ Solution
Use __dirname or __filename to determine the location of the file.

■ Discussion
Sometimes you need to load data from a file that clearly shouldn’t be handled by
Node’s module system, but you need to take the path of the current script into
account—for example, a template in a web application. The __dirname and
__filename variables are extremely useful in such cases.

 Running the following listing will print the output of these values.

console.log('__dirname:', __dirname);
console.log('__filename:', __filename);

Most developers join these variables with path fragments using simple string concate-
nation: var view = __dirname + '/views/view.html';. This works with both Windows
and Unix—the Windows APIs are clever enough to automatically switch the slashes to
the native format, so you don’t need special handling to support both operating systems.

 If you really want to ensure paths are joined correctly, you can use the path.join
method from Node’s path module: path.join(__dirname, 'views', 'view.html');.

 Apart from module management, there are globally available objects for writing to
the standard I/O streams. The next set of techniques explores process.stdout and
the console object.

2.2 Standard I/O and the console object
Text can be piped to a Node process by using command-line tools in Unix or
Windows. This section includes techniques for working with these standard I/O
streams, and also how to correctly use the console object for a wide range of logging-
related tasks.

TECHNIQUE 5 Reading and writing to standard I/O

Whenever you need to get data into and out of a program, one useful technique is
using the process object to read and write to standard I/O streams.

■ Problem
You want to pipe data to and from a Node program.

■ Solution
Use process.stdout and process.stdin.

■ Discussion
The process.stdout object is a writable stream to stdout. We’ll look at streams in
more detail in chapter 5, but for now you just need to know it’s part of the process
object that every Node program has access to, and is helpful for displaying and receiv-
ing text input.

Listing 2.9 Path variables

These variables point to
the fully resolved locations
of the current script.

23TECHNIQUE 5 Reading and writing to standard I/O

 The next listing shows how to pipe text from another command, process it, and
output it again.

// Run with:
// cat file.txt | node process.js

process.stdin.resume();
process.stdin.setEncoding('utf8');

process.stdin.on('data', function(text) {
process.stdout.write(text.toUpperCase());

});

Every time a chunk of text is read from the input stream, it’ll be transformed with
toUpperCase() and then written to the output stream. Figure 2.2 shows how data
flows from one operating system process, through your Node program, and then out
through another program. In the terminal, these programs would be linked together
with the pipe (|) symbol.

 This pipe-based approach works well when dealing with input in Unix, because
many other commands are designed to work this way. That brings a LEGO-like modu-
larity to Node programs that facilitates reuse.

 If you just want to print out messages or errors, Node provides an easier API specif-
ically tailored for this purpose through the console object. The next technique
explains how to use it, and some of its less obvious features.

Listing 2.10 Path variables

Tell the stream we’re
ready to start reading.

This callback transforms the data
in chunks when they’re available.

cat file.txt

process.stdout

process.stdin

Node processOS process

wc –1

OS process

process.stdin.on('data', function(d) {
 process.stdout.write(d);
});

Figure 2.2 Data flows in a simple program that uses stdio.

24 CHAPTER 2 Globals: Node’s environment

TECHNIQUE 6 Logging messages

The easiest way to log information and errors from a program is by using the console
object.

■ Problem
You want to log different types of messages to the console.

■ Solution
Use console.log, console.info, console.error, and console.warn. Be sure to take
advantage of the built-in formatting facilities provided by these methods.

■ Discussion
The console object has several methods that can be used to output different types of
messages. They’ll be written to the relevant output stream, which means you can pipe
them accordingly on a Unix system.

 Although the basic usage is console.log('message'), more functionality is
packed in. Variables can be interpolated, or simply appended alongside string literals.
This makes it extremely easy to log messages that display the contents of primitive val-
ues or objects. The following listing demonstrates these features.

var name = 'alex';
var user = { name: 'alex' };

console.log('Hello');
console.log('Hello %s', name);
console.log('Hello:', name);
console.log('Hello:', user);

console.error('Error, bad user:', user);

The output of listing 2.11 looks like this:

Hello
Hello alex
Hello: alex
Hello: { name: "alex" } //
Error, bad user: { name: 'alex' }

When message strings are formatted, util.format is used. Table 2.1 shows the sup-
ported formatting placeholders.

Listing 2.11 Path variables

Table 2.1 Formatting placeholders

Placeholder Type Example

%s String '%s', 'value'

%d Number '%f', 3.14

%j JSON '%j', { name: 'alex' }

Simple variable
interpolation can be used
with strings or numbers.

A space will automatically
be added after the colon.

The user object is
internally formatted
using util.inspect.

25TECHNIQUE 7 Benchmarking a program

These formatting placeholders are convenient, but just being able to simply include
objects in console.log messages without manually appending strings is a handy way
to log messages.

 The info and warn methods are synonyms for log and error. The difference
between log and error is the output stream used. In technique 5, you saw how Node
makes standard input and output streams available to all programs. It also exposes the
standard error stream through process.stderr. The console.error method will
write to this stream, rather than process.stdout. This means you can redirect a Node
process’s error messages in the terminal or in a shell script.

 If you ran the previous listing with 2> error-file.log, the error messages would
be redirected to error-file.log. The other messages would be printed to the con-
sole as usual:

node listings/globals/console-1.js 2> errors-file.log

The 2 handle refers to the error stream; 1 is standard output. That means you could
redirect errors to a log file without having to open files within your Node program, or
use a specific logging module. Good old-fashioned shell redirection is good enough
for many projects.

Stack traces
Another feature of the console object is console.trace(). This method generates a
stack trace at the current point of execution. The generated stack trace includes line
numbers for the code that invokes asynchronous callbacks, which can help when
reporting errors that would otherwise be difficult to track down. For example, a trace
generated inside an event listener will show where the event was triggered from. Tech-
nique 28 in chapter 5 explores this in more detail.

 Another slightly more advanced use of console is its benchmarking feature. Con-
tinue reading for a detailed look.

TECHNIQUE 7 Benchmarking a program

Node makes it possible to benchmark programs without any additional tools.

■ Problem
You need to benchmark a slow operation.

Standard streams
Standard streams come in three flavors: stdin, stdout, and stderr. In Unix terminals,
these are referred to with numbers. 0 is used for standard input, 1 is standard output,
and 2 is standard error.

The same applies to Windows: running a program from the command prompt and add-
ing 2> errors-file.log will send the error messages to errors-file.log, just
like Unix.

26 CHAPTER 2 Globals: Node’s environment

■ Solution
Use console.time() and console.timeEnd().

■ Discussion
In your career as a Node programmer, there will come a time when you’re trying to
determine why a particular operation is slow. Fortunately, the console object comes
with some built-in benchmarking features.

 Invoking console.time('label') records the current time in milliseconds, and
then later calling console.timeEnd('label') displays the duration from that point.
The time in milliseconds will be automatically printed alongside the label, so you
don’t have to make a separate call to console.log to print a label.

 Listing 2.12 is a short program that accepts command-line arguments (see tech-
nique 9 for more on handling arguments), with benchmarking to see how fast the file
input is read.

var args = {
'-h': displayHelp,
'-r': readFile

};

function displayHelp() {
console.log('Argument processor:', args);

}

function readFile(file) {
if (file && file.length) {
console.log('Reading:', file);
console.time('read');
var stream = require('fs').createReadStream(file)
stream.on('end', function() {

console.timeEnd('read');
});
stream.pipe(process.stdout);

} else {
console.error('A file must be provided with the -r option');
process.exit(1);

}
}

if (process.argv.length > 0) {
process.argv.forEach(function(arg, index) {
args[arg].apply(this, process.argv.slice(index + 1));

});
}

Using several interleaved calls to console.time with different labels allows multiple
benchmarks to be performed, which is perfect for exploring the performance of com-
plex, nested asynchronous programs.

 These functions calculate duration based on Date.now(), which gives accuracy in
milliseconds. To get more accurate benchmarks, the third-party benchmark module

Listing 2.12 Benchmarking a function

Calling console.timeEnd()
will cause the benchmark
to be displayed.

27TECHNIQUE 8 Getting platform information

(https://npmjs.org/package/benchmark) can be used in conjunction with micro-
time (https://npmjs.org/package/microtime).

 The process object is used for working with standard I/O streams, and used cor-
rectly, console handles many of the tasks that the uninitiated may tackle with third-
party modules. In the next section we’ll further explore the process object to look at
how it helps integrate with the wider operating system.

2.3 Operating system and command-line integration
The process object can be used to obtain information about the operating system,
and also communicate with other processes using exit codes and signal listeners. This
section contains some more-advanced techniques for using these features.

TECHNIQUE 8 Getting platform information

Node has some built-in methods for querying operating system functionality.

■ Problem
You need to run platform-specific code based on the operating system or processor
architecture.

■ Solution
Use the process.arch and process.platform properties.

■ Discussion
Node JavaScript is generally portable, so it’s unlikely that you’ll need to branch based
on the operating system or process architecture. But you may want to tailor projects to
take advantage of operating system–specific features, or simply collect statistics on
what systems a script is executing on. Certain Windows-based modules that include
bindings to binary libraries could switch between running a 32- or 64-bit version of a
binary. The next listing shows how this could be supported.

switch (process.arch) {
case 'x64':
require('./lib.x64.node');
break;

case 'ia32':
require('./lib.Win32.node');
break;

default:
throw new Error('Unsupported process.arch:', process.arch);

}

Other information from the system can also be gleaned through the process module.
One such method is process.memoryUsage()—it returns an object with three proper-
ties that describe the process’s current memory usage:

■ rss—The resident set size, which is the portion of the process’s memory that is
held in RAM

Listing 2.13 Branching based on architecture

https://npmjs.org/package/benchmark
https://npmjs.org/package/microtime

28 CHAPTER 2 Globals: Node’s environment

■ heapTotal—Available memory for dynamic allocations
■ heapUsed—Amount of heap used

The next technique explores handling command-line arguments in more detail.

TECHNIQUE 9 Passing command-line arguments

Node provides a simple API to command-line arguments that you can use to pass
options to programs.

■ Problem
You’re writing a program that needs to receive simple arguments from the command
line.

■ Solution
Use process.argv.

■ Discussion
The process.argv array allows you to check if any arguments were passed to your
script. Because it’s an array, you can use it to see how many arguments were passed, if
any. The first two arguments are node and the name of the script.

 Listing 2.14 shows just one way of working with process.argv. This example loops
over process.argv and then slices it to “parse” argument flags with options. You
could run this script with node arguments.js -r arguments.js and it would print out
its own source.

var args = {
'-h': displayHelp,
'-r': readFile

};

function displayHelp() {
console.log('Argument processor:', args);

}

function readFile(file) {
console.log('Reading:', file);
require('fs').createReadStream(file).pipe(process.stdout);

}

if (process.argv.length > 0) {
process.argv.forEach(function(arg, index) {
args[arg].apply(this, process.argv.slice(index + 1));

});
}

The args object B holds each switch that the script supports. Then createReadStream
is used C to pipe the file to the standard output stream. Finally, the function referenced
by the command-line switch in args is executed using Function.prototype.apply D.

Listing 2.14 Manipulating command-line arguments

This is a simple object
used to model the
valid arguments.B

Pipe out a file
through the
standard
output stream.

C

Call a matching method
from the arg parameter
model, and slice the full
list of arguments to
effectively support
passing options from
command-line flags.D

29TECHNIQUE 10 Exiting a program

 Although this is a toy example, it illustrates how handy process.argv can be with-
out relying on a third-party module. Since it’s a JavaScript Array, it’s extremely easy to
work with: you can use methods like map, forEach, and slice to process arguments
with little effort.

Good Unix programs handle arguments when needed, and they also exit by returning
a suitable status code. The next technique presents how and when to use pro-
cess.exit to signal the successful—or unsuccessful—completion of a program.

TECHNIQUE 10 Exiting a program

Node allows you to specify an exit code when a program terminates.

■ Problem
Your Node program needs to exit with specific status codes.

■ Solution
Use process.exit().

■ Discussion
Exit status codes are significant in both Windows and Unix. Other programs will
examine the exit status to determine whether a program ran correctly. This becomes
more important when writing Node programs that take part in larger systems, and
helps with monitoring and debugging later on.

 By default, a Node program returns a 0 exit status. This means the program ran
and terminated correctly. Any non-zero status is considered an error. In Unix, this sta-
tus code is generally accessed by using $? in a shell. The Windows equivalent is
%errorlevel%.

 Listing 2.15 shows a modification to listing 2.14 that causes the program to exit
cleanly with a relevant status code when no filename is specified with the -r option.

var args = {
'-h': displayHelp,
'-r': readFile

};

function displayHelp() {

Listing 2.15 Returning meaningful exit status codes

Complex arguments
For more complex programs, use an option parsing module. The two most popular
are optimist (https://npmjs.org/package/optimist) and commander (https://
npmjs.org/package/commander). optimist converts arguments into an Object,
which makes them easier to manipulate. It also supports default values, automatic
usage generation, and simple validation to ensure certain arguments have been pro-
vided. commander is slightly different: it uses an abstracted notion of a program that
allows you to specify your program’s accepted arguments using a chainable API.

www.allitebooks.com

https://npmjs.org/package/optimist
https://npmjs.org/package/commander
https://npmjs.org/package/commander
http://www.allitebooks.org

30 CHAPTER 2 Globals: Node’s environment

console.log('Argument processor:', args);
}

function readFile(file) {
if (file && file.length) {
console.log('Reading:', file);
require('fs').createReadStream(file).pipe(process.stdout);

} else {
console.error('A file must be provided with the -r option');
process.exit(1);

}
}

if (process.argv.length > 0) {
process.argv.forEach(function(arg, index) {
args[arg].apply(this, process.argv.slice(index + 1));

});
}

After running listing 2.15, typing echo $? in a Unix terminal will display 1. Also note
that console.error B is used to output an error message. This will cause the message
to be written to process.stderr, which allows users of the script to easily pipe error
messages somewhere.

Because many Node programs are asynchronous, there are times when you may need
to specifically call process.exit() or close down an I/O connection to cause the
Node process to end gracefully. For example, scripts that use the Mongoose database
library (http://mongoosejs.com/) need to call mongoose.connection.close()

before the Node process will be able to exit.
 You may need to track the number of pending asynchronous operations in order

to determine when it’s safe to call mongoose.connection.close(), or the equivalent
for another database module. Most people do this using a simple counter variable,
incrementing it just before asynchronous operations start, and then decrementing it
once their callbacks fire. Once it reaches 0, it’ll be safe to close the connection.

 Another important facet to developing correct programs is creating signal han-
dlers. Continue reading to learn how Node implements signal handlers and when to
use them.

Both console.error and
process.exit are used to correctly
indicate an error occurred.B

Exit codes with special meanings
In the Advanced Bash-Scripting Guide (http://tldp.org/LDP/abs/html/index.html), a
page is dedicated to status codes called Exit Codes With Special Meanings (http://
tldp.org/LDP/abs/html/exitcodes.html). This attempts to generalize error codes, al-
though there’s no standard list of status codes for scripting languages, outside of
non-zero indicating an error occurred.

http://mongoosejs.com/
http://tldp.org/LDP/abs/html/index.html
http://tldp.org/LDP/abs/html/exitcodes.html
http://tldp.org/LDP/abs/html/exitcodes.html

31TECHNIQUE 11 Responding to signals

TECHNIQUE 11 Responding to signals

Node programs can respond to signals sent by other processes.

■ Problem
You need to respond to signals sent by other processes.

■ Solution
Use the signal events that are sent to the process object.

■ Discussion
Most modern operating systems use signals as a way of sending a simple message to a pro-
gram. Signal handlers are typically used in programs that run in the background,
because it might be the only way of communicating with them. There are other cases
where they can be useful in the kinds of programs you’re most likely write—consider a
web application that cleanly closes its connection to a database when it receives SIGTERM.

 The process object is an EventEmitter, which means you can add event listeners
to it. Adding a listener for a POSIX signal name should work—on a Unix system, you
can type man sigaction to see the names of all of the signals.

 Signal listeners enable you to cater to the expected behavior of Unix programs.
For example, many servers and daemons will reload configuration files when they
receive a SIGHUP signal. The next listing shows how to attach a listener to SIGHUP.

process.stdin.resume();
process.on('SIGHUP', function () {

console.log('Reloading configuration...');
});

console.log('PID:', process.pid);

Before doing anything with standard input, resume should be called B to prevent
Node from exiting straight away. Next, a listener is added to the SIGHUP event on the
process object C. Finally, the PID is displayed for the current process D.

 Once the program in listing 2.16 is running, it’ll display the process’s PID. The PID
can be used with the kill command to send the process signals. For example, kill
-HUP 94962 will send the HUP signal to PID 94962. If you send another signal, or just
type kill 94962, then the process will exit.

 It’s important to realize that signals can be sent from any process to any other, per-
missions notwithstanding. Your Node process can send another process a signal by
using process.kill(pid, [signal])—in this case kill doesn’t mean the process will
be “killed,” but simply sent a given signal. The method is named kill after the C stan-
dard library function in signal.h.

 Figure 2.3 shows a broad overview of how signals originate from any process in an
operating system and can be received by your Node processes.

Listing 2.16 Adding a listener for a POSIX signal

Read from stdin so the
program will run until
CTRL-C is pressed or
it’s killed.B

Binding a
listener to the
SIGHUP signal. C

The PID is displayed so you can
use it to send signals using the
kill command.D

32 CHAPTER 2 Globals: Node’s environment

You don’t have to respond to signals in your Node programs, but if you’re writing a
long-running network server, then signal listeners can be extremely useful. Support-
ing signals like SIGHUP will make your program fit into existing systems more naturally.

 A large part of Node’s appeal is its asynchronous APIs and non-blocking I/O fea-
tures. Sometimes it’s desirable to fake this behavior—perhaps in automated tests—or
simply to just force code to execute later on. In the next section we’ll look at how
Node implements JavaScript timers, which support this type of functionality.

2.4 Delaying execution with timers
Node implements the JavaScript timer functions setTimeout, setInterval, clear-
Timeout, and clearInterval. These functions are globally available. Although they’re
part of JavaScript as defined by Mozilla, they’re not defined in the ECMAScript standard.
Instead, timers are part of the HTML DOM Level 0 specification.

TECHNIQUE 12 Executing functions after a delay with setTimeout

It’s possible to run code once after a delay using Node’s setTimeout global method.

■ Problem
You want to execute a function after a delay.

■ Solution
Use setTimeout, and use Function.prototype.bind if necessary.

■ Discussion
The most basic usage of setTimeout is simple: pass it a function to execute and a delay
in milliseconds:

setTimeout(function() {
console.log('Hello from the past!');

}, 1000);

Node process

SIGHUP

OS

process.on('SIGHUP', function() {
 // Listener
});

Process 1

Process 2

Process 3

Process 4

Process 5

Process 6

Figure 2.3 Signals originate from a process, and are handled with an event listener.

33TECHNIQUE 12 Executing functions after a delay with setTimeout

This seems simple and contrived, but you’ll see it used most commonly in tests where
asynchronous APIs are being tested and a small delay is necessary to simulate real-
world behavior. Node supports JavaScript timers for just such cases.

 Methods can also easily be passed to setTimeout by using Function.prototype
.bind. This can be used to bind the first argument to this, or more often the object that
the method belongs to. The following listing shows how bind can be used with a simple
object.

function Bomb() {
this.message = 'Boom!';

}

Bomb.prototype.explode = function() {
console.log(this.message);

};

var bomb = new Bomb();

setTimeout(bomb.explode.bind(bomb), 1000);

Binding ensures that the code inside the method can access the object’s internal prop-
erties. Otherwise, setTimeout would cause the method to run with this bound to the
global object. Binding a method can be more readable than creating a new anony-
mous function.

 To cancel scheduled functions, retain a reference to the timeoutId returned by
setTimeout and then call clearTimeout(timeoutId)B. The next listing demon-
strates clearTimeout.

function Bomb() {
this.message = 'Boom!';

}

Bomb.prototype.explode = function() {
console.log(this.message);

};

var bomb = new Bomb();

var timeoutId = setTimeout(bomb.explode.bind(bomb), 1000);

clearTimeout(timeoutId);

Listing 2.17 Combining setTimeout with Function.prototype.bind

Listing 2.18 Using clearTimeout to prevent scheduled functions

Call .bind to ensure
the method is bound
correctly so it can
access internal
properties.

Defuse the bomb by calling
clearTimeout to prevent
bomb.expode from running.

B

When exactly does the callback run?
Although you can specify when a callback runs in milliseconds, Node isn’t quite that
precise. It can guarantee that the callback will run after the specified time, but it may
be slightly late.

34 CHAPTER 2 Globals: Node’s environment

As well as delaying execution, you can also call functions periodically. The next tech-
nique discusses how to achieve this by using setInterval.

TECHNIQUE 13 Running callbacks periodically with timers

Node can also run callbacks at regular intervals using setInterval, which works in a
fashion similar to setTimeout.

■ Problem
You want to run a callback at a regular interval.

■ Solution
Use setInterval, and clearInterval to stop the timer.

■ Discussion
The setInterval method has been around for years in browsers, and it behaves in
Node much like the client-side counterparts. The callback will be executed on or just
after the specified delay, and will run in the event loop just after I/O (and any calls to
setImmediate, as detailed in technique 14).

 The next listing shows how to combine setInterval with setTimeout to schedule
two functions to execute in a sequence.

function tick() {
console.log('tick:', Date.now());

}

function tock() {
console.log('tock:', Date.now());

}

setInterval(tick, 1000);

setTimeout(function() {
setInterval(tock, 1000);

}, 500);

The setInterval method itself returns a reference to the timer, which can be
stopped by calling clearInterval and passing the reference. Listing 2.19 uses a sec-
ond call to setTimeout B to trigger a second interval timer that runs 500 millisec-
onds after the first.

 Because setInterval prevents a program from exiting, there are cases where you
might want to exit a program if it isn’t doing anything else. For example, let’s say
you’re running a program that should exit when a complex operation has finished,
and you’d like to monitor it at regular intervals using setInterval. Once the complex
operation has finished, you don’t want to monitor it any more.

 Rather than calling clearInterval, Node 0.10 allows you to call timerRef
.unref() at any time before the complex operation has finished. This means you can
use setTimeout or setInterval with operations that don’t signal their completion.

Listing 2.19 Using setInterval and setTimeout together

Run another setInterval
after the first one.

B

35TECHNIQUE 14 Safely managing asynchronous APIs

 Listing 2.20 uses setTimeout to simulate a long-running operation that will keep
the program running while the timer displays the process’s memory usage. Once the
timeout’s delay has been reached, the program will exit without calling clearTimeout.

function monitor() {
console.log(process.memoryUsage());

}

var id = setInterval(monitor, 1000);
id.unref();

setTimeout(function() {
console.log('Done!');

}, 5000);

This is extremely useful in situations where there isn’t a good place to call clear-
Interval.

 Once you’ve mastered timers, you’ll encounter cases where it’s useful to run a call-
back after the briefest possible delay. Using setTimeout with a delay of zero isn’t the
optimum solution, even though it seems like the obvious strategy. In the next tech-
nique you’ll see how to do this correctly in Node by using process.nextTick.

TECHNIQUE 14 Safely managing asynchronous APIs

Sometimes you want to delay an operation just slightly. In traditional JavaScript, it
might be acceptable to use setTimeout with a small delay value. Node provides a more
efficient solution: process.nextTick.

■ Problem
You want to write a method that returns an instance of EventEmitter or accepts a call-
back that sometimes makes an asynchronous API call, but not in all cases.

■ Solution
Use process.nextTick to wrap the synchronous operation.

■ Discussion
The process.nextTick method allows you to place a callback at the head of the next
cycle of the run loop. That means it’s a way of slightly delaying something, and as a
result it’s more efficient than just using setTimeout with a zero delay argument.

 It can be difficult to visualize why this is useful, but consider the following exam-
ple. Listing 2.21 shows a function that returns an EventEmitter. The idea is to provide
an event-oriented API, allowing users of the API to subscribe to events as needed, while
being able to run asynchronous calls internally.

var EventEmitter = require('events').EventEmitter;

function complexOperations() {

Listing 2.20 Keeping a timer alive until the program cleanly exits

Listing 2.21 Incorrectly triggering asynchronous methods with events

Tell Node to stop the
interval when the program
has finished the long-
running operation.

36 CHAPTER 2 Globals: Node’s environment

var events = new EventEmitter();

events.emit('success'); 1((callout-globals-nexttick-1))

return events;
}

complexOperations().on('success', function() {
console.log('success!');

});

Running this example will fail to trigger the success listener B at the end of the
example. Why is this the case? Well, the event is emitted before the listener has been
subscribed. In most cases, events would be emitted inside callbacks for some asynchro-
nous operation or another, but there are times when it makes sense to emit events
early—perhaps in cases where arguments are validated and found to contain errors,
so error can be emitted very quickly.

 To correct this subtle flaw, any sections of code that emit events can be wrapped in
process.nextTick. The following listing demonstrates this by using a function that
returns an instance of EventEmitter, and then emits an event.

var EventEmitter = require('events').EventEmitter;

function complexOperations() {
var events = new EventEmitter();

process.nextTick(function() {
events.emit('success');

});

return events;
}

complexOperations().on('success', function() {
console.log('success!');

});

Node’s documentation recommends that APIs should always be 100% asynchronous
or synchronous. That means if you have a method that accepts a callback and may call
it asynchronously, then you should wrap the synchronous case in process.nextTick
so users can rely on the order of execution.

 Listing 2.23 uses an asynchronous call to read a file from the disk. Once it has
read the file, it’ll keep a cached version in memory. Subsequent calls will return the
cached version. When returning the cached version, process.nextTick is used so
the API still behaves asynchronously. That makes the output in the terminal read in
the expected order.

Listing 2.22 Triggering events inside process.nextTick

This is an event that is
triggered outside of any
asynchronous callbacks.

B

The event will now
be emitted when the
listener is ready.

37TECHNIQUE 14 Safely managing asynchronous APIs

var EventEmitter = require('events').EventEmitter;
var fs = require('fs');
var content;

function readFileIfRequired(cb) {
if (!content) {
fs.readFile(__filename, 'utf8', function(err, data) {

content = data;
console.log('readFileIfRequired: readFile');
cb(err, content);

});
} else {
process.nextTick(function() {

console.log('readFileIfRequired: cached');
cb(null, content);

});
}

}

readFileIfRequired(function(err, data) {
console.log('1. Length:', data.length);

readFileIfRequired(function(err, data2) {
console.log('2. Length:', data2.length);

});

console.log('Reading file again...');
});

console.log('Reading file...');

In this example, a file is cached to memory by using fs.readFile to read it B, and
then return a copy of it C for every subsequent call. This is wrapped in a process
that’s called multiple times D so you can compare the behavior of the non-blocking
file system operation to process.nextTick.

Visualizing the event loop: setImmediate and process.maxTickDepth
The setImmediate and clearImmediate global functions accept a callback and
optional arguments, and will run after any upcoming I/O events but before setTimeout
and setInterval.

 Callbacks added this way are pushed onto a queue, and one callback will be
executed per run loop. This is different from process.nextTick, which causes
process.maxTickDepth callbacks to run per iteration of the run loop.

 The callbacks that have been passed with process.nextTick are usually run at the
end of the current event loop. The number of callbacks that can be safely run is con-
trolled by process.maxTickDepth, which is 1000 by default to allow I/O operations to
continue to be handled.

 Figure 2.4 illustrates how each of the timer functions is positioned within a single
iteration of the event loop.

Listing 2.23 Creating the illusion of an always asynchronous API

If the content hasn’t been
read into memory, read it
asynchronously.

B

If the content has been read,
pass the cached version to
the callback, but first use
process.nextTick to ensure
the callback is executed later.

C

Make subsequent calls to the
asynchronous operation to
ensure it behaves as expected.

D

38 CHAPTER 2 Globals: Node’s environment

When you’re creating your own classes and methods that behave asynchronously,
keep behavior consistent and predictable by using process.nextTick.

 Node’s implementation of the standard browser-based JavaScript timers fits in well
with its event loop and non-blocking I/O. Although these functions are typically used for
testing asynchronous code, a deep understanding of when setTimeout, setImmediate,
and process.nextTick will be executed provides mastery over the event loop.

2.5 Summary
In this chapter you’ve seen some of the surprisingly powerful things that are built into
Node programs without going to the trouble of loading a module. The next time you
want to group related modules together, you can create an index.js file, as described
in technique 3. And if you need to read standard input, you can use the process
object’s stdin property (technique 5).

 In addition to the process object, there’s also the often overlooked console
object, which will help you debug and maintain programs (technique 6).

 In the next chapter you’ll learn about buffers. Buffers are great for working with
binary data, which has traditionally been seen as a weakness of JavaScript. Buffers also
underpin some of Node’s powerful features such as streams.

Event loop iteration

I/O events

setInterval

setImmediate

process.nextTick

Figure 2.4 Scheduling nextTick on the event loop

39

Buffers: Working with
 bits, bytes, and encodings

JavaScript has historically had subpar binary support. Typically, parsing binary data
would involve various tricks with strings to extract the data you want. Not having a
good mechanism to work with raw memory in JavaScript was one of the problems
Node core developers had to tackle when the project started getting traction. This
was mostly for performance reasons. All of the raw memory accumulated in the
Buffer data type.

 Buffers are raw allocations of the heap, exposed to JavaScript in an array-like
manner. They’re exposed globally and therefore don’t need to be required, and
can be thought of as just another JavaScript type (like String or Number):

This chapter covers
■ Introduction to the Buffer data type
■ Changing data encodings
■ Converting binary files to JSON
■ Creating your own binary protocol

40 CHAPTER 3 Buffers: Working with bits, bytes, and encodings

var buf = new Buffer(255);
buf[0] = 23;

If you haven’t worked much with binary data, don’t worry; this chapter is designed to
be friendly to newcomers but also equip those who are more familiar with the con-
cept. We’ll cover simple and more advanced techniques:

■ Converting a Buffer to different encodings
■ Using the Buffer API to transform a binary file to JSON
■ Encoding and decoding your own binary protocol

 Let’s look first at changing encodings for buffers.

3.1 Changing data encodings
If no encoding is given, file operations and many network operations will return data
as a Buffer. Take this fs.readFile as an example:

var fs = require('fs');
fs.readFile('./names.txt', function (er, buf) {

Buffer.isBuffer(buf); // true
});

But many times you already know a file’s encoding, and it’s more useful to get the data
as an encoded string instead. We’ll look at converting between Buffers and other for-
mats in this section.

TECHNIQUE 15 Converting buffers into other formats

By default, Node’s core APIs return a buffer unless an encoding is specified. But buf-
fers easily convert to other formats. In this next technique we’ll look at how to convert
buffers.

■ Problem
You want to turn a Buffer into plain text.

■ Solution
The Buffer API allows you to convert a Buffer into a string value.

■ Discussion
Let’s say we have a file that we know is just plain text. For our purposes we’ll call this
file names.txt and it will include a person’s name on each line of the file:

Janet
Wookie
Alex
Marc

If we were to load the file using a method from the file system (fs) API, we’d get a
Buffer (buf) by default

var fs = require('fs');
fs.readFile('./names.txt', function (er, buf) {

console.log(buf);
});

Allocate 255 bytes.
Write integer 23 to the first byte.

isBuffer returns
true if it’s a Buffer.

41TECHNIQUE 16 Changing string encodings using buffers

which, when logged out, is shown as a list of octets (using hex notation):

<Buffer 4a 61 6e 65 74 0a 57 6f 6f 6b 69 65 0a 41 6c 65 78 0a
4d 61 72 63 0a>

This isn’t very useful since we know that the file is plain text. The Buffer class pro-
vides a method called toString to convert our data into a UTF-8 encoded string:

var fs = require('fs');
fs.readFile('./names.txt', function (er, buf) {

console.log(buf.toString());
});

This will yield the same output as our original file:

Janet
Wookie
Alex
Marc

But since we know that this data is only comprised of ASCII characters,1 we could also
get a performance benefit by changing the encoding to ASCII rather than UTF-8. To
do this, we provide the type of encoding as the first argument for toString:

var fs = require('fs');
fs.readFile('./names.txt', function (er, buf) {

console.log(buf.toString('ascii'));
});

The Buffer API provides other encodings such as utf16le, base64, and hex, which
you can learn more about by viewing the Buffer API online documentation.2

TECHNIQUE 16 Changing string encodings using buffers

In addition to converting buffers, you can also utilize buffers to turn one string encod-
ing into another.

■ Problem
You want to change from one string encoding to another.

■ Solution
The Node Buffer API provides a mechanism to change encodings.

■ Discussion
Example 1: Creating a Basic authentication header
Sometimes it’s helpful to build a string of data and then change its encoding. For
example, if you wanted to request data from a server that uses Basic authentication,3

you’d need to send the username and password encoded using Base64:

Authorization: Basic am9obm55OmMtYmFk

1 See http://en.wikipedia.org/wiki/ASCII.
2 See http://nodejs.org/api/buffer.html.
3 See http://en.wikipedia.org/wiki/Basic_access_authentication.

toString by default will
convert data into a
UTF-8 encoded string.

toString accepts an
encoding as the first
argument.

am9obm55OmMtYmFk
is encoded credentials

http://en.wikipedia.org/wiki/ASCII
http://nodejs.org/api/buffer.html
http://en.wikipedia.org/wiki/Basic_access_authentication

42 CHAPTER 3 Buffers: Working with bits, bytes, and encodings

Before Base64 encoding is applied, Basic authentication credentials combine the
username and password, separating the two using a : (colon). For our example, we’ll
use johnny as the username and c-bad as the password:

var user = 'johnny';
var pass = 'c-bad';
var authstring = user + ':' + pass;

Now we have to convert this into a Buffer in order to change it into another encod-
ing. Buffers can be allocated by bytes, as we’ve seen already by simply passing in a
number (for example, new Buffer(255)). They also can be allocated by passing in
string data:

var buf = new Buffer(authstring);

Now that we have our data as a Buffer, we can turn it back into a Base64-encoded
string by using toString('base64'):

var encoded = buf.toString('base64');

This process can be compacted as well, since instance methods can be called on the
returned Buffer instance right away and the new keyword can be omitted:

var encoded = Buffer(user + ':' + pass).toString('base64');

Example 2: Working with data URIs
Data URIs4 are another example of when using the Buffer API can be helpful. Data URIs
allow a resource to be embedded inline on a web page using the following scheme:

data:[MIME-type][;charset=<encoding>[;base64],<data>

For example, this PNG image of a monkey can be represented as a data URI:

...

And when read in the browser, the data URI will display our pri-
mate as shown in figure 3.1.

 Let’s look at how we can create a data URI using the Buf-
fer API. In our primate example, we were using a PNG image
that has the MIME type of image/png:

var mime = 'image/png';

4 See http://en.wikipedia.org/wiki/Data_URI_scheme.

username and
password are
separated using colon

String data converted
to a Buffer

Specifying an encoding
When strings are used to allocate a Buffer, they’re assumed to be UTF-8 strings,
which is typically what you want. But you can specify the encoding of the incoming
data using a second, optional, encoding argument:

new Buffer('am9obm55OmMtYmFk', 'base64')

Result:
am9obm55OmMtYmFk

Figure 3.1 Data URI read
in a browser displays the
monkey as an image

http://en.wikipedia.org/wiki/Data_URI_scheme

43TECHNIQUE 16 Changing string encodings using buffers

Binary files can be represented in data URIs using Base64 encoding, so let’s set up a
variable for that:

var encoding = 'base64';

With our MIME type and encoding, we can construct the start of our data URI:

var mime = 'image/png';
var encoding = 'base64';
var uri = 'data:' + mime + ';' + encoding + ',';

We need to add the actual data next. We can use fs.readFileSync to read in our data
synchronously and return the data inline. fs.readFileSync will return a Buffer, so
we can then convert that to a Base64 string:

var encoding = 'base64';
var data = fs.readFileSync('./monkey.png').toString(encoding);

Let’s put this all together and make a program that will output our data URI:

var fs = require('fs');
var mime = 'image/png';
var encoding = 'base64';
var data = fs.readFileSync('./monkey.png').toString(encoding);
var uri = 'data:' + mime + ';' + encoding + ',' + data;
console.log(uri);

The output of this program will be

...

Let’s flip the scenario around. What if you have a data URI but you want to write it out
to an actual file? Again, we’ll work with our monkey example. First, we split the array
to grab only the data:5

var uri = '...';
var data = uri.split(',')[1];

We can then create a Buffer using our data string and specifying the encoding:

var buf = Buffer(data, 'base64');

Next, we use fs.writeFileSync to write this synchronously to disk, giving it a file
name and the Buffer:

fs.writeFileSync('./secondmonkey.png', buf);

Putting this example all together looks like this:

var fs = require('fs');
var uri = '...';
var data = uri.split(',')[1];
var buf = Buffer(data, 'base64');
fs.writeFileSync('./secondmonkey.png', buf);

5 This is not prescriptive for all data URIs, as commas could appear elsewhere.

Require fs module to
use fs.readFileSync

Construct data URI

Output
data URI

Require fs module to
use fs.writeFileSync

44 CHAPTER 3 Buffers: Working with bits, bytes, and encodings

When opened in our default image
viewer, this gives us our monkey, as shown
in figure 3.2.

 Most of the time, when you deal with
Buffer objects in Node, it will be to con-
vert them to other formats, and some-
times you’ll change encodings. But you
may find yourself having to deal with a
binary file format, and the Buffer API—
which we’ll look at next—provides a rich
set of tools to work with that as well.

3.2 Converting binary files to JSON
Working with binary data is kind of like
solving a puzzle. You’re given clues by
reading a specification of what the data means and then you have to go out and turn
that data into something usable in your application.

TECHNIQUE 17 Using buffers to convert raw data

What if you could utilize a binary format to do something useful in your Node pro-
gram? In this technique we’ll cover, in depth, working with binary data to convert a
common file format into JSON.

■ Problem
You want to convert a binary file into a more usable format.

■ Solution
The Node API extends JavaScript with a Buffer class, exposing an API for raw binary
data access and tools for dealing more easily with binary data.

■ Discussion
For the purposes of our example, namely, file conversion, you can think of the process
in terms of figure 3.3.

 Binary data is read, processed, and written out in a more usable format using the
binary specification as a guide and the binary API as the mechanism for accomplishing
the transformation. This is not the only use of binary data. For example, you could do
processing on a binary protocol to pass messages back and forth and the diagram
would look different.

 For our technique, the binary file format we’ll work with is DBase 5.0 (.dbf). That
format may sound obscure, but (to put it into context) it was a popular database
format that’s still heavily in use for attribution of geospatial data. You could think
of it as a simplified Excel spreadsheet. The sample we’ll work with is located at
buffers/world.dbf.

Figure 3.2 Generated secondmonkey.png file
from a data URI

45TECHNIQUE 17 Using buffers to convert raw data

The file contains geospatial information for the countries of the world. Unfortunately,
if you were to open it in your text editor, it wouldn’t be very useful.

WHY ARE WE COVERING IN DEPTH A BINARY FORMAT THAT I MAY NEVER USE? Although
we could’ve picked a number of binary formats, DBase 5.0 is one that will teach
you a lot of different ways of approaching problems with reading binary files that
are common to many other formats. In addition, binary formats are unfamiliar
to many coming from a web development background, so we’re taking some
time to focus on reading binary specifications. Please feel free to skim if you’re
already familiar.

Since we want to use it in our Node application, JSON would be a good format choice
because it can be natively parsed in JavaScript and resembles native JavaScript objects.
This is illustrated in figure 3.4.

 Figure 3.5 shows an example of the transformation we want to make: on the left is
the raw binary opened in a text editor, and on the right is the converted JSON format.

The header
Before we can start tackling this problem, we’ll need to do some research to find out
the specification for the binary format we want to deal with. In our case, a number of
similar specifications were found online from search engine queries. For DBase 5.0,
the primary specification we’ll use for this example is found at http://mng.bz/i7K4.

The raw binary
data.

The spec is the guide on how
to parse the binary file.

The API has the tools to
parse the binary file.

A usable format for
our application.

Usable
format

010100101010
010010101001

100010101010
001010110100

Binary file
Binary processing
(the actual code)

I/O read

Binary
specification

I/O write
Binary API

Figure 3.3 The transformation of binary data into a more usable/programmable format

http://mng.bz/i7K4

46 CHAPTER 3 Buffers: Working with bits, bytes, and encodings

The raw DBase
5.0 binary file.

DBase 5.0 specification gives us
a guide to parse the binary file.

The Node API extends JavaScript with a Buffer
class exposing an API for raw binary data access and

tools for dealing more easily with that data.

JSON can be natively parsed
in JavaScript and resembles native

JavaScript objects.

JSON

010100101010
010010101001

100010101010
001010110100

world.dbf
Binary processing

with Node.js
(the actual code)

fs.readFile

DBase 5.0
specification

console.log
Node

Buffer API

Figure 3.4 Binary data is read using FileSystem API into Node.js, transformed using the Buffer API
into an easier-to-use JSON format.

The original world.dbf
binary file

The output JSON using
the Node Buffer API

Figure 3.5 Final result of our transformation

47TECHNIQUE 17 Using buffers to convert raw data

The first portion of the specification is called the header. Many binary formats will use a
header as a place to store metadata about the file; table 3.1 shows what the specifica-
tion looks like for DBase 5.0.

Let’s take a peek at the first row.

This row tells us the byte located at position 0 contains the information specified in
the description. So how do we access the byte at position 0? Thankfully, this is really
simple with buffers.

 In Node, unless you specify a particular encoding for the data you’re reading in, you’ll
get back a Node Buffer, as seen in this example:

var fs = require('fs');

fs.readFile('./world.dbf', function (er, buf) {
Buffer.isBuffer(buf); // true

});

fs.readFile isn’t the only way to get back a buffer but, for the sake of simplicity, we’ll
use that method so we get the entire buffer back as an object after it’s read. This method
may not be ideal for large binary files where you wouldn’t want to load the whole buffer
into memory at once. In that case, you could stream the data with fs.createRead-
Stream or manually read in parts of the file at a time with fs.read. It should also be
noted that buffers aren’t available only for files; they exist pretty much anywhere you
can get streams of data (for example, post data on an HTTP request).

Table 3.1 DBase 5.0 header specification

Byte Contents Description

0 1 byte Valid dBASE for Windows table file; bits 0-2 indicate version number ...

1-3 3 bytes Date of last update; in YYMMDD format

4-7 32-bit number Number of records in the table

8-9 16-bit number Number of bytes in the header

10-11 16-bit number Number of bytes in the record

...

32-n each 32 bytes Field descriptor array

n+1 1 byte 0Dh stored as the field terminator

Byte Contents Description

0 1 byte Valid dBASE for Windows table file; bits 0-2 indicate version number ...

48 CHAPTER 3 Buffers: Working with bits, bytes, and encodings

 If you wanted to view a string representation of a buffer, a simple buf.toString()
call would suffice (this defaults to UTF-8 encoding). This is nice if you’re pulling in
data that you know is just text:

var fs = require('fs');

fs.readFile('./world.dbf', function (er, buf) {
console.log(buf.toString());

});

In our case, buf.toString() would be just as bad as opening up the world.dbf file in a
text editor: unusable. We need to make sense of the binary data first.

NOTE From here forward, whenever you see our variable buf, it refers to an
instance of a Buffer, therefore part of the Node Buffer API.

In the table we talked about byte position 0. Buffers in Node act very similar to
JavaScript arrays but the indices are byte positions in memory. So byte position 0 is buf[0].
In Buffer syntax, buf[0] is synonymous with the byte, the octet, the unsigned 8-bit
integer, or positive signed 8-bit integer at position 0.

 For this example, we don’t really care about storing information about this particu-
lar byte. Let’s move on to the next byte definition.

Here’s something interesting: the date of the last update. But this spec doesn’t tell us
anything more than that it’s 3 bytes and in YYMMDD format. All this is to say that you
may not find all you’re looking for in one spot. Subsequent web searches landed this
information:

Each byte contains the number as a binary. YY is added to a base of 1900 decimal to
determine the actual year. Therefore, YY has possible values from 0x00-0xFF, which
allows for a range from 1900-2155.6

That’s more helpful. Let’s look at parsing this in Node:

var header = {};

var date = new Date();
date.setUTCFullYear(1900 + buf[1]);
date.setUTCMonth(buf[2]);
date.setUTCDate(buf[3]);
header.lastUpdated = date.toUTCString();

Here we use a JavaScript Date object and set its year to 1900 plus the integer we pulled
out of buf[1]. We use integers at positions 2 and 3 to set the month and date. Since
JSON doesn’t store JavaScript Date types, we’ll store it as a UTC Date string.

Byte Contents Description

1-3 3 bytes Date of last update; in YYMMDD format

6 See http://www.dbase.com/Knowledgebase/INT/db7_file_fmt.htm.

Returns a UTF-8
string by default

Result:
“Sat Aug 26 1995 ...”

http://www.dbase.com/Knowledgebase/INT/db7_file_fmt.htm

49TECHNIQUE 17 Using buffers to convert raw data

 Let’s pause to recap. “Sat Aug 26 1995...” as shown here is the result of parsing a
portion of world.dbf binary data into a JavaScript string. We’ll see more examples of
this as we continue.

This next definition gives us two clues. We know the byte starts at offset 4 and it’s a 32-
bit number with the least significant byte first. Since we know the number shouldn’t
be negative, we can assume either a positive signed integer or an unsigned integer.
Both are accessed the same way in the Buffer API:

header.totalRecords = buf.readUInt32LE(4);

buf.readUInt32LE will read an unsigned 32-bit integer with little-endian format from
the offset of 4, which matches our description from earlier.

 The next two definitions follow a similar pattern except they’re 16-bit integers. Fol-
lowing are their definitions.

And here’s the corresponding code:

header.bytesInHeader = buf.readUInt16LE(8);
header.bytesPerRecord = buf.readUInt16LE(10);

The transformation that has taken place between the specification and the code for
this header section is illustrated in figure 3.6.

The field descriptor array
Only one more relevant piece of information for this example remains in the header
of the world.dbf file. It’s the definitions for the fields, including type and name infor-
mation, seen in the following lines.

From this we know that each field description is stored as 32 bytes of information.
Since this database could have one or more fields for data, we’ll know it’s finished

Byte Contents Description

4-7 32-bit number Number of records in the table

Byte Contents Description

8-9 16-bit number Number of bytes in the header

10-11 16-bit number Number of bytes in the record

Byte Contents Description

32-n each 32 bytes Field descriptor array

n+1 1 byte 0Dh stored as the field terminator

Result: 246

Result: 385

Result: 424

50 CHAPTER 3 Buffers: Working with bits, bytes, and encodings

when we hit the 1 byte field terminator (0Dh) shown in the second row. Let’s write a
structure to handle this:

var fields = [];
var fieldOffset = 32;
var fieldTerminator = 0x0D;

while (buf[fieldOffset] != fieldTerminator) {
// here is where we parse each field
fieldOffset += 32;

}

Here we loop through the buffer 32 bytes at a time until we hit the fieldTerminator,
which is represented in hexadecimal notation.

Declare an empty
object to store the

header information.

Pull out the year,
month, and date bytes

at positions 1, 2, 3
to create date.

Pull out unsigned
32-bit integer, little endian,

at position 4.

Pull out unsigned
16-bit integer, little endian,

at position 8.

header = {"lastUpdated": "Sat Aug 26 1995 ...",
 "totalRecords": 246,
 "bytesInHeader": 385,
 "bytesPerRecord": 424}

Result of
transformation

Pull out unsigned
16-bit integer, little endian,

at position 10.

1-3 3 bytes Date of last update; in YYMMDD format.

4-7 32-bit
number

16-bit
number

16-bit
number

Number of records in the table.

The Header

var header = {};

header.totalRecords = buf.readUInt32LE(4);

header.bytesInHeader = buf.readUInt16LE(8);

var date = new Date();
date.setUTCFullYear(1900 + buf[1]);
date.setUTCMonth(buf[2]);
date.setUTCDate(buf[3]);
header.lastUpdated = date.toUTCString();

8-9 Number of bytes in the header.

10-11 Number of bytes in the header.

header.bytesPerRecord = buf.readUInt16LE(10);

Figure 3.6 The header: transformation from the specification to code using the Node Buffer API

JavaScript hex
literal notation to
represent 0Dh

51TECHNIQUE 17 Using buffers to convert raw data

 Now we need to handle the information concerning each field descriptor. The
specification has another table specifically for this; the relevant information for our
example is shown in table 3.2.

Note that the indexing for the bytes starts over at 0, even though we’re well past byte
position 0 in our reading of the file. It would be nice to start over at each record so we
could follow the specification more closely. Buffer provides a slice method for us to
do just that:

var fields = [];
var fieldOffset = 32;
var fieldTerminator = 0x0D;

while (buf[fieldOffset] != fieldTerminator) {
var fieldBuf = buf.slice(fieldOffset, fieldOffset+32);
// here is where we parse each field
fieldOffset += 32;

}

buf.slice(start,end) is very similar to a standard array slice method in that it returns
a buffer indexed at start to end. But it differs in that it doesn’t return a new copy of the
data. It returns just a snapshot of the data at those points. So if you manipulate the data
in the sliced buffer in any way, it will also be manipulated in the original buffer.

 With our new fieldBuf indexed at zero for each iteration, we can approach the
specification without doing extra math in our heads. Let’s look at the first line.

Here’s the code to extract the field name:

var field = {};

field.name = fieldBuf.toString('ascii', 0, 11).replace(/\u0000/g,'');

By default, buf.toString() assumes utf8, but Node Buffers support other encod-
ings as well,7 including ascii, which is what our spec calls for. buf.toString() also

Table 3.2 DBase 5.0 field descriptor array specification

Byte Contents Description

0-10 11 bytes Field name in ASCII (zero-filled)

11 1 byte Field type in ASCII (C, N, ...)

...

16 1 byte Field length in binary

Byte Contents Description

0-10 11 bytes Field name in ASCII (zero-filled)

7 See http://nodejs.org/api/buffer.html#buffer_buffer.

Result, such as “LON” (longitude)

http://nodejs.org/api/buffer.html#buffer_buffer

52 CHAPTER 3 Buffers: Working with bits, bytes, and encodings

allows you to pass in the range that you want converted. We also have to replace()
the zero-filled characters with empty strings if the field was shorter than 11 bytes so
we don’t end up with zero-filled characters (\u0000) in our names.

 The next relevant field is a field data type.

But the characters C and N don’t really mean anything to us yet. Further down the
specification, we get definitions for these types, as shown in table 3.3.

It would be nice to convert this data to relevant types for our application. JavaScript
doesn’t use the language character or numeric, but it does have String and Number; let’s
keep that in mind when we parse the actual records. For now we can store this in a lit-
tle lookup object to do the conversion later:

var FIELD_TYPES = {
C: 'Character',
N: 'Numeric'

}

Now that we have a lookup table, we can pull out the relevant information as we con-
tinue converting the binary data:

field.type = FIELD_TYPES[fieldBuf.toString('ascii', 11, 12)];

buf.toString() will give us our one ASCII character that we then look up in the hash
to get the full type name.

 There’s only one other bit of information we need to parse the remaining file from
each field description—the field size.

We write this now-familiar code:

field.length = fieldBuf[16];

The transformation that has taken place between the specification and the code for
this field descriptor array section is illustrated in figure 3.7.

Byte Contents Description

11 1 byte Field type in ASCII (C, N, ...)

Table 3.3 Field types specification

Data type Data input

C (Character) All OEM code page characters

N (Numeric) - . 0 1 2 3 4 5 6 7 8 9

Byte Contents Description

16 1 byte Field length in binary

Result: will be “Character or “Numeric”

Result, such as 435

53TECHNIQUE 17 Using buffers to convert raw data

The records
Now that we’ve parsed the header, including the field descriptors, we have one more
part to process: the actual record data. The specification tells us this:

Set up loop to grab
fields, slicing to start

at position 0 each time,
and stopping at

terminator.

Set up an object to
store each field.

Grab ascii characters
from 0 to 10, removing

any zeros.

Grab single ascii
character type from

position 11 and look up
full type name in
FIELD_TYPES.

Grab field length as
integer from position
16 and push field into

fields array.

The Header
32-n
each

n+1

32 bytes Field descriptor array

0-10 11 bytes Field name in ASCII (zero-filled)

11 1 byte Field type in ASCII (C, N, ...)

1 byte 0Dh stored as the field terminator

var fields = [];
var fieldOffset = 32;
var fieldTerminator = 0x0D;
var FIELD_TYPES = { 'n': 'Numeric', 'c': 'Character' };

while (buf[fieldOffset] != fieldTerminator) {
 var fieldBuf = buf.slice(fieldOffset, fieldOffset+32);

 fieldOffset += 32;
}

The Field Descriptor

var field = {}

field.name = fieldBuf.toString('ascii', 0, 10)
 .replace(/\u0000/g,'');

16 1 byte Field length in binary

field.type = FIELD_TYPES[
 fieldBuf.toString('ascii', 11, 12)];

field.length = fieldBuf[16];
fields.push(field);

field = {"name": "LON",
 "type": "Numeric",
 "length": 385}

Result of single
field transformation

Figure 3.7 The field descriptor array: transformation from the specification to code using the Node
Buffer API

54 CHAPTER 3 Buffers: Working with bits, bytes, and encodings

The records follow the header in the table file. Data records are preceded by one byte, that
is, a space (20h) if the record is not deleted, an asterisk (2Ah) if the record is deleted.
Fields are packed into records without field separators or record terminators. The end of
the file is marked by a single byte, with the end-of-file marker, an OEM code page
character value of 26 (1Ah).

Let’s break this down for discussion:

The records follow the header in the table file.

Although we could’ve kept track of the byte position after the fieldOffset, the
header had a field for number of bytes in the header, which we stored as
header.bytesInHeader. So we know we need to start there:

var startingRecordOffset = header.bytesInHeader;

We also learned a couple other things from our parsing of the header. The first is how
many records exist in the data, which we stored as header.totalRecords. The second
is how many bytes are allocated for each record, which was stored as header.bytes-
PerRecord. Knowing where to start, how many to iterate, and how much of a jump per
iteration helps us set up a nice for loop for handling each record:

for (var i = 0; i < header.totalRecords; i++) {
var recordOffset = startingRecordOffset +

(i * header.bytesPerRecord);
// here is where we parse each record

}

Now, at the beginning of each iteration, we know the byte position we want to start at
is stored as recordOffset. Let’s continue reading the specification:

Data records are preceded by one byte, that is, a space (20h) if the record is not deleted,
an asterisk (2Ah) if the record is deleted.

Next we have to check that first byte to see if the record was deleted:

var record = {};
record._isDel = buf.readUInt8(recordOffset) == 0x2A;
recordOffset++;

Similar to when we tested for the fieldTerminator in our header file, here we test to
see if the integer matches 0x2A or the ASCII “asterisk” character. Let’s continue reading:

Fields are packed into records without field separators or record terminators.

Lastly, we can pull in the actual record data. This pulls in the information we learned
from parsing the field descriptor array. We stored a field.type, field.name, and
field.length (in bytes) for each field. We want to store the name as a key in the
record where the value is the data for that length of bytes converted to the correct
type. Let’s look at it in simple pseudo code:

record[name] = cast type for (characters from length)
e.g.
record['pop2005'] = Number("13119679")

Note: We could’ve
also used
buf[recordOffset]

55TECHNIQUE 17 Using buffers to convert raw data

We also want to do this type conversion for every field per record, so we use another
for loop:

for (var j = 0; j < fields.length; j++) {
var field = fields[j];
var Type = field.type == 'Numeric' ? Number : String;
record[field.name] = Type(buf.toString('ascii', recordOffset,

recordOffset+field.length).trim());
recordOffset += field.length;

}

We loop through each of the fields:

1 First, we find out which JavaScript type we want to cast the value to and store it
in a variable Type.

2 Then, we use buf.toString to pull out the characters from recordOffset to
the next field.length. We also have to trim() the data because we don’t know
if all the bytes were used to store relevant data or just filled with spaces.

3 Lastly, we increment the recordOffset with the field.length so that we keep
the location to start at for the next field when we go around the for loop again.

The transformation that has taken place between the specification and the code for
this records section is illustrated in figure 3.8.

Set up loop to grab
records setting recordOffset
for the current record each

time and stopping at
totalRecords (details we
found out from parsing

the header).

Set up an object to
store record; store if

deleted or not.

Loop through each field
(using details we found out
parsing the field descriptor

array). Store name as a
key in the record, pull the
value found using the field
length, and cast the value

to a JavaScript type.
record = {"LON": -160.027,
 "NAME": "United States Minor Outlying Islands",
 "ISO2": "UM",
 "LAT": -0.385, ...}

Result of single record
tranformation

The records follow the header in the table file.

Data records are preceded by one byte, that is, a space (20h) if the
record is not deleted, an asterisk (2Ah) if the record is deleted.

Fields are packed into records without field separators or record terminators.

The Records

var startingRecordOffset = header.bytesInHeader;
for (var i = 0; i < header.totalRecords; i++) {
 var recordOffset = startingRecordOffset +
 (i * header.bytesPerRecord);
 // loop code below
}

for (var j = 0; j < fields.length; j++) {
 var field = fields[j];
 var Type = field.type == ‘Numeric’ ? Number : String;
 record[field.name] = Type(buf.toString('ascii',
 recordOffset, recordOffset+field.length).trim());
 recordOffset += field.length;
}

var record = {};
record._isDel = buf.readUInt8(recordOffset) == 0x2A;

Figure 3.8 The records: transformation from the specification to code using the Node Buffer API

56 CHAPTER 3 Buffers: Working with bits, bytes, and encodings

Still with me? I hope so. The complete code sample is shown in figure 3.9.

var fs = require('fs');

fs.readFile('./world.dbf', function (err, buf) {
 var header = {};

 var date = new Date();
 date.setFullYear(1900 + buf[1]);
 date.setMonth(buf[2]);
 date.setDate(buf[3]);
 header.lastUpdated = date.toString();

 header.totalRecords = buf.readUInt32LE(4);
 header.bytesInHeader = buf.readUInt16LE(8);
 header.bytesPerRecord = buf.readUInt16LE(10);

 var fields = [];
 var fieldOffset = 32;
 var fieldTerminator = 0x0D;

 var FIELD_TYPES = {
 C: 'Character',
 N: 'Numeric'
 };

 while (buf[fieldOffset] != fieldTerminator) {
 var fieldBuf = buf.slice(fieldOffset, fieldOffset+32);
 var field = {};
 field.name = fieldBuf.toString('ascii', 0, 11).replace(/\u0000/g,'');
 field.type = FIELD_TYPES[fieldBuf.toString('ascii', 11, 12)];
 field.length = fieldBuf[16];

 fields.push(field);
 fieldOffset += 32;
 }

 var startingRecordOffset = header.bytesInHeader;
 var records = [];

 for (var i = 0; i < header.totalRecords; i++) {
 var recordOffset = startingRecordOffset + (i * header.bytesPerRecord);
 var record = {};

 record._isDel = buf.readUInt8(recordOffset) == 0x2A;
 recordOffset++;

 for (var j = 0; j < fields.length; j++) {
 field = fields[j];
 var Type = field.type === 'Numeric' ? Number : String;
 record[field.name] = Type(buf.toString('utf8',recordOffset,
 recordOffset+field.length).trim());
 recordOffset += field.length;
 }

 records.push(record);
 }

 console.log({ header: header, fields: fields, records: records });
})

Reading in world.dbf
and receiving a

buffer object

The Header
(metadata on
how to read

the file)

The Field
Descriptor Array

(part of the
header that

deals with field
metadata)

The Records
(read from
information

learned from
parsing

metadata)

Writing out JSON
data to console

(STDOUT)

Figure 3.9 The full set of code for parsing a DBF file into JSON

57TECHNIQUE 17 Using buffers to convert raw data

Using the Node Buffer API, we were able to turn a binary file into a usable JSON for-
mat. The output of running this application is shown next:

{ header:
{ lastUpdated: 'Sat Aug 26 1995 21:55:03 GMT-0500 (CDT)',
totalRecords: 246,
bytesInHeader: 385,
bytesPerRecord: 424 },

fields:
[{ name: 'LON', type: 'Numeric', length: 24 },
{ name: 'NAME', type: 'Character', length: 80 },
{ name: 'ISO2', type: 'Character', length: 80 },
{ name: 'UN', type: 'Numeric', length: 11 },
{ name: 'ISO3', type: 'Character', length: 80 },
{ name: 'AREA', type: 'Numeric', length: 11 },
{ name: 'LAT', type: 'Numeric', length: 24 },
{ name: 'SUBREGION', type: 'Numeric', length: 11 },
{ name: 'REGION', type: 'Numeric', length: 11 },
{ name: 'POP2005', type: 'Numeric', length: 11 },
{ name: 'FIPS', type: 'Character', length: 80 }],

records:
[{ _isDel: false,

LON: -160.027,
NAME: 'United States Minor Outlying Islands',
ISO2: 'UM',
UN: 581,
ISO3: 'UMI',
AREA: 0,
LAT: -0.385,
SUBREGION: 0,
REGION: 0,
POP2005: 0,
FIPS: '' },

{ _isDel: false,
LON: 35.278,
NAME: 'Palestine',
ISO2: 'PS',
UN: 275,
ISO3: 'PSE',
AREA: 0,
LAT: 32.037,
SUBREGION: 145,
REGION: 142,
POP2005: 3762005,
FIPS: '' },
...

}

And almost magically a binary file that wasn’t human-readable is turned into, not only
a readable format, but also a usable data format to work with and do more transforma-
tions with. Of course, it isn’t magic, but rather investing the time to learn a binary for-
mat and using the tools available to do a conversion. The Buffer API provides good
tools to do this.

58 CHAPTER 3 Buffers: Working with bits, bytes, and encodings

Binary file formats can be a lot of fun to crack. Another fun but practical use for Buf-
fers is working binary protocols, which we’ll tackle next.

3.3 Creating your own binary protocol
It feels like you’ve cracked a code when you read a binary file and make sense out of it.
It can be just as fun to write your own puzzles and decode them. Of course, this isn’t
just for fun. Using a well-defined binary protocol can be a compact and efficient way
to transfer data.

TECHNIQUE 18 Creating your own network protocol

In this technique we’ll cover some additional aspects of working with binary data, like
bit masks and protocol design. We’ll also look into compressing binary data.

■ Problem
You want create an efficient transport of messages across the network or in process.

■ Solution
JavaScript and the Node Buffer API give you tools to create your own binary protocol.

■ Discussion
To create a binary protocol, you first have to define what kind of information you want
to send across the wire and how you’ll represent that information. Like you learned in
the last technique, a specification provides a good roadmap for this.

 For this technique, we’ll develop a simple and compact database protocol. Our
protocol will involve

■ Using a bitmask to determine which database(s) to store the message in
■ Writing data to a particular key that will be an unsigned integer between 0-255

(one byte)
■ Storing a message that is compressed data of any length using zlib

Table 3.4 shows how we could write the specification.

Using fs methods
We could’ve also chosen to write the resulting code out to a file using fs.writeFile
and friends.a Just like most APIs in Node can read in a buffer object, most also can
write out a buffer object. In our case we didn’t end up with a buffer but rather a JSON
object, so we could’ve used JSON.stringify in conjunction with fs.writeFile to
write that data out:

fs.writeFile('world.json', JSON.stringify(result), ...
a

a.See http://nodejs.org/api/fs.html.

http://nodejs.org/api/fs.html

59TECHNIQUE 18 Creating your own network protocol

Playing with bits to select databases
Our protocol states that the first byte will be used to represent which databases should
record the information transferred. On the receiving end, our main database will be a
simple multidimensional array that will hold spots for eight databases (since there are
eight bits in a byte). This can be simply represented using array literals in JavaScript:

var database = [[], [], [], [], [], [], [], []];

Whatever bits are turned on will indicate which database or databases will store the
message received. For example, the number 8 is represented as 00001000 in binary. In
this case we’d store the information in database 4, since the fourth bit is on (bits are
read from right to left).

ZERO-INDEXED ARRAYS Arrays are zero-indexed in JavaScript, so database 4 is
in array position 3, but to avoid complicating things, we’re intentionally call-
ing our databases 1 through 8 instead of 0 through 7 to match our language
more closely when talking about bits in a byte.

If you’re ever curious about a number’s binary representation in JavaScript, you can
use the built-in toString method, giving it a base 2 as the first argument:

8..toString(2) // '1000'

Numbers can have more than one bit turned on as well; for example, 20 is 00010100
in binary, and for our application that would mean we wanted to store the message in
databases 3 and 5.

 So how do we test to see which bits are turned on for any given number? To solve
this, we can use a bitmask. A bitmask represents the bit pattern we’re interested in test-
ing. For example, if we were interested in finding out whether we should store some
data in database 5, we could create a bitmask that has the fifth bit turned on. In binary,
this would look like 00010000, which is the number 32 (or 0x20 in hex notation).

 We then have to test our bitmask against a value, and JavaScript includes various
bitwise operators8 to do this. One is the & (bitwise AND) operator. The & operator

Table 3.4 Simple key-value database protocol

Byte Contents Description

0 1 byte Determines which database(s) to write the data to based on which bits
are toggled on. Each bit position represents a database from 1–8.

1 1 byte An unsigned integer of one byte (0–255) used as the database key to
store the data in.

2-n 0-n bytes The data to store, which can be any amount of bytes that have been
compressed using deflate (zlib).

8 See https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Operators/Bitwise_Operators.

Two dots (..) are needed to call
a method on a number, since the
first is parsed as a decimal point.

https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Operators/Bitwise_Operators

60 CHAPTER 3 Buffers: Working with bits, bytes, and encodings

behaves similarly to the && operator, but instead of testing for two conditions to be
true, it tests for two bits to be on (have ones and not zeros) and keeps the bits on (or
one) where that’s the case:

 000101000
& 000100000

000100000

Bit position 5 was on for both values, so it remains when using &. Armed with this
knowledge, we can see that a value compared with the bitmask will be the bitmask if it
has the same bit or bits turned on. With this information, we can set up a simple con-
ditional to test:

if ((value & bitmask) === bitmask) { .. }

It’s important that the & expression be surrounded by parentheses; otherwise, the
equality of the bitmasks would be checked first because of operator precedence.9

 To test the first byte received in our binary protocol, we’ll want to set up a list of
bitmasks that correspond with the indexes of our databases. If the bitmask matches,
we know the database at that index will need the data written to it. The “on” bits for
every position are an array

var bitmasks = [1, 2, 4, 8, 16, 32, 64, 128]

which corresponds to this:

1 2 4 8 16 32 64 128

00000001 00000010 00000100 00001000 00010000 00100000 01000000 10000000

Now we know that if a byte matches 1 in our bitmasks array, it will match database 1 or
array position 0. We can set up a simple loop to test each bitmask against the value of
the first byte:

var database = [[], [], [], [], [], [], [], []];
var bitmasks = [1, 2, 4, 8, 16, 32, 64, 128];

function store (buf) {
var db = buf[0];
bitmasks.forEach(function (bitmask, index) {
if ((db & bitmask) === bitmask) {

// found a match for database[index]
}

});
}

Working with bits can be tricky at first, but once you understand more about how they
work, they become more manageable. So far all of what we’ve covered is available not
only in Node, but in browser JavaScript too. We’ve made it far enough to determine

9 See https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Operators/Operator_Precedence.

Grabbing the byte
from position 0

https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Operators/Operator_Precedence

61TECHNIQUE 18 Creating your own network protocol

which database we should put our incoming data in; we still have to find out which key
to store the data in.

Looking up the key to store the data
This is the easiest part of our example, because you’ve already learned this from the
previous technique. Before we begin, let’s look at the relevant part of the specification
defined earlier in table 3.4.

We know we’ll be receiving at byte position 1 an unsigned integer of one byte (0-255)
that will be used as a database key to store the data in. We purposely set up the data-
base to be a multidimensional array where the first dimension is the databases. Now
we can use the second dimension as a place to store the keys and values, and since the
keys are numbers, an array will work.10 Let’s illustrate to make this more concrete.
Here’s what storing the value 'foo' inside the first and third databases at key 0 would
look like:

[
['foo'],
[],
['foo'],
[],
[],
[],
[],
[]

]

To get the key value out of position 1, we can use the hopefully now familiar
readUInt8 method:

var key = buf.readUInt8(1);

Let’s add that to our previous main code sample we’re building:

var database = [[], [], [], [], [], [], [], []];
var bitmasks = [1, 2, 4, 8, 16, 32, 64, 128];

function store (buf) {
var db = buf[0];
var key = buf.readUInt8(1);

bitmasks.forEach(function (bitmask, index) {
if ((db & bitmask) === bitmask) {

Byte Contents Description

1 1 byte An unsigned integer of one byte (0–255) used as the database key to
store the data in.

10 Although there are more-ideal alternatives coming in ECMAScript 6.

Note that buf[1] does
the same thing

62 CHAPTER 3 Buffers: Working with bits, bytes, and encodings

database[index][key] = 'some data';
}

});
}

Now that we’re able to parse the database(s) and the keys within those database(s), we
can get to parsing the actual data to store.

Inflating data with zlib
It’s a smart idea to compress string/ASCII/UTF-8 data when sending it across the wire,
as compression can really cut down on bandwidth usage. In our simple database pro-
tocol, we assume that the data we get to store has been compressed; let’s look at the
specification to see the relevant description.

 Node includes a built-in zlib module that exposes deflate (compress) and
inflate (uncompress) methods. It also includes gzip compression. To avoid getting
malformed messages, we can check that the received message was indeed properly
compressed, and if not, we’ll refuse to inflate it. Typically, the first byte of zlib
“deflated” data is 0x78,11 so we can test for that accordingly:

if (buf[2] === 0x78) { .. }

Now that we know that we’re most likely dealing with deflated data, we can inflate it
using zlib.inflate. We’ll also need to use buf.slice() to get just the data portion
of our message (since leaving the first two bytes would cause an error):

var zlib = require('zlib');
...
if (buf[2] === 0x78) {

zlib.inflate(buf.slice(2), function (er, inflatedBuf) {
if (er) return console.error(er);

var data = inflatedBuf.toString();
})

}

We have everything we need to store some data in our database using our simple data-
base protocol. Let’s put all the components together:

var zlib = require('zlib');
var database = [[], [], [], [], [], [], [], []];
var bitmasks = [1, 2, 4, 8, 16, 32, 64, 128];

function store (buf) {
var db = buf[0];
var key = buf.readUInt8(1);

if (buf[2] === 0x78) {
zlib.inflate(buf.slice(2), function (er, inflatedBuf) {

if (er) return console.error(er);

11 A more robust implementation should do more checks; see http://tools.ietf.org/html/rfc6713.

‘some data’ is a
placeholder for now.

Remember, we start at byte position 2
because the previous were the key (1) and
the database byte (0) we covered earlier.

Even though we checked,
something else could have
failed; if so, we log it out
and don’t continue.

zlib.inflate
returns a
buffer, so

we convert
it into a

UTF-8 string
to store.

http://tools.ietf.org/html/rfc6713

63Summary

var data = inflatedBuf.toString();

bitmasks.forEach(function (bitmask, index) {
if ((db & bitmask) === bitmask) {

database[index][key] = data;
}

});
});

}
}

Now we have the code in place to store some data. We could generate a message by
using the following:

var zlib = require('zlib');
var header = new Buffer(2);

header[0] = 8;
header[1] = 0;

zlib.deflate('my message', function (er, deflateBuf) {
if (er) return console.error(er);
var message = Buffer.concat([header, deflateBuf]);
store(message);

})

We could write an example that sends messages over TCP and do more error han-
dling. But let’s leave that as an exercise for you to tackle as you learn about network-
ing in Node in a later chapter.

3.4 Summary
In this chapter you learned about buffers and how to turn buffers into different
encoded strings using the toString method. We dove into the complicated task of
turning a binary file into something more usable using the Buffer API. Lastly, we had
some fun creating our own protocol and learning about bitmasks and compression.

 We covered some common uses of buffers in Node, varying in difficulty to hope-
fully make you more comfortable using them and making the most of them. Go forth
and tackle a binary format conversion and publish your work on NPM, or maybe a pro-
tocol that better fits your business needs is waiting to be written.

 In the next chapter we’ll look at another core part of Node—events.

The actual data is stored in
the key of every database
that matched.

Store in database
4 (8 = 00001000)Store in

key 0

Deflate the
data ‘my
message’

Concat header
and data into
one message

Store message

64

Events: Mastering
 EventEmitter and beyond

Node’s events module currently includes just a single class: EventEmitter. This
class is used throughout both Node’s built-in modules and third-party modules. It
contributes to the overall architecture of many Node programs. Therefore it’s
important to understand EventEmitter and how to use it.

 It’s a simple class, and if you’re familiar with DOM or jQuery events, then you
shouldn’t have much trouble understanding it. The major consideration when
using Node is in error handling, and we’ll look at this in technique 21.

 EventEmitter can be used in various ways—it’s generally used as a base class for
solving a wide range of problems, from building network servers to architecting

This chapter covers
■ Using Node’s EventEmitter module
■ Managing errors
■ How third-party modules use EventEmitter
■ How to use domains with events
■ Alternatives to EventEmitter

65TECHNIQUE 19 Inheriting from EventEmitter

application logic. In view of the fact that it’s used as the basis for key classes in popular
Node modules like Express, learning how it works can be useful for writing idiomatic
code that plays well alongside existing modules.

 In this chapter you’ll learn how to use EventEmitter to make custom classes, and
how it’s used within Node and open source modules. You’ll also learn how to solve
problems found when using EventEmitter, and see some alternatives to it.

4.1 Basic usage
To use EventEmitter, the base class must be inherited from. This section includes
techniques for inheriting from EventEmitter and mixing it into other classes that
already inherit from another base class.

TECHNIQUE 19 Inheriting from EventEmitter

This technique demonstrates how to create custom classes based on EventEmitter. By
understanding the principles in this technique, you’ll learn how to use EventEmitter,
and how to better use modules that are built with it.

■ Problem
You want to use an event-based approach to solve a problem. You have a class that
you’d like to operate when asynchronous events occur.

 Web, desktop, and mobile user interfaces have one thing in common: they’re
event-based. Events are a great paradigm for dealing with something inherently asyn-
chronous: the input from human beings. To show how EventEmitter works, we’ll use
a music player as an example. It won’t really play music, but the underlying concept is
a great way to learn how to use events.

■ Solution
The canonical example of using events in Node is inheriting from EventEmitter. This
can be done by using a simple prototype class—just remember to call EventEmitter’s
constructor from within your new constructor.

 The first listing shows how to inherit from EventEmitter.

var util = require('util');
var events = require('events');

function MusicPlayer() {
events.EventEmitter.call(this);

}

util.inherits(MusicPlayer, events.EventEmitter);

■ Discussion
The combination of a simple constructor function and util.inherits is the easiest
and most common way to create customized event-based classes. The next listing
extends the previous listing to show how to emit and bind listeners using on.

Listing 4.1 Inheriting from EventEmitter

Using util.inherits is
the idiomatic Node
way to inherit from
prototype classes.

66 CHAPTER 4 Events: Mastering EventEmitter and beyond

var util = require('util');
var events = require('events');
var AudioDevice = {

play: function(track) {
// Stub: Trigger playback through iTunes, mpg123, etc.

},

stop: function() {
}

};

function MusicPlayer() {
this.playing = false;
events.EventEmitter.call(this);

}

util.inherits(MusicPlayer, events.EventEmitter);

var musicPlayer = new MusicPlayer();

musicPlayer.on('play', function(track) {
this.playing = true;
AudioDevice.play(track);

});

musicPlayer.on('stop', function() {
this.playing = false;
AudioDevice.stop();

});

musicPlayer.emit('play', 'The Roots - The Fire');

setTimeout(function() {
musicPlayer.emit('stop');

}, 1000);

This might not seem like much, but suppose we need to do something else when play
is triggered—perhaps the user interface needs to be updated. This can be supported
simply by adding another listener to the play event. The following listing shows how
to add more listeners.

var util = require('util');
var events = require('events');

function MusicPlayer() {
this.playing = false;
events.EventEmitter.call(this);

}

util.inherits(MusicPlayer, events.EventEmitter);

Listing 4.2 Inheriting from EventEmitter

Listing 4.3 Adding multiple listeners

The class’s state can be configured,
and then EventEmitter’s constructor
can be called as required.

The inherits method copies
the methods from one
prototype into another—
this is the general pattern
for creating classes based
on EventEmitter.

The emit method is
used to trigger events.

67TECHNIQUE 19 Inheriting from EventEmitter

var musicPlayer = new MusicPlayer();

musicPlayer.on('play', function(track) {
this.playing = true;

});

musicPlayer.on('stop', function() {
this.playing = false;

});

musicPlayer.on('play', function(track) {
console.log('Track now playing:', track);

});

musicPlayer.emit('play', 'The Roots - The Fire');

setTimeout(function() {
musicPlayer.emit('stop');

}, 1000);

Listeners can be removed as well. emitter.removeListener removes a listener for a
specific event, whereas emitter.removeAllListeners removes all of them. You’ll
need to store the listener in a variable to be able to reference it when removing a spe-
cific listener, which is similar to removing timers with clearTimeout. The next listing
shows this in action.

function play(track) {
this.playing = true;

}

musicPlayer.on('play', play);

musicPlayer.removeListener('play', play);

util.inherits works by wrapping around the ES5 method Object.create, which
inherits the properties from one prototype into another. Node’s implementation also
sets the superconstructor in the super_ property. This makes accessing the original
constructor a lot easier—after using util.inherits, your prototype class will have
access to EventEmitter through YourClass.super_.

 You can also respond to an event once, rather than every time it fires. To do that,
attach a listener with the once method. This is useful where an event can be emitted
multiple times, but you only care about it happening a single time. For example, you
could update listing 4.3 to track if the play event has ever been triggered:

musicPlayer.once('play', {
this.audioFirstStarted = new Date();

});

Listing 4.4 Removing listeners

New listeners can be
added as needed.

A reference to the
listener is required to
be able to remove it.

68 CHAPTER 4 Events: Mastering EventEmitter and beyond

When inheriting from EventEmitter, it’s a good idea to use events.EventEmitter
.call(this) in your constructor to run EventEmitter’s constructor. The reason for
this is because it’ll attach the instance to a domain if domains are being used. To learn
more about domains, see technique 22.

 The methods we’ve covered here—on, emit, and removeListener—are fundamen-
tal to Node development. Once you’ve mastered EventEmitter, you’ll find it cropping
up everywhere: in Node’s built-in modules and beyond. Creating TCP/IP servers with
net.createServer will return a server based on EventEmitter, and even the process
global object is an instance of EventEmitter. In addition, popular modules like
Express are based around EventEmitter—you can actually create an Express app
object and call app.emit to send messages around an Express project.

TECHNIQUE 20 Mixing in EventEmitter

Sometimes inheritance isn’t the right way to use EventEmitter. In these cases, mixing
in EventEmitter may work.

■ Problem
This is an alternative option to technique 19. Rather than using EventEmitter as a
base class, it’s possible to copy its methods into another class. This is useful when you
have an existing class and can’t easily rework it to inherit directly from EventEmitter.

■ Solution
Using a for-in loop is sufficient for copying the properties from one prototype to
another. In this way you can copy the necessary properties from EventEmitter.

■ Discussion
This example might seem a little contrived, but sometimes it really is useful to copy
EventEmitter’s properties rather than inherit from it in the usual way. This approach
is more akin to a mixin, or multiple inheritance; see this demonstrated in the follow-
ing listing.

var EventEmitter = require('events').EventEmitter;

function MusicPlayer(track) {
this.track = track;
this.playing = false;

for (var methodName in EventEmitter.prototype) {
this[methodName] = EventEmitter.prototype[methodName];

}
}

MusicPlayer.prototype = {
toString: function() {
if (this.playing) {

return 'Now playing: ' + this.track;
} else {

return 'Stopped';

Listing 4.5 Mixing in EventEmitter

This is the for-in loop
that copies the relevant
properties.

69TECHNIQUE 21 Managing errors

}
}

};

var musicPlayer = new MusicPlayer('Girl Talk - Still Here');

musicPlayer.on('play', function() {
this.playing = true;
console.log(this.toString());

});

musicPlayer.emit('play');

One example of multiple inheritance in the wild is the Connect framework.1 The
core Server class inherits from multiple sources, and in this case the Connect
authors have decided to make their own property copying method, shown in the next
listing.

exports.merge = function(a, b){
if (a && b) {
for (var key in b) {

a[key] = b[key];
}

}
return a;

};

This technique may be useful when you already have a well-established class that could
benefit from events, but can’t easily be a direct descendant of EventEmitter.

 Once you’ve inherited from EventEmitter you’ll need to handle errors. The next
section explores techniques for handling errors generated by EventEmitter classes.

4.2 Error handling
Although most events are treated equally, error events are a special case and are
therefore treated differently. This section looks at two ways of handling errors: one
attaches a listener to the error event, and the other uses domains to collect errors
from groups of EventEmitter instances.

TECHNIQUE 21 Managing errors

Error handling with EventEmitter has its own special rules that must be adhered to.
This technique explains how error handling works.

■ Problem
You’re using an EventEmitter and want to gracefully handle when errors occur, but it
keeps raising exceptions.

1 See http://www.senchalabs.org/connect/.

Listing 4.6 utils.merge from Connect

www.allitebooks.com

http://www.senchalabs.org/connect/
http://www.allitebooks.org

70 CHAPTER 4 Events: Mastering EventEmitter and beyond

■ Solution
To prevent EventEmitter from throwing exceptions whenever an error event is emit-
ted, add a listener to the error event. This can be done with custom classes or any
standard class that inherits from EventEmitter.

■ Discussion
To handle errors, bind a listener to the error event. The following listing demon-
strates this by building on the music player example.

var util = require('util');
var events = require('events');

function MusicPlayer() {
events.EventEmitter.call(this);

}

util.inherits(MusicPlayer, events.EventEmitter);

var musicPlayer = new MusicPlayer();

musicPlayer.on('play', function(track) {
this.emit('error', 'unable to play!');

});

musicPlayer.on('error', function(err) {
console.error('Error:', err);

});

setTimeout(function() {
musicPlayer.emit('play', 'Little Comets - Jennifer');

}, 1000);

This example is perhaps simple, but it’s useful because it should help you realize how
EventEmitter handles errors. It feels like a special case, and that’s because it is. The
following excerpt is from the Node documentation:

When an EventEmitter instance experiences an error, the typical action is to emit an
error event. Error events are treated as a special case in Node. If there is no listener for
it, then the default action is to print a stack trace and exit the program.

You can try this out by removing the 'error' handler from listing 4.7. A stack trace
should be displayed in the console.

 This makes sense semantically—otherwise the absence of an error handler would
lead to potentially dangerous activity going unnoticed. The event name, or type as it’s
referred to internally, has to appear exactly as error—extra spaces, punctuation, or
uppercase letters won’t be considered an error event.

 This convention means there’s a great deal of consistency across event-based error-
handling code. It might be a special case, but it’s one worth paying attention to.

Listing 4.7 Event-based errors

Listening for
an error event

71TECHNIQUE 22 Managing errors with domains

TECHNIQUE 22 Managing errors with domains

Dealing with errors from multiple instances of EventEmitter can feel like hard work
... unless domains are used!

■ Problem
You’re dealing with multiple non-blocking APIs, but are struggling to effectively han-
dle errors.

■ Solution
Node’s domain module can be used to centralize error handling for a set of asynchro-
nous operations, and this includes EventEmitter instances that emit unhandled
error events.

■ Discussion
Node’s domain API provides a way of wrapping existing non-blocking APIs and excep-
tions with error handlers. This helps centralize error handling, and is particularly use-
ful in cases where multiple interdependent I/O operations are being used.

 Listing 4.8 builds on the music player example by using two EventEmitter descen-
dants to show how a single error handler can be used to handle errors for separate
objects.

var util = require('util');
var domain = require('domain');
var events = require('events');
var audioDomain = domain.create();

function AudioDevice() {
events.EventEmitter.call(this);
this.on('play', this.play.bind(this));

}

util.inherits(AudioDevice, events.EventEmitter);

AudioDevice.prototype.play = function() {
this.emit('error', 'not implemented yet');

};

function MusicPlayer() {
events.EventEmitter.call(this);

this.audioDevice = new AudioDevice();
this.on('play', this.play.bind(this));

this.emit('error', 'No audio tracks are available');
}

util.inherits(MusicPlayer, events.EventEmitter);

Listing 4.8 Managing errors with domain

The Domain module must be
loaded, and then a suitable instance
created with the create method.

This error and any
other errors will be
caught by the same
error handler.

