Pro

Hibernate
and MongoDB

Anghel Leonard

Apress:

http:///
http://www.allitebooks.org

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks
and Contents at a Glance links to access them.

Apress*

vww allitebooks.conl

http:///
http://www.allitebooks.org

Contents at a Glance

About the AUtROr ..o ——————————_——_——_—— Xiii
About the Technical REVIEWETccuusseesssssnsssssnsssssnnsssssssssssnsssssnssssanssssansssssnsssssnsssssnsssssnnnsss Xv
ACKNOWIEAdGMENLESccuuririmissssnnnnnnnnmessssssssssssssssssssssssssssnnnssessssssssssnnnnnnnessssssssnnnnnnnnssssssssnn XVii
INtroductioncccvvemimni s ———————————_———_—————— Xix
Chapter 1: Getting Started with Hibernate OGMccocusmmmsssnnmsssnnssssnsssssssssssssssssnnssssnnss 1
Chapter 2: Hibernate 0GM and MongoDB...........ccccusseemmmmsssssnmmmssssssmmssssssssssssssssssssssssnssssss 23
Chapter 3: Bootstrapping Hibernate OGM............cccccmmmnnneemnmnmsssssnnmssssssssssssssssssssssssnssnsns 37
Chapter 4: Hibernate OGM at WOrK.........cccivussemmmmmssssnsnmmssssssnssssssssnssssssssnssssssnsnsssssssnnssssss 51
Chapter 5: Hibernate 0GM and JPA 2.0 Annotations.........cccivumsemmmmmsssssnsmsssssssssssssssnsssans 121
Chapter 6: Hibernate 0GM Querying MongoDB............ccuccemmmmmssemnmmmssssssssssssssssessssssssnsans 205
Chapter 7: MongoDB e-Commerce Database Model..........c.cccuseemmmnsssnnnmmssssnsnnmssssssnsnnans 241
Chapter 8: MongoDB e-Commerce Database QUeryingcccucerrssesrssssssssssnssssanssssnnsesss 269
Chapter 9: Migrate MongoDB Database to Cloudcccemmnsemnnnsssssnnnssssssssssssssssnsnsans 283
Chapter 10: Migrating RafaEShop Application on OpenShift.........c..ccccinnneennnnnssennnnnine. 297
L1 . 355
v

[vww allitebooks.cond

http:///
http://www.allitebooks.org

Introduction

This book covers all the important aspects of developing Hibernate OGM-MongoDB applications. It provides clear
instructions for getting the most out of the Hibernate OGM-MongoDB duo and offers many examples of integrating
Hibernate OGM by means of both the Hibernate Native API and the Java Persistence API. You will learn how to
develop desktop, web, and enterprise applications for the most popular web and enterprise servers, such as
Tomcat, JBoss AS, and Glassfish AS. You'll see how to take advantage of Hibernate OGM-MongoDB together with
many common technologies, such as JSE Spring, Seam, E]JB, and more. Finally, you'll learn how to migrate to the
cloud—MongoHQ, MongoLab, and OpenShift.

Who This Book Is For

This book is for experienced Java developers who are interested in exploring Hibernate solutions for NoSQL databases.
For the opening chapters (Chapters 1-3), it's enough to be familiar with the main aspects of the ORM paradigm,

the Hibernate Native API, and JPA. The book provides brief overviews of these concepts. Starting with Chapter 4,

you should have some knowledge about developing web applications (using NetBeans or Eclipse) deployed under

the Tomcat, JBoss AS, or GlassFish AS servers. Moreover, you need to be familiar with the Java technologies and
frameworks that are commonly used in web applications, such as servlets, EJB, JSE JSP, Seam, Spring, and so on.

How This Book Is Structured

Here’s the main focus of each chapter:

Chapter 1: Getting Started with Hibernate OGM

This chapter provides a brief introduction to the Hibernate OGM world. In the first part of the chapter, I discuss the
Hibernate OGM architecture, its current features, and what we can expect in terms of future support. I then offer
several alternatives for downloading, installing, and configuring Hibernate OGM and MongoDB.

Chapter 2: Hibernate OGM and MongoDB

In this chapter, I define more clearly the relationship between Hibernate OGM and MongoDB by focusing on how
Hibernate OGM works with MongoDB. You learn how data is stored, how primary keys and associations are mapped,
and how to deal with transactions and queries.

Chapter 3: Bootstrapping Hibernate OGM

This chapter shows how Hibernate OGM can be bootstrapped by means of the Hibernate Native API and JPA.

Xix

[vww allitebooks.cond

http:///
http://www.allitebooks.org

INTRODUCTION

Chapter 4: Hibernate OGM at Work

This is one of the most important chapters. You learn how to integrate Hibernate OGM and MongoDB in the most
common web and enterprise Java applications deployed on different servers. Here is the entire list of applications:

¢ Java SE and Mongo DB—a “Hello world” example

¢ Hibernate OGM (via Hibernate Native API) in a non-JTA environment (JDBC Transactions,
Tomcat 7)

e Hibernate OGM (via Hibernate Native API) in a standalone JTA environment (JBoss JTA,
Tomcat 7)

¢ Hibernate OGM (via Hibernate Native API) in a built-in JTA environment (no EJB, GlassFish 3)
¢ Hibernate OGM (via Hibernate Native API) in a built-in JTA environment (EJB/BMT, GlassFish 3)
¢ Hibernate OGM (via Hibernate Native API) in a built-in JTA environment (EJB/CMT, GlassFish 3)
¢ Hibernate OGM (via JPA) in a built-in JTA environment (GlassFish AS 3)

e Hibernate OGM (via JPA) in a built-in JTA environment (JBoss AS 7)

e Hibernate OGM (via JPA) in a built-in JTA environment (JBoss AS 7 and Seam application)

e Hibernate OGM (via JPA) in a built-in JTA environment (GlassFish and Spring application)

¢ Hibernate OGM (via JPA) JPA/JTA in a standalone JTA environment (Tomcat)

e Hibernate OGM in a non- JTA environment (RESOURCE_LOCAL, Apache Tomcat 7)

Chapter 5: Hibernate OGM and JPA 2.0 Annotations

Mapping Java entities in Hibernate OGM can be divided into supported and non-supported annotations.
In this chapter, I show the supported annotations, as well as how much of each annotation is supported.

Chapter 6: Hibernate OGM Querying MongoDB

This chapter explores the querying capabilities of Hibernate OGM. I start with a MongoDB native query and progress
to complex queries written with Hibernate Search and Apache Lucene.

Chapter 7: MongoDB e-Commerce Database Model

At this point in the book, you will have acquired sufficent expertise to develop a real application that involves
Hibernate OGM and MongoDB. An e-commerce web site is a good start and an interesting study case, so in this
chapter I adapt a classic SQL database model to the Hibernate OGM and MongoDB style. I also examine aspects of
e-commerce database architecture.

Chapter 8: MongoDB e-Commerce Database Querying

After you develop a MongoDB e-commerce database model, it’s time to sketch and implement the main
e-commerce-specific queries. In this chapter, I use Hibernate Search and Apache Lucene to write such queries.
The result is a complete e-commerce application named RafaEShop.

XX

[vww allitebooks.cond

http:///
http://www.allitebooks.org

INTRODUCTION

Chapter 9: Migrate MongoDB Database to Cloud

In this chapter, you learn how to migrate the MongoDB e-commerce database developed in Chapter 7 into two
clouds: MongoHQ and MongoLab.

Chapter 10: Migrating RafaEShop Application on OpenShift

This final chapter is a detailed guide for migrating the e-commerce RafaEShop application to the OpenShift cloud on
two enterprise servers: JBoss AS and GlassFish AS.

Downloading the Code

The code for the examples shown in this book is available on the Apress web site, www.apress.com. You'll find the link
on the book’s information page under the Source Code/Downloads tab. This tab is located underneath the Related
Titles section of the page.

Contacting the Author

Should you have any questions or comments—or even spot a mistake you think I should know about—you can
contact me at leoprivacy@yahoo.com.

xxi

[vww allitebooks.cond

http://www.apress.com
http://leoprivacy@yahoo.com
http:///
http://www.allitebooks.org

CHAPTER 1

Getting Started with Hibernate OGM)

Chances are, you're familiar with Hibernate ORM, a powerful, robust tool for converting data between relational
databases (RDBMS) and object-oriented programming languages. As an object-relational mapping (ORM)
framework, Hibernate ORM works with SQL stores. In recent years, however, developers have become interested in
NoSQL databases, which are optimized for storing and retrieving enormous quantities of data. NoSQL databases tend
to be non-relational, open-source, horizontally scalable, distributed, and schema-free.

There are a number of ways to describe NoSQL stores, but they are generally classified by data model, particularly
the following:

e Document stores (Mongo DB, RavenDB, CouchDB and more)
e Wide column stores (Hypertable, Cassandra, HBase and more)
e Key value/tuple stores (DynamoDB, Level DB, Redis, Ryak and more)
e Graph databases (Neo4], GraphBase, InfoGrid and more)
These are also common:

e Multimodel databases (OrientDB, ArangoDB and more)

Object databases (db4o, Versant and more)

Grid and cloud databases (GigaSpaces, Infinispan and more)
e XML databases (eXist, Sedna and more)

Clearly, NoSQL stores are complex and very diverse. Some have significant user bases, while others are barely
known. And each has its own strong points and weaknesses. You could even say that NoSQL is such a keenly disputed
topic that programmers talk about it more than they actually use it.

That's likely to change, however, with the recent release of the Hibernate OGM (Object Grid Mapper) project,
which offers a complete Java Persistence API (JPA) engine for storing data in NoSQL stores. This project gives a real
boost to Java developers looking to exploit NoSQL stores, since it provides a common interface—the well-known
JPA programming model—as a front end to various NoSQL approaches. Hibernate OGM is based on the Hibernate
ORM Core engine, reuses the Java Persistence Query Language (JP-QL) as an interface for querying stored data, and
already provides support for three NoSQL stores: MongoDB, Ehcache, and Infinispan, and Apache Cassandra should
see support in the future. Despite the youth of the project, the aims of the Hibernate OGM team guarantee it has huge
potential in the future—and a lot of work to accomplish.

[vww allitebooks.cond

http:///
http://www.allitebooks.org

CHAPTER 1 © GETTING STARTED WITH HIBERNATE OGM

Features and Expectations

As this book is written, the latest Hibernate OGM distribution is 4.0.0 Beta2, which already successfully provides
a common interface for different NoSQL approaches; rapid scaling of a data store up or down; independence from the
underlying store technology; and Hibernate Search. Here’s what Hibernate OGM supports so far:

e Storing data in document stores (MongoDB)

e storing data in key/value stores (Infinispan's data grid and Ehcache)

e Create, Read, Update and Delete (CRUD) operations for JPA entities

e Polymorphic entities (support for superclasses, subclasses, and so forth)

¢ Embeddable objects (for example, embeddable classes, annotated in JPA with @Embeddable;
collections of instances of embeddable classes, annotated in JPA with @ lementCollection)

e Basictypes (such as numbers, String, URL, Date, enums)

e Associations (@ManyToOne, @neToOne, @neToMany and @ManyToMany)
e Bidirectional associations

e Collections (Set, List, Map, etc)

e Hibernate Search's full-text queries

e JPA and native Hibernate ORM API (Hibernate OGM can be bootstrapped via JPA or via
Hibernate Session, as I'll show you in Chapter 3.)

In the future, Hibernate OGM will support:
e Other key/value pair systems
e Other NoSQL engines
e Declarative denormalization
e Complex JP-QL queries, including to-many joins and aggregation

e Fronting existing JPA applications

Note Denormalization is a database technique for speeding up the read process. The idea is to reduce the number of
joins in queries as much as possible; joins slow read performance because data must be picked up from multiple tables
without disrupting their associations. While normalization promotes splitting related data into multiple associated tables,
denormalization encourages adding a small number of redundancies to limit joins. Even if some data gets duplicated,
performance generally improves.

Hibernate OGM Architecture

Because Hibernate OGM uses the existing Hibernate ORM modules as much as possible, the OGM architecture
essentially extends the ORM architecture by plugging different components in and out. Hibernate ORM converts and
persists data between relational databases and object-oriented programming languages using a set of interfaces and
classes. These include the JDBC layer, used for connecting to databases and sending queries, and the Persisters
and Loaders interfaces, responsible for persisting and loading entities and collections, as shown in Figure 1-1.

[vww allitebooks.cond

http:///
http://www.allitebooks.org

CHAPTER 1 * GETTING STARTED WITH HIBERNATE 0GM

SOL Statements —p

L———
JDBC Layer DRIVER
4— Result
JTA

Database

JNDI

Application

HIBERNATE

Figure 1-1. Hibernate ORM Architecture

Hibernate OGM is meant to accomplish the same goals, but using NoSQL stores. Thus, Hibernate OGM doesn't
need the JDBC layer anymore and instead comes with two new elements: a datastore provider and a datastore dialect,
as shown in Figure 1-2. Both of these act as adaptors between Hibernate OGM Core and the NoSQL store. (A datastore
is an adaptor that connects the core mapping engine with the specific NoSQL technology.)

o N

DatastoreProvider

(

Application INTERACTION

GridDialect

HIBERNATE

pu
=T
=
=
(YN
]
==

Database '

The datastore provider is responsible for managing connections to NoSQL stores, while the datastore dialect
manages communications with NoSQL storage engines. Practically, these notions are materialized in two interfaces,
org.hibernate.ogm.datastore.spi.DatastoreProvider and org.hibernate.ogm.dialect.GridDialect. The
DatastoreProvider interface is responsible for starting, maintaining, and stopping a store connection, while the
GridDialect interface deals with data persistence in NoSQL stores. Moreover, the Persisters and Loaders interfaces
were rewritten to support NoSQL store features.

Currently there are four implementations of DatastoreProvider:

Figure 1-2. Hibernate OGM datastore provider and datastore dialect

e EhcacheDatastoreProvider (for NoSQL Encache)
e InfinispanDatastoreProvider (for NoSQL Infinispan)
e MongoDBDatastoreProvider (for NoSQL MongoDB)

e MapDatastoreProvider (for testing purposes)

vww allitebooks.conl

http:///
http://www.allitebooks.org

CHAPTER 1 © GETTING STARTED WITH HIBERNATE OGM

There are five implementations of GridDialect for abstracting Hibernate OGM from a particular grid

implementation:

e EhcacheDialect (for EhCache)

e InfinispanDialect (for Infinispan)

e MongoDBDialect (for MongoDB)

e HashMapDialect (for testing)

e GridDialectlogger (for logging calls performed on the real dialect)

Note If you decide to write a new datastore, you have to implement a DatastoreProvider and a GridDialect.
Find more details about this at https://community. jboss.org/wiki/HowToWriteADatastoreInHibernateOGM.

Persisting Data

Through the modified Loaders and Persisters interfaces, Hibernate OGM is capable of saving data to NoSQL stores.
Before doing so, however, OGM needs to represent and store the data internally. For this purpose, Hibernate OGM
retains as much as it can of the relational database concepts, and adapts these notions according to its needs. Some
concepts, like storing entities, follow the relational model fairly completely, while others, like storing associations,
do so partially. Data, therefore, is stored as basic types (entities are stored as tuples); the notions of primary key and
foreign key are still employed; and the application data model and the store data model relationships are abstractly
maintained through notions like table and column.
OGM uses the tuple to represent the basic unit of data. Tuples are meant to conceptually store entities as a
Map<String, Object>.The key is the column name (the entity property/field or the @olumn annotation value) and
the value is the column value as a primitive type (see Figure 1-3).

r

@Entity

@Table{name="players")

Relational Database Model

Hibernate OGM Tuples

J

ppk name surname birthday key value
i 1 Rafael Nadal 03 Jun, 1986 |
name ROV Ppk -
Novak Djokovic 22 May, 1987 name Rafael
surname surname Nadal
i Fede: 54 1981
birthday Foger erer: ach birthdate 03 Jun, 1986

A

Map=<S8tring, Object>

TUPLE

X

A

Figure 1-3. The Hibernate OGM tuple

vww allitebooks.conl

https://community.jboss.org/wiki/HowToWriteADatastoreInHibernateOGM
http:///
http://www.allitebooks.org

CHAPTER 1 * GETTING STARTED WITH HIBERNATE 0GM

Each tuple, representing an entity instance, is stored in a specific key. An entity instance is identified with a

specific key lookup composed of the table name, the primary key column name(s), and the primary key column
value(s). See Figure 1-4.

r ~

@Entity
@Table{name="players"}
' Relational Database Model
ppk name surname birthday gpecific key TUPLE
T [1 Rafael Nadal 03 Jun, 1986 || {
name 2 Novak Djokovic | 22 May, 1987 - - ppk =1, ;
surname layers,ppk, 1 name = "Rafael",
birthday 3 Roger Federer & Aug, 1981 e e surname = "Nadal",
birthday = "03 Jun, 19536"
L :

Figure 1-4. Hibernate OGM storing an entity instance

Note Java collections are represented as a list of tuples. The specific key is composed of the name of the table
containing the collection, and column names and column values representing the foreign key.

Figure 1-5 shows the relational database model of a many-to-many association.

http:///

CHAPTER 1 © GETTING STARTED WITH HIBERNATE OGM

@Entity ‘
@Table(name="players")

Relational Database Model
ppk name surname birthday
ppk 1 Rafael Nadal 03 Jun, 1986
- 2 Novak Djokovic | 22 Msy, 1987
surname
birthday 3 Roger Federer 8 Aug, 1981 1
tournaments n players table
tpk _fk ppk_fk
tournaments_tpk| players_ppk|
& 1
7 1
3 1
9 1
7 2
8 2
9 2
[3
T 3
@Entity players_tournaments table *
@Table{name="tournaments")
n Relational Database Model .
itpk indicative
[Roland Garos
7 US Cpen
tpk 8 Australian Cpen
indicative 9 Wimbledon
players fournaments table

v

Associations in Hibernate OGM, in contrast, are stored as sets of tuples of type Map<String, Object>.For
example, for a many-to-many association, each tuple stores a pair of foreign keys. Hibernate OGM stores the
information necessary to navigate from an entity to its associations in a specific key composed of the table name
and the column name(s) and value(s) representing the foreign key to the entity we come from. This @anyToMany
association is stored internally by Hibernate OGM as shown in Figure 1-6. (You can see the association tuples
starting with row 8.) This approach fosters reachable data via key lookups, but it has disadvantages: that data may be
redundant since the information has to be stored for both sides of the association.

Figure 1-5. Relational database model of a many-to-many association

http:///

CHAPTER 1 * GETTING STARTED WITH HIBERNATE 0GM

r Y

key value

players, ppk, 1 {ppk=1, name="Rafael", surname="Nadal", birthday="03 Jun, 1986"}
players, ppk, 2 {ppk=2, name="Novak", surname="Djokovic", birthday="22 May, 1987"}
players, ppk, 3 {ppk=3, name="Roger", surname="Federer", birthday="8 Aug, 1981"}
tournaments, tpk, 6 {tpk=6, indicative="Roland Garos"}
tournaments, tpk, 7 {tpk=7, indicative="US Open"}
tournaments, tpk, & {tpk=8, indicative="Australian Open"}
tournaments, tpk, 9 {tpk=9, indicative="Wimbledon"}
players_tournaments, ppk_fk , 1 {{ppk_fk =1, tpk_fk =6}, {ppk_fk=1, tpk_fk=7}, {ppk_fk =1, tpk_fk =8}, {ppk_fk=1, tpk _fk =03}
players_tournaments, ppk_fk, 2 {{ppk_fk =2, tpk_fk=T7}, {ppk_fk =2, tpk_fk =8}, {ppk_fk =2, tpk_fk =93}
players_tournaments, ppk_fk , 3 {{ppk_fk =3, tpk_fk =6}, {ppk_fk =3, tpk_fk =7}}
players_tournaments, tpk_fk , 6 {{ppk_fk=1, tpk_fk=6}, {ppk_fk=3, tpk_fk=6}}
players_tournaments, tpk_fk ,7 {{ppk_fk=1, tpk_fk=7}, {ppk_fk =2, tpk _fk=T}, {ppk_fk=3, tpk_fk=T}}
players_tournaments, tpk_fk , 8 {{ppk_fk=1, tpk_fk =8}, {ppk _fk =2, tpk _fk =8}}

| players_tournaments, tpk_fk , 9 {{ppk_fk=1, tpk_fk =9}, {ppk_fk =2, tpk_fk =9}}

Figure 1-6. Hibernate OGM data grid of a many-to-many relationship
Hibernate OGM stores JPA entities as tuples instead of serializable blobs. This is much closer to the relational
model. There are a few disadvantages in serializing entities:

e Entities that are in associations with other entities must be also be stored, very possibly
resulting in a big graph.

e It’s hard to guarantee object identity or even consistency among duplicated objects.

e It'shard to add or remove a property or include a superclass and deal with deserialization
issues.

Note Hibernate OGM stores seeds (when identifiers requires seeds) in the value whose key is composed of the table
name and the column name and column value representing the segment.

Obviously, this representation is not common to all NoSQL stores. It’s different, for instance, for MongoDB,
which is a document-oriented store. In such cases, GridDialect is used, and its main task consists of converting this
representation into the expected representation for the NoSQL store. For MongoDB, the MongoDBDialect converts it
into MongoDB documents.

Note Since NoSQL stores are not aware of the schema notion, Hibernate OGM tuples are not tied to schemas.

http:///

CHAPTER 1 * GETTING STARTED WITH HIBERNATE OGM

Querying Data

Of course, Hibernate OGM needs to offer a powerful querying data engine and, at the time of this writing, this is
implemented in a number of different ways depending on the nature of the query and the NoSQL querying support.
CRUD operations are the responsibility of the Hibernate ORM engine and they follow a straightforward process.
Independently of JPA or the Hibernate Native API, Hibernate ORM delegates persistence and load queries to the OGM
engine, which delegates CRUD operations to DatastoreProvider/GridDialect, which interacts with the NoSQL store.

Figure 1-7 depicts this process.

delegates DatastoreProvider
datastore CRUD —— INTERACTION
operations GridDialect 3

Database '

Because Hibernate OGM wants to offer the entire JPA, it needs to support JP-QL queries. This implies a
sophisticated query engine (QE) that should be sensitive to the particular NoSQL store querying capabilities and to
JP-QL query complexity. The most optimistic instance is NoSQL with query capabilities and simple JP-QL queries.
In this case, the query is delegated to the NoSQL-specific query translator, and the results are managed by Hibernate
OGM to compose the specific objects (see Figure 1-8).

' . Query Engine ‘

delegates
queries

i) . Database '

Figure 1-8. Hibernate OGM and JP-QL simple queries (NoSQL with query support)

Application

HIBERNATE

o
=T
=
(=
(1N]
]
A

A

Figure 1-7. Hibernate OGM and CRUD operations

l

simple
queries

Application

INTERACTION

JP-QL Parser

=
=
=
o
(18]
Q
=

HIBERNATE

A less optimistic case arises when a NoSQL store does not support the current query. In this case, the JBoss Teiid
data virtualization system intervenes to split the JP-QL query into simple queries that can be executed by the data
store. (See www. jboss.org/teiid for more information). Teiid also processes the results to obtain the final query
result, as Figure 1-9 shows.

http://www.jboss.org/teiid
http:///

CHAPTER 1 * GETTING STARTED WITH HIBERNATE 0GM

X

Query Engine

delegates
queries

. - Database '

Figure 1-9. Hibernate OGM and JP-QL complex queries

Application e
INTERACTION

gueries queries

JP-QL Parser
Datastore
query tranglator

o
=T
=
e
w
]
e

HIBERNATE

The worst case is a NoSQL store that has little or no query support. Since this is a hard case, it requires heavy
artillery, like Hibernate Search, an enterprise full-text search tool based on Hibernate Core and Apache Lucene.
Basically, the Hibernate Search Indexing Engine receives events from the Hibernate ORM Core and keeps the entity
indexing process up to date, while the JP-QL Query Parser delegates query translation to the Hibernate Search Query
Engine (for simple queries) or to Teiid (for intermediate to complex queries), and executes them using Lucene indexes
(see Figure 1-10). In addition, Hibernate Search provides clustering support and an object-oriented abstraction that

includes a query domain-specific language (DSL).
e — |

’ B 4
Ll Ll =3 @
= = 5 simple w & u
icati o z [
Apphcaiios g ':z: delegates B queEries queries g & | READS j g indexes stored, |
il Ml queries 9 £ & moexe? @8 ntosoL
o m % g 5 [(optional)
- -) T g
simple e =
queries L
ti h T Database
entity change events WRITES
ty chang) HIBERNATE s
' SEARCH

4

Figure 1-10. Hibernate OGM and JP-QL queries (little or no NoSQL support)

Get the Hibernate OGM Distribution

At the time of writing, the Hibernate OGM distribution was 4.0.0.Beta2. The best way to get it with full documentation,
sources, and dependencies is to access www.hibernate.org/subprojects/ogm.html and download the corresponding
ZIP/TGZ archive.

Unfortunately, this isn’t as simple as it might seem. Since the focus of this book is Hibernate OGM and MongoDB,
you'll want to locate the JARs dedicated to “connecting” OGM with MongoDB: hibernate-ogm-mongodb-x. jar and
mongo-java-driver-x.jar. (MongoDB has client support for most programming languages; this is the MongoDB Java
driver developed by MongoDB team and used by Hibernate OGM to interact with MongoDB). In Hibernate
OGM version 4.0.0.Betal, you'll find these JARs in the \hibernate-ogm-4.0.0.Betai\dist\1ib\mongodb folder:
hibernate-ogm-mongodb-4.0.0.Betal.jar and mongo-java-driver-2.8.0.jar. In Hibernate OGM version 4.0.0.Beta2,
the \mongodb folder is missing, so the new JARs are not bundled out of the box.

http://www.hibernate.org/subprojects/ogm.html
http:///

CHAPTER 1 © GETTING STARTED WITH HIBERNATE OGM

This means you can still use hibernate-ogm-mongodb-4.0.0.Beta1l. jar and mongo-java-driver-2.8.0.jar with
Hibernate OGM 4.0.0.Beta2, or you can compile the source code of Hibernate OGM 4.0.0.Beta2 to obtain the newest
snapshots. For compiling the code, visit www. sourceforge.net/projects/hibernate/files/hibernate-ogm/4.0.0.Beta2/.
I have compiled the code and obtained the MongoDB JAR, named hibernate-ogm-mongodb-4.0.0-SNAPSHOT.

If you take a look at the Hibernate OGM change log shown in Figure 1-11, you'll see that Hibernate OGM 4.0.0.Beta2
has been upgraded to support MongoDB Java Driver 2.9.x. This means that if you decide to compile the code and use the
resulting snapshot of the MongoDB profile, you can also add a 2.9.x MongoDB Java driver, instead of 2.8.x.

[= changelogbd |
k—libernate OGM Changelog

[¥R % N T

1.0.0.BetaZ (14-01-2013)

1 & n

e Improvement
¥ [OGHM-253] - Upgrade to MongoDB driver 2.9.x

3 W o

1C #% Task

¥ [OGM-204] - S5top skipping tests once Infinispan has fixed the
* [OGHM-250] - Update to Infinispan 5.2.0.Beta4

* [OGM-252] - Upgrade to Hibernate CEM 4.1.7

14 # [OGM-2E55] - Assemble as a JBoss Module during releases

[OGHM-25T7] - Update to Hibermate OBM 4,1.9.Final

[CGM-258] - Upgrade to Inmfinispan 5.2.0.CR1

1 * [OGHM-260] - Upgrade to Hibernate Search 4.2.0.CEl

I
if [WRI % R)

1 &y n
x

[T = =]

4.0.0.Betal (03-10-2012)

1Ry R

Figure 1-11. Hibernate OGM change log

For this book, I chose to use the Hibernate OGM 4.0.0.Beta2 with Hibernate OGM for MongoDB 4.0.0.Betal.

Getting Hibernate OGM from the Maven Central Repository

You can also download Hibernate OGM from the Maven Central Repository (www.search.maven.org/). Search for
“hibernate ogm,” which will return what you see in Figure 1-12.

10

http://www.sourceforge.net/projects/hibernate/files/hibernate-ogm/4.0.0.Beta2/
http://www.search.maven.org/
http:///

CHAPTER 1 * GETTING STARTED WITH HIBERNATE 0GM

The Central RepOSitory SEARCH | ADVANCED SEARCH | BROWSE | QUICK STATS
hibernate ogm

Hew: App Scan Advanced Search | APl Guide | Help
Search Results =1 = displaying 1to 6 of 6

Groupld Artifactld Latest Version Updated Download

org.hibernate.ogm hibernate-ogm-parent 4.0.0.Beta? all (4) 14-Jan-2013 pom tests.jar

org hibernate.ogm hibernate-ogm-maodules 4.0.0.Beta? 14-Jan-2013 pom jbossas-71-distzip tests jar

org.hibernate.oom hibernate-oom-infinispan 4.0.0Beta? all (2) 14-Jan-2013 pom jar javadocjar sources.jar tests.jar

org.hibernate.ogm hibernate-sgm-ehcache 4.0.0.Beta2 all (2} 14-Jan-2013 pom jar javadoc.jar sources jar testsjar

org.hibernate.ogm hibernate-ogm-core 4.0.0Beta? all (4) 14-Jan-2013 pom jar javadoc.jar sources jar tests.jar

org hibernate ogm hibernate-ogm-mongodb 4.0.0Betal 02-0ct-2012 DpOM jar javadocjar sources jar testsjar

Figure 1-12. Hibernate OGM distribution listed in Maven Central Repository

As you can see, it’s very easy to dowload the Hibernate OGM core and profiles, including the MongoDB profile.
You can download the JARs or the POMs (Project Object Model) files.

Getting Hibernate OGM from the Maven Command Line

Hibernate OGM is also available from the Apache Maven command line. Obviously, Maven must be installed and
configured on your computer. First, you have to modify your settings.xml document, which is stored in the Maven local
repository .m2 folder (the default location). For Unix/Mac OS X users, this folder should be ~/.m2; for Windows users,
it's C:\Documents and Settings\{your username}\.m2 or C:\Users\{your username}\.m2.Ifthe settings.xml
file doesn’t already exist, you should create it in this folder, as shown in Listing 1-1. (If you already have this file, just
modify its contents accordingly.)

Note If it seems too complicated to create or modify settings.xml since it's so verbose, you can simply use
<repository> and <dependency> tags in your pom.xml.

Listing 1-1. Settings.xml

<?xml version="1.0" encoding="UTF-8"?>

<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/SETTINGS/1.0.0
http://maven.apache.org/xsd/settings-1.0.0.xsd">
<!-- jboss.org config start -->
<profiles>
<profile>
<id>jboss-public-repository</id>
<repositories>
<repository>
<id>jboss-public-repository-group</id>
<name>JBoss Public Maven Repository Group</name>

11

http://maven.apache.org/SETTINGS/1.0.0
http://www.w3.org/2001/XMLSchema-instance
http://maven.apache.org/SETTINGS/1.0.0
http://maven.apache.org/xsd/settings-1.0.0.xsd
http:///

CHAPTER 1 © GETTING STARTED WITH HIBERNATE OGM

<url>https://repository.jboss.org/nexus/content/groups/public-jboss/</url>
<layout>default</layout>
<releases>
<enabled>true</enabled>
<updatePolicy>never</updatePolicy>
</releases>
<snapshots>
<enabled>true</enabled>
<updatePolicy>never</updatePolicy>
</snapshots>
</repository>
</repositories>
<pluginRepositories>
<pluginRepository>
<id>jboss-public-repository-group</id>
<name>JBoss Public Maven Repository Group</name>
<url>https://repository.jboss.org/nexus/content/groups/public-jboss/</url>
<layout>default</layout>
<releases>
<enabled>true</enabled>
<updatePolicy>never</updatePolicy>
</releases>
<snapshots>
<enabled>true</enabled>
<updatePolicy>never</updatePolicy>
</snapshots>
</pluginRepository>
</pluginRepositories>
</profile>
<profile>
<id>jboss-deprecated-repository</id>
<repositories>
<repository>
<id>jboss-deprecated-repository</id>
<name>JBoss Deprecated Maven Repository</name>
<url>https://repository.jboss.org/nexus/content/repositories/deprecated/</url>
<layout>default</layout>
<releases>
<enabled>true</enabled>
<updatePolicy>never</updatePolicy>
</releases>
<snapshots>
<enabled>false</enabled>
<updatePolicy>never</updatePolicy>
</snapshots>
</repository>
</repositories>
</profile>
<!-- jboss.org config end -->
</profiles>

12

https://repository.jboss.org/nexus/content/groups/public-jboss/%3C
https://repository.jboss.org/nexus/content/groups/public-jboss/%3C/
https://repository.jboss.org/nexus/content/repositories/deprecated/%3C
http:///

CHAPTER 1 * GETTING STARTED WITH HIBERNATE 0GM

<!-- jboss.org config start --»>

<activeProfiles>
<activeProfile>jboss-public-repository</activeProfile>
</activeProfiles>
<!-- jboss.org config end -->
</settings>

Note You can modify the default location of the Maven local repository by adding into settings.xml the tag
localRepository, like this: <localRepository>new repository path</localRepository>

Next, you need to create a pom.xml file. Obviously, this file’s content depends on what you want to obtain from
the Hibernate OGM repository. For example, the pom.xml in Listing 1-2 will download the Hibernate OGM Core
distribution (including dependencies) and store it locally in D: /Hibernate_OGM (you can also use the default . /m2
folder, but this makes it much clearer and easier to navigate).

Listing 1-2. Pom.xml

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>maven.hibernate.ogm</groupId>
<artifactId>Maven HOGM</artifactId>
<version>1.0-SNAPSHOT</version>
<packaging>pom</packaging>
<name>Maven_HOGM</name>
<dependencies>
<dependency>
<groupId>org.hibernate.ogm</groupId>
<artifactId>hibernate-ogm-core</artifactId>
<version>4.0.0.Beta2</version>
</dependency>
</dependencies>
<build>
<directory>D:/Hibernate OGM</directory>
<defaultGoal>dependency:copy-dependencies</defaultGoal>
</build>
</project>

The final step consists of executing the Maven mvn command. To do so, open a command prompt, navigate to the

folder containing the pom.xml file, and run the mvn command (see Figure 1-13). After a few seconds, you should find
the Hibernate OGM binary (including dependencies) in the path specified in the pom.xml file.

13

http://maven.apache.org/POM/4.0.0
http://www.w3.org/2001/XMLSchema-instance
http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd
http:///

CHAPTER 1 © GETTING STARTED WITH HIBERNATE OGM

EX Command Prompt EI@

D:“~\Apresssapps~NetBeans“Maven_HOGM>mun -
[INFO]1 Scanning for projects...

[INFO1]
[INFO]

[INFO] Building Mawven_HOGH 1.B8-SHAPSHOT

LINFO]

[INFO1

[INFO]1 —- maven—dependency—plugin:2._1:copy—dependencies {(default—cli) B Maven_H

0OGH ———

[INFO] Copying antlr-2.7.7.jar to D:“\Hibernate_ OGM“dependencysantlr-2.7.7.jar

[INFO1 Copying domd4j—1.6.1.jar to D:“Hibhernate_OGM“dependencysdom4j—1.6.1.jar

[INFO1 Copying 8T4-4_B_4_jar to D:“\Hibernate_OGM:dependency~5T4-4_ 8.4 _jar

[INFO] Copying antlr-3.4.1-preview—jhossorg—#.jar to D:“Hibernate_ OGM-dependency
antlyr—3._4.1-preview—jhossorg—8.jar

[INFO1 Copying antlr—runtime—-3.4.1-preview—jhossorg—8A.jar to D:“Hibernate_0GM\de

pendencysant lr—runtime—3_4_.1-preview—jhossorg—0. jar

[INFO] Copying stringtemplate-3.2.1.jar to D:~\Hibernate_ OGM~dependency:stringtem

plate-3.2.1.jar

glgFg]_Cupying lucene—core—-3.6.8.jar to D:“Hibernate_O0GM“dependency“lucene—core—
.6.8_jar

[INFO] Copying hibernate—-core—4.1.7.Final.jar to D:“Hibernate_ O0GM:dependency~hib

ernate—core—4.1.7?_.Final. jar

[INFO1 Copying hibernate—entitymanager—4.1.%2.Final.jar to D:“Hibernate_O0GM“depen

dencyshibernate—entitymanager—4.1.9.Final. jar

[INF0O] Copying hibernate—search—engine—4.2.8.Betal.jar to D:“Hibernate_OGHM“~depen

dencyshibernate—search—engine—4.2.89._Betal. jar

[INFO1 Copying hibernate—-commons—annotations—4.8.1.Final.jar to D:“Hibernate_OGM
dependencyshibernate—commons—annotations—4.8.1.Final. jar

[INF0O] Copying hibernate—jpa—2.B-api—1.8.1.Final.jar to D:“Hibernate_OGHM~depende

ncyshibernate—jpa-2.8-api—1.8.1.Final. jar

[INFO1 Copying hibernate—jpgl-parser—1.B.8.Alphal.jar to D:“Hihernate_OGM-depend

encyshibernate—jpgl—-parser—1.8.8.Alphal. jar

[INFO] Copying hibernate—ogm—core—4.8.8_Beta2.jar to D:“Hibernate_OGM:dependency
hibernate—ogm—core—4.8.8.BetaZ. jar

[INFO1 Copying javassist—-3.17.1-GA.jar to D:“Hibernate_O0GM-dependency:javassist—

3.17.1-GA. jar

[INFO] Copying jbhoss—logging—-3.1.8.GA.jar to D:~Hibernate_ OGM:dependency~jhoss—1

ogging—3.1.8.GA. jar

[INFO1 Copying jhoss—transaction—api_1.1_spec—1.A.@.Final.jar to D:“Hibernate_0G

Muwdependencysjboss—transaction—api_1.1_spec—-1.@8.8.Final. jar

LINFO]

[INFO]1 BUILD SUCCESS

[INFO1

[INFO]1 Total time: 1.412=

[INFO] Finished at: Fri Mar 15 16:86:24 YET 2813

[INFO] Final Memory: B8M/114M

[INFO1

D :“~Apresssapps“NetBeans“Maven_HOGM> &

m

Figure 1-13. Running the mvn command

Adding MongoDB Artifacts

Now you know how to obtain the Hibernate OGM 4.0.0.Beta2 Core (and dependencies), but without any NoSQL data
store artifacts. Currently, you can add artifacts for the following NoSQL stores: Ehcache, Infinispan, and MongoDB.
Since our focus is Hibernate OGM and MongoDB, you'll need to add MongoDB artifacts by placing the following
dependency into the pom. xml file:

<dependency>
<groupId>org.hibernate.ogm</groupId>
<artifactId>hibernate-ogm-mongodb</artifactId>
<version>4.0.0.Betai</version>
</dependency>

14

[vww allitebooks.cond

http:///
http://www.allitebooks.org

CHAPTER 1 * GETTING STARTED WITH HIBERNATE 0GM

Note For Infinispan, just replace the artifact id with hibernate-ogm-infinispan, and for Ehcache with

hibernate-ogm-ehcache.

Now, running the mvn command again will add two more JARs, hibernate-ogm-mongodb-4.0.0.Betal. jar and

mongo-java-driver-2.8.0.jar, as shown in Figure 1-14. The MongoDB drivers are also available for download as

JARs at www.mongodb.org/display/DOCS/Drivers address.

=8 Command Prompt E'@

[INFO1]
[INFO] BUILD SUCCESS
LINFO]
[INFOQ]1 Total time: 1.412s

[INFO]1 Finished at: Fri Mar 15 16:86:24 UET 26813
[INFO] Final Memory: BM-114M

LINFO]
D:~Apresssapps NetBeans*Maven_HOGM>»mun
[INFO1 8Scanning for projects...

LINFO]
LINFO]
[INFO] Building Maven_HOGHM 1.8-SNAPSHOT
[INFO1
LINFO]
[INFO] —- maven—dependency—plugin:2.1:copy—dependencies {(default—clid @ Maven_H

-

INFO1 Copying hihernate—ugm—mongudh—4.B.B.Betai.jaP to D:“\Hibernate_O0GH“depende
cy\hlbernate—ugm—mungudb 4.8.8_Betal. Jar

INFO1 Copying mnngo Jaua driver—2.8.8.jar to D:\Hibernate_ OGM~dependencysmongo—
java—driver—2.8.68.

[INFO] dom4j—1. 6 1 Jar already exists in destination.

[INFO] 8T4-4.8.4.jar already exists in destination.

[INFO1 antlpr—-3.4.1-preview—jhossorg—B.jar already exists in destination.

[INFO1 antlp-runtime-3.4.1-preview—jhossorg—-@.jar already exists in destination.

[INFO] stringtemplate—-3.2.1.jar already exists in destination.

[INFO]1 lucene—core—-3.6.8.jar already exists in destination.

[INFO1 hibernate—core—4.1.9.Final.jar already exists in destination.

[INFQO] hibernate—entitymanager—4.1.9.Final.jar already exists in destination.
[INFO] hibernate—search—engine—4.2.8._Betal. jar already exists in destination.
[INFO1 hibernate—commons—annotations—4.8.1.Final. jar already exists in destinati

on .
[INFO] hibernate—jpa—2.8-api—-1.08.1.Final.jar already exists in destination.
[INFO] hibernate—jpgl-parser—1.8.8.Alphal.jar already exists in destination.
[INFO]1 hibernate—ogm—core—4.@.8.Beta2.jar already exists in destination.

[INFO]1 javassist—3.17.1-GA.jar already exists in destination.

[INFO]1 jboss—logging—-3.1_B_.GA.jar already exists in destination.

EINFO] Jjbhoss—transaction—api 1.1 spec—-1.8.8._Final.jar already exists in destinat
ion.
[INFQ1
[INFO1 BUILD SUCCESS
LINFO]
[INFO] Total time: 1.398s

[INFOQ] Finished at: Fri Mar 15 16:87:17 UET 2813
[INFO]1 Final Memory: 9M-164M

LINFO]
D:~Apress~appssMetBeans“Maven_HOGM>_

m

Figure 1-14. Running the mvn command after adding MongoDB artifacts

15

http://www.mongodb.org/display/DOCS/Drivers
http:///

CHAPTER 1 © GETTING STARTED WITH HIBERNATE OGM

Getting a Hibernate OGM Distribution Using the NetBeans IDE

If you're a NetBeans fan, it’s much simpler to use Maven from a NetBeans Maven project. This section describes the
main steps in creating such a project to obtain the Hibernate OGM distribution as a NetBeans Library ready to be
used in other projects. Launch NetBeans (I tested on NetBeans 7.2.1) and follow these steps:

1. From the File menu, select the New Project option. In the New Project wizard, select
Maven in the Categories list and POM Project in the Projects list, as shown in Figure 1-15.

O Mew Project \EI

Steps Choose Project

1. Choose Project Categories: Projects:
2 . [)} Java '&' Java Application
.....)\ JavaFy 'E) Web Application
_____ 1) JavaWeb @ EIE Module
_____ Y laveEE ﬁ?i Enterprise Application
_____ R e % Enterprise Application Client
= 05Gi Bundle
""" L Java ME B NetBeans Module
""" Ao Maven % NetBeans Application
----- 4 PHP ‘E} MNetBeans Module Suite
.....) Groowy [P OM Project
..... Jb CiC++ {[ile Project from Archetype
,,,,, 1| NetBeans Modules [l Project with Existing POM
B[Samples
Description:
A Maven pom-packaging project, usable as a parent andfor aggregator for other modules.

< Back Finish Cancel] [Help

Figure 1-15. Creating a POM project with NetBeans 7

Note If Maven isn’t available in your NetBeans distribution, you can install it by following the tutorial about third-party
plug-in installations at http://wiki.netbeans.org/InstallingAPlugin.

2. Type the project name (Maven_HOGM), select the project location (D: \Apress\apps\
NetBeans), type the group id (maven.hibernate.ogm) and the version (1.0-SNAPSHOT)
and click Finish as shown in Figure 1-16. (Note that I've used example names and
locations here. Feel free to choose your own.) The empty project will be created and listed
under the Projects panel.

16

http://wiki.netbeans.org/InstallingAPlugin
http:///

CHAPTER 1 * GETTING STARTED WITH HIBERNATE 0GM

O Mew Project @

Steps Hame and Location

1. Choose Project Project Mame: |Maven_HOGM|

2. Mame and Location
Project Location: |D:\Apress\apps\NetBeans

Project Folder: |D:‘\Apress\apps\NetBeans\Maven_HOGM

Artifact Id: Maven_HOGM

Group Id: maven. hibernate.ogm

Version: 1.0-5MAPSHOT

Package: maven. hibernate.ogm.maven_hogm (Optional)

Mext = Einigh ” Cancel ” Help

Figure 1-16. Setting the project name and location

3. ExpandtheMaven HOGM | Project Filesnode and locate pom.xmland settings.xml.
If settings.xmlisn'tlisted, right-click on the Project Files node, selectCreate settings.xml
(as shown in Figure 1-17), and fill the file with the appropriate content.

(] NetBeans IDE7.2.1
File Edit View Mavigate Source Refactor Ru

']JF_‘I 'El % : :::default

Projects % |Files | Services
E-{ile Maven_HOGM
-- 4 Modules

...... D Create settings.xml

Figure 1-17. Creating the settings.xml file from NetBeans 7

4. Edit pom.xml according to your needs. At this point, both files should be ready to be
processed by Maven.

5. Right-click on the Maven-HOGM node and select Clean and Build. Wait until the task ends
successfully, then expand the Maven_0GM | Dependencies node to see the downloaded JARs.

17

http:///

CHAPTER 1 © GETTING STARTED WITH HIBERNATE OGM

6. Now you can create a NetBeans library. (I recommend that you create this library
because the applications developed with NetBeans, in later chapters, refer to it.) From
the NetBeans main menu, select Tools | Ant Libraries.Inthe Ant Library Manager,
click the New Library button, provide a name for the library, such as Hibernate OGM
Core and MongoDB, and click OK. Next, click on the Add JAR/Folder button and navigate to
the JARSs (if you followed my example path, you'll find them in D: \Hibernate OGM\
dependency, as shown in Figure 1-18). Select all of the JARs and add them to this library.
Click OK to finish creating the library.

E:] Ant Library Manager @
Libraries location: :Glnbal Libraries v:
Libraries:

..... &) Eeans Binding + | Library Mame: |Hibernate OGM Core and MongoDB
----- B9 CDC Build System Ant Utilities Classpath | 5 o
----- & CDC Java Embedded Client B| PR | ENA0OE
----- =5 Comet from GlassFish _|| | Ubrary Classpath:
..... =5 Copylibs Task MW C: \Hibernate_OGM\dependency\ST4-4.0.4.jar - [Add JAR Folder...]
..... & Edipselink (JPA 2.0) D:\Hibernate_0GM\dependencyantlr-2.7. 7. jar b
..... & EdipseLink from GlassFish D:'Hibernate_OGM\dependency\antir-3. 4. 1-preview- Add URL...
_____ ﬁ EdipseLink-MadelGen (TPA 2. D:\H!bernate_OGM'n,dependency'».anﬂr-runhme—.l-’l. 1-
_____ ﬁ heach D:'\Hibernate_OGM\dependency'dom<i-1.6. 1.jar [Remove]
ETCOTIE IS [:\Hibernate_OGM\dependency thibernate-commaons-
""" ﬁ Groovy 1.8.6 D:\Hibernate_0GM\dependencythibernate-core-4. 1. 5 Move Up
""" ﬁ Hibernate D:\Hibernate_OGM\dependencythibernate-entitymar
""" = Hibernate JPA D:‘\Hibernate 0OGM\dependencythibernate-jpa-2.0-a| [Mowve Down]
..... t—‘BHibernate OGM Core and Mo D ‘\Hibernate_OGM\dependency thibernate-jpgl-parse
..... & Jakarta Slide Ant WebDAY D {Hibernate_0GM\dependency thibernate-ogm-core
_____ & Java DB Driver D:\Hibernate_OGM\dependencythibernate-ogm-mong—
_____ ﬁ HiiatE 6 A T D:\H!bernate_OGM'n,dependency'n.l.'nbern.ate-seard'u-er
_____) Java EE 6 Endorsed APT Libre [:‘\Hibernate_OGM\dependency javassist-3, 17. 1-GA
v i D:\Hibernate_OGM\dependency'jbossdogging-3.1.0. _
----- & JavaEEWeb 6 APILibrary ~ ||| - - L .. =
- @ 4| n | 3
' I | b -
[Mew Library...] [Remove
QK] [Cancel] [Help

Figure 1-18. Creating a user library for Hibernate OGM and MongoDB
Now you can easily integrate the Hibernate OGM/MongoDB distribution into any of your NetBeans projects by

adding Hibernate OGM Core/Hibernate OGM Core and MongoDB library into your project libraries.
The complete application is available in the Apress repository. It’s a NetBeans project named Maven_HOGM.

18

http:///

CHAPTER 1 * GETTING STARTED WITH HIBERNATE 0GM

Getting the Hibernate OGM Distribution Using the Eclipse IDE

If you're an Eclipse fan, it’s much simpler to use Maven from an Eclipse Maven project. This section describes the
main steps for creating such a project to obtain the Hibernate OGM distribution as an Eclipse library ready to be used
in other projects. So launch Eclipse (we tested on Eclipse JUNO) and follow these steps:

1. From the File menu, selectNew | Other. In the New wizard, expand the Maven node and
select Maven Project as shown in Figure 1-19. Click Next.

1= MR
4 = Maven
W, Checkout Maven Projects from SCM
M Maven Module
M Maven Project
» [= Plug-in Development
+ [= Remote System Explorer
+ = Server i

F— .

Figure 1-19. Creating a new Maven project with Eclipse JUNO

If Maven isn’t available in your Eclipse distribution, you can either download a standalone Maven distribution
and install it from Window | Preferences | Maven | Installations, or you can install Maven for Eclipse from the
Eclipse Marketplace, which you'll find on the Help menu. Once you locate Maven in the Marketplace, follow the
wizard to complete the installation (see Figure 1-20).

19

http:///

CHAPTER 1 © GETTING STARTED WITH HIBERNATE OGM

o

[.] Eclipse Marketplace

Eclipse Marketplace

Select solutions to install. Press Finish to proceed with installation.

Search ‘ Recent | Popular | Installed|

-

= (o=

&

Press the information button to see a detailed overview and a link to more information.

Find: || All Markets - | | All Categories

@

R AP Rich Ajax Platform (RAP) Tooling

Rk fs Plakier e

by EclipseSource, EPL

osgi RAP Equinox server-side equinox

‘ Maven Integration for Eclipse WTP (Incubation)

Web...
by Eclipse.org, EPL
m2e-wtp maven witp m2e m2eclipse

The RAP project enables developers to build rich, Ajax-enabled Web applications
by using the Eclipse development model, plug-ins with the well known Eclipse...

Maven Integration for Eclipse WTP (a.k.a mZe-wtp) aims at providing a tight
integration between Maven Integration for Eclipse (a.k.a m2e) and the Eclipse -

Share @ -

Install

Share @ E

Install

Figure 1-20. Creating a new Maven project with Eclipse JUNO

2. Checkthe boxlabeled Create a simple project (skip archetype selection).You can

choose the default workspace and click Next.

3. Type the group id (maven.hibernate.ogm) and artifact id (Maven_HOGM). Click he Finish
button and wait until the project has been successfully created and is listed in the Package

Explorer panel.

4. Manually update or create the settings.xml file in the maven local repository.

5. Locate pom.xml in the Maven_HOGM project and double-click it.

6. Next, in the editor, switch to the pom.xml tab where you’ll see a pom. xml skeleton. Add to it
the missing parts from your pom.xml and save the project (see Figure 1-21).

20

http:///

CHAPTER 1 * GETTING STARTED WITH HIBERNATE 0GM

Maven_HOGM/pom.aml 32 = 0
P

<project wmlns="http://maven.apache.org/POM/4.8.8" xmlnsixsi="http:/ . w3.0rg/ 2081/ XML5chema-instance” x5 »
<modelVersion»4.8.8</modelVersion>
<groupIdrmaven.hibernate.ogm</groupId>
<versions@.@.1-SNAPSHOT< /versions
<dependenciess
<dependency>
<groupIldrorg.hibernate.ogm</groupld>
<artifactId>hibernate-ogm-core</artifactId>
<version>4.8.8.Beta2</versiony
</dependency>
<dependency>
<groupldrorg.hibernate.ogm</groupIld>
<artifactId>hibernate-ogm-mongodb</artifactId:
<version»4.8.8.Betal</versions
</dependency>
</dependencies>
<builds
<directorysD:/Hibernate_0GM</directorys
<defaultGoal>dependency: copy-dependencies</defaultGoals
<fbuild>
<artifactId>Maven_HOGM</artifactId>
</project>

4 1 2

Overview | Dependencies | Dependency Hierarchy | Effective POM | pom.xml

Figure 1-21. Editing pom.xml file in Eclipse JUNO

7. InthePackage Explorer panel, right-click the project name and selectRun As | Maven build.
When the process ends successfully, you should see the Hibernate OGM distribution
(including dependencies) under the path defined by the <directory> tag in pom.xml.

8. Select Preferences in the Window menu. In the tree on the left, expand the Java | Build
Path node and select User Libraries.

9. Click the New button to create a new library. Type a name for the new library, such as
Hibernate OGM Core and MongoDB, and click the OK.

10. Clickthe Add External JARs button and navigate to the folder where the Hibernate OGM
distribution was downloaded. Select all of the JARs and add them to the library. Click OK.

Now you can easily integrate Hibernate OGM/MongoDB distribution into any of your Eclipse projects by adding
Hibernate OGM Core/Hibernate OGM Core and MongoDB library into your project build path.

Note If you'd prefer to create the entire project with Maven, just add the Hibernate 0GM dependencies accordingly.
All'you have to do is add the corresponding <repository> and <dependency> tags.

The complete application is available in the Apress repository. It's an Eclipse project named Maven_HOGM.

Obtain the MongoDB Distribution

When this book was written, the recommended MongoDB distribution was version 2.2.2 (I chose this version
because is “preferred” by Hibernate OGM and OpenShift). You can easily download it from the official web site at
http://www.mongodb.org/. You'll find the installation steps at http://docs.mongodb.org/manual/installation/.

21

http://www.mongodb.org/
http://docs.mongodb.org/manual/installation/
http:///

CHAPTER 1 © GETTING STARTED WITH HIBERNATE OGM

The examples in this book were developed and tested under the 64-bit versions of Windows 7 and 8, for which the
installation is straightforward.

After downloading and installing the MongoDB distribution, you're ready to see if the MongoDB server starts
and responds to commands. Open a command prompt, navigate to the {MONGODB_HOME }/bin folder and type mongod
--dbpath ../ command to start the server (the --dbpath option indicates the location of the /data/db folder you
manually created in the {MONGODB_HOME } folder, following installation guide). If there are no errors, open another
command prompt, navigate to the same folder, and type mongo. If you see something similar to what’s shown in
Figure 1-22, MongoDB was successfully installed.

mongodbsbin*mongo

ongoDB shell version: 2.2.2
onnecting to: test
? -

Figure 1-22. Checking MongoDB server availability

To test more thoroughly, try the commands from the Getting Started tutorial at http://docs.mongodb.org/
manual/tutorial/getting-started/. You can easily shut down the MongoDB server by pressing CTRL-C.

Summary

In this introductory chapter we took the first steps toward understanding and using Hibernate OGM. We looked at
Hibernate OGM concepts, features and aims, as well as giving a brief overview of the Hibernate OGM architecture.
(It's important to know how things are managed internally if you want to understand the next chapter).

You then saw how to obtain the Hibernate OGM distribution as a ZIP/TGZ, as a command-line Maven project,
and as a NetBeans/Eclipse Maven based project. Finally, you learned how to install a MongoDB distribution and how
to add the corresponding JARs to the Hibernate OGM distribution.

22

http://docs.mongodb.org/manual/tutorial/getting-started/
http://docs.mongodb.org/manual/tutorial/getting-started/
http:///

CHAPTER 2

Hibernate OGM and MongoDB

By now, you should have some idea of the general scope and architecture of Hibernate OGM. In Chapter 1,

I discussed how Hibernate OGM works with generic NoSQL stores, and I spoke about its general focus and how you
represent, persist, and query data. In addition, you learned how to obtain a Hibernate OGM distribution, and you've
installed a MongoDB NoSQL store and performed a simple command-line test to verify that the MongoDB server
responds correctly.

In this chapter, I'll define more clearly the relationship between Hibernate OGM and MongoDB. Instead of
generic possibilities, I'll focus on how Hibernate OGM works with the MongoDB store, and you'll see how much of
MongoDB can be “swallowed” by Hibernate OGM and some MongoDB drawbacks that force Hibernate OGM to work
overtime to manage them.

Configuring MongoDB-Hibernate OGM Properties

Hibernate OGM becomes aware of MongoDB when you provide a bundle of configuration properties. If you've
worked before with Hibernate ORM, you're already familiar with these kinds of properties. In particular, there are
three ways of setting these properties, as you'll see in the next chapters:

e declarative, through the hibernate.cfg.xml configuration file
e programmatically, through Hibernate native APIs

e declarative, through the persistence.xml configuration file in JPA context

Note Remember, we’re using Hibernate 0GM 4.0.0.Beta.2 with Hibernate 0GM for MongoDB 4.0.0.Beta1 and the
Java driver for MongoDB 2.8.0.

Let’s take look at the properties that enable Hibernate OGM to work with MongoDB.
hibernate.ogm.datastore.provider

As you know from Chapter 1, Hibernate OGM currently supports several NoSQL stores, including MongoDB. This
property value is how you let Hibernate OGM know which NoSQL store you want to use. For MongoDB, the value of

this property must be set to mongodb.

hibernate.ogm.mongodb.host

23

http:///

CHAPTER 2 ' HIBERNATE OGM AND MONGODB

Next, Hibernate OGM needs to locate the MongoDB server instance. First, it must locate the hostname, which is
represented by the IP address of the machine that hosts the MongoDB instance. By default, the value of this property
is 127.0.0.1, which equivalent to localhost, and it can be set through the MongoDB driver as well:

Mongo mongo = new Mongo("127.0.0.1");
Mongo mongo = new Mongo(new ServerAddress("127.0.0.1"));

hibernate.ogm.mongodb.port

And what is a hostname without a port? By default, the MongoDB instance runs on port number 27017, but you
can use any other MongoDB port as long as you specify it as the value of this property. If you are using the MongoDB
driver directly, the port is typically set like this:

Mongo mongo = new Mongo("127.0.0.1", 27017);
Mongo mongo = new Mongo(new ServerAddress("127.0.0.1", 27017));

hibernate.ogm.mongodb.database

Now Hibernate OGM can locate MongoDB through its host and port. You also have to specify the database to
connect to. If you indicate a database name that doesn’t exist, a new database with that name will be automatically
created (there’s no default value for this property). You can also connect using the MongoDB driver, like this:

DB db = mongo.getDB("database _name");
Mongo db = new Mongo(new DBAddress("127.0.0.1", 27017, "database _name"));

hibernate.ogm.mongodb.username
hibernate.ogm.mongodb.password

These two properties represent authentication credentials. They have no default values and usually appear
together to authenticate a user against the MongoDB server (though if you set the password without setting the
username, Hibernate OGM will ignore the hibernate.ogm.mongodb.password property). You can also use the
MongoDB driver to set authentication credentials, like so:

boolean auth = db.authenticate("username", "password".toCharArray());
hibernate.ogm.mongodb.safe

Note that this property is a little tricky. MongoDB isn’t adept at transactions; it doesn’t do rollback and can’t
guarantee that the inserted data is, in fact, in the database since the driver doesn’t wait for the write operation to be
applied before returning. Behind the great speed advantage—resulting from the fact that the driver performs a write
behind to the MongoDB server—lurks a dangerous trap that can lose data.

The MongoDB team knew of this drawback, so it developed a new feature called Write Concerns to tell
MongoDB how important a piece of data is. This is also used to indicate the initial state of the data, the default write,
(WriteConcern.NORMAL).

MongoDB defines several levels of data importance, but Hibernate OGM lets you switch between the default
write and write safe write concerns.

With write safe, the driver doesn’t return immediately; it waits for the write operation to succeed before returning.
Obviously, this can have serious consequences for performance. You can set this value using the hibernate.ogm.
mongodb . safe property. By default, the value of this property is true, which means write safe is active, but you can set
it to false if loss of writes is not a major concern for your case.

24

[vww allitebooks.cond

http:///
http://www.allitebooks.org

CHAPTER 2 * HIBERNATE OGM AND MONGODB

Here’s how to use the MongoDB driver directly to set write safe:

DB db = mongo.getDB("database_name");

DBCollection dbCollection = db.getCollection("collection name");
dbCollection.setWriteConcern(WriteConcern.SAFE);
dbCollection.insert(piece of data);

//or, shortly

dbCollection.insert(piece of data, WriteConcern.SAFE);

Note Currently, Hibernate OGM only lets you enable the write safe MongoDB write concern (WriteConcern. SAFE).
Strategies like Write FSYNC_SAFE (WriteConcern.FSYNC_SAFE), Write JOURNAL_SAFE (WriteConcern.JOURNAL SAFE),
and Write Majority (WriteConcern.MAJORITY) are thus controllable only through MongoDB driver.

hibernate.ogm.mongodb.connection_timeout

MongoDB supports a few timeout options for different kinds of time-consuming operations. Currently, Hibernate
OGM exposes through this property the MongoDB option connectTimeout (see com.mongodb.MongoOptions). This
is expressed in milliseconds and represents the timeout used by the driver when the connection to the MongoDB
instance is initiated. By default, Hibernate OGM sets it to 5000 milliseconds to override the driver default of 0 (which
means no timeout). You can set this property as follows:

mongo . getMongoOptions().connectTimeout=n _miliseconds;
hibernate.ogm.mongodb.associations.store

This property defines the way Hibernate OGM stores information relating to associations. The accepted values
are: IN_ENTITY, COLLECTION, and GLOBAL_COLLECTION.I'll discuss these three strategies a little later in this chapter.

hibernate.ogm.datastore.grid dialect

This is an optional property that’s usually ignored because the datastore provider chooses the best grid dialect
automatically. But if you want to override the recommended value, you have to specify the fully qualified class name
of the GridDialect implementation. For MongoDB, the correct value is org.hibernate.ogm.dialect.mongodb.
MongoDBDialect.

This is the set of properties that Hibernate OGM uses for configuring a connection to MongoDB server. At this
point, you have access to the essential settings for creating decent communications with the MongoDB server.

In future OGM releases, we can hope to be able to access many more settings for the MongoDB driver.

Data Storing Representation

As you know, the relational data model is useless in terms of MongoDB, which is a document-based database system;
all records (data) in MongoDB are documents. But, even so, MongoDB has to keep a conceptual correspondence
between relational terms and its own notions. Therefore, instead of tables, MongoDB uses collections and instead of

25

http:///

CHAPTER 2 ' HIBERNATE 0GM AND MONGODB

records, it uses documents (collections contain documents). MongoDB documents are BSON (Binary JSON—binary-
encoded serialization of JSON-like documents) objects and have the following structure:

{
field1: valuei,
field2: value2,
field3: value3,
fieldN: valueN

}

Storing Entities

OK, but we are still storing and retrieving Java entities, right? Yes, the answer is definitely yes! If Hibernate ORM provides
complete support for transforming Java entities into relational tables, Hibernate OGM provides complete support for
transforming Java entities into MongoDB collections. Each entity represents a MongoDB collection; each entity instance
represents a MongoDB document; and each entity property will be translated into a document field (see Figure 2-1).

' Java

}...

A

public class FPlayers {

private int id;

private String name;
private String surname;
private int age;

private Date birth;

ligetters and setters

”%5 MongoDB V) l

Collection: players , document with id 1

1,
> "age™ 26,
“birth™ 1500ate("1986-06-03T15:43:37.763Z7),
“name™; "Madal”,
"surname” "Rafael”

}

oGM

=

Figure 2-1. Storing a Java object in a MongoDB document

The Hibernate OGM team worked hard to store data as naturally as possible for MongoDB so that third-party
applications can exploit this data without Hibernate OGM assistance. For example, let’s suppose we have a POJO
class like the one in Listing 2-1. (I'm sure you've stored tons of Java objects like this into relational databases, so I'm
providing no details about this simple class.)

Listing 2-1. APOJO Class

import java.util.Date;

public class Players {

private int id;
private String name;
private String surname;
private int age;
private Date birth;

26

http:///

}
}
like this:
{
" id": 1,
"age": 26,
"birth": ISODate("1986-06-03T15:43:37.763Z"),
"name": "Nadal",
"surname": "Rafael"
}

public int getId() {

return id;

}

public void setId(int id) {
this.id = id;

}

public String getName() {
return name;
}

public void setName(String name) {
this.name = name;
}

public String getSurname() {
return surname;
}

public void setSurname(String surname) {
this.surname = surname;
}

public int getAge() {
return age;
}

public void setAge(int age) {
this.age = age;
}

public Date getBirth() {
return birth;
}

public void setBirth(Date birth) {
this.birth = birth;

CHAPTER 2

HIBERNATE 0GM AND MONGODB

Now, suppose an instance of this POJO is stored into the MongoDB players collection using Hibernate OGM,

27

http:///

CHAPTER 2 ' HIBERNATE OGM AND MONGODB

This is exactly what you obtain if you manually store via the MongoDB shell with the following command:

>db.players.insert(

{
_id: 1,
age: 26,
birth: new ISODate("1986-06-03T15:43:37.763Z"),
name: “Nadal",
surname: "Rafael"

}

)

Practically, there’s no difference in the result. You can't tell if the document was generated by Hibernate OGM or
inserted through the MongoDB shell. That’s great! Moreover, Hibernate OGM knows how to transform this result back
into an instance of the POJO. That’s even greater! And you won'’t feel any programmatic discomfort, since Hibernate
OGM doesn’t require you write any underlying MongoDB code. That’s the greatest!

Storing Primary Keys

A MongoDB document or collection has a very flexible structure. It supports simple objects: the embedding of objects
and arrays within other objects and arrays; different kinds of documents in the same collection; and more, but it
also contains a document field especially reserved for storing primary keys. This field is named _id and its value
can be any information as long as it’s unique. If you don’t set _id to anything, the value will be set automatically to
“MongoDB Id Object”

Hibernate OGM recognizes these specifications when storing identifiers into a MongoDB database; it lets you use
identifiers of any Java type, even composite identifiers, and it always stores them into the reserved _id field.

Figure 2-2 shows some identifiers of different Java types and how they look in MongoDB.

' Java % MongoDB A F:

£y
|
llpk of type int ,
el . {mid~ 122, .}
private int mypk;
gﬁ:aﬁzﬂﬁz ;Op”k‘_ll_ ‘- {"_id" NumberLong(23}, ...}
fREEHpE S {"_id™ "Record 1", ..}
private String sid; & - '
llpk of type double . id 45613
private double dpk; ‘- i ok
| —
’; ‘r}i:a‘fe“‘g:tfgéek_ " id™ 1S0Date("2013-01-20T07-11:46 91477} , ...}

2 " _id™ fheld_1™ "value_1", ield_2" "value_2", ...
‘ fcosmbosme key iﬁe_ld nsﬁ'\falae n"}...}_ ' - - '

Figure 2-2. Correspondence between Java-style primary keys and MongoDB identifiers

28

http:///

CHAPTER 2 * HIBERNATE OGM AND MONGODB

Storing Associations

Probably the most powerful feature of relational databases relies on associations. Any database of any meaningful
capability take advantages of associations: one-to-one, one-to-many, many-to-one, and many-to-many.
In the relational model, associations require storing additional information, known as navigation information
Jor associations.

For example, in a bidirectional many-to-many association, the relational model usually uses three tables, two
tables for data and an additional table, known as a junction table. The junction table holds a composite key that

consists of the two foreign key fields that refer to the primary keys of both data tables (see Figure 2-3). Note that the
same pair of foreign keys can only occur once.

' Junction Table

~] Players v _] Players_has_Tournaments v] Tournaments ¥
idPlayers INT Players_idPlayers INT idTournaments INT
> name V ARCHAR (45) Tournam ents_jdTournaments INT »name VARCHAR (45)
» surname VARCHAR(45) > » country VARCHAR (45)
»age INT » surface VARCHAR(45)
> birth DATE > type VARCH AR(45)
P

A ' y

Figure 2-3. A bidirectional many-to-many association, shown in a relational model representation

In a MongoDB many-to-many association, you store the junction table as a document. Hibernate OGM provides
three solutions to accomplish this: IN_ENTITY, COLLECTION, and GLOBAL_COLLECTION. To better understand these
strategies, let’s improvise a simple scenario—two relational tables (Players and Tournaments) populated respectively
with three players, two tournaments, and a many-to-many association as shown in Figure 2-4. (The first and second
players, P1 and P2, participate in both tournaments, T1 and T2, and the third player (P3) participates only in the
second tournament, T2. Or, from the other side of the association, the first tournament, T1, includes the first and
second players, P1 and P2, and the second tournament, T2, includes the first, second, and third players, P1, P2, and P3.)

Players_has_Tournaments Table
layers Table n Players_idPlayers Tournaments_idTournaments n Tournaments Table
[-+ +
P1 L

]
idPlayers | name | surname | age birth 1 1 type surface country name idTournaments
1 MNadal Rafasl 26 | 3.6.1986 1 2 Grand Slam | grass |United Kingdom, Lendon | Wimbledon 4
; 2 1
idPlayers | name | surname | age birth = > type surface country name idTournaments
2 Ferrer David 30 | 241882 ™ = Grand Slam | hard U.S.A, New York Us Open ¥
idPlayers | name | surname | age | birth | Junction Table

P3
3 Federer| Roger 31 | 881981

Figure 2-4. A bidirectional many-to-many association in a relational model representation—test case

29

http:///

CHAPTER 2 ' HIBERNATE OGM AND MONGODB

Now, let’s look at the Hibernate OGM strategies for storing associations, using this test case. We want to observe
how the junction table is stored in MongoDB based on the selected strategy. We'll begin with the default strategy,
IN_ENTITY, and continue with GLOBAL_COLLECTION, and finally COLLECTION.

In JPA terms, the main ways to represent this relational model are: the Players entity defines a primary key
field named idPlayers and is the owner of the association; the Tournaments entity defines a primary key named
idTournaments and is the non-owner side of the association—it contains the mappedBy element. Moreover,
the Players entity defines a Java collection of Tournaments, named tournaments, and the Tournaments entity defines
aJava collection of Players, named players.

IN_ENTITY

The default strategy for storing navigation information for associations is named IN_ENTITY. In this case, Hibernate
OGM stores the primary key of the other side of the association (the foreign key) into:

o afield if the mapping concerns a single object.
e anembedded collection if the mapping concerns a collection.

Running the relational scenario for MongoDB using the IN_ENTITY strategy reveals the results shown in Figure 2-5
and Figure 2-6.

E® Command Prompt - mengo associations_db EIE
> db.Players.find () .prettyld;
wosaun .
vagen : 36,
"hirth" : IS0Date<"1986-86-83TA3:33:22.173Z"">,
‘"name” : “Nadal.
::surname" H ::R?f?el", | association
tournamﬁnts E mapping field
"tournaments_idTournaments" = 2 —7——————
.
{
"tournaments_idTournaments” : 1 ———1
>
1
H
vogar s o2, primary keys
“age" : 38,
"hirth" : IS80Date<'1982-84-82T83:33:22.173Z"">,
"name” : “Ferrer'.
"surname' : “David".
"tournaments' : [
{
"tournaments_idTournaments" = 1 — @ foreign keys
.
{
"tournaments_idTournaments" = 2 —7————J
>
1
H
v_id" - 3.
“age" = 31,
"hirth" = IS0Date<'1981-8B8-8B8TA3:33:22.173Z"">,
‘"name : “Federer",
"surname" : "Roger".
"tournaments" :
{
"tournaments_idTournaments" = 2 —— 8
>

Figure 2-5. Hibernate OGM-IN_ENTITY strategy result (Players collection)

30

http:///

CHAPTER 2 * HIBERNATE OGM AND MONGODB

B Command Prompt - menge associations_db EE
> db. Tournaments . find () pretty(d;
N v_did" - 1.
"country'” : "United Kingdom, London®.
::name" :""'.\.'inr'lh].edl:ln". association
1:'1‘35"31'3{ =t mapping field
"players_idPlayers" = 1 —fF— 4
%' B— primary keys
N "players_idPlayers" = 2—— — 1}
";uvi—‘ace" = “"grass',
A "type'" @ "Grand Slam"
K
r_id" = 2,
"country" = “"U_.S_A. New York".
"name' : "US Open®.
"playersz I
"players_idPlayers"” : 3—— 14
¥
{
"players_idPlayers" = 2————— & foreign keys
e
{
"players_idPlayers" : {1 —— &
>
“zurface" : “hard" .,
type' : "Grand Slam"
H

Figure 2-6. Hibernate OGM-IN_ENTITY strategy result (tournaments collection)

Figure 2-5 shows the MongoDB Players collection corresponding to the Players relational table; as you can
see, each collection’s document contains part of the association as an embedded collection. (The Players collection
contains the part of the junction table that references the Tournaments collection.)

Note The simplest way to explore a MongoDB collection from the shell is to call the find method, which returns all
documents from the specified collection. In addition, calling the pretty method results in the output being nicely format-
ted. When a collection contains more documents than fit in a shell window, you need to type the it command, which
supports document pagination.

The Players collection shows three main documents with the _id setas 1, 2, and 3, and each document
encapsulates the corresponding foreign keys in a field named like the Java collection declared by the owner side
(tournaments). Each document in the embedded collection contains a foreign key value stored in a field whose name
is composed of the Java collection name declared by the owner side (tournaments) concatenated with an underscore
and the non-owner side primary key field name (idTournaments).