72 CHAPTER 4 Events: Mastering EventEmitter and beyond

MusicPlayer.prototype.play = function() {
this.audioDevice.emit('play');
console.log('Now playing');

};

audioDomain.on('error', function(err) {
console.log('audioDomain error:', err);

});

audioDomain.run(function() {
var musicPlayer = new MusicPlayer();
musicPlayer.play();

});

Domains can be used with EventEmitter descendants, networking code, and also the
asynchronous file system methods.

 To visualize how domains work, imagine that the domain.run callback wraps
around your code, even when the code inside the callback triggers events that occur
outside of it. Any errors that are thrown will still be caught by the domain. Figure 4.1
illustrates this process.

 Without a domain, any errors raised using throw could potentially place the inter-
preter in an unknown state. Domains avoid this and help you handle errors more
gracefully.

 Now that you know how to inherit from EventEmitter and handle errors, you
should be starting to see all kinds of useful ways that it can be used. The next section
broadens these techniques by introducing some advanced usage patterns and higher-
level solutions to program structure issues relating to events.

Any code that raises errors
inside this callback will be
covered by the domain.

Domain event
listener: 'error'

fs.open callback

if error?

throw error

domain.run callback

Figure 4.1 Domains
help catch errors and
handle them with an
EventEmitter-style API.

73TECHNIQUE 23 Reflection

4.3 Advanced patterns
This section offers some best practice techniques for solving structural issues found
when using EventEmitter.

TECHNIQUE 23 Reflection

Sometimes you need to dynamically respond to changes to an instance of an
EventEmitter, or query its listeners. This technique explains how to do this.

■ Problem
You need to either catch when a listener has been added to an emitter, or query the
existing listeners.

■ Solution
To track when listeners are added, EventEmitter emits a special event called new-
Listener. Listeners added to this event will receive the event name and the listener
function.

■ Discussion
In some ways, the difference between writing good Node code and great Node code
comes down to a deep understanding of EventEmitter. Being able to correctly reflect
on EventEmitter objects gives rise to a whole range of opportunities for creating
more flexible and intuitive APIs. One dynamic way of doing this is through the new-
Listener event, emitted when listeners are added using the on method. Interestingly,
this event is emitted by using EventEmitter itself—it’s implemented by using emit.

 The next listing shows how to track newListener events.

var util = require('util');
var events = require('events');

function EventTracker() {
events.EventEmitter.call(this);

}

util.inherits(EventTracker, events.EventEmitter);

var eventTracker = new EventTracker();

eventTracker.on('newListener', function(name, listener) {
console.log('Event name added:', name);

});

eventTracker.on('a listener', function() {
// This will cause 'newListener' to fire

});

Even though 'a listener' is never explicitly emitted in this example, the newLis-
tener event will still fire. Since the listener’s callback function is passed as well as the
event name, this is a great way to create simplified public APIs for things that require

Listing 4.9 Keeping tabs on new listeners

Track whenever new
listeners are added.

74 CHAPTER 4 Events: Mastering EventEmitter and beyond

access to the original listener function. Listing 4.10 demonstrates this concept by auto-
matically starting a timer when listeners for pulse events are added.

var util = require('util');
var events = require('events');

function Pulsar(speed, times) {
events.EventEmitter.call(this);

var self = this;
this.speed = speed;
this.times = times;

this.on('newListener', function(eventName, listener) {
if (eventName === 'pulse') {

self.start();
}

});
}

util.inherits(Pulsar, events.EventEmitter);

Pulsar.prototype.start = function() {
var self = this;
var id = setInterval(function() {
self.emit('pulse');
self.times--;
if (self.times === 0) {

clearInterval(id);
}

}, this.speed);
};

var pulsar = new Pulsar(500, 5);

pulsar.on('pulse', function() {
console.log('.');

});

We can go a step further and query EventEmitter objects about their listeners by call-
ing emitter.listeners(event). A list of all listeners can’t be returned in one go,
though. The entire list is technically available within the this._events object, but this
property should be considered private. The listeners method currently returns an
Array instance. This could be used to iterate over multiple listeners if several have
been added to a given event—perhaps to remove them at the end of an asynchronous
process, or simply to check if any listeners have been added.

 In cases where an array of events is available, the listeners method will effectively
return this._events[type].slice(0). Calling slice on an array is a JavaScript short-
cut for creating a copy of an array. The documentation states that this behavior may

Listing 4.10 Automatically triggering events based on new listeners

Display a dot for
each pulse.

75TECHNIQUE 24 Detecting and exploiting EventEmitter

change in the future, so if you really want to create a copy of attached listeners, then
call slice yourself to ensure you really get a copy and not a reference to a data struc-
ture within the emitter instance.

 Listing 4.11 adds a stop method to the Pulsar class. When stop is called, it checks
to see if there are any listeners; otherwise, it raises an error. Checking for listeners is a
good way to prevent incorrect usage, but you don’t have to do this in your own code.

Pulsar.prototype.stop = function() {
if (this.listeners('pulse').length === 0) {
throw new Error('No listeners have been added!');

}
};

var pulsar = new Pulsar(500, 5);

pulsar.stop();

TECHNIQUE 24 Detecting and exploiting EventEmitter

A lot of successful open source Node modules are built on EventEmitter. It’s useful to
spot where EventEmitter is being used and to know how to take advantage of it.

■ Problem
You’re working on a large project with several components and want to communicate
between them.

■ Solution
Look for the emit and on methods whenever you’re using either Node’s standard
modules or open source libraries. For example, the Express app object has these
methods, and they’re great for sending messages within an application.

■ Discussion
Usually when you’re working on a large project, there’s a major component that’s cen-
tral to your problem domain. If you’re building a web application with Express, then
the app object is one such component. A quick check of the source shows that this
object mixes in EventEmitter, so you can take advantage of events to communicate
between the disparate components within your project.

 Listing 4.12 shows an Express-based example where a listener is bound to an event,
and then the event is emitted when a specific route is accessed.

var express = require('express');
var app = express();

app.on('hello-alert', function() {
console.warn('Warning!');

});

Listing 4.11 Querying listeners

Listing 4.12 Reusing EventEmitter in Express

76 CHAPTER 4 Events: Mastering EventEmitter and beyond

app.get('/', function(req, res){
res.app.emit('hello-alert');
res.send('hello world');

});

app.listen(3000);

This might seem contrived, but what if the route were defined in another file? In this
case, you wouldn’t have access to the app object, unless it was defined as a global.

 Another example of a popular project built on EventEmitter is the Node Redis cli-
ent (https://npmjs.org/package/redis). Instances of RedisClient inherit from
EventEmitter. This allows you to hook into useful events, like the error event, as
shown in the next listing.

var redis = require('redis'),
var client = redis.createClient();

client.on('error', function(err) {
console.error('Error:', err);

});

client.on('monitor', function(timestamp, args) {
console.log('Time:', timestamp, 'arguments:', args);

});

client.on('ready', function() {
// Start app here

});

In cases where the route separation technique has been used to store routes in several
files, you can actually send events by calling res.app.emit(event). This allows route
handlers to communicate back to the app object itself.

 This might seem like a highly specific Express example, but other popular open
source modules are also built on EventEmitter—just look for the emit and on methods.
Remember that Node’s internal modules like the process object and net.create-
Server inherit from EventEmitter, and well-written open source modules tend to
inherit from these modules as well. This means there’s a huge amount of scope for event-
based solutions to architectural problems.

 This example also highlights another benefit of building projects around
EventEmitter—asynchronous processes can respond as soon as possible. If the
hello-alert event performs a very slow operation like sending an email, the per-
son browsing the page might not want to wait for this process to finish. In this case,
you can render the requested page while effectively performing a slower operation
in the background.

 The Node Redis client makes excellent use of EventEmitter and the author has
written documentation for what each of the methods do. This is a good idea—if

Listing 4.13 Reusing EventEmitter in the redis module

The app object is also
available in res.app.

The monitor event emitted
by the redis module for
tracking when various
internal activities occur

https://npmjs.org/package/redis

77TECHNIQUE 25 Categorizing event names

somebody joins your project, they may find it hard to get an overall picture of the
events that are being used.

TECHNIQUE 25 Categorizing event names

Some projects just have too many events. This technique shows how to deal with bugs
caused by mistyped event names.

■ Problem
You’re losing track of the events in your program, and are concerned that it may be
too easy to write an incorrect event name somewhere causing a difficult-to-track bug.

■ Solution
The easiest way to solve this problem is to use an object to act as a central dictionary for
all of the event names. This creates a centralized location of each event in the project.

■ Discussion
It’s hard to keep track of event names littered throughout a project. One way to man-
age this is to keep each event name in one place. Listing 4.14 demonstrates using an
object to categorize event names, based on the previous examples in this chapter.

var util = require('util');
var events = require('events');

function MusicPlayer() {
events.EventEmitter.call(this);
this.on(MusicPlayer.events.play, this.play.bind(this));

}

var e = MusicPlayer.events = {
play: 'play',
pause: 'pause',
stop: 'stop',
ff: 'ff',
rw: 'rw',
addTrack: 'add-track'

};

util.inherits(MusicPlayer, events.EventEmitter);

MusicPlayer.prototype.play = function() {
this.playing = true;

};

var musicPlayer = new MusicPlayer();

musicPlayer.on(e.play, function() {
console.log('Now playing');

});

musicPlayer.emit(e.play);

Listing 4.14 Categorizing event names using an object

The object used to store
the event list is aliased
for convenience.

When adding new listeners, users
of the class can refer to the events
list rather than writing the event
names as strings.

78 CHAPTER 4 Events: Mastering EventEmitter and beyond

Although EventEmitter is an integral part of Node’s standard library, and an elegant
solution to many problems, it can be the source of a lot of bugs in larger projects
where people may forget the name of a given event. One way around this is to avoid
writing events as strings. Instead, an object can be used with properties that refer to
the event name strings.

 If you’re writing a reusable, open source module, you should consider making this
part of the public API so it’s easy for people to get a centralized list of event names.

 There are other observer pattern implementations that avoid using string event
names to effectively type check events. In the next technique we’ll look at a few that
are available through npm.

 Although EventEmitter provides a wide array of solutions when working on Node
projects, there are alternative implementations out there. The next section includes
some popular alternatives.

4.4 Third-party modules and extensions
EventEmitter is essentially an observer pattern implementation. There are other inter-
pretations of this pattern, which can help scale Node programs to run across several
processes or over a network. The next technique introduces some of the more popu-
lar alternatives created by the Node community.

TECHNIQUE 26 Alternatives to EventEmitter

EventEmitter has a great API and works well in Node programs, but sometimes a
problem requires a slightly different solution. This technique explores some alterna-
tives to EventEmitter.

■ Problem
You’re trying to solve a problem that doesn’t quite fit EventEmitter.

■ Solution
Depending on the exact nature of the problem you’re trying to solve, there are several
alternatives to EventEmitter: publish/subscribe, AMQP, and js-signals are some
popular alternatives with good support in Node.

■ Discussion
The EventEmitter class is an implementation of the observer pattern. A related pattern
is publish/subscribe, where publishers send messages that are characterized into
classes to subscribers without knowing the details of the subscribers themselves.

 The publish/subscribe pattern is often useful in cases where horizontal scaling is
required. If you need to run multiple Node processes on multiple servers, then tech-
nologies like AMQP and ØMQ can help implement this. They’re both specifically
designed to solve this class of problem, but may not be as convenient as using the
Redis publish/subscribe API if you’re already using Redis.

 If you need to horizontally scale across a distributed cluster, then an AMQP imple-
mentation like RabbitMQ (http://www.rabbitmq.com/) will work well. The rabbitmq-
nodejs-client (https://github.com/adrai/rabbitmq-nodejs-client) module has a

http://www.rabbitmq.com/
https://github.com/adrai/rabbitmq-nodejs-client

79TECHNIQUE 26 Alternatives to EventEmitter

publish/subscribe API. The following listing shows a simple example of RabbitMQ
in Node.

var rabbitHub = require('rabbitmq-nodejs-client');
var subHub = rabbitHub.create({ task: 'sub', channel: 'myChannel' });
var pubHub = rabbitHub.create({ task: 'pub', channel: 'myChannel' });

subHub.on('connection', function(hub) {
hub.on('message', function(msg) {
console.log(msg);

}.bind(this));
});
subHub.connect();

pubHub.on('connection', function(hub) {
hub.send('Hello World!');

});
pubHub.connect();

ØMQ (http://www.zeromq.org/) is more popular in the Node community. Justin Tulloss
and TJ Holowaychuk’s zeromq.node module (https://github.com/JustinTulloss/
zeromq.node) is a popular binding. The next listing shows just how simple this API is.

var zmq = require('zmq');
var push = zmq.socket('push');
var pull = zmq.socket('pull');

push.bindSync('tcp://127.0.0.1:3000');
pull.connect('tcp://127.0.0.1:3000');
console.log('Producer bound to port 3000');

setInterval(function() {
console.log('sending work');
push.send('some work');

}, 500);

pull.on('message', function(msg) {
console.log('work: %s', msg.toString());

});

If you’re already using Redis with Node, then it’s worth trying out the Pub/Sub API
(http://redis.io/topics/pubsub). Listing 4.17 shows an example of this using the
Node Redis client (https://github.com/mranney/node_redis).

var redis = require('redis');
var client1 = redis.createClient();
var client2 = redis.createClient();

Listing 4.15 Using RabbitMQ with Node

Listing 4.16 Using ØMQ with Node

Listing 4.17 Using Redis Pub/Sub with Node

Print the message
when it’s received.

http://www.zeromq.org/
https://github.com/JustinTulloss/zeromq.node
https://github.com/JustinTulloss/zeromq.node
http://redis.io/topics/pubsub
https://github.com/mranney/node_redis

80 CHAPTER 4 Events: Mastering EventEmitter and beyond

var msg_count = 0;

client1.on('subscribe', function(channel, count) {
client2.publish('channel', 'Hello world.');

});

client1.on('message', function(channel, message) {
console.log('client1 channel ' + channel + ': ' + message);
client1.unsubscribe();
client1.end();
client2.end();

});

client1.subscribe('channel');

Finally, if publish/subscribe isn’t what you’re looking for, then you may want to take a
look at js-signals (https://github.com/millermedeiros/js-signals). This module is a
messaging system that doesn’t use strings for the signal names, and dispatching or lis-
tening to events that don’t yet exist will raise errors.

 Listing 4.18 shows how js-signals sends and receives messages. Notice how sig-
nals are properties of an object, rather than strings, and that listeners can receive an
arbitrary number of arguments.

var signals = require('signals');
var myObject = {

started: new signals.Signal()
};

function onStarted(param1, param2){
console.log(param1, param2);

}

myObject.started.add(onStarted);
myObject.started.dispatch('hello', 'world');

js-signals provides a way of using properties for signal names, as mentioned in tech-
nique 25, but in this case the module will raise an error if an unregistered listener is
dispatched or bound to. This approach is more like “strongly typed” events, and is
very different from most publish/subscribe and event observer implementations.

4.5 Summary
In this chapter you’ve learned how EventEmitter is used through inheritance and
multiple inheritance, and how to manage errors with and without domains. You’ve
also seen how to centralize event names, how open source modules build on
EventEmitter, and some alternative solutions.

 What you should take away from this chapter is that although EventEmitter is usually
used as a base class for inheritance, it’s also possible to mix it into existing classes. Also,
although EventEmitter is a great solution to many problems and used throughout

Listing 4.18 Using Redis Pub/Sub with Node

Be sure to close client connections
when using the Redis module.

Binding a
listener to the
started signal

Dispatching the
signal using two
parameters

https://github.com/millermedeiros/js-signals

81Summary

Node’s internals, sometimes other solutions are more optimal. For example, if you’re
using Redis, then you can take advantage of its publish/subscribe implementation.
Finally, EventEmitter isn’t without its problems; managing large amounts of event
names can cause bugs, and now you know how to avoid this by using an object with prop-
erties that act as event names.

 In the next chapter we’ll look at a related topic: streams. Streams are built around
an event-based API, so you’ll be able to use some of these EventEmitter techniques
there as well.

82

Streams: Node’s
 most powerful and

misunderstood feature

Streams are an event-based API for managing and modeling data, and are wonder-
fully efficient. By leveraging EventEmitter and Node’s non-blocking I/O libraries,
the stream module allows data to be dynamically processed when it’s available, and
then released when it’s no longer needed.

This chapter covers
■ What streams are and how to use them
■ How to use Node’s built-in streaming APIs
■ The stream API used in Node 0.8 and below
■ The stream primitive classes bundled since

Node 0.10
■ Strategies for testing streams

83Introduction to streams

 The idea of a stream of data isn’t new, but it’s an important concept and integral to
Node. After chapter 4, mastering streams is the next step on the path to becoming
truly competent at Node development.

 The stream core module provides abstract tools for building event-based stream
classes. It’s likely that you’ll use modules that implement streams, rather than creating
your own. But to exploit streams to their fullest, it’s important to understand how they
really work. This chapter has been designed with that goal in mind: understanding
streams, working with Node’s built-in streaming APIs, and finally creating and testing
your own streams. Despite the conceptually abstract nature of the stream module, once
you’ve mastered the major concepts, you’ll start to see uses for streams everywhere.

 The next section provides a high-level overview of streams and addresses the two
APIs that Node supports as of Node 0.10.

5.1 Introduction to streams
In Node, streams are an abstract interface adhered to by several different objects. When
we talk about streams, we’re referring to a way of doing things—in a sense, they’re a
protocol. Streams can be readable or writable, and are implemented with instances of
EventEmitter—see chapter 4 for more on events. Streams provide the means for cre-
ating data flows between objects, and can be composed with LEGO-like modularity.

5.1.1 Types of streams

Streams always involve I/O of some kind, and they can be classified into groups based
on the type of I/O they deal with. The following types of streams were taken from James
Halliday’s stream-handbook (https://github.com/substack/stream-handbook/), and
will give you an idea of the wide array of things you can do with streams:

■ Built-in—Many of Node’s core modules implement streaming interfaces; for
example, fs.createReadStream.

■ HTTP—Although technically network streams, there are streaming modules
designed to work with various web technologies.

■ Parsers—Historically parsers have been implemented using streams. Popular
third-party modules for Node include XML and JSON parsers.

■ Browser—Node’s event-based streams have been extended to work in browsers,
offering some unique opportunities for interfacing with client-side code.

■ Audio—James Halliday has written some novel audio modules that have stream-
able interfaces.

■ RPC (Remote Procedure Call)—Sending streams over the network is a useful way to
implement interprocess communication.

■ Test—There are stream-friendly test libraries, and tools for testing streams
themselves.

■ Control, meta, and state—There are also more abstract uses of streams, and mod-
ules designed purely for manipulating and managing other streams.

https://github.com/substack/stream-handbook/

84 CHAPTER 5 Streams: Node’s most powerful and misunderstood feature

The best way to understand why streams are important is to first consider what hap-
pens when data is processed without them. Let’s look at this in more detail by compar-
ing Node’s asynchronous, synchronous, and stream-based APIs.

5.1.2 When to use streams

When reading a file synchronously with fs.readFileSync, the program will block,
and all of the data will be read to memory. Using fs.readFile will prevent the pro-
gram from blocking because it’s an asynchronous method, but it’ll still read the entire
file into memory.

 What if there were a way to tell fs.readFile to read a chunk of data into memory,
process it, and then ask for more data? That’s where streams come in.

 Memory becomes an issue when working with large files—compressed backup
archives, media files, large log files, and so on. Instead of reading the entire file into
memory, you could use fs.read with a suitable buffer, reading in a specific length at a
time. Or, preferably, you could use the streams API provided by fs.createReadStream.
Figure 5.1 illustrates how only a chunk of a file is read at a time with fs.createRead-
Stream, compared to the entire file with fs.readFile.

 Streams are asynchronous by design. Rather than reading that entire file into
memory, a buffer’s worth will be read, the desired operations will be performed, and
then the result will be written to the output stream. This approach is as close to idiom-
atic Node as you can get. What’s more, streams are implemented with plain old
JavaScript. Take fs.createReadStream—it offers a more scalable solution, but ulti-
mately just wraps simple file system operations with a better API.

 Node’s streaming APIs feel idiomatic, yet streams have been around in computer
science for a long time. This history is examined briefly in the next section to give you
some background on where streams come from and where they’re used.

File Memory
Callback

fs.readFile

File Memory
Callback

1 2 n
Stream

Figure 5.1 Using streamable APIs means I/O operations potentially use less memory.

85Introduction to streams

5.1.3 History

So where did streams originate? Historically, streams in computer science have been
used to solve problems similar to streams in Node. For example, in C the standard way
to represent a file is by using a stream. When a C program starts, it has access to the
standard I/O streams. The standard I/O streams are also available in Node, and can
be used to allow programs to work well with large amounts of data in the shell.

 Traditionally, streams have been used to implement efficient parsers. This has also
been the case in Node: the node-formidable module (https://github.com/felixge/
node-formidable) is used by Connect to efficiently parse form data with streams, and
database modules like the Node redis module (https://npmjs.org/package/redis)
use streams to represent the connection to the server and respond by parsing
on demand.

 If you’re familiar with Unix, you’re probably already aware of streams. If you’ve
used pipes or I/O redirection, then you’ve used streams. You can literally think about
Node streams as you would Unix pipes—except data is filtered through functions
instead of command-line programs. The next section explains how streams have
evolved in Node, up until version 0.10 when they changed significantly.

STREAMS OLD AND NEW

Streams are part of Node’s core modules, and as such remain backward compatible
with earlier versions. As of this writing, Node is at version 0.10, which has seen signifi-
cant changes in the streams API. Though it remains backward compatible, the new
streams syntax is in some ways stricter than earlier versions, yet ultimately more flexi-
ble. This boils down to the behavior of pipe—pipes must now originate from a Read-
able stream and end at a Writable stream. The util.pump method, found in earlier
versions of Node, has now been deprecated in favor of the new pipe semantics.

 The evolution of streams in Node came from a desire to use the event-based APIs
to solve non-blocking I/O problems in an efficient way. Older solutions like util.pump
sought to find efficiency in intelligent uses of “drain” events—this is emitted when a
writable stream has emptied and it’s safe to write again. This sounds a lot like pausing
a stream, and the handling of paused streams was something the pre-0.10 streams API
couldn’t handle effectively.

 Now Node has reached a point where the core developers have seen the types of
problems people are tackling with streams, so the new API is richer thanks to the
new stream primitive classes. Table 5.1 shows a summary of the classes available from
Node 0.10 onward.

 Learning to take advantage of streams will pay dividends when it comes to working
with third-party modules that implement streams. In the next section, a selection of
popular stream-oriented modules is examined.

5.1.4 Streams in third-party modules

The main use of streams in Node is for creating event-based APIs for I/O-like sources;
parsers, network protocols, and database modules are the key examples. A network

https://github.com/felixge/node-formidable
https://github.com/felixge/node-formidable
https://npmjs.org/package/redis

86 CHAPTER 5 Streams: Node’s most powerful and misunderstood feature

protocol implemented with streams can be convenient when composition is desired—
think about how easy it would be to add data compression to a network protocol if the
data could be passed through the gzip module with a single call to pipe.

 Similarly, database libraries that stream data can handle large result sets more effi-
ciently; rather than collecting all results into an array, a single item at a time can be
streamed.

 The Mongoose MongoDB module (http://mongoosejs.com/) has an object called
QueryStream that can be used to stream documents. The mysql module (https://
npmjs.org/package/mysql) can also
stream query results, although this imple-
mentation doesn’t currently implement
the stream.Readable class.

 You can also find more creative uses of
streams out there. The baudio module
(see figure 5.2) by James Halliday can be
used to generate audio streams that
behave just like any other stream—audio
data can be routed to other streams with
pipe, and recorded for playback by stan-
dard audio software:

var baudio = require('baudio');

var n = 0;
var b = baudio(function (t) {

var x = Math.sin(t * 262 + Math.sin(n));
n += Math.sin(t);
return x;

});
b.play();

Table 5.1 A summary of the classes available in streams2

Name User methods Description

stream.Readable _read(size) Used for I/O sources that
generate data

stream.Writable _write(chunk, encoding,
callback)

Used to write to an underlying
output destination

stream.Duplex _read(size), _write(chunk,
encoding, callback)

A readable and writable stream,
like a network connection

stream.Transform _flush(size), _transform(chunk,
encoding, callback)

A duplex stream that changes
data in some way, with no lim-
itation on matching input data
size with the output

Figure 5.2 The baudio module by James
Halliday (substack) supports the generation of
audio streams (from https://github.com/
substack/baudio).

http://mongoosejs.com/
https://npmjs.org/package/mysql
https://npmjs.org/package/mysql
https://github.com/substack/baudio
https://github.com/substack/baudio
https://github.com/substack/baudio

87Introduction to streams

When selecting a network or database library for your Node projects, we strongly rec-
ommend ensuring it has a streamable API, because it’ll help you write more elegant
code while also potentially offering performance benefits.

 One thing all stream classes have in common is they inherit from EventEmitter.
The significance of this is investigated in the next section.

5.1.5 Streams inherit from EventEmitter

Each of the stream module base classes emits various events, which depend on
whether the base class is readable, writable, or both. The fact that streams inherit from
EventEmitter means you can bind to various standard events to manage streams, or
create your own custom events to represent more domain-specific behavior.

 When working with stream.Readable instances (see table 5.2 for guidance on
selecting a stream base class), the readable event is important because it signifies that
the stream is ready for calls to stream.read().

 Attaching a listener to data will cause the stream to behave like the old streams
API, where data is passed to data listeners when it’s available, rather than through
calls to stream.read().

 The error event is covered in detail in technique 28. It’ll be emitted if the stream
encounters an error when receiving data.

 The end event signifies that the stream has received an equivalent of the end-of-file
character, and won’t receive more data. There’s also a close event that represents the
case where the underlying resource has been closed, which is distinct from end, and
the Node API documentation notes that not all streams will emit this event, so a rule of
thumb is to bind to end.

 The stream.Writable class changes the semantics for signifying the end of a stream
to close and finish. The distinction between the two is that finish is emitted when
writable.end() is called, whereas close means the underlying I/O resource has been
closed, which isn’t always required, depending on the nature of the underlying stream.

 The pipe and unpipe events are emitted when passing a stream to the
stream.Readable.prototype.pipe method. This can be used to adapt the way a
stream behaves when it’s piped. The listener receives the destination stream as the
first argument, so this value could be inspected to change the behavior of the stream.
This is a more advanced technique that’s covered in technique 37.

About the techniques in this chapter
The techniques in this chapter all use the streams2 API. This is the nickname of the
newer API style found in Node 0.10 and 0.12. If you’re using Node 0.8, forward com-
patibility is supported through the readable-stream module (https://github.com/
isaacs/readable-stream).

https://github.com/isaacs/readable-stream
https://github.com/isaacs/readable-stream

88 CHAPTER 5 Streams: Node’s most powerful and misunderstood feature

In the next section you’ll learn how to solve real-world problems using streams. First
we’ll discuss some of Node’s built-in streams, and then we’ll move on to creating
entirely new streams and testing them.

5.2 Built-in streams
Node’s core modules themselves are implemented using the stream module, so it’s easy
to start using streams without having to build your own classes. The next technique
introduces some of this functionality through file system and network streaming APIs.

TECHNIQUE 27 Using built-in streams to make a static web server

Node’s core modules often have streamable interfaces. They can be used to solve
many problems more efficiently than their synchronous alternatives.

■ Problem
You want to send a file from a web server to a client in an efficient manner that will
scale up to large files.

■ Solution
Use fs.createReadStream to open a file and stream it to the client. Optionally, pipe
the resulting stream.Readable through another stream to handle features like
compression.

■ Discussion
Node’s core modules for file system and network operations, fs and net, both provide
streamable interfaces. The fs module has helper methods to automatically create
instances of the streamable classes. This makes using streams for some I/O-based
problems fairly straightforward.

 To understand why streams are important and compare them to nonstreaming
code, consider the following example of a simple static file web server made with
Node’s core modules:

var http = require('http');
var fs = require('fs');

http.createServer(function(req, res) {
fs.readFile(__dirname + '/index.html', function(err, data) { //

if (err) {
res.statusCode = 500;
res.end(String(err));

} else {
res.end(data);

}
});

}).listen(8000);

Even though this code uses the fs.readFile method, which is non-blocking, it can
easily be improved on by using fs.createReadStream. The reason is because it’ll read
the entire file into memory. This might seem acceptable with small files, but what if
you don’t know how large the file is? Static web servers often have to serve up poten-
tially large binary assets, so a more adaptable solution is desirable.

89TECHNIQUE 27 Using built-in streams to make a static web server

 The following listing demonstrates a streaming static web server.

var http = require('http');
var fs = require('fs');

http.createServer(function(req, res) {
fs.createReadStream(__dirname + '/index.html').pipe(res);

}).listen(8000);

This example uses less code than the first version, and improves its efficiency. Now
instead of reading the entire file into memory, a buffer’s worth will be read at a time
and sent to the client. If the client is on a slow connection, the network stream will sig-
nal this by requesting that the I/O source pauses until the client is ready for more
data. This is known as backpressure, and is one of the additional benefits using streams
brings to your Node programs.

 We can take this example a step further. Streams aren’t just efficient and poten-
tially more syntactically elegant, they’re also extensible. Static web servers often com-
press files with gzip. The next listing adds that to the previous example, using streams.

var http = require('http');
var fs = require('fs');
var zlib = require('zlib');

http.createServer(function(req, res) {
res.writeHead(200, { 'content-encoding': 'gzip' });
fs.createReadStream(__dirname + '/index.html')
.pipe(zlib.createGzip())
.pipe(res);

}).listen(8000);

Now if you open http://localhost:8000 in a browser and use its debugging tools to
look at the network operations, you should see that the content was transferred using
gzip. Figure 5.3 shows what our browser reported after running the example.

 This could be expanded in several other ways—you can use as many calls to pipe
as required. For example, the file could be piped through an HTML templating
engine and then compressed. Just remember that the general pattern is read-
able.pipe(writable).

 Note that this example is simplified to illustrate how streams work and isn’t suffi-
cient for implementing a production HTTP asset server.

 Now that you’ve seen a fleshed-out example of how streams are used to solve a
common problem, it’s time to look at another piece of the puzzle: error handling.

Listing 5.1 A simple static web server that uses streams

Listing 5.2 A static web server with gzip

Data is piped from a file to
Node’s HTTP Response object.

Set the header so the
browser knows gzip
compression has
been used.

Use two calls to pipe, compress, and
stream the file back to the client.

90 CHAPTER 5 Streams: Node’s most powerful and misunderstood feature

TECHNIQUE 28 Stream error handling

The stream classes inherit from EventEmitter, which means sane error handling
comes as standard. This technique explains how to handle errors generated by a
stream.

■ Problem
You want to catch errors generated by a stream.

■ Solution
Add an error listener.

■ Discussion
The standard behavior of EventEmitter is to throw an exception when an error event
is emitted—unless there’s a listener attached to the error event. The first argument to
the listener will be the error that was raised, a descendent of the Error object.

 The following listing shows an example of an intentionally generated error with a
suitable error listener.

Figure 5.3 The network inspector confirms the content was compressed.

91TECHNIQUE 29 Using streams from third-party modules

var fs = require('fs');
var stream = fs.createReadStream('not-found');

stream.on('error', function(err) {
console.trace();
console.error('Stack:', err.stack);
console.error('The error raised was:', err);

});

Here we attempt to open a file that doesn’t exist B, causing an 'error' event to be
triggered. The error object passed to the handler C will usually have extra informa-
tion to aid in tracking down the error. For example, the stack property may have line
number information, and console.trace() can be called to generate a full stack
trace. In listing 5.3 console.trace() will show a trace up to the ReadStream imple-
mentation in Node’s events.js core module. That means you can see exactly where
the error was originally emitted.

 Now that you’ve seen how some of Node’s core modules use streams, the next sec-
tion explores how third-party modules use them.

5.3 Third-party modules and streams
Streams are about as idiomatic Node as you can get, so it’s no surprise that streamable
interfaces crop up all over the open source Node landscape. In the next technique
you’ll learn how to use streamable interfaces found in some popular Node modules.

TECHNIQUE 29 Using streams from third-party modules

Many open source developers have recognized the importance of streams and incor-
porated streamable interfaces into their modules. In this technique you’ll learn how
to identify such implementations and use them to solve problems more efficiently.

■ Problem
You want to know how to use streams with a popular third-party module that you’ve
downloaded with npm.

■ Solution
Look at the module’s documentation or source code to figure out if it implements a
streamable API, and if so, how to use it.

■ Discussion
We’ve picked three popular modules as examples of third-party modules that imple-
ment streamable interfaces. This guided tour of streams in the wild should give you a
good idea of how developers are using streams, and how you can exploit streams in
your own projects.

 In the next section you’ll discover some key ways to use streams with the popular
web framework, Express.

Using streams with Express
The Express web framework (http://expressjs.com/) actually provides a relatively
lightweight wrapper around Node’s core HTTP module. This includes the Request

Listing 5.3 Catching errors during streaming

Cause an error
to be generated

by trying to
open a file that

doesn’t exist. B

Use the events API
to attach an error
handler.C

http://expressjs.com/

92 CHAPTER 5 Streams: Node’s most powerful and misunderstood feature

and Response objects. Express decorates these objects with some of its own methods
and values, but the underlying objects are the same. That means everything you
learned about streaming data to browsers in technique 27 can be reused here.

 A simple example of an Express route—a callback that runs for a given HTTP
method and URL—uses res.send to respond with some data:

var express = require('express');
var app = express();

app.get('/', function(req, res) {
res.send('hello world');

});

app.listen(3000);

The res object is actually a response object, and inherits from Node’s http.Server-
Response. In technique 27 you saw that HTTP requests can be streamed to by using
the pipe method. Express is built in a way that allows buffers and objects to work with
the res.send method, and for streams you can still use the pipe method.

 Listing 5.4 is an Express web application that will run with Express 3 and streams
content from a custom-readable stream by using pipe.

var stream = require('stream');
var util = require('util');
var express = require('express');
var app = express();

util.inherits(StatStream, stream.Readable);

function StatStream(limit) {
stream.Readable.call(this);
this.limit = limit;

}

StatStream.prototype._read = function(size) {
if (this.limit === 0) {
// Done
this.push();

} else {
this.push(util.inspect(process.memoryUsage()));
this.push('n');
this.limit--;

}
};

app.get('/', function(req, res) {
var statStream = new StatStream(10);
statStream.pipe(res);

});

app.listen(3000);

Listing 5.4 An Express application that uses streams

Create a readable stream
by inheriting from
stream.Readable and calling
the parent’s constructor.

B

Respond with some data—
this sends a string
representation of the Node
process’s memory usage.

C

Use the standard
readable.pipe(writable) pattern to
send data back to the browser.

D

93TECHNIQUE 29 Using streams from third-party modules

Our custom readable stream, StatStream, inherits from stream.Readable B and
implements the _read method, which just sends memory usage data C. The _read
method must be implemented whenever you want to make a readable stream. When
sending the response back to the browser, the stream can be piped to the res object D
provided by Express without any extra work.

 The implementation of the send module that comes with Express 3 uses
fs.createReadStream, as described in technique 27. The following sample code is
taken from the source to send:

SendStream.prototype.stream = function(path, options){
TODO: this is all lame, refactor meeee
var self = this;
var res = this.res;
var req = this.req;

pipe
var stream = fs.createReadStream(path, options);
this.emit('stream', stream);
stream.pipe(res);

It takes a lot more work to correctly deal with things like HTTP Content-Range head-
ers, but this snippet demonstrates that leveraging the built-in streaming APIs like
fs.createReadStream can lead to solutions powerful enough to underpin major
open source projects.

Using streams with Mongoose
The Mongoose module (http://mongoosejs.com/) for the MongoDB database server
(http://www.mongodb.org/) has an interface called QueryStream that provides
Node 0.8-style streams for query results. This class is used internally to allow query
results to be streamed using the stream method. The following code shows a
query that has its results piped through a hypothetical writable stream:

User
.where('role')
.equals('admin')
.stream()
.pipe(writeStream);

This pattern—using a class to wrap an external I/O source’s streamable behavior, and
then exposing streams through simple method calls—is the style employed by Node’s
core modules, and is popular with third-party module authors. This has been made
clearer by the streams2 API’s use of simple abstract classes that can be inherited from.

Using streams with MySQL
The third-party mysql module (https://npmjs.org/package/mysql) is often seen by
Node developers as something low-level that should be built on with more complex
libraries, like the Sequelize (http://www.sequelizejs.com/) object-relational mapper
(ORM). But the mysql module itself shouldn’t be underestimated, and supports
streaming results with pause and resume. Here’s an example of the basic API style:

http://mongoosejs.com/
http://www.mongodb.org/
https://npmjs.org/package/mysql
http://www.sequelizejs.com/

94 CHAPTER 5 Streams: Node’s most powerful and misunderstood feature

var query = connection.query('SELECT * FROM posts');
query
.on('result', function(row) {

connection.pause();
processRow(row, function() {
connection.resume();

});
});

This streaming API uses domain-specific event names—there’s also a 'fields' event.
To pause the result stream, connection.pause must be called. This signals to the
underlying connection to MySQL that results should stop briefly until the receiver is
ready for more data.

■ Summary
In this technique you’ve seen how some popular third-party modules use streams.
They’re all characterized by the fact they deal with I/O—both HTTP and database con-
nections are network- or file-based protocols, and both can involve network connec-
tions and file system operations. In general, it’s a good idea to look for Node network
and database modules that implement streamable interfaces, because they help scale
programs and also write them in a readable, idiomatic style.

 Now that you’ve seen how to use streams, you’re probably itching to learn how to
create your own. The next section has a technique for using each base stream class,
and also shows how to correctly inherit from them.

5.4 Using the stream base classes
Node’s base stream classes provide templates for solving the kinds of problems that
streams are best at. For example, stream.Transform is great for parsing data, and
stream.Readable is perfect for wrapping lower-level APIs with a streamable interface.

 The next technique explains how to inherit from the stream base classes, and then
further techniques go into detail about how to use each base class.

TECHNIQUE 30 Correctly inheriting from the stream base classes

Node’s base classes for streams can be used as a starting point for new modules and
subclasses. It’s important to understand what problems each solves, and how to cor-
rectly inherit from them.

■ Problem
You want to solve a problem by creating a streamable API, but you’re not sure which
base class to use and how to use it.

■ Solution
Decide on which base class closely matches the problem at hand, and inherit from it
using Object.prototype.call and util.inherits.

■ Discussion
Node’s base classes for streams, already summarized in table 5.1, should be used as the
basis for your own streamable classes or modules. They’re abstract classes, which means

95TECHNIQUE 30 Correctly inheriting from the stream base classes

they’re methods that you must implement before they can be used. This is usually
done through inheritance.

 All of the stream base classes are found in the stream core module. The five base
classes are Readable, Writable, Duplex, Transform, and PassThrough. Fundamen-
tally, streams are either readable or writable, but Duplex streams are both. This makes
sense if you consider the behavior of I/O interfaces—a network connection can be
both readable and writable. It wouldn’t be particularly useful, for example, if ssh were
only able to send data.

 Transform streams build on Duplex streams, but also change the data in some way.
Some of Node’s built-in modules use Transform streams, so they’re fundamentally
important. An example of this is the crypto module.

 Table 5.2 offers some hints to help you choose which base class to use.

Inheriting from the base classes
If you’ve learned about inheritance in JavaScript, you might be tempted to inherit from
the stream base classes by using MyStream.prototype = new stream.Readable();. This
is considered bad practice, and it’s better to use the ECMAScript 5 Object.create pat-
tern instead. Also, the base class’s constructor must be run, because it provides essential
setup code. The pattern for this is shown next.

var Readable = require('stream').Readable;

function MyStream(options) {
Readable.call(this, options);

}

MyStream.prototype = Object.create(Readable.prototype, {
constructor: { value: MyStream }

});

Node includes a utility method called util.inherits that can be used instead of
Object.create, but both approaches are widely used by Node developers. This example
uses the Object.create method B instead so you can see what util.inherits does.

Table 5.2 Selecting a streams base class

Problem Solution

You want to wrap around an underlying I/O source with a streamable API. Readable

You want to get output from a program to use elsewhere, or send data elsewhere
within a program.

Writable

You want to change data in some way by parsing it. Transform

You want to wrap a data source that can also receive messages. Duplex

You want to extract data from streams without changing it, from testing to analysis. PassThrough

Listing 5.5 Inheriting from the stream.Readable base class

Call the parent constructor,
and be sure to pass any
options to it as well.

B

Use Object.create to
correctly set up the
prototype chain.C

96 CHAPTER 5 Streams: Node’s most powerful and misunderstood feature

 Note that in listing 5.5 the options argument C is passed to the original Readable
constructor. This is important because there’s a standard set of options that Node sup-
ports for configuring streams. In the case of Readable, the options are as follows:

■ highWaterMark—The number of bytes to store in the internal buffer before
pausing reading from the underlying data source.

■ encoding—Causes the buffer to be automatically decoded. Possible values
include utf8 and ascii.

■ objectMode—Allows the stream to behave as a stream of objects, rather than
bytes.

The objectMode option allows JavaScript objects to be handled by streams. An exam-
ple of this has been provided in technique 31.

■ Summary
In this technique you’ve seen how to use Node’s stream base classes to create your
own stream implementations. This involves using util.inherits to set up the class,
and then .call to call the original constructor. We also covered some of the options
that these base classes use.

 Properly inheriting from the base classes is one thing, but what about actually
implementing a stream class? Technique 31 explains this in more detail for the Read-
able base class, but in that specific case it involves implementing a method called
_read to read data from the underlying data source and push it onto an internal
queue managed by the base class itself.

TECHNIQUE 31 Implementing a readable stream

Readable streams can be used to provide a flexible API around I/O sources, and can
also act as parsers.

■ Problem
You’d like to wrap an I/O source with a streamable API that provides a higher-level
interface than would otherwise be possible with the underlying data.

■ Solution
Implement a readable stream by inheriting from the stream.Readable class and creat-
ing a _read(size) method.

■ Discussion
Implementing a custom stream.Readable class can be useful when a higher level of
abstraction around an underlying data source is required. For example, I (Alex) was
working on a project where the client had sent in JSON files that contained millions of
records separated by newlines. I decided to write a quick stream.Readable class that
read a buffer’s worth of data, and whenever a newline was encountered, JSON.parse
was used to parse the record.

 One way of using stream.Readable to parse newline-separated JSON records is
shown next.

97TECHNIQUE 31 Implementing a readable stream

var stream = require('stream');
var util = require('util');
var fs = require('fs');

function JSONLineReader(source) {
stream.Readable.call(this);
this._source = source;
this._foundLineEnd = false;
this._buffer = '';

source.on('readable', function() {
this.read();

}.bind(this));
}

util.inherits(JSONLineReader, stream.Readable);

JSONLineReader.prototype._read = function(size) {
var chunk;
var line;
var lineIndex;
var result;

if (this._buffer.length === 0) {
chunk = this._source.read();
this._buffer += chunk;

}

lineIndex = this._buffer.indexOf('n');

if (lineIndex !== -1) {
line = this._buffer.slice(0, lineIndex);
if (line) {

result = JSON.parse(line);
this._buffer = this._buffer.slice(lineIndex + 1);
this.emit('object', result);
this.push(util.inspect(result));

} else {
this._buffer = this._buffer.slice(1);

}
}

};

var input = fs.createReadStream(__dirname + '/json-lines.txt', {
encoding: 'utf8'

});
var jsonLineReader = new JSONLineReader(input);

jsonLineReader.on('object', function(obj) {
console.log('pos:', obj.position, '- letter:', obj.letter);

});

Listing 5.6 A JSON line parser

Always ensure
the constructor’s
parent is called.

B

Call read() when the
source is ready to trigger
subsequent reads.

C

Inherit from stream.Readable
to create a new class that can
be customized.

D

All custom stream.Readable
classes must implement the
_read() method.E

When the class is ready
for more data, call
read() on the source.F

Slice from the start of the
buffer to the first newline to
grab some text to parse.

G

Emitting an “object” event
whenever a JSON record has been
parsed is unique to this class and
isn’t necessarily required.H

Send the
parsed

JSON back
to the

internal
queue. I

Create an instance of
JSONLineReader and give it
a file stream to process.J

98 CHAPTER 5 Streams: Node’s most powerful and misunderstood feature

Listing 5.6 uses a constructor function, JSONLineReader B, that inherits from
stream.Readable D to read and parse lines of JSON from a file. The source for JSON-
LineReader will be a readable stream as well, so a listener for the readable event is
bound to, so instances of JSONLineReader know when to start reading data C.

 The _read method E checks whether the buffer is empty F and, if so, reads
more data from the source and adds it to the internal buffer. Then the current line
index is incremented, and if a line ending is found, the first line is sliced from the
buffer G. Once a complete line has been found, it’s parsed and emitted using the
object event H—users of the class can bind to this event to receive each line of
JSON that’s found in the source stream.

 When this example is run, data from a file will flow through an instance of the
class. Internally, data will be queued. Whenever source.read is executed, the latest
“chunk” of data will be returned, so it can be processed when JSONLineReader is ready
for it. Once enough data has been read and a newline has been found, the data will be
split up to the first newline, and then the result will be collected by calling this.push I.

 Once this.push is called, stream.Readable will queue the result and forward it
on to a consuming stream. This allows the stream to be further processed by a writable
stream using pipe. In this example JSON objects are emitted using a custom object
event. The last few lines of this example attach an event listener for this event and pro-
cess the results J.

 The size argument to Readable.prototype._read is advisory. That means the
underlying implementation can use it to know how much data to fetch—this isn’t
always needed so you don’t always implement it. In the previous example we parsed
the entire line, but some data formats could be parsed in chunks, in which case the
size argument would be useful.

 In the original code that I based this example on, I used the resulting JSON objects
to populate a database. The data was also redirected and gzipped into another file.
Using streams made this both easy to write and easy to read in the final project.

 The example in listing 5.6 used strings, but what about objects? Most streams that
deal directly with I/O—files, network protocols, and so on—will use raw bytes or
strings of characters. But sometimes it’s useful to create streams of JavaScript objects.
Listing 5.7 shows how to safely inherit from stream.Readable and pass the object-
Mode option to set up a stream that deals with JavaScript objects.

var stream = require('stream');
var util = require('util');

util.inherits(MemoryStream, stream.Readable);

function MemoryStream(options) {
options = options || {};
options.objectMode = true;
stream.Readable.call(this, options);

}

Listing 5.7 A stream configured to use objectMode

This stream should always use
objectMode, so set it here and
pass the rest of the options to
the stream.Readable constructor.

B

99TECHNIQUE 32 Implementing a writable stream

MemoryStream.prototype._read = function(size) {
this.push(process.memoryUsage());

};

var memoryStream = new MemoryStream();
memoryStream.on('readable', function() {

var output = memoryStream.read();
console.log('Type: %s, value: %j', typeof output, output);

});

The MemoryStream example in listing 5.7 uses objects for data, so objectMode is passed
to the Readable constructor as an option B. Then process.memoryUsage is used to gen-
erate some suitable data C. When an instance of this class emits readable D, indicating
that it’s ready to be read from, then the memory usage data is logged to the console.

 When using objectMode, the underlying behavior of the stream is changed to
remove the internal buffer merge and length checks, and to ignore the size argument
when reading and writing.

TECHNIQUE 32 Implementing a writable stream

Writable streams can be used to output data to underlying I/O sinks.
■ Problem

You want to output data from a program using an I/O destination that you want to
wrap with a streamable interface.

■ Solution
Inherit from stream.Writable and implement a _write method to send data to the
underlying resource.

■ Discussion
As you saw in technique 29, many third-party modules offer streamable interfaces for
network services and databases. Following this trend is advantageous because it allows
your classes to be used with the pipe API, which helps keep chunks of code reusable
and decoupled.

 You might be simply looking to implement a writable stream to act as the destina-
tion of a pipe chain, or to implement an unsupported I/O resource. In general, all
you need to do is correctly inherit from stream.Writable—for more on the recom-
mended way to do this, see technique 30—and then add a _write method.

 All the _write method needs to do is call a supplied callback when the data has
been written. The following code shows the method’s arguments and the overall struc-
ture of a sample _write implementation:

MyWritable.prototype._write = function(chunk, encoding, callback) {
this.customWriteOperation(chunk, function(err) {
callback(err); //

});
};

Generate an object by calling Node’s
built-in process.memoryUsage() method.

C

Attach a listener to
readable to track when
the stream is ready to
output data; then call
stream.read() to fetch
recent values.D

The chunk
argument is
an instance
of Buffer or

a String. B

C

customWriteOperation is your class’s custom
write operation. It can be asynchronous, so
the callback can be safely called later.

The callback
provided by Node’s
internal code is
called with an error
if one was generated.D

100 CHAPTER 5 Streams: Node’s most powerful and misunderstood feature

A _write method supplies a callback B that you can call when writing has finished.
This allows _write to be asynchronous. This customWriteOperation method C is
simply used as an example here—in a real implementation it would perform the
underlying I/O. This could involve talking to a database using sockets, or writing to a
file. The first argument provided to the callback should be an error D, allowing
_write to propagate errors if needed.

 Node’s stream.Writable base class doesn’t need to know how the data was written,
it just cares whether the operation succeeded or failed. Failures can be reported by
passing an Error object to callback. This will cause an error event to be emitted.
Remember that these stream base classes descend from EventEmitter, so you should
usually add a listener to error to catch and gracefully handle any errors.

 The next listing shows a complete implementation of a stream.Writable class.

var stream = require('stream');
GreenStream.prototype = Object.create(stream.Writable.prototype, {

constructor: { value: GreenStream }
});

function GreenStream(options) {
stream.Writable.call(this, options);

}

GreenStream.prototype._write = function(chunk, encoding, callback) {
process.stdout.write('u001b[32m' + chunk + 'u001b[39m');
callback();

};

process.stdin.pipe(new GreenStream());

This short example changes input text into green text. It can be used by running it with
node writable.js, or by piping text through it with cat file.txt | node writable.js.

 Although this is a trivial example, it illustrates how easy it is to implement stream-
able classes, so you should consider doing this the next time you want to make some-
thing that stores data work with pipe.

Listing 5.8 An example implementation of a writable stream

Use the usual inheritance
pattern to create a new

writable stream class.

Decorate the
chunk with the

ANSI escape
sequences for

green text.

Call the callback once the text
has been sent to stdout.

Pipe stdin through
stdout to transform
text into green text.

Chunks and encodings
The encoding argument to write is only relevant when strings are being used instead
of buffers. Strings can be used by setting decodeStrings to false in the options
that are passed when instantiating a writable stream.

Streams don’t always deal with Buffer objects because some implementations have
optimized handling for strings, so dealing directly with strings can be more efficient
in certain cases.

101TECHNIQUE 33 Transmitting and receiving data with duplex streams

TECHNIQUE 33 Transmitting and receiving data with duplex streams

Duplex streams allow data to be transmitted and received. This technique shows you
how to create your own duplex streams.

■ Problem
You want to create a streamable interface to an I/O source that needs to be both read-
able and writable.

■ Solution
Inherit from stream.Duplex and implement _read and _write methods.

■ Discussion
Duplex streams are a combination of the Writable and Readable streams, which are
explained in techniques 31 and 32. As such, Duplex streams require inheriting from
stream.Duplex and implementations for the _read and _write methods. Refer to
technique 30 for an explanation of how to inherit from the stream base classes.

 Listing 5.9 shows a small stream.Duplex class that reads and writes data from
stdin and stdout. It prompts for data and then writes it back out with ANSI escape
codes for colors.

var stream = require('stream');

HungryStream.prototype = Object.create(stream.Duplex.prototype, {
constructor: { value: HungryStream }

});

function HungryStream(options) {
stream.Duplex.call(this, options);
this.waiting = false;

}

HungryStream.prototype._write = function(chunk, encoding, callback) {
this.waiting = false;
this.push('u001b[32m' + chunk + 'u001b[39m');
callback();

};

HungryStream.prototype._read = function(size) {
if (!this.waiting) {
this.push('Feed me data! > ');
this.waiting = true;

}
};

var hungryStream = new HungryStream();
process.stdin.pipe(hungryStream).pipe(process.stdout);

Listing 5.9 A duplex stream

This property
tracks if the prompt
is being displayed.

B

This _write implementation
pushes data onto the
internal queue and then
calls the supplied callback.

C

Display a prompt
when waiting for data.D

Pipe the standard
input through the
duplex stream, and
then back out to
standard output.E

102 CHAPTER 5 Streams: Node’s most powerful and misunderstood feature

The HungryStream class in listing 5.9 will display a prompt, wait for input, and then
return the input with ANSI color codes. To track the state of the prompt, an internal
property called waiting B is used. The _write method, which will be called by Node
automatically, sets the waiting property to false, indicating that input has been
received, and then the data is pushed to the internal buffer with color codes attached.
Finally, the callback that gets automatically passed to _write is executed C.

 When the class is waiting for data, the _read method pushes a message that acts as
the prompt D. This can be made interactive by piping the standard input stream
through an instance of HungryStream and then back out through the standard output
stream E.

 The great thing about duplex streams is they can sit in the middle of pipes. A sim-
pler way to do this is to use the stream.PassThrough base class, which only relays data,
allowing you to plug into the middle of a pipe and track data as it flows through it.
The diagram in figure 5.4 shows how chunks of data flow through the duplex stream
object, from the input to the output stream.

 Several stream.Duplex implementations in the wild implement a _write method
but keep the _read method as a blank stub. This is purely to take advantage of duplex
streams as something that can enhance the behavior of other streams through pipes.
For example, hiccup by Naomi Kyoto (https://github.com/naomik/hiccup) can be
used to simulate slow or sporadic behavior of underlying I/O sources. This novel use
of streams comes in handy when you’re writing automated tests.

 Duplex streams are useful for piping readable streams to writable streams and ana-
lyzing the data. Transform streams are specifically designed for changing data; the
next technique introduces stream.Transform and the _transform method.

_read
Duplex stream

_write

process.stdoutprocess.stdin

Figure 5.4 A duplex stream

https://github.com/naomik/hiccup

103TECHNIQUE 34 Parsing data with transform streams

TECHNIQUE 34 Parsing data with transform streams

Streams have long been used as a way to create efficient parsers. The stream.Transform
base class can be used to do this in Node.

■ Problem
You want to use streams to change data into another format in a memory-efficient
manner.

■ Solution
Inherit from stream.Transform and implement the _transform method.

■ Discussion
On the surface, transform streams sound a little bit like duplex streams. They can also
sit in the middle of a pipe chain. The difference is that they’re expected to transform
data, and they’re implemented by writing a _transform method. This method’s signa-
ture is similar to _write—it takes three arguments, chunk, encoding, and callback.
The callback should be executed when the data has been transformed, which allows
transform streams to parse data asynchronously.

 Listing 5.10 shows a transform stream that parses (albeit simplified) CSV data. The
CSV is expected to contain comma-separated values without extra spaces or quotes,
and should use Unix line endings.

var fs = require('fs');
var stream = require('stream');

CSVParser.prototype = Object.create(stream.Transform.prototype, {
constructor: { value: CSVParser }

});

function CSVParser(options) {
stream.Transform.call(this, options);

this.value = '';
this.headers = [];
this.values = [];
this.line = 0;

}

CSVParser.prototype._transform = function(chunk, encoding, done) {
var c;
var i;

chunk = chunk.toString();

for (i = 0; i < chunk.length; i++) {
c = chunk.charAt(i);

if (c === ',') {
this.addValue();

Listing 5.10 A CSV parser implemented using a transform stream

These properties are
used to track the
state of the parser.B The _transform

implementation. C

The input data is turned into a
string and then iterated over,
character by character.

D

If the character is a comma,
add the previously collected
data to the internal list of
headers or values.

E

104 CHAPTER 5 Streams: Node’s most powerful and misunderstood feature

} else if (c === 'n') {
this.addValue();
if (this.line > 0) {

this.push(JSON.stringify(this.toObject()));
}
this.values = [];
this.line++;

} else {
this.value += c;

}
}

done();
};

CSVParser.prototype.toObject = function() {
var i;
var obj = {};
for (i = 0; i < this.headers.length; i++) {
obj[this.headers[i]] = this.values[i];

}
return obj;

};

CSVParser.prototype.addValue = function() {
if (this.line === 0) {
this.headers.push(this.value);

} else {
this.values.push(this.value);

}
this.value = '';

};

var parser = new CSVParser();
fs.createReadStream(__dirname + '/sample.csv')

.pipe(parser)

.pipe(process.stdout);

Parsing CSV involves tracking several variables—the current value, the headers for the
file, and the current line number B. To do this, a stream.Transform descendent with
suitable properties can be used. The _transform implementation C is the most com-
plex part of this example. It receives a chunk of data, which is iterated over one char-
acter at a time using a for loop D. If the character is a comma, the current value is
saved E (if there is one). If the current character is a newline, the line is transformed
into a JSON representation F. This example is synchronous, so it’s safe to execute the
callback supplied to _transform at the end of the method G. A toObject method has
been included to make it easier to change the internal representation of the headers
and values into a JavaScript object H.

 The last line in the example creates a readable file stream of CSV data and pipes it
through the CSV parser, and that output is piped again back through stdout so the
results can be viewed I. This could also be piped through a compression module to

If the character is a line
ending, record the previously
collected header or field, and
then use push to send a JSON
version of the data fields to
the internal queue.F

When processing has
finished, call the callback
provided by Node.

G

Convert the internal
array of headers and the
most recent line of fields
into an object that can be
converted to JSON.

H

Headers are assumed to be on
the first line; otherwise the
most recently collected data is
assumed to be a data value.I

105TECHNIQUE 35 Optimizing streams

directly support compressed CSV files, or anything else you can think of doing with
pipe and streams.

 This example doesn’t implement all of the things real-world CSV files can contain,
but it does show that building streaming parsers with stream.Transform isn’t too
complicated, depending on the file format or protocol.

 Now that you’ve learned how to use the base classes, you’re probably wondering
what the options argument in listing 5.10 was used for. The next section includes
some details on how to use options to optimize stream throughput, and details some
more advanced techniques.

5.5 Advanced patterns and optimization
The stream base classes accept various options for tailoring their behavior, and some
of these options can be used to tune performance. This section has techniques for
optimizing streams, using the older streams API, adapting streams based on input, and
testing streams.

TECHNIQUE 35 Optimizing streams

Built-in streams and the classes used to build custom streams allow the internal buffer
size to be configured. It’s useful to know how to optimize this value to attain the
desired performance characteristics.

■ Problem
You want to read data from a file, but are concerned about either speed or memory
performance.

■ Solution
Optimize the stream’s buffer size to suit your application’s requirements.

■ Discussion
The built-in stream functions take a buffer size parameter, which allows the perfor-
mance characteristics to be tailored to a given application. The fs.createReadStream
method takes an options argument that can include a bufferSize property. This
option is passed to stream.Readable, so it’ll control the internal buffer used to tem-
porarily store file data before it’s used elsewhere.

 The stream created by zlib.createGzip is an instance of streams.Transform, and
the Zlib class creates its own internal buffer object for storing data. Controlling the
size of this buffer is also possible, but this time the options property is chunkSize.
Node’s documentation has a section on optimizing the memory usage of zlib,1 based
on the documentation in the zlib/zconf.h header file, which is part of the low-level
source code used to implement zlib itself.

 In practice it’s quite difficult to push Node’s streams to exhibit different CPU per-
formance characteristics based on buffer size. But to illustrate the concept, we’ve
included a small benchmarking script that includes some interesting ideas about mea-
suring stream performance. The next listing attempts to gather statistics on memory
and elapsed time.

1 See “Memory Usage Tuning”—http://nodejs.org/docs/latest/api/all.html#all_process_memoryusage.

http://nodejs.org/docs/latest/api/all.html#all_process_memoryusage

106 CHAPTER 5 Streams: Node’s most powerful and misunderstood feature

var fs = require('fs');
var zlib = require('zlib');

function benchStream(inSize, outSize) {
var time = process.hrtime();
var watermark = process.memoryUsage().rss;
var input = fs.createReadStream('/usr/share/dict/words', {
bufferSize: inSize

});
var gzip = zlib.createGzip({ chunkSize: outSize });
var output = fs.createWriteStream('out.gz', { bufferSize: inSize });

var memoryCheck = setInterval(function() {
var rss = process.memoryUsage().rss;

if (rss > watermark) {
watermark = rss;

}
}, 50);

input.on('end', function() {
var memoryEnd = process.memoryUsage();
clearInterval(memoryCheck);

var diff = process.hrtime(time);
console.log([

inSize,
outSize,
(diff[0] * 1e9 + diff[1]) / 1000000,
watermark / 1024].join(', ')

);
});

input.pipe(gzip).pipe(output);

return input;
}

console.log('file size, gzip size, ms, RSS');

var fileSize = 128;
var zipSize = 5024;

function run(times) {
benchStream(fileSize, zipSize).on('end', function() {
times--;
fileSize *= 2;
zipSize *= 2;

if (times > 0) {
run(times);

}
});

Listing 5.11 Benchmarking streams

hrtime is used to get precise
nanosecond measurements
of the current time.

B

A timer callback is used to
periodically check on memory
usage and record the highest
usage for the current benchmark.C

When the input has ended,
gather the statistics.D

Log the results of the memory usage
and time, converting the nanosecond
measurements into milliseconds.

E

Stream the input file through the
gzip instance and back out to a file.F

A callback that will
run when each
benchmark finishes.

G

Recursively call the
benchmark function.H

107TECHNIQUE 35 Optimizing streams

}

run(10); 8((callout-streams-buffer-size-8))

This is a long example, but it just uses some of Node’s built-in functionality to gather
memory statistics over time for streams designed to use different buffer sizes. The bench-
Stream function performs most of the work and is executed several times. It records the
current time using hrtime B, which returns more precise measurements than
Date.now() would. The input stream is the Unix dictionary file, which is piped through
a gzip stream and then out to a file F. Then benchStream uses setInterval to run a peri-
odic check on the memory usage C. When the input stream ends D, the memory usage
is calculated based on the values before and after the input file was gzipped.

 The run function doubles the input file’s buffer and gzip buffer G to show the
impact on memory and the time taken to read the streams over time. When the read-
ing of the input file completes, the memory usage and elapsed time will be printed E.
The input file is returned by the benchStream function so run can easily be called
when benchmarking has finished. The run function will be called repeatedly H,
depending on the first argument passed to it I.

 Note that process.hrtime has been used to accurately benchmark the elapsed
time. This method can be used for benchmarking because it’s precise, and also
accepts a time argument for automatically calculating the elapsed time.

 I (Alex) ran this program with a 20 MB file to try to generate more interesting results
than /usr/share/dict/words, and I’ve included a graph of the results in figure 5.5.

Initially call the benchmark
function with the number
of times we want it to run.I

80,000

Effects of buffer size on memory and time

60,000

40,000

20,000

Buffer size

0

Time (ms) RSS

Figure 5.5 A graphical
representation of the mem-
ory usage of streams

108 CHAPTER 5 Streams: Node’s most powerful and misunderstood feature

I found when I experimented with various files that the results indicated that elapsed
time was far less affected than the memory usage. That indicates that it’s generally
desirable to use smaller buffers and be more conservative about memory usage,
although this test should be repeated with a load-testing benchmark to really see how
long it takes Node to process those buffers.

 Node had an older API for streams that had different semantics for pausing a
stream. Although the newer API should be used where possible, it’s possible to use the
older API alongside the newer one. The next technique demonstrates how to use
modules written with the older API.

TECHNIQUE 36 Using the old streams API

Before Node 0.10 (and technically 0.9.4), streams had a different API. Code written
using that API can be used with the newer APIs by wrapping it to behave like the newer
stream.Readable class.

■ Problem
You want to use a module that implements the old-style streaming API with classes that
use the newer APIs.

■ Solution
Use Readable.prototype.wrap.

■ Discussion
The older stream API had readable and writable streams, but pausing a stream was
“advisory” only. This led to a different API design that wasn’t based around the newer
streams2 classes. As people gradually realized how useful streamable classes are, a
wealth of modules appeared on npm. Although the newer API solves key problems
with the older design, there are still useful modules that haven’t been updated.

 Fortunately, older classes can be wrapped using the Readable.prototype.wrap
method provided by the stream module. It literally wraps the older interface to make
it behave like the newer stream.Readable class—it effectively creates a Readable
instance that uses the older class as its data source.

 Listing 5.12 shows an example of a stream implemented with the older API that has
been wrapped with the newer Readable class.

var stream = require('stream');
var Readable = stream.Readable;
var util = require('util');

util.inherits(MemoryStream, stream);

function MemoryStream(interval) {
this.readable = true;

setInterval(function() {
var data = process.memoryUsage();
data.date = new Date();
this.emit('data', JSON.stringify(data) + 'n');

Listing 5.12 An old-style stream that has been wrapped

The older API
required that

classes inherited
from the stream
module and set

the readable
property to true.

B

The data event is emitted
with some example values.
Make sure strings or Buffer

instances are used.

C

109TECHNIQUE 37 Adapting streams based on their destination

}.bind(this), interval);
}

var memoryStream = new MemoryStream(250);
var wrappedStream = new Readable().wrap(memoryStream);

wrappedStream.pipe(process.stdout);

The example in listing 5.12 presents a simple class that inherits from the Node 0.8
stream module. The readable property B is part of the old API, and signifies that this
is a readable stream. Another indicator that this is a legacy stream is the data event C.
The newer Readable.prototype.wrap method D is what translates all of this to make
it compatible with the streams2 API style. At the end, the wrapped stream is piped to a
Node 0.10 stream E.

 Now you should be able to use older streams with the newer APIs!
 Sometimes streams need to change their behavior depending on the type of input

that has been provided. The next technique looks at ways of doing just that.

TECHNIQUE 37 Adapting streams based on their destination

Stream classes are typically designed to solve a specific problem, but there’s also
potential for customizing their behavior by detecting how the stream is being used.

■ Problem
You want to make a stream behave differently when it’s piped to the TTY (the user’s
shell).

■ Solution
Bind a listener to the pipe event, and then use stream.isTTY to check if the stream is
bound to a terminal.

■ Discussion
This technique is a specific example of adapting a stream’s behavior to its environ-
ment, but the general approach could be adapted to other problems as well. Some-
times it’s useful to detect whether a stream is writing output to a TTY or something
else—perhaps a file—because different behavior in each is desirable. For example,
when printing to a TTY, some commands will use ANSI colors, but this isn’t usually
advisable when writing files because strange characters would clutter the results.

 Node makes detecting whether the current process is connected to a TTY simple—
just use process.stdout.isTTY and process.stdin.isTTY. These are Boolean prop-
erties that are derived from OS-level bindings in Node’s source (in lib/tty.js).

 The strategy to use for adapting a stream’s output is to create a new stream.Writable
class and set an internal property based on isTTY. Then add a listener to the pipe event,
which changes isTTY based on the newly piped stream that’s passed as the first argument
to the listener callback.

 Listing 5.13 demonstrates this by using two classes. The first, MemoryStream, inher-
its from stream.Readable and generates data based on Node’s memory usage. The

An instance of the original stream must
be wrapped to become an instance of the

newer class.

DHere the new
stream is piped to
a writable stream
that is compatible

with the newer
streams API.

E

110 CHAPTER 5 Streams: Node’s most powerful and misunderstood feature

second, OutputStream, monitors the stream it’s bound to so it can tell the readable
stream about what kind of output it expects.

var stream = require('stream');
var util = require('util');

util.inherits(MemoryStream, stream.Readable);
util.inherits(OutputStream, stream.Writable);

function MemoryStream() {
this.isTTY = process.stdout.isTTY;
stream.Readable.call(this);

}

MemoryStream.prototype._read = function() {
var text = JSON.stringify(process.memoryUsage()) + 'n';
if (this.isTTY) {
this.push('u001b[32m' + text + 'u001b[39m');

} else {
this.push(text);

}
};

// A simple writable stream
function OutputStream() {

stream.Writable.call(this);
this.on('pipe', function(dest) {
dest.isTTY = this.isTTY;

}.bind(this));
}

OutputStream.prototype._write = function(chunk, encoding, cb) {
util.print(chunk.toString());
cb();

};

var memoryStream = new MemoryStream();

// Switch the desired output stream by commenting one of these lines:
//memoryStream.pipe(new OutputStream);
memoryStream.pipe(process.stdout);

Internally, Node uses isTTY to adapt the behavior of the repl module and the readline
interface. The example in listing 5.13 tracks the state of process.stdout.isTTY B to
determine what the original output stream was, and then copies that value to subse-
quent destinations D. When the terminal is a TTY, colors are used C; otherwise plain
text is output instead.

 Streams, like anything else, should be tested. The next technique presents a
method for writing unit tests for your own stream classes.

Listing 5.13 Using isTTY to adapt stream behavior

Set an internal flag to
record what kind of
output is expected.

B

Use ANSI colors
when printing
to a terminal.C

When the writable stream is
bound with a pipe, change
the destination’s isTTY state.

D

111TECHNIQUE 38 Testing streams

TECHNIQUE 38 Testing streams

Just like anything else you write, it’s strongly recommended that you test your streams.
This technique explains how to use Node’s built-in assert module to test a class that
inherits from stream.Readable.

■ Problem
You’ve written your own stream class and you want to write a unit test for it.

■ Solution
Use some suitable sample data to drive your stream class, and then call read() or
write() to gather the results and compare them to the expected output.

■ Discussion
The common pattern for testing streams, used in Node’s source itself and by many
open source developers, is to drive the stream being tested using sample data and
then compare the end results against expected values.

 The most difficult part of this can be coming up with suitable data to test. Some-
times it’s easy to create a text file, or a fixture in testing nomenclature, that can be used
to drive the stream by piping it. If you’re testing a network-oriented stream, then you
should consider using Node’s net or http modules to create “mock” servers that gen-
erate suitable test data.

 Listing 5.14 is a modified version of the CSV parser from technique 34; it has been
turned into a module so we can easily test it. Listing 5.15 is the associated test that cre-
ates an instance of CSVParser and then pushes some values through it.

var stream = require('stream');

module.exports = CSVParser;

CSVParser.prototype = Object.create(stream.Transform.prototype, {
constructor: { value: CSVParser }

});

function CSVParser(options) {
options = options || {};
options.objectMode = true;
stream.Transform.call(this, options);

this.value = '';
this.headers = [];
this.values = [];
this.line = 0;

}

CSVParser.prototype._transform = function(chunk, encoding, done) {
var c;
var i;

Listing 5.14 The CSVParser stream

Export the class so it
can be easily tested.

B

We can test this method by calling
.push() on an instance of the class.

C

112 CHAPTER 5 Streams: Node’s most powerful and misunderstood feature

chunk = chunk.toString();

for (i = 0; i < chunk.length; i++) {
c = chunk.charAt(i);

if (c === ',') {
this.addValue();

} else if (c === 'n') {
this.addValue();
if (this.line > 0) {

this.push(this.toObject());
}
this.values = [];
this.line++;

} else {
this.value += c;

}
}

done();
};

CSVParser.prototype.toObject = function() {
var i;
var obj = {};
for (i = 0; i < this.headers.length; i++) {
obj[this.headers[i]] = this.values[i];

}
return obj;

};

CSVParser.prototype.addValue = function() {
if (this.line === 0) {
this.headers.push(this.value);

} else {
this.values.push(this.value);

}
this.value = '';

};

The CSVParser class is exported using module.exports so it can be loaded by the unit
test B. The _transform method C will run later when push is called on an instance
of this class. Next up is a simple unit test for this class.

var assert = require('assert');
var fs = require('fs');
var CSVParser = require('./csvparser');

var parser = new CSVParser();
var actual = [];

fs.createReadStream(__dirname + '/sample.csv')

Listing 5.15 Testing the CSVParser stream

113Summary

.pipe(parser);

process.on('exit', function() {
actual.push(parser.read());
actual.push(parser.read());
actual.push(parser.read());

var expected = [
{ name: 'Alex', location: 'UK', role: 'admin' },
{ name: 'Sam', location: 'France', role: 'user' },
{ name: 'John', location: 'Canada', role: 'user' }

];

assert.deepEqual(expected, actual);
});

A fixture file, sample.csv, has been used to pipe data to the CSVParser instance. Then
the assert.deepEqual method has been used to make it easy to compare the
expected array with the actual array.

 A listener is attached to exit B because we want to wait for the streams to finish
processing the data before running the assertion. Then data is read C from the
parser and pushed to an array to examine with assertions E—the expected values are
defined first D. This pattern is used in Node’s own streams tests, and is a lightweight
version of what test frameworks like Mocha and node-tap provide.

5.6 Summary
In this chapter you’ve seen how the built-in streamable APIs work, how to create new
and novel streams using the base classes provided by Node, and how to use some more
advanced techniques to structure programs with streams. As you saw in technique 36,
building new streams starts with correctly inheriting from the base classes—and don’t
forget to test those streams! For more on testing, refer back to technique 38.

 As you saw, there are some novel uses of streams, like substack’s baudio module
(https://github.com/substack/baudio) that speaks in streams of sound waves. There
are also two streams APIs: the original Node 0.8 and below API, and the newer streams2
API. Forward compatibility is supported through the readable-stream module
(https://github.com/isaacs/readable-stream), and backward compatibility is made
possible by wrapping streams (technique 36).

 A big part of working with streams is handling files. In the next chapter we’ll look
at Node’s file system handling in detail.

Attach a listener to the exit
event to run the tests when

the streams have finished.

B

Call the stream’s read()
method to collect data.

C

Create an array that holds
the expected values.

D

Use assert.deepEqual to correctly
compare the executed and actual
values.E

https://github.com/substack/baudio
https://github.com/isaacs/readable-stream

114

File system: Synchronous
 and asynchronous
 approaches to files

As we’ve noted in previous chapters, Node’s core modules typically stick to a low-
level API. This allows for various (even competing) ideas and implementations of
higher-level concepts like web frameworks, file parsers, and command-line tools to
exist as third-party modules. The fs (or file system) module is no different.

This chapter covers
■ Understanding the fs module and its components
■ Working with configuration files and file descriptors
■ Using file-locking techniques
■ Recursive file operations
■ Writing a file database
■ Watching files and directories

115An overview of the fs module

 The fs module allows the developer to interact with the file system by providing

■ POSIX file I/O primitives
■ File streaming
■ Bulk file I/O
■ File watching

The fs module is unique compared with other I/O modules (like net and http) in
that it has both asynchronous and synchronous APIs. That means that it provides a
mechanism to perform blocking I/O. The reason the file system also has a synchro-
nous API is largely because of the internal workings of Node itself, namely, the module
system and the synchronous behavior of require.

 The goal of this chapter is to show you a number of techniques, of varying com-
plexity, to use when working with the file system module. We’ll look at

■ Asynchronous and synchronous approaches for loading configuration files
■ Working with the file descriptors
■ Advisory file-locking techniques
■ Recursive file operations
■ Writing a file database
■ Watching for file and directory changes

But before we get to the techniques, let’s first take a high-level view of all you can do
with the file system API in order to capture the functionality and provide some insight
into what tool may be the best for the job.

6.1 An overview of the fs module
The fs module includes wrappers for common POSIX file operations, as well as bulk,
stream, and watching operations. It also has synchronous APIs for many of the opera-
tions. Let’s take a high-level walk through the different components.

6.1.1 POSIX file I/O wrappers

At a bird’s-eye view, the majority of methods in the file system API are wrappers
around standard POSIX file I/O calls (http://mng.bz/7EKM). These methods will
have a similar name. For example, the readdir call (http://linux.die.net/man/3/
readdir) has an fs.readdir counterpart in Node:

var fs = require('fs');
fs.readdir('/path/to/dir', function (err, files) {

console.log(files); // ['fileA', 'fileB', 'fileC', 'dirA', 'etc']
});

Table 6.1 shows a list of the supported POSIX file methods in Node, including a
description of their functionality.

http://mng.bz/7EKM
http://linux.die.net/man/3/readdir
http://linux.die.net/man/3/readdir

116 CHAPTER 6 File system: Synchronous and asynchronous approaches to files

Table 6.1 Supported POSIX file methods in Node

POSIX method fs method Description

rename(2) fs.rename Changes the name of a file

truncate(2) fs.truncate Truncates or extends a file to a specified length

ftruncate(2) fs.ftruncate Same as truncate but takes a file descriptor

chown(2) fs.chown Changes file owner and group

fchown(2) fs.fchown Same as chown but takes a file descriptor

lchown(2) fs.lchown Same as chown but doesn’t follow symbolic links

chmod(2) fs.chmod Changes file permissions

fchmod(2) fs.fchmod Same as chmod but takes a file descriptor

lchmod(2) fs.lchmod Same as chmod but doesn’t follow symbolic links

stat(2) fs.stat Gets file status

lstat(2) fs.lstat Same as stat but returns information about link if
provided rather than what the link points to

fstat(2) fs.fstat Same as stat but takes a file descriptor

link(2) fs.link Makes a hard file link

symlink(2) fs.symlink Makes a symbolic link to a file

readlink(2) fs.readlink Reads value of a symbolic link

realpath(2) fs.realpath Returns the canonicalized absolute pathname

unlink(2) fs.unlink Removes directory entry

rmdir(2) fs.rmdir Removes directory

mkdir(2) fs.mkdir Makes directory

readdir(2) fs.readdir Reads contents of a directory

close(2) fs.close Deletes a file descriptor

open(2) fs.open Opens or creates a file for reading or writing

utimes(2) fs.utimes Sets file access and modification times

futimes(2) fs.futimes Same as utimes but takes a file descriptor

fsync(2) fs.fsync Synchronizes file data with disk

write(2) fs.write Writes data to a file

read(2) fs.read Reads data from a file

117An overview of the fs module

The POSIX methods provide a low-level API to many common file operations. For
example, here we use a number of synchronous POSIX methods to write data to a file
and then retrieve that data:

var fs = require('fs');
var assert = require('assert');

var fd = fs.openSync('./file.txt', 'w+');
var writeBuf = new Buffer('some data to write');
fs.writeSync(fd, writeBuf, 0, writeBuf.length, 0);

var readBuf = new Buffer(writeBuf.length);
fs.readSync(fd, readBuf, 0, writeBuf.length, 0);
assert.equal(writeBuf.toString(), readBuf.toString());

fs.closeSync(fd);

When it comes to reading and writing files, typically you won’t need a level this low,
but rather can use a streaming or bulk approach.

6.1.2 Streaming

The fs module provides a streaming API with fs.createReadStream and fs.create-
WriteStream. fs.createReadStream is a Readable stream, whereas fs.createWrit-
eStream is a Writeable. The streaming APIs can connect to other streams with pipe.
For example, here’s a simple application that copies a file using streams:

var fs = require('fs');
var readable = fs.createReadStream('./original.txt');
var writeable = fs.createWriteStream('./copy.txt');
readable.pipe(writeable);

File streaming is beneficial when you want to deal with bits and pieces of data at a time
or want to chain data sources together. For a more in-depth look at streams, check out
chapter 5.

6.1.3 Bulk file I/O

The file system API also includes a few bulk methods for reading (fs.readFile), writ-
ing (fs.writeFile), or appending (fs.appendFile).

 The bulk methods are good when you want to load a file into memory or write one
out completely in one shot:

var fs = require('fs');
fs.readFile('/path/to/file', function (err, buf) {

console.log(buf.toString());
});

Open or create
file.txt for writing
and reading (w+).Create a

buffer with
data to write.

Write the
buffer to
the file.

Create an empty
read buffer the
same size as what
was written.

Fill the read
buffer with the
data stored in

the file.

Assert the written
and read data are
indeed the same.

Close
the file.

Open original.txt to
start reading.Create or

overwrite
copy.txt with

new data.

While reading in
original.txt, write
it out to copy.txt.

Entire file is buffered
and provided in the
buf variable

118 CHAPTER 6 File system: Synchronous and asynchronous approaches to files

6.1.4 File watching

The fs module also provides a couple of mechanisms for watching files (fs.watch
and fs.watchFile). This is useful when you want to know if a file has changed in
some way. fs.watch uses the underlying operating system’s notifications, making it
very efficient. But fs.watch can be finicky or simply not work on network drives. For
those situations, the less-efficient fs.watchFile method, which uses stat polling, can
be used.

 We’ll look more at file watching later on in this chapter.

6.1.5 Synchronous alternatives

Node’s synchronous file system API sticks out like a sore thumb. With a big Sync
tacked onto the end of each synchronous method, it’s hard to miss its purpose. Syn-
chronous methods are available for all the POSIX and bulk API calls. Some examples
include readFileSync, statSync, and readdirSync. Sync tells you that this method
will block your single-threaded Node process until it has finished. As a general rule,
synchronous methods should be used when first setting up your application, and not
within a callback:

var fs = require('fs');
var http = require('http');
fs.readFileSync('./output.dat');

http.createServer(function (req, res) {
fs.readFileSync('./output.dat');

}).listen(3000);

Of course there are exceptions to the rule, but what’s important is understanding the
performance implications of using synchronous methods.

With our quick overview out of the way, we’re now ready to get into some of the tech-
niques you’ll use when working with the file system.

A good spot for a synchronous
method, top level, gets called on
initialization of the application

A bad spot for a synchronous
method, halts the server until
the file is read on every request

Testing server performance
How do we know synchronous execution within the request handling of a web server
is slower? A great way to test this is using ApacheBench (http://en.wikipedia.org/
wiki/ApacheBench). Our earlier example showed a ~2x drop in performance when
serving a 10 MB file synchronously on every request rather than cached during appli-
cation setup. Here’s the command used in this test:

ab -n 1000 -c 100 "http://localhost:3000"

http://en.wikipedia.org/wiki/ApacheBench
http://en.wikipedia.org/wiki/ApacheBench

119TECHNIQUE 39 Loading configuration files

TECHNIQUE 39 Loading configuration files

Keeping configuration in a separate file can be handy, especially for applications that
run in multiple environments (like development, staging, and production). In this
technique, you’ll learn the ins and outs of how to load configuration files.

■ Problem
Your application stores configuration in a separate file and it depends on having that
configuration when it starts up.

■ Solution
Use a synchronous file system method to pull in the configuration on initial setup of
your application.

■ Discussion
A common use of synchronous APIs is for loading configuration or other data used in
the application on startup. Let’s say we have a simple configuration file stored as JSON
that looks like the following:

{
"site title": "My Site",
"site base url": "http://mysite.com",
"google maps key": "92asdfase8230232138asdfasd",
"site aliases": ["http://www.mysite.com", "http://mysite.net"]

}

Let’s first look at how we could do this asynchronously so you can see the difference.
For example, say doThisThing depends on information from our configuration file.
Asynchronously we could write it this way:

var fs = require('fs');
fs.readFile('./config.json', function (err, buf) {

if (err) throw er;
var config = JSON.parse(buf.toString());
doThisThing(config);

})

This will work and may be desirable for some setups, but will also have the effect of
having everything that depends on the configuration nested in one level. This can get
ugly. By using a synchronous version, we can handle things more succinctly:

var fs = require('fs');
var config = JSON.parse(fs.readFileSync('./config.json').toString());
doThisThing(config);

One of the characteristics of using Sync methods is that whenever an error occurs, it
will be thrown:

var fs = require('fs');
try {

fs.readFileSync('./some-file');

Since the application can’t run
without this config file, we’ll just
throw the error so the Node
process will exit with a stack trace.

We get a Buffer back,
convert to a string, and
then parse the JSON.

Synchronous methods will
automatically throw if there’s an error.

Synchronous errors can
be caught using a
standard try/catch block.

120 CHAPTER 6 File system: Synchronous and asynchronous approaches to files

}
catch (err) {

console.error(err);
}

This is different from asynchronous methods, which use an error argument as the first
parameter of the callback:

fs.readFile('./some-file', function (err, data) {
if (err) {
console.error(err);

}
});

In our example of loading a configuration file, we prefer to crash the application
since it can’t function without that file, but sometimes you may want to handle syn-
chronous errors.

TECHNIQUE 40 Using file descriptors

Working with file descriptors can be confusing at first if you haven’t dealt with them.
This technique serves as an introduction and shows some examples of how you use
them in Node.

■ Problem
You want to access a file descriptor to do writes or reads.

■ Solution
Use Node’s fs file descriptor methods.

■ Discussion
File descriptors (FDs) are integers (indexes) associated with open files within a process
managed by the operating system. As a process opens files, the operating system keeps
track of these open files by assigning each a unique integer that it can then use to look
up more information about the file.

 Although it has file in the name, it covers more than just regular files. File descrip-
tors can point to directories, pipes, network sockets, and regular files, to name a few.

Handle
the error.

A note about require
We can require JSON files as modules in Node, so our code could even be short-
ened further:

var config = require('./config.json');
doThisThing(config);

But there’s one caveat with this approach. Modules are cached globally in Node, so
if we have another file that also requires config.json and we modify it, it’s modified
everywhere that module is used in our application. Therefore, using readFileSync
is recommended when you want to tamper with the objects. If you choose to use
require instead, treat the object as frozen (read-only); otherwise you can end up with
hard-to-track bugs. You can explicitly freeze an object by using Object.freeze.

Asynchronous errors are
handled as the first parameter
in the callback function.Handle

the error.

121TECHNIQUE 41 Working with file locking

Node can get at these low-level bits. Most processes have a standard set of file descrip-
tors, as shown in table 6.2.

In Node, we typically are used to the console.log sugar when we want to write to stdout:

console.log('Logging to stdout')

If we use the stream objects available on the process global, we can accomplish the
same thing more explicitly:

process.stdout.write('Logging to stdout')

But there’s another, far less used way to write to stdout using the fs module. The fs
module contains a number of methods that take an FD as its first argument. We can
write to file descriptor 1 (or stdout) using fs.writeSync:

fs.writeSync(1, 'Logging to stdout')

SYNCHRONOUS LOGGING console.log and process.stdout.write are actu-
ally synchronous methods under the hood, provided the TTY is a file stream

A file descriptor is returned from the open and openSync calls as a number:

var fd = fs.openSync('myfile','a');
console.log(typeof fd == 'number');

There are a variety of methods that deal with file descriptors specified in the file sys-
tem documentation.

 Typically more interesting uses of file descriptors happen when you’re inheriting
from a parent process or spawning a child process where descriptors are shared or
passed. We’ll discuss this more when we look at child processes in a later chapter.

TECHNIQUE 41 Working with file locking

File locking is helpful when cooperating processes need access to a common file
where the integrity of the file is maintained and data isn’t lost. In this technique, we’ll
explore how to write your own file locking module.

■ Problem
You want to lock a file to prevent processes from tampering with it.

■ Solution
Set up a file-locking mechanism using Node’s built-ins.

Table 6.2 Common file descriptors

Stream File descriptor Description

stdin 0 Standard input

stdout 1 Standard output

stderr 2 Standard error

Returns true

122 CHAPTER 6 File system: Synchronous and asynchronous approaches to files

■ Discussion
In a single-threaded Node process, file locking is typically something you won’t need
to worry about. But you may have situations where other processes are accessing the
same file, or a cluster of Node processes are accessing the same file.

 In these cases, there’s the possibility that races and data loss may occur (more about
this at http://mng.bz/yTLV). Most operating systems provide mandatory locks (those
enforced at a kernel level) and advisory locks (not enforced; these only work if processes
involved subscribe to the same locking scheme). Advisory locks are generally preferred if
possible, as mandatory locks are heavy handed and may be difficult to unlock (https://
kernel.org/doc/Documentation/filesystems/mandatory-locking.txt).

FILE LOCKING WITH THIRD-PARTY MODULES Node has no built-in support for
locking a file directly (either mandatory or advisory). But advisory locking of
files can be done using syscalls such as flock (http://linux.die.net/man/2/
flock), which is available in a third-party module (http://github.com/
baudehlo/node-fs-ext).

Instead of locking a file directly with something like flock, you can use a lockfile. Lock-
files are ordinary files or directories whose existence indicates some other resource is
currently in use and not to be tampered with. The creation of a lockfile needs to be
atomic (no races) to avoid collisions. Being advisory, all the participating processes
would have to play by the same rules agreed on when the lockfile is present. This is
illustrated in figure 6.1.

 Let’s say we had a file called config.json that could potentially be updated by any
number of processes at any time. To avoid data loss or corruption, a config.lock file
could be created by the process making the updates and removed when the process is
finished. Each process would agree to check for the existence of the lockfile before
making any updates.

1

1

2

3

2

3 Process A tries to create a
lockfile and is successful.

Process A, having obtained the
lock, modifies the shared
resource.

Process B tries to create a lockfile
and is not successful, does not
modify shared resource.

Process A Process B

Lockfile

Resource

Figure 6.1 Advisory locking using a lockfile between cooperating processes

http://mng.bz/yTLV
https://kernel.org/doc/Documentation/filesystems/mandatory-locking.txt
https://kernel.org/doc/Documentation/filesystems/mandatory-locking.txt
http://linux.die.net/man/2/flock
http://linux.die.net/man/2/flock
http://github.com/baudehlo/node-fs-ext
http://github.com/baudehlo/node-fs-ext

123TECHNIQUE 41 Working with file locking

Node provides a few ways to perform this out of the box. We’ll look at a couple of options:

■ Creating a lockfile using the exclusive flag
■ Creating a lockfile using mkdir

Let’s look at using the exclusive flag first.

Creating lockfiles using the exclusive flag
The fs module provides an x flag for any methods that involve opening a file (like
fs.writeFile, fs.createWriteStream, and fs.open). This flag tells the operating
system the file should be opened in an exclusive mode (O_EXCL). When used, the file
will fail to open if it already exists:

fs.open('config.lock', 'wx', function (err) {
if (err) return console.error(err);

});

FLAG COMBINATIONS WHEN OPENING FILES There are a variety of flag combina-
tions you can pass when opening files; for a list of all of them consult the
fs.open documentation: http://nodejs.org/api/fs.html#fs_fs_open_path
_flags_mode_callback.

We want to fail if another process has already created a lockfile. We fail because we don’t
want to tamper with the resource behind the lockfile while another process is using it.
Thus, having the exclusive flag mechanism turns out to be useful in our case. But
instead of writing an empty file, it’s a good idea to throw the PID (process ID) inside of
this file so if something bad happens, we’ll know what process had the lock last:

fs.writeFile('config.lock', process.pid, { flags: 'wx' },
function (err) {

if (err) return console.error(err);

});

Creating lockfiles with mkdir
Exclusive mode may not work well if the lockfile exists on a network drive, since
some systems don’t honor the O_EXCL flag on network drives. To circumvent this,
another strategy is creating a lockfile as a directory. mkdir is an atomic operation (no
races), has excellent cross-platform support, and works well with network drives.
mkdir will fail if a directory exists. In this case, the PID could be stored as a file inside
of that directory:

fs.mkdir('config.lock', function (err) {
if (err) return console.error(err);
fs.writeFile('config.lock/'+process.pid, function (err) {
if (err) return console.error(err);

});
});

Open in an exclusive
write mode.

Any failure including
if file exists.Safely modify

config.json.

Write PID to lockfile
if it doesn’t exist.

Any failure
including if
file exists.

Safely modify
config.json.

Unable
to create
directory.

Indicate which PID
has the lock for
debugging.

Safely modify
config.json.

http://nodejs.org/api/fs.html#fs_fs_open_path_flags_mode_callback
http://nodejs.org/api/fs.html#fs_fs_open_path_flags_mode_callback

124 CHAPTER 6 File system: Synchronous and asynchronous approaches to files

Making a lockfile module
So far we’ve discussed a couple ways to create lockfiles. We also need a mechanism to
remove them when we’re done. In addition, to be good lockfile citizens, we should
remove any lockfiles created whenever our process exits. A lot of this functionality can
be wrapped up in a simple module:

var fs = require('fs');
var hasLock = false;
var lockDir = 'config.lock';

exports.lock = function (cb) {
if (hasLock) return cb();

fs.mkdir(lockDir, function (err) {
if (err) return cb(err);
fs.writeFile(lockDir+'/'+process.pid, function (err) {
if (err) console.error(err);
hasLock = true;
return cb();

});
});

}

exports.unlock = function (cb) {
if (!hasLock) return cb();

fs.unlink(lockDir+'/'+process.pid, function (err) {
if (err) return cb(err);
fs.rmdir(lockDir, function (err) {
if (err) return cb(err);
hasLock = false;
cb();

});
});

}

process.on('exit', function () {
if (hasLock) {

fs.unlinkSync(lockDir+'/'+process.pid);
fs.rmdirSync(lockDir);
console.log('removed lock');

}
});

Here’s an example usage:

var locker = require('./locker');

locker.lock(function (err) {
if (err) throw err;

locker.unlock(function () { });
})

Define a method for
obtaining a lock.

A lock is
already

obtained.

Unable to
create a lock.

Write PID in
directory for

debugging.

If unable to write PID,
not the end of the world:
log and keep going.

Lock
created.

Define a method for
releasing a lock.No lock to

unlock.

If we still have a lock,
remove it synchronously
before exit.

Try to attain a lock.

Do modifications here.

Release lock when finished.

125TECHNIQUE 42 Recursive file operations

For a more full-featured implementation using exclusive mode, check out the lockfile
third-party module (https://github.com/isaacs/lockfile).

TECHNIQUE 42 Recursive file operations

Ever need to remove a directory and all subdirectories (akin to rm -rf)? Create a
directory and any intermediate directories given a path? Search a directory tree for a
particular file? Recursive file operations are helpful and hard to get right, especially
when done asynchronously. But understanding how to perform them is a good exer-
cise in mastering evented programming with Node. In this technique, we’ll dive into
recursive file operations by creating a module for searching a directory tree.

■ Problem
You want to search for a file within a directory tree.

■ Solution
Use recursion and combine file system primitives.

■ Discussion
When a task spans multiple directories, things become more interesting, especially in
an asynchronous world. You can mimic the command-line functionality of mkdir with
a single call to fs.mkdir, but for fancier things like mkdir -p (helpful for creating inter-
mediate directories), you have to think recursively. This means the solution to our prob-
lem will depend on “solutions to smaller instances of the same problem” (“Recursion
(computer science)”: http://en.wikipedia.org/wiki/Recursion_(computer_science)).

 In our example we’ll write a finder module. Our finder module will recursively
look for matching files at a given start path (akin to find /start/path -name='file-
in-question') and provide the paths to those files in an array.

 Let’s say we had the following directory tree:

root
dir-a

dir-b
dir-c

file-e.png
file-c.js
file-d.txt

file-a.js
file-b.txt

A search for the pattern /file.*/ from the root would give us the following:

['dir-a/dir-b/dir-c/file-e.png',
'dir-a/dir-b/file-c.js',
'dir-a/dir-b/file-d.txt',
'dir-a/file-a.js',
'dir-a/file-b.txt']

So how do we build this? To start, the fs module gives us some primitives we’ll need:

http://en.wikipedia.org/wiki/Recursion_(computer_science)
https://github.com/isaacs/lockfile

126 CHAPTER 6 File system: Synchronous and asynchronous approaches to files

■ fs.readdir/fs.readdirSync—List all the files (including directories), given a
path.

■ fs.stat/fs.statSync—Give us information about a file at the specified path,
including whether the path is a directory.

Our module will expose synchronous (findSync) and asynchronous (find) imple-
mentations. findSync will block execution like other Sync methods, will be slightly
faster than its asynchronous counterpart, and may fail on excessively large directory
trees (since JavaScript doesn’t have proper tail calls yet: https://people.mozilla.org/
~jorendorff/es6-draft.html#sec-tail-position-calls).

On the other hand, find will be slightly slower, but won’t fail on large trees (since the
stack is regularly cleared due to the calls being asynchronous). find won’t block
execution.

 Let’s take a look at the code for findSync first:

var fs = require('fs');
var join = require('path').join;

exports.findSync = function (nameRe, startPath) {
var results = [];

function finder (path) {
var files = fs.readdirSync(path);

for (var i = 0; i < files.length; i++) {
var fpath = join(path,files[i]);
var stats = fs.statSync(fpath);

if (stats.isDirectory()) finder(fpath);
if (stats.isFile() && nameRe.test(files[i])) results.push(fpath);

}
}

finder(startPath);
return results;

}

Why are synchronous functions slightly faster?
Synchronous functions aren’t deferred until later, even though the asynchronous
counterparts happen very quickly. Synchronous functions happen right away while
you’re already on the CPU and you’re guaranteed to wait only exactly as long as nec-
essary for the I/O to complete. But synchronous functions will block other things from
happening during the wait period.

Takes a regular expression
for the file we’re searching
for and a starting path.

Collection
to store

matches.

Read a list of files
(including directories).

Get path
to current

file. Get stats for
current file

If it’s a directory,
call finder again

with the new path.
If it’s a file and matches
search, add it to results.

Start initial
file lookup. Return results.

https://people.mozilla.org/~jorendorff/es6-draft.html#sec-tail-position-calls
https://people.mozilla.org/~jorendorff/es6-draft.html#sec-tail-position-calls

127TECHNIQUE 42 Recursive file operations

Since everything is synchronous, we can use return at the end to get all our results, as
it’ll never reach there until all the recursion has finished. The first error to occur would
throw and could be caught, if desired, in a try/catch block. Let’s look at a sample usage:

var finder = require('./finder');
try {

var results = finder.findSync(/file.*/, '/path/to/root');
console.log(results);

} catch (err) {
console.error(err);

}

Let’s switch now and take a look at how to tackle this problem asynchronously with the
find implementation:

var fs = require('fs');
var join = require('path').join;

exports.find = function (nameRe, startPath, cb) {
var results = [];
var asyncOps = 0;
var errored = false;

function error (err) {
if (!errored) cb(err);
errored = true;

}

function finder (path) {
asyncOps++;
fs.readdir(path, function (err, files) {

if (err) return error(err);

files.forEach(function (file) {
var fpath = join(path,file);

asyncOps++;
fs.stat(fpath, function (err, stats) {

if (err) return error(err);

if (stats.isDirectory()) finder(fpath);
if (stats.isFile() && nameRe.test(file)) results.push(fpath);

asyncOps--;
if (asyncOps == 0) cb(null, results);

})
})

asyncOps--;
if (asyncOps == 0) cb(null, results);

});
}

finder(startPath);
}

Success!
List files

found.
Oh no! Something bad
happened; log error.

Find now takes a
third callback
parameter.

In order to
know when

we’ve completed
our traversal,

we’ll need a
counter.

In order to avoid multiple error
calls if we’re unsuccessful, we’ll
track when an error occurs.Error handler to

ensure callback
is only called

once if multiple
errors. Increment counter before each

asynchronous operation.

Need a closure here so
we don’t lose our file
reference later on.

Decrement
counter after an

asynchronous
operation has

completed.

If we’re back to zero,
we’re done and had no
errors, and can call
back with the results.

128 CHAPTER 6 File system: Synchronous and asynchronous approaches to files

We can’t just return our results, like in the synchronous version; we need to call back
with them when we know we’re finished. To know that we’re finished, we use a coun-
ter (asyncOps). We also have to be aware whenever we have callbacks to ensure we
have a closure around any variables we expect to have around when any asynchronous
call completes (this is why we switched from a standard for loop to a forEach call—
more about this at http://mng.bz/rqEA).

 Our counter (asyncOps) increments right before we do an asynchronous opera-
tion (like fs.readdir or fs.stat). The counter decrements in the callback for the
asynchronous operation. Specifically it decrements after any other asynchronous calls
have been made (otherwise we’ll get back to 0 too soon). In a successful scenario,
asyncOps will reach 0 when all the recursive asynchronous work has completed, and
we can call back with the results (if (asyncOps == 0) cb(null, results)). In a failure
scenario, asyncOps will never reach 0, and one of the error handlers would’ve been
triggered and have already called back with the error.

 Also, in our example, we can’t be sure that fs.stat will be the last thing to be
called, since we may have a directory with no files in our chain, so we check at both
spots. We also have a simple error wrapper to ensure we never call back with more
than one error. If your asynchronous operation returns one value like in our example
or one error, it’s important to ensure you’ll never call the callback more than once, as
it leads to hard-to-track bugs later down the road.

ALTERNATIVES TO COUNTERS The counter isn’t the only mechanism that can
track the completion of a set of asynchronous operations. Depending on the
requirements of the application, recursively passing the original callback
could work. For an example look at the third-party mkdirp module (https://
github.com/substack/node-mkdirp).

Now we have an asynchronous version (find) and can handle the result of that opera-
tion with the standard Node-style callback signature:

var finder = require('./finder');
finder.find(/file*/, '/path/to/root', function (err, results) {

if (err) return console.error(err);
console.log(results);

});

THIRD-PARTY SOLUTIONS TO PARALLEL OPERATIONS Parallel operations can be
hard to keep track of, and can easily become bug-prone, so you may want to
use a third-party library like async (https://github.com/caolan/async) to
help. Another alternative is using a promises library like Q (https://
github.com/kriskowal/q).

TECHNIQUE 43 Writing a file database

Node’s core fs module gives you the tools to build complexity like the recursive oper-
ations you saw in the last technique. It also enables you to do other complex tasks such

http://mng.bz/rqEA
https://github.com/substack/node-mkdirp
https://github.com/substack/node-mkdirp
https://github.com/caolan/async
https://github.com/kriskowal/q
https://github.com/kriskowal/q

129TECHNIQUE 43 Writing a file database

as creating a file database. In this technique we’ll write a file database in order to look
at other pieces in the fs module, including streaming, working together.

■ Problem
You want a simple and fast data storage structure with some consistency guarantees.

■ Solution
Use an in-memory database with append-only journaling.

■ Discussion
We’ll write a simple key/value database module. The database will provide in-memory
access to the current state for speed and use an append-only storage format on disk
for persistence. Using append-only storage will provide us the following:

■ Efficient disk I/O performance—We’re always writing to the end of the file.
■ Durability—The previous state of the file is never changed in any way.
■ A simple way to create backups—We can just copy the file at any point to get the

state of the database at that point.

Each line in the file is a record. The record is simply a JSON object with two proper-
ties, a key and a value. A key is a string representing a lookup for the value. The
value can be anything JSON-serializable, which includes strings and numbers. Let’s
look at some sample records:

{"key":"a","value":23}
{"key":"b","value":["a","list","of","things"]}
{"key":"c","value":{"an":"object"}}
{"key":"d","value":"a string"}

If a record is updated, a new version of the record will be found later in the file with
the same key:

{"key":"d","value":"an updated string"}

If a record has been removed, it’ll also be found later in the file with a null value:

{"key":"b","value":null}

When the database is loaded, the journal will be streamed in from top to bottom,
building the current state of the database in memory. Remember, data isn’t deleted,
so it’s possible to store the following data:

{"key":"c","value":"my first value"}
...
{"key":"c","value":null}
...
{"key":"c","value":{"my":"object"}}

In this case, at some point we saved "my first value" as the key c. Later on we deleted
the key. Then, most recently, we set the key to be {"my":"object"}. The most recent
entry will be loaded in memory, as it represents the current state of the database.

 We talked about how data will be persisted to the file system. Let’s talk about the
API we’ll expose next:

www.allitebooks.com

http://www.allitebooks.org

130 CHAPTER 6 File system: Synchronous and asynchronous approaches to files

var Database = require('./database');
var client = new Database('./test.db');

client.on('load', function () {
var foo = client.get('foo');

client.set('bar', 'my sweet value', function (err) {
if (err) return console.error(err);
console.log('write successful');

});

client.del('baz');
});

Let’s dive into the code to start putting this together. We’ll write a Database module to
store our logic. It’ll inherit from EventEmitter so we can emit events back to the con-
sumer (like when the database has loaded all its data and we can start using it):

var fs = require('fs')
var EventEmitter = require('events').EventEmitter

var Database = function (path) {
this.path = path

this._records = Object.create(null)
this._writeStream = fs.createWriteStream(this.path, {

encoding: 'utf8',
flags: 'a'

})

this._load()
}

Database.prototype = Object.create(EventEmitter.prototype)

We want to stream the data stored and emit a “load” event when that’s completed.
Streaming will enable us to handle data as it’s being read in. Streaming also is asynchro-
nous, allowing the host application to do other things while the data is being loaded:

Database.prototype._load = function () {
var stream = fs.createReadStream(this.path, { encoding: 'utf8' });
var database = this;

var data = '';
stream.on('readable', function () {
data += stream.read();
var records = data.split('\n');
data = records.pop();

Load our
Database module. Provide the path to

the database file we
want to load and/or
create.

Load is
triggered when
data is loaded
into memory.

Get the
value stored

at key foo.

Set a value
for key bar.

An error occurred
when persisting
to disk.

Delete key baz; optionally
take afterWrite callback.

Set the path to
the database

storage. Create an internal
mapping of all the
records in memory.

Create a write stream in
append-only mode to
handle writes to disk.Load the

database.

Inherit from
EventEmitter.

Read the
available
data.

Split
records on

newlines.
Pop the last
record as it may
be incomplete.

131TECHNIQUE 43 Writing a file database

for (var i = 0; i < records.length; i++) {
try {

var record = JSON.parse(records[i]);
if (record.value == null)

delete database._records[record.key];
else

database._records[record.key] = record.value;
} catch (e) {
 database.emit('error', 'found invalid record:', records[i]);
}

}
});
stream.on('end', function () {

database.emit('load');
});

}

As we read in data from the file, we find all the complete records that exist.

STRUCTURING OUR WRITES TO STRUCTURE OUR READS What do we do with the
data we just pop()ed the last time a readable event is triggered? The last
record turns out to always be an empty string ('') because we end each line
with a newline (\n) character.

Once we’ve loaded the data and emitted the load event, a client can start interacting
with the data. Let’s look at those methods next, starting with the simplest—the get
method:

Database.prototype.get = function (key) {
return this._records[key] || null;

}

Let’s look at storing updates next:

Database.prototype.set = function (key, value, cb) {
var toWrite = JSON.stringify({ key: key, value: value }); + '\n'

if (value == null)
delete this._records[key];

else
this._records[key] = value;

this._writeStream.write(toWrite, cb);
}

Now we add some sugar for deleting a key:

Database.prototype.del = function (key, cb) {
return this.set(key, null, cb);

}

If the record has a
null value, delete
the record if stored.

Otherwise, for all
non-null values,
store the value

for that key.

Emit an error if an
invalid record was

found.

Emit a load event
when data is
ready to be used.

Return value for
key or null if no
key exists.

If deleting, remove
record from in-memory

storage.

Stringify JSON
storage object,

and then add
newline.

Otherwise, set
key to value in

memory.
Write out record to disk
with callback if provided.

Call set for key with null
as its value (storing a
delete record).

132 CHAPTER 6 File system: Synchronous and asynchronous approaches to files

There we have a simple database module. Last thing: we need to export the constructor:

module.exports = Database;

There are various improvements that could be made on this module, like flushing
writes (http://mng.bz/2g19) or retrying on failure. For examples of more full-featured
Node-based database modules, check out node-dirty (https://github.com/felixge/
node-dirty) or nstore (https://github.com/creationix/nstore).

TECHNIQUE 44 Watching files and directories

Ever need to process a file when a client adds one to a directory (through FTP, for
instance) or reload a web server after a file is modified? You can do both by watching
for file changes.

 Node has two implementations for file watching. We’ll talk about both in this tech-
nique in order to understand when to use one or the other. But at the core, they
enable the same thing: watching files (and directories).

■ Problem
You want to watch a file or directory and perform an action when a change is made.

■ Solution
Use fs.watch and fs.watchFile.

■ Discussion
It’s rare to see multiple implementations for the same purpose in Node core. Node’s
documentation recommends that you prefer fs.watch over fs.watchFile if possible,
as it’s considered more reliable. But fs.watch isn’t consistent across operating sys-
tems, whereas fs.watchFile is. Why the madness?

The story about fs.watch
Node’s event loop taps into the operating system in order to juggle asynchronous I/O
in its single-threaded environment. This also provides a performance benefit, as the
OS can let the process know immediately when some new piece of I/O is ready to be
handled. Operating systems have different ways of notifying a process about events
(that’s why we have libuv). The culmination of that work for file watching is the
fs.watch method.

 fs.watch combines all these different types of event systems into one method with
a common API to provide the following:

■ A more reliable implementation in terms of file change events always getting fired
■ A faster implementation, as notifications get passed to Node immediately when

they occur

Let’s look at the older method next.

The story about fs.watchFile
There’s another, older implementation of file watching called fs.watchFile. It
doesn’t tap into the notification system but instead polls on an interval to see if
changes have occurred.

http://mng.bz/2g19
https://github.com/felixge/node-dirty
https://github.com/felixge/node-dirty
https://github.com/creationix/nstore

133TECHNIQUE 44 Watching files and directories

 fs.watchFile isn’t as full-fledged in the changes it can detect, nor as fast. But the
advantage of using fs.watchFile is that it’s consistent across platforms and it works
more reliably on network file systems (like SMB and NFS).

Which one is right for me?
The preferred is fs.watch, but since it’s inconsistent across platforms, it’s a good idea
to test whether it does what you want (and better to have a test suite).

 Let’s write a program to help us play around file watching and see what each API
provides. First, create a file called watcher.js with the following contents:

var fs = require('fs');
fs.watch('./watchdir', console.log);
fs.watchFile('./watchdir', console.log);

Now create a directory called watchdir in the same directory as your watcher.js file:

mkdir watchdir

Then, open a couple terminals. In the first terminal, run

node watcher

and in the second terminal, change to watchdir:

cd watchdir

With your two terminals open (preferably side by side), we’ll make changes in watch-
dir and see Node pick them up. Let’s create a new file:

touch file.js

We can see the Node output:

rename file.js
change file.js
{ dev: 64512,

mode: 16893,
nlink: 2,
... } { dev: 64512,
mode: 16893,
nlink: 2,
... }

All right, so now we have a file created; let’s update its modification time with the
same command:

touch file.js

Now when we look at our Node output, we see that only fs.watch picked up this
change:

change file.js

So if using touch to update a file when watching a directory is important to your appli-
cation, fs.watch has support.

A couple of fs.watch events come quickly
(rename and change). These are the only two
events fs.watch will emit. The second argument,
file.js, is the file that received the event.

The fs.watchFile event comes later and has a
different response. It includes two fs.Stats
objects for the current and previous state of
the file. They’re the same here because the file
was just created.

134 CHAPTER 6 File system: Synchronous and asynchronous approaches to files

FS.WATCHFILE AND DIRECTORIES Many updates to files while watching a direc-
tory won’t be picked up by fs.watchFile. If you want to get this behavior
with fs.watchFile, watch the individual file.

Let’s try moving our file:

mv file.js moved.js

In our Node terminal, we see the following output indicating both APIs picked up the
change:

rename file.js
rename moved.js
{ dev: 64512,

mode: 16893,
nlink: 2,
... } { dev: 64512,
mode: 16893,
nlink: 2,
... }

The main point here is to test the APIs using the exact use case you want to utilize. Hope-
fully, this API will get more stable in the future. Read the documentation to get the latest
development (http://nodejs.org/api/fs.html#fs_fs_watch_filename_options_listener).
Here are some tips to help navigate:

■ Run your test case, preferring fs.watch. Are events getting triggered as you
expect them to be?

■ If you intend to watch a single file, don’t watch the directory it’s in; you may end
up with more events being triggered.

■ If comparing file stats is important between changes, fs.watchFile provides
that out of the box. Otherwise, you’ll need to manage stats manually using
fs.watch.

■ Just because fs.watch works on your Mac doesn’t mean it will work exactly the
same way on your Linux server. Ensure development and production environ-
ments are tested for the desired functionality.

Go forth and watch wisely!

6.2 Summary
In this chapter we talked through a number of techniques using the fs module. We
covered asynchronous and synchronous usage while looking at configuration file
loading and recursive file handling. We also looked at file descriptors and file locking.
Lastly we implemented a file database.

 Hopefully this has expanded your understanding of some of the concepts possible
with using the fs module. Here are a few takeaways:

fs.watch reports two
rename events from the
old to the new name.

fs.watchFile indicates
the file was modified.

http://nodejs.org/api/fs.html#fs_fs_watch_filename_options_listener

135Summary

■ Synchronous methods can be a nicer, simpler way to do things over their asyn-
chronous counterparts, but beware of the performance issues, especially if
you’re writing a server.

■ Advisory file locking is a helpful mechanism for resources shared across multi-
ple processes as long as all processes follow the same contract.

■ Parallel asynchronous operations that require some sort of response after com-
pletion need to be tracked. Although it’s helpful to understand how to use
counters or recursive techniques, consider using a well-tested third-party mod-
ule like async.

■ Look at how you’ll use a particular file to determine which course of action to
follow. If it’s a large file or can be dealt with in chunks, consider using a stream-
ing approach. If it’s a smaller file or something you can’t use until you have the
entire file loaded, consider a bulk method. If you want to change a particular
part of a file, you probably want to stick with the POSIX file methods.

In the next chapter we’ll look at the other main form of I/O in Node: networking.

136

Networking: Node’s
 true “Hello, World”

The Node.js platform itself is billed as a solution for writing fast and scalable net-
work applications. To write network-oriented software, you need to understand
how networking technologies and protocols interrelate. Over the course of the
next section, we explain how networks have been designed around technology
stacks with clear boundaries; and furthermore, how Node implements these proto-
cols and what their APIs look like.

 In this chapter you’ll learn about how Node’s networking modules work. This
includes the dgram, dns, http, and net modules. If you’re unsure about network
terminology like socket, packet, and protocol, then don’t worry: we also introduce key
networking concepts to give you a solid foundation in network programming.

This chapter covers
■ Networking concepts and how they relate to Node
■ TCP, UDP, and HTTP clients and servers
■ DNS
■ Network encryption

137Networking in Node

7.1 Networking in Node
This section is an introduction to networking. You’ll learn about network layers, pack-
ets, sockets—all of the stuff that networks are made of. These ideas are critical to
understanding Node’s networking APIs.

7.1.1 Networking terminology

Networking jargon can quickly become overwhelming. To get everyone on the same
page, we’ve included table 7.1, which summarizes the main concepts that will form
the basis of this chapter.

 To understand Node’s networking APIs, it’s crucial to learn about layers, packets,
sockets, and all the other things that networks are made of. If you don’t learn about
the difference between TCP (Transmission Control Protocol) and UDP (User Data-
gram Protocol), then it would be difficult for you to know when to use these proto-
cols. In this section we introduce the terms you need to know and then explore the
concepts a bit more so you leave the section with a solid foundation.

If you’re responsible for implementing high-level protocols that run on top of HTTP
or even low-latency game code that uses UDP, then you should understand each of
these concepts. We break each of these concepts down into more detail over the next
few sections.

LAYERS

The stack of protocols and standards that make up the internet and internet technol-
ogy in general can be modeled as layers. The lowest layers represent physical media—
Ethernet, Bluetooth, fiber optics—the world of pins, voltages, and network adapters.

Table 7.1 Networking concepts

Term Description

Layer A slice of related networking protocols that represents a logical group. The application
layer, where we work, is the highest level; physical is the lowest.

HTTP Hypertext Transfer Protocol—An application-layer client-server protocol built on TCP.

TCP Transmission Control Protocol—Allows communication in both directions from the client to
the server, and is built on to create application-layer protocols like HTTP.

UDP User Datagram Protocol—A lightweight protocol, typically chosen where speed is desired
over reliability.

Socket The combination of an IP address and a port number is generally referred to as a socket.

Packet TCP packets are also known as segments—the combination of a chunk of data along with
a header.

Datagram The UDP equivalent of a packet.

MTU Maximum Transmission Unit—The largest size of a protocol data unit. Each layer can have
an MTU: IPv4 is at least 68 bytes, and Ethernet v2 is 1,500 bytes.

138 CHAPTER 7 Networking: Node’s true “Hello, World”

As software developers, we work at a higher level than lower-level hardware. When
talking to networks with Node, we’re concerned with the application and transport lay-
ers of the Internet Protocol (IP) suite.

 Layers are best represented visually. Figure 7.1 relates logical network layers to pack-
ets. The lower-level physical and data-link layer protocols wrap higher-level protocols.

 Packets are wrapped by protocols at consecutive layers. A TCP packet, which could
represent part of a series of packets from an HTTP request, is contained in the data
section of an IP packet, which in turn is wrapped by an Ethernet packet. Going back to
figure 7.1, TCP packets from HTTP requests cut through the transport and application
layers: TCP is the transport layer, used to create the higher-level HTTP protocol. The
other layers are also involved, but we don’t always know which specific protocols are
used at each layer: HTTP is always transmitted over TCP/IP, but beyond that, Wi-Fi or
Ethernet can be used—your programs won’t know the difference.

 Figure 7.2 shows how network layers are wrapped by each protocol. Notice that
data is never seen to move more than one step between layers—we don’t talk about
transport layer protocols interacting with the network layer.

 When writing Node programs, you should appreciate that HTTP is implemented
using TCP because Node’s http module is built on the underlying TCP implementation
found in the net module. But you don’t need to understand how Ethernet, 10BASE-T,
or Bluetooth works.

DNS, HTTP, IRC

TCP, UDP

IP, ICMP

Data

Receiver
port

Sender
port

Data

Receiver
address

Sender
address

Data

Receiver
MAC

Sender
MAC

802.3 (Ethernet), Wi-Fi (IEEE 802.11)

10BASE-T, Bluetooth, fiber optics

Application

Transport

Network

Data link

Physical

Session/presentation

IP packet

Ethernet packet

TCP packet

Figure 7.1 Protocols are grouped into seven logical layers. Packets are wrapped by protocols at con-
secutive layers.

139Networking in Node

TCP/IP

You’ve probably heard of TCP/IP—this is what we call the Internet Protocol suite because
the Transmission Control Protocol (TCP) and the Internet Protocol (IP) are the most
important and earliest protocols defined by this standard.

 In Internet Protocol, a host is identified by an IP address. In IPv4, addresses are 32-
bit, which limits the available address space. IP has been at the center of controversy
over the last decade because addresses are running out. To fix this, a new version of
the protocol known as IPv6 was developed.

 You can make TCP connections with Node by using the net module. This allows
you to implement application layer protocols that aren’t supported by the core mod-
ules: IRC, POP, and even FTP could be implemented with Node’s core modules. If you
find yourself needing to talk to nonstandard TCP protocols, perhaps something used
internally in your company, then net.Socket and net.createConnection will make
light work of it.

 Node supports both IPv4 and IPv6 in several ways: the dns module can query IPv4 and
IPv6 records, and the net module can transmit and receive data to hosts on IPv4 and IPv6
networks.

 The interesting thing about IP is it doesn’t guarantee data integrity or delivery. For
reliable communication, we need a transport layer protocol like TCP. There are also
times when delivery isn’t always required, although of course it’s preferred—in these
situations a lighter protocol is needed, and that’s where UDP comes in. The next sec-
tion examines TCP and UDP in more detail.

UDP AND HOW IT COMPARES TO TCP

Datagrams are the basic unit of communication in UDP. These messages are self-
contained, holding a source, destination, and some user data. UDP doesn’t guarantee

Application layer:
HTTP, HTTPS, SSH

Transport layer:
TCP or UDP

Internet protocol:
Addressing and routing

Link layer:
Ethernet, Wi-Fi

Application layer:
HTTP, HTTPS, SSH

Transport layer:
TCP or UDP

Internet protocol:
Addressing and routing

Link layer:
Ethernet, Wi-Fi

Source Destination

Messages or streams

TCP or UDP

IP datagrams

Physical data transfer

Figure 7.2 Network layer wrapping

140 CHAPTER 7 Networking: Node’s true “Hello, World”

delivery or message order, or offer protection against duplicated data. Most protocols
you’ll use with Node programs will be built on TCP, but there are times when UDP is
useful. If delivery isn’t critical, but performance is desired, then UDP may be a better
choice. One example is a streaming video service, where occasional glitches are an
acceptable trade-off to gain more throughput.

 TCP and UDP both use the same network layer—IP. Both provide services to appli-
cation layer protocols. But they’re very different. TCP is a connect-oriented and reli-
able byte stream service, whereas UDP is based around datagrams, and doesn’t
guarantee the delivery of data.

 Contrast this to TCP, which is a full-duplex1 connection-oriented protocol. In TCP,
there are only ever two endpoints for a given connection. The basic unit of informa-
tion passed between endpoints is known as a segment—the combination of a chunk of
data along with a header. When you hear the term packet, a TCP segment is generally
being referred to.

 Although UDP packets include checksums that help detect corruption, which can
occur as a datagram travels across the internet, there’s no automatic retransmission of
corrupt packets—it’s up to your application to handle this if required. Packets with
invalid data will be effectively silently discarded.

 Every packet, whether it’s TCP or UDP, has an origin and destination address. But
the source and destination programs are also important. When your Node program
connects to a DNS server or accepts incoming HTTP connections, there has to be a way
to map between the packets traveling along the network and the programs that gener-
ated them. To fully describe a connection, you need an extra piece of information.
This is known as a port number—the combination of a port number and an address is
known as a socket. Read on to learn more about ports and how they relate to sockets.

SOCKETS

The basic unit of a network, from a programmer’s perspective, is the socket. A socket
is the combination of an IP address and a port number—and there are both TCP and
UDP sockets. As you saw in the previous section, a TCP connection is full-duplex—
opening a connection to a given host allows communication to flow to and from that
host. Although the term socket is correct, historically “socket” meant the Berkeley Sock-
ets API.

THE BERKELEY SOCKETS API Berkeley Sockets, released in 1983, was an API for
working with internet sockets. This is the original API for the TCP/IP suite.
Although the origins lie in Unix, Microsoft Windows includes a networking
stack that closely follows Berkeley Sockets.

There are well-known port numbers for standard TCP/IP services. They include DNS,
HTTP, SSH, and more. These port numbers are usually odd numbers due to historical
reasons. TCP and UDP ports are distinct so they can overlap. If an application layer

1 Full-duplex: messages can be sent and received in the same connection.

141Networking in Node

protocol requires both TCP and UDP connections, then the convention is to use the
same port number for both connections. An example of a protocol that uses both
UDP and TCP is DNS.

 In Node, you can create TCP sockets with the net module, and UDP is supported by
the dgram module. Other networking protocols are also supported—DNS is a good
example.

 The following sections look at the application layer protocols included in Node’s
core modules.

7.1.2 Node’s networking modules

Node has a suite of networking modules that allows you to build web and other server
applications. Over the next few sections we’ll cover DNS, TCP, HTTP, and encryption.

DNS

The Domain Name System (DNS) is the naming system for addressing resources con-
nected to the internet (or even a private network). Node has a core module called dns
for looking up and resolving addresses. Like other core modules, dns has asynchro-
nous APIs. In this case, the implementation is also asynchronous, apart from certain
methods that are backed by a thread pool. This means DNS queries in Node are fast,
but also have a friendly API that is easy to learn.

 You don’t often have to use this module, but we’ve included techniques because
it’s a powerful API that can come in handy for network programming. Most applica-
tion layer protocols, HTTP included, accept hostnames rather than IP addresses.

 Node also provides modules for networking protocols that we’re more familiar
with—for example, HTTP.

HTTP

HTTP is important to most Node developers. Whether you’re building web applica-
tions or calling web services, you’re probably interacting with HTTP in some way.
Node’s http core module is built on the net, stream, buffer, and events modules.
It’s low-level, but can be used to create simple HTTP servers and clients without too
much effort.

 Due to the importance of the web to Node development, we’ve included several
techniques that explore Node’s http module. Also, when we’re working with HTTP we
often need to use encryption—Node also supports encryption through the crypto
and tls modules.

ENCRYPTION

You should know the term SSL—Secure Sockets Layer—because it’s how secure web
pages are served to web browsers. Not just HTTP traffic gets encrypted, though—other
services, like email, encrypt messages as well. Encrypted TCP connections use TLS:
Transport Layer Security. Node’s tls module is implemented using OpenSSL.

 This type of encryption is called public key cryptography. Both clients and servers
must have private keys. The server can then make its public key available so clients can

142 CHAPTER 7 Networking: Node’s true “Hello, World”

encrypt messages. To decrypt these messages, access to the server’s private key is
required.

 Node supports TLS by allowing TCP servers to be created that support several
ciphers. The TCP server itself inherits from net.Server—once you’ve got your head
around TCP clients and servers in Node, encrypted connections are just an extension
of these principles.

 A solid understanding of TLS is important if you want to deploy web applications with
Node. People are increasingly concerned with security and privacy, and unfortunately
SSL/TLS is designed in such a way that programmer error can cause security weaknesses.

 There’s one final aspect of networking in Node that we’d like to introduce before
we move on to the techniques for this chapter: how Node is able to give you asynchro-
nous APIs to networking technologies that are sometimes blocking at the system level.

7.1.3 Non-blocking networking and thread pools

This section delves into Node’s lower-level implementation to explore how network-
ing works under the hood. If you’re confused about what exactly “asynchronous”
means in the context of networking, then read on for some background information
on what makes Node’s networking APIs tick.

 Remember that in Node, APIs are said to be asynchronous when they accept a call-
back and return immediately. At the operating system level, I/O operations can also
be asynchronous, or they can be synchronous and wrapped with threads to appear
asynchronous.

 Node employs several techniques to provide asynchronous network APIs. The main
ones are non-blocking system calls and thread pools to wrap around blocking system
calls.

 Behind the scenes, most of Node’s networking code is written in C and C++—the
JavaScript code in Node’s source gives you an asynchronous binding to features pro-
vided by libuv and c-ares.

 Figure 7.3 shows Apple’s Instruments tool recording the activity of a Node pro-
gram that makes 50 HTTP requests. HTTP requests are non-blocking—each takes
place using callbacks that are run on the main thread. The BSD sockets library, which
is used by libuv, can make non-blocking TCP and UDP connections.

 For HTTP and other TCP connections, Node is able to access the network using a
system-level non-blocking API.

 When writing networking or file system code, the Node code looks asynchronous:
you pass a function to a method that will execute the function when the I/O operation
has reached the desired state. But for file operations, the underlying implementation
is not asynchronous: thread pools are used instead.

 When dealing with I/O operations, understanding the difference between non-
blocking I/O, thread pools, and asynchronous APIs is important if you want to truly
understand how Node works.

143TECHNIQUE 45 Creating a TCP server and tracking clients

For those interested in reading more about libuv and networking, the freely available
book, An Introduction to libuv (http://nikhilm.github.io/uvbook/networking.html#tcp)
has a section on networking that covers TCP, DNS, and UDP.

 Now on to the first set of networking techniques: TCP clients and servers.

7.2 TCP clients and servers
Node has a simple API for creating TCP connections and servers. Most of the lowest-
level classes and methods can be found in the net module. In the next technique,
you’ll learn how to create a TCP server and track the clients that connect to it. The
cool thing about this is that higher-level protocols like HTTP are built on top of the
TCP API, so once you’ve got the hang of TCP clients and servers, you can really start to
exploit some of the more subtle features of the HTTP API as well.

TECHNIQUE 45 Creating a TCP server and tracking clients

The net module forms the foundation of many of Node’s networking features. This
technique demonstrates how to create a TCP server.

■ Problem
You want to start your own TCP server, bind to a port, and send data over the network.

■ Solution
Use net.createServer to create a server, and then call server.listen to bind it to a
port. To connect to the server, either use the command-line tool telnet or create an
in-process client connection with its client counterpart, net.connect.

■ Discussion
The net.createServer method returns an object that can be used to listen on a given
TCP port for incoming connections. When a client makes a new connection, the callback

Figure 7.3 Node’s threads when making HTTP requests

http://nikhilm.github.io/uvbook/networking.html#tcp

144 CHAPTER 7 Networking: Node’s true “Hello, World”

passed to net.createServer will run. This callback receives a connection object which
extends EventEmitter.

 The server object itself is an instance of net.Server, which is just a wrapper
around the net.Socket class. It’s interesting to note that net.Socket is implemented
using a duplex stream—for more on streams, see chapter 5.

 Before going into more theory, let’s look at an example that you can run and con-
nect to with telnet. The following listing shows a simple TCP server that accepts con-
nections and echoes data back to the client.

var net = require('net');
var clients = 0;

var server = net.createServer(function(client) {
clients++;
var clientId = clients;
console.log('Client connected:', clientId);

client.on('end', function() {
console.log('Client disconnected:', clientId);

});

client.write('Welcome client: ' + clientId + 'rn');
client.pipe(client);

});

server.listen(8000, function() {
console.log('Server started on port 8000');

});

To try out this example, run node server.js to start a server, and then run telnet
localhost 8000 to connect to it with telnet. You can connect several times to see the
ID incremented. If you disconnect, a message should be printed that contains the cor-
rect client ID.

 Most programs that use TCP clients and servers load the net module B. Once it
has been loaded, TCP servers can be created using net.createServer, which is actu-
ally just a shortcut for new net.Server with a listener event listener. After a server
has been instantiated, it can be set to listen for connections on a given port using
server.listen H.

 To echo back data sent by the client, pipe is used G. Sockets are streams, so you
can use the standard stream API methods with them as you saw in chapter 5.

 In this example, we track each client that has connected using a numerical ID by
incrementing a “global” value C that tracks the number of clients D. The total number

Listing 7.1 A simple TCP server

Load net
module.

B
Create ID to
reference each
client that connects.

C
Increment

 ID whenever a
client

connects, and
store a local

client ID value. D Track whenever
clients disconnect
by binding to end
event.

E

Greet each
client with
their client ID.

F

Pipe data sent by
the client back to

the client. G
Bind to port 8000
to start accepting
new connections.H

145TECHNIQUE 46 Testing TCP servers with clients

of connected clients is stored in the callback’s scope by creating a local variable in the
connection callback called clientId.

 This value is displayed whenever a client connects F or disconnects E. The client
argument passed to the server’s callback is actually a socket—you can write to it with
client.write and data will be sent over the network.

 The important thing to note is any event listener added to the socket in the
server’s callback will share the same scope—it will create closures around any variables
inside this callback. That means the client ID is unique to each connection, and you
can also store other values that clients might need. This forms a common pattern
employed by client-server applications in Node.

 The next technique builds on this example by adding client connections in the
same process.

TECHNIQUE 46 Testing TCP servers with clients

Node makes creating TCP servers and clients in the same process a breeze—it’s an
approach particularly useful for testing your network programs. In this technique
you’ll learn how to make TCP clients, and use them to test a server.

■ Problem
You want to test a TCP server.

■ Solution
Use net.connect to connect to the server’s port.

■ Discussion
Due to how TCP and UDP ports work, it’s entirely possible to create multiple servers
and clients in the same process. For example, a Node HTTP server could also run a
simple TCP server on another port that allows telnet connections for remote admin-
istration.

 In technique 45, we demonstrated a TCP server that can track client connections
by issuing each client a unique ID. Let’s write a test to ensure this worked correctly.

 Listing 7.2 shows how to create client connections to an in-process server, and then
run assertions on the data sent over the network by the server. Of course, technically
this isn’t running over a real network because it all happens in the same process, but it
could easily be adapted to work that way; just copy the program to a server and specify
its IP address or hostname in the client.

var assert = require('assert');
var net = require('net');
var clients = 0;
var expectedAssertions = 2;

var server = net.createServer(function(client) {
clients++;
var clientId = clients;
console.log('Client connected:', clientId);

Listing 7.2 Creating TCP clients to test servers

146 CHAPTER 7 Networking: Node’s true “Hello, World”

client.on('end', function() {
console.log('Client disconnected:', clientId);

});

client.write('Welcome client: ' + clientId + '\r\n');
client.pipe(client);

});

server.listen(8000, function() {
console.log('Server started on port 8000');

runTest(1, function() {
runTest(2, function() {
console.log('Tests finished');
assert.equal(0, expectedAssertions);
server.close();

});
});

});

function runTest(expectedId, done) {
var client = net.connect(8000);

client.on('data', function(data) {
var expected = 'Welcome client: ' + expectedId + '\r\n';
assert.equal(data.toString(), expected);
expectedAssertions--;
client.end();

});

client.on('end', done);
}

This is a long example, but it centers around a relatively simple method: net.connect.
This method accepts some optional arguments to describe the remote host. Here
we’ve just specified a port number, but the second argument can be a hostname or IP
address—localhost is the default F. It also accepts a callback, which can be used to
write data to the other end once the client has connected. Remember that TCP servers
are full-duplex, so both ends can receive and send data.

 The runTest function in this example will run once the server has started listen-
ing B. It accepts an expected client ID, and a callback called done E. The callback
will be triggered once the client has connected, received some data by subscribing to
the data event G, and then disconnected.

 Whenever clients are disconnected, the end event will be emitted. We bind the
done callback to this event I. When the test has finished in the data callback, we call
client.end to disconnect the socket manually, but end events will be triggered when
servers close connections, as well.

runTest function
accepts a callback
so additional tests
can be scheduled.

B
After tests

have finished,
a counter is

checked to see
if tests were

executed.

C

Once tests and
assertions have
run, server can
be closed.DrunTest function

connects to server,
checks that it

displays expected
client ID, and then

disconnects.

E

net.connect is used to connect
to server; it returns an
EventEmitter object that can
be used to listen for events.F

Client’s data event
is used to grab the
message the server

displays after the
client connects. G Disconnect client when

data has been sent.H

When client has
finished sending
data, run callback.I

147TECHNIQUE 47 Improve low-latency applications

 The data event is where the main test is performed H. The expected message is
passed to assert.equal with the data passed to the event listener. The data is a buffer,
so toString is called for the assertion to work. Once the test has finished, and the end
event has been triggered H, the callback passed to runTest will be executed.

We’ve used two calls to runTest here by calling one inside the callback. Once both
have run, the number of expected assertions is checked C, and the server is shut
down D.

 This example highlights two important things: clients and servers can be run
together in-process, and Node TCP clients and servers are easy to unit test. If the server
in this example were a remote service that we had no control over, then we could create
a “mock” server for the express purpose of testing our client code. This forms the basis
of how most developers write tests for web applications written with Node.

 In the next technique we’ll dig deeper into TCP networking by looking at Nagle’s
algorithm and how it can affect the performance characteristics of network traffic.

TECHNIQUE 47 Improve low-latency applications

Although Node’s net module is relatively high-level, it does provide access to some
low-level functionality. One example of this is control over the TCP_NODELAY flag,
which determines whether Nagle’s algorithm is used. This technique explains what
Nagle’s algorithm is, when you should use it, and how to turn it off for specific sockets.

■ Problem
You want to improve connection latency in a real-time application.

■ Solution
Use socket.setNoDelay() to enable TCP_NODELAY.

■ Discussion
Sometimes it’s more efficient to move batches of things together, rather than sepa-
rately. Every day millions of products are shipped around the globe, but they’re not
carried one at a time—instead they’re grouped together in shipping containers, based

Error handling
If you need to collect errors generated by TCP connections, just subscribe to the error
event on the EventEmitter objects returned by net.connect. If you don’t, an excep-
tion will be raised; this is standard behavior in Node.

Unfortunately, this isn’t easy to work with when dealing with sets of distinct network
connections. In such cases, a better technique is to use the domain module. Creat-
ing a new domain with domain.create() will cause error events to be sent to the
domain; you can then handle them in a centralized error handler by subscribing to
error events on the domain.

For more about domains, refer to technique 21.

148 CHAPTER 7 Networking: Node’s true “Hello, World”

on their final destination. TCP works exactly the same way, and this feature is made
possible by Nagle’s algorithm.

 Nagle’s algorithm says that when a connection has data that hasn’t yet been
acknowledged, small segments should be retained. These small segments will be
batched into larger segments that can be transmitted when sufficient data has been
acknowledged by the recipient.

 In networks where many small packets are transmitted, it can be desirable to reduce
congestion by combining small outgoing messages, and sending them together. But
sometimes latency is desired over all else, so transmitting small packets is important.

 This is particularly true for interactive applications, like ssh, or the X Window Sys-
tem. In these applications, small messages should be delivered without delay to create
a sense of real-time feedback. Figure 7.4 illustrates the concept.

 Certain classes of Node programs benefit from turning off Nagle’s algorithm. For
example, you may have created a REPL that transmits a single character at a time as
the user types messages, or a game that transmits location data of players. The next
listing shows a program that disables Nagle’s algorithm.

var net = require('net');
var server = net.createServer(function(c) {

c.setNoDelay(true);
c.write('377375042377373001', 'binary');
console.log('server connected');
c.on('end', function() {

console.log('server disconnected');
server.unref();

});
c.on('data', function(data) {

process.stdout.write(data.toString());
c.write(data.toString());

Listing 7.3 Turning off Nagle’s algorithm

Server

Client

Buffer

4-byte packets

16-byte packet

Figure 7.4 When Nagle’s
algorithm is used, smaller
packets are collected into a
larger payload.

Turn off Nagle’s
algorithm.

B
Force client to
use character

mode.

C

Call unref() so that when
last client disconnects,
program exits.

D
Print out

characters
from client to

the server’s
terminal.

E

149TECHNIQUE 48 Transferring a file with UDP

});
});
server.listen(8000, function() {

console.log('server bound');
});

To use this example, run the program in a terminal with node nagle.js, and then con-
nect to it with telnet 8000. The server turns off Nagle’s algorithm B, and then forces
the client to use character mode C. Character mode is part of the Telnet Protocol
(RFC 854), and will cause the Telnet client to send a packet whenever a key is pressed.

 Next, unref is used D to cause the program to exit when there are no more client
connections. Finally, the data event is used to capture characters sent by the client
and print them to the server’s terminal E.

 This technique could form the basis for creating low-latency applications where
data integrity is important, which therefore excludes UDP. If you really want to get
more control over the transmission of data, then read on for some techniques that use
UDP.

7.3 UDP clients and servers
Compared to TCP, UDP is a much simpler protocol. That can mean more work for
you: rather than being able to rely on data being sent and received, you have to cater
to UDP’s more volatile nature. UDP is suitable for query-response protocols, which is
why it’s used for the Domain Name System (DNS). It’s also stateless—if you want to
transfer data and you value lower latency over data integrity, then UDP is a good
choice. That might sound unusual, but there are applications that fit these character-
istics: media streaming protocols and online games generally use UDP.

 If you wanted to build a video streaming service, you could transfer video over TCP,
but each packet would have a lot of overhead for ensuring delivery. With UDP, it would
be possible for data to be lost with no simple means of discovery, but with video you
don’t care about occasional glitches—you just want data as fast as possible. In fact,
some video and image formats can survive a small amount of data loss: the JPEG for-
mat is resilient to corrupt bytes to a certain extent.

 The next technique combines Node’s file streams with UDP to create a simple
server that can be used to transfer files. Although this can potentially result in data
loss, it can be useful when you care about speed over all else.

TECHNIQUE 48 Transferring a file with UDP

This technique is really about sending data from a stream to a UDP server rather than
creating a generalized file transfer mechanism. You can use it to learn the basics of
Node’s datagram API.

■ Problem
You want to transfer data from a client to a server using datagrams.

■ Solution
Use the dgram module to create datagram sockets, and then send data with socket.send.

150 CHAPTER 7 Networking: Node’s true “Hello, World”

■ Discussion
Sending datagrams is similar to using TCP sockets, but the API is slightly different, and
datagrams have their own rules that reflect the actual structure of UDP packets. To set
up a server, use the following snippet:

var dgram = require('dgram');
var socket = dgram.createSocket('udp4');
socket.bind(4000);

This example creates a socket that will act as the server B, and then binds it to a port
C. The port can be anything you want, but in both TCP and UDP the first 1,023 ports
are privileged.

 The client API is different from TCP sockets because UDP is a stateless protocol. You
must write data a packet at a time, and packets (datagrams) must be relatively small—
under 65,507 bytes. The maximum size of a datagram depends on the Maximum
Transmission Unit (MTU) of the network. 64 KB is the upper limit, but isn’t usually
used because large datagrams may be silently dropped by the network.

 Creating a client socket is the same as servers—use dgram.createSocket. Sending
a datagram requires a buffer for the payload, an offset to indicate where in the buffer
the message starts, the message length, the server port, the remote IP, and an optional
callback that will be triggered when the message has been sent:

var message = 'Sample message';
socket.send(new Buffer(message), 0, message.length, port, remoteIP);

Listing 7.4 combines a client and a server into a single program. To run it, you must
issue two commands: node udp-client-server.js server to run the server, and
then node udp-client-server.js client remoteIP to start a client. The remoteIP
option can be omitted if you run both locally; we designed this example to be a single
file so you can easily copy it to another computer to test sending things over the inter-
net or a local network.

var dgram = require('dgram');
var fs = require('fs');
var port = 41230;
var defaultSize = 16;

function Client(remoteIP) {
var inStream = fs.createReadStream(__filename);
var socket = dgram.createSocket('udp4');

inStream.on('readable', function() {
sendData();

});

function sendData() {
var message = inStream.read(defaultSize);

Listing 7.4 A UDP client and server

Create UDP
socket

B

Bind it to
a portC

Create a
readable
stream for
current file

BMake a new
datagram
socket to

use as client

C

When readable stream
is ready, start sending
its data to the server

D
Use

stream.read(size) to
read chunks of data

E

151TECHNIQUE 48 Transferring a file with UDP

if (!message) {
return socket.unref();

}

socket.send(message, 0, message.length, port, remoteIP,
function(err, bytes) {

sendData();
}

);
}

}

function Server() {
var socket = dgram.createSocket('udp4');

socket.on('message', function(msg, rinfo) {
process.stdout.write(msg.toString());

});

socket.on('listening', function() {
console.log('Server ready:', socket.address());

});

socket.bind(port);
}

if (process.argv[2] === 'client') {
new Client(process.argv[3]);

} else {
new Server();

}

When you run this example, it starts by checking the command-line options to see if
the client or server is required 1). It also accepts an optional argument for clients so
you can connect to remote servers 1!.

 If the client was specified, then a new client will be created by making a new data-
gram socket C. This involves using a read stream from the fs module so we have
some data to send to the server B—we’ve used __filename to make it read the cur-
rent file, but you could make it send any file.

 Before sending any data, we need to make sure the file has been opened and is
ready for reading, so the readable event is subscribed to D. The callback for this
event executes the sendData function. This will be called repeatedly for each chunk of
the file—files are read in small chunks at a time using inStream.read E, because
UDP packets can be silently dropped if they’re too large. The socket.send method is
used to push the data to the server G. The message object returned when reading the
file is an instance of Buffer, and it can be passed straight to socket.send.

 When all of the data has been read, the last chunk is set to null. The
socket.unref F method is called to cause the program to exit when the socket is no
longer required—in this case, once it has sent the last message.

When client has finished,
call unref to safely close it
when no longer needed

F

Otherwise,
send data
to server G

Create a socket
to use for server

HWhen a
message event

is emitted, print
data to terminal

I

Indicate server is
ready for clients by
printing message

J

Check for
command-line

options to
determine if

client or server
should be run

1)

Accept optional setting
for connecting to
remote IP addresses

1!

152 CHAPTER 7 Networking: Node’s true “Hello, World”

The server is simpler than the client. It sets up a socket in the same way H, and then
subscribes to two events. The first event is message, which is emitted when a datagram
is received I. The data is written to the terminal by using process.stdout.write.
This looks better than using console.log because it won’t automatically add newlines.

 The listening event is emitted when the server is ready to accept connections J.
A message is displayed to indicate this so you know it’s safe to try connecting a client.

 Even though this is a simple example, it’s immediately obvious how UDP is differ-
ent from TCP—you need to pay attention to the size of the messages you send, and
realize that it’s possible for messages to get lost. Although datagrams have a check-
sum, lost or damaged packets aren’t reported to the application layer, which means
data loss is possible. It’s generally best to use UDP for sending data where assured
integrity is second place to low latency and throughput.

 In the next technique you’ll see how to build on this example by sending messages
back to the client, essentially setting up bidirectional communication channels with
UDP.

Datagram packet layout and datagram size
UDP packets are comparatively simple. They’re composed of a source port, the des-
tination port, datagram length, checksum, and the payload data. The length is the to-
tal size of the packet—the header size added to the payload’s size. When deciding
on your application’s buffer size for UDP packets, you should remember that the
length passed to socket.send is only for the buffer (payload), and the overall packet
size must be under the MTU on the network. The structure of a datagram looks like
the following.

8 bytes

Source port

0 15 16 31

Payload

UDP length UDP checksum

Destination port

The UDP header is 8 bytes, fol-
lowed by an optional payload of up
to 65,507 bytes for IPv4 and
65,527 bytes for IPv6.

153TECHNIQUE 49 UDP client server applications

TECHNIQUE 49 UDP client server applications

UDP is often used for query-response protocols, like DNS and DHCP. This technique
demonstrates how to send messages back to the client.

■ Problem
You’ve created a UDP server that responds to requests, but you want to send messages
back to the client.

■ Solution
Once you’ve created a server and it has received a message, create a datagram connec-
tion back to the client based on the rinfo argument that’s passed to message events.
Optionally create a unique reference by combining the client port and IP address to
send subsequent messages.

■ Discussion
Chat servers are the classic network programming example for new Node program-
mers, but this one has a twist—it uses UDP instead of TCP or HTTP.

 TCP connections are different from UDP, and this is apparent in the design of Node’s
networking API. TCP connections are represented as a stream of bidirectional events, so
sending a message back to the sender is straightforward—once a client has connected
you can write messages to it at any time using client.write. UDP, on the other hand,
is connectionless—messages are received without an active connection to the client.

 There are some protocol-level similarities that enable you to respond to messages
from clients, however. Both TCP and UDP connections use source and destination
ports. Given a suitable network setup, it’s possible to open a connection back to the
client based on this information. In Node the rinfo object that’s included with every
message event contains the relevant details. Figure 7.5 shows how messages flow
between two clients using this scheme.

 Listing 7.5 presents a client-server program that allows clients to connect to a cen-
tral server over UDP and message each other. The server keeps details of each client in

Port 5012

Port 5013

Port 4096

Port 4097

Client A Client B

Figure 7.5 Even though
UDP isn’t full-duplex, it’s
possible to create con-
nections in two direc-
tions given a port number
at both sides.

154 CHAPTER 7 Networking: Node’s true “Hello, World”

an array, so it can refer to each one uniquely. By storing the client’s address and port,
you can even run multiple clients on the same machine—it’s safe to run this program
several times on the same computer.

var assert = require('assert');
var dgram = require('dgram');
var fs = require('fs');
var defaultSize = 16;
var port = 41234;

function Client(remoteIP) {
var socket = dgram.createSocket('udp4');
var readline = require('readline');
var rl = readline.createInterface(process.stdin, process.stdout);

socket.send(new Buffer('<JOIN>'), 0, 6, port, remoteIP);

rl.setPrompt('Message> ');
rl.prompt();

rl.on('line', function(line) {
sendData(line);

}).on('close', function() {
process.exit(0);

});

socket.on('message', function(msg, rinfo) {
console.log('\n<' + rinfo.address + '>', msg.toString());
rl.prompt();

});

function sendData(message) {
socket.send(new Buffer(message), 0, message.length, port, remoteIP,

function(err, bytes) {
console.log('Sent:', message);
rl.prompt();

}
);

}
}

function Server() {
var clients = [];
var server = dgram.createSocket('udp4');

server.on('message', function(msg, rinfo) {
var clientId = rinfo.address + ':' + rinfo.port;

msg = msg.toString();

if (!clients[clientId]) {
clients[clientId] = rinfo;

Listing 7.5 Sending messages back to clients

Use readline module
to handle user input.

B
Whenever a

client first
joins, send
special join

message.

C

Send messages to server
when the user types a
message and presses Return.

D

Listen for messages
from other users.

E

Take user’s message and create
a new buffer that can then be
sent as UDP message to server.F

Listen
 for new

messages
from

clients.

G

Combine client’s
port and address
to make a unique
reference to it.

H

If client hasn’t been seen
before, keep a record of its
connection details.

I

155TECHNIQUE 49 UDP client server applications

}

if (msg.match(/^</)) {
console.log('Control message:', msg);
return;

}

for (var client in clients) {
if (client !== clientId) {

client = clients[client];
server.send(

new Buffer(msg), 0,
msg.length, client.port, client.address,
function(err, bytes) {

if (err) console.error(err);
console.log('Bytes sent:', bytes);

}
);

}
}

});

server.on('listening', function() {
console.log('Server ready:', server.address());

});

server.bind(port);
}

module.exports = {
Client: Client,
Server: Server

};

if (!module.parent) {
switch (process.argv[2]) {
case 'client':

new Client(process.argv[3]);
break;

case 'server':
new Server();
break;

default:
console.log('Unknown option');

}
}

This example builds on technique 48—you can run it in a similar way. Type node
udp-chat.js server to start a server, and then node udp-chat.js client to con-
nect a client. You should run more than one client for it to work; otherwise mes-
sages won’t get routed anywhere.

If message is wrapped in
angled brackets, treat it
as a control message.J

Send message to
every other client.1)

156 CHAPTER 7 Networking: Node’s true “Hello, World”

 The readline module has been used to capture user input in a friendly manner
B. Like most of the other core modules you’ve seen, this one is event-based. It’ll emit
the line event whenever a line of text is entered D.

 Before messages can be sent by the user, an initial join message is sent C. This is
just to let the server know it has connected—the server code uses it to store a unique
reference to the client I.

 The Client constructor wraps socket.send inside a function called sendData F.
This is so messages can be easily sent whenever a line of text is typed. Also, when a cli-
ent itself receives a message, it’ll print it to the console and create a new prompt E

 Messages received by the server G are used to create a unique reference to the cli-
ent by combining the port and remote address H. We get all of this information from
the rinfo object, and it’s safe to run multiple clients on the same machine because
the port will be the client’s port rather than the port the server listens on (which
doesn’t change). To understand how this is possible, recall that UDP headers include a
source and destination port, much like TCP.

 Finally, whenever a message is seen that isn’t a control message J, each client is
iterated over and sent the message 1). The client that has sent the message won’t
receive a copy. Because we’ve stored references to each rinfo object in the clients
array, messages can be sent back to clients.

 Client-server networking is the basis of HTTP. Even though HTTP uses TCP connec-
tions, it’s slightly different from the type of protocols you’ve seen so far: it’s stateless.
That means you need different patterns to model it. The next section has more details
on how to make HTTP clients and servers.

7.4 HTTP clients and servers
Today most of us work with HTTP—whether we’re producing or consuming web ser-
vices, or building web applications. The HTTP protocol is stateless and built on TCP,
and Node’s HTTP module is similarly built on top of its TCP module.

 You could, of course, use your own protocol built with TCP. After all, HTTP is built
on top of TCP. But due to the prevalence of web browsers and tools for working with
web-based services, HTTP is a natural fit for many problems that involve communicat-
ing between remote systems.

 In the next section you’ll learn how to write a basic HTTP server using Node’s core
modules.

TECHNIQUE 50 HTTP servers

In this technique you’ll learn how to create HTTP servers with Node’s http module.
Although this is more work than using a web framework built on top of Node, popular
web frameworks generally use the same techniques internally, and the objects they
expose are derived from Node’s standard classes. Understanding the underlying mod-
ules and classes is therefore useful for working extensively with HTTP.

157TECHNIQUE 50 HTTP servers

■ Problem
You want to run HTTP servers and test them.

■ Solution
Use http.createServer and http.createClient.

■ Discussion
The http.createServer method is a shortcut for creating a new http.Server object
that descends from net.Server. The HTTP server is extended to handle various ele-
ments of the HTTP protocol—parsing headers, dealing with response codes, and set-
ting up various events on sockets. The major focus in Node’s HTTP handling code is
parsing; a C++ wrapper around Joyent’s own C parser library is used. This library can
extract header fields and values, Content-Length, request method, response status
code, and more.

 The following listing shows a small “Hello World” web server that uses the http
module.

var assert = require('assert');
var http = require('http');

var server = http.createServer(function(req, res) {
res.writeHead(200, { 'Content-Type': 'text/plain' });
res.write('Hello, world.\r\n');
res.end();

});

server.listen(8000, function() {
console.log('Listening on port 8000');

});

var req = http.request({
port: 8000

}, function(res) {
console.log('HTTP headers:', res.headers);
res.on('data', function(data) {

console.log('Body:', data.toString());
assert.equal('Hello, world.\r\n', data.toString());
assert.equal(200, res.statusCode);
server.unref();

});
});

req.end();

The http module contains both Node’s client and server HTTP classes B. The
http.createServer creates a new server object and returns it. The argument is a call-
back that receives req and res objects—request and response, respectively C. You
may be familiar with these objects if you’ve used higher-level Node web frameworks
like Express and restify.

Listing 7.6 A simple HTTP server

Load HTTP moduleB
Create new

HTTP server and
pass a callback

that will run
when there’s a

new request C
Write some sensible

headers for text-
based response D

Write message
back to the client E

Set server to listen
on port 8000F

Make
 request using

http.request G

Add listener to the data event
and make sure response is

what was expected H

158 CHAPTER 7 Networking: Node’s true “Hello, World”

 The interesting thing about the listener callback passed to http.createServer is
that it behaves much like the listener passed to net.createServer. Indeed, the mech-
anism is the same—we’re creating TCP sockets, but layering HTTP on top. The main
conceptual difference between the HTTP protocol and TCP socket communication is a
question of state: HTTP is a stateless protocol. It’s perfectly acceptable and in fact typi-
cal to create and tear down TCP sockets per request. This partly explains why Node’s
underlying HTTP implementation is low-level C++ and C: it needs to be fast and use as
little memory as possible.

 In listing 7.6, the listener runs for every request. In the TCP example from tech-
nique 45, the server kept a connection open as long as the client was connected.
Because HTTP connections are just TCP sockets, we can use res and req like the
sockets in listing 7.6: res.write will write to the socket E, and headers can be writ-
ten back with res.writeHead D, which is where the socket connection and HTTP
APIs visibly diverge—the underlying socket will be closed as soon as the response has
been written.

 After the server has been set up, we can set it to listen on a port with server
.listen F.

 Now that we can create servers, let’s look at creating HTTP requests. The
http.request method will create new connections G, and accepts an options argu-
ment object and a callback that will be run when a connection is made. This means we
still need to attach a data listener to the response passed to the callback to slurp down
any sent data.

 The data callback ensures the response from the server has the expected format:
the body content and status code H are checked. The server is told to stop listening
for connections when the last client has disconnected by calling server.unref, which
means the script exits cleanly. This makes it easy to see if any errors were encountered.

 One small feature of the HTTP module is the http.STATUS_CODES object. This
allows human-readable messages to be generated by looking up the integer status
code: http.STATUS_CODES[302] will evaluate to Moved Temporarily.

 Now that you’ve seen how to create HTTP servers, in the next technique we’ll look
at the role state plays in HTTP clients—despite HTTP being a stateless protocol—by
implementing HTTP redirects.

TECHNIQUE 51 Following redirects

Node’s http module provides a convenient API for handling HTTP requests. But it
doesn’t follow redirects, and because redirects are so common on the web, it’s an
important technique to master. You could use a popular third-party module that
handles redirection, like the popular request module by Mikeal Rogers,2 but you’ll
learn much more about Node by looking at how it can be implemented with the
core modules.

2 https://npmjs.org/package/request

https://npmjs.org/package/request

159TECHNIQUE 51 Following redirects

 In this technique we’ll look at how to use straightforward JavaScript to maintain
state across several requests. This allows a redirect to be followed correctly without cre-
ating redirect loops or other issues.

■ Problem
You want to download pages and follow redirects if necessary.

■ Solution
Handling redirection is fairly straightforward once the basics of the protocol are
understood. The HTTP standard defines status codes that denote when redirection
has occurred, and it also states that clients should detect infinite redirect loops. To sat-
isfy these requirements, we’ll use a simple prototype class to retain the state of each
request, redirecting if needed and detecting redirect loops.

■ Discussion
In this example we’ll use Node’s core http module to make a GET request to a URL that
we know will generate a redirection. To determine if a given response is a redirect, we
need to check whether the returned status code begins with a 3. All of the status codes
in the 3xx family of responses indicate that a redirect of some kind has occurred.

 According to the specification, this is the full set of status codes that we need to
deal with:

■ 300—Multiple choices
■ 301—Moved permanently
■ 302—Found
■ 303—See other
■ 304—Not modified
■ 305—See proxy
■ 307—Temporary redirect

Exactly how each of these status codes is handled depends on the application. For
example, it might be extremely important for a search engine to identify responses
that return a 301, because it means the search engine’s list of URLs should be perma-
nently updated. For this technique we simply need to follow redirects, which means a
single statement is sufficient to check whether the request is being redirected: if
(response.statusCode >= 300 && response.statusCode < 400).

 Testing for redirection loops is more involved. A request can no longer exist in iso-
lation—we need to track the state of several requests. The easiest way to model this is
by using a class that includes an instance variable for counting how many redirects
have occurred. When the counter reaches a limit, an error is raised. Figure 7.6 shows
how HTTP redirects are handled.

 Before writing any code, it’s important to consider what kind of API we need. Since
we’ve already determined a “class” should be used to manage state, then users of our
module will need to instantiate an instance of this class. Node’s http module is asyn-
chronous, and our code should be as well. That means that to get a result back, we’ll
have to pass a callback to a method.

160 CHAPTER 7 Networking: Node’s true “Hello, World”

The signature for this callback should use the same format as Node’s core modules,
where an error variable is the first parameter. Designing the API in this way has the
advantage of making error handling straightforward. Making an HTTP request can
result in several errors, so it’s important to handle them correctly.

 The following listing puts all of this together to successfully follow redirects

var http = require('http');
var https = require('https');
var url = require('url');
var request;

function Request() {
this.maxRedirects = 10;
this.redirects = 0;

}

Request.prototype.get = function(href, callback) {
var uri = url.parse(href);
var options = { host: uri.host, path: uri.path };
var httpGet = uri.protocol === 'http:' ? http.get : https.get;

console.log('GET:', href);

function processResponse(response) {
if (response.statusCode >= 300 && response.statusCode < 400) {

if (this.redirects >= this.maxRedirects) {
this.error = new Error('Too many redirects for: ' + href);

} else {
this.redirects++;
href = url.resolve(options.host, response.headers.location);

Listing 7.7 Making an HTTP GET request that follows redirects

Make request

Server

Get request

Response: 302 redirect

Saved
page

Is status
3xx?

Is status
2xx?

Figure 7.6 Redirection is cyclical, and requests will be made until a 200 status is encountered.

url module has
useful methods
for parsing URLsB

Define constructor
to manage request
stateC Parse URLs into format

used by Node’s http
module, and determine if
HTTPS should be used

D

Check to see if statusCode is in
the range for HTTP redirects

E
Increment

redirection
counter, and

use url.resolve
to ensure

relative URLs
are expanded

to absolute
URLs

F

161TECHNIQUE 51 Following redirects

return this.get(href, callback);
}

}

response.url = href;
response.redirects = this.redirects;

console.log('Redirected:', href);

function end() {
console.log('Connection ended');
callback(this.error, response);

}

response.on('data', function(data) {
console.log('Got data, length:', data.length);

});

response.on('end', end.bind(this));
}

httpGet(options, processResponse.bind(this))
.on('error', function(err) {
callback(err);

});
};

request = new Request();
request.get('http://google.com/', function(err, res) {

if (err) {
console.error(err);

} else {
console.log('Fetched URL:', res.url,
'with', res.redirects, 'redirects');

process.exit();
}

});

Running this code will display the last-fetched URL, and the number of times the
request was redirected. Try it with a few URLs to see what happens: even nonexistent
URLs that result in DNS errors should cause error information to be printed to
stderr.

 After loading the necessary modules B, the Request C constructor function is
used to create an object that models the lifetime of a request. Using a class in this way
keeps implementation details neatly encapsulated from the user. Meanwhile, the
Request.prototype.get method does most of the work. It sets up a standard HTTP
request, or HTTPS if necessary, and then calls itself recursively whenever a redirect is
encountered. Note that the URL has to be parsed D into an object that we use to cre-
ate the options object that is compatible with Node’s http module.

 The request protocol (HTTP or HTTPS) is checked to ensure we use the right
method from Node’s http or https module. Some servers are configured to always

Use Fuction.prototype.bind
to bind callback to Request
instance so this points to
correct object

G

Instantiate Request
and fetch a URL

H

162 CHAPTER 7 Networking: Node’s true “Hello, World”

redirect HTTP traffic to HTTPS. Without checking for the protocol, this method would
repeatedly fetch the original HTTP URL until maxRedirects is hit—this is a trivial mis-
take that’s easily avoided.

 Once the response has been received, the statusCode is checked E. The number
of redirects is incremented as long as maxRedirects hasn’t been reached F. This pro-
cess is repeated until there’s no longer a status in the 300 range, or too many redirects
have been encountered.

 When the final request has finished (or the first if there were no redirects), the
user-supplied callback function is run. The standard Node API signature of error,
result has been used here to stay consistent with Node’s core modules. An error is
generated when maxRedirects is reached, or when creating the HTTP request by lis-
tening for an error event.

 The user-supplied callback runs after the last request has finished, allowing the
callback to access the requested resource. This is handled by running the callback
after the end event for the last request has been triggered, and by binding the event
handler to the current Request instance G. Binding the event handler means it’ll
have access to any useful instance variables that the user might need—including
errors that are stored in this.error.

 Lastly, we create an instance of Request H to try out the class. You can use it with
other URLs if you like.

 This technique illustrates an important point: state is important, even though
HTTP is technically a stateless protocol. Some misconfigured web applications and
servers can create redirect loops, which would cause a client to fetch URLs forever
until it’s forcibly stopped.

 Though listing 7.7 showcases some of Node’s HTTP- and URL-handling features, it
isn’t a complete solution. For a more advanced HTTP API, take a look at Request by
Mikeal Rogers (https://github.com/mikeal/request), a widely used simplified Node
HTTP API.

 In the next technique we’ll dissect a simple HTTP proxy. This expands on the cli-
ent and server techniques discussed here, and could be expanded to create numerous
useful applications.

TECHNIQUE 52 HTTP proxies

HTTP proxies are used more often than you might expect—ISPs use transparent proxies
to make networks more efficient, corporate systems administrators use caching proxies
to reduce bandwidth, and web application DevOps use them to improve the perfor-
mance of their apps. This technique only scratches the surface of proxies—it catches
HTTP requests and responses, and then mirrors them to their intended destinations.

■ Problem
You want to capture and retransmit HTTP requests.

■ Solution
Use Node’s built-in HTTP module to act as a simple HTTP proxy.

https://github.com/mikeal/request

163TECHNIQUE 52 HTTP proxies

■ Discussion
A proxy server offers a level of redirection, which facilitates a variety of useful applica-
tions: caching, logging, and security-related software. This technique explores how to
use the core http module to create HTTP proxies. Fundamentally all that’s required is
an HTTP server that catches requests, and then an HTTP client to clone them.

 The http.createServer and http.request methods can catch and retransmit
requests. We’ll also need to interpret the original request so we can safely copy it—the
url core module has an ideal URL-parsing method that can help do this.

 The next listing shows how simple it is to create a working proxy in Node.

var http = require('http');
var url = require('url');

http.createServer(function(req, res) {
console.log('start request:', req.url);
var options = url.parse(req.url);
options.headers = req.headers;
var proxyRequest = http.request(options, function(proxyResponse) {
proxyResponse.on('data', function(chunk) {

console.log('proxyResponse length:', chunk.length);
res.write(chunk, 'binary');

});

proxyResponse.on('end', function() {
console.log('proxied request ended');
res.end();

});

res.writeHead(proxyResponse.statusCode, proxyResponse.headers);
});

req.on('data', function(chunk) {
console.log('in request length:', chunk.length);
proxyRequest.write(chunk, 'binary');

});

req.on('end', function() {
console.log('original request ended');
proxyRequest.end();

});
}).listen(8080);

To use this example, your computer will need a bit of configuration. Find your sys-
tem’s internet options, and then look for HTTP proxies. From there you should be
able to enter localhost:8080 as the proxy. Alternatively, add the proxy in a browser’s
settings if possible. Some browsers don’t support this; Google Chrome will open the
system proxy dialog.

Listing 7.8 Using the http module to create a proxy

Create standard HTTP
server instance

B

Create request that copies
the original request

C

Listen for data; then
write it back to browserD

Track when proxied
request has finishedE

Send headers
to the browser F

Capture data sent from
browser to the serverG

Track when original
request endsH

Listen for connections
from local browsersI

164 CHAPTER 7 Networking: Node’s true “Hello, World”

Figure 7.7 shows how to configure the proxy on a Mac. Make sure you click OK and
then Apply in the main Network dialog to save the setting. And remember to disable
the proxy once you’re done!

 Once your system is set up to use the proxy, start the Node process up with node
listings/network/proxy.js in a shell. Now when you visit web pages, you should see
the successive requests and responses logged to the console.

 This example works by first creating a server B using the http module. The call-
back will be triggered when a browser makes a request. We’ve used url.parse (url is
another core module) to separate out the URL’s various parts so they can be passed as
arguments to http.request. The parsed URL object is compatible with the arguments
that http.request expects, so this is convenient C.

 From within the request’s callback, we can subscribe to events that need to be
repeated back to the browser. The data event is useful because it allows us to capture
the response from the server and pass it back to the client with res.write D. We also
respond to the end of the server’s connection by closing the connection to the

Figure 7.7 To use the Node proxy we’ve created, set localhost:8080 as the Web Proxy Server.

165TECHNIQUE 53 Making a DNS request

browser E. The status code is also written back to the client based on the server’s
response F.

 Any data sent by the client is also proxied to the remote server by subscribing to
the browser’s data events G. Similarly, the browser’s original request is watched for an
end event so it can be reflected back to the proxied request H.

 Finally, the HTTP server used as the proxy is set up to listen on port 8080 I.
 This example creates a special server that sits between the browser and the server

the browser wants to talk to. It could be extended to do lots of interesting things. For
example, you could cache image files and compress them based on the remote client,
sending mobile browsers heavily compressed images. You could even strip out certain
content based on rules; some ad-blocking and parental filters work this way.

 We’ve been using the DNS so far without really thinking about it too much. DNS
uses TCP and UDP for its request/response-based protocol. Fortunately, Node hides
this complexity for us with a slick asynchronous DNS module. The next section dem-
onstrates how to make DNS requests using Node’s dns module.

7.5 Making DNS requests
Node’s DNS module lives outside of the net module, in dns. When the http or net
modules are used to connect to remote servers, Node will look up IP addresses using
dns.lookup internally.

TECHNIQUE 53 Making a DNS request

Node has multiple methods for making DNS requests. In this technique you’ll learn
how and why you should use each to resolve a domain name to an IP address.

 When you query a DNS record, the results may include answers for different record
types. The DNS is a distributed database, so it isn’t used purely for resolving IP
addresses—some records like TXT are used to build features off the back of the DNS itself.

 Table 7.2 includes a list of each type along with the associated dns module method.

Table 7.2 DNS record types

Type Method Description

A dns.resolve An A record stores the IP address. It can have an associated
time-to-live (TTL) field to indicate how often the record should be
updated.

TXT dns.resolveTxt Text values that can be used by other services for additional fea-
tures built on top of DNS.

SRV dns.resolveSrv Service records define “location” data for a service; this usually
includes the port number and hostname.

NS dns.resolveNs Used for name servers themselves.

CNAME dns.resolveCname Canonical name records. These are set to domain names rather
than IP addresses.

166 CHAPTER 7 Networking: Node’s true “Hello, World”

■ Problem
You want to look up a single or multiple domain names quickly.

■ Solution
The dns.lookup method can be used to look up either IPv4 or IPv6 addresses. When
looking up multiple addresses, it can be faster to use dns.resolve instead.

■ Discussion
According to Node’s documentation, dns.lookup is backed by a thread pool, whereas
dns.resolve uses the c-ares library, which is faster. The dns.lookup API is a little
friendlier—it uses getaddrinfo, which is more consistent with the other programs on
your system. Indeed, the Socket.prototype.connect method, and any of Node’s
core modules that inherit from the objects in the net module, all use dns.lookup
for consistency:

var dns = require('dns');

dns.lookup('www.manning.com', function(err, address) {

if (err) {
console.error('Error:', err);

}
console.log('Addresses:', address);

});

This example loads the dns module B, and then looks up the IP address using
dns.lookup C. The API is asynchronous, so we have to pass a callback to receive the IP
address and any errors that were raised when looking up the address. Note that the
domain name has to be provided, rather than a URL—don’t include http:// here.

 If everything runs correctly, then you should see 68.180.151.75 printed as the IP
address. Conversely, if the previous example is run when you’re offline, then a rather
interesting error should be printed instead:

Error: {
[Error: getaddrinfo ENOTFOUND]
code: 'ENOTFOUND',
errno: 'ENOTFOUND',
syscall: 'getaddrinfo'

}

The error object includes a standard error code B alongside the system call that
raised the error C. You can use the error code in your programs to detect when this
kind of error was raised and handle it appropriately. The syscall property, mean-
while, is useful to us as programmers: it shows that the error was generated by a service
outside of our Node code that is provided by the operating system.

 Now compare this to the version that uses dns.resolve:

var dns = require('dns');

dns.resolve('www.manning.com', function(err, addresses) {
if (err) {

Load dns moduleB

Look up IP address
of the given domainC

Error codeB

System call where
the error originatedC

Resolve domain name
asynchronously.

B

167TECHNIQUE 54 A TCP server that uses encryption

console.error(err);
}

console.log('Addresses:', addresses);
});

The API looks similar to the previous example, apart from dns.resolve B. You’ll still
see an error object that includes ECONNREFUSED if the DNS server couldn’t be reached,
but this time the result is different: we receive an array of addresses instead of a single
result. In this example you should see ['68.180.151.75'], but some servers may
return more than one address.