The Tournaments collection, which corresponds to the Tournaments relational table, is like a reflection of the
Players collection—the Players primary keys become Tournaments foreign keys (the Tournaments collection
contains the part of the junction table that references the Players collection). Figure 2-6 shows the contents of the
Tournaments collections.

The Tournaments collection includes two main documents with the _id setas 1 and 2. Each one encapsulates the
corresponding foreign keys in a field named like the Java collection declared by the non-owner side (players). Each
document of the embedded collection contains a foreign key value stored in a field whose name is composed of the
Java collection name declared by non-owner side (players) concatenated with an underscore and the owner side
primary key field name (idPlayers).

31

http:///

CHAPTER 2 ' HIBERNATE OGM AND MONGODB

In the unidirectional case, only the collection representing the owner side will contain navigation information for
the association.

You can use this strategy of storing navigation information for associations by setting the hibernate.ogm.
mongodb.associations.store configuration property to the value IN_ENTITY. Actually, this is the default value of this

property.

GLOBAL_COLLECTION

When you don’t want to store the navigation information for associations into an entity’s collections, you can choose
the GLOBAL_COLLECTION strategy (or COLLECTION, as you'll see in the next section). In this case, Hibernate OGM creates
an extra collection named Associations, especially designed to store all navigation information. The documents
of this collection have a particular structure composed of two parts. The first part contains a composite identifier,
_id, made up of two fields whose values represent the primary key of the association owner and the name of the
association table; the second part contains a field, named rows, which stores foreign keys in an embedded collection.
For bidirectional associations, another document is created where the ids are reversed.

Running our relational scenario for MongoDB and the GLOBAL_COLLECTION strategy reveals the results shown in
Figure 2-7 and Figure 2-8.

EX Command Prompt - monge associations_db EI@ E® Command Prompt - monge associations_db Elg
2 db.Players.find (> . pretty(d; - > db. Tournaments.find{>.pretty(d;
v_did" - 1. N v_id" o= 1,
“age" : 26, “country” : "United Kingdom. London'.
“hirth" : I80Date("1986-06-B3TA4:59:31 591Z">, “name" : "Wimbledon".
"name" = "MWadal". "supface" : "grass'.
“"surname" = "Rafael" "type" : "Grand Slam"
H H
< <
v_id" = 2,
: 38, country™ = “U.S5.A. New York",
: I80Date{"1982-A4-82TB4:59:31.5F1Z">, “name" : “US Open'.
"Ferrer’, “surface” = “hard".
: "David™ type” : "Grand Slam'
> H
<
1,
"hirt : IS0Date("1981-A8-B8TB4:59:31 .591Z">,
“name" : “Federer”,
“surname" : "Roger" =
H

Figure 2-7. Hibernate OGM-GLOBAL_COLLECTION strategy result (Players and Tournaments collections)

32

http:///

CHAPTER 2 * HIBERNATE OGM AND MONGODB

E® Command Prompt - mongo associations_db EI v_id" oz {
e s A “"tournaments_idTournaments" = 1.
g db.Associations.find(}.pretty(d; "table" :"Plagers_Tournaments"
voidr oz ¢ Ix v
"players_idPlayers" = 1. rows '{
" woaw "
table" : "Players_Tournaments "players_idPlayers” @ 1
Yhows" : [.
< < .
"tournaments_idTournaments" = 2 3 players_idFPlayers™ = 2
2 ;
“tournaments_idTournaments” = 1 |
1 > U TUN.
1y "tournaments_idTournaments" = 2.
< "table" : "Players_Tournaments"
DT LR .}_, v
"players_idPlayers' : 2. rouws® = £
table” : "Players_Tournaments vplayers_idPlagers” : 3
“rows" : [%’
< . .
"tournaments_idTournaments" = 1 3 "players_idPlayers™ = 2
} »
- {
< : -
"tournaments_idTournaments" = 2 3 "players_idPlayers™ = 1
1 > 1
h H
< > -
(1] id" = { 4 m
"players_idPlavers" : 3,
"tabhle" : "Players_Tournaments"
vpouws™ : [
<
"tournaments_idTournaments" = 2
>
1
H

Figure 2-8. Hibernate OGM-GLOBAL_COLLECTION strategy result (Associatins collection)

In Figure 2-7, you can see that the Players and Tournaments collections contain only pure information, no
navigation information.

The extra, unique collection that contains the navigation association is named Associations and is listed
in Figure 2-8.

This is a bidirectional association. The owner side (Players) is mapped on the left side of Figure 2-8 and the
non-owner side (Tournaments) is mapped on the right side of Figure 2-8. In a unidirectional association, only the owner
side exists.

Now, focus on the nested document under the first _id field (Figure 2-8, left side). The first field name,
players_idPlayers, is composed from the corresponding Java collection name defined in the non-owner side
(players), o, for unidirectional associations, the collection name representing the owner side (Players) concatenated
with an underscore and the name of the field representing the primary key of the owner side (idPlayers). The second
field name is table; its value is composed of the collection name representing the the owner side concatenated with
an underscore and the collection name representing the non-owner side (Players_Tournaments). The rows nested
collection contains one document per foreign key. Each foreign key is stored in a field whose name is composed of the
corresponding Java collection name defined in the owner side (tournaments) concatenated with an underscore and
the primary key field name of the non-owner side (idTournaments). As a consequence of bidirectionality, things get
reversed, as shown on the right side of Figure 2-8.

You can use this strategy for storing navigation information for associations by setting the hibernate.ogm.
mongodb.associations.store configuration property to the value GLOBAL_COLLECTION.

COLLECTION

If GLOBAL_COLLECTION stores all the navigation information in one global collection, the COLLECTION strategy is less
global and creates one MongoDB collection per association. For example, in our scenario, there will be one extra
collection named associations_Players Tournaments. In this strategy, each collection is prefixed with the word
associations followed by the name of the association table. Using this convention makes it easy to differentiate the
associations collections from the other collections.

33

http:///

CHAPTER 2 ' HIBERNATE OGM AND MONGODB

The documents of this collection have a particular structure composed of two parts. The first part contains the
primary key of the association owner and the second part contains a field, named rows, which stores all foreign keys
in an embedded collection. For each foreign key there’s a document in the embedded collection. For bidirectional
cases, another document is created where the ids are reversed.

If you're familiar with the relational model this strategy should seem closer to your experience. In Figure 2-9, you
can see the partial content of associations Players Tournaments collection—the navigation information for the
owner side (Players).

Z8 Command Prompt - mongo associations_db Ell
> dh.associations_Players_Tournaments . fFind().pretty(d;
Y_id" = {
"plavers_idPlayers" = 1
Ypows" = [
£
"tournaments_idTournaments™ 2—p——
.
{
"tournaments_idTournaments"” : 1 —7— |
>
1
< .
v_id" = £ primary keys
“players_idPlayers' = 2 of iati
}' owner
"rows™ = [
<
"tournaments_idTournaments™ = 1— g foreign keys
3.
£
"tournaments_idTournaments™ = 2—p—— ||
>
1
<
Y_id" = {
“players_idPlayers" : 3 — — — — =®
>
Yrows" = [
£
"tournaments_idTournaments" = 2——— —————#
>
1

Figure 2-9. Hibernate OGM-COLLECTION strategy result (associations_Players_Tournaments collection)

You can easily see that the collection structure is the same as in the GLOBAL_COLLECTION case. The only difference
is that the _id field no longer contains the association table name in a field named table, which is logical since the
association table name is a part of the collection name (associations_Players Tournaments).

You can use this strategy of storing navigation information for associations by setting the hibernate.ogm.
mongodb.associations.store configuration property to the value COLLECTION.

Note Based on this example, you can easily intuit how the associations are represented in one-to-one, one-to-many,
and many-to-one cases. Keep in mind that collections and field names can be altered by JPA annotations, like @Column,
@Table, @JoinTable and so on. The example | presented doesn’t use such annotations.

From the JPA perspective, when a bidirectional association doesn’t define the owning side (using the mappedBy element),
Hibernate OGM considers each side to be an individual association. In other words, you’ll obtain two

associations instead of one in such cases. For example, the COLLECTION strategy will produce two collections for storing
two associations.

Now, it’s up to you to decide which strategy better meets your needs.

34

[vww allitebooks.cond

http:///
http://www.allitebooks.org

CHAPTER 2 * HIBERNATE OGM AND MONGODB

Managing Transactions

Before switching from a relational model system to a NoSQL platform like Mongo DB, it’s important to understand
the differences between them, and the advantages and drawbacks of each in the context of your application needs.
Knowing only that MongoDB doesn’t support SQL, while relational models don’t support collections and documents,
can lead to serious problems in application implementation. This is actually the fundamental difference between

the two, but there are many others, including the amount of space consumed and the time necessary to perform
statements, caching, indexing, and, probably the most painful, managing transactions.

Many pioneer projects with MongoDB fail miserably when the developers realize that data transactional integrity
is a must, because MongoDB doesn’t support transactions. MongoDB follows this directive: “write operations are
atomic on the level of a single document: no single write operation can atomically affect more than one document
or more than one collection.” It also provides the two-phase commit mechanism for simulating transactions over
multiple documents. You'll find more details at www.docs .mongodb.org/manual/tutorial/perform-two-phase-
commits/. But both mechanisms omit the most powerful feature of transactional systems—the rollback operation.

Thus, if you need transactions, using MongoDB can be a delicate or even inappropriate choice. MongoDB is not
an alternative to SQL as a “fashion” choice and should be used only if it satisfies your application needs better than an
RDBMS. You should choose MongoDB when your database model doesn’t imply transactions or when you can shape
your database model not to need transactions.

Hibernate OGM can’t provide the rollback facility, but it does diminish the transactions issue by querying all
changes before applying them during flush. For this, OGM recommends using transaction demarcations to trigger the
flush operation on commit.

Managing Queries

Hibernate OGM provides three solutions for executing queries against a MongoDB database:
e Partial JP-QL support
e Hibernate Search
e Native MongoDB queries

Each of these will be discussed and demonstrated in Chapter 6.

Summary

Though this is a short chapter, it contains plenty of information. I presented the rules that govern the relationship
between Hibernate OGM and MongoDB. You saw how to configure MongoDB from Hibernate OGM and how data
can be persisted in MongoDB according to the OGM implementation. In addition, I described the MongoDB view of
transactions and finished with a quick enumeration of the query mechanism supported by Hibernate OGM.

35

http://www.docs.mongodb.org/manual/tutorial/perform-two-phase-commits/
http://www.docs.mongodb.org/manual/tutorial/perform-two-phase-commits/
http:///

CHAPTER 3

Bootstrapping Hibernate OGM

Since Hibernate OGM acts as a JPA implementation for NoSQL data stores, it’s obvious we can bootstrap it through
JPA. Moreover, it can be bootstrapped through the Hibernate Native APIs as well. No matter which way you choose to
bootstrap Hibernate OGM, it’s strongly recommended you use it in a Java Transaction API (JTA) environment, even if
you're not using Java EE.

Before getting into the actual bootstrapping process, let’s take a brief look at these specifications. You'll want to
keep the main features of these technologies in mind over the course of the next sections and chapters. Of course,
if you're already a guru, you can skip ahead.

Brief Overview of JPA

The Java Persistence API aims to provide support for operations that store, update, and map data from relational
databases to Java objects and vice versa. You could say that JPA is the perfect tool for developers who have decided to
work directly with objects rather than with SQL statements (the ORM paradigm).

Note Object-relational mapping is a programming technique that provides a virtual object layer between relational
databases and object-oriented programming languages. Programming languages read from and write to relational
databases through this layer. Instead of writing SQL statements to interact with your database, you use objects. Moreover,
the code is much cleaner and easier to read, since it is not “plumbed” with SQL statements. As this book is written, the
JPA specification has several implementations or persistence providers. Some are popular, tested, and stable (EclipseLink,
Hibernate and Apache OpenJPA), while others may be less common but have very high benchmark performances
(BatooJPA). EclipseLink is the reference implementation of JPA and it works, as every JPA implementation should, in
both Java EE environments and standalone Java applications.

JPA is easy to use, thanks to persistence metadata that defines the relationships between Java objects and
database tables. You are probably familiar with persistence metadata as JDK 5.0 annotations or XDoclet-style
annotations at the language level, which are type safe and checked at compile time. It could be said that JPA
annotations are actually plain JDK 5.0 annotations. Some hide complex tasks. One such annotation is
javax.persistence.Entity (@Entity annotation), which is used to mark a POJO Java class that should be persisted
in a database—each class annotated with @Entity is stored into a table and each table row is an entity class instance.
Entities must define primary keys (a simple or complex primary key, explicitly specified or auto-generated if the
@GeneratedValue annotation is present). Entities must not be final and must define a constructor with no arguments.
The table name can reflect the class name or it can be explicitly provided through @Table annotation, like
@Table(name="my table name").

37

http:///

CHAPTER 3 © BOOTSTRAPPING HIBERNATE 0GM

An entity class defines a set of fields and each field defaults to a table’s column that has the same name as the
field; you can alter this using the @Column annotation, such as @Column(name="my_column_name").JPA can access
fields through getter and setter methods. Fields annotated with @Transient won't be persisted while the other fields
are persisted by default.

Entity classes are where you define relationships between and among classes (tables). Classes can have
one-to-one (@0neToOne), one-to-many (@0neToMany), many-to-one (@ManyToOne), and many-to-many (@ManyToMany)
relationships with other classes. When two classes store references to each other, the relationship is bidirectional and
you must specify the owning side of the relationship in the other class with the element mappedBy. When the reference
is only from one class to another and not vice versa, the relationship is unidirectional and the mappedBy element isn’t
necessary.

Once you have the entities that reflect the database tables, you need an entity manager (an interface between
the application and the persistence context, what the Hibernate documentation describes as a “set of entity instances
in which for any persistent entity identity there is a unique entity instance,” or, more succinctly, all the entities of one
entity manager capable of providing methods for storing, retrieving, merging, and finding objects in the database.

In practice, this is the javax.persistence.EntityManager, which is automatically provided in Java EE environments,
such GlassFish or JBoss. If you're in a non-Java EE environment, such as Tomcat or Java SE, you have to manage the
EntityManager lifecycle on your own.

The set of entities (usually logically related) that can be managed by a given EntityManager instance is defined
as a persistence unit, each of which has a unique name and resides in an XML document named persistence.xml.
Persistence.xml is a standard configuration file for JPA. It contains the JPA provider, the JTA or non-JTA data source,
the database connection information, such as driver, user, password, DDL generation, and more. (In a Java SE
application, this file is usually saved in the source directory in a folder named META-INF, while in a web application
it’s typically stored in the /src/conf folder, but, depending on application architecture, it can be located in other
places). A persistence.xml file may contain multiple persistence units; based on the one your application uses,
the server will know against which database to execute queries. In other words, through a persistence unit the
EntityManagerFactory, used by the application to obtain an application-managed entity manager, is configured for
a set of entities. You can look at this as a portable way to instantiate an EntityManagerFactory in JPA.

Figure 3-1 shows the relationships among the main components of the JPA architecture.

JPA Architecture
- main EEII'I'IFICII'IE-'ITZS -

EntityManager

Figure 3-1. Relationships among the main components of the JPA architecture

Well, that was pretty quick. Now let’s take a look at JTA.

38

http:///

CHAPTER 3 © BOOTSTRAPPING HIBERNATE 0GM

Brief Qverview of JTA

The Java Transaction API (JTA) enables distributed transactions. Basically, a transaction consists of a set of tasks

(for example, SQL statements) that must be processed as an inseparable unit. This is an atomic operation and, in fact,
the rule of “one task for all and all tasks for one” is a transaction’s overriding principle. Transactions are characterized
by ACID properties, as follows:

Atomicity requires that if any of the tasks fail then the transaction fails and it is rolled back.
If all tasks are successfully executed, the transaction is committed. In other words,
a transaction is an all-or-nothing proposition.

Consistency ensures that any committed transaction will leave the database in a valid state
(written data must be valid according to all defined rules).

Isolation means that your transaction is yours and yours alone; no other transaction can touch
it because the database uses a locking mechanism to protect the transaction until it ends,
successfully or otherwise. There are four levels of isolation:

® Read Uncommitted: your transaction can read the uncommitted data of other
transactions (never recommended in a multi-threaded environment).

® Read Committed: your transaction can never read uncommitted data of other
transactions.

e Repeatable: your transaction will get the same data on multiple reads of the same rows
until it ends.

e Serializable: this level of isolation guarantees that everything you touch (all tables)
remains unchanged during a transaction. It’s the strictest isolation level and, with the
most overhead, it causes the most performance bottlenecks.

Durability guarantees that any committed transactions are safe, after system crashes.

These concepts are very important since transactions typically modify shared resources.
Generally, there are two ways of managing transactions:

Container Managed Transactions (CMT) use deployment descriptors or annotations
(transaction attributes). In this case, the container is responsible for starting, committing,
and rolling back a transaction. This is the declarative technique of demarcating transactions.
In EJB containers, you can explicitly indicate a container-managed transaction using the
annotation @TransactionManagement, like this:

@TransactionManagement(TransactionManagementType.CONTAINER)

Moreover, you can tell the EJB container how to handle the transaction via the
@TransactionAttribute annotation, which supports six values: REQUIRED (default),
REQUIRES_NEW, SUPPORTS, MANDATORY, NOT_SUPPORTED, NEVER. For example, you can set
MANDATORY like this:

@TransactionAttribute(TransactionAttributeType.MANDATORY)

Bean Managed Transactions (BMT) require you to explicitly (programmatically) start, commit,
and roll back transactions. This is the programmatic technique of demarcating transactions.
In EJB containers, you can explicitly indicate a bean-managed transaction via the annotation
@TransactionManagement, like this:

@TransactionManagement(TransactionManagementType.BEAN)

39

http:///

CHAPTER 3 © BOOTSTRAPPING HIBERNATE 0GM

And there are two types of transactions:
e local transactions access and update data on a single networked resource (one database).

e distributed transactions access and update data on two or more networked resources
(multiple databases).

Programmatically speaking, JTA is a high-level API for accessing transactions based on three main interfaces:

e UserTransaction: The javax.transaction.UserTransaction interface allows developers to
control transaction boundaries programmatically. To demarcate a JTA transaction, you invoke
the begin, commit, and rollback methods of this interface.

e TransactionManager: The javax.transaction.TransactionManager allows the application
server to control transaction boundaries.

e XAResource: The javax.transaction.xa.XAResource is a Java mapping of the standard XA
interface based on the X/Open CAE Specification. You can find more details about XA at
www.en.wikipedia.org/wiki/X/Open_XA and about XAResource and at
www.docs.oracle.com/javaee/6/api/javax/transaction/xa/XAResource.html.

And that was a quick look at JTA.

MongoDB and Transactions

MongoDB does not support transactions, and this might seem like a limitation that cancels any potential benefit.
MongoDB supports atomicity only when the changes affect a single document or multiple subdocuments of a single
document. When changes (such as write operations) affect multiple documents, they are not applied atomically,
which may lead to inconsistent data, other operations that interleave, and so on. Obviously, since the changes

to multiple documents are not atomic, rollback is not applicable.

MongoDB does better with regard to consistency and durability. MongoDB write operations can be made
consistent across connections. Moreover, MongoDB supports near-real-time replication, so it’s possible to ensure an
operation has been replicated before returning.

Hibernate OGM mitigates MongoDB'’s lack of support for transactions by queuing all changes before applying them
during flush time. Even though MongoDB doesn't support transactions, Hibernate OGM recommends using transaction
demarcations to trigger the flush operation transparently (on commit). But, as the official documentation indicates, rollback
is not an option. Therefore, the applications developed in this book will use JTA, as Hibernate OGM recommends.

Note Based on the limitations I've noted, it’s easy to conclude that MongoDB can't meet our application’s needs. But, let’s
consider why we might jump to that conclusion. Are we too addicted to complex database schema designs, with many joins and
tables that require transactions, and queries that are hard to write and manage? It’s far from my aim to debate such questions
here, but maybe you’ll take a little time to think about them and find the correct answers for your applications.

Brief Overview of Hibernate Native API

Applications that use the Hibernate API directly are known as native Hibernate applications. Developing a native
Hibernate application consists of a few straightforward steps in which you:

e define persistence classes
e specify properties and mapping documents

e load these into the application’s configuration

40

http://www.en.wikipedia.org/wiki/X/Open_XA
http://www.docs.oracle.com/javaee/6/api/javax/transaction/xa/XAResource.html
http:///

CHAPTER 3 © BOOTSTRAPPING HIBERNATE 0GM

e based on this configuration, create a session factory
e obtain (open) sessions from the session factory
e execute queries and transactions

The starting point and core of the Native APl is the org.hibernate.cfg.Configuration class, which uses the
properties and mapping documents (. properties, .cfg.xml and hbm.xml files) to create org.hibernate.SessionFactory,
a thread-safe object that's instantiated once and provides a factory for obtaining sessions (org.hibernate.Session).
Session instances are used to execute transactions (JTA) and/or queries.

Figure 3-2 represents the Hibernate Native API architecture.

' Application Layer Hibernate Layer Database Layer ‘

2

=
2
k¥
]
[}
=
o
)
=

.hibernate.prc-perties

hibernate.cfg.xml

Persistence
Object
ucneinbyuo

A

Figure 3-2. Hibernate Native API architecture

Bootstrapping Hibernate 0GM Using JPA

Bootstrapping Hibernate OGM using JPA is the simplest case, since Hibernate OGM acts as a persistence provider.
As noted earlier, the persistence provider is specified in the persistence.xml file within a persistence unit. The
contents of persistence.xml may differ depending on how certain variables are defined, such as environment

(Java EE, Java SE); JTA or non-JTA; database-specific requirements; server configurations; and so on. I tried to write a
persistence.xml file for Hibernate OGM that contains the minimum mandatory settings.

1. The first step is to write a persistence.xml skeleton, which (in a Java SE/EE application)
generally looks like this:

<?xml version="1.0" encoding="UTF-8"?>

<persistence version="2.0" xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd">

</persistence>

This file is typically saved in the source directory in a folder named META-INF, though in a
web application it’s usually saved in the /src/conf folder.

41

http://java.sun.com/xml/ns/persistence
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd
http:///

CHAPTER 3 © BOOTSTRAPPING HIBERNATE 0GM

Next, you add a persistence unit; you can name it whatever you want. JPA implementations
can either manage transactions themselves through RESOURCE_LOCAL, or have them
managed by the application server’s JTA implementation. You use the transaction-type
attribute to specify whether the entity managers provided by the entity manager factory for
the persistence unit should be JTA or resource-local. Here I'll indicate the transaction type
as JTA, because we want to use a JTA entity manager. (Whatever the server environment,
Hibernate OGM recommends using JTA).

<persistence-unit name="{PU NAME}" transaction-type="JITA">
</persistence-unit>

Remember to not use RESOURCE_LOCAL (a resource-local entity manager) as it uses basic
JDBC-level transactions and is more specific to Java SE applications, while JTA is the
default in Java EE environments.

2. Now you need to specify the persistence provider. You're probably familiar with providers
like EclipseLink 2.0 for GlassFish v3, Hibernate 4 for JBoss AS 7, OpenJPA for WebSphere
6 and 7, and OpenJPA/KODO for WebLogic. For Hibernate OGM, the provider is named
org.hibernate.ogm.jpa.HibernateOgmPersistence and it can be explicitly added into
persistence.xml, like so:

<provider>org.hibernate.ogm. jpa.HibernateOgmPersistence</provider>

3. Now we’ve come to the properties section of persistence.xml. The first property to set is
the JTA platform using hibernate.transaction.jta.platform. This property can have
the following values (these classes belong to Hibernate core; they are the transaction
managers as deployed on different application servers):

e JBoss Application Server 7 (www. jboss.org/as7)!
org.hibernate.service.jta.platform.internal.JBossAppServerJtaPlatform

e Bitronix JTA Transaction Manager (www.docs.codehaus.org/display/BTM/Home)
org.hibernate.service.jta.platform.internal.BitronixJtaPlatform

e Borland Enterprise Server 6.0 (www.techpubs.borland.com/am/bes/v6/)
org.hibernate.service.jta.platform.internal.BorlandEnterpriseServerJtaPlatform

e JBoss Transactions (standalone JTA transaction manager known to work with
org.jboss.jbossts:jbossjta:4.9.0.GA; not for use with Jboss AS 7)
(www. jboss.org/jbosstm)
org.hibernate.service.jta.platform.internal.JBossStandAloneJtaPlatform

e JOnAS OSGi Enterprise Server (OW2) (www.jonas.ow2.org/xwiki/bin/view/Main/)
org.hibernate.service.jta.platform.internal.JOnASJtaPlatform

Tn April 2013 Red Hat, Inc. announced that the next generation of JBoss Application Server would be known as Wildfly. See
http://gb.redhat.com/about/news/press-archive/2013/4/red-hat-reveals-plans-for-its-next-generation-java-
application-server-project.

42

http://www.jboss.org/as7
http://www.docs.codehaus.org/display/BTM/Home
http://www.techpubs.borland.com/am/bes/v6/
http://www.jboss.org/jbosstm
http://www.jonas.ow2.org/xwiki/bin/view/Main/
http://gb.redhat.com/about/news/press-archive/2013/4/red-hat-reveals-plans-for-its-next-generation-java-application-server-project
http://gb.redhat.com/about/news/press-archive/2013/4/red-hat-reveals-plans-for-its-next-generation-java-application-server-project
http:///

CHAPTER 3 © BOOTSTRAPPING HIBERNATE 0GM

e Java Open Transaction Manager (JOTM), a standalone transaction manager
(www.jotm.objectweb.org/)
org.hibernate.service.jta.platform.internal.JOTMItaPlatform

e JRun 4 Application Server (www.adobe.com/products/jrun/)
org.hibernate.service.jta.platform.internal.JRun4JtaPlatform

e NoJtaPlatform class, a no-op version for use when no JTA has been configured
(www.docs.jboss.org/hibernate/orm/4.0/javadocs/org/hibernate/service/jta/
platform/internal/NoJtaPlatform.html)
org.hibernate.service.jta.platform.internal.NoJtaPlatform

e Oracle Application Server 10g (OC4J)
(www.oracle.com/technetwork/middleware/ias/index-099846.html)
org.hibernate.service.jta.platform.internal.0C4JJtaPlatform

e Caucho Resin Application Server (www.caucho.com/)
org.hibernate.service.jta.platform.internal.ResinJtaPlatform

e Sun ONE Application Server 7 (This transaction manager also works with GlassFish v3
Application Server) (www.docs.oracle.com/cd/E19957-01/817-2180-10/pt_chap1.html)
org.hibernate.service.jta.platform.internal.SunOneJtaPlatform

e Weblogic Application Server (www.oracle.com/us/products/middleware/cloud-app-
foundation/weblogic/overview/index.html)
org.hibernate.service.jta.platform.internal.WeblogicJtaPlatform

e WebSphere Application Server version 6
(www-01.ibm.com/software/webservers/appserv/was/)
org.hibernate.service.jta.platform.internal.WebSphereExtendedJtaPlatform

e WebSphere Application Server versions 4, 5.0 and 5.1
(www-01.1ibm.com/software/webservers/appserv/was/)
org.hibernate.service.jta.platform.internal.WebSphereJtaPlatform

e Transaction Manager Lookup Bridge, a bridge to legacy (and deprecated)
org.hibernate.transaction.TransactionManagerLookup implementations
(www.docs.jboss.org/hibernate/orm/4.0/javadocs/org/hibernate/service/jta/
platform/internal/TransactionManagerLookupBridge.html)
org.hibernate.service.jta.platform.internal.TransactionManagerLookupBridge

e Orion Application Server - it seems that this server does not exist any more
org.hibernate.service.jta.platform.internal.OrionJtaPlatform

Note Keep in mind that these values were valid when this book was written. They were available in Hibernate 4.1,
but it's quite possible they will change in the future. You can check the list in the Hibernate Developer Guide,
at www.docs.jboss.org/hibernate/orm/4.1/devguide/en-US/html_single/.

Here’s an example of setting the JTA platform for Caucho Resin:

<property name="hibernate.transaction.jta.platform"
value="org.hibernate.service.jta.platform.internal.ResinJtaPlatform"/>

43

http://www.jotm.objectweb.org/
http://www.adobe.com/products/jrun/
http://www.docs.jboss.org/hibernate/orm/4.0/javadocs/org/hibernate/service/jta/platform/internal/NoJtaPlatform.html
http://www.docs.jboss.org/hibernate/orm/4.0/javadocs/org/hibernate/service/jta/platform/internal/NoJtaPlatform.html
http://www.oracle.com/technetwork/middleware/ias/index-099846.html
http://www.caucho.com/
http://www.docs.oracle.com/cd/E19957-01/817-2180-10/pt_chap1.html
http://www.oracle.com/us/products/middleware/cloud-app-foundation/weblogic/overview/index.html
http://www.oracle.com/us/products/middleware/cloud-app-foundation/weblogic/overview/index.html
http://www-01.ibm.com/software/webservers/appserv/was/
http://www-01.ibm.com/software/webservers/appserv/was/
http://www.docs.jboss.org/hibernate/orm/4.0/javadocs/org/hibernate/service/jta/platform/internal/TransactionManagerLookupBridge.html
http://www.docs.jboss.org/hibernate/orm/4.0/javadocs/org/hibernate/service/jta/platform/internal/TransactionManagerLookupBridge.html
http://www.docs.jboss.org/hibernate/orm/4.1/devguide/en-US/html_single/
http:///

CHAPTER 3 © BOOTSTRAPPING HIBERNATE 0GM

The next five properties configure which NoSQL data store to use and how to connect to it.
For example, you can connect to an out-of-the-box MongoDB distribution by setting the
data store provider, grid dialect (optional), database, host and port, like this:

<property name="hibernate.ogm.datastore.provider" value="mongodb"/>

<property name="hibernate.ogm.datastore.grid dialect"
value="org.hibernate.ogm.dialect.mongodb.MongoDBDialect"/>

<property name="hibernate.ogm.mongodb.database" value="test"/>

<property name="hibernate.ogm.mongodb.host" value="127.0.0.1"/>

<property name="hibernate.ogm.mongodb.port" value="27017"/>

That's it! Now we can glue the pieces together and provide a generic persistence.xml for out-of-the-box
MongoDB, as shown in Listing 3-1. In the next chapter we’ll adapt this file to fit into different environments.

Listing 3-1. A Generic persistence.xml File

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.0" xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence 2 _0.xsd">
<persistence-unit name="{PU NAME}" transaction-type="JTA">
<provider>org.hibernate.ogm. jpa.HibernateOgmPersistence</provider>
<properties>
<property name="hibernate.transaction.jta.platform"
value="{JTA PLATFORM}"/>
<property name="hibernate.ogm.datastore.provider" value="mongodb"/>
<property name="hibernate.ogm.datastore.grid dialect"”
value="org.hibernate.ogm.dialect.mongodb.MongoDBDialect"/>
<property name="hibernate.ogm.mongodb.database" value="test"/>
<property name="hibernate.ogm.mongodb.host" value="127.0.0.1"/>
<property name="hibernate.ogm.mongodb.port" value="27017"/>
</properties>
</persistence-unit>
</persistence>

Bootstrap Hibernate OGM Using Hibernate Native API

Earlier, you saw that a native API application can be developed by following a few straightforward steps. Three of these
steps—loading properties and mapping files into the application; creating a global thread-safe SessionFactory for the
current configuration; and obtaining Sessions (single-threaded units of work) through SessionFactory—are usually
implemented in the well-known HibernateUtil class. (You can write this class, but you also can find it on Internet in
different "shapes.") Invariably, in this class, you’ll have some lines of code similar to this (for Hibernate 3):

private static final SessionFactory sessionFactory;

sessionFactory = new Configuration().configure().buildSessionFactory();

44

http://java.sun.com/xml/ns/persistence
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd
http:///

CHAPTER 3 © BOOTSTRAPPING HIBERNATE 0GM

Look at the second line, which builds the SessionFactory through an instance of the org.hibernate.cfg.
Configuration class. Actually, this is the entry point to setting Hibernate OGM to work with Native API, because
instead of using the org.hibernate.cfg.Configuration class, which is specific to Hibernate ORM, you need to use
the org.hibernate.ogm.cfg.0gmConfiguration class. Therefore, that second line will become:

sessionFactory = new OgmConfiguration().configure().buildSessionFactory();

Starting with Hibernate 4, this code will present a warning about the deprecated method buildSessionFactory().
In this case, the javadoc recommends using the form buildSessionFactory(ServiceRegistry serviceRegistry).
So if you are using Hibernate 4 (recommended), replace the previous code with this:

private static final SessionFactory sessionFactory;
private static final ServiceRegistry serviceRegistry;

OgmConfiguration cfgogm = new OgmConfiguration();
cfgogm.configure();

serviceRegistry = new ServiceRegistryBuilder().
applySettings(cfgogm.getProperties()).buildServiceRegistry();
sessionFactory = cfgogm.buildSessionFactory(serviceRegistry);

This approach (using either Hibernate 3 or 4) requires a hibernate.cfg.xml file that contains specific
configurations. For Hibernate OGM, the file needs to contain the correct transaction strategy and the correct
transaction manager lookup strategy. You have to specify a factory class for Transaction instances by setting the
Hibernate configuration property hibernate.transaction.factory class. The accepted values are:

e org.hibernate.transaction.JDBCTransactionFactory—this is the default value and it
delegates to database (JDBC) transactions.

e org.hibernate.transaction.JTATransactionFactory —with this, bean-managed
transactions are used, which means you must manually demarcate transaction boundaries.

e org.hibernate.transaction.CMTTransactionFactory—this value delegates to container-
managed JTA transactions.

Programmatically, you can achieve this setting like this:

OgmConfiguration cfgogm = new OgmConfiguration();
cfgogm.setProperty(Environment. TRANSACTION STRATEGY,
"{TRANSACTION STRATEGY}");

Next, you have to specify the JTA platform by setting the property named hibernate.transaction.jta.platform.
The value of this property must consist of the fully qualified class name of the lookup implementation. The acceptable
values were listed earlier in the "Bootstrap Hibernate OGM Using JPA" section.

45

[vww allitebooks.cond

http:///
http://www.allitebooks.org

CHAPTER 3 © BOOTSTRAPPING HIBERNATE 0GM

Programmatically, you can achieve this setting like this:

OgmConfiguration cfgogm = new OgmConfiguration();

cfgogm.setProperty(Environment.JTA PLATFORM,"{JTA PLATFORM}");

Finally, you need configure which NoSQL data store you want to use and how to connect to it.
For an out-of-the-box MongoDB distribution, you need to set the data store provider, grid dialect (optional),
database, host and port, like this:

<property name="hibernate.ogm.datastore.provider">mongodb</property>

<property name="hibernate.ogm.mongodb.database">test</property>

<property name="hibernate.ogm.datastore.grid dialect">
org.hibernate.ogm.dialect.mongodb.MongoDBDialect</property>

<property name="hibernate.ogm.mongodb.host">127.0.0.1</property>

<property name="hibernate.ogm.mongodb.port">27017</property>

Programmatically, you can achieve these settings with the code in Listing 3-2.
Listing 3-2. Configuring MongoDB as the Data Store

OgmConfiguration cfgogm = new OgmConfiguration();
cfgogm.setProperty("hibernate.ogm.datastore.provider”, "mongodb");
cfgogm.setProperty("hibernate.ogm.mongodb.database", "test");
cfgogm.setProperty("hibernate.ogm.datastore.grid dialect ","
org.hibernate.ogm.dialect.mongodb.MongoDBDialect");
cfgogm.setProperty("hibernate.ogm.mongodb.host","127.0.0.1");

cfgogm.setProperty("hibernate.ogm.mongodb.port","27017");

Therefore, if you are using non-programmatically settings then the hibernate.cfg.xml may look like this:

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE hibernate-configuration PUBLIC "-//Hibernate/Hibernate Configuration DTD 3.0//EN"
"http://www.hibernate.org/dtd/hibernate-configuration-3.0.dtd">
<hibernate-configuration>
<session-factory>
<property name="hibernate.transaction.factory class">
{TRANSACTION STRATEGY}
</property>
<property name="hibernate.transaction.jta.platform">
{JTA PLATFORM}
</property>
<property name="hibernate.ogm.datastore.provider">mongodb</property>
<property name="hibernate.ogm.mongodb.database">test</property>
<property name="hibernate.ogm.datastore.grid dialect">
org.hibernate.ogm.dialect.mongodb.MongoDBDialect</property>

46

http://www.hibernate.org/dtd/hibernate-configuration-3.0.dtd
http:///

CHAPTER 3 © BOOTSTRAPPING HIBERNATE 0GM

<property name="hibernate.ogm.mongodb.host">127.0.0.1</property>
<property name="hibernate.ogm.mongodb.port">27017</property>
<mapping resource="..."/>

</session-factory>
</hibernate-configuration>

Listing 3-3 shows the HibernateUtil class that uses this configuration file.

Listing 3-3. HibernateUtil

import java.util.logging.level;

import java.util.logging.logger;

import org.hibernate.SessionFactory;

import org.hibernate.ogm.cfg.0gmConfiguration;
import org.hibernate.service.ServiceRegistry;

import org.hibernate.service.ServiceRegistryBuilder;

/**

* HibernateUtil class (based on hibernate.cfg.xml)
*

*/

public class HibernateUtil {

private static final Logger log = Logger.getlogger(HibernateUtil.class.getName());
private static final SessionFactory sessionFactory;
private static final ServiceRegistry serviceRegistry;

static {
try {
// create a new instance of OmgConfiguration
OgmConfiguration cfgogm = new OgmConfiguration();

//process configuration and mapping files
cfgogm.configure();
// create the SessionFactory
serviceRegistry = new ServiceRegistryBuilder().
applySettings(cfgogm.getProperties()).buildServiceRegistry();
sessionFactory = cfgogm.buildSessionFactory(serviceRegistry);
} catch (Throwable ex) {
log.log(Level.SEVERE,
"Initial SessionFactory creation failed !", ex);
throw new ExceptionInInitializerError(ex);

}

public static SessionFactory getSessionFactory() {
return sessionFactory;
}

47

http:///

CHAPTER 3 © BOOTSTRAPPING HIBERNATE 0GM

If you're using programmatic settings, you don’t need a hibernate.cfg.xml file and your HibernateUtil will

look like what'’s shown in Listing 3-4.

Listing 3-4. A HibernateUtil Class That Doesn’t Need Hibernate.cfg.xml

import java.util.logging.Level;

import java.util.logging.logger;

import org.hibernate.SessionFactory;

import org.hibernate.cfg.Environment;

import org.hibernate.ogm.cfg.0OgmConfiguration;
import org.hibernate.service.ServiceRegistry;

import org.hibernate.service.ServiceRegistryBuilder;

%k

* HibernateUtil class (no need of hibernate.cfg.xml)

*
*/

public class HibernateUtil {

48

private static final Logger log = Logger.getlogger(HibernateUtil.class.getName());
private static final SessionFactory sessionFactory;
private static final ServiceRegistry serviceRegistry;

static {
try {
// create a new instance of OmgConfiguration
OgmConfiguration cfgogm = new OgmConfiguration();

// enable transaction strategy
cfgogm.setProperty(Environment.TRANSACTION STRATEGY,
"{TRANSACTION_STRATEGY}");
// specify JTA platform
cfgogm.setProperty(Environment.JTA PLATFORM, "{JTA PLATFORM}");

//configure MongoDB connection
cfgogm.setProperty("hibernate.ogm.datastore.provider", "mongodb");
cfgogm.setProperty("hibernate.ogm.datastore.grid dialect",
"org.hibernate.ogm.dialect.mongodb.MongoDBDialect");
cfgogm.setProperty("hibernate.ogm.mongodb.database"”, "test");
cfgogm.setProperty("hibernate.ogm.mongodb.host", "127.0.0.1");
cfgogm.setProperty("hibernate.ogm.mongodb.port"”, "27017");

//add our annotated class
cfgogm.addAnnotatedClass(*.class);

// create the SessionFactory

serviceRegistry = new ServiceRegistryBuilder().
applySettings(cfgogm.getProperties()).buildServiceRegistry();

sessionFactory = cfgogm.buildSessionFactory(serviceRegistry);

http:///

CHAPTER 3 © BOOTSTRAPPING HIBERNATE 0GM

} catch (Throwable ex) {
log.log(Level.SEVERE,
"Initial SessionFactory creation failed !", ex);
throw new ExceptionInInitializerError(ex);

}

public static SessionFactory getSessionFactory() {
return sessionFactory;
}

Now, the Hibernate Native API presented in Figure 3-2 can be redrawn as in Figure 3-3.

' Application Layer Hibernate Layer Database Layer ‘

]

Transaction
—

uoneinbyuo

hibernate. properties

hibernate.cfg.xml

Persistence
Object

SessionFactory | :

A

Figure 3-3. Hibernate Native API architecture in Hibernate OGM

Note Setting up Infinispan with the default configuration (org/hibernate/ogm/datastore/infinispan/
default-config.xml) can be accomplished by specifying the value of the hibernate.ogm.datastore.provider
property as infinispan. And you can set up Ehcache with the default configuration (org/hibernate/ogm/datastore/
ehcache/default-ehcache.xml) by setting the same property to Ehcache. For these two NoSQL products, Hibernate
OGM also supports a specific property for indicating an XML configuration file. For Infinispan, this property is called
hibernate.ogm.infinispan.configuration resourcename and for Ehcache it’s hibernate.ogm.ehcache.configuration_
resourcename. For Infinispan and Ehcache, therefore, you don’t need to set dialect, database, port and host.

49

http:///

CHAPTER 3 © BOOTSTRAPPING HIBERNATE 0GM

Hibernate 0GM Obsolete Configuration Options

With the advent of Hibernate OGM, a set of options from Hibernate ORM are no longer available. Therefore,
in accordance with the Hibernate OGM specification, the following options should not be used in OGM
environments:

hibernate.
hibernate.
hibernate.
hibernate.

hibernate.

hibernate

hibernate.

Summary

After a brieflook at the Java Persistence API (JPA), Java Transaction API (JTA), and Hibernate Native API, you saw how
to bootstrap Hibernate OGM using JPA and Hibernate Native API. You learned how to write a generic persistence.

xml and how to implement a HibernateUTtil class for Hibernate OGM. Finally, you saw the list of Hibernate ORM
configuration properties that are no longer available in Hibernate OGM.

50

dialect

connection.* and in particular hibernate.connection.provider_class
show_sqgl and hibernate.format_sql

default_schema and hibernate.default_catalog

use_sql_comments

.jdbe.*

hbm2ddl.auto and hibernate.hbm2ddl.import_file

http:///

CHAPTER 4

Hibernate OGM at Work

So far, you've learned that Hibernate OGM can be used via Java Persistence APIs or Hibernate Native APIs. Moreover,
you understand the principles for accomplishing Hibernate OGM bootstrapping and you've looked at some relevant
code snippets. Obviously, jumping from those code snippets to real applications requires more than copying and
pasting, since you have to deal with the integration process and each environment’s specific features and settings.
Trying to give an example that exactly matches each individual programmer’s needs would be hopelessly
overambitious, but what I can do is to provide a series of examples that use Hibernate OGM. In this chapter, I'll show you
some out-of-the-box Hibernate OGM applications deployable on Java EE 6 servers (such as JBoss and GlassFish) and
on Web servers (such as Tomcat), using frameworks like Seam and Spring and specifications like EJB. In addition to the
kernel technologies that interact directly with Hibernate OGM, we'll use some development tools, IDEs like NetBeans
and Eclipse, as well as Maven, JBoss Forge, Ant and so on, which help us build the applications with a minimum of effort.
Consider these tools as my choice and not a must. You can use any other tools that yield the same results.
The entire set of applications share some simple business logic that stores a random integer in a MongoDB
collection—we'll call this integer a lucky number. As you'll see, the stored integer is not even solicited from the
user; it's randomly generated when the user presses a button (each press generates and stores a new integer). The
point of this trivial business logic is to keep the application code as simple as possible and focus on Hibernate
OGM integration into the context. What we’re really concerned with is successfully binding Hibernate OGM to an
application context and setting up interaction with MongoDB. In later chapters, we’ll have plenty of time to discuss
advanced setting for MongoDB, storage principles, JP-QL, Hibernate Search, and so on.

General Prerequisites

Before we start, make sure you've correctly installed MongoDB (as you saw in the Chapter 1) and that you have the
Hibernate OGM JARs available, including the JARs needed for MongoDB support (locally or through Maven artifacts).
The rest of the tools, such as application servers, frameworks, IDEs and so on, can be installed separately according
to your needs; you probably won’t be interested in all of the following examples. In any case, for testing the complete
suite of applications from this chapter, you'll need the following:

e JavaEEG6

e JDK1.7

e GlassFish AS 3 (bundled with NetBeans 7.2.1 or 7.3)

e JBoss AS 7 (should be installed separately)

e Apache Tomcat 7 (bundled with NetBeans 7.2.1 or 7.3)

e NetBeans 7.2.1 or 7.3 (recommended with GlassFish AS 3 and Tomcat 7)

51

http:///

CHAPTER 4 * HIBERNATE OGM AT WORK

e Eclipse JUNO (JBoss AS 7 can be configured under this Eclipse distribution through JBoss
AS Tools)

e MongoDB 2.2.2 (you should have this installed from Chapter 1)

e Hibernate OGM 4.0.0.Beta2 (from Chapter 1, you should have a NetBeans and Eclipse library
named Hibernate OGM Core and MongoDB)

e MongoDB Java Driver 2.8.0 (this is present in Hibernate OGM Core and MongoDB library)
e JBossJTA 4.16.4 Final
e Forge 1.0.5 or 1.3.1 (standalone or running as an Eclipse plug-in)
e Spring 3.3.1 (bundled with NetBeans 7.2.1 or 7.3)
Moreover, before you start, you may find it helpful to know that:

e Each application presented in this chapter can be downloaded from the Apress repository.
Each application includes a small paragraph that describes the application name and the
technical conditions under which it was tested. In other words, there’s no need for you to
reconstruct each application as you read this book, unless you want to.

¢ The examples show you how to integrate MongoDB and Hibernate OGM in different kinds
of applications that involve several technologies. As you know, such applications need many
additional files—XML configuration files, XHTML pages, servlets, managed beans, controllers
and so on. I tried to keep the code as clean as possible to make it easier to understand how to
integrate MongoDB and Hibernate OGM, so I've skipped the “spaghetti” code that isn’t relevant.
Furthermore, I don'’t try to teach you how to create a servlet, a session bean, or an XHTML page,
or how to write a web.xml file. I assume you already know how, probably with NetBeans, Eclipse
or another IDE. Don’t expect to see a step-by-step NetBeans or Eclipse tutorial.

Note For the applications developed as Apache Maven projects, don’t forget to edit settings.xml as you saw in
Chapter 1. Or, if you think that settings.xml is too verbose, you can simply use <repository> tags in your pom.xml.
Keep in mind, though, that missing repositories will cause errors.

Java SE and MongoDB—the Hello World Example

We'll start our series of applications with an exception: the first application won'’t involve Hibernate OGM. This application
is actually just a quick test to make sure that the MongoDB server is running and responds to a connection attempt. Consider
this our Hello World application for Java-MongoDB novices. You can skip it if you think it’s a waste of your time. Otherwise,
let’s go!

This is the simplest Java SE/MongoDB example ever—it simply stores a random number into a MongoDB collection.

Prerequisites

e MongoDB2.2.2

e MongoDB Java driver 2.8.0 (mongo-java-driver-2.8.0.jar)
e JDK1.7

e NetBeans 7.2.1 (or Eclipse JUNO)

52

http:///

CHAPTER 4 © HIBERNATE OGM AT WORK

Developing

After launching NetBeans, create a new project consisting of a simple Maven Java application and name it
HelloWorld. In the New Java Application wizard, type HelloWorld for the Artifact Id, and hello.world.mongodb
for the Group Idand Package. Once you see the project listed in the Projects window, edit the pom.xml file (which
must be under the Project Files node). In the pom.xml file, add the MongoDB Java driver, version 2.8.0, by pasting in
the following code:

<dependencies>
<dependency>
<groupId>org.mongodb</groupId>
<artifactId>mongo-java-driver</artifactId>
<version>2.8.0</version>
</dependency>

<dependencies>

Now save the project and the driver JAR will be listed under the Dependencies node.

Note If you're not a Maven fan, create a simple Java application and download the MongoDB Java driver 2.8.0 from
GitHub, https://github.com/mongodb/mongo-java-driver/downloads. Obviously, in this case, you have to add it
manually to the Libraries node

Now the necessary libraries are available. Next, edit the application’s main class. If you didn’t rename it, it’s
listed as App. java in the Source Packages node of the hello.world.mongodb.helloworld package. Under the main
method, insert the following code, step by step:

1. Connect to the MongoDB store at localhost (127.0.0.1) on default port, 270127
Mongo mongo = new Mongo("127.0.0.1", 27017);

2. Create a MongoDB database named helloworld_db. Most likely this database will be
automatically created by MongoDB since it doesn’t exist.

DB db = mongo.getDB("helloworld db");

3. Create a MongoDB collection named helloworld. This collection will probably be created
automatically in the helloworld db database by MongoDB since it doesn’t exist.

DBCollection dbCollection = db.getCollection("helloworld");

4. Create a document for storing a key/value pair. The key is just text and the value is the
generated number.

BasicDBObject basicDBObject = new BasicDBObject();
basicDBObject.put("Lucky number", new Random().nextInt(1000));

53

https://github.com/mongodb/mongo-java-driver/downloads
http:///

CHAPTER 4 * HIBERNATE OGM AT WORK

5

Done!
Now, put those five steps together. Listing 4-1 shows the result.

Save the pair to the helloworld collection:

dbCollection.insert(basicDBObject);

Listing 4-1. The Hello World Example

package hello.world.mongodb.helloworld;

import
import
import
import
import
import
import

/**

com.
com.
.mongodb.DBCollection;

com

com.
com.

mongodb.BasicDBObject;
mongodb .DB;

mongodb.Mongo;
mongodb .MongoException;

java.net.UnknownHostException;
java.util.Random;

* Hello world!

*
*/

public class App {

public static void main(String[] args) {
try {

54

// connect to the MongoDB store
Mongo mongo = new Mongo("127.0.0.1", 27017);

// get the MongoDB database, helloworld db
DB db = mongo.getDB("helloworld db");

//get the MongoDB collection named helloworld
DBCollection dbCollection = db.getCollection("helloworld");

// create a document for storing a key/value pair
BasicDBObject basicDBObject = new BasicDBObject();
basicDBObject.put("Lucky number", new Random().nextInt(1000));

// save the pair into helloworld collection
dbCollection.insert(basicDBObject);

System.out.println("MongoDB has stored the lucky number!");

} catch (UnknownHostException e) {

System.err.println("ERROR: " + e.getMessage());

} catch (MongoException e) {

}

System.err.println("ERROR: " + e.getMessage());

http:///

CHAPTER 4 © HIBERNATE OGM AT WORK

Testing

Start the MongoDB server as in Chapter 1. Next, since you are in NetBeans (or Eclipse), there’s a Run button that does the
magic. Run the application and if you get the message “MongoDB has stored the lucky number!, everything worked perfectly.
Open a command prompt and type the commands shown in Figure 4-1 to see the results of your work.

smongodbsbin?mongo helloworld_dhb

ongoDB shell version: 2_.2.2

onnecting to: helloworld_d

> show collections

elloworld

ystem.indexes

> db.helloworld.find(>;
"_id" = ObjectIld{"5B8ee?a?fA1658fd45122b728"), "Lucky number" : 493 >
"_id" = Objectld("5Bee?cdlBle5f47he8302632"),. "Lucky number' : 643 >
"_id" = Objectld("5Bee?cd3@l65bfbh73748ed38"),. “Lucky number' : 188 >
"_id" = Objectld{'"5Bee?cd4@1652e8cA?24c4922"),. "Lucky number" : 668 >

>
Figure 4-1. Checking the “helloworld” collection content

If you don’t obtain similar results, there’s a problem that must be fixed before creating the next application.
The complete Hello World application is available in the Apress repository and, of course, is named HelloWorld.
It comes as a NetBeans project and was tested under JDK 1.7 and MongoDB 2.2.2.

Hibernate OGM via Hibernate Native API

Once you've checked that MongoDB is ready to serve your applications, it’s time to move on to Hibernate OGM. In
this section, we’ll develop a series of applications that involve Hibernate OGM using the Hibernate Native API. Here
are the applications we’ll develop:

e Hibernate OGM in a non-JTA environment (JDBC Transactions, Apache Tomcat 7)
e Hibernate OGM in a standalone JTA environment (JBoss JTA, Apache Tomcat 7)

e Hibernate OGM in a built-in JTA environment (no EJB, GlassFish AS 3)

e Hibernate OGM in a built-in JTA environment (EJB 3/BMT, GlassFish AS 3)

e Hibernate OGM in a built-in JTA environment (EJB 3/CMT, GlassFish AS 3)

Hibernate OGM in a Non-JTA Environment (JDBC Transactions,
Apache Tomcat 7)

This application will bootstrap Hibernate OGM via Hibernate Native API in a non-JTA environment. Instead of JTA,
we'll use the old-style JDBC transactions. Actually, instead of calling the JDBC API directly, we'll use Hibernate’s
Transaction API and the built-in session-per-request functionality. The application will be deployable under an Apache
Tomcat 7 web container.

Note When Hibernate OGM is used in a non-JTA environment, the rollback feature is not guaranteed. This is why
the Hibernate 0GM team doesn’t recommend this environment for the Hibernate 0GM 4.0.0.Beta2 release, but there are
hopes that this situation will become more favorable in the next releases. Since we are using MongoDB, which does not
support transactions, this is a less concern for us.

55

[vww allitebooks.cond

http:///
http://www.allitebooks.org

CHAPTER 4 * HIBERNATE OGM AT WORK

Prerequisites
e MongoDB2.2.2
e Hibernate OGM 4.0.0.Beta2
e JDK1.7
e NetBeans 7.2.1 (or Eclipse JUNO)

e Apache Tomcat 7

Developing

After launching NetBeans, create a new project consisting of an empty Maven web application and name it
HOGMviaHNAPI_JDBC Tomcat7.Inthe New Web Application wizard, type hogm.hnapi for the Group Idand Package
fields. Don’t forget to select the Apache Tomcat 7 web server for deployment of this application. Once you see the
project listed in Projects window, edit the pom.xm1 file (Which must be under the Project Files node). In the pom.xml
file, add the Hibernate OGM distribution (including MongoDB support) by pasting in the following dependencies:

<dependencies>

<dependency>
<groupIld>org.hibernate.ogm</groupId>
<artifactId>hibernate-ogm-core</artifactId>
<version>4.0.0.Beta2</version>

</dependency>

<dependency>
<groupId>org.hibernate.ogm</groupId>
<artifactId>hibernate-ogm-mongodb</artifactId>
<version>4.0.0.Betal</version>

</dependency>

<dependencies>

Now save the project and the MongoDB Java driver JAR will be listed under the Dependencies node.

Coding the Application

Now we’re ready to add some code. We start with a simple POJO class, which has the ability to represent objects in
the database. As you can see in Listing 4-2, the class contains a single field (apart from primary key field), named
luckynumber and the well-known getter and setter methods.

Listing 4-2. The LuckyNumberPojo Class

package hogm.hnapi.pojo;
public class LuckyNumberPojo {

private String id;
private int luckynumber;

56

http:///

CHAPTER 4 © HIBERNATE OGM AT WORK

public String getId() {

return id;

}

public void setId(String id) {
this.id = id;

}

public int getLuckynumber() {
return luckynumber;
}

public void setLuckynumber(int luckynumber) {
this.luckynumber = luckynumber;
}

Most applications that use Hibernate require a special class named HibernateUtil, a helper class that provides
access to the SessionFactory everywhere in the code. There are many versions available for Hibernate ORM on the
Internet, like the one from the CaveatEmptor demo. For Hibernate OGM, we can develop a HibernateUtil based on
the simplest of the versions for Hibernate ORM, which usually looks like what’s shown in Listing 4-3. You're probably
familiar with it and have used it many times in Hibernate 3.

Listing 4-3. A Basic HibernateUtil Class for Hibernate ORM

import org.hibernate.SessionFactory;
import org.hibernate.cfg.Configuration;

public class HibernateUtil {
private static final SessionFactory sessionFactory;

static {
try {
sessionFactory = new
Configuration().configure().buildSessionFactory();
} catch (Throwable ex) {
System.err.println("Initial SessionFactory creation failed." + ex);
throw new ExceptionInInitializerError(ex);

}

public static SessionFactory getSessionFactory() {
return sessionFactory;
}

Now, developing a HibernateUtil for Hibernate OGM is a task based on two main modifications of this source.
First, instead of creating a new instance of the Configuration class, we need to instantiate the OgmConfiguration
class, which is used to configure the Hibernate OGM environment. And second, starting with Hibernate 4, the session
factory has to be obtained through a service registry passed to the buildSessionFactory method. With these in mind,
the code can be easily transformed into a HibernateUtil for Hibernate OGM, as shown in Listing 4-4.

57

http:///

CHAPTER 4 * HIBERNATE OGM AT WORK

Listing 4-4. A HibernateUtil Class for Hibernate OGM

package hogm.hnapi.util.with.hibernate.cfg;

import java.util.logging.level;

import java.util.logging.logger;

import org.hibernate.SessionFactory;

import org.hibernate.ogm.cfg.0gmConfiguration;
import org.hibernate.service.ServiceRegistry;

import org.hibernate.service.ServiceRegistryBuilder;

public class HibernateUtil {

private static final Logger log =

Logger.getLogger (HibernateUtil.class.getName());
private static final SessionFactory sessionFactory;
private static final ServiceRegistry serviceRegistry;

static {
try {
// create a new instance of OmgConfiguration
OgmConfiguration cfgogm = new OgmConfiguration();

// process configuration and mapping files

cfgogm.configure();

// create the SessionFactory

serviceRegistry = new ServiceRegistryBuilder().

applySettings(cfgogm.getProperties()).buildServiceRegistry();

sessionFactory = cfgogm.buildSessionFactory(serviceRegistry);
} catch (Throwable ex) {

log.log(Level.SEVERE,

"Initial SessionFactory creation failed !", ex);
throw new ExceptionInInitializerError(ex);

}

public static SessionFactory getSessionFactory() {
return sessionFactory;
}

To get a valid session factory from this HibernateUtil, we need to build the Hibernate configuration file
(hibernate.cfg.xml) and the corresponding mapping files (*. hbm.xml). As you know, the hibernate.cfg.xml file
contains the main information for adjusting the Hibernate environment and database connection. Since we’re in a
non-JTA environment and are following the well-known Hibernate thread-bound strategy (Hibernate binds the current
session to the current Java thread), we start by setting two properties that are mandatory for accessing this strategy:

<property name="hibernate.transaction.factory class">
org.hibernate.transaction.JDBCTransactionFactory

</property>

<property name="hibernate.current_session_context_class">
thread

</property>

58

http:///

CHAPTER 4 © HIBERNATE OGM AT WORK

The next five properties are the top priority for us since they represent the MongoDB configuration, so we
specify the datastore provider, dialect, the name of the database to connect to, the MongoDB server host, and the
port (we'll use the localhost and the MongoDB server’s default port of 27017):

<property name="hibernate.ogm.datastore.provider">mongodb</property>
<property name="hibernate.ogm.datastore.grid dialect">
org.hibernate.ogm.dialect.mongodb.MongoDBDialect</property>
<property name="hibernate.ogm.mongodb.database">tomcat_db</property>
<property name="hibernate.ogm.mongodb.host">127.0.0.1</property>
<property name="hibernate.ogm.mongodb.port">27017</property>

Finally, we add the mapping resource, which, in this case, is represented by the single class, LuckyNumberPojo.
Add this final line:

<mapping resource="/LuckyNumberPojo.hbm.xml"/>

to the end of hibernate.cfg.xml to get the code shown in Listing 4-5.

Listing 4-5. A Hibernate Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE hibernate-configuration PUBLIC "-//Hibernate/Hibernate Configuration DTD 3.0//EN"
"http://www.hibernate.org/dtd/hibernate-configuration-3.0.dtd">
<hibernate-configuration>
<session-factory>
<property name="hibernate.transaction.factory class">
org.hibernate.transaction.JDBCTransactionFactory</property>
<property name="hibernate.current_session_context_class">thread</property>
<property name="hibernate.ogm.datastore.provider">mongodb</property>
<property name="hibernate.ogm.datastore.grid dialect">
org.hibernate.ogm.dialect.mongodb.MongoDBDialect</property>
<property name="hibernate.ogm.mongodb.database">tomcat_db</property>
<property name="hibernate.ogm.mongodb.host">127.0.0.1</property>
<property name="hibernate.ogm.mongodb.port">27017</property>
<mapping resource="/LuckyNumberPojo.hbm.xml"/>
</session-factory>
</hibernate-configuration>

The file hibernate.cfg.xml must reside in the root of the classpath when the web app is started. In a Maven
project, like this one, it should be saved in the src/main/resources directory (in NetBeans, this directory can be
found in the Other Sources node). In a non-Maven application, save the file in the WEB-INF/classes directory.

Writing LuckyNumberPojo.hbm.xml is our next goal. Since we have an ordinary POJO, the task is simple. First,
we describe the primary key field and the generator as UUID2. (This generates an IETF RFC 4122-compliant
(variant 2) 128-bit UUID. More details are available at www.ietf.org/rfc/rfc4122.txt.) Then we describe the
luckynumber field. The result is shown in Listing 4-6.

Listing 4-6. LuckyNumberPojo.hbm.xml

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE hibernate-mapping PUBLIC "-//Hibernate/Hibernate Mapping DTD 3.0//EN"
"http://www.hibernate.org/dtd/hibernate-mapping-3.0.dtd">

59

http://www.hibernate.org/dtd/hibernate-configuration-3.0.dtd
http://www.ietf.org/rfc/rfc4122.txt
http://www.hibernate.org/dtd/hibernate-mapping-3.0.dtd
http:///

CHAPTER 4 * HIBERNATE OGM AT WORK

<hibernate-mapping>
<class name="hogm.hnapi.pojo.LuckyNumberPojo" table="jdbc">
<id name="id" type="string">
<column name="id" />
<generator class="uuid2" />
</id>
<property name="luckynumber" type="int">
<column name="luckynumber"/>
</property>
</class>
</hibernate-mapping>

This file should go in the same folder as hibernate.cfg.xml.
The assignment table="jdbc" creates a collection named jdbc in MongoDB. If you want to create a collection
named XXX. jdbc, you can add catalog="XXX", like this:

<class name="hogm.hnapi.pojo.LuckyNumberPojo" table="jdbc" catalog="XXX">

Finally, we've reached the point where we can add some business logic. We'll write a DAO class that persists
the lucky numbers into the database. Such a class would typically contain, at the least, methods for all the CRUD
operations. However, all we need is a method for the persist operation. Actually, there are two implementations
of persist, one per opening session strategy. As you know, Hibernate provides both the getCurrentSession and
openSession methods for obtaining the current session. Calling getCurrentSession returns the “current” session
bound by Hibernate behind the scenes to the transaction scope, or opens a new session when getCurrentSession
is called for the first time. The session is available everywhere in the code as long as the transaction runs, and it is
automatically closed and flushed when the transaction ends. If you want to flush and close the session explicitly,
you have to use the openSession method. Listing 4-7 shows our DAO class with two persist methods, one for
getCurrentSession and one for openSession. Both use declarative demarcation of transactions boundaries, using
org.hibernate.Session methods such as beginTransaction and commit.

Listing 4-7. The DAO Class with Two persist Methods

package hogm.hnapi.dao;

import hogm.hnapi.pojo.LuckyNumberPojo;
import java.util.logging.Level;

import java.util.logging.logger;

import org.hibernate.Session;

public class LuckyNumberDAO {

private static final Logger log = Logger.getlLogger(LuckyNumberDAO.class.getName());

/**

* Insert data (use getCurrentSession and P0JO)
ES

* @param transientInstance
* @throws Exception
*/

60

http:///

CHAPTER 4 © HIBERNATE OGM AT WORK

public void persist cs with cfg(LuckyNumberPojo transientInstance) throws java.lang.Exception {

log.log(Level.INFO, "Persisting LuckyNumberPojo instance ...");
Session session = hogm.hnapi.util.with.hibernate.cfg.HibernateUtil.
getSessionFactory().getCurrentSession();
try {
session.beginTransaction();
session.persist(transientInstance);
session.getTransaction().commit();

log.log(Level .INFO, "Persist successful...");
} catch (RuntimeException re) {
session.getTransaction().rollback();
log.log(Level.SEVERE, "Persist failed...", re);
throw re;

}

Jx*

* Insert data (use openSession and P0JO)

*

* @param transientInstance

* @throws Exception

*/

public void persist os with_ cfg(LuckyNumberPojo transientInstance) throws java.lang.Exception {

log.log(Level.INFO, "Persisting LuckyNumberPojo instance ...");
Session session = hogm.hnapi.util.with.hibernate.cfg.HibernateUtil.
getSessionFactory().openSession();

try {
session.beginTransaction();
session.persist(transientInstance);
session.flush(); // flush happens automatically anyway
session.getTransaction().commit();

log.log(Level .INFO, "Persist successful...");
} catch (RuntimeException re) {
session.getTransaction().rollback();
log.log(Level.SEVERE, "Persist failed...", re);
throw re;
} finally {
session.close();
}

Note Though it's not listed here, the source code for this application (available in the Apress repository) also
demonstrates using an entity instead of a POJO, and replacing hibernate.cfg.xml with programmatic configuration
in the HibernateUtil class.

61

http:///

CHAPTER 4 * HIBERNATE OGM AT WORK

We're almost done! A simple user interface and a servlet are all we have left to implement. When the user presses a
button in the interface, an empty form is submitted to the servlet, which calls our DAO class (either persist_cs with_cfg
or persist_os_with_cfg) to store the generated lucky number into the database. The main snippet of code from the
servlet is shown in Listing 4-8.

Listing 4-8. The Lucky Number Servlet
package hogm.hnapi.servlet;

@WebServlet(name = "LuckyNumberServlet", urlPatterns = {"/LuckyNumberServlet"})
public class LuckyNumberServlet extends HttpServlet {

protected void processRequest(HttpServletRequest request, HttpServletResponse
response) throws ServletException, IOException, Exception {

LuckyNumberDAO luckyNumberDAO = new LuckyNumberDAO();
LuckyNumberPojo luckyNumberPojo = new LuckyNumberPojo();
luckyNumberPojo.setLuckynumber (new Random().nextInt(1000000));

luckyNumberDAO. persist cs with cfg(luckyNumberPojo);
// luckyNumberDAO.persist _os_with_cfg(luckyNumberPojo);

And the HTML form that’s submitted to this servlet is also extremely simple. The code goes on the index. jsp
page, which, in a NetBeans project, is listed under the Web Pages node of the project).

<form action="./LuckyNumberServlet" method="POST">
<input type="submit" value="Generate Lucky Number">
</form>

6éée!
Testing

Start the MongoDB server as you saw in Chapter 1. Next, since you're in a NetBeans/Tomcat (or Eclipse/Tomcat)
environment, just save the project and click the Run (or Run on Server in Eclipse) button to start Tomcat and deploy
and run the application. If the application starts successfully, you'll see in the browser something like what’s shown
in Figure 4-2.

62

http:///

CHAPTER 4 © HIBERNATE OGM AT WORK

%} B Hibernate OGM via Hibernate Native API.‘.l + |

localhost:2084 /HO GMviaHMAPL_JDEC_Tomcat7/

Hibernate OGM via Hibernate Native APL, non-JTA,
JDBC transaction demarcation
| Generate Lucky Number |

Figure 4-2. Running the HOGMviaHNAPI_JDBC_Tomcat7 application

Press the Generate Lucky Number button a few times to persist some lucky numbers into the MongoDB database
(tomcat_db) collection (jdbc). Open a command prompt and type the commands shown in Figure 4-3 to see the
results of your work. This lets you monitor Tomcat log messages in case anything unwanted happens.

D:=“mongodb“hin>mongo tomcat_dh
MongoDB shell version: 2

connecting to: tomcat_db

> show collections

Jdhbc

system.indexes

dhb. jdbc . find<D;

_id'" @ "A?3c1Vh?-3759-4584-b6P5-abedBalaabls?,. "luckynumber' - 397159 >
_id" : "bhfbed623-24a4-4e7B-2fd4-8h?25ei114Bad",. "luckynumber' - 111416 >
_id'" : "FP8c45a3-86db—4f1f-aB18-64BadbB66656",. "luckynumber' - 6EA446 >

a el ld

Figure 4-3. Checking the “jdbc” collection content

The complete source code for this application, which is called HOGMviaHNAPI_JDBC_Tomcat7, is available in the
Apress repository. It comes as a NetBeans project and it was tested under Tomcat 7. (I used the Tomcat bundled with
NetBeans 7.2.1.)

Hibernate OGM in a Standalone JTA Environment (JBoss JTA,
Apache Tomcat 7)

Our next application will bootstrap Hibernate OGM via the Hibernate Native API in a standalone JTA environment.
Asyou'll see, Hibernate works in any environment that uses JTA and, in fact, can automatically bind the current
session to the current JTA transaction. Since Tomcat is not a J2EE environment, it does not provide an automatic
JTA transaction manager, so we have to choose a standalone implementation of JTA. There are several open source
implementations, such as JOTM, Bitronix JTA, and Atomikos, but I prefer the JBoss JTA. It’s part of the well-known
JBoss TS (Arjuna Transaction Service) that comes with a very robust implementation of JTA and JTS APIs.

Now let’s see what the prerequisites for this application are.

Prerequisites
e MongoDB2.2.2
e Hibernate OGM 4.0.0.Beta2
e JBoss]JTA 4.16.4 Final
e JDK1.7
e NetBeans 7.2.1 (or Eclipse JUNO)

e Apache Tomcat 7

63

http:///

CHAPTER 4 * HIBERNATE OGM AT WORK

Developing

Launch NetBeans and create a new project consisting of an empty Maven web application and name it
HOGMviaHNAPI_JTA Tomcat7.In the New Web Applicationwizard, type hogm.hnapi for the Group Id and Package
fields. Don'’t forget to select the Apache Tomcat 7 web server for deploying this application. Once you see the project
listed in the Projects window, edit the pom.xml file (Which must be under the Project Files node).In pom.xml,
add the Hibernate OGM distribution (including MongoDB support) by pasting in the following dependencies.

<dependencies>

<dependency>
<groupIld>org.hibernate.ogm</groupld>
<artifactId>hibernate-ogm-core</artifactId>
<version>4.0.0.Beta2</version>

</dependency>

<dependency>
<groupIld>org.hibernate.ogm</groupld>
<artifactId>hibernate-ogm-mongodb</artifactId>
<version>4.0.0.Betai</version>

</dependency>

<dependencies>

Now save the project and the driver JAR will be listed under the Dependencies node.
We still need to add JARs for JBoss JTA in the application classpath, so now add this dependency:

<dependencies>
<dependency>
<groupIld>org.jboss.jbossts</groupld>
<artifactId>jbossjta</artifactId>
<version>4.16.4.Final</version>
</dependency>

<dependencies>

Coding the Application

We have all the necessary artifacts now so it’s time to start developing the application. First we’ll create a basic entity
class that can represent objects in the database. The class will contain just a single field (apart from the primary key),
which is named luckynumber. You should be familiar with these kind of entities, which are, technically speaking, just
annotated POJOs. (For more details, refer back to Chapter 2.) Listing 4-9 shows the LuckyNumberEntity class.

Listing 4-9. The LuckyNumberEntity Class

package hogm.hnapi.pojo;

import java.io.Serializable;

import javax.persistence.Column;

import javax.persistence.Entity;

import javax.persistence.GeneratedValue;

import javax.persistence.Id;

import javax.persistence.Table;

import org.hibernate.annotations.GenericGenerator;

64

http:///

CHAPTER 4 © HIBERNATE OGM AT WORK

@Entity
@Table(name="jta")
public class LuckyNumberEntity implements Serializable {

private static final long serialVersionUID = 1L;
@Id

@GeneratedValue(generator = "uuid")
@GenericGenerator(name="uuid", strategy="uuid2")
private String id;

@Column(name="1luckynumber", nullable=false)
private int luckynumber;

public String getId() {

return id;

}

public void setId(String id) {
this.id = id;

}

public int getLuckynumber() {
return luckynumber;
}

public void setLuckynumber(int luckynumber) {
this.luckynumber = luckynumber;
}

In the previous application, we used a simple POJO, and we developed a HibernateUtil class especially designed
to obtain a session factory anywhere in the code based on hibernate.cfg.xml and mapping files. In this application,
we'll take another approach—we’ll use an entity (a POJO extended with JDK 5 annotations) and a HibernateUtil that
provides a session factory configured programmatically. In other words, no hibernate.cfg.xml and no mapping files.

There are several configuration properties specific to our application. First of all, we tell Hibernate we want to
use manual transaction demarcation by setting the hibernate.transaction.factory classto
org.hibernate.transaction.JTATransactionFactory and hibernate.current_session_context_class to jta.
Programmatically speaking, these properties are mapped as constant values in the org.hibernate.cfg.Environment
class:

// create a new instance of OmgConfiguration
OgmConfiguration cfgogm = new OgmConfiguration();
cfgogm.setProperty(Environment.TRANSACTION STRATEGY,

"org.hibernate.transaction.JTATransactionFactory");
cfgogm.setProperty(Environment.CURRENT SESSION CONTEXT CLASS, "jta");

65

[vww allitebooks.cond

http:///
http://www.allitebooks.org

CHAPTER 4 * HIBERNATE OGM AT WORK

Next, we specify the JTA platform, JBoss JTA. To do so, we add the following:

cfgogm.setProperty(Environment.JTA_PLATFORM,
"org.hibernate.service.jta.platform.internal.JBossStandAloneJtaPlatform");

Notice that we set the JBoss JTA standalone distribution, not the one used by the JBoss AS.

According to the JBoss TS documentation, in order to select the local JBoss JTA implementation, you need to
specify two properties, com.arjuna.ats.jta.jtaTMImplementation and com.arjuna.ats.jta.jtaUTImplementation.
Since these properties aren’t part of Hibernate environment, they don’t have correlates in the Environment class. You
can specify them like this:

cfgogm.setProperty("com.arjuna.ats.jta.jtaTMImplementation”,
"com.arjuna.ats.internal.jta.transaction.arjunacore.TransactionManagerImple");
cfgogm.setProperty("com.arjuna.ats.jta.jtaUTImplementation”,
"com.arjuna.ats.internal.jta.transaction.arjunacore.UserTransactionImple");

Next, we configure the MongoDB connection: the datastore provider, the dialect, the name of the database to
connect to, the host and the port (we will use the localhost and the default MongoDB server port of 27017):

cfgogm.setProperty("hibernate.ogm.datastore.provider", "mongodb");
cfgogm.setProperty("hibernate.ogm.datastore.grid dialect",
"org.hibernate.ogm.dialect.mongodb.MongoDBDialect");
cfgogm.setProperty("hibernate.ogm.mongodb.database", "tomcat db");
cfgogm.setProperty("hibernate.ogm.mongodb.host", "127.0.0.1");
cfgogm.setProperty("hibernate.ogm.mongodb.port”, "27017");

Finally, we add our entity into the equation, dropping the LuckyNumberEntity.hbm.xml mapping file:
cfgogm.addAnnotatedClass(hogm.hnapi.pojo.LuckyNumberEntity.class);

Now add all of these configuration properties into the HibernateUtil class specific to the OGM distribution to
get the code shown in Listing 4-10. Note that I discussed this class in more detail in the previous application.

Listing 4-10. Another HibernateUtil Class

package hogm.hnapi.util.without.hibernate.cfg;

import java.util.logging.level;

import java.util.logging.logger;

import org.hibernate.SessionFactory;

import org.hibernate.cfg.Environment;

import org.hibernate.ogm.cfg.0gmConfiguration;
import org.hibernate.service.ServiceRegistry;

import org.hibernate.service.ServiceRegistryBuilder;

public class HibernateUtil {
private static final Logger log = Logger.getlLogger(HibernateUtil.class.getName());

private static final SessionFactory sessionFactory;
private static final ServiceRegistry serviceRegistry;

66

http:///

CHAPTER 4 © HIBERNATE OGM AT WORK

static {
try {
// create a new instance of OmgConfiguration
OgmConfiguration cfgogm = new OgmConfiguration();

// enable JTA strategy

cfgogm.setProperty(Environment.TRANSACTION STRATEGY,
"org.hibernate.transaction.JTATransactionFactory");

cfgogm.setProperty(Environment.CURRENT SESSION CONTEXT_CLASS, "jta");

// specify JTA platform
cfgogm.setProperty(Environment.JTA_PLATFORM,
"org.hibernate.service.jta.platform.internal.JBossStandAloneJtaPlatform");

// in order to select the local JBoss JTA implementation it is necessary to specify

these properties

cfgogm.setProperty("com.arjuna.ats.jta.jtaTMImplementation”,
"com.arjuna.ats.internal.jta.transaction.arjunacore.TransactionManagerImple");

cfgogm.setProperty("com.arjuna.ats.jta.jtaUTImplementation”,
"com.arjuna.ats.internal.jta.transaction.arjunacore.UserTransactionImple");

//configure MongoDB connection
cfgogm.setProperty("hibernate.ogm.datastore.provider”, "mongodb");
cfgogm.setProperty("hibernate.ogm.datastore.grid dialect",
"org.hibernate.ogm.dialect.mongodb.MongoDBDialect");
//you can ignore this setting
cfgogm.setProperty("hibernate.ogm.mongodb.database", "tomcat db");
cfgogm.setProperty("hibernate.ogm.mongodb.host", "127.0.0.1");
cfgogm.setProperty("hibernate.ogm.mongodb.port"”, "27017");

//add our annotated class
cfgogm.addAnnotatedClass(hogm.hnapi.pojo.LuckyNumberEntity.class);

// create the SessionFactory
serviceRegistry = new ServiceRegistryBuilder().applySettings(cfgogm.getProperties()).
buildServiceRegistry();
sessionFactory = cfgogm.buildSessionFactory(serviceRegistry);
} catch (Throwable ex) {
log.log(Level.SEVERE, "Initial SessionFactory creation failed !", ex);
throw new ExceptionInInitializerError(ex);

}

public static SessionFactory getSessionFactory() {
return sessionFactory;
}

67

http:///

CHAPTER 4 * HIBERNATE OGM AT WORK

Well, so far we have the entity and the session factory provider. The next part is very interesting, because we start
developing the DAO class. This means using JBoss JTA to demarcate transactions, and for this we focus on two JBoss
JTA classes:

e com.arjuna.ats.jta.UserTransaction—This class automatically associates newly created
transactions with the invoking thread, and exposes methods like begin, commit, and
rollback for controlling the transaction boundaries. It also provides a static method named
userTransaction that returns a javax.transaction.UserTransaction representing user
transactions:

javax.transaction.UserTransaction tx = com.arjuna.ats.jta.UserTransaction.userTransaction();

e com.arjuna.ats.jta.TransactionManager—This is an interface that allows the application
server to control transaction boundaries. It also provides methods like begin, commit,
and rollback, but it’s especially designed for application servers that can initialize the
transaction manager and call it to demarcate transactions for you. You can obtain the
javax.transaction.TransactionManager through transactionManager method, like so:

javax.transaction.TransactionManager tx = com.arjuna.ats.jta.TransactionManager.transactionManager();

If you prefer the Hibernate getCurrentSession approach for getting current Session, you can implement a DAO
method of persisting lucky numbers into the database using JBoss JTA, as shown in Listing 4-11.

Listing 4-11. The LuckyNumberDAO Class - getCurrentSession Approach

package hogm.hnapi.dao;
public class LuckyNumberDAO {

private static final Logger log =
Logger .getLogger (LuckyNumberDAO.class.getName());

public void persist cs without cfg(LuckyNumberEntity transientInstance) throws
java.lang.Exception {

log.log(Level .INFO, "Persisting LuckyNumberEntity instance ...");

// javax.transaction.TransactionManager tx =
com.arjuna.ats.jta.TransactionManager.transactionManager();
javax.transaction.UserTransaction tx = com.arjuna.ats.jta.UserTransaction.userTransaction();

try {
tx.begin();
hogm.hnapi.util.without.hibernate.cfg.HibernateUtil.getSessionFactory().
getCurrentSession().persist(transientInstance);
tx.commit();

log.log(Level .INFO, "Persist successful...");
} catch (RuntimeException re) {

68

http:///

CHAPTER 4 © HIBERNATE OGM AT WORK

tx.rollback();
log.log(Level .SEVERE, "Persist failed...", re);
throw re;

But, if you want to control the session flush and close by yourself, choose the Hibernate openSession approach,
which can be interwoven with JBoss JTA in almost the same manner, as in Listing 4-12.

Listing 4-12. The LuckyNumberDAO Class - openSession Approach

package hogm.hnapi.dao;
public class LuckyNumberDAO {

private static final Logger log =
Logger.getLogger (LuckyNumberDAQ.class.getName());

public void persist os without cfg(LuckyNumberEntity transientInstance) throws
java.lang.Exception {

log.log(Level .INFO, "Persisting LuckyNumberEntity instance ...");

// javax.transaction.TransactionManager tx =
com.arjuna.ats.jta.TransactionManager.transactionManager();
javax.transaction.UserTransaction tx = com.arjuna.ats.jta.UserTransaction.userTransaction();
Session session = hogm.hnapi.util.without.hibernate.cfg.HibernateUtil.
getSessionFactory().openSession();

try {
tx.begin();
session.persist(transientInstance);
session.flush();
tx.commit();

log.log(Level.INFO, "Persist successful...");
} catch (RuntimeException re) {
tx.rollback();
log.log(Level .SEVERE, "Persist failed...", re);
throw re;
} finally {
session.close();
}

The application is almost finished. Its main parts are available and we just need to add a servlet to call the DAO
methods, as well as a simple user interface to submit an empty form to this servlet. The main snippet of code from
LuckyNumberServlet is shown in Listing 4-13

69

http:///

CHAPTER 4 * HIBERNATE OGM AT WORK

Listing 4-13. A Snippet from LuckyNumberServlet

package hogm.hnapi.servlet;

@WebServlet(name = "LuckyNumberServlet", urlPatterns = {"/LuckyNumberServlet"})
public class LuckyNumberServlet extends HttpServlet {

protected void processRequest(HttpServletRequest request, HttpServletResponse
response) throws ServletException, IOException, Exception {

LuckyNumberDAO luckyNumberDAO = new LuckyNumberDAO();
LuckyNumberEntity luckyNumberEntity = new LuckyNumberEntity();
luckyNumberEntity.setLuckynumber(new Random().nextInt(1000000));

luckyNumberDAO.persist cs without cfg(luckyNumberEntity);
// luckyNumberDAO.persist os without cfg(luckyNumberEntity);

And here’s the form that interacts with this servlet (in index.jsp):

<form action="./LuckyNumberServlet" method="POST">
<input type="submit" value="Generate Lucky Number">
</form>

Done!

Testing

Begin by starting the MongoDB server as in Chapter 1. Next, since you're in a NetBeans/Tomcat (or Eclipse/Tomcat)
environment, just save the project and click the Run (or Run on Server in Eclipse) button to start Tomcat and deploy
and run the application. If the application successfully starts, you'll see in your browser something similar to what’s
shown in Figure 4-4.

g&] Hibernate OGM via Hibernate NativeAPI...l + |

localhost:8084/HOGMviaHMAPLITA_Tomcat?/

Hibernate OGM via Hibernate Native API,
standalone JTA, JBoss Transactions

| Generate Lucky Mumber |

Figure 4-4. Running the HOGMviaHNAPI_JTA_Tomcat7 application

70

http:///

CHAPTER 4 © HIBERNATE OGM AT WORK

Press the Generate Lucky Number button a few times for persisting some lucky numbers into the MongoDB
database (tomcat_db) collection (jta). Open a command prompt and type the commands shown in Figure 4-5 to see
the result of your work. As before, you can monitor Tomcat log messages to see if anything unwanted happens.

D:“mongodb~hin>mongo tomcat_dh
MongoDB shell version: 2.2.2
connecting to: tomcat_db

> show collections

jdbe

Jta

system.indexes

> db_jta.find{>;

£ U_did" = "foaafPeb-55e8-4feb6-8356-1842593442ca’,. “luckynumber" : 228718 >
< U_did" = "3eBa51d6-6295—42e2-bh5dB-56263dfd4a??",. “luckynumber' : 771213 >
£ "_id" : "daB4ad35-aP28-4ce3d-?d36-dfe?@3ea?de2",. “luckynumber" : 77994 3

Figure 4-5. Checking the jta collection content

The complete source code for this application, called HOGMviaHNAPI_JTA Tomcat7, is available in the Apress
repository. It comes as a NetBeans project and it was tested under Tomcat 7 (I used the Tomcat bundled to
NetBeans 7.2.1).

Hibernate OGM in a Built-in JTA Environment (no EJB, GlassFish AS 3)

In the previous example, we developed an application based on a standalone JTA environment. We can reuse most

of the code to write the same kind of application, but based this time on a built-in JTA environment provider, like
GlassFish v3 AS. As you probably know, this is a fully compatible J2EE application server that automatically handles
(through a JTA TransactionManager) the transaction lifecycle for each data source. In other words, we will develop
the same application as in the last section, but instead of using and configuring JBoss JTA, we will use the JTA
transaction manager provided by the container. Notice that we are still manually demarcating transaction boundaries;
this is not a container managed transaction (CMT) strategy.

Prerequisites
e MongoDB2.2.2
e Hibernate OGM 4.0.0.Beta2
e JDK1.7
e NetBeans 7.2.1 (or Eclipse JUNO)
e GlassFish 3.1.2.2

Developing

After launching NetBeans, create a new project consisting of an empty Maven web application and name it
HOGMviaHNAPI_JTA GlassFish3.Inthe New Web Application wizard, type hogm.hnapi for the Group Idand Package
fields, and select GlassFish web server for deploying this application. Now, just follow the scenario from the preceding
section. We'll make some small but important modifications.

71

http:///

CHAPTER 4 * HIBERNATE OGM AT WORK

Coding the Application

After adding Hibernate OGM/Mongo DB JARs (using Maven as in the previous example), create the same
LuckyNumberEntity entity. Continue by writing the HibernateUtil class shown in Listing 4-14.

Listing 4-14. A Modified HibernateUtil Class

package hogm.hnapi.util.without.hibernate.cfg;

import java.util.logging.Level;

import java.util.logging.logger;

import org.hibernate.SessionFactory;

import org.hibernate.cfg.Environment;

import org.hibernate.ogm.cfg.0gmConfiguration;
import org.hibernate.service.ServiceRegistry;

import org.hibernate.service.ServiceRegistryBuilder;

public class HibernateUtil {

private static final Logger log = Logger.getlogger(HibernateUtil.class.getName());
private static final SessionFactory sessionFactory;
private static final ServiceRegistry serviceRegistry;

static {
try {
// create a new instance of OmgConfiguration
OgmConfiguration cfgogm = new OgmConfiguration();

// enable JTA strategy

cfgogm.setProperty(Environment.TRANSACTION STRATEGY,
"org.hibernate.transaction.JTATransactionFactory");

cfgogm.setProperty(Environment.CURRENT SESSION CONTEXT_CLASS, "jta");

// specify JTA platform
cfgogm.setProperty(Environment.JTA_PLATFORM,
"org.hibernate.service. jta.platform.internal.SunOneJtaPlatform");

//configure MongoDB connection
cfgogm.setProperty("hibernate.ogm.datastore.provider", "mongodb");
cfgogm.setProperty("hibernate.ogm.datastore.grid dialect",
"org.hibernate.ogm.dialect.mongodb.MongoDBDialect");
//you can ignore this setting
cfgogm.setProperty("hibernate.ogm.mongodb.database", "glassfish_db");
cfgogm.setProperty("hibernate.ogm.mongodb.host", "127.0.0.1");
cfgogm.setProperty("hibernate.ogm.mongodb.port"”, "27017");

//add our annotated class
cfgogm.addAnnotatedClass(hogm.hnapi.pojo.LuckyNumberEntity.class);

// create the SessionFactory

serviceRegistry = new ServiceRegistryBuilder().applySettings(cfgogm.getProperties()).
buildServiceRegistry();

72

http:///

CHAPTER 4 © HIBERNATE OGM AT WORK

sessionFactory = cfgogm.buildSessionFactory(serviceRegistry);

} catch (Throwable ex) {
log.log(Level .SEVERE, "Initial SessionFactory creation failed !", ex);
throw new ExceptionInInitializerError(ex);

}

public static SessionFactory getSessionFactory() {
return sessionFactory;
}

Asyou can see, the relevant code is shown in bold:

cfgogm.setProperty(Environment.JTA_PLATFORM,
"org.hibernate.service.jta.platform.internal.SunOneJtaPlatform");

This code tells Hibernate the JTA platform to be used. Obviously, we want to use the built-in JTA platform,
which, for GlassFish v3 AS is org.hibernate.service.jta.platform.internal.SunOneJtaPlatform.
No library or JAR is needed; everything is provided by the container. You can easily modify this property
(hibernate.transaction.jta.platform) for other supported containers (the JTA built-in platform) by checking
the list of available JTA platforms in Chapter 2. For example, if you deploy this application under JBoss 7 AS, the
built-in JTA platform is org.hibernate.service. jta.platform.internal.JBossAppServerJtaPlatform; don’t
confuse this JTA with the standalone JBoss JTA platform.

If you decide to use hibernate.cfg.xml, add the JTA platform, like this:

<property name="hibernate.transaction.jta.platform">
org.hibernate.service.jta.platform.internal.SunOneJtaPlatform</property>

Now let’s develop the DAO class. If you followed the earlier applications, you know we are focusing only on
persisting objects into a database in Hibernate sessions obtained using the getCurrentSession or openSession
methods. As you know, Hibernate can automatically bind the current session to the current JTA transaction, but
for this we need to take control of the transaction itself and add the corresponding demarcation boundaries.

To accomplish this task in a J2EE environment, we can simply take advantage of the standard JNDI subcontext
java:comp/UserTransaction. The javax.transaction.UserTransaction should be available in java:comp/
UserTransaction, following the J2EE specification:

UserTransaction tx = (UserTransaction) new InitialContext().lookup("java:comp/UserTransaction");

Now, for the getCurrentSession approach, we can call the begin, commit, and rollback methods shown in
Listing 4-15.

Listing 4-15. The getCurrentSession Approach

package hogm.hnapi.dao;
public class LuckyNumberDAO {

private static final Logger log =
Logger.getLogger(LuckyNumberDAQ.class.getName());

73

http:///

CHAPTER 4 * HIBERNATE OGM AT WORK

public void persist cs without cfg(LuckyNumberEntity transientInstance) throws
java.lang.Exception {

log.log(Level.INFO, "Persisting LuckyNumberEntity instance ...");

UserTransaction tx = (UserTransaction) new
InitialContext().lookup("java:comp/UserTransaction");

try {
tx.begin();
hogm.hnapi.util.without.hibernate.cfg.HibernateUtil.getSessionFactory().
getCurrentSession().persist(transientInstance);
tx.commit();

log.log(Level .INFO, "Persist successful...");
} catch (RuntimeException re) {
tx.rollback();
log.log(Level.SEVERE, "Persist failed...", re);
throw re;

Or, if you prefer openSession, use the approach in Listing 4-16.

Listing 4-16. The openSession Approach

package hogm.hnapi.dao;
public class LuckyNumberDAO {

private static final Logger log =
Logger.getLogger(LuckyNumberDAO.class.getName());

public void persist os without cfg(LuckyNumberEntity transientInstance) throws
java.lang.Exception {

log.log(Level .INFO, "Persisting LuckyNumberEntity instance ...");

UserTransaction tx = (UserTransaction) new InitialContext().lookup("java:comp/UserTransaction");
Session session = hogm.hnapi.util.without.hibernate.cfg.HibernateUtil.
getSessionFactory().openSession();

try {
tx.begin();
session.persist(transientInstance);
session.flush();
tx.commit();

log.log(Level .INFO, "Persist successful...");
} catch (RuntimeException re) {

74

http:///

CHAPTER 4 © HIBERNATE OGM AT WORK

tx.rollback();
log.log(Level .SEVERE, "Persist failed...", re);
throw re;
} finally {
session.close();
}

Now the entire Hibernate OGM mechanism is set. All that remains is to add a simple user interface that submits
an “empty” form to a basic JSF bean (replace this with a servlet if you aren’t a JSF fan) that communicates with the
DAO class. Listing 4-17 shows the code that interacts with the DAO class.

Listing 4-17. The TestManagedBean Class
package hogm.hnapi.jsf;
public class TestManagedBean {
public void persistAction() throws Exception {

LuckyNumberDAO luckyNumberDAO = new LuckyNumberDAO();
LuckyNumberEntity luckyNumberEntity = new LuckyNumberEntity();
luckyNumberEntity.setLuckynumber(new Random().nextInt(1000000));

luckyNumberDAO.persist cs without cfg(luckyNumberEntity);
// luckyNumberDAO.persist os without cfg(luckyNumberEntity);

And here’s code for the user form, which goes on the index.xhtml page:

<h:form>
<h:commandButton action="#{bean.persistAction()}" value="Generate Lucky Number"/>
</h:form>

That’s it!

Testing

Now start the MongoDB server as you saw in Chapter 1. Next, since you're in a NetBeans/GlassFish (or Eclipse/GlassFish)
environment, just save the project and click the Run (or Run on Server in Eclipse) button to start GlassFish and
deploy and run the application. If the application successfully starts, you'll see in your browser something similar to
what'’s shown in Figure 4-6.

75

http:///

CHAPTER 4 * HIBERNATE OGM AT WORK

l%J EA Hibernate OGM via Hibernate Nati\.reAPI...l + |

(- localhost:8080,/HOGMyiaHMAPL_ITA_GlassFish3/faces/index.xhtml

Hibernate OGM via Hibernate Native API,
JTA environment, built-in JTA platform

| Generate Lucky Number |

Figure 4-6. Running the HOGMviaHNAPI_JTA_GlassFish3 application

Press the Generate Lucky Number button a few times to persist some lucky numbers into the MongoDB database
(glassfish_db) collection (jta). Open a command prompt and type the commands from Figure 4-7 to see the results
of your work. You can also monitor GlassFish log messages in case anything unwanted happens.

ssmongodbshin>mongo glassfish_dhb

ongoDB zhell version: 2.2_.2

onnecting to: glassfish_db

> show collections

jta

ystem.indexes

> db.jta.find{>;
Y_id" = "3f2alabe—celd—-422c-ac3B-808chad443f?3a",. “luckynumber™ : 355161 >
_id" : "Bdf3eaf?-8f9c—4cdd-2498-4cBd2@72dade". “"luckynumber' : 369579 >

Figure 4-7. Checking the jta collection content

The complete source code for this application is named HOGMviaHNAPI JTA GlassFish3 and is available in the
Apress repository. It comes as a NetBeans project and was tested it under GlassFish 3 (I used the GlassFish bundled
with NetBeans 7.2.1).

Hibernate OGM in a Built-in JTA Environment (EJB 3/BMT, GlassFish AS 3)

In the previous example, we developed an application based on the GlassFish 3 built-in JTA environment. You saw
how to obtain the current transaction via lookup in the JNDI subcontext java: comp/UserTransaction and manually
demarcate transaction boundaries in a plain DAO class. Now we're going to develop the same kind of application, but
this time we’ll use an EJB component annotated as a bean managed transaction (BMT).

Prerequisites
e MongoDB2.2.2
e Hibernate OGM 4.0.0.Betal
e JDK1.7
e NetBeans 7.2.1 (or Eclipse JUNO)
e GlassFish 3.1.2.2

76

http:///

CHAPTER 4 © HIBERNATE OGM AT WORK

Developing

After launching NetBeans, create a new project consisting of an empty Maven web application and name it
HOGMviaHNAPI JTA EJB BMT_GlassFish3.IntheNew Web Application wizard, type hogm.hnapi for the Group Idand
Package fields. Don't forget to select the GlassFish web server for deployment of this application. Notice that even if we're
going to add an EJB component, we won'’t be creating an enterprise application to separate the web module from the EJB
module. We prefer a web application because we want to have the ability to call web components from the EJB component.

Coding the Application

After adding Hibernate OGM/Mongo DB JARs (using Maven as in previous examples) create the well-known
LuckyNumberEntity entity (this time use @Table(name="bmt"), or the POJO version, LuckyNumberPojo, if you want
to use hibernate.cfg.xml). Continue by writing the HibernateUtil class, enabling the JTA strategy and adding the
GlassFish 3 built-in JTA platform:

OgmConfiguration cfgogm = new OgmConfiguration();

cfgogm.setProperty(Environment.TRANSACTION STRATEGY,
"org.hibernate.transaction.JTATransactionFactory");
cfgogm.setProperty(Environment.CURRENT SESSION CONTEXT_CLASS, "jta");
cfgogm.setProperty(Environment.JTA_PLATFORM,
"org.hibernate.service.jta.platform.internal.SunOneJtaPlatform");

Oy, if you prefer using the hibernate.cfg.xml file, add it there (in this case, don’t forget to write the
LuckyNumberPojo.hbm.xml and specify table="bmt"):

<property name="hibernate.transaction.factory class">
org.hibernate.transaction.JTATransactionFactory</property>

<property name="hibernate.current_session_context_class">jta</property>

<property name="hibernate.transaction.jta.platform">
org.hibernate.service.jta.platform.internal.SunOneJtaPlatform</property>

Next, add a stateless bean (an EJB component) named BMTBean; there’s no need to create an interface for it.
Since code inside EJB methods is executed in a transaction by default, we have to modify this by adding the
@TransactionManagement statement, as in the following:

package hogm.hnapi.ejb;
@Stateless

@TransactionManagement(TransactionManagementType.BEAN)
public class BMTBean {

You can find more details about this annotation in Chapter 2.
Now we have control over transaction boundaries. All we need is the UserTransaction that can be obtained
using the @Resource annotation, like this:

@Resource
private UserTransaction userTransaction;

77

http:///

CHAPTER 4 * HIBERNATE OGM AT WORK

Note You can also obtain the UserTransaction through EJBContext, via JNDI lookup or even through a CDI
injection mechanism (@Inject UserTransaction). It's always a good idea to consult the official documentation of the
J2EE implementation before choosing your approach.

Now, we can easily call the UserTransaction.begin, commit and setRollbackOnly methods to control the
transactions with the MongoDB database via Hibernate OGM sessions obtained from getCurrentSession or
openSession. (If it sounds like MongoDB supports transactions, it doesn’t. Remember, we're using this approach
because the OGM documentation recommends using transaction demarcations, even with MongoDB.) For example,
we can store a lucky number, as shown in Listing 4-18. Note that the code contains both cases—using entity and POJO.

Listing 4-18. Two Ways to Store a Lucky Number - the BMT Approach

package hogm.hnapi.ejb;

import hogm.hnapi.pojo.LuckyNumberEntity;
import hogm.hnapi.pojo.LuckyNumberPojo;
import java.util.Random;

import javax.annotation.Resource;

import javax.ejb.Stateless;

import javax.ejb.TransactionManagement;
import javax.ejb.TransactionManagementType;
import javax.inject.Named;

import javax.transaction.SystemException;
import javax.transaction.UserTransaction;
import org.jboss.logging.Llogger;

@Stateless

@Named("bean")

@TransactionManagement (TransactionManagementType.BEAN)
public class BMTBean {

@Resource
private UserTransaction userTransaction;
private static final Logger log = Logger.getLogger(BMTBean.class.getName());

public void persistAction() {
log.info("Persisting LuckyNumberEntity instance ...");
LuckyNumberEntity luckyNumberEntity = new LuckyNumberEntity();
luckyNumberEntity.setLuckynumber(new Random().nextInt(1000000));

LuckyNumberPojo luckyNumberPojo = new LuckyNumberPojo();
luckyNumberPojo.setLuckynumber (new Random().nextInt(1000000));

try {
// Start the transaction
userTransaction.begin();

78

http:///

CHAPTER 4 © HIBERNATE OGM AT WORK

hogm.hnapi.util.without.hibernate.cfg.HibernateUtil.getSessionFactory().
getCurrentSession().persist(luckyNumberEntity);

hogm.hnapi.util.with.hibernate.cfg.HibernateUtil.getSessionFactory().
getCurrentSession().persist(luckyNumberPojo);

//persist here through openSession method

// Commit the transaction
userTransaction.commit();
} catch (Exception ex) {

try {
//Rollback the transaction
userTransaction.setRollbackOnly();

} catch (IllegalStateException ex1) {
log.log(Logger.Level .ERROR, ex1, ex1);

} catch (SystemException ex1) {
log.log(Logger.Level .ERROR, ex1, ex1);

}

log.info("Persist successful ...");

To run this application, we choose to activate the JSF framework and CDI support (by adding the corresponding
beans.xml in the /WEB-INF folder). We have annotated the EJB component with @amed("bean")—as shown in the
code—and we call it from the application start page using a simple JSF form, like this (index.xhtml):

<h:form>
<h:commandButton action="#{bean.persistAction()}"
value="Generate Lucky Number"/>

</h:form>

Testing

Start the MongoDB server as you saw in Chapter 1. Next, since you're in a NetBeans/GlassFish (or Eclipse/GlassFish)
environment, save the project and click the Run (or Run on Server in Eclipse) button to start GlassFish and deploy
and run the application. If the application successfully starts, you'll see in your browser something like what’s shown
in Figure 4-8.

[Firefox ~ 1] i::jH\bErnatEOGMviaH\bErnatENathAPIu.l + ‘

H

localhost:20 (OGMIviaHMNAPLJTA_EJE BMT_GlassFish3/

Hibernate OGM via Hibernate Native API, JTA environment,
EJB/BMT (Bean Managed Transaction)

Generate Lucky Number

Figure 4-8. Running the HOGMviaHNAPI_JTA_EJB_BMT _GlassFish3 application

79

http:///

CHAPTER 4 * HIBERNATE OGM AT WORK

Press the Generate Lucky Number button a few times to persist some lucky numbers to the MongoDB database
(glassfish_db) collection, (bmt). For each press, two new documents are inserted, one for enitity and one for POJO.
Open a command prompt and type the commands from Figure 4-9 to see the results of your work. You can also
monitor GlassFish log messages in case anything unwanted happens.

smongodbsbin>mongo glassfish_db

ongoDB shell version: 2.2.2

onnecting to: glassfish_db

> show collections

mt

jta

ystem.indexes

> db.bmt . Find(D;
r_id" @ "21215aaB-2f96-4a57-ad@B-331bBe2a7BaZ". "luckynumber™ : 734498 >
_id" : "296cBlab—2f5d-4cB8-862f-621dbZbZcebd"”. "luckynumber" : 279245 3

Figure 4-9. Checking the bmt collection content

The complete source code for this application is available in the Apress repository and is named
HOGMviaHNAPI_JTA EJB BMT GlassFish3.It comes as a NetBeans project and it was tested under GlassFish 3
(T used the GlassFish bundled to NetBeans 7.2.1).

Hibernate OGM in a Built-in JTA Environment (EJB 3/CMT, GlassFish AS 3)

In the previous example we developed an application based on the GlassFish 3 built-in JTA environment and a bean
managed transaction (BMT). We can easily transform this application into a container managed transaction (CMT)
by applying a few essential changes. I could just tell you to “check the previous example and modify this, modify that ...,
but if you're not interested in the previous application, you probably wouldn’t find that too appealing. So I'll try to
provide as much information as possible here and ask you to copy from the previous application only the parts that
have been repeated several times in this chapter.

Prerequisites
e MongoDB2.2.2
e Hibernate OGM 4.0.0.Betal
e JDK1.7
e NetBeans 7.2.1 (or Eclipse JUNO)
e GlassFish 3.1.2.2

Developing

After launching NetBeans, create a new project consisting of an empty Maven web application and name it
HOGMviaHNAPI_JTA EJB_CMT_GlassFish3.Inthe New Web Application wizard, type hogm.hnapi for the Group Idand
Package fields. Don’t forget to select the GlassFish web server for deploying this application. Note that even though we’re
adding an EJB component, we won't create an enterprise application to separate the web module from the EJB module.
We prefer a web application because we want to have the ability to call web components from the EJB component.

80

http:///

CHAPTER 4 © HIBERNATE OGM AT WORK

Coding the Application

After adding Hibernate OGM/MongoDB JARs (using Maven as in previous examples), create the well-known
LuckyNumberEntity entity (this time use @Table(name="cmt"), or the POJO version, LuckyNumberPojo, if you want to
use hibernate.cfg.xml). Continue by writing the HibernateUtil class, enabling the CMT strategy and adding the
GlassFish 3 built-in JTA platform:

OgmConfiguration cfgogm = new OgmConfiguration();

cfgogm.setProperty(Environment.TRANSACTION STRATEGY,
"org.hibernate.transaction.CMTTransactionFactory");

cfgogm.setProperty(Environment.JTA PLATFORM,
"org.hibernate.service.jta.platform.internal.SunOneJtaPlatform");

Or, if you prefer using the hibernate.cfg.xml file, add it there (in this case, don’t forget to write the
LuckyNumberPojo.hbm.xml and specify table="cmt"):

<property name="hibernate.transaction.factory class">
org.hibernate.transaction.CMTTransactionFactory</property>

<property name="hibernate.transaction.jta.platform">
org.hibernate.service.jta.platform.internal.SunOneJtaPlatform</property>

Add a stateless bean (an EJB component) named CMTBean (no need to create an interface for it). Since the code
in the EJB methods is executed in a transaction by default, we don’t need to interfere. However, just for fun, we can
manually provide the annotations that are already default—@TransactionManagement and @TransactionAttribute.
More details about this annotation can be found in Chapter 2.

Now we can easily take advantage of the CMT strategy and use Hibernate OGM sessions obtained from the
getCurrentSession or openSession methods to store lucky numbers in the MongoDB database, as shown in Listing 4-19.
Note that the code contains both cases—using entity and POJO.

Listing 4-19. Two Ways to Store a Lucky Number—the CMT Approach

package hogm.hnapi.ejb;

import hogm.hnapi.pojo.LuckyNumberEntity; //entity case
import hogm.hnapi.pojo.LuckyNumberPojo; //P0JO case
import java.util.Random;

import javax.ejb.Stateless;

import javax.ejb.TransactionAttribute;

import javax.ejb.TransactionAttributeType;

import javax.ejb.TransactionManagement;

import javax.ejb.TransactionManagementType;

import javax.inject.Named;

import org.jboss.logging.Logger;

@Stateless

@Named("bean")
@TransactionManagement(TransactionManagementType.CONTAINER) //this is the default
public class CMTBean {

private static final Logger log = Logger.getLogger(CMTBean.class.getName());

81

http:///

CHAPTER 4 * HIBERNATE OGM AT WORK

@TransactionAttribute(TransactionAttributeType.REQUIRED) //this is the default
public void persistAction() {

log.info("Persisting LuckyNumberEntity instance ...");

LuckyNumberEntity luckyNumberEntity = new LuckyNumberEntity();
luckyNumberEntity.setLuckynumber(new Random().nextInt(1000000));
LuckyNumberPojo luckyNumberPojo = new LuckyNumberPojo();
luckyNumberPojo.setLuckynumber (new Random().nextInt(1000000));

hogm.hnapi.util.without.hibernate.cfg.HibernateUtil.getSessionFactory().
getCurrentSession().persist(luckyNumberEntity);

hogm.hnapi.util.with.hibernate.cfg.HibernateUtil.getSessionFactory().
getCurrentSession().persist(luckyNumberPojo);

//persist here through openSession method

log.info("Persist successful ...");

To run this application, we’ll activate the JSF framework and CDI support (by adding the corresponding beans . xml
in the /WEB-INF folder). We have annotated the EJB component with @Named("bean")—as shown in the code—and we
call it from the application start page using a simple JSF form, like this (index.xhtml):

<h:form>
<h:commandButton action="#{bean.persistAction()}"
value="Generate Lucky Number"/>

</h:form>

Testing

Start the MongoDB server as in Chapter 1. Next, since you're in a NetBeans/GlassFish (or Eclipse/GlassFish) environment,
just save the project and click the Run (or Run on Server in Eclipse) button to start GlassFish and deploy

and run the application. If the application successfully starts, you'll see in the browser something similar to what’s
shown in Figure 4-10.

ITECAR| (vibernate 0GM via Hibernate Native APL.| + |

€ localhost:8080/HOGMviaHNAPT JTA_EJB_CMT GlassFish3 faces/indexxhtml

Hibernate OGM via Hibernate Native APIL, JTA environment,
EJB/CMT (Container Managed Transaction)

Figure 4-10. Running the HOGMviaHNAPI JTA_EJB_CMT _GlassFish3 application

Press the Generate Lucky Number button a few times to persist some lucky numbers into the MongoDB database
(glassfish_db) collection (cmt). For each press, two new documents are inserted, one for the enitity and one for the
POJO. Open a command prompt and type the commands from Figure 4-11 to see the results of your work. You can
monitor GlassFish log messages in case anything unwanted happens.

82

http:///

CHAPTER 4 © HIBERNATE OGM AT WORK

ssmongodbsbin>mongo glassfish_db
ongoDB shell version: 2.2.2
onnecting to: glassfish_dh
> zhow collections

ystem.indexes

> db.cnt . find{)>;

T_did" : "2cdiP497-7281-4281-ab47-e43b5b6dd218",. “"luckynumber' : 666129 >
"_id" : "d666?3IF5-Ff6Bd-4efa-95e7-907d198a8fh4",. “"luckynumber' : 585125 >

Figure 4-11. Checking the “cmt” collection content

The complete source code for this application is named HOGMviaHNAPI JTA EJB_CMT_GlassFish3 and is available
in the Apress repository. It comes as a NetBeans project and was tested under GlassFish 3 (I used the GlassFish
bundled to NetBeans 7.2.1).

Hibernate OGM via the Java Persistence API (JPA 2.0)

Hibernate OGM can also be bootstrapped via JPA. This is very useful since it doesn’t involve any knowledge of
Hibernate ORM and doesn’t require any code related to Hibernate. Practically, if you've used JPA before (no matter
which implementation), it should be a piece of cake to configure Hibernate OGM as your JPA provider.

In this section you'll see a set of applications that will exploit Hibernate OGM as a JPA provider under different
architectures and technologies. You will see how it works in a:

e built-in JTA environment (EJB 3, GlassFish AS 3)

e built-in JTA environment (EJB 3, JBoss AS 7)

e standalone JTA environment (Apache Tomcat 7)

e built-in JTA environment (JBoss AS 7 and Seam 3 application)

e built-in JTA environment (GlassFish 3 and Spring 3 application)
¢ non-JTA environment (RESOURCE_LOCAL, Apache Tomcat 7)

Hibernate OGM in a Built-in JTA Environment (EJB 3, GlassFish AS 3)

We start with an enterprise application (known as EAR—Enterprise Archive) deployed on GlassFish AS. This is one of
the classic heavy applications in the Java world that’s used quite often and usually involves several technologies, like
JPA, JSE, Struts, E]B, Hibernate, Spring and so on. Web technologies go into one module (the WAR module) and EJB
components in another (the EJB module). The WAR module has access to the EJB module, but not vice versa. From

a programmer’s perspective, the core of JPA consists of an XML file, named persistence.xml, which goes in the EJB
module as a configuration file. So, let’s see how this file looks for Hibernate OGM acting as a JPA provider.

Prerequisites
e MongoDB2.2.2
e Hibernate OGM 4.0.0.Beta2
e JDK1.7
e NetBeans 7.2.1 (or Eclipse JUNO)
e GlassFish3.1.2.2

83

http:///

CHAPTER 4 * HIBERNATE OGM AT WORK

Developing

After launching NetBeans, create a new project consisting of an empty Maven enterprise application and name it
HOGMviaJPA EE_GlassFish.Inthe New Enterprise Application wizard, type hogm for the Group Id and Package
fields, and select the GlassFish application server for deploying this application. Once you see the project in the
Projects window, you can edit the pom.xml file in the HOGMviaJPA_EE_GlassFish-ear project module (it has to be
under Project Files node). In the pom.xml, add the Hibernate OGM distribution (including MongoDB support) by
pasting in the following dependencies:

<dependencies>

<dependency>
<groupId>org.hibernate.ogm</groupId>
<artifactId>hibernate-ogm-core</artifactId>
<version>4.0.0.Beta2</version>

</dependency>

<dependency>
<groupId>org.hibernate.ogm</groupId>
<artifactId>hibernate-ogm-mongodb</artifactId>
<version>4.0.0.Betai</version>

</dependency>

<dependencies>

Now save the project and the MongoDB Java driver JAR will be listed under the Dependencies node.

Coding the Application

Now, we have all the needed artifacts, so we’re ready to add some code. First, in the HOGMviaJPA_EE_GlassFish-ejb
module, we develop a basic entity class that has the ability to represent objects in the database. It contains a single
field (apart from the primary key field) named luckynumber. (You should be familiar with these kind of entities, which
are, technically speaking, just annotated POJOs. You can find more details in Chapter 2.) Listing 4-20 shows the code
for the LuckyNumberEntity class.

Listing 4-20. The LuckyNumberEntity Class

package hogm.jpa.entities;

import java.io.Serializable;

import javax.persistence.Column;

import javax.persistence.Entity;

import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;

import javax.persistence.Table;

@Entity

@Table(name = "jpa")

public class LuckyNumberEntity implements Serializable {
private static final long serialVersionUID = 1L;

@Id

84

http:///

CHAPTER 4 © HIBERNATE OGM AT WORK

@GeneratedValue(strategy = GenerationType.AUTO)
private Long id;

@Column(name = "luckynumber", nullable = false)
private int luckynumber;

public Long getId() {

return id;

}

public void setId(Long id) {
this.id = id;

}

public int getLuckynumber() {
return luckynumber;
}

public void setLuckynumber(int luckynumber) {
this.luckynumber = luckynumber;
}

Let’s continue with the main point of our interest, integrating Hibernate OGM as a JPA provider. You can start
by creating a persistence.xml skeleton using the NetBeans wizard. This will provide an “empty” persistence unit
for the GlassFish default data source (which is most convenient, since we don’t actually need it) or no data source.
From the Hibernate OGM perspective, this data source is not needed and never used, but depending on the situation
you may need to specify an existing data source as it’s a JPA requirement. (According to the JPA 1.0/2.0 specification,
“A transaction-type of JTA assumes that a JTA data source will be provided—either as specified by the jta-data-source
element or provided by the container.”) To be certain, you'll have to test it yourself. As far as I can tell, there’s no need
to specify a data source; leave that field empty in the NetBeans wizard and you'll obtain a persistence.xml skeleton
without a data source involved—no <jta-data-source> tag. If you get related errors on this, then add the default data
source in GlassFish, like this:

<!-- out of the box data source for GlassFish v3-->
<jta-data-source>jdbc/sample</jta-data-source>

We also rename the persistence unit to HOGM_JPA_GLASSFISH_PU and indicate the transaction type as JTA.
This is recommended. Remember that we have two possible values: RESOURCE_LOCAL indicates that transactions
will be managed by the JPA provider implementation, and JTA indicates that transactions will be managed by the
application server (GlassFish in this case). Finally, we specify the list of entities managed by this persistence unit.

In addition, we are adding Hibernate OGM as the JPA provider. This is very easy and fast, since all it requires is
adding the <provider> tag, like this:

<provider>org.hibernate.ogm.jpa.HibernateOgmPersistence</provider>

85

http:///

CHAPTER 4 * HIBERNATE OGM AT WORK

By default, NetBeans will auto-detect entities and will add into persistence.xml the tag <exclude-unlisted-classes>,
which defaults to false—all entity beans in the archive managed by this persistence unit. You can leave it that way, or
delete this tag and add the entity class explicitly:

<class>hogm. jpa.entites.LuckyNumberEntity</class>

Since we're in a JTA environment, the JTA platform should be automatically detected and used without our
intervention. But, to be sure, you can set the hibernate.transaction.jta.platform property accordingly:

<property name="hibernate.transaction.jta.platform"
value="org.hibernate.service.jta.platform.internal.SunOneJtaPlatform"/>

We're almost done. We just need to configure the MongoDB connection (the provider, dialect (optional), database
name, host, and port). Once we've done that, we have the entire persistence.xml file, as shown in Listing 4-21.

Listing 4-21. persistence.xml

<?xml version="1.0" encoding="UTF-8"?>

<persistence version="2.0" xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence 2 _0.xsd">

<persistence-unit name="HOGM JPA_GLASSFISH PU" transaction-type="JTA">
<provider>org.hibernate.ogm.jpa.HibernateOgmPersistence</provider>
<class>hogm.jpa.entities.LuckyNumberEntity</class>
<properties>
<property name="hibernate.transaction.jta.platform"
value="org.hibernate.service.jta.platform.internal.SunOneJtaPlatform"/>
<property name="hibernate.ogm.datastore.provider" value="mongodb"/>
<property name="hibernate.ogm.datastore.grid dialect"
value="org.hibernate.ogm.dialect.mongodb.MongoDBDialect"/>
<property name="hibernate.ogm.mongodb.database" value="glassfish_db"/>
<property name="hibernate.ogm.mongodb.host" value="127.0.0.1"/>
<property name="hibernate.ogm.mongodb.port" value="27017"/>
</properties>
</persistence-unit>
</persistence>

Hibernate OGM is now ready to serve our application as the JPA provider.

This is an enterprise application, so an EJB component (transactional by default) is perfect for exploiting the
brand-new entity manager provided by OGM. The CMTBean implements the business logic for storing lucky numbers
into a MongoDB database (no need for a local or remote interface), as shown in Listing 4-22.

86

http://java.sun.com/xml/ns/persistence
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd
http:///

CHAPTER 4 © HIBERNATE OGM AT WORK

Listing 4-22. The CMTBean Class

package hogm.jpa.ejb;

import hogm.jpa.entities.LuckyNumberEntity;
import java.util.Random;

import javax.ejb.Stateless;

import javax.inject.Named;

import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;

@Stateless
@Named("bean")
public class CMTBean {

@PersistenceContext(unitName = "HOGM_JPA GLASSFISH PU")
private EntityManager em;

public void persistAction() {
LuckyNumberEntity luckyNumberEntity = new LuckyNumberEntity();
luckyNumberEntity.setLuckynumber(new Random().nextInt(1000000));

em.persist(luckyNumberEntity);

Finally, we need some glue code to obtain a functional application. As you see, the E]JB component was annotated
with @Named, which means you need to activate CDI support by adding the beans . xml file. NetBeans will do that for
you if you push the right buttons, but you can also add it manually. In a Maven project, in the *-ejb module, beans . xml
should be placed in the src/main/resources folder (under the Other Resource node). And in the *-war module,
beans.xml should be placed in the /WEB-INF folder (under the Web Pages node). Add beans.xml in both places.

Calling the EJB through CDI can be done from a JSF form—you need to activate the JSF framework:

<h:form>
<h:commandButton action="#{bean.persistAction()}" value="Generate Lucky Number"/>
</h:form>

And it’s done!

Testing

Start the MongoDB server as you saw in Chapter 1. Next, since you are in a NetBeans/GlassFish (or Eclipse/GlassFish)
environment, just save the project and select the HOGMviaJPA EE GlassFish-ear node. Click the Run (or Run on
Server in Eclipse) button to start Glassfish and to deploy and run the application. If the application successfully starts,
you'll see in your browser something like what'’s shown in Figure 4-12.

87

http:///

CHAPTER 4 * HIBERNATE OGM AT WORK

hrefox = | Hibernate OGM via Java Persistence APL... | + |

(— localhost:8080/HOGMyvialPA_EE_GlassFish-web/faces/index.xhtml

Hibernate OGM via Java Persistence API,
J2EE application under GlassFish 3 AS

| Generate Lucky Number |

Figure 4-12. Running the HOGMviaJPA_EE_GlassFish application

Press the Generate Lucky Number button a few times to persist some lucky numbers into the MongoDB database
(glassfish_db) collection (jpa). Open a command prompt and type the commands from Figure 4-13 to see the result
of your work. You can monitor GlassFish log messages in case anything unwanted happens.

smongodbhshinmongoe glassfish_db

ongoDB shell version: 2.2.2

onnecting to: glassfizh_dh

> show collections

mt

mt

ibernate_sequences

ipa

jita

ystem.indexes

» db.jpa.find<{>;
"_id" : NumberLong<i>. "“luckynumber' : 263118 >
_id" : HumberLong<2)>, "“"luckynumber' : 582571 3

Figure 4-13. Checking jpa collection content

Note Ignore the hibernate sequences collection, since is not relevant for the moment. You’ll learn how and
why it appears in Chapter 5.

The complete source code for this application is named HOGMviaJPA EE_GlassFish and is available in the
Apress repository. It comes as a NetBeans project and was tested under GlassFish 3 (I used the GlassFish bundled to
NetBeans 7.2.1).

Hibernate OGM in a Built-in JTA Environment (EJB 3, JBoss AS 7)

In this section you’ll see how to run the application developed in the preceding section, but using JBoss AS rather than
GlassFish AS. Unfortunately, it won't work as is under the JBoss application server, so you need to adjust a few things
at application server level and add several modifications in the persistence.xml file.

88

http:///

CHAPTER 4 © HIBERNATE OGM AT WORK

Prerequisites
e MongoDB2.2.2
e Hibernate OGM 4.0.0.Beta2
e JDK1.7
e Eclipse JUNO
e JBossAS7.1

Developing

There’s an unwritten rule that GlassFish fans prefer the NetBeans IDE and JBoss AS fans like to work with the Eclipse
IDE. Obviously, this is not mandatory. After all, we're talking about enterprise applications that are independent

of IDEs and should work under any certified EE application server. Still, chances are good that you agree with this
association, and that’s why we’ll develop the JBoss AS applications using the Eclipse IDE. So, after launching Eclipse,
create a new project consisting of an empty Enterprise Application Project named HOGMviaJPA EE_JbossAS.
Select EAR version 6.0 and JBoss AS 7.1 with the default configuration of target runtime. Add the Web and EJB
modules, named HOGMviaJPA EE_JBossAS-web and HOGMviaJPA_EE_JBossAS-ejb.

Note | used the Eclipse JUNO distribution and added JBoss AS 7.1 via the JBoss AS Tools plug-in, because this
application server isn’t available by default in JUNO (the link | used was www.download. jboss.org/jbosstools/updates/
development/indigo/). Feel free to use any other Eclipse distribution, as long as it’s bound to JBoss AS 7.1.

For now, we’ll leave this application as is and switch our attention to the JBoss AS 7 modules because we need to
configure the Hibernate OGM JARs as a module inside the application server. Without this module, we won’t be able
to successfully deploy a Hibernate OGM-contained application.

First, locate three JARs: hibernate-ogm-core-4.0.0.Beta2. jar, hibernate-ogm-mongodb-4.0.0.Betal.jar and
mongo-java-driver-2.8.0.jar. Next, browse the {JBOSSAS_HOME}/modules/org/hibernate path and create a new folder
named ogm. Copy the three JARs to this new folder, and also add to this folder the module.xml file shown in Listing 4-23.

Listing 4-23. module.xml

<module xmlns="urn:jboss:module:1.1" name="org.hibernate" slot="ogm">
<resources>
<resource-root path="hibernate-ogm-mongodb-4.0.0.Beta1.jar"/>
<resource-root path="hibernate-ogm-core-4.0.0.Beta2.jar"/>
<resource-root path="mongo-java-driver-2.8.0.jar"/>
</resources>

<dependencies>
<module name="org.jboss.as.jpa.hibernate" slot="4"/>
<module name="org.hibernate" slot="main" export="true" />
<module name="javax.api"/>
<module name="javax.persistence.api"/>
<module name="javax.transaction.api"/>
<module name="javax.validation.api"/>
<module name="org.infinispan"/>
<module name="org.javassist"/>

89

http://www.download.jboss.org/jbosstools/updates/development/indigo/
http://www.download.jboss.org/jbosstools/updates/development/indigo/
http:///

CHAPTER 4 * HIBERNATE OGM AT WORK

<module name="org.jboss.logging"/>
</dependencies>
</module>

Save the file. We have to do one more thing here—add Hibernate 4.1.9 in place of 4.0.1 in the module. First, locate
the following JARs: hibernate-core-4.1.9.Final.jar and hibernate-entitymanager-4.1.9.Final.jar and then
browse the {JBOSSAS_HOME}/modules/org/hibernate/main path. Now, replace the old JARs with these ones, or just
add these. Edit the module.xml file in the same folder and replace the old references accordingly:

<module xmlns="urn:jboss:module:1.1" name="org.hibernate">

<resources>
<resource-root path="hibernate-core-4.1.9.Final.jar"/>
<resource-root path="hibernate-entitymanager-4.1.9.Final.jar"/>
<resource-root path="hibernate-commons-annotations-4.0.1.Final.jar"/>
<resource-root path="hibernate-infinispan-4.0.1.Final.jar"/>
<!-- Insert resources here -->

</resources>

Done! We finished everything necessary for preparing JBoss AS 7.1 for Hibernate OGM applications.

Coding the Application

Now, we can switch back to application development and, more specifically, to the persistence.xml file, which must
undergo some significant modification, as you'll see in the next paragraphs. To add this file, you can use the Eclipse
IDE wizard, like this:

e InProject Explorer,locate the HOGMviaJPA _EE_JBossAS-ejb module. Right-click on it and select
Properties from the context menu. Navigate to Project Facets in the Properties window and
locate the JPA facet. Select it and you should see something like what’s shown in Figure 4-14.

Deployment Assembly
Hibernate Settings

{8} Properties for HOGMvialPA_EE_JBossAS-gjb o e]
type filter text Project Facets e it
> Resource
Builders Lonfiguration: | <custom> h8 ‘ ‘ Save As... | I Delete I
CDI (Context and Dependel Project Facet Version Details | Runtimes

CDI (Contexts and Dependency Injection) 10 (DI (Contexts and Dependency Injection) 1.0

Java Build Path » EJB Module 31 2

-| EJBDoclet (XDoclet) 1293 - Enables the project to work with Context and Dependency
» Java Code Style 13 i} Injection (CDJ
» Java Compiler :
. 10 OR
» Java Editor
Javadoc Location 21 K Requires all of the following facets:
JBoss Tools Knowledge Bas ig & @ EJB Module 3.0 or newer

Project Archives
Project Facets
Project References ?
Run/Debua Settinas [J] Javals or newer

[J] Javals or newer

Requires the following facet:

I @ Further configuration required... I

Revert Appl
4 I } 3
7 -
'\? Py OK Cancel

Figure 4-14. Adding the JPA facet

90

http:///

CHAPTER 4 © HIBERNATE OGM AT WORK

e We are especially interested in the bottom text, "Further configuration required..."
(or it might say "Further configuration available...").Click on that text to open the
Modify Faceted Project window. We have to choose the JPA implementation, which is
Hibernate OGM. Select Generic 2.0 as the Platformand User Library asthe Type in the JPA
Implementation section.

e Next, we have to specify the Hibernate OGM and MongoDB libraries. If you followed along
in the Chapter 1 section “Getting Hibernate OGM Distribution Using the Eclipse IDE,” you
should have the Hibernate OGM Core and MongoDB library. Select it and click 0K, as shown
in Figure 4-15. If you don’t have this library, create it now. Click Apply and OK to return to the
main application screen.

[.] Madify Faceted Project = @
JPA Facet — i
Configure JPA settings. f
Platform
’Genericl.ﬂ v]

JPA implementation

Type: [User Likrary v]

=i Hibernate 0GM Core and MongoDE |

B

[#] Include libraries with this application

Figure 4-15. Select the JPA implementation

Now you should see an empty persistence.xml leaf under the HOGMviaJPA EE JBossAS-ejb | JPA Content
node. Open this file in the editor and let’s add what we need:

¢ Rename the persistence unit to HOGM_JPA_JBOSSAS_PU and set the transaction type as JTA:
<persistence-unit name="HOGM_JPA_JBOSSAS PU" transaction-type="JTA">

e Specify the JPA provider as Hibernate OGM using the <provider> tag:
<provider>org.hibernate.ogm.jpa.HibernateOgmPersistence</provider>

e Add the entities that can be managed by the EntityManager instance defined by the
persistence unit (in our case, a single entity named LuckyNumberEntity :

<class>hogm.jpa.entities.LuckyNumberEntity</class>

91

http:///

CHAPTER 4 * HIBERNATE OGM AT WORK

e Optionally, indicate the JTA platform. Normally, this is auto-detected in an EE environment.
Notice that for JBoss AS 7, the correct value is:

org.hibernate.service.jta.platform.internal.JBossAppServerJtaPlatform
It's not the value used for JBoss JTA standalone.

<property name="hibernate.transaction.jta.platform"
value="org.hibernate.service.jta.platform.internal.JBossAppServerJtaPlatform"/>

e Bydefault, JPA applications will use Hibernate integration classes that are configured in the JBoss
AS 7 integration adapter module, unless you add the property jboss.as.jpa.adapterModule set
to another value to your persistence.xml properties list. The value of this property represents
the name of the Hibernate integration classes that help the application server to work with the
persistence provider. In our case, we need the Hibernate integration classes 4, so we use the
following setting:

<property name="jboss.as.jpa.adapterModule"” value="org.jboss.as.jpa.hibernate:4"/>

e We also need to add the property jboss.as. jpa.providerModule to indicate that we want
Hibernate OGM to be used. This is the module we have added manually earlier in this section:

<property name="jboss.as.jpa.providerModule" value="org.hibernate:ogm"/>

e Further, we need to disable class transformers for the persistence unit (by default, class enhancing
or rewriting is permitted). For this, set the jboss.as.jpa.classtransformer to false

<property name="jboss.as.jpa.classtransformer" value="false"/>

e Next, turn off automatic Envers event listeners registration by setting the
hibernate.listeners.envers.autoRegister property to false:

<property name="hibernate.listeners.envers.autoRegister" value="false"/>

e Finally, configure the MongoDB connection (provider, dialect (optional), database name, host, and
port). Once you've done that, the entire persistence.xml file is available, shown in Listing 4-24.

Listing 4-24. persistence.xml

<?xml version="1.0" encoding="UTF-8"?>

<persistence version="2.0" xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd">

<persistence-unit name="HOGM_JPA JBOSSAS PU" transaction-type="JTA">
<provider>org.hibernate.ogm.jpa.HibernateOgmPersistence</provider>
<class>hogm. jpa.entities.LuckyNumberEntity</class>
<properties>
<property name="hibernate.transaction.jta.platform"
value="org.hibernate.service.jta.platform.internal.JBossAppServerJtaPlatform"/>
<property name="jboss.as.jpa.adapterModule" value="org.jboss.as.jpa.hibernate:4"/>

92

http://java.sun.com/xml/ns/persistence
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd
http:///

CHAPTER 4 © HIBERNATE OGM AT WORK

<property name="jboss.as.jpa.providerModule" value="org.hibernate:ogm"/>
<property name="jboss.as.jpa.classtransformer” value="false"/>
<property name="hibernate.listeners.envers.autoRegister" value="false"/>
<property name="hibernate.ogm.datastore.provider" value="mongodb"/>
<property name="hibernate.ogm.datastore.grid dialect"”
value="org.hibernate.ogm.dialect.mongodb.MongoDBDialect"/>
<property name="hibernate.ogm.mongodb.database" value="jbossas_db"/>
<property name="hibernate.ogm.mongodb.host" value="127.0.0.1"/>
<property name="hibernate.ogm.mongodb.port" value="27017"/>
</properties>
</persistence-unit>
</persistence>

Regarding the fact that there is no data source specified, remember, as I pointed out earlier, Hibernate OGM
doesn’t need a data source. However, in some cases a data source must be specified to conform to JPA specification.
For JBoss AS 7.1, the simplest way to provide a data source (in case you get related errors, which I didn’t) is to add the
out-of-the-box data source, like this:

<!-- out of the box data source for GlassFish v3-->
<jta-data-source> java:jboss/datasources/ExampleDS</jta-data-source>

At this point, I can say that we are respecting every single JBoss AS 7 requirement for running Hibernate
OGM applications.

Next, you have to add the application code (the LuckyNumberEntity entity, the CMTBean EJB component
(don’t forget to change the unit name to HOGM_JPA_JBOSSAS_PU), and the index.xhtml web page) discussed in the
previous example, and to add the CDI and JSF settings (which can be selected from the Project Facets wizard).
When you're done, you should be able to deploy and run the application without any unpleasant events. To do this,
I used JBoss AS Tools for Eclipse JUNO, but you can do it however you like.

Testing

Start the MongoDB server as in Chapter 1. Next, since you're in an Eclipse/JBoss AS (or NetBeans/JBoss AS)
environment, just save the project and select Run on Server (or Run, in NetBeans) to deploy and run the application.
If the application successfully starts, you'll see in the browser something similar to what’s shown in Figure 4-16.

g&] E-1 Hibernate OGM via Java Persistence APL... | + |

localhost:8080/HOGMvia)PA_EE_JBossAS-web,/

Hibernate OGM via Java Persistence API,
J2EE application under JBoss AS 7

| Generate Lucky Mumber |

Figure 4-16. Running the HOGMviaJPA_EE_JBossAS Application

93

http:///

CHAPTER 4 * HIBERNATE OGM AT WORK

Press the Generate Lucky Number button a few times to persist some lucky numbers into the MongoDB database
(jbossas_db) collection (jpa). Open a command prompt and type the commands from Figure 4-17 to see the results
of your work. You can monitor JBoss AS log messages in case anything unwanted happens.

smongodbsbin*mongo jhossas_dhb
ongoDB zhell version: 2.2.2
onnecting to: jhossas_db
» zhow collections
ihernate_sequences

ipa

ystem.indexes
> db.jpa.findC{>;

" _id" @ MumberLong<1?. "luckynumber'" : 978881 >
Y_id" : MumberLong<Z». "luckynumber' : 947118 3
"_id" : NumberLong¢3?,. "luckynumber' - 384566 >

Figure 4-17. Checking jpa collection content

Note You will see how and why the hibernate sequences collection appears in Chapter 5.

The complete source code for this application is named HOGMviaJPA_EE_JBossAS and is available in the Apress
repository. It comes as an Eclipse project and it was tested under JBoss AS 7.1.

Hibernate OGM in a Standalone JTA environment (Apache Tomcat 7)

Earlier in this chapter we created a Hibernate OGM via Hibernate Native API that was deployed in a standalone JTA
environment with a Tomcat 7 web server. In this section, we will replace the Hibernate Native API part with the Java
Persistence API. Instead of Hibernate Session, we'll use an EntityManager.

Prerequisites
e MongoDB2.2.2
e Hibernate OGM 4.0.0.Betal
e JDK1.7
e NetBeans 7.2.1 (or Eclipse JUNO)

e Apache Tomcat 7

Developing

After launching NetBeans, create a new project consisting of an empty Maven web application and name it
HOGMviaJPAJTA Tomcat7.Inthe New Web Application wizard, type hogm.hnapi for the Group Idand Package fields
and select Apache Tomcat 7 web server for deploying this application. When you see the project in the Projects
window, edit the pom.xml file (which must be under the Project Files node). In the pom.xml file, add the Hibernate
OGM (including MongoDB support) and JBoss JTA (JTA standalone from JBoss) distributions by pasting in the
following dependencies:

<dependencies>
<dependency>
<groupId>org.hibernate.ogm</groupId>

94

http:///

CHAPTER 4 © HIBERNATE OGM AT WORK

<artifactId>hibernate-ogm-core</artifactId>
<version>4.0.0.Beta2</version>

</dependency>

<dependency>
<groupIld>org.hibernate.ogm</groupld>
<artifactId>hibernate-ogm-mongodb</artifactId>
<version>4.0.0.Betai</version>

</dependency>

<dependency>
<groupIld>org.jboss.jbossts</groupIld>
<artifactId>jbossjta</artifactId>
<version>4.16.4.Final</version>

</dependency>

<dependencies>

Now save the project and the driver JAR will be listed under the Dependencies node.

Coding the Application

Now add the well-known entity named LuckyNumberEntity. You can find this in the previous examples; it’s a simple
POJO annotated with @Entity, @Table(name="jpa"), with a primary key field, named id, of type String and
generated using a UUID2 generator, and an int field named luckynumber.

Next, we'll write the persistence.xml file. In a Maven project, place this file in the Other Sources/src/
main/resources/META-INF folder and start by naming the persistence unit as HOGM_JPA JTA TOMCAT PU and the
transaction type as JTA:

<persistence-unit name="HOGM_JPA_JTA TOMCAT_PU" transaction-type="JTA">

Set Hibernate OGM as the JPA provider by adding the <provider> tag:
<provider>org.hibernate.ogm. jpa.HibernateOgmPersistence</provider>

Add the entity class in this persistence unit using the <class> attribute:
<class>hogm.hnapi.entities.LuckyNumberEntity</class>

Next, we need to specify the JTA platform—JBoss JTA. Do this by adding the following:

<property name="hibernate.transaction.jta.platform"
value="org.hibernate.service. jta.platform.internal.JBossStandAloneJtaPlatform"/>

Notice that we specified the JBoss JTA standalone distribution, not the one used by the JBoss AS.

The JBoss TS documentation indicates that, in order to select the local JBoss JTA implementation, you have to specify
two properties: com.arjuna.ats.jta.jtaTMImplementation and com.arjuna.ats.jta.jtaUTImplementation.
We can specify them like this:

<property name="com.arjuna.ats.jta.jtaTMImplementation"
value="com.arjuna.ats.internal.jta.transaction.arjunacore.TransactionManagerImple"/>

<property name="com.arjuna.ats.jta.jtaUTImplementation"”
value="com.arjuna.ats.internal.jta.transaction.arjunacore.UserTransactionImple"/>

95

http:///

CHAPTER 4 * HIBERNATE OGM AT WORK

Now we’ll configure the MongoDB connection using the datastore provider, the dialect, the name of the
database to connect to, and the host and port (we will use the localhost and the default MongoDB server port, 27017).
Putting everything together, we get the persistence.xml file shown in Listing 4-25.

Listing 4-25. Persistence.xml

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.0" xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence 2 _0.xsd">
<persistence-unit name="HOGM_JPA JTA TOMCAT PU" transaction-type="JTA">
<provider>org.hibernate.ogm. jpa.HibernateOgmPersistence</provider>
<class>hogm.hnapi.entities.LuckyNumberEntity</class>
<properties>
<property name="hibernate.transaction.jta.platform"
value="org.hibernate.service.jta.platform.internal.
JBossStandAloneJtaPlatform"/>
<property name="com.arjuna.ats.jta.jtaTMImplementation"
value="com.arjuna.ats.internal.jta.transaction.arjunacore.
TransactionManagerImple"/>
<property name="com.arjuna.ats.jta.jtaUTImplementation"”
value="com.arjuna.ats.internal.jta.transaction.arjunacore.
UserTransactionImple"/>
<property name="hibernate.ogm.datastore.provider" value="mongodb"/>
<property name="hibernate.ogm.datastore.grid dialect"
value="org.hibernate.ogm.dialect.mongodb.MongoDBDialect"/>
<property name="hibernate.ogm.mongodb.database" value="tomcat_db"/>
<property name="hibernate.ogm.mongodb.host" value="127.0.0.1"/>
<property name="hibernate.ogm.mongodb.port" value="27017"/>
</properties>
</persistence-unit>
</persistence>

At this point, we have one entity and the corresponding persistence unit, so it’s time to add a DAO class for
storing lucky numbers into the MongoDB database. First, based on this persistence unit (HOGM_JPA_JTA TOMCAT_PU),
we need to obtain an entity manager factory, and an entity manager from this factory, like so:

private static final EntityManagerFactory emf =
Persistence.createEntityManagerFactory("HOGM JPA JTA TOMCAT PU");
private final EntityManager em = emf.createEntityManager();

Now the entity manager is ready to join a transaction and execute statements against the MongoDB database

(in our case, persist statements), but for this we need to obtain the user transaction for setting the transaction boundaries.
We've done this before in a previous application, but in case you don’t remember, it can be done in at least two ways:

¢ using the static method transactionManager:

javax.transaction.TransactionManager tx = com.arjuna.ats.jta.TransactionManager.transactionManager();

96

http://java.sun.com/xml/ns/persistence
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd
http:///

CHAPTER 4 © HIBERNATE OGM AT WORK

e using the static method userTransaction:

javax.transaction.UserTransaction tx = com.arjuna.ats.jta.UserTransaction.userTransaction();

Note The TransactionManager interface allows the application server to control transaction boundaries on behalf
of the application being managed, while the UsexrTransaction interface allows applications to control transaction boundaries.
Obviously, when the application controls transaction boundaries, you can use both of these, but when you allow the
application server to control transaction boundaries, you must use TransactionManager.

Now, you can demarcate a persist statement with the begin, commit, and rollback methods for controlling the
transaction flow. After a transaction begins (when the begin method is called), the entity manager must join it by
calling the joinTransaction method, like this:

tx.begin();
em.joinTransaction();
em.persist(transientInstance);
tx.commit();

Supply the code for clearing and closing the entity manager, a few messages for monitoring the application flow,
and you'll get the DAO class shown in Listing 4-26.

Listing 4-26. The LuckyNumberDAO Class

package hogm.hnapi.dao;

import hogm.hnapi.entities.LuckyNumberEntity;
import java.util.logging.level;

import java.util.logging.logger;

import javax.persistence.EntityManager;

import javax.persistence.EntityManagerFactory;
import javax.persistence.Persistence;

public class LuckyNumberDAO {
private static final Logger log = Logger.getlLogger(LuckyNumberDAO.class.getName());
private static final EntityManagerFactory emf =
Persistence.createEntityManagerFactory("HOGM JPA JTA TOMCAT PU");

private final EntityManager em = emf.createEntityManager();

public void persistAction(LuckyNumberEntity transientInstance) throws java.lang.Exception {
log.log(Level.INFO, "Persisting LuckyNumberEntity instance ...");
javax.transaction.TransactionManager tx =

com.arjuna.ats.jta.TransactionManager.transactionManager();
// javax.transaction.UserTransaction tx = com.arjuna.ats.jta.UserTransaction.userTransaction();

97

http:///

CHAPTER 4 * HIBERNATE OGM AT WORK

try {
tx.begin();
em.joinTransaction();
em.persist(transientInstance);
tx.commit();

log.log(Level .INFO, "Persist successful ...");
} catch (Exception re) {
tx.rollback();

log.log(Level.SEVERE, "Persist failed ...", re);
throw re;
} finally {
if (em != null) {
em.clear();
em.close();

The important part is done! We just have to add a simple servlet for working with the DAO class, like this:
package hogm.hnapi.servlet;
éWébServlet(name = "LuckyNumberServlet", urlPatterns = {"/LuckyNumberServlet"})
public class LuckyNumberServlet extends HttpServlet {

protected void processRequest(HttpServletRequest request, HttpServletResponse response) throws
ServletException, IOException, Exception {

LuckyNumberDAO luckyNumberDAO = new LuckyNumberDAO();
LuckyNumberEntity luckyNumberEntity = new LuckyNumberEntity();
luckyNumberEntity.setLuckynumber(new Random().nextInt(1000000));

luckyNumberDAO. persistAction(luckyNumberEntity);

}

And a trivial JSP page (index. jsp) that sends empty requests to our servlet:

<form action="./LuckyNumberServlet" method="POST">
<input type="submit" value="Generate Lucky Number">
</form>

Done!

98

http:///

CHAPTER 4 © HIBERNATE OGM AT WORK

Testing

Start the MongoDB server as in Chapter 1. Next, since you're in a NetBeans/Tomcat (or Eclipse/Tomcat) environment,
just save the project and click the Run (or Run on Server in Eclipse) button to start Tomcat and deploy and run the
application. If the application starts successfully, you'll see in your browser something similar to what’s shown in
Figure 4-18.

l&] Hibernate OGM via Java Persistence API... | + |

localhost:8084/HOGMviaJPAITA TomcatT/

Hibernate OGM via Java Persistence API,
standalone JTA, JBoss Transactions

| Generate Lucky Number |

Figure 4-18. Running the HOGMviaJPAJTA_Tomcat7 application

Press the Generate Lucky Number button a few times to persist some lucky numbers into the MongoDB database
(tomcat_db) collection (jpa). Open a command prompt and type the commands from Figure 4-19 to see the results of
your work. You can monitor Tomcat log messages in case anything unwanted happens.

ssmongodbsbhin>mongo tomcat_db

ongoDB shell version: 2 2

onnecting to: tomcat_dhb

> show collections

jdbc

ipa

jta

ystem.indexes

> db_jpa-find({>;
r_id" : "Bh22V225-204a-4bh%a—827c-Bee?3faddbcd”. "luckynumber™ : 687168
_id" : "8%a2f268-b157-4725-978006-278798987536" . "luckynumber™ : 476694

Figure 4-19. Checking jpa collection content

The complete source code for this application is named HOGMviaJPAJTA Tomcat7 and is available in the Apress
repository. It comes as a NetBeans project and was tested under GlassFish AS 3.

Hibernate OGM in a Built-in JTA Environment (JBoss AS 7 and Seam 3
Application)

I saved for the end of this chapter two applications that involve Seam and Spring, two powerful and popular J2EE

frameworks. As a Seam fan, I've seen Seam become a mature and robust framework, transforming in version 3 into

“a collection of modules and developer tooling tailored for Java EE 6 application development, with CDI as the central piece.”
Thanks to the modular framework structure and the CDI injection mechanism, you can create Seam 3

applications that involve only the modules you need. In the next application, we use a single Seam 3 module called

Seam Persistence (this is the module closest to our subject), which “brings transactions and persistence to managed

99

http:///

CHAPTER 4 * HIBERNATE OGM AT WORK

beans, provides a simplified transaction API, and hooks transaction propagation events to the CDI event bus.” Among
the many features of Seam Persistence, two stand out:

e Seam Managed Persistence Context—This is a built-in Seam component capable of managing
entity managers (EntityManagexrs for JPA; it will work even in an SE environment because
the Seam Persistence extensions will bootstrap the EntityManagerFactory) and sessions
(Sessions for Hibernate). Moreover, it provides stability and robustness both outside and
inside an EE container.

e Declarative transactions—Seam has upgraded the EJB 3 well-known @TransactionAttribute
to provide declarative transactions for plain beans and, even cooler, this works outside the EE
container where EJBs are totally unknown.

If you add to these two features simplicity of configuration and integration, you realize Seam Persistence really rocks!
So, let’s write an application that uses Seam 3 (the Seam Persistence module) and Hibernate OGM as JPA.