 Node’s dns module is flexible, friendly, and fast. It can scale up well from infre-
quent single requests to making batches of requests.

 The last part of Node’s networking suite left to look at is perhaps the hardest to
learn, yet paradoxically the most important to get right: encryption. The next section
introduces SSL/TLS with the tls and https modules.

7.6 Encryption
Node’s encryption module, tls, uses OpenSSL Transport Layer Security/Secure
Socket Layer (TLS/SSL). This is a public key system, where each client and server both
have a private key. The server makes its public key available so clients can encrypt sub-
sequent communications in a way that only that server can decrypt again.

 The tls module is used as the basis for the https module—this allows HTTP serv-
ers and clients to communicate over TLS/SSL. Unfortunately, TLS/SSL is a world of
potential pitfalls. Node potentially supports different cyphers based on what version
of OpenSSL it has been linked against. You can specify what cyphers you want to use
when creating servers with tls.createServer, but we recommend using the defaults
unless you have specific expertise in this area.

 In the following technique you’ll learn how to start a TCP server that uses SSL and
a self-signed certificate. After that, we end the chapter with a technique that shows
how encrypting web server communication works in Node.

TECHNIQUE 54 A TCP server that uses encryption

TLS can be used to encrypt servers made with net.createServer. This technique
demonstrates how to do this by first creating the necessary certificates and then start-
ing a client and server.

■ Problem
You want to encrypt communication sent and received over a TCP connection.

■ Solution
Use the tls module to start a client and server. Set up the required certificate files
using OpenSSL.

■ Discussion
The main thing to master when working with encryption, whether it’s web servers, mail
servers, or any TCP-based protocol, is how to properly set up the key and certificate files.

168 CHAPTER 7 Networking: Node’s true “Hello, World”

Public key cryptography is dependent on public-private key pairs—a pair is required for
both clients and servers. But an additional file is needed: the public key of the Certificate
Authority (CA).

 Our goal in this technique is to create a TLS client and server that both report
authorized after the TLS handshake. This state is reported when both parties have ver-
ified each other’s identity. When working with web server certificates, your CA will be
the well-known organizations that commercially distribute certificates. But for the pur-
poses of testing, you can become your own CA and sign certificates. This is also useful
for secure communication between your own systems that don’t need publicly verifi-
able certificates.

 That means before you can run any Node examples, you’ll need certificates. The
OpenSSL command-line tools are required for this. If you don’t have them, you
should be able to install them with your operating system’s package manager, or by vis-
iting www.openssl.org.

 The openssl tool takes a command as the first argument, and then options as sub-
sequent arguments. For example, openssl req is used for X.509 Certificate Signing
Request (CSR) management. To make a certificate signed by an authority you control,
you’ll need to issue the following commands:

■ genrsa—Generate an RSA certificate; this is our private key.
■ req—Create a CSR.
■ x509—Sign the private key with the CSR to produce a public key.

When the process is broken down like this, it’s fairly easy to understand: certificates
require an authority and must be signed, and we need a public and private key. The pro-
cess is similar when creating a public and private key signed against a commercial certif-
icate authority, which you’ll do if you want to buy certificates to use with public web servers.

 The full command list for creating a public and private key is as follows:

openssl genrsa -out server.pem 1024
openssl req -new -key server.pem -out server-csr.pem
openssl x509 -req -in server-csr.pem -signkey server.pem \
-out server-cert.pem

openssl genrsa -out client.pem 1024
openssl req -new -key client.pem -out client-csr.pem
openssl x509 -req -in client-csr.pem -signkey client.pem \
-out client-cert.pem

After creating a private key B, you’ll create a CSR. When prompted for the “Common
Name” C, enter your computer’s hostname, which you can find by typing hostname in

Create server’s private
key using 1024 bits

B
Create

CSR—this is
where you
enter your
hostname

C

Sign server’s
private key

Create client’s
private key

Create CSR for the
client—remember

to enter your
hostname here as

well

Sign client’s private key
and output a public key

www.openssl.org

169TECHNIQUE 54 A TCP server that uses encryption

the terminal on a Unix system. This is important, because when your code sends or
receives certificates, it’ll check the name value against the servername property
passed to the tls.connect method.

 The next listing reads the server’s keys and starts a server running using
tls.createServer.

var fs = require('fs');
var tls = require('tls');

var options = {
key: fs.readFileSync('server.pem'),
cert: fs.readFileSync('server-cert.pem'),
ca: [fs.readFileSync('client-cert.pem')],
requestCert: true

};

var server = tls.createServer(options, function(cleartextStream) {
var authorized = cleartextStream.authorized ?

'authorized' : 'unauthorized';
console.log('Connected:', authorized);
cleartextStream.write('Welcome!\n');
cleartextStream.setEncoding('utf8');
cleartextStream.pipe(cleartextStream);

});

server.listen(8000, function() {
console.log('Server listening');

});

The network code in listing 7.9 is very similar to the net.createServer method—
that’s because the tls module inherits from it. The rest of the code is concerned with
managing certificates, and unfortunately this process is left to us to handle and is
often the cause of programmer errors, which can compromise security. First we load
the private B and public C keys, passing them to tls.createServer. We also load
the client’s public key as a certificate authority D—when using a commercially
obtained certificate, this stage isn’t usually required.

 When clients connect, we want to send them some data, but for the purposes of
this example we really just want to see if the client was authorized F. Client authoriza-
tion has been forced by setting the requestCert option E.

 This server can be run with node tls.js—but there’s something missing: a client!
The next listing contains a client that can connect to this server.

var fs = require('fs');
var os = require('os');
var tls = require('tls');

var options = {

Listing 7.9 A TCP server that uses TLS for encryption

Listing 7.10 A TCP client that uses TLS

Private keyB
Public key C

Client as a certificate
authorityDEnsure client

certificates are
always checked E

Whenever a client
connects, show if
server was able to
verify the certificatesF

170 CHAPTER 7 Networking: Node’s true “Hello, World”

key: fs.readFileSync('client.pem'),
cert: fs.readFileSync('client-cert.pem'),
ca: [fs.readFileSync('server-cert.pem')],
servername: os.hostname()

};

var cleartextStream = tls.connect(8000, options, function() {
var authorized = cleartextStream.authorized ?

'authorized' : 'unauthorized';
console.log('Connected:', authorized);
process.stdin.pipe(cleartextStream);

});

cleartextStream.setEncoding('utf8');

cleartextStream.on('data', function(data) {
console.log(data);

});

The client is similar to the server: the private B and public keys C are loaded, and
this time the server is treated as the CA D. The server’s name is set to the same value
as the Common Name in the CSR by using os.hostname E—you could type in the
name manually if you set it to something else. After that the client connects, displays
whether it was able to authorize the certificates, and then reads data sent by the server
and pipes it to the standard output F.

An instance of tls.Server is instantiated when you call tls.createServer. This con-
structor calls net.Server—there’s a clear inheritance chain between each networking
module. That means the events emitted by net.Server are the same for TLS servers.

 In the next technique you’ll see how to use HTTPS, and how this is also related to
the tls and net modules.

TECHNIQUE 55 Encrypted web servers and clients

Though it’s possible to host Node applications behind other web servers like Apache
and nginx, there are times when you’ll want to run your own HTTPS servers. This tech-
nique introduces the https module and shows how it’s related to the tls module.

Load private keyB
Load public key C

Treat server as a
certificate authorityDSet hostname

as the server
name E

Read data from server
and print it outF

Testing SSL/TLS
When testing secure certificates, it can be hard to tell whether the problem lies in
your code or elsewhere. One way around this is to use the openssl command-line
tool to simulate a client or server. The following command will start a client that con-
nects to a server with the given certificate file:

openssl s_client -connect 127.0.0.1:8000 \

➥ -CAfile ./server-cert.pem

The openssl tool will display a lot of extra information about the connection. When
we wrote the example in this technique, we used it to figure out that the certificate
we’d generated had the wrong value for its Common Name.

171TECHNIQUE 55 Encrypted web servers and clients

■ Problem
You want to run a server that supports SSL/TLS.

■ Solution
Use the https module and https.createServer.

■ Discussion
To run the examples in this technique, you’ll need to have followed the steps to create
suitable self-signed certificates, as found in technique 54. Once you’ve set up some
public and private keys, you’ll be able to run the examples.

 The following listing shows an HTTPS server.

var fs = require('fs');
var https = require('https');

var options = {
key: fs.readFileSync('server.pem'),
cert: fs.readFileSync('server-cert.pem'),
ca: [fs.readFileSync('client-cert.pem')],
requestCert: true

};

var server = https.createServer(options, function(req, res) {
var authorized = req.socket.authorized

? 'authorized' : 'unauthorized';
res.writeHead(200);
res.write('Welcome! You are ' + authorized + '\n');
res.end();

});

server.listen(8000, function() {
console.log('Server listening');

});

The server in listing 7.11 is basically the same as the one in technique 54. Again, the
private B and public C keys are loaded and passed to https.createServer.

 When browsers request a page, we check the req.socket.authorized property to
see if the request was authorized. This status is returned to the browser. If you want to
try this out with a browser, ensure you type https:// into the address bar; otherwise it
won’t work. You’ll see a warning message because the browser won’t be able to verify
the server’s certificate—that’s OK; you know what’s going on because you created the
server. The server will respond saying that you’re unauthorized because it won’t be able
to authorize you, either.

 To make a client that can connect to this server, follow the code shown next.

var fs = require('fs');
var https = require('https');
var os = require('os');

Listing 7.11 A basic HTTP server that uses TLS for encryption

Listing 7.12 An example HTTPS client

Private keyB
Public key C

Ensure client certificates
are always checked

When a browser
requests a page,

show if server
was able to

verify the
certificates

172 CHAPTER 7 Networking: Node’s true “Hello, World”

var options = {
key: fs.readFileSync('client.pem'),
cert: fs.readFileSync('client-cert.pem'),
ca: [fs.readFileSync('server-cert.pem')],
hostname: os.hostname(),
port: 8000,
path: '/',
method: 'GET'

};

var req = https.request(options, function(res) {
res.on('data', function(d) {

process.stdout.write(d);
});

});
req.end();

req.on('error', function(e) {
console.error(e);

});

This example sets the private B and public C keys for the client, which is what your
browser does transparently when making secure requests. It also sets the server as a
certificate authority D, which wouldn’t usually be required. The hostname used for
the HTTP request is the machine’s current hostname E.

 Once all of this setup is done, the HTTPS request can be made. This is done using
https.request F. The API is identical to the http module. In this example the server
will ensure the SSL/TLS authorization procedure was valid, so the server will return
text to indicate if the connection was fully authorized.

 In real HTTPS code, you probably wouldn’t make your own CA. This can be useful
if you have internal systems that you want to communicate with using HTTPS—per-
haps for testing or for API requests over the internet. When making HTTPS requests
against public web servers, Node will be able to verify the server’s certificates for you,
so you won’t need to set the key, cert, and ca options.

 The https module has some other features—there’s an https.get convenience
method for making GET requests more easily. Otherwise, that wraps up our set of tech-
niques on encryption in Node.

Load private keyB
Load public key C

Load server’s
certificate as
a CAD

Set hostname as
the machine’s

hostname E

Make HTTPS
request using
https.requestF

Secure pairs
Before moving off encryption for greener pastures, there’s one patch of delicious turf
left to chew: SecurePair. This is a class in the tls module that can be used to
create a secure pair of streams: one reads and writes encrypted data, and the other
reads and writes clear text. This potentially allows you to stream anything to an
encrypted output.

There’s a convenience method for this: tls.createSecurePair. When a SecurePair
establishes a secure connection, it’ll emit a secure event, but you’ll still need to check
for cleartext.authorized to ensure the certificates were properly authorized.

173Summary

7.7 Summary
This chapter has been long, but that’s because networking in Node is important.
Node is built on excellent foundations for network programming; buffers, streams,
and asynchronous I/O all contribute to an environment that is perfect for writing the
next generation of network-oriented programs.

 With this chapter you should be able to appreciate how Node fits into the wider
world of network software. Whether you’re developing Unix daemons, Windows-
based game servers, or the next big web app, you should now know where to start.

 It goes without saying that networking and encryption are closely related. With
Node’s tls and https modules, you should be able to write network clients and serv-
ers that can talk to other systems without fear of eavesdroppers.

 The next chapter is the last on Node’s core modules, child_process, and looks at
techniques for interfacing with other command-line programs.

174

Child processes:
 Integrating external

 applications with Node

No platform is an island. Although it would be fun to write everything in JavaScript,
we’d miss out on valuable applications that already exist in other platforms. Take
GraphicsMagick, for instance (http://www.graphicsmagick.org/): a full-featured
image manipulation tool, great for resizing that massively large profile photo that
was just uploaded. Or take wkhtmltopdf (http://wkhtmltopdf.org/), a headless
webkit PDF generator, perfect for turning that HTML report into a PDF download.

This chapter covers
■ Executing external applications
■ Detaching a child process
■ Interprocess communication between Node processes
■ Making Node programs executable
■ Creating job pools
■ Synchronous child processes

http://www.graphicsmagick.org/
http://wkhtmltopdf.org/

175Executing external applications

In Node, the child_process module allows us to execute these applications and oth-
ers (including Node applications) to use with our programs. Thankfully, we don’t
have to re-invent the wheel.

 The child_process module provides four different methods for executing exter-
nal applications. All methods are asynchronous. The right method will depend on
what you need, as shown in figure 8.1.

■ execFile—Execute an external application, given a set of arguments, and call-
back with the buffered output after the process exits.

■ spawn—Execute an external application, given a set of arguments, and provide
a streaming interface for I/O and events for when the process exits.

■ exec—Execute one or more commands inside a shell and callback with the
buffered output after the process exits.

■ fork—Execute a Node module as a separate process, given a set of arguments,
provide a streaming and evented interface like spawn, and also set up an inter-
process communication (IPC) channel between the parent and child process.

Throughout this chapter we’ll dive into how to get the most out of these methods, giv-
ing practical examples of where you’d want to use each. Later on, we’ll look into some
other techniques to use when working with child processes: detaching processes,
interprocess communication, file descriptors, and pooling.

8.1 Executing external applications
In this first section, we will look at all the ways you can work asynchronously with an
external program.

External app

Non-Node Node

Streaming

YesNo No

Streaming

No

spawn execFile exec fork

Buffered (callback)

Method to use:

Use a subshell?

Type of interface?

Type of application?

Figure 8.1 Choosing the right method

176 CHAPTER 8 Child processes: Integrating external applications with Node

TECHNIQUE 56 Executing external applications

Wouldn’t it be great to run some image processing on a user’s uploaded photo with
ImageMagick, or validate an XML file with xmllint? Node makes it easy to execute
external applications.

■ Problem
You want to execute an external application and get the output.

■ Solution
Use execFile (see figure 8.2).

■ Discussion
If you want to run an external application and get the result, using execFile makes it
simple and straightforward. It’ll buffer the output for you and provide the results and
any errors in a callback. Let’s say we want to run the echo program given the parame-
ters hello world. With execFile, we would do the following:

var cp = require('child_process');

cp.execFile('echo', ['hello', 'world'],
function (err, stdout, stderr) {
if (err) console.error(err);

 console.log('stdout', stdout);
 console.log('stderr', stderr);

 });

How does Node know where to find the external application? To answer that, we need
to look at how paths work in the underlying operating system.

8.1.1 Paths and the PATH environment variable

Windows/UNIX has a PATH environment variable (envvar: http://en.wikipedia.org/
wiki/PATH_(variable)). PATH contains a list of directories where executable programs
exist. If a program exists in one of the listed directories, it can be located without
needing an absolute or relative path to the application.

execFile

External app

stdout

stderr

Callback

Execute our external app asynchronously.

The output from
our external app is
buffered internally.

When our external app
exits, our callback is called

with the output.

Figure 8.2 The
execFile method buffers
the result and provides a
callback interface.

Provide command as first parameter
and any command arguments as an
array for second parameter

Callback includes any error executing
the command and buffered output
from stdout and stderr

http://en.wikipedia.org/wiki/PATH_(variable)
http://en.wikipedia.org/wiki/PATH_(variable)

177TECHNIQUE 56 Executing external applications

Node, using execvp behind the scenes, will search for applications using PATH when no
absolute or relative location is provided. We can see this in our earlier example, since
directories to common system applications like echo usually exist in PATH already.

 If the directory containing the application isn’t in PATH, you’ll need to provide the
location explicitly like you would on the command line:

cp.execFile('./app-in-this-directory' ...
cp.execFile('/absolute/path/to/app' ...
cp.execFile('../relative/path/to/app' ...

To see what directories are listed in PATH, you can run a simple one-liner in the Node
REPL:

$ node
> console.log(process.env.PATH.split(':').join('\n'))
/usr/local/bin
/usr/bin/bin
…

If you want to avoid including the location to external applications not in PATH, one
option is to add any new directories to PATH inside your Node application. Just add
this line before any execFile calls:

process.env.PATH += ':/a/new/path/to/executables';

Now any applications in that new directory will be accessible without providing a path
to execFile.

8.1.2 Errors when executing external applications

If your external application doesn’t exist, you’ll get an ENOENT error. Often this is
due to a typo in the application name or path with the result that Node can’t find the
application, as shown in figure 8.3.

 If the external application does exist but Node can’t access it (typically due to
insufficient permissions), you’ll get an EACCES or EPERM error. This can often be mit-
igated by either running your Node program as a user with sufficient permissions or
changing the external application permissions themselves to allow access.

execFile

ENOENT

The application was
not found.

External application

execFile

EPERM EACCES

Insufficient permissions to
execute application.

External application

Nonexistent path or
name provided.

Path to locked
application provided.

Figure 8.3 Common child process errors

178 CHAPTER 8 Child processes: Integrating external applications with Node

You’ll also get an error if the external application has a non-zero exit status (http://
mng.bz/MLXP), which is used to indicate that an application couldn’t perform the task
it was given (on both UNIX and Windows). Node will provide the exit status as part of
the error object and will also provide any data that was written to stdout or stderr:

var cp = require('child_process');
cp.execFile('ls', ['non-existent-directory-to-list'],

function (err, stdout, stderr) {
console.log(err.code);
console.log(stderr);

});

Having execFile is great for when you want to just execute an application and get the
output (or discard it), for example, if you want to run an image-processing command
with ImageMagick and only care if it succeeds or not. But if an application has a lot of
output or you want to do more real-time analysis of the data returned, using streams is
a better approach.

TECHNIQUE 57 Streaming and external applications

Imagine a web application that uses the output from an external application. As that
data is being made available, you can at the same time be pushing it out to the client.
Streaming enables you to tap into the data from a child process as it’s being output-
ted, versus having the data buffered and then provided. This is good if you expect the
external application to output large amounts of data. Why? Buffering a large set of
data can take up a lot of memory. Also, this enables data to be consumed as it’s being
made available, which improves responsiveness.

■ Problem
You want to execute an external application and stream the output.

■ Solution
Use spawn (see figure 8.4).

Output exit code, which is
1 in this case, indicating
command failed

Output error details
stored in stderr

spawn

External app

ChildProcess

stdout

stderr

Execute our external app asynchronously.

Return a
ChildProcess

object.

ChildProcess
contains Readable
streams for stdout

and stderr.

Figure 8.4 The spawn method
returns a streaming interface
for I/O.

http://mng.bz/MLXP
http://mng.bz/MLXP

179TECHNIQUE 57 Streaming and external applications

■ Discussion
The spawn method has a function signature similar to execFile:

cp.execFile('echo', ['hello', 'world'], ...);
cp.spawn('echo', ['hello', 'world'], ...);

The application is the first argument, and an array of parameters/flags for the appli-
cation is the second. But instead of taking a callback providing the output already
buffered, spawn relies on streams:

var cp = require('child_process');

var child = cp.spawn('echo', ['hello', 'world']);
child.on('error', console.error);
child.stdout.pipe(process.stdout);
child.stderr.pipe(process.stderr);

Since spawn is stream-based, it’s great for handling large outputs or working with data
as it’s read in. All other benefits of streams apply as well. For example, child.stdin is
a Writeable stream, so you can hook that up to any Readable stream to get data. The
reverse is true for child.stdout and child.stderr, which are Readable streams that
can be hooked into any Writeable stream.

API SYMMETRY The ChildProcess API (child.stdin, child.stdout,
child.stderr) share a nice symmetry with the parent process streams (pro-
cess.stdin, process.stdout, process.stderr).

8.1.3 Stringing external applications together

A large part of UNIX philosophy is building applications that do one thing and do it
well, and then communicating between those applications with a common interface
(that being plain text).

 Let’s make a Node program that exemplifies this by taking three simple applica-
tions that deal with text streams and sticking them together using spawn. The cat
application will read a file and output its contents. The sort application will take in
the file as input and provide the lines sorted as output. The uniq application will take
the sorted file as input, and output the sorted file with all the duplicate lines removed.
This is illustrated in figure 8.5.

 Let’s look at how we can do this with spawn and streams:

var cp = require('child_process');
var cat = cp.spawn('cat', ['messy.txt']);
var sort = cp.spawn('sort');
var uniq = cp.spawn('uniq');

cat.stdout.pipe(sort.stdin);
sort.stdout.pipe(uniq.stdin);
uniq.stdout.pipe(process.stdout);

Spawn method returns
 a ChildProcess object containing stdin,

stdout, and stderr stream objects
Errors are
emitted on
error event

Output from stdout
and stderr can be
read as it’s available

Call spawn for each
command we want
to chain together

Output of each command
becomes input for next
command

Stream result to
the console with

process.stdout

180 CHAPTER 8 Child processes: Integrating external applications with Node

Using spawn’s streaming interfaces allows a seamless way to work with any stream
objects in Node, including stringing external applications together. But sometimes we
need the facilities of our underlying shell to do powerful composition of external
applications. For that, we can use exec.

APPLYING WHAT YOU’VE LEARNED Can you think of a way to avoid using the
cat program based on what you learned with the fs module and streaming in
chapter 6?

TECHNIQUE 58 Executing commands in a shell

Shell programming is a common way to build utility scripts or command-line applica-
tions. You could whip up a Bash or Python script, but with Node, you can use
JavaScript. Although you could execute a subshell manually using execFile or spawn,
Node provides a convenient, cross-platform method for you.

■ Problem
You need to use the underlying shell facilities (like pipes, redirects, file blobs) to exe-
cute commands and get the output.

■ Solution
Use exec (see figure 8.6).

■ Discussion
If you need to execute commands in a shell, you can use exec. The exec method runs
the commands with /bin/sh or cmd.exe (on Windows). Running commands in a shell
means you have access to all the functionality provided by your particular shell (like
pipes, redirects, and backgrounding).

cat

messy.txt

sort uniq stdout

1

1 2 3 4

cat outputs the contents
of messy.txt.

2 sort takes contents and
outputs sorted lines.

3 uniq takes sorted lines and
removes duplicates in output.

4 process.stdout takes de-duped
sorted lines and prints them to
the console.

Ralph
Alex
Marc
Ralph

Alex
Marc
Ralph
Ralph

Alex
Marc
Ralph

Figure 8.5 Stringing external applications together with spawn

181TECHNIQUE 58 Executing commands in a shell

A SINGLE COMMAND ARGUMENT Unlike execFile and spawn, the exec method
doesn’t have a separate argument for command parameters/flags, since you
can run more than one command on a shell.

As an example, let’s pipe together the same three applications we did in the last tech-
nique to generate a sorted, unique list of names. But this time, we’ll use common
UNIX shell facilities rather than streams:

cp.exec('cat messy.txt | sort | uniq',
function (err, stdout, stderr) {
console.log(stdout);

});

ABOUT SHELLS UNIX users should keep in mind that Node uses whatever is
mapped to /bin/sh for execution. This typically will be Bash on most modern
operating systems, but you have the option to remap it to another shell of
your liking. Windows users who need a piping facility can use streams and
spawn as discussed in technique 57.

8.1.4 Security and shell command execution

Having access to a shell is powerful and convenient, but it should be used cautiously,
especially with a user’s input.

 Let’s say we’re using xmllint (http://xmlsoft.org/xmllint.html) to parse and
detect errors in a user’s uploaded XML file where the user provides a schema to vali-
date against:

cp.exec('xmllint --schema '+req.query.schema+' the.xml');

If a user provided “http://site.com/schema.xsd,” it would be replaced and the follow-
ing command would run:

xmllint --schema http://site.com/schema.xsd the.xml

exec

Shell

Commands stderr

stderr

Execute our commands asynchronously in a subshell.

The output from the
subshell is buffered

internally.

When subshell exits,
our callback is called

with the output.

Callback

Figure 8.6 The exec method runs our commands in a subshell.

Pipe cat, sort,
and uniq together
like we would on
command line

If successful, stdout
will contain sorted,
de-duped version of

messy.txt

http://xmlsoft.org/xmllint.html

182 CHAPTER 8 Child processes: Integrating external applications with Node

But since the argument has user input, it can easily fall prey to command (or shell) injec-
tion attacks (https://golemtechnologies.com/articles/shell-injection)—for example,
a malicious user provides “; rm -rf / ;” causing the following comment to run (please don’t
run this in your terminal!):

xmllint --schema ; rm -rf / ; the.xml

If you haven’t guessed already, this says, “Start new command (;), remove forcibly and
recursively all files/directories at root of the file system (rm -rf /), and end the com-
mand (;) in case something follows it.”

 In other words, this injection could potentially delete all the files the Node process
has permission to access on the entire operating system! And that’s just one of the
commands that can be run. Anything your process user has access to (files, com-
mands, and so on) can be exploited.

 If you need to run an application and don’t need shell facilities, it’s safer (and
slightly faster) to use execFile instead:

cp.execFile('xmllint', ['--schema', req.query.schema, 'the.xml']);

Here this malicious injection attack would fail since it’s not run in a shell and the exter-
nal application likely wouldn’t understand the argument and would raise an error.

TECHNIQUE 59 Detaching a child process

Node can be used to kick off external applications and then allow them to run on
their own. For example, let’s say you have an administrative web application in Node
that allows you to kick off a long-running synchronization process with your cloud
provider. If that Node application were to crash, your synchronization process would
be halted. To avoid this, you detach your external application so it’ll be unaffected.

■ Problem
You have a long-running external application that you want Node to start but then be
able to exit with the child process still running.

■ Solution
Detach a spawned child process (see figure 8.7).

Node.js

Attached child process
exits when Node exits.

Child process

Attached child process

Process
group

Process
leader

Node.js

Detached child process
is process leader and lives

independent of Node.

Child process

Detached child process

Figure 8.7 Detached child process exists independent of the Node process

https://golemtechnologies.com/articles/shell-injection

183TECHNIQUE 59 Detaching a child process

■ Discussion
Normally, any child process will be terminated when the parent Node process is termi-
nated. Child processes are said to be attached to the parent process. But the spawn
method includes the ability to detach a child process and promote it to be a process
group leader. In this scenario, if the parent is terminated, the child process will con-
tinue until finished.

 This scenario is useful when you want Node to set up the execution of a long-
running external process and you don’t need Node to babysit it after it starts.

 This is the detached option, configurable as part of a third options parameter to
spawn:

var child = cp.spawn('./longrun', [], { detached: true });

In this example, longrun will be promoted to a process group leader. If you were to
run this Node program and forcibly terminate it (Ctrl-C), longrun would continue
executing until finished.

 If you didn’t forcibly terminate, you’d notice that the parent stays alive until the
child has completed. This is because I/O of the child process is connected to the par-
ent. In order to disconnect the I/O, you have to configure the stdio option.

8.1.5 Handing I/O between the child and parent processes

The stdio option defines where the I/O from a child process will be redirected. It
takes either an array or a string as a value. The string values are simply shorthands that
will expand to common array configurations.

 The array is structured such that the indexes correspond to file descriptors in the
child process and the values indicate where the I/O for the particular file descriptor
(FD) should be redirected.

WHAT ARE FILE DESCRIPTORS? If you’re confused about file descriptors, check
out technique 40 in chapter 6 for an introduction.

By default, stdio is configured as

stdio: 'pipe'

which is a shorthand for the following array values:

stdio: ['pipe', 'pipe', 'pipe']

This means that file descriptors 0-2 will be made accessible on the ChildProcess object
as streams (child.stdio[0], child.stdio[1], child.stdio[2]). But since FDs 0-2
often refer to stdin, stdout, and stderr, they’re also made available as the now familiar
child.stdin, child.stdout, and child.stderr streams.

 The pipe value connects the parent and child processes because these streams stay
open, waiting to write or read data. But for this technique, we want to disconnect the
two in order to exit the Node process. A brute-force approach would be to simply
destroy all the streams created:

184 CHAPTER 8 Child processes: Integrating external applications with Node

child.stdin.destroy();
child.stdout.destroy();
child.stderr.destroy();

Although this would work, given our intent to not use them, it’s better to not create
the streams in the first place. Instead, we can assign a file descriptor if we want to
direct the I/O elsewhere or use ignore to discard it completely.

 Let’s look at a solution that uses both options. We want to ignore FD 0 (stdin)
since we won’t be providing any input to the child process. But let’s capture any out-
put from FDs 1 and 2 (stdout, stderr) just in case we need to do some debugging
later on. Here’s how we can accomplish that:

var fs = require('fs');
var cp = require('child_process');

var outFd = fs.openSync('./longrun.out', 'a');
var errFd = fs.openSync('./longrun.err', 'a');

var child = cp.spawn('./longrun', [], {
detached: true,
stdio: ['ignore', outFd, errFd]

});

This will disconnect the I/O between the child and parent processes. If we run this
application, the output from the child process will end up in the log files.

8.1.6 Reference counting and child processes

We’re almost there. The child process will live on because it’s detached and the I/O is
disconnected from the parent. But the parent still has an internal reference to the
child process and won’t exit until the child process has finished and the reference has
been removed.

 You can use the child.unref() method to tell Node not to include this child pro-
cess reference in its count. The following complete application will now exit after
spawning the child process:

var fs = require('fs');
var cp = require('child_process');

var outFd = fs.openSync('./longrun.out', 'a');
var errFd = fs.openSync('./longrun.err', 'a');

var child = cp.spawn('./longrun', [], {
detached: true,
stdio: ['ignore', outFd, errFd]

});

child.unref();

To review, detaching a process requires three things:

Open two log files,
one for stdout and
one for stderr

Ignore FD 0; redirect
output from FDs 1
and 2 to the log files

Remove reference of child
in the parent process

185TECHNIQUE 60 Executing Node programs

■ The detached option must be set to true so the child becomes its own process
leader.

■ The stdio option must be configured so the parent and child are disconnected.
■ The reference to the child must be severed in the parent using child.unref().

8.2 Executing Node programs
Any of the prior techniques can be used to execute Node applications. However, in the
techniques to follow, we will focus on making the most out of Node child processes.

TECHNIQUE 60 Executing Node programs

When writing shell scripts, utilities, or other command-line applications in Node, it’s
often handy to make executables out of them for ease of use and portability. If you
publish command-line applications to npm, this also comes in handy.

■ Problem
You want to make a Node program an executable script.

■ Solution
Set up the file to be executable by your underlying platform.

■ Discussion
A Node program can be run as a child process with any of the means we’ve already
described by simply using the node executable:

var cp = require('child_process');
cp.execFile('node', ['myapp.js', 'myarg1', 'myarg2'], ...

But there are many cases where having a standalone executable is more convenient,
where you can instead use your app like this:

myapp myarg1 myarg2

The process for making an executable will vary depending on whether you’re on Win-
dows or UNIX.

Executables on Windows
Let’s say we have a simple one-liner hello.js program that echoes the first argument
passed:

console.log('hello', process.argv[2]);

To run this program, we type

$ node hello.js marty
hello marty

To make a Windows executable, we can make a simple batch script calling the Node
program. For consistency, let’s call it hello.bat:

@echo off
node "hello.js" %*

Don’t echo
commands
to stdout

Call node executable,
passing in any additional

parameters (%*)

186 CHAPTER 8 Child processes: Integrating external applications with Node

Now we can execute our hello.js program by simply running the following:

$ hello tom
hello tom

Running it as a child process requires the .bat extension:

var cp = require('child_process');
cp.execFile('hello.bat', ['billy'], function (err, stdout) {

console.log(stdout); // hello billy
});

Executables on UNIX
To turn a Node program into an executable script on most UNIX systems, we don’t
need a separate batch file like in Windows; we simply modify hello.js itself by adding
the following to the top of the file:

#!/usr/bin/env node
console.log('hello', process.argv[2]);

Then to actually make the file executable, we run the following command:

$ chmod +x hello.js

We can then run the command like this:

$./hello.js jim
hello jim

The file can be renamed as well to look more like a standalone program:

$ mv hello.js hello
$./hello jane
hello jane

Executing this program as a child process will look the same as its command-line
counterpart:

var cp = require('child_process');
cp.execFile('./hello', ['bono'], function (err, stdout) {

console.log(stdout); // hello bono
});

PUBLISHING EXECUTABLE FILES IN NPM For publishing packages that contain
executable files, use the UNIX conventions, and npm will make the proper
adjustments for Windows.

TECHNIQUE 61 Forking Node modules

Web workers (http://mng.bz/UG63) provide the browser and JavaScript an elegant
way to run computationally intense tasks off the main thread with a built-in commu-
nication stream between the parent and worker. This removes the painful work of
breaking up computation into pieces in order to not upset the user experience. In
Node, we have the same concept, with a slightly different API with fork. This helps

Execute node command
wherever it’s found in
user’s environment

http://mng.bz/UG63

187TECHNIQUE 61 Forking Node modules

us break out any heavy lifting into a separate process, keeping our event loop run-
ning smoothly.

■ Problem
You want to manage separate Node processes.

■ Solution
Use fork (see figure 8.8).

■ Discussion
Sometimes it’s useful to have separate Node processes. One such case is computation.
Since Node is single-threaded, computational tasks directly affect the performance of
the whole process. This may be acceptable for certain jobs, but when it comes to network
programming, it’ll severely affect performance since requests can’t be serviced when
the process is tied up. Running these types of tasks in a forked process allows the main
application to stay responsive. Another use of forking is for sharing file descriptors,
where a child can accept an incoming connection received by the parent process.

 Node provides a nice way to communicate between other Node programs. Under
the hood, it sets up the following stdio configuration:

stdio: [0, 1, 2, 'ipc']

This means that, by default, all output and input are directly inherited from the par-
ent; there’s no child.stdin, child.stdout, or child.stderr:

var cp = require('child_process');
var child = cp.fork('./myChild');

If you want to provide an I/O configuration that behaves like the spawn defaults
(meaning you get a child.stdin, and so on), you can use the silent option:

var cp = require('child_process');
var child = cp.fork('./myChild', { silent: true });

INTERNALS OF INTERPROCESS COMMUNICATION Although a number of mecha-
nisms exist to provide interprocess communication (IPC; see http://mng.bz/
LGKD), Node IPC channels will use either a UNIX domain socket (http://
mng.bz/1189) or a Windows named pipe (http://mng.bz/262Q).

fork

Node module

ChildProcess

Execute our Node module as a separate process.

IPC channel set up between
parent and child.

ChildProcess shares
I/O of parent.

Figure 8.8 The fork command
runs a Node module in a separate
process and sets up a communi-
cations channel.

http://mng.bz/LGKD
http://mng.bz/LGKD
http://mng.bz/1189
http://mng.bz/1189
http://mng.bz/262Q

188 CHAPTER 8 Child processes: Integrating external applications with Node

Communicating with forked Node modules
The fork method opens up an IPC channel that allows message passing between Node
processes. On the child side, it exposes process.on('message') and process.send()
as mechanisms for receiving and sending messages. On the parent side, it provides
child.on('message') and child.send().

 Let’s make a simple echo module that sends back any message received from the
parent:

process.on('message', function (msg) {
process.send(msg);

});

An application can now consume this module using fork:

var cp = require('child_process');
var child = cp.fork('./child');
child.on('message', function (msg) {

console.log('got a message from child', msg);
});
child.send('sending a string');

Sending data between the processes maintains the type information, which means you
can send any valid JSON value over the wire and it retains the type:

child.send(230);
child.send('a string');
child.send(true);
child.send(null);
child.send({ an: 'object' });

Disconnecting from forked Node modules
Since we’re opening an IPC channel between the parent and child, both stay alive
until the child is disconnected (or exits some other way). If you need to disconnect
the IPC channel, you can do that explicitly from the parent process:

child.disconnect();

TECHNIQUE 62 Running jobs

When you need to run routine computational jobs, forking processes on demand will
quickly eat up your CPU resources. It’s better to keep a job pool of available Node pro-
cesses ready for work. This technique takes a look at that.

■ Problem
You have routine jobs that you don’t want to run on the main event loop.

■ Solution
Use fork and manage a pool of workers.

■ Discussion
We can use the IPC channel built into fork to create a pattern for handling computa-
tionally intensive tasks (or jobs). It builds upon our last technique, but adds an important

When child receives a
message, this handler
will be calledSend message

back to parent

When parent receives a
message, this handler
will be called

Log out
echoed

message

Send message to
child process

189TECHNIQUE 62 Running jobs

constraint: when the parent sends a task to the child, it expects to receive exactly one
result. Here’s how this works in the parent process:

function doWork (job, cb) {
var child = cp.fork('./worker');
child.send(job);
child.once('message', function (result) {

cb(null, result);
});

}

But receiving a result is only one of the possible outcomes. To build resilience into our
doWork function, we’ll account for

■ The child exiting for any reason
■ Unexpected errors (like a closed IPC channel or failure to fork)

Handling those in code will involve a couple more listeners:

child.once('error', function (err) {
cb(err);
child.kill();

});
child.once('exit', function (code, signal) {

cb(new Error('Child exited with code: ' + code));
});

This is a good start, but we run the risk of calling our callback more than once in the
case where the worker finished the job but then later exited or had an error. Let’s add
some state and clean things up a bit:

function doWork (job, cb) {
var child = cp.fork('./worker');
var cbTriggered = false;

child
.once('error', function (err) {

if (!cbTriggered) {
cb(err);
cbTriggered = true;

}
child.kill();

})
.once('exit', function (code, signal) {

if (!cbTriggered)
cb(new Error('Child exited with code: ' + code));

})
.once('message', function (result) {

cb(null, result);
cbTriggered = true;

})
.send(job);

}

Send job to the
child process

Expect child to respond
with exactly one message
providing the result

Unexpected error; kill
the process as it’s
likely unusable

Track if callback
was called

Message will never be
triggered if an error or exit
happens, so we don’t need
cbTriggered check

190 CHAPTER 8 Child processes: Integrating external applications with Node

So far we’ve only looked at the parent process. The child worker takes in a job, and
sends exactly one message back to the parent when completed:

process.on('message', function (job) {
// do work
process.send(result);

});

8.2.1 Job pooling

Currently, our doWork function will spin up a new child process every time we need to
do some work. This isn’t free, as the Node documentation states:

These child Nodes are still whole new instances of V8. Assume at least 30ms startup
and 10mb memory for each new Node. That is, you cannot create many thousands
of them.

A performant way to work around this is not to spin off a new process whenever you
want to do something computationally expensive, but rather to maintain a pool of
long-running processes that can handle the load.

 Let’s expand our doWork function, creating a module for handling a worker pool.
Here are some additional constraints we’ll add:

■ Only fork up to as many worker processes as CPUs on the machine.
■ Ensure new work gets an available worker process and not one that’s currently

in-process.
■ When no worker processes are available, maintain a queue of tasks to execute as

processes become available.
■ Fork processes on demand.

Let’s take a look at the code to implement this:

var cp = require('child_process');
var cpus = require('os').cpus().length;)

module.exports = function (workModule) {
var awaiting = [];
var readyPool = [];
var poolSize = 0;

return function doWork (job, cb) {
if (!readyPool.length && poolSize > cpus)

return awaiting.push([doWork, job, cb]);

var child = readyPool.length
? readyPool.shift()
: (poolSize++, cp.fork(workModule));

var cbTriggered = false;

child

Grab number
of CPUs Keep list of tasks that are

queued to run when all
processes are in use

Keep list of worker processes
that are ready for work

Keep track of how many
worker processes exist

If no worker processes are
available and we’ve reached
our limit, queue work to be
run later

Grab next available child,
or fork a new process
(incrementing the poolSize)

191TECHNIQUE 62 Running jobs

.removeAllListeners()

.once('error', function (err) {
if (!cbTriggered) {

cb(err);
cbTriggered = true;

}
child.kill();

})
.once('exit', function () {

if (!cbTriggered)
cb(new Error('Child exited with code: ' + code));

poolSize--;
var childIdx = readyPool.indexOf(child);
if (childIdx > -1) readyPool.splice(childIdx, 1);

})
.once('message', function (msg) {

cb(null, msg);
cbTriggered = true;
readyPool.push(child);
if (awaiting.length) setImmediate.apply(null, awaiting.shift());

})
.send(job);

}
}

APPLYING WHAT YOU’VE LEARNED Other constraints may apply depending on
the needs of the pool, for example, retrying jobs on failure or killing long-
running jobs. How would you implement a retry or timeout using the preced-
ing example?

8.2.2 Using the pooler module

Let’s say we want to run a computationally intensive task based on a user’s request to
our server. First, let’s expand our child worker process to simulate an intensive task:

process.on('message', function (job) {
for (var i = 0; i < 1000000000; i++);
process.send('finished: ' + job);

});

Now that we have a sample child process to run, let’s put this all together with a simple
application that uses the pooler module and worker modules:

var http = require('http');
var makePool = require('./pooler');
var runJob = makePool('./worker');

http.createServer(function (req, res) {
runJob('some dummy job', function (er, data) {

Remove any listeners that exist on
child, ensuring that a child process
will always have only one listener
attached for each event at a time

If child exits for any reason, ensure
it’s removed from the readyPool

Child is ready again; add
back to readyPool and run
next awaiting task (if any)

Receive
task from
the parent

Actual work happens
here; in our case, we’ll
simply generate a CPU

load on the child

Send result of task
back to the parent

Include pooler
module to make
job pools

Create job
pool around
the worker

module
Run job on every
request to the
server, responding
with the result

192 CHAPTER 8 Child processes: Integrating external applications with Node

if (er) return res.end('got an error:' + er.message);
res.end(data);

});
}).listen(3000);

Pooling saves the overhead of spinning up and destroying child processes. It makes
use of the communications channels built into fork and allows Node to be used effec-
tively for managing jobs across a set of child processes.

GOING FURTHER To further investigate job pools, check out the third-party
compute-cluster module (https://github.com/lloyd/node-compute-cluster).

We’ve discussed asynchronous child process execution, which is when you need to jug-
gle multiple points of I/O, like servers. But sometimes you just want to execute com-
mands one after another without the overhead. Let’s look at that next.

8.3 Working synchronously
Non-blocking I/O is important for keeping the event loop humming along without
having to wait for an unwieldy child process to finish. However, it has extra coding
overhead that isn’t pleasant when you want things to block. A good example of this is
writing shell scripts. Thankfully, synchronous child processes are also available.

TECHNIQUE 63 Synchronous child processes

Synchronous child process methods are recent additions to the Node scene. They
were first introduced in Node 0.12 to address a very real problem in a performant and
familiar manner: shell scripting. Before Node 0.12, clever but nonperformant hacks
were used to get synchronous-like behavior. Now, synchronous methods are a first-
class citizen.

 In this technique we’ll cover all the synchronous methods available in the child
process modules.

■ Problem
You want to execute commands synchronously.

■ Solution
Use execFileSync, spawnSync, and execFile.

■ Discussion
By now, we hope these synchronous methods look extremely familiar. In fact, they’re
the same in their function signatures and purpose as we’ve discussed previously in this
chapter, with one important distinction—they block and run to completion when called.

 If you just want to execute a single command and get output synchronously, use
execFileSync:

var ex = require('child_process').execFileSync;
var stdout = ex('echo', ['hello']).toString();
console.log(stdout);

Extract execFileSync method
as ex for a shorthand way to
refer to it

execFileSync returns a Buffer of the
output, which is then converted to a
UTF-8 string and assigned to stdout

Outputs
“hello”

https://github.com/lloyd/node-compute-cluster

193TECHNIQUE 63 Synchronous child processes

If you want to execute multiple commands synchronously and programmatically
where the input of one depends on the output of another, use spawnSync:

var sp = require('child_process').spawnSync;
var ps = sp('ps', ['aux']);
var grep = sp('grep', ['node'], {

input: ps.stdout,
encoding: 'utf8'

});
console.log(grep);

The resulting synchronous child process contains a lot of detail of what happened,
which is another advantage of using spawnSync:

{ status: 0,
signal: null,
output:

[null,
'wavded 4376 ... 9:03PM 0:00.00 (node)\n
wavded 4400 ... 9:11PM 0:00.10 node spawnSync.js\n',

''],
pid: 4403,
stdout: 'wavded ... 9:03PM 0:00.00 (node)\n

wavded 4400 ... 9:11PM 0:00.10 node spawnSync.js\n',
stderr: '',
envPairs:

['USER=wavded',
'EDITOR=vim',
'NODE_PATH=/Users/wavded/.nvm/v0.11.12/lib/node_modules:',
...],

options:
{ input: <Buffer 55 53 45 52 20 20 20 ... >,
 encoding: 'utf8',
 file: 'grep',
 args: ['grep', 'node'],
 stdio: [[Object], [Object], [Object]] },
 args: ['grep', 'node'],
file: 'grep' } [

Lastly, there’s execSync, which executes a subshell synchronously and runs the com-
mands given. This can be handy when writing shell scripts in JavaScript:

var ex = require('child_process').execSync;
var stdout = ex('ps aux | grep').toString();
console.log(stdout);

Extract spawnSync
method as sp for a
shorthand way to
refer to it

Run ps aux
and grep node
synchronously

Pass stdout Buffer
from ps aux as
input to grep node

Indicate all
resulting stdio

should be in UTF-8

Exit status of
the process

Signal used
to end the

process

Output of all the stdio
streams used in the child
process; we can see that
index 1 (stdout) has data

PID of the
process stdout output

for the process

stderr
output for

the process Environment variables present
when the process ran

Options used to
create the process;

we can see our
input buffer from

ps aux here

Arguments used to
execute the process Executable file

Extract execSync
method as ex for
a shorthand way

to refer to it

Execute shell command
synchronously and return
the output as a string

194 CHAPTER 8 Child processes: Integrating external applications with Node

This will output the following:

wavded 4425 29.7 0.2 ... 0:00.10 node execSync.js
wavded 4427 1.5 0.0 ... /bin/sh -c ps aux | grep node
wavded 4429 0.5 0.0 ... grep node
wavded 4376 0.0 0.0 ... (node)

Error handing with synchronous child process methods
If a non-zero exit status is returned in execSync or execFileSync, an exception will be
thrown. The error object will include everything we saw returned using spawnExec.
We’ll have access to important things like the status code and stderr stream:

var ex = require('child-process').execFileSync;
try {

ex('cd', ['non-existent-dir'], {
encoding: 'utf8'

});
} catch (err) {

console.error('exit status was', err.status);
console.error('stderr', err.stderr);

}

This program yields the following output:

exit status was 1
stderr /usr/bin/cd: line 4:cd:

non-existent-dir: No such file or directory

We talked errors in execFile and execFileSync. What about spawnSync? Since
spawnSync returns everything that happens when running the process, it doesn’t
throw an exception. Therefore, you’re responsible to check the success or failure.

8.4 Summary
In this chapter you learned to integrate different uses of external applications in
Node by using the child_process module. Here are some tips in summary:

■ Use execFile in cases where you just need to execute an external application.
It’s fast, simple, and safer when dealing with user input.

■ Use spawn when you want to do something more with the I/O of the child pro-
cess, or when you expect the process to have a large amount of output. It pro-
vides a nice streamable interface, and is also safer when dealing with user input.

■ Use exec when you want to access your shell’s facilities (pipes, redirects, blobs).
Many shells allow running multiple applications in one go. Be careful with user
input though, as it’s never a good idea to put untrusted input into an exec call.

■ Use fork when you want to run a Node module as a separate process. This
enables computation and file descriptor handling (like an incoming socket) to
be handled off the main Node process.

Output shows we’re
executing a subshell
with execSync

Executing cd on
nonexistent directory
gives non-zero exit status

Although more verbose than
toString(), setting encoding to UTF-
8 here will set it for all our stdio
streams when we handle the error

195Summary

■ Detach spawned processes you want to survive after a Node process dies. This
allows Node to be used to set up long-running processes and let them live on
their own.

■ Pool a cluster of Node processes and use the built-in IPC channel to save the
overhead of starting and destroying processes on every fork. This is useful for
building computational clusters of Node processes.

This concludes our dive into Node fundamentals. We focused on specific core module
functionality, focusing on idiomatic Node principals. In the next section, our focus
will expand beyond core concepts into real-world development recipes.

Part 2

Real-world recipes

In the first section of this book, we took a deep dive into Node’s standard
library. Now we’ll take a broader look at real-world recipes many Node programs
encounter. Node is most famously known for writing fast network-based pro-
grams (high-performance HTTP parsing, ease-of-use frameworks like Express),
so we devoted a whole chapter to web development.

 In addition, there are chapters to help you grasp what a Node program is doing
preemptively with tests, and post-mortem with debugging. In closing, we set you
up for success when deploying your applications to production environments.

199

The Web:
 Build leaner and

 meaner web applications

The purpose of this chapter is to bring together the things you’ve learned about
networking, buffers, streams, and testing to write better web applications with
Node. There are practical techniques for browser-based JavaScript, server-side
code, and testing.

 Node can help you to write better web applications, no matter what your back-
ground is. If you’re a client-side developer, then you’ll find it can help you work

This chapter covers
■ Using Node for client-side development
■ Node in the browser
■ Server-side techniques and WebSockets
■ Migrating Express 3 applications to Express 4
■ Testing web applications
■ Full-stack frameworks and real-time services

200 CHAPTER 9 The Web: Build leaner and meaner web applications

more efficiently. You can use it for preprocessing client-side assets and for managing
client-side workflows. If you’ve ever wanted to quickly spin up an HTTP server that
builds your CSS or CoffeeScript for a single-page web app, or even just a website, then
Node is a great choice.

 The previous book in this series, Node.js in Action, has a detailed introduction to
web development with Connect and Express, and also templating languages like Jade
and EJS. In this chapter we’ll build on some of these ideas, so if you’re completely new
to Node, we recommend reading Node.js in Action as well. If you’re already using
Express, then we hope you’ll find something new in this chapter; we’ve included tech-
niques for structuring Express applications to make them easier to scale as your proj-
ects grow and mature.

 The first section in this chapter has some techniques that focus on the browser. If
you’re a perplexed front-end developer who’s been using Node because your client-
side libraries need it, then you should start here. If you’re a server-side developer who
wants to bring Node to the browser, then skip ahead to technique 66 to see how to use
Node modules in the browser.

9.1 Front-end techniques
This section is all about Node and its relationship to client-side technology. You’ll see
how to use the DOM in Node and Node in the DOM, and run your own local develop-
ment servers. If you’ve come to Node from a web design background, then these
techniques should help you get into the swing of things before we dive in to deeper
server-side examples. But if you’re from a server-side background, then you might
like to see how Node can help automate front-end chores.

 The first technique shows you how to create a quick, static server for simple web-
sites or single-page web applications.

TECHNIQUE 64 Quick servers for static sites

Sometimes you just want to start a web server to work on a static site, or a single-page
web application. Node’s a good choice for this, because it’s easy to get a web server run-
ning. It can also neatly encapsulate client-side workflows, making it easier to collaborate
with others. Rather than manually running programs over your client-side JavaScript
and CSS, you can write Node programs that you can share with other people.

 This technique introduces three solutions for starting up a web server: a short Con-
nect script, a command-line web server, and a mini–build system that uses Grunt.

■ Problem
You want to quickly start a web server so you can develop a static site, or a single-page
application.

■ Solution
Use Connect, a command-line web server, or a client-side workflow tool like Grunt.

201TECHNIQUE 64 Quick servers for static sites

■ Discussion
Plain old HTML, JavaScript, CSS, and images can be viewed in a browser without a
server. But because most web development tasks end up with files on a server some-
where, you often need a server just to make a static site. It’s a chore, but it doesn’t
need to be! The power of browsers also means you can create sophisticated web appli-
cations by contacting external web APIs: single-page web applications, or so-called
serverless apps.

 In the case of serverless web applications, you can work more efficiently by using
build tools to preprocess and package client-side assets. This technique will show you
how to start a web server for developing static sites, and also how to use tools like
Grunt to get a small project going without too much trouble.

 Although you could use Node’s built in http module to serve static sites, it’s a lot of
work. You’ll need to do things like detect the content type of each file to send the
right HTTP headers. While the http core module is a solid foundation, you can save
time by using a third-party module.

 First, let’s look at how to start a web server with Connect, the HTTP middleware
module used to create the popular Express web framework. The first listing demon-
strates just how simple this is.

var connect = require('connect');

connect.createServer(
connect.static(__dirname)

).listen(8080);

To use the example in listing 9.1, you’ll need to install Connect. You can do that by
running npm install connect, but it’s a better idea to create a package.json file so
it’s easier for other people to see how your project works. Even if your project is a sim-
ple static site, creating a package.json file will help your project to grow in the future.
All you need to do is memorize these commands: npm init and npm install --save
connect. The first command creates a manifest file for the current directory, and the
second will install Connect and save it to the list of dependencies in the new pack-
age.json file. Learn these and you’ll be creating new Node projects in no time.

 The createServer method B is derived from Node’s http.createServer, but it’s
wrapped with a few things that Connect adds behind the scenes. The static server
middleware component C is used to serve files from the current directory
(__dirname with two underscores means “current directory”), but you can change the
directory if you like. For example, if you have client-side assets in public/, then you
can use connect.static(__dirname + '/public') instead.

 Finally, the server is set to listen on port 8080 D. That means if you run this script
and visit http://localhost:8080/file.html in a browser, you should see file.html.

Listing 9.1 A quick static web server

Create web server based
on Node’s standard HTTP
server

BServe
files from

current
directory

C

Listen on port 8080D

202 CHAPTER 9 The Web: Build leaner and meaner web applications

 If you’ve been sent a bunch of HTML files from a designer, and you want to use a
server to view them because they make use of paths to images and CSS files with a leading
forward slash (/), then you can also use a command-line web server. There are many of
these available on npm, and they all support different options. One example is glance
by Jesse Keane. You can find it on GitHub at https://github.com/jarofghosts/glance,
and on npm as glance.

 To use glance on the command line, navigate to a directory where you have some
HTML files that you want to look at. Then install glance systemwide with npm install
--global glance, and type glance. Now go to http://localhost:61403/file, where file
is a file you want to look at, and you should see it in your browser.

 glance can be configured in various ways—you can change the port from 61403 to
something else with --port, and specify the directory to be served with --dir. Type
--help to get a list of options. It also has some nice defaults for things like 404s—
figure 9.1 shows what a 404 looks like.

 The third way of running a web server is to use a task runner like Grunt. This
allows you to automate your client-side tasks in a way that others can replicate. Using
Grunt is a bit like a combination of the previous two approaches: it requires a web
server module like Connect, and a command-line tool.

 To use Grunt for a client-side project you’ll need to do three things:

1 Install the grunt-cli module.
2 Make a package.json to manage the dependencies for your project.
3 Use a Grunt plugin that runs a web server.

Figure 9.1 Glance has built-in pages for errors.

https://github.com/jarofghosts/glance

203TECHNIQUE 64 Quick servers for static sites

The first step is easy: install grunt-cli as a global module with npm install -g grunt-
cli. Now you can run Grunt tasks from any project that includes them by typing grunt.

 Next, make a new directory for your project. Change to this new directory and type
npm init—you can press Return to accept each of the defaults. Now you need to
install a web server module: npm install --save-dev grunt grunt-contrib-connect
will do the job.

 The previous command also installed grunt as a development dependency. The
reason for this is it locks Grunt to the current version—if you look at package.json
you’ll see something like "grunt": "~0.4.2", which means Grunt was installed first
at 0.4.2, but newer versions on the 0.4 branch will be used in the future. The popu-
larity of modules like Grunt forced npm to support something known as peer dependen-
cies. Peer dependencies allow Grunt plugins to express a dependency on a specific
version of Grunt, so the Connect module we’ll use actually has a peerDependencies
property in its package.json file. The benefit of this is you can be sure plugins will
work as Grunt changes—otherwise, as Grunt’s API changes, plugins might just break
with no obvious cause.

ALTERNATIVES TO GRUNT At the time of writing, Grunt was the most popular
build system for Node. But new alternatives have appeared and are rapidly
gaining adoption. One example is Gulp (http://gulpjs.com/), which takes
advantage of Node’s streaming APIs and has a light syntax that is easy to learn.

In case all this is new to you, we’ve included a screenshot of what your project should
look like in figure 9.2.

Figure 9.2 Projects that use Grunt typically have a package.json and a Gruntfile.js.

http://gulpjs.com/

204 CHAPTER 9 The Web: Build leaner and meaner web applications

Now that we have a fresh project set up, the final thing to do is create a file called
Gruntfile.js. This file contains a list of tasks that grunt will run for you. The next list-
ing shows an example that uses the grunt-contrib-connect module.

module.exports = function(grunt) {
grunt.loadNpmTasks('grunt-contrib-connect');

grunt.initConfig({
connect: {
server: {

options: {
port: 8080,
base: 'public',
keepalive: true

}
}

}
});

grunt.registerTask('default', ['connect:server']);
};

You should also create a directory called public with an index.html file—the HTML
file can contain anything you like. After that, type grunt connect from the same
directory as your Gruntfile.js, and the server should start. You can also type grunt by
itself, because we set the default task to connect:server E.

 Gruntfiles use Node’s standard module system, and receive an object called grunt
B that can be used to define tasks. Plugins are loaded with grunt.loadNpmTasks,
allowing you to reference modules installed with npm C. Most plugins have different
options, and these are set by passing objects to grunt.initConfig—we’ve defined a
server port and base path, which you can change by modifying the base property D.

 Using Grunt to start a web server is more work than writing a tiny Connect script
or running glance, but if you take a look at Grunt’s plugin list (http://gruntjs.com/
plugins), you’ll see over 2,000 entries that cover everything from building optimized
CSS files to Amazon S3 integration. If you’ve ever needed to concatenate client-side
JavaScript or generate image sprites, then chances are there’s a plugin that will help
you automate it.

 In the next technique you’ll learn how to reuse client-side code in Node. We’ll also
show you how to render web content inside Node processes.

TECHNIQUE 65 Using the DOM in Node

With a bit of work, it’s possible to simulate a browser in Node. This is useful if you
want to make web scrapers—programs that convert web pages into structured con-
tent. This is technically rather more complicated than it may seem. Browsers don’t just
provide JavaScript runtimes; they also have Document Object Model (DOM) APIs that
don’t exist in Node.

Listing 9.2 A Gruntfile for serving static files

All Gruntfiles
export a
function B

This loads
Connect pluginC

The base path
for static filesD

Default
command is
aliased here

E

http://gruntjs.com/plugins
http://gruntjs.com/plugins

205TECHNIQUE 65 Using the DOM in Node

 Such a rich collection of libraries has evolved around the DOM that it’s sometimes
hard to imagine solving problems without them. If only there were a way to run librar-
ies like jQuery inside Node! In this technique you’ll learn how to do this by using
browser JavaScript in a Node program.

■ Problem
You want to reuse client-side code that depends on the DOM in Node, or render entire
web pages.

■ Solution
Use a third-party module that provides a DOM layer.

■ Discussion
The W3C DOM is a well-defined standard. When designers struggle with browser
incompatibilities, they’re often dealing with the fact that standards require a degree
of interpretation, and browser manufacturers have naturally interpreted the standards
slightly differently. If your goal is just to run JavaScript that depends on the JavaScript
DOM APIs, then you’re in luck: these standards can be re-created well enough that you
can run popular client-side libraries in Node.

 One early solution to this problem was jsdom (https://github.com/tmpvar/
jsdom). This module accepts an environment specification and then provides a window
object. If you install it with npm install -g jsdom, you should be able to run the fol-
lowing example:

var jsdom = require('jsdom');
jsdom.env(

'<p class="intro">Welcome to Node in Practice</p>',
['http://code.jquery.com/jquery.js'],
function(errors, window) {
 console.log('Intro:', window.$('.intro').text());

}
);

This example takes in HTML B, fetches some remote scripts C, and then gives you a
window object that looks a lot like a browser window object D. It’s good enough that
you can use jQuery to manipulate the HTML snippet—jQuery works as if it’s running
in a browser. This is useful because now you can write scripts that process HTML doc-
uments in the way you’re probably used to: rather than using a parser, you can query
and manipulate HTML using the tools you’re familiar with. This is amazing for writ-
ing succinct code for tasks like web scraping, which would otherwise be frustrating
and tedious.

 Others have iterated on jsdom’s approach, simplifying the underlying dependen-
cies. If you really just want to process HTML in a jQuery-like way, then you could use
cheerio (https://npmjs.org/package/cheerio). This module is more suited to web
scraping, so if you’re writing something that downloads, processes, and indexes
HTML, then cheerio is a good choice.

HTML you want
to process

B
External

JavaScript
libraries

jsdom will
fetch C

Access to $() from
jQuery now possible D

https://github.com/tmpvar/jsdom
https://github.com/tmpvar/jsdom
https://npmjs.org/package/cheerio
https://npmjs.org/package/cheerio

206 CHAPTER 9 The Web: Build leaner and meaner web applications

 In the following example, you’ll see how to use cheerio to process HTML from a
real web page. The actual HTML is from manning.com/index.html, but as designs
change frequently, we’ve kept a copy of the page we used in our code samples. You
can find it in cheerio-manning/index.html. The following listing opens the HTML file
and queries it using a CSS selector, courtesy of cheerio.

var cheerio = require('cheerio');
var fs = require('fs');

fs.readFile('./index.html', 'utf8', function(err, html) {
var $ = cheerio.load(html);
var releases = $('.Releases a strong');

releases.each(function(i) {
console.log('New release:', this.text());

});
});

The HTML is loaded with fs.readFile. If you were doing this for real then you’d
probably want to download the page using HTTP—feel free to replace fs.readFile
with http.get to fetch Manning’s index page over the network. We have a detailed
example of http.get in chapter 7, technique 51, “Following redirects.”

 Once the HTML has been fetched, it’s passed to cheerio.load B. Setting the
result as a variable called $ is just a convention that will make your code easier to read
if you’re used to jQuery, but you could name it something else.

 Now that everything is set up, you can query the HTML; $('.Releases a strong')
is used C to query the document for the latest books that have been released. They’re
in a div with a class of Releases, as anchor tags.

 Each element is iterated over using releases.each, just like in jQuery. The call-
back’s context is changed to be the current element, so this.text() is called to get
the text contained by the node D.

 Because Node has such a wide collection of third-party modules, you could take
this example and make all sorts of amazing things with it. Add Redis for caching and
queueing websites to process, then scrape the results and throw it at Elasticsearch, and
you’ve got your own search engine!

 Now you’ve seen how to run JavaScript intended for browsers in Node, but what
about the opposite? You might have some Node code that you want to reuse client-
side, or you might want to just use Node’s module system to organize your client-side
code. Much like we can simulate the DOM in Node, we can do the same in the
browser. In the next technique you’ll learn how to do this by running your Node
scripts in browsers.

Listing 9.3 Scraping a web page with cheerio

Load HTML
content

B

Query it using
CSS selectorC

Extract
the textD

207TECHNIQUE 66 Using Node modules in the browser

TECHNIQUE 66 Using Node modules in the browser

One of Node’s selling points for JavaScript is that you can reuse your existing browser
programming skills on servers. But what about reusing Node code in browsers without
any changes? Wouldn’t that be cool? Here’s an example: you’ve defined data models
in Node that do things like data validation, and you want to reuse them in the browser
to automatically display error messages when data is invalid.

 This is almost possible, but not quite: unfortunately browsers have quirks that must
be ironed out. Also, important features like require don’t exist in client-side
JavaScript. In this technique you’ll see how you can take code intended for Node, and
convert it to work with most web browsers.

■ Problem
You want to use require() to structure your client-side code, or reuse entire Node
modules in the browser.

■ Solution
Use a program like Browserify that is capable of converting Node JavaScript into
browser-friendly code.

■ Discussion
In this technique we’ll use Browserify (http://browserify.org/) to convert Node mod-
ules into browser-friendly code. Other solutions also exist, but at this point Browserify
is one of the more mature and popular solutions. It doesn’t just patch in support for
require(), though: it can convert code that relies on Node’s stream and network
APIs. You can even use it to recursively convert modules from npm.

 To see how it works, we’ll first look at a short self-contained example. To get
started, install Browserify with npm: npm install -g browserify. Once you’ve got
Browserify installed, you can convert your Node modules into Browser scripts with
browserify index.js -o bundle.js. Any require statements will cause the files to be
included in bundle.js, so you shouldn’t change this file. Instead, overwrite it whenever
your original files have changed.

 Listing 9.4 shows a sample Node program that uses EventEmitter and
utils.inherit to make the basis of a small messaging class.

var EventEmitter = require('events').EventEmitter;
var util = require('util');

function MessageBus(options) {
EventEmitter.call(this, options);
this.on('message', this.messageReceived.bind(this));

}

util.inherits(MessageBus, EventEmitter);

MessageBus.prototype.messageReceived = function(message) {
console.log('RX:', message);

Listing 9.4 Node modules in the browser

Load modules with
require() as you
usually would.B

EventEmitter can
be inherited using
util.inherits.C

http://browserify.org/

208 CHAPTER 9 The Web: Build leaner and meaner web applications

};

var messageBus = new MessageBus();
messageBus.emit('message', 'Hello world!');

Running Browserify on this script generates a bundle that’s about 1,000 lines long!
But we can use require as we would in any Node program B, and the Node modules
we know and love will work, as you can see in listing 9.4 by the use of util.inherits
and EventEmitter C.

 With Browserify, you can also use require and module.exports, which is better than
having to juggle <script> tags. The previous example can be extended to do just that.
In listing 9.5, Browserify is used to make a client-side script that can load MessageBus
and jQuery with require, and then modify the DOM when messages are emitted.

var MessageBus = require('./messagebus');
var messageBus = new MessageBus();
var $ = require('jquery')(window);

messageBus.on('message', function(msg) {
$('#messages').append('<p>' + msg + '</p>');

});

$(function() {
messageBus.emit('message', 'Hello from example 2');

});

By creating a package.json file with jquery as a dependency, you can load jQuery
using Browserify B. Here we’ve used it to attach a DOMContentLoaded listener C and
append paragraphs to a container element when messages are received.

To make this work, all you need to do is add module.exports = MessageBus to the
example from listing 9.4, and then generate the bundle with browserify index.js -o
bundle.js, where index.js is listing 9.5. Browserify will dutifully follow the require
statements from index.js to pull in jQuery from ./node_modules and the MessageBus
class from messagebus.js.

Listing 9.5 Node modules in the browser

jQuery can be loaded
with Browserify!

B

jQuery’s DOM ready
function can be used.

C

Source maps
If the JavaScript files you generate with Browserify raise errors, then it can be hard
to untangle the line numbers in stack traces, because they refer to line numbers in
the monolithic bundle. If you include the --debug flag when building the bundle, then
Browserify will generate mappings that point to the original files and line numbers.

These mappings require a compatible debugger—you’ll also need to tell your
browser’s debugging tools to use them. In Chrome you’ll need to select Enable source
maps, under the options in Chrome’s DevTools.

209TECHNIQUE 67 Express route separation

 Because people might forget how to build the script, you can add a scripts entry
to your package.json file, like this: "build": "browserify index.js -o bundle.js".
The downloadable code samples for this book include both a sample package.json file
and a suitable HTML file for running the entire example in a browser.

 There’s another way to build bundles with Browserify: by using Browserify as a
module in a Node program. To use it, you need to create a Browserify instance B
and then tell it what files you want to build C:

var browserify = require('browserify');
var b = browserify();
b.add('./index.js');
b.bundle().pipe(process.stdout);

You could use this as part of a more complex build process, or put in a Grunt task to
automate your build process. Now that you’ve seen how to use Node modules in the
browser and how to simulate the browser in Node, it’s time to learn how to improve
your server-side web applications.

9.2 Server-side techniques
This section includes general techniques for building web applications. If you’re
already using Express, then you’ll be able to use these techniques to improve how
your Express programs are organized. Express aims to be simple, which makes it flexi-
ble, but sometimes it’s not easy to see how to use it in the best way. The patterns and
solutions we’ve created have come from using Express to build commercial and open
source web applications over the last few years. We hope they’ll help you to write bet-
ter web applications.

EXPRESS 3 AND 4 The techniques in this section refer to Express 3. Most will
work with Express 4, or may require minor modifications. For more about
migrating to Express 4, see technique 75.

TECHNIQUE 67 Express route separation

The documentation and popular tutorials for Express usually organize all the code in
a single file. In real projects, this eventually becomes unmanageable. This technique
uses Node’s module system to separate related routes into files, and also includes ways
to get around the Express app object being in a different file.

■ Problem
Your main Express application file has become extremely large, and you want a better
way to organize all of those routes.

■ Solution
Use route separation to split related routes into modules.

■ Discussion
Express is a minimalist framework, so it doesn’t hold your hand when it comes to
organizing projects. Projects that start simple can become unwieldy if you don’t pay

Create Browserify
instance

B
Specify files you
want to bundle

C

210 CHAPTER 9 The Web: Build leaner and meaner web applications

attention. The secret to successfully organizing larger projects is to embrace Node’s
module system.

 The first avenue of attack is routes, but you can apply this technique to every facet
of development with Express. You can even treat applications as self-contained Node
modules, and mount them within other applications.

 Here’s a typical example of some Express routes:

app.get('/notes', function(req, res, next) {
db.notes.findAll(function(err, notes) {
if (err) return next(err);
res.send(notes);

});
});

app.post('/notes', function(req, res, next) {
db.notes.create(req.body.note, function(err, note) {
if (err) return next(err);
res.send(note);

});
});

The full example project can be found in listings/web/route_separation/app
_monolithic.js. It contains a set of CRUD routes for creating, finding, and updating
notes. An application like this would have other CRUD routes as well: perhaps notes
can be organized into notebooks, and there will definitely be some user account man-
agement, and extra features like setting reminders. Once you have about four or five
of these sets of routes, the application file could be hundreds of lines of code.

 If you wrote this project as a single, large file, then it would be prone to many prob-
lems. It would be easy to make mistakes where variables are accidentally global instead
of local, so dangerous side effects can be encountered under certain conditions. Node
has a built-in solution which can be applied to Express and other web frameworks:
directories as modules.

 To refactor your routes using modules, first create a directory called routes, or
controllers if you prefer. Then create a file called index.js. In our case it’ll be a sim-
ple three-line file that exports the notes routes:

module.exports = {
notes: require('./notes')

};

Here we have just one routing module, which can be loaded with require and a rela-
tive path B. Next, copy and paste the entire set of routes into routes/notes.js. Then
delete the route definition part—for example, app.get('/notes',, and replace it
with an export: module.exports.index = function(req, res) {.

 The refactored files should look like the next listing.

This route displays
a list of notes.

This route is used
to create notes.

Export each routing
module like this

B

211TECHNIQUE 67 Express route separation

var db = require('./../db');

module.exports.index = function(req, res, next) {
db.notes.findAll(function(err, notes) {
if (err) return next(err);
res.send(notes);

});
};

module.exports.create = function(req, res, next) {
db.notes.create(req.body.note, function(err, note) {
if (err) return next(err);
res.send(note);

});
};

module.exports.update = function(req, res, next) {
db.notes.update(req.param('id'), req.body.note, function(err, note) {
if (err) return next(err);
res.send(note);

});
};

module.exports.show = function(req, res, next) {
db.notes.find(req.param('id'), function(err, note) {
if (err) return next(err);
res.send(note);

});
};

Each routing function is exported with a CRUD-inspired name (index, create, update,
show) B. The corresponding app.js file can now be cleared up. The next listing shows
just how clean this can look.

var express = require('express');
var app = express();
var routes = require('./routes');

app.use(express.bodyParser());

app.get('/notes', routes.notes.index);
app.post('/notes', routes.notes.create);
app.patch('/notes/:id', routes.notes.update);
app.get('/notes/:id', routes.notes.show);

module.exports = app;

All of the routes can be loaded at once with require('./routes')B. This is conve-
nient and clean, because there are fewer require statements that would otherwise

Listing 9.6 A routing module without the rest of the application

Listing 9.7 A refactored app.js file

Export each routing function
with a name that reflects its
CRUD operation.B

Load all routes
at once

B

Bind them to HTTP
verb and partial URL

C

Export app
object

D

212 CHAPTER 9 The Web: Build leaner and meaner web applications

clutter app.js. All you need to do is remove the old route callbacks and add in refer-
ences to each routing function C.

 Don’t put an app.listen call in this file; export app instead D. This makes it eas-
ier to test the application. Another advantage of exporting the app object is that you
can easily load the app.js module from anywhere within the application. Express
allows you to get and set configuration values, so making app accessible can be useful
if you want to refer to these settings in places outside the routes. Also note that
res.app is available from within routes, so you don’t need to pass the app object
around too often.

 If you want to easily load app.js without creating a server, then name the applica-
tion file app.js, and have a separate server.js file that calls app.listen. You can set up
the server property in package.json to use node server.js, which allows people to
start the application with npm start—you can also leave out the server property,
because node server.js is the default, but it’s better to define it so people know how
you intend them to use it.

The full example for this technique can be found in listings/web/route-separation,
and it includes sample tests in case you want to unit test your own projects.

 Properly organizing your Express projects is important, but there are also workflow
issues that can slow down development. For example, when you’re working on a web
application, you’ll typically make many small changes and then refresh the browser to
see the results. Most Node frameworks require the process to be restarted before see-
ing the changes take effect, so the next technique explores how this works and how to
efficiently solve this problem.

TECHNIQUE 68 Automatically restarting the server

Although Node comes with tools for monitoring changes to files, it can be a lot of
work to use them productively. This technique looks at fs.watch, and introduces a
popular third-party tool for automatically restarting web applications as files are
edited.

■ Problem
You need to restart your Node web application every time you edit files.

Directories as modules
This technique puts all of the routes in a directory, and then exports them with an
index.js file so they can be loaded in one go with require('./routes').

This pattern can be reused in other places. It’s great for organizing middleware,
database modules, and configuration files.

For an example of using directories as modules to organize configuration files, see
technique 69.

213TECHNIQUE 68 Automatically restarting the server

■ Solution
Use a file watcher to restart the application automatically.

■ Discussion
If you’re used to languages like PHP or ASP, Node’s in-process server-based model
might seem unusual. One of the big differences about Node’s model is that you need
to restart the process when files change. If you think about how require and V8 work,
then this makes sense—files are generally loaded and interpreted once.

 One way to get around this is to detect when files change, and then restart the
application. Node makes good use of non-blocking I/O, and one of the properties of
non-blocking file system APIs is that listeners can be used to wait for specific events. To
solve this problem, you could set up file system event handlers for all of the files in
your project. Then, when files change, your event handler can restart the project.

 Node provides an API for this in the fs module called fs.watch. At the time of
writing, this API is unstable—that means it may be changed in subsequent versions of
Node. This method has been covered in chapter 6, section 6.1.4. Let’s look at how it
could be used with a web application. Figure 9.8 shows a program that can watch and
reload a simple web server.

var fs = require('fs');
var exec = require('child_process').exec;

function watch() {
var child = exec('node server.js');
var watcher = fs.watch(__dirname + '/server.js', function(event) {
console.log('File changed, reloading.');
child.kill();
watcher.close();
watch();

});
}

watch();

Watching a file for changes with fs.watch is slightly convoluted, but you can use
fs.watchFile, which is based on file polling instead of I/O events. The way listing 9.8
works is to start a child process—in this case node server.js B—and then watch that
file for changes C. Starting and stopping processes is managed with the child_process
core module, and the kill method is used to stop the child process D.

 On Mac OS we found it’s best to also stop watching the file with watcher.close E,
although Node’s documentation indicates that fs.watch should be “persistent.” Once all
of that is done, the watch function is called recursively to launch the web server again F.

 This example could be run with a server.js file like this:

var http = require('http');
var server = http.createServer(function(req, res) {

res.writeHead(200, { 'Content-Type': 'text/plain' });

Listing 9.8 Reloading a Node process

Start web server
process

B
Use fs.watch
to watch for

changes to
file

C

When file has changed,
kill web serverDClose

watcher E
Recursively call watcher
function to start web
server up againF

214 CHAPTER 9 The Web: Build leaner and meaner web applications

res.end('This is a super basic web application');
});

server.listen(8080);

This works, but it’s not exactly elegant. And it’s not complete, either. Most Node web
applications consist of multiple files, so the file-watching logic will become more com-
plicated. It’s not enough to recurse over the parent directories, because there are lots
of files that you don’t want to watch—you don’t want to watch the files in .git, and if
you’re writing an Express application you probably don’t want to watch view tem-
plates, because they’re loaded on demand without caching in development mode.

 Suddenly automatically restarting Node programs seems less trivial, and that’s
where third-party modules can help. One of the most widely used modules that solves
this problem is Remy Sharp’s nodemon (http://nodemon.io/). It works well for watch-
ing Express applications out of the box, and you can even use it to automatically
restart any kind of program, whether it’s written in Node or Python, Ruby, and so on.

 To try it out, type npm install -g nodemon, and then navigate to a directory that
contains a Node web application. If you want to use a small sample script, you can use
our example from listings/web/watch/server.js.

 Start running and watching server.js by typing nodemon server.js, and you’ll find
you can edit the text in res.end and the change will be reflected the next time you
load http://localhost:8080/.

 You might notice a small delay before changes are visible—that’s just Nodemon
setting up fs.watch, or fs.watchFile if it’s not available on your OS. You can force it
to reload by typing rs and pressing Return.

 Nodemon has some other features that will help you work on web applications.
Typing nodemon --help will show a list of command-line options, but you can get
greater, VCS-friendly control by creating a nodemon.json file. This allows you to spec-
ify an array of files to ignore, and you can also map file extensions to program names
by using the execMap setting. Nodemon’s documentation includes a sample file that
illustrates each of the features.

 The next listing is an example Nodemon configuration that you can adapt for your
own projects.

{
"ignore": [
".git",
"node_modulesnode_modules"

],
"execMap": {
"js": "node --harmony"

},
"watch": [
"test/fixtures/",

Listing 9.9 Nodemon’s configuration file

A list of paths to ignoreB

Automatically map .js files to
use node with harmony flag

C

Specify paths
to watchD

http://nodemon.io/

215TECHNIQUE 69 Configuring web applications

"test/samples/"
],
"env": {
"NODE_ENV": "development"

},
"ext": "js json"

}

The basic options allow you to ignore specific paths B, and list multiple paths to
watch D. This example uses execMap to automatically run node with the --harmony
flag1 for all JavaScript files C. Nodemon can also set environmental variables—just
add some values to the env property E.

 Once your workflow is streamlined thanks to Nodemon, the next thing to do is to
improve how your project is configured. Most projects need some level of configura-
tion—examples include the database connection details and authorization credentials
for remote APIs. The next technique looks at ways to configure your web application
so you can easily deploy it to multiple environments, run it in test mode, and even
tweak how it behaves during local development.

TECHNIQUE 69 Configuring web applications

This technique looks at the common patterns for configuring Node web applications.
We’ll include examples for Express, but you can use these patterns with other web
frameworks as well.

■ Problem
You have configuration options that change between development, testing, and
production.

■ Solution
Use JSON configuration files, environmental variables, or a module for managing
settings.

■ Discussion
Most web applications require some configuration values to operate correctly: data-
base connection strings, cache settings, and email server credentials are typical. There
are many ways to store application settings, but before you install a third-party module
to do it, consider your requirements:

■ Is it acceptable to leave database credentials in your version control repository?
■ Do you really need configuration files, or can you embed settings into the

application?
■ How can configuration values be accessed in different parts of the application?
■ Does your deployment environment offer a way to store configuration values?

The first point depends on your project or organization’s policies. If you’re building an
open source web application, you don’t want to leave database accounts in the public
repository, so configuration files might not be the best solution. You want people to

1 --harmony is used to enable all of the newer ECMAScript features available to Node.

List environmental
variablesE

216 CHAPTER 9 The Web: Build leaner and meaner web applications

install your application quickly and easily, but you don’t want to accidentally leak your
passwords. Similarly, if you work in a large organization with database administrators,
they might not be comfortable about letting everyone have direct access to databases.

 In such cases, you can set configuration values as part of the deployment environ-
ment. Environmental variables are a standard way to configure the behavior of Unix
and Windows programs, and you can access them with process.env. The basic exam-
ple of this is switching between deployment environments, using the NODE_ENV setting.
The following listing shows the pattern Express uses for storing configuration values.

var express = require('express');
var app = express();

app.set('port', process.env.PORT || 3000);

app.configure('development', function() {
app.set('db', 'localhost/development');

});

app.configure('production', function() {
app.set('db', 'db.example.com/production');

});

app.listen(app.get('port'), function() {
console.log('Using database:', app.get('db'));
console.log('Listening on port:', app.get('port'));

});

Express has a small API for setting application configuration values: app.set, app.get
E, and app.configure. You can also use app.enable and app.disable to toggle Bool-
ean values, and app.enabled and app.disabled to query them. The app.configure
blocks are equivalent to if (process.env.NODE_ENV === 'development') C and if
(process.env.NODE_ENV === 'production')D, so you don’t really need to use
app.configure if you don’t want to. It will be removed in Express 4. If you’re not using
Express, you can just query process.env.

 The NODE_ENV environmental variable is controlled by the shell. If you want to run
listing 9.10 in production mode, you can type NODE_ENV=production node config.js,
and you should see it print the production database string. You could also type export
NODE_ENV=production, which will cause the application to always run in production
mode while the current shell is running.

 The reason we’ve used PORT B to set the port is because that’s the default name
Heroku uses. This allows Heroku’s internal HTTP routers to override the port your
application listens on.

 You could use process.env throughout your code instead of app.get, but using the
app object feels cleaner. You don’t need to pass app around—if you’ve used the route
separation pattern from technique 67, then you’ll be able to access it through res.app.

Listing 9.10 Configuring an Express application

Use 3000 if the
environmental variable
PORT is not set.

BThis callback
will only run
if NODE_ENV

is set to
development.

C

This callback will only
run if NODE_ENV is set
to production.

D

Use app.get()
to access
settings.

E

217TECHNIQUE 69 Configuring web applications

 If you’d rather use configuration files, the easiest and quickest way is to use the
folder as a module technique with JSON files. Create a folder called config/, and then
create an index.js file, and a JSON file for each environment. The next listing shows
what the index.js file should look like.

var config = {
development: require('./development.json'),
production: require('./production.json'),
test: require('./test.json')

};

module.exports = config[process.env.NODE_ENV || 'development'];

Node’s module system allows you to load a JSON file with require B, so you can load
each environment’s configuration file and then export the relevant one using
NODE_ENV C. Then whenever you need to access settings, just use var config =
require('./config')—you’ll get a plain old JavaScript object that contains the set-
tings for the current environment. The next listing shows an example Express applica-
tion that uses this technique.

var express = require('express');
var app = express();
var config = require('./config');

app.listen(config.port, function() {
console.log('Using database:', config.db);
console.log('Listening on port:', config.port);

});

This is so easy it almost feels like cheating! All you have to do is call require
('./config') and you’ve got your settings. Node’s module system should cache the
file as well, so once you’ve called require it shouldn’t need to evaluate the JSON files
again. You can repeatedly call require('./config') throughout your application.

 This technique takes advantage of JavaScript’s lightweight syntax for setting and
accessing values on objects, as well as Node’s module system. It works well for lots of
types of projects.

 There’s one more approach to configuration: using a third-party module. After the
last technique, you might think this is overkill, but third-party modules can offer a lot
of functionality, including command-line option parsing. It might be that you often
need to switch between different options, so overriding application settings with
command-line options is attractive.

Listing 9.11 A JSON configuration file loader

Listing 9.12 Loading the configuration directory

Load a JSON file
with require()B

Check NODE_ENV to
see which file to use C

Load settings
using require()

218 CHAPTER 9 The Web: Build leaner and meaner web applications

 The web framework Flatiron (http://flatironjs.org/) has an application configura-
tion module called nconf (https://npmjs.org/package/nconf) that handles configu-
ration files, environmental variables, and command-line options. Each can be given
precedence, so you can make command-line options override configuration files. It’s
a unifying framework for processing options.