Prerequisites
e MongoDB2.2.2
e Hibernate OGM 4.0.0.Beta2
e JDK1.7
¢ Eclipse JUNO
e Forgel.0.50r1.1.3
e JBossAS7

Developing

Our first concern was how to start a Seam Persistence project, because there are several possibilities. For example,
you can add the Seam Persistence distribution through Maven artifacts:

<dependencies>
<dependency>

<groupId>org.jboss.seam.persistence</groupId>
<artifactId>seam-persistence-api</artifactId>
<version>${seam.persistence.version}</version>

</dependency>

<dependency>
<groupId>org.jboss.seam.persistence</groupId>
<artifactId>seam-persistence-impl</artifactId>
<version>${seam.persistence.version}</version>

</dependency>

<dependency>
<groupId>org.jboss.seam.solder</groupIld>
<artifactId>seam-solder</artifactId>
<version>${seam.solder.version}</version>

</dependency>

100

http:///

CHAPTER 4 © HIBERNATE OGM AT WORK

<dependency>
<groupld>org.jboss.seam.xml</groupld>
<artifactId>seam-xml-config</artifactId>
<version>${seam.xml.version}</version>
</dependency>

</dependencies>

Or, even better, you could use JBoss Tools for Eclipse or Seam Forge Tools for Eclipse (actually Seam Forge Tools
is now available as a sub-tool of JBoss Tools). However, for our needs the decision was clear: We'll use the Seam
Forge Tools plug-in (www.forge.jboss.org/) for Eclipse JUNO. You may well already have it installed in your Eclipse
distribution, or outside Eclipse, and have used it many times, but if you're new to Forge and you want to install it
quickly, go to the Help|Install New Software window, add the JBoss Tools repository
(http://download. jboss.org/jbosstools/updates/development/indigo/) or select it from the list), expand the
Abridged JBoss Tools 3.3 node, and select Forge Tools (see Figure 4-20).

&) Install o -2 |5
Available Software

Check the items that you wish to install. ;‘.—_—

Work with: -g/jbosstools/updates/development/indigo/ - Add...

Find more software by working with the "Available Software Sites” preferences.

type filter text

Mame il

2 [H 000 Abridged JBoss Tools 3.3
[[] 4+ Apache Deltaspike Tools

Lt Context and Dependency Injection Tools
[#] &+ Forge Tools i

L] I k

| SelectAll || DeselectAll | 1item selected

Figure 4-20. Install Forge Tools for Eclipse

Follow the steps in the wizard to install it and then restart the IDE. Now, from the Window | Show View window,
you can activate the Forge | Forge Console. Initially Forge is not running, but it can be started by pressing the little
green triangle on the Forge bar (Figure 4-21).

101

http://www.forge.jboss.org/
http://download.jboss.org/jbosstools/updates/development/indigo/
http:///

CHAPTER 4 * HIBERNATE OGM AT WORK

JPADetaiIs =l Console 5 Forge Console &2

|
RN I N VA
[o rre
T N Y I WP RN
[~
JBoss Forge, wversion [1.8.5.Final] - JBoss, by Red Hat, Inc. [http://jboss.org/forge]

[] Eclipse

Figure 4-21. Forge Console in Eclipse

The big advantage of using Forge is that you don’t need to read tons of tutorials, since it’s just a shell for tooling
and automation at the command line. There are no complicated wizards, settings, XMLs configurations, or anything,
just a sheaf of commands that generate entire projects, including Seam and EE, in seconds.

Coding the Application

I'm going to assume that you're looking at a Seam Forge console right now. (This is recommended under Eclipse,
because it lets you see the project creation progress after each typed command.) Let’s insert the necessary commands
for generating a new Seam 3 project with the Seam Persistence module.

First we need to install the Seam Persistence plug-in for Forge outside the project context (if it’s not present).
This can be easily accomplished with the following command:

forge install-plugin seam-persistence --version 3.1.0.Final

Now we can insert commands for creating the new project:

e Create a new project named HOGMviaJPA_SEAM3:
new-project --named HOGMviaJPA SEAM3

e Add to the new project the JavaServer Faces scaffold (answer yes to all questions):
scaffold setup

e Select which JBoss Java EE version to install. In the list of versions, locate

org.jboss.spec:jboss-javaee-6.0:pom::3.0.1.Final and type the number in front of it
(if this is not available, then select the most recent final version).

e After a bunch of success messages, you'll see the question “Create scaffold in which
sub-directory of web-root?”. Type main.

e Install the Seam Persistence module:
seam-persistence setup
e You'll be asked to indicate which version to install. Locate the

org.jboss.seam.persistence:seam-persistence:::3.1.0.Final version and type the
number in front of it (if this is not available, select the most recent final version).

102

http:///

CHAPTER 4 © HIBERNATE OGM AT WORK

e Install the Seam Managed Persistence Context:
seam-persistence install-managed-persistence-context

¢ You'll be prompted to specify the package and class name for the Persistence Context
Producer. Just press the Enter key for each question to accept the default suggestions.

e Activate declarative transactions support by typing:
seam-persistence enable-declarative-tx

e Generate an entity class—the LuckyNumberEntity class (accept the suggested package name
by pressing the Enter key):

entity --named LuckyNumberEntity

e Addthe field luckynumber to the entity by typing:
field int --named luckynumber

e Done! We have all the components we need, so we’re ready to build our project. Type:
build

If the build ends successfully, you've done a great job and the project should be visible under Project Explorer
tab in the Eclipse IDE. Don’t worry about the red “x” that marks the project as having errors—this happens because
the persistence.xml file is empty. (And even if you don’t have that red “x,” you still need to populate persistence.xml
with the correct settings.)

Let’s get rid of this annoying error using an Eclipse IDE wizard. In Project Explorer, locate the HOGMviaJPA SEAM3
project node and right-click on it and select Properties from the context menu. Now, follow the instructions from the
“Coding the Application” part of the “Hibernate OGM in a Built-in JTA Environment (EJB 3, JBoss AS 7)” section of this

chapter to get the persistence.xml content shown in Listing 4-27.

Listing 4-27. persistence.xml

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<persistence xmlns="http://java.sun.com/xml/ns/persistence"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" version="2.0"

xsi:schemalocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence 2 _0.xsd">
<persistence-unit name="HOGM_JPA SEAM3_PU" transaction-type="JTA">

<provider>org.hibernate.ogm.jpa.HibernateOgmPersistence</provider>
<class>com.example.HOGMviaJPA SEAM3.model.LuckyNumberEntity</class>
<properties>
<property name="hibernate.transaction.jta.platform"
value="org.hibernate.service.jta.platform.internal.JBossAppServerJtaPlatform"/>
<property name="jboss.as.jpa.adapterModule" value="org.jboss.as.jpa.hibernate:4"/>
<property name="jboss.as.jpa.providerModule" value="org.hibernate:ogm"/>
<property name="jboss.as.jpa.classtransformer" value="false"/>
<property name="hibernate.listeners.envers.autoRegister" value="false"/>
<property name="hibernate.ogm.datastore.provider" value="mongodb"/>

103

http://java.sun.com/xml/ns/persistence
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd
http:///

CHAPTER 4 * HIBERNATE OGM AT WORK

<property name="hibernate.ogm.datastore.grid_dialect"
value="org.hibernate.ogm.dialect.mongodb.MongoDBDialect"/>
<property name="hibernate.ogm.mongodb.database" value="jbossas_db"/>
<property name="hibernate.ogm.mongodb.host" value="127.0.0.1"/>
<property name="hibernate.ogm.mongodb.port" value="27017"/>
</properties>
</persistence-unit>
</persistence>

Note Before you save and build, edit the LuckyNumberEntity by adding a line that says @Table(name="seam").

Save and build the project with the Forge build command and the error will disappear.

Now we need to add the business logic for persisting lucky numbers into the MongoDB database, and I think an
EJB component is exactly what we need because we can make good use of its CDI features. First, create a new package
named com.example.HOGMviaJPA SEAM3.view under Java sources (src/main/java), with an empty stateless bean
inside named CMTBean. If you create the stateless bean from the Eclipse wizard, select the Session Bean (E]B 3.x) leaf,
under the EJB node.

Now we're going to use the Seam Managed Persistence Context. If you're not familiar with it, you might think it
leads to a mass of spaghetti code to glue it into our EJB component. But keep in mind that all we need to do is to use
the CDI @Inject annotation to obtain a Seam managed EntityManager:

@Inject @Forge EntityManager em;
The @Forge represents a CDI qualifier (both the Seam Managed Persistence Context factory class and the

qualifier class were generated by Seam Forge and placed in the package com.example.HOGMviaJPA SEAM3, under the
Java sources src/main/java).

Note We didn't use the declarative transaction feature (even though we installed it) because we’re in an EE environment
and EJBs are by default transactional.

That single line of code does all the work of injecting and managing our entity manager. Next, we’ll use the most
common approach for giving life to the persisting process:

public void persistAction() {
LuckyNumberEntity luckyNumberEntity = new LuckyNumberEntity();
luckyNumberEntity.setLuckynumber(new Random().nextInt(1000000));
em.persist(luckyNumberEntity);

}

Finally, we annotate our EJB component with @Named to make it visible in a simple JSF form. Listing 4-28 shows
the complete EJB code.

104

http:///

CHAPTER 4 © HIBERNATE OGM AT WORK

Listing 4-28. The Complete E]B Code

package com.example.HOGMviaJPA SEAM3.view;

import java.io.Serializable;

import java.util.Random;

import javax.ejb.Stateful;

import javax.enterprise.context.RequestScoped;
import javax.inject.Inject;

import javax.inject.Named;

import javax.persistence.EntityManager;

import com.example.HOGMviaJPA_SEAM3.Forge;
import com.example.HOGMviaJPA SEAM3.model.LuckyNumberEntity;

@Named("bean")

@Stateful

@RequestScoped

public class CMTBean implements Serializable

{

private static final long serialVersionUID = 1L;
@Inject @Forge EntityManager em;

public void persistAction() {
LuckyNumberEntity luckyNumberEntity = new LuckyNumberEntity();
luckyNumberEntity.setLuckynumber(new Random().nextInt(1000000));
em.persist(luckyNumberEntity);

Calling the persistAction method with a LuckyNumberEntity instance can be easily accomplished by adding
a few modifications to the index.xhtml file generated by Seam Forge under src/main/webapp/main/index.xhtml.
The first modification involves using the Taglib directives for importing the JSF tag library; use XML syntax for this
(see the bold code):

<ui:composition xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets"”
template="/resources/scaffold/pageTemplate.xhtml"
xmlns:h="http://java.sun.com/jsf/html">

Second, slip the next form into the code somewhere—I paste it in the <ui:define> tag. Since this is just an
example, I kept the generated design:

<ui:define name="subheader">
<h:form>
<h:commandButton action="#{bean.persistAction()}" value="Generate Lucky Number"/>
</h:form>
</ui:define>

105

http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/facelets
http://java.sun.com/jsf/html
http:///

CHAPTER 4 * HIBERNATE OGM AT WORK

Finally, specify the application start page. Edit the web.xml file (under src/main/webapp/WEB-INF folder) and
add this code at the end:

<welcome-file-list>
<welcome-file>faces/main/index.xhtml</welcome-file>
</welcome-file-list>

Save and build the project again (use the Forge Console) and that’s it!

Testing

Start the MongoDB server as in Chapter 1. Next, since you're in an Eclipse/JBoss AS (or NetBeans/JBoss AS)
environment, just save the project and click the Run on Server (or Run in NetBeans) button to start JBoss AS and
deploy and run the application. If the application successfully starts, you'll see in your browser something like what’s
shown in Figure 4-22.

Welcome to Forge

| Generate Lucky Number |

Documentation | Get Excited!

Forge Project | User List | Report an issue

Figure 4-22. Running the HOGMviaJPA_SEAM3 application

Press the Generate Lucky Number button a few times to persist some lucky numbers into the MongoDB database
(jbossas_db) collection (seam). Open a command prompt and type the commands from Figure 4-23 to see the results
of your work. You can monitor JBoss AS log messages in case anything unwanted happens.

ssmongodbsbin2monge jhossas_db

ongoDB zhell version: 2.2.2

onnecting to: jhossas_db

» show collections

ibernate_sequences

ipa

eam

ystem. indexes

» db.seam.find<);
"_id"™ : NumberLong<i?), "luckynumber' : 266538, "verzion'
*_id" : MumberLong<2?, "luckynumber' : 579787. "wersion'
" _id" : MumberLong€3},. “"luckynumber' : 912428, “wersion'

e
et

Figure 4-23. Checking the seam collection content

106

http:///

CHAPTER 4 © HIBERNATE OGM AT WORK

The complete source code for this application is is named HOGMviaJPA_SEAM3 and it’s available in the Apress
repository. It comes as an Eclipse project and was tested under JBoss AS 7.

Hibernate OGM in a Built-in JTA Environment (GlassFish 3
and Spring 3 Application)

One of the best open source Java enterprise frameworks on the market, with millions of fans, is Spring, especially
distribution 3. In this section, we will develop an application that integrates Spring 3 and Hibernate OGM via JPA.
Since you're reading this section, you're probably a Spring fan and the application may look pretty simple to you. Keep
in mind that the point here is showing you how to add Hibernate OGM into this equation. So, let’s persist some lucky
numbers using Spring and Hibernate OGM.

Prerequisites
e MongoDB2.2.2
e Hibernate OGM 4.0.0.Beta2
e JDK1.7
e NetBeans IDE 7.2.1 (or Eclipse JUNO)
e Spring3.1.1
e GlassFish 3.1.2.2

Developing

After launching NetBeans, create a new project consisting of an empty Web Application (notice that we won't use
Maven for this application) and name it HOGMviaJPA_Spring3. Select GlassFish AS for deploying this application and
add the Spring Web MVC framework from the NetBeans wizard.

Once you have the project under Projects window, you need to provide a few more JARs aside from the Spring
3.1.1 JARs that were automatically added by NetBeans. Begin with the Hibernate OGM/MongoDB JARs, which should
be available in the Hibernate OGM Core and MongoDB user library created in Chapter 1. Continue with two JARs you
can download from the Internet: asm-3.1.jar (http://asm.ow2.0rg/) and aopalliance. jar
(http://aopalliance.sourceforge.net/).

Now you have all the necessary JARs and we can start coding.

Coding the Application

We'll start by developing the entity class and the persistence.xml. The entity class that feeds our MongoDB database
with lucky numbers code, shown in Listing 4-29, is pretty straightforward.

Listing 4-29. The Entity Class
package hogm.spring;

import java.io.Serializable;

import javax.persistence.Column;

import javax.persistence.Entity;

import javax.persistence.GeneratedValue;

107

http://asm.ow2.org/
http://aopalliance.sourceforge.net/
http:///

CHAPTER 4 * HIBERNATE OGM AT WORK

import javax.persistence.GenerationType;
import javax.persistence.Id;
import javax.persistence.Table;

@Entity

@Table(name = "spring")

public class LuckyNumberEntity implements Serializable {
private static final long serialVersionUID = 1L;
@1d
@GeneratedValue(strategy = GenerationType.AUTO)
private Long id;
@Column(name = "luckynumber", nullable = false)
private int luckynumber;

public LuckyNumberEntity() {
}

public int getLuckynumber() {
return luckynumber;
}

public void setLuckynumber(int luckynumber) {
this.luckynumber = luckynumber;
}

public Long getId() {
return id;
}

public void setId(Long id) {
this.id = id;
}

Add an empty persistence.xml. The persistence.xml contains a single persistence unit, HOGMviaJPA_SPRING3_PU
and a transaction type defined as JTA:

<persistence-unit name="HOGMviaJPA_SPRING3_PU" transaction-type="JTA">

Next, specify Hibernate OGM as the JPA provider by adding the <provider> tag:
<provider>org.hibernate.ogm. jpa.HibernateOgmPersistence</provider>
Add the entity class in Listing 4-28 to this persistence unit using the <class> attribute:

<class>hogm.spring.LuckyNumberEntity</class>

108

http:///

CHAPTER 4 © HIBERNATE OGM AT WORK

Specify the JTA platform using the hibernate.transaction. jta.platform property. The value of this property
can be found in the list in Chapter 2. For GlassFish AS, use:

<property name="hibernate.transaction.jta.platform" value="org.hibernate.service.jta.platform.
internal.SunOneJtaPlatform"/>

We're almost done; we just need to configure the MongoDB connection (provider, dialect (optional), database
name, host, and port). Once we've done that, we have the entire persistence.xml file as shown in Listing 4-30.

Listing 4-30. persistence.xml

<?xml version="1.0" encoding="UTF-8"?>

<persistence version="2.0" xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence 2 0.xsd">

<persistence-unit name="HOGMviaJPA_SPRING3_PU" transaction-type="JTA">
<provider>org.hibernate.ogm.jpa.HibernateOgmPersistence</provider>
<class>hogm.spring.LuckyNumberEntity</class>
<properties>
<property name="hibernate.transaction.jta.platform"
value="org.hibernate.service.jta.platform.internal.SunOneJtaPlatform"/>
<property name="hibernate.ogm.datastore.provider" value="mongodb"/>
<property name="hibernate.ogm.datastore.grid_dialect"”
value="org.hibernate.ogm.dialect.mongodb.MongoDBDialect"/>
<property name="hibernate.ogm.mongodb.database" value="glassfish db"/>
<property name="hibernate.ogm.mongodb.host" value="127.0.0.1"/>
<property name="hibernate.ogm.mongodb.port" value="27017"/>
</properties>
</persistence-unit>
</persistence>

Now, we're ready to add some DAO business logic to take advantage of the JPA settings. For this, we can write
a simple Spring component (annotating the class with @omponent) that injects an EntityManager and implements a
transactional persist method, like the following:

package hogm.spring;

import javax.persistence.EntityManager;

import javax.persistence.PersistenceContext;
import org.springframework.stereotype.Component;

import org.springframework.transaction.annotation.Transactional;

@Component
public class LuckyNumberDAO {

@PersistenceContext
private EntityManager em;

109

http://java.sun.com/xml/ns/persistence
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd
http:///

CHAPTER 4 * HIBERNATE OGM AT WORK

@Transactional

public void persist(LuckyNumberEntity luckyNumberEntity) {
em.persist(luckyNumberEntity);

}

Notice that we used the @Transactional annotation, since we want Spring to wrap that method in a transaction.
To create a classical Spring application, we need a Spring controller (annotating the class with @Controller)
capable of receiving HTTP requests from multiple users and able to participate in an MVC workflow. Our controller
will receive HTTP GET requests for its users and, for each request, will generate a new lucky number that becomes
a parameter passed to the DAO persist method. For this, we use the @Autowired annotation that lets the container
automatically wire beans—in our case, the LuckyNumberDAO bean shown in Listing 4-31.

Listing 4-31. The LuckyNumberDAO Bean

package hogm.spring;

import java.util.Random;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Controller;

import org.springframework.ui.ModelMap;

import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;

@Controller
public class LuckyNumberController {

@Autowired
private LuckyNumberDAO luckyNumberDao;

@RequestMapping(value = "/", method = RequestMethod.GET)

public String index(ModelMap map) {
LuckyNumberEntity luckyNumberEntity = new LuckyNumberEntity();
luckyNumberEntity.setLuckynumber(new Random().nextInt(1000000));

luckyNumberDao.persist(luckyNumberEntity);

return "index";

The user can fire HTTP GET requests using the Spring form we added to the WEB-INF/jsp/index. jsp page.
We use the Taglib directives to import the Spring tag library:

<%@ taglib prefix="form" uri="http://www.springframework.org/tags/form" %>
<form:form method="GET" commandName="/">

<input type="submit" value="Generate Lucky Number" />
</form:form>

110

http://www.springframework.org/tags/form
http:///

CHAPTER 4 © HIBERNATE OGM AT WORK

Almost done. Two more XML configuration files and we’ll be ready to run the application. The well-known
dispatcher-servlet.xml, shown in Listing 4-32, needs to contain several settings, for example to enable the Spring
MVC @Controller programming model and to define the entity manager factory (notice that we indicate our Hibernate
OGM persistence unit name) and the Spring JTA transaction manager (it should be placed in the WEB-INF folder).

Listing 4-32. dispatcher-servlet.xml

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:p="http://www.springframework.org/schema/p"
xmlns:mvc="http://www.springframework.org/schema/mvc"
xmlns:tx="http://www.springframework.org/schema/tx"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/tx
http://www.springframework.org/schema/tx/spring-tx-3.0.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-3.0.xsd
http://www.springframework.org/schema/mvc
http://www.springframework.org/schema/mvc/spring-mvc-3.0.xsd">

<context:component-scan base-package="hogm.spring" />
<context:annotation-config/>

<mvc:annotation-driven />

<tx:annotation-driven transaction-manager="txManager" />

<bean id="jspViewResolver"
class="org.springframework.web.servlet.view.InternalResourceViewResolver">
<property name="viewClass"
value="org.springframework.web.servlet.view.JstlView" />
<property name="prefix" value="/WEB-INF/jsp/" />
<property name="suffix" value=".jsp" />
</bean>

<bean id="entityManagerFactory"
class="org.springframework.orm.jpa.LocalEntityManagerFactoryBean">
<property name="persistenceUnitName" value="HOGMviaJPA SPRING3_PU"/>
</bean>

<bean id="txManager" class="org.springframework.transaction.jta.JtaTransactionManager">
</bean>
</beans>

Finally, the generated web.xml should be adjusted accordingly, as shown in Listing 4-33. It should be placed in
the WEB-INF folder.

111

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/p
http://www.springframework.org/schema/mvc
http://www.springframework.org/schema/tx
http://www.springframework.org/schema/context
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/tx
http://www.springframework.org/schema/tx/spring-tx-3.0.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-3.0.xsd
http://www.springframework.org/schema/mvc
http://www.springframework.org/schema/mvc/spring-mvc-3.0.xsd
http:///

CHAPTER 4 * HIBERNATE OGM AT WORK

Listing 4-33. web.xml

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="3.0"
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd">
<context-param>
<param-name>contextConfiglocation</param-name>
<param-value>/WEB-INF/dispatcher-servlet.xml</param-value>
</context-param>
<listener>
<listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>
</listener>
<servlet>
<servlet-name>dispatcher</servlet-name>
<servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>
<load-on-startup>2</load-on-startup>
</servlet>
<servlet-mapping>
<servlet-name>dispatcher</servlet-name>
<url-pattern>/</url-pattern>
</servlet-mapping>
<session-config>
<session-timeout>
30
</session-timeout>
</session-config>
<welcome-file-list>
<welcome-file>/</welcome-file>
</welcome-file-list>
</web-app>

Done!

Note Spring also supports NoSQL datastores, like MongoDB, without Hibernate OGM. For more details, visit
www. springsource.org/spring-data/mongodb

Testing

Start the MongoDB server as you saw in Chapter 1. Next, since you're in a NetBeans/GlassFish (or Eclipse/GlassFish)
environment, just save the project and click the Run (or Run on Server in Eclipse) button to start GlassFish and
deploy and run the application. If the application successfully starts, you'll see in the browser something like what’s
shown in Figure 4-24.

112

http://java.sun.com/xml/ns/javaee
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd
http://www.springsource.org/spring-data/mongodb
http:///

CHAPTER 4 © HIBERNATE OGM AT WORK

%J E- Hibernate OGM via Java Persi;tenceAPI,.‘.l + |

localhost:3080/HOGMvia PA_SPRINGS

Hibernate OGM via Java Persistence API, Spring 3

| Generate Lucky Number |

Figure 4-24. Running HOGMuviaJPA_SPRING3 application

Press the Generate Lucky Number button a few times to persist some lucky numbers into the MongoDB database
(glassfish_db) collection (spring). Open a command prompt and type the commands from Figure 4-25 to see the
result of your work. You can monitor GlassFish log messages in case anything unwanted happens.

~mongodb~bin*mongo glassfish_dhb
ongoDB shell version: 2.2_2
onnecting to: glassfish_dh
> show collections
mt
mt
ibernate_seguences
ipa
jita
pring
ystem.indexes
> db.spring.find{>;
" _id" : NumberLong¢l?,. ""luckynumhbher'
" _id" : MumberLong<2». "luckynumber'

580%63 >
286341 >

]
Figure 4-25. Checking the spring collection content

The complete source code for this application is named HOGMviaJPA_SPRING3 and is available in the Apress
repository. It comes as a NetBeans project and it was tested under GlassFish AS 3.

Hibernate OGM in a non-JTA Environment (RESOURCE_LOCAL,
Apache Tomcat 7)

In this section we’'ll develop a Hibernate OGM application that will run in a not-recommended condition and
environment—this is why we saved it for last. The basic idea is that we will use a transaction of type RESOURCE_LOCAL
in an non-EE environment (in a Tomcat web container). In other words, we will have the JPA provider implementation
manage transactions in a non-JTA container (it doesn’t provide a JTA implementation and so it obviously doesn’t offer
automatic transaction management).

Hibernate OGM documentation doesn’t recommend using OGM outside a JTA environment (built-in or
standalone). But, the fact that it’s not recommended doesn’t mean it doesn’t work (especially for MongoDB which
doesn’t support transactions). Thus we can try it and draw some conclusions.

Prerequisites
e MongoDB2.2.2
e Hibernate OGM 4.0.0.Beta2
e JDK1.7

113

http:///

CHAPTER 4 * HIBERNATE OGM AT WORK

e NetBeans 7.2.1 (or Eclipse JUNO)

e Apache Tomcat 7

Developing

After launching NetBeans, create a new project consisting of an empty Maven web application and name it
HOGMviaJPA RESOURCELOCAL_Tomcat7.Inthe New Web Application wizard, type hogm.hnapi for the Group Idand
Package fields and select the Tomcat application server for deploying this application. Once you see the project listed
in the Projects window, you need to edit the pom.xml1 file (it has to be under Project Files node). In the pom.xml
file, add the Hibernate OGM distribution (including MongoDB support) by pasting in the well-known dependencies.

Coding the Application

We start by developing the entity class and the persistence.xml. The entity class (LuckyNumberEntity) that feeds
our MongoDB databases with lucky numbers code is pretty straightforward and we've used it in almost all of the
preceding examples. We can therefore skip the listing here (just remember to use @Table(name="jpa_r1")). Next, we
focus on persistence.xml, which goes in the Other Sources/src/main/resources/META-INF) folder. Asyou can see
in Listing 4-34, it has no JTA platform specified, no special settings, just the transaction-type set as RESOURCE_LOCAL
and the MongoDB connection settings.

Listing 4-34. persistence.xml

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.0" xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence 2 _0.xsd">
<persistence-unit name="HOGM_JPA RESOURCE_LOCAL_PU" transaction-
type="RESOURCE_LOCAL">
<provider>org.hibernate.ogm.jpa.HibernateOgmPersistence</provider>
<class>hogm.hnapi.entities.LuckyNumberEntity</class>
<properties>
<property name="hibernate.ogm.datastore.provider" value="mongodb"/>
<property name="hibernate.ogm.datastore.grid dialect"
value="org.hibernate.ogm.dialect.mongodb.MongoDBDialect"/>
<property name="hibernate.ogm.mongodb.database" value="tomcat_db"/>
<property name="hibernate.ogm.mongodb.host" value="127.0.0.1"/>
<property name="hibernate.ogm.mongodb.port" value="27017"/>
</properties>
</persistence-unit>
</persistence>

Now we develop the DAO class responsible for persisting the lucky numbers in the MongoDB database, as shown
in Listing 4-35. As you can see, we need some plumbing code since we're using the transaction mechanism provided
by the JPA provider, which in our case is Hibernate OGM. The transaction methods begin, commit, and rollback are
provided through the EntityManager.

114

http://java.sun.com/xml/ns/persistence
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd
http:///

CHAPTER 4 © HIBERNATE OGM AT WORK

Listing 4-35. The LuckyNumberDAO Class

package hogm.hnapi.dao;

import hogm.hnapi.entities.LuckyNumberEntity;
import java.util.logging.level;

import java.util.logging.logger;

import javax.persistence.EntityManager;

import javax.persistence.EntityManagerFactory;
import javax.persistence.Persistence;

public class LuckyNumberDAO {

private static final Logger log = Logger.getlogger(LuckyNumberDAO.class.getName());

private static EntityManagerFactory emf = Persistence.createEntityManagerFactory
("HOGM_JPA RESOURCE_LOCAL_PU");

private EntityManager em = emf.createEntityManager();

public void persistAction(LuckyNumberEntity transientInstance) throws java.lang.Exception {

log.log(Level.INFO, "Persisting LuckyNumberEntity instance ...");

try {
em.getTransaction().begin();
em.persist(transientInstance);
em.getTransaction().commit();

log.log(Level .INFO, "Persist successful...");
} catch (Exception re) {
em.getTransaction().rollback();

log.log(Level.SEVERE, "Persist failed...", re);
throw re;
} finally {
if (em != null) {
em.clear();
em.close();

Now suppose we have the piece of code that “connects” the user with the DAO class (a servlet and a simple
XHTML page) and we run the application and see an error, like this:

Caused by: java.lang.ClassNotFoundException: Could not load requested class :
com.arjuna.ats.jta.TransactionManager

115

http:///

CHAPTER 4 * HIBERNATE OGM AT WORK

This error contains two hints for us: First, the JPA provider doesn’t find any JTA implementation (normal, since
we are in a non-JTA environment) and second, the JPA provider is looking, by default, for a JBoss JTA implementation.
Therefore, we need to add JBoss JTA JARs, and we have to add the corresponding Maven artifacts in the pom. xml file:

<dependency>
<groupId>org.jboss.jbossts</groupIld>
<artifactId>jbossjta</artifactId>
<version>4.16.4.Final</version>
</dependency>

Now, run the application again and everything should work fine (don’t forget the web page and the servlet—you
can copy them from previous projects, or simply download the application from the Apress repository).

Testing

Start the MongoDB server as you saw in Chapter 1. Next, since you're in a NetBeans/Tomcat (or Eclipse/Tomcat)
environment, just save the project and click the Run (or Run on Server in Eclipse) button to start Tomcat and deploy
and run the application. If the application successfully starts, you'll see in your browser something like what’s shown
in Figure 4-26.

%J Hibernate QOGM via Java Persistence APL... | + |

localhost:8084/HOGNviaPA_RESOURCELOCAL_Tomcat?/

Hibernate OGM via Java Persistence API,
RESOURCE_ LOCAL

| Generate Lucky Number |

Figure 4-26. Running the HOGMviaJPA_RESOURCELOCAL_Tomcat7 application

Press the Generate Lucky Number button a few times to persist some lucky numbers into the MongoDB database
(tomcat_db) collection (jpa_rl). Open a command prompt and type the commands from Figure 4-27 to see the result
of your work. You can monitor Tomcat log messages in case anything unwanted happens.

D:s~mongodb~bin>*mongo tomcat_db
MongoDB shell verszion: 2.2.2

connecting to: tomcat_db

> show collections

Jdhe

Jpa

Jpa_rl

Jta

system.indexes

> dbh.jpa_rl.find{>;

£ U_dd" - "B8clZah2-Pchd—47%e—?5c7-ad74ab%cdBlla”,. "luckynumber' : 324143 >
£ "_id" - “"h4Belcad-bbBc—42f8-9132-627de5d1887c",. "luckynumber' : 464324 >

Figure 4-27. Checking the jpa_rl collection content

116

http:///

CHAPTER 4 © HIBERNATE OGM AT WORK

The complete source code for this application is named HOGMviaJPA_RESOURCELOCAL_Tomcat7 and it’s
available in the Apress repository. It comes as a NetBeans project and was tested under Tomcat 7.

With this example, we finish the set of applications based on bootstrapping Hibernate OGM via both Hibernate
Native API and JPA.

If you are not a Maven fan, but still want to test these applications, you can manually add the needed JARs under
the Libraries node (in NetBeans/Eclipse) and compile and run the application using the NetBeans/Eclipse interface
tools (as discussed in the section in Chapter 1) for getting the Hibernate OGM and MongoDB JARs locally).

If you're not a fan of IDEs either, you can edit the source code in your favorite editor, even Notepad, and compile
the applications manually using Ant from the command line. For example, the Ant script (build.xml) in Listing 4-36
can be used to compile an application deployed under Tomcat. Just install Ant (http://ant.apache.org/) and put it
in your classpath. Place the Ant script in the application root folder, open a command prompt, navigate to that folder
and type build. This will compile the application and build the application WAR:

Listing 4-36. build.xml

<project name="hibernate" default="war">

<property name="sourcedir" value="${basedir}/WEB-INF/src"/>
<property name="targetdir" value="${basedir}/WEB-INF/classes"/>
<property name="librarydir" value="${basedir}/WEB-INF/1ib"/>
<property name="builddir" value="${basedir}/build"/>

<path id="libraries">
<fileset dir="¢{librarydir}">
<include name="*.jar"/>
</fileset>
</path>

<target name="clean">
<delete dir="${targetdir}"/>
<mkdir dir="${targetdir}"/>
<delete dir="${builddir}"/>
<mkdir dir="${builddir}"/>
</target>

<target name="compile" depends="clean, copy-resources">
<javac srcdir="${sourcedir}"”
destdir="¢{targetdir}"
classpathref="libraries"/>
</target>

<target name="copy-resources">
<copy todir="¢{targetdir}">
<fileset dir="${sourcedir}">
<exclude name="**/* java"/>
</fileset>
</copy>
</target>

117

http://ant.apache.org/
http:///

CHAPTER 4 * HIBERNATE OGM AT WORK

<target name="war" depends="compile">
<jar jarfile="${builddir}/{app_name} .war" basedir="${basedir}"/>
</target>

</project>

Obviously, you have to deal with application server and browser start/stop maneuvers.

Synthesis

Developing and testing these applications gave birth to this section. After analyzing these applications, we can come
to some general conclusions regarding Hibernate OGM and MongoDB when integrated in different application
environments. Clearly, Hibernate OGM is capable of running in many different environments and architectures and
can be used with a number of frameworks and tools.

Moreover, depending on the environment (especially EE and JTA standalone) and the bootstrapping (via
Hibernate Native API or JPA), we can extract a bunch of mandatory and/or recommended settings that Hibernate
OGM needs for correctly serving Java applications.

Hibernate OGM via JPA in an EE Container

When you use Hibernate OGM via JPA in an EE container, you'll want to include the following settings in the
persistence.xml file:

e Setthe transaction type to JTA using the transaction-type JTA attribute of the
persistence-unit tag.

e Setthe JTA platform to the correct EE container using the hibernate.transaction. jta.
platform property.

e Specify a JTA data source. This should be tested and can be skipped in some cases. For
GlassFish you can use the built-in data source jdbc/sample (this is the associated JNDI
name) and for JBoss AS you can use java:/DefaultDS (prior to version 7) or java: jboss/
datasources/ExampleDS (version 7 and above). The data source is specified using the
jta-data-source tag.

Hibernate OGM via Hibernate Native API in an EE Container

When you use Hibernate OGM via Hibernate Native API in an EE container, you should include the following settings
in the hibernate.cfg.xml file (or a programmatic version of it):

e Setthe property hibernate.transaction.factory classtoorg.hibernate.transaction.
JTATransactionFactory, if you manually demarcate transaction boundaries, or to org.
hibernate.transaction.CMTTransactionFactory, if you use declarative transaction demarcation.

e Setthe property hibernate.current_session_context class to jpa to indicate the strategy
for scoping the “current” Session instances.

e Set the JTA platform to the correct EE container using the hibernate.transaction. jta.
platform property

118

http:///

CHAPTER 4 © HIBERNATE OGM AT WORK

Hibernate OGM via JPA in Standalone JTA

When you use Hibernate OGM via JPA in an non-EE container (standalone JTA, like Tomcat), you should include the
following settings in persistence.xml file:

e Set the transaction type to JTA using the transaction-type JTA attribute of the persistence-
unit tag.

e Set the JTA platform (this is the standalone JTA—JOTM, JBoss JTA, Bitronix, and so forth—not
a container built-in to JTA) using the hibernate.transaction.jta.platform property.

e Check the documentation specific to the selected standalone JTA because it may require some
specific properties to be set.

Hibernate OGM via Hibernate Native API in Standalone JTA

When you use Hibernate OGM via Hibernate Native API in a non-EE container (a standalone JTA, like Tomcat),
you should include the following settings in the hibernate.cfg.xml file (or a programmatic version of it):

e Setthe property hibernate.transaction.factory classtoorg.hibernate.transaction.
JTATransactionFactory, if you manually demarcate transaction boundaries, or to org.
hibernate.transaction.CMTTransactionFactory, if you use declarative transaction demarcation.

e Setthe property hibernate.current_session_context_class to jpa to indicate the strategy
for scoping the current Session instances.

e Set the JTA platform (this is the standalone JTA—JOTM, JBoss JTA, Bitronix, and so forth—not
a container built-in to JTA) using the hibernate.transaction.jta.platform property.

e Check the documentation specific to the selected standalone JTA because it may require some
specific properties to be set.

Hibernate OGM via JPA in Non-JTA

When you use Hibernate OGM via JPA in a non-JTA environment (like Tomcat), you should include the following
settings in persistence.xml file:

e Setthe transaction type to RESOURCE_LOCAL using the transaction-type JTA attribute of
persistence-unit tag.

¢ Don’t specify any JTA platform, but provide the JBoss JTA JARs to the application.

e Manage both the EntityManager and its JTA-transaction by yourself.

Hibernate OGM via Hibernate Native API in Non-JTA

When you use Hibernate OGM via Hibernate Native API in a non-JTA environment (like Tomcat), you should include
the following settings in the hibernate.cfg.xml file (or a programmatic version of it):

e Setthe property hibernate.transaction.factory class to org.hibernate.transaction.
JDBCTransactionFactory.

e Setthe property hibernate.current_session_context_class to thread.
e Use Hibernate’s Transaction and the built-in session-per-request functionality instead of calling

the JDBC APL

119

http:///

CHAPTER 4 * HIBERNATE OGM AT WORK

Note Values accepted by the hibernate.transaction.jta.platform property (indicating the JTA platform) are
available in Chapter 2 in the section “Bootstrap Hibernate 0GM Using JPA”.

Summary

In this chapter, you saw how to integrate Hibernate OGM with different kinds of applications by varying the container
environment, bootstrapping procedure, and involved frameworks and tools. The list of applications presented in this
chapter includes:

e Java SE and Mongo DB—the HelloWorld Example

e Hibernate OGM (via Hibernate Native API) in a non-JTA environment (JDBC Transactions,
Tomcat 7)

e Hibernate OGM (via Hibernate Native API) in a standalone JTA environment (JBoss JTA,
Tomcat 7)

e Hibernate OGM (via Hibernate Native API) in a built-in JTA environment (no EJB, GlassFish 3)
e Hibernate OGM (via Hibernate Native API) in a built-in JTA environment (EJB/BMT, GlassFish 3)
e Hibernate OGM (via Hibernate Native API) in a built-in JTA environment (EJB/CMT, GlassFish 3)
e Hibernate OGM (via JPA) in a built-in JTA environment (GlassFish AS 3)

e Hibernate OGM (via JPA) in a built-in JTA environment (JBoss AS 7)

e Hibernate OGM (via JPA) in a built-in JTA environment (JBoss AS 7 and Seam application)

e Hibernate OGM (via JPA) in a built-in JTA environment (GlassFish and Spring application)

e Hibernate OGM (via JPA) JPA/JTA in a standalone JTA environment (Tomcat)

e Hibernate OGM in a non- JTA environment (RESOURCE_LOCAL, Apache Tomcat 7)

120

http:///

CHAPTER 5

Hibernate OGM and JPA 2.0
Annotations

Mapping Java entities in Hibernate OGM can be divided into supported and non-supported annotations. Practically,
Hibernate OGM supports the mandatory annotations like @Entity and @Id, as well as all the commonly used
annotations like @Table and @Column. However, in the 4.0.0.Beta2 release, it doesn’t support some “pretentious”
annotations, like @Inheritance and @iscriminatorColumn. Unsupported annotations may cause errors or work
inappropriately, or may be entirely ignored.

Hibernate OGM translates each entity in accordance with the official specification, but adapted to MongoDB
capabilities. This means that some annotations will work exactly as expected, while others will have some limitations,
and a few may not work at all. Since Hibernate OGM has the responsibility for creating a symbiosis between JPA
annotations and MongoDB storage, it’s no surprise that it will take more time and releases to make this symbiosis
work smoothly in practice.

I'll start off with a brief discussion of Java supported types in OGM, then move on to the eager/lazy loading
mechanism and cascading facility. Then we’ll follow a simple scenario to explore the annotations: a brief overview, a
look at OGM support, some case studies, and, finally the results of that annotation in MongoDB after passing through
Hibernate OGM. In previous chapters, especially in Chapter 4, you saw some Java entities and some of the supported
annotations. In this chapter, we'll take a closer look at those and at more annotations, such as @1d, @Column, @Table,
@Embedded, @Enumerated, @Temporal. Finally, we’ll delve into association annotations.

Java Supported Types

Java entities go hand in hand with Java types since they encapsulate all kinds of data: numbers, strings, URLs, objects,
custom types, and so on. Practically, each persistable field of an entity is characterized by a Java type and must be
represented in a MongoDB document field. One of the main concerns of Hibernate OGM, therefore, was (and is) to
provide as much support as possible for Java types.

According to the official documentation, Hibernate OGM 4.0.0.Beta.2 supports the following Java types (though
this list may change in future releases):

e Boolean

e Byte

e Calendar (may change)
e (Class (may change)

e Date (may change)

e Double

121

http:///

CHAPTER 5 ' HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

e Integer

e Long

e Byte Array
e String

These types are supported natively. Other supported types, such as BigDecimal, BigInteger, URL, and UUID, are
stored in MongoDB as strings.

Eager and Lazy Loading Considerations

As you probably know, JPA can load data from a database eagerly (fetch immediately) or lazily (fetch when needed).
These notions usually come into play when two (or more) entities are involved in an association. For example, if one
entity is the parent and the other is the child (meaning that the parent entity defines a collection of child entities), the
possibilities are:

e eager loading—a child is fetched when its parent is fetched.
e lazyloading—a child is fetched only when you try to access it.

Eager loading is natively supported in all JPA implementations, while lazy loading is implementented in different
ways or not supported. Hibernate (including Hibernate OGM) supports lazy loading using proxy objects instead of
instances of the entity classes.

Hibernate uses proxies as a solution for “breaking up” the interconnected data received from a database into
smaller pieces that can be easily stored in memory. It may be useful to be aware that Hibernate dynamically generates
proxies for objects that are lazily loaded. Chances are, you aren’t aware of proxy objects, and won’t be until you get
some exceptions of type LazyInitializationException, or until you try to test lazy loading in a debugger and notice
the presence of some not-null objects with null properties. Not knowing when you're “working” on a proxy object
instead of an entity object can cause weird results or exceptions. We'll discuss this more later on in the chapter.

Cascadable Operations Considerations

Since version 1.0, JPA supports cascadable operations. Put simply, if you apply some operations to an entity and
those operations can be propagated to an associated entity, those operations are cascadable. JPA has five cascadable
operations: persist, merge, remove, refresh, and detach (the last was added in JPA 2.0).

Programmatically, you can indicate which operations should be persisted using the Java enum CascadeType
(http://docs.oracle.com/javaee/6/api/javax/persistence/CascadeType.html). For example, you can indicate
that the persist and merge operations should be persisted in one-to-many associations:

@0neToMany(cascade = {CascadeType.PERSIST,CascadeType.MERGE},
mappedBy = "...")
public Set<...> get...() {
return this...;
}

122

http://docs.oracle.com/javaee/6/api/javax/persistence/CascadeType.html
http:///

CHAPTER 5 * HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

When all five operations should be propagated, use CascadeType.ALL:

@0neToMany(cascade = {CascadeType.ALL},
mappedBy = "...")
public Set<...> get...() {
return this...;
}

Hibernate OGM supports all cascadable operations and everything works as expected. In this chapter, you'll see
several examples and you may be inspired to explore cascading techniques on those examples yourself.

Entity Mapping

Let’s take look now at entity mapping in Hibernate OGM. More specifically, let’s see how Hibernate OGM maps

JPA 2.0 annotations, including annotations for persistable classes and for fields and relationships. I won’t follow a strict
JPA 2.0 classification of annotations, but rather an approach that allows me to introduce annotations one by one,

so I can test the entity at each step based only on the annotations we've already seen.

Note For testing purposes | used a MongoDB database named mapping entities_db. Before performing each test,
you should drop all the existing collections from this database (you can use the db.dropDatabase command). Otherwise,
you may get various errors, depending on the test.

Let’s begin!

@Entity Annotation

Mapped by the javax.persistence.Entity annotation.
Official documentation: http://docs.oracle.com/javaee/6/api/javax/persistence/Entity.html.

Brief Overview

@Entity marks a class as an entity. By default, the entity name is the same as the annotated unqualified class name,
but it can be replaced using the name element (for example, @Entity (name="MyEntityName")).

OGM Support

Hibernate OGM, like any other entity consumer, uses this annotation simply as a flag to recognize an entity class, so it
has no direct effect on the persistence layer, MongoDB in our case.

123

http://docs.oracle.com/javaee/6/api/javax/persistence/Entity.html
http:///

CHAPTER 5 ' HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

Example

import javax.persistence.Entity;

@Entity
public class PlayerEntity implements Serializable {

In this case, the entity name is PlayerEntity.

@Id Annotation

Mapped by the javax.persistence.Id annotation.
Official documentation: http://docs.oracle.com/javaee/6/api/javax/persistence/Id.html.

Brief Overview

The @Id annotation is applied to an entity field (or property) to mark it as the primary key of that entity. Primary
key values are set explicitly, or automatically using generators (dedicated algorithms) that guarantee uniqueness,
consistency, and scalability. Usually, primary key types are represented as numbers or strings, but they can also
be dates.

MongoDB is aware of primary keys and has a reserved field for them, id (as you know from Chapter 2). If _id
value is not specified, MongoDB automatically fills it with "MongoDB Id Object". But you can put any unique info into
this field (a number, a timestamp, a string, and so forth).

0GM Support

Hibernate OGM supports the @Id annotation and a consistent set of generators, including the four standard JPA
generators. Some of the Hibernate generators are available as well, through a generic generator; they will be listed
later. For maximum scalability, Hibernate OGM recommends generators based on UUID (either uuid or uuid2). You'll
also see some of the supported id generators and their effects in MongoDB, but, obviously, it’s impossible to cover

all kinds of generators. Remember to test your own generators (custom generators, for example). That I omitted a
generator here doesn’t mean it is, or is not, supported.

Example of a Simple @Id

By “simple @Id” I mean a primary key that doesn’t have an explicit generator. In this case, you have to manually
set a unique id value for each entity instance you need to persist, otherwise an error of type “org.hibernate.
HibernateException: trying to insert an already existing entity” will result from the persisting operation.

As long as you set the primary keys correctly, everything works perfectly and the data can be found in MongoDB.
For example, the following Players entity uses a simple @Id of type int:

import javax.persistence.Id;

@Entity
public class Players implements Serializable {

124

http://docs.oracle.com/javaee/6/api/javax/persistence/Id.html
http:///

CHAPTER 5 * HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

@Id

private int id;
private String name;
private String surname;
private int age;

//constructors, getters and setters

Next, I create three Players and use the setId method to manually specify ids 1, 2 and 3. Persist these Players
into a MongoDB collection and you’ll obtain three documents, as shown in Figure 5-1.

ll_idll 1 llagell
Il_idll 2 Ilagell
ll_idll lla!:l.ﬂll

"31. "name"
25, "name"
26, "name"

"Federer'",. "surname" - "Roger’ >
"Murray", “surname" @ "Andy" >
"Madal",. "surname' : "Rafael" >

Figure 5-1. Persisting three Players instances into a MongoDB collection

Example of @Id and the AUTO Strategy

JPA comes with four strategies that can be applied to primary key generation: AUTO, IDENTITY, SEQUENCE and TABLE.
AUTO lets the persistence provider choose the right strategy with respect to the database (table, sequence, or identity).
Normally, this is the primary key generation strategy that’s the default for the database. Thus, if you used AUTO,
Hibernate OGM should pick the appropriate strategy based on the underlying database—MongoDB (which, in
this case would be sequence). This strategy has the advantage of making the code very portable, though database
migration can become an issue.

You can set the AUTO strategy using the @GeneratedValue annotation, like this:

import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;

@Entity
public class Players implements Serializable {

@Id
@GeneratedValue(strategy=GenerationType.AUTO)
private int id;

private String name;

private String surname;

private int age;

//constructors, getters and setters

I'll now persist a few instances of this entity using Hibernate OGM, with the result in MongoDB shown
in Figure 5-2.

125

http:///

CHAPTER 5 ' HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

Y_did'™ = |1, "age' : 27, "name" : "Tzonga'. “surname’ @ “"Jo—-Wilfried"'
" id'" = |2, "age' : 27, "name" = “Berduych'. “surname' : "Tomas"

Y id"™ = |3, "age' : 25, "name" & “Djokovic. "surname" @ “Novak' ¥

Y id"™ = |4, "age' : 26, "name" = "Madal', “'surname' = “Rafael"

Y _dd" = |5, "age' : 31, "name" : "Federer'. “surname' : "Roger"

Figure 5-2. Persisting several Players instances into a MongoDB collection

Notice that when a document is persisted, Hibernate OGM tells the database to insert a sequentially generated
number using a behind-the-scene collection, named hibernate_sequences. After inserting five documents (records),
the content of hibernate_sequences is similar to what you see in Figure 5-3. As you can see, it stores the id value for
the next insert.

> db.hibernate_sequences.find{>;
"_id" : "Plavers'. "sequence_value" = 6 ¥

Figure 5-3. The hibernate_sequences collection content

Example of @Id and IDENTITY strategy

The IDENTITY strategy requires the persistence provider to assign primary keys (of type short (Short), int
(Integer) or long (Long)) for the entity using a database identity column. In relational databases (MySQL, Microsoft
SQL Server, IBM DB2, HypersonicSQL, and Sybase), tables usually contain an auto-increment column that tells the
database to insert a sequentially generated number when a record is inserted. Attaching the IDENTITY strategy to the
auto-increment column enables the entity to automatically generate a sequential number as the primary key when
inserted into the database. In the MongoDB world, you're essentially leveraging the generated _id from MongoDB as
the primary key for the persisted object.

Hibernate OGM supports this strategy, but since it acts exactly like the AUTO strategy, OGM doesn’t use the
generated _id from MongoDB as the primary key for the persisted object. In any case, it’s a well-known fact that this
strategy has some problems, especially with regard to portability and performance.

Setting the IDENTITY strategy can be accomplished using the @GeneratedValue annotation, like this:

import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;

@Entity
public class Players implements Serializable {

eId
@GeneratedValue(strategy=GenerationType.IDENTITY)
private Long id;

private String name;

private String surname;

private int age;

//constructors, getters and setters

126

http:///

CHAPTER 5 * HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

If you persist several instances of the Players entity using Hibernate OGM, MongoDB will reveal the Players
collection, as shown in Figure 5-4.

g db.Plavers . find{> . prettydl; > ﬂhzgihernﬁie_seqﬁenﬁes.Pind().p{etﬁy(); N
v 44" : NumberLong¢i>, _i ayers',. "sequence_value
“age' = 27.
"name' : “Berdych'.
X "surname' : "Tomas"
<
"_id" : NHumberLong<(2>,
“age' : 27.
"name' : "Tsonga',
X “"surname' @ "Jo—Wilfried'

Figure 5-4. Persisting several Players instances into a MongoDB collection using the IDENTITY strategy

Actually, I expected to see something more like this (and no hibernate_sequences collection):

{ "_id" : ObjectId("4eaafff900694710bfb8fasb"),
"id" : NumberLong(1),

or, even better:

{ "_id" : ObjectId("4eaafff900694710bfb8fasb"),

}

Note More details about Objectld and how it’s generated are available in the MongoDB official documentation at:
http://docs.mongodb.org/manual/reference/object-id/

Example of @Id and the SEQUENCE strategy

The SEQUENCE strategy (called seghilo in Hibernate) requires the persistence provider to assign primary keys (of
type short, int, or long) for the entity using a database sequence. Instead of generating a primary key value during
commit, this strategy generates groups of primary keys before commit, which is useful when the primary key value
is needed earlier. (It's possible that some of the IDs in a given allocation will not be used, which can cause gaps in
sequence values.)

Hibernate OGM supports this strategy by keeping the sequence information in a collection named hibernate_
sequences. To show how this strategy works, I've configured a sequence generator with an initial value of 5 and a size
allocation (the number of primary keys in a group) of 2, using the @SequenceGenerator annotation, like this:

@SequenceGenerator (name="mongodb_sequence", initialValue=5, allocationSize=2)

127

http://docs.mongodb.org/manual/reference/object-id/
http:///

CHAPTER 5 ' HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

Next, I defined an int primary key and indicated the SEQUENCE strategy:

import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Ild;

import javax.persistence.SequenceGenerator;

@Entity
@SequenceGenerator(name="mongodb_sequence", initialValue=5, allocationSize=2)
public class Players implements Serializable {

@Id

@GeneratedValue(strategy=GenerationType.SEQUENCE, generator="mongodb_sequence")
private int id;

private String name;

private String surname;

private int age;

//constructors, getters and setters

After persisting the first object, the hibernate_sequences and Players collections look like what’s shown
in Figure 5-5.

» db.hibernate_sequences.find(>;
" _id" : "Players",. "seguence_wvalue" = [#] >
> db.Plavers.find();
" _jid"™ =[5, age" : 28, "name” : "Tipsarevic”, "surname' : “Janko" 2

Figure 5-5. Persisting one Players instance into a MongoDB collection using the SEQUENCE strategy

Notice that the id of the first object (document) is the initial value of the generated sequence, while the generated
sequence allocation size is calculated as the (allocation size * 2) + initial value, which is (2*2) + 5 =9 (sequence_value field).
I then persisted three more objects and the result is shown in Figure 5-6.

» dh.hibernate_sequences . find{>;
"_id" : "Players'., "sequence_wvalue' = >
> dh.Plavers . find()

Y_id" : 5, age' - 28, “name" : "Tipszarevic', "surname" : "Janko'
Y _id" : 6, “age' = 2Y. "name" = "“Berdych'. “surname" : "Tomas"
_id" = “"age'" : 25, "name" : "Murrav'. “surname' - “Andy' >

Figure 5-6. Persisting three more Players instances into a MongoDB collection using the SEQUENCE strategy

So, when I persisted an object with id equal to 7, the sequence automatically increased with the allocation size
value—2. Here the process is redundant.
Note that you can add the optional catalog element to the sequence generator:

@SequenceGenerator (name="mongodb_sequence", catalog="MONGO",
initialValue=5, allocationSize=2)

128

http:///

CHAPTER 5 * HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

Now, the hibernate_sequences collection name becomes MONGO.hibernate_sequences.
Moreover, if you add a schema element, like this:

@SequenceGenerator (name="mongodb_sequence", catalog="MONGO",
schema="MONGOSEQ", initialValue=5, allocationSize=2)

Then, the hibernate_sequences collection name becomes MONGO.MONGOSEQ. hibernate_sequences.
Everything seems to work as expected!

Example of @Id and TABLE Strategy

The TABLE strategy (called MultipleHilLoPerTableGenerator in Hibernate) requires the persistence provider to assign
primary keys (of type short, int or long) for the entity using an underlying database table. This strategy is very widely
used thanks to excellent performance, portability, and clustering. JPA providers are free to decide which approach to
use to accomplish this task. The generator can be configured using the standard @TableGenerator annotation.
Hibernate OGM supports this strategy by creating a collection named hibernate_sequences; for MongoDB, the
underlying table is a collection. To show how this strategy works, I've configured a table generator with an initial value
of 5 and a size allocation (the number of primary keys in a group) of 2 using the @TableGenerator annotation, like this:

@TableGenerator(name="mongodb table", initialValue=5, allocationSize=2)
Next, I define an int primary key and indicate the TABLE strategy, as shown in Listing 5-1.

Listing 5-1. Using the TABLE Strategy

import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;

import javax.persistence.TableGenerator;

@Entity
@TableGenerator (name="mongodb_table", initialValue=5, allocationSize=2)
public class Players implements Serializable {

@Id

@GeneratedValue(strategy=GenerationType.TABLE, generator="mongodb_table")
private int id;

private String name;

private String surname;

private int age;

//constructors, getters and setters

After persisting the first object, the hibernate_sequences and Players collections have the content shown
in Figure 5-7.

129

http:///

CHAPTER 5 ' HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

» dhbh_hibernate_sequences.find{);
" id" @ "Plavers". "seguence_walue" = 6 >
> db.Plavyers.find{>;
" id" =[G, "age" : 24, "name" : "Del Potro", "surname' : "Juan Martin" 3>

Figure 5-7. Persisting one Players instance to a MongoDB collection using the TABLE strategy

Notice that the id of the first object (document) is the initial value + 1, while the sequence allocation size is
calculated as the (allocation size * 2) + initial value + 1, which is (2*2) + 5 + 1= 10 (sequence_value field).
Next, I persisted three more objects and got the results shown in Figure 5-8:

» db.hibernate_sequences.find<);
"_id" : "Players', "sequence_walue' : >
> db.Plavers.find<C>;
Y_id" = 6, "age" & 24, "name" : "Del Potro". "surname" I "Juan Martin' >
Y id" = 7. Yage' @ 27, "name' : "Berdych'. "surname" : "Tomas' ¥
Yoid™ = "age'" : 24, "name" : "Del Potro'. surname” : "Juan Martin' >

Figure 5-8. Persisting three more Players instances to a MongoDB collection using the TABLE strategy

So, when I persisted the object with id equal to 8, the sequence was automatically increased by 1 + the allocation
size value, by 3. For this, the process is redundant.

Notice that you can change the name of the hibernate_sequences by adding the table element in a table
generator:

@TableGenerator(name="mongodb table", table="pk_table", initialValue=5, allocationSize=2)

Example of @Id and GenericGenerator—UUID and UUID2

UUID and UUID2 are two of the many generators Hibernate provides in addition to the four standard JPA generators.
UUID generates a 128-bit UUID based on a custom algorithm, while UUID2 generates an IETF RFC 4122-compliant
(variant 2) 128-bit UUID. For MongoDB, these kinds of primary keys are represented as strings.

Hibernate OGM supports both generators, but in some environments, UUID generates some warnings. In
GlassFish, for example, using the UUID generator throws this warning: “WARN: HHH000409: Using org.hibernate.
id. UUIDHexGenerator which does not generate IETF RFC 4122 compliant UUID values; consider using org.hibernate.
id. UUIDGenerator instead”. In simple translation, “use UUID2" So it’s better to use UUID2, as shown in Listing 5-2.

Listing 5-2. Using UUID2

import javax.persistence.GeneratedValue;
import javax.persistence.Ild;
import org.hibernate.annotations.GenericGenerator;

@Entity
@GenericGenerator(name="mongodb_uuidgg"”, strategy="uuid2")
public class Players implements Serializable {

@Id
@GeneratedValue(generator="mongodb_uuidgg")
private String id;

private String name;

130

http:///

CHAPTER 5 * HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

private String surname;
private int age;

//constructors, getters and setters

If I now persist several instances of the Players entity using Hibernate OGM, MongoDB will reveal the Players
collection shown in Figure 5-9.

» db.Plavers.find() . prettyld;
£
v id" : ["991F1149-3h98-4627—adhd—728f abBlee?1"]
"age" - B
"name" : "Ferrer',
"surname' : “"David"’
H
€
v _jid" : ["ZadBZafc—12bd—43d0—9dZ24-6Fd53A5F213a".
"age" - .
"name" : "Tipsarevic”.
"surname" - “"Janko"
>
£
_id" = C c—Hcab— - — e'fa
"age" = 2?’
"name" : "Berdych'.
"surname" - “"Tomas"
H

Figure 5-9. Persisting several Players instances into a MongoDB collection using the UUID2 strategy

Example of @Id and Custom Generator

Sometimes, all the primary key generators in the world are just not enough to meet the needs of the application.
In such cases, a custom generator becomes mandatory, but before writing one, you need to know if your persistence
environment will support it. In this case, Hibernate OGM and MongoDB worked perfectly with my custom generator,
asyou'll see.

Creating a new Hibernate custom generator is a very simple task if you follow these steps:

e create a new class that implements the org.hibernate.id.IdentifierGenerator interface

e override the IdentifierGenerator.generate method; provide the generator business logic
and return the new primary key as a Serializable object

Based on these two steps, I wrote a custom generator that creates primary keys of type: XXXX_long-number (for
example, SFGZ_3495832849584739405). Listing 5-3 shows the custom generator.
Listing 5-3. A Custom Primary Key Generator
package hogm.mongodb.generator;
import java.io.Serializable;
import java.util.Random;
import org.hibernate.HibernateException;

import org.hibernate.engine.spi.SessionImplementor;
import org.hibernate.id.IdentifierGenerator;

131

http:///

CHAPTER 5 ' HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

public class CustomGenerator implements IdentifierGenerator {

@0verride
public Serializable generate(SessionImplementor sessionImplementor,
Object object) throws HibernateException {

Random rnd = new Random();

String str = "";

for (int 1 = 0; i <= 3; i++) {
str = str + (char) (rnd.nextInt(26) + 'a');
}

str = str +
str = str + String.valueOf(rnd.nextLong());
str=str.toUpperCase();

non,
1

return str;

Testing the custom generator is pretty straightforward. First, I use the @GenericGenerator annotation and
indicate the custom generator’s fully qualified class name as the generator strategy:

@GenericGenerator(name="mongodb_custom_generator",
strategy="hogm.mongodb.generator.CustomGenerator")

Next, I define a String primary key field and use the @GeneratedValue annotation shown in Listing 5-4.

Listing 5-4. Using the GeneratedValue Annotation

import javax.persistence.GeneratedValue;
import javax.persistence.Id;
import org.hibernate.annotations.GenericGenerator;

@Entity
@GenericGenerator (name="mongodb_custom_generator",
strategy="hogm.mongodb.generator.CustomGenerator")

public class Players implements Serializable {

@Id
@GeneratedValue(generator="mongodb_custom_generator")
private String id;

private String name;

private String surname;

private int age;

//constructors, getters and setters

132

http:///

CHAPTER 5 * HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

Again, I persist several instances of the Players entity using Hibernate OGM, and MongoDB reveals the Players
collection in Figure 5-10.

2 db.Plavers.findC}.prettyi);
Y_id™ : YBDMU_2228843745796377247",
“age' : 31,
"name' : "Federer',
“"surname'" = “Rogepr"
o
£
" _did™ : "PRNN_-4316774883129546112",
“age' : 28.
"name'" = "Tipsarevic',
X "surname' @ "Janko"
€
Y_id"™ = "IZRK_-8285773235493384459",
Ilagell : -
"name'" = ""Murray',
“"surname' @ "Andy'
ks

Figure 5-10. Persisting several Players instances into a MongoDB collection using a custom generator

The complete application that demonstrates @1d annotation is available in the Apress repository and is named
HOGM_MONGODB_1Id. It comes as a NetBeans project and was tested under GlassFish 3 AS.

@Embeddedld Annotation

Mapped by the javax.persistence.EmbeddedId annotation.
Official documentation: http://docs.oracle.com/javaee/6/api/javax/persistence/EmbeddedId.html.

Brief Overview

The @EmbeddedId annotation denotes a composite primary key that’s an embeddable class. You are forced to write
a new serializable class that must: be annotated with the @Embeddable annotation (no need of @Entity or other
annotations for this class); define primary key fields; and define getters and setters for the primary key fields.
@Embeddable allows you to specify a class whose instances are stored as an intrinsic part of the owning entity.
The entity itself must define a primary key field of the type of the class annotated with @Embeddable. This field should
be annotated with @EmbeddedId.

If you prefer this kind of composite key, there’s no need to specify the @1d annotation anymore. For MongoDB, a
composite key should be stored in the _id field as an embedded document.

0GM Support

Hibernate OGM supports composite keys defined with the @mbeddedId annotation. It transforms the Java composite
key into an embedded document in the id field of MongoDB and the primary key fields become the embedded
document fields.

133

http://docs.oracle.com/javaee/6/api/javax/persistence/EmbeddedId.html
http:///

CHAPTER 5 ' HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

Example

Creating this kind of composite key comprises two main steps: first, you write the serializable primary key class and
annotate it with @Embeddable, and, second, you choose the appropriate entity property or persistence field that will
become the composite primary key and annotate it with @EmbeddedId. For example, suppose you have a primary
key class:

import javax.persistence.Embeddable;
@Embeddable
public class RankingAndPrizeE implements Serializable {

private int ranking;
private String prize;

//constructors, getters and setters

Then, in the Players entity, you create a composite primary key field:
import javax.persistence.EmbeddedId;
@Entity
public class Players implements Serializable {
@EmbeddedId
private RankingAndPrizeE id;
private String name;
private String surname;

private int age;

//constructors, getters and setters

Now persist several instances of the Players entity using Hibernate OGM, and MongoDB will reveal the Players
collection shown in Figure 5-11.

134

http:///

CHAPTER 5 * HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

> db.Players . find{().prettyld;
i
ll_idll = {
“prize' @ 513,139,293,
N "panking" - 6
“age' = 2Y.
"name" : “Berdych",.
5 "surname"' = “Tomas"
i
ll_idll = {
“"prize'" @ 545,686,497,
"panking" - 1
3.
"age' = 25,
"name" = “"Djokovic'.
5 "surname"' = “"Movak"
i
ll_idll = {
“prize' : "$58.861.827".
N "panking" - 4
“"age'" @ 26.
"name'" = “"Madal.
5 "surname' - “Rafael"

Figure 5-11. Defining a composite key using @EmbeddedId

The complete application that demonstrates the @EmbeddedId annotation is available in the Apress repository
and is named HOGM_MONGODB_1Id. It comes as a NetBeans project and was tested under GlassFish 3 AS.

@IdClass Annotation

Mapped by the javax.persistence.IdClass annotation.
Official documentation: http://docs.oracle.com/javaee/6/api/javax/persistence/IdClass.html.

Brief Overview

The @IdClass annotation denotes a composite primary key that is mapped to multiple fields or properties of the
entity. This approach forces you to write a new serializable class that defines the primary key fields and overrides
the equals and hashCode methods. The primary key fields defined in the primary key class must also appear in the
entity class in exactly the same way, except that they must have getter and setter methods. Moreover, the entity class is
annotated with @IdClass.

If you prefer this kind of composite key, you'll have multiple @1d annotations in the entity—one per primary key
field. For MongoDB, a composite key should be stored in the _id field as an embedded document.

OGM Support

Hibernate OGM supports composite keys defined with the @IdClass annotation. It transforms the Java composite
key into an embedded document in the MongoDB _id field and the primary key fields become the embedded
document fields.

135

http://docs.oracle.com/javaee/6/api/javax/persistence/IdClass.html
http:///

CHAPTER 5 ' HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

Example

Creating this kind of composite key comprises two main steps: first, you write the serializable primary key class and,
second, you annotate the entity class with @1 dClass and define the primary keys fields as in the primary keys class.
The first step is shown in Listing 5-5.

Listing 5-5. The Serializable Primary Key Class

package hogm.mongodb.entity;
import java.io.Serializable;
public class RankingAndPrizeC implements Serializable {

private int ranking;
private String prize;

public RankingAndPrizeC() {
}

@0verride
public boolean equals(Object argo) {

//implement equals here
return false;

}

@0verride
public int hashCode() {

//implement hashCode here
return 0;

And the second step is shown in Listing 5-6.

Listing 5-6. Define the Primary Keys Fields

import javax.persistence.Ild;
import javax.persistence.IdClass;

@Entity
@IdClass(hogm.mongodb.entity.RankingAndPrizeC.class)
public class Players implements Serializable {

@Id

private int ranking;

@Id

private String prize;
private String name;

136

http:///

CHAPTER 5 * HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

private String surname;
private int age;

//constructors, getters and setters

Now persist several instances of the Players entity using Hibernate OGM. MongoDB will reveal the the Players
collection shown in Figure 5-12.

> db.Plavers.Find(> . prettyd;
£

Il_idll = {
“"prize" : "$5@.861.827",
"ranking' = 4

}!

"age" = 26,

"name" : "Madal".
"surname' : "Rafael"

>

» db.Plavers . find<{> . prettyll;
£

ll_idll = {

“"prize" : "$5@.861.827",
"ranking' = 4

>.

"age" = 26,

"name" : "Madal".
"surname' : "Rafael"

>

Figure 5-12. Define a composite key using @IdClass

The complete application that demonstrates the @IdClass annotation is available in the Apress repository and is
named HOGM_MONGODB_Id. It comes as a NetBeans project and was tested under GlassFish 3 AS.

@Table Annotation

Mapped by the javax.persistence.Table annotation.
Official documentation: http://docs.oracle.com/javaee/6/api/javax/persistence/Table.html.

Brief Overview

In a relational database, each entity is represented as a table (known as a primary table) whose name is, by default,
the same as the entity (an unqualified entity class name). If you want to set another name for a table, you can use the
@Table annotation and the name element. You can also specify a catalog and a schema by adding the catalog and
schema elements.

MongoDB associates the notion of table with collection. The default collection name is the same as the
mapped entity.

0GM Support

Hibernate OGM supports @Table annotation. It will supply the name element value as the name of the corresponding
collection. Moreover, if you specify the catalog element as well, Hibernate OGM will add the catalog value as a
prefix to the schema name (or collection name, if the schema is missing) and will separate it from the schema name

137

http://docs.oracle.com/javaee/6/api/javax/persistence/Table.html
http:///

CHAPTER 5 ' HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

(or collection name) with a dot. And if you specify the schema element, Hibernate OGM will add the schema value
between the catalog name (if that exists) and the collection name separated by dots. As you can see, when catalog,
schema, and collection names are present, Hibernate OGM concatenates a final name based on the relational model
hierarchy: catalogs contain schemas, and schemas contain tables.

Example

Testing @Table annotation is a straightforward task, since all you need to do is add this annotation at the class level
and see what happens. Here's the Players entity annotated with @Table:

import javax.persistence.Table;

@Entity
@Table(catalog="ATP", schema="public", name="atp_players")
public class Players implements Serializable {

@Id
@GeneratedValue(strategy=GenerationType.AUTO)
private int id;

private String name;

private String surname;

private int age;

//constructors, getters and setters

Figure 5-13 shows the effect of the @Table annotation on MongoDB:

ns

ey > shnw‘cqllectio
@Table(catalog schema="public", name="atp_players") é'ixﬁg—lﬁéw

maaldim mlams Mlaccmes smmmdaommmedes Camalirabla 0 =ystem. indexes

Figure 5-13. Mapping @Table annotation in MongoDB

The complete application that demonstrates the @Table annotation is available in the Apress repository and is
named HOGM_MONGODB_TableColumn. It comes as a NetBeans project and it was test it under GlassFish 3 AS.

@Column Annotation

Mapped by the javax.persistence.Column annotation.
Official documentation: http://docs.oracle.com/javaee/6/api/javax/persistence/Column.html.

138

http://docs.oracle.com/javaee/6/api/javax/persistence/Column.html
http:///

CHAPTER 5 * HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

Brief Overview

In a relational database, each entity’s persistent property or field is represented in the database as a column of the
corresponding table, and the field name provides the column name. You can explicitly provide a column name
(different from the field name) by annotating its field with the @olumn annotation and specifying the desired name
as the value of the name element. Moreover, the @Column elements let you set some data restrictions, such as length
(using the length element), whether the database column is nullable (the nullable element), and so on. All of the
supported elements are listed in the official documentation.

MongoDB stores each entity instance as a document. Each document is made of the document’s fields that are
characterized by name and value. Apart from the reserved _id field, the rest of the document’s field names reflect the
entity persistence property or field names (or, from the relational model perspective, the column names).

OGM Support

Hibernate OGM supports the @Column annotation. It will supply each name element value as the name of the
corresponding document’s field. Besides name, the rest of @olumn elements seem to be ignored. Moreover, adding an
@Column annotation to the primary key persistence field will be ignored and the MongoDB _id field name will be used
instead, so you can use any name you like for the primary key field in the entity.

Example

Testing @Column annotation is a straightforward task, since all you need to do is add this annotation at field (or
property) level and see what happens. Here’s the Players entity annotated with @Column:

import javax.persistence.Column;

@Entity
@Table(catalog="ATP", schema="public", name="atp players")
public class Players implements Serializable {

@Id
@GeneratedValue(strategy=GenerationType.AUTO)
private int id;

@Column(name="player_name")

private String name;
@Column(name="player_surname")

private String surname;
@Column(name="player_age")

private int age;

//constructors, getters and setters

Figure 5-14 shows the effect of @Column annotation on MongoDB.

139

http:///

CHAPTER 5 ' HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

prnvate intia, » db.ATP.public.atp_players . find<¢>.pretty{lr;

@Column(name="player_name"] < voiav s 1
private String name; 'Elager af;_ie 25,

v "|'| AYEr_name "Murray',
@Column(name="player_surname D aarmans™ * vhmdy®

private String sumame;

@COlumnfnamE_—

nrivate int ane-

Figure 5-14. Mapping @Column annotation in MongoDB

The complete application for demonstrating the @Column annotation is available in the Apress repository and is
named HOGM_MONGODB_TableColumn. It comes as a NetBeans project and was tested under GlassFish 3 AS.

@Temporal Annotation

Mapped by the javax.persistence.Temporal annotation.
Official documentation: http://docs.oracle.com/javaee/6/api/javax/persistence/Temporal.html.

Brief QOverview

@Temporal annotation indicates a persistence field or property that represents a date, time, or date-time (timestamp)
value. The supported values are of type java.util.Date and java.util.Calendar. The type used in mapping
java.util.Date or java.util.Calendar can be indicated using TemporalType as DATE (mapped as java.sql.Date),
TIME (mapped as java.sql.Time) or TIMESTAMP (mapped as java.sql.Timestamp).

MongoDB supports date/time fields in its documents. MongoDB dates follow the format defined by the BSON
official documentation (see http://bsonspec.org/#/specification) and they can be created in MongoDB shell
using Date or ISODate constructors, like this:

var mydate = new Date()

var mydate = new Date("Sun Feb 16 2013")

var mydate = new Date("Sun Feb 16 2013 08:22:05")
var mydate iso = ISODate()

var mydate iso = ISODate("2013-02-16T08:22:05")

OGM Support

Hibernate OGM supports the @Temporal annotation. Each temporal field (independent of its type) will be
converted into a MongoDB ISO date consisting of year, month, day, hour, minute, and second (year-month-
dayThour:minute:second). For example, a Java date defined using the Gregorian calendar would look like this:
private static final Calendar calendar = GregorianCalendar.getInstance();
calendar.clear();
calendar.set(1987, Calendar.MAY, 22); //22.05.1987

That date is represented in MongoDB like this:

ISODate("1987-05-22T00:00:00Z")

140

http://docs.oracle.com/javaee/6/api/javax/persistence/Temporal.html
http://bsonspec.org/#/specification
http:///

CHAPTER 5 * HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

Notice that in this example I didn’t indicate the hour, minute and second. Adding a sample time transforms the
calendar settings to this:

calendar.set(1987, Calendar.MAY, 22, 12, 40, 01); //22.05.1987 12:40:01
And the MongoDB representation becomes:
ISODate("1987-05-22T12:40:01Z")

If you don't clear the calendar settings by calling the clear method, and you don’t specify a time (hour, minute
and second), the current time will be automatically set.

Example

First I define in the entity a java.util.Date field representing each player’s birthday. Then I annotate it with
@Temporal (javax.persistence.TemporalType.DATE), asyou can see in Listing 5-7.

Listing 5-7. Defining a Field to Represent Each Player’s Birthday

import java.util.Date;
import javax.persistence.Temporal;

@Entity
@Table(catalog="ATP", schema="public", name="atp players")
public class Players implements Serializable {

@Id
@GeneratedValue(strategy=GenerationType.AUTO)
private int id;

@Column(name="player name")

private String name;

@Column(name="player surname")

private String surname;
@Column(name="player age")

private int age;
@Temporal(javax.persistence.TemporalType.DATE)
private Date birth;

//constructors, getters and setters

Second, I defined the players’ birthdays using the Gregorian calendar, like this:

private static final Calendar calendar = GregorianCalendar.getInstance();
calendar.clear();

calendar.set(1987, Calendar.MAY, 22); //22.05.1987

calendar.clear();

calendar.set(1981, Calendar.AUGUST, 8); //08.08.1981

141

http:///

CHAPTER 5 ' HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

Now I'll persist several instances of the Players entity using Hibernate OGM. MongoDB will reveal the Players
collection shown in Figure 5-15. Notice the birth document field.

E_ dbh.ATP.public.atp_plavers.find{(>.pretty(d;

Il_idll : 1’

“"hirth" - IS0Date('"1786-86—-63THA:B0:-00Z" >,
"plaver_age' : 26,

"plaver_name" - "Madal'.

"plaver_surname' : "Rafael"

*

i
"_id" - 2,
"hirth'" = IS0Date('"1982-A4-B2THA:A60:-00Z" >,
"plaver_age' : 38,
"player_name' : "Ferrer".
"plaver_surname' = "David"

H

Figure 5-15. Mapping the @ Temporal annotation in MongoDB

The complete application for demonstrating the @Temporal annotation is available in the Apress repository and is
named HOGM_MONGODB_Temporal. It comes as a NetBeans project and it was test it under GlassFish 3 AS.

@Transient Annotation

Mapped by the javax.persistence.Transient annotation.
Official documentation: http://docs.oracle.com/javaee/6/api/javax/persistence/Transient.html.

Brief Overview

First, a word of caution: If you're not familiar with @Transient annotation, be carefully not to confuse it with the

Java transient keyword. The transient keyword is used to indicate non-serializable fields, while the @Transient
annotation is specific to JPA and indicates fields that must not be persisted to the underlying database. Moreover, this
annotation doesn’t imply any support from the database; only the JPA provider should know how to deal with it.

0GM Support

Hibernate OGM supports the @Transient annotation. When an entity class is passed to OGM, it persists only the
fields that are not annotated with @Transient.

Example

Here I've annotated some of the Players entity fields with @Transient, like so:
import javax.persistence.Transient;
@Entity

@Table(catalog="ATP", schema="public", name="atp players")
public class Players implements Serializable {

142

http://docs.oracle.com/javaee/6/api/javax/persistence/Transient.html
http:///

CHAPTER 5 * HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

@Id
@GeneratedValue(strategy=GenerationType.AUTO)
private int id;

@Column(name="player name")

private String name;

@Column(name="player surname")

private String surname;
@Column(name="player age")

@Transient

private int age;

@Temporal (javax.persistence.TemporalType.DATE)
@Transient

private Date birth;

//constructors, getters and setters

If you persist several instances of the Players entity using Hibernate OGM, MongoDB will reveal the Players
collection shown in Figure 5-16. Notice that the age and birth document fields are missing, which means that OGM
does not persist them based on the @Transient state.

Y id" = 1, "player_name' : “Berdych', "player_surname' : "Tomas" >

E db.ATP.public.atp_players.find().prettyd;
"_id" : 2, "plaver_name" : "Djokovic", "plaver_surname" : “Novak" »

Figure 5-16. Mapping @Transient annotation in MongoDB

The complete application for demonstrating the @Transient annotation is available in the Apress repository and
is named HOGM_MONGODB_Transient. It comes as a NetBeans project and was tested under GlassFish 3 AS.

@Embedded and @Embeddable Annotations

Mapped by the javax.persistence.Embedded and javax.persistence.Embeddable annotations.
Official documentation: http://docs.oracle.com/javaee/6/api/javax/persistence/Embedded.html

http://docs.oracle.com/javaee/6/api/javax/persistence/Embeddable.html

Brief Overview

When a persistence field or property is annotated with @Embedded, this denotes an instance of an embeddable
class. This class is not an entity and doesn’t have an id or table; it’s just a logical part of the entity that contains the
embedded field, and it was intentionally separated and marked as embeddable using the @Embeddable annotation at
the class level. The reasons for separation vary, from the wish to have straightforward code to not wanting to persist
the embeddable part, and thus marking its fields as transient using the @Transient annotation. By default, each
non-transient property or field of the embedded object is mapped to the database table for the entity.

From the MongoDB perspective, embeddable objects are stored as nested documents within the entity’s
documents.

143

http://docs.oracle.com/javaee/6/api/javax/persistence/Embedded.html
http://docs.oracle.com/javaee/6/api/javax/persistence/Embeddable.html
http:///

CHAPTER 5 ' HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

OGM Support

Hibernate OGM supports @Embedded and @Embeddable annotations. Moreover, as you can see here, Hibernate OGM
also supports the @Transient annotation for embeddable fields (mapped by javax.persistence.Transient, with
more details at http://docs.oracle.com/javaee/6/api/javax/persistence/Transient.html). OGM knows how to
convert each instance of the embeddable class into a nested document inside the document representing each owner
entity instance. Any field of the embeddable class that is annotated as transient will not be persisted in the nested
document.

Don't try to use the @SecondaryTable annotation (javax.persistence.SecondaryTable) because OGM doesn’t
support it.

Example

First, I define an embeddable class that contains some details for each player: birthplace, residence, height, weight,
and so on. The class is very simple, but the @Embeddable annotations makes it special:

import javax.persistence.Embeddable;

@Embeddable
public class Details implements Serializable {

private String birthplace;
private String residence;
private String height;
private String weight;
private String plays;
private int turnedpro;
private String coach;
private String website;

//constructors, getters and setters

Next, in the Players entity, I create a field of type Details and annotate it as @Embedded, as Listing 5-8 shows.

Listing 5-8. Creating the Embedded Details Field

import javax.persistence.Embedded;

@Entity
@Table(catalog="ATP", schema="public", name="atp players")
public class Players implements Serializable {

private static final long serialVersionUID = 1L;

@Id
@GeneratedValue(strategy=GenerationType.AUTO)
private int id;

@Column(name="player name")

144

http://docs.oracle.com/javaee/6/api/javax/persistence/Transient.html
http:///

private String name;

@Column(name="player surname")

private String surname;
@Column(name="player age")

private int age;

@Temporal (javax.persistence.TemporalType.DATE)
private Date birth;

@Embedded

private Details details;

//constructors, getters and setters

If you now persist several instances of the Players entity using Hibernate OGM, MongoDB will reveal the

Players collection shown in Figure 5-17. Note the nested document.

» db.ATP.public.atp_plavers . . find() . prettyd);
€

"details" = {
“"hirthplace" : "Manacor, Mallorca. Spain®,
"coach"™ : "Toni Madal".
“"height" = "185% cm"™.

"plays" @ "Left—handed".
"turnedpro™ : 20881,

"weight' : 188 1lbs (85 kg>"
B .

"pesidence” @ "Manacor,. Mallorca. Spain”,

"website" @ “http:/Awuw._rafaelnadal.comn',

"plaver_age' = 26.
"plaver_name' = "Madal",
"plaver_surname' = "Rafael"

Figure 5-17. Mapping @Embeddable and @Embedded annotations in MongoDB

I've also annotated the embeddable fields birthplace and residence as transient:

import javax.persistence.Transient;

@Embeddable
public class Details implements Serializable {

@Transient
private String birthplace;
@Transient
private String residence;

CHAPTER 5 * HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

145

http:///

CHAPTER 5 ' HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

I persisted more players and Hibernate OGM worked perfectly. The transient fields were not persisted, as you can
see in Figure 5-18.

i
i .
"details" = {
"coach" @ "none".
"height" = "188 cm".
"plays" "“"Hight—handed".
"turnedpro' : 28082,
"webzite" - “http:sfvwuuw. jtipzarevic.com'|
"weight™ = "176 lhs (88 kg>"
¥
"plavyer_age" = 28,
"player_name' = "Tipsarewic'.
X "player_surname" @ “"Janko''

Figure 5-18. Using @Transient for a few embeddable fields (or properties)

For the sake of completeness, it’s worth noting that if you annotate all the embeddable fields as transient, OGM
will completely skip the nested document, as you can see in Figure 5-19.

Il_idll = 9’

"hirth" : IS0Date('1982-04-02TAA:-00:00Z"> .
"plaver_age" : 38,

"plaver_name" : “Ferrer'.
"plaver_surname' : "David"

Figure 5-19. Using @Transient for all embeddable fields (or properties)

The complete application that demonstrates the @Embeddable and @Embedded annotations is available in the
Apress repository and is named HOGM_MONGODB_Embedded. It comes as a NetBeans project and was tested under
GlassFish 3 AS.

Note Anembeddable object can be shared among multiple classes. In a relational model, this feature is supported
by allowing each embedded mapping to override the columns used in the embeddable, which is accomplished using the
@AttributeOverride annotation. In MongoDB and Hibernate OGM, you don’t need to override columns. Everything will work
as expected without any special treatment; just use @Embedded in each class you want to embed the same embeddable class.

@Enumerated Annotation

Mapped by the javax.persistence.Enumerated annotation.
Official documentation: http://docs.oracle.com/javaee/6/api/javax/persistence/Enumerated.html.

146

http://docs.oracle.com/javaee/6/api/javax/persistence/Enumerated.html
http:///

CHAPTER 5 * HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

Brief Overview

Sometimes a Java enum type can be appropriate for representing a column in the database. JPA provides conversion
between database columns and Java enum types via the @Enumerated annotation. An enum type is, by default, ordinal;
it persists the enumerated type property or field as an integer, but it can also be made a string by setting the EnumType
value as STRING.

MongoDB treats a column that stores Java enum type values as an ordinary document field.

OGM Support

Hibernate OGM supports the @Enumerated annotation. It knows how to convert a Java enum type into a MongoDB
document field and how to restore it. Both EnumType .ORDINAL and EnumType.STRING are supported. OGM stores
STRING values in MongoDB between quotes, to indicate string values. ORDINAL values, on the other hand, are stored
without quotes, indicating numeric values.

Example

First, I define a Java enum type representing the highest ranking of our players in the history of the ATP World Tour.
Then I define the corresponding field that will be persisted or restored by Hibernate OGM and I mark it with the
@Enumerated annotation. Listing 5-9 shows part of the code for the entity.

Listing 5-9. AJava Enum Type

import javax.persistence.EnumType;
import javax.persistence.Enumerated;

@Entity
@Table(catalog="ATP", schema="public", name="atp_players")
public class Players implements Serializable {

public static enum Ratings {

FIRST,
SECOND,
THIRD,
FOURTH,
FIFTH,
SIXTH,
SEVENTH,
EIGHTH,
NINTH,
TENTH

@Id
@GeneratedValue(strategy=GenerationType.AUTO)
private int id;

@Column(name="player name")

private String name;

147

http:///

CHAPTER 5 ' HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

@Column(name="player surname")

private String surname;
@Column(name="player age")

private int age;

@Temporal (javax.persistence.TemporalType.DATE)
private Date birth;
@Column(name="player best rating")
@Enumerated(EnumType.STRING)

private Ratings best_rating;

//constructors, getters and setters

As usual, I now persist several instances of the Players entity using Hibernate OGM, and MongoDB reveals the
Players collection shown in Figure 5-20.

3 db.ATP.public.atp_plavers . find<{> _prettydl;
£

"_id" - 1’
“"hirth" : IS30Date{"1987-A5-22TAA:BA:A0Z""> .
"plaver_age' = 25,
"plaver_hest_ratin

player_name Jokovic™,
"plaver_surname' : “"Movak"
H

Figure 5-20. Mapping @Enumerated in MongoDB

The complete application that demonstrates the @Enumerated annotation is available in the Apress repository
and is named HOGM_MONGODB_Enumerated. It comes as a NetBeans project and was tested under GlassFish 3 AS.

@Cacheable Annotation

Mapped by the javax.persistence.Cacheable annotation.
Official documentation: http://docs.oracle.com/javaee/6/api/javax/persistence/Cacheable.html.

Brief Overview

Caching is one of the most important ways of increasing performance, by reducing database traffic when executing
queries, joins, and so on. As you may know, JPA 2.0 contains two levels of cache:

e The first-level cache is not directly related to performance and is meant for reducing the
number of queries in transactions. It’s also known as the persistent context cache and it lives as
long as the persistence context lives, usually until the end of transaction. When the persistent
context is closed, the first-level cache is cleared, and further queries must use the database
again. See Figure 5-21.

148

http://docs.oracle.com/javaee/6/api/javax/persistence/Cacheable.html
http:///

CHAPTER 5 * HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

FIRST-LEVEL CACHE

PersistenceContext

EntityManager

persist() - - I I
merge() -

TS - Transaction Scoped
ES - Extended Scoped JPA 2.0

Figure 5-21. JPA 2.0 first-level cache

e The second-level cache is directly related to performance. In this case, the caching mechanism
is placed between the persistence context and the database and it acts a server-side device
to keep objects loaded into memory. With this approach, the objects are available for the
entire application directly from memory without involving the database. The JPA provider is
responsible for implementing the second-level cache, but the implementation itself is pretty
subjective, because the specification is not very clear. Therefore, each implementation is free
to decide how to implement caching capabilities and how sophisticated they will be. See
Figure 5-22.

FIRST-LEVEL CACHE

PersistenceContext
EntityManager

FMEL CACHE
cache)

persist()
merge()

Cl

SECOND-
[share

TS5 - Transaction Scoped
ES - Extended Scoped JPA 2.0

Figure 5-22. JPA 2.0 second-level cache

By default, entities are not part of the second-level cache. JPA 2.0 provides the @Cacheable annotation that can
be used to explicitly inform the JPA provider about cacheable or non-cacheable entities. The @Cacheable annotation
takes a Boolean value (true is the default for cacheable entities; false, for non-cacheable entities). After spreading

149

http:///

CHAPTER 5 ' HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

the @Cacheable annotation over the desired entities, you must tell the JPA provider which caching mechanism to use
and, for this, you must add into the persistence.xml file the shared-cache-mode tag. The supported values are:

e NONE - no caching

e ENABLE_SELECTIVE—caching for all entities annotated with @Cacheable(true)

e DISABLE SELECTIVE—caching for all entities except those annotated with @Cacheable(false)
e AlLL—caching for all entities

e UNSPECIFIED—undefined behavior (might be the JPA provider default option)

OGM Support

Hibernate OGM supports the @Cacheable annotation and the shared-cache-mode tag. As you probably know, there
are several second-level cache providers for Hibernate, such as EHCache, OSCache, and Infinispan. Each of these
cache providers comes with some specific settings and specific features, has strong points and gaps, and provides
better or worse performance. But it’s not our focus here to look at the different cache providers, so we've arbitrarily
chosen EHCache to test the Hibernate OGM support for the @Cacheable annotation and the shared-cache-mode tag.
Feel free to use any other supported second-level cache provider.

Example

You might be interested only in the final result and conclusions but, if you want to reproduce the same test, here are
the main steps for setting up the EHCache second-level cache. (If you've never used Hibernate OGM and a second-
level cache, this is a good opportunity to try them out.)

1. Inorder to use EHCache with Hibernate OGM and MongoDB, you need to add several
JARSs to your application’s libraries, in addition to the Hibernate OGM distribution
and MongoDB driver. The additional JARs are: ehcache-core-2.4.3. jar, hibernate-
ehcache-4.1.4.Final.jar, s1f4j-api-1.6.1.jar (all available in the optional JARs set
of the Hibernate 4.1.4 Final distribution) and s1f4j-simple-1.6.1.jar (which you can
download from http://www.java2s.com/Code/Jar/s/Downloads1lf4jsimple161jar.htm).

2. Next, you have to write the persistence.xml file. You have to:

e setthe shared-cache-mode as ENABLE_SELECTIVE (only the entities annotated as
@Cacheable(true) will be cached).

e turn on the second-level cache and query cache.
e indicate the second-level cache provider class.
e setup theregion factory class.

e specify the location of the EHCache configuration file, ehcache.xml, to be used by the
cache provider/region-factory (the ehcache.xml content is not really relevant so I won’t
list it here. You can check it out in the Apress repository under the application named
HOGM_MONGODB_Cache).

e setthe JTA platform.
e add specific properties for configuring the MongoDB connection.

If you complete these steps, you'll end up with a persistence.xml file, like the one in Listing 5-10.

150

http://www.java2s.com/Code/Jar/s/Downloadslf4jsimple161jar.htm
http:///

CHAPTER 5 * HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

Listing 5-10. Persistence.xml

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.0" xmlns="http://java.sun.com/xml/ns/persistence"” xmlns:xsi=
"http://www.w3.0rg/2001/XMLSchema-instance" xsi:schemalocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence 2 0.xsd">
<persistence-unit name="HOGM MONGODB_L2Cache-ejbPU" transaction-type="JTA">
<provider>org.hibernate.ogm. jpa.HibernateOgmPersistence</provider>
<class>hogm.mongodb.entity.Players</class>
<class>hogm.mongodb.entity.Tournaments</class>
<shared-cache-mode>ENABLE_SELECTIVE</shared-cache-mode>
<properties>
<property name="hibernate.cache.use_second_level cache" value="true"/>
<property name="hibernate.cache.use_query_cache" value="true"/>
<property name="hibernate.cache.provider_class"
value="org.hibernate.cache.EhCacheProvider"/>
<property name="hibernate.cache.region.factory_class”
value="org.hibernate.cache.ehcache.SingletonEhCacheRegionFactory”/>
<property name="hibernate.cache.provider_configuration_file_resource_path"
value="ehcache.xm1"/>
<property name="hibernate.transaction.jta.platform"
value="org.hibernate.service.jta.platform.internal.SunOneJtaPlatform"/>
<property name="hibernate.ogm.datastore.provider" value="mongodb"/>
<property name="hibernate.ogm.datastore.grid dialect"
value="org.hibernate.ogm.dialect.mongodb.MongoDBDialect"/>
<property name="hibernate.ogm.mongodb.database" value="mapping entities_db"/>
<property name="hibernate.ogm.mongodb.host" value="127.0.0.1"/>
<property name="hibernate.ogm.mongodb.port" value="27017"/>
</properties>
</persistence-unit>
</persistence>

Notice that there are two entities specified in the persistence.xml file—Players and Tournaments. In order to
test the ENABLE_SELECTIVE caching mechanism, I've annotated the Players entity with @Cacheable(true) and the
Tournaments entity with @acheable(false). Our test will check to make sure the Players objects are cacheable,
while the Tournaments objects should not be cacheable. Here’s the listing for the Players entity:

import javax.persistence.Cacheable;

@Entity

@Cacheable(txue)

@Table(catalog = "ATP", schema = "public", name = "atp players")

public class Players implements Serializable {

//fields declaration
//constructors, getters and setters

151

http://java.sun.com/xml/ns/persistence
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd
http:///

CHAPTER 5 ' HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

And, the listing for the Tournaments entity is:
import javax.persistence.Cacheable;

@Entity
@Cacheable(false)
public class Tournaments implements Serializable {

//fields declaration
//constructors, getters and setters

Before starting to write the test, you need to populate the MongoDB collections associated with these two entities
with at least five documents each, with ids 1, 2, 3, 4 and 5 (you'll see why we need five documents in the test section).
When that’s done, you're ready to write a simple JUnit test to check whether the second-level cache is working. To
do this, you need to use the second-level cache API, which is pretty poor but at least it allows us to query and remove
entities from the cache using the javax.persistence.Cache interface. It provides the method contains for checking
whether the cache contains data for the given entity and two methods for removing data from cache: evict for
removing a particular entity and evictAll for clearing the cache.

So, we are ready to write the test. All we need is a simple scenario for the Players and Tournaments entities,
like this:

e Use the contains method to check whether the Players objects are in the cache (this should
return false).

e Usethe EntityManager find method to query the Players objects (this query is executed
against the MongoDB database and the extracted objects should be placed in the second-level
cache, thanks to ENABLE_SELECTIVE effect).

e Call the contains method again to check whether the Players objects are in the cache (this
should return true).

e Usethe evict method to remove the Players objects from the cache.

e Check whether the Players objects were removed from the cache when the contains method
was called again (this should return false).

The scenario for Tournaments follows:

e Use the contains method to check whether the Tournaments objects are in cache (this should
return false).

e Usethe EntityManager find method to query the Tournaments objects (this query is executed
against the MongoDB database and the extracted objects should NOT be placed in second-
level cache thanks to ENABLE_SELECTIVE effect).

e (Callthe contains method again to check whether the Tournaments objects are in the cache
(this should return false).

e (Clear the cache by calling the evictAll method.

Finally, translate the scenario into a JUnit test, like the one in Listing 5-11.

152

http:///

CHAPTER 5

Listing 5-11. A JUnit Test

package tests;

import
import
import
import
import
import
import
import
import
import
import
import
import
import

public

hogm.mongodb.entity.Players;
hogm.mongodb.entity.Tournaments;
javax.persistence.Cache;
javax.persistence.CacheRetrieveMode;
javax.persistence.CacheStoreMode;
javax.persistence.EntityManager;
javax.persistence.EntityManagerFactory;
javax.persistence.Persistence;
org.junit.After;
org.junit.AfterClass;

static org.junit.Assert.*;
org.junit.Before;
org.junit.BeforeClass;
org.junit.Test;

class CacheTest {

private static EntityManagerFactory emf;
private EntityManager em;

public CacheTest() {

}

@BeforeClass
public static void setUpClass() {

}

@AfterClass
public static void tearDownClass() {

}

@Before
public void setUp() {
emf = Persistence.createEntityManagerFactory("HOGM MONGODB_L2Cache-ejbPU");

}

em = emf.createEntityManager();

HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

em.setProperty("javax.persistence.cache.retrieveMode", CacheRetrieveMode.USE);
em.setProperty("javax.persistence.cache.storeMode", CacheStoreMode.USE);

@After
public void tearDown() {

if (em != null) {
em.clear();
em.close();

153

http:///

CHAPTER 5 ' HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

@Test
public void testCache ENABLE_SELECTIVE() {

Cache cache = em.getEntityManagerFactory().getCache();
//TESTING PLAYERS OBJECT CACHING

// players objects shouldn't be in second-level cache at this moment

for (int i = 1; 1 < 5; i++) {
assertFalse(cache.contains(Players.class, i));

}

// finding the players objects should place them into second-level cache
for (int i = 1; i < 5; i++) {

em.find(Players.class, 1i);
}

// players objects should be in second-level cache at this moment,

// but we delete them from cache one by one

for (int i = 1; 1 < 5; i++) {
assertTrue(cache.contains(Players.class, i));
cache.evict(Players.class, i);

}

// players objects shouldn't be in second-level cache at this moment

for (int i = 1; 1 < 5; i++) {
assertFalse(cache.contains(Players.class, i));

}

//TESTING TOURNAMENTS OBJECT CACHING

// tournaments objects shouldn't be in second-level cache at this moment

for (int i = 1; 1 < 5; i++) {
assertFalse(cache.contains(Tournaments.class, i));

}

// finding the tournaments objects shouldn't place them into second-level cache
for (int i = 1; 1 < 5; i++) {

em.find(Tournaments.class, i);
}

// players objects shouldn't be in second-level cache at this moment either
for (int i = 1; 1 < 5; i++) {

assertFalse(cache.contains(Tournaments.class, i));
}

cache.evictAll();

And the result of the test is 100 percent favorable, as shown in Figure 5-23, which means that Hibernate OGM
supports @Cacheable and shared-cache-mode.

154

http:///

tests.CacheTest

CHAPTER 5 * HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

[[100.00 % || mFo: mmoooozi- Bytecode provider name : j ssist o
ug The test passed.(2.115s) Jan 30, 2013 7:01:40 BM org.hibernate.dialect.Dialect <init>
D, INFC: HHHOO00400: Using dialect: org.hibernate.ogm.dialect_NoopDizlect
e Jan 30, 2013 7:01:40 BRM org.hibernate.engine.jdbc.internal.LobCreatorBuilder use
INFG: HHHO00422: Dissbling contextuzl LOB creation &5 connection was null
Jan 30, 2013 7:01:40 2M org.hibernate.engine.transaction.internzl.TransactionFac
INFCO- HHHOOOZEE: Transaction strategy: org hibernate engine transaction_ internal| |
Jen 30, 2013 7:01:40 2M org.hibernate._hgl.internal.ast_ASTCueryTranslatorFactory
4} INFC: HHHOO00337: Using ASTQueryIlranslatorFactory
& SLF4J: Class path contains multiple SLF4J bindings.

SLF47:

SLF4J: Found binding in [jar:file:/D:/glassfish-3.1.2.2/glassfish/modules/weld-o
SLF4J: See http://www.slfdj._org/codes htmlfmultiple bindings for an explanastion.
Jan 30, 2013 7:01:40 AM org.hibernate.validator.internal.util.Version <clinit>
INFC: HV00000l: Hibernate Validator 4.3.0.Final

Jan 30, 2013 7:01:40 AM org.hibernate.ogm.cfg.impl.Version <clinit>

INFC CM000001: Hibernate OGM 4.0.0.Betal

Jan 30

INFC

Jan 30, 2013 7:01:40 RM org.hibernate.ogm.datastore.mongodb_ impl MongoDBDatastor|S
INFO: OGM001Z11: The configuration property 'hibernate.cgm.mongodb.safe' is set
Jan 30, 2013 7:01:40 AM org.hibernste.ogm.datastore.mongodb.impl.MongoDBDatastor
INFC 001201: Connecting to MongoDB at 127.0.0.1:27017 with 2 timeout set at

Jan 30, 2013 7:01:40 M org._hibernate_ogm. datastore_ mongodb_ impl MongoDBDatastor
INFO 001207: Connecting to Mongo datsbase named [mepping_entities_db] .

Jan 30

/D:/hpress/apps/HetBeans/ CDB_Cache/1i]

Found binding in [jar:file:

2013 7:01-40 BM org hibernate_ogm datastore impl DatastoreProviderInitia
000016z M

0L Datastore provider: org.hibernate.ogm.datzstore.mongodb. i

2013 7:01:40 BEM crg.hibernate.ogm.dialect.impl.GridDialectFactoryImpl bu

INFC 000017: Grid Dialect:
Jan 30, 2013 7:01:40 2M

crg.hibernste.ogm.dizlect. mongodb . MongoDBlislect
org.hibernate.ogm.dialect.impl.GridDizlectFactorylnpl bu

INFC: Grid dizlect logs are disabled
Jan 30, 2013 7:01:41 AM org.hibernate.cache.spi.UpdateTimestampsCache <init>
INFO: HHHO00Z250: Starting update timestamps cache at region: org.hibernate.cache

Jan 30, 2013 7:01:41 2M org.hibernate.cache.internsl.StandardfueryCache <initr
INFC: HHHO000Z48:

Starting query cache at regicn: org.hibernate.cache.internal.Stl_

< .] r

Figure 5-23. Testing @Cacheable annotation

In addition, you can easily test DISABLE_SELECTIVE and ALL by writing your own scenarios.

Note that you can programmatically control the cache behavior on retrieving and storing entities by setting the
following EntityManager properties (within the setUp method, as in Listing 5-11). For the sake of completeness I set
them to default values (USE), but I also tested BYPASS and REFRESH values and everything worked as expected:

e javax.persistence.cache.retrieveMode controls how data is read from the cache for calls to
the EntityManager.find method and from queries. It defaults to the value USE, which means
that data is retrieved from the second-level cache, if available. If it’s not available, the data is
retrieved from the database. You can easily bypass the second-level cache and go directly to
database by specifying the value BYPASS.

e javax.persistence.cache.storeMode controls how data is stored in the cache. It defaults to
the USE value, which means that the cache data is created or updated when data is read from
or committed to the database without refreshing the cache upon a database read. Forcing the
refresh is available by setting the REFRESH value. Finally, you can leave the cache unmodified
by setting the BYPASS value.

Everything you need to know to understand the JPA 2.0 second-level cache API is nicely condensed in the Java EE 6
tutorial available at http://docs.oracle.com/javaee/6/tutorial/doc/gkjia.html.

The complete application for demonstrating the @Cacheable annotation is available in the Apress repository and
is named HOGM_MONGODB_Cache. It comes as a NetBeans project and it was tested under GlassFish 3 AS.

@MappedSuperclass Annotation

Mapped by the javax.persistence.MappedSuperclass annotation.
Official documentation: http://docs.oracle.com/javaee/6/api/javax/persistence/MappedSuperclass.html.

155

http://docs.oracle.com/javaee/6/tutorial/doc/gkjia.html
http://docs.oracle.com/javaee/6/api/javax/persistence/MappedSuperclass.html
http:///

CHAPTER 5 ' HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

Brief Overview

The scope of a mapped superclass is to feed its subclasses with common behavior and properties or fields mappings.
It's similar to table per class inheritance, but doesn’t allow querying, persisting, or relationships with the superclass
(this is the big disadvantage of this approach). Also known as the concrete class, a mapped superclass is not an entity
and it doesn’t have a separate table in database. Mapping information may be overridden in the corresponding
subclasses using the AttributeOverride and AssociationOverride annotations (or corresponding XML elements).
The subclasses are entities, so they are responsible for defining tables.

MongoDB will contain one collection per entity (per subclass) and documents will look exactly as the fields were
declared in entities (including the inherited ones). If you look at a collection’s content, nothing betrays the existence
of the mapped superclass.

0GM Support

Hibernate OGM supports the @appedSuperclass annotation. It knows how to convert each subclass into a MongoDB
collection and populate it with documents that contain the unified fields (inherited fields + entity fields).

Example

My example is based on a simple, common scenario. I start with some kind of generic or abstract object, like the
players. “Players” is a very generic notion, since there are many kinds of players—tennis players, baseball players and
so on. All players have some common characteristics, such as name, surname, age, and birthday, and some particular
characteristics specific to their discipline (category).

Instead of repeating the common characteristics for each kind of player entity, we can place them in a superclass,
an abstract class annotated with @appedSuperclass. Then, for each category of players, we can define an entity that
inherits the common characteristics from the superclass and provide more specific characteristics.

So, the mapped superclass is called Players and looks like this:

import javax.persistence.MappedSuperclass;

@MappedSuperclass
public abstract class Players implements Serializable {

@Id
@GeneratedValue(strategy=GenerationType.AUTO)
protected int id;

@Column(name="player name")

protected String name;

@Column(name="player surname")

protected String surname;
@Column(name="player age")

protected int age;
@Temporal(javax.persistence.TemporalType.DATE)
protected Date birth;

//getters and setters

156

http:///

CHAPTER 5 * HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

Next, we set up two categories of players: tennis players and baseball players. One distinguishing characteristic of
a tennis player might be which hand he or she uses to play. For a baseball player, it might be the position on the team.
So, we can write the TennisPlayers entity to inherit the superclass field and create a new one, like below:

import javax.persistence.AttributeOverride;

coe

@Entity
@AttributeOverride(name="age", column=@Column(name="tenis_player_age"))
public class TennisPlayers extends Players implements Serializable {

protected String handplay;

//constructors, getters and setters

Following the rule, the BaseballPlayers entity is listed below:

import javax.persistence.AttributeOverride;

@Entity
@AttributeOverride(name="age", column=@Column(name="baseball_player age"))
public class BaseballPlayers extends Players implements Serializable {

protected String position;

//constructors, getters and setters

Now persist several instances of the TennisPlayers and BaseballPlayers entities using Hibernate OGM.
MongoDB will reveal the TennisPlayers and BaseballPlayers collections, as shown in Figure 5-24. Notice the
inherited fields and the new fields together in the documents, and the effect of @AttributeOverride annotation:

TennisPlayers collection BaseballPlayers collection
2 dh.TennisPlayers.find{} . pretty(}; 2 db.BaseballPlayers . find().pretty();
v_id™ o= 1, id" = 1,
"hirth" : 1S0Date("1985-B9-16T23:008:00Z'">. "hasehall_player _age" = 37.
:handplay" :""F1ght—handﬁd", "h1rth" H ISODate("i??S A7-27TAA: 88 :80Z"> ,
'player_name” : UBerdych”. vplayer_name" : "Rodriguez"
"plas_-er_surname ':' Tomas"'. "player_surname” : “Alex
L tenis_player_age' : 27 "position" : “Third haseman # Shortstop"
]
< . K
ll_. LL] B 2, 1d" H 2
"hirth" = I80Date("1987-05-15T00:08:00Z"> . "hasehall_playep _age" =
::handplay” :._"]_}1%ht—han|.:l_ed", "hirth" : ISODate("i?'?‘} 33 13TH6: 00 :88Z") .
"1313-5'81‘_“&“8 . I_‘Iui':ra.y . player_name' : "Santana'
"13135_'91‘_3“1'“3“9 : _l’lndy - "player_surname’™ : “Johan".
L tenis_player_age' : 25 Yposition" : “Starting pitcher"
y]
<
_id" - 3,
"hasehall_player _age' : 32,
"hirth" : ISODate("i?SB A7-21TAA: 88 :BAZ"> ,
"plaver_name' : "Sabhathia'.
"plavyer_surname' = “'CC*,
N Yposition' : "Starting pitcher®

Figure 5-24. Testing @MappedSuperclass annotation in MongoDB
157

http:///

CHAPTER 5 ' HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

The complete application that demonstrates the @appedSuperclass annotation is available in the Apress
repository and is named HOGM_MONGODB_MappedSuperclass. It comes as a NetBeans project and it was tested under
GlassFish 3 AS.

@ElementCollection Annotation

Mapped by the javax.persistence.ElementCollection annotation.
Official documentation: http://docs.oracle.com/javaee/6/api/javax/persistence/ElementCollection.html

Brief QOverview

The @ElementCollection annotation is used to indicate a collection of instances (a basic Java type or embeddable
class). Don’t confuse Java collections with MongoDB collections. The Java collection data is stored in a separate table
(the collection table) that can be specified using the @CollectionTable annotation, which indicates the collection
table name and any joins. Since the data is stored in a separate table, this is not similar to @mbeddable objects that
are embedded in the source object’s table. It's more like a one-to-many embeddable relationship. A key feature of
@ElementCollection is its ability to easily define collections of simple values (objects) without defining new classes
but having separate tables for them. A drawback is that you can’t control the propagation level of persisting, merging,
or removing data, since the target objects are strictly related to the source objects and they act as one. Nevertheless,
the fetch type (EAGER and LAZY) is available, so you can load source objects without the target objects.

OGM Support

Hibernate OGM provides partial support for the @ElementCollection annotation. Though I encountered no errors
or bugs during testing, it doesn’t really do what the specification says. The @CollectionTable annotation is not
supported and the Java collection data is stored in MongoDB as nested collections in the entity collection, not in
separate collections.

Example

To demonstrate @ElementCollection for a collection of embeddable class instances, I defined a simple class
representing, for each player, the list of tournaments won or finals played in 2012:

import javax.persistence.Embeddable;

@Embeddable

public class Wins2012 implements Serializable {
private String titlesfinals;

//constructors, getters and setters

Typically, such a class would contain more than one field, but for testing purposes there’s no need to add
more fields.

In addition, for a collection of simple objects, Iused a List<String> to hold the ranking history for each player
between 2008 and 2012.

158

http://docs.oracle.com/javaee/6/api/javax/persistence/ElementCollection.html
http:///

CHAPTER 5 * HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

Both collections were defined in the Players entity, as shown in Listing 5-12 (elements like targetClass (“the
basic or embeddable class that is the element type of the collection”) and fetch (“whether the collection should be lazily
loaded or must be eagerly fetched”) are optional).

Listing 5-12. Defining Two Collections

import javax.persistence.AttributeOverride;
import javax.persistence.AttributeOverrides;
import javax.persistence.FetchType;

@Entity
@Table(catalog = "ATP", schema = "public", name = "atp players")
public class Players implements Serializable {

private static final long serialVersionUID = 1L;
@Id
@GeneratedValue(strategy = GenerationType.AUTO)
private int id;
@Column(name = "player name")
private String name;
@Column(name = "player surname")
private String surname;
@Column(name = "player age")
private int age;
@Temporal (javax.persistence.TemporalType.DATE)
private Date birth;
@ElementCollection(taxgetClass=hogm.mongodb.entity.Wins2012.class,
fetch = FetchType.EAGER)
@CollectionTable(name = "EC_TABLE") //not supported by OGM
@AttributeOverrides({
@AttributeOverride(name = "titlesfinals",
column = @Column(name = "EC_titlesfinals"))
)
private List<Wins2012> wins = new ArrayList<Wins2012>();
@ElementCollection(targetClass=java.lang.String.class,
fetch = FetchType.LAZY)
@CollectionTable(name = "RANKING_TABLE") //not supported by OGM
private List<String> rankinghistory08_12 = new ArraylList<Strings>();

//constructors, getters and setters

Next, I persist a few Players instances and the result is shown in Figure 5-25. Notice that there are no separate
MongoDB collections for the two Java collections—the @AttributeOverrides worked perfectly.

159

http:///

CHAPTER 5 ' HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

@FElementCollection

I Insert Tenis Player ‘ I Goto see lazy loading (you need a document with _id: 1) I

voidv -2,
“"hirth" : I50Date("1985-A9-16T23:00:A@Z" >,
"player_age' = 27,
player_name' : "Berdych",
"player surname' : “"Tomas". @ElementCollection
"ranking?istoryﬂs_lw' = L generates nested
"rankinghistory@8_12" : "2@11i: 7v | Ccollections, "wins” and
2. "rankinghistory(08-12"
{
s "pankinghistory@8_12'" : "2018: &"
3
s "pankinghistory@8_12'" : "20689: 28"
3
s "pankinghistory@8_12'" : "2088: 28"
e
s "pankinghistory@8_ 12" :@ "2812: &"
ins” = [
£
"ECG_titlesfinals" : "Stockholm'
3.
£
"EG_titlesfinals" @ "Montpellier”
>
1

Figure 5-25. Testing @ElementCollection annotation in MongoDB

The complete application for demonstrating the @E1lementCollection annotation is available in the Apress
repository and is named HOGM_MONGODB_ElementCollection. It comes as a NetBeans project and was tested under
GlassFish 3 AS. Before you continue with this section, please download the corresponding NetBeans project and
ensure that you can successfully run the application under GlassFish AS 3.

While testing, you may have noticed in the web GUI a button labeled, “Go to see lazy loading (you need a
document with _id:1).” If you press this button, the wins collection is loaded using the EAGER mechanism and the
rankinghistory08 12 collection isloaded using the LAZY mechanism (for a single player, with id:1). The result will
be similar to what'’s shown in Figure 5-26.

[1d | Name [[Surname|[Age]| Birth [Wins (EAGER)| Rankings History 2008-2012 (LAZY)

Stockholm
1 |Berdych|Tomas |27 ||Tue Sep 17 00:00:00 WET 1985 li [2011: 7, 2008: 20, 2009: 20, 2010: 6, 2012: 6]
Montpellier

Figure 5-26. Testing LAZY loading for @ElementCollection annotation in MongoDB

The results in Figure 5-26 give rise to an obvious question: how do I know that the wins collection was loaded
eagerly and the rankinghistory08 12 was loaded lazily? In other words, how do I know that lazy loading worked?

Well, such questions are common when Hibernate (including Hibernate OGM) JPA is involved, because the
proxy objects used by Hibernate behind the scene can be confusing. Nevertheless, the question as to whether lazy
loading is working can be solved in several ways. You can choose to write JUnit tests to monitor database transfers

160

http:///

CHAPTER 5 * HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

or any other complex solutions, or you can create a simple test, like the one I'll describe. Note that this test was
performed in the NetBeans IDE and is specific to the example presented in this section, but it can be easily adjusted to
other cases. Here are the steps in the test:

Set FetchType. EAGER for both collections, wins and rankinghistoryo8_12.

In the hogm.mongodb.ejb.SampleBean stateless bean, locate the following line of code in
method loadAction:

Players p = em.find(Players.class, 1);

After this line, place a NetBeans line breakpoint as shown in Figure 5-27.

64 Players p = em.find(Players.class, 1);
(| first.add(p):

Figure 5-27. Adding a line breakpoint in NetBeans

Deploy and start the application in debug mode (press the Debug Project button on NetBeans
toolbar).

After the application starts, press the button labeled “Go to see lazy loading (you need a
document with _id:1)" This will cause debugger to execute the code until the line breakpoint
and leave the application suspended at that point.

The Players instance is loaded and the p variable is listed in NetBeans debugger (see the
Variables window in Figure 5-28). Don’t expand the p tree node, since this will be interpreted
as an explicit request to see the p content.

EDutput] O'u'ariables ss|@ Players.java ss|@ persistence. xml ﬁ“@‘] SampleBean.java =
Name Type

<¢> this _SampleBean_Serializable
[first ArrayList
| p Players

Figure 5-28. The Variables window in NetBeans

Next, shut down the MongoDB server (you can press Ctrl+C in server shell).

Now you can expand the p node and the wins and rankinghistory08 12 sub-nodes as shown
in Figure 5-29. Since the MongoDB server is closed, and the collections data is available, we
can conclude that the data was eagerly loaded.

161

http:///

CHAPTER 5 ' HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

':T'.:-, Qutput & <> Variables $| @ Flayers.java ml £p persistence.xml m| @ SampleBean. java $| @ Helper.java $| @ Wins2012.java ﬁl @ lazy.x
MName Type Value
F.I@ﬁﬂs _SampleBean_Serializable E] #413
<> first ArrayList E] “size = 0"
BOp Flayers E] #416
B @u int B
%] & name String E] "Tipsarevic™
& surname String g E] “Janko™
@age int E] 28
[@ birth Date BES::
[=] < wins PersistentBag U "size = 17
= @ [0] Wins2012 E] #443
[=] <& rankinghistory0&_12 PersistentBag [_] size = 57
@ 0] String [2011:9
@1 String E] "2009: 38"
& String E] 2008: 497
&3 String E] 2010; 43
@M String D 2012: 9

“w _n

Figure 5-29. Expanding the “p” node

e Next, close the application, stop the debugger and restart the MongoDB server.

e SetFetchType.LAZY for the rankinghistory08 12 collection and FetchType.EAGER for wins
collection.

e Again, start the application in debugging mode.

e After the application starts, press the button labeled “Go to see lazy loading (you need a
document with _id:1)"

e Inthe NetBeans Variables window, you should see a collapsed tree node representing the
p variable. Don’t expand the node.

e Again, shut down the MongoDB server.

¢ Now, expand the p node and the wins and rankinghistory08_12 sub-nodes as shown in
Figure 5-30. Notice that the wins collection contains data, since it was eagerly loaded, but
the rankinghistory08 12 node reveals an error indicating it can’t connect to the MongoDB
server. This means that the data for the rankinghistory08 12 collection wasn’t loaded eagerly
and it should be loaded now, when you explicitly expanded the rankinghistory08 12 node.
Therefore, lazy loading is working in Hibernate OGM.

162

http:///

CHAPTER 5 * HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

E Cutput = <> Variables ﬁl@]& Players.java ss| @ persistence. xml ss| |§‘| SampleBean. java ﬁ| @ Helper.java ﬁ| @ Wins2012.java $| @ lazy. xhtml
Mame Type Value
i.'f'@ihis 9 SamnleRean Serializahle [_] #347 -
’+3<> first O Value
E&P : : : : —
[@ : =Exception occurred in target VM: can't call something @ /127.0.0. 1: 27017 /mapping_entities_db -
@'d com.mongodb. MongoExceptionSNetwork: can't call something @ /127.0.0. 1: 27017 /mapping_entities_db [
h:;j @ BT at com.mongodb . DETCPConnector. call[DETCPCannectar. java: 226) |
‘ at com.mongodb.DBEApiLayer SMyCollection. __find(DEApiLayer.java:313) il
@ surname String |.) anko™
@ age int E] 28
4 birth Date BE=::
5@wins PersistentBag E] “size = 17
=@ o] Wins2012 L] 2885
| E‘@ rankinghistory08_12 PersistentBag B >Exception occurred in target WM: can't call something : /127.0.0. 1:27017/mapping_entities_db Y
@ bag D null

Figure 5-30. Expanding the “p” node

You can easily perform similar tests for other cases, such as for associations.

JPA Lifecycle Events @EntityListeners, @ExcludeDefaultListeners,
@ExcludeSuperclassListeners Annotations

Mapped by the javax.persistence.EntitylListeners, javax.persistence.ExcludeDefaultlListeners and
javax.persistence.ExcludeSuperclassListeners annotations.
Official documentation:

http://docs.oracle.com/javaee/6/api/javax/persistence/EntityListeners.html
http://docs.oracle.com/javaee/6/api/javax/persistence/ExcludeDefaultListeners.html
http://docs.oracle.com/javaee/6/api/javax/persistence/ExcludeSuperclassListeners.html

Brief QOverview

JPA comes with a set of callback methods that reflect the lifecycle of entities. In a practical sense, an entity lifecycle
consists of a suite of events, like persist, update, remove, and so on. For each event, JPA lets you define a supported
callback method and when an event is fired, JPA automatically calls the corresponding callback method. You are
responsible for writing the callback method implementation.

When callback methods are defined within the entity body, they are internal callback methods and when they are
defined outside the entity body, in a separate class, they are external callback methods. In addition, default callback
methods are listeners that can be applied by default to all the entity classes. To relate these concepts to annotations,
here are the typical cases:

e Internal callback methods don’t need annotations. The callback methods are simply defined
in the entity body or mapped superclasses.

e External callback methods don’t need annotations. But, the entities and mapped superclasses
that use these methods need to be annotated with @EntitylListeners({Externallistener 1.class,
Externallisteners 2.class, ...}).

163

http://docs.oracle.com/javaee/6/api/javax/persistence/EntityListeners.html
http://docs.oracle.com/javaee/6/api/javax/persistence/ExcludeDefaultListeners.html
http://docs.oracle.com/javaee/6/api/javax/persistence/ExcludeSuperclassListeners.html
http:///

CHAPTER 5 ' HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

e Default callback methods don’t need annotations. Actually there are no annotations for
these callbacks; that’s why the default listeners are defined in an XML file named orm. xml,
which goes in the same location as persistence.xml or in any other location indicated in
persistence.xml.

e Defaultlisteners are applied by default to all the entity classes. You can turn off this behavior
for an entity by annotating it with @xcludeDefaultListeners.

e By default, entities inherit the callback methods from their mapped superclasses (the
invocation of superclass listeners is inherited in the entity class). You can obtain the opposite
effect by annotating the entity class with @ExcludeSuperclassListeners. Moreover, you can
override the mapped superclasses callback methods in subclasses.

The internal callback methods can be marked with the following annotations:
e @PrePersist is executed before a new entity is persisted (added to the EntityManager).
e @PostPersist is executed after storing a new entity in the database (during commit or flush).
e @Postloadis executed after an entity has been retrieved from the database.
e @PreUpdate is executed when an entity is identified as modified by the EntityManager.
e @PostUpdate is executed after updating an entity in the database (during commit or flush).
e @PreRemove is executed when an entity is marked for removal in the EntityManager.
e @PostRemove is executed after deleting an entity from the database (during commit or flush).

The external callback methods and default callback methods are the same except that they take one argument
that specifies the entity that’s the source of the lifecycle event.

Note that when all listeners appear in an application, there’s a strict order of invocation. Default callback
methods happen first, external callback methods are second, and internal callback methods execute last.

OGM Support

Hibernate OGM supports @EntitylListeners, @ExcludeDefaultListeners, and @ExcludeSuperclassListeners
annotations. It also supports listeners for entities and for mapped superclasses.

Example

For this example I used the classes defined in the section about mapped superclasses—the abstract mapped
superclass, Players, and the two entities, TennisPlayers and BaseballPlayers. With these three classes, I can test
the listeners quite well. Notice that the callback methods mark their presence only through some log messages.

In order of invocation, I defined first a default listener in the orm.xml file (don’t forget to save this file in the same
location as persistence.xml):

<entity-mappings xmlns="http://java.sun.com/xml/ns/persistence/orm"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/persistence/orm
http://java.sun.com/xml/ns/persistence/orm 1 0.xsd" version="1.0">
<persistence-unit-metadata>
<persistence-unit-defaults>

164

http://java.sun.com/xml/ns/persistence/orm
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/persistence/orm
http://java.sun.com/xml/ns/persistence/orm_1_0.xsd
http:///

CHAPTER 5 * HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

<entity-listeners>
<entity-listener class="hogm.mongodb.listeners.DefaultListener" /»
</entity-listeners>
</persistence-unit-defaults>
</persistence-unit-metadata>
</entity-mappings>

The hogm.mongodb.listeners.DefaultListener implements only the onPrePersist and onPostPersist
methods, as shown in Listing 5-13.

Listing 5-13. The onPrePersist and onPostPersist Methods

package hogm.mongodb.listeners;

import java.util.logging.Level;
import java.util.logging.logger;
import javax.persistence.PostPersist;
import javax.persistence.PrePersist;

public class DefaultlListener {

@PrePersist
void onPrePersist(Object o) {
Logger.getLogger(DefaultListener.class.getName()).
log(Level.INFO, "PREPARING THE PERSIST SOME OBJECT ...");
}

@PostPersist
void onPostPersist(Object o) {
Logger.getLogger(DefaultListener.class.getName()).
log(Level.INFO, "AN OBJECT WAS PERSISTED ...");

By default, these methods will be called for all three entities when an object is persisted.

I also define two external listeners, one to implement the callback methods specific to update operations
and the other for delete operations. These listeners will be available only for the BaseballPlayers entity, using the
@EntitylListeners annotation. The first listener is shown in Listing 5-14.

Listing 5-14. The Update Listener

package hogm.mongodb.listeners;

import java.util.logging.level;
import java.util.logging.logger;
import javax.persistence.PostUpdate;
import javax.persistence.PreUpdate;

public class BaseballExternalUpdatelisteners {

165

http:///

CHAPTER 5 ' HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

@PreUpdate
void onPreUpdate(Object o) {
Logger.getLogger(BaseballExternalUpdateListeners.class.getName()).log(Level.INFO,
"PREPARING THE UPDATE THE FIRST BASEBALL PLAYER OBJECT ...{0}", o.toString());

}

@PostUpdate
void onPostUpdate(Object o) {
Logger.getLogger(BaseballExternalUpdatelisteners.class.getName()).log(Level .INFO,
"THE FIRST BASEBALL PLAYER OBJECT WAS UPDATED...{0}", o.toString());

And the second one is in Listing 5-15.

Listing 5-15. The Delete Listener

package hogm.mongodb.listeners;

import java.util.logging.Level;
import java.util.logging.logger;
import javax.persistence.PostRemove;
import javax.persistence.PreRemove;

public class BaseballExternalRemovelisteners {

@PreRemove
void onPreRemove(Object o) {
Logger.getLogger(BaseballExternalRemovelisteners.class.getName()).log(Level .INFO,
"PREPARING THE DELETE FOR THE FIRST BASEBALL PLAYER OBJECT ...{0}", o.toString());
}

@PostRemove
void onPostRemove(Object o) {
Logger.getLogger(BaseballExternalRemovelisteners.class.getName()).log(Level.INFO,
"THE FIRST TENNIS PLAYER OBJECT WAS REMOVED ...{0}", o.toString());

The mapped superclass, Players, will reject default listeners and implement three internal callback methods:
onPrePersist, onPostPersist and onPostLoad. These listeners are inherited only by the BaseballPlayers entity,
because the TennisPlayers entity will be annotated with @ExcludeSuperclassListeners. The Players mapped
superclass is shown in Listing 5-16.

Listing 5-16. The Players Mapped Superclass
package hogm.mongodb.entity;

import java.io.Serializable;
import java.util.Date;

import java.util.logging.level;
import java.util.logging.logger;
import javax.persistence.Column;

166

http:///

import
import
import
import
import
import
import
import
import

CHAPTER 5

javax.persistence.ExcludeDefaultListeners;
javax.persistence.GeneratedValue;
javax.persistence.GenerationType;
javax.persistence.Id;
javax.persistence.MappedSuperclass;
javax.persistence.PostLoad;
javax.persistence.PostPersist;
javax.persistence.PrePersist;
javax.persistence.Temporal;

@MappedSuperclass
@ExcludeDefaultListeners

public

@Id

abstract class Players implements Serializable {

@GeneratedValue(strategy = GenerationType.AUTO)
protected int id;

@Column(name = "player name")

protected String name;

@Column(name = "player surname")

protected String surname;

@Column(name = "player age")

protected int age;

@Temporal (javax.persistence.TemporalType.DATE)
protected Date birth;

@PrePexsist
void onPrePersist() {

}

Logger.getLogger(Players.class.getName()).log(Level.INFO,
"PREPARING THE PERSIST A (BASEBALL) PLAYER OBJECT ...");

@PostPersist
void onPostPersist() {

}

Logger.getLogger(Players.class.getName()).log(Level.INFO,
"THE (BASEBALL) PLAYER OBJECT WAS PERSISTED ...");

@PostLoad
void onPostLoad() {

}

Logger.getLogger(Players.class.getName()).log(Level.INFO,
"THE FIRST (BASEBALL) PLAYER OBJECT WAS LOADED ...");

//constructors, getters and setters

HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

167

http:///

CHAPTER 5 ' HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

Next up is the TennisPlayers entity, shown in Listing 5-17. It will implement all the internal listeners and
accept the default listeners but not the superclass listeners (notice the presence of @xcludeSuperclassListeners
annotations:

Listing 5-17. The TennisPlayers Entity

import java.io.Serializable;

import java.util.logging.Llevel;

import java.util.logging.logger;

import javax.persistence.AttributeOverride;
import javax.persistence.Column;

import javax.persistence.Entity;

import javax.persistence.ExcludeSuperclassListeners;
import javax.persistence.PostLoad;

import javax.persistence.PostPersist;
import javax.persistence.PostRemove;

import javax.persistence.PostUpdate;

import javax.persistence.PrePersist;

import javax.persistence.PreRemove;

import javax.persistence.PreUpdate;

@Entity

@ExcludeSuperclassListeners

@AttributeOverride(name = "age", column =

@Column(name = "tenis player age"))

public class TennisPlayers extends Players implements Serializable {

protected String handplay;

@PrePersist
@0Override
void onPrePersist() {
Logger.getLogger(TennisPlayers.class.getName()).log(Level.INFO,
"PREPARING THE PERSIST A TENNIS PLAYER OBJECT ...");

}

@PostPersist
@Override
void onPostPersist() {
Logger.getLogger(TennisPlayers.class.getName()).log(Level.INFO,
"THE TENNIS PLAYER OBJECT WAS PERSISTED ...");

}

@PostLoad
@Override
void onPostLoad() {
Logger.getLogger(TennisPlayers.class.getName()).log(Level.INFO,
"THE FIRST TENNIS PLAYER OBJECT WAS LOADED ...");

168

http:///

CHAPTER 5 * HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

@PreUpdate
void onPreUpdate() {

}

Logger.getLogger(TennisPlayers.class.getName()).log(Level.INFO,
"PREPARING THE UPDATE THE FIRST TENNIS PLAYER OBJECT ...");

@PostUpdate
void onPostUpdate() {

}

Logger.getLogger(TennisPlayers.class.getName()).log(Level.INFO,
"THE FIRST TENNIS PLAYER OBJECT WAS UPDATED...");

@PreRemove
void onPreRemove() {

}

Logger.getLogger(TennisPlayers.class.getName()).log(Level.INFO,
"PREPARING THE DELETE FOR THE FIRST TENNIS PLAYER OBJECT ...");

@PostRemove
void onPostRemove() {

}

Logger.getLogger(TennisPlayers.class.getName()).log(Level.INFO,
"THE FIRST TENNIS PLAYER OBJECT WAS REMOVED ...");

public String getHandplay() {

}

return handplay;

//constructors, getters and setters

And, finally, the BaseballPlayers entity is shown in Listing 5-18. It doesn’t define any internal listeners. It uses
the defined external listeners, specified using the @EntitylListeners annotation, and inherits the listeners from the
mapped superclass. It will not accept default listeners, since the mapped superclass excludes default listeners.

Listing 5-18. The BaseballPlayers Entity

package hogm.mongodb.entity;

import
import
import
import
import
import
import

@Entity

hogm.mongodb.listeners.BaseballExternalRemovelisteners;
hogm.mongodb.listeners.BaseballExternalUpdateListeners;
java.io.Serializable;
javax.persistence.AttributeOverride;
javax.persistence.Column;

javax.persistence.Entity;
javax.persistence.EntityListeners;

@Entitylisteners({BaseballExternalUpdatelisteners.class,

BaseballExternalRemovelisteners.class})

169

http:///

CHAPTER 5 HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

@AttributeOverride(name = "age", column =
@Column(name = "baseball player age"))
public class BaseballPlayers extends Players implements Serializable {

protected String position;
//constructors, getters and setters
Done! I know it’s confusing, but testing all three annotations for entities and mapped superclasses in a single

application is pretty sophisticated. In a real application you wouldn’t mix all of this stuff together. Figure 5-31 should
help to clarify things.

' @ExcludeDefaultListeners '

Players

onPrePersist, onPostPersist, onPostload

(@Exclude SuperclasslListeners

§ TennizPlayers | BaseballExternalUpdateListeners
% all internal listeners (onPrePersist, ...) onPrelpdate, onPostlpdate
£

{@EntityLizsteners
({BazeballExternalUpdateListeners.clazs,
BaseballExternalRemovelListeners.class})

BazeballPlayers —_—
no internal listeners

—_—
| BaseballExternalRemovelisteners
onPreRemove, onPpstRemove

| DefaultListener

onPrePersist, onPostPersist

Figure 5-31. Testing JPA listeners

Here's the simple scenario I tested:
e Insert two tennis players and one baseball player.
e Load first tennis player.
e Update first tennis player.
e Delete first tennis player.
e Update first baseball player.
e Load first baseball player.
e Delete second tennis player.
e Delete first baseball player.

In Figure 5-32, you can see each step from the listener’s call perspective. It looks like Hibernate OGM has done
a great job and everything works exactly as expected and each callback method was called at the appropriate moment.

170

http:///

CHAPTER 5 * HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

Ingert first tennis player

default listeners (onPrePersist and onPostPersist)
and internal listeners (onPrePersist and
onPostPersist) are called by JPA

Insert second tennis player

default listeners (onPrePersist and onPostPersist)
and internal listeners (onPrePersist and
onPostPersist) are called by JPA

Insert first baseball plaver o
inherited onPrePersist and onPostPersist listeners
are called by JPA

Load first tenniz player |

the internal istener, onPostl oad is called by JRA
Update first tennis player

the internal listeners, onPostLoad, onPreUpdate

and onPostUpdate are called by JPA

Delete first tennis player
the internal listeners, onPostLoad, onPreRemove

and onPostRemove are called by JPA

Update first baseball player

the inherited listener onPostLoad and the external
listeners. onPrellpdate and onPostUpdate are
called by JPA&

Load first baseball player

the inherited Istener, onPostLoad is called by JPA
Delete the second tenis player

the internal iIsteners, onPostLoad, enPreRemove

and onPostRemove are called by JPA

Delete first baseball player
the inherited onPostLoad listener and the

external, onPreRemove and onPostRemove
listeners are called by JPA

Figure 5-32. Results of testing JPA listeners

The complete application that demonstrates the JPA listeners is available in the Apress repository and is named
HOGM_MONGODB_Listeners. It comes as a NetBeans project and was tested under GlassFish 3 AS.

@Version Annotation

Mapped by the javax.persistence.Version annotation.
Official documentation: http://docs.oracle.com/javaee/6/api/javax/persistence/Version.html

Brief QOverview

An @Version field or property has a double role: to guarantee data integrity when performing merge operations
(updates) and to provide optimistic concurrency control. Version fields (only one version field per entity class

is allowed) team well with JPA optimistic locking, which is applied on transaction commit and is responsible for
checking every object to be updated or deleted. The goal is to avoid possible conflicts that can occur when JPA deals
with simultaneous updates to the same data by two concurrent threads (users). When a conflict arises, the persistent
provider throws an exception. In other words, optimistic locking assumes that the data will not be modified between
read-write data operations.

The field annotated with @/ersion is persisted to the database with an initial value of, usually, 0 and it’s
automatically incremented (usually by 1) for each update operation (the calling of the merge method). Practically,
when JPA “bakes” an entity update statement, it adds to the WHERE clause, beside the update scope, the right “words”
for incrementing the version field and for matching the old version value (the read value):

UPDATE table name SET field 1 = value 1, ... field n = value n, version = (version + 1)
WHERE id = some_id and version = read version

171

http://docs.oracle.com/javaee/6/api/javax/persistence/Version.html
http:///

CHAPTER 5 ' HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

If, in the meantime, the same entity is updated by another user (thread), the persistence provider will throw an
OptimisticLockException since it can’t locate the correct old version value. Optimistic locking can provide better
scalability, but the drawback is that the user/application must refresh and retry failed updates.

Optimistic locking is specific to JPA 1.0 and is the most common style (used and recommended) of locking.
JPA 2.0 also comes with pessimistic locking, which locks the database row when data is being read or written to.
This is rarely used, though, since it can hinder scalability and cause deadlocks and risk states. Both optimistic and
pessimistic locking are layered on top of @/ersion annotation and are controllable through the JPA API.

More details about JPA 2.0 locking can be found in this excellent article, “JPA 2.0 Concurrency and locking”
(https://blogs.oracle.com/carolmcdonald/entry/jpa_2 0 concurrency and).

0GM Support

Hibernate OGM supports @/ersion annotation and the field annotated with @Version is stored in MongoDB like any
other field. You can also control locking mechanisms using the EntityManager find, refresh, and lock methods.
Since OGM doesn’t support native query or named queries, you can’t use the Query and NamedQuery locking methods.

Example

First, I define an @Version field in the Players entity, as shown in Listing 5-19. I named it version and set it as type
Long (you can choose from int, Integer, short, Short, long, java.sql.Timestamp).

Listing 5-19. Defining the @Version Field

import javax.persistence.Version;

@Entity
@Table(name = "atp_players")
public class Players implements Serializable {

private static final long serialVersionUID = 1L;
@Id

@GeneratedValue(strategy = GenerationType.AUTO)
private int id;

@Version

private Long version;

@Column(name = "player name")

private String name;

@Column(name = "player surname")

private String surname;

@Column(name = "player age")

private int age;

private int facade; //used for simulating updated

public Long getVersion() {
return version;
}

172

https://blogs.oracle.com/carolmcdonald/entry/jpa_2_0_concurrency_and
http:///

CHAPTER 5 * HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

protected void setVersion(Long version) {
this.version = version;
}

//constructors, getters and setters

Notice that since the @Version field should not normally be modified by the application, the corresponding setter
method was declared protected.

Now, let’s check if the @Version field is automatically incremented on each update operation. For this, persist
some players and find a reason to call the merge method several times, for example, to update the facade field with
some random numbers. While merging, monitor the atp_players collection documents in the MongoDB shell. In
Figure 5-33, the left side presents the document (_id:1) before calling merge for first time. On the right-side, notice
that after I called merge three times, the value of the version field grew from 0 to 3.

> db.atp_plavers find{)._pretty{d; ? db.atp_players . Find{}.prettycr;
"Yoid" - 1. LR T: AL
"facade" : 471633, “"facade" = 694979,
"player_age' = 38, "player_age' : 38,
"player_name' = "Ferrer'. "player_name' = "Ferrer'.
"player_ surname" = “David". "player_ surname' : "Dawvid",
[Mwersion™ : HumberLong{@}] ["wersion™ = MumberLong¢3)]

Figure 5-33. Monitoring version field incrementation while calling the merge method

So, OGM successfully increased the version field each time merge was called.

Note If you can’t obtain a document with _id: 1, you should drop the hibernate_sequences collection and repeat
the persist operation. You need this _id:1 because in the next test we use the EntityManager find method with
this id. | realize that using auto-generated keys and the find method like this is unusual and not realistic, but it’s just for
teaching purposes.

Testing whether the optimistic locking is actually working (LockModeType .OPTIMISTIC) is not simple; it usually
requires writing a JUnit test to simulate concurrent transactions. However, I prefer to a different approach and I want
to shape a stateful bean according to the following scenario:

e Declare a stateful bean and inject the OGM EntityManager; as a session bean, it will maintain
the conversational state over multiple requests:

@Named("bean")

@Stateful

@SessionScoped

public class SampleBean {

@PersistenceContext(unitName = "PU name")
private EntityManager em;

173

http:///

CHAPTER 5 ' HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

e Declare two Players objects, p1 and p2:

Players p1 = null;
Players p2 = null;

e Create a business method that populates p1 with the first player in the database and displays
the read version field. Note that I specified the locking mode as OPTIMISTIC (which is the
default):

public void read OPTIMISTIC Action 1() {
pl = em.find(Players.class, 1, LockModeType.OPTIMISTIC);
Logger.getLogger(SampleBean.class.getName()).
log(Level.INFO, "READ 1, version={0}", pi.getVersion());

}

e Repeat the previous step for p2:

public void read OPTIMISTIC_Action_2() {
p2 = em.find(Players.class, 1, LockModeType.OPTIMISTIC);
Logger.getLogger(SampleBean.class.getName()).
log(Level.INFO, "READ 2, version={0}", p2.getVersion());

}

e Create a business method for updating p1. After the update, read p1 again and display the
version. This was incremented by 1 and the update is successfully accomplished since the
document wasn’t modified between read and write operations:

public void update OPTIMISTIC Action 1() {
pl.setFacade(new Random().nextInt(1000000));
em.merge(p1);
em.flush();
pl = em.find(Players.class, 1, LockModeType.OPTIMISTIC);
Logger.getLogger(SampleBean.class.getName()).
log(Level.INFO, "UPDATE 1, version={0}", pi.getVersion());

}

e Write a business method for updating p2. Before calling mexge, display the read version. This
value should be smaller than the current version in the database, indicating that between p2
read and write operations, another thread has modified the document. Therefore, when the
merge method is called, I'll get an OptimisticLockException

public void update OPTIMISTIC Action 2() {
Logger.getLogger(SampleBean.class.getName()).
log(Level.INFO, "UPDATE 2, version={0}", p2.getVersion());
p2.setFacade(new Random().nextInt(1000000));
em.merge(p2);
em.flush();
//there is no need to check version,
// now the OptimisticLockException exception should be on screen

174

http:///

CHAPTER 5 * HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

For a successful test, I need to call these four methods precisely in order: read_OPTIMISTIC Action_1(),
read OPTIMISTIC Action 2(), update OPTIMISTIC Action_1() and update OPTIMISTIC Action 2().The output
of GlassFish log is shown in Figure 5-34.

Caused by: javax.pergistence.fptimisticLockException

at org.hikernate.ejb. fbstractEntityManagerImel

at org.hikernate.ejb_2ZbstractEntityManagerImpl

at crg.hikernate.ejb.2bstractEntityManagerImpl

at org.hikernate.ejb. fbstractEntityManagerImel

at org.hikernate.ejb_2ZbstractEntityManagerImpl

at crg.hikbernate.ogm.jpa.impl . OgmEntityManager

a2t com.sun.enterprise.container.common.impl En

Caused by: ocrg.hikbernate.StaleCkjectStateException: Row was updated or deleted by another transaction

at org.hikernate.event.internal . DefaultMergeEventlistener. entitylsDetached (DefaultMergeEventli

Figure 5-34. Obtaining the OptimisticLockException for LockModeType.OPTIMISTIC

If I change LockModeType.OPTIMISTIC into LockModeType .OPTIMISTIC FORCE_INCREMENT, I can easily test the
optimistic force-increment mechanism. If you ran the preceding test, drop all the atp_players collections and again,
persist one Players instance. Then use one of the next two method call sequences: read_OPTIMISTIC Action_1,
read OPTIMISTIC Action 2,update OPTIMISTIC Action 1 orread OPTIMISTIC Action 1, read OPTIMISTIC
Action_2, update OPTIMISTIC Action_2, update OPTIMISTIC Action_1. Because the version field is incremented
before each commit, not just for the updates commit, you'll see something like what’s shown in Figure 5-35 (the first
call sequence).

After persisting ...
» db.atp_players . Find<(> . prettyd;
<

After read p1 ...
> db.atp_players . find<{> pretty{};

P

After read p2 ...
z db.atp_plavers.find()_pretty();

_ 1.

"facade' : 996167,
"player_age' = 27,
"player_name' : "Berdych'.

‘plaver_surname' : "Tomas",
"version" : HumberLong(2)>

Figure 5-35. Obtaining the OptimisticLockException for LockModeType. OPTIMISTIC_FORCE_INCREMENT

ll_idll = 1. ll_idll H 1'

"facade' : 298167, "facade'" : 798167,
"player_age' : 27, "player_age" : 27,
"playel‘_ﬂame" = llBedechll' Ilplayer_namell = "BEdeCh".
"player_surname' : "Tomas'. "plaver_surname' : "Tomas'.
"wersion" : NumberLong{B@}> 'wversion" : NumberLong{l)

After update p1 ...

| Javax_persistence OptimisticLockException

crg-hibernate_ejb_fbstractEntityManagerImpl .

org.hibernate.ejb_ibstractEntityManagerImpl .

org.hibernate.ejb_ibstractEntityManagerImpl .

crg-hibernate_ejb_fbstractEntityManagerImpl .

org-hibernate_ejb_fbstractEntityManagerImpl .

org.hibernate.ogm.jpa.impl . OgmEntityManager.

(X EST I I

The complete application that demonstrates the @/ersion annotation is available in the Apress repository and is
named HOGM_MONGODB_Version. It comes as a NetBeans project and was tested under GlassFish 3 AS.

175

http:///

CHAPTER 5 ' HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

@Access Annotation

Mapped by the javax.persistence.Access annotation
Official documentation: http://docs.oracle.com/javaee/6/api/javax/persistence/Access.html

Brief Overview

By default, an entity provides data to be persisted through its persistent fields. Moreover, when data is extracted from
a database, it populates the same persistent fields. In annotations terms, this is @Access (AccessType.FIELD). Another
approach involves obtaining the data to persist by accessing fields indirectly as properties, using get methods.
Similarly, the extracted data populates entity through the set methods. In annotations terms, this is
@Access (AccessType.PROPERTY).

In JPA 1.x, the access type was restricted to be a field or property based on the entity hierarchy. Starting with JPA 2.0,
an embeddable class can have an access type different from the access type of the entity in which it’s embedded.

OGM Support

Hibernate OGM supports the @Access annotation according to the JPA 2.0 specification. It can extract data to persist
from an embeddable class via one access type and from the entity via the other access type. Of course, I'm talking
about the entity that embeds the embeddable class.

Example

For this example, I define an embeddable class, named Details:

import javax.persistence.Access;
import javax.persistence.AccessType;

@Embeddable
@Access(AccessType.FIELD)
public class Details implements Serializable {

private String birthplace;
private String residence;
private String height;
private String weight;
private String plays;
private int turnedpro;
private String coach;
private String website;

//constructors, getters and setters

Note the @Access annotation. (I chose arbitrarily to use the access type FIELD). Now the entity, named Players
is annotated with @Access (AccessType.PROPERTY). In order to use property access, I need to provide get and
set methods based on the Java bean property convention for non-transient fields. I must also move all the JPA
annotations from the field level to their getters. Listing 5-20 shows the complete listing for the Players entity.

176

http://docs.oracle.com/javaee/6/api/javax/persistence/Access.html
http:///

CHAPTER 5 * HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

Listing 5-20. The Complete Players Entity

import javax.persistence.Access;
import javax.persistence.AccessType;

@Entity

@Access (AccessType.PROPERTY)

@Table(catalog = "ATP", schema = "public", name = "atp players")
public class Players implements Serializable {

private int id;

private String name;
private String surname;
private int age;

private Date birth;
private Details details;

@Column(name = "player_name™)

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;
}

@Column(name = "player_surname")

public String getSurname() {
return surname;

}

public void setSurname(String surname) {
this.surname = surname;
}

@Column(name = "player_age")

public int getAge() {
return age;

}

public void setAge(int age) {
this.age = age;
}

@Temporal(javax.persistence.TemporalType.DATE)
public Date getBirth() {

return birth;
}

177

http:///

CHAPTER 5 ' HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

public void setBirth(Date birth) {
this.birth = birth;
}

@Embedded

public Details getDetails() {
return details;

}

public void setDetails(Details details) {
this.details = details;
}

eId
@GeneratedValue(strategy = GenerationType.AUTO)
public int getId() {

return id;

}

public void setId(int id) {
this.id = id;

}

Now, the entity class has the PROPERTY access type and the embeddable class has the FIELD access type. This
was not possible until JPA 2.0, because the embeddable object’s access type was determined by the access type of the
entity class in which it was declared.