 The following listing shows how nconf can be used to configure an Express
application.

var express = require('express');
var app = express();
var nconf = require('nconf');
var routes = require('./routes');

nconf
.argv()
.env()
.file({ file: 'config.json' });

nconf.set('db', 'localhost/development');
nconf.set('port', 3000);

app.get('/', routes.index);

app.listen(nconf.get('port'), function() {
console.log('Using database:', nconf.get('db'));
console.log('Listening on port:', nconf.get('port'));

});

Here we’ve told nconf to prioritize options from the command line, but to also read a
configuration file if one is available B. You don’t need to create a configuration file,
and nconf can create one for you if you use nconf.save. That means you could allow
users of your application to change settings and persist them. This works best when
nconf is set up to use a database to save settings—it comes with built-in Redis support.

 Default values can be set with nconf.set C. If you run this example without any
options, it should use port 3000, but if you start it with node app.js --port 3001, it’ll
use whatever you pass with --port. Getting settings is as simple as nconf.get D.

 And you don’t need to pass the nconf object around! Settings are stored in mem-
ory. Other files in your project can access settings by loading nconf with require, and
then calling nconf.get. The next listing loads nconf again, and then tries to access
the db setting.

var nconf = require('nconf');

module.exports.index = function(req, res) {
res.send('Using database:', nconf.get('db'));

};

Listing 9.13 Using nconf to configure an Express application

Listing 9.14 Loading nconf elsewhere in the application

Tell nconf to optionally use
configuration file, and override it
with command-line arguments

B

Set a default
for db setting

C

Get the portD

If you load nconf
again, it’ll know
what to do.B

http://flatironjs.org/
https://npmjs.org/package/nconf

219TECHNIQUE 70 Elegant error handling

Even though it seems like var nconf = require('nconf') might return a pristine copy
of nconf, it doesn’t B.

 A well-organized and carefully configured web application can still go wrong.
When your application crashes, you’ll want logs to help debug the problem. The next
technique will help you improve how your application handles errors.

TECHNIQUE 70 Elegant error handling

This technique looks at using the Error constructor to catch and handle errors in
your application.

■ Problem
You want to centralize error handling to simplify your web applications.

■ Solution
Inherit from Error with error classes that include HTTP status codes, and use a mid-
dleware component to handle errors based on content type.

■ Discussion
JavaScript has an Error constructor that you can inherit from to represent specific
types of errors. In web development, some errors frequently crop up: incorrect URLs,
incorrect parameters for query parameters or form values, and authentication fail-
ures. That means you can define errors that include HTTP codes alongside the typical
things Error provides.

 Rather than branching on error conditions in HTTP routers, you should call
next(err). The next listing shows how that works.

var db = require('./../db');
var errors = require('./../errors');

module.exports.show = function(req, res, next) {
db.notes.find(req.param('id'), function(err, note) {

if (err) return next(err);
if (!note) {
return next(new errors.NotFound('That note was not found.'));

}
res.send(note);

});
};

In this example, error classes have been defined in a separate file B, which you can
find in listing 9.16. The route handler includes a third argument, next C, after the
standard req, res arguments that we’ve used in previous techniques.

 Many of your route handlers will load data from a database, whether it’s MySQL,
PostgreSQL, MongoDB, or Redis, so this example is based around a generic asynchro-
nous database API. If an error was encountered by the database API, then return early
and call next, including the error object as the first argument. This will pass the error
along to the next middleware component D. This route handler has an additional

Listing 9.15 Passing errors to middleware

Keep error
objects
organized in
separate file.B

Make sure the
route handler

signature
includes the

third
parameter,

next. C

If an error was
passed by the
database API,
return early. D

If a note couldn’t be found,
create an instance of a

suitable error class. E

220 CHAPTER 9 The Web: Build leaner and meaner web applications

piece of logic—if a note wasn’t found in the database, then an error object is instanti-
ated and passed along using next E.

 The following listing shows how to inherit from Error.

var util = require('util');

function HTTPError() {
Error.call(this, arguments);

}

util.inherits(HTTPError, Error);

function NotFound(message) {
HTTPError.call(this);
Error.captureStackTrace(this, arguments.callee);
this.statusCode = 404;
this.message = message;
this.name = 'NotFound';

}
util.inherits(NotFound, HTTPError);

module.exports = {
HTTPError: HTTPError,
NotFound: NotFound

};

Here we’ve opted to create two classes. Instead of just defining NotFound, we’ve cre-
ated HTTPError B and inherited from it F. This is so it’s easier to track if an error is
related to HTTP, or if it’s something else. The base HTTPError class inherits from
Error C.

 In the NotFound error, we’ve captured the stack trace to aid with debugging D,
and set a statusCode property E that can be reported to the browser.

 The next listing shows how to create an error-handling middleware component in
a typical Express application.

var errors = require('./errors');
var express = require('express');
var app = express();
var routes = require('./routes');

app.use(express.bodyParser());

app.get('/notes/:id', routes.notes.show);

app.use(function(err, req, res, next) {
if (process.env.NODE_ENV !== 'test') {
console.error(err.stack);

}

Listing 9.16 Inheriting errors and including status codes

Listing 9.17 Using an error-handling middleware component

Create generic
HTTPError class

B

Inherit from Error,
using util.inherits

C

Optionally capture
stack trace

D

Set status code that can
be passed to browserE

Additional HTTP
errors can inherit
from HTTPErrorF

If four arguments are
used with app.use, then
the first argument is
the error object.

B

Print stack traces if you’re
not running in the test mode.C

221TECHNIQUE 70 Elegant error handling

res.status(err.statusCode || 500);

res.format({
text: function() {

res.send(err.message);
},

json: function() {
res.send(err);

},

html: function() {
res.render('errors', { err: err });

}
});

});

module.exports = app;

This middleware component is fairly simple, but it has some tweaks that we’ve found
work well in production. To get the error objects passed by next, make sure to use the
four-parameter form of app.use’s callback B. Also note that this middleware compo-
nent comes at the end of the chain, so you need to put it after all your other middle-
ware and route definitions.

 You can conditionally print stack traces so they’re not visible when specifically test-
ing expected errors C—errors may be triggered as part of testing, and you wouldn’t
want stack traces cluttering the test output.

 Because this centralizes error handling into the main application file, it’s a good
idea to conditionally return different formats. This is useful if your application pro-
vides a JSON API as well as HTML pages. You can use app.format to do this D, and it
works by checking the MIME type in the request’s Accept header. The JSON response
might not be needed, but it’s possible that your API would return well-formed errors
that can be consumed by clients—it can be difficult to deal with APIs that suddenly
respond with HTML when you’re asking for JSON.

 Somewhere in your tests you should check that these errors do what you want. The
following snippet shows a Mocha test that makes sure 404s are returned when
expected, and in the expected format:

describe('Error handling', function() {
it('should return a 404 for IDs that do not exist', function(done) {
request(app)

.get('/notes/999')

.expect(404, done);
});

it('should send JSON errors when requested', function(done) {
request(app)

.get('/notes/999')

.set('Accept', 'application/json')

Respond with errors in
the expected format.

D

Check that expected
status code was returned

B

Set Accept header
to get JSON

C

222 CHAPTER 9 The Web: Build leaner and meaner web applications

.expect(404, function(err, res) {
 assert.equal(res.body.name, 'NotFound');
done();

});
});

});

This snippet includes two requests. The first checks that we get an error with a 404 B,
and the second sets the Accept header to make sure we get back JSON C. This is
implemented with SuperTest, which will give us JSON in responses, so the assertion
can check to make sure we get an object in the format we expect D. The full source
for this example can be found in listings/web/error-handling.

This error-handling pattern is widely used in Express apps, and it’s even built into the
restify framework (https://npmjs.org/package/restify). If you remember to pass error
objects to next, you’ll find testing and debugging Express applications easier.

 Errors can also be sent as emails with useful transcripts. To make the most out of
error emails, include the request and error objects in the email so you can see exactly
where things broke. Also, you probably don’t want to send details about errors with
certain status codes, but that’s up to you.

 In this technique we mentioned adapting code to work with REST APIs. The next
technique delves deeper into the world of REST, and has examples for both Express
and restify.

TECHNIQUE 71 RESTful web applications

At some stage you might want to add an API to your application. This technique is all
about building RESTful APIs. There are examples for both Express and restify, and tips
on how to create APIs that use the right HTTP verbs and idiomatic URLs.

■ Problem
You want to create a RESTful web service in Express, restify, or another web framework.

■ Solution
Use the right HTTP methods, URLs, and headers to build an intuitive, RESTful API.

Check that body was
in expected formatD

Error email cheat sheet
If you’re going to make your application send email notifications when unexpected
errors occur, here’s a list of things you should include in the email to aid with debugging:

■ A string version of the error object
■ The contents of err.stack—this is a nonstandard property of error objects that

Node includes
■ The request method and URL
■ The Express req.route property, if available
■ The remote IP, which is req.ip in Express
■ The request body, which you can convert to a string with inspect(req.body)

https://npmjs.org/package/restify

223TECHNIQUE 71 RESTful web applications

■ Discussion
REST stands for representational state transfer ,2 which isn’t terribly useful to memorize
unless you want to impress someone in a job interview. The way web developers talk
about it is usually in contrast to SOAP (Simple Object Access Protocol), which is seen
as a more corporate and strict way to create web APIs. In fact, there’s such a thing as a
strict REST API, but the key distinction is that REST embraces HTTP at a fundamental
level—the HTTP methods themselves have semantic meaning.

 You should be familiar with using GET and POST requests if you’ve ever made a basic
HTML form. In REST, these HTTP verbs have specific meanings. For example, POST will
create a resource, and GET means fetch a resource.

 Node developers typically create APIs that use JSON. JSON is the easiest structured
data format to generate and read in Node, but it also works well in client-side
JavaScript. But REST doesn’t imply JSON—you’re free to use any data format. Certain
clients and services expect XML, and we’ve even seen those that work with CSV and
spreadsheet formats like Excel.

 The desired data format is specified by the request’s Accept header. For JSON that
should be application/json, and application/xml for XML. There are other useful
request headers as well—Accept-Version can be used to request a different version of
the API. This allows clients to lock themselves against a supported version, while
you’re free to improve the server without breaking backward compatibility—you can
always update your server faster than people can update their clients.

 Express provides a lightweight layer over Node’s http core module, but it doesn’t
include any data persistence functionality outside of in-memory sessions and cookies.
You’ll have to decide which database and database module to use. The same is true
with restify: it doesn’t automatically map data from HTTP to be stored offline; you’ll
need to find a way to do that.

 Restify is superficially similar to Express. The difference is that Express has fea-
tures that help you build web applications, which includes rendering templates. Con-
versely, restify is focused on building REST APIs, and that brings a different set of
requirements. Restify makes it easy to serve multiple versions of an API with semantic
versioning using HTTP headers, and has an event-based API for emitting and listening
for HTTP-related events and errors. It also supports throttling, so you can control how
quickly responses are made.

 Figure 9.3 shows a typical RESTful API that allows page objects to be created, read,
updated, and deleted.

 To get started building REST APIs, you should consider what your objects are.
Imagine you’re building a content management system: it probably has pages, users,
and images. If you want to add a button that allows pages to be toggled between “pub-
lished” and “draft,” and if you’ve already got a REST API and it supports requests to
PATCH /pages/:id, you could just tie the button to some client-side JavaScript or a
form that posts to /pages/:id with { state: 'published' } or { state: 'draft' }. If

2 For more about REST, see Fielding’s dissertation on the subject at http://mng.bz/7Fhj.

http://mng.bz/7Fhj

224 CHAPTER 9 The Web: Build leaner and meaner web applications

you’ve been given an Express application that only has PUT /pages/:id, then you
could probably derive the code for PATCH from the existing implementation.

Table 9.1 shows HTTP verbs alongside the typical response. Note that PUT and PATCH
have different but similar meanings—PATCH means modify some of the fields in a
resource, while PUT means replace the entire resource. It can take some practice to get
the hang of building applications this way, but it’s pragmatic and easy to test, so it’s
worth learning properly. If these HTTP terms are new to you, then use table 9.1 when
you’re designing the API for your application.

 In an Express application, these URLs and methods are mapped using routes.
Routes specify the HTTP verb and a partial URL. You can map these to any function
that you like, but if you use the route separation pattern from technique 67, which is
advisable, then you should use the method names that are close to their associated

HTTP request

/pages/10/pages/pages /pages/10/pages/10

Pages
Page 10 200 OKNew

page
Updated

page

GET POST GET PATCH DELETE

Figure 9.3 Making requests to a REST API

Plural or singular?
When you design your API’s URI endpoints, you should generally use plural nouns.
That means /pages and also /pages/1 for a specific page, not /page/1. It’ll be eas-
ier to use your API if the endpoints are consistent.

You may find there are certain resources that should be singular nouns, because
there’s only ever one such item. If it makes semantic sense, use a singular noun,
but use it consistently. For example, if your API requires that users sign in, and you
don’t want to expose a unique user ID, then /account might be a sensible endpoint
for user account management, if there’s only ever one account for a given user.

225TECHNIQUE 71 RESTful web applications

HTTP verbs. Listing 9.18 shows the routes for a RESTful resource in Express, and some
of the required configuration to make it work.

var app;
var express = require('express');
var routes = require('./routes');

module.exports = app = express();

app.use(express.json());
app.use(express.methodOverride());

app.get('/pages', routes.pages.index);
app.get('/pages/:id', routes.pages.show);
app.post('/pages', routes.pages.create);
app.patch('/pages/:id', routes.pages.patch);
app.put('/pages/:id', routes.pages.update);
app.del('/pages/:id', routes.pages.remove);

This example uses some middleware for automatically parsing JSON requests B, and
overrides the HTTP method POST with the query parameter, _method C. That means
that the PUT, PATCH, and DELETE HTTP verbs are actually determined by the _method
query parameter. This is because most browsers can only send a GET or POST, so
_method is a hack used by many web frameworks.

 The routes in listing 9.18 define each of the usual RESTful resource methods D.
Table 9.1 shows how these routes map to actions.

Table 9.1 Choosing the correct HTTP verbs

Verb Description Response

GET /animals Get a list of animals. An array of animal objects

GET /animals/:id Get a single animal. A single animal object, or an error

POST /animals Create an animal by sending the
properties of a single animal.

The new animal

PUT /animals/:id Update a single animal record. All
properties will be replaced.

The updated animal

PATCH /animals/:id/ Update a single animal record, but
only change the fields specified.

The updated animal

Listing 9.18 A RESTful resource in Express

Table 9.2 Mapping routes to responses

Verb, URL Description

GET /pages An array of pages.

GET /pages/:id An object containing the page specified by id.

Use JSON
body parser

BmethodOverride
middleware

component allows
a query parameter

to specify extra
HTTP methods C

The routes for
the resourceD

226 CHAPTER 9 The Web: Build leaner and meaner web applications

Listing 9.19 is an example implementation for the route handlers. It has a generic
Node database API—a real Redis, MongoDB, MySQL, or PostgreSQL database module
wouldn’t be too far off, so you should be able to adapt it.

var db = require('./../db');

module.exports.index = function(req, res, next) {
db.pages.findAll(function(err, pages) {
if (err) return next(err);
res.send(pages);

});
};

module.exports.create = function(req, res, next) {
var page = req.body.page;
db.pages.create(page, function(err, page) {
if (err) return next(err);
res.send(page);

});
};

module.exports.update = function(req, res, next) {
var id = req.param('id');
var page = req.body.page;
db.pages.update(id, page, function(err, page) {
if (err) return next(err);
res.send(page);

});
};

module.exports.show = function(req, res, next) {
db.pages.find(req.param('id'), function(err, page) {
if (err) return next(err);
res.send(page);

});
};

module.exports.patch = function(req, res, next) {
var id = req.param('id');
var page = req.body.page;

POST /pages Create a page.

PATCH /pages/:id Load the page for id, and change some of the fields.

PUT /pages/:id Replace the page for id.

DELETE /pages/:id Remove the page for id.

Listing 9.19 RESTful route handlers

Table 9.2 Mapping routes to responses (continued)

Verb, URL Description

Fall through to next
middleware component
when an error is raised
by the database

B

Calling send will automatically
return JSON to browserC

227TECHNIQUE 71 RESTful web applications

db.pages.patch(id, page, function(err, page) {
if (err) return next(err);
res.send(page);

});
};

module.exports.remove = function(req, res, next) {
var id = req.param('id');
db.pages.remove(id, function(err) {
if (err) return next(err);
res.send(200);

});
};

Although this example is simple, it illustrates something important: you should keep
your route handlers lightweight. They deal with HTTP and then let other parts of your
code handle the underlying business logic. Another pattern used in this example is the
error handling—errors are passed by calling next(err) B. Try to keep error-handling
code centralizing and generic—technique 70 has more details on this.

 To return the JSON to the browser, res.send() is called with a JavaScript object C.
Express knows how to convert the object to JSON, so that’s all you need to do.

 All of these route handlers use the same pattern: map the query or body to some-
thing the database can use, and then call the corresponding database method. If you’re
using an ORM or ODM—a more abstracted database layer—then you’ll probably have
something analogous to PATCH D. This could be an API method that allows you to
update only the specified fields. Relational databases and MongoDB work that way.

 If you download this book’s source code, you’ll get the other files required to try
out the full example. To run it, type npm start. Once the server is running, you can
use some of the following Curl commands to communicate with the server.

 The first command creates a page:

curl -H "Content-Type: application/json" \
-X POST -d '{ "page": { "title": "Home" } }' \
http://localhost:3000/pages

First we specify the Content-Type using the -H option B. Next, the request is set to
use POST, and the request body is included as a JSON string C. The URL is /pages
because we’re creating a resource D.

 Curl is a useful tool for exploring APIs, once you understand the basic options. The
ones to remember are -H for setting headers, -X for setting the HTTP method, and -d
for the request body.

 To see the list of pages, just use curl http://localhost:3000/pages. To change
the contents, try PATCH:

curl -H "Content-Type: application/json" \
-X PATCH -d '{ "page": { "title": "The Moon" } }' \
http://localhost:3000/pages/1

Most database modules won’t
have method named patch,
but something similarD

Use JSON as
body encoding

B
Method
is POST

C

URL for creating
pages is /pagesD

228 CHAPTER 9 The Web: Build leaner and meaner web applications

Express has a few other tricks up its sleeves for creating RESTful web services. Remem-
ber that some REST APIs use other data formats, like XML? What if you want both? You
can solve this by using res.format:

module.exports.show = function(req, res, next) {
db.pages.find(req.param('id'), function(err, page) {
if (err) return next(err);
res.format({

json: function() {
res.send(page);

},
xml: function() {

res.send('<page><title>' + page.title + '</title></page>');
}

});
});

};

To use XML instead of JSON, you have to include the Accept header in the request.
With Curl, you can do this:

curl -H 'Accept: application/xml' \
http://localhost:3000/pages/1

Just remember that Accept is used to ask the server for a specific format, and Content-
Type is used to tell the server what format you’re sending it. It sometimes makes sense
to include both in a single request!

 Now that you’ve seen how REST APIs in Express work, we can compare them with res-
tify. The patterns used to structure Express applications can be reused for restify proj-
ects. The two important patterns are route separation, as described in technique 67,
and defining the application in a separate file to the server (for easier testing and inter-
nal reuse). Listing 9.20 is the restify equivalent of listing 9.18.

var app;
var restify = require('restify');
var routes = require('./routes');

module.exports = app = restify.createServer({
name: 'NIP CMS',

});

app.use(restify.bodyParser());

app.get('/pages', routes.pages.index);
app.get('/pages/:id', routes.pages.show);
app.post('/pages', routes.pages.create);
app.patch('/pages/:id', routes.pages.patch);
app.put('/pages/:id', routes.pages.update);
app.del('/pages/:id', routes.pages.remove);

Listing 9.20 A restify application

format
method
accepts

an object

B

json is shorthand for
application/json

C

Include a
function
for each
content

type D

Create restify
server instance

B

Use middleware
component to parse JSON

C

Set up
routesD

229TECHNIQUE 71 RESTful web applications

Using restify, instances of servers are created with some initial configuration options
B. You don’t have to pass in any options, but here we’ve specified a name. The
options are actually the same as Node’s built-in http.Server.listen, so you can pass
in options for SSL/TLS certificates, if you want to use encryption. Restify-specific
options that aren’t available in Express include formatters, which allows you to set up
functions that res.send will use for custom content types.

 This example uses bodyParser to parse JSON in the request bodies C. This is like
the Express middleware component in the previous example.

 The route definitions are identical to Express D. The actual route callbacks are
slightly different. Listing 9.21 shows a translation of listing 9.19. See if you can spot the
differences.

var db = require('./../db');

module.exports.index = function(req, res, next) {
db.pages.findAll(function(err, pages) {
if (err) return next(err);
res.send(pages);

});
};

module.exports.create = function(req, res, next) {
var page = req.body.page;
db.pages.create(page, function(err, page) {
if (err) return next(err);
res.send(page);

});
};

module.exports.update = function(req, res, next) {
var id = req.params.id;
var page = req.body.page;
db.pages.update(id, page, function(err, page) {
if (err) return next(err);
res.send(page);

});
};

module.exports.show = function(req, res, next) {
db.pages.find(req.params.id, function(err, page) {
if (err) return next(err);
res.send(page);

});
};

module.exports.patch = function(req, res, next) {
var id = req.params.id;
var page = req.body.page;
db.pages.patch(id, page, function(err, page) {
if (err) return next(err);

Listing 9.21 Restify routes

The callback arguments
are similar to Express.B

Getting URL parameters
is slightly different.C

230 CHAPTER 9 The Web: Build leaner and meaner web applications

res.send(page);
});

};

module.exports.remove = function(req, res, next) {
var id = req.params.id;
db.pages.remove(id, function(err) {
if (err) return next(err);
res.send(200);

});
};

The first thing to note is the callback arguments for route handlers are the same as
Express B. In fact, you can almost lift the equivalent code directly from Express appli-
cations. There are a few differences though: req.param() doesn’t exist—you need to
use req.params instead, and note this is an object rather than a method C. Like
Express, calling res.send() with an integer will return a status code to the client D.

If you download the full example and run it (listings/web/restify), you can try out
some of the Curl commands we described earlier. Create, update, and show should
work the same way.

 Knowing that Express and restify applications are similar is useful, because you can
start to compose applications made from both frameworks. Both are based on Node’s
http module, which means you could technically mount a restify application inside
Express using app.use(restifyApp). This works well if the restify application is in its
own module—you could install it using npm, or put it in its own directory.

 Both Express and restify use middleware, and you’ll find well-structured applica-
tions have loosely coupled middleware that can be reused across different projects. In

Passing an integer to send()
returns the status code.

D

Using other HTTP headers
In this technique you’ve seen how the Content-Type and Accept headers can be
used to deal with different data formats. There are other useful headers that you
should take into account when building APIs.

One such header, supported by restify, is Accept-Version. When you define a route,
you can include an optional first parameter that includes options, instead of the usual
string. The version property allows your API to respond differently based on the
Accept-Version header.

For example, using app.get({ path: '/pages', version: '1.1.8' }, routes
.v1.pages); allows you to bind specific route handlers to version 1.1.8. If you have
to change your API in 2.0.0, then you can do this without breaking older clients.

There’s nothing to stop you from using this header in an Express application, but it’s
easier in restify. If you decide to take this approach, you should learn how
major.minor.patch works in semantic versioning (http://semver.org/).

http://semver.org/

231TECHNIQUE 72 Using custom middleware

the next technique you’ll see how to write your own middleware, so you can start dec-
orating applications with useful features like custom logging.

TECHNIQUE 72 Using custom middleware

You’ve seen middleware being used for error handling, and you’ve also used some of
Express’s built-in middleware. You can also use middleware to add custom behavior to
routes; this might add new functionality, improve logging, or control access based on
authentication or permissions.

 The benefit of middleware is that it can improve code reuse in your application.
This technique will teach you how to write your own middleware, so you can share
code between projects, and structure projects in a more readable way.

■ Problem
You want to add behavior—in a reusable, testable manner—that’s triggered when cer-
tain routes are accessed.

■ Solution
Write your own middleware.

■ Discussion
When you first start using Express, middleware sounds like a complicated concept
that other people use for writing plugins that extend Express. But in fact, writing mid-
dleware is a fundamental part of using Express, and you should start writing middle-
ware as soon as possible. And if you can write routes, then you can write middleware:
it’s basically the same API!

 In technique 70, you saw how to handle errors with a middleware component.
Error handling is a special case—you have to include a fourth parameter to capture
the error object: app.use(function(err, req, res, next) {. With other middle-
ware, you can just use three arguments, like standard route handlers. This is the sim-
plest middleware component:

app.use(function(req, res, next) {
console.log('%s %s', req.method, req.url);
next();

});

By passing an anonymous callback to app.use B, the middleware component will
always run, unless a previous middleware component fails to call next. When your
code is finished, you can call next C to trigger the next middleware component in
the stack. That means two things: asynchronous APIs are supported, and the order in
which you add middleware is important.

 The following example shows how you can use asynchronous APIs inside middle-
ware. This example is based on the idea of loading a user based on a user ID that has
been set in the session:

Apply middleware component
by calling app.use()

B

Call next() to continue execution
to next middleware componentC

232 CHAPTER 9 The Web: Build leaner and meaner web applications

app.use(function(req, res, next) {
if (req.session.user_id) {
db.users.find(req.session.user_id, function(err, user) {
if (err) {

next(err);
} else if (user) {

res.locals.user = user;
next();

} else {
next(new Error('Account not found'));

}
});

} else {
next();

}
});

This middleware will be triggered for every request B. It loads user accounts from a
database, but only when the user’s ID has been set in the session C. The code that
loads the user is asynchronous, so next could be called after a short delay. There are
several points where next is called: for example, if an error was encountered when
loading the user, next will be called with an error D.

 In this example the loaded user is set as a property of res.locals E. By using
res.locals, you’ll be able to access the user in other middleware, route handlers, and
templates.

 This isn’t necessarily the best way to use middleware. Including an anonymous
function this way means it can be hard to test—you can only test middleware by start-
ing up the entire Express application. You might want to write simpler unit tests that
don’t use HTTP requests, so it would be better to refactor this code into a function.
The function would have the same signature, and would be used like this:

var middleware = require('./middleware');
app.use(middleware.loadUser);

By grouping all the middleware together as modules B, you can load the middle-
ware from other locations, whether they’re entirely different projects, test code, or
inside separated routes. This function has decoupled the middleware to improve
how it can be reused.

 If you’re using the route separation pattern from technique 67, then this makes
sense, because middleware can be applied to specific routes that might be defined in
different files. Let’s say you’re using the RESTful API style from technique 71, and your
page resource can only be updated by signed-in users, but other parts of the applica-
tion should be accessible to anyone. You can restrict access to the page resource
routes like this:

This callback will run
for every request.

B
If a user ID has
been set in the

session, load
the account.

C

If there was an error
loading the user,

pass control to the
error middleware

component. D

If the user was
loaded, set it
on res.locals so
it can be used
elsewhere.E

Loading a module that
contains middlewareB

233TECHNIQUE 72 Using custom middleware

var middleware = require('./middleware');

app.get('/pages', routes.pages.index);
app.get('/pages/:id', routes.pages.show);
app.post('/pages', middleware.loadUser, routes.pages.create);
app.patch('/pages/:id', middleware.loadUser, routes.pages.patch);

In this fragment, routes are defined for a resource called pages. Some routes are
accessible to anyone B, but creating or updating pages is limited to people with
accounts on the system C. This is done by supplying the loadUser middleware com-
ponent as the second argument when defining a route. In fact, multiple arguments
could be used—you could have a generic user loading route, and then a more specific
permission checking route that ensures users are administrators, or have the neces-
sary rights to change pages.

 Figure 9.4 shows how requests can pass through several callbacks until the final
response is sent back to the client. Sometimes this might cause a response to finish
before other middleware has had a chance to run—if an error is encountered and
passed to next(err).

 You can even apply middleware to batches of routes. It’s common to see something
like app.all('/admin/*', middleware.loadUser); in Express applications.

 If you use modules to manage your middleware, and simplify route handlers by mov-
ing shared functionality into separate files, then you’ll find that organizing middleware
into modules becomes a fundamental architectural tool for organizing applications.

Anyone can
view pages.

B

Only signed-in users can
create or update pages. C

requireAccount
Middleware

Node application

requirePermission
Middleware

createAccount
Route handler

403 Forbidden

401 Unauthorized

200 OK

POST/pages
{ title: "Home" }

Figure 9.4 Requests can pass
through several callbacks until
the final response is sent.

234 CHAPTER 9 The Web: Build leaner and meaner web applications

If you’re designing a new Express application, you should think in terms of middle-
ware. Ask yourself what kinds of HTTP requests you’re going to deal with, and what
kinds of filtering they might need.

 Now it’s time to combine all of these ideas into a worked example. Listing 9.22
demonstrates one way of parsing requests that contain XML. Middleware has been
used to parse the XML, turning it into plain old JavaScript objects. That means two
things: only a small part of your code has to worry about XML, and you could poten-
tially add support for other data formats as well.

var express = require('express');
var app = express();
var Schema = require('validate');
var xml2json = require('xml2json');
var util = require('util');
var Page = new Schema();

Page.path('title').type('string').required();

function ValidatorError(errors) {
this.statusCode = 400;
this.message = errors.join(', ');

}
util.inherits(ValidatorError, Error);

function xmlMiddleware(req, res, next) {
if (!req.is('xml')) return next();

var body = '';
req.on('data', function(str) {
body += str;

});

req.on('end', function() {
req.body = xml2json.toJson(body.toString(), {

object: true,
sanitize: false

});
next();

});
}

function checkValidXml(req, res, next) {
var page = Page.validate(req.body.page);
if (page.errors.length) {
next(new ValidatorError(page.errors));

} else {
next();

}
}

function errorHandler(err, req, res, next) {

Listing 9.22 Three types of middleware

Define some data validation
to ensure pages have titles

B

Inherit from standard error object
so validation errors can be handled
in error middleware componentC

This function will be used as
XML middleware componentD

Request object will emit data events
when body is read from the clientE

Data-validation
middleware component

F

Passing errors to next() will stop
route handler from runningG

This is error-handling
middleware component

H

235TECHNIQUE 72 Using custom middleware

console.error('errorHandler', err);
res.send(err.statusCode || 500, err.message);

}

app.use(xmlMiddleware);

app.post('/pages', checkValidXml, function(req, res) {
console.log('Valid page:', req.body.page);
res.send(req.body);

});

app.use(errorHandler);

app.listen(3000);

In summary, this example defines three middleware components to parse XML, vali-
date it, and then either respond with a JSON object or display an error. We’ve used an
arbitrary data-validation library here B—your database module may come with some-
thing similar.

 The routes deal with page resources, and the expected format for pages is XML. It’s
passed in as request bodies and validated. An error object, ValidatorError C, is used
to return a 400 error when invalid data is sent to the server. The XML parser D reads
in the request body using the standard event-based API E. This middleware compo-
nent is called for every request I because it’s passed directly to app.use, but it only
runs if the Content-Type is set to XML.

 The data-validation middleware component F ensures a page title has been set—
this is just an arbitrary example we’ve chosen to illustrate how this kind of validation
works. If the data is invalid, an instance of ValidatorError is passed when next is
called G. This will trigger the error-handling middleware component H.

 Data is only validated for certain requests. This is done by passing checkValidXml
when the /pages route is defined J.

 The global error handler is the last middleware component to be added 1). This
should always be the case, because middleware is executed in the order it’s defined.
Once res.send has been called, then no more processing will occur, so errors won’t
be triggered.

 To try this example out, run node server.js and then try posting XML to the
server using curl:

curl -H "Content-Type: application/xml" \
-X POST -d '<page><title>Node in Practice</title></page>' \
http://localhost:3000/pages

You should try leaving out a title to ensure a 400 error is raised!
 This approach can be used for XML, JSON, CSV, or any other data formats you like.

It works well for minimizing the code that has to deal with XML, but there are other
ways you can write decoupled code in Node web applications. In the next technique
you’ll see how something fundamental to Node—events—can be used as another use-
ful architectural pattern.

Use XML middleware
component for all requests

I

Validate XML for
specific requestsJ

Last middleware component to be
added should be error handler

1)

236 CHAPTER 9 The Web: Build leaner and meaner web applications

TECHNIQUE 73 Using events to decouple functionality

In the average Express application, most code is organized into methods and mod-
ules. This can make sharing functionality inconvenient in some cases, particularly if
you want to neatly separate concerns within your application. This technique uses
sending emails as an example of something that doesn’t fit neatly into routers, mod-
els, or views. Events are used to decouple emails from routers, which keeps email-
related code outside of HTTP code.

■ Problem
You want to do things that aren’t related to HTTP, like send emails, but aren’t sure how
to structure the code so it’s neatly decoupled and easy to test.

■ Solution
Use easily accessible EventEmitter objects, like the Express app object.

■ Discussion
Express and restify applications generally follow the Model-View-Controller (MVC)
pattern. Models are used to save data, controllers are route handlers, and views are
the templates in the views/ directory.

 Some code doesn’t fit neatly into these categories. For example, where would you
keep email-handling code? Email generation clearly doesn’t belong in routes, because
email isn’t related to HTTP. But like route handlers, it does require templates. It also
isn’t really a model, because it doesn’t interact with the database.

 What if you did put the email-handling code into models? In that case, given an
instance of a User model, you want to send an email when a new account is created. You
could put the email code in the User.prototype.registerUser method. The problem
with that is you might not always want to send emails when users are created. It might
not be convenient during testing, or some kind of periodic maintenance tasks.

 The reason why sending email isn’t quite suitable for models or HTTP routes can
be understood by thinking about the SOLID principles (http://en.wikipedia.org/
wiki/SOLID). There are two principles that are relevant to us: the single responsibility
principle and the dependency inversion principle.

 Single responsibility dictates that the class that deals with HTTP routes really
shouldn’t send emails, because these are different responsibilities that shouldn’t be
mixed together. Inversion of control is a specific type of dependency inversion, and can
be done by removing direct invocation—rather than calling emails.sendAccount-
Creation, your email-handling class should respond to events.

 For Node programmers, events are one of the most important tools available. And
fortunately for us, the SOLID principles indicate that we can write better HTTP routers
by removing our email code, and replacing it with abstract and generalized events.
These events can then be responded to by the relevant classes.

 Figure 9.5 shows what our idealized application structure might look like. But how
do we achieve this? Take Express applications as an example; they don’t typically have
a suitable global event object. You could technically create a global variable somewhere

http://en.wikipedia.org/wiki/SOLID
http://en.wikipedia.org/wiki/SOLID

237TECHNIQUE 73 Using events to decouple functionality

central, like the file that calls express(), but that would introduce a global shared state,
and that would break the principles we described earlier.

 Fortunately, Express includes a reference to the app object in the request. Route
handlers, which accept the req, res parameters, always have access to app in res.app.
The app object inherits from EventEmitter, so we can use it to broadcast when things
happen. If your route handler creates and saves new users, then it can also call
res.app.emit('user:created', user), or something similar—you can use any nam-
ing scheme for events as long as it’s consistent. Then you can listen for user:created
events and respond accordingly. This could include sending email notifications, or
perhaps even logging useful statistics about users.

 The following listing shows how to listen for events on the application object.

var express = require('express');
var app = express();
var emails = require('./emails');
var routes = require('./routes');

app.use(express.json());

app.post('/users', routes.users.create);

app.on('user:created', emails.welcome);

module.exports = app;

In this example a route for registering users is defined B, and then an event listener
is defined and bound to a method that sends emails C.

 The route is shown in the next listing.

var User = require('./../models/user');

module.exports.create = function(req, res, next) {
var user = new User(req.body);

Listing 9.23 Using events to structure an application

Listing 9.24 Emitting events

app.post('/users',
accounts.create);

Model
new User(...)

Email
emails.welcome(user)

Figure 9.5 Applications can be
easier to understand if organized
according to the SOLID principles.

Set up a route for
creating users.

B

Listen for user creation
events, and bind them to
the email code.C

238 CHAPTER 9 The Web: Build leaner and meaner web applications

user.save(function(err) {
if (err) return next(err);
res.app.emit('user:created', user);
res.send('User created');

});
};

This listing contains an example model for User objects. If a user is successfully cre-
ated, then user:created is emitted on the app object. The downloadable code for this
book includes a more complete example with the code that sends emails, but the basic
principle for removing direct invocation and adhering to the single responsibility
principle is represented here.

 Communication with events inside applications is useful when you need to make
the code easier for other developers to understand. There are also times when you
need to communicate with client-side code. The next technique shows you how to
take advantage of WebSockets in your Node applications, while still being able to
access resources like sessions.

TECHNIQUE 74 Using sessions with WebSockets

Node has strong support for the real-time web. Adopting event-oriented, asynchro-
nous APIs means supporting WebSockets is a natural fit. Also, it’s trivial to run two
servers in the same process: a WebSocket server and a standard Node HTTP server can
coexist happily.

 This technique shows you how to reuse the Connect and Express middleware that
we’ve been using so far with a WebSocket server. If your application allows users to
sign in, and you want to add WebSocket support, then read on to learn how to master
sessions in WebSockets.

■ Problem
You want to add WebSocket support to an existing Express application, but you’re not
sure how to access session variables, like whether the user is currently signed in.

■ Solution
Reuse Connect’s cookie and session middleware with your WebSocket server.

■ Discussion
This technique assumes you have a passing familiarity with WebSockets. To recap:
HTTP requests are stateless and relatively short-lived. They’re great for downloading
documents, and requesting a state change for a resource. But what about streaming
data to and from a server?

 Certain types of events originate from servers. Think about a web mail service.
When you create and send a message, you push it to the server, and the server sends
it to the recipients. If the recipient is sitting watching their inbox, there’s no easy
way for their browser to get updated. It could periodically check for new messages
using an Ajax request, but this isn’t very elegant. The server knows it has a new mes-
sage for the recipient, so it would be much better if it could push that message
directly to the user.

Emit user creation events when
users are successfully registered.

239TECHNIQUE 74 Using sessions with WebSockets

That’s where WebSockets come in. They’re conceptually like the TCP sockets we saw in
chapter 7: a bidirectional bridge is set up between the client and server. To do this you
need a WebSocket server in addition to your standard Express server, or plain old Node
http server. Figure 9.6 illustrates how this works in a typical Node web application.

 HTTP requests are short-lived, have specific endpoints, and use methods like POST
and PUT. WebSockets are long-lived, don’t have specific endpoints, and don’t have
methods. They’re conceptually different, but since they’re used to communicate with
the same application, they typically need access to the same data.

 This presents a problem for sessions. The Express examples we’ve looked at used
middleware to automatically load the session. Connect middleware is based on the
HTTP request and response, so how do we map this to WebSockets, which are long-
lived and bidirectional? To understand this, we need to look at how WebSockets and
sessions work.

 Sessions are loaded based on unique identifiers that are included in cookies. Cook-
ies are sent with every HTTP request. WebSockets are initiated with a standard HTTP
request that asks to be upgraded to a WebSocket. This means there’s a point where
you can grab the cookie from the request, and then load the session. For each Web-
Socket, you can store a reference to the user’s session. Now you can do all the usual
things you need to do with a session: verify the user is signed in, set preferences, and
so on.

 Figure 9.7 extends figure 9.6 to show how sessions can be used with WebSockets, by
incorporating the Connect middleware for parsing cookies and loading the session.

 Now that you know how the parts fit together, how do you go about building it?
The cookie-parsing middleware component can be found in express.cookieParser.
This is actually a simple method that gets the cookie from the request headers, and
then parses the cookie string into separate values. It accepts an argument, secret,

http.createServer new WebSocketServer

Node web application

Figure 9.6 A Node web appli-
cation should support both
standard HTTP requests and
WebSockets.

240 CHAPTER 9 The Web: Build leaner and meaner web applications

which is the value used to sign the cookie. Once the cookie is decrypted, you can get
the session ID from it and load the session.

 Sessions in Express are modeled on an asynchronous API for storing and retrieving
values. They can be backed by a database, or you can use the built-in memory-based
class. Passing the session ID and a callback to sessionStore.get will load the session,
if the session ID is correct.

 In this technique we’ll use the ws WebSocket module (https://www.npmjs.org/
package/ws). This is a fast-but-minimal implementation that has a very different API
than Socket.IO. If you want to learn about Socket.IO, then Node in Action has some
excellent tutorials. Here we’re using a simpler module so you can really see how Web-
Sockets work.

 To make ws load the session, you need to parse the cookies from the HTTP
upgrade request, and then call sessionStore.get. A full example that shows how it
all works follows.

var express = require('express');
var WebSocketServer = require('ws').Server;
var parseCookie = express.cookieParser('some secret');
var MemoryStore = express.session.MemoryStore;
var store = new MemoryStore();

Listing 9.25 An Express application that uses WebSockets

http.createServer new WebSocketServer

parseCookies sessionStore

Node web application

Figure 9.7 Accessing ses-
sions from WebSockets

Load
cookie-parser

middleware
component and

set the secret B

Load desired
session storeC

https://www.npmjs.org/package/ws
https://www.npmjs.org/package/ws

241TECHNIQUE 74 Using sessions with WebSockets

var app = express();
var server = app.listen(process.env.PORT || 3000);
var webSocketServer;

app.use(parseCookie);
app.use(express.session({ store: store, secret: 'some secret' }));
app.use(express.static(__dirname + '/public'));

app.get('/random', function(req, res) {
req.session.random = Math.random().toString();
res.send(200);

});

webSocketServer = new WebSocketServer({ server: server });

webSocketServer.on('connection', function(ws) {
var session;

ws.on('message', function(data, flags) {
var message = JSON.parse(data);

if (message.type === 'getSession') {
parseCookie(ws.upgradeReq, null, function(err) {

var sid = ws.upgradeReq.signedCookies['connect.sid'];

store.get(sid, function(err, loadedSession) {
if (err) console.error(err);
session = loadedSession;
ws.send('session.random: ' + session.random, {

mask: false
});

});
});

} else {
ws.send('Unknown command');

}
});

});

This example starts by loading and configuring the cookie parser B and the session
store C. We’re using signed cookies, so note that ws.upgradeReq.signedCookies is
used when loading the session later.

 Express is set up to use the session middleware component D, and we’ve created a
route that you can use for testing E. Just load http://localhost:3000/random in your
browser to set a random value in the session, and then visit http://localhost:3000/ to
see it printed back.

 The ws module works by using a plain old constructor, WebSocketServer, to han-
dle WebSockets. To use it, you instantiate it with a Node HTTP server object—we’ve
just passed in the Express server here F. Once the server is started, it’ll emit events
when connections are created G.

 The client code for this example sends JSON to the server, so there’s some code to
parse the JSON string and check whether it’s valid H. This wasn’t entirely necessary

Tell Express to use
session store, and

set the secret

D
Create

Express
route that

will set a
session value

for testing

E

Start up WebSocket
server, and pass it
the Express server

F

On connection
events, create

WebSocket
for the client G Data sent by the client is

assumed to be JSON, and
is parsed here

H

Get session ID for
WebSocket from the

HTTP upgrade request I Get user’s
session from
the storeJ

Send value from
session back through
the WebSocket1)

242 CHAPTER 9 The Web: Build leaner and meaner web applications

for this example, but we included it to show that ws requires this kind of extra work to
be used in most practical situations.

 Once the WebSocket server has a connection, the session ID can be accessed
through the cookies on the upgrade request I. This is similar to what Express does
behind the scenes—we just need to manually pass a reference to the upgrade request
to the cookie-parser middleware component. Then the session is loaded using the ses-
sion store’s get method J. Once the session has been loaded, a message is sent back
to the client that contains a value from the session 1).

 The associated client-side implementation that’s required to run this example is
shown in the following listing.

<!DOCTYPE html>
<html>
<head>
<script>
var host = window.document.location.host.replace(/:.*/, '');
var ws = new WebSocket('ws://' + host + ':3000');

setInterval(function() {
ws.send('{ "type": "getSession" }');

}, 1000);

ws.onmessage = function(event) {
document.getElementById('message').innerHTML = event.data;

};
</script>
</head>
<body>

<h1>WebSocket sessions</h1>
<div id='message'></div>

</body>
</html>

All it does is periodically send a message to the server. It’ll display undefined until you
visit http://localhost:3000/random. If you open two windows, one to http://local-
host:3000/random and the other to http://localhost:3000/, you’ll be able to keep
refreshing the random page so the WebSocket view shows new values.

 Running this example requires Express 3 and ws 0.4—we’ve included a pack-
age.json with everything you need in the book’s full listings.

 The next technique has tips for migrating from Express 3 to Express 4.

TECHNIQUE 75 Migrating Express 3 applications to Express 4

This book was written before Express 4 was released, so our Express examples are
written with version 3 of the framework in mind. We’ve included this technique to
help you migrate, and also so you can see how version 4 differs from the previous
versions.

Listing 9.26 The client-side WebSocket implementation

Periodically
send message
to the server

243TECHNIQUE 75 Migrating Express 3 applications to Express 4

■ Problem
You have an Express 3 application and want to upgrade it to use Express 4.

■ Solution
Update your application configuration, install missing middleware, and take advan-
tage of the new routing API.

■ Discussion
Most of the updates from Express 3 to 4 were a long time coming. Certain changes
have been hinted at in Express 3’s documentation, so the API changes weren’t unex-
pected or even too dramatic for the most part. You’ll probably spend most of your
time replacing the middleware that used to ship with Express, because Express 4 no
longer has any built-in middleware components, apart from express.static.

 The express.static middleware component enables Express to mount your pub-
lic folder that contains JavaScript, CSS, and image assets. This has been left in
because it’s convenient, but the rest of the middleware components have gone. That
means you’ll need to use npm install --save body-parser if you previously used
bodyParser, for example. Refer to table 9.1 that has the old middleware names and
the newer equivalents. Just remember that you need to npm install --save each one
that you need, and then require it in your app.js file.

Table 9.3 Migrating Express middleware components

Express 3 Express 4 npm package Description

bodyParser body-parser Parses URL-encoded and JSON POST bodies

compress compression Compresses the server’s responses

timeout connect-timeout Allows requests to timeout if they take too long

cookieParser cookie-parser Parses cookies from HTTP headers, leaving the
result in req.cookies

cookieSession cookie-session Simple session support using cookies

csrf csurf Adds a token to the session that you can use to pro-
tect forms from CSRF attacks

error-handler errorhandler The default error handler used by Connect

session express-session Simple session handler that can be extended with
stores that write sessions to databases or files

method-override method-override Maps new HTTP verbs to the _method request
variable

logger morgan Log formatting

response-time response-time Track response time

favicon serve-favicon Send favicons, including a built-in default if you
don’t have one yet

244 CHAPTER 9 The Web: Build leaner and meaner web applications

You might not use most of these modules. In my applications I (Alex) usually have
only body-parser, cookie-parser, csurf, express-session, and method-override,
so migration isn’t too difficult. The following listing shows a small application that
uses these middleware components.

var bodyParser = require('body-parser');
var cookieParser = require('cookie-parser');
var csurf = require('csurf');
var session = require('express-session');
var methodOverride = require('method-override');
var express = require('express');
var app = express();

app.use(cookieParser('secret'));
app.use(session({ secret: 'secret' }));
app.use(bodyParser());
app.use(methodOverride());
app.use(csurf());

app.get('/', function(req, res) {
res.send('Hello');

});

app.listen(3000);

To install Express 4 and the necessary middleware, you should run the following com-
mand in a new directory:

npm install --save body-parser cookie-parser \
csurf express-session method-override \
serve-favicon express

This will install all of the required middleware modules along with Express 4, and save
them to a package.json file. Once you’ve loaded the middleware components with
require B, you can add them to your application’s stack with app.use as you did in
Express 3 C. Route handlers can be added exactly as they were in Express 3 D.

OFFICIAL MIGRATION GUIDE The Express authors have written a migration
guide that’s available in the Express wiki on GitHub.3 This includes a quick
rundown of every change.

directory serve-index Directory listings, similar to Apache’s directory
indexing

vhost vhost Allow routes to match on subdomains

Listing 9.27 Express 4 middleware

3 https://github.com/visionmedia/express/wiki/Migrating-from-3.x-to-4.x

Table 9.3 Migrating Express middleware components (continued)

Express 3 Express 4 npm package Description

Load middleware
modulesB

Configure each piece
of middlewareC

Define
a routeD

https://github.com/visionmedia/express/wiki/Migrating-from-3.x-to-4.x

245TECHNIQUE 75 Migrating Express 3 applications to Express 4

You can’t use app.configure anymore, but it should be easy to stop using it. If you’re
using app.configure to do only certain things for specific environments, then just use
a conditional statement with process.env.NODE_ENV. The following example assumes
a fictitious middleware component called logger that can be set to be noisy, which
might not be desirable when the tests are running:

if (process.env.NODE_ENV !== 'test') {
app.use(logger({ verbose: true }));

}

The new routing API reinforces the concept of mini-applications that can be mounted
on different endpoints. That means your RESTful resources can leave off the resource
name from URLs. Instead of writing app.get('/songs', songs.index), you can now
write songs.get('/', index) and mount songs on /songs with app.use. This fits in
well with the route separation pattern in technique 67.

 The next listing shows how to use the new router API.

var express = require('express');
var app = express();

app.get('/', function(req, res) {
res.send('Hello');

});

var songs = express.Router();

songs.get('/', function(req, res) {
res.send('A list of songs');

});

songs.get('/:id', function(req, res) {
res.send('A specific song');

});

app.use('/songs', songs);

app.listen(3000);

After creating a new router B, you can add routes the same way you always did, using
HTTP verbs like get C. The cool thing about this is you can also add middleware that
will be confined to these routes only: just call songs.use. That was previously trickier
in older versions of Express.

 Once you’ve set up a router, you can mount it using a URL prefix D. That means
you could do things like mount the same route handler on different URLs to easily
alias them.

 If you put the routers in their own files and mount them in your main app.js file,
then you could even distribute routers as modules on npm. That means you could
compose applications from reusable routers.

Listing 9.28 Express 4 middleware

Create new
router

B

Add route handler to
this set of routesC

Mount router with
a URL prefix

D

246 CHAPTER 9 The Web: Build leaner and meaner web applications

 The final thing we’ll mention about Express 4 is the new router.param method.
This allows you to run asynchronous code when certain route parameters are present.
Let’s say you have '/songs/:song_id', and :song_id should only ever be a valid song
that’s in the database. With route.param you can validate that the value is a number
and exists in the database, before any route handlers run!

router.param('song_id', function(req, res, next, id) {
Song.find(id, function(err, song) {
if (err) {

return next(err);
} else if (!song) {

return next(new Error('Song not found'));
}
req.song = song;
next();

});
});

router.get('/songs/:song_id', function(req, res, next) {
res.send(req.song);

});

In this example, Song is assumed to be a class that fetches songs from a database. The
actual route handler is now extremely simple, because it only runs if a valid song has
been found. Otherwise, next will shortcut execution and pass an error to the error-
handling middleware.

 That wraps up our section on web application development techniques. There’s
one more important thing before we move on to the next chapter. Like everything
else, web applications should be well tested. The next section has some techniques
that we’ve found useful when testing web applications.

9.3 Testing web applications
Testing can feel like a chore, but it can also be an indispensable tool for verifying
ideas, particularly if you’re creating web APIs without user interfaces.

 Chapter 10 has an introduction to testing in Node, and technique 84 has an exam-
ple for testing web applications. In the next technique we extend this example to
show you how to test authenticated routes.

TECHNIQUE 76 Testing authenticated routes

Test frameworks like Mocha make tests easy to read and write, and SuperTest helps
keep HTTP-related tests clean. But authentication support isn’t usually built into such
modules. In this technique you’ll learn one way to handle authentication in tests, and
the approach is general enough that it can be reused with other test modules as well.

■ Problem
You want to test parts of your application that are behind a session-based username
and password.

247TECHNIQUE 76 Testing authenticated routes

■ Solution
Make a request that signs in during the setup phase of the tests, and then reuse the
cookies for subsequent tests.

■ Discussion
Some web frameworks and testing libraries handle sessions for you, so you can test
routes without worrying too much about logging in. This isn’t true for Mocha and
SuperTest, which we’ve used before in this book, so you’ll need to know a bit about
how sessions work.

 The session handling that Express uses from Connect is based around a cookie.
Once the cookie has been set, it can be used to load the user’s session. That means
that to write a test that accesses a secure part of your application, you’ll need to make
a request that signs in the user, grabs the cookies, and then use the cookies for subse-
quent requests. This process is shown in figure 9.8.

 To write tests that access authenticated routes, you’ll need a test user account, which
usually involves creating database fixtures. You’ll read about fixtures in chapter 10,
technique 87.

 Once the data is ready, you can use a library like SuperTest to make a POST to your
session-handling endpoint with a username and password. Cookies are transmitted
using HTTP headers, so you can read them from res.headers['set-cookie']. You
should also make an assertion to ensure the account was signed in.

 Now any new requests just need to set the Cookie header with the value from
res.headers, and your test user will be signed in. The next listing shows how this works.

var app = require('./../app');
var assert = require('assert');
var request = require('supertest');
var administrator = {

username: 'admin',
password: 'secret'

};

Listing 9.29 Testing authenticated requests

Node web application

Cookie: cookies

Request

GET/admin

set-cookie

Response

Headers

Request

POST/sessions

Figure 9.8 You can test authenticated routes by catching cookies.

This is a test user
that would usually be
loaded from a fixture.

B

248 CHAPTER 9 The Web: Build leaner and meaner web applications

describe('authentication', function() {
var cookies;

before(function(done) {
request(app)

.post('/session')

.field('username', administrator.username)

.field('password', administrator.password)

.end(function(err, res) {
assert.equal(200, res.statusCode);
cookies = res.headers['set-cookie'];
done();

});
});

it('should allow admins to access the admin area', function(done) {
request(app)

.get('/admin')

.set('Cookie', cookies)

.expect(200, done);
});

});

The first part of this test loads the required modules and sets up an example user B.
This would usually be stored in a database, or set by a fixture. Next, a POST is made
with the username and password C. The session cookie will be available in the set-
cookie header D.

 To access a route that’s behind a login E, set the Cookie header with the previ-
ously saved cookies F. You should find that the request is handled as if the user had
signed in normally.

 The trick to understanding testing with sessions can be learned by looking at how
Connect’s session middleware component works. Other middleware isn’t as easy to
manage during testing, so the next technique introduces the concept of test seams,
which will allow you to bring middleware under control during testing.

TECHNIQUE 77 Creating seams for middleware injection

Middleware is flexible and composable. This modular approach makes Connect-based
applications a joy to work on. But there’s a downside to middleware: testability. Some
middleware makes routes inherently difficult to test. This technique looks at ways to
get around this by creating seams.

■ Problem
You’re using middleware that has made your application difficult to test.

■ Solution
Find seams where middleware can be replaced for the duration of the tests.

■ Discussion
The term seam is a formal way of describing places in code that can be changed with-
out editing the original code. The concept is extended to apply to languages like

Post the username
and password.

CThe
session

cookie is
in the set-

cookie
header.

D

This route is
behind a login. E

Set the Cookie header with
the saved session cookie.F

249TECHNIQUE 77 Creating seams for middleware injection

JavaScript by Stephen Vance in his book Quality Code: Software Testing Principles, Prac-
tices, and Patterns.4

A seam in our code gives us the opportunity to take control of that code and exercise it in
a testing context. Any place that we can execute, override, inject, or control the code
could be a seam.

One example of this is the csrf middleware component from Connect. It creates a
session variable that can be included in forms to avoid cross-site request forgery
attacks. Let’s say you have a web application that allows registered users to create cal-
endar entries. If your site didn’t use CSRF protection, someone could create a web
page that tricks a user of your site into deleting items from their calendar. The attack
might look like this:

The user’s browser will dutifully load the image source that’s hosted on an external
site. But it references your site in a potentially dangerous way. To prevent this, a ran-
dom token is generated on each request and inserted into forms. The attacker doesn’t
have access to the token, so the attack is mitigated.

 Unfortunately, simply adding express.csrf to routes that render forms isn’t
entirely testable. Tests can no longer post to route handlers without first loading the
form and scraping out the session variable that contains the secret CSRF token.

 To get around this, you need to take express.csrf under your control. Refactor it
to create a seam: place it in a module that contains your other custom middleware,
and then change it during tests. You don’t need to test express.csrf because the
authors of Express and Connect have done that for you—instead, change its behavior
during tests.

 Two other options are available: checking if process.env.NODE_ENV is set to test
and then branching to a test-only version of the CSRF middleware component, or
patching express.csrf’s internals so you can extract the secret token. There are
problems with both of these approaches: the first means you can’t get 100% code cov-
erage—your production code has to include test code. The second approach is poten-
tially brittle: it’s too sensitive to Connect changing the way CSRF works in the future.

 The seam-based concept that we’ll use requires that you create a middleware file if
you don’t already have one. This is just a file that groups all of your middleware
together into a module that can be easily loaded. Then you need to create a function
that wraps around express.csrf, or just returns it. A basic example follows.

var express = require('express');

module.exports.csrf = express.csrf;

4 https://www.informit.com/store/quality-code-software-testing-principles-practices-9780321832986

Listing 9.30 Taking control of middleware

Create a place where other
middleware can be injected.

B

https://www.informit.com/store/quality-code-software-testing-principles-practices-9780321832986

250 CHAPTER 9 The Web: Build leaner and meaner web applications

All this does is export the original csrf middleware component B, but now it’s much
easier to inject different behavior during tests. The next listing shows what such a test
might look like.

var middleware = require('./../middleware');

middleware.csrf = function() {
return function(req, res, next) {
req.session._csrf = '';
next();

};
};

var app = require('./../app');
var request = require('supertest');

describe('calendar', function() {
it('should allow us to turn off csrf', function(done) {
request(app)

.post('/calendars')

.expect(200, done);
});

});

This test loads our custom middleware module before anything else, and then
replaces the csrf method B. When it loads app and fires off a request using Super-
Test, Express will use our injected middleware component because middleware.js
will be cached. The _csrf value is set just in case any views expected it C, and the
request should return a 200 instead of a 403 (forbidden) D.

 It might not seem like we’ve done much, but by refactoring how express.csrf is
loaded, we’ve been able to run our application in a more testable way. You may prefer
to make two requests to ensure the csrf middleware component is used normally, but
this technique can be used for other things as well. You can bring any middleware
under control for testing. If there’s something you don’t want to run during tests, look
for seams that allow you to inject the desired behavior, or try to create a seam using
simple JavaScript or Node patterns—you don’t need a complex dependency injection
framework; you can take advantage of Node’s module system.

 The next technique builds on some of these ideas to allow tests to interact with
simulated versions of remote services. This will make it easier if you’re writing tests for
an application that accesses remote services, like a payment gateway.

TECHNIQUE 78 Testing applications that depend on remote services

Third-party modules can help you integrate your applications with remote services
like GitHub, Twitter, and Facebook. But how do you test applications that depend on
such remote services? This technique looks at ways to insert stubs for remote depen-
dencies, to make your tests faster and more maintainable.

Listing 9.31 Injecting new behavior during tests

Load middleware component
first, and replace csrf method.

B

This stops views from breaking if
they expect _csrf to be set.C

A 200 should be
returned, not a 403!D

251TECHNIQUE 78 Testing applications that depend on remote services

■ Problem
You’re using a social network for authentication, or a service to accept payments, and
you don’t want your tests to access these remote dependencies.

■ Solution
Find the seams between your application, the remote service, and the things you want
to test, and then insert your own HTTP servers to simulate parts of the remote
dependency.

■ Discussion
One of the things that most web applications need, yet is easy to get dangerously
wrong, is user accounts. Using a Node module that supports the authorization services
provided by companies like GitHub, Google, Facebook, and Twitter is both quick and
potentially safer than creating a bespoke solution.

 It’s comparatively easy to adopt one of these services, but how do you test it? In
technique 76, you saw how to write tests for authenticated routes. This involved sign-
ing in and saving the session cookies so subsequent requests appeared authenticated.
You can’t use the same approach with remote services, because your tests would have
to make requests to real-life production services. You could use a test account, but
what if you wanted to run your tests offline?

 To get around this, you need to create a seam between your application and the
remote service. Whenever your application attempts to communicate with the remote
service, you need to slot in a fake version that emits similar responses. In unit tests,
mock objects simulate other objects. What you want is to mock a service.

 There are two requirements that your application needs to satisfy to make this
possible:

■ Configurable remote services
■ A web server that can stand in for the remote service

The first condition means your application should allow the URLs of remote services
to be changed. If it needs to connect to http://auth.example.com/signin, then you’ll
need to specify http://localhost:3001/signin during testing. The port is entirely up to
you—some solutions we’ve seen use a sequence of port numbers so multiple services
can be run at once for the same tests.

 The second condition can be handled however you want. If you’re using Express,
you could start an Express server with a limited set of routes defined—just enough
routes and code to simulate the remote service. This server can be kept in its own
module, and loaded in the tests that need it.

 In practice this doesn’t require much code, so once you understand the principle
it shouldn’t be too difficult to reuse it to handle practically any API. If the API you’re
attempting to simulate isn’t well documented, then you may need to capture real
requests to figure out how it works.

252 CHAPTER 9 The Web: Build leaner and meaner web applications

In the following three listings, you’ll see how to create a mock server that a test can use
to simulate some of PayPal’s behavior. The first listing shows the application itself.

var express = require('express');
var app = express();
var PayPal = require('./paypal');
var payPal = new PayPal({

user: 'NIP',
payPalUrl: 'http://localhost:3001/validate',

Listing 9.32 A small web store that uses PayPal

Investigating remote APIs
There are times when remote APIs aren’t well documented. Once you get beyond the
basic API calls, there are bound to be parts that aren’t easy to understand. In cases
like this, we find it’s best to make requests with a command-line tool like curl, and
watch the requests and responses in an HTTP logging tool.

If you’re using Windows, then Fiddler (http://www.telerik.com/fiddler) is absolutely
essential. It’s described as a HTTP debugging proxy, and it supports HTTPS as well.

For Linux and Mac OS, mitmproxy (http://mitmproxy.org/) is a powerful choice. It
allows HTTP traffic to be observed in real time, dumped, saved, and replayed. We’ve
found it perfect for debugging our own Node-powered APIs that support desktop apps,
as well as figuring out the quirks of certain popular payment gateways.

Glance has built-in pages for errors.

These settings control
PayPal’s behavior.

B

http://www.telerik.com/fiddler
http://mitmproxy.org/

253TECHNIQUE 78 Testing applications that depend on remote services

rootUrl: 'http://localhost:3000'
});

app.use(express.bodyParser());

app.post('/buy', function(req, res, next) {
var url = payPal.generateUrl(req.body);

// Send the user to the PayPal payment page
res.redirect(url);

});

app.post('/paypal/success', function(req, res, next) {
payPal.verify(req.body, function(err) {
if (err) next(err);
app.emit('purchase:accepted', req.body);
res.send(200);

});
});

module.exports = app;

The settings passed to the PayPal class near the top of the file B are used to control
PayPal’s behavior. One of them, payPalUrl, could be https://www.sandbox.paypal
.com/cgi-bin/webscr for testing against PayPal’s staging server. Here we use a local
URL, because we’re going to run our own mock server.

 If this were a real project, you should use a configuration file to store these
options. One for each environment would make sense. Then the test configuration
could point to a local server, staging could use PayPal sandbox, and live would use Pay-
Pal.com. For more on configuration files, see technique 69.

 To make a payment, the user is forwarded to PayPal’s hosted forms. Our demon-
stration PayPal class has the ability to generate this URL, and it’ll use payPalUrl C.
This example also features payment notification handling D—known as IPN in Pay-
Pal’s nomenclature.

 An extra feature we’ve added here is the call to emit E. This makes it easier to
test, because our tests can now listen for purchase:accepted events. It’s also useful for
setting up email handling—see technique 73 for more on that.

 Now for the mock PayPal server. All it needs to do is handle IPN requests. It basi-
cally needs to say, “Yes, that purchase has been validated.” It could also optionally
report errors so we can test error handling on our side as well. The next listing shows
what the tiny mocked server looks like.

var express = require('express');
var paypalApp = express();

paypalApp.returnInvalid = false;

paypalApp.post('/validate', function(req, res) {

Listing 9.33 Mocking PayPal’s IPN requests

Get the purchase URL
used by PayPal.

C

Handle payment
notifications.

D

When a payment is
successful, emit an event.E

Allow errors
to be toggled

B

Handle IPN
validation

C

https://www.sandbox.paypal.com/cgi-bin/webscr
https://www.sandbox.paypal.com/cgi-bin/webscr

254 CHAPTER 9 The Web: Build leaner and meaner web applications

if (paypalApp.returnInvalid) {
res.send('INVALID');

} else {
res.send('VERIFIED');

}
});

module.exports = paypalApp;

Real-life PayPal stores receive a POST from PayPal with an order’s details, near the end
of the sales process. You need to take that order and send it back to PayPal for verifica-
tion. This prevents attackers from crafting a POST request that tricks your application
into thinking a fake purchase was made.

 This example includes a toggle so errors can be turned on B. We’re not going to
use it here, but it’s useful in real projects because you’ll want to test how errors are
handled. There will be customers that encounter errors, so ensuring they’re handled
gracefully is critical.

 Once all that’s in place, all we need to do is send back the text VERIFIED C. That’s
all PayPal does—it can be frustratingly abstruse at times!

 Finally, let’s look at a test that puts all of this together. The next listing uses both
the mocked PayPal server and our application to make purchases.

var app = require('./../app');
var assert = require('assert');
var request = require('supertest');
var payPalMock = require('./paypalmock');

function makeCustomer() {
return {
address1: '123',
city: 'Nottingham',
country: 'GB',
email: 'user@example.com',
first_name: 'Paul',
last_name: 'Smith',
state: 'Nottinghamshire',
zip: 'NG10932',
tax_number: ''

};
}

function makeOrder() {
return {
id: 1,
customer: makeCustomer()

};
}

function makePayPalIpn(order) {
// More fields should be used for the real PayPal system

Listing 9.34 Testing PayPal

Customer
fixtureB

Order
fixture

C

What PayPal
would send

D

255TECHNIQUE 78 Testing applications that depend on remote services

return {
'payment_status': 'Completed',
'receiver_email': order.customer.email,
'invoice': order.id

};
}

describe('buying the book', function() {
var payPalServer;

before(function(done) {
payPalServer = payPalMock.listen(3001, done);

});

after(function(done) {
payPalServer.close(done);

});

it('should redirect the user to paypal', function(done) {
var order = makeOrder();

request(app)
.post('/buy')
.send(order)
.expect(302, done);

});

it('should handle IPN requests from PayPal', function(done) {
var order = makeOrder();

app.once('purchase:accepted', function(details) {
assert.equal(details.receiver_email, order.customer.email);

});

request(app)
.post('/paypal/success')
.send(makePayPalIpn(order))
.expect(200, done);

});
});

This test sets up a sample order C, which requires a customer B. We also create an
object that has the same fields as a PayPal IPN request—this is what we’re going to
send to our mock PayPal server for validation. Before E and after F each test, we
have to start and stop the mock PayPal server. That’s because we don’t want servers
running when they’re not needed—it might cause other tests to behave strangely.

 When the user fills out the order form on our site, it will be posted to a route that
generates a PayPal URL. The PayPal URL will forward the user’s browser to PayPal for
payment. Listing 9.34 includes a test for this G, and the URL it generates will start
with our local test PayPal URL from listing 9.32.

 There’s also a test for the notification sent by PayPal H. This is the one we’re
focusing on that requires the PayPal mocked server. First we have to POST to our server

Before each test, start
up mock PayPal server

E

After each test, close
mock PayPal server

F

User should be redirected
for valid orders

G

200 OK should be returned
for valid orders

H

256 CHAPTER 9 The Web: Build leaner and meaner web applications

at /paypal/success with the notification object D—this is what PayPal would normally
do—and then our application will make an HTTP request to PayPal, which will hit the
mocked server, and then return VERIFIED. The test simply ensures a 200 is returned,
but it’s also able to listen for the purchase:accepted event, which indicates a given
purchase is complete.

 It might seem like a lot of work, but you’ll be able to work more efficiently once your
remote services are simulated with mock servers. Your tests run faster, and you can work
offline. You can also make your mocked services generate all kinds of unusual
responses, which will help you get better test coverage if that’s one of your goals.

 This is the last web-related technique that we cover in this chapter. The next sec-
tions discuss emerging trends in Node web development.

9.4 Full stack frameworks
In this chapter you’ve seen how to build web applications with Node’s built-in mod-
ules, Connect, and Express. There’s an emerging class of new frameworks known as
full stack frameworks. They provide features that are needed to make rich, browser-
based applications with modern tools like data binding, but also handle server-side
concerns like modeling business logic and data persistence.

 If you’re set on using Express, then you can still start working with full stack frame-
works today. The MEAN solution stack uses MongoDB, Express, AngularJS, and Node.
There could be many MEAN implementations out there, but the MEAN Stack from
Linnovate (https://github.com/linnovate/mean) is currently the most popular. It
comes with Mongoose for data models, Passport for authorization, and Twitter Boot-
strap for the user interface. If you’re working in a team that’s already familiar with
Bootstrap, AngularJS, and Mongoose, then this is a great way to get new projects off
the ground quickly.

 The book Getting MEAN 5 introduces full stack development and covers Mongoose
models, RESTful API design, and account management with Facebook and Twitter.

 Another framework that builds on Express and MongoDB is Derby (http://
derbyjs.com/). Instead of Mongoose, Derby uses Racer to implement data models.
This allows data from different clients to be synchronized, using operational transfor-
mation (OT). OT is specifically designed to support collaborative systems, so Derby is a
good choice for developing software inspired by Etherpad (http://etherpad.org/). It
also has client-side features like templates and data binding.

 If you like Express but want more features, then one option that we haven’t cov-
ered is Kraken (http://krakenjs.com/) by PayPal. This framework adds more struc-
ture to Express projects by adding subdirectories for configuration, controllers, Grunt
tasks, and tests. It also supports internationalization out of the box.

 Some frameworks are almost entirely focused on the browser, relying on Node only
for sensitive operations and data persistence. One popular example is Meteor (https:
//www.meteor.com/). Like Derby and MEAN Stack, it uses MongoDB, but the creators

5 Getting MEAN by Simon Holmes: http://www.manning.com/sholmes/.

http://www.manning.com/sholmes/
http://derbyjs.com/
http://derbyjs.com/
http://etherpad.org/
http://krakenjs.com/
https://github.com/linnovate/mean
https://www.meteor.com/
https://www.meteor.com/

257Real-time services

are planning support for other databases. It’s based around a pub/sub architecture,
where JSON documents are pushed between the client and server. Clients retain an in-
memory copy of the documents—servers publish sets of documents, while clients sub-
scribe to them. This means most model-related code in the browser can be written
synchronously.

 Meteor embraces reactive programming, a paradigm that’s currently popular in
desktop development circles. This allows reactive computations to be bound to methods.
If you subscribe a function to such a value, the function will be rerun when the value
changes. The overall effect in a real application is streamlined code—there’s essen-
tially less pub/sub management and event-handling code.

 Hoodie (http://hood.ie/) is a competitor to Meteor. It uses CouchDB, and is suit-
able for mobile applications because it synchronizes data when possible. Almost every-
thing can happen locally. It comes with built-in account management, which is as
simple as hoodie.account.signUp('alex@example.com', 'pass'). There’s even a
global public store, so data can be saved for specific users or made available to every-
one using a given application.

 There’s lots of activity in the Node web framework scene, but there’s another aspect
to Node web development that we haven’t mentioned yet: real-time development.

9.5 Real-time services
Node is the natural choice for web-based real-time services. Broadly speaking, this
involves three types of applications: statistics servers, collaboration services, and
latency-sensitive applications like game servers.

 It’s not that difficult to start a server with Express and collect data about your other
applications, servers, weather sensor data, or dog-feeding robot. Unfortunately, doing
this well isn’t trivial. If you’re logging something every time someone plays your free-
to-play iOS game, what happens when there are thousands of events a minute? How
do you scale this, or view critical information in real time?

 Some companies have this problem on a huge scale, and fortunately some of them
have created open source tools that we can reuse. One example is Cube (http://
square.github.io/cube/) by Square. Cube allows you to collect timestamped events
and then derive metrics on them. It uses MongoDB, so you could feed data out to
something that generates graphs. Square has a solution for visualizing the data called
Cubism.js (http://square.github.io/cubism/), which renders new values in real-time
(see figure 9.9).

 The Etherpad project (http://etherpad.org/) is a Node-powered collaborative
document editor. It allows users to chat as they make changes to documents, and
color-codes the changes so it’s easy to see what each person is doing. It’s based
on some of the modules you’ve seen in this book: Mikeal Rogers’ request, Express,
and Socket.IO.

 WebSockets make these projects possible. Without WebSockets, pushing data to
the client would be more cumbersome. Node has a rich set of WebSockets

http://hood.ie/
http://square.github.io/cube/
http://square.github.io/cube/
http://square.github.io/cubism/
http://etherpad.org/

258 CHAPTER 9 The Web: Build leaner and meaner web applications

implementations—Socket.IO (http://socket.io/) is the most popular, but there’s
also ws (https://www.npmjs.org/package/ws), which claims to be the fastest
WebSocket implementation.

 There’s a parallel between sockets and streams; SocketStream (http://socketstream
.org/) aims to bridge the gap by building web applications entirely around streams. It
uses the HTML5 history.pushState API with single-page applications, Connect mid-
dleware, and code sharing with the browser.

9.6 Summary
In this chapter you’ve seen how Node fits in with modern web development. It can be
used to improve client-side tooling—it’s now normal for client-side developers to
install Node and a Node build tool.

 Node is also used for server-side development. Express is the major web frame-
work, but many projects can get off the ground with a subset from Connect. Other
frameworks are similar to Express, but have a different focus. Restify is one example,
and can be used to make strict RESTful APIs (technique 71).

 Writing well-structured Express applications means you should adopt certain pat-
terns and idioms that the Node community has adopted. This includes error handling
(technique 70), folders as modules and route separation (technique 67), and decou-
pling through events (technique 73).

 It’s also increasingly common to use Node modules in the browser (technique 66),
and client-side code in Node (technique 65).

 If you want to write better code, you should adopt test-driven development as
soon as possible. We’ve included some techniques that enable you to test things like
authentication (technique 76) and mocking remote APIs (technique 78), but the
simple act of writing a test to think about new code is one of the best ways to
improve your Node web applications. One way you can do this is every time you want
to add a new route to a web application, write the test first. Practice using Super-

Figure 9.9 Cubism.js shows time series values in real time.

http://socket.io/
https://www.npmjs.org/package/ws
http://socketstream.org/
http://socketstream.org/

259Summary

Test, or a comparable HTTP request library, and use it to plan out new API methods,
web pages, and forms.

 The next chapter shows you how to write better tests, whether they’re simple
scripts or database-driven web applications.

260

Tests: The key
 to confident code

Imagine that you wanted to add a new currency to an online shop. First you’d add a
test to define the expected calculations: subtotal, tax, and the total. Then you’d
write code to make this test pass. This chapter will help you learn how to write tests
by looking at Node’s built-in features for testing: the assert module and test scripts
that you can set in your package.json file. We also introduce two major test frame-
works: Mocha and node-tap.

This chapter covers
■ Assertions, custom assertions, and automated

testing
■ Ensuring things fail as expected
■ Mocha and TAP
■ Testing web applications
■ Continuous integration
■ Database fixtures

261Introduction to testing with Node

One of the advantages of working with Node is that the community adopted testing
early on, so there’s no shortage of modules to help you write fast and readable tests.
You might be wondering what’s so great about tests and why we write them early on
during development. Well, tests are important for exploring ideas before committing
to them—you can think of them like small, flexible experiments. They also communi-
cate your intent, which means they help document and expand on the ideas in the key
parts of the project. Tests can also help reduce maintenance in mature projects by
allowing you to check that changes haven’t broken existing working features.

 The first thing to learn about is Node’s assert module. This module allows you to
define an expectation that will throw an error when it isn’t met. Expressing and con-
firming expectations is the main purpose of tests, so you’ll see a lot of assertions in this
chapter. Although you don’t have to use assert to write tests, it’s a built-in core mod-
ule and similar to assertion libraries you might’ve used before in other languages. The
first set of techniques in this chapter is all about assertions.

 To get everyone up to speed, the next section includes a list of common terms used
when working with tests.

10.1 Introduction to testing with Node
To make it easier for newcomers to automated testing, we’ve included table 10.1 that
defines common terminology. This table also outlines what we mean by specific terms,
because some programming communities use the same terms slightly differently.

Table 10.1 Node testing concepts

Term Description

Assertion A logical statement that allows you to test expressions. Supported by the assert
core module; for example:
assert.equal(user.email, 'name@example.com');.

Test case One or more assertions that test a particular concept. In Mocha, a test case looks
like this:

it('should calculate the square of a number', function() {
assert.equal(square(4), 16);

});

Introduction to testing
This chapter assumes you have some experience at writing unit tests. Table 10.1
includes definitions of the terminology used; if you want to know what we mean by
assertions, test cases, or test harnesses, you can refer to this table.

For a more detailed introduction to testing, The Art of Unit Testing, Second Edition (Roy
Osherove, Manning, 2013; http://manning.com/osherove2/) has step-by-step
examples for writing maintainable and readable tests. Test Driven Development: By
Example (Kent Beck, Addison-Wesley, 2002; http://mng.bz/UT12) is another well-
known foundational book on the topic.

http://manning.com/osherove2/
http://mng.bz/UT12

262 CHAPTER 10 Tests: The key to confident code

The only feature from table 10.1 that Node directly supports is assertions. The other
features are provided through third-party libraries—you’ll learn about CI servers in
technique 86, and mocks and fixtures in technique 87. You don’t have to use all of
these things to write tests, you can actually write tests with just the assertion module.
The next section introduces the assert module so you can start writing basic tests.

10.2 Writing simple tests with assertions
So far we’ve briefly mentioned that assertions are used to test expressions. But what
does this involve? Typically assertions are functions that cause an exception to be
raised if a condition isn’t met. A failing assertion is like your credit card being
declined in a store—your program will refuse to run no matter how many times you
try. The idea of assertions has been around for a long time; even C has assertions.

Test harness A program that runs tests and collates output. The resulting reports help diagnose
problems when tests fail.
This builds on the previous example, so with Mocha a test harness looks like this:

var assert = require('assert');
var square = require('./square');

describe('Squaring numbers', function() {
it('should calculate the square of a number', function() {

assert.equal(square(4), 16);
});

it('should return 0 for 0', function() {
assert.equal(square(0), 0);

});
});

Fixture Test data that is usually prepared before tests are run. Let’s say you want to test a
user accounts system. You could predefine users and their passwords, and then
include the passwords in the tests to ensure users can sign in correctly.
In Node, JSON is a popular file format for fixtures, but you could use a database,
SQL dump, or CSV file. It depends on your application’s requirements.

Mock An object that simulates another object. Mocks are often used to replace I/O opera-
tions that are either slow or difficult to run in unit tests; for example, downloading
data from a remote web API, or accessing a database.

Stub A method stub is used to replace functionality for the duration of tests. For example,
methods used to communicate with an I/O source like a disk or remote API can be
stubbed to return predefined data.

Continuous
integration server

A CI server runs automated tests whenever a project is updated through a version
control server.

Table 10.1 Node testing concepts (continued)

Term Description

263TECHNIQUE 79 Writing tests with built-in modules

 In C, the standard library includes the assert() macro, which is used for verifying
expressions. In Node, we have the assert core module. There are other assertion
modules out there, but assert is built-in and easy to use and extend.

COMMONJS UNIT TESTING The assert module is based on the CommonJS Unit
Testing 1.1 specification (http://wiki.commonjs.org/wiki/Unit_Testing/1.1).
So even though it’s a built-in core module, you can use other assertion modules
as well. The underlying principles are always the same.

This section introduces Node’s built-in assertions. By following the first technique,
you’ll be able to write tests using the assert core module by using assert.equal to
check for equality, and to automate the running of tests by using npm scripts.1

TECHNIQUE 79 Writing tests with built-in modules

Have you ever tried to write a quick test for an important feature, but you found your-
self lost in test library documentation? It can be hard to get started actually writing
tests; it seems like there’s a lot to learn. If you just start using the assert module,
though, you can write tests right now without any special libraries.

 This is great when you’re writing a small module and don’t want to install any
dependencies. This technique demonstrates how to write clean, expressive, single-file
tests.

■ Problem
You have a clear idea of the acceptable input and output values for your module, class,
or functions, and you want it to be clear when the output values don’t match the
input.

■ Solution
Use the assert module and npm scripts.

■ Discussion
Node comes with an assertion module. You can think of this as a toolkit for checking
expectations against outcomes. Internally this is done by comparing actual values
against expected values. The assert.equal method demonstrates this perfectly: the
arguments are actual, expected. There’s also a third optional argument: message.
Passing a message makes it easier to understand what happened when tests fail.

 Let’s say you’re writing an online shop that calculates order prices, and you’ve sold
three items at $3.99 each. You could ensure the correct price gets calculated with this:

assert.equal(
order.subtotal, 11.97,
'The price of three items at $3.99 each'

);

 In methods with only a single required argument, like assert(value), the
expected value is true, so it uses the same pattern.

1 This is defined by the scripts property in a package.json file. See npm help scripts for details on this
feature.

http://wiki.commonjs.org/wiki/Unit_Testing/1.1

264 CHAPTER 10 Tests: The key to confident code

 To see what happens when a test fails, try running the next listing.

var assert = require('assert');
var actual = square(2);
var expected = 4;

assert(actual, 'square() should have returned a value');
assert.equal(

actual,
expected,

'square() did not calculate the correct value'
);

function square(number) {
return number * number + 1;

}

The first line you’ll see in most test files is one that loads the assert module B. The
assert variable is also a function aliased from assert.ok—which means you can use
either assert() or assert.ok()C.

 It’s easy to forget the order of the arguments for assert.equal, so you might find
yourself checking Node’s documentation a lot. It doesn’t really matter how you order
the arguments—some people might find it easier to list the expected value first so
they can scan the code for values—but you should be consistent. That’s why this exam-
ple is explicit about the naming of actual and expected D.

 This test has a function that has an intentional bug E. You can run the test with
node assertions.js, which should display an error with a stack trace:

assert.js:92
throw new assert.AssertionError({

^
AssertionError: square() did not calculate the correct value

at Object.anonymous (listings/testing/assertions.js:7:8)
at Module._compile (module.js:456:26)

at Object.Module._extensions..js (module.js:474:10)
at Module.load (module.js:356:32)
at Function.Module._load (module.js:312:12)
at Function.Module.runMain (module.js:497:10)
at startup (node.js:119:16)
at node.js:901:3

These stack traces can be hard to read. But because we’ve included a message with the
assertion that failed, we can see a description of what went wrong. We can also see that
the assertion failed in the file assertions.js on line 7 B.

 The assert module has lots of other useful methods for testing values. The most
significant is assert.deepEqual, which can check for equality between two objects.
This is important because assert.equal can only compare shallow equality. Shallow
equality is used for comparing primitive values like strings or numbers, whereas deep-
Equal can compare objects with nested objects and values.

Listing 10.1 The assert module

Load
assertion
moduleB

assert module is a function
for testing truth C

assert.equal
allows

expectations
to be set up
for shallow

equality
checks D square() function is

what we’re testingE

File and line
number where the
assertion failedB

265TECHNIQUE 80 Testing for errors

 You might find deepEqual useful when you’re writing tests that return complex
objects. Think about the online shop example from earlier. Your shopping cart might
look like this: { items: [{ name: "Coffee beans", price: 4.95 }], subtotal: 4.95 }.
It’s an object that contains an array of shopping cart items, and a subtotal that is calcu-
lated by another object. Now, to check this entire object against one that you’ve defined
in your unit test, you’d use assert.deepEqual, because it’s able to compare objects
rather than just primitive values.

 The deepEqual method can be seen in the next listing.

var assert = require('assert');
var actual = login('Alex');
var expected = new User('Alex');

assert.deepEqual(actual, expected, 'The user state was not correct');

function User(name) {
this.name = name;
this.permissions = {
admin: false

};
}

function login(name) {
var user = new User(name);
user.permissions.admin = true;
return user;

}

This example uses the assert module B to test objects created by a constructor func-
tion, and an imaginary login system. The login system is accidentally loading normal
users as if they were administrators D.

 The assert.deepEqual method C will go over each property in the objects to see
if any are different. When it runs into user.permissions.admin and finds the values
differ, an AssertionError exception will be raised.

 If you take a look at the assert module’s documentation, you’ll see many other
useful methods. You can invert logic with notDeepEqual and notEqual, and even per-
form strict equality checks just like === with strictEqual and notStrictEqual.