Done! Make sure everything works as expected by persisting several entity instances.

The complete application that demonstrates the @Access annotation is available in the Apress repository and is
named HOGM_MONGODB_Access. It comes as a NetBeans project and was tested under GlassFish 3 AS.

Note Obviously, you don’t always need to explicitly specify the access type, but sometimes you do to avoid mapping
problems. For example, you may have two entities that define different access types, but both embed the same embeddable
class. In this case, you must explicitly set the access type of the embeddable class. The same kind of situation can
occur with inheritance—each entity inherits the access type from its parent entity, which may not always be desirable.
Starting with JPA 2.0, you can explicitly override the access type locally, in any entity involved in this inheritance.

There are some misconceptions regarding the access type FIELD in Hibernate. To avoid certain “traps,” you should
know that Hibernate is fully capable of populating entities when this access type is set. A problem can occur when you
need to access those values from your code, because in this case Hibernate requires dedicated methods. This is one
of the well-known Hibernate proxy pitfalls. To learn the details, a good place to start is at
http://blog.xebia.com/2008/03/08/advanced-hibernate-proxy-pitfalls/.

178

http://blog.xebia.com/2008/03/08/advanced-hibernate-proxy-pitfalls/
http:///

CHAPTER 5 * HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

Associations

In Chapter 2, you saw how OGM stores associations using the IN_ENTITY, GLOBAL_COLLECTION, or COLLECTION
strategies. Now I'll discuss how OGM stores a different kind of database association. I'll use IN_ENTITY for most of the
examples. There are several types of database associations:

e One-To-One
¢ One-To-Many and Many-To-One
e Many-To-Many

Direction in Entity Associations

I'want to add here a short overview of direction in entity associations, because I think it will be useful for the last part
of this chapter. Entity associations have the following characteristics:

e The directionality of association can be from one side (unidirectional) or from both sides
(bidirectional) of the relationship.

¢ Inunidirectional associations, one of the sides is defined as the owning side; the opposite side
is not aware of the association.

e In bidirectional associations, both sides have references to the other side.

¢ Inabidirectional association, one side is defined as the owning side (the owner), while the
opposite side is the owned side (non-owner).

e Programmatically speaking, in a bidirectional association, declaration is asymmetric, meaning
that only one side provides information about directionality by setting the mappedBy element
in the association-specific annotation. In bidirectional one-to-one and many-to-many
associations, either side can use the mappedBy element, while in a bidirectional one-to-many
association, mappedBy can’t be declared on the many-to-one side.

e The value of the annotation’s element is the name of the field (or property) on the owning side
of the association that references the entity on the owned side.

@O0neToOne Annotation

Mapped by the javax.persistence.OneToOne annotation.
Official documentation: http://docs.oracle.com/javaee/6/api/javax/persistence/OneToOne.html

Brief Overview

In relational database terms, a one-to-one association occurs when there is exactly one record in a table that
corresponds to exactly one record in a related table; both tables contain the same number of records and each row of
the first table is linked to another row in the second table. JPA maps both unidirectional and bidirectional one-to-one
associations using @0neToOne annotation. In bidirectional associations, the non-owning side must use the mappedBy
element of the @0neToOne annotation to specify the association field or property of the owning side (either side can be
the owner). Such an association supports fetching (eager or lazy), cascading, and orphan removal.

179

http://docs.oracle.com/javaee/6/api/javax/persistence/OneToOne.html
http:///

CHAPTER 5 ' HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

OGM Support

Hibernate OGM supports @0neToOne annotations that conform to the JPA 2.0 specification. As you know, by default,
OGM stores data in MongoDB using the IN_ENTITY strategy, which doesn’t imply any additional collections—each
entity class is represented by a single collection. It’s easy to distinguish the following cases:

e For a unidirectional one-to-one association, OGM stores the navigation information
for associations in the collection representing the owner side of the association. Each
document from this collection contains a field for storing the corresponding foreign key.
See Figure 5-36.

(@Entity g A collection B collection ‘

public class A implements Serializable [| { {
" id" 1, L "_id™: 1
@ld private int id; _"b id™ 1 }
@OneToOne 1 = [

private B b; ["_id" 2
} u_idu: 2| /}

}

@Entity
public class B implements Serializable {
@ld private int id;

}

. MongoDB collections

Figure 5-36. IN_ENTITY: one-to-one unidirectional association

e For a bidirectional one-to-one association, the navigation information is stored like this: the
collection representing the entity that uses mappedBy (the non-owner side of the association)
contains fields that store one foreign key per embedded collection, while the collection
representing the owner side of the association contains, in each document, a field that stores
the corresponding foreign key. See Figure 5-37.

180

http:///

CHAPTER 5 * HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

B collection ‘

"_id": 1, "_id": A,
o — | =
@OneToOne } = —__—__"" {

private B b; "id"s 1
H " g™ 2, }
"b_id": 2

NON-OV/NER-SIDE [H T

" id™ 2,
mat [
{
"id": 2

}
1 i |

} }
' MongoDB collections

Figure 5-37. IN_ENTITY: one-to-one bidirectional association

@Entity L A collection

public class A implements Serializable {

(@ld private int id;

@Entity
public class B implements Serializable {
@ld private int id;
@OneToOne({mappedBy="b")

private A a;

For the GLOBAL_COLLECTION strategy, there are also some straightforward cases:

e For a unidirectional one-to-one association, GLOBAL_COLLECTION has no effect (similar to
IN_ENTITY).

e For a bidirectional one-to-one association, the navigation information is stored like this: the
collection representing the entity that uses mappedBy (the non-owner side) doesn’t contain
navigation information; it’s stored in the global Associations collection. The collection
representing the owner side of the association contains, in each document, a field that stores

the corresponding foreign key. See Figure 5-38.
B collection ‘
{

@Entity OWNER-SIDE A collection | Associations collection
public class A implements Serializable { | {)
o "_id": 1, "_id":{ i 1
@ld private int id; "b_id": 1 "b_id™: 1, H
{@OneToOne 3 "table" : "A" t
private B b; h "_id™ 2
} ll_idll: 2| "rows": [}

“b_id": 2 ! { "id™:1}

}
@Entity HON-OWHNER-SIDE {}
public class B implements Serializable { " id™
@Id private int id; "b_id": 2,
@OoneToOne({mappedBy="b") "table”: " A"
private A a; b

"rows": [
f id™ 2} |
} 1
' 1 MongoDB collections

Figure 5-38. GLOBAL_COLLECTION: one-to-one bidirectional association

http:///

CHAPTER 5 ' HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

For the COLLECTION strategy, here are the possibilities:
e For unidirectional one-to-one associations, COLLECTION has no effect (similar to IN_ENTITY).

¢ For a bidirectional one-to-one association, the navigation information is stored like this: the
collection representing the entity that uses mappedBy (the non-owner side of the association)
doesn’t contain navigation information; it’s stored in a separate collection prefixed with the
word associations (every such association will have a separate collection). The collection
representing the owner side of the association will contain, in each document, a field that
stores the corresponding foreign key. See Figure 5-39.

@Entity OVINER-SIDE A collection | associations_A collection| B collection '
public class A implements Serializable { | { { { .
" id"™: 1, "_id" "_id": 1
@ld private int id; "b_id": 1 "b_id™: 1 H
@OneTolne 1 L {)
private B b; { "rows": ["_id™: 2
} "_id": 2, {mid:1) }
"b_id" 2]
) {
@Entity " id": [
public class B implements Serializable { "b_id™: 2
@ld private int id; h
@OneToOne(mappedBy="b") “rows": [
private A a; {"id": 2 }
}] 1

}
' MongoDB collections

Figure 5-39. COLLECTION: one-to-one bidirectional association

To sum up the main supported aspects of one-to-one associations, there’s support for unidirectional and
bidirectional associations; the ability to specify a column for joining an entity association or element collection (using
@JoinColumn), support for a one-to-one association from an embeddable class to another entity using @JoinTable
and @JoinColumns with the GLOBAL_COLLECTION and COLLECTION strategies, cascading(all) and orphan removal.
Moreover, OGM supports fetching using lazy loading.

Example

To illustrate one-to-one associations (unidirectional and bidirectional), I need two entities that are logically
appropriate for this purpose. For example, a tennis player entity and its web site address would have such an
association. I can thus create the entity that maps the web sites addresses:

import java.io.Serializable;

@Entity
@Table(name = "players websites")
public class Websites implements Serializable {

182

http:///

CHAPTER 5 * HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

@Id

@GeneratedValue(strategy = GenerationType.AUTO)
private int id;

private String http_address;

//constructors, getters and setters

Next, I create the Players entity and define a unidirectional one-to-one association:

import javax.persistence.JloinColumn;
import javax.persistence.OneToOne;

@Entity
@Table(name = "atp_players")
public class Players implements Serializable {

private static final long serialVersionUID = 1L;

@Id

@GeneratedValue(strategy = GenerationType.AUTO)

private int id;

@Column(name = "player name")

private String name;

@Column(name = "player surname")

private String surname;

@Column(name = "player age")

private int age;

@Temporal (javax.persistence.TemporalType.DATE)

@Column(name = "player_birth")

private Date birth;

@OneToOne(cascade = {CascadeType.PERSIST, CascadeType.REMOVE})
@JoinColumn(name = "website_fk", unique = true, nullable = false, updatable = false)
private Websites website;

//constructors, getters and setters

Now I'll persist several players and their web site addresses to get something like what'’s shown in Figure 5-40.
Notice that each document within the atp_players collection contains a field named website_pk that stores the
foreign key from the players_websites collection. This is how OGM maps the one-to-one unidirectional association
using the IN_ENTITY strategy.

183

http:///

CHAPTER 5 ' HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

2 db.atp_plavers . find().pretty();
"_id" = 1'
"player_age' : 25,
"plaver_birth" = IS0Date("1987-85-22THA:B00:80Z") .
"plaver_name' = "Djokouvic",
"plaver_surname" : “Novak",.
—{"website_fk" : 1]
>
<
v_id" = 2.
"player_age' : 31,
"player_birth" - IS50Date("1981-88-OETHA:A0:-80Z")
"plaver_name" : "Federer',
"plaver_surname” : "Roger'.
N [Fuwebsite _fk™ = 2|
> wehsites _find{>.prettyl);
< "http_address" : "http: " Awww_novakdjokovic.com' >
< "http_address" : "http:/ wuuw.rogerfederer.com" >

Figure 5-40. One-to-one unidirectional association

Moreover, I can easily transform this association into a bidirectional one by modifying the Websites entity,
adding the @0neToOne annotation and the mappedBy element:

import javax.persistence.OneToOne;

@Entity
@Table(name = "players websites")
public class Websites implements Serializable {

@Id

@GeneratedValue(strategy = GenerationType.AUTO)
private int id;

private String http_address;
@0neToOne(mappedBy = "website")

private Players player website;

//constructors, getters and setters

This time, the atp_players and players_websites collections look like what’s shown in Figure 5-41. As you can
see, the owner of the association, atp_players, still contains the field for storing foreign keys, while the non-owning
side, players_websites, stores the foreign keys in embedded collections.

184

http:///

CHAPTER 5 * HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

Figure 5-41. One-to-one bidirecional association

g dh.atp_plavers.find<{).prettyld; 2 db.players_webhsites.fFind () _pretty(};
id" = 1. fad" o= 1,
playel‘ _age' = 25 "http_address" : "http:/swuww.novakd
"player_hlrth" H ISODate("i?S'? @5-22TH0: A0 -BAZ"' > . "player_wehsite” : [
"player_name' = "Djokovic" {
"player_surname” : “Nouak". id' = 1
["webhsite_fk" = 1] >
] 1
i H
_id" - 2, s
player _age' = 38. id™ - 2,
"player_blrth" : IS0Dated"1982-04-A2TAA:AA - AQZ"' > . ""h'rf'n address"™ = "hitp: wutd - dav idf
"player_name" : "Ferrer" "player_website" - [
“"player_surname"' : "Dauid", £
["wehsite_fk" : 2| "id'" = 2
H H
1
by

My next goal is to create a one-to-one association from an embeddable class to another entity. For this, I need an
embeddable class that stores some player details and an entity that stores even more details. The embeddable class
will define a one-to-one association to this entity. Here’s the embeddable class, which is named Details:

import javax.persistence.Embeddable;
import javax.persistence.OneToOne;

@Embeddable
@Table(name = "player details")
public class Details implements Serializable {

private String birthplace;

private String residence;

private String height;

private String weight;

private String plays;

private int turnedpro;

private String coach;
@OneToOne(cascade={CascadeType.PERSIST, CascadeType.REMOVE})
private MoreDetails more;

//constructors, getters and setters

The MoreDetails field references the following entity:

import java.io.Serializable;

185

http:///

CHAPTER 5 ' HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

@Entity
@Table(name = "player more details")
public class MoreDetails implements Serializable {

@1d

@GeneratedValue(strategy = GenerationType.AUTO)
private int id;

private int ranking;

private String prizes;

//constructors, getters and setters

The final step consists of adding the embeddable class in the Players entity:
import javax.persistence.Embedded;

@Entity
@Table(name = "atp_players")
public class Players implements Serializable {

@Id

@GeneratedValue(strategy = GenerationType.AUTO)
private int id;

@Embedded

private Details details;

//constructors, getters and setters

Now, MongoDB will reveal two collections, atp_players and player more_details, as shown in Figure 5-42.
Notice that the atp_players nested documents (the details field), used for storing the embeddable class, contains a
field, named more_id, that stores the foreign keys referencing the player more_details documents.

186

http:///

CHAPTER 5 * HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

> db.atp_players._ find{) . prettyld;
€
_dd" = 1,
"details" : ¢
"hirthplace" : “Javea, Spain".
"coach" : "Javier Pilez"
[T v W95 ot
"more_id" : 1
plays ight—handed",
"rezidence’ : "Walencia, Spain"
"turnedpro' : 20088,
"weight' : "168 lhs <73 kgd"
}
player _age” : 38,
"player_hlrth" : I50Date(""1982-04—A2THA-B@ - A8Z"" >
"player_name' : "Ferrer',
"player_surname' : "David',
"wehsite_fk" : 1
H
€
'_id" = 2,
"details" : ¢
"hirthplace" : "Dunhlane, Scotland",
"coach" : "Iuan Lendl1"
[T " A cm",
"more_id" —
plays ight—handed",
P331dence" : "London, England".
"turnedpro' : 2005,
"weight' : "185% lhs (84 kg>"
.
"player_age" : 25,
"player_birth" : I180Date('1987-A5-15THA:A0:-BAZ"" >,
"player_name' = "Murray',.
"player_surname"” : “Andy'.
"wehsite_fk" : 2
H
> dh player_mnre detalls Find{>. pPetty(),
d" 1, "prizes" = "$17.178.869". "eanking™ : 5 }
2. "prizes" : ""$24,934,.421", "panking" : 3 3
3. “prizes" : "$58.061.827",. “eanking" : 4 >

Figure 5-42. One-to-one association and an embeddable class

I've played a little with the one-to-one associations for storing, retrieving, and removing some Players instances.
In Figure 5-43, you can see a sample of GlassFish log messages resulting from a simple scenario: insert one player, list
it, delete it, and list it again. (Notice the cascading effect on persist and remove).

Figure 5-43. Testing one-to-one associations (persist, retrieve, list, and remove)
187

http:///

CHAPTER 5 ' HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

The complete application for demonstrating the @neToOne annotation is available in the Apress repository and is
named HOGM_MONGODB_OneToOne. It comes as a NetBeans project and was tested under GlassFish 3 AS.

@O0neToMany and @ManyToOne Annotation

Mapped by the javax.persistence.OneToMany and javax.persistence.ManyToOne annotations
Official documentation: http://docs.oracle.com/javaee/6/api/javax/persistence/OneToMany.html

http://docs.oracle.com/javaee/6/api/javax/persistence/ManyToOne.html

Brief Overview

In relational database terms, a one-to-many association occurs when each record in one table corresponds to many
records in a related table. The tables don’t contain the same number of records and each row from the first table is
linked to more rows in the second table. This kind of association is mapped by JPA using the @0neToMany annotation.

When rows from the second table have an inverse association back to the first table, this is a bidirectional
association and is indicated by the @anyToOne annotation. In bidirectional associations, the mappedBy element must
be used to specify the association field or property of the entity that is the owner of the association.

Both, @0neToMany and @ManyToOne can be used in an embeddable class to specify an association to a collection of
entities, or to specify an association from the embeddable class to an entity class.

Such associations support fetching (eager or lazy), cascading, and orphan removal (only on @neToMany, not on
@anyToOne).

OGM Support

Hibernate OGM supports @neToMany and @anyToOne annotations. As you know, by default, OGM stores data
in MongoDB using the IN_ENTITY strategy, which does not imply any additional collection—each entity class is
represented by a single collection. We can easily distinguish the following cases:

e For unidirectional one-to-many associations, OGM stores the navigation information for
associations in the collection representing the owner side of the association, in fields that store
the foreign keys in embedded collections. See Figure 5-44.

' @Entity L A collection B collection ‘

public class A implements Serializable { |1 "_id": 1, ..
"id" A, ,_————”{ " id" 2, ..)
@ld private int id; "B": [/ -
@0OneToMany {"b_id": 1}, /—/_’{ .._!d..: -
private Collection b; {"b_id": 2}, {m_ld o ey
} 1
}
- {
@Entity " id™: 2,
public class B implements Serializable { E [
{@ld private int id; {"b_id": 3},
{"b_id": 4 },
1
i : 1

' MongoDB collections ‘

Figure 5-44. IN_ENTITY: one-to-many unidirectional association

188

http://docs.oracle.com/javaee/6/api/javax/persistence/OneToMany.html
http://docs.oracle.com/javaee/6/api/javax/persistence/ManyToOne.html
http:///

CHAPTER 5 * HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

e For unidirectional many-to-one associations, OGM stores the navigation information in the
collection representing the owner side of the association; each document will contain a field
for storing the corresponding foreign key. See Figure 5-45.

@Entity

public class A implements Serializable {
@ld private int id;
i

@Entity
public class B implements Serializable {
@ld private int id;

@ManyToOne

private A a;

}

A

A collection
{
" id™ 1,
H
{
" id™ 2,
H

OWHER-SIDE

B collection ‘
{

"_id™ 1,

"a_id": 1
}

{
"_id"™: 2,

"a_jd": 1
}

i
"_id™: 3,

“a_id": 2
}

MongoDB collections

Figure 5-45. IN_ENTITY: many-to-one unidirectional association

e For a bidirectional one-to-many association, the navigation information is stored like this: the
collection representing the entity that uses mappedBy (the non-owner side of the association)
will contain fields that store the foreign keys in embedded collections. The collection
representing the owner side of the association will contain, in each document, a field that
stores the corresponding foreign key. See Figure 5-46.

.

@Entity eIy A collection
public clazs A implements Serializable { {
"_id" 1,
@Id private int id; "b": [_
@OneToMany({mappedBy="a") { "b_!d": 1h
private Collection b; "b_id™: 2},
3 1
1
@Entity owner-siE |k o
public class B implements Serializable { --Elu. [' !
@Id private int id; {"b_id": 3}

@ManyToOne
private A a;

}

A

/

B collection ‘
{

" id": 1,

"a_id": 1
H

{
" id™ 2,

"a_id": 1
H

{
" id": 3,

"a_id": 2
H

MongoDB collections

Figure 5-46. IN_ENTITY: one-to-many bidirectional association

189

http:///

CHAPTER 5 ' HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

For the GLOBAL_COLLECTION strategy, there are also some straightforward cases:

e For unidirectional one-to-many associations, OGM stores the navigation information for
associations inside the global collection, named Associations. The collection representing
the association owner does not contain any navigation information. See Figure 5-47.

(@Entity

public clazs A implements Serializable {

{@ld private int id;
{@OneToMany
private Collection b;

}

(@Entity

public clazs B implements Serializable {
{@ld private int id;

}

Associations collection

OWHER-SIDE
{

A

A collection
"_id": 1,

}

{
"_id™: 2,

[
"A_id™ 1,
"table": "A_B"
h
"rows": [
{"b_id": 1},
{"b_id": 2},
"b_id":3}
I
{ " id"{
"A_id": 2,
"table™: "A_B"
h
"rows": [
{"b_id": 4}
I

B collection ‘

{

" id" 1,
H
{

"_id" 2,
H
{

" id"s 3,
H
i

"_id": 4,
H

MongoDB collections

Figure 5-47. GLOBAL_COLLECION: one-to-many unidirectional association

e For unidirectional many-to-one association, GLOBAL_COLLECTION doesn’t have any effect. See

Figure 5-48.
@Entity TRl A collection | Associations collection | B collection '
public class A implements Serializable { { L= { — { .
id": 1, e i1,
@Id private int id; } . table™: "B "a_id": 1
OneToMany|mappedBy="a" { ! }
@rivate Collebn:tionigb t:r"‘lr] "2, rows": [t
P ' 1 {"id™ 1, " g 2,
y {"id": 2}, "a_id" 1,
id" 3} 1
. . I {
({@Entity OWHNER-SIDE " id™y "™ 3
public class B implements Serializable { T ovaidm 2, "E_idl": :1|
@d private int id; table™ "B }
@ManyToOne 1' {
private A a; hE. & '"I . _id™: 4,
{"id": 4} "a_id"™: 2,
I 1

A

MongoDB collections

Figure 5-48. GLOBAL_COLLECTION: one-to-many bidirectional association

190

http:///

CHAPTER 5 * HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

e For a bidirectional one-to-many association, the navigation information is stored like this:
the collection representing the entity that uses mappedBy (the non-owning @0neToMany entity)
will not contain navigation information. This information is now stored in the Associations
collection. The other side (the owner) will contain, in each document, a field that stores the
corresponding foreign key.

For the COLLECTION strategy, we have:

e For unidirectional one-to-many associations, OGM stores the navigation information
for associations in a new collection prefixed with the word associations. The collection
representing the association owner does not contain navigation information. See Figure 5-49.

@Entity OWNER-SIDE A collection | associations_A_B collection|B collection '
public class A implements Serializable { { { :,,{ -
" g, A_id": 1 " g d,
(@Id private int id: }"' ?’.'mws.., [
@[I}HETDM&I'I‘_{ . [{"b_id": 1} i
private Collection b; " jd"s 2, {"b_id": 2}, " g 2,
{"b_id":3}
} } I }
[idm g
{@Entity "A_id": 2 " g 3,
public class B implements Serializable { h n
Id private int id; ‘rows™ [
@ P ; "b_id™ 43 i
1 It " ig": 4,
}

' MongoDB collections

Figure 5-49. COLLECTION: one-to-many unidirectional association

e For unidirectional many-to-one associations, COLLECTION doesn’t have any effect

e For a bidirectional one-to-many association, the navigation information is stored like this: the
collection representing the entity that uses mappedBy (the non-owning @OneToMany entity)
does not contain navigation information. This information is stored in a new collection
prefixed with the word associations. The other side (the owner) will contain, in each
document, a field that stores the corresponding foreign key. See Figure 5-50.

191

http:///

CHAPTER 5 ' HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

@Entity

(@ld private int id;

H

public class A implements Serializable {

@OneToMany(mappedBy="a")
private Collection by

HON-OWHNER-SIDE

(@Entity

@ld private int id;
@ManyToOne
private A a;

public class B implements Serializable {

OWWHER-SIDE

A

B collection ‘

A collection | associations_B collection
{ Lmd™ {

" g, “a_id":1, " i 1,
} h "a_id": 1
f "rows": [}

"_id™: 2, {id": 1), {

H {"id™: 2}, "id™ 2,
id™: 3} "a_id"™: 1,
I no

B) {

{ "a_id": 2, " id™: 3,
b "a_jd": 1,
"rows": [1

{"id": 4} [
I} "id™ 4,
"a_id" 2,
}

MongoDB collections ‘

Figure 5-50. COLLECTION: one-to-many bidirectional association

For the main aspects of these associations, there is support for unidirectional and bidirectional associations, the
ability to specify a column for joining an entity association or element collection (@JoinColumn), support for one-to-
many/many-to-one associations from an embeddable class to another entity or collection of entities, @oinTable and
@JoinColumns with GLOBAL_COLLECTION and COLLECTION strategies, cascading(all), orphan removal, and fetching with

lazy loading.

Example

As an example of a one-to-many association (unidirectional and bidirectional), I need two entities that should be
logically appropriate for this purpose. A tennis player who has many photos for his fans can be a good test case for a
one-to-many association, when we store the player and his photos. The photos can be mapped in the Photos entity,

like so:

import java.io.Serializable;

@Entity

@Table(name = "players photos")
public class Photos implements Serializable {

@Id

@GeneratedValue(strategy = GenerationType.AUTO)

private int id;

private String photo;

//constructors, getters and setters

192

http:///

CHAPTER 5 * HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

Now, each player has a collection of Photos, so the Players entity should define a @neToMany association, like this:

import javax.persistence.CascadeType;
import javax.persistence.OneToMany;

@Entity
@Table(name = "atp_players")
public class Players implements Serializable {

@Id
@GeneratedValue(strategy = GenerationType.AUTO)
private int id;

@0neToMany(cascade=CascadeType.ALL)
private Collection<Photos> photos;

//constructors,getters and setters

Persist several players and their photos to get something similar to what’s shown in Figure 5-51. Notice that
each document in the atp_players collection contains a field named photos, which stores (in a nested collection)
the corresponding foreign keys from the players_photos collection. This is how OGM maps the one-to-many
unidirectional association using IN_ENTITY strategy.

> db.atp_players. find{> _prettyld;
N voad' o= o1,
“"photos" = [
{
3 "photos_id" = 1
{
“"photos_id" = 2
¥
player _age" : 3@,
"player_hlrth" = I50Dated"1982-A4-A2TOA: B8 :AAZ "> .
"plaver_name' : "Ferrer"
"player_surname' : “David"” > db.plavers Dhntns f1nd() prettydy;
o L "_dd™ = 1. "ph : "ferrer_1. png" >
{ L1 3 = Il L1
voidY = o2, 1 0
"photos™ = [R | H »
£ K "_did" = 5, "photo" : "delpotro_3.png" >
"photos_id™ = 3 £ "_did" = 6, "photo" : "delpotro_4.png" >
.
£
“photos_id" = 4
.
£
“photos_id" = &
.
{
“photos_id" : 6
¥
1.
"player_age™ :© 24
"player_hlrth" H ISODate("i?SS B?-23TH0: 88 : WAL "> ,
"player_name' : "Del Potro".
X “player_surname' : “Juan Martin'

Figure 5-51. Unidirectional one-to-many association

193

http:///

CHAPTER 5 ' HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

Because I've used generics to specify the element type, the associated target entity type isn’t specified. When
generics aren’t used, I need to specify the target entity class using the targetEntity element. For example, I can
redefine the @neToMany association, like this:

@0neToMany (targetEntity=hogm.mongodb.entity.Photos.class, cascade=CascadeType.ALL)
private Collection photos;

If you think about the association from the opposite direction, many photos belong to the same player, which
describes a unidirectional many-to-one association. Implementing such an association means we write the Players
entity like this:

import java.io.Serializable;

@Entity
@Table(name = "atp_players")
public class Players implements Serializable {

@Id

@GeneratedValue(strategy = GenerationType.AUTO)
private int id;

@Column(name = "player name")

private String name;

@Column(name = "player surname")

private String surname;

@Column(name = "player age")

private int age;

@Temporal (javax.persistence.TemporalType.DATE)
@Column(name = "player birth")

private Date birth;

//constructors, getters and setters

In addition, the Photos entity must define an @anyToOne field (or property), like this:

import javax.persistence.JloinColumn;
import javax.persistence.ManyToOne;

@Entity
@Table(name = "players photos")
public class Photos implements Serializable {

@Id

@GeneratedValue(strategy = GenerationType.AUTO)
private int id;

private String photo;

194

http:///

CHAPTER 5 * HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

@ManyToOne
@JoinColumn(name = "player_fk", unique = true, nullable = false, updatable = false)
private Players player photos;

//constructors, getters and setters

Persist several players and their photos to get something like what’s shown in Figure 5-52. Notice that each
document in the players photos collection contains a field named player pk that stores the corresponding foreign
keys from the atp_players collection. This is how OGM maps the many-to-one unidirectional association using
IN_ENTITY strategy.

2 dbh.atp_players findC{) _prettyC);
'_id" - 1’
“"plaver_age" : 25,
“"plaver_hirth" @ I150DateC 1787-8A5-15THH:A80:-0AZ" >,
“"plaver_name'" : "Murray".
5 "player_surname' = "Andy"
i
fid' - 2.
“"plaver_age' : 28,
“"plaver_hirth' : I50Date< 1784-86-21T23:00:-08Z").
"plaver_name'" : "Tipsarevic”
5 "playver_surname' : "Janko"
> dh players_phutus flnd() prettyull;
£ " _dd" = 1, "photo" : “"murray_1. png , "plaver_fk" - 1 |3
£ Y_id" @ 2, "photo" & "murravy_2.png',. |“plaver_fk'" : 1|}
« Y_id" @ 3. "photo" = "murravy_3.png",. |“plaver_fk'" = 1|}
£ Y_id" @ 4, "photo" = "murray_4.png',. | “plaver_fk'" : 1 |}
 Y_id" = 5, "photo" - "tipsarevic_1.png",. ["plaver_fk" : 2|3
£ "_did" : 6, "photo'" : “tipsarevic_2.png",. |"plaver_fk'" @ 2|3
£ "_did" : 7. "photo" : “tipsarevic_3.png". ["plaver fk' : 2|}

Figure 5-52. Unidirectional many-to-one association

I can easily change the unidirectional one-to-many and many-to-one association into a bidirectional one by
adjusting the Players entity (Photos remains unchanged). I need to specify the association field of the entity that is
the owner of the relationship. Therefore, in the Players entity, I make this adjustemnt:

@0neToMany (cascade=CascadeType.ALL, mappedBy = "player_photos™")
private Collection<Photos> photos;

This time, the atp_players and players_photos collections look like what’s shown in Figure 5-53.

195

http:///

CHAPTER 5 ' HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

> db.atp_players.Find{>.pretty{d;
<

void" - 1,
‘photos" - [
{
"id" 1
.
{
"id" @ 2
>
.
player _age"
vplayer_hirt IS0Date(*"1985-04-16T23:00:0Z") ,
p%ayer_name " ?saggau 1f a db. plagers photos flnd() prettyld;
h "player_surname® : o-Wilfrie _E "__d" s 1. photo "tsonga_l png ':player_fk:: B
< Y U 2 L Y_id" : 3. Yphoto" : “novak_1.png". “player fk" = 2
]:!; € T —m "_id" : 4, "photo" : "novak_2.png". "player_fk" : 2
"photos’ {' £ v id" : 5. "photo" @ “novak 3.png". "plaver fk" : 2 3
vid” = 3
.
{
"id" @ 4
.
{
"id" : &
¥
1.
"player_age" : Z5,
“player_hirth" : IS80Date("1987-05-22TA0:00:00Z">,
"player_name" : "Djokovic".
N “player_surname' : "Novak"

Figure 5-53. Bidirectional one-to-many association

Finally, I've played a little with these associations for storing, retrieving, and removing some Players instances.
In Figure 5-54, you can see a sample of GlassFish log messages following a simple scenario: insert one player, list it,

delete it,

INFO:
INEFO:
INFO:
INEFO:
INFQ:
INEFO:
INFQ:
INEFO:
INFQ:
INEFO:
INFO:
INEFO:
INFO:
INEFO:
INFO:
INEFO:
INFO:
INEFO:
INFO:
INEFO:
INFO:

and list it again. (Notice the cascading effect on persist and remove.)

PLAYERS INFOBMATION ...

e e e e e e e e e ol ol ol o o PLAYER WITH ID: 1 e e e e e e ol ol ol ol ol ol o o e e

PLAYER: Mame:Ferrer, Surname:David, 2ge:30, Birth:4/2/82 1Z:00 AM
PHOTO: WName:ferrer l.png

PHOTO: Name:ferrer Z._png

e e e e e e e e e ol ol ol ol ok ok o e e e e e e e o o e e e ol ol ol ol ol ol ok o o e e e e e e o o e e e e e e e

HO MORE PLAYERS AVAILABLE ...

PHOTOCS INFOBMATION ...

e e o e e e e e e o FHGTO WITH ID: 1 ey e e e e e e e o o o o e

FHOTO: Photo :ferrer l.png, This photo belongs to :Ferrer Dawvid
e e e e e e e e e ol o ke ol e e e e ol e e ol e o e o e e e e e e o ok e o e e e e e o o o o e e e o e o

Ak ks DOTS WITH TD- T *&*ssbsbdbdbdhdnd

PHOTO: Photo -ferrer Z _png, This photo belongs to -Ferrer Dawvid
ke e ke o e e e e ke ol ke ol ke ol e e ol e ok ol ke ol ke ol e e e e ke ol e e o ke ol e e e e ol e e o ke ol e e e e e e

NO MORE PHOTOS AVAILABLE ...

BEMOVING FIRST PLAYER (_id:1 - _id:10) ...

PLAYER SUCCESSFULLY REMOVED ...

PLAYERS INFORMATION ...

HO MORE PLAYERS AVAILRABLE

PHOTOS INFORMRTION ...

NO MORE PHOTOS AVAILABLE ...

Figure 5-54. Testing one-to-many associations

196

http:///

CHAPTER 5 * HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

The complete application for demonstrating the @neToMany/@ManyToOne annotations is available in the
Apress repository and is named HOGM_MONGODB_OneToMany. It comes as a NetBeans project and was tested under
GlassFish 3 AS.

@ManyToManyAnnotation

Mapped by the javax.persistence.ManyToMany annotation.
Official documentation: http://docs.oracle.com/javaee/6/api/javax/persistence/ManyToMany.html

Brief Overview

In relational database terms, a many-to-many association occurs when many records in one table each correspond to
many records in a related table. This kind of association is mapped by JPA using the @anyToMany annotation.

When rows from the second table have an inverse association back to the first table, it’s a bidirectional
association. In a bidirectional many-to-many association, the relational model usually uses three tables, two tables
for data and an additional table known as a junction table, which holds a composite key made of two fields: the two
foreign key fields that refer to the primary keys of first and second tables. The same pair of foreign keys can occur only
once. In JPA, the junction table can be specified using the @JoinTable annotation on the owning side, which can be
either side.

Practically, in JPA, the main difference between @ManyToMany and @0neToMany is that @anyToMany always makes
use of this intermediate relational join table to store the association, while @neToMany can use either a join table
or a foreign key in a target object’s table referencing the source object table’s primary key. The non-owning side
(which can be either of the two sides) should use the mappedBy element to specify the association field or property
of the owning side. Technically, mappedBy will keep the database correctly updated if you only add or remove from
the owning side, but this can cause issues, such as orphans (records without links) that must be removed from the
application code. Without mappedBy, duplicate records in the join table may appear since you'll have two different
associations. In a bidirectional many-to-many association, it is recommended you add data from both sides.

@ManyToMany can be used in an embeddable class to specify an association to a collection of entities. Such an
association supports fetching (eager or lazy) and cascading, but doesn’t support orphan removal, which is allowed
only for associations with single cardinality on the source side.

OGM Support

Hibernate OGM supports the @anyToMany annotation. As you know, by default, OGM stores data in MongoDB using
the IN_ENTITY strategy, which does not imply any additional collection, only entity collections. For unidirectional
many-to-many associations, OGM stores the navigation information for associations in the owner collection, in
fields that store the foreign keys in embedded collections. If the association is bidirectional, both sides will contain
embedded collections for storing the corresponding navigation information (foreign keys). For the GLOBAL_COLLECTION
and COLLECTION strategies, a third collection will be used as described in Chapter 2, in the section called
"Association Storing." In the case of the COLLECTION strategy, if mappedBy is not specified, it's assumed to be two
difference associations and you’ll get two join collections (one per association).

The main aspects of these associations include supports for unidirectional and bidirectional associations,
the ability to specify a column for joining an entity association or element collection (@JoinColumn), support for
one-to-many/many-to-one associations from an embeddable class to another collection of entities, @JoinTable and
@JoinColumns with the GLOBAL_COLLECTION and COLLECTION strategies, and cascading(all). In addition, OGM
supports fetching with lazy loading.

197

http://docs.oracle.com/javaee/6/api/javax/persistence/ManyToMany.html
http:///

CHAPTER 5 ' HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

Example

To demonstrate a many-to-many association, I need two entities that should be logically appropriate for this purpose.
For example, a tennis player might participate in several tournaments, and each tournament would contain several
players. This can be a good test case for a many-to-many association when we store the players, the tournaments,
and the association. To start, let’s suppose that only the players are aware of the tournaments. In other words, let’s
implement a unidirectional many-to-many association.

For this, the Players entity must define an @anyToMany association, like this:

import javax.persistence.ManyToMany;

@Entity
@Table(name = "atp_players")
public class Players implements Serializable {

@Id

@GeneratedValue(strategy = GenerationType.AUTO)
private int id;

@Column(name = "player name")

private String name;

@Column(name = "player surname")

private String surname;

@Column(name = "player age")

private int age;

@Temporal (javax.persistence.TemporalType.DATE)
@Column(name = "player birth")

private Date birth;

@ManyToMany(cascade = CascadeType.PERSIST)
Collection<Tournaments> tournaments;

//constructors, getters and setters

The Tournaments entity is pretty straightforward:
import java.io.Serializable;
@Entity
@Table(name = "atp_tournaments")
public class Tournaments implements Serializable {
@Id
@GeneratedValue(strategy = GenerationType.AUTO)
private int id;

private String tournament;

//constructors, getters and setters

198

http:///

CHAPTER 5 * HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

Persist several players and tournaments and define some links from players to tournaments to get something
like what'’s shown in Figure 5-55. Notice that each document in the atp_players collection contains a field named
tournaments that stores (in a nested collection) the corresponding foreign keys from the atp_tournaments collection.
This is how OGM maps the many-to-many unidirectional association using IN_ENTITY strategy.

» db.atp_players.Find¢) . pretty(d;
£
_id"™ = 1.
player _age" = 25,
"plaver_hirth" @ I180Date<"1787-85-22T00:00:808Z"),
"player_name' = "Djokovic"
"plaver_surname' : “"Movak".
"tournaments' : [
"tournaments_id" : 1
¥
1
]
£
id" : 2,
player _age" = 31,
"plaver_hirth" @ I80Date<'"1281-B8-BBTO0:B60:88Z"),
"plaver_name' : "Federer".
i L1 = IIRD‘:‘EP!!-
"tournaments' : [
"tournaments_id" : 4
>,
£
"tournaments_id" : 3
>,
£
"tournaments_id" : 2
>,
{
"tournaments_id" - 1
¥
1
H
> dh atp_tournaments find() . prettul);
< Y_did" - 1, "tournament" : "Open Sud de France' >
L v_id" : 2. "tournament" : "Barclays ATP Yorld Tour Finals"
« Y_did" = 3., "tournament' - "Sony Open Tennis"
4 "_dd" = 4, "tournament" : "Dubai Duty Free Tennis Championships" 3

Figure 5-55. Unidirectional many-to-many association

The same kind of association can be defined from the Tournaments perspective by translating the @ManyToMany
annotation from the Players entity to the Tournaments entity and providing Players for Tournaments, instead of
Tournaments for Players

You can easily transform this unidirectional many-to-many association into a bidirectional association. While the
Players entity remains unchanged, the Tournaments entity should be modified like this:

import javax.persistence.ManyToMany;

@Entity
@Table(name = "atp_tournaments")
public class Tournaments implements Serializable {

199

http:///

CHAPTER 5 ' HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

@Id

@GeneratedValue(strategy = GenerationType.AUTO)
private int id;

private String tournament;
@ManyToMany(mappedBy = "tournaments")
Collection<Players> players;

//constructors, getters and setters

Now, MongoDB will contain nested collections in both entity collections, atp_players and atp_tournaments.
Each nested collection will store the foreign keys of the other side. See Figure 5-56.

> db.atp_plavers.find$Y pretty<d; viv s e
i i H
v idv o= 1. “players" : [
“player_age" = 25, < . squ .
"player_hirth" : IS0Date("1987-85-22T88:00:808Z"> . players_id" : 3
player_name' = “Djokovic’. b
il [OraaT™ k' .
--Eﬁﬁﬁ;;ﬁ;‘z;ﬁm—f T qua "tournament' : “BMY Open"
£ H
N “"tournaments_id" : 2 widr s 9
{' “players" = [
"tournaments_id" = 1 < . e
3. 3 players_id" : 3
<
"t ts_id" : 4 1
3. ournaments_1i "tournament”™ : "Rakuten Japan Open Tenni
£]
vt ts_id" : 3
N ournaments_i a3,
1 ‘plavers" = [
) £
ke "players_id" : 1
v_jdv : 2, 2
“player_age" : 31, < " s qu
“player_hirth" : IS0Date{'1981-B3-B8THA:00:08Z"> . players_id" : 4
"plaver_name' = “Federer', ¥
"nlayer_surnamne' : "Roger' 1.
“tournaments™ : [; Tournament™ : "Shanghai Rolex Masters"
"tournaments_id" = 5 i
>
1
H

Figure 5-56. Bidirectional many-to-many association

Notice that in the preceding cases, I used generics, so I didn’t specify the associated target entity type. When
generics aren’t used, you need to specify the target entity class using the targetEntity element. For example, I can
redefine the @ManyToMany associations like this:

//in Players entity
@ManyToMany (targetEntity = hogm.mongodb.entity.Tournaments.class,cascade = CascadeType.PERSIST)
Collection tournaments;

//in Tournaments entity
@ManyToMany (targetEntity = hogm.mongodb.entity.Players.class, mappedBy = "tournaments")
Collection players;

200

http:///

CHAPTER 5 * HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

When the GLOBAL_COLLECTION or COLLECTION strategy is preferred, I can use @JoinTable (including
@JoinColumn) on the owning side of the association to indicate the name of the association table and columns. For
GLOBAL_COLLECTION, I can use:

@ManyToMany(targetEntity = hogm.mongodb.entity.Tournaments.class,
cascade = CascadeType.PERSIST)
@JoinTable(name = "PLAYERS_AND_TOURNAMENTS", joinColumns =
@JoinColumn(name = "PLAYER_ID", referencedColumnName = "id"),
inverseJoinColumns =
@JoinColumn(name = "TOURNAMENT_ID", referencedColumnName = "id"))
Collection tournaments;

The result is shown in Figure 5-57.

» zhow collections
ssociations
tp_plavers
tp_tournaments
ibernate_sequences
ustem.indexes

> db_Associations _find{) _pretty(l;
€
ll_idll : {
“"TOURMAMENT _ID" = 1.
"table' : "PLAYERS_AND_TOURNAMENTS™
¥,
"rouws" - [
£
"PLAYER_ID" = 1
H
]
]
£
ll_idll H {
"PLAYER_ID" :- 1.
"table' : "PLAYERS_AND_TOURNAMENTS™
vpous" 1 [
€
"TOURMAMENT _ID'" - 1
¥,
£
"TOURMAMENT _ID'" - 2
H
]
ke

Figure 5-57. GLOBAL_COLLECTION and @JoinTable

201

http:///

CHAPTER 5 ' HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

And for COLLECTION, the result is shown in in Figure 5-58.

show collections
associations_PLAYERS _AND_TOURNAMENTS

atp_plavers

atp_tournaments

hibernate_sequences

mystem.indexes

> dh.azzociationz_PLAYERS _AND_TOURNAMENTS . find<)» . prettyll;
4
ll_idll =

>
"prows" o [

£
"TOURNAMENT _ID" : 1

"PLAYER_ID" : 1

>
1
ks
4
ll_idll : {
"PLAYER_ID" :@ 1
}J
"pows" o [
£
"TOURHNAMENWT _ID" :& 1
*-
£
"TOURMAMENT _ID' := 2
>
1
ks

Figure 5-58. COLLECTION and @JoinTable

Finally, I played a little with these associations for storing, retrieving, and removing some Players and
Tournaments instances. You can test the entire application by downloading it from the Apress repository; it’s the
HOGM_MONGODB_ManyToMany application (notice that the application doesn’t provide orphan removal). It comes as a
NetBeans project and was tested under GlassFish 3 AS.

Unsupported JPA 2.0 Annotations

According to the Hibernate OGM Beta 4.0.0Beta 2 documentation, the following are not supported:
e inheritance strategies: @Inheritance nor @iscriminatorColumn.
e secondary tables: @SecondaryTables, @SecondaryTable
e named queries

e native queries

202

http:///

CHAPTER 5 * HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

Summary

In this chapter, you saw how Hibernate OGM implements the JPA 2.0 annotations for working with MongoDB stores.
I discussed the main JPA 2.0 annotations and focused on the supported ones:

e @Entity

e @Id

e @EmbeddedId
e @IdClass

e @Table

e @Column

e (@Temporal

e @Transient

e @Embedded and @Embeddable

e @Enumerated

e @Cacheable

e (@MappedSuperclass

e @ElementCollection

e @EntitylListeners, @ExcludeDefaultlListeners, @ExcludeSuperclassListeners
e (@ ersion

e @Access

e (@0neToOne, @0OneToMany, @ManyToOne, @ManyToMany

The list of unsupported annotations is quite short and will probably be reduced to zero on the next release.

203

http:///

http:///

CHAPTER 6

Hibernate OGM Querying MongoDB Y

In previous chapters, we accomplished several tasks in order to organize and store our data in NoSQL MongoDB stores.
Now we’ll make use of this data by applying different querying techniques to extract only the information we need from
a NoSQL MongoDB store.

AsInoted in Chapter 1, querying a NoSQL database is a delicate and complex task—there are different situations,
and different approaches depending on the native support for NoSQL querying. For MongoDB, there are a number
of querying options; it’s up to you to choose the one that meets your needs, depending on your queries’ complexity,
performance parameters, and so on:

e Native query technology, which means using the MongoDB driver querying capabilities
without involving Hibernate OGM or any other technology.

e Hibernate ORM/OGM for CRUD, in which Create/Read/Update/Delete operations are
implemented by the Hibernate ORM engine.

e Hibernate Search/Apache Lucene, which uses a full-text indexing and query engine
(Apache Lucene). Hibernate Search is a powerful querying mechanism with great
performance and capabilities and provides a very easy-to-use bridge to Lucene. For complex
queries and indexing support, this is the right choice.

e Hibernate OGM JP-QL parser, which uses uses Hibernate Search to retrieve the desired
information from a MongoDB store, is good for simple queries. This JP-QL parser is in its
infancy, so it will need time to become powerful and support complex queries.

e Other tools, such as DataNucleus, Morphia, and so on that won’t be covered in this book.

Note Currently, Hibernate OGM via Hibernate Native APl doesn’t provide support for Hibernate Criteria. Moreover, it
doesn’t, via JPA, provide support for native and named queries.

We are going to delve into each of these querying possibilities and try to see how it works. We will focus on
Hibernate OGM and discuss MongoDB from this perspective. For the sake of completeness, however, we’ll start this
journey about querying MongoDB by first looking at basic MongoDB querying capabilities, and reserve the subject
of Hibernate OGM till the second part of the chapter. In this way, you'll get a complete picture of querying MongoDB
and you'll be better able to choose the appropriate querying solution for your needs.

205

http:///

CHAPTER 6 © HIBERNATE OGM QUERYING MONGODB

MongoDB Native Query

As you probably know, MongoDB natively provides interactive support through the mongo shell (a full interactive
JavaScript environment with a database interface for MongoDB), and programmatic support through the MongoDB
driver (which is available for multiple programming languages, such as Java, Ruby, and PHP). In this section, we will
skip the shell and concentrate on querying a MongoDB store using the MongoDB driver for Java. You'll need the 2.8.0
version of this driver, which is available for download as a JAR named mongo-java-driver-2.8.0.jar at
www.docs.mongodb.org/manual/applications/drivers/.

Before executing any query, you need to configure a MongoDB connection and create a database, then create a
collection and populate it with data. For this, please go back to the section in Chapter 4 called “Java SE and Mongo
DB—the HelloWorld Example.” Once you know how to connect and persist documents to a MongoDB store, you're
ready to perform queries.

We'll create a collection called players and try some queries against it. Each document stores some tennis player
data: name, surname, age, and birth date (and duplicate documents are allowed). After populating the collection with
several documents, you can start with the well-known “select all” query. You can use the find method, which returns
a cursor that contains a number of documents. As you can seg, it’s very easy to iterate the results. This chunk of code
uses find to extract all documents:

Mongo mongo = new Mongo("127.0.0.1", 27017);
DB db = mongo.getDB("players db");
DBCollection dbCollection = db.getCollection("players");

System.out.println("Find all documents in collection:");
try (DBCursor cursor = dbCollection.find()) {

while (cursor.hasNext()) {
System.out.println(cursor.next());
}

The result of this query is shown in Figure 6-1.

Find =211 deocuments in cocllecticon:

{ "_id" : ... , "name™ : "Ferrer" , "surname"” : "David" , "age"™ : 30 , "birth" : { "$date™ : "1982Z-04-0ZT00:00:00.0C
{ "_id" : ... | "name"™ : "Ferrer" , "surname" : "David" , "age" : 30 , "birth" : { "3$date" : "1332-04-02T00:00:00.0C
{ "_id" : ., "name™ : "Tsonga" , "surname" : "Jo-Wilfried"™ , "age" : 27 , "birth™ : { "$date" : "1985-04-18T23:0C
{ "_id" = .. , "name" : "Federer" , "surname" : "Roger" , "age™ : 31 , "birth" : { "$date™ : ™1351-05-08T00:00:00.C
{ "_id" = __ , "name" : "Del Potro"™ , "surname" : "Juan Martin™ , "age" : Z4 , "birth" "$date™ : "1988-09-23TO0C
{ "_id" : ., "name™ : "Murray" , "surname” : "&ndy"™ , "age" : Z5 , "birth"™ : { "$date" : "13987-05-15T00:00:00.00C
{ "_id" : ... ¢ "name" : "Tsonga" , "surname" : "Jo-Wilfried" , “age" : 27 , "birth" : { "sdate" : "1385-04-18T23:0C
{ "_id" =, "name"™ : "Federer" , "surname" : "Hoger" , "age™ : 31 , "birth" : { "$date™ : "13531-08-08T00:00:00.C
{ "_id" = __ , "name" : "Nadal" , "surname" : "Rafzel™ , "age" : 2Z& , "birth" : { "3$date" : "133&-06-03T00:00:00.0C
{ "_id" = .., "name" : "Djokovie"™ , "surname" : "Novak™ , "age" : 25 , "birth"™ : { "$date" : "1987-05-22T00:00:00.

Figure 6-1. All documents of the players collection

Note You can count how many documents are in a collection by calling the getCount method, like this:
dbCollection.getCount();.

206

http://www.docs.mongodb.org/manual/applications/drivers/
http:///

CHAPTER 6 * HIBERNATE OGM QUERYING MONGODB

You can find a single document using the findOne method; this method doesn’t return a cursor. The snipped
code is:

System.out.println("Find the first document in collection:");
DBObject first = dbCollection.findOne();
System.out.println(first);

The result will be the first document from the players collection, as shown in Figure 6-2.

Find the first document in ceollecticn:
{ "_id"™ : .., "name™ : "Ferrer" , "surname" : "David" , "age" : 30 , "birth" : { "$date"™ : "1382-04-02T00:00:00.000

Figure 6-2. Extracting the first document of the players collection

You can also execute conditional queries. For example, we can extract the documents corresponding to the
player Rafael Nadal using the find method, like this:

System.out.println("Find Rafael Nadal documents:");
BasicDBObject query = new BasicDBObject("name", "Nadal").append("surname”, "Rafael");
try (DBCursor cursor = dbCollection.find(query)) {
while (cursor.hasNext()) {
System.out.println(cursor.next());
}

The results are shown in Figure 6-3.

Find Rafael Nadal documents:
{ "_id" : ..., "name" : "Nadal"™ , "surname”™ : "Rafael™ , "age" : Z& , "birth" : { "$date" : "1386-06-03T00:00:00.000:

Figure 6-3. Extracting only documents containing Rafael Nadal

The find method combined with the $gt (greater than) operator lets you extract all players whose age is
greater than 25:

System.out.println("Find players with age > 25:");
BasicDBObject query = new BasicDBObject("age", new BasicDBObject("$gt", 25));
try (DBCursor cursor = dbCollection.find(query)) {
while (cursor.hasNext()) {
System.out.println(cursor.next());
}

You can see the results in Figure 6-4.

207

http:///

CHAPTER 6 © HIBERNATE OGM QUERYING MONGODB

Find players with age > Z5:

{ "_id" : ..., "mame" : "Ferrer" , "surname" : "Dawvid" , |"age" : 30 , "birgh" : { "s$date" : "198Z-04-02T00:00:00.000:z

{ "_id" : ..., "mame" : "Ferrer" , "surmname" : "Dawvid" , |"age" : 30 , "birgh" : { "s$date" : "198Z-04-02T00:00:00.000:z

{ "_id" - ., "name" : "Tsonga" , "surname” "Jo-Wilfried" , "age" : 27 ,| "birth"™ : { "sdate™ : "1385-04-1&TZ3:00:(

{ "_id" : ., "mame" : "Federer" , "surname" : "Reoger" ,| "age" : 31 , "bigth" : { "s$date™ : "1981-03-08T00:00:00.00C

{ "_id" : _ , "mame" : "Tscnga" , "surmame" : "Jo-Wilfried" , "age"™ : Z7 | "birth"™ : { "$date" : "1585-04-18T23:00:(
" id" - "name" : "Federer" "surname" : "Roger" "age"™ : 31 bigth" = "$date™ : "1981-08-08T00:00:00.00C
— e . a . g .

{ "_id" : , "name" : "Nadal"™ , "surname™ : "Rafael™ , ["age™ : Z& , "birgh" : { "$date™ : "1586-06-03T00:00:00.000:z

Figure 6-4. Extracting only documents with age greater than 25

The find method combined with the $11t (less than) operator lets you extract all players whose age is less than 28:

System.out.println("Find players with age < 28:");
BasicDBObject query = new BasicDBObject("age", new BasicDBObject("$1t", 28));
try (DBCursor cursor = dbCollection.find(query)) {
while (cursor.hasNext()) {
System.out.println(cursor.next());
}

The results are shown in Figure 6-5.

Find players with age < Z8:

{ "_id" : ..., "pame" : "Tscnga" , “surname" : "Jo-Wilfried" , "lage™ : 27 , ["birth"™ : ["$date" : "1385-04-18T23:00:(
{ "_1d"™ : | "mpzme"™ : "Del Dotroe" , "surname" : "Ju=sn Martin" [, "age" : 24|, "birth" : { "sdzte" : "1988-035-Z3T00:(
{ "_id" : ., "pame" : "Murray" , “"surname" : "Andy" , "age"™ : |25 , "birth" : { "#date" : "1937-05-15T00:00:00.000Z'
{ "_id"™ : .., "pame" : "Tscnga" , “surname" : "Jo-Wilfried" , "lage™ : 27 , ["birth" : { "$date" : "13385-04-18T23:00:(
{ "_id" : |, "name" : "Nadzl" , "surname"” : "Rafzel"™ , “zge"” : Z& , "birth" : { "sdate" : "138&-0&-03T00:00:00.000:
{ "_id" : ., "pame" : "Djckevie" , "surname" : "Novak" , "age"| : 25 , "birgh"™ : { "sdate" : "1387-05-22T00:00:00.0(

Figure 6-5. Extracting only documents with age less than 28

Extracting data that falls within (or outside of) an interval of values can be accomplished using the $gt and $1t,
or $gte (greater than or equal) and $1te (less than or equal) operators and the find method. For example, you can
obtain all players born between 1 January, 1982 and 31 December, 1985 like this:

System.out.println("JAVA - Find players with birthday between 1 January, 1982 - 31 December, 1985:");
Calendar calendar begin = GregorianCalendar.getInstance();
calendar_begin.clear();
calendar_begin.set(1982, Calendar.JANUARY, 1);
Calendar calendar_end = GregorianCalendar.getInstance();
calendar_end.clear();
calendar_end.set(1985, Calendar.DECEMBER, 31);
BasicDBObject query = new BasicDBObject("birth", new BasicDBObject("$gte",
calendar_begin.getTime()).append("$1te", calendar_end.getTime()));

try (DBCursor cursor = dbCollection.find(query)) {

while (cursor.hasNext()) {

System.out.println(cursor.next());
}

http:///

CHAPTER 6 * HIBERNATE OGM QUERYING MONGODB

The results are shown in Figure 6-6:

Find players with bkirthday between 1 January, 1382Z - 31 December, 1385:

{ "_id"™ : ..., "pame" : "Ferrer" , "surname" : "David" , "age" : 30 , "birth" : { "sdate" : ['1322-04-02T00:00:40.000:
{ "_id" : | "pame™ : "Ferrer™ , "surname" : "David" , "age"™ : 30 , "birth" : { "$date"™ : ['1982-04-02T00:00:40.000:
{ "_id"™ : ., "name" : "Tscnga" , "surname" : "Jo-Wilfried" , "age" : 27 , "birth"™ : ["sdafe" : "1385-04-16T23:00:C
{ "_4d"™ @ | "name"™ : "Tsonga" , "surname" : "Jo-Wilfried" , "=ge" : 27 , "birth"™ : { "sdape" : "1585-04-18T33:00:¢

Figure 6-6. Extracting only documents with births between 1 January, 1982 and 31 December, 1985

If you prefer to use Joda Time (a replacement for the Java date and time classes, available at
http://joda-time.sourceforge.net), you can write the query like this:

System.out.println("JODA - Find players with birthday between 1 January, 1982 - 31 December, 1985:");

DateTime joda_calendar begin = new DateTime(1982, 1, 1, 0, 0);
DateTime joda_calendar_end = new DateTime(1985, 12, 31, 0, 0);
query = new BasicDBObject("birth", new BasicDBObject("$gte",
joda_calendaxr_begin.toDate()).append("$1te", joda_calendar_end.toDate()));
try (DBCursor cursor = dbCollection.find(query)) {

while (cursor.hasNext()) {

System.out.println(cursor.next());
}

}

You can also extract data with specific values using the $in operator and the find method. For example, you can
obtain all players with the ages 25, 27, and 30, like this:

System.out.println("Find players with ages: 25, 27, 30");

List<Integer> list = new ArraylList<>();
list.add(25);
list.add(27);
list.add(30);
BasicDBObject query = new BasicDBObject("age", new BasicDBObject("$in", list));
try (DBCursor cursor = dbCollection.find(query)) {

while (cursor.hasNext()) {

System.out.println(cursor.next());
}

The result are shown in Figure 6-7.

Find players with ages: 25, 27, 30

{ "_id" : ..., "name"™ : “"Ferrer" , "surname" : "Dawvid" ,|"age" : 30 , "birgh" : { "sdate" : "1382-04-02T00:00:00.000
{ "_id" : ..., "name"™ : “"Ferrer" , "surname" : "David" ,|"age" : 30 , "birgh" : { "sdate" : "1382-04-02T00:00:00.000
{ " _id" : _ , "name" : "Tsonga" , "surname" : "Jo-Wilfried" , “age" : 27 ,| "birth" : { "sdate" : "1385-04-1€T23:00:
{ "_id" : ., "name"™ : “"Murray" , "surname" : "Andy" , Tage" : &5 , "birth" : { "s$date"™ : "1587-05-15T00:00:00.0002
{ "_id" : _ , "name" : "Tsonga" , "surname" : "Jo-Wilfrjed" , "age"™ : 27 ,| "birth" : { "sdate" : "1385-04-1&T23:00:
{ "_id" : _ , "mname" : "Djokovic" , "surname" : "Novak™|, "age" : Z5 , "bifrth"™ : { "sdate" : "1387-05-22T00:00:00.0

Figure 6-7. Extracting only documents with age equal to 25, 27, or 30

209

http://joda-time.sourceforge.net/
http://joda-time.sourceforge.net/
http:///

CHAPTER 6 © HIBERNATE OGM QUERYING MONGODB

When you need to extract data by negation, you can use the $ne (not equal) operator and the find method. For
example, you can easily obtain all players with ages not equal to 27, like this:

System.out.println("Find players with ages different from: 27");
BasicDBObject query = new BasicDBObject("age", new BasicDBObject("$ne", 27));
try (DBCursor cursor = dbCollection.find(query)) {
while (cursor.hasNext()) {
System.out.println(cursor.next());
}

The results are shown in Figure 6-8:

Find players with ages different from: Z7

{ "name" : "Ferrer"™ , "surname" : “Dawvid" , "age[" : 30 , "birthl : { "$date" : "1382-04-02T00:00:00.000Z
{" name" "Ferrer" , "surname" : "David"™ , "agel" : 30 , "birthf : { "$date™ : "1582-04-02T00:00:00.000Z
{" "name" : "Federer"™ , "surmame"™ : "Roger" , "agp"™ : 31 , "birth"™ : { "$date" : "1381-08-08T00:00:00.000
{" "name" : "Del Potro" , "surname"™ : "Juan Martip™ , "age" : Z4|, "kirth" : { "3$date™ : "1388-03-23T00:0
{" "name" : "Murray"™ , "surname"™ : “Andy" , "age"| : 25 , "birth"|: { "$date" : "1387-05-15T00:00:00.000Z"
{" "name" : "Federer"™ , "surmame"™ : "Roger" , "agp"™ : 31 , "birth"™ : { "$date" : "1381-08-08T00:00:00.000
- "name" : "WNadzal" , "surname" : "Rafzel™ , "agel" : 26 , "birthl : { "3date" : "1386-0&-03T00:00:00.000Z
{ "name" : "Djckovie™ , "surname"™ : "Nowvak™ , "apge" : 25 "birth" : { "$date™ : "1887-05-22T00:00:00.00

Figure 6-8. Extracting only documents with age different from 27

In the previous examples, we created (inserted) and retrieved (read) data from MongoDB using MongoDB Java
driver. You can accomplish an update accomplish by calling the save method. For example, you can replace Rafael
Nadal with Rafael Nadal Parera, like this:

System.out.println("UPDATING ...");
BasicDBObject query = new BasicDBObject("name", "Nadal").append("surname", "Rafael");
try (DBCursor cursor = dbCollection.find(query)) {
while (cursor.hasNext()) {
DBObject item = cursor.next();
item.put("name", "Nadal Parera");
dbCollection.save(item);

And you can delete data by calling the remove method. For example, you can delete all occurrences of Roger
Federer, like this:

System.out.println("DELETING ...");
BasicDBObject query = new BasicDBObject("name", "Federer").append(“surname"”, "Roger");
try (DBCursor cursor = dbCollection.find(query)) {

while (cursor.hasNext()) {

210

http:///

CHAPTER 6 * HIBERNATE OGM QUERYING MONGODB

DBObject item = cursor.next();
dbCollection.remove(item);

Note For advanced queries using MongoDB drivers, see The Definitive Guide to MongoDB by Eelco Plugge,
Tim Hawkins, and Peter Membrey (Apress, 2010). Visit www. apress.com/9781430230519.

The complete application containing the preceding snippets of code is available in the Apress repository and is
named MONGODB_QUERY. It comes as a NetBeans project and was tested under Java 7.

Hibernate O0GM and CRUD Operations

The four essential operations performed against a NoSQL database—Create, Read, Update and Delete—are available
in Hibernate OGM out of the box. Actually, independently of JPA or the Hibernate Native API, Hibernate ORM
delegates persistence and load queries to the OGM engine, which delegates CRUD operations to DatastoreProvider
and GridDialect, and these interact with the NoSQL store.

In Chapters 3 and 4 you saw how to develop applications based on Hibernate OGM via the Hibernate Native API
and Java Persistence API. It should be a piece of cake, therefore, to wrap the Players entity in Listing 6-1 into such an
application.

Listing 6-1. The Players Entity

package hogm.hnapi.entity;

import java.io.Serializable;

@Entity

@Table(name = "atp_players")

@GenericGenerator(name = "mongodb _uuidgg", strategy = "uuid2")
public class Players implements Serializable {

@Id

@GeneratedValue(generator = "mongodb_uuidgg")
private String id;

@Column(name = "player name")

private String name;

@Column(name = "player surname")

private String surname;

@Column(name = "player age")

private int age;

@Column(name = "player birth")

@Temporal (javax.persistence.TemporalType.DATE)
private Date birth;

211

http://www.apress.com/9781430230519
http:///

CHAPTER 6 © HIBERNATE OGM QUERYING MONGODB

public String getName() {
return name;
}

public void setName(String name) {
this.name = name;
}

public String getSurname() {
return surname;
}

public void setSurname(String surname) {
this.surname = surname;
}

public int getAge() {
return age;
}

public void setAge(int age) {
this.age = age;
}

public Date getBirth() {
return birth;
}

public void setBirth(Date birth) {
this.birth = birth;
}

public String getId() {
return id;
}

public void setId(String id) {
this.id = id;
}

Once that’s done, you have access to CRUD operations. Suppose we have an instance of Players, named player.
Using Hibernate OGM via Hibernate Native API, you can obtain the Hibernate session with the
getCurrentSession or openSession methods.

e To persist the player instance, use the persist method:

HibernateUtil.getSessionFactory().getCurrentSession().persist(player);

212

http:///

CHAPTER 6 © HIBERNATE OGM QUERYING MONGODB

e To update the player instance, use the merge method:
HibernateUtil.getSessionFactory().getCurrentSession().merge(player);

e Tofind the player instance by id, use the find method:
HibernateUtil.getSessionFactory().getCurrentSession().get(Players.class, id);

e To delete the player instance, use the delete method:
HibernateUtil.getSessionFactory().getCurrentSession().delete(player);

You can try all of these methods in a sample application named HOGM_MONGODB_HNAPI_CRUD, available in the

Apress repository. It comes as a NetBeans project and was tested under GlassFish 3 AS. The interface application looks
like Figure 6-9.

CRUD OPERATIONS

Search Player (FIND operation)

SearchById -~ Search

Found player (or last persisted plaver): Name: , Surname: , Age: 0
New Player (PERSIST operation) / Update Player (MERGE operation) / I

Player Name:
Player Surname:
Player Age: 0
Player Birth (vyyy.mm.dd):
MNew ” Update || Remove

Figure 6-9. Testing Hibernate OGM and CRUD operations

Using Hibernate OGM via the Java Persistence API (em stands for EntityManager):

e To persist the player instance, use the persist method:
em.persist(player);
e To update the player instance, use the merge method:

em.merge(player);

213

http:///

CHAPTER 6 © HIBERNATE OGM QUERYING MONGODB

e Tofind the player instance by id, use the find method:
em.find(Players.class, id);

e To delete the player instance, use the delete method:
em.delete (player);

You can try all of these methods in a sample application named HOGM_MONGODB_JPA CRUD, available in the Apress
repository. It comes as a NetBeans project and was tested under GlassFish 3 AS. The interface application looks like
the one in Figure 6-9.

Hibernate Search and Apache Lucene

Basically, Hibernate/JPA and Apache Lucene deal with the same area—querying data. They both provide CRUD
operations, a basic data unit (an entity in Hibernate, a document in Lucene) and the same programming concepts.
The main difference lies in the fact that Hibernate/JPA promotes domain model-oriented programming, while
Lucene deals with only a single, built-in data model—the Document class, which is too simple to describe complex
associations. Combined, however, the two yield a higher-level API, named Hibernate Search.

Both Hibernate Search and Apache Lucene are powerful, robust technologies. While Apache Lucene is a full-text
indexing and query engine with excellent query performance, Hibernate Search brings its power to the persistence
domain model. The symbiosis works fairly well: Hibernate Search “squeezes” the query capabilities of Apache Lucene
while providing support for the domain model and the synchronization of databases and indexes, and converting
free text queries back to managed objects. Because our focus is on Hibernate OGM and MongoDB, I won't provide
a Hibernate Search or Apache Lucene tutorial. Instead we’ll get quickly to developing examples, and I'll supply
sufficient information for you to understand the new Hibernate Search/Apache Lucene annotations and classes,
without going into detail. We are going to combine Hibernate ORM, OGM, and Search with Apache Lucene and
MongoDB into applications with query capabilities so you can explore the complexity of the querying process. Once
you have a functional application, you'll be able to try a wide range of queries.

We will develop two applications. The first will be a Hibernate OGM/ via Hibernate Native API application
and the second Hibernate OGM via JPA (details in Chapters 3 and 4). Both applications will follow a common,
straightforward scenario: we’ll create an entity (and the corresponding POJO, specific only to Hibernate Native API),
persist several instances to a MongoDB collection, and execute some query samples through Hibernate Search and
Apache Lucene.

The POJO is named Players and is shown in Listing 6-2 (this POJO is mapped in an hbm. xm1 file).

Listing 6-2. The Players Class

public class Players {

private String id;
private String name;
private String surname;
private int age;
private Date birth;

public String getName() {
return name;
}

214

http:///

CHAPTER 6 * HIBERNATE OGM QUERYING MONGODB

public void setName(String name) {
this.name = name;
}

public String getSurname() {
return surname;
}

public void setSurname(String surname) {
this.surname = surname;
}

public int getAge() {
return age;
}

public void setAge(int age) {
this.age = age;
}

public Date getBirth() {
return birth;
}

public void setBirth(Date birth) {
this.birth = birth;
}

public String getId() {
return id;
}

public void setId(String id) {
this.id = id;
}

And thePlayers.hbm.xml fileis shown in Listing 6-3.

Listing 6-3. Players.hbm.xml

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE hibernate-mapping PUBLIC "-//Hibernate/Hibernate Mapping DTD 3.0//EN"
"http://www.hibernate.org/dtd/hibernate-mapping-3.0.dtd">
<hibernate-mapping>
<class name="hogm.hnapi.pojo.Players" table="atp players">
<id name="id" type="string">
<column name="id" />
<generator class="uuid2" />
</id>
<property name="name" type="string">
<column name="player name"/>
</property>

215

http://www.hibernate.org/dtd/hibernate-mapping-3.0.dtd
http:///

CHAPTER 6 © HIBERNATE OGM QUERYING MONGODB

<property name="surname" type="string">
<column name="player surname"/>

</property>

<property name="age" type="int">
<column name="player age"/>

</property>

<property name="birth" type="date">
<column name="player birth"/>

</property>

</class>
</hibernate-mapping>

Oy, if you prefer the entity version, the POJO becomes what’s shown in Listing 6-4. (This entity is used in both
applications.)

Listing 6-4. The Entity Version of Players

import java.io.Serializable;

@Entity

@Table(name = "atp_players")

@GenericGenerator(name = "mongodb_uuidgg", strategy = "uuid2")
public class Players implements Serializable {

@Id

@GeneratedValue(generator = "mongodb_uuidgg")
private String id;

@Column(name = "player name")

private String name;

@Column(name = "player surname")

private String surname;

@Column(name = "player age")

private int age;

@Column(name = "player birth")

@Temporal (javax.persistence.TemporalType.DATE)
private Date birth;

public String getName() {
return name;
}

public void setName(String name) {
this.name = name;
}

public String getSurname() {
return surname;
}

216

http:///

CHAPTER 6 * HIBERNATE OGM QUERYING MONGODB

public void setSurname(String surname) {
this.surname = surname;
}

public int getAge() {
return age;
}

public void setAge(int age) {
this.age = age;
}

public Date getBirth() {
return birth;
}

public void setBirth(Date birth) {
this.birth = birth;
}

public String getId() {
return id;
}

public void setId(String id) {
this.id = id;
}

Common Steps

No matter which application type (OGM via the Hibernate Native API or via JPA), there are a few common steps to
add Hibernate Search or Apache Lucene support:

1. Inaddition to the Hibernate OGM and MongoDB library (remember it from Chapter 1),
we need to add at least two more JARs: hibernate-search-orm-4.2.0.Final. jar and
avro-1.6.3.jar. Both are available in the Hibernate Search distribution, release 4.2.0
Final. Notice that many other JARs, including Apache Lucene and Object/Lucene core
mapper, are available in Hibernate OGM and MongoDB library.

2. Next, we need to focus on our POJO (or entity) class. This is the first step to bring
Hibernate Search into the equation—Hibernate Search-specific configurations are
expressed via annotations. More precisely, we need to use a couple of annotations for
mapping the POJO (entity).

e We'll use the @Indexed annotation to mark the Players class as indexable (searchable).
Entities that are not annotated with @Indexed will be ignored by the indexing process.

e We then specify how the indexing will be done using the @Field annotation at the field or
property level. There are a few supported attributes but, for now, it’s enough to indicate
whether the field or property is indexed (using the index attribute); whether the field
or property is analyzed (using the analyze attribute); and whether the field or property
is stored in the Lucene index (using the store attribute). More attributes and detailed
descriptions are available in the official documentation.

217

http:///

CHAPTER 6 © HIBERNATE OGM QUERYING MONGODB

218

Since we have a Date field, we need to know a few things about how Hibernate

Search works with dates. Dates are stored as “yyyyMMddHHmmssSSS in GMT time
(200611072203012 for Nov 7th of 2006 4:03PM and 12ms EST),” but we can specify the
appropriate resolution for storing a date in the index using the @ateBridge annotation
(the resolution can be DAY, HOUR, YEAR, MINUTE, SECOND, MONTH and MILISECOND). We use
the YEAR resolution.

For numerical fields, like player age, we can use the @NumericField annotation.
This is optional, but it can be useful for enabling efficient range query, and in sorting,
and to speed up queries.

Finally, to indicate a field or property as the document id (primary key), we need to
annotate it with @ocumentId. This annotation is optional for entities that already contain
an @Id annotation.

For our needs, the @Indexed, @Field, @NumericField, @DateBridge and @DocumentId
annotations are enough to configure the indexing process. Listing 6-5 shows the Players
POJO after it has been marked with the Hibernate Search annotations.

Listing 6-5. The Players POJO with Annotations

package hogm.hnapi.pojo;

import org.hibernate.search.annotations.Analyze;
import org.hibernate.search.annotations.DateBridge;
import org.hibernate.search.annotations.DocumentId;
import org.hibernate.search.annotations.Field;

import org.hibernate.search.annotations.Index;

import org.hibernate.search.annotations.Indexed;
import org.hibernate.search.annotations.NumericField;
import org.hibernate.search.annotations.Resolution;
import org.hibernate.search.annotations.Store;

@Indexed
public class Players {

@DocumentId

private String id;

@Field(index=Index.YES, analyze=Analyze.YES, store=Store.NO)
private String name;

@Field(index=Index.YES, analyze=Analyze.NO, store=Store.NO)
private String surname;

@NumericField

@Field(index=Index.YES, analyze=Analyze.NO, store=Store.NO)
private int age;

@Field(index=Index.YES, analyze=Analyze.NO, store=Store.NO)
@DateBridge(resolution = Resolution.YEAR)

private Date birth;

public String getName() {
return name;
}

http:///

}

CHAPTER 6

public void setName(String name) {
this.name = name;
}

public String getSurname() {
return surname;
}

public void setSurname(String surname) {
this.surname = surname;
}

public int getAge() {
return age;
}

public void setAge(int age) {
this.age = age;
}

public Date getBirth() {
return birth;
}

public void setBirth(Date birth) {
this.birth = birth;
}

public String getId() {
return id;
}

public void setId(String id) {
this.id = id;
}

HIBERNATE OGM QUERYING MONGODB

Or, if we apply these annotations to the Players entity, we get what’s shown in Listing 6-6.

Listing 6-6. The Entity Version of Players with Annotations

package hogm.hnapi.entity;

import org.hibernate.search.annotations.Analyze;
import org.hibernate.search.annotations.DateBridge;
import org.hibernate.search.annotations.Documentld;
import org.hibernate.search.annotations.Field;
import org.hibernate.search.annotations.Index;
import org.hibernate.search.annotations.Indexed;
import org.hibernate.search.annotations.NumericField;
import org.hibernate.search.annotations.Resolution;
import org.hibernate.search.annotations.Store;

219

http:///

CHAPTER 6 © HIBERNATE OGM QUERYING MONGODB

@Entity

@Indexed

@Table(name = "atp players")

@GenericGenerator(name = "mongodb uuidgg", strategy = "uuid2")
public class Players implements Serializable {

220

private static final long serialVersionUID = 1L;
@DocumentId

@Id

@GeneratedValue(generator = "mongodb uuidgg")

private String id;

@Column(name = "player name")

@Field(index=Index.YES, analyze=Analyze.YES, store=Store.NO)
private String name;

@Column(name = "player surname")

@Field(index=Index.YES, analyze=Analyze.NO, store=Store.NO)
private String surname;

@Column(name = "player age")

@NumericField

@Field(index=Index.YES, analyze=Analyze.NO, store=Store.NO)
private int age;

@Column(name = "player birth")

@Field(index=Index.YES, analyze=Analyze.NO, store=Store.NO)
@DateBridge(resolution = Resolution.YEAR)
@Temporal(javax.persistence.TemporalType.DATE)

private Date birth;

public String getName() {

return name;

public void setName(String name) {
this.name = name;
}

public String getSurname() {
return surname;
}

public void setSurname(String surname) {
this.surname = surname;
}

public int getAge() {
return age;
}

public void setAge(int age) {
this.age = age;
}

http:///

CHAPTER 6 * HIBERNATE OGM QUERYING MONGODB

public Date getBirth() {
return birth;

}

public void setBirth(Date birth) {
this.birth = birth;
}

public String getId() {
return id;

}

public void setId(String id) {
this.id = id;
}

3. Next, we have to provide some basic configuration information in hibernate.cfg.xml (o in
HibernateUtil) for OGM via the Hibernate Native API application, or in persistence.xml,
for OGM via JPA.

We have to specify the directory provider; for Apache Lucene, a directory represents the type and place to store
index files, and it comes bundled with a file system (FSDirectoryProvider) and an in-memory implementation
(RAMDirectoryProvider), though it also supports custom implementations. Hibernate Search is responsible for the
configuration and initialization of Lucene resources, including the directory via DirectoryProviders. We want
easy access to index files (with the ability to physically inspect indexes with external tools, like Luke), so we'll use
the file system to store them by setting the hibernate.search.default.directory provider property as
filesystem. Besides the directory provider, we also have to specify the default base directory for all indexes via
the hibernate.search.default. indexBase property. Finally, we can specify the locking strategy (in this case, the
filesystem-level lock) by setting the hibernate.search.default.locking_strategy property to single; thisisa
Java object lock held in memory. Add these configurations in hibernate.cfg.xml (or in HibernateUtil) for OGM via
the Hibernate Native APJ, or in persistence.xml for OGM via JPA, like this:

//in hibernate.cfg.xml

<property name="hibernate.search.default.directory provider">filesystem</property>
<property name="hibernate.search.default.indexBase">./Indexes</property>
<property name="hibernate.search.default.locking strategy">single</property>...

Or:

//in HibernateUtil
OgmConfiguration cfgogm = new OgmConfiguration();

cfgogm.setProperty("hibernate.search.default.directory provider","filesystem");

cfgogm.setProperty("hibernate.search.default.indexBase","./Indexes");
cfgogm.setProperty("hibernate.search.default.locking strategy", "single");

221

http:///

CHAPTER 6 © HIBERNATE OGM QUERYING MONGODB

Or:

//in persistence.xml

<property name="hibernate.search.default.directory provider" value="filesystem"/>
<property name="hibernate.search.default.indexBase" value="./Indexes"/>
<property name="hibernate.search.default.locking strategy" value="single"/>

Finally, everything is configured and we are ready to start writing Lucene queries. But, from this point on, the
code will be specific to each of the two applications. So let’s start with the OGM via Hibernate Native API application.

Hibernate Search/Apache Lucene Querying—OGM via Native API

The first goal is to write a “select all” query that will help you become familiar with Lucene style in an OGM via Native
API application. Following a step-by-step approach, we can write such a query, like this:

1.

222

Create an org.hibernate.search.FullTextSession. This interface will spice up the
Hibernate session with full-text search and indexing capabilities. This session provides two
ways of writing queries: using the Hibernate Search query DSL (domain search language)
or the native Lucene query. The code to accomplish this is:

FullTextSession fullTextSession =
Search.getFullTextSession(HibernateUtil.getSessionFactory().getCurrentSession());

Create an org.hibernate.search.query.dsl.QueryBuilder and use the new session to
obtain a query builder that helps to simplify the query definition. Notice that we indicate
that our query affects only the Players class:

QueryBuilder queryBuilder = fullTextSession.getSearchFactory().
buildQueryBuilder().forEntity(Players.class).get();

Create a Lucene query. As you'll see in the official documentation, there are several
ways to build a Lucene query using QueryBuilder. For this example, we can use the
queryBuilder.all method, which is a simple approach for obtaining whole documents:

org.apache.lucene.search.Query query = queryBuilder.all().createQuery();

Define a sort rule (optional). We can easily define a sort rule using the Lucene sort
capabilities. For example, we might need to sort the extracted players by name:

org.apache.lucene.search.Sort sort = new Sort(new SortField("name", SortField.STRING));
Wrap the Lucene query in an org.hibernate.FullTextQuery. In order to configure the

sort rule and execute the query, we need to wrap the Lucene query into a FullTextQuery,

like this:

FullTextQuery fullTextQuery = fullTextSession.createFullTextQuery(query, Players.class);

Specify the object lookup method and database retrieval method. For OGM you must
specify object lookup and database retrieval methods (SKIP specifies to not check if

http:///

CHAPTER 6 * HIBERNATE OGM QUERYING MONGODB

objects are already present in the second level cache or in the persistence context;
FIND_BY_IDloads each object by its identifier one by one):

fullTextQuery.initializeObjectshWith(ObjectLookupMethod.SKIP,
DatabaseRetrievalMethod.FIND BY ID);

7. Setthesortrule. You can set the sort rule by calling the setSort method:
fullTextQuery.setSort(sort);

8. Execute the query. Finally, we execute the query and obtain the resultsin a java.util.List:
List<Players> results = fullTextQuery.list();

9. Optionally, clear up the session:
fullTextSession.clear();

We can put these nine steps in a method named selectAllAction to create our first Hibernate Search/Lucene query.
You can find this method in a session bean, named SampleBean, in the package hogm.hnapi.ejb shown in Listing 6-7.

Listing 6-7. The selectAllAction Method
package hogm.hnapi.ejb;
public class SampleBean {

public List<Players> selectAllAction() {
log.info("Select all Players instance ...");

FullTextSession fullTextSession =
Search.getFullTextSession(HibernateUtil.getSessionFactory().getCurrentSession());
QueryBuilder queryBuilder = fullTextSession.getSearchFactory().
buildQueryBuilder().forEntity(Players.class).get();
org.apache.lucene.search.Query query = queryBuilder.all().createQuery();
org.apache.lucene.search.Sort sort = new Sort(new SortField("name", SortField.STRING));

FullTextQuery fullTextQuery = fullTextSession.createFullTextQuery(query, Players.class);
fullTextQuery.initializeObjectsWith(ObjectLookupMethod.SKIP,
DatabaseRetrievalMethod.FIND BY ID);

fullTextQuery.setSort(sort);
List<Players> results = fullTextQuery.list();

fullTextSession.clear();
log.info("Search complete ...");

return results;

223

http:///

CHAPTER 6 * HIBERNATE OGM QUERYING MONGODB
The nine steps can be used as a quick guide for writing many other kinds of queries. Now let’s see how to write
some common queries:

o Select all players born in 1987. This query (and similar queries) can be easily written
using three methods: queryBuilder.keyword, which indicates we're searching for a
specific word; TermContext.onField, which specifies in which Lucene field to look; and
TermMatchingContext.matching, which tells what to look for. So, wrapping this query into a
method named selectByYearAction looks like what’s shown in Listing 6-8.

Listing 6-8. The selectByYearAction Method

package hogm.hnapi.ejb;
p.n.ﬂ.)lic class SampleBean {
puk‘)iic List<Players> selectByYearAction() {
log.info("Search only Players instances 'born in 1987' ...");

Calendar calendar = GregorianCalendar.getInstance(TimeZone.getTimeZone("UTC"));
calendar.clear();

calendar.set(Calendar.YEAR, 1987);
FullTextSession fullTextSession =
Search.getFullTextSession(HibernateUtil.getSessionFactory().getCurrentSession());
QueryBuilder queryBuilder = fullTextSession.getSearchFactory().
buildQueryBuilder().forEntity(Players.class).get();

org.apache.lucene.search.Query query =
queryBuilder .keyword().onField("birth").matching(calendar.getTime()).createQuery();

FullTextQuery fullTextQuery = fullTextSession.createFullTextQuery(query, Players.class);

fullTextQuery.initializeObjectsWith(ObjectLookupMethod.SKIP,
DatabaseRetrievalMethod.FIND_BY ID);

List<Players> results = fullTextQuery.list();

fullTextSession.clear();

log.info("Search complete ...");

return results;

e Select only a player named Rafael Nadal. This query (and similar queries) searches for two
words in two different fields, “Rafael” and “Nadal.” The query looks for the first word in
the player surname column (surname field), and for the second word in the player_name
column (name field). For this, you can use one of the aggregation operators, named must.
(Aggregations operators allow you to combine simple queries into more complex queries.)

224

http:///

CHAPTER 6 * HIBERNATE OGM QUERYING MONGODB

Wrapping the necessary code into a method named selectRafaelNadalAction shows this.
The bool method indicates that we've created a Boolean query—a query that finds documents
matching Boolean combinations of other queries. (See Listing 6-9.)

Listing 6-9. The selectRafaelNadalAction Method
package hogm.hnapi.ejb;
public class SampleBean {
public List<Players> selectRafaelNadalAction() {
log.info("Search only Players instances that have the name 'Nadal' and surname 'Rafael’ ...");
FullTextSession fullTextSession =
Search.getFullTextSession(HibernateUtil.getSessionFactory().getCurrentSession());

QueryBuilder queryBuilder = fullTextSession.getSearchFactory().
buildQueryBuilder().forEntity(Players.class).get();
org.apache.lucene.search.Query query = queryBuilder.bool().must(queryBuilder.keyword()
.onField("name").matching("Nadal").createQuery()).must(queryBuilder.keyword()
.onField("surname").matching("Rafael™).createQuery()).createQuery();

FullTextQuery fullTextQuery = fullTextSession.createFullTextQuery(query, Players.class);

fullTextQuery.initializeObjectsWith(ObjectLookupMethod.SKIP,
DatabaseRetrievalMethod.FIND BY ID);

List<Players> results = fullTextQuery.list();
fullTextSession.clear();

log.info("Search complete ...");

return results;

e Select players with surnames starting with the letter ’J. This query (and similar queries) can be
written using wildcards. The ? represents a single character and the * represents any character
sequence. The TermContext.wildcard method indicates that a wildcard query follows.
Wrapping the necessary code into a method named selectJAction shows this.

(See Listing 6-10.)
Listing 6-10. The selectJAction Method
package hogm.hnapi.ejb;
public class SampleBean {

public List<Players> selectJAction() {

log.info("Search only Players that surnames begins with 'J' ...");

225

http:///

CHAPTER 6 © HIBERNATE OGM QUERYING MONGODB

FullTextSession fullTextSession =

Search.getFullTextSession(HibernateUtil.getSessionFactory().getCurrentSession());

QueryBuilder queryBuilder = fullTextSession.getSearchFactory().
buildQueryBuilder().forEntity(Players.class).get();

org.apache.lucene.search.Query query = queryBuilder.keyword().wildcard()
.onField("surname").matching("J*").createQuery();

FullTextQuery fullTextQuery = fullTextSession.createFullTextQuery(query, Players.class);
fullTextQuery.initializeObjectsWith(ObjectLookupMethod.SKIP,
DatabaseRetrievalMethod.FIND BY ID);

List<Players> results = fullTextQuery.list();
fullTextSession.clear();

log.info("Search complete ...");

return results;

Select players with ages in the interval (25,28). This query (and similar queries) can be treated
as range queries. Such a query searches for a value in an interval (boundaries included or
not) or for a value below or above the interval boundary (boundaries included or not). You
indicate that a range query follows by calling the QueryBuilder.range method. The interval
is set by calling the from and to methods, and the interval’s boundaries can be excluded

by calling the excludeLimit method. Wrapping the necessary code into a method named
select25To28AgeAction will show this. (See Listing 6-11.)

Listing 6-11. The select25To28AgeAction Method

package hogm.hnapi.ejb;

public class SampleBean {

public List<Players> select25To28AgeAction() {

226

log.info("Search only Players that have ages between 25 and 28, excluding limits ...");

FullTextSession fullTextSession =
Search.getFullTextSession(HibernateUtil.getSessionFactory().getCurrentSession());
QueryBuilder queryBuilder = fullTextSession.getSearchFactory().
buildQueryBuilder().forEntity(Players.class).get();

org.apache.lucene.search.Query query = queryBuilder.range()
.onField("age").from(25).to(28).excludeLimit().createQuery();

FullTextQuery fullTextQuery = fullTextSession.createFullTextQuery(query, Players.class);
fullTextQuery.initializeObjectsWith(ObjectLookupMethod.SKIP,
DatabaseRetrievalMethod.FIND_BY_ID);

http:///

CHAPTER 6 * HIBERNATE OGM QUERYING MONGODB

List<Players>results = fullTextQuery.list();
fullTextSession.clear();

log.info("Search complete ...");

return results;

Note As you can see, you can easy model a range using the from, to, and excludeLimit methods. Beside these,
Lucene provides the below and above methods. Using them in a logical approach, you can obtain the well-known
operators “<” (less than), “>" (greater than), “<=" (less than or equal t0)”, and “>=" greater than or equal to).

There are many other kinds of queries you can write, you just have to explore more documentation about
Hibernate Search and Apache Lucene. For the queries mentioned, I developed a complete application that’s available
in the Apress repository and is named HOGM_MONGODB_HNAPI_HS. It comes as a NetBeans project and was tested under
GlassFish 3 AS. Figure 6-10 shows this application.

Player | Player ([Player| Player Plaver Player |Player| Player Player | Player ([Player| Player Player | Player |Player| Player Player | Player ’m’m
Name |Surname | Age Birth Name Surname | Age Birth Name | Surname | Age Birth Name |Surname | Age Birth Name [Surname| Age || Birth
Berdych [Tomas [27 [16.09.1985)| [Nadal [Rafasl |26 [03.06 1986 | [Tipsarevic|Janko |28 |21.06.1984)|[Berdych |[Tomas |27 [16.09 1985 [Muray[Andy |25 [1987 |
Murray [Andy 25 15.05.1987 Tsonga ||Jo-Wilfried [27 16.04.1985| |Nadal [Rafael 26 03.06.1986
[Nadal [Rafael 26 03.06.1986 Tipsarevic Janko 28 21.06.1984
| Tipsarevic |Tanko 28 21.06.1984 Tsonga ||To-Wilfried |27 16.04.1985

Tsonga ||Jo-Wilfiied |27 16.04.1985

Figure 6-10. The HOGM_MONGODB_HNAPI_HS application

Note You can rebuild the index (deleting it and then reloading all entities from the database) by calling the
startAndWait method: fullTextSession.createIndexer().startAndWait();

When you have associations (or embedded objects), you need to provide a few more annotations. Associated
objects (and embedded objects) can be indexed as part of the root entity index. For this, the association is marked
with @IndexedEmbedded. When the association is bidirectional, the other side must be annotated with @ContainedIn.
This helps Hibernate Search keep up to date the associations indexing process.

For example, let’s suppose that the Players entity is in a many-to-many association with the Tournaments entity
(each player participates in multiple tournaments and each tournament contains multiple players). (And keep in mind
that POJOs annotations are specified in . hbm.xml files.) The annotated POJOs are shown in Listing 6-12 and Listing 6-13.

227

http:///

CHAPTER 6 © HIBERNATE OGM QUERYING MONGODB

Listing 6-12. The Players POJO

package hogm.hnapi.pojo

import
import
import
import
import
import
import
import
import

org.hibernate.search.annotations.Analyze;
org.hibernate.search.annotations.DateBridge;
org.hibernate.search.annotations.DocumentId;
org.hibernate.search.annotations.Field;
org.hibernate.search.annotations.Index;
org.hibernate.search.annotations.Indexed;

org.hibernate.search.annotations.IndexedEmbedded;

org.hibernate.search.annotations.Resolution;
org.hibernate.search.annotations.Store;

@Indexed

public

class Players {

@DocumentId
private String id;

@Field(index = Index.YES, analyze

private String name;

@Field(index = Index.YES, analyze

private String surname;

@Field(index = Index.YES, analyze

private int age;

@Field(index = Index.YES, analyze = Analyze.NO, store

@ateBridge(resolution = Resolution.YEAR)
private Date birth;

@IndexedEmbedded

Collection<Tournaments> tournaments = new ArrayList<Tournaments»(0);

//getters and setters

Listing 6-13. The Tournaments POJO

package hogm.hnapi.pojo

import
import
import
import
import
import
import

org.hibernate.search.annotations.Analyze;
org.hibernate.search.annotations.ContainedIn;
org.hibernate.search.annotations.Documentld;
org.hibernate.search.annotations.Field;
org.hibernate.search.annotations.Index;
org.hibernate.search.annotations.Indexed;
org.hibernate.search.annotations.Store;

@Indexed

public

228

class Tournaments {

Analyze.NO, store

Analyze.NO, store

Analyze.YES, store = Store.NO)

Store.NO)
Store.NO)

Store.NO)

http:///

@DocumentId
private String id;

@Field(index =

Index.YES, analyze =

private String tournament;
@ContainedIn

Collection<Players> players =

//getters and setters

CHAPTER 6

Analyze.YES, store = Store.NO)

new ArrayList<Players>(0);

Now wrap these POJOs into entities, as shown in Listing 6-14 and Listing 6-15.

Listing 6-14. The Players Entity

package hogm.hnapi.entity;

import
import
import
import

org.hibernate.search.annotations
org.hibernate.search.annotations
org.hibernate.search.annotations
org.hibernate.search.annotations

.Analyze;
.DateBridge;
.DocumentId;
.Field;

import
import
import
import
import

org.hibernate.search.annotations.Index;
org.hibernate.search.annotations.Indexed;
org.hibernate.search.annotations.IndexedEmbedded;
org.hibernate.search.annotations.Resolution;
org.hibernate.search.annotations.Store;

@Entity

@Indexed

@Table(name = "atp_players")

@GenericGenerator(name = "mongodb _uuidgg", strategy = "uuid2")
public class Players implements Serializable {

@DocumentId

@Id
@GeneratedValue(generator =
private String id;

"mongodb_uuidgg")

@Column(name = "player name")

@Field(index = Index.YES, analyze = Analyze.YES, store = Store.NO)
private String name;

@Column(name = "player surname")

@Field(index = Index.YES, analyze = Analyze.NO, store = Store.NO)
private String surname;

@Column(name = "player age")

@Field(index = Index.YES, analyze = Analyze.NO, store = Store.NO)
private int age;

@Column(name = "player birth")

@Field

@ateBridge(resolution = Resolution.YEAR)
@Temporal(javax.persistence.TemporalType.DATE)
private Date birth;

@ManyToMany(cascade = CascadeType.PERSIST,fetch=FetchType.EAGER)

HIBERNATE OGM QUERYING MONGODB

229

http:///

CHAPTER 6 © HIBERNATE OGM QUERYING MONGODB

@IndexedEmbedded
private Collection<Tournamentsy tournaments= new ArraylList<Tournamentss(0);

//getters and setters

Listing 6-15. The Tournaments Entity

package hogm.hnapi.entity;

import org.hibernate.search.annotations.Analyze;
import org.hibernate.search.annotations.ContainedIn;
import org.hibernate.search.annotations.DocumentId;
import org.hibernate.search.annotations.Field;
import org.hibernate.search.annotations.Index;
import org.hibernate.search.annotations.Indexed;
import org.hibernate.search.annotations.Store;

@Entity

@Indexed

@Table(name = "atp_tournaments")

@GenericGenerator(name = "mongodb_uuidgg", strategy = "uuid2")
public class Tournaments implements Serializable {

@ocumentId

@Id

@GeneratedValue(generator = "mongodb_uuidgg")

private String id;

@Field(index = Index.YES, analyze = Analyze.YES, store = Store.NO)
private String tournament;

@ManyToMany(mappedBy = "tournaments", fetch = FetchType.EAGER)
@ContainedIn

private Collection<Playersy players = new ArrayList<Players»(0);

//getters and setters

Now you can write Hibernate Search/Apache Lucene queries. (The official documentation can be a good place

to start testing queries for associations.) For testing purposes, I've integrated the preceding POJOs and entities into an

application named HOGM_MONGODB_HNAPI_ASSOCIATIONS HS that can be downloaded from the Apress repository (there
are two queries involved). It comes as a NetBeans project and was tested under GlassFish 3 AS. Figure 6-11 shows this

application.

230

http:///

CHAPTER 6 * HIBERNATE OGM QUERYING MONGODB

Insert A Set Of Players (before each press drop MongoDEB database from shell)

Players -> Tournaments Tournaments -> Players
Player Name |Player Surname |Player Age|[Player Birth Tournament Name ‘ Tournament Name | Player
BNP Paribas Open Berdych [Tomas | 27[16.09.1985
Tsonga Jo-Wilfried 27 16.04.1985 || Dubai Duty Free Tenanis Championships ‘Mmray |And}' E|15_05_1937
ABN AMRO World Tennis Tournament ‘Del Potro |JuanNIa1ﬁnE|23.09.1988
Sony Open Tennis
ENP Paribas Open [Federer [Roger |31[08.08.1981
Open Sud de France [Nadel [Rafael |26[03.06.1986
Berdych Tomas 27 16.09.1985 || Sony Open Tennis ‘Fma{ |David Ebg_m_]ggz
Erste Bank Open |_
Rakuten Japan Open Tennis Championships [Federer |Roger [31 [08.08.1981
) Muray [andy [25[15.05.1987
Open Sud de France Gerry Weber Open
: , [Nadal |Rafael [26][03.06.1986
Barclays ATP World Tour Finals ‘ ‘ - |—|
ABN AMRO World Tennis Tournament Fomer |David 130 102.04.1982
BNP Parib: , . s[5 05
Diokovic [Novak 25 22.05.1987 aribas Open Maray [andy 251505 1987
Aegon Championships [Federer [Roger |31[08.08.1981

Dubai Duty Free Tennis Championships Shanghai Rolex Masters |[Nadal |Rafael |[26]03.06.1986
Ralauten Japan Open Tennis Championships ‘Fma{ |David E|02.04.1982

Clina Open [Del Potro [fuan Martin| 2423 09 1988
gn};m;;i:r;;ﬂal Duray [Asdy |25(15.05.1987
Sony Open Temis Stockhalm Femer [David |[30[02.04.1982
op;ﬂ Sud de France tockholm Open [Del Potro [Fuan Martin|24]23 09 1988
Acgon Championships Nadal |[Rafzel |[26[03.06.1986

Figure 6-11. The HOGM_MONGODB_HNAPI_ASSOCIATIONS_HS application

Note You can easily drop a MongoDB database from the shell by typing the command db.dropDatabase();.

Hibernate Search/Apache Lucene Querying—OGM via JPA

Remember the “select all” query we wrote earlier? This time, we’ll write the same query for an application based on
OGM via JPA. The steps for accomplishing this task are:

1. Create an org.hibernate.search.jpa.FullTextEntityManager. This interface spices up
the OGM EntityManager with full-text search and indexing capabilities. Here’s the code to
accomplish this (em is the EntityManager instance):

FullTextEntityManager fullTextEntityManager =
org.hibernate.search.jpa.Search.getFullTextEntityManager(em);

2. Create anorg.hibernate.search.query.dsl.QueryBuilder. Use the new entity manager
to obtain a query builder that will help simplify the query definition. Note that you indicate
that the query affects only the Players class:

QueryBuilder queryBuilder = fullTextEntityManager.getSearchFactory().
buildQueryBuilder().forEntity(Players.class).get();

231

http:///

CHAPTER 6

HIBERNATE OGM QUERYING MONGODB

Create a Lucene query. As the official documentation shows, there are several ways
to build a Lucene query using queryBuilder. For this example, we can use the
queryBuilder.all method, which is a simple approach for obtaining whole documents:

org.apache.lucene.search.Query query = queryBuilder.all().createQuery();

Define a sort rule (optional). You can easily define a sort rule using the Lucene sort
capabilities. For example, you may need to sort the extracted players by name:

org.apache.lucene.search.Sort sort = new Sort(new SortField("name", SortField.STRING));

Wrap the Lucene query in an org.hibernate.FullTextQuery. In order to set the sort rule
and execute the query, you need to wrap the Lucene query in a FullTextQuery, like this:

FullTextQuery fullTextQuery = fullTextEntityManager.createFullTextQuery(query, Players.class);

Specity the object lookup method and the database retrieval method. For OGM, you must
specify object lookup and database retrieval methods, like this:

fullTextQuery.initializeObjectsWith(ObjectLookupMethod.SKIP,
DatabaseRetrievalMethod.FIND_BY_ID);

Set the sort rule. You can set the sort rule by calling the setSort method, like so:
fullTextQuery.setSort(sort);

Execute the query. Finally, you can execute the query and obtain the results in a
java.util.Llist:

List<Players> results = fullTextQuery.getResultList();

Clear up the session (optional):

fullTextEntityManager.clear();

Now, you can put these nine steps in a method named selectAllAction to obtain the Hibernate Search/Lucene
query shown in Listing 6-16.

Listing 6-16. The selectAllAction Method

package hogm.jpa.ejb;

public class SampleBean {

public List<Players> selectAllAction() {

232

log.info("Select all Players instance ...");

http:///

CHAPTER 6 * HIBERNATE OGM QUERYING MONGODB

FullTextEntityManager fullTextEntityManager =
org.hibernate.search.jpa.Search.getFullTextEntityManager (em);

QueryBuilder queryBuilder = fullTextEntityManager.getSearchFactory().
buildQueryBuilder().forEntity(Players.class).get();
org.apache.lucene.search.Sort sort = new Sort(new SortField("name", SortField.STRING));
org.apache.lucene.search.Query query = queryBuilder.all().createQuery();
FullTextQuery fullTextQuery = fullTextEntityManager.createFullTextQuery(query, Players.class);
fullTextQuery.initializeObjectsWith(ObjectLookupMethod.SKIP,
DatabaseRetrievalMethod.FIND BY ID);

fullTextQuery.setSort(sort);
List<Players> results = fullTextQuery.getResultList();

fullTextEntityManager.clear();
log.info("Search complete ...");

return results;

The nine steps can be used as a quick guide for writing many other kinds of queries. In addition, you can see
how to write some common queries (these are the same queries from the section “Hibernate Search/Apache Lucene
Querying OGM via Native APL" rewritten for the OGM via JPA case).

Select all players born in 1987. This query (and similar queries) can be easily written

using three methods: QueryBuilder.keyword, which indicates we're searching for a

specific word; TermContext.onField, whichspecifies in which Lucene field to look; and
TermMatchingContext.matching, which tells what to look for. So, wrapping this query into a
method named selectByYearAction looks like what’s shown in Listing 6-17.

Listing 6-17. The selectByYearAction Method

package

hogm. jpa.ejb;

public class SampleBean {

public List<Players> selectByYearAction() {

log.info("Search only Players instances born in 1987 ...");

Calendar calendar = GregorianCalendar.getInstance(TimeZone.getTimeZone("UTC"));
calendar.clear();

calendar.set(Calendar.YEAR, 1987);
FullTextEntityManager fullTextEntityManager =

org.hibernate.search.jpa.Search.getFullTextEntityManager(em);

233

http:///

CHAPTER 6 © HIBERNATE OGM QUERYING MONGODB

QueryBuilder queryBuilder = fullTextEntityManager.getSearchFactory().
buildQueryBuilder().forEntity(Players.class).get();

org.apache.lucene.search.Query query = queryBuilder.keyword()
.onField("birth").matching(calendar.getTime()).createQuery();

FullTextQuery fullTextQuery = fullTextEntityManager.createFullTextQuery(query, Players.class);
fullTextQuery.initializeObjectsWith(ObjectLookupMethod.SKIP,
DatabaseRetrievalMethod.FIND BY ID);

List<Players> results = fullTextQuery.getResultlList();
fullTextEntityManager.clear();
log.info("Search complete ...");

return results;

Select only the player named Rafael Nadal. This query (and similar queries) searches for two
words in two different fields, “Rafael” and “Nadal” The query looks for the first word in the
player surname column (surname field), and for the second word in the player name column
(name field). For this, you can use one of the aggregation operators, named must. Wrapping
the necessary code into a method named selectRafaelNadalAction shows this. The bool
method indicates that we have created a Boolean query. (See Listing 6-18.)

Listing 6-18. The selectRafaelNadalAction Method

package hogm.jpa.ejb;

public class SampleBean {

public List<Players> selectRafaelNadalAction() {

234

log.info("Search only Players instances that have the name 'Nadal' and surname 'Rafael’ ...");

FullTextEntityManager fullTextEntityManager =
org.hibernate.search.jpa.Search.getFullTextEntityManager (em);
QueryBuilder queryBuilder = fullTextEntityManager.getSearchFactory().
buildQueryBuilder().forEntity(Players.class).get();

org.apache.lucene.search.Query query = queryBuilder.bool().must(queryBuilder.keyword()
-onField("name") .matching("Nadal").createQuery()).must(queryBuilder.keyword()
.onField("surname").matching("Rafael").createQuery()).createQuery();

FullTextQuery fullTextQuery = fullTextEntityManager.createFullTextQuery(query, Players.class);
fullTextQuery.initializeObjectsWith(ObjectLookupMethod.SKIP,
DatabaseRetrievalMethod.FIND_BY_ID);

http:///

CHAPTER 6 * HIBERNATE OGM QUERYING MONGODB

List<Players> results = fullTextQuery.getResultList();
fullTextEntityManager.clear();

log.info("Search complete ...");

return results;

o Select players with surnames starting with the letter J." This query (and similar queries) can be
written using wildcards. The ? represents a single character and the * represents any character
sequence. The TermContext.wildcard method indicates that a wildcard query follows. Wrapping
the necessary code into a method named selectJAction will show this. (See Listing 6-19.)

Listing 6-19. The selectJAction Method

package hogm.jpa.ejb;
p‘n‘lk‘)lic class SampleBean {
é&élic List<Players> selectJAction() {
log.info("Search only Players that surnames begins with 'J" ...");

FullTextEntityManager fullTextEntityManager =
org.hibernate.search.jpa.Search.getFullTextEntityManager(em);

QueryBuilder queryBuilder = fullTextEntityManager.getSearchFactory()
.buildQueryBuilder().forEntity(Players.class).get();

org.apache.lucene.search.Query query = queryBuilder.keyword().wildcard()
.onField("suxname").matching("J*").createQuery();

FullTextQuery fullTextQuery = fullTextEntityManager.createFullTextQuery(query, Players.class);
fullTextQuery.initializeObjectsWith(ObjectLookupMethod.SKIP,
DatabaseRetrievalMethod.FIND BY ID);

List<Players> results = fullTextQuery.getResultList();
fullTextEntityManager.clear();

log.info("Search complete ...");

return results;

235

http:///

CHAPTER 6 © HIBERNATE OGM QUERYING MONGODB

o Select players with ages in the interval (25,28). This query (and similar queries) can be treated
as range queries. Such a query searches for a value in an interval (boundaries included or
not) or for a value below or above the interval boundary (boundaries included or not). You
indicate that a range query follows by calling the queryBuilder.range method. The interval
is set by calling the from and to methods, and the interval’s boundaries can be excluded
by calling the excludeLimit method. Wrapping the necessary code into a method named
select25To28AgeAction will show this. (See Listing 6-20.)

Listing 6-20. The select25To28AgeAction Method

package hogm.jpa.ejb;
p.n.ﬂ.)lic class SampleBean {
p‘n‘lk‘)lic List<Players> select25To28AgeAction() {
log.info("Search only Players that have ages between 25 and 28, excluding limits ...");

FullTextEntityManager fullTextEntityManager =
org.hibernate.search.jpa.Search.getFullTextEntityManager(em);

QueryBuilder queryBuilder = fullTextEntityManager.getSearchFactory()
.buildQueryBuilder().forEntity(Players.class).get();

org.apache.lucene.search.Query query = queryBuilder.range().onField("age")
.from(25).to(28).excludeLimit().createQuery();

FullTextQuery fullTextQuery = fullTextEntityManager.createFullTextQuery(query, Players.class);
fullTextQuery.initializeObjectsWith(ObjectLookupMethod.SKIP,
DatabaseRetrievalMethod.FIND BY ID);

List<Players> results = fullTextQuery.getResultlList();
fullTextEntityManager.clear();

log.info("Search complete ...");

return results;

There are many other kinds of queries you can write, you just have to delve into the available documentation
about Hibernate Search and Apache Lucene. For the queries covered, I developed a complete application that’s
available in the Apress repository and is named HOGM_MONGODB_JPA_HS. It comes as a NetBeans project and was tested
under GlassFish 3 AS. Figure 6-12 shows this application.

236

http:///

CHAPTER 6 * HIBERNATE OGM QUERYING MONGODB

‘P]ayer Player |Player| Player Player | Player |Player| Player Player | Player |Player| Player P'laver Player |Player| Player ‘P]aver Player |Player |Player
Name ||Surmame| Age | Birth || Name ||Surname| Age | Birth Name |Surmame| Age | Birth Name Surname | Age | Birth Name ||Surname| Age | Birth
Bedych [Tomas [27 [16.09.1985] [Nadal [Rafael [26 [03.06.1986] [Tpsarevic [Tanko [28 [21.06.1984] [Djokovic [Novak 25 [22.05.1987| [Djckovic [Novak [25 [[1987
Dijokovic |[Novak |25 22.05.1987 [Berdych |[Tomas 27 16.09.1985

Ferrer [David 30 02.04.1982 [Nadal [Rafael 26 03.06.1986

Ferrer [David 30 02.04.1982

Nadal [Rafael 26 03.06.1986

Tipsarevic Janko 28 21.06.1984

Figure 6-12. The HOGM_MONGODB_JPA_HS application

Note You can rebuild the index (deleting it and then reloading all entities from the database) by calling the
startAndWait method: fullTextEntityManager.createIndexer().startAndwWait();

When you have associations (or embedded objects), you need to provide a few more annotations. Associated
objects (and embedded objects) can be indexed as part of the root entity index. For this, the association is marked
with @IndexedEmbedded. When the association is bidirectional, the other side must be annotated with @ContainedIn.
This helps Hibernate Search keep the associations indexing process up to date.

For example, let’s suppose that the Players entity is in a many-to-many association with the Tournaments entity
(each player participates in multiple tournaments and each tournament contains multiple players). The annotated
Players entity listing is shown in Listing 6-21.

Listing 6-21. The Annotated Players Entity

package hogm.jpa.entity;

import
import
import
import
import
import
import
import
import

org.hibernate.
org.hibernate.
org.hibernate.
org.hibernate.
org.hibernate.
org.hibernate.

search

.annotations
search.
search.
search.
search.
search.

annotations.
annotations.
annotations.
annotations.
annotations.

.Analyze;

DateBridge;
DocumentId;
Field;
Index;
Indexed;

org.hibernate.search.annotations.IndexedEmbedded;
org.hibernate.search.annotations.Resolution;
org.hibernate.search.annotations.Store;

@Entity

@Indexed

@Table(name = "atp_players")

@GenericGenerator(name = "mongodb_uuidgg", strategy =
public class Players implements Serializable {

"yuid2")

@DocumentId

@Id
@GeneratedValue(generator
private String id;

"mongodb_uuidgg")

237

http:///

CHAPTER 6 © HIBERNATE OGM QUERYING MONGODB

@Column(name = "player name")
@Field(index = Index.YES, analyze
private String name;

@Column(name = "player surname")
@Field(index = Index.YES, analyze
private String surname;
@Column(name = "player age")
@Field(index = Index.YES, analyze = Analyze.NO, store = Store.NO)

private int age;

@Column(name = "player birth")

@Field

@ateBridge(resolution = Resolution.YEAR)

@Temporal (javax.persistence.TemporalType.DATE)

private Date birth;

@ManyToMany(cascade = CascadeType.PERSIST,fetch=FetchType.EAGER)
@IndexedEmbedded

private Collection<Tournaments» tournaments= new ArrayList<Tournamentss(0);

Analyze.YES, store = Store.NO)

Analyze.NO, store = Store.NO)

//getters and setters

And the Tournaments entity is shown in Listing 6-22.

Listing 6-22. The Annotated Tournaments Entity

package hogm.jpa.entity;

import org.hibernate.search.annotations.Analyze;
import org.hibernate.search.annotations.ContainedIn;
import org.hibernate.search.annotations.DocumentId;
import org.hibernate.search.annotations.Field;
import org.hibernate.search.annotations.Index;
import org.hibernate.search.annotations.Indexed;
import org.hibernate.search.annotations.Store;

@Entity

@Indexed

@Table(name = "atp_tournaments")

@GenericGenerator(name = "mongodb_uuidgg", strategy = "uuid2")
public class Tournaments implements Serializable {

238

@ocumentId

@Id

@GeneratedValue(generator = "mongodb_uuidgg")

private String id;

@Field(index = Index.YES, analyze = Analyze.YES, store = Store.NO)
private String tournament;

@ManyToMany (mappedBy = "tournaments", fetch = FetchType.EAGER)

http:///

CHAPTER 6 * HIBERNATE OGM QUERYING MONGODB

@ContainedIn
private Collection<Playersy players = new ArrayList<Players»(0);

//getters and setters

Now you can write Hibernate Search/Apache Lucene queries. (The official documentation can be a good place
to start testing queries for associations.) For testing purposes, I've integrated the preceding entities into an application
named HOGM_MONGODB_JPA_ASOCIATIONS_HS that can be downloaded from the Apress repository (there are two queries
involved). It comes as a NetBeans project and was tested under GlassFish 3 AS. Figure 6-13 shows this application.

| Insert A Set Of Players (before each press drop MongoDB database from shell) |

Players > Tournaments Tournaments = Players
[Player Name [Player Surname Player Age Player Birth ‘ Tournament Name | Tournament Name Player
China Open Federer |Roger ||31[08.08.1981
Tsonga \Jo-Wilfried 27 16.04.1985 |BMW Open Del Potro||Juan Martin ’E 23.00.1088
Aegon Championships Somy Open Tennis I
g amp! Nadal |Rafael 2603.06.1986
BNP Paribas Open [Ferer [David [3002.04 1982
If Stockholm Open -
Berdych [Tomas 27 16.09 1985 Del PotroJuan Martin 24 [23 09 1988

BMW Open
Brisbane International

Gerry Weber Open [Nadal |Rafasl |26/03 061986
[Diokovic [Novak |[25[22.05.1987

Open Sud de France

Gerry Weber Open Federer |Roger |31]08.08.1981

Coupe Rogers Del Potro|[Juan Martin]24)[23.09.1988
: Aegon Championships [Berdych |Tomas [2716.09.1985

[Djokovic (Novak 25 22.05.1987 If Stockholm Open -

I Stockholm Open Op IDjokovic [Novak |[25[22.05 1987

China Open Fewer |David |30[02.04.1982

Barclays ATP World Tour Finals Mumray | Andy 25(15.05.1987

RAMK Onan = =

Figure 6-13. The HOGM_MONGODB_JPA_ASSOCIATIONS_HS application

We stop here, but this may be just the beginning of your exploration of the amazing power of Hibernate Search
and Apache Lucene combined. I've given you a starting point for querying MongoDB collections via OGM and
Hibernate Search/Apache Lucene. From this point forward, it’s up to you how much you go in the Hibernate
Search/Apache Lucene territory.

Hibernate OGM JP-QL Parser

According to the Hibernate OGM documentation, version 4.0.0Betal includes a JP-QL basic parser capable of
converting simple queries using Hibernate Search. Currently, there are several limitations in using it, iincluding:

¢ Nojoin, aggregation, or other relational operations are implied.
e The Hibernate Session APl is used (JPA integration is coming).

e The target entities and properties are indexed by Hibernate Search (currently there’s
no validation).

239

http:///

CHAPTER 6 © HIBERNATE OGM QUERYING MONGODB

I tried to work around these limitations, but have not been able to develop a functional application to exploit the
JP-QL parser for simple queries. I tried, for the Players entity annotated with @Indexed, @Field, and so on, a simple
query, like this:

Query query = HibernateUtil.getSessionFactory().getCurrentSession().createQuery("from Players p");

Unfortunately, my multiple approaches failed with one single and annoying error: java.lang.
NullPointerException. The indexing process seems to work fine, but the query results list is always null.

Anywayj, this is not such a big issue, since the JP-QL parser is very young and, by the time you read this section,
this information may well be obsolete. The JP-QL parser may be more generous with its query support by then.
For now, you can use the MongoDB Java driver and, of course, Hibernate Search and Apache Lucene.

Summary

After all the hard work of the previous chapters, in this chapter we gathered the fruits. We were able to work with

the stored data by writing queries against MongoDB databases. In particular, in this chapter, you learned how to
write queries using Hibernate Search/Apache Lucene and the MongoDB Java driver. My aim was to provide the basic
information about writing a pure MongoDB Java driver application and an OGM via Native API and/or via

JPA application ready to query a MongoDB database.

240

http:///

CHAPTER 7

MongoDB e-Commerce
Database Model

The market for open source e-commerce software keeps on growing every year. For proof, just look at the many popular
platforms that are used today as starting points for a variety of e-commerce applications. For example, Magento, Zen Cart,
and Spree all provide database schemas ready for storing and querying categories, products, orders, inventories, and so
on. Despite the differences among these platforms, they all have something in common: they provide a SQL database.

For NoSQL stores, the e-commerce software market is a challenge, with most NoSQL stores considered
inappropriate for e-commerce. MongoDB, however, is robust and flexible, with features like support for rich data
models, indexed queries, atomic operations, and replicated writes that prompt us to ask: is MongoDB suitable for
e-commerce applications? Well, this question waits for an authoritative answer, which will probably emerge after both
the enthusiasm and misconceptions regarding MongoDB’s suitability for e-commerce application begin to wane,
and things start to calm down.

It’s generally agreed that MongoDB is fast, reduces the number of tables and associations by using documents
(which are conceptually simpler than tables), and provides flexible schemas. But it has some drawbacks that center
around transactions, consistency, and durability. SQL databases, in contrast, provide safety, but they’re not that fast,
have rigid schemas, need dozens of tables (associations), and can slow development progress (sometimes we need
to write complex queries). Nevertheless, it seems that “safety” is the operative word, since no e-seller (e-retailer)
wants to lose an order or money because of database inconsistency.

Still, “a full-featured, developer-centric e-commerce platform that makes custom code easy, with powerful templates &
expressive syntax’, named Forward (http://getfwd.com/) is ready to show everybody that MongoDB is more than
suitable for e-commerce applications. And so, on a smaller scale, I'll try to sustain this affirmation by developing an
e-commerce data model using MongoDB, and using it in an enterprise application based on Hibernate OGM via JPA
and Hibernate Search/Apache Lucene.

In this chapter, I'll look at converting (or adapting) a specific SQL schema for e-commerce applications to a MongoDB
schema. In Figure 7-1, you can see a database schema for a medium-complexity e-commerce application; most of the
tables are self-explanatory in an e-commerce context. The main tables are categories, products, orders, and users.

241

http://getfwd.com/
http:///

CHAPTER 7 ' MONGODB E-COMMERCE DATABASE MODEL

categories

1]
ucts

ﬂ | m
el |k

e 1w
- (—.‘
===
id id

sku | w price_increment

name
‘ @
— 1
o -
id s
id
amount
shipping_address ol

address_1

Figure 7-1. SQL e-commerce database schema

The main goal is to develop a MongoDB database schema similar to the one in Figure 7-1. By similar, I mean
that we want to reproduce the main functionality (the same query capabilities), not the same tables, associations and
fields. Moreover, we will write the corresponding JPA entities for it. We're going to use Hibernate OGM via JPA, so we'll
need JPA annotations. And we'll be using Hibernate Search and Apache Lucene for querying, so we’ll need Hibernate
Search-specific annotations for indexing data in Lucene.

Even if you're not an e-retailer, you're probably very familiar with many e-commerce terms from the client
perspective, especially categories, products, promotions, orders, shopping carts, purchase orders, payment, shipping
addresses and so on. Such terms are well-known to every Internet user, so I won't try to explain them here.

MongoDB E-commerce Database Architecture

In Figure 7-2, you can see the MongoDB e-commerce database architecture I propose, which I named eshop_db.
The diagram contains the MongoDB collections, their associations, and the corresponding JPA entities (but not the fields).

http:///

CHAPTER 7= MONGODB E-COMMERCE DATABASE MODEL

r

Categories.java G Customers.java

categories ¢ C

customers ¢ C

G Inventory.java
oaddresses.java

G Products.java GOrders.'ava 0 InventoryPK.java

products ¢ C orders_c

o Addresses.java
o CartProducts.java

E - MongoDB collection {li)- Unidirectional many-to-one association

{® -JPAEntity Class {J) -Embeddable Class {{) - Composite Key Class ‘

Figure 7-2. MongoDB E-commerce database schema

Model the Categories Collection (categories_c)

The categories_c collection corresponds to the categories table.

Sorting the products by categories is a common capability on most e-commerce sites. Very likely, the SQL table
specific to categories stores the name of each category and a one-to-many (or, sometimes, a many-to-many) lazy
association to the table responsible for storing products. The idea is to load category names very quickly (without
their products), since they appear on the first page of the e-commerce web site. The products can be loaded later, after
the user chooses a category. But though this works in the case of SQL, in MongoDB you need to be very careful with
associations, since they may start transactions. Our aim is to avoid transactions as much as possible, so I didn’t define
any association in the categories_c collection.

I created the categories collection (categories_c) with the structure shown in Figure 7-3. As you can see, each
document stores an identifier and the category name:

" .-
v_id" : "{3ffcB59-94ed-47e8-8fd1-9F219af3£344", Java Field | Java Type | MongoDB Field
"category_name' : "Wriszthands" N .

o id String _id

i -

v_id" : “ca9f2453-548c—475h-8837-ald917bFE594", category String category_name

L "category_name' : "Racquets"

i
"_id" : "Beec3lebc-55bc—44d4-2f26-36faaalfdcfl",

L "category_name' : '"Calendars'

i
Y_id" : "Befbh5lab-2c84-4866-9fid-dlie63IbBhdIec”.

L "category_name' : “Posters"

categories_c

Figure 7-3. Document sample from the categories_c collection

243

http:///

CHAPTER 7 MONGODB E-COMMERCE DATABASE MODEL
The JPA entity for this collection is shown in Listing 7-1.

Listing 7-1. The JPA Entity for categories_c

1 package eshop.entities;

2

3 import java.io.Serializable;

4 import javax.persistence.Column;

5 import javax.persistence.Entity;

6 import javax.persistence.GeneratedValue;

7 import javax.persistence.Id;

8 import javax.persistence.Table;

9 import org.hibernate.annotations.GenericGenerator;
10 import org.hibernate.search.annotations.Analyze;
11 import org.hibernate.search.annotations.DocumentId;
12 import org.hibernate.search.annotations.Field;

13 import org.hibernate.search.annotations.Index;

14 import org.hibernate.search.annotations.Indexed;
15 import org.hibernate.search.annotations.Store;

16

17 @Entity

18 @Indexed

19 @Table(name = "categories c")

20 public class Categories implements Serializable {
21

22 private static final long serialVersionUID = 1L;
23 @ocumentId

24 @Id

25 @GeneratedValue(generator = "uuid")

26 @GenericGenerator(name = "uuid", strategy = "uuid2")
27 private String id;

28 @Column(name = "category name")

29 @Field(index = Index.YES, analyze = Analyze.NO, store = Store.YES)
30 private String category;

31

32 public String getId() {

33 return id;

34 }

35

36 public void setId(String id) {

37 this.id = id;

38 }

39

40 public String getCategory() {

41 return category;

42 }

43

44 public void setCategory(String category) {

45 this.category = category;

46 }

a7

48 @0verride

244

http:///

CHAPTER 7= MONGODB E-COMMERCE DATABASE MODEL

49 public int hashCode() {

50 int hash = 0;

51 hash += (id != null ? id.hashCode() : 0);

52 return hash;

53 }

54

55 @0verride

56 public boolean equals(Object object) {

57 if (!(object instanceof Categories)) {

58 return false;

59 }

60 Categories other = (Categories) object;

61 if ((this.id == null && other.id != null) || (this.id != null 88&
I'this.id.equals(other.id))) {

62 return false;

63 }

64 return true;

65 }

66

67 @0verride

68 public String toString() {

69 return "eshop.entities.Categories[id=" + id + "]";

70 }

71 }

72

Notice that line 29 specifies that the category id (id field) and category name (category name field) should be
searchable with Lucene and disables analyzers. We don’t need analyzers because we search the category as is (not by
the words it contains), and we'll sort the categories by name (Lucene doesn't let you analyze fields used for sorting
operations). Moreover, category names are stored in the Lucene index. This consumes space in the index, but not a
considerable amount, since you won’t want so many categories as to cause concern. This allows us to take advantage
of projection (notice that the ids are automatically stored). Using projection allows us, in the future, to add more
searchable, non-lazy fields to this collection, such as category code, category description, and so on, but still extract
only the categories names. Of course, this is just an approach (not a rule) specific to Lucene. If you choose to use JP-QL
queries (when Hibernate OGM provides support for such queries), things will be different.

Model The Products Collection (products_c)

The products_c collection corresponds to the products and productoptions tables.

In the collection dedicated to products (products_c), the document for each product stores two kinds of
information: general data, such as SKU, name, price, description and so on; and the kind of data that in a relational
model usually needs additional tables, such as a product’s gallery and a product’s options (for example, colors, sizes,
types, and so on). Instead of using additional tables and associations, I'm going to store each product’s gallery and
options in embedded collections. This makes sense, because these physical details are unique features of the product.
Moreover, the products_c collection is the owner side of the unidirectional many-to-one association with the
categories_c collection, so it stores the foreign keys of the corresponding categories.

In Figure 7-4, you can see such a document sample.

245

http:///

CHAPTER 7 ' MONGODB E-COMMERCE DATABASE MODEL

_idv : V5eb85908 eBlc 4136 adfh 244bi13211e9”. JavaField | Java Type | MongoDB Field
category id "82706202-A7e?-4733-aB38-d536eacPfcBc™,
"colors™ : [id String _id
< @ e sku String product_sku
" product_colors" = “Red product String prodllc.t_na.me
I price double produci_price _
"product_colors" = "Khaki" old_price douhble product_old_price
>. description | String product_description
4
3 product_colors" : “Black gallery List<String>| product_gallery
1. colors List<String>| product_colors
"gallery‘{' EI sizes List<String>| product_sizes
vproduct _gallery” : “tops_BBO1_4_png"
>
£ @ManyToOne| Categories | category_id
"product_gallery™ : “tops_@BB1_1.png" category
3.
<
N "product_gallery™ : "tops_BBA1_3.png"
<
" "product_gallery" : "tops_@B6881_2._png'
1.
“"product_description" : "This T-Shirt is only for real fans ...".
“product_name" : “Bull Logo T-Shiet",
"product_old_price" : 8.
"product_price" : 26.9.
“product_sku™ : "TOPS_BBB1",
Ysizes" 1 [
" "product_sizes" @ "M"
+
"product_sizes" : "L"
.
£
"product_sizes™ : "KEL"
3.
<
"product_sizes" = "REL"
] 3 products_c
ik

Figure 7-4. Sample document from products_c collection

Each product will be represented by such a document. The colors and sizes embedded collections will be visible
only for products that have these options.
The JPA entity for this collection is shown in Listing 7-2.

Listing 7-2. The JPA entity for products_c

1 package eshop.entities;

2

3 import java.io.Serializable;

4 import java.util.Arraylist;

5 import java.util.list;

6 import javax.persistence.Column;

7 import javax.persistence.ElementCollection;

8 import javax.persistence.Entity;

9 import javax.persistence.FetchType;

10 import javax.persistence.GeneratedValue;

11 import javax.persistence.Id;

12 import javax.persistence.ManyToOne;

13 import javax.persistence.Table;

14 import org.hibernate.annotations.GenericGenerator;
15 import org.hibernate.search.annotations.Analyze;

16 import org.hibernate.search.annotations.DocumentId;
17 import org.hibernate.search.annotations.Field;

18 import org.hibernate.search.annotations.Index;

19 import org.hibernate.search.annotations.Indexed;

20 import org.hibernate.search.annotations.IndexedEmbedded;

246

http:///

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
M
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

57
58
59
60

61
62
63
64

65
66
67

CHAPTER 7

import org.hibernate.search.annotations.NumericField;
import org.hibernate.search.annotations.Store;

@Entity

@Indexed

@Table(name = "products c")

public class Products implements Serializable {

private static final long serialVersionUID = 1L;
@DocumentId

@1d

@GeneratedValue(generator = "uuid")
@GenericGenerator(name = "uuid", strategy = "uuid2")
private String id;

@Column(name = "product sku")
@Field(index = Index.YES, analyze
private String sku;

@Column(name = "product name")

Analyze.NO, store =

@Field(index = Index.YES, analyze = Analyze.YES, store =

private String product;

@Column(name = "product price")

@NumericField

@Field(index = Index.YES, anmalyze = Analyze.NO, store =

private double price;

@Column(name = "product_old_price")

@NumericField

@Field(index = Index.YES, analyze = Analyze.NO, store =

private double old price;

@Column(name = "product description")

@Field(index = Index.YES, analyze = Analyze.NO, store =

private String description;

@IndexedEmbedded

@ManyToOne(fetch = FetchType.LAZY)

private Categories category;

@IndexedEmbedded

@ElementCollection(targetClass = java.lang.String.class,
fetch = FetchType.EAGER)

@Column(name = "product_gallery")

private List<String> gallery = new ArraylList<String»>();

@IndexedEmbedded

@ElementCollection(targetClass = java.lang.String.class,
fetch = FetchType.EAGER)

@Column(name = "product_colors")

private List<String> colors = new ArraylList<String>();

@IndexedEmbedded

@ElementCollection(targetClass = java.lang.String.class,
fetch = FetchType.EAGER)

@Column(name = "product_sizes")

private List<String> sizes = new ArrayList<String>();

MONGODB E-COMMERCE DATABASE MODEL

Store.NO)

Store.NO)

Store.NO)

Store.NO)

Store.NO)

247

http:///

CHAPTER 7 ' MONGODB E-COMMERCE DATABASE MODEL

68 public String getId() {

69 return id;

70 }

71

72 public void setId(String id) {

73 this.id = id;

74 }

75

76 public List<String> getGallery() {
77 return gallery;

78 }

79

80 public void setGallery(List<String> gallery) {
81 this.gallery = gallery;

82 }

83

84 public double getPrice() {

85 return price;

86 }

87

88 public void setPrice(double price) {
89 this.price = price;

90 }

91

92 public double getOld price() {

93 return old price;

94 }

95

96 public void setOld price(double old price) {
97 this.old_price = old price;

98 }

99

100 public String getProduct() {

101 return product;

102 }

103

104 public void setProduct(String product) {
105 this.product = product;

106 }

107

108 public String getSku() {

109 return sku;

110 }

111

112 public void setSku(String sku) {
113 this.sku = sku;

114 }

115

248

http:///

CHAPTER 7= MONGODB E-COMMERCE DATABASE MODEL

116 public String getDescription() {

117 return description;

118 }

119

120 public List<String> getColors() {

121 return colors;

122 }

123

124 public void setColors(List<String> colors) {

125 this.colors = colors;

126 }

127

128 public List<String> getSizes() {

129 return sizes;

130 }

131

132 public void setSizes(List<String> sizes) {

133 this.sizes = sizes;

134 }

135

136 public void setDescription(String description) {

137 this.description = description;

138 }

139

140 public Categories getCategory() {

141 return category;

142 }

143

144 public void setCategory(Categories category) {

145 this.category = category;

146 }

147

148 @0verride

149 public int hashCode() {

150 int hash = 0;

151 hash += (id != null ? id.hashCode() : 0);

152 return hash;

153 }

154

155 @0verride

156 public boolean equals(Object object) {

157 if (!(object instanceof Products)) {

158 return false;

159 }

160 Products other = (Products) object;

161 if ((this.id == null 8& other.id != null) || (this.id != null &&
Ithis.id.equals(other.id))) {

162 return false;

163 }

164 return true;

165 }

166

249

http:///

CHAPTER 7 ' MONGODB E-COMMERCE DATABASE MODEL

167 @Override

168 public String toString() {

169 return "eshop.entities.Products[id=" + id + " 1";
170 }

171 }

Let’s take a closer look at some of the main lines of code.

In line 39, the field that corresponds to the product name (product_name) is prepared for Lucene. The part we want
tonote isanalyze = Analyze.YES, which tells Lucene to use the default analyzer for this field. Instead of searching
for a product by name (which is usually composed of several words), we can search for it by any of the words its name
contains. This helps us easily implement a “search by product name” facility.

Asyou can see, in lines 42 and 48 the product prices (product_price and product_old price) are numerical
values (doubles). It makes sense to store them as numbers instead of strings so you can perform range queries and
calculations, like subtotals, totals, currency conversions and so on. You can tell Lucene that a field represents numerical
values by annotating it with @umericField. When a property is indexed as a numeric field, it enables efficient range
querying, and sorting is faster than doing the same query on standard @Field properties.

Lines 52-54 define a unidirectional, many-to-one association between the categories_c and products_c
collections. For Lucene, this association should be marked as @IndexedEmbedded, which is used to index associated
entities as part of the owning entity. Probably I've said this before, but it's a gopod moment to point out again that
Lucene is not aware of associations, which is why it needs the @IndexedEmbedded and @ContainedIn annotations.
Without these annotations, associations like @1anyToMany, @*ToOne, @Embedded, and @ElementCollection will not be
indexed and, therefore, will not be searchable. Associations let you easily write Lucene queries similar to SQL queries
that contain the WHERE clause, of the type: select all products from a category where the category field equals something
(which in JP-QL is usually a join).

Lines 55-66 define the product’s options and gallery of images. For this example, we used the most common options,
color and size, but you can add more. Instead of placing them into another table and creating another association, I
prefer to store them using @E lementCollection. When a product doesn’t have color or size, it’s just skipped. MongoDB
documents allow a flexible structure, so when an option isn’t specified, the corresponding collection will not be present
in document. As a final observation, we're loading the options and gallery using the eager mechanism, because we want
to load and display each product with its gallery and options. If you want to load the products in two phases: first a brief
overview of the products and then, by user request, the options, use the lazy mechanism instead.

Model the Customers Collection (customers_c)

The customers_c collection corresponds to the users table.

For users (potential customers), we need a separate collection for storing personal data; we name this collection
customers_c. Personal data includes information such as name, surname, e-mail address, password, addresses and
so on (obviously, you can add more fields). When a user logs into the system, you can easily indentify him by e-mail
address and password and load his profile. His orders are not loaded in the same query as his profile. They are loaded
lazily only when an explicit request is performed; this allows us to load only the requested orders, not all. Usually, a
customer checks just his most recent order status and rarely wants to view an obsolete order. Many e-commerce sites
don’t provide access to obsolete orders, only to the most recent one.

Each document (entry) in the customers_c collection looks like what’s shown in Figure 7-5.

250

http:///

CHAPTER 7= MONGODB E-COMMERCE DATABASE MODEL

< i .
v_id" : "7h54b632-cSaf-44e5-9370-447e246358f6", Java Field Java Type MongoDB Field
"customer__addr'essﬁ;(l:" : £ i

city" = ampina", = - .
“"country" : "Romania", - . S'".ng —id N
“fax" : “+44 137 538 1222%, email String customer_email
“numher" I I 2
vphone" ¢@7275 249423, password String customer_password
"state' Prahova®. name String customer_name
--22;3“ --igﬁgaq}-”g“ - surname String customer_surname
L istrati Dat i i
"customer_address_2" = { ESEai et EAEir et
“city" : “"Banesti",.
: "Romania",
44 137 538 1222%, 1 dd 1 Add t dd 1
Mgl , country, fax, number, try, fax, number,
T T e S S
wPrahova', , 3 2 5 , 5
“"Nationala", customer_address_2 | Addresses | customer_address_2
Yzip" = '"1@7858" (city, country, fax, number, (city, country, fax, number,
- phone, state, street, zip) phone, state, street, zip)
customer_email" : “marian@yahoo.com™.
"customer_name" : "Marian".
"customer_password" = "marianandrafa'.
“customer_registration' : IS0Date{"2013-B5-B4TB5:27:58.497Z">,
"customer_surname' I “"lordache" cuStomersEe

Figure 7-5. Sample document from the customers_c collection

Notice that the customer’s addresses are stored as embedded documents; this lets us provide multiple addresses
without additional tables, using fast queries and lazy loading.
The JPA entity for this collection is shown in Listing 7-3.

Listing 7-3. The JPA Entity for customers_c

1 package eshop.entities;

2

3 import eshop.embedded.Addresses;

4 import java.io.Serializable;

5 import java.util.Date;

6 import javax.persistence.Basic;

7 import javax.persistence.Column;

8 import javax.persistence.Embedded;

9 import javax.persistence.Entity;

10 import javax.persistence.FetchType;

11 import javax.persistence.GeneratedValue;

12 import javax.persistence.Ild;

13 import javax.persistence.Table;

14 import javax.persistence.Temporal;

15 import org.hibernate.annotations.GenericGenerator;
16 import org.hibernate.search.annotations.Analyze;

17 import org.hibernate.search.annotations.DateBridge;
18 import org.hibernate.search.annotations.DocumentId;
19 import org.hibernate.search.annotations.Field;

20 import org.hibernate.search.annotations.Index;

21 import org.hibernate.search.annotations.Indexed;

22 import org.hibernate.search.annotations.IndexedEmbedded;
23 import org.hibernate.search.annotations.Resolution;
24 import org.hibernate.search.annotations.Store;

25

26 @Entity

27 @Indexed

28 @Table(name = "customers c")

29 public class Customers implements Serializable {

30

251

http:///

CHAPTER 7 ' MONGODB E-COMMERCE DATABASE MODEL

31 private static final long serialVersionUID = 1iL;
32 @DocumentId

33 @Id

34 @GeneratedValue(generator = "uuid")

35 @GenericGenerator(name = "uuid", strategy = "uuid2")
36 private String id;

37 @Column(name = "customer_email")

38 @Field(index = Index.YES, analyze = Analyze.NO, store = Store.NO)
39 private String email;

40 @Column(name = "customer password")

41 @Field(index = Index.YES, analyze = Analyze.NO, store = Store.NO)
42 private String password;

43 @Column(name = "customer name")

44 @Field(index = Index.YES, analyze = Analyze.NO, store = Store.NO)
45 private String name;

46 @Column(name = "customer_ surname")

47 @Field(index = Index.YES, analyze = Analyze.NO, store = Store.NO)
48 private String surname;

49 @DateBridge(resolution = Resolution.DAY)

50 @Temporal(javax.persistence.TemporalType.DATE)
51 @Column(name = "customer registration")

52 private Date registration;

53 @Embedded

54 @IndexedEmbedded

55 @Basic(fetch = FetchType.LAZY)

56 private Addresses customer_address_1;

57 @Embedded

58 @IndexedEmbedded

59 @Basic(fetch = FetchType.LAZY)

60 private Addresses customer_address_2;

61

62 public String getId() {

63 return id;

64 }

65

66 public void setId(String id) {

67 this.id = id;

68 }

69

70 public String getEmail() {

71 return email;

72 }

73

74 public void setEmail(String email) {

75 this.email = email;

76 }

77

78 public String getPassword() {

79 return password;

80 }

81

252

http:///

CHAPTER 7= MONGODB E-COMMERCE DATABASE MODEL

82 public void setPassword(String password) {

83 this.password = password;

84 }

85

86 public String getName() {

87 return name;

88 }

89

90 public void setName(String name) {

91 this.name = name;

92 }

93

94 public String getSurname() {

95 return surname;

96 }

97

98 public void setSurname(String surname) {

99 this.surname = surname;

100 }

101

102 public Date getRegistration() {

103 return registration;

104 }

105

106 public void setRegistration(Date registration) {
107 this.registration = registration;

108 }

109

110 public Addresses getCustomer address 1() {
111 return customer_address_1;

112 }

113

114 public void setCustomer address 1(Addresses customer address 1) {
115 this.customer_address_1 = customer_address_1;
116 }

117

118 public Addresses getCustomer address 2() {
119 return customer address 2;

120 }

121

122 public void setCustomer address 2(Addresses customer address 2) {
123 this.customer_address 2 = customer_address_2;
124 }

125

126 @0verride

127 public int hashCode() {

128 int hash = 0;

129 hash += (id != null ? id.hashCode() : 0);
130 return hash;

131 }

132

253

http:///

CHAPTER 7 ' MONGODB E-COMMERCE DATABASE MODEL

133 @Override

134 public boolean equals(Object object) {

135 if (!(object instanceof Customers)) {

136 return false;

137 }

138 Customers other = (Customers) object;

139 if ((this.id == null 8& other.id != null) || (this.id != null &&
Ithis.id.equals(other.id))) {

140 return false;

141 }

142 return true;

143 }

144

145 @0verride

146 public String toString() {

147 return "eshop.entities.Customers[id=" + id + "]";

148 }

149 }

150

There are important aspects of this code that deserve explanation.

The code in lines 53-60 is pretty interesting. As you can see, the same embeddable object type appears twice in
the same entity (the embeddable object maps the address coordinates, city, zip, street and so on in a class named
Addresses). If you've used this technique with SQL and JPA providers such as EclipseLink or Hibernate, you know
you had to set at least one of the columns explicitly, because the column name default will not work. In this case,
generic JPA fixes the issue with the @AttributeOverride annotation (see www.docs.oracle.com/javaee/6/api/
javax/persistence/AttributeOverride.html). In NoSQL and Hibernate OGM, however, you don’t need to use this
adjustment to column names.

The embeddable class representing an address is shown in Listing 7-4.

Listing 7-4. The Embeddable Addresses Class

1 package eshop.embedded;

2

3 import java.io.Serializable;

4 import javax.persistence.Embeddable;

5 import org.hibernate.search.annotations.Analyze;

6 import org.hibernate.search.annotations.Field;

7 import org.hibernate.search.annotations.Index;

8 import org.hibernate.search.annotations.Store;

9

10 @Embeddable

11 public class Addresses implements Serializable {

12

13 @Field(index = Index.YES, analyze = Analyze.NO, store = Store.NO)
14 private String city;

15 @Field(index = Index.YES, analyze = Analyze.NO, store = Store.NO)
16 private String state;

17 @Field(index = Index.YES, analyze = Analyze.NO, store = Store.NO)
18 private String street;

19 @Field(index = Index.YES, analyze = Analyze.NO, store = Store.NO)
20 private String number;

254

http://www.docs.oracle.com/javaee/6/api/javax/persistence/AttributeOverride.html
http://www.docs.oracle.com/javaee/6/api/javax/persistence/AttributeOverride.html
http:///

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
4
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

@Field(index = Index.YES,
private String zip;
@Field(index = Index.YES,
private String country;
@Field(index = Index.YES,
private String phone;
@Field(index = Index.YES,
private String fax;

public String getCity() {

}

public void setCity(String city) {

}

return city;

this.city = city;

analyze
analyze
analyze

analyze

public String getNumber() {

}

return number;

Analyze.NO,
Analyze.NO,
Analyze.NO,

Analyze.NO,

public void setNumber(String number) {

}

public String getState() {

}

public void setState(String state) {

}

this.number = number;

return state;

this.state = state;

public String getStreet() {

}

return street;

public void setStreet(String street) {

}

this.street = street;

public String getzip() {

}

return zip;

public void setZip(String zip) {

}

this.zip = zip;

CHAPTER 7= MONGODB E-COMMERCE DATABASE MODEL

store

store

store

store

Store.NO)
Store.NO)
Store.NO)

Store.NO)

255

http:///

CHAPTER 7 ' MONGODB E-COMMERCE DATABASE MODEL

70 public String getCountry() {

71 return country;

72 }

73

74 public void setCountry(String country) {
75 this.country = country;

76 }

77

78 public String getPhone() {

79 return phone;

80 }

81

82 public void setPhone(String phone) {
83 this.phone = phone;

84 }

85

86 public String getFax() {

87 return fax;

88 }

89

90 public void setFax(String fax) {
91 this.fax = fax;

92 }

93 }

Model The Orders Collection (orders_c)

The orders_c collection corresponds to the orders and details tables.

The orders are stored in a separate collection, named orders_c. For each order, we store status (an order can
pass through multiple statuses, such as PURCHASED, SHIPPED, CANCELED and so on); subtotal (this represents
the order value in money); order creation date; shipping address; and the order’s products. You can add more fields,
such as an order identifier (#nnnn, for example), an order friendly name, an order expiration date, and so on.

The shipping address is represented by an embedded document and the order’s products are stored as an
embedded collection. Therefore, we don’t need supplementary collections or associations, the queries are very easy
to perform, and we can load the shipping address and the order’s products either lazily or eagerly, depending on how
we implement the web site GUI.

In this collection, we need to store the foreign keys that indicate the customers who purchased the orders.
For this I defined a unidirectional many-to-one association between orders and customers.

I haven'’t yet said anything about the current shopping cart—the order hasn’t been submitted yet. The shopping
cart can support multiple content modifications in a single (or multiple) session(s) of a customer, adding new
products, deleting others, clearing the cart, modifying a product’s quantity, and so forth. It’s not useful to reflect all of
these modifications in the database, since each requires at least one query for updating the “conversation” between
customer and shopping cart. For this, you can take a programmatic approach, storing the shopping cart in a customer
session, or in a view scope or conversational scope. You can also use cookies, or any specific design pattern that can
help implement this task. The idea is to modify the database only when an order is actually placed.

Of course, if your data is highly critical or you need to persist over multiple sessions (for example, if the user
might come back after a week), then it’s a good idea to persist the shopping cart to the database using a separate
collection or as a document inside the orders_c collection. After all, a shopping cart is just an order that has not
been placed, so it can be stored like a normal order with a status of, perhaps, unpurchased. If you decide to persist the
shopping cart, be careful to correctly synchronize it with the inventory. This is mandatory for preventing “overselling;”
the application must move items from inventory to the cart and back to again in some cases, for instance if the user

256

http:///

CHAPTER 7= MONGODB E-COMMERCE DATABASE MODEL

drops one or more products or even abandons the whole purchase. Taking a product from inventory and moving it to
the cart (or the reverse) is an operation specific to transactions, so you have to deal with rollback issues. Obviously,

if you don’t have an inventory, things are much simpler.
In Figure 7-6, you can see a document sample for an order.