 There’s another aspect to testing, and that’s ensuring that things fail the way we
expect. The next technique looks at testing for failures.

TECHNIQUE 80 Testing for errors

Programs will eventually fail, but when they do, we want them to produce useful
errors. This technique is about ensuring that expected errors are raised, and about
how to cause exceptions to be raised during testing.

■ Problem
You want to test your error-handling code.

Listing 10.2 Testing object equality

Load the assert module.B

Use deepEqual to
compare objects. C

The login system
has a bug!

D

266 CHAPTER 10 Tests: The key to confident code

■ Solution
Use assert.throws and assert.ifError.

■ Discussion
One of the conventions we use as Node developers is that asynchronous methods
should return an error as the first argument. When we design our own modules, we
know there are places where errors are likely to occur. Ideally we should test these
cases to make sure the correct errors are passed to callbacks.

 The following listing shows how to ensure an error hasn’t been passed to an asyn-
chronous function.

var assert = require('assert');
var fs = require('fs');

function readConfigFile(cb) {
fs.readFile('config.cfg', function(err, data) {
if (err && err.code === 'ENOENT') {

cb(null, { database: 'psql://localhost/test' });
} else if (err) {

cb(err);
} else {

// Do important configuration stuff
cb(null, data);

}
});

}

// Test to make sure non-existent configuration
// files are handled correctly.
readConfigFile(function(err, data) {

assert.ifError(err);
});

Although assert.ifError works synchronously, it makes semantic sense to use it for
testing asynchronous functions that pass errors to callbacks. Listing 10.3 uses an asyn-
chronous function called readConfigFile B to read a configuration file. In reality
this might be the database configuration for a web application, or something similar.
If the file isn’t found, then it returns default values C. Any other error—and this is
the important part—will be passed to the callback D.

 That means the assert.ifError test E can easily detect whether an unexpected
error has occurred. If something changes in the structure of the project that causes an
unusual error to be raised, then this test will catch that and warn the developers
before they release potentially dangerous code.

 Now let’s look at raising exceptions during testing. Rather than using try and
catch in our tests, we can use assert.throws.

 To use assert.throws, you must supply the function to be run and an expected
error constructor. Because a function is passed, this works well with asynchronous
APIs, so you can use it to test things that depend on I/O operations.

Listing 10.3 Handling errors from asynchronous APIs

The function we want to
test takes a callback.

B

If the error is “file
not found,” return
default values.

C

Otherwise, pass
the error to the
callback.D

Now ifError will
fail if any errors
are passed.

E

267TECHNIQUE 80 Testing for errors

 The next listing shows how to use assert.throws with a fictitious user account
system.

var assert = require('assert');
var util = require('util');

assert.throws(
function() {
loginAdmin('Alex');

},
PermissionError,
'A PermissionError was expected'

);

function PermissionError() {
Error.call(this, arguments);

}
util.inherits(PermissionError, Error);

function User(name) {
this.name = name;
this.permissions = {
admin: false

};
}

function loginAdmin(name) {
var user = new User(name);
if (!user.permissions.admin) {
throw new PermissionError('You are not an administrator');

}
return user;

}

The assertion B checks to ensure the expected exception is thrown. The first argu-
ment is a function to test, in this case loginAdmin, and the second is the expected
error C.

 This highlights two things about assert.throws: it can be used with asynchronous
APIs because you pass it a function, and it expects error objects of some kind. When devel-
oping projects with Node, it’s a good idea to use util.inherits to inherit from the built-
in Error constructor. This allows people to easily catch your errors, and you can decorate
them with extra properties that include useful additional information if required.

 In this case we’ve created PermissionError D, which is a clear name and there-
fore self-documenting—if someone sees a PermissionError in a stack trace, they’ll
know what went wrong. A PermissionError is subsequently thrown in the login-
Admin function E.

 This technique delved into error handling with the assert module. Combined with
the previous techniques, you should have a good understanding of how to test a range
of situations with assertions. With assert.equal you can quickly compare numbers and

Listing 10.4 Ensuring that exceptions are raised

The first argument of
assert.throws is the
function being tested.

B

The second argument
is the expected error.C

PermissionError inherits
from the standard Error
constructor.D

This is a fake login system that
only allows administrators to

sign in.

E

268 CHAPTER 10 Tests: The key to confident code

strings, and this covers a lot of problems like checking prices in invoices or email
addresses in web application account-handling code. A lot of the time, assert.ok—
which is aliased as assert()—is enough to get by, because it’s a quick and handy way for
checking for truthy expressions. But there’s one last thing to master if you want to really
take advantage of the assert module; read on to learn how to create custom assertions.

TECHNIQUE 81 Creating custom assertions

Node’s built-in assertions can be extended to support application-specific expressions.
Sometimes you find yourself repeatedly using the same code to test things, and it seems
like there might be a better way. For example, suppose you’re checking for valid email
addresses with a regular expression in assert.ok. Writing custom assertions can solve
this problem, and is easier than you might think. Learning how to write custom asser-
tions will also help you understand the assertion module from the inside out.

■ Problem
You’re repeating a lot of code in your tests that could be replaced if only you had the
right assertion.

■ Solution
Extend the built-in assert module.

■ Discussion
The assert module is built around a single function: fail. assert.ok actually calls
fail with the logic inverted, so it looks like this: if (!value) fail(value). If you look
at how fail works, you’ll see that it just throws an assert.AssertionError:

function fail(actual, expected, message, operator, stackStartFunction) {
throw new assert.AssertionError({
message: message,
actual: actual,
expected: expected,
operator: operator,
stackStartFunction: stackStartFunction

});
}

The error object is decorated with properties that make it easier for test reporters to
break down the location and cause of failures. The people who wrote this module
knew that others would like to write their own assertions, so the fail function is
exported, which means it can be reused.

 Writing a custom assertion involves the following steps:

1 Define a method with a signature similar to the existing assertion library.
2 Call fail when an expectation isn’t matched.
3 Test to ensure failure results in an AssertionError.

Listing 10.5 puts these steps together to define a custom assertion that ensures a regu-
lar expression is matched.

269TECHNIQUE 81 Creating custom assertions

var assert = require('assert');
assert.match = match;

function match(actual, regex, message) {
if (!actual.match(regex)) {
assert.fail(actual, regex, message, 'match', assert.match);

}
}

assert.match('{ name: "Alex" }', /Alex/, 'The name should be "Alex"');

assert.throws(
function() {
assert.match('{ name: "Alex" }', /xlex/, 'This should fail');

},
assert.AssertionError,
'A non-matching regex should throw an AssertionError'

);

This example loads the assertion module B and then defines a function called match
that runs assert.fail to generate the right exception when the regular expression
doesn’t match the actual value C. The key detail to remember is to define the argu-
ment list to be consistent with other methods in the assertion module—the example
here is based on assert.equal.

 Listing 10.5 also includes some tests. In reality these would be in a separate file, but
here they illustrate how the custom assertion works. First we check to see if it passes a
simple test by matching a string against a regular expression D, and then
assert.throws is used to ensure the test really does fail when it’s meant to E.

This example might seem simple, but understanding how to write custom assertions
improves your knowledge of the underlying module. Custom assertions can help
clean up tests where expectations have been made less expressive by squeezing con-
cepts into built-in assertions. If you want to be able to say something like
assert.httpStatusOK, now you can!

 With assertions out of the way, it’s time to look at how to organize tests across mul-
tiple files. The next technique introduces test harnesses that can be used to organize
groups of test files and run them more easily.

Listing 10.5 A custom assertion

Load assert moduleB
Execute regular

expression
match against a

string using
String.prototype

.match C

Make sure
tests pass DMake sure

tests fail E

Your own domain-specific language
Using custom assertions is but one technique for creating your own testing DSL
(domain-specific language). If you find you’re duplicating code between test cases,
then by all means wrap that code in a function or class.

For example, setUpUserAccount({ email: 'user@example.com' }) is more readable
than three or four lines of setup code, particularly if it’s repeated between test cases.

270 CHAPTER 10 Tests: The key to confident code

10.3 Test harnesses
A test harness, or automated test framework, generally refers to a program that sets up
the runtime environment and runs tests, and then collects and compares the results.
Since it’s automated, tests can be run by other systems including continuous integra-
tion (CI) servers, covered in technique 86.

 Test harnesses are used to execute groups of test files. That means you can easily
run lots of tests with a single command. This not only makes it easier for you to run
tests, but makes it easier for your collaborators as well. You may even decide to start all
projects with a test harness before doing anything else. The next technique shows you
how to make your own test harness, and how to save time by adding scripts to your
package.json files.

TECHNIQUE 82 Organizing tests with a test harness

Suppose you’re working on a project and it keeps on growing, and using a single test file
is starting to feel messy. It’s hard to read and causes confusion that leads to mistakes. So
you’d like to use separate files that are related in some way. Perhaps you’d even like to
run tests one file at a time to help track down issues when things go wrong.

 Test harnesses solve this problem.

■ Problem
You want to write tests organized into test cases and test suites.

■ Solution
Use a test harness.

■ Discussion
First, let’s consider what a test harness is. In Node, a test harness is a command-line
script that you can run by typing the name of the script. At its most basic, it must run a
group of test files and display any errors that occur. We don’t need anything particu-
larly special to do that—a failed assertion will cause an exception to be thrown; other-
wise the program will exit silently with a return code of 0.

 That means a basic test harness is just node test/*.js, where test/ is a directory that
contains a set of test files. We can go one better than that. All Node projects should have
a package.json file. One of the properties in this file is scripts, and one of the default
scripts is test. Any string you set here will be executed like a shell command.

 The following listing shows an example package.json file with a test script.

{
"name": "testrunner",
"version": "0.0.0",
"description": "A test runner",
"main": "test-runner.js",
"dependencies": {},
"devDependencies": {},
"scripts": {
"test": "node test-runner.js test.js test2.js"

Listing 10.6 A package.json with a test script

Test script
invocation
goes here

B

271TECHNIQUE 82 Organizing tests with a test harness

},
"author": "",
"license": "MIT"

}

With node test-runner.js test.js test2.js set as the test script B, other devel-
opers can now run your tests simply by typing npm test. This is much easier than hav-
ing to remember a project-specific command.

 Let’s expand this example by looking at how test harnesses work. A test harness is a
Node program that runs groups of test files. Therefore, we should be able to give such
a program a list of files to test. Whenever a test fails, it should display a stack trace so
we can easily track down the source of the failure.

 In addition, it should exit with a non-zero return code whenever a test fails. That
allows tests to be run in an automated way—other software can easily see if a test failed
without having to parse the textual output from the tests. This is how continuous inte-
gration (CI) servers work: they automatically run tests whenever code is committed to
a version control system like Git.

 The next listing shows what a test file for this system should look like.

var assert = require('assert');

it('should run a test', function() {
assert('a' === 'a');

});

it('should allow a test to fail', function() {
assert(true);
assert.equal('a', 'b', 'Bad test');

});

it('should run a test after the failed test', function() {
assert(true);

});

The it function B looks strange, but it’s a global function that will be provided by
our test framework. It gives each test case a name so it’s easier to understand the
results when the tests are run. A failing test is included C so we can see what
happens when tests fail. The last test case D should run even though the second
one failed.

 Now, the final piece of the puzzle: the next listing includes a program capable of
executing this test.

Listing 10.7 An example test file

The it() function
represents a test case.

B

A failing test is included
so we can see what the
results look like.

C

This last test
should still run.D

272 CHAPTER 10 Tests: The key to confident code

var assert = require('assert');
var exitCode = 0;
var filenames = process.argv.slice(2);

it = function(name, test) {
var err;

try {
test();

} catch (e) {
err = e;

}

console.log(' - it', name, err ? '[FAIL]' : '[OK]');

if (err) {
console.error(err);
console.error(err.stack);
exitCode = 1;

}
};

filenames.forEach(function(filename) {
console.log(filename);
require('./' + filename);

});

process.on('exit', function() {
process.exit(exitCode);

});

This example can be run by passing test files as arguments: node test-runner.js
test.js test2.js test-n.js. The it function is defined as a global B, and is called
it so the tests and their output read logically. This makes sense when the results are
printed D.

 Because it takes a test case name and a callback, the callback can be run under
whatever conditions we desire. In this case we’re running it inside a try/catch state-
ment C, which means we can catch failed assertions and report errors E to the user.

 Tests are loaded by calling require on each of the files passed in as command-line
arguments F. In a more polished version of this program, the file handling would need
to be more sophisticated. Wildcard expressions would need to be supported, for example.

 A failed test case causes the exitCode variable to be set to a non-zero value. This is
returned to the controlling process with process.exit in the exit handler G.

 Even though this is a minimal example, it can be run with npm test, gives test
cases a little syntax sugar with it, improves the error reporting over a simple file full
of assertions, and returns a non-zero exit code when something goes wrong. This is
the basis for most popular Node test frameworks like Mocha, which we’ll look at in the
next section.

Listing 10.8 Running tests in a prescribed manner

The it() function
is defined as a
global.

B

Tests are passed as
callbacks and run inside
a try/catch statement.C Results are printed

based on the presence
of an exception.

D

A stack trace is printed to
help track down errors.

E

Each file passed on the
command-line is run.

F

When the program exits,
return a non-zero error
code if a test failed.

G

273TECHNIQUE 83 Writing tests with Mocha

10.4 Test frameworks
If you’re starting a new project, then you should install a test framework early on. Sup-
pose that you’re building an online blogging system, or perhaps a simple content
management system. You’d like to allow people to sign in, but only allow specific users
to access the administration interface. By using a test framework like Mocha or node-
tap, you can write tests that address these specific concerns: users signing up for
accounts, and administrators signing in to the admin interface. You could create sepa-
rate test files for these concerns, or bundle them up as groups of test cases under
“user accounts tests.”

 Test frameworks include scripts to run tests and other features that make it eas-
ier to write and maintain tests. This section features the Mocha test framework in
technique 84 and the Test Anything Protocol (TAP; http://testanything.org/) in
technique 85—two popular test frameworks favored by the Node community. Mocha
is lightweight: it runs tests, provides three styles for structuring test cases,2 and
expects you to use either Node’s assert module or another third-party module.
Conversely, node-tap, which implements TAP, uses an API that includes assertions.

TECHNIQUE 83 Writing tests with Mocha

There are many test frameworks for Node, so it’s difficult to choose the right one.
Mocha is a popular choice because it’s well maintained and has the right balance of
features and conventions.

 In general, you use a test framework to organize tests for a project. You’d like to
use a test framework that other people are familiar with so they can easily navigate and
collaborate without learning a new module. Perhaps you’re just looking for a way to
run tests the same way every time, or trigger them from an automated system.

■ Problem
You need to organize your tests in a way other developers will be familiar with, and run
the tests with a single command.

■ Solution
Use one of the many open source test frameworks for Node, like Mocha.

■ Discussion
Mocha must be installed from npm before you can do anything else. The best way to
install it is with npm install --save-dev mocha. The --save-dev option causes npm
to install Mocha into node_modules/ and update your project’s package.json file with
the latest version from npm. It will be saved as a development dependency.

 Listing 10.9 shows an example of a simple test written with Mocha. It uses the
assert core module to make assertions, and should be invoked using the mocha com-
mand-line binary. You should add "./node_modules/mocha/bin/mocha test/*.js" to

2 Mocha supports API styles based on Behavior Driven Development (BDD), Test Driven Development (TDD),
and Node’s module system (exports).

http://testanything.org/

274 CHAPTER 10 Tests: The key to confident code

the "test" property in package.json—see technique 82 for more details on how to
do that.

var index = require('./../index');
var assert = require('assert');

describe('Amazing mathematical operations', function() {
it('should square numbers', function() {
assert.equal(index.square(4), 16);

});

it('should run a callback after a delay', function(done) {
index.randomTimeout(function() {

assert(true);
done();

});
});

});

The describe and it functions are provided by Mocha. The describe function can
be used to group related test cases together, and it contains a collection of assertions
that form a test case B.

 Special handling for asynchronous tests is required. This involves including a done
argument in the callback for the test case C, and then calling done() when the test
has finished D. In this example, a timeout will be triggered after a random interval,
which means we need to call done in the index.randomTimeout method. The corre-
sponding file under test is shown in the next listing.

module.exports.square = function(a) {
return a * a;

};

module.exports.randomTimeout = function(cb) {
setTimeout(cb, Math.random() * 500);

};

Listing 10.9 A simple Mocha test

Listing 10.10 A sample module to test

Mocha versions
The version of Mocha we use for this chapter is 1.13.x. We prefer to run the tests by
installing it locally to the project rather than as a systemwide Node module. That
means that tests can be run using ./node_modules/mocha/bin/mocha test/*.js
rather than just typing mocha. That allows different projects to have different versions
of Mocha, just in case the API changes dramatically between major releases.

An alternative is to install Mocha globally with npm install --global mocha, and
then run tests for a project by typing mocha. It will display an error if it can’t find any tests.

Group related
tests with
describe()

B

Include done
argument for
asynchronous tests

C

Call done() when
asynchronous test
has finishedD

Simple synchronous function
that squares numbersB

Asynchronous function
that will run after a
random amount of time

C

275TECHNIQUE 83 Writing tests with Mocha

CONTROLLING SYNCHRONOUS AND ASYNCHRONOUS BEHAVIOR If done isn’t
included as an argument to it, then Mocha will run the test synchronously.
Internally, Mocha looks at the length property of the callback you pass to it
to see if an argument has been included. This is how it switches between asyn-
chronous and synchronous behavior. If you include an argument, then
Mocha will wait around for done to be called until a timeout is reached.

This module defines two methods: one for squaring numbers B and another that
runs a callback after a random amount of time C. It’s just enough to demonstrate
Mocha’s main features in listing 10.9.

 To set up a project for Mocha, the index.js file we’ve used in this example should
be in its own directory, and at the same level should be a package.json file with a test
subproperty of the scripts property set to "./node_modules/mocha/bin/mocha
test/*.js". There should also be a test/ directory that contains example_test.js.3

With all that in place, you can run the tests with npm test.
 When the tests are run, you should notice some dots appearing. These mark a com-

pleted test case. When the tests take more than a preset amount of time, they’ll change
color to denote they ran slower than is acceptable. Since index.randomTimeout pre-
vents the second test from completing for a random amount of time, there will be times
when Mocha thinks the tests are running too slowly. You can increase this threshold by
passing --slow to Mocha, like this: ./node_modules/mocha/bin/mocha --slow 2000
test/*.js. Now you don’t need to feel guilty about seemingly slow tests!

To see all of the command-line options, type node_modules/mocha/bin/mocha --help
or visit http://mochajs.org/.

 We’ve included the final package.json file in listing 10.11 in case you have trouble
writing your own. You can install Mocha and its dependencies with npm install.

{
"name": "mocha-example-1",
"version": "0.0.0",
"description": "A basic Mocha example",
"main": "index.js",

3 The file can be called anything as long as it’s in the test/ directory.

Listing 10.11 The Mocha sample project’s JSON file

Assertions per test
In listing 10.9, each test case has a single assertion. Some consider this best prac-
tice—and it can result in readable tests.

But we prefer the idea of a single concept per test. This style structures test cases
around well-defined concepts, using the absolute necessary amount of assertions.
This will typically be a small number, but occasionally more than one.

http://mochajs.org/

276 CHAPTER 10 Tests: The key to confident code

"dependencies": {},
"devDependencies": {
"mocha": "~1.13.0"

},
"scripts": {
"test": "./node_modules/mocha/bin/mocha --slow 2000 test/*.js"

},
"author": "Alex R. Young",
"license": "MIT"

}

In this technique the assert core module has been used, but you could swap it for
another assertion library if you prefer. Others are available, like chai (https://npmjs
.org/package/chai) and should.js (https://github.com/visionmedia/should.js).

 Mocha is often used for testing web applications. In the next technique, you’ll see
how to use Mocha for testing web applications written with Node.

TECHNIQUE 84 Testing web applications with Mocha

Let’s suppose you’re building a web application with Node. You’d like to test it by run-
ning it in a way that allows you to send requests and receive responses—you want to
make HTTP requests to test the web application works as expected.

■ Problem
You’re building a web application and would like to test it with Mocha.

■ Solution
Write tests with Mocha and the standard http module. Consider using an HTTP mod-
ule designed for testing to simplify your code.

■ Discussion
The trick to understanding web application testing in Node is to learn to think in
terms of HTTP. This technique starts off with a Mocha test and the http core module.
Once you understand the principles at work and can write tests this way, we’ll intro-
duce a third-party HTTP testing module to demonstrate how to simplify such tests.
The built-in http module is demonstrated first because it’s useful to see what goes on
behind the scenes and to get a handle on exactly how to construct such tests.

 The following listing shows what the test looks like.

var assert = require('assert');
var http = require('http');
var index = require('./../index');

function request(method, url, cb) {
http.request({
hostname: 'localhost',
port: 8000,
path: url,
method: method

}, function(res) {
res.body = '';

Listing 10.12 A Mocha test for a web application

This function is
used to make HTTP
requests in the tests.B

https://npmjs.org/package/chai
https://npmjs.org/package/chai
https://github.com/visionmedia/should.js

277TECHNIQUE 84 Testing web applications with Mocha

res.on('data', function(chunk) {
res.body += chunk;

});

res.on('end', function() {
cb(res);

});
}).end();

}

describe('Example web app', function() {
it('should square numbers', function(done) {
request('GET', '/square/4', function(res) {

assert.equal(res.statusCode, 200);
assert.equal(res.body, '16');
done();

});
});

it('should return a 500 for invalid square requests', function(done) {
request('GET', '/square', function(res) {

assert.equal(res.statusCode, 500);
done();

});
});

});

This example is a test for a web service that can square numbers. It’s a simple web ser-
vice that expects GET requests and responds with plain text. The goal of this test suite
is to ensure that it returns the expected results and correctly raises errors when invalid
data is sent. The tests aim to simulate browsers—or other HTTP clients, for that mat-
ter—and to do so, both the server and client are run in the same process.

 To run a web service, all you need to do is create a web server with http.create-
Server(). Exactly how this is done is shown in listing 10.13. Before discussing that,
let’s finish looking at this test.

 The test starts by creating a function for making HTTP requests B. This is to
reduce the amount of duplication that would otherwise be present in the test cases.
This function could be its own module, which could be used in other test files. After a
request has been sent, it listens for data events on the response object to store any
data returned by the server C. Then it runs the provided callback D, which is passed
in from the test cases.

 Figure 10.1 shows how Node can run both servers and clients in the same process
to make web application testing possible.

 An example of this is the test for the /square method that ensures 4 * 4 === 16 E.
Once that’s done, we also make sure invalid HTTP query parameters cause the server
to respond with a 500 error F.

 The standard assertion module is used throughout, and res.statusCode is used to
test the expected status codes are returned.

After the request has been
sent, collect any data that
is sent back to the client.C

When the request and
response have both
finished, run the callback.D

Ensure the response is
what we expect for the
/square method.E

Ensure the server correctly
raises an error for invalid
requests.F

278 CHAPTER 10 Tests: The key to confident code

The implementation of the corresponding web service is shown in the next listing.

var http = require('http');

var server = http.createServer(function(req, res) {
if (req.url.match(/^/square/)) {
var params = req.url.split('/');
var number;
if (params.length > 1 && params[2]) {

number = parseInt(params[2], 10);
res.writeHead(200);
res.end((number * number).toString());

} else {
res.writeHead(500);
res.end('Invalid input');

}
} else {
res.writeHead(404);
res.end('Not found');

}
})

server.listen(8000);

module.exports = server;

Before doing anything else, http.createServer is used to create a server. Near the
end of the file, .listen(8000) is used to make the server start up and listen for con-
nections. Whenever a request with a URL matching /square comes in, the URL is
parsed for a numerical parameter B and then the number is squared and sent to the
client C. When the expected parameter isn’t present, a 500 is returned instead D.

Listing 10.13 A web application that can square numbers

HTTP request to
web application

Check response
with assert.equal

Node process

index.js test/test.js

res.end((n * n)
 .toString());

assert.equal(
 res.statusCode,
 200
);

assert.equal(
 res.body, '16'
);

Figure 10.1 Node can run a web server and requests against it to support web application testing.

Parse out number
parameter from
the URL

B

Perform square
calculation

C

Return a 500 when
parameter is invalidD

279TECHNIQUE 84 Testing web applications with Mocha

 One part of listing 10.12 that can be improved on is the request method. Rather
than defining a wrapper around http.request, we can use a library designed specifi-
cally for testing with web requests.

 The module we’ve chosen is SuperTest (https://github.com/visionmedia/
supertest) by TJ Holowaychuk, who also wrote Mocha. There are other similar librar-
ies out there. The general idea is to simplify HTTP requests and allow assertions to
be made about the request.

 You can add SuperTest to the development dependencies for this example by run-
ning npm install --save-dev supertest.

 The following listing shows how the test can be refactored using the SuperTest
module.

var assert = require('assert');
var index = require('./../index');
var request = require('supertest');

describe('Example web app', function() {
it('should square numbers', function(done) {
request(index)

.get('/square/4')

.expect(200)

.expect(/16/, done);
});

it('should return a 500 for invalid square requests', function(done) {
request(index)

.get('/square')

.expect(500, done);
});

});

Although functionally identical to listing 10.12, this example improves it by removing
the boilerplate for making HTTP requests. The SuperTest module is easier to under-
stand, and allows assertions to be expressed with less code while still being asynchro-
nous. SuperTest expects an instance of an HTTP server B, which in this case is the
application that we want to test. Once the application has been passed to SuperTest’s
main function, request, we can then make a GET request using request().get. Other
HTTP verbs are also supported, and form parameters can be sent when using post()
with the send method.

 SuperTest’s methods are chainable, so once a request has been made, we can
make an assertion by using expect. This method is polymorphic—it checks the type of
the argument and acts accordingly. If you pass it a number C, it’ll ensure that the
HTTP status was that number. A regular expression will make it check the response
body for a match D. These expectations are perfect for the requirements of this test.

Listing 10.14 The refactored Mocha test that uses SuperTest

Pass HTTP
server to
SuperTest

B

Set up an assertion to make
sure HTTP status is 200

C

Ensure request body
contains the right answerD

When passing invalid
parameters, check a
500 is returnedE

https://github.com/visionmedia/supertest
https://github.com/visionmedia/supertest

280 CHAPTER 10 Tests: The key to confident code

 Any HTTP status can be checked, so when we actually expect a 500, we can test for
it E.

 Though it’s useful to understand how to make simple web applications and test
them using the built-in http module, we hope you can see how third-party modules
like SuperTest can simplify your code and make your tests clearer.

 Mocha captures the zeitgeist of the current state of testing in Node, but there are
other approaches that are just as valid. The next technique introduces TAP and the Test
Anything Protocol, due to its endorsement by Node’s maintainer and core contributors.

TECHNIQUE 85 The Test Anything Protocol

Test harness output varies based on programming language and test framework.
There are initiatives to unify these reports. One such effort that has been adopted by
the Node community is the Test Anything Protocol (http://testanything.org). Tests
that use TAP will produce lightweight streams of results that can be consumed by com-
patible tools.

 Suppose you need a test harness that’s compatible with the Test Anything Protocol,
either because you have other tools that use TAP, or because you’re already familiar
with it from other languages. It could be that you don’t like Mocha’s API and want an
alternative, or are interested in learning about other solutions to testing in Node.

■ Problem
You want to use a test framework that’s designed to interoperate with other systems.

■ Solution
Use Isaac Z. Schlueter’s tap module.

■ Discussion
TAP is unique because it aims to bridge test frameworks and tools by specifying a pro-
tocol that implementors can use. The protocol is stream-based, lightweight, and
human-readable. In comparison to other, heavier XML-based standards, TAP is easy to
implement and use.

 It’s significant that the tap module (https://npmjs.org/package/tap) is written by
Node’s former maintainer, Isaac Z. Schlueter. This is an important seal of approval by
someone highly influential in the Node community.

 The example in this technique uses the number squaring and random timeout
module used in technique 83 so you can compare how tests look in TAP and Mocha.

 The following listing shows what the test looks like. For the corresponding mod-
ule, see listing 10.10.

var index = require('./../index');
var test = require('tap').test;

test("Alex's handy mathematics module", function(t) {
t.test('square', function(t) {

t.equal(index.square(4), 16);

Listing 10.15 Testing with TAP

Load the tap module, and assign
a variable to the test() method.

B

Define tests
with test().

C

Using tap’s built-in assertions.D

http://testanything.org
https://npmjs.org/package/tap

281TECHNIQUE 85 The Test Anything Protocol

t.end();
});

t.test('randomTimeout', function(t) {
t.plan(1);
index.randomTimeout(function() {
t.ok(true);

});
});

t.end();
});

This is different from the Mocha example because it doesn’t assume there are any
global test-related methods like it and describe: a reference to tap.test has to be
set up B before doing anything else. Tests are then defined with the t.test()
method C, and can be nested if needed. Nesting allows related concerns to be
grouped, so in this case we’ve created a test case for each method being tested.

 The tap module has built-in assertions, and we’ve used these throughout the test
file D. Once a test case has finished, t.end() must be called E. That’s because the
tap module assumes tests are asynchronous, so t.end() could be called inside an
asynchronous callback.

 Another approach is to use t.plan F. This method indicates that n assertions are
expected. Once the last assertion has been called, the test case will finish running.
Unlike the previous test case, the second one can leave off the call to t.end() G.

 This test can be run with ./node_modules/tap/bin/tap.js test/*_test.js. You
can add this line to the test property of scripts in the package.json file to make it
run with npm test.

 If you run the test with the tap script, you’ll see some clean output that consoli-
dates the results of each assertion. This is generated by one of tap’s submodules called
tap-results. The purpose of the tap-results module is to collect lines from a TAP
stream and count up skips, passes, and fails to generate a simplified report;

ok test/index_test.js 3/3
total ... 3/3

ok

Due to the design of the tap module, you’re free to run the tests with node test/
index_test.js. This will print out the TAP stream instead:

Alex's handy mathematics module
square
ok 1 should be equal
randomTimeout
ok 2 (unnamed assert)

1..2
tests 2
pass 2

ok

Call end() to indicate
when a test has finished.E

plan() can be used
to indicate the

expected number
of assertions.

F

When plan() has been
called there’s no need
to call end().G

282 CHAPTER 10 Tests: The key to confident code

Tests written with the tap module will still return a non-zero exit code to the shell when
tests fail—you can use echo $? to see the exit code. Try making the test in listing 10.15
fail on purpose and take a look at $?.

 The fact that TAP is designed around producing and consuming streams fits in
well with Node’s design. It’s also a fact of life that tests must interact with other auto-
mated systems in most projects, whether it’s a deployment system or a CI server.
Working with this protocol is easier than heavyweight XML standards, so hopefully it
will rise in popularity.

 Figure 10.2 illustrates how some of node-tap’s submodules are used to test a pro-
gram. Control is transferred from different modules, to your tests, back to your pro-
gram, and then out through the reporter, which collects and analyzes results. The key
thing to realize about this is that node-tap’s submodules can be reused and
replaced—if you don’t like the way results are displayed with tap-results, it could be
replaced with something else.

 Beyond test frameworks, real-world testing depends on several more important
tools and techniques. The next section shows you how to use continuous integration
servers and database fixtures, and how to mock I/O.

10.5 Tools for tests
When you’re working in a team, you want to quickly see when someone has commit-
ted changes that break the tests. This section will help you to set up a continuous inte-
gration server so you can do this. It also has techniques for other project-related issues
like using databases with tests and mocking web services.

tap-runner

tap-results

Tests

Program assert

assert

tap-assert

Runs each test file.

Tests invoke parts
of the program.

Test behavior using assertions.

Collect the
results for display.

Figure 10.2 node-tap uses several reusable submodules to orchestrate tests.

283TECHNIQUE 86 Continuous integration

TECHNIQUE 86 Continuous integration

Your tests are running, but what happens when someone makes a change that breaks
the project? Continuous integration (CI) servers are used to automatically run tests.
Because most test harnesses return a non-zero exit code on failure, they’re conceptu-
ally simple enough. Their real value comes becomes apparent when they can easily be
hooked up to services like GitHub and send out emails or instant messages to team
members when tests fail.

■ Problem
You want to see when members of a team commit broken code so you don’t acciden-
tally release it.

■ Solution
Use a continuous integration server.

■ Discussion
You’re working in a team and want to see when tests start to fail. You’re already using a
version control system like Git, and want to run tests whenever code is committed to a
tracked repository. Or you’ve written an open source project and want to indicate on
the GitHub or Bitbucket page that it’s well tested.

 There are many popular open source and proprietary continuous integration ser-
vices. In this technique we’ll look at Travis CI (https://travis-ci.org/), because it’s free for
open source projects and popular in the Node community. If you want an open source
CI server that you can install locally, take a look at Jenkins (http://jenkins-ci.org/).

 Travis CI provides a link to an image that shows your project’s build status. To add
a project, sign in with your GitHub account at travis-ci.org, and then go to the profile
page at travis-ci.org/profile. You’ll see a list of your GitHub projects, and toggling a
switch to On will cause the repository to be updated with a service hook that will notify
Travis CI whenever you push an update to GitHub.

 Once you’ve done that, you need to add a .travis.yml file to the repository to tell
Travis CI about the environment your code depends on. All you need to do is set the
Node version.

 Let’s work through a full example and set up a project on Travis so you can see
how it works. You’ll need three files: a package.json, a file to test, and the .travis.yml
file. The following listing shows the file we’ll be testing.

var assert = require('assert');

function square(a) {
return a * a;

}

assert.equal(square(4), 16);

Listing 10.16 A simple test to try with Travis CI

This simple test
should pass when
run with Travis.

B

http://jenkins-ci.org/
https://travis-ci.org/
https://travis-ci.org/

284 CHAPTER 10 Tests: The key to confident code

This is just a simple test B that we can play with to see what Travis CI does. After run-
ning, it should result in an exit code of zero—type node test.js and then echo $? to
see the exit code. Put this file in a new directory so you can set up a Git repository for
it later. Before that we’ll need to create a package.json file. The next listing is a simple
package.json that allows the tests to be run with npm test.

{
"name": "travis-example",
"version": "0.0.0",
"description": "A sample project for setting up Travis CI and Node.",
"main": "test.js",
"scripts": {
"test": "node test.js"

},
"author": "Alex R. Young",
"license": "MIT"

}

Finally, you’ll need a .travis.yml file. It doesn’t need to do much other than tell Travis
CI that you’re using Node.

language: node_js
node_js:

- "0.10"

Now go to GitHub.com and sign in; then click New Repository to create a public
repository. We’ve called ours travis-example so people know it’s purely educational.
Follow the instructions on how to commit and push the project to GitHub—you’ll
need to run git init in the directory where you placed the preceding three code
files, and then git add . and git commit -m 'Initial commit'. Then use git remote
add <url> with the repository URL GitHub gives you, and push it with git push -u
origin master.

 Go to your profile at travis-ci.org/profile and toggle your new project to On. You
might need to tell Travis CI to sync your project list—there’s a button near the top of
the page.

 There’s one last step before you can see any tests running on Travis CI. Make a sin-
gle change in test.js—add another assertion if you like, and then commit and git
push the change. This will cause GitHub to send an API request to Travis CI that will
cause your tests to be run.

 Travis CI knows how to run Node tests—it defaults to npm test. If you’re adapting
this technique to an existing project and you use another command (perhaps make
test), then you can change what Travis CI runs by setting the script value in the YML
file. Documentation can be found under “Configuring your build” in the documenta-
tion (http://about.travis-ci.org/docs/user/build-configuration/#script).

Listing 10.17 A basic package.json file

Listing 10.18 Travis CI configuration

http://about.travis-ci.org/docs/user/build-configuration/#script
https://github.com/

285TECHNIQUE 87 Database fixtures

If you go to the homepage at Travis CI, you should now see a console log with details
on how the tests were run. Figure 10.3 shows what successful tests look like.

 Now that you have tests running successfully, you should edit test.js to make the
tests fail to see what happens.

 Travis can be configured to use most of the things you expect when running tests
in real-world projects—databases and other services can be added (http://about
.travis-ci.org/docs/user/database-setup/), and even virtual machines.

 Getting a database configured with suitable fixtures for your projects is one of the
most important parts of testing. The next technique shows how to set up databases for
your tests.

TECHNIQUE 87 Database fixtures

Most applications need to persist data in some way, and it’s important to test that data
is stored correctly. This technique explores three solutions for handling database fix-
tures in Node: loading database dumps, creating data during tests, and using mocks.

■ Problem
You need to test code that stores data in a database, or performs some other kind of
I/O like sending data over a network. You don’t want to access this I/O resource dur-
ing testing, or you have test data that you want to preload before tests. Either way,
your application is highly dependent on an I/O service, and you want to carefully
test how your code interacts with it.

Figure 10.3 Travis CI running tests

http://about.travis-ci.org/docs/user/database-setup/
http://about.travis-ci.org/docs/user/database-setup/

286 CHAPTER 10 Tests: The key to confident code

■ Solution
Preload data before the tests, or mock the I/O layer.

■ Discussion
The mark of well-written code is how testable it is. Code that performs I/O instinc-
tively feels hard to test, but it shouldn’t be if the APIs are cleanly decoupled.

 For example, if your code performs HTTP requests, then as you’ve seen in previous
techniques, you can run a customized HTTP server within your tests to simulate a
remote service. This is known as mocking. But sometimes you don’t want to mock I/O.
You may wish to write tests that result in changes being made against a real database,
albeit an instance of the database that tests can safely destroy and re-create. These
types of tests are known as integration tests—they “integrate” disparate layers of software
to deeply test behavior.

 This technique presents two ways to handle database fixtures for integration tests;
then we’ll broaden the scope by demonstrating how to use mocks. First up: preload-
ing data using database dumps.

Database dumps
Using database dumps is the sledgehammer of database fixture techniques. All you
need is to be able to run some code before all of your other tests so you can clear out
a database and drop in a pristine copy. If this test data is dumped from a database,
then you can use your existing database tools for preparing and exporting the data.

 Listing 10.19 uses Mocha and MySQL, but you could adapt the same principles to
work with other databases and test frameworks. See technique 83 for more on Mocha.

var assert = require('assert');
var exec = require('child_process').exec;
var path = require('path');
var ran = 0;
var db = {

config: {
username: 'nodeinpractice',
password: 'password'

}
};

function loadFixture(sqlFile, cb) {
sqlFile = path.resolve(sqlFile);
var command = 'mysql -u ' + db.config.username + ' ';
command += db.config.database + ' < ' + sqlFile;

exec(command, function(err, stdout, stderr) {
if (err) {

console.error(stderr);
throw err;

} else {
cb();

}

Listing 10.19 The assert module

ran variable will be used
to ensure fixtures aren’t
loaded more than onceB

loadFixture method is
used to asynchronously
prepare database

CMySQL
command line

is prepared
for importing

database
dump

D

Node’s child_process.exec
method is used to invoke
mysql command-line tool
to import data and
overwrite existing dataE

287TECHNIQUE 87 Database fixtures

});
}

before(function(done) {
ran++;
assert.equal(1, ran);
assert.equal(process.env.NODE_ENV, 'test', 'NODE_ENV is not test');
loadFixture(__dirname + '/fixtures/file.sql', function() {

process.nextTick(done);
});

});

The basic principle of this example is to run a database import before the other tests.
If you use this approach with your own tests, make sure the import wipes the database
first. Relational databases can do this with DROP TABLE IF EXISTS, for example.

 To actually run this test, you need to pass the filename to mocha before the other
tests, and make sure the test environment is used. For example, if listing 10.19 is
called test/init.js, then you could run these commands in the shell:
NODE_ENV=test ./node_modules/.bin/mocha test/init.js test/**/*_test.js. Or
simply place the commands in your project’s package.json file under scripts, test.

 The ran variable B is used to ensure the importer is only run once G. Mocha’s
before function is used F to run the importer once, but if test/init.js is acciden-
tally loaded elsewhere (perhaps by running mocha test/**/*.js), then the import
would happen twice.

 To import the data, the loadFixture function is defined C and run in the before
callback I. It accepts a filename and a callback, so it’s easy to use asynchronously. An
additional check is performed to make sure the import is only run in the test envi-
ronment H. The reasoning here is that the database settings would be set by the rest
of the application based on NODE_ENV, and you wouldn’t want to lose data by overwrit-
ing your development or production databases with the test fixtures.

 Finally, the shell command to import the data is built up D and run with
child_process E. This is database-dependent—we’ve used MySQL as an example,
but a similar approach would work with MongoDB, PostgreSQL, or pretty much any
database that has command-line tools.

 Using dump files for fixtures has some benefits: you can author test data with your
favorite database tool (we like Sequel Pro), and it’s easy to understand how it all
works. If you change your database’s schema or the “model” classes that work with the
data, then you’ll need to update your fixtures.

Creating test data with your ORM
An alternative approach is to create data programmatically. This style requires setup
code—run in before callbacks or the equivalent in your test framework—which cre-
ates database records using your model classes.

 The next listing shows how this works.

before() callback
will run prior to
all other tests

FUse assertions
to ensure
database

import is only
performed

once

G

Use assertions to only allow
import to run in test environment H

Run
database

import I

288 CHAPTER 10 Tests: The key to confident code

var assert = require('assert');
var crypto = require('crypto');

function User(fields) {
this.fields = fields;

}

User.prototype.save = function(cb) {
process.nextTick(cb);

};

User.prototype.signIn = function(password) {
var shasum = crypto.createHash('sha1');
shasum.update(password);
return shasum.digest('hex') === this.fields.hashed_password;

};

describe('user model', function() {
describe('sign in', function() {
var user = new User({

email: 'alex@example.com',
hashed_password: 'a94a8fe5ccb19ba61c4c0873d391e987982fbbd3'

});

before(function(done) {
user.save(done);

});

it('should accept the correct password', function() {
assert(user.signIn('test'));

});

it('should not accept the wrong password', function() {
assert.equal(user.signIn('wrong'), false);

});
});

});

This example can be run with Mocha, and although it doesn’t use a real database
layer, the User class B fakes the kind of behavior you’re likely to see with a library for
a relational database or even a NoSQL database. A save function is defined that has an
asynchronous API C so the tests look close to a real-world test.

 In the describe block that groups together each test case, a variable called user is
defined D. This will be used by some of the following test cases. It’s defined above
their scope so they can all access it, but also because we want to persist it asynchro-
nously in the before block. This runs prior to the test cases E.

Mocking the database
The final approach that will be discussed in this technique is mocking the database
API. Although you should always write some integration tests, you can also write tests
that never touch the database at all. Instead, the database API is abstracted away.

Listing 10.20 Preparing test data with an ORM

A stand-in for
a model class

B

Simulate non-blocking
database save

C

Create user record
to use for this test

D

Save user before
the test starts

E

289TECHNIQUE 87 Database fixtures

JavaScript allows objects to be modified after they have been defined. That means you
can override parts of the database module with your own methods to return test data.
There are libraries designed to make this process easier and more expressive. One
module that does this exceptionally well is Sinon.JS. The next example uses Sinon.JS
along with Mocha to stub the database module.

 Listing 10.21 presents an example that stubs a class that uses Redis for a user
account database. The goal of the test is to check that password encryption works
correctly.

var assert = require('assert');
var sinon = require('sinon');
var db = sinon.mock(require('./../db'));
var User = require('./../user');

describe('Users', function() {
var fields = {
name: 'Huxley',
hashedPassword: 'a94a8fe5ccb19ba61c4c0873d391e987982fbbd3'

};
var user;

before(function() {
user = new User(1, fields);
var stub = sinon

.stub(user.db, 'hmget')

.callsArgWith(2, null, JSON.stringify(fields));
});

it('should allow users to sign in', function(done) {
user.signIn('test', function(err, signedIn) {

assert(signedIn);
done(err);

});
});

it('should require the correct password', function(done) {
user.signIn('wrong', function(err, signedIn) {

assert(!signedIn);
done(err);

Listing 10.21 Stubbing a database

Should I use the ORM for test data?
Like the database dump example in listing 10.19, using an ORM to create test data
is useful for integration tests where you really want to talk to a database server. It’s
more programming effort than using database dumps, but it can be useful if you want
to call methods defined above the database in the ORM layer. The downside of this
technique is that a database schema change will potentially require changes in
multiple test files.

Mock the database
module.

B

This hashed password
will be used when the

user signs in.

C

Stub the Redis
hmget method.

D

Make hmget call the
passed-in callback,
which is the third
argument (index two),
and pass the callback
null and the fields we
want to use.E

290 CHAPTER 10 Tests: The key to confident code

});
});

});

This example is part of a large project that includes a package.json file and the User
class being tested—it’s available in the code samples, under testing/mocha-sinon.

 On the third line you’ll notice something new: sinon.mock wraps the whole data-
base module B. The database module is one we’ve defined that loads the node-redis
module, and then connects to the database. In this test we don’t want to connect to a
real database, so we call sinon.mock to wrap it instead. This approach can be applied
to other projects that use MySQL, PostgreSQL, and so on. As long as you design the
project to centralize the database configuration, you can easily swap it for a mock.

 Next we set up some fields that we want to use for this user C. In an integration
test, these fields would be returned by the database. We don’t want to do that here, so
in the before callback, we use a stub to redefine what Redis hmget does D. The stub-
bing API is chainable, so we chain on the definition of what we want our version of
hmget to do by using .callsArgWith E.

 The semantics of .callsArgWith can be confusing, so here’s a breakdown of how
it works. In the User class, hmget is called like this:

this.db.hmget('user:' + this.id, 'fields', function(err, fields) {
this.fields = JSON.parse(fields);
cb(err, this);

}.bind(this));

As you can see, it takes three arguments: the record key, the hash value to fetch, and
then a callback that receives an optional error object and the loaded values. When we
stub this, we need to tell Sinon.JS how to respond. Therefore, the first argument to
callsArgWith is the index of the callback, which is 2, and then the arguments that the
callback should receive. We pass null for the error, and the user’s fields serialized as a
strong. That gives us callsArgWith(2, null, JSON.stringify(fields)).

 This test is useful because the intent of the test is to ensure users can sign in, but only
with the correct password. The sign-in code doesn’t really require database access, so
it’s better to pass in predefined values rather than going to the trouble of accessing the
database. And, because the code serializes JSON to Redis, we don’t need a special library
for serializing and decoding JSON—we can use the built-in JSON object.

 Now you should know when and how to use integration tests, and mocks and stubs.
All of these techniques will help you write better tests, but only if you use them in the
correct circumstances. Table 10.2 provides a summary of these techniques and
explains when to use each one.

 The next time you want to test code that connects to a remote web service, or you
need to write tests that run against a database, you should know what to do. If you’ve
found this section interesting and you want to find out more, continue reading for
some ideas on what to learn next.

291Further reading

10.6 Further reading
Testing is a big topic, and although this chapter has been long, there are still impor-
tant topics to consider. The Node community continues to explore ways to write better
tests, and it has started to bring its ideas to client-side development. One such devel-
opment is Browserify (http://browserify.org)—this allows Node’s module pattern and
core modules like EventEmitter and stream.Readable to be used in the browser.

 Some Node developers are taking advantage of Browserify to write better client-
side tests. Not only can they take advantage of streams and Node’s module pattern for
cleaner dependency management, but they can also write Mocha or TAP tests the way
they do on the server. James Halliday, the author of Browserify, created Testling, which
is a browser automation module for running client-side tests.

 Along with continuous integration servers, another useful test-related tool is cover-
age reports. These analyze code to see how much of a project is hit when the tests are

Table 10.2 When to use integration tests, mocks, and stubs

Technique When to use it

Integration
testing

This means testing groups of modules. Here we’ve used the term to distinguish between
tests that access a real database, and tests that somehow replace database access
with a compatible API. You should use integration tests to ensure your database behaves
the way you expect.
Integration tests can help verify performance, but this is highly dependent on your test
data. It may cause your tests to be more closely coupled to the database, which means
that if you change the database or database API, you may need to change your test code
as well.

Database
dump

This is one way to preload data (before tests) into a test database. It requires a lot of
work up front to prepare the data, and the data has to be maintained if you ever change
the database schema. The added maintenance work is offset by the simplicity of the
approach—you don’t need any special tools to create SQL, Mongo, or other data files.
You should use this technique when you’re writing tests for a project that already has a
database. Perhaps you’re moving to Node from another programming language or plat-
form, and you’re using the existing database. You can take production data—being care-
ful to remove or obscure any personal information, or other sensitive information—and
then drop the resulting database export into your project’s repository.

ORM fixture Rather than creating a file to import before the tests are run, you can use your ORM mod-
ule to create and store data in your test code. This can make it hard to maintain over
time—any schema changes mean tests have to be carefully updated.
You should use this technique for tests where algorithms are closely tied to the underly-
ing data. By keeping the data near the code that uses it, any relating issues can be eas-
ier to understand and fix.

Mocks and
stubs

Mocks are objects that simulate other objects. In this chapter you saw Sinon.JS, a library
for handling mocks and stubs for tests.
You should use mocks when you don’t want to access an I/O resource. For example, if
you’re writing tests for code that talks to a payment provider like WorldPay or Stripe, then
you’d create objects that behave like Stripe’s API without actually communicating with
Stripe. It’s generally safer to ensure tests never need to access the internet, so anything
that hits the network should be mocked.

http://browserify.org

292 CHAPTER 10 Tests: The key to confident code

run. There may be functions, methods, or even clauses in if statements that never get
executed, which means untested and potentially buggy code could be released to the
production environment.

10.7 Summary
In this chapter you’ve learned how to write assertions and extend them, and how to
use two popular test frameworks. When writing tests for your Node projects, you
should always err on the side of readability—tests should be fast, but if they don’t com-
municate intent, they can cause maintenance issues in the future.

 Here’s a recap of the main points we covered:

■ Master the assert module by learning each method and how to ensure errors
are correctly handled.

■ Use test harnesses like Mocha and node-tap to help make tests readable and
maintainable.

■ Write tests for code that uses a database by loading data or using mocks and
stubs.

■ Improve mocks and stubs by using third-party modules like Sinon.JS.
■ Develop your own domain-specific languages for tests—write functions and

classes that help keep test cases lean and succinct.

One aspect of development that we haven’t covered yet is debugging Node programs.
This can be an important part of writing software, depending on your development
style and background. If you’re interested in learning the basics of the Node debug-
ger, or want to learn more about it, then read on to dive into debugging with Node.

293

Debugging: Designing
 for introspection and

 resolving issues

Understanding how errors are generated and handled in any given platform is par-
amount to building stable applications. Good error introspection and tests that are
built-in are the best offense for debugging issues later on. In this chapter we focus
on how to prepare for and what to do when things go south.

This chapter covers
■ Handling uncaught exceptions
■ Linting Node applications
■ Using debugging tools
■ Profiling applications and investigating memory

leaks
■ Using a REPL to investigate a running process
■ Tracing system calls

294 CHAPTER 11 Debugging: Designing for introspection and resolving issues

 Maybe your process keeps crashing or it’s using more memory than you expected.
Perhaps it’s stuck at 100% CPU usage. We’ll look at debugging solutions for these and
other problems you may encounter in your Node applications.

 In the first part we’ll cover Node application design for error handling and detec-
tion. In the second half we’ll look at debugging specific types of problems.

11.1 Designing for introspection
When we design applications, we need to be thinking about how we’ll handle errors.
Relevant error logging and intervention takes thought. It also takes a good under-
standing of where errors can occur in order to trap them. Throughout this book,
we’ve covered various forms of errors that can happen in Node applications. Let’s
cover all the types here.

11.1.1 Explicit exceptions

Explicit exceptions are those explicitly triggered by the throw keyword. They clearly
indicate that something has gone wrong:

function formatName (name) {
if (!name) throw new Error("name is required");
...

}

Explicit exceptions are handled by a try/catch block:

try {
formatName();

} catch (err) {
console.log(err.message, err.stack);

}

If you throw your own exceptions, keep these guidelines in mind:

■ throw should be used only in synchronous functions; or in some cases, it makes
sense before the asynchronous action has occurred in asynchronous functions
(like API misuse).

■ Always throw an Error object or something that inherits from Error. Using sim-
ple strings (like throw "Oh no!") won’t generate a stack trace, so you’ll have no
information as to where the error occurred.

■ Don’t throw inside Node-style callback functions; nothing exists on the stack to
catch it! Instead, deal directly with the error or pass the error off to another
function that can properly handle the error.

REGAINING THROW You can regain the use of throw for asynchronous blocks if
the structures support it; some notable ones are domains, promises, or
generators.

295Designing for introspection

11.1.2 Implicit exceptions

Implicit exceptions are any runtime JavaScript errors not triggered by the throw keyword.
Unfortunately, these exceptions can sneak into our code too easily.

 One common implicit exception is ReferenceError, which is caused when a refer-
ence to a variable or property can’t be found.

 Here, we see an innocent misspelling of data causes an exception:

function (err, data) {
res.write(dat); // ReferenceError: dat is not defined

}

Another common implicit exception is SyntaxError, most famously triggered using
JSON.parse on invalid JSON data:

JSON.parse("undefined"); // SyntaxError: Unexpected token u

It’s a good idea to wrap JSON.parse with a try/catch block, especially if you aren’t in
control of the input JSON data.

CATCH IMPLICIT EXCEPTIONS EARLY A great way to catch implicit exceptions
early is to utilize linting tools like JSHint or JSLint. Adding them to your build
process helps keep your code in check. We’ll talk more on subject this later in
the chapter.

11.1.3 The error event

The error event can be emitted from any EventEmitter in Node. If left unhandled,
Node will throw the error. These events can be the most difficult to debug if not han-
dled, since many times they’re triggered during asynchronous operations like stream-
ing data where the call stack is minimal:

var EventEmitter = require('events').EventEmitter;
var ee = new EventEmitter();
ee.emit('error', new Error('No handler to catch me'));

This will output the following:

events.js:72
throw er; // Unhandled 'error' event

^
Error: No handler to catch me

at Object.<anonymous> (/debugging/domain/ee.js:5:18)
at Module._compile (module.js:456:26)
at Object.Module._extensions..js (module.js:474:10)
at Module.load (module.js:356:32)
at Function.Module._load (module.js:312:12)
at Function.Module.runMain (module.js:497:10)
at startup (node.js:119:16)
at node.js:902:3

296 CHAPTER 11 Debugging: Designing for introspection and resolving issues

Luckily, we know where this error came from; we just wrote the code, after all! But in
larger applications, we may have errors triggered at the DNS layer and we have no idea
which module utilizing DNS just had a problem.

 So, when possible, handle error events:

ee.on('error', function (err) {
console.error(err.message, err.stack);

});

When writing your own EventEmitters, do yourself and your API consumers a favor
and give them context to any errors in your dependencies that you’re propagating
upward. Also, use Error objects over plain strings when emitting errors so a stack trace
can be found.

11.1.4 The error argument

Errors that occur during an asynchronous operation are provided as the first argu-
ment in a callback function. Unlike the previous errors we’ve talked about, these
never cause exceptions directly. But they can be the source of many implicit exceptions:

fs.readFile('/myfile.txt', function (err, buf) {
var data = buf.toString();
...

});

Here, we ignore the error returned from readFile, perhaps assuming we’ll always
have a buffer of the file data to continue working with. Unfortunately, the day comes
when we can’t read the file and we have a ReferenceError because buf is not defined.

 It’s more robust to just handle the asynchronous errors. A lot of times this can
mean simply passing the error to another function that can gracefully handle the
error:

function handleError (err) {
console.error('Failed:', err.message, err.stack);

}
fs.readFile('/myfile.txt', function (err, buf) {

if (err) return handleError(err);
var data = buf.toString();
...

});

Handling each of these four types of errors effectively will give you much better data
to work with when you’re debugging issues in the future!

 Even with our best efforts and tooling, though, we can still miss exceptions and
have a crashed server on our hands. Let’s look at designing our applications to handle
these situations so we can quickly address and fix uncaught exceptions.

TECHNIQUE 88 Handling uncaught exceptions

How do you effectively handle Node crashes? One of the first things you discover
when working with Node is that it terminates a process whenever an exception is

297TECHNIQUE 88 Handling uncaught exceptions

uncaught. It’s important to understand why this behavior exists and how you handle
uncaught exceptions in order to build robustness into your programs.

■ Problem
You have an uncaught exception taking down your process.

■ Solution
Log the exception, and shut down gracefully.

■ Discussion
Sometimes exceptions go uncaught. When this happens, Node by default will termi-
nate the process. There’s a good reason for this, which we’ll come back to, but let’s
first talk about how we can change this default behavior.

 With an uncaughtException handler set on the process object, Node will execute
the handler instead of terminating your program:

process.on('uncaughtException', function (err) {
console.error(err);

});

Yeah! Now your Node application will never crash! Although it’s true that exceptions
won’t take down your process anymore, the drawbacks of leaving the Node program
running will most likely outweigh the benefits. If you choose to keep the application
running, the application could leak resources and possibly become unstable.

 How does that happen? Let’s look at an example of an application we intend to
run for a long time: a web server. We won’t allow Node to terminate the process by
adding an uncaughtException handler that just logs the error. What do you think will
happen when we have an uncaught exception while we’re handling a user’s request?

var http = require('http');

var server = http.createServer(req, res) {
response.end('hello world');

});
server.listen(3000);

process.on('uncaughtException', function (err) {
console.error(err);

});

When a request comes in, an exception is thrown and then caught by the uncaught-
Exception handler. What happens to the request? It is leaked, as that connection will
remain open until the client times out (we also no longer have access to res to give a
response back).

 In figure 11.1, you can see an illustration of this leak happening. If we had no
exception, we’d be fine, but since we had an exception, we leaked a resource.

 Although this example is simplified to be clear, uncaught exceptions are a reality.
Most of the time it will be open handles to sockets or files that aren’t able to be closed
properly. Uncaught exceptions are usually buried much deeper in the code, which
makes determining what resources are being leaked even harder.

Throws a ReferenceError
since response is not defined

298 CHAPTER 11 Debugging: Designing for introspection and resolving issues

State can also be affected, since an uncaught exception takes you out of your current con-
text and places you in a completely different context (the uncaughtException handler)
where you don’t have references to objects in order to clean things up. In our example,
we didn’t have access to the res object in order to send a response back to the client.

 So what good is the uncaughtException handler? It enables your application to
log and restart gracefully. It’s wise to treat an uncaughtException handler as a last
chance to say your goodbyes before going down. Write out the error, perhaps send an
email or do some other notification, and then gracefully kill the app:

process.on('uncaughtException', function (err) {
console.error(err);
server.close();
setTimeout(process.exit, 5000, 1);

});

The uncaughtException handler is a last defense. Ideally exceptions should be han-
dled closer to the source so action can be taken to prevent leaks and instability. For
that, you can use domains.

Using domains for uncaught exceptions
Whereas an uncaughtException casts a net over the entirety of your application code
base to catch errors, domains allow you to control the portions of code that are moni-
tored by the domain and handle exceptions closer to the source (more on this back in
chapter 4). Let’s implement the same uncaughtException example from earlier, but
using domains instead:

var domain = require('domain');
var http = require('http');

var d = domain.create();
 d.run(function () {

Incoming request

Outgoing response

Client Server

Uncaught
exception

Client makes a connection to
the sever; sends request.

Exception occurs;
connection is leaked.

Server is unable to
send a response.

Figure 11.1 Leaking re-
sources when using
uncaughtException

Log error

Stop
incoming

connections

Give any existing connections
5 more seconds and then kill
process

Set up a new
domain.

Run the following
code inside the

domain.

299TECHNIQUE 89 Linting Node applications

var server = http.createServer(req, res) {
d.on('error', function (er) {
res.statusCode = 500;)
res.end('internal server error');
server.close();
setTimeout(process.exit, 5000, 1);

})
response.end('hello world');

})
server.listen(3000);

});

Using domains allowed us to sandbox our server code and still have access to the res
object to give the user a response, which is an improvement on the previous example.
But even though we’re able to give the user a response and close the connection, it’s
still best practice to close out the process.

 If you utilize domains, it’s not a bad idea to keep an uncaughtException handler as
a catchall for those cases where an error slips by one of your domains, or your domain’s
error handler throws an exception where no other domain is there to catch it.

 Let’s switch to a helpful way to build introspection into your application and pre-
vent errors before they happen: linting!

TECHNIQUE 89 Linting Node applications

Lint tools can help catch a multitude of application errors when properly tuned. In
our previous example, we misspelled res, which led to an uncaught exception.
Although the code was valid JavaScript, we had an undefined variable being accessed.
A lint tool would’ve caught this error.

■ Problem
You want to catch potential coding errors and exceptions.

■ Solution
Use a lint tool.

■ Discussion
Let’s talk about setting up an application to use JSHint with Node. JSHint is an actively
maintained lint tool that includes a number of customizable options for JavaScript
code bases.

 First, we assume you already have a package.json file set up (if not: npm init) for
your project. Next, let’s add jshint to our development dependencies:

npm install jshint --save-dev

Now let’s configure JSHint so it knows what it’s working with. We just throw a .jshintrc
file—which takes a JSON configuration—in our project root. Let’s look at a basic con-
figuration for Node projects:

{
"node": true,
"undef": true

}

Handle any uncaught
exception that occurs
in the domain.Respond to the

user with an error
response.

Make JSHint understand it’s working with Node.
This avoids errors with known global variables
and other Node-specific intelligence.

Catch any undefined
variable usage.

300 CHAPTER 11 Debugging: Designing for introspection and resolving issues

JSHint has a lot of options (http://jshint.com/docs/options/) that bend rules to
match your coding style and intent, but these just shown are some good basic defaults.

 To run JSHint, add the following line to the "scripts" block in your package.json
file (if you don’t have a "scripts" block, just add one):

"scripts": {
"lint": "jshint *"

}

You can then run JSHint from your project root this way:

npm run lint

JSHint will give you output that tells you what errors it found, and you can either cor-
rect or update the options to better fit your coding style and intent. Similarly to tests,
it’s helpful to have your build tools run the lint tools as you push code, since it’s easy
to forget to run and can be automated away.

 Now that we’ve looked at ways to prevent and effectively handle application errors,
let’s switch over to look at tools we can use to debug issues when they occur.

11.2 Debugging issues
We have our tests, our logging, and our linting. How do we actually debug and fix
issues when they occur? Thankfully, there are a number of tools for a number of
different situations. In this section we’ll take a look at various and likely unrelated
problems you can encounter when running your applications, and techniques to solve
them. We’ll start with using debuggers and move on to profiling, memory leaks,
production debugging, and tracing.

TECHNIQUE 90 Using Node’s built-in debugger

Whenever you need step-by-step analysis of the state of your application, a debugger
can be an invaluable tool, and Node’s built-in debugger is no exception. Node’s built-
in tooling allows you to watch variables, pause execution through breakpoints, step in
and out of parts of your application, see backtraces, run an interactive context-aware
REPL, and more.

 Unfortunately, many shy away from the command-line tool, as it may seem intimi-
dating at first. We want to debunk that and show how powerful it can be by walking
you through most of the functionality it has to offer.

■ Problem
You want to run a debugger to set breakpoints, watch variables, and step through your
application.

■ Solution
Use node debug.

■ Discussion
Let’s take a simple program to debug in order to demonstrate some of the features of
the debugger:

Run JSHint against all
JavaScript files in your project

http://jshint.com/docs/options/

301TECHNIQUE 90 Using Node’s built-in debugger

var a = 0;
function changeA () {

a = 50;
}
function addToA (toAdd) {

a += toAdd;
}
changeA();
addToA(25);
addToA(25);

To run the built-in debugging tool, simply use the debug command:

node debug myprogram

It will start the application with the debugger breaking on the first executable line:

< debugger listening on port 5858
connecting... ok
break in start.js:1

1 var a = 0;
2
3 function changeA () {

debug>

To view all the available commands and debugging variables, you can type help:

debug> help
Commands: run (r), cont (c), next (n), step (s), out (o),
backtrace (bt), setBreakpoint (sb), clearBreakpoint (cb),
watch, unwatch, watchers, repl, restart, kill, list, scripts,
breakOnException, breakpoints, version

To continue from the default starting breakpoint, just type cont, or just c for short.
Since we don’t have any other breakpoints, the application will terminate:

debug> cont
program terminated
debug>

But we’re still in the debugger and can restart the application again by using the run
command (r for short):

debug> run
< debugger listening on port 5858
connecting... ok
break in start.js:1

1 var a = 0;
2
3 function changeA () {

debug>

And we’re back in business. We can also restart the application with the restart com-
mand or manually kill the application with the kill command if we need to.

302 CHAPTER 11 Debugging: Designing for introspection and resolving issues

 The application is all about the letter A, so let’s take a peek at how that changes as
our application executes by making a watch expression for that. The watch function
takes an expression to watch as an argument:

debug> watch('a')

We can view the state of all that we’re watching using the watchers command:

debug> watchers
0: a = undefined

Currently we’re paused before the assignment to 0 has even been made, so we’re
undefined. Let’s step into the next line with next(or n for short):

debug> next
break in start.js:11
Watchers:

0: a = 0

9 }
10
11 changeA();
12 addToA(25);
13 addToA(25);

debug>

Well, that’s convenient: the debugger outputs our watchers for us as we step to the
next section. If we were to type watchers again, we’d see similar output:

debug> watchers
0: a = 0

If we ever want to remove a watch expression, we can use the unwatch command given
the same expression we used to create it.

 By default, the debugger will print just a couple lines before and after to give a
sense of context. But sometimes we want to see more of what’s going on. We can use
the list command, giving it the number of lines around the current line where we’re
paused:

debug> list(5)
6
7 function addToA (toAdd) {
8 a += toAdd;
9 }
10
11 changeA();
12 addToA(25);
13 addToA(25);
14
15 });

debug>

303TECHNIQUE 90 Using Node’s built-in debugger

We’re currently at line 11, the changeA function. If we were to type next, we’d move to
the next line, which is the addToA function, but let’s investigate our changeA function
more by stepping into it. To do that we just use the step command (or s for short):

debug> step
break in start.js:4
Watchers:

0: a = 0

2
3 function changeA () {
4 a = 50;
5 }
6

debug>

Now that we’re in this function, we can step out of it at any time using the out com-
mand. We’ll automatically step out of it once we reach the end, so we can also use
next; let’s try it:

debug> next
break in start.js:5
Watchers:

0: a = 50

3 function changeA () {
4 a = 50;
5 }
6
7 function addToA (toAdd) {

debug>

As you can see, our watchers updated to show that a is now 50. Let’s go to the next line:

debug> next
break in start.js:12
Watchers:

0: a = 50

10
11 changeA();
12 addToA(25);
13 addToA(25);
14

debug>

Now we’re back to the line after our changeA function. Let’s step into this next func-
tion again. Remember what command that was?

debug> step
break in start.js:8
Watchers:

0: a = 50

304 CHAPTER 11 Debugging: Designing for introspection and resolving issues

6
7 function addToA (toAdd) {
8 a += toAdd;
9 }
10

debug>

Let’s explore another neat aspect of the debugger: the built-in REPL! We can access it
by using the repl command:

debug> repl
Press Ctrl + C to leave debug repl
>

This is a standard REPL that’s aware of the context that surrounds it when you used
the repl command. So we can, for instance, output the value of the toAdd argument:

> toAdd
25

We can also introduce state into the application. Let’s create a global b variable:

> b = 100100

In many ways, this behaves just like the standard Node REPL, so a lot of what you can
do there, you can do here.

 You can exit the REPL mode at any time with Ctrl-C. Let’s do that now. You’ll know
you’ve exited because you’ll get your debug prompt back:

debug>

We were in a REPL for a while, so we likely lost context when we were paused. Let’s use
list again to get our bearings:

debug> list()
3 function changeA () {
4 a = 50;
5 }
6
7 function addToA (toAdd) {
8 a += toAdd;
9 }
10
11 changeA();
12 addToA(25);
13 addToA(25);

Ah yes, that’s right, we were on line 8. Well, you know what, we really wanted the changeA
function to assign a to 100. It’s such a nice number to accompany such a nice letter! But
we forgot to do that when we started the debugger. No problem! We can set a breakpoint
here to save our spot by using the setBreakpoint function (or sb for short):

debug> setBreakpoint()
3 function changeA () {
4 a = 50;

305TECHNIQUE 90 Using Node’s built-in debugger

5 }
6
7 function addToA (toAdd) {

*8 a += toAdd;
9 }
10
11 changeA();
12 addToA(25);
13 addToA(25);

debug>

Note that our line 8 now has a star (*) next to it indicating we have a breakpoint set
there. Let’s change that function in our code file and save it:

function changeA () {
a = 100;

}

Back in our debugger, we can restart the app:

debug> restart
program terminated<
debugger listening on port 5858
connecting... ok
Restoring breakpoint debug.js:8
break in start.js:1

1 var a = 0;
2
3 function changeA () {

debug>

Looks like our program was restarted and the breakpoint we set is still intact. Did it
get our changes? Let’s see:

debug> list(20)
1 var a = 0;
2
3 function changeA () {
4 a = 100;
5 }
6
7 function addToA (toAdd) {
8 a += toAdd;
9 }
10
11 changeA();
12 addToA(25);
13 addToA(25);
14
15 });

debug>

Another way we can set breakpoints right from our application code is to use the
debugger keyword:

306 CHAPTER 11 Debugging: Designing for introspection and resolving issues

function changeA () {
debugger;
a = 100;

}

If we restart our application again, we’ll always stop on any debugger lines. We can
clear breakpoints as well using clearBreakpoint (or cb for short).

 Let’s look at one more topic: uncaught exceptions. Let’s introduce a nasty
ReferenceError in our changeA function:

function changeA () {
a = 100;
foo = bar;

}

If we restart our application using restart and then cont to skip the initial break-
point, our application will crash due to an uncaught exception. We can break on these
exceptions instead using breakOnException:

debug> breakOnException
debug>

Now, instead of crashing, we’ll break first, allowing us to inspect the state of the appli-
cation and use the REPL before the program terminates.

HELPFUL MULTIFILE DEBUGGER COMMANDS This scenario only looked at a sin-
gle file that included no other modules. The debugger also has a couple of
commands that are helpful when you’re within multiple files. Use backtrace
(or bt for short) to get a call stack on whatever line you’re currently paused
at. You can also use scripts to get a list of loaded files and an indicator of
what file you’re currently in.

The built-in debugger may feel odd at first if you’re used to a GUI tool for debugging
applications, but it’s actually pretty versatile once you get the hang of it! Just throw a
quick debugger statement where you’re working and fire it up.

TECHNIQUE 91 Using Node Inspector

Want to do everything you can with the built-in debugger, but using the Chrome Dev-
Tools interface instead? There’s a module for that! It’s called node-inspector. In this
technique we’ll look at how to set it up and start debugging.

■ Problem
You want to debug a Node application using Chrome DevTools.

■ Solution
Use node-inspector.

■ Discussion
Node allows remote debugging by exposing a debugging port that third-party mod-
ules and tools can hook into (including the built-in debugger). One popular module
is node-inspector, which ties in debugging information from Node into the Chrome
DevTools interface.

307TECHNIQUE 91 Using Node Inspector

 To set up node-inspector, simply install it:

npm install node-inspector -g

Don’t forget the -g flag to install it globally. Once you have it, you can fire it up by run-
ning the following command:

node-inspector

Now node-inspector is ready to roll and will tell you where to reach it:

$ node-inspector
Node Inspector v0.7.0-2

info - socket.io started
Visit http://127.0.0.1:8080/debug?port=5858 to start debugging.

You can then visit that URL in any Blink-enabled browser like Chrome or Opera. But
we don’t have any Node program that has an open debugging port to start debugging,
so we receive an error message, as shown in figure 11.2.

 Let’s leave that running for now and write a little application to debug:

var http = require('http');

var server = http.createServer();
server.on('request', function (req, res) {

res.end('Hello World');
});
server.listen(3000);

Now we can run this application exposing the debugging port:

$ node --debug test.js
debugger listening on port 5858

Figure 11.2 Error screen when no debugging agent is found

308 CHAPTER 11 Debugging: Designing for introspection and resolving issues

Our application now lets us know that the debugger is listening on port 5858. If we
refresh our Node inspector web page, it’ll look more interesting, as shown in figure 11.3.

 We can use the inspector much like the built-in debugger to set breakpoints and
watch expressions. It also includes a console that’s similar to the REPL to allow you to
poke around at the state of your application while it’s paused.

 One difference between node-inspector and the built-in debugger is that Node
doesn’t automatically break on the first expression. To enable that, you have to use
the --debug-brk flag:

node --debug-brk test.js

This tells the debugger to break on the first line until the inspector can step through
or continue execution. If we reload the inspector, we can see it’s paused on the first
line, as shown in figure 11.4.

 node-inspector is continually being developed to support more of Chrome Dev-
Tools’ functionality.

 We’ve looked at two ways to use debugging tools in Node: the command-line
debugger and node-inspector. Now, let’s switch to another tool for resolving perfor-
mance-related issues: the profiler.

TECHNIQUE 92 Profiling Node applications

Profiling aims to answer this question: Where is my application spending its time? For
instance, you may have a long-running web server that gets stuck at 100% CPU usage
when you hit a particular route. At first glance, you might view the various functions
that touch that route to see if anything stands out, or you could run a profiler and let
Node tell you where it’s stuck. In this technique you’ll learn how to use the profiler
and interpret the results.

Figure 11.3 Node inspector connected to the debugger

309TECHNIQUE 92 Profiling Node applications

■ Problem
You want to find out where your application is spending its time.

■ Solution
Use node --prof.

■ Discussion
Node taps into the underlying V8 statistical profiler by the use of the --prof command-
line flag. It’s important to understand how it works in order to interpret the data.

 Every two milliseconds, the profiler looks at the running application and records
the function executing at that moment. The function may be a JavaScript function,
but it also can come from C++, shared libraries, or V8 garbage collection. The profiler
writes these “ticks” to a file named v8.log, where they’re then processed by a special
V8 tick-processor program.

 Let’s look at a simple application to see how this works. Here we have an applica-
tion doing two different things—running a slower computational task every two sec-
onds, and running a quicker I/O task more often:

function makeLoad () {
for (var i=0;i<100000000000;i++);

}
function logSomething () {

console.log('something');
}

setInterval(makeLoad, 2000);
setInterval(logSomething, 0);

We can profile this application like so:

node --prof profile-test.js

Figure 11.4 Using the --debug-brk flag

310 CHAPTER 11 Debugging: Designing for introspection and resolving issues

If we let it run for 10 seconds or so and kill it, we’ll get a v8.log in that same directory.
The log isn’t too helpful by itself. Let’s process the log by using the V8 tick-processor
tools. Those tools require that you build V8 from source on your machine, but there’s
a handy third-party module that allows you to skip that. Just run the following com-
mand to install:

npm install tick -g

This will install the appropriate tick processor for your operating system in order to
view the data. You can then run the following command in the same directory as your
v8.log file to get some more helpful output:

node-tick-processor

You’ll get output that looks similar to the following (abbreviated to show structure):

Statistical profiling result from v8.log,
(6404 ticks, 1 unaccounted, 0 excluded).

[Unknown]:
ticks total nonlib name

1 0.0%

[Shared libraries]:
ticks total nonlib name
4100 64.0% 0.0% /usr/lib/system/libsystem_kernel.dylib
211 3.3% 0.0% /Users/wavded/.nvm/v0.10.24/bin/node

...

[JavaScript]:
ticks total nonlib name
1997 31.2% 96.4% LazyCompile: *makeLoad profile-test.js:1
7 0.1% 0.3% LazyCompile: listOnTimeout timers.js:77
5 0.1% 0.2% RegExp: %[sdj%]

...

[C++]:
ticks total nonlib name

[GC]:
ticks total nonlib name

1 0.0%

[Bottom up (heavy) profile]:
Note: percentage shows a share of a particular caller in
the total amount of its parent calls.
Callers occupying less than 2.0% are not shown.

ticks parent name
4100 64.0% /usr/lib/system/libsystem_kernel.dylib

1997 31.2% LazyCompile: *makeLoad profile-test.js:1
1997 100.0% LazyCompile: ~wrapper timers.js:251
1997 100.0% LazyCompile: listOnTimeout timers.js:77

311TECHNIQUE 93 Debugging memory leaks

Let’s look at what each section means:

■ Unknown—For that tick, the profiler couldn’t find a meaningful function
attached to the pointer. These are noted in the output but aren’t much help
beyond that and can be safely ignored.

■ Shared libraries—These are usually underlying C++/C shared libraries; a lot of
the I/O stuff happens here as well.

■ JavaScript—This is typically the most interesting part; it includes your applica-
tion code as well as Node and V8 internal native JavaScript code.

■ C++—This is C++ code in V8.
■ GC—This is the V8 garbage collector.
■ Bottom up (heavy) profile—This shows a more detailed stack for the highest hitters

found by the profiler.

In our case, we can see that *makeLoad is the hottest JavaScript function, with 1997
ticks accounted for:

[JavaScript]:
ticks total nonlib name
1997 31.2% 96.4% LazyCompile: *makeLoad profile-test.js:1
7 0.1% 0.3% LazyCompile: listOnTimeout timers.js:77
5 0.1% 0.2% RegExp: %[sdj%]

This makes sense since it has some heavy computation. Another interesting section to
note is RegExp: %[sdj%], which is used by util.format, which is used by console.log.

 The profiler’s job is to show you what functions are running most often. It doesn’t
necessarily mean that the function is slow, but it does mean either a lot happens in the
function or it’s called often. The results should serve as clues to help you understand
what can be done to improve the performance. In some cases it may be surprising to
find out certain functions are running hot; other times it may be expected. Profiling
serves as one piece of the puzzle to help solve performance-related issues.

 Another potential source of performance-related issues is memory leaks, although,
obviously they’re first a memory concern that may have performance ramifications.
Let’s look at handling memory leaks next.

TECHNIQUE 93 Debugging memory leaks

Before the days of Ajax and Node, there wasn’t much effort put into debugging
JavaScript memory leaks, since page views were short-lived. But memory leaks can hap-
pen, especially in Node programs where a server process is expected to stay up and
running for days, weeks, or months. How do you debug a leaking application? We’ll
look at a technique that works locally or in production.

■ Problem
You want to debug a program leaking memory.

■ Solution
Use heapdump and Chrome DevTools.

312 CHAPTER 11 Debugging: Designing for introspection and resolving issues

■ Discussion
Let’s write a leaky application to demonstrate how to use a couple of tools to debug a
memory leak. Let’s make a leak.js program:

var string = '1 string to rule them all';

var leakyArr = [];
var count = 2;
setInterval(function () {

leakyArr.push(string.replace(/1/g, count++));
}, 0);

How do we know this application is growing in memory? We could sit and watch top
or some other process-monitoring application. We can also test it by logging the mem-
ory used. To get an accurate read, let’s force a garbage collection before logging out
the memory usage. Let’s add the following code to our leak.js file:

setInterval(function () {
gc();
console.log(process.memoryUsage());

}, 10000)

In order to use the gc() function, we need to expose it by running our application
with the --expose-gc flag:

node --expose-gc leak.js

Now we can see some output showing clearly that we’re growing in memory usage:

{ rss: 15060992, heapTotal: 6163968, heapUsed: 2285608 }
{ rss: 15331328, heapTotal: 6163968, heapUsed: 2428768 }
{ rss: 15495168, heapTotal: 8261120, heapUsed: 2548496 }
{ rss: 15585280, heapTotal: 8261120, heapUsed: 2637936 }
{ rss: 15757312, heapTotal: 8261120, heapUsed: 2723192 }
{ rss: 15835136, heapTotal: 8261120, heapUsed: 2662456 }
{ rss: 15982592, heapTotal: 8261120, heapUsed: 2670824 }
{ rss: 16089088, heapTotal: 8261120, heapUsed: 2814040 }
{ rss: 16220160, heapTotal: 9293056, heapUsed: 2933696 }
{ rss: 16510976, heapTotal: 10324992, heapUsed: 3085112 }
{ rss: 16605184, heapTotal: 10324992, heapUsed: 3179072 }
{ rss: 16699392, heapTotal: 10324992, heapUsed: 3267192 }
{ rss: 16777216, heapTotal: 10324992, heapUsed: 3293760 }
{ rss: 17022976, heapTotal: 10324992, heapUsed: 3528376 }
{ rss: 17117184, heapTotal: 10324992, heapUsed: 3635264 }
{ rss: 17207296, heapTotal: 10324992, heapUsed: 3728544 }

Although we know we’re growing pretty steadily, we don’t really know “what” is leak-
ing from this output. For that we need to take some heap snapshots and compare
them to see what’s changing in our application. We’ll use the third-party heapdump
module (https://github.com/bnoordhuis/node-heapdump). The heapdump module
allows us to take snapshots either programmatically or by sending a signal to the pro-
cess (UNIX only). These snapshots can be processed using the Chrome DevTools.

 Let’s install the module first:

npm install heapdump --save-dev

Since strings are immutable in
JavaScript, we push a unique
string every time into the array
to intentionally grow memory
and not allow the garbage
collector to clean.

https://github.com/bnoordhuis/node-heapdump

313TECHNIQUE 93 Debugging memory leaks

Then include it in our leak.js file and instrument it to output a heap snapshot every 10
seconds:

var heapdump = require('heapdump');
var string = '1 string to rule them all';

var leakyArr = [];
var count = 2;
setInterval(function () {

leakyArr.push(string.replace(/1/g, count++));
}, 0);

setInterval(function () {
if (heapdump.takeSnapshot()) console.log('wrote snapshot');

}, 10000);

Now, every 10 seconds a file is written to the current working directory of the process
that contains the snapshot. A garbage collection is automatically performed whenever
a snapshot is taken. Let’s run our application to write a couple snapshots and then ter-
minate it:

$ node leak3.js
wrote snapshot
wrote snapshot

Now we can see what was written:

$ ls
heapdump-29701132.649984.heapsnapshot
heapdump-29711146.938370.heapsnapshot

The files are saved with their respective timestamps. The larger the number, the more
recent the snapshot. Now we can load these files into Chrome DevTools. Open
Chrome and then the Developer Tools, go to the Profiles tab, and right-click on Pro-
files to load a snapshot file (see figure 11.5).

Figure 11.5 Loading a heap snapshot into the Chrome DevTools

314 CHAPTER 11 Debugging: Designing for introspection and resolving issues

To compare our two snapshots, let’s load them in the order we took them (see fig-
ure 11.6).

 Now that we have them loaded, we can do some investigation. Let’s select the sec-
ond one and then choose the Comparison option. Chrome will automatically select
the previous snapshot to compare to (see figure 11.7).

 Now we can see something immediately interesting in our view—a lot of strings are
being created and not being garbage collected (see figure 11.8).

Figure 11.6 Loading a second snapshot for comparison

Select comparison view.

Figure 11.7 Using the comparison view

315TECHNIQUE 93 Debugging memory leaks

So we can see that strings could be a problem here. But what strings are getting cre-
ated? Here we have to do some investigation. Expanding the (string) tree will show us
the largest strings first—typically application source code and some larger strings used
in Node core and V8. But when we scroll down, we start to see strings generated in our
application, and lots of them. By clicking one, we can see the retaining tree, or its rela-
tionship to other objects (see figure 11.9).

Delta shows a large increase in strings.

Figure 11.8 Examining memory allocations between the snapshots

Strings created in our app

Members of an Array

Figure 11.9 Drilling down to the types of data being created in memory

316 CHAPTER 11 Debugging: Designing for introspection and resolving issues

In this exercise, we had a hunch we were going to leak strings stored inside the leaky-
Arr variable. But this exercise shows the relationship between the code and the tools
to inspect memory usage. As a developer, you’ll know your source code, and the clues
you get inside DevTools will be specific to your code and modules. The Comparison
view can give a great snapshot of what’s changing.

 We only talked about one way of creating snapshots. You can also send a SIGUSR2
(on *NIX systems) to a process with heapdump to take a snapshots at will:

kill -USR2 1120

Just remember that it’ll write the snapshot to the CWD of the process and will fail
silently if the CWD isn’t writable by the process user.

 You can also be programmatically clever, depending on your needs. For example,
you could set up heapdump to take a snapshot after a certain memory threshold is
breached, or if it grows faster than some expected limit given an interval.

 Taking heap snapshots is something you can do in production for a small perfor-
mance penalty while the snapshot is being written to disk. Let’s turn our attention to
another technique you can use in production that has a minimal penalty and lets you
poke around at the application state: using a REPL.

TECHNIQUE 94 Inspecting a running program with a REPL

Attaching a debugger to a production process isn’t a viable option, as we don’t want to
be pausing execution or adding a performance tax of running the V8 debugger. So
how can we debug live or performance-sensitive issues? We can use a REPL to dive into
the process and inspect or change state. In this technique we’ll first look at how a
REPL works in Node, and how to set up your own REPL server and client. Then we’ll
turn to inspecting a running process.

■ Problem
You want to interact with a running process to inspect or change its state.

■ Solution
Set up a REPL in the process and a REPL client to access.

■ Discussion
The Node REPL is a great way to play around and experiment with JavaScript and
Node. The simplest way to play around with a REPL is to run Node without any argu-
ments, as shown in figure 11.10.

 But you can create your own REPLs using the built-in repl module. In fact, Node
uses the same module when you type node. Let’s make our own REPL:

var repl = require('repl');
repl.start({

input: process.stdin,
output: process.stdout

});

Use stdin stream
as input stream
to the REPLUse stdout stream as

output stream from
the REPL

317TECHNIQUE 94 Inspecting a running program with a REPL

Executing this program creates a REPL that looks and functions much like node does:

$ node repl-basic.js
> 10 + 20
30
>

But we don’t need to use the process’s stdio for input and output; we can use a UNIX
or a TCP socket! This allows us to connect to a long-running process from the outside.
Let’s make a TCP REPL server:

var net = require('net');
var repl = require('repl');

net.createServer(function (socket) {
var r = repl.start({
input: socket,
output: socket

});
r.on('exit', function() {
socket.end();

});
}).listen(1337);

console.log('node repl listening on 1337');

Figure 11.10 Sample Node REPL session

Use incoming socket (a
Duplex stream) as the input
and output stream for REPL

When REPL is exited,
end connection

318 CHAPTER 11 Debugging: Designing for introspection and resolving issues

Now if we fire up our REPL server, it’ll be listening on port 1337:

$ node repl-tcp.js
node repl listening on 1337

We can then connect to it with a TCP client like telnet or Netcat. You can do this in a
separate terminal window:

$ nc localhost 1337
> 10 + 20
30
> exit
$

That’s cool! But it doesn’t behave like our basic REPL (see figure 11.11) or the node
command:

■ The Tab key doesn’t autocomplete available properties and variables.
■ We don’t have any readline support, so the Up Arrow key doesn’t give us any

command history.
■ No color or bold output.

The reasons for this are twofold. First, the repl module can’t determine that we’re run-
ning a TTY (terminal) session, so it provides a minimal interface avoiding the use of
ANSI/VT100 escape codes for color and formatting. These escape codes end up being
noise to clients like Netcat. Second, our client isn’t behaving like a TTY. It isn’t sending
the proper input codes to get nice perks like autocomplete behavior or history.

 In order to change this behavior, we need to modify both the server and client.
First, to send proper ANSI/VT100 escape codes for things like color and bold output,
we need to add the terminal option to our REPL configuration:

var net = require('net');
var repl = require('repl');

net.createServer(function (socket) {
var r = repl.start({

Figure 11.11 Using Netcat against a REPL server

319TECHNIQUE 94 Inspecting a running program with a REPL

input: socket,
output: socket,
terminal: true

});
r.on('exit', function() {
socket.end();

});
}).listen(1337);

console.log('node repl listening on 1337');

Second, to get the input tab completion and readline, we need to create a REPL client
that can send the raw TTY input to the server. We can create that using Node:

var net = require('net');
var socket = net.connect(1337);

process.stdin.setRawMode(true);
process.stdin.pipe(socket);
socket.pipe(process.stdout);

socket.once('close', function () {
process.stdin.destroy();

});

Now we can start our REPL server with terminal support:

$ node repl-tcp-terminal.js
node repl listening on 1337

We can connect to the server with our REPL client in another terminal session:

$ node repl-client.js
> 10 + 20
30
> .exit
$

Now our REPL session behaves as if we were running the node or a basic REPL. We can
use autocomplete, access our command history, and get colored output. Sweet!

Inspecting a running process
We’ve discussed how to use the repl module to create connection points and use vari-
ous clients to access it. We did this to get you comfortable setting up REPL instances
on your applications so you can use them to inspect a running process. Now, let’s get
practical and instrument an existing application with a REPL server, and interact with
it using the REPL client we created.

Treat output as a TTY stream

Connect to the
REPL TCP server.

Treat stdin as a raw
TTY input stream.

This allows, for
example, the Tab key
and Up Arrow key to

behave as you’d
expect in a modern

terminal session.

Pipe input from
stdin to the socket.

Pipe output from the
socket to stdout.

When the connection
is terminated, destroy

the stdin stream,
allowing the process

to exit.

320 CHAPTER 11 Debugging: Designing for introspection and resolving issues

 First, let’s create a basic HTTP server:

var http = require('http');
var server = http.createServer();
server.on('request', function (req, res) {

res.end('Hello World');
});
server.listen(3000);
console.log('server listening on 3000');

This should look familiar. But let’s expose this server to our REPL server by adding the
following code:

var net = require('net');
var repl = require('repl');
net.createServer(function (socket) {

var r = repl.start({
input: socket,
output: socket,
terminal: true,
useGlobal: true

});
r.on('exit', function() { socket.end() });
r.context.server = server;

}).listen(1337);
console.log('repl listening on 1337');

A NOTE ABOUT USEGLOBAL When enabled, whenever you create a new variable
(like var a = 1), it will be put in the global context (global.a === 1). But a
now will also be accessible in functions run in a later turn in the event loop.

We exposed the server by setting a property on r.context. We can expose anything
we want to the REPL in order to interact with it. It’s important to note that we also can
override anything already existing in the context. This includes all the standard Node
global variables like global, process, or Buffer.

 Now that we have our server exposed, let’s see how we can inspect and debug our
HTTP server. First let’s fire up our HTTP and REPL servers:

$ node repl-app.js
server listening on 3000
repl listening on 1337

Now let’s use our REPL client to tap into the server:

$ node repl-client.js
>

We can tap into useful bits of information right away. For instance, we can see how
long our process has been running, or how its memory usage is:

> process.uptime()
115
> process.memoryUsage()

{ rss: 17399808,
heapTotal: 7195904,
heapUsed: 4146840 }

Allow scripts to be
executed in global context
versus a separate context

Expose our server
instance to REPL

Uptime in seconds

Memory in bytes

321TECHNIQUE 94 Inspecting a running program with a REPL

We also exposed the server object, and we can access that by just typing server:

> server
{ domain: null,

_events:
...
_connectionKey: '4:0.0.0.0:3000' }

Let’s see how many connections are currently active:

> server.connections
0

Clearly this would be more interesting in a production context, since we are the only
ones using the server and we haven’t made a connection yet! Let’s hit http://local-
host:3000 in our browser and inspect the connections again and see if they’ve
changed:

> server.connections
6

That works. Let’s instrument something more complex. Can you think of a way to start
tallying the number of requests coming in to our server using the REPL?

ADDING INSTRUMENTATION One powerful aspect of a REPL is the ability to add
instrumentation to help us understand behavior in our application as it’s hap-
pening. This is especially handy for tricky problems where restarting the
application loses our precious state and we have no idea how to duplicate the
issue except to wait for it to happen again.

Since our HTTP server is an EventEmitter, we can add another request handler that
will be called on every request to instrument it with the behavior we want using the
REPL:

> var numReqs = 0
undefined

> function trackReqs (req, res) {
..... numReqs++

..... }
undefined
> server.on('request', trackReqs)
{ domain: null,
_events:
...
_connectionKey: '4:0.0.0.0:3000' }

>

Now we’re tracking incoming requests. Let’s hit Refresh a few times on our browser
and see if it worked:

> numReqs
8

Excellent. Since we have access to the request objects, we can inspect any information
about requests available to us: IP addresses, headers, paths, and so on. In this example

Connections vary
on browser/client

Create variable to store
the number of requests

Create handler function
for incoming requests that
increments the request count

Add handler to
the request event

322 CHAPTER 11 Debugging: Designing for introspection and resolving issues

we exposed an HTTP server, but any objects can be put on the context where it makes
sense in your application. You may even consider writing a module exposing com-
monly used methods in the REPL.

 Some issues can’t be resolved at an application level and need deeper system intro-
spection. One way to gain deeper understanding is by tracing.

TECHNIQUE 95 Tracing system calls

Understanding how the underlying system calls work can really help you understand a
platform. For example, Python and Node both have functionality to perform DNS
lookups, but they go about it differently at a lower level. And if you’re wondering why
one is behaving differently than the other, tracing tools will show you that!

 At their core, tracing tools monitor underlying system calls (typically C function
names, arguments, and return values) that an application or multiple applications are
making, and do interesting things with the data (like logging or statistics).

 Tracing helps in production. If you have a process stuck at 100% and are unsure
why, a tracer can help expose the underlying state at the system level. For example,
you may discover in this instance that you exceeded the allowed open files for a pro-
cess, and all I/O attempts are being rejected, causing the problem. Since tracing tools
aren’t performance intrusive like a profiler, they can be valuable assets.

■ Problem
You want to understand what’s happening in your application at the system level.

■ Solution
Use tracing tools specific to the operating system to gain introspection.

■ Discussion
All the techniques we’ve discussed so far have been system-agnostic. This one is OS-
specific. There are a lot of different tools, but most are unique to an operating system.
For our example, we’ll use the Linux-specific tool called strace. Similar tools exists
for Mac OS X/Solaris (dtruss) and Windows (ProcessMonitor: http://technet
.microsoft.com/en-us/sysinternals/bb896645.aspx).

 A tracing program is essentially a dump of system calls as they happen in a process.
If you’re unfamiliar with the underlying OS, prepare to learn! We’ll walk through trac-
ing a simple application to see what’s happening at the OS level when we run it to
learn how to read trace logs.

 Let’s write an extremely simple program to trace:

console.log('hello world');

This seems innocent enough. To see what’s going on behind the scenes, let’s trace
this:

sudo strace -o trace.out node hello

You’ll see the program output “hello world” and exit as expected. But we also got a
dump of every system call in trace.out. Let’s examine that file.

http://technet.microsoft.com/en-us/sysinternals/bb896645.aspx
http://technet.microsoft.com/en-us/sysinternals/bb896645.aspx

323TECHNIQUE 95 Tracing system calls

 Right at the top we can see our first call, which makes sense. We’re executing
/usr/bin/node, passing it the arguments node and hello:

execve("/usr/bin/node", ["node", "hello"], [/* 24 vars */]) = 0

If you ever wondered why process.argv[0] is node and process.argv[1] is the path
to our Node program, now you can see how the underlying call is being made! The
strace output tells us the arguments passed and the return value.

 To find more information about what execve is (and any other system call), we can
just look at the man pages on the host if available (best option), or if not, look online:

man execve

MORE ON MAN COMMAND Manual pages also include error codes that are help-
ful to get more details on, for example, what ENOENT or EPERM mean on an
operating system. Many of these error codes can be found in the openman page.

Let’s examine more of this file. Many of the initial calls are loading the shared librar-
ies libuv needs. Then we get to our application:

getcwd("/home/wavded", 4096) = 13
...
stat("/home/wavded/hello", 0x7fff082fda08) = -1

ENOENT (No such file or directory)
stat("/home/wavded/hello.js",

{st_mode=S_IFREG|0664, st_size=27, ...}) = 0

We can see Node grabbing the current working directory and then looking up our file
to run. Note that we executed our application without the .js extension, so Node first
looks for a program called “hello” and doesn’t find it, and then looks for hello.js and is
successful. If we were to run it with the .js extension, you wouldn’t see the first stat call.

 Let’s look at the next interesting bit:

open("/home/wavded/hello.js", O_RDONLY) = 9
fstat(9, {st_mode=S_IFREG|0664, st_size=27, ...}) = 0
...
read(9, "console.log('hello world')\n", 27) = 27
close(9) = 0

Here we open the hello.js file in read-only mode and get assigned a file descriptor. File
descriptors are just integers assigned by the OS. But to understand the subsequent
calls, we should take note that 9 is the number assigned for hello.js until we see a sub-
sequent close call.

 After open, we then see an fstat to get the file’s size. Then we read the contents of
the file in the read line. The strace output also shows us the contents of the buffer we
used to store the file. We then close the file descriptor.

 A trace output file won’t show us any application code being run. We just see the
system effects of what’s being run. That is, we won’t see V8 parsing or executing our
console.log but we’ll see the underlying write out to stdout. Let’s look at that next:

write(1, "hello world\n", 12) = 12

324 CHAPTER 11 Debugging: Designing for introspection and resolving issues

Recall from chapter 6 that every process has three file descriptors automatically
assigned for stdin (0), stdout (1), and stderr (2). We can see that this write call uses
stdout (1) to write out hello world. We also see that console.log appends a newline
for us.

 Our program eventually exits on the last line of trace.out:

exit_group(0)

The zero (0) here represents the process exit code. In this case it’s successful. If we
were to exit with process.exit(1) or some other status, we’d see that number
reflected here.

Tracing a running process
So far we’ve used strace to start and trace a program till it exits. How about tapping
into a running process?

 Here we can just grab the PID for the process:

ps ax | grep node

The first number in the row is our PID:

32476 ? Ssl 0:08 /usr/bin/node long-running.js

Once we have our PID, we can run strace against it:

sudo strace -p 32476

All the currently running system calls will output to the console.
 This can be a great first line of defense when debugging live issues where CPU is

pegged. For example, if we’ve exceeded our ulimit for a process, this will typically
peg our CPU, since open system calls continually will fail. Running strace on the pro-
cess would quickly show a bunch of ENFILE errors occurring. And from the openman
page, we can see a nice entry for the error:

ENFILE The system limit on the total number of
open files has been reached.

LISTING OPEN FILES In this case, we can use another handy Linux tool called
lsof to get a list of open files for a process given a PID to further investigate
what we have open right now.

We can also get a CPU pegged at 100% and open up strace and see just the following
repeating over and over:

futex(0x7ffbe00008c8, FUTEX_WAKE_PRIVATE, 1) = 1

This, for the most part, is just event loop noise, and it’s likely that your application
code is stuck in an infinite loop somewhere. Tools like node --prof would help at this
point.

325Summary

About other operating system tools
The actual system calls we looked at will be different on other operating systems. For
example, you’ll see epoll calls being made on Linux that you won’t ever see on Mac
OS X because libuv uses kqueue for Mac. Although most OSes have POSIX methods
like open, the function signatures and error codes can vary. Get to understand the
machines you host and develop your Node applications on to make best use of the
tracing tools!

HOMEWORK! Make a simple HTTP server and trace it. Can you find out where
the port is being bound, where connections are being accepted, and where
responses are being written back to the client?

11.3 Summary
In this chapter we looked at debugging Node applications. First, we focused on error
handling and prevention:

■ How do you handle errors that your application generates?
■ How are you notified about crashes? Do you have domains set up or an

uncaughtException handler?
■ Are you using a lint tool to help prevent exceptions?

Then, we focused on debugging specific problems. We used various tools available in
Node and third-party modules. The big thing to take away is knowing the right tool
for the job, so when a problem arises, you can assess it and gain useful information:

■ Do you need to be able to set breakpoints, watch expressions, and step through
your code? Use the built-in debug command or node-inspector.

■ Do you need to see where your application is spending its time? Use the Node
built-in profiler (node --prof).

■ Is your application using more memory than expected? Take heap snapshots
and inspect the results.

■ Do you want to investigate a running process without pausing it or incurring a
performance penalty? Set up and use a REPL server.

■ Do you want to see what underlying system calls are being made? Use your oper-
ating system’s tracing tools.

In the next chapter we’ll dive into writing web applications with Node!

326

Node in production:
 Deploying

 applications safely

Once you’ve built and tested a Node application, you’ll want to release it. Popular
PaaS (platform as a service) providers like Heroku and Nodejitsu make deploy-
ment simple, but you can also deploy to private servers. Once your code is out
there, you’ll need to cope with unexpected errors, service outages, and bugs, and
monitor performance.

 This chapter shows you how to safely release and maintain Node programs. It
covers privately hosted servers that use Apache and nginx, WebSockets, horizontal
scaling, automated deployment, logging, and ways to boost performance.

This chapter covers
■ Deploying Node applications to your own server
■ Deploying Node applications to cloud providers
■ Managing packages for production
■ Logging
■ Scaling with proxies and cluster

327TECHNIQUE 96 Deploying Node applications to the cloud

12.1 Deployment
In this section you’ll learn how to deploy Node applications to popular cloud provid-
ers and your own private servers. It’s likely that you’ll only typically use one of these
approaches, depending on the requirements of your application or employer, but
being familiar with both is instructive. For example, the Git-based workflow employed
by Heroku has influenced how people deploy applications to servers they control, and
with a bit of knowledge you can set up a server without having to call for help from a
DevOps specialist.

 The first technique we cover is based on Windows Azure, Heroku, and Nodejitsu.
This is probably the easiest way to deploy web applications today, and cloud providers
have free plans that make it cheap and painless to share your work.

TECHNIQUE 96 Deploying Node applications to the cloud

This technique outlines how to use Node with PaaS providers, and has tips on how to
configure and maintain applications in production. The focus is on the practical
aspects of deployment and maintenance, rather than pricing or business models.

 You can try out Heroku and Azure for free, so follow along if you’ve ever wanted to
run a Node application in the cloud.

■ Problem
You’ve built a Node web application and want to run it on servers so people can use it.

■ Solution
Use a PaaS provider like Heroku or Nodejitsu.

■ Discussion
We’ll look at three options for cloud deployment: Nodejitsu, Heroku, and Windows
Azure. All of these services allow you to deploy Node web applications, but they all
handle things slightly differently. The methods for uploading an application and con-
figuring it vary, even though the fundamental concepts are the same.

 Nodejitsu is an interesting case because it’s dedicated to Node. On the other hand,
Windows Azure supports Microsoft’s software development tools, programming lan-
guages, and databases. Azure even has features beyond web application hosting, like
databases and Active Directory integration. Heroku draws on a rich community of
partners that offers add-ons, whereas Azure is more of a full-service offering.

 If you look in the source code provided with this book, you should find a small
Express application in production/inky. This is the application we used to research
this technique, and you can use it as a sample application to try each service provider.
Nodejitsu and Azure’s documentation includes examples based on Node’s http mod-
ule, but you really need something with a package.json to see how things work for typ-
ical Node applications.

 The first service provider we’ll look at is Nodejitsu (https://www.nodejitsu.com/).
Nodejitsu is based in New York, and has data centers in North America and Western
Europe. Nodejitsu was founded in 2010, and has funding from the Bloomberg Beta
fund.

https://www.nodejitsu.com/

328 CHAPTER 12 Node in production: Deploying applications safely

To get started with Nodejitsu, you’ll need to register an account. Go to Nodejitsu.com
and sign up. You can sign up without selecting a pricing plan if you intend to release
an open source project through Nodejitsu.

 Nodejitsu has a command-line client called jitsu. You can install it with npm
install -g jitsu. Once npm has finished, you’ll need to sign in—type jitsu login
and enter your username and password. This will save an API token to a file called
~/.jitsuconf, so your password won’t be stored locally. Figure 12.1 shows what this pro-
cess looks like in the terminal.

 To deploy an application, type jitsu deploy. The jitsu command will prompt
with questions about your application, and then set it up to run on a temporary sub-
domain. If you’re using an Express application, it’ll automatically set NODE_ENV to pro-
duction, but you can edit this setting along with other environmental variables in the
web interface. In fact, the web interface can do most of the things the jitsu com-
mand does, which means you don’t necessarily need a developer on hand to do basic
maintenance chores like restarting applications.

 Figure 12.2 shows a preview of Nodejitsu’s web interface, which is called WebOps. It
allows you to stop and start applications, manage environmental variables, roll back to
earlier versions of your application, and even stream logs in real time.

 Unsurprisingly Nodejitsu is heavily tailored toward Node applications, and the
deployment process is heavily influenced by npm. If you have a strong grasp of npm
and package.json files, and your projects are all Node applications, then you’ll feel at
home with Nodejitsu.

 Another PaaS solution that’s popular with Node developers is Heroku. Heroku
supports several programming languages and platforms, including Node, and was

Figure 12.1 The jitsu command-line client allows you to sign in.

https://www.nodejitsu.com/

329TECHNIQUE 96 Deploying Node applications to the cloud

founded in 2007. It has since been acquired by Salesforce.com, and uses a virtualized
solution based on Ubuntu servers. To use Heroku, you’ll need to sign up at heroku
.com. It’s easy to create a free account, and you can even run production applications
on the free tier. Essential features like domain aliases and SSL are paid, so it doesn’t
take many requirements to hit around $20 a month, but if you don’t mind using a
Heroku subdomain, you can keep things running for free.

 Once you’ve created an account, you’ll need to install the Heroku Toolbelt from
toolbelt.heroku.com. There are installers for Linux, Mac OS X, and Windows. Once
you’ve installed it, you’ll have a command-line client called heroku that can be used to
create and manage applications. Before you can use it, you’ll have to sign in; heroku
login can be used to do this, and functions in much the same way as Nodejitsu’s
jitsu command. You only need to log in once because it stores a token that will be
used for subsequent requests. Figure 12.3 shows what this should look like.

Figure 12.2 The WebOps management interface

Figure 12.3 Signing in with Heroku

http://www.salesforce.com/
https://www.heroku.com/
https://www.heroku.com/
https://toolbelt.heroku.com/

330 CHAPTER 12 Node in production: Deploying applications safely

The next step with a Heroku deploy is to prepare your repository. You’ll need to git
init and commit your project. If you’re using our code samples and have checked
them out of Git, then you should copy the specific project that you want to deploy out
of our working tree. The full steps are as follows:

1 git init
2 git add .
3 git commit -m 'Create new project'
4 heroku create
5 git push heroku master

The heroku create command sets up a remote repository called heroku, and the first
git push to it will trigger the creation of a temporary herokuapp.com subdomain.

 If your application can be started with npm start, it should just work. If not, you
might need to add a file called Procfile to your application that contains web: node
yourapp.js. This file lists the processes that your application needs to run—it could
include background workers as well.

 If you’re using an Express application that expects NODE_ENV to be set, then you’ll
need to do this manually with Heroku. The command is just heroku config:set
NODE_ENV=production, but notice that this is automatic with Nodejitsu.

 The last PaaS provider we’ll discuss is Windows Azure. Microsoft’s Azure platform
can be used entirely through the web interface, but there’s also a command-line inter-
face that you can install with npm install -g azure-cli. Figure 12.4 shows what the
command-line tool looks like.

Figure 12.4 The Azure CLI tool

331TECHNIQUE 96 Deploying Node applications to the cloud

Azure also has an SDK that you can download for Linux, Mac OS X, and Windows. The
downloads are available at www.windowsazure.com/en-us/downloads/.

 To start using Azure, you’ll need to sign in to www.windowsazure.com with a Micro-
soft account. This is the same account that you can use for other Microsoft services, so
if you already have an email account with Microsoft, you should be able to sign in.
Azure’s registration process has extra security steps: a credit card and phone number
are used to validate your account, so it’s a bit more tedious than Heroku or Nodejitsu.

 Once you’ve created your Windows Azure account, you’ll want to go to the Portal
page. Next go to Compute, Web Site, and then Quick Create. Just keep in mind that you’re
creating a “Web Site” and you should be fine—Microsoft supports a wide range of ser-
vices that are partly tailored to .NET development with their existing tools like Visual
Studio, so it can be bewildering for Mac and Unix developers.

 Once your application has been created, you’ll need to tie it to a source control
repository. Don’t worry, you can use GitHub! Before we go any further, check that
you’re looking at a page like the one in figure 12.5.

Figure 12.5 Azure’s web interface after creating a website

Cloud configuration
PaaS providers all seem to have their own approaches to application configuration.
You can, of course, keep configuration settings in your code, or JSON files, but there
are times when it’s useful to store them outside of your repository.

For example, we build open source web applications that we also run on Heroku, so
we keep our database passwords outside of our open source repository and use heroku
config:set instead.

www.windowsazure.com/en-us/downloads/
www.windowsazure.com/en-us/downloads/
www.windowsazure.com

332 CHAPTER 12 Node in production: Deploying applications safely

Click your application’s name, select Set up deployment from source control, and then look
for site URL on the right side. From here you’ll be able to choose from a huge range of
repositories and service providers, but we tested our application with GitHub. Azure
fetched the code and set up a Node application—it was the same Express code that we
used for Heroku (listings/production/inky), and worked the first time.

 Table 12.1 shows how to get and set configuration values on each of the cloud pro-
viders we’ve discussed here.

Although Azure’s registration requirements might seem less convenient than Heroku
and Nodejitsu, it does have several benefits: if you’re working with .NET, then you can
use your existing tools. Also, Microsoft’s documentation is excellent, and includes
guides on setup and deploying for Linux and Mac OS X (http://www.windowsazure
.com/en-us/documentation/articles/web-sites-nodejs-develop-deploy-mac/).

 Your own servers, rented servers, or cheap virtual hosts all have their own advantages.
If you want complete control over your server, or if your business already has its own serv-
ers or data centers, then read on to learn how to deploy Node to your own servers.

TECHNIQUE 97 Using Node with Apache and nginx

Deploying Node to private servers running Apache or nginx is entirely possible, and
recommended for certain situations. This technique demonstrates how to run a Node
program behind Apache and nginx.

■ Problem
You want to run a Node web application on your own server.

■ Solution
Use Apache or nginx proxying and a service supervisor like runit.

■ Discussion
While PaaS solutions are easy to use, there are times when you have to use dedicated
hardware, or virtual machines that you have full control over. Larger businesses often
have investments in their own data centers, so it doesn’t make sense to switch to an
external service provider.

 Virtualization has transformed web hosting. Linux virtual machines have been a
key solution for hosting web applications for several years, and services like Amazon
Elastic Compute Cloud make it easy to create and destroy services on demand.

Table 12.1 Setting environmental variables

Provider Set Remove List

Nodejitsu jitsu env set name value jitsu env delete name jitsu env list

Heroku heroku config:set
name=value

heroku config:unset
name

heroku config

Azure azure site appsetting
add name=value

azure site appsetting
delete name

azure site
appsetting list

http://www.windowsazure.com/en-us/documentation/articles/web-sites-nodejs-develop-deploy-mac/
http://www.windowsazure.com/en-us/documentation/articles/web-sites-nodejs-develop-deploy-mac/

333TECHNIQUE 97 Using Node with Apache and nginx

 It’s therefore likely that at some point you’ll be faced with deploying Node applica-
tions to servers that need configuration and maintenance. If you’re already experi-
enced with basic systems administration tasks, then you can reuse your existing skills
and software. Otherwise, you’ll have to become familiar with web server daemons and
the tools used to keep Node programs running and recovering from errors.

 This technique presents examples for Apache and nginx. They’re both web serv-
ers, but their configuration formats
are very different, and they’re built in
different ways. Figure 12.6 shows the
basic server architecture that we’ll
create in this section.

 It’s not actually necessary to run a
web server—there are ways to make
Node programs safely access port 80.
But we assume that you’re deploying
to a server that has existing websites.
Also, some people prefer to serve
static assets from Apache or nginx.

 The same technique is used for both
servers: proxying. The following listing
shows how to do this with Apache.

ProxyPass / http://localhost:3000/
LoadModule proxy_module /lib/apache2/modules/mod_proxy.so
LoadModule proxy_http_module /lib/apache2/modules/mod_proxy_http.so

The directives in listing 12.1 should be added to your Apache configuration file. To
find the right file, type apache2 -V on your server, and look for the HTTPD_ROOT and
SERVER_CONFIG_FILE values—joining them will give you the right path and file. It’s
likely that you won’t want to redirect all requests to your Node application, so you can
add the proxy settings to a VirtualHost block.

 With these three lines, requests to / will now be proxied to a process listening
on port 3000 B. In this case, the process is assumed to be a Node program that
you’ve run with node server.js or npm start, but it could technically be any HTTP
server. The LoadModule directives tell Apache to use the proxy C and HTTP proxy-
ing D modules.

 If you forget to start the Node process, or quit it, then Apache will return a 503
error. To avoid errors like this, you need a way to keep the Node process running, and
to also run it when the server boots. One way to do this is with runit (http://
smarden.org/runit/).

Listing 12.1 Proxying requests to a Node application with Apache

Proxy requests starting
at / to localhost:3000

B

Load
proxy

module C Load HTTP proxy module D

nginx: 80

Node: 3001 Node: 3002Node: 3000

HTTP request on port 80

Figure 12.6 A Node program running alongside
Apache or nginx

http://smarden.org/runit/
http://smarden.org/runit/

334 CHAPTER 12 Node in production: Deploying applications safely

 If you’re using Debian or Ubuntu, you can install runit with apt-get install
runit. Once it’s ready, create a shell script that can start your Node process. First, cre-
ate a directory for your project: sudo mkdir /etc/service/nodeapp. Next, create a file
that will be used for the script: sudo touch /etc/service/nodeapp/run. Then edit the
file to make it look like the next listing.

#!/bin/sh
export PATH=$PATH:/home/vagrant/.nvm/v0.10.26/bin
cd /home/vagrant/inky
exec npm start

Our server was using nvm (https://github.com/creationix/nvm) to manage the
installed versions of Node, so we added its location to $PATH B; otherwise the shell
couldn’t find where node and npm were installed. You may have to modify this based
on the output of which node, or remove it entirely. The last two lines C just change
the directory to the location of your Node project, and then start it with npm start.

 The application can be started with sudo sv start /etc/service/nodeapp and
stopped with sudo sv stop /etc/service/nodeapp. Once the Node process is run-
ning, you can test it by killing it, and then checking to see that it automatically gets
restarted by runit.

 Now that you know how Apache handles proxies, and how to keep a process run-
ning, let’s look at nginx. Nginx is often used as a web server, but it’s technically a
reverse proxy server that supports HTTP, HTTPS, and email. To make nginx proxy con-
nections to Node applications, you can use the Proxy module, which uses a
proxy_pass directive in a way similar to Apache.

 Listing 12.3 has the settings needed by nginx. Like Apache, you could also put the
server block in a virtual host file.

http {
server {
listen 80;

location / {
proxy_pass http://localhost:3000;
proxy_http_version 1.1;

}
}

}

If you have multiple applications on the same server, then you can use a different
port, but we’ve used 3000 here B. This example is basically the same as Apache—you
tell the server what location to proxy, and then the port. And of course, this example
could be combined with runit.

Listing 12.2 Running a program with runit

Listing 12.3 Proxying requests to a Node application with nginx

Set PATH so the shell
can find your Node
installationBChange directory to

location of your Node
projectC

This proxies to port 3000, so
you can change it to other ports
if you use multiple applications.

B

https://github.com/creationix/nvm

335TECHNIQUE 98 Safely running Node on port 80

 If you don’t want to run Apache or nginx, you can run Node web applications without
a web server. Read on to learn how to do this using firewall rules and other techniques.

TECHNIQUE 98 Safely running Node on port 80

You can still run Node without a web server daemon like Apache. To do this, you basi-
cally need to forward the external port 80 to an internal, unprivileged port. This tech-
nique presents some ways to do this in Linux.

■ Problem
You don’t want to use Apache or nginx.

■ Solution
Use firewall rules to redirect port 80 to another, unprivileged port.

■ Discussion
In most operating systems, binding to port 80 requires special privileges. That means
that if you try to use app.listen(80) instead of port 3000 as we’ve used in most of our
examples, you’ll see Error: listen EACCES. This happens because your current user
account doesn’t have permission to bind to port 80.

 You could get around this restriction by running sudo npm start, but this is dan-
gerous. Ideally you want your Node program to run as a nonroot user.

 In Linux, traffic can be redirected from port 80 to a higher port number by using
iptables. Linux uses iptables to manage firewall rules, so you just need a rule that
maps from port 80 to 3000:

iptables -t nat -I PREROUTING -p tcp --dport\
80 -j REDIRECT --to-port 3000

To make this change permanent, you’ll need to save the rules to a file that gets run
whenever the network interface is set up. The general approach is to save the rules to
a file, like /etc/iptables.up.rules, and then edit /etc/network/interfaces to use it:

auto eth0
iface eth0 inet dhcp

pre-up iptables-restore < /etc/iptables.up.rules
post-down iptables-restore < /etc/iptables.down.rules

This is highly dependent on your operating system; these rules are adapted from Debian
and Ubuntu’s documentation, but it may be different in other Linux distributions.

 One downside of this technique is that it maps traffic to any process that’s listening
to that port. An alternative solution is to grant the Node binary extra capabilities. You
can do this by installing libcap2.

 In Debian and Ubuntu, you can use sudo apt-get install libcap2-bin. Then
you just need to grant the Node binary the capabilities for accessing privileged ports:

sudo setcap cap_net_bind_service=+ep /usr/local/bin/node

You may need to change the path to Node—check the output of which node if you’re
not sure where it is. The downside of using capabilities for this is that now the node
binary can bind to all ports from 1–1024, so it’s not as specific as restricting it to port 80.

336 CHAPTER 12 Node in production: Deploying applications safely

 Once you’ve applied a capability to a binary, it will be fixed until the file changes.
That means that you’ll need to run this command again if you upgrade Node.

 Now that your application is running on a server, you’ll want to ensure that it runs
forever. There are many different ways to do this; the next technique outlines runit
and the forever module.

TECHNIQUE 99 Keeping Node processes running

Programs inevitably crash, and it’s unfortunate when this happens. What matters is how
well you handle failure—users should be informed, and programs should recover ele-
gantly. This technique is all about keeping Node programs running, no matter what.

■ Problem
Your program crashed in the middle of the night, and customers were unable to use
the service until you restarted it.

■ Solution
Use a process monitor to automatically restart the Node program.

■ Discussion
There are two main ways to keep a Node program running: service supervision or a
Node program that manages other Node programs. The first method is a generic,
operating system–specific technique. You’ve already seen runit in technique 97. Runit
supports service supervision, which means it detects when a process stops running and
tries to restart it.

 Another daemon manager is Upstart (http://upstart.ubuntu.com/). You may
have seen Upstart if you use Ubuntu. To use it, you’ll need a configuration file that
describes how the Node program is managed. Listing 12.4 contains an example that
you can modify for your server—it should be saved in /etc/init/nodeapp.conf, where
nodeapp is the name of your application.

#!upstart
description "ExampleApp"
author "alex"

env PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

respawn
start on runlevel [23]

script
export NODE_ENV=production
exec /usr/bin/node /apps/example/app.js 2>&1 >> /var/log/node.log

end script

This configuration file tells Upstart to respawn the application (http://upstart
.ubuntu.com/wiki/Stanzas#respawn) if it dies for any reason. It sets up a PATH B

Listing 12.4 Managing a Node program with Upstart

You can change the
PATH if it’s required
by your application.

B

This causes the
application to be started
on run levels 2 and 3.C

The command that
runs the application. D

http://upstart.ubuntu.com/
http://upstart.ubuntu.com/wiki/Stanzas#respawn
http://upstart.ubuntu.com/wiki/Stanzas#respawn

337TECHNIQUE 99 Keeping Node processes running

that’s similar to the one you’ll see in your terminal if you type echo $PATH. Then it
states the program should be run on run levels 2 and 3 C—run level 2 is usually when
networking daemons are started.

RUN LEVELS Unix systems handle run levels differently depending on the ven-
dor. The Linux Standard Base specification describes run level 2 as multi-user
mode, and 3 as multi-user mode with networking. In Debian, 2–5 are grouped
as multi-user mode with console logins and the display manager. However,
Ubuntu treats run level 2 as graphical multi-user with networking, so you
should check how your system implements run levels before using Upstart.

The Upstart script stanza allows you to include a short script, so this means you can
do things like set NODE_ENV to production. The application itself is launched with the
exec instruction. We’ve included some logging support by redirecting standard out
and standard error to a log file D.

 Upstart can be more work to set up than runit, but we’ve used it in production for
three years now without any issues. Both are easier to set up and maintain than tradi-
tional stop/start init scripts, but there’s another technique you can use: Node pro-
grams that monitor other Node programs.

 Node process managers work by using a small program that ensures another pro-
gram runs continuously. This program is simple and therefore less likely to crash than
a more complex web application. One of the most popular modules for this is forever
(https://www.npmjs.org/package/forever), which can be used as a command-line pro-
gram or programmatically.

 Most people use it through the command-line interface. The basic usage is
forever start app.js, where app.js is your web application. It has lots of options
beyond this, though: it can manage log files and even wrap your program so it
behaves like a daemon.

 To start your program as a daemon, use the following options:

forever start -l forever.log -o out.log -e err.log app.js

This will start app.js, creating some additional files: one to store the current PID of the
active process, a log file, and an error log file. Once the program is running, you can
stop it gracefully like this:

forever stop app.js

Forever can be used with any Node program, but it’s generally seen as a tool for keep-
ing web applications running for a long time. The command-line interface makes it
easy to use alongside other Unix programs.

 Deploying applications that use WebSockets can bring a set of unique require-
ments. It can be more difficult with PaaS providers, because they can kill requests that
last for more than a certain number of seconds. If you’re using WebSockets, look
through the next technique to make sure your setup will work in production.

https://www.npmjs.org/package/forever

338 CHAPTER 12 Node in production: Deploying applications safely

TECHNIQUE 100 Using WebSockets in production

Node is great for WebSockets—the same process can serve both standard HTTP
requests and the newer WebSocket protocol. But how exactly do you deploy programs
that use WebSockets in production? Read on to find out how to do this with web serv-
ers and cloud providers.

■ Problem
You want to use WebSockets in production.

■ Solution
Make sure the service provider or proxy you’re using supports HTTP Upgrade headers.

■ Discussion
WebSockets are amazing, but are still treated almost like second-class citizens by hosting
providers. Nodejitsu was the first PaaS provider to support WebSockets, and it uses node-
http-proxy (https://github.com/nodejitsu/node-http-proxy) to do this. Almost all
solutions involve a proxy. To understand why, you need to look at how WebSockets work.

 HTTP is essentially a stateless protocol, which means all interactions between a
server and a client can be modeled with requests and responses that hold all of the
required state. This level of encapsulation has led to the design of modern client/
server web applications.

 The downside of this is that the underlying protocol doesn’t support long-running
full-duplex connections. There’s a wide class of applications that are built on TCP con-
nections of this type; video streaming and conferencing, real-time messaging, and
games are prominent examples. As web browsers have evolved to support richer, more
sophisticated applications, we’re naturally left trying to simulate these types of applica-
tions using HTTP.

 The WebSocket protocol was developed to support long-lived TCP-like connec-
tions. It works by using a standard HTTP handshake where the client establishes
whether the server supports WebSockets. The mechanism for this is a new header
called Upgrade. As HTTP clients and servers are typically bombarded with a variety of
nonstandard headers, servers that don’t support Upgrade should be fine—the client
will just have to fall back to old-fashioned HTTP polling.

 Because servers have to handle WebSocket connections so differently, it makes sense
to effectively run two servers. In a Node program, we typically have an http.listen for
our standard HTTP requests, and another “internal” WebSocket server.

 In technique 97, you saw how to use nginx with Node. The example used proxies
to pass requests from nginx to your Node process, which meant the Node process
could bind to a different port to 80. By using the same technique, you can make nginx
support WebSockets. A typical nginx.conf would look like the next listing.

http {
server {
listen 80;

Listing 12.5 Adding WebSocket support to nginx

https://github.com/nodejitsu/node-http-proxy

339TECHNIQUE 100 Using WebSockets in production

server_name example.com;

location / {
proxy_pass http://localhost:3000;
proxy_http_version 1.1;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection 'upgrade';
proxy_set_header Host $host;
proxy_cache_bypass $http_upgrade;

}
}

}

Adding proxy_http_version 1.1 and proxy_set_header Upgrade B enables nginx
to filter WebSocket requests through to your Node process. This example will also skip
caching for WebSocket requests.

 Since we mentioned Nodejitsu supports WebSockets, what about Heroku? Well,
you currently need to enable it as an add-on, which means you need to run a heroku
command:

heroku labs:enable websockets

Heroku’s web servers usually kill requests that take longer than around 75 seconds,
but enabling this add-on means requests that originate with an Upgrade header
should keep running for as long as the network allows.

 There are times when you might not be able to use WebSockets easily. One exam-
ple is older versions of Apache, where the proxy module doesn’t support them. In
cases like this, it can be better to use a proxy server that runs before everything else.

 HAProxy (http://haproxy.1wt.eu/) is a flexible proxy server. The usage is similar
to nginx, and it’s also event-based, so it has been widely adopted in the Node commu-
nity. If you’re using an old version of Apache, you can proxy web requests to Apache
or Node, depending on various options like URL or headers.

 If you want to install HAProxy in Debian or Ubuntu, you can do so with sudo
apt-get install haproxy. Once it’s set up, you’ll need to edit /etc/default/haproxy
and set ENABLED=1—this is just because it ships with a default configuration, so it’s
disabled by default. Listing 12.6 is a sample configuration that’s capable of routing
requests to a Node web application that runs on port 3000, but will be accessible
using port 80 externally.

frontend http-in
mode http
bind *:80
timeout client 999s
default_backend node_backend

backend node_backend
mode http

Listing 12.6 Using HAProxy with a Node application

Support Upgrade
header

B

Allow WebSocket
connections a very

long time to live.

B

All HTTP requests will
be routed to your Node
application.

http://haproxy.1wt.eu/

340 CHAPTER 12 Node in production: Deploying applications safely

timeout server 86400000
timeout connect 5000
server io_test localhost:3000

This should work with WebSockets, and we’ve used a long timeout so HAProxy doesn’t
close WebSockets connections, which are typically long-lived B. If you run a Node
program that listens on port 3000, then after restarting HAProxy with sudo /etc/
init.d/haproxy restart, your application should be accessible on port 80.

 You can use table 12.2 to find the web server that’s right for your application.

Your HAProxy setup can be made aware of multiple “back ends” by naming them with
the backend instruction. In listing 12.7 we only have one—node_backend . It would be
possible to also run Apache, and route certain requests to it based on the domain name:

frontend http-in
mode http
bind *:80
acl static_assets hdr_end(host) -i static.manning.com

Table 12.2 Comparing server options

Server Features Best for

Apache ■ Fast asset serving

■ Works well with established web platforms
(PHP, Ruby)

■ Lots of modules for things like proxying,
URL rewriting

■ Virtual hosts

May already be on servers

nginx ■ Event-based architecture, very fast

■ Easy to configure

■ Proxy module works well with Node and
WebSockets

■ Virtual hosts

Hosting Node applications when you also
want to host static websites, but don’t yet
have Apache or a legacy server set up

HAProxy ■ Event-based and fast

■ Can route to other web servers on the
same machine

■ Works well with WebSockets.

Scaling up to a cluster for high-traffic
sites, or complex heterogeneous setups

Native
Node proxy

■ Reuse your Node programming knowledge

■ Flexible

Useful if you want to scale and have a
team with excellent Node skills

Which server is right for me?
This chapter doesn’t cover every server choice out there—we’ve mainly focused on
Apache and nginx for Unix servers. Even so, it can be difficult to pick between these
options. We’ve included table 12.2 so you can quickly compare each option.

341TECHNIQUE 100 Using WebSockets in production

backend static_assets
mode http
server www_static localhost:8080

This works well if you have an existing set of Apache virtual hosts—perhaps serving
things like static assets, blogs, and websites—and you want to add Node to the same
server. Apache can be set up to listen on a different port so HAProxy can sit in front of
it, and then route requests to Express on port 3000 and the existing Apache sites on
port 8080. Apache allows you to change the port by using the Listen 8080 directive.

 You can use the same acl option to route WebSockets based on URL. Let’s say
you’ve mounted your WebSocket server on /chat in your Node application. You could
have a specific instance of your server that just handles WebSockets, and route condi-
tionally using HAProxy by using path_beg. The following listing shows how this works.

frontend http-in
mode http
bind *:80
acl is_websocket hdr(Upgrade) -i WebSocket

acl is_websocket path_beg -i /chat

use_backend ws if is_websocket
default_backend node_backend

backend node_backend
mode http
server www_static localhost:3000

backend ws
timeout server 600s
server ws1 localhost:3001

HAProxy can match requests based on lots of parameters. Here we’ve used
hdr(Upgrade) -i WebSocket to test if an Upgrade header has been used B. As you’ve
already seen, that denotes a WebSocket handshake.

 By using path_beg and marking matching routes with acl is_websocket C, you
can now route requests based on the prefix expression if is_websocket.

 All of these HAProxy options can be combined to route requests to your Node
application, Apache server, and WebSocket-specific Node server. That means you can
run your WebSockets off an entirely different process, or even another internal web
server. HAProxy is a great choice for scaling up Node programs—you could run multi-
ple instances of your application on multiple servers.

 HAProxy provides a weight option that allows you to implement round-robin load
balancing by adding balance roundrobin to a backend.

 You can initially deploy your application without nginx or HAProxy in front of it, but
when you’re ready, you can scale up by using a proxy. If you don’t have performance

Listing 12.7 Using HAProxy with WebSockets

Check WebSocket
header

B

Check if path for
WebSockets was usedC

342 CHAPTER 12 Node in production: Deploying applications safely

issues right now, then it’s worth just being aware that proxies can do things like route
WebSockets to different servers and handle round-robin load balancing. If you already
have a server using Apache 2.2.x that isn’t compatible with proxying WebSockets, then
you can drop HAProxy in front of Apache.

 If you’re using HAProxy, you’ll still have to manage your Node processes with a
monitoring daemon like runit or Upstart, but it has proven to be an incredibly flexi-
ble solution.

 Another approach that we haven’t discussed yet is to put your Node applications
behind a lightweight Node program that acts as a proxy itself. This is actually used
behind the scenes by PaaS providers like Nodejitsu.

 Selecting the right server architecture is just the first step to successfully deploying
a Node application. You should also consider performance and scalability. The next
three techniques include advice on caching and running clusters of Node programs.

12.2 Caching and scaling
This section is mainly about running multiple copies of Node applications at once,
but we’ve also included a technique to give you details on caching. If you can make
the client do more work, then why not?

TECHNIQUE 101 HTTP caching

Even though Node is known for high-performance web applications, there are ways
you can speed things up. Caching is the major technique, and you should consider
caching before deploying your application. This technique introduces the concepts
behind HTTP caching.

■ Problem
You want to reduce how long it takes to make requests to your application.

■ Solution
Check to ensure that you’re using HTTP caching correctly.

■ Discussion
Modern web applications can be huge: image assets, fonts, CSS, JavaScript, and HTML
all add up to a formidable payload that’s spread across several HTTP requests. Even
with the best minimizers and compression, downloads can still run into megabytes. To
avoid requiring users to wait for every action they perform on your site, the best strat-
egy can be to remove the need to download anything at all.

 Browsers cache content locally, and can look at the cache to determine if a
resource needs to be downloaded. This process is controlled by HTTP cache headers and
conditional requests. In this technique we’ll introduce cache headers and explain
how they work, so when you watch your application serving responses in a debugging
tool like WebKit Inspector, you’ll know what caching headers to expect.

 The main two headers are Cache-Control and Expires. The Cache-Control
header allows the server to specify a directive that controls how a resource is cached.
The basic directives are as follows:

343TECHNIQUE 101 HTTP caching

■ public—Allow caching in the browser and any intermediate proxies between
the browser and server.

■ private—Only allow the browser to cache the resource.
■ no-store—Don’t cache the resource (but some clients still cache under certain

conditions).

For a full list of Cache-Control directives, refer to the Hypertext Transfer Protocol 1.1
specification (http://www.w3.org/Protocols/rfc2616/rfc2616.html).

 The Expires header tells the browser when to replace the local resource. The date
should be in the RFC 1123 format: Fri, 03 Apr 2014 19:06 BST. The HTTP/1.1 specifi-
cation notes that dates over a year shouldn’t be used, so don’t set dates too far into the
future because the behavior is undefined.

 These two headers allow the server to tell clients when a resource should be
cached. Most Node frameworks like Express will set these headers for you—the static
serving middleware that’s part of Connect, for example, will set maxAge to 0 to indi-
cate cache revalidation should occur. If you watch the Network console in your
browser’s debugging tools, you should see Express serving static assets with Cache-
Control: public, max-age=0, and a Last-Modified dates based on the file date.

 Connect’s static middleware, which is found in the send module, does this by using
stat.mtime.toUTCString to get the date of the last file modification. The browser will
make a standard HTTP GET request for the resource with two additional request headers:
If-Modified-Since and If-None-Match. Connect will then check If-Modified-Since
against the file modification date, and
respond with an HTTP 304, depending
on the modification date. A 304
response like this will have no body, so
the browser can conditionally use
local content instead of downloading
the resource again.

 Figure 12.7 shows a high-level
overview of HTTP caching, from the
browser’s perspective.

 Conditional caching is great for
large assets that may change, like
images, because it’s much cheaper to
make a GET request to find out if a
resource should be downloaded
again. This is known as a time-based
conditional request. There are also con-
tent-based conditional requests, where a
digest of the resource is used to see if
a resource has changed.

Request with
local cache

304 with empty body,
or 200 with document

New request

Local cached
resource

Conditional
request: content- or

time-based

Check
cache-control

Check expires

Figure 12.7 Browsers either use the local cache or
make a conditional request, based on the previous re-
quest’s headers.

http://www.w3.org/Protocols/rfc2616/rfc2616.html

344 CHAPTER 12 Node in production: Deploying applications safely

 Content-based conditional requests work using ETags. ETag is short for entity tag,
and allows servers to validate resources in a cache based on their content. Connect’s
static middleware generates ETags like this:

exports.etag = function(stat) {
return '"' + stat.size + '-' + Number(stat.mtime) + '"';

};

Now contrast this to how Express generates ETags for dynamic content—this is usually
content sent with res.send, like a JavaScript object or a string:

exports.etag = function(body){
return '"' + crc32.signed(body) + '"';

};

The first example uses the file modification time and size to create a hash. The second
uses a hashing function based on the content. Both techniques send the browser tags
that are based on the content, but they’ve been optimized for performance based on
the resource type.

 There’s pressure on developers of static servers to make them as fast as possible. If
you were to use Node’s built-in http module, you’d have to take all of these caching
headers into account, and then optimize things like ETag generation. That’s why it’s
advisable to use a module like Express—it’ll handle the details of the required headers
based on sensible default behavior, so you can focus on developing your application.

 Caching is an elegant way of improving performance because it effectively allows
you to reduce traffic by making clients do a bit more work. Another option is to use a
Node-based HTTP proxy to route between a cluster of processes or servers. Read on to
learn how to do this, or skip to technique 103 to see how to use Node’s cluster module
to manage multiple Node processes.

TECHNIQUE 102 Using a Node proxy for routing and scaling

Local development is simple because you generally run one Node application at a
time. But a production server can host multiple applications, and run the same appli-
cation on multiple CPU cores to improve performance. So far we’ve talked about web
and proxy servers, but this technique focuses on pure Node servers.

■ Problem
You want to use a pure Node solution to host multiple applications, or scale an
application.

■ Solution
Use a proxy server module like Nodejitsu’s http-proxy.

■ Discussion
This technique demonstrates how to use Node programs to route traffic. It’s similar to
the proxy server examples in technique 100, so you can reapply these ideas to
HAProxy or nginx. But there are times when it might be easier to express routing logic
in code rather than using settings files.

345TECHNIQUE 102 Using a Node proxy for routing and scaling

 Also, as you’ve seen before in this book, Node programs run as a single process,
which doesn’t usually take advantage of a modern server that may have multiple CPUs
and CPU cores. Therefore, you can use the techniques here to route traffic based on
your production needs, but also to run multiple instances of your application so it can
better take advantage of your server’s resources, reducing response latency and hope-
fully keeping your customers happy.

 Nodejitsu’s http-proxy (https://www.npmjs.org/package/http-proxy) is a light-
weight wrapper around Node’s built-in http core module that makes it easier to
define proxies with code. The basic usage should be familiar to you if you’ve followed
our chapter on Node web development. The following listing is a simple proxy that
redirects traffic to another port.

var httpProxy = require('http-proxy');
var proxy = httpProxy.createProxyServer({

target: 'http://localhost:3000'
});

proxy.on('error', function(err) {
console.error('Error:', err);

});

proxy.listen(9000);

This example redirects traffic to port 3000 by using http-proxy’s target option B.
This module is event-based, so errors can be handled by setting up an error listener
C. The proxy server itself is set to listen on port 9000 D, but we’ve just used that so
you can run it easily—port 80 would be used in production.

 The options passed to createProxyServer can define other routing logic. If ws:
true is set, then WebSockets will be routed separately. That means you can create a
proxy server that routes WebSockets to one application, and standard requests else-
where. Let’s look at that in a more detailed example. The next listing shows you how
to route WebSocket requests to a separate application.

var http = require('http');
var httpProxy = require('http-proxy');

var proxy = new httpProxy.createProxyServer({
target: 'http://localhost:3000'

});

var wsProxy = new httpProxy.createProxyServer({
target: 'http://localhost:3001'

});

var proxyServer = http.createServer(function(req, res) {

Listing 12.8 Redirecting traffic to another port with http-proxy

Listing 12.9 Routing WebSocket connections separately

Redirect traffic
to port 3000

B

Catch errors
and log them

C

Set this server to
listen on port 9000

D

Create another proxy
server for WebSockets

B

https://www.npmjs.org/package/http-proxy

346 CHAPTER 12 Node in production: Deploying applications safely

proxy.web(req, res);
});

proxyServer.on('upgrade', function(req, socket, head) {
wsProxy.ws(req, socket, head);

});

proxyServer.listen(9000);

This example creates two proxy servers: one for web requests and the other for Web-
Sockets B. The main web-facing server emits upgrade events when a WebSocket is ini-
tiated, and this is intercepted so requests can be routed elsewhere C.

 This technique can be extended to route traffic according to any rules you like—if
you can infer something from a request object, you can route traffic accordingly. The
same idea can also be used to map traffic to multiple machines. This allows you to cre-
ate a cluster of servers, which can help you scale up an application. The following list-
ing could be used to proxy to several servers.

var http = require('http');
var httpProxy = require('http-proxy');

var targets = [
{ target: 'http://localhost:3000' },
{ target: 'http://localhost:3001' },
{ target: 'http://localhost:3002' }

];

var proxies = targets.map(function(options, i) {
var proxy = new httpProxy.createProxyServer(options);
proxy.on('error', function(err) {
console.error('Proxy error:', err);
console.error('Server:', i);

});
return proxy;

});

var i = 0;
http.createServer(function(req, res) {

proxies[i].web(req, res);
i = (i + 1) % proxies.length;

}).listen(9000);

This example uses an array that contains the options for each proxy server, and then
creates an instance of proxy server for each one B. Then all you need to do is create a
standard HTTP server and map requests to each server C. This example uses a basic
round-robin implementation—after each request a counter is incremented, so the
next request will be mapped to a different server. You could easily take this example
and reconfigure it to map to any number of servers.

Listing 12.10 Scaling using multiple instances of a server

Listen for upgrade
event; then use
WebSocket proxy
instead of the standard
web request proxyC

Create a proxy for each
instance of application

B

Proxy requests
using round-robin

C

347TECHNIQUE 103 Scaling and resiliency with cluster

 Mapping requests like this can be useful on a single server with multiple CPUs and
CPU cores. If you run your application multiple times and set each instance to listen
on a different port, then your operating system should run each Node process on a
different CPU core. This example uses localhost, but you could use another server,
thereby clustering the application across several servers.

 In contrast to this technique’s use of additional servers for scaling, the next
technique uses Node’s built-in features to manage multiple copies of the same Node
program.

TECHNIQUE 103 Scaling and resiliency with cluster

JavaScript programs are considered single-threaded. Whether they actually use a single
thread or not is dependent on the platform, but conceptually they execute as a sin-
gle thread. That means you may have to do additional work to scale your application
to take advantage of multiple CPUs and cores.

 This technique demonstrates the core module cluster, and shows how it relates to
scalability, resiliency, and your Node applications.

■ Problem
You want to improve your application’s response time, or increase its resiliency.

■ Solution
Use the cluster module.

■ Discussion
In technique 102, we mentioned running multiple Node processes behind a proxy. In
this technique we’ll explain how this works purely on the Node side. You can use the
ideas in this technique with or without a proxy server to load balance. Either way, the
goal is the same: to make better use of available processor resources.

 Figure 12.8 shows a system with two CPUs with four cores each. A Node program is
running on the system, but only fully utilizing a single core.

 There are reasons why figure 12.8 isn’t entirely accurate. Depending on the operat-
ing system, the process might be moved around cores, and although it’s accurate to say
a Node program is a single process, it still uses several threads. Let’s say you start up an
Express application that uses a MySQL database, static file serving, user sessions, and so
on. Even though it will run as a single process, it’ll still have eight separate threads.

 We’re trained to think of Node
programs as single-threaded because
JavaScript platforms are conceptually
single-threaded, but behind the
scenes, Node’s libraries like libuv
will use threads to provide asynchro-
nous APIs. That gives us the event-
based programming style without
having to worry about the complexity
of threads.

CPU 0 CPU 1

Figure 12.8 A Node process running on a single core

348 CHAPTER 12 Node in production: Deploying applications safely

 If you’re deploying Node applica-
tions and want to get more perfor-
mance out of your multicore, multi-
CPU system, then you need to start
thinking more about how Node works
at this level. If you’re running a single
application on a multicore system, you
want something like the illustration in
figure 12.9.

 Here we’re running a Node pro-
gram on all but one core, the idea being that a core is left free for the system. You
can get the number of cores for a system with the os core module. On our system,
running require('os').cpus().length returns 4—that’s the number of cores we
have, rather than CPUs—Node’s API cpus method returns an array of objects that
represent each core:

[{ model: 'Intel(R) Core(TM) i7-4650U CPU @ 1.70GHz',
speed: 1700,
times:
{ user: 11299970, nice: 0, sys: 8459650, idle: 93736040, irq: 0 } },

{ model: 'Intel(R) Core(TM) i7-4650U CPU @ 1.70GHz',
speed: 1700,
times:
{ user: 5410120, nice: 0, sys: 2514770, idle: 105568320, irq: 0 } },

{ model: 'Intel(R) Core(TM) i7-4650U CPU @ 1.70GHz',
speed: 1700,
times:
{ user: 10825170, nice: 0, sys: 6760890, idle: 95907170, irq: 0 } },

{ model: 'Intel(R) Core(TM) i7-4650U CPU @ 1.70GHz',
speed: 1700,
times:
{ user: 5431950, nice: 0, sys: 2498340, idle: 105562910, irq: 0 } }]

With this information, we can automatically tailor an application to scale to the target
server. Next, we need a way of forking our application so it can run as multiple pro-
cesses. Let’s say you have an Express web application: how do you safely scale it up
without completely rewriting it? The main issue is communication: once you start run-
ning multiple instances of an application, how does it safely access shared resources
like databases? There are platform-agnostic solutions to this that would require a big
project rewrite—pub/sub servers, object brokers, distributed systems—but we’ll use
Node’s cluster module.

 The cluster module provides a way of running multiple worker processes that
share access to underlying file handles and sockets. That means you can wrap a Node
application with a master process that works workers. Workers don’t need access to
shared state if you’re doing things like accessing user sessions in a database; all the
workers will have access to the database connection, so you shouldn’t need to set up
any communication between workers.

CPU 0 CPU 1

Figure 12.9 Take advantage of more cores by run-
ning multiple processes.

349TECHNIQUE 103 Scaling and resiliency with cluster

 Listing 12.11 is a basic example of using clustering with an Express application.
We’ve just included the server.js file that loads the main Express application in app.js.
This is our preferred method of structuring Node web applications—the part that sets
up the server using .listen(port) is in a different file than the application itself. In
this case, separating the server and application has the additional benefit of making it
easier to add clustering to the project.

var app = require('./app');
var cluster = require('cluster');

if (cluster.isMaster) {
var totalWorkers = require('os').cpus().length - 1;

console.log('Running %d total workers', totalWorkers);

for (var i = 0; i < totalWorkers; i += 1) {
cluster.fork();

}
} else {

console.log('Worker PID:', process.pid);
app.listen(process.env.PORT || 3000);

}

The basic pattern is to load the cluster core module B, and then determine how many
cores should be used C. The cluster.isMaster allows the code to branch if this is the
first (or master) process, and then fork workers as needed with cluster.fork D.

 Each worker will rerun this code, so when a worker hits the else branch, the server
can run the code particular to the worker E. In this example workers start listening
for HTTP connections, thereby starting the Express application.

 There’s a full example that includes this code in this book’s code samples, which
can be found in production/inky-cluster.

 If you’re a Unix hacker, this should all look suspiciously familiar. The semantics of
fork() are well known to C programmers. The way it works is whenever the system
call fork() is used, the current process is cloned. Child processes have access to open
files, network connections, and data structures in memory. To avoid performance
issues, a system called copy on write is used. This allows the same memory locations to
be used until a write is attempted, at which point each forked process receives a copy
of the original. After the processes are forked, they’re isolated.

 There’s an additional step to properly dealing with clustered applications: worker
exit recovery. If one of your workers encounters an error and the process ends, then
you’ll want to restart it. The cool thing about this is any other active workers can still
serve requests, so clustering will not only improve request latency but also potentially
uptime as well. The next listing is a modification of listing 12.11, to recover from work-
ers exiting.

Listing 12.11 Clustering a Node web application

Load the cluster core module.B

Determine how many
processes should be
started.C

Fork the process to
create a worker.D

Workers will hit this
branch, and the PID
is displayed.E

350 CHAPTER 12 Node in production: Deploying applications safely

var app = require('./app');
var cluster = require('cluster');

if (cluster.isMaster) {
var totalWorkers = require('os').cpus().length - 1;

console.log('Running %d total workers', totalWorkers);

for (var i = 0; i < totalWorkers; i += 1) {
cluster.fork();

}

cluster.on('exit', function(worker) {
console.log('Worker %d died', worker.id);
cluster.fork();

});
} else {

console.log('Worker PID:', process.pid);
app.listen(process.env.PORT || 3000);

}

The cluster module is event-based, so the master can listen for events like exit B,
which denotes the worker died. The callback for this event gets a worker object, so
you can get a limited amount of information about the worker. After that all you need
to do is fork again C, and you’ll be back to the full complement of workers.

You can run this example with an Express application, and then use kill to force
workers to quit. The transcript of such a session should look something like this:

Running 3 total workers
Worker PID: 58733
Worker PID: 58732
Worker PID: 58734
Worker 1 died
Worker PID: 58737

Three workers were running until kill 58734 was issued, and then a new worker was
forked and 58737 started.

Listing 12.12 Recovering from untimely worker death

cluster module
is event-based

B

Fork again after
worker diesC

Recovering from a crash in the master process
You might be wondering what happens when the master process itself dies. Even
though the master should be kept simple to make this unlikely, a crash is still of course
possible. To minimize downtime, you should still manage your clustered applications
with a process manager like the forever module or Upstart. Both of these solutions
are explored in technique 99.

351TECHNIQUE 104 Package optimization

 Once you’ve got clustering set up, there’s one more thing to do: benchmark. We’ll
use ab (http://httpd.apache.org/docs/2.0/programs/ab.html), the Apache bench-
marking tool. It’s used like this:

ab -n 10000 -c 100 http://localhost:3000/

This makes 10,000 requests with 100 concurrent requests at any one time. Using three
workers on our system gave 260 requests per second, whereas a single process version
resulted in 171 requests per second. The cluster was definitely faster, but is this really
working as well as our round-robin example with HAProxy or nginx?

 The advantage of the cluster module is that you can script it with Node. That
means your developers should be able to understand it rather than having to learn
how HAProxy or nginx works for load balancing. Load balancing with an additional
proxy server doesn’t have the same kind of interprocess communication options that
cluster has—you can use process.send and cluster.workers[id].on('message',
fn) to communicate between workers.

 But proxies with dedicated load-balancing features have a wider choice of load-
balancing algorithms. Like all things, it would be wise to invest time in testing
HAProxy, nginx, and Node’s clustering module to see which works best for your appli-
cation and your team.

 Also, dedicated load-balancing servers can proxy requests to multiple servers—you
could technically proxy from a central server to multiple Node application servers,
each of which uses the cluster core module to take advantage of the server’s multi-
core CPU.

 With heterogeneous setups like this, you’ll need to keep track of what instances of
your application are doing. The next section is dedicated to maintaining production
Node programs.

12.3 Maintenance
No matter how solid your server architecture is, you’re still going to have to maintain
your production system. The techniques in this section are all about maintaining your
Node program; first, package optimization with npm.

TECHNIQUE 104 Package optimization

This technique is all about npm and how it can make deployments more efficient. If
you feel like your module folder might be getting a bit large, then read on for some
ideas on how to fix it.

■ Problem
Your application seems larger than expected when it’s released to production.

■ Solution
Try out some of npm’s maintenance features, like npm prune and npm shrinkwrap.

http://httpd.apache.org/docs/2.0/programs/ab.html

352 CHAPTER 12 Node in production: Deploying applications safely

■ Discussion
Heroku makes your application’s size clear when you deploy: each release displays a
slug size in megabytes, and the maximum size on Heroku is 300 MB. Slug size is closely
related to dependencies, so as your application grows and new dependencies are
added, you’ll notice that it can increase dramatically.

 Even if you’re not using Heroku, you should be aware of your application’s size. It
will impact how quickly you can release new code, and releasing new code should be
as fast as possible. When deployment is fast, then releasing bug fixes and new features
becomes less of a chore and less risky.

 Once you’ve gone through your dependencies in package.json and weeded out
any that aren’t necessary, there are some other tricks you can use to reduce your appli-
cation’s size. The npm prune command removes packages that are no longer listed in
your package.json, but it also applies to the dependencies themselves, so it can some-
times dramatically reduce your application’s storage footprint.

 You should also consider using npm prune --production to remove devDependen-
cies from production releases. We’ve found test frameworks in our production releases
that didn’t need to be there. If you have ./node_modules checked into git, then Heroku
will run npm prune for you, but it doesn’t currently run npm prune --production.

Another command you can use to potentially improve deployment is npm shrink-
wrap. This will create a file called npm-shrinkwrap.json that specifies the exact version
of each of your dependencies, but it doesn’t stop there—it continues recursively to
capture the version of each submodule as well. The npm-shrinkwrap.json file can be
checked into your repository, and npm will use it during deployment to get the exact
version of each package.

 shrinkwrap is also useful for collaboration, because it means people can duplicate
the modules you’ve had living on your computer during development. This helps
when someone joins a project after you’ve been working solo for a few months.

 Some PaaS providers have features for excluding files from deployment as well.
For example, Heroku can accept a .slugignore file, which works like .gitignore—you
could create one like this to ignore tests and local seed data:

Why check in ./node_modules?
It might be tempting to add ./node_modules to .gitignore, but don’t! When you’re
working on an application that will be deployed, then you should keep ./node
_modules in your repository. This will help other people to run your application, and
make it easier to reproduce your local setup that passes tests and everything else
on a production environment.

Do not do this for modules you release through npm. Open source libraries should
use npm to manage dependencies during installation.

353TECHNIQUE 105 Logging and logging services

/test
/seed-data
/docs

By taking advantage of npm’s built-in features, you can create solid and maintainable
packages, reduce deployment time, and improve deployment reliability.

 Even with a well-configured, scalable, and carefully deployed application, you’ll
still run into issues. When things go wrong, you need logs. Read on for techniques
when dealing with log files and logging services.

TECHNIQUE 105 Logging and logging services

When things break—not if, but when—you’ll need logs to uncover what happened.
On a typical server, logs are text files. But what about PaaS providers, like Heroku and
Nodejitsu? For these platforms you’ll need logging services.

■ Problem
You want to log messages from a Node application on your own server, or on a PaaS
provider.

■ Solution
Either redirect logs to files and use logrotate, or use a third-party logging service.

■ Discussion
In Unix, everything is a file, and that partly dictates the way systems administrators
and DevOps experts think about log files. Logs are just files: programs stream data
into them, and we stream data out. This kind of setup is convenient for those of us
that live in the command line—piping files through commands like grep, sed, and
awk makes light work of even gigabyte-sized logs.

 Therefore, whatever you do, you’ll want to correctly use console.log and
console.error. It also doesn’t hurt to be aware of err.stack—instances of Error in
Node get a stack property when they’re defined, which can be extremely helpful for
debugging problems in production. For more on writing logs, take a look at
technique 6 in chapter 2.

 The benefit of using console.error and console.log is that you can pipe out-
put to different locations. The following command will redirect data from standard
out (console.log) to application.log, and standard error (console.error) to
errors.log:

npm start 1> application.log 2> errors.log

All you need to remember is the greater-than symbol redirects output, and using a
number specifies the output stream: 1 is standard out, and 2 is standard error.

 After a while, your log files will get too large. Fortunately, modern Unix systems
usually come with a log rotation package. This will split files up over time and option-
ally compress them. The logrotate package can be installed in Debian or Ubuntu
with apt-get install logrotate. Once you’ve installed it, you’ll need a configuration

354 CHAPTER 12 Node in production: Deploying applications safely

file for each set of log files you want to rotate. The following listing shows an example
configuration that you can tailor for your application.

"/var/www/nodeapp/logs/application.log"
"/var/www/nodeapp/logs/application.err" {

daily
rotate 20
compress
copytruncate

}

After listing the log files you want to rotate, you can list the options you want to use.
logrotate has many options, and they’re documented in man logrotate. The first
one here, daily B, just states that we want to rotate files every day. The next line
makes logrotate keep 20 files; after that files will be removed C. The third option
will make sure old log files are compressed so they don’t use up too much space D.

 The fourth option, copytruncate E, is more important for an application that
uses simple standard I/O-based logging. It makes logrotate copy and then truncate
the current log file. That means that your application doesn’t need to close and re-
open standard out—it should just work without any special configuration.

 Using standard I/O and logrotate works well for a single server and a simple
application, but if you’re running an application in a cluster, you might find it difficult
to manage logging. There are Node modules that are dedicated to logging and pro-
vide cluster-specific options. Some people even prefer to use these modules because
they generate output in standard log file formats.

 Using the log4node module (https://github.com/bpaquet/log4node) is similar
to using console.log, but has features that make it easier for use in a cluster. It cre-
ates one log file for all workers, and listens for a USR2 signal to determine when to re-
open files. It supports configuration options, including log level and message prefix,
so you can keep logs quiet during tests or increase the verbosity for critical production
systems.

 winston (https://github.com/flatiron/winston) is a logging module that supports
multiple transports, including Cassandra, which allows you to cluster your log writes.
That means that if you have an application that writes millions of log entries an hour,
then you can use multiple servers to capture the logs in a more reliable manner.

 winston supports remote log services, including commercial ones like Papertrail.
Papertrail and Loggly (see figure 12.10) are commercial services that you can pipe
your logs to, typically using the syslogd protocol. They will also index logs, so search-
ing gigabytes of logs is extremely fast, depending on the query.

 A service like Loggly is absolutely critical for Heroku. Heroku only stores the last 5,000
log entries, which can be flooded off within minutes of running a typical application.
If you’ve deployed a Node application to Heroku that uses console.log, log4node, or
winston, then you’ll be able to redirect your logs just by enabling the add-on.

Listing 12.13 logrotate configuration

Run every
day

B

Keep 20 filesC
Compress

rotated files D Truncate current log fileE

https://github.com/bpaquet/log4node
https://github.com/flatiron/winston

355TECHNIQUE 105 Logging and logging services

With Heroku, Loggly can be configured by selecting a plan name and running heroku
addons:add Loggly:PlanName from your project’s directory. Typing heroku

addons:open loggly will open the Loggly web interface, but there’s also a link in
Heroku’s administration panel under Resources. Any logging you’ve done with
standard I/O should be sent straight to Loggly.

 If you’re using winston, then there are transports available for Loggly. One is
winston-loggly (https://github.com/indexzero/winston-loggly), which can be used
for easy access to Loggly with non-Heroku services, or your own private servers.

 Because Winston transports can be changed by using winston.add(winston
.transports.Loggly, options), you don’t need to do anything special to support
Loggly if you’re already using winston.

 There’s a standard for logging that you can use with your applications: The Syslog
Protocol (RFC 5424). Syslog message packets have a standard format, so you won’t usu-
ally generate them by hand. Modules like winston typically support syslog, so you can
use it with your Node application, but there are two main benefits to using it. The first
is that messages have standardized log levels, so filtering logs is easier. Some examples
include level 0, known as Emergency, and level 4, which is Warning. The second is that the

Figure 12.10 Loggly’s dashboard

https://github.com/indexzero/winston-loggly
https://github.com/indexzero/winston-loggly

356 CHAPTER 12 Node in production: Deploying applications safely

protocol defines how messages are sent over the network, which means you can make
your Node application talk to a syslog daemon that runs on a remote server.

 Some log services like Loggly and Splunk can act as syslog servers; or, you could
run your own daemon on dedicated hardware or a virtual machine. By using a stan-
dardized protocol like syslog, you can switch between log providers as your require-
ments change.

 That’s the last technique on Node-specific production concerns. The next section
outlines some additional issues relating to scaling and resiliency.

12.4 Further notes on scaling and resiliency
In this chapter we’ve demonstrated how to use proxies and the cluster module to
scale Node programs. One of the advantages we cited in cluster’s favor is easier inter-
process communication. If you’re running an application on separate servers, how can
Node processes communicate?

 One simple answer might be HTTP—you could build an internal REST API for com-
munication. You could even use WebSockets if messages need faster responses. When
we were faced with this problem, we used RabbitMQ (https://www.rabbitmq.com/).
This allowed instances of our Node application to message each other using a shared
message bus, thereby distributing work throughout a cluster.

 The project was a search engine that used Node programs to download and scrape
content. Work was classified into spidering, downloading, and scraping. Swarms of
Node processes would take work from queues, and then push new jobs back to queues
as well.

 There are several implementations of RabbitMQ clients on npm—we used amqplib
(https://www.npmjs.org/package/amqplib). There are also competitors to
RabbitMQ—zeromq (http://zeromq.org/) is a highly focused and simple alternative.

 Another option is to use a hosted publish/subscribe service. One example of this is
Pusher (http://pusher.com/), which uses WebSockets to help scale applications. The
advantage of this approach is that Pusher can message anything, including mobile cli-
ents. Rather than restricting messaging to your Node programs, you can create mes-
sage channels that web, mobile, and even desktop clients can subscribe to.

 Finally, if you’re using private servers, you’ll need to monitor resource usage.
StrongLoop (http://strongloop.com/) offers monitoring and clustering tools for
Node, and New Relic (New Relic) also now has Node-specific features. New Relic can
help you break down where time is being spent in a live application, so you can use it
to discover bottlenecks in database access, view rendering, and application logic.

 With service providers like Heroku, Nodejitsu, and Microsoft, and the tools pro-
vided by StrongLoop and New Relic, running Node software in production has rapidly
matured and become entirely feasible.

http://zeromq.org/
https://www.npmjs.org/package/amqplib
http://pusher.com/
http://strongloop.com/
https://www.rabbitmq.com/

357Summary

12.5 Summary
In this chapter you’ve seen how to run Node on PaaS providers, including Heroku,
Nodejitsu, and Windows Azure. You’ve also learned about the issues of running Node
on private servers: safely accessing port 80 (technique 98), and how WebSockets relate
to production requirements (technique 100).

 No matter how fast your code is, if your application is popular, then you may run
into performance issues. In our section on scaling, you’ve learned all about caching
(technique 101), proxies (technique 102), and scaling with cluster (technique 103).

 To keep your application running solidly, we’ve included maintenance-related
techniques on npm in production (technique 104) and logging (technique 105). Now
if anything goes wrong, you should have enough information to solve the problem.

 Now you should know how to build Node web applications and release them in a
maintainable and scalable state.

Part 3

Writing modules

As we dove deep into Node’s core libraries and looked into real-world rec-
ipes, we’ve been building a narrative that leads to the biggest part of the Node eco-
system: community-driven innovation through third-party module development.
As the core provides the Legos with which we build, and the recipes provide the
tooling and insight to build confidently, what we ultimately build is up to us!

 We have one last chapter that will take you through the ins and outs of build-
ing a module and contributing it back to the community.

361

Writing modules:
 Mastering what

 Node is all about

The Node package manager (npm) is arguably the best package manager any plat-
form has seen to date. npm at its core is a set of tools for installing, managing, and
creating Node modules. The barrier to entry is low and uncluttered with ceremony.
Things “just work” and work well. If you aren’t convinced yet, we hope this chapter
will encourage you to take another look.

 The subtitle for this chapter is “Mastering what Node is all about.” We chose this
because user-contributed modules make up the vast majority of the Node ecosystem. The

This chapter covers
■ Planning a module
■ Setting up a package.json file
■ Working with dependencies and semantic versioning
■ Adding executable scripts
■ Testing out a module
■ Publishing modules

362 CHAPTER 13 Writing modules: Mastering what Node is all about

core team decided early on that Node would have a small standard library, containing
just enough core functionality to build great modules upon. We knew understanding
this core functionality was paramount to building modules, so we saved this chapter
for the end. In Node, you may find 5 or 10 different implementations for a particular
protocol or client, and we’re OK with that because it allows experimentation to drive
innovation in the space.

 One thing we’ve learned through our experimentation is that smaller modules mat-
ter. Larger modules tend to be hard to maintain and test. Node enables smaller mod-
ules to be stuck together simply to solve more and more complex problems.

 Node’s require system (based on CommonJS; http://wiki.commonjs.org/wiki/
Modules/1.1) manages those dependencies in a way that avoids dependency hell. It’s
perfectly fine for modules to depend on different versions of the same module, as
shown in figure 13.1.

 In addition to standard dependencies, you can specify development and peer
dependencies (more on that later) and have npm keep those in check for you.

DEPENDENCY GRAPHS If you ever want to see a dependency graph for your
project, just type npm ls at the project root to get a listing.

Another difference that was decided early on in the history of npm was to manage
dependencies at a local level by default as popularized by the bundler Ruby gem. This
bundles modules inside your project (sitting in the node_modules folder), making
dependency hell a non-issue across multiple projects since there’s no globally shared
module state.

INSTALLING GLOBAL MODULES You can still install global modules if you want
with npm install -g module-name, which can be useful when you need a sys-
tem-wide executable, for instance.

A 1.0.0
My

dependencies

My app uses the latest
version of module C.

My dependencies use the version
of C they depend upon.

B 1.0.0 C 0.8.0

My app 1.0.0

A Node dependency graph

C 0.5.0 C 0.6.0

Figure 13.1 Node avoids dependency hell

http://wiki.commonjs.org/wiki/Modules/1.1
http://wiki.commonjs.org/wiki/Modules/1.1

363TECHNIQUE 106 Planning for our module

Hopefully we’ve whetted your appetite for exploring a range of module-authoring
techniques! In this chapter we’ll focus on a variety of techniques that center around

■ Effectively making the most of the package.json file
■ Using npm for various module-authoring tasks
■ Best practices for developing modules

Our techniques will follow a logical order from an empty project directory to a com-
pleted and published npm module. Although we tried to stuff as many concepts as
possible into one module, you may find your module may only need a handful of
these steps. When we can’t fit a concept into the module, we’ll focus on an isolated
use case to illustrate the point.

13.1 Brainstorming
What kind of API do we want to build? How should someone consume it? Does it have
a clear purpose? These are some of the questions we need to ask as we begin to write a
module. In this section we’ll walk through researching and proving out a module
idea. But first, let’s introduce a problem we want to solve, which will provide a context
as we progress.

13.1.1 A faster Fibonacci module

One of the most famous Node critiques (although arguably misguided) early on in its
history was “Node.js is Cancer” (http://pages.citebite.com/b2x0j8q1megb), where
the author argued that a CPU-bound task on a running web server was miserably han-
dled in Node’s single-threaded system.

 The implementation was a common recursive approach to calculating a Fibonacci
sequence (http://en.wikipedia.org/wiki/Fibonacci_number), which could be imple-
mented as follows:

function fibonacci (n) {
if (n === 0) return 0;
if (n === 1) return 1;
return fibonacci(n-1) + fibonacci(n-2);

}

This implementation is slow in V8, and since proper tail calls don’t yet exist in
JavaScript, it wouldn’t be able to calculate very high numbers due to a stack overflow.

 Let’s write a module to help rid the world of slow Fibonacci calculations in order
to learn about module development from start to finish.

TECHNIQUE 106 Planning for our module

So we want to start writing a module. How should we approach it? Is there anything we
can do before we even start writing a line of code? It turns out that planning ahead of
time can be extremely helpful and save pain down the road. Let’s take a peek on how
to do that well.

This line was added to the
original implementation, since
the original didn’t return a
proper sequence number for 0.

http://pages.citebite.com/b2x0j8q1megb
http://en.wikipedia.org/wiki/Fibonacci_number

364 CHAPTER 13 Writing modules: Mastering what Node is all about

■ Problem
You want to write a module. What steps should you take in planning?

■ Solution
Research what already exists, and ensure that your module does just one thing.

■ Discussion
It’s important to clearly articulate the purpose of your module. If you can’t boil it
down to one sentence, it may be doing too much. Here’s where an important aspect
of the Unix philosophy comes in: make each program do one thing well.

Surveying the landscape
First, it’s good to know what exists already. Has someone else implemented a solution
to my problem? Can I contribute there? How did others approach this? A great way to
do that is searching on npmjs.org or doing a search from the command line:

npm search fibonacci

Let’s look at some of the more interesting results:

fibonacci Calculates fibonacci numbers for one or endless iterations.…
=franklin 2013-05-01 1.2.3 fibonacci math bignum endless

fibonacci-async So, you want to benchmark node.js with fibonacci once…
=gottox 2012-10-29 0.0.2

fibonacci-native A C++ addon to compute the nth fibonacci number.
=avianflu 2012-03-21 0.0.0

Here we can see the names and descriptions of three different implementations. We
also see what version was released last and on what date. It looks like a couple are
older and have a lower version number, which may mean the API is in flux or still in
progress. But the top result looks pretty mature at version 1.2.3 and has been updated
most recently. Let’s get more information on that by running the following:

npm docs fibonacci

The npm docs command will load the module’s homepage if specified, or the npmjs
search result, which looks like figure 13.2.

 The npmjs result page helps give you an overall picture for a module. We can see
this module depends on the bignum module and was updated a year ago, and we can
view its readme to get a sense of the API.

 Although this module looks pretty good, let’s create a module as an experiment to
try out some other ideas for handling Fibonacci sequences. In our case, let’s create a
module where we’ll experiment with different implementations and benchmark our
results using straight JavaScript with no required bignum dependency.

If this is your first time running
npm search, it will take a while
to update the local cache before
you get any results.

https://www.npmjs.org/

365TECHNIQUE 106 Planning for our module

Embrace doing one thing well
A module should be simple and pluggable. In this case, let’s try to define our mod-
ule’s purpose in one phrase:

Calculates a Fibonacci number as quickly as possible with only JavaScript

That’s a pretty good start: it’s clear and succinct. When that concept doesn’t ring true
anymore, we’ve blown our scope, and it may be time to write another module that
extends this one rather than adding more to it. For this project, adding a web server
endpoint that returns the result of this function may be better served in a new module
that depends on this one.

 Of course, this isn’t a rigid requirement, but it helps us clarify the module’s pur-
pose and makes it clear for our end users. This statement will be great to add to our
package.json (which we’ll look at later) and to the top of our readme file.

 We’ll eventually need a module name, which isn’t vital at the start, but in order to
refer to it in future techniques, let’s call ours fastfib. Go ahead and make a fastfib
directory that will serve as our project directory:

mkdir fastfib && cd fastfib

Full
description

Installation

Recent
download

activity

Package
information

Module
readme

Figure 13.2 npmjs.com package details page

366 CHAPTER 13 Writing modules: Mastering what Node is all about

Now that we’ve defined our “one thing” we want our module to do and have our bare
project directory, let’s prove out our module idea in the next technique to see if it will
actually work.

TECHNIQUE 107 Proving our module idea

So we have a focus now; what next? Time to prove our idea. This is the step where we
think about the API surface of our module. Is it usable? Does it accomplish its pur-
pose? Let’s look at this next.

■ Problem
What should you code first when proving out your module idea?

■ Solution
Look at the API surface through TDD.

■ Discussion
It’s important to know how you want your module to function. In fastfib, we’ll calcu-
late a Fibonacci sequence synchronously. What would be the simplest and easiest-to-use
API we can think of?

fastfib(3) // => 2

Right, just a simple function call that returns the result.
 When building an asynchronous API, it’s recommended to use the Node callback

signature, as it will work well with pretty much any control flow library. If our module
were asynchronous, it would look like this:

fastfib(3, function (err, result) {
console.log(result); // => 2

});

We have our synchronous API. In the beginning of this chapter, we showed you an
implementation that we wanted to improve on. Since we want a baseline to compare
other implementations, let’s bring that recursive implementation into our project by
creating a lib folder with a file called recurse.js with the following content:

module.exports = recurse;

function recurse (n) {
if (n === 0) return 0;
if (n === 1) return 1;
return recurse(n-1) + recurse(n-2);

}

Defining an entry point
Every module has an entry point: the object/function/constructor that we get when it’s
required elsewhere using the require keyword. Since we know that we’ll be trying dif-
ferent implementations inside our lib directory, we don’t want lib/recurse.js to be the
entry point, as it may change.

Exporting a single function
to match our API design

367TECHNIQUE 107 Proving our module idea

 Usually index.js in the project root makes the most sense as an entry point. Many
times it makes sense to have the entry point be minimal in nature and just tie together
the parts needed to provide the API to the end user. Let’s create that file now:

module.exports = require('./lib/recurse');

Now when a consumer of the module does a require('fastfib'), they will get this
file and in turn get our recursive implementation. We can then just switch this file
whenever we need to change the exposed implementation.

Testing our implementation
Now that we have our first implementation of fastfib, let’s ensure that we actually
have a legit Fibonacci implementation. For that, let’s make a folder called test with a
single index.js file inside:

var assert = require('assert');
var fastfib = require ('../');

assert.equal(fastfib(0), 0);
assert.equal(fastfib(1), 1);
assert.equal(fastfib(2), 1);
assert.equal(fastfib(3), 2);
assert.equal(fastfib(4), 3);
assert.equal(fastfib(5), 5);
assert.equal(fastfib(6), 8);
assert.equal(fastfib(7), 13);
assert.equal(fastfib(8), 21);
assert.equal(fastfib(9), 34);
assert.equal(fastfib(10), 55);
assert.equal(fastfib(11), 89);
assert.equal(fastfib(12), 144);

// if we get this far we can assume we are on the right track

Now we can run our test suite to see if we’re on track:

node test

We didn’t get any errors thrown, so it looks like we’re at least accurate in our
implementation.

Benchmarking our implementation
Now that we have a well-defined API and tests around our implementation of fastfib,
how do we determine how fast it is? For this we’ll use a reliable JavaScript benchmark-
ing tool behind the jsperf.com project called Benchmark.js (http://benchmarkjs
.com/). Let’s include it in our project:

npm install benchmark

Let’s create another folder called benchmark and add an index.js file inside of it with
the following code:

var assert = require('assert');
var recurse = require('../lib/recurse');
var suite = new (require('benchmark')).Suite;

Include our recursive
implementation to test.Set up a new

benchmark suite.

http://benchmarkjs.com/
http://benchmarkjs.com/
http://jsperf.com/

368 CHAPTER 13 Writing modules: Mastering what Node is all about

suite
.add('recurse', function () { recurse(20); })
.on('complete', function () {
console.log('results: ') ;
this.forEach(function (result) {

console.log(result.name, result.count, result.times.elapsed);
});
assert.equal(

this.filter('fastest').pluck('name')[0],
'recurse',
'expect recurse to be the fastest'

);
})
.run();

Let’s run our benchmark now from the root module directory:

$ node benchmark
results:
recurse 392 5.491

Looks like we were able to calculate recurse(20) 392 times in ~5.5 seconds. Let’s see
if we can improve on that. The original recursive implementation wasn’t tail call opti-
mized, so we should be able to get a boost there. Let’s add another implementation to
the lib folder called tail.js with the following content:

module.exports = tail;

function tail (n) { return fib(n, 0, 1); }
function fib (n, current, next) {

if (n === 0) return current;
return fib(n -?1, next, current + next);

}

Now, add the test to our benchmark/index.js file and see if we did any better by add-
ing the implementation to the top of the file:

var recurse = require('../lib/recurse');
var tail = require('../lib/tail');

.add('recurse', function () { recurse(20); })
.add('tail', function () { tail(20); })

Add a test for the recurse
function, calculating the
20th number in the
Fibonacci sequence.

After the tests
complete, aggregate

the results.

Output the test name,
with the amount of

iterations it was able to
do in the elapsed time.

Assert that recurse
was the fastest

implementation; given
it’s the only

implementation so far,
that should be easy!

In order to expose the
same API as recurse, we
add this function to set
up our default values.

This recursive
fibonacci function

takes the next index
n, the current

sequence number,
and the next

sequence number.

If we’ve reached the
end, return the current

sequence number.
Calculate the next call. This is in tail

position because the calculations
happen before the recursive

function call and therefore are able
to be optimized by the compiler.

Require tail
implementation
after the recurse
require

Add tail test after
the recurse test

369TECHNIQUE 107 Proving our module idea

Let’s see how we did:

$ node benchmark
results:
recurse 391 5.501
tail 269702 5.469

assert.js:92
throw new assert.AssertionError({
^

AssertionError: expect recurse to be the fastest

Wow! Tail position really helped speed up our Fibonacci calculation. So let’s switch
that to be our default implementation in our main index.js file:

module.exports = require('lib/tail');

And make sure our tests pass:

node test

No errors; it looks like we’re still good. As noted earlier, a proper tail call implementa-
tion will still blow our stack when it gets too large, due to it not being supported yet in
JavaScript. So let’s try one more implementation and see if we can get any better. To
avoid a stack overflow on larger sequences of numbers, let’s make an iterative imple-
mentation and create it at lib/iter.js:

module.exports = iter;

function iter (n) {
var current = 0, next;
for (var i = 0; i < n; i++) {

swap = current, current = next;
next = swap + next;

}
return current;

}

Let’s add this implementation to the benchmark/index.js file:

var tail = require('../lib/tail');
var iter = require('../lib/iter');

.add('tail', function () { tail(20) })
.add('iter', function () { iter(20) })

Let’s see how we did:

$ node benchmark
results:
recurse 392 5.456
tail 266836 5.455
iter 1109532 5.474

Putting our recursive
function into tail position
led to a 689x speedup!

Our assertion failed, as
recurse is no longer the
fastest implementation.

Set up
current and

next defaults

Iterate through index n,
swapping next and current
values and incrementing
the next value

Return final current value

Require iterative
implementation after
the tail require

Add iterative test
after the tail test

370 CHAPTER 13 Writing modules: Mastering what Node is all about

An iterative approach turns out to be 4x faster than the tail version, and 2830x faster
than the original function. Looks like we have a fastfib indeed, and have proven our
implementation. Let’s update our benchmark/index.js file to assert that iter should
be the fastest now:

assert.equal(
this.filter('fastest').pluck('name')[0],
'iter',
'expect iter to be the fastest'

);

Then update our main index.js to point to our fastest version:

module.exports = require('./lib/iter');

And test that our implementation is still correct:

node test

No errors still, so we’re good! If we later find that V8 optimizes tail call flows to be
even faster than our iterative approach, our benchmark test will fail and we can switch
implementations. Let’s review our overall module structure at this point:

fastfib
benchmark

index.js
index.js
lib

iter.js
recurse.js
tail.js

node_modules
benchmark

test
index.js

Looks like we’ve proved our idea. What’s important to take away is to experiment! Try
different implementations! You likely won’t get it right initially, so take this time to
experiment until you’re satisfied. In this particular technique, we tried three different
implementations until we landed one.

 Time to look at the next step in module development: setting up a package.json
file.

13.2 Building out the package.json file
Now we have an idea we like and we’ve proven that our idea does what we intend it to
do, we’ll turn to describing that module though a package.json file.

TECHNIQUE 108 Setting up a package.json file

A package.json is the central file for managing core data about your module, common
scripts, and dependencies. Whether you ultimately publish your module or simply use
it to manage your internal projects, setting up a package.json will help drive your

Our benchmark suiteOur module
entry point

Our implementations

Our installed
dependencies

Our tests

371TECHNIQUE 108 Setting up a package.json file

development. In this technique we’ll talk about how to get a package.json set up and
how to populate your package json using npm.

■ Problem
You need to create a package.json file.

■ Solution
Use the built-in npm tools.

■ Discussion
The npm init command provides a nice step-by-step interface for setting up a pack-
age.json. Let’s run this command on our fastfib project directory:

$ npm init

name: (fastfib) fastfib

version: (0.0.0) 0.1.0

description: Calculates a Fibonacci number as fast as possible

 with only JavaScript.

entry point: (index.js)

test command: node test &&
 node benchmark

git repository: git://github.com/wavded/fastfib.git

keywords: fibonacci fast

author: Marc Harter <wavded@gmail.com> (http://wavded.com)

license: (ISC) MIT

PACKAGE OPTIONS For extensive detail on each package option, view the offi-
cial documentation (https://www.npmjs.org/doc/json.html) by running npm
help json.

Running npm init gets even simpler when you set up your user config ($HOME/
.npmrc) to prepopulate the values for you. Here are all the options you can set:

npm config set init.author.name "Marc Harter"
npm config set init.author.email "wavded@gmail.com"
npm config set init.author.url "http://wavded.com"
npm config set init.license "MIT"

With these options, npm init won’t ask you for an author, but instead autopopulate
the values. It will also default the license to MIT.

A name for your package.
This is required to publish.

Since our project folder
was called fastfib, this is

defaulted to fastfib for us.

The version of your package. This
is also required and it is highly
recommended to utilize semantic
versioning (semver). We’ll look
more at semver later. For now
we’ll set the version at 0.1.0.

A longer description
for your package.
Here we use our

succinct one-liner to
describe the package.

The entry point
to your module,

loaded first when
your package is

required.

Test command to run.
This command will be
set up to be executed

with npm test. Since our
module is considered
fully tested when it’s
fast and correct, we
 run both node test

 and node benchmark.

The location of the Git repository
where your code is hosted. If you’ve

already done a git init and git remote
add, this will be autopopulated for you.

These are search keywords

This is you! Use the
format: [Full Name]

<[Email]> ([Website])!This is type of licensing for the
 software, defaults to ISC license: http://
en.wikipedia.org/wiki/ISC_license. If you

need help deciding on a license,
 check out http://choosealicense.com/.

https://www.npmjs.org/doc/json.html
http://en.wikipedia.org/wiki/ISC_license
http://en.wikipedia.org/wiki/ISC_license
http://en.wikipedia.org/wiki/ISC_license
http://choosealicense.com/

372 CHAPTER 13 Writing modules: Mastering what Node is all about

A NOTE ABOUT EXISTING MODULES If you already have modules that you
installed prior to setting up your package.json file, npm init is smart enough
to add them to package.json with the correct versions!

Once you’ve finished initializing, you’ll have a nice package.json file in your directory
that looks something like this:

{
"name": "fastfib",
"version": "0.1.0",
"description": "Calculates a Fibonacci number as fast

as possible with only JavaScript.",
"main": "index.js",
"bin": {
"fastfib": "index.js"

},
"directories": {
"test": "test"

},
"dependencies": {

"benchmark": "^1.0.0"
},
"devDependencies": {},
"scripts": {
"test": "node test && node benchmark"

},
"repository": {
"type": "git",
"url": "git://github.com/wavded/fastfib.git"

},
"keywords": [
"fibonacci",
"fast"

],
"author": "Marc Harter <wavded@gmail.com> (http://wavded.com)",
"license": "MIT",
"bugs": {

"url": "https://github.com/wavded/fastfib/issues"
},
"homepage": "https://github.com/wavded/fastfib"

}

Now that we have a good start on a package.json file, we can add more properties by
either directly modifying the JSON file or using other npm commands that modify dif-
ferent parts of the file for you. The npm init command just scratches the surface on what
we can do with a package.json file. We’ll look at more things we can add as we continue.

 In order to look at more package.json configuration and other aspects of module
development, let’s head to the next technique.

Dependencies your module
depends upon. Note how
npm init discovered that
we already were using the
benchmark module and
added it for us.

Additional dependencies
only used for development.
These are by default not
included when someone
installs your module.

Used by npm bugs to launch
a browser at the location

where issues can be
reported. Since we’re using

a GitHub repository, npm
init autopopulated this

property for us.

The location of the project’s homepage.
Defaulted to GitHub since we entered a
GitHub repository URL. This is used by

npm docs to launch a browser at the
project’s homepage.

373TECHNIQUE 109 Working with dependencies

TECHNIQUE 109 Working with dependencies

Node has over 80,000 published modules on npm. In our fastfib module, we’ve
already tapped into one of those: the benchmark module. Having dependencies well
defined in our package.json file helps maintain the integrity of our module when it’s
installed and worked on by ourselves and others. A package.json file tells npm what to
fetch and at what version to fetch our dependencies when using npm install. Failing to
include dependencies inside our package.json file will result in errors.

■ Problem
How do you effectively manage dependencies?

■ Solution
Keep the package.json file in sync with your module requirements using npm.

■ Discussion
The package.json file allows you to define four types of dependency objects, shown in
figure 13.3.

 The types of dependencies are as listed here:

■ dependencies—Required for your module to function properly
■ devDependencies—Required solely for development, like testing, bench-

marking, and server reloading tools
■ optionalDependencies—Not required for your module to work, but may

enhance the functionality in some way
■ peerDependencies—Requires another module to be installed in order to run

properly

My module

dependencies Dependencies required for my module to work

optionalDependencies Dependencies my module will use if available

peerDependencies Dependencies I require the end user to already have installed

devDependencies Dependencies only required for development tasks (like testing)

Figure 13.3 The different types of dependencies

374 CHAPTER 13 Writing modules: Mastering what Node is all about

Let’s look at these in turn with our project and talk about adding and removing within
your package.json file as we go.

Main and development dependencies
Currently the package.json file that was generated with npm init has benchmark listed
in the dependencies object. If we look at our list, that doesn’t hold true for a couple rea-
sons. The first is because our main entry point (index.js) will never require benchmark
in its require chain, so an end user has no need for it:

index.js requires ./lib/iter.js which requires nothing

The second reason is because benchmarking is typically a development-only thing for
those who work on our module. To remove that out of our dependencies, we can use
npm remove and have it removed from our package.json file using the --save flag:

$ npm remove benchmark --save
unbuild benchmark@1.0.0

Then we can install it into our development dependencies using npm install with the
--save-dev flag:

$ npm install benchmark --save-dev
benchmark@1.0.0 node_modules/benchmark

Now if we look at our package.json file, we’ll see that benchmark is now a part of the
devDependencies object:

"devDependencies": {
"benchmark": "^1.0.0"

},

This was somewhat of a brute force way to show you the commands to remove and
install with npm. We could have also just moved benchmark inside the package.json
file in our text editor, avoiding the uninstall and re-install.

 Now we have benchmark in the right spot, so it won’t be installed when others want
to use our module.

Optional dependencies
Optional dependencies aren’t required for a project to run, but they will be installed
along with the regular dependencies. The only difference from normal dependencies
is that if an optional dependency fails to install, it will be ignored and the module
should continue to install properly.

 This typically plays out for modules that can get a boost by including a native add-
on. For example, hiredis is a native C add-on to boost performance for the redis
module. But it can’t be installed everywhere, so it attempts to install, but if it fails, the
redis module falls back to a JavaScript implementation. A typical pattern to check for
the dependency in the parent module is this:

try {
var client = require('hiredis'); // super fast!

}
Attempt to load the
optional dependency.

375TECHNIQUE 109 Working with dependencies

catch (e) {
var client = require('./lib/redis'); // fast

}

module.exports = client;

Let’s say we wanted to support a larger set of sequence numbers for our fastfib. We
could add the bignum native add-on to enable that functionality by running

npm install bignum --save-optional

Then we could optionally use that iteration instead if we detect the bignum module
was able to be installed in our index.js file:

try {
var fastfib = require('./lib/bigiter');

}
catch (er) {

var fastfib = require('./lib/iter');
}

module.exports = fastfib;

Unfortunately, the bignum implementation would be much slower, as it can’t be opti-
mized by the V8 compiler. We’d be violating our goal of having the fastest Fibonacci if
we included that optional dependency and implementation, so we’ll scratch it out for
now. But this illustrates how you may want to use optional dependencies (for example,
if you wanted to support the highest possible Fibonacci numbers as your goal).

HOMEWORK The code and tests were intentionally left out for the bignum
implementation; try implementing a version that uses bignum and see what
performance benchmarks you get from our test suite.

Peer dependencies
Peer dependencies (http://blog.nodejs.org/2013/02/07/peer-dependencies/) are
the newest to the dependency scene. Peer dependencies say to someone installing
your module: I expect this module to exist in your project and to be at this version in order for
my module to work. The most common type of this dependency is a plugin.

 Some popular modules that have plugins are

■ Grunt
■ Connect
■ winston
■ Mongoose

Let’s say we really wanted to add a Connect middleware component that calculates a
Fibonacci number on each request; who wouldn’t, right? In order for that to work,

If that fails, continue
without the dependency,
perhaps shimming with
another implementation.

Expose a common interface entry point
anyone can use regardless of whether

they got the optional dependency.

Try to include bignum
implementation of fastfib.

If that fails, include iterative
implementation.

http://blog.nodejs.org/2013/02/07/peer-dependencies/

376 CHAPTER 13 Writing modules: Mastering what Node is all about

we need to make sure the API we write will work against the right version of Connect.
For example, we may trust that for Connect 2 we can reliably say our module will
work, but we can’t speak for Connect 1 or 3. To do this we can add the following to
our package.json file:

"peerDependencies": {
"connect": "2.x"

}

In this technique we looked at the four types of dependencies you can define in your
package.json file. If you’re wondering what ^1.0.0 or 2.x means, we’ll cover that in
depth in the next technique, but let’s first talk about updating existing dependencies.

Keeping dependencies up to date
Keeping a module healthy also means keeping your dependencies up to date. Thank-
fully there are tools to help with that. One built-in tool is npm outdated, which will
strictly match your package.json file as well as all the package.json files in your depen-
dencies, to see if any newer versions match.

 Let’s purposely change our package.json file to make the benchmark module out of
date, since npm install gave us the latest version:

"devDependencies": {
"benchmark": "^0.2.0"

},

Then let’s run npm outdated and see what we get:

$ npm outdated
Package Current Wanted Latest Location
benchmark 1.0.0 0.2.2 1.0.0 benchmark

Looks like we have 1.0.0 currently installed, but according to our package.json we just
changed, we want the latest package matching ^0.2.0, which will give us version 0.2.2.
We also see the latest package available is 1.0.0. The location line will tell us where it
found the outdated dependencies.

OUTDATED DEPENDENCIES THAT YOU DIRECTLY REQUIRE Often it’s nice to see
just your outdated dependencies, not your subdependencies (which can get
very large on bigger projects). You can do that by running npm outdated
--depth 0.

If we want to update to the wanted version, we can run

npm update benchmark --save-dev

This will install 0.2.2 and update our package.json file to ^0.2.2.
 Let’s run npm outdated again:

$ npm outdated
Package Current Wanted Latest Location
benchmark 0.2.2 0.2.2 1.0.0 benchmark

Only allow module to be
installed if Connect 2.x is
also installed.

Roll benchmark back
to earlier version.

377TECHNIQUE 110 Semantic versioning

Looks like our current and our desired versions match now. What if we wanted to update
to the latest? That’s easy: we can install just the latest and save it to our package.json by
running

npm install benchmark@latest --save-dev

VERSION TAGS AND RANGES Note the use of the @latest tag in order to get
the latest published version of a module. npm also supports the ability to
specify versions and version ranges, too! (https://www.npmjs.org/doc/cli/
npm-install.html)

We’ve talked a little about version numbers so far, but they really need a technique
unto their own, as it’s important to understand what they mean and how to use them
effectively. Understanding semantic versioning will help you define versions better for
your module and for your dependencies.

TECHNIQUE 110 Semantic versioning

If you’re not familiar with semantic versioning, you can read up on it at http://semver
.org. Figure 13.4 captures the major points.

 Here is how it’s described in the official documentation:1

Given a version number MAJOR.MINOR.PATCH, increment the:

1 MAJOR version when you make incompatible API changes,
2 MINOR version when you add functionality in a backwards-compatible man-

ner, and
3 PATCH version when you make backwards-compatible bug fixes.

In practice, these rules can be ignored or loosely followed, since, after all, nobody is
mandating your version numbers. Also, many authors like to play around with their API
in the early stages and would prefer not to be at version 24.0.0 right away! But semver
can give you, as a module author and as a module consumer, clues within the version
number itself as to what may have happened since the last release.

1 From http://semver.org/.

Major Minor Patch

2 . 3 6.
Major incompatible

API changes

Minor functionality updates that
are backwards compatible

Patches to existing
functionality (bug fixes)

My module - Version 2.3.6

Figure 13.4 Semantic versioning

http://semver.org
http://semver.org
http://semver.org/
https://www.npmjs.org/doc/cli/npm-install.html
https://www.npmjs.org/doc/cli/npm-install.html

378 CHAPTER 13 Writing modules: Mastering what Node is all about

In this technique we’ll look at how to use semver effectively within our fastfib library.

■ Problem
You want to use semver effectively in your module and when including dependencies.

■ Solution
Understand your underlying projects in order to have a safe upgrade path, and clearly
communicate the intent of your module version.

■ Discussion
We currently have one development dependency in our project, which looks like this
in the package.json file:

"devDependencies": {
"benchmark": "^1.0.0"

},

This is how npm, by default, will include the version inside the package.json file. This
plays nice for how most modules authors behave:

■ If the version is less than 1.0.0, like ^0.2.0, then allow any greater PATCH version
to be installed. In the previous technique, we saw this ended up being 0.2.2 for
the benchmark module.

■ If the version is 1.0.0 or greater, like ^1.0.0, then allow any greater MINOR ver-
sion to be installed. Typically 1.0.0 is considered stable and MINOR versions
aren’t breaking in nature.

This means that when another user installs your module dependencies, they’ll get the
latest version that’s allowed in your version range. For example, if Benchmark.js
released version 1.1.0 tomorrow, although you currently have 1.0.0 on your machine,
they would get version 1.1.0, since it still matches the version range.

VERSION OPERATORS Node supports a whole host of special operators to cus-
tomize multiple versions or version ranges. You can view them in the semver
documentation (https://www.npmjs.org/doc/misc/semver.html).

Versioning dependencies
When writing modules, it can increase the confidence in your dependencies to use a
specific version number a user will install along with your module. This way, you know
what you’ve tested will run the same down the dependency chain. Since we know our
test suite works with benchmark 1.0.0, let’s lock it in to be only that version by running
the following:

npm install benchmark --save-dev --save-exact

We could’ve so updated our package.json manually. Let’s take a look at what it looks
like now:

"devDependencies": {
"benchmark": "1.0.0"

},

Save exact same version installed
to the package.json file.

Exact versions have
no special identifiers.

https://www.npmjs.org/doc/misc/semver.html

379TECHNIQUE 111 Adding executable scripts

Now that we’ve locked in our dependency, we can always use npm outdated to see if a
new version exists and then npm install using the --save-exact flag to update our
package.json!

Versioning the module
As already noted, many module authors use versions less than 1.0.0 to indicate that
the API hasn’t been fully implemented yet and may change in subsequent versions.
Typically, when the version number hits 1.0.0, there’s some good stability to the
module, and although the API surface may grow, existing functionality shouldn’t
change that much. This matches how npm behaves when a module is saved to the
package.json file.

 Currently we have our fastfib module at version 0.1.0 in the package.json file. It’s
pretty stable, but there may be other changes we want to make before we give it the
1.0.0 status, so we’ll leave it at 0.1.0.

The change log
It’s also helpful for module authors to have a change log summarizing anything users
should be aware of when new releases happen. Here’s one such format:

Version 0.5.0?--?2014-04-03

added; feature x
removed; feature y [breaking change!]
updated; feature z
fixed; bug xx

Version 0.4.3?--?2014-03-25

Breaking changes, especially in a minor version, should be noted clearly in the change
log so users know how to prepare for the update. Some authors like to keep a change
log inside their main readme or have a separate change log file.

 We’ve covered some understanding and tooling around versioning our dependen-
cies and our module; let’s look at what else we can expose to the consumers of our
modules.

13.3 The end user experience
Before we push our module out for consumption, it would be nice to test that it actually
works. Of course, we already have a test suite, so we know our logic is sound, but what
is the experience of an end user installing the module? How do we expose executable
scripts to a user in addition to an API? What versions of Node can we support? In this
section we’ll take a look at those questions, starting with adding executable scripts.

TECHNIQUE 111 Adding executable scripts

Want to expose an executable when your module is installed? Express, for example,
includes an express executable you can run from the command line to help initialize
new projects:

380 CHAPTER 13 Writing modules: Mastering what Node is all about

$ npm install express -g
$ express

npm itself is an installable module with an npm executable, which we’ve been using
all over in this chapter.

 Executables can help end users use your module in different ways. In this technique
we’ll look at adding an executable script to fastfib and include it in our package.json
to be installed along with our module.

■ Problem
How do you add an executable script?

■ Solution
How do you add command-line tools and scripts for a package and link it inside the
package.json file?

■ Discussion
We have our fastfib module built, but what if we wanted to expose a fastfib execut-
able to the end user where they could run a command like fastfib 40 and get the 40th
Fibonacci number printed out? This would allow our module to be used on the com-
mand line as well as programmatically.

 In order to do this, let’s create a bin directory with an index.js file inside contain-
ing the following:

#!/usr/bin/env node
var fastfib = require('../');
var seqNo = Number(process.argv[2]);

if (isNaN(seqNo)) {
return console.error('\nInvalid sequence number provided,

➥ try:\n fastfib 30\n');
}

console.log(fastfib(seqNo));

Now that we have our application executable, how do we expose it as the fastfib
command when someone installs our module? For that, we need to update our pack-
age.json file. Add the following lines underneath main:

"main": "index.js",
"bin": {

"fastfib": "./bin/index.js"
},

Testing executables with npm link
We can test our executable by using npm link. The link command will create a global
symbolic link to our live module, simulating installing the package globally, as a user
would if they installed the module globally.

Installs express module
globally making the executable
accessible from anywhere

Indicate operating
system should look for
a node executable to
run following code

Require
 fastfib
module

Get sequence
number

argument

If we didn’t get valid number,
exit early and give error
message with instructions

Output result

Alias executable as fastfib
and have it run ./bin/index.js

381TECHNIQUE 112 Trying out a module

 Let’s run npm link from our fastfib directory:

$ npm link
/usr/bin/fastfib

-> /usr/lib/node_modules/fastfib/bin/index.js
/usr/lib/node_modules/fastfib

-> /Users/wavded/Dev/fastfib

Now that we’ve globally linked up our executable, let’s try it out:

$ fastfib 40
102334155

Since these links are in place now, any edits will be reflected globally. Let’s update the
last line of our bin/index.js file to announce our result:

console.log('The result is', fastfib(seqNo));

If we run the fastfib executable again, we get our update immediately:

$ fastfib 40
The result is 102334155

We’ve added a fastfib executable to our module. It’s important to note that every-
thing discussed in this technique is completely cross-platform compatible. Windows
doesn’t have symbolic links or #! statements, but npm wraps the executable with addi-
tional code to get the same behavior when you run npm link or npm install.

 Linking is such a powerful tool, we’ve devoted the next technique to it!

TECHNIQUE 112 Trying out a module

Besides using npm link to test our executables globally, we can use npm link to try out
our module elsewhere. Say we wanted to try out our shiny new module in another
project and see if it’ll work out. Instead of publishing our module and installing it, we
can just link to it and play around with the module as we see it used in the context of
another project.

■ Problem
You want to try out your module before publishing it or you want to make changes to
your module and test them in another project without having to republish first.

■ Solution
Use npm link

■ Discussion
In the previous technique we showed how to use npm link to test an executable
script’s behavior. This showed that we can test our executables while we’re developing,
but now we want to simulate a local install of our module, not a global one.

 Let’s start by setting up another project. Since we started this chapter with our can-
cerous implementation of a Fibonacci web server, let’s go full circle and make a little
project that exposes fastfib as a web service.

Link fastfib executable
to the ./bin/index.js file

Link fastfib module to our
working directory code

382 CHAPTER 13 Writing modules: Mastering what Node is all about

 Create a new project called fastfibserver and put a single server.js file inside
with the following content:

var fastfib = require('fastfib');
var http = require('http');

http.createServer(function (req, res) {
res.end(fastfib(40));

}).listen(3000);

console.log('fastfibber running on port 3000');

We have our server set up, but if we were to run node server, it wouldn’t work yet
because we haven’t installed the fastfib module in this project yet. To do that we use
npm link:

$ npm link ../fastfib
/usr/bin/fastfib
-> /usr/lib/node_modules/fastfib/bin/index.js

/usr/lib/node_modules/fastfib
-> /Users/wavded/Dev/fastfib

/Users/wavded/Projects/Dev/fastfibserver/node_modules/fastfib
-> /usr/lib/node_modules/fastfib
-> /Users/wavded/Dev/fastfib

Now if we run our web server, it will run successfully:

$ node server
fastfibber running on port 3000

And a visit to our site will give us the 40th Fibonacci number, as shown in figure 13.5.

ANOTHER WAY TO LINK Since we already linked our module globally in the
previous technique running npm link inside the fastfib project, we could’ve
also run npm link fastfib in our fastfibserver project to set up the link.

Using npm link also helps a lot in debugging your module in the context of another
module. Edge cases come up that can best be debugged while running the project
that’s requiring your module. Once you npm link the module, any changes will take

Require fastfib
module

Respond with 40th Fibonacci
number on every request

Pass in path to
fastfib module

Links are created
globally first

A final link is set up
in fastwebserver

project

Figure 13.5 Sample output
from fastfibserver

383TECHNIQUE 113 Testing across multiple Node versions

effect immediately without the need to republish and re-install. This allows you to fix
the problem in your module’s code base as you debug.

 So far we’ve defined and implemented our module with tests, set up our depen-
dencies, locked our versions down for our dependencies and our module, added a
command-line executable, and practiced using our module. Next we’ll look at
another aspect of the package.json file—the engines section, and testing our module
across multiple versions of Node.

TECHNIQUE 113 Testing across multiple Node versions

Unfortunately, not everybody is able to upgrade to the latest and greatest Node ver-
sion when it comes on the scene. It takes time for companies to adapt all their code to
newer versions, and some may never update. It’s important that we know what ver-
sions of Node our module can run on so npm knows who can install and run it.

■ Problem
You want to test your module across multiple versions of Node, and you want your
application to be installed only for those versions.

■ Solution
Keep the engines object accurate in the package.json file by running tests across mul-
tiple versions of Node.

■ Discussion
The npm init script we ran when first setting up our package.json doesn’t include an
engines section, which means that npm will install it on any version of Node. At first
glance, we may think that’s OK, since we’re running pretty vanilla JavaScript code. But
we don’t really know that without actually testing it.

 Typically patch version updates (Node 0.10.2 to 0.10.3, for instance) shouldn’t
break your modules. But it’s a good idea at a minimum to test your modules across
minor and major version updates, as V8 receives a decent upgrade and Node’s APIs
can change. Currently, we’ve been working off 0.10 branch of Node and things have
been working well. So let’s start with that. Let’s add the following to the end of our
package.json file:

"homepage": "https://github.com/wavded/fastfib",
"engines": {
"node": "0.10.x"

}
}

That’s a start, but it really seems like we should be able to support earlier versions of
Node. How do we test for that?

 A variety of popular options are available:

■ Install multiple versions of Node on your machine
■ Use Travis CI’s multi-Node version support (https://travis-ci.org/)
■ Use a third-party multiversion test module that works for your environment

(like dnt—https://github.com/rvagg/dnt)

Indicate that our module
can run on any patch
version of Node 0.10.

https://travis-ci.org/
https://github.com/rvagg/dnt

384 CHAPTER 13 Writing modules: Mastering what Node is all about

ABOUT NODE VERSIONS In Node, all odd-numbered minor versions are consid-
ered unstable. So 0.11.0 is the unstable version for 0.12.0, and so on. You
shouldn’t need to test any existing unstable releases. Typically, module
authors will only test the latest unstable release as it nears completion.

For our technique we’ll focus on installing multiple versions of Node, as that can
come in handy for testing new features in upcoming versions of Node, as well as for
testing our module.

 The tool we’ll use is nvm (https://github.com/creationix/nvm; the Windows
counterpart is nvmw: https://github.com/hakobera/nvmw). The following instruc-
tions will be for nvm, but the commands will be similar in nvmw once installed.

 To install, run

curl https://raw.github.com/creationix/nvm/v0.5.0/install.sh | sh
source ~/.nvm/nvm.sh

Now that we have it installed, let’s go ahead and test Node version 0.8 of our fastfib
module. First let’s install Node 0.8:

$ nvm install 0.8
100.0%
Now using node v0.8.26

nvm went out and grabbed the latest version of the 0.8 branch to test against. We
could have specified a patch if we wanted, but this will work for now. Note how we’re
also using this version. We can validate that by running

$ node -v
v0.8.26

Now, all Node and npm interaction happens within an isolated environment just for
Node 0.8.26. If we were to install more versions, they would be in their own isolated
environments. We use nvm use to switch between them. For example, if you wanted to
go back to your system install of Node, you could do the following:

nvm use system

And to go back to Node version 0.8.26:

nvm use 0.8

Let’s run our test suite in 0.8.26 and see how we do:

$ npm test

> fastfib@0.1.0 test /Users/wavded/Dev/fastfib
> node test && node benchmark

results:
recurse 432 5.48
tail 300770 5.361
iter 1109759 5.428

We source it right away so we don’t
have to reload our session. This is done
automatically in future sessions.

https://github.com/creationix/nvm
https://github.com/hakobera/nvmw

385TECHNIQUE 114 Publishing modules

Looks good! Let’s update our package.json to include 0.8 versions:

"engines": {
"node": ">=0.8.0 <0.11.0"

}

WHAT IF MY MODULE LOSES SUPPORT FOR A PARTICULAR NODE VERSION? That’s
totally fine. Users of an older version of Node will get the last-published pack-
age that’s supported for their version.

We’ve tested Node version 0.10 and 0.8; try testing a few other versions on your own.
When you’re done, switch back to the system Node version.

 Now that we’ve looked through a variety of steps to get our module into a usable
state for others, let’s publish it!

13.4 Publishing
As we wrap up this chapter, we’ll turn our focus on module distribution by looking at
publishing modules publicly on npm or privately for internal use.

TECHNIQUE 114 Publishing modules

Whew! We’ve gone through a lot of different techniques getting our module ready to
publish. We know there will likely be changes, but we’re ready to release our first ver-
sion out in the wild to be required in other projects. This technique explores the vari-
ous aspects of publishing.

■ Problem
You want to get your module published publicly.

■ Solution
Register with npm if you haven’t and npm publish.

■ Discussion
If it’s your first time publishing a module, you’ll need to register yourself with npm.
Thankfully, it couldn’t be any easier. Run the following command and follow the
prompts:

npm adduser

Once finished, npm will save your credentials to the .npmrc file.

CHANGING EXISTING ACCOUNT DETAILS The adduser command can also be
used to change account details (except username) and register a fresh install
with an existing account.

Once registered, publishing a module is just as simple as adding a user. But before we
get to that, let’s cover some good practices when publishing modules.

Before you publish
One of the biggest things before publishing is to review technique 110 about semantic
versioning:

Include any version
from 0.8.0 up to but
not including 0.11.0.

386 CHAPTER 13 Writing modules: Mastering what Node is all about

■ Does your version number accurately reflect the changes since the last push? If
this is your first push, this doesn’t matter as much.

■ Do you do a changelog update with your release? Although not required, it can
be extremely helpful to those who depend on your project to get a high-level
view of what they can expect in this release.

Also, check whether your tests pass to avoid publishing broken code.

Publishing to npm
Once you’re ready to publish, it’s as simple as running the following command from
the project root directory:

npm publish

npm will respond with the success or failure of the publish. If successful, it will indi-
cate the version that was pushed to the public registry.

 Can you tell that npm wants you to get your modules out there as painlessly as possible?

Undoing a publish
Although we want a publish to go well, sometimes we miss things we wanted to release,
or have some things we realize are broken after the fact. It’s recommended you don’t
unpublish modules (although the ability exists). The reason is that people who are
depending on that module and/or version can no longer get it.

 Typically, make the fix, increase the PATCH version, and npm publish again. A sim-
ple way to do that is by running the following commands:

// make fixes
$ npm version patch
v0.1.1

$ npm publish

npm does not allow you to publish over an existing version, since that also would affect
people who have already downloaded that particular version.

 There are some cases where you really want to discourage users from using a par-
ticular version. For example, maybe a severe security flaw was fixed in versions 0.2.5
and above, yet you have users depending on versions earlier than that. npm can help
you get the word out by using npm deprecate.

 Let’s say in the future, we find a critical bug in fastfib version 0.2.5 and below, and
we wanted to warn users who are using those modules. We could run the following:

npm deprecate fastfib@"<= 0.2.5"
"major security issue was fixed in v0.2.6"

Now if any user installs fastfib 0.2.5 or less, they’ll receive the specified warning from
npm.

The npm version command (https://
www.npmjs.org/doc/cli/npm-version.html)
will update your package.json based on the
arguments passed. Here we used patch to
tell it to increment the patch version.

Deprecate module name followed
by version range affected and
message NPM should display

https://github.com/hakobera/nvmw

387TECHNIQUE 115 Keeping modules private

TECHNIQUE 115 Keeping modules private

Although open source can be a fun and collaborative environment, there are times
when you want your project to remain private. This is especially true for work done for
clients. It can also be handy to bake a module first internally before deciding whether
to publish. npm can safeguard your module and keep it private for you. In this tech-
nique we’ll talk about configuring your module to stay private and including private
modules in your projects.

■ Problem
You want to keep your module private and use it internally.

■ Solution
Configure private in your package.json file and share it internally.

■ Discussion
Let’s say we want to let fastfib to only be used internally. To ensure it doesn’t get
accidentally published, we add the following to our package.json file:

"private": true

This tells npm to refuse to publish your package with npm publish.
 This setting works well for client-specific projects. But what if you have a core set of

internal modules you want to share across projects within your development team?
For that there are a few different options.

Sharing private modules with Git
npm supports a couple of ways you can share your internal modules that are minimal
to set up out of the box. If you’re using a Git repository, npm makes this incredibly
simple to do.

 Let’s use GitHub as an example (although it can be any Git remote). Let’s say we
had our private repo at

git@github.com:mycompany/fastfib.git

We can then include it in our package.json dependencies with npm install (or mod-
ify the package.json directly):

npm install git+ssh://git@github.com:mycompany/fastfib.git --save

Pretty sweet! This by default will pull the contents of the master branch. If we wanted
to specify a particular commit-ish (tag, branch, or SHA-1—http://git-scm.com/book/
en/Git-Internals-Git-Objects), we can do that too! Here are some examples within a
package.json file:

"dependencies": {
"a": "git+ssh://git@github.com:mycompany/a.git#0.1.0",
"b": "git+ssh://git@github.com:mycompany/b.git#develop",
"c": "git+ssh://git@github.com:mycompany/c.git#dacc525c"

}

Specifying
by tag

Specifying by
branch nameSpecifying by commit SHA-1 (typically

you won’t need the whole SHA-1)

http://git-scm.com/book/en/Git-Internals-Git-Objects
http://git-scm.com/book/en/Git-Internals-Git-Objects

388 CHAPTER 13 Writing modules: Mastering what Node is all about

INCLUDING PUBLIC REPOSITORIES You may have guessed it, but you can also
use public Git repositories as well. This can be helpful if you really need a
feature or fix that hasn’t been published on npm yet. For more examples,
see the package.json documentation (https://www.npmjs.org/doc/
json.html#Git-URLs-as-Dependencies).

Sharing private modules as a URL
If you aren’t using Git or prefer to have your build system spit out packages, you can
specify a URL endpoint where npm can find a tarball. To package up your module,
you can use the tar command like the following:

tar -czf fastfib.tar.gz fastfib

From here, we can throw that file on a web server and install it using the following:

npm install http://internal-server.com/fastfib.tar.gz --save

A NOTE ABOUT PUBLIC ENDPOINTS Although typically not used often, tarballs of
packages can be used with public endpoints too; it’s usually better and easier
to publish to npm instead.

Sharing modules with a private npm registry
Another option for private repositories is hosting your own private npm registry and
having npm publish push to that repository. For the complete functionality of npm,
this will require an installation of a recent version of CouchDB, which, in turn,
requires Erlang.

 Since this involves a variety of tricks/headaches depending on your operating sys-
tem, we won’t cover setting up an instance here. Hopefully, the process will get
streamlined soon. If you want to experiment, check out the npm-registry-couchapp
project (https://github.com/npm/npm-registry-couchapp).

13.5 Summary
Third-party modules are where innovation happens. npm makes this trivial and fun!
With the rise of social coding sites like GitHub, collaboration on modules is also easy
to do. In this chapter we looked at many different aspects of module development.
Let’s summarize what we learned.

 When starting to work on a module, consider the following:

■ Define your module idea. Can you summarize it in one sentence?
■ Check your module idea. Is there another module out there doing what you

want to do? Search it out with npm search or npmjs.org.

Once you’ve landed on an idea, prove it out. Start with a simple API you’d like to work
with. Write an implementation and tests installing any dependencies you need along
the way.

We tell tar to make a new archive (c),
compress the archive using gzip (z), and
store it in the file (f) fastfib.tar.gz, giving
it the contents of the fastfib directory.

https://www.npmjs.org/doc/json.html#Git-URLs-as-Dependencies
https://www.npmjs.org/doc/json.html#Git-URLs-as-Dependencies
https://github.com/npm/npm-registry-couchapp
https://github.com/npm/npm-registry-couchapp
https://www.npmjs.org/

389Summary

 After you’ve proven your idea (or perhaps during), think about these things:

■ Have you initialized your package.json file? Run npm init to get a skeleton rep-
resenting the state of the current project.

■ Work with your dependencies. Are some optional, development-only? Make
sure that’s indicated in your package.json file.

■ Check your semver ranges in package.json. Do you trust the version ranges
specified in your package.json file? Check for updates with npm outdated.

■ What versions of Node will your code run on? Check it out by using nvm or a
build system like Travis CI. Specify the version range in your package.json file.

■ Try out your module using npm link in another project.

When you’re ready to publish, it’s as simple as npm publish. Consider keeping a
changelog for your users and try to follow semantic versioning, so users have a reason-
able idea of what to expect from version to version.

 And that’s a wrap for this book! We hope at this point you were able to grasp the
core foundations of Node, understand how to apply those foundations in real-world
scenarios, and how to go beyond standard development by writing your own Node
modules (which we hope to see on npm!).

 A growing Node community is available to help you continue to level up on your jour-
ney. Please check out the appendix to make the most of that community. If you have spe-
cific questions for us, please visit the #nodejsinpractice Google group (https://
groups.google.com/forum/#!forum/nodejsinpractice), and thanks for reading!

https://groups.google.com/forum/#!forum/nodejsinpractice
https://groups.google.com/forum/#!forum/nodejsinpractice

391

appendix
Community

This section will help you to make the most of the growing Node community. Pro-
gramming communities can help you get answers to problems that aren’t directly
answered by the documentation. You can learn more effectively just by hanging out
with like-minded people—whether online or in person.

A.1 Asking questions
Sometimes you just want to know how to do something that seems like it should be
easy, but isn’t. Other times you think you might have found a serious bug in Node.
Whatever the situation, when you need help that isn’t satisfied by Node’s API docu-
mentation, there are several official channels you can use.

 The first is the Node mailing list, which is the nodejs Google Group (http://
groups.google.com/group/nodejs). You can subscribe by email or use Google’s web
interface. The web interface allows posts to be searched, so you can see if someone
has asked your question before.

 The group has contributions from prominent community members, including
Isaac Schlueter, Mikeal Rogers, and Tim Caswell, so it’s a good place to get help
and learn about Node in general.

 There’s also an official IRC chat room: #node.js on irc.freenode.net. It’s
extremely busy though, so be prepared for a lot of messages. Informative discus-
sions do happen in #node.js, so some patience may be rewarded!

 If you’re a fan of the Stack Exchange network, you can post questions using the
node.js tag (http://stackoverflow.com/questions/tagged/node.js).

 If you prefer social networks, the Node users group (https://github.com/joyent/
node/wiki/Node-Users) in the Node wiki lists hundreds of Twitter accounts along-
side the developer’s time zone, so you could look for people to talk to that way. Hint:
the authors of this book are listed!

http://groups.google.com/group/nodejs
http://groups.google.com/group/nodejs
http://stackoverflow.com/questions/tagged/node.js
https://github.com/joyent/node/wiki/Node-Users
https://github.com/joyent/node/wiki/Node-Users

392 APPENDIX Community

 Finally, if your question is about a specific module, you should check that module’s
documentation for community information. For example, the Express web framework
has its own express-js Google Group (https://groups.google.com/group/express-js).

A.2 Hanging out
Your city may have an active Node meet-up group. Examples include the London
Node.js User Group (http://lnug.org/), the Melbourne Node.JS Meetup Group
(http://www.meetup.com/MelbNodeJS/), and BayNode (http://meetup.com/BayN-
ode/) in Mountain View, California.

 There are also major Node conferences, including NodeConf (http://nodeconf
.com/) and NodeConf EU (http://nodeconfeu.com/).

 To help you find more meet-up groups and conferences, the Node.js Meatspace
page at https://github.com/knode/node-meatspace is frequently updated. You can, of
course, try searching at meetup.com as well.

A.3 Reading
If you’re looking for something to read, you’ll find some great community publica-
tions. Naturally reddit.com/r/node collects some great posts, but there are also collec-
tions on Medium, including medium.com/node-js-javascript.

 Noted Node developers have blogs you can check as well. Isaac Z. Schlueter
(http://blog.izs.me/), James Halliday (http://substack.net/; see figure A.1), and Tim
Caswell all have personal blogs where they write about Node. Tim’s howtonode.org
has material suitable for beginners, but will also help you keep track of new
developments.

 There are also commercial blogs that have some contributions from talented Node
developers. Joyent’s blog at joyent.com/blog often has interesting posts relating to
deploying Node, and StrongLoop’s blog, “In the Loop,” at strongloop.com/strong-
blog, does as well.

 Nodejitsu’s blog at blog.nodejitsu.com has advice on deployment, and also features
module authors talking about their work.

Figure A.1 James Halliday’s blog about Node and testing

https://groups.google.com/group/express-js
http://lnug.org/
http://www.meetup.com/MelbNodeJS/
http://meetup.com/BayNode/
http://meetup.com/BayNode/
http://nodeconf.com/
http://nodeconf.com/
http://nodeconfeu.com/
https://github.com/knode/node-meatspace
http://www.meetup.com/
http://www.reddit.com/r/node
https://medium.com/node-js-javascript
http://blog.izs.me/
http://substack.net/
http://howtonode.org/
https://www.joyent.com/blog
http://strongloop.com/strongblog/
http://strongloop.com/strongblog/
http://blog.nodejitsu.com/

393Marketing your open source projects

A.4 Training by the community, for the community
One interesting development in teaching Node is NodeSchool (http://nodeschool.io/;
see figure A.2). You can install lessons yourself, but there are also community-run
in-person training events. NodeSchool provides the materials to set up training events,
so they’re proliferating rapidly around the world. The site has more details on upcom-
ing events.

A.5 Marketing your open source projects
If you’re going to take part in the Node community, one of the best ways to it is to
share your work. But npm is now so popular that it’s hard to get your module noticed.

 To really make an impact, you should consider marketing your open source proj-
ects. If prominent Node bloggers have contact forms or Twitter accounts, it won’t hurt
to tell them about what you’ve made. As long as you’re polite, and give your work
some context so it’s easy to understand, then it can really help you get feedback and
improve your skills.

Figure A.2
Learn Node with
NodeSchool.

http://nodeschool.io/

395

index

A

A records 165
ab tool 351
abstract interface 83
Accept header 223, 228
Accept-Version header 230
adduser command 385
advertising distribution 6
advisory argument 98
AMQP technology 78
amqplib 356
AngularJS 256
Apache

benchmarking tool 118, 351
deployment using 332–335
features of 340
proxying web requests 339

API, designing for module 366
application layer 137
args object 28
argv array 28
arrays 59
ASCII encoding 41
assert module 12

custom assertions 268–269
overview 262–263
writing tests using 263–265

AssertionError 265
assertions

defined 261
single per test 275

async library 128
asynchronous calls

networking 142–143
Node advantages 3

attached processes 183
audio streams 83, 86
authenticated routes 246–248
Azure 327, 330, 332

B

backpressure 89
backtrace command 306
backward compatibility 85
Base64 encoding 42
Basic Authentication

header 41–42
baudio module 86
BDD (behavior-driven

development) 273
benchmark module 26
Benchmark.js 367
benchmarking

clustering and 351
modules 367–370
using console output 25–27

Berkeley Sockets API 140
binary data support 39
bind method 33
bitmask 59
bitwise operators 59
blogs 6
body-parser module 243
Bootstrap 256
breakOnException

function 306
Browserify 207, 291–292

Buffer class 16
converting DBase file to JSON

field descriptor array 49–52
header 45–49
overview 44–45
record data 53–58

creating Basic Authentication
header 41–42

creating network protocol
inflating data with zlib

62–63
looking up key 61–62
overview 58–59
selecting database with first

byte 59–61
data encodings

changing 41–44
converting to other

formats 40–41
data URIs 42–44

buffer module 141
bulk file I/O 117

C

CA (Certificate Authority) 168
Cache-Control header 342
caching, HTTP 342–344
callback argument 103
Caswell, Tim 392
Certificate Signing Request. See

CSR
chai 276
change log 379
cheerio module 205

INDEX396

child processes
detaching 182–183
executing commands in shell

overview 180–181
security and 181–182

executing external
applications
errors for 177–178
overview 176
PATH environment

variable and 176–177
executing Node applications

on UNIX 186
on Windows 185–186
overview 185

forking modules
communication with 188
disconnecting from 188
overview 186–187

I/O between parent process
and 183–184

overview 174–175
reference counting and

184–185
resources required for 190
running jobs

job pooling 190–191
overview 188–190
pooler module 191–192

streaming output 178–179
stringing together

applications 179–180
synchronous

error handling 194
overview 192

chmod method 116
chown method 116
Chrome 208
chunk argument 103
CI (continuous

integration) 262, 270–271,
283–285

clearBreakpoint function 306
clearInterval method 34
clearTimeout method 33, 67
clients

sending messages using
UDP 153–156

TCP 145–147
close method 116
cloud deployment 327–332
cluster module 347–351
CMS (content management

system) 6

CNAME records 165
comma-separated values. See CSV
command-line integration

28–29
Commander.js module 29
CommonJS 263, 362
community

asking questions 391–392
marketing 393
meet up groups 392
NodeSchool 393
online resources 392
training 393

compression 62, 243
compute-cluster module 192
conferences 392
configuration 215–219
Connect framework 69, 201
connect method 145–146
connect-timeout module 243
console object 8

benchmarking program
25–27

errors 353
logging 24–25, 353
overview 24–25
stack traces 25

content management system.
See CMS

content-based conditional
request 343

Content-Range headers 93
Content-Type header 227–228
continuous integration. See CI
Cookie header 247
cookie-parser module 243
cookie-session module 243
cookieParser middleware 239
cookies 239
counters, alternatives to 128
CPU usage 308
createProxyServer method 345
createReadStream method 8,

47, 84
createSecurePair method 172
createServer method

143, 157–158
createSocket method 150
CSR (Certificate Signing

Request) 168
csrf middleware 249
csurf module 243
CSV (comma-separated

values) 103, 235
Cube 257

Cubism.js 257
curl command 235

D

%d formatting placeholder 24
data encodings

changing 41–44
converting to other

formats 40–41
data URIs 42–44
databases

creating test data 287–289
dumps 286–287
mocking 288–290
overview 285–286

datagrams
defined 137
packet layout 152

DBase files
field descriptor array 49–52
header 45–49
overview 44–45
record data 53–58

.dbf files 44
debug command 301
--debug-brk flag 308
debugging

debug flag 208
error argument 296
error event 295–296
errors 222
explicit exceptions 294
implicit exceptions 295
lint tools 299–300
memory leaks 311–316
Node debugger 300–306
Node Inspector 306–308
profiling applications

308–311
REPL

inspecting running pro-
gram with 319–322

setting up 316–322
tracing system calls

operating systems and 325
overview 322–324
for running process 324

uncaught exceptions
overview 296–298
using domains 298–299

decodeStrings option 100
deepEqual method 264
deflate method 62

INDEX 397

delaying execution
nextTick method 35–38
setInterval method 34–35
setTimeout method 32–34

DELETE method 226
dependencies

development 374
keeping up to date 376–377
Node require system 362
optional 374–375
overview 373–374
peer 203, 375–376

dependency inversion
principle 236

deployment
Apache 332–335
cloud 327–332
HTTP caching 342–344
keeping processes

running 336–337
maintenance

logging 353–356
package optimization

351–353
nginx 332–335
running on port 80 335–336
scaling

interprocess communica-
tion and 356

using cluster module
347–351

using Node proxy 344–347
using WebSockets 338–342

deprecate command 386
Derby framework 256
describe function 274
development

dependencies 373–374
dgram module 141
directories

as modules 212
watchFile method and 134

__dirname variable 22
DNS (Domain Name System)

making requests 165–167
module for 141
record types 165

DOM (Document Object
Model) 204–206

domain module 147
domains

defined 6
error handling with 71–72
handling uncaught

exceptions 298–299

DSL (domain-specific
language) 269

dtruss command 322
Duplex class 95
duplex streams 86, 101–102

E

EACCES error 177
ECONNREFUSED error 167
emit method 10
encoding

changing 41–44
converting to other

format 40–41
specifying for strings 42

encoding argument 96, 100, 103
encryption

HTTPS server 170–172
module for 141–142
overview 167
TCP server 167–170

end method 281
endpoints, naming of 224
ENOENT error 177
entry point, module 366–367
environment

console output
benchmarking

program 25–27
logging messages 24–25
stack traces 25

delaying execution with
timers
nextTick method 35–38
setInterval method 34–35
setTimeout method 32–34

modules
creating 17–19
exporting 18
installing 16–17
loading 16–17, 19
loading group of 19–21
paths in 21–22

operating system integration
exiting program 29–30
getting platform

information 27–28
passing command-line

arguments 28–29
responding to signals from

processes 31–32
standard I/O 22–23
variables 332

EPERM error 177

equal method 263
err.stack 353
error argument 296
Error constructor 219
error event 147, 295–296
error handling

debugging 222
error argument 296
error event 295–296
explicit exceptions 294
for external applications

177–178
implicit exceptions 295
for synchronous child

processes 194
testing 265–268
uncaught exceptions

overview 296–298
using domains 298–299

using events module
with domains 71–72
overview 69–70

using streams 90–91
for web application

servers 219–222
error method 25
Error object 294
errorhandler module 243
ETags 344
Etherpad 256–257
EventEmitter class 147, 295

alternatives to 78–80
exploiting methods 75–77
inheriting from class 65–68
mixing in use of 68–69
overview 7
streams and 87

events module
categorizing event names

77–78
error handling

with domains 71–72
overview 69–70

exploiting EventEmitter
methods 75–77

HTTP and 141
inheriting from

EventEmitter 65–68
mixing in EventEmitter

68–69
overview 7
third-party modules 78–80
using reflection 73–75

events, decoupling functionality
using 236–238

INDEX398

exceptions
explicit 294
implicit 295
uncaught

overview 296–298
using domains 298–299

exclusive flag 123
exec method 175, 180
execFile method 175–176, 181
execFileSync method 192
execSync method 193
executable scripts

adding 379–381
npm and 186
testing with npm link

380–381
execution, delaying

nextTick method 35–38
setInterval method 34–35
setTimeout method 32–34

exit codes 30, 178
exiting program 29–30
Expires header 343
explicit exceptions 294
exporting modules 18
--expose-gc flag 312
Express

defined 5
Google Group 392
MEAN solution stack 256
migrating from 3 to 4

242–246
route separation 209–212
streams and 91–93

express-session module 243
Extensible Markup Language.

See XML
external applications

errors for 177–178
executing 176
executing in shell

overview 180–181
security and 181–182

Node applications
overview 185
on UNIX 186
on Windows 185–186

PATH environment variable
and 176–177

stringing together 179–180

F

Facebook 251
fchmod method 116

fchown method 116
Fibonacci sequence 363
Fiddler 252
file descriptors 120–121, 183
file locking

creating lockfile module
124–125

creating lockfile with
mkdir 123

overview 121–123
using exclusive flag 123

file watching
fs.watch method 132–134
fs.watchFile method 132–134
overview 118, 132

__filename variable 22
fixtures 111, 262
flag combinations 123
Flatiron framework 218
flock 122
flushing writes 132
folders, loading all files in 20
forever module 337
fork method 175, 187, 349
forking modules

communication with 188
disconnecting from 188
overview 186–187

format method 24
Formidable module 85
freezing object 120
fs module 213

buffers and 40
bulk file I/O 117
documentation 58
file descriptors 120–121
file locking

creating lockfile
module 124–125

creating lockfiles with
mkdir 123

overview 121–123
using exclusive flag 123

file watching
fs.watch method 132–134
fs.watchFile method

132–134
overview 118, 132

loading configuration
files 119–120

overview 8–115
POSIX file I/O

wrappers 115–117

recursive file operations
125–128

streams and 88, 117
synchronous alternatives 118
writing file database 128–132

fstat method 116
fsync method 116
ftruncate method 116
full-duplex 140
full-stack frameworks 256–257
futimes method 116

G

game servers 6
gc function 312
genrsa command 168
GET method 223, 225
Getting MEAN 256
Git 387–388
GitHub 251
glance module 202
global objects

installing module globally
17, 362

overview 8–16
Google Group 391
GraphicsMagick 174
Grunt 202, 204
grunt-cli module 203
grunt-contrib-connect

module 203
Gruntfile.js file 204
Gulp 203
gzip module 86

H

Halliday, James 392
HAProxy 339–341
harmony flag 215
heapdump module 312
Heroku 327–328, 332, 339
Hiccup 102
highWaterMark option 96
Holowaychuk, TJ 392
Hoodie 257
host objects 15
HTML5 (Hypertext Markup

Language 5) 32
HTTP (Hypertext Transfer

Protocol)
caching 342–344
defined 137

INDEX 399

HTTP (Hypertext Transfer
Protocol) (continued)

handling redirects 158–162
module for 141
overview 156
proxies 162–165
servers 156–158
streams for 83

http module 8
http-proxy module 345
HTTPD_ROOT value 333
HTTPS (Hypertext Transfer

Protocol Secure) 170–172
Hypertext Markup Language 5.

See HTML5
Hypertext Transfer Protocol.

See HTTP

I

I/O (input/output)
between child and parent

processes 183–184
bulk files 117
console output

benchmarking
program 25–27

logging messages 24–25
stack traces 25

non-blocking 3
reading and writing

streams 22–23
standard streams 25
streams and 83

If-Modified-Since header 343
If-None-Match header 343
ifError method 266
implicit exceptions 295
inflate method 62
info method 25
init command 371
injection attacks 182
input/output. See I/O
installing modules 16–17
integration tests 286, 288, 291
IP (Internet protocol) 139
IPC (interprocess

communication)
175, 187, 356

iptables 335
IPv6 139
IRC chat room 391
it function 272

J

%j formatting placeholder 24
JavaScript 59
JavaScript Object Notation. See

JSON
Jenkins 283
jitsu command 328
jobs

job pooling 190–191
overview 188–190
pooler module 191–192

jQuery 205
js file extension 21
JS-Signals 80
jsdom module 205
JSHint 295, 299–300
JSLint 295
JSON (JavaScript Object

Notation)
converting DBase files to

field descriptor array 49–52
header 45–49
overview 44–45
record data 53–58

Node strengths 5
json file extension 21

K

kqueue 325
Kraken 256

L

@latest tag 377
layers 137–138
lchmod method 116
lchown method 116
leaked resources 297
libcap2 335
libuv library 143, 325, 347
link method 116
linking to modules 380–383
Linnovate 256
lint tools 295, 299–300
listen method 143, 158
listening event 152
loading modules

group of 19–21
overview 16–17, 19

LoadModule directives 333
log method 25
log4node module 354

logging
maintenance 353–356
synchronously 121

Loggly service 354
logrotate 353–354
lookup method 166
low-latency applications

147–149
ls command 362
lsof command 324
lstat method 116

M

maintenance
logging 353–356
package optimization

351–353
man command 323
marketing 393
master process 349–350
maximum transmission unit. See

MTU
maxTickDepth value 37–38
MEAN solution stack 256
Meatspace page 392
meet up groups 392
memory leaks 311–316
memoryUsage method 27
Meteor 256
method-override module 243
Microsoft Visual Studio 4
microtime module 26
middleware

overview 231–235
testing 248–250

mitmproxy 252
mkdir method 116, 123
Mocha

help 275
installing 273
overview 273
using 273–280
versions of 274

mocking
databases storage 288–290
defined 262, 286
servers 252

Model-View-Controller pattern.
See MVC pattern

modules
benchmarking 367–370
caching of 19
creating 17–19

INDEX400

modules (continued)
dependencies

development 374
keeping up to date

376–377
optional 374–375
overview 373–374
peer 375–376

directories as 212
executable scripts

adding 379–381
testing with npm link

380–381
exporting 18
global 362
installing 16–17
linking to 381–383
loading 16–17, 19
loading group of 19–21
networking

DNS 141
encryption 141–142
HTTP 141

option parsing using 29
overview 6, 361–363
package.json file 370–372
paths in 21–22
planning for

API design 366
best practices 365–366
defining entry point

366–367
overview 363–364

private
overview 387
sharing as URL 388
sharing with Git 387–388
sharing with private npm

registry 388
publishing 385–386
scope for 16
searching 17
semantic versioning

1.0.0 version and 379
change log 379
overview 377–378
versioning

dependencies 378–379
testing

across Node versions
383–385

implementation testing 367
using link 381–383

unloading 19

MongoDB 86, 256
Mongoose 30, 86, 93, 256
morgan module 243
MTU (maximum transmission

unit) 137, 150
MVC (Model-View-Controller)

pattern 236
MySQL 86, 93–94

N

Nagle's algorithm 148–149
nconf module 218
net module

HTTP and 141
overview 8
streams and 88
TCP sockets and 141

network protocols, creating
inflating data with zlib 62–63
looking up key 61–62
overview 58–59
selecting database with first

byte 59–61
networking

asynchronous 142–143
DNS 165–167
encryption

HTTPS server 170–172
overview 167
for TCP server 167–170

HTTP
handling redirects 158–162
overview 156
proxies 162–165
servers 156–158

modules for 141–142
TCP

clients 145–147
servers 143–145
TCP_NODELAY flag

147–149
terminology

layers 137–138
overview 137
sockets 140–141
TCP/IP 139
UDP 139–140

thread pools 142–143
UDP

overview 149
sending messages to

client 153–156
transferring files 149–152

New Relic 356
newListener event 73
nextTick method 35–38
nginx

deployment using 332–335
features of 340
support WebSockets 338

Node
advantages of 4–6
creating classes 9–10
creating projects 9
debugger 300–306
events module 7
features 6
fs module 8
global objects 8
net module 8
standard library 6
stream module 7
using stream 10–11
version numbers 384
writing tests 12–13

Node Inspector 306–308
Node Package Manager. See npm
NODE_ENV setting

216, 245, 249
node-dirty module 132
node-http-proxy 338
node-inspector module 306
Node.js in Action 4, 200
Nodejitsu 327, 332, 338,

345, 392
nodemon module 214
NodeSchool 393
non-blocking I/O 3
notDeepEqual method 265
notEqual method 265
npm (Node Package Manager)

advantages of 361
creating project 9
executable files and 186
installing module 16
installing module globally 17
searching modules 17
using scripts with 13

npm-registry-couchapp
project 388

npmjs.org 16
npmsearch module 17
NS records 165
nstore module 132
nvm 334, 384
nvmw 384

INDEX 401

O

object-relational mapping. See
ORM

Object.freeze method 120
objectMode option 96
observer pattern 78
on method 10, 188
online resources 392
open method 116
OpenSSL 141, 168
openssl command 170
operating system integration

exiting program 29–30
getting platform

information 27–28
passing command-line

arguments 28–29
responding to signals from

processes 31–32
operational transformation.

See OT
operators

bitwise 59
precedence 60
for version numbers 378

Optimist module 29
optional dependencies 373–375
ORM (object-relational

mapping) 93, 289, 291
OT (operational

transformation) 256
outdated command 376

P

PaaS (Platform as a
Service) 326, 332

package.json file
overview 370–372
private property in 387
when to use 9

packets
datagram layout 152
defined 137, 140

parent process 183–184
parse method 164
parsers 83
PassThrough class 95
PATCH method 225–226
PATH environment

variable 176–177
paths, in modules 21–22
PayPal 252, 256

peer dependencies 203, 373,
375–376

PID (process ID) 123
pipe method 11
pipe symbol (|) 23
Platform as a Service. See PaaS
platform, Node as 4
pooler module 191–192
port 80, running application

on 335–336
POSIX file I/O wrappers

115–117
POSIX signals 31
POST method 223, 225–226
private modules

overview 387
sharing as URL 388
sharing with Git 387–388
sharing with private npm

registry 388
process ID. See PID
Process Monitor 322
process object 8, 16, 22–23, 297
production

deployment
Apache 332–335
cloud 327–332
keeping processes

running 336–337
nginx 332–335
running on port 80

335–336
using WebSockets 338–342

HTTP caching 342–344
maintenance

logging 353–356
package optimization

351–353
scaling

inter-process communica-
tion and 356

using cluster module
347–351

using Node proxy 344–347
--production flag 352
--prof flag 309
profiling applications 308–311
projects, creating 9
protocols, custom

inflating data with zlib 62–63
looking up key 61–62
overview 58–59
selecting database with first

byte 59–61
proxies, HTTP 162–165

prune command 352
Pub/Sub API 79
public key cryptography 141
publish command 386
publish-subscribe pattern 78
publishing modules 385–386
Pusher 356
PUT method 226

Q

Q library 128

R

RabbitMQ 78, 356
reactive computations 257
read method 116
read-eval-print loop. See REPL
Readable class 95
readable streams 86, 96–99, 179
readdir method 116
readdirSync method 118
readFile method 206
readFileSync method 118, 120
readline module 156
readlink method 116
real-time services 257–258
realpath method 116
recursive file operations

125–128
redirects 158–162
Redis client 76, 85
reference counting 184–185
ReferenceError 295–296
reflection 73–75
remote APIs 252
Remote Procedure Call. See RPC
remote services, testing 250–256
removeAllListeners method 67
removeListener method 67
rename method 116
REPL (read-eval-print loop)

inspecting running program
with 319–322

setting up 316–319
representational state transfer.

See REST
req object 157, 168
request method 163
request module 158, 162
require method

files with other extensions 21
loading modules 17
overview 17

INDEX402

res object 157
resolve method 165
resolveCname method 165
resolveNs method 165
resolveSrv method 165
resolveTxt method 165
resources 392
response-time module 243
REST (representational state

transfer) 222–231
restarting servers

automatically 212–215
restify framework 222, 229
rinfo argument 153
rmdir method 116
Rogers, Mikeal 162
routes, Express 92
RPC (Remote Procedure

Call) 83
runit 333, 336

S

%s formatting placeholder 24
--save flag 374
--save-dev flag 374
--save-exact flag 379
scaling

inter-process communication
and 356

using cluster module 347–351
using Node proxy 344–347

Schlueter, Isaac 392
scripts command 306
scripts, npm 13
seams 248
secure event 172
Secure Sockets Layer. See SSL
segments 140
semantic versioning

1.0.0 version and 379
Accept-Version header

and 230
change log 379
overview 377–378
versioning

dependencies 378–379
send method 188, 227
send module 343
Sequelize library 93
serve-favicon module 243
serve-index module 244
SERVER_CONFIG_FILE

value 333

serverless apps 201
servers

configuration 215–219
error handling 219–222
Express route

separation 209–212
HTTP 156–158
HTTPS 170–172
middleware 231–235
migrating to Express 4

242–246
REST 222–231
restarting automatically

212–215
for static sites 200–204
TCP 143–145
TCP encryption 167–170
using events to decouple

functionality 236–238
using sessions with

WebSockets 238–242
setBreakpoint function 304
setInterval method 34–35
setTimeout method 32–34
shell commands

overview 180–181
security and 181–182

should.js 276
shrinkwrap command 352
SIGHUP signal 31–32
silent option 187
Simple Object Access Protocol.

See SOAP
single page applications 201
single responsibility

principle 236
single-threaded programs 347
Sinon.JS 289
slice method 51
--slow flag 275
slug size 352
SOAP (Simple Object Access

Protocol) 223
Socket.IO 257
sockets 137, 140–141
SocketStream 258
SOLID principles 236
source maps 208
spawn method 175, 179, 181
spawnSync method 193
Splunk 356
Square 257
SRV records 165

SSL (Secure Sockets Layer) 141
Stack Exchange 391
stack traces 25
stat method 8, 116
stateless, defined 150
static middleware 343
static web server

creating 200–204
using streams 88–89

statSync method 8, 118
STATUS_CODES object 158
statusCode property 277
stderr stream 25
stdin stream 25
stdout stream 25
strace command 322, 324
streams

adapting based on
destination 109–110

backward compatibility 85
base classes for

duplex streams 101–102
inheriting 94–96
readable streams 96–99
transform streams 103–105
writable streams 99–100

from child processes 178–179
creating class 9–10
error handling using 90–91
EventEmitter and 87
fs module and 117
history of 85
HTTP and 141
inherited methods from

EventEmitter 10
optimizing 105–108
overview 7
reading and writing 22–23
static web server using 88–89
testing 111–113
third-party modules and

Express 91–93
Mongoose 93
MySQL 93–94
overview 85–87, 91–94

types of 83–84
using 10–11
using old API 108–109
when to use 84

strictEqual method 265
stringify method 58
strings 42
Stripe 291
StrongLoop 356

INDEX 403

stubs 262, 291
SuperTest module 247, 279
symlink method 116
synchronous child processes

error handling 194
overview 192

synchronous functions, speed
of 126

synchronous logging 121
SyntaxError 295
Syslog Protocol 355

T

tap module 280
tap-results module 281
TCP (Transmission Control

Protocol)
clients 145–147
defined 137, 139
net module and 141
server encryption 167–170
servers 143–145
TCP_NODELAY flag 147–149

TCP/IP suite 139
TDD (test-driven

development) 273
terminology

layers 137–138
overview 137
sockets 140–141
TCP/IP 139
UDP 139–140

Test Anything Protocol
273, 280–282

test method 281
test-driven development. See

TDD
testing

assert module
custom assertions 268–269
overview 262–263
writing tests using 263–265

Browserify 291–292
continuous integration

283–285
database storage

creating test data 287–289
dumps 286–287
mocking 288–290
overview 285–286

error handling 265–268
executable scripts with npm

link 380–381

frameworks
Mocha 273–280
overview 273
Test Anything

Protocol 280–282
modules

across Node versions
383–385

implementation testing 367
using link 381–383

overview 261–262
streams 12–13, 111–113
test harness

organizing tests 270–272
overview 270

web applications
authenticated routes

246–248
creating seams for middle-

ware injection 248–250
remote service

dependencies 250–256
text method 206
third-party modules

Express 91–93
Mongoose 93
MySQL 93–94
overview 85–87, 91–94

thread pools 142–143
throw statement 294
throws method 266–267
time method 26
time-based conditional

request 343
timeEnd method 26
timers

nextTick method 35–38
precision of 33
setInterval method 34–35
setTimeout method 32–34

TLS (Transport Layer
Security) 142

tls module 172
toString method 41
trace method 25
tracing system calls

operating systems and 325
overview 322–324
for running process 324

training 393
Transform class 95
transform streams 86, 103–105
Transmission Control Protocol.

See TCP
transport layer 137

Transport Layer Security. See
TLS

Travis CI 283–284
truncate method 116
try/catch blocks 294
TTY (user shell) 109
Twitter 251, 391
TXT records 165

U

UDP (User Datagram Protocol)
defined 137, 139–140
dgram module and 141
overview 149
sending messages to

client 153–156
transferring files 149–152

uncaught exceptions
overview 296–298
using domains 298–299

uniform resource locators. See
URLs

UNIX
executing Node applications

on 186
PATH environment

variable 176
unlink method 116
unloading modules 19
unref method 158, 184
unstable versions 384
unwatch command 302
Upstart 336
url module 164
URLs (uniform resource

locators) 388
useGlobal property 320
User Datagram Protocol. See

UDP
UTF-8 encoding 41
util.format method 24
util.inherits method 65, 95
util.pump method 85
utimes method 116

V

V8 4
version command 386
versioning

1.0.0 version and 379
Accept-Version header

and 230

INDEX404

versioning (continued)
change log 379
dependencies 378–379
operators for 378
overview 377–378

vhost module 244

W

warn method 25
watch method 213, 302
watchers command 302
watchFile method 213
watching files

fs.watch method 132–134
fs.watchFile method 132–134
overview 118, 132

web applications
accessing DOM 204–206
full-stack frameworks 256–257
real-time services 257–258
servers

automatically
restarting 212–215

configuration 215–219
error handling 219–222
Express route

separation 209–212

middleware 231–235
migrating to Express

4 242–246
REST 222–231
for static sites 200–204
using events to decouple

functionality 236–238
using sessions with

WebSockets 238–242
testing

authenticated routes
246–248

creating seams for middle-
ware injection 248–250

remote service
dependencies 250–256

using Node modules in
browser 207–209

web scraping 5
Web Workers 186
WebMatrix 4
WebOps 328
websocket-server module 257
WebSockets 257, 338–342
Windows

executing Node applications
on 185–186

PATH environment
variable 176

Winston module 354
winston-loggly transport 355
wkhtmltopdf 174
WorldPay 291
Writable class 95
writable streams 86, 99–100
write method 116
Writeable stream 179
writeFile method 58
ws module 240, 257

X

x509 command 168
XML (Extensible Markup

Language) 235
xmllint 181

Z

zero-indexed arrays 59
zeromq 356
ØMQ technology 79
zlib, inflating data with 62–63

Y
ou’ve decided to use Node.js for your next project and you
need the skills to implement Node in production. It would
be great to have Node experts Alex Young and Marc Har-

ter at your side to help you tackle those day-to-day challenges.
With this book, you can!

Node.js in Practice is a collection of 115 thoroughly tested
examples and instantly useful techniques guaranteed to make
any Node application go more smoothly. Following a common-
sense Problem/Solution format, these experience-fueled tech-
niques cover important topics like event-based programming,
streams, integrating external applications, and deployment. Th e
abundantly annotated code makes the examples easy to follow,
and techniques are organized into logical clusters, so it’s a snap
to fi nd what you’re looking for.

What’s Inside
Common usage examples, from basic to advanced
Designing and writing modules
Testing and debugging Node apps
Integrating Node into existing systems

Written for readers who have a practical knowledge of
JavaScript and the basics of Node.js.

Marc Harter works daily on large-scale projects including high-
availability real-time applications, streaming interfaces, and
other data-intensive systems. Alex Young is a seasoned JavaScript
developer who blogs regularly at DailyJS.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/Node.jsinPractice

$49.99 / Can $52.99 [INCLUDING eBOOK]

WEB DEVELOPMENT/JAVASCRIPT

M A N N I N G

“An in-depth tour
 of Node.js.”—From the Foreword by

Ben Noordhuis, Cofounder
of StrongLoop, Inc.

“Th e missing manual
 for Node.js, packed with
 real-world examples!”

—Kevin Baister
1KB Soft ware Solutions Ltd.

“Essential recipes for
the server-side

 JavaScript developer.”—Gregor Zurowski, Sotheby’s

“Useful techniques and
resources that help with

problem solving, debugging,
and troubleshooting.”

—Michael Piscatello
MBP Enterprises, LLC

Young Harter
Node.js IN PRACTICE

SEE INSERT

	Node.js in Practice
	brief contents
	contents
	foreword
	preface
	acknowledgments
	Alex Young
	Marc Harter

	about this book
	Chapter roadmap
	Code conventions and downloads
	Author Online forum

	about the cover illustration
	Part 1: Node fundamentals
	Chapter 1: Getting started
	1.1 Getting to know Node
	1.1.1 Why Node?
	1.1.2 Node’s main features

	1.2 Building a Node application
	1.2.1 Creating a new Node project
	1.2.2 Making a stream class
	1.2.3 Using a stream
	1.2.4 Writing a test

	1.3 Summary

	Chapter 2: Globals: Node’s environment
	2.1 Modules
	Technique 1 : Installing and loading modules
	Technique 2 : Creating and managing modules
	Technique 3 : Loading a group of related modules
	Technique 4 : Working with paths

	2.2 Standard I/O and the console object
	Technique 5 : Reading and writing to standard I/O
	Technique 6 : Logging messages
	Technique 7 : Benchmarking a program

	2.3 Operating system and command-line integration
	Technique 8 : Getting platform information
	Technique 9 : Passing command-line arguments
	Technique 10 : Exiting a program
	Technique 11 : Responding to signals

	2.4 Delaying execution with timers
	Technique 12 : Executing functions after a delay with setTimeout
	Technique 13 : Running callbacks periodically with timers
	Technique 14 : 4Safely managing asynchronous APIs

	2.5 Summary

	Chapter 3: Buffers: Working with bits, bytes, and encodings
	3.1 Changing data encodings
	Technique 15 : Converting buffers into other formats
	Technique 16 : Changing string encodings using buffers

	3.2 Converting binary files to JSON
	Technique 17 : Using buffers to convert raw data

	3.3 Creating your own binary protocol
	Technique 18 : Creating your own network protocol

	3.4 Summary

	Chapter 4: Events: Mastering EventEmitter and beyond
	4.1 Basic usage
	Technique 19 : Inheriting from EventEmitter
	Technique 20 : Mixing in EventEmitter

	4.2 Error handling
	Technique 21 : Managing errors
	Technique 22 : Managing errors with domains

	4.3 Advanced patterns
	Technique 23 : Reflection
	Technique 24 : Detecting and exploiting EventEmitter
	Technique 25 : Categorizing event names

	4.4 Third-party modules and extensions
	Technique 26 : Alternatives to EventEmitter

	4.5 Summary

	Chapter 5: Streams: Node’s most powerful and misunderstood feature
	5.1 Introduction to streams
	5.1.1 Types of streams
	5.1.2 When to use streams
	5.1.3 History
	5.1.4 Streams in third-party modules
	5.1.5 Streams inherit from EventEmitter

	5.2 Built-in streams
	Technique 27 : Using built-in streams to make a static web server
	Technique 28 : Stream error handling

	5.3 Third-party modules and streams
	Technique 29 : Using streams from third-party modules

	5.4 Using the stream base classes
	Technique 30 : Correctly inheriting from the stream base classes
	Technique 31 : Implementing a readable stream
	Technique 32 : Implementing a writable stream
	Technique 33 : Transmitting and receiving data with duplex streams
	Technique 34 : Parsing data with transform streams

	5.5 Advanced patterns and optimization
	Technique 35 : Optimizing streams
	Technique 36 : Using the old streams API
	Technique 37 : Adapting streams based on their destination
	Technique 38 : Testing streams

	5.6 Summary

	Chapter 6: File system: Synchronous and asynchronous approaches to files
	6.1 An overview of the fs module
	6.1.1 POSIX file I/O wrappers
	6.1.2 Streaming
	6.1.3 Bulk file I/O
	6.1.4 File watching
	6.1.5 Synchronous alternatives
	Technique 39 : Loading configuration files
	Technique 40 : Using file descriptors
	Technique 41 : Working with file locking
	Technique 42 : Recursive file operations
	Technique 43 : Writing a file database
	Technique 44 : Watching files and directories

	6.2 Summary

	Chapter 7: Networking: Node’s true “Hello, World”
	7.1 Networking in Node
	7.1.1 Networking terminology
	7.1.2 Node’s networking modules
	7.1.3 Non-blocking networking and thread pools

	7.2 TCP clients and servers
	Technique 45 : Creating a TCP server and tracking clients
	Technique 46 : Testing TCP servers with clients
	Technique 47 : Improve low-latency applications

	7.3 UDP clients and servers
	Technique 48 : Transferring a file with UDP
	Technique 49 : UDP client server applications

	7.4 HTTP clients and servers
	Technique 50 : HTTP servers
	Technique 51 : Following redirects
	Technique 52 : HTTP proxies

	7.5 Making DNS requests
	Technique 53 : Making a DNS request

	7.6 Encryption
	Technique 54 : A TCP server that uses encryption
	Technique 55 : Encrypted web servers and clients

	7.7 Summary

	Chapter 8: Child processes: Integrating external applications with Node
	8.1 Executing external applications
	Technique 56 : Executing external applications
	8.1.1 Paths and the PATH environment variable
	8.1.2 Errors when executing external applications
	Technique 57 : Streaming and external applications
	8.1.3 Stringing external applications together
	Technique 58 : Executing commands in a shell
	8.1.4 Security and shell command execution
	Technique 59 : Detaching a child process
	8.1.5 Handing I/O between the child and parent processes
	8.1.6 Reference counting and child processes

	8.2 Executing Node programs
	Technique 60 : Executing Node programs
	Technique 61 : Forking Node modules
	Technique 62 : Running jobs
	8.2.1 Job pooling
	8.2.2 Using the pooler module

	8.3 Working synchronously
	Technique 63 : Synchronous child processes

	8.4 Summary

	Part 2: Real-world recipes
	Chapter 9: The Web: Build leaner and meaner web applications
	9.1 Front-end techniques
	Technique 64 : Quick servers for static sites
	Technique 65 : Using the DOM in Node
	Technique 66 : Using Node modules in the browser

	9.2 Server-side techniques
	Technique 67 : Express route separation
	Technique 68 : Automatically restarting the server
	Technique 69 : Configuring web applications
	Technique 70 : Elegant error handling
	Technique 71 : RESTful web applications
	Technique 72 : Using custom middleware
	Technique 73 : Using events to decouple functionality
	Technique 74 : Using sessions with WebSockets
	Technique 75 : Migrating Express 3 applications to Express 4

	9.3 Testing web applications
	Technique 76 : Testing authenticated routes
	Technique 77 : Creating seams for middleware injection
	Technique 78 : Testing applications that depend on remote services

	9.4 Full stack frameworks
	9.5 Real-time services
	9.6 Summary

	Chapter 10: Tests: The key to confident code
	10.1 Introduction to testing with Node
	10.2 Writing simple tests with assertions
	Technique 79 : 9Writing tests with built-in modules
	Technique 80 : Testing for errors
	Technique 81 : Creating custom assertions

	10.3 Test harnesses
	Technique 82 : Organizing tests with a test harness

	10.4 Test frameworks
	Technique 83 : Writing tests with Mocha
	Technique 84 : Testing web applications with Mocha
	Technique 85 : The Test Anything Protocol

	10.5 Tools for tests
	Technique 86 : Continuous integration
	Technique 87 : Database fixtures

	10.6 Further reading
	10.7 Summary

	Chapter 11: Debugging: Designing for introspection and resolving issues
	11.1 Designing for introspection
	11.1.1 Explicit exceptions
	11.1.2 Implicit exceptions
	11.1.3 The error event
	11.1.4 The error argument
	Technique 88 : Handling uncaught exceptions
	Technique 89 : Linting Node applications

	11.2 Debugging issues
	Technique 90 : Using Node’s built-in debugger
	Technique 91 : Using Node Inspector
	Technique 92 : Profiling Node applications
	Technique 93 : Debugging memory leaks
	Technique 94 : Inspecting a running program with a REPL
	Technique 95 : Tracing system calls

	11.3 Summary

	Chapter 12: Node in production: Deploying applications safely
	12.1 Deployment
	Technique 96 : Deploying Node applications to the cloud
	Technique 97 : Using Node with Apache and nginx
	Technique 98 : Safely running Node on port 80
	Technique 99 : Keeping Node processes running
	Technique 100 : Using WebSockets in production

	12.2 Caching and scaling
	Technique 101 : HTTP caching
	Technique 102 : Using a Node proxy for routing and scaling
	Technique 103 : Scaling and resiliency with cluster

	12.3 Maintenance
	Technique 104 : Package optimization
	Technique 105 : Logging and logging services

	12.4 Further notes on scaling and resiliency
	12.5 Summary

	Part 3: Writing modules
	Chapter 13: Writing modules: Mastering what Node is all about
	13.1 Brainstorming
	13.1.1 A faster Fibonacci module
	Technique 106 : Planning for our module
	Technique 107 : Proving our module idea

	13.2 Building out the package.json file
	Technique 108 : Setting up a package.json file
	Technique 109 : Working with dependencies
	Technique 110 : Semantic versioning

	13.3 The end user experience
	Technique 111 : Adding executable scripts
	Technique 112 : Trying out a module
	Technique 113 : Testing across multiple Node versions

	13.4 Publishing
	Technique 114 : Publishing modules
	Technique 115 : Keeping modules private

	13.5 Summary

	appendix: Community
	A.1 Asking questions
	A.2 Hanging out
	A.3 Reading
	A.4 Training by the community, for the community
	A.5 Marketing your open source projects

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