Figure 7-6. Sample document from the orders_c collection

v_id" : “3b99defd-46cc—4fh5-hahf-9c6?BfaB324c ", Java Field lava Type MongoDB Field
Ycart" = [
i - id String _id
"product sizer status String order_status
"product_sku' i subtotal double order_subtotal
"unique_identification_numher" : "1996582",
vproduct_color"” : “"Unavailable" orderdate Date orderdate
“product_nane" Rafael Hadal 2618 Calendar",
“product_guantity'
z- cart List<CartProducts> | cart
w. PRI (sku, name, (product_sku, product_name, product_price,
..g;:gﬁgg—g‘{;gﬁ '..%?.'9’ price, color, product_color, product_size, product_quantity,
pruduct sku" 'TOPS_BB93". slze, quantity, unigue_ldentification_number)
“unique_identifica tanJuNhEP 1 1244535, ulm)
“product_ culur : "Khaki
“product_name" : "Puwer Cuurt N?8 Jacket". o
“product_guantity®™ : P ad Add, hi dd
z- (city, country, fax, number, (clty, country, fax, number,
vproduct_price” : 15.95, phone, state, street, zip) phone, state, strect, zip)
“product_size' “Unavailable".
“product_sku" 'POSTER_@@@1", @ManyToOne Ci id
"unigque_identification_number" : "1676785", customer -
"prnduct color" : "Unavailable"'
“product_name' @ "HIS?ORY Pustel’“',
"product_guantity™ = ‘2%
>
1,
veustomer_id" : "a8461a37 l|:46 4676-8380—e4dBc1B0a2669" .
"order_status" : "PURCHA
vorder_subtotal : 138 6
"orderdate' : lSODate("2l13 B5-B4TA8:45:39 571Z">,
sh1pp1ng address" :
Teity" : "Bucurestl .
“country" a ",
“Fax' "3233224'?433",
V2324
H orders_c

By convention, when a product does not have color or size, we store a flag like “Unavailable”.

The JPA entity for this collection is shown in Listing 7-5:

Listing 7-5. The JPA Entity for orders_c

1 package eshop.entities;

2

3 import eshop.embedded.Addresses;

4 import eshop.embedded.CartProducts;

5 import java.io.Serializable;

6 import java.util.Arraylist;

7 import java.util.Date;

8 import java.util.list;

9 import javax.persistence.AttributeOverride;
10 import javax.persistence.AttributeOverrides;
11 import javax.persistence.Basic;

12 import javax.persistence.Column;

13 import javax.persistence.ElementCollection;
14 import javax.persistence.Embedded;

15 import javax.persistence.Entity;

16 import javax.persistence.FetchType;

17 import javax.persistence.GeneratedValue;

18 import javax.persistence.Id;

257

http:///

CHAPTER 7 ' MONGODB E-COMMERCE DATABASE MODEL

19 import javax.persistence.ManyToOne;

20 import javax.persistence.Table;

21 import javax.persistence.Temporal;

22 import org.hibernate.annotations.GenericGenerator;

23 import org.hibernate.search.annotations.Analyze;

24 import org.hibernate.search.annotations.DateBridge;
25 import org.hibernate.search.annotations.DocumentId;
26 import org.hibernate.search.annotations.Field;

27 import org.hibernate.search.annotations.Index;

28 import org.hibernate.search.annotations.Indexed;

29 import org.hibernate.search.annotations.IndexedEmbedded;
30 import org.hibernate.search.annotations.NumericField;
31 import org.hibernate.search.annotations.Resolution;
32 import org.hibernate.search.annotations.Store;

33

34 @Entity

35 @Indexed

36 @Table(name = "orders c")

37 public class Orders implements Serializable {

38

39 private static final long serialVersionUID = 1L;
40 @DocumentId

41 @1d

42 @GeneratedValue(generator = "uuid")

43 @GenericGenerator(name = "uuid", strategy = "uuid2")
44 private String id;

45 @Column(name = "order status")

46 @Field(index = Index.YES, analyze = Analyze.NO, store = Store.NO)
47 private String status;

48 @Column(name = "order subtotal")

49 @NumericField

50 @Field(index = Index.YES, analyze = Analyze.NO, store = Store.NO)
51 private double subtotal;

52 @DateBridge(resolution = Resolution.HOUR)

53 @Temporal(javax.persistence.TemporalType.DATE)

54 private Date orderdate;

55 @Embedded

56 @IndexedEmbedded

57 @Basic(fetch = FetchType.EAGER)

58 private Addresses shipping address;

59 @IndexedEmbedded

60 @ElementCollection(targetClass = eshop.embedded.CartProducts.class,
61 fetch = FetchType.EAGER)

62 @AttributeOverrides({

63 @AttributeOverride(name = "sku",

64 column =

65 @Column(name = "product_sku")),

66 @AttributeOverride(name = "name",

67 column =

68 @Column(name = "product_name")),

69 @AttributeOverride(name = "price",

258

http:///

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

column =

@Column(name = "product_|

@AttributeOverride(name
column =

@Column(name = “"product_

@AttributeOverride(name
column =

@Column(name = "product_

@AttributeOverride(name
column =

@Column(name = “"product_

@AttributeOverride(name
column =

CHAPTER 7
price")),
= "colox",

color")),
= llsizell,

size")),
= "quantity",

quantity")),
= Iluinll,

@Column(name = "unique_identification_number")),})
private List<CartProductsy cart = new ArraylList<CartProductsy(0);
@IndexedEmbedded
@ManyToOne(fetch = FetchType.LAZY)
private Customers customer;

public String getId() {

}

return id;

public void setId(String id) {

}

this.id = id;

public String getStatus() {

}

return status;

public void setStatus(String status) {

}

this.status = status;

public Addresses getShipping address() {

}

return shipping_address;

MONGODB E-COMMERCE DATABASE MODEL

public void setShipping address(Addresses shipping address) {

}

this.shipping_address =

shipping_address;

public List<CartProducts> getCart() {

}

return cart;

public void setCart(List<CartProducts> cart) {

}

this.cart = cart;

259

http:///

CHAPTER 7 ' MONGODB E-COMMERCE DATABASE MODEL

121 public Customers getCustomer() {

122 return customer;

123 }

124

125 public void setCustomer(Customers customer) {

126 this.customer = customer;

127 }

128

129 @0verride

130 public int hashCode() {

131 int hash = 0;

132 hash += (id != null ? id.hashCode() : 0);

133 return hash;

134 }

135

136 public double getSubtotal() {

137 return subtotal;

138 }

139

140 public void setSubtotal(double subtotal) {

141 this.subtotal = subtotal;

142 }

143

144 public Date getOrderdate() {

145 return orderdate;

146 }

147

148 public void setOrderdate(Date orderdate) {

149 this.orderdate = orderdate;

150 }

151

152 @0verride

153 public boolean equals(Object object) {

154 if (!(object instanceof Orders)) {

155 return false;

156 }

157 Orders other = (Orders) object;

158 if ((this.id == null && other.id != null) || (this.id != null &&
Ithis.id.equals(other.id))) {

159 return false;

160 }

161 return true;

162 }

163

164 @0Override

165 public String toString() {

166 return "eshop.entities.Orders[id=" + id + "]";

167 }

168 }

Let’s discuss the main lines of code for this entity.

260

http:///

CHAPTER 7= MONGODB E-COMMERCE DATABASE MODEL

Lines 55-58 represent the mapping of the shipping address. As you can see, I prefer to use an embedded
document for each order. I loaded it eagerly, but lazy loading is also an option, depending on what you want to display
when you load an order.

From the Lucene perspective, I need the @I ndexedEmbedded annotation, because I want to index this
embeddable class as part of the owning entity. The Addresses embeddable class (annotated with @Embeddable) is
shown above in Listing 7-4.

In lines 59-84, an element-collection (mapped in MongoDB as an embedded collection) stores an order’s
products. The type of the element-collection is an embeddable class. The main thing to notice here is that I've used
the @AttributeOverrides annotation; if we don’t override the columns names of the embeddable collection, they
default to something like cart.collection&&element.price. This is not very friendly, so @AttributeOverrides can be
very useful in such cases.

This embeddable class is named CartProducts and is shown in Listing 7-6.

Listing 7-6. The Embeddable CartProducts Class

1 package eshop.embedded;

2

3 import java.io.Serializable;

4 import javax.persistence.Embeddable;

5 import org.hibernate.search.annotations.Analyze;

6 import org.hibernate.search.annotations.Field;

7 import org.hibernate.search.annotations.Index;

8 import org.hibernate.search.annotations.NumericField;

9 import org.hibernate.search.annotations.Store;

10

11 @Embeddable

12 public class CartProducts implements Serializable {

13

14 @Field(index = Index.YES, analyze = Analyze.NO, store = Store.NO)
15 private String sku;

16 @Field(index = Index.YES, analyze = Analyze.NO, store = Store.NO)
17 private String name;

18 @NumericField

19 @Field(index = Index.YES, analyze = Analyze.NO, store = Store.NO)
20 private double price;

21 @Field(index = Index.YES, analyze = Analyze.NO, store = Store.NO)
22 private String color;

23 @Field(index = Index.YES, analyze = Analyze.NO, store = Store.NO)
24 private String size;

25 @Field(index = Index.YES, analyze = Analyze.NO, store = Store.NO)
26 private String quantity;

27 @Field(index = Index.YES, analyze = Analyze.NO, store = Store.NO)
28 private String uin;

29

30 public String getSku() {

31 return sku;

32 }

33

34 public void setSku(String sku) {

35 this.sku = sku;

36 }

37

261

http:///

CHAPTER 7 ' MONGODB E-COMMERCE DATABASE MODEL

38 public String getName() {

39 return name;

40 }

41

42 public void setName(String name) {
43 this.name = name;

44 }

45

46 public double getPrice() {

47 return price;

48 }

49

50 public void setPrice(double price) {
51 this.price = price;

52 }

53

54 public String getColor() {

55 return color;

56 }

57

58 public void setColor(String color) {
59 this.color = color;

60 }

61

62 public String getSize() {

63 return size;

64 }

65

66 public void setSize(String size) {
67 this.size = size;

68 }

69

70 public String getQuantity() {

71 return quantity;

72 }

73

74 public void setQuantity(String quantity) {
75 this.quantity = quantity;

76 }

77

78 public String getUin() {

79 return uin;

80 }

81

82 public void setUin(String uin) {
83 this.uin = uin;

84 }

85 }

86

From the Lucene perspective, we need the @I ndexedEmbedded annotation because we want to index this
embeddable collection in the entity owner index.

262

http:///

CHAPTER 7= MONGODB E-COMMERCE DATABASE MODEL

Lines 85-87 define the unidirectional association between the orders_c and customers_c collections. For Lucene,
this association should be marked as @IndexedEmbedded, which is used to index associated entities as part of the owning
entity. This association allows us to easily write Lucene queries similar to SQL queries that contain the WHERE clause, of
the type: select all orders from an order where the customer field equals something (which, in JP-QL, is usually a join).

Model The Inventory Collection (inventory_c)

This collection doesn’t have a corresponding table in Figure 7-1. Not all e-commerce sites need inventory
management. But, for those that do, MongoDB provides a few solutions. One solution is to store a separate document
for each physical product in the warehouse. This will prevent concurrent access to data, since every document will
have a unique lock on that product. In this approach, we rely on the fact that MongoDB supports atomic operations
on individual documents. For cases where the warehouse doesn’t contain too many products (and this depends on
your definition of “too many”), this approach will work quite well.

Another approach is to store a document for a group of identical products and use a field in this document to
represent the number of products. In this case, you need to deal with the situation of multiple users updating this field,
by extracting or returning a product from the same group (there’s also an administrator who occasionally repopulates
the inventory). I choose this approach and deal with concurrent updates by using optimistic locking. If you need to
lock a document for your exclusive use until you've finished with it, use pessimistic locking, but be carefully to avoid
(or deal with) deadlocks. In general, optimistic locking is good when you don’t expect imminent collisions but, since
the transaction is aborted (not rolled back), you need to pay the price and deal with it somehow. On the other hand,
pessimistic locking is used when a collision is anticipated, and it’s used when collisions are imminent. It can be pretty
tricky to decide which locking option to choose, but here’s a rule of thumb: use pessimistic locking if you have to
guarantee the integrity of important data, like banking data, and use optimistic locking for everything else.

The MongoDB collection for storing inventory is named inventory_c. For each group of identical products,

I've created a composite key from the product SKU and the color and size. Besides the id, each document contains a
numeric field for storing the number of available products, named inventory. The version field is used for optimistic
locking. See Figure 7-7.

v_qdv : € Java Field | Java Type | MongoDB Field
"eku" = "TOPS_B@8B2".
"sku_color" = “"Khaki". composife id| InventoryPK| _id
"sku_size'™ @ "M B b i

¥ inventory int inventory

"inventory' : 8, i £

"wersion" : NumherLong{@> version Long version

Il_idll = {
"sku'" @ "TOPS_BB@AZ'.
"sku_color" : “Khaki",.
"sku_size' @ "HEL"
.
“"inventory' : B,
"wersion" : MumberLong(@>

v_id" =
"zku'" = "TOPS_BBA3'.
"sku_color" @ "Red'.
"sku_size'" : "

";.nuentury" 14,
"yversion" : MumbherLong(@> inventory_c

Figure 7-7. Sample document from the customers_c collection showing the inventory field

The JPA entity for inventory_c is shown in Listing 7-7.

263

http:///

CHAPTER 7 ' MONGODB E-COMMERCE DATABASE MODEL

Listing 7-7. The JPA Entity for inventory_c

1 package eshop.entities;

2

3 import java.io.Serializable;

4 import javax.persistence.Column;

5 import javax.persistence.Entity;

6 import javax.persistence.Id;

7 import javax.persistence.IdClass;

8 import javax.persistence.Table;

9 import javax.persistence.Version;

10

11 @Entity

12 @IdClass(eshop.embedded.InventoryPK.class)
13 @Table(name = "inventory c")

14 public class Inventory implements Serializable {
15

16 private static final long serialVersionUID = 1L;
17 @Id

18 private String sku;

19 @Id

20 private String sku_color;

21 @Id

22 private String sku_size;

23 @Version

24 private Long version;

25 @Column(name = "inventory")

26 private int inventory;

27

28 public int getInventory() {

29 return inventory;

30 }

31

32 public void setInventory(int inventory) {
33 this.inventory = inventory;
34 }

35

36 public String getSku() {

37 return sku;

38 }

39

40 public void setSku(String sku) {
41 this.sku = sku;

42 }

43

44 public String getSku color() {
45 return sku_color;

46 }

47

264

http:///

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

85
86
87
88
89

CHAPTER 7= MONGODB E-COMMERCE DATABASE MODEL

public void setSku_color(String sku_color) {
this.sku_color = sku_color;
}

public String getSku size() {
return sku_size;
}

public void setSku_size(String sku_size) {
this.sku_size = sku_size;
}

public Long getVersion() {
return version;
}

protected void setVersion(Long version) {
this.version = version;
}

@0verride
public int hashCode() {
int hash = 7;

hash = 13 * hash + (this.sku != null ? this.sku.hashCode() :

return hash;

}

@0verride
public boolean equals(Object obj) {
if (obj == null) {
return false;
}

if (getClass() != obj.getClass()) {
return false;
}

final Inventory other = (Inventory) obj;

if ((this.sku == null) ? (other.sku != null) :
I'this.sku.equals(other.sku)) {
return false;

}

return true;

0);

265

http:///

CHAPTER 7 ' MONGODB E-COMMERCE DATABASE MODEL

25

26
27
28
29
30
31
32
33
34
35
36
37
38

39
40
41

42

43
44

266

And the composite key class is:
package eshop.embedded;
import java.io.Serializable;

public class InventoryPK implements Serializable{

private String sku;
private String sku_color;
private String sku_size;

public InventoryPK(){
}

public InventoryPK(String sku, String sku_color, String sku_size) {
this.sku = sku;
this.sku_color = sku_color;
this.sku_size = sku_size;

}

@0verride
public int hashCode() {
int hash = 7;
hash = 83 * hash + (this.sku != null ? this.sku.hashCode() : 0);
hash = 83 * hash + (this.sku_color != null ?
this.sku color.hashCode() : 0);
hash = 83 * hash + (this.sku size != null ?
this.sku_size.hashCode() : 0);
return hash;
}

@0verride
public boolean equals(Object obj) {
if (obj == null) {
return false;

if (getClass() != obj.getClass()) {
return false;
}

final InventoryPK other = (InventoryPK) obj;
if ((this.sku == null) ? (other.sku != null) :
I'this.sku.equals(other.sku)) {
return false;

if ((this.sku_color == null) ? (other.sku color != null) :
Ithis.sku_color.equals(other.sku _color)) {

return false;

if ((this.sku size == null) ? (other.sku size != null) :

http:///

CHAPTER 7= MONGODB E-COMMERCE DATABASE MODEL

Ithis.sku_size.equals(other.sku size)) {

45 return false;
46 }

47 return true;

48 }

49 }

Summary

In this chapter, you saw my proposal for a MongoDB e-commerce database. Of course, this is just a sketch that,
obviously, is open for improvement. I presented the proposed architecture and the database collections, and we’ve
created the necessary entities and embeddable classes. In the next chapter, we’ll continue to develop an enterprise
application based on this database architecture.

267

http:///

http:///

CHAPTER 8

MongoDB e-Commerce Database
Querying

In Chapter 7 we developed a MongoDB database model for an e-commerce application. Now we’ll write the necessary
queries for using the database and see how to perform common tasks for an e-commerce platform, including:

Display categories of products.

Display promotional products.

Display products from a category (with pagination).

Search for a product by name (or by the words in the name).

Find a customer (for login, editing the profile, saving orders, and so on).
Save an order for synchronizing the shopping cart with the database.
Check the inventory for a certain product and quantity.

Restore the quantity when products are removed from shopping cart.

Each of these tasks will be accomplished in a Hibernate Search/Apache Lucene query (since JP-QL is
insufficiently developed, we need to use the full-text search engine provided by Apache). The Hibernate Search
queries will be written in JPA style.

For testing the database, I developed an e-commerce web site inspired by the official e-shop of the tennis player
Rafael Nadal (www.rafaelnadal-shop.com/en). The web site is based on:

Java EE 6 (EJB 3.0, JSF 2.0)
Hibernate OGM 4.0.0 Beta2
MongoDB 2.2.2

MongoDB Java Driver 2.8.0
Hibernate Search 4.2.0 Beta 1
Apache Lucene 3.6.0

PrimeFaces 3.4.2

Don’t worry if you're not familiar with JSF or PrimeFaces. You can implement the same functionality without
them, using other approaches such as JSP and servlets. Moreover, you can drop EJB and implement the business layer
as you wish. You can also use the Hibernate Native API instead of JPA. These technologies are not essential and, as
long as you understand the e-commerce database model and the queries we’ll discuss, you can glue everything into
an e-commerce application using the technologies you prefer.

269

http://www.rafaelnadal-shop.com/en
http:///

CHAPTER 8 ©- MONGODB E-COMMERCE DATABASE QUERYING

You'll find the complete source code for the application, named RafaEShop, in the Apress repository. The

application was developed as a NetBeans 7.2.1 project and was tested under GlassFish v3 AS. Figure 8-1 shows the

interaction of the classes.

r =

eshop.helper package

4+—F HelperBean.java

eshop.entities package
Categories.java
Products.java
Customers.java
Orders.java
Inventory.java

~

eshop.embedded package

Addresses.java
CartProducts.java
InventorvPK.iava

v

Figure 8-1. The interaction of the classes in the RafaEShop application

For localhost testing purposes, follow these steps (assuming the application is deployed and the MongoDB server

is running):

1. Ensure you don’t have a database named eshop_db in MongoDB.

2. Access the page http://localhost:8080/RafaEShop/faces/db.xhtml, as shown
in Figure 8-2. (Obviously, you need to adjust the address and port to reflect your

application server).

("} Rafael Nadal E-Shop i

(€ ¥ @ localhost:8080/RafaEShop/faces/db.shtml

[= & =

77 v @ ||&)- BitTomentControl v12 Customized Web P | & ¢ K~ = |-

Populate Rafael Nadal E- Shop MongoDB Database

Populating

s

Pressing the above button will populate the MongoDB database, named 'eshop_db' with a default set of data. DO NOT press the butten mere than ence! If you want

to repeat the process then drop the 'eshop_db' database before!!!

Figure 8-2. The user interface for populating the eshop_db database

270

http://localhost:8080/RafaEShop/faces/db.xhtml
http:///

CHAPTER 8 © MONGODB E-COMMERCE DATABASE QUERYING

3. Press, ONLY ONCE, the button labeled “Populate Rafael Nadal E-Shop MongoDB
Database;” pressing the button more than once will cause errors.

4. Navigate to the web site by pressing the button labeled, “Go To Website.” This button

navigates to the web site start page.

Now you should see something like what’s shown in Figure 8-3.

[Firefox {7} Rafael Nadal E-Shap | + ‘

(=& s

<& localhost8080/Raf aEShap/faces/indexxhtml

Welcome, Guest

Product llame and Description
Selecta category
Calendars Rafael Nadal 2012 desktop calendar
Caps
Collectors Size: [unavaisble | v Color: [ynavalabe | = Quantity
= Add To Cart
Fosters
Racoues
BnTy Product Description:
Shoes The most beautiful and exciting moments of the last season ...
Tops More details:
Wristbands S
Rafael Nadal 2010 Calendar
Size: | ynavaiabe | Color: [unavatable | = Quantity

Add To Cart

Product Description:
The official Rafa Nadal Calendar 2010 features ...
More details:

Rafael Nadal 2010 desktop calendar

Size | unavaiable |~ Color: |unavalable | = Quantity

Add To Cart

1

1

1

C | |[@l- BitTorrentControl v12Customized Web P | ¥ ¢ K~ |~

(0 products) 50.004%

Product Gallery

B Search o ‘
I

$2.95**
$2.95 ** ez
: -]
$2.95°%° .

— = = | p— T T =

Figure 8-3. The Rafael Nadal E-Shop GUI

If you need to restore the database (for whatever reason), follow these steps:

1. Drop the eshop_db database. You can do this from the MongoDB shell, like this:

mongo eshop_db
db.dropDatabase()

2. Navigate to the D root folder and delete the eshop folder (this is where Lucene indexes data).

3. Repeat the steps 1-4, from above.

Now let’s “dissect” Figure 8-2 in terms of Lucene queries.

Display the Categories of Products

The first query will extract the category names and ids from the categories_c collection (the Categories entity).
The names are visible to users and the ids help identify a category in order to retrieve its products; we display the
categories sorted by name. You can find this code in EshopBean. java, shown in Listing 8-1.

271

http:///

CHAPTER 8 MONGODB E-COMMERCE DATABASE QUERYING

Listing 8-1. EshopBean.java

package eshop.beans;

public class EShopBean {

public List<String> extractCategories() {

FullTextEntityManager fullTextEntityManager =

org.hibernate.search.jpa.Search.getFullTextEntityManager(em);

QueryBuilder queryBuilder = fullTextEntityManager.getSearchFactory().buildQueryBuilder().

forEntity(Categories.class).get();
org.apache.lucene.search.Query query = queryBuilder.all().createQuery();
FullTextQuery fullTextQuery = fullTextEntityManager
.createFullTextQuery(query, Categories.class);
fullTextQuery.setProjection(FullTextQuery.ID, "category");
Sort sort = new Sort(new SortField("category", SortField.STRING));
fullTextQuery.setSort(sort);

fullTextQuery.initializeObjectsWith(ObjectLookupMethod.SKIP,
DatabaseRetrievalMethod.FIND BY ID);

List<String> results = fullTextQuery.getResultlList();

return results;

The query is pretty simple. We extract all Categories instances (sorted by category names) by projecting the

category names and ids. In Figure 8-4, you can see how categories are listed in the browser.

272

http:///

CHAPTER 8 © MONGODB E-COMMERCE DATABASE QUERYING

Select a category
Calendars
Caps
Collectors
Gadgets
Posters
Racguets

Shoes

ops

Wristbands

Figure 8-4. Displaying product categories

Display the Promotional Products

In addition to the category names, the first page of our web site contains a list of the promotional products; these
products can belong to different categories. This is a common approach on many e-commerce web sites, but you can
also display the newest products or the bestsellers. In this case, it’s easy to recognize the promotional products by
checking the MongoDB field product_old_price (old_pricein Products entity) of the documents in the products_c
collection (the Products entity). All products with an old price bigger than 0 are assumed to be promotional products.
Therefore, the query looks like the code in Listing 8-2.

Listing 8-2. Query for Displaying Promotional Products

package eshop.beans;
public class EShopBean {
public List<Products> extractPromotionalProducts() {

FullTextEntityManager fullTextEntityManager =
org.hibernate.search.jpa.Search.getFullTextEntityManager(em);

org.apache.lucene.search.Query query = NumericRangeQuery

.newDoubleRange("old price", 0.0d, 1000d, false, true);
FullTextQuery fullTextQuery = fullTextEntityManager

.createFullTextQuery(query, Products.class);
Sort sort = new Sort(new SortField("price", SortField.DOUBLE));
fullTextQuery.setSort(sort);

273

http:///

CHAPTER 8 MONGODB E-COMMERCE DATABASE QUERYING

fullTextQuery.initializeObjectsWith(ObjectLookupMethod.SKIP,
DatabaseRetrievalMethod.FIND BY ID);

List results = fullTextQuery.getResultList();

return results;

Notice that the promotional products are displayed in ascending order by price. Obviously, you can present the
products in a web browser in a number of different ways. In Figure 8-5, you can see our custom design. Notice that
promotional products have the old price to the right of the current price.

[Firefox = {7} Rafzel Nadal E-Shop | + ‘
localhost&080/RafaEShop/ =
o [Y search * @ etup d o clientready 1] i
Official 2012 Calendar $5.95
Size: |unavaiable | = Color: [unavaiabe | ~ Quantity: |4 -

Add To Cart

Product Description:
The official Rafa Nadal Calendar 2012 features ...

Life Size US Open vinyl sticker $49.50 =~

Size: [unavaiable | = Color: [unavalable | v Quantity: 1 -

Uit

D O

Add To Cart

m

Product Description:
Life size vinyl sticker for smooth surfaces ...

Life Size Roland Garros vinyl sticker $49.50 %%

Size | unavaiable |~ Color: |unavaiable | = Quantity: |4 -

Add To Cart

Product Description:
High definition image printed in high quality ...

More details: -

e — P —) p— T T L ——

Figure 8-5. Displaying the promotional products

Asyou can see, we haven't yet provided pagination for the promotional products. Next we'll look at how to provide
pagination when displaying the products from a selected category, and you can adapt the same mechansim here.

Display the Products From a Category

When a user selects a category, we need to provide a list of the products grouped under that category. Since we have
the category id, it’s very easy to extract the products, as shown in Listing 8-3.

274

http:///

CHAPTER 8 © MONGODB E-COMMERCE DATABASE QUERYING

Listing 8-3. Extracting the Products

package eshop.beans;
public class EShopBean {
public Map<Integer, List<Products>> extractProducts(String id, int page) {

FullTextEntityManager fullTextEntityManager =

org.hibernate.search.jpa.Search.getFullTextEntityManager(em);

QueryBuilder queryBuilder = fullTextEntityManager.getSearchFactory().

buildQueryBuilder().forEntity(Products.class).get();

org.apache.lucene.search.Query query = queryBuilder.keyword().

onField("category.id").matching(id).createQuery();

FullTextQuery fullTextQuery = fullTextEntityManager

.createFullTextQuery(query, Products.class);
Sort sort = new Sort(new SortField("price", SortField.DOUBLE));
fullTextQuery.setSort(sort);

fullTextQuery.initializeObjectsWith(ObjectLookupMethod.SKIP,
DatabaseRetrievalMethod.FIND BY ID);

fullTextQuery.setFirstResult(page * 3);
fullTextQuery.setMaxResults(3);
List<Products> results = fullTextQuery.getResultList();

Map<Integer, List<Products>> results and total = new HashMap<Integer, List<Products>>();

results_and_total.put(fullTextQuery.getResultSize(), results);

return results_and_total;

Returning type Map<Integer, List<Products>> may look strange, but it’s actually very simple to understand.
Since a category may contain many products, we need to implement the pagination mechanism and load from the
database only one page per query (the page size is set to three products). For calculating the number of pages, we

need to know the number of products in the selected category, even if we extract only some of them. Lucene is able to
return the total number of products even if you query only for some. The total number of products is stored as the key

of the returned map, while the products list is the value of this map. Here’s what the code for this looks like:

e fullTextQuery.setFirstResult(int n); Sets the position of the first result of retrieving the
data or, in other words, it skips the first "n" elements from the result set.

e fullTextQuery.setMaxResults(int n);, which is used to set the number of results to
retrieve starting from the first result.

e fullTextQuery.getResultSize(); Returnsthe number of all results that match the query,
even if we retrieve only a subset of results.

275

http:///

CHAPTER 8 MONGODB E-COMMERCE DATABASE QUERYING

In Figure 8-6, for example, you can see the last product from the Racquets category. Under the products list, you
can see the navigation link to the previous page and the pagination status of type current_page of total_pages:

recams] Gues Slsarch rO:roducxs‘SUUu#
it Product Hame and Description Product Gallery
dars i 2108 i

Eaardrs Babolat AeroPro Drive GT Raquet $186.00 . o
Caps 4 W
Callectars Size: |13 - Color: [uUnavalable | = Quantity 1 =

. Add To Cart

Posters

Racquets -

Preduct Description:

Shoes Great control, amazing spin ...

== More details:
Wristhands S

Previous Page 2 0f 2

Figure 8-6. Displaying the products of a category using pagination

Search for a Product by Name

One task an e-commerce web site has to perform is providing an easy way to search for a specific product or a number
of products without navigating through categories and pages of products. Usually, a user knows the product name or
has an idea of what he’s looking for. For example, he may know that the product is named “Babolat AeroPro Drive GT
Racquet,” or he may know only that he’s looking a “racquet.” The hard part is when the user knows only keywords that
should appear in the name of the products(s).

Many query engines handle such problems with custom queries, but Lucene was especially designed to search in
text, so searching for keywords in text is a piece of cake. The easiest way to accomplish this kind of search is to activate
the default analyzer for the product field in the Products entity (set analyze = Analyze.YES). For complex searching,
you can write your own analyzers, or mix analyzers, and so on. And you can use wildcards if you need more fine-
grained control of keywords.

The code in Listing 8-4 locates a product (or group of products) that contains a keyword (or a list of keywords
separated by spaces) within the name. (I arbitrarily chose not to sort the results.)

Listing 8-4. Locating a Product by Keyword

package eshop.beans;
public class EShopBean {
public List<Products> searchProducts(String search) {

FullTextEntityManager fullTextEntityManager =
org.hibernate.search.jpa.Search.getFullTextEntityManager(em);

QueryBuilder queryBuilder = fullTextEntityManager.getSearchFactory().
buildQueryBuilder().forEntity(Products.class).get();

org.apache.lucene.search.Query query = queryBuilder.keyword().
onField("product").matching(search).createQuery();

276

http:///

CHAPTER 8 © MONGODB E-COMMERCE DATABASE QUERYING

FullTextQuery fullTextQuery = fullTextEntityManager

.createFullTextQuery(query, Products.class);

fullTextQuery.initializeObjectsWith(ObjectLookupMethod.SKIP,

DatabaseRetrievalMethod.FIND BY ID);

fullTextQuery.setMaxResults(3);

List results

= fullTextQuery.getResultList();

return results;

A limitation of our search is that it returns at most three results (the first three). If you want to return more, or
even all, you will need to implement the pagination mechanism to not return too much data in a single query.
For example, I tested the search for the keyword “t-shirts” and obtained the results shown in Figure 8-7.

Welcome, Guest

Select a category

Calendars

Cape
Colectors

ehitts ek (0 products) 50.00%
Product Hame and Description Product Gallery
; ey -
Masters Crew T-Shirt $64.95 N Oy
i L T
Size: [i Color: [Rea - Quantity. [o 1 T | | [
Add To Cart e = 2
Product Description:
A great T-Shirt for amateur tennis players .
Bull Logo T-Shirt $26.90 A LG
e ~ st
Size: L - Color: | knaki - Quantity 1 - | 4
L j Sl L
Add To Cart _— e

Product Description:
This T-Shirt is only for real fans .

Figure 8-7. Searching for a product by keyword

Find a Customer By E-mail And Password

Each customer must have a unique account that contains his name, surname, e-mail address, password, and so on in
the Customers entity (the customers_c collection). When the customer logs in to the web site, views or modifies his
profile, places an order, or takes other actions, we need to be able to extract the customer details from the database.
The query in Listing 8-5 locates a customer in the customers_c collection by the e-mail address and password.

Listing 8-5. Locating a Customer

package eshop.beans;

public class EShopBean {

public Customers extractCustomer(String email, String password) {

277

http:///

CHAPTER 8 MONGODB E-COMMERCE DATABASE QUERYING

FullTextEntityManager fullTextEntityManager =
org.hibernate.search.jpa.Search.getFullTextEntityManager (em);
QueryBuilder queryBuilder = fullTextEntityManager.getSearchFactory().buildQueryBuilder().
forEntity(Customers.class).get();
org.apache.lucene.search.Query query = queryBuilder.bool().must(queryBuilder.keyword()
.onField("email").matching(email).createQuery()).
must (queryBuilder.keyword()
.onField("password").matching(password).createQuery()).
createQuery();

FullTextQuery fullTextQuery = fullTextEntityManager
.createFullTextQuery(query, Customers.class);

fullTextQuery.initializeObjectshWith(ObjectLookupMethod.SKIP,
DatabaseRetrievalMethod.FIND BY ID);

List results = fullTextQuery.getResultList();
if (results.isEmpty()) {

return null;
}

return (Customers) results.get(0);

Place an Order

This query does not need Lucene. When a customer places an order, the application should have the customer
(because he or she is logged in); the shipping address (it’s provided by the customer); and the shopping cart (stored in
the customer’s session). With these, it’s very easy to persist an order, like this:

package eshop.beans;

public class EShopBean {

private EntityManager em;

Orders new_order = new Orders();

//for each product
new_order.getCart().add(cart product);

new_order.setShipping address(shipping address);
new_order.setCustomer(customer);

new_order.setOrderdate(Calendar.getInstance().getTime());

new_order.setSubtotal (payment);
new_order.setStatus("PURCHASED");

278

http:///

CHAPTER 8 © MONGODB E-COMMERCE DATABASE QUERYING

em.persist(new_order);
}

This query affects only a single document, providing atomicity.

Check the Inventory

A customer can add a product to his shopping cart only if the product is available in the warehouse inventory.
Programmatically speaking, this means we need to know the product details and the required quantity; check if it’s
available in the inventory; and, if it is, remove the quantity from the inventory.

However, removing from inventory can lead to inconsistent data, which is clearly undesirable. This can be
avoided by using optimistic locking (or even pessimistic locking), but there’s a price to pay when an optimistic locking
exception is thrown. A simple solution is to provide a message such as, “The product was not added to your cart. Sorry
for the inconvenience, please try again ...’ or to wait a few seconds and repeat the query for a certain number of times
or until the product is not available in the inventory anymore. The first solution gives the customer a quick response,
while the second solution puts him in a waiting queue. I chose to return a message that urges the user to try again.

The code is shown in Listing 8-6.

Listing 8-6. Checking Inventory

package eshop.beans;

p.n'Jt.)lic class EShopBean {

F‘N‘Jt.Jlic int checkInventory(String sku, String color, String size, int quantity) {
InventoryPK pk = new InventoryPK(sku, color, size);

Inventory inventory = em.find(Inventory.class, pk, LockModeType.OPTIMISTIC);
int amount = inventory.getInventory();
if (amount > 0) {
if (amount >= quantity) {
amount = amount - quantity;
inventory.setInventory(amount);
try {
em.merge(inventory);
} catch (OptimisticLockException e) {
return -9999;
}

return quantity;
} else {

inventory.setInventory(0);

try {
em.merge(inventory);

} catch (OptimisticLockException e) {
return -9999;

}

279

http:///

CHAPTER 8 ©- MONGODB E-COMMERCE DATABASE QUERYING

return amount;

}
} else {

return amount;
}

—

When the inventory contains fewer products than the required quantity, we add to the shopping cart only the
quantity available and inform the user with a message. Figure 8-8 shows the messages that might appear when the
user tries to add a product to his shopping cart.

o

A

Figure 8-8. Possible messages when adding a product to the shopping cart

Of course, there are many ways to improve this, such as displaying a message next to each product that says
either "In Stock" or "Not in Stock," and deactivating the Add to Cart button for the latter.

Restore the Inventory

Customers can drop products from their shopping carts before placing the order, or the session might expire if the
user get distracted and doesn’t complete the order in a timely fashion (our application doesn’t implement this case).
When this happens, we need to restore the stock by adding the dropped product back to inventory. Practically, the
process is the reverse of removing products from inventory, so the same problem of inconsistent data may arise.
Optimistic locking (or pessimistic locking) can solve this, but, again, we have to deal with a possible optimistic locking
exception. Obviously, you can’t return a message to the customer that says, “Sorry, we can’t remove the product from
your cart...” because that would be very annoying. In our case, we just remove the product from the shopping cart
(since it’s stored in the session) and try only once to restore the inventory. But you could repeat the query, storing the
quantity somewhere else and try to restore it later; or you could use an in-memory secondary inventory; or find any
other approach that fits your needs.

Here’s the code for restoring the inventory:

package eshop.beans;
public class EShopBean {

public int refreshInventory(String sku, String color, String size, int quantity) {

http:///

CHAPTER 8 © MONGODB E-COMMERCE DATABASE QUERYING

InventoryPK pk = new InventoryPK(sku, color, size);

Inventory inventory = em.find(Inventory.class, pk, LockModeType.OPTIMISTIC);
int amount = inventory.getInventory();

amount = amount + quantity;

inventory.setInventory(amount);

try {
em.merge(inventory);

} catch (OptimisticLockException e) {
return -9999;

}

return quantity;

When a product is removed from the shopping cart (even if the inventory could not actually be restored), the user
should see a message like the one in Figure 8-9.

Figure 8-9. Message indicating that removing a product from the shopping cart was successful

At this point, we have a set of queries that compare well with many e-commerce web sites. Obviously, there are
many others that could be added, either using this database model or by modifying the model itself.

Considerations for Developing the Admin GUI

So far, we've talked about the e-commerce platform only from the perspective of a customer (user). But the
administrative aspects are also important for e-commerce platforms. You can develop a powerful admin GUI based
on our database model just by writing the proper queries. For example, our database model facilitates the most
common tasks that an administrator must accomplish:

You can easily create a new category, rename or delete existing ones, and so on.

You can insert new products into a category, delete existing products, or modify products
characteristics.

You can view or modify customer profiles and orders.
You can easily populate the inventory and tracking status.

You can create several statistics regarding selling, bestsellers, and more.

All these tasks can be accomplished atomically (affecting only one document per query).

281

http:///

CHAPTER 8 MONGODB E-COMMERCE DATABASE QUERYING

Summary

In this chapter, you learned how to query the MongoDB e-commerce database modeled in Chapter 7. You saw how
easy it is to write Lucene queries to achieve the main features of an e-commerce platform and avoid transactions.
Using MongoDB atomicity per document, embedded collections, nested documents, and some tricky queries, we
were able to create an e-commerce site that provides most of the common facilities of a real e-commerce platform.

At this point, you can easily write an admin side, add a powerful login mechanism, modify certain parameters such as
the products page size, and much more.

282

http:///

CHAPTER 9

Migrate MongoDB Database to Clouy

In this chapter, you'll see how to migrate a MongoDB database from your local computer to two cloud platforms,
MongoHQ and MongoLab. Cloud computing typically means that hardware and software resources are available as
services over a network (usually, the Internet).

I'll show you how to migrate the MongoDB eshop_db database developed in Chapter 7 to the cloud, but you can
use any other database as long as you follow the steps in order. It’s extremely easy to adapt the process to any other
MongoDB database.

Migrating the MongoDB Database to the MongoHQ Cloud

The first cloud computing platform I'll present is MongoHQ (www.mongohq.com/home). When you access this link, you
should see something like what’s shown in Figure 9-1.

<« [=W ttps,//www.mongohg.com/home

;\\:‘ mongo HQ Home AboutUs Pricing We are hiring! Sign Up Log In

Blazing fast, SSD-powered
MongoDB

Whether you are just starting your exploration of MongoDB or you are looking for the best team to help
you manage and scale out a clustered MongoDB environment, MongeHQ provides the best team, tools
and options to help you grow.

Get Started

Figure 9-1. MongoHQ cloud platform—the home page

283

http://www.mongohq.com/home
http:///

CHAPTER 9 © MIGRATE MONGODB DATABASE TO CLOUD

Suppose you have a MongoDB database on a local computer (for example, the eshop_db database) and you want
it to run on the MongoHQ cloud platform. Here are the steps you need to follow:

1. To create a free account, first press the Sign Up button. You'll see a simple form like the

one in Figure 9-2. Fill out the form and create the account (for this exercise, you can skip
the credit card information).

Account Basics
This information is used when you are logging into MongeHQ.
Full Mame *

Anghel Leonard

Email Address (used to login) *

leoprivacy@yahoo.com

Password

Confirm Password

Terms of Service
Please read the Terms of Senvice and check the box noting that you fully agree to them.
I hawve fully read and understand the Terms of Service for MongoHQ.com

Figure 9-2. MongoHQ cloud platform—creating a new account

2. Use these credentials to authenticate yourself in the MongoHQ system. Enter your e-mail
address and password and press the Sign In button, as shown in Figure 9-3.

284

http:///

CHAPTER 9 © MIGRATE MONGODB DATABASE TO CLOUD

sYmongoHa

Email

leoprivacy@yahoo.com

Password

Forgot your password?

Figure 9-3. MongoHQ cloud platform—Ilogging in

After you log in, you’ll see the New Database panel, where you can choose a database type.
For testing purposes, you can choose a free database, such as Sandbox or Azure Sandbox.
Once you select a database type, additional information will be provided below it. As you
can see in Figure 9-4, I chose Sandbox.

s'mongoHa

New Database

«@

Choose a database type

§SD Backed Databases

Replica Set: S5D 4GB $100/menth
Replica Set: 5D Large 25 GE $500/month
Elastic Hosting (AWS)

.*) Sandbox 512 MB $0/month

Includes: A shared MongoDB process. a good option for learning more about MangoHQ and MongoDB

Figure 9-4. MongoHQ cloud platform—choosing the Sandbox database type

After selecting the database type, scroll down and locate the Name your database input
text field. Type the name of the MongoDB database exactly as you want it to appear in the
cloud (see Figure 9-5). Then press the Create Database button and wait until the empty
database is prepared for you.

285

http:///

CHAPTER 9 © MIGRATE MONGODB DATABASE TO CLOUD

Name your database

eshop_db ‘

Create Database

Figure 9-5. MongoHQ cloud platform—naming your MongoDB database

5. After a few seconds, the database should be ready. A popup will inform you that the database
is empty, but you can copy an external database or a MongoHQ database or start creating
collections. In addition, the popup displays the information you need to connect to the
database either from the MongoDB shell or by using a MongoDB URI (see Figure 9-6). The

MongoDB URI is specific to each user, which means you have to adjust each command to
your own URL

eshop_db is empty

Connect directly to your database, copy external database, copy MongoHQ database, or create a
collection.

Mongo Console

mongo 1inus.mongohg.com:10039/eshop_db -u <user> -p<password:>

Mongo URI

mongodb: / /<user>: <password>@11nus .mongohq. com:1003%/eshop_db

Our support team can help with guestions about getting started. Just send us your guestions.

Figure 9-6. MongoHQ cloud platform—the MongoDB database is ready to use

6. Right now, we don’t need this popup. To the left of it, locate the Admin tab under the
Collections tab and open it. The Admin wizard provides all the operations available for
working with the databases, including those from the popup.

7. Now you have to create at least one user for your database. To do so, switch to the Users
tab and fill in the fields, as shown in Figure 9-7. Press the Add user button.

286

http:///

CHAPTER 9 © MIGRATE MONGODB DATABASE TO CLOUD

eshop_db c

one / Upgrade Database Add Database

Admin

Overview Users Jobs Backups

admin eshop

Add user

Users

Far security wa anhs disnlav nassward hashes nnt artnal nasswards

Figure 9-7. MongoHQ cloud platform—create a new user for the MongoDB database

If the user is successfully created, you'll see the entry, as shown in Figure 9-8.

Users

For security we only display password hashes not actual passwords

[_id: Objectld("513¢c28a24945bfb 57f3"). user: "admin”, pwd: "73e6b271d2befSaclc4faT

008", readOnly: false] Change Password | | Remove

Figure 9-8. MongoHQ cloud platform—the new user document

So far, so good! Now you can export the eshop_db collections from your local computer to
the brand-new eshop_db database created in the MongoHQ cloud. You can accomplish
this task by using two MongoDB utilities: mongodump and mongorestore. Both are available
as executables in the {MongoDB_HOME}/bin folder. Start the MongoDB server, open a shell
command, and navigate to the /bin folder.

Note You can find more information about the mongodump and mongorestore utilities in the MongoDB Manual at
http://docs.mongodb.org/manual/reference/mongodump/ and
http://docs.mongodb.org/manual/reference/mongorestore/.

10.

Use the mongodump utility to export the eshop_db database content in binary format

(you can get either JSON or CSV as the output format using the mongoexport command).
The output of this utility should be stored in a separate folder. I specified a folder named

eshop_tmp within the {MongoDB_HOME } folder (it will be automatically created). Here’s the
complete command (shown also in Figure 9-9):

mongodump -h localhost:27017 -d eshop_db -o ../eshop_tmp

287

http://docs.mongodb.org/manual/reference/mongodump/
http://docs.mongodb.org/manual/reference/mongorestore/
http:///

CHAPTER 9 © MIGRATE MONGODB DATABASE TO CLOUD

D:smongodbsbin2mongodump —h localhost:27817 —d eshop db —o .. eshop_tmp

connected to: localhost:27817

Thu Mar A7 13:32:34 DATABASE: eshop_dhb to . .eshop_tmp-eshop_dh

Thu Mar A7 13:32:34 eshop_db.categories ¢ to .. eshop_tmps/eshop_dhscategorie
s_c.hson

Thu Mar A7 13:32:34 2 ohjects

Thu Mar A7 13:32:34 Metadata for eshop_db.categories ¢ to .. eshop_tmpseshop
| dbs/categories_c.metadata.json

ihu Mar 87 13:32:34 eghop_db.products_c¢ to .. eshop_tmpreshop_dbsproducts_c.
son

Thu Mar A7 13:32:34 25 obhjects

Thu Mar B7 13:32:34 Metadata for eshop_db.proeducts_c¢ to .. eshop_tmpreshop_d
hs/products_c.metadata.json

Ihﬂ Mar 87 13:32:34 eghop_db.inventory_c to ..seshop_tnpseshop_dbsinventory_
c.hson

Thu Mar A7 13:32:34 59 objects

Thu Mar B7 13:32:34 Metadata for eshop_db.inventory_c to .. eshop_tmpreshop_
db/inventory_c.metadata.j=zon

Thu Mar @7 13:-32:34 eshop_db.customers_c to .. eshop_tmpreshop_db/customers_
c.hzon

Thu Mar @7 13:32:34 3 objects

Thu Mar @7 13:-32:34 Metadata for eshop_db.customers_c to ..~ eshop_tmpreshop_
db/customers_c.metadata.json

Figure 9-9. Exporting the eshop_db database in binary format (still on the local computer)

11. The database, in binary format, can now be imported to the cloud using the mongorestore
utility. Basically, mongorestore is used to import the content from a binary database dump
into a specific database. Here’s the command (also shown in Figure 9-10):

mongorestore -h linus.mongohq.com:10039 -d eshop_db -u admin -p eshop ../eshop_tmp/eshop_db

smongodbsbin>mongorestore —h linus.mongohg.comn:1883%2 —-d eshop_dh —u admin -p ﬂ

hop .. eshop_tmpseshop_db

onnected to: linus.mongohg.com:1B037

un Mar 10 B7:19:24 ..~ eshop_tmpreshop_dhs/categories_c.hson

un Mar 10 B7:19:24 going into namespace [eshop_db.categories _cl

objects found

un Mar 18 B7:19:24 Creating index: { key: { _id: 1 >, n=s: "eshop_dh_categor
1] . 3

un Mar 160 B7:17:24 going into namespace [eshop_db.customers_c]

un Mar 18 B7:19:24 Creating index: { key: { _id: 1 ¥, ns: "eshop_dhbh_custome
" oy

un qu 18 A7:19:24 going into namespace [eshop:dh.inuentory_c]
un Mar 18 B7:19:25 Creating index: { key: { _id: 1 ¥, ns: "eshop_dh_invento
iAoy

un Mar 10 @7:19:25 . -/eshop_tmpreshop_db/products_c.hson
un Mar 1@ @7:19:25 going into namespace [eshop_db.products_cl

un Mar 10 B7:19:25 Creating index: { key: { _id: 1 ., ns: "eshop_db_product
id "3

Figure 9-10. Importing eshop_db database in the MongoHQ cloud

Each collection was successfully imported.You can see the names of the collections
by navigating to the Collections tab, as shown in Figure 9-11.

288

http:///

CHAPTER 9 © MIGRATE MONGODB DATABASE TO CLOUD

eshop_d b Clone / Upgra

[Collections Collections

T Admin
collection name documents e
categories_c 9 8 KB
customers_c 3 28 KB
inventory_c 50 8 KB
orders_c 0 8 KB
products_¢ 25 28 KB

Figure 9-11. The collections of eshop_db database listed in MongoHQ

Mission accomplished! The eshop_db database is in the MongoHQ cloud.
Notice that there are many other tasks you can accomplish in the Admin wizard: delete a database, clone a
database, create a collection, and so on. Each task is pretty intuitive and assisted by friendly MongoHQ interfaces.

Migrating the MongoDB Database to the MongoLab Cloud

MongoLab (https://mongolab.com/welcome/) is the second cloud computing platform I'll present in this chapter.
When you access the link, you should see something like what’s shown in Figure 9-12.

'ﬂ MangoLal: MongoDg-a: %

€ 5 ¢ # © I

m mongolab Products Pricing Support

Welcome to MongoDB-as-a-Service

? Total data protection
g th

Figure 9-12. MongoLab cloud platform - start page

We'll start again from a MongoDB database, such as the eshop_db database, on a local computer. Again, you want
to make it run on the cloud. Here are the steps to do this using MongoLab:

1. To create a free account, first press the Sign Up button. You'll see a simple form, such as
the one in Figure 9-13. Fill out the form and create the account.

289

https://mongolab.com/welcome/
http:///

CHAPTER 9 © MIGRATE MONGODB DATABASE TO CLOUD

Create a new account

Account Name
Anghel Leonard

Admin username

Angzhel Leonard

Admin email

leoprivacy@yahoo.com

Admin password

Confirm pa rd

Figure 9-13. MongoLab cloud platform—creating a new account

2. Use these credentials to authenticate yourself in the MongoLab system. Fill in the
username and password and press the Log In button, as shown in Figure 9-14.

Anzhel Leonard
i

Forgot your username or password?

Figure 9-14. MongoLab cloud platform—log-in form

290

http:///

5.

CHAPTER 9 © MIGRATE MONGODB DATABASE TO CLOUD

After logging in, you'll see the Databases administration panel where you can create new
databases, remote connections, and dedicated clusters. For testing purposes, you can
create a new MongoDB database by pressing the Create new button in the Databases
section (see Figure 9-15).

m mongolab

Home

Databases E E

Figure 9-15. MongoLab cloud platform—Databases section

Next, you need to fill in some fields and make some selections in the Create Shared Plan
database wizard. Start by typing the database name as eshop_db, then select the cloud
provider. I just accepted the default. Select the free, shared plan because it’s perfect for
testing purposes. Finally, create at least one user for this database by filling in the fields

in the New database user section. I used admin for the username and eshop for the
password. Press the Create database button (see Figure 9-16).

New database user (optiona :

Share

Figure 9-16. MongoLab cloud platform—creating a new MongoDB database

After a few seconds the database is created and listed in the Databases section, as shown
in Figure 9-17:

291

http:///

CHAPTER 9 © MIGRATE MONGODB DATABASE TO CLOUD

Databases

D

eshop_db

Figure 9-17. MongoLab cloud platform—the eshop_db database listed in MongoLab

6. Select this database to see further details, such as the connection information, collections,

system collections, users, stats, and so on (see Figure 9-18). This information is specific to
your account.

Home

Database: eshop_db

Backups

Systermn Collections

MNAME
system.indexes
system.namespaces

system.users

Figure 9-18. MongoLab cloud platform—the eshop_db database details

You're ready to import the eshop_db database content to the MongoLab cloud. Just as you did earlier, you can use
the mongodump and mongorestore utilities. Assuming you've already used mongodump to export the database content to
binary format, all you need to do is call mongorestore based on the connection information listed under the database
name, as shown in Figure 9-18. Here’s the mongostore command (also shown in Figure 9-19):

mongorestore -h ds029107.mongolab.com:29107 -d eshop_db -u admin -p eshop ../eshop_tmp/eshop_db

292

http:///

CHAPTER 9 © MIGRATE MONGODB DATABASE TO CLOUD

Sun Mar 18 A7:38:A7
Sun Mar 18 A7:38:897
2 objects found

Sun Har 16 B?=3B=1B
ies_c", name: '"_id_
Sun Mar 10 B9:38:18
Bun Mar 18 B2:30:18
3 objects found

rs_c'", name: "
Sun Mar 18 B@9: 38 i@
Sun Mar 18 A9:38:18
59 obhjects found

ry c', name: '"_id_
Sun Mar 18 A7:38:18
Sun Mar 18 A7:38:18
25 obhjects found
Sun Mar 18 A7:38:11

Sun Har 18 @9: 38 13
>

Sun Har 1A 89:38:13
H

e_c', pame: “_id " >

D:~mongodb~bin*mongorestore —h dz029107 _mongolab.com:29107 —d eshop_db —u admin

—p eshop ../eshop_tmpreshop_db
connected to: ds(029107.mongolab.com:=29107

../eshop_tmpseshop_dbscategories_c.hson
going into namespace [eshop_dbh.categories_cl

Creating index: { key: { _id: 1 >, ns: “eshop_db.categor

../eshop tmp/eshop dbhscustomers_c.bson
going inte namespace [eshop_db.customers_cl

Creating index: { key: { _id: 1 >, ns: “eshop_db.custone

- .#eshop_tmpreshop_db/inventory_c.hson
going into namespace [eshop_db.inventory_cl

Creating index: { key: { _id: 1 >, ns: “eshop_db_invento

../eshnp _tmpseshop_dbsproducts_c.hson
going into namespace [eshop_dhbh.products_cl

Creating index: { key: { _id: 1 >, ns: “eshop_db.product

Figure 9-19. Importing the eshop_db database content in MongoLab cloud

A quick page refresh will reveal the imported collection under eshop_db, as in Figure 9-20.

Home

Database: eshop_db

MAME
categores_
customn
inventory_c
orders c

products_c

Figure 9-20. The eshop_db database collections listed in MongoLab

293

http:///

CHAPTER 9 © MIGRATE MONGODB DATABASE TO CLOUD

Mission accomplished! The eshop_db database is now in the MongoLab cloud.
Notice that the Tools wizard provides detailed information about importing and exporting data in MongoLab.
And in addition to mongodump and mongorestore, you can also access the mongoimport and mongoexport utilities.

Connecting to the MongoHQ or MongoLab Cloud Database

You can easily test the connection to the eshop_db database deployed to the MongoHQ or MongoLab cloud as long
as you correctly integrate the connection data (host, port, user, and password) into the application context. The
application in Listing 9-1 is based on the MongoDB Java driver. It connects to the eshop_db database and displays
the collection sizes (the number of documents). Adjust the MONGO_* constants to correspond to yours if the provided
values don’t work.

Listing 9-1. Testing the Connection to the eshop_db Database

package testcloudauth;

import com.mongodb.DB;

import com.mongodb.DBCollection;
import com.mongodb.Mongo;

import com.mongodb.MongoException;
import java.net.UnknownHostException;

public class TestCloudAuth {

//for MongoHQ

private static final String MONGO_HOST HQ = "linus.mongohq.com";
private static final int MONGO_PORT_HQ = 10039;

private static final String MONGO_USER HQ = "admin";

private static final String MONGO_PASSWORD HQ = "eshop";

private static final String MONGO_DATABASE_HQ = "eshop_db";

//for MongoLab

private static final String MONGO_HOST LAB = "ds029107.mongolab.com";
private static final int MONGO_PORT_LAB = 29107,

private static final String MONGO_USER_LAB = "admin";

private static final String MONGO_PASSWORD LAB = "eshop";

private static final String MONGO_DATABASE LAB = "eshop db";

public static void main(String[] args) {
try {

Mongo mongo hq = new Mongo(MONGO HOST HQ, MONGO_PORT HQ);
DB db_hq = mongo_hq.getDB(MONGO_DATABASE HQ);

Mongo mongo_lab = new Mongo(MONGO_HOST_LAB, MONGO_PORT_LAB);
DB db_lab = mongo_lab.getDB(MONGO DATABASE LAB);

boolean auth hq = db_hq.authenticate(MONGO USER HQ,
MONGO_PASSWORD_HQ.toCharArray());

boolean auth lab = db lab.authenticate(MONGO USER LAB,
MONGO_PASSWORD _LAB.toCharArray());

294

http:///

if (auth_hq) {

CHAPTER 9 © MIGRATE MONGODB DATABASE TO CLOUD

System.out.println("Connected at MongoHQ:");

DBCollection
DBCollection
DBCollection
DBCollection
DBCollection

collection categories c hq = db_hq.getCollection("categories c");
collection customers c hq = db_hq.getCollection("customers c");
collection_inventory c hq = db_hq.getCollection("inventory c");
collection products c_hq = db_hq.getCollection("products c");
collection orders c_hq = db_hq.getCollection("orders c");

System.out.println("TOTAL DOCUMENTS IN categories c (MongoHQ):" +

collection categories c_hq.count());

System.out.println("TOTAL DOCUMENTS IN customers_c (MongoHQ):" +

collection customers c_hq.count());

System.out.println("TOTAL DOCUMENTS IN inventory c (MongoHQ):" +

collection_inventory c_hq.count());

System.out.println("TOTAL DOCUMENTS IN products c (MongoHQ):" +

collection products c_hq.count());

System.out.println("TOTAL DOCUMENTS IN orders_c (MongoHQ):" +

} else {

collection orders c_hq.count());

System.out.println("Sorry, connection to MongoHQ (eshop db database) failed ...");

}

if (auth_lab) {

System.out.println("Connected at Mongolab:");

DBCollection
DBCollection
DBCollection
DBCollection
DBCollection

collection categories c lab = db lab.getCollection("categories c");
collection_customers c lab = db_lab.getCollection("customers c");
collection_inventory c lab = db_lab.getCollection("inventory c");
collection products c_lab = db_lab.getCollection("products c");
collection orders c_lab = db_lab.getCollection("orders c");

System.out.println("TOTAL DOCUMENTS IN categories c (Mongolab):" +

collection categories c lab.count());

System.out.println("TOTAL DOCUMENTS IN customers c (Mongolab):" +

collection customers c lab.count());

System.out.println("TOTAL DOCUMENTS IN inventory c (Mongolab):" +

collection inventory c lab.count());

System.out.println("TOTAL DOCUMENTS IN products c (Mongolab):" +

collection products c_lab.count());

System.out.println("TOTAL DOCUMENTS IN orders c (Mongolab):" +

} else {

collection orders c_lab.count());

System.out.println("Sorry, connection to Mongolab (eshop _db database) failed ...");

}

} catch (UnknownHostException | MongoException e) {
System.err.println(e.getMessage());

}

If the connection is successfully established, the output will be similar to what you see in Figure 9-21.

295

http:///

CHAPTER 9 © MIGRATE MONGODB DATABASE TO CLOUD

Output % | TestCloudAuthjava |

b | Java DB Database Process i | GlassFish Server3.1.2 s | TestMongoHQAuth (run) s [

|.>|.> rumn:

Connected a2t MongoHQ:
%% TOTAL DOCUMENTS IN categories o (MongoHQ) -5
TOTAL DOCUMENTS IN customers_c (MongoHQ) -3
TOTAL DOCUMENTS IN inventory c (MongoHO) :53
TOTAL DOCUMENTS IN products_c (MongoHQ) -25
TOTAL DOCUMENTS IN orders c (MongoHQ) -0
Connected at Mongolak:
TOTAL DOCUMENTS IN categories_c (Mongolab) 3
TOTAL DOCUMENTIS IN customers_c (Mongolab):3
TOTAL. DOCUMENTS IN inventory c (Mongolab) 53
TCOTAL DOCUMENTS IN products_c (Mongolabk) 25
TOTAL DOCUMENTS IN crders c (Mongolab):O

BUILD SUCCESSFUL {(total time: 3 seconds)

Figure 9-21. Output of the TestCloudAuth application

The complete source code for this application, called TestMongoHQAuth, is available in the Apress repository.
It comes as a NetBeans project and was tested for the presented cases.

The same connection can be configured in Hibernate OGM via JPA or Hibernate Native API. For example, the
persistence.xml file can be modified to connect to the eshop_db database under MongoHQ, like this:

<property name="hibernate.ogm.mongodb.database" value="eshop_db"/>
<property name="hibernate.ogm.mongodb.host" value="linus.mongohq.com"/>
<property name="hibernate.ogm.mongodb.port" value="10039"/>

<property name="hibernate.ogm.mongodb.username" value="admin"/>
<property name="hibernate.ogm.mongodb.password" value="eshop"/>

Summary

In this chapter, you saw how to migrate a MongoDB database from your local computer to the MongoHQ and
MongoLab cloud platforms. In both cases, I used free accounts, and I exported the binary version of the eshop_db
database modeled in Chapter 7 to the cloud. I used the MongoDB mongodump utility to obtain the binary version of this
database, and the export was achieved using the MongoDB mongorestore utility. Moreover, you saw how to test the
connection and do some queries against each cloud provider from a Java application. The application uses the Java
MongoDB driver, butI also showed you how to configure the same connection using the JPA persistence.xml file.

296

http:///

CHAPTER 10

Migrating RafaEShop Application
on OpenShift

In Chapter 9 you saw how to migrate MongoDB databases to two cloud platforms—MongoHQ and MongoLab.

As their names suggest, these platforms are cloud-based, hosted database solutions dedicated to MongoDB, which
means that the applications that use these databases must be hosted in another place. But if you don’t have such a
place, or you want to have the entire application (not just the database) in the cloud, you have to focus more on cloud
computing platforms, like OpenShift from Red Hat. As quoted on the www.openshift.comweb site, “OpenShift is Red
Hat's free, auto-scaling Platform as a Service (PaaS) for applications. As an application platform in the cloud, OpenShift
manages the stack so you can focus on your code.”

OpensShift allows you to use almost any programming language, framework, and middleware, supports many
kinds of architectures and servers, provides out-of-the-box templates for various types of applications, maintains
dedicated tools for developing and migrating applications, and is always focused on assistance and documentation
for developers.

OpenShift uses the notion of a cartridge to refer to all the supported servers, frameworks, database management
systems, and so on. For example, GlassFish AS, MongoDB, MySQL, SwitchYard, Cron, RockMongo, and JBoss AS are
all cartridges, and applications are built on one or more cartridges. As you'll see, OpenShift provides a user interface
for adding, removing, and configuring cartridges of applications, but its real power comes from the OpenShift Client
tools, known as rhc. For simple applications (like some web applications), it’s very convenient to use the OpenShift
GUI, while for more complex applications (web applications with databases, web services, and the like) a mix of both
GUI and rhc provides full control.

In this chapter, you'll see how to migrate the RafaEShop application to the OpenShift cloud. The application was
hosted and tested on GlassFish AS 3 running on localhost, but now we're going to migrate it to GlassFish AS 3 and
JBoss AS 7 running in the cloud. The aim is to apply the necessary modifications to the source code (the MongoDB
connection credentials, configuration files, and so on) and migrate this code to the cloud, first on GlassFish AS 3
as a Web Archive (WAR), and, second, on JBoss AS 7 as a WAR and a Maven project. At the end, you'll have three
applications in the cloud: one deployed on GlassFish AS 3 and two deployed on JBoss AS 7.

Creating a Free Account on OpenShift

Before getting started with OpenShift, you need to create a free account at www.openshift.com/. This can be
accomplished quickly and easily by pressing the SIGN UP link, which opens a form like the one shown in Figure 10-1.

297

http://www.openshift.com/
http://www.openshift.com/
http:///

CHAPTER 10 © MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

Create an account Already have an account? Sign in

Email address

\alid email address You'll love OpenShift because it has:

Built-in support for Java, Node._js, Ruby, Python, PHP,
Perl and extensible functionality to add other
At least 6 characters languages.

Password

Powerful command line client tools and a web
management console to launch and manage your

Enter it again applications
Pre-created quickstarts to instantaneously boot your
favorite application framework

Password confirmation

Are you a spam bot? A vibrant community forum watched around the clock
by an army of developers, evangelists, and OpenShift
devolees.

A wide range of developer resourc
technology specific get started pages. how-to blog
posts and videos.

Get Another Get an audio CAPTCHA Help
ing up you agree to the Te|

SIGN UP

Figure 10-1. Creating a free OpenShift account

Notice that you have to provide a valid e-mail address because you'll receive an e-mail from OpenShift containing
a link for activating the account (Figure 10-2).

What's next?

Check your inbox for an email confirming your account. You must click the link in the email to complete the registration
process.

If you do not eck your Spam folder to ensure it was not incorrectly moved. Please
). If these steps do not resolve your issue, contact us at

Figure 10-2. Activating your account from e-mail

After creating and activating your account, you have to accept the legal terms and conditions. Read them and
then press the I Accept button (Figure 10-3).

298

http:///

CHAPTER 10 © MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

Legal terms

Please Accept the Following Terms

Before participating in the OpenShift Preview Program and receiving the Preview Services, Preview Software and access
to online properties, you need to accept certain terms and conditions. The link below contains a list of the terms that will

apply to your use.

| Ter
cking | accept means that you agree to the above terms.

| Accept

Figure 10-3. OpenShift legal terms

Once you accept the legal terms, you'll be redirected to your personal management console where you can see
and create applications, get help, and modify account settings (see Figure 10-4). By default, the Create Application
wizard will be active.

Figure 10-4. User management console tabs

From now on, the management console page can be accessed by clicking the MY APPS link on the OpenShift start
page and signing in using your e-mail address and password, as shown in Figure 10-5.

Sign in to OpenShift

Password

SIGN 1M

Figure 10-5. Signing in to OpenShift

299

http:///

CHAPTER 10 © MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

If you sign in successfully, you should see the Create Application wizard (Figure 10-6). This wizard starts
automatically because you don’t yet have any application available. Once you do, the default wizard will be
My Applications. Note that a free OpenShift account allows you to have at most three applications in the cloud.
When you reach three applications, you can’t create a new one until you delete or scale down an existing one.
(The message you'll get is: “Currently you do not have enough free gears available to create a new application. You can
either scale down or delete existing applications to free up resources.”)

CREATE AN APPLICATION

2 Configure and deploy the application 3 Next steps

Create your first application now!

Choose a web programming cartridge or kick the tires with a quickstart. After you create the application you can a
like databases, metrics, and continuous build support with Jenkins.

Search by keyword or tag Browse by tag...

Figure 10-6. OpensShift Create Application wizard

Before creating your first application, you must create a namespace that’s unique to your account and is the
suffix of the public URLs OpenShift will assign to your applications. (If you don’t create the namespace now, you'll
be prompted for it later.) First, in your personal management console, switch to the My Account wizard, shown in
Figure 10-7. (If you don’t see this image, click on the Create a domain for your application link, in the
Domain section).

My Account

You need to set a namespace before you can create applications

Namespace

Your namespace is unigue to your account and is the suffix of the public URLs w
your own domain names to an application.

Your namespace must be letters or numbers with no spaces or symbols.
Save

Figure 10-7. OpenShift My Account wizard

300

http:///

CHAPTER 10 © MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

Type a valid namespace and save it. As you can see in Figure 10-7, I typed hogm. After the namespace is
successfully created, you'll see a message like the one in Figure 10-8. (Note that in place of the Public Keys message,
you might see an SSH Keys section, with a link indicating to upload your public key to access the code.)

My Account

Your domain has been created

‘You need to set a public key before you can work with application code

Public Keys

 to securely encrypt the connection between your Paste the contents of your public key file (_pub)
cation and to authorize you to upload code. You
private and public key on your loc achine and then upload
efore you can connect to your applications' Git repositories or
remotely ac your application.

The contents of your public key file

Learn mq H K

Figure 10-8. Domain was successfully created

There are two important messages in Figure 10-8. The first confirms that the domain was created successfully,
and the second tells you need an SSH public key to securely encrypt the connection between your local machine and
your applications. I'll show you later how to do this from the shell so you can sign out.

At this point, you have an account and a domain, but there are a few more steps before you can start migrating
the RafaEShop application. To communicate with the OpenShift platform from the local shell, you need to install
and configure the OpenShift RHC Client Tools (rhc) on your machine. These tools, which were built and packaged
using the Ruby programming language, will help you with many tasks, such as uploading or removing applications
to or from the cloud; monitoring server status and logs; controlling available services (start/stop/restart); adding and
removing security permissions; forwarding ports, and so on. Some of the capabilities provided by these tools are also
available through OpenShift wizards, but the power of these tools goes beyond OpenShift web GUIs.

Installing the OpenShift RHC Client Tools on Windows

In this section, you'll see how to install the OpenShift RHC Client Tools on Windows. You'll also install the Git version
control system, which is used by rhc to provide powerful command-line support for controlling your application.

Installing Ruby

Because rhc is built and packaged using Ruby, you need to install Ruby on your computer. The recommended version
is Ruby 1.9.x; I installed Ruby 1.9.3-p392, available at http://rubyinstaller.org/downloads/. For Windows, Ruby
comes as an executable file, so the installation process is monitored and guided by an intuitive wizard. During
installation, many settings have default values that fit most cases, but you must select the “Add Ruby executables to
your PATH” check box to run Ruby from the shell (Figure 10-9).

301

http://rubyinstaller.org/downloads/
http:///

CHAPTER 10 © MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

({5 Setup - Ruby 1.03-p392 = @ (==

Installation Destination and Optional Tasks
<Y

Setup will install Ruby 1.9. 39392 into the following folder. Click Install to
} continue or dick Browse to use a different one.

Please avoid any folder name that contains spaces (e.g. Program Files).

Db\Ruby193 Browse. ..

[tnetall Td/Tk support
| Add Ruby executables to your PATH |
["] Aszodiate .rb and .rbw files with this Ruby installation

TIP: Mouse over the above options for more detailed information.

Required free disk space: ~35.0 MB

< Back][Install][Cancel

Figure 10-9. Installing Ruby; adding Ruby executables to your PATH

Note If you decide to install Ruby versions later than 1.9.x (Ruby 2.0.0, for example), you might get a warning of type

“DL is deprecated, please use Fiddle” in the shell. Everything else should work as expected.

Installing Git

As quoted on the www.git-scm.com web site, “Git is a free and open source distributed version control system designed
to handle everything from small to very large projects with speed and efficiency.” OpenShift rhc needs Git to provide
version control for your source code, so you need to download and install it from www.git-scm.com/downloads.

I downloaded Git 1.8.1.2 and installed it using the installation wizard. During installation, ensure that Git is

added to your PATH so you can run it from the shell (Figure 10-10).

302

http://www.git-scm.com/
http://www.git-scm.com/downloads
http:///

CHAPTER 10 © MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

© Gt et =To s
Adjusting your PATH environment
How would you like to use Git from the command line?

) Use Git Bash only

This is the most conservative choice if you are concerned about the stability
of your system. Your PATH will not be modified.

(@ ‘Run Git from the Windows Command Prompt:

This option is considered safe and no conflicts with other tools are known.
Only Git will be added to your PATH. Use this option if you want to use Git
from & Cygwin Prompt {make sure to not have Cygwin's Git installed).

) Run Git and included Unix tools from the Windows Command Prompt

Both Git and its accompanying Unix tools will be added to your PATH.

Warning: This will override Windows tools like find.exe and
sort.exe. Select this option only if you understand the implications.

< Back][MNext =][Cancel

Figure 10-10. Installing Git; adding Git executables to your PATH

If you don’t want to alter your PATH, you can use the Git Bash shell (the first radio button in Figure 10-10), which
will put a shortcut on your desktop.

Testing Ruby and Git from the Shell

Before going further, it’s a good idea to do a quick test of Ruby and Git by executing some simple commands. To test
Ruby, open a shell and type the following command, which is also shown in Figure 10-11:

ruby -e 'puts "Hello from Ruby"'

w2ruby —e ‘puts "Hello from Ruby'™
ello from Ruby

N

Figure 10-11. Testing Ruby

303

http:///

CHAPTER 10 © MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

The output of this command is also visible in this figure.
Now type the following command, which is also shown in Figure 10-12, to test that Git was successfully installed
and is available from the shell:

git -version

:\>git ——version
it version 1.8.1 .msysgit.1

N>
Figure 10-12. Testing Git

The expected output is also visible in this figure.

There are situations when adding the Ruby and Git paths to the Windows PATH during installation doesn’t have
the expected result. In such cases, Ruby and/or Git will not be available from the shell, and instead of the expected
results, you'll get an error message stating “’ruby or git' is not recognized as an internal or external command, operable
program or batch file.” If this happens to you, keep reading. If you did get the expected results, just jump to the next
section.

This issue can be fixed in at least two ways. I like to use a batch (*.bat) file. The idea is simple:

e Create a file named autoexec.bat anywhere on your computer (the name doesn’t actually
have to be autoexec).

e Inthisfile, add aline like the SET PATH entry in Figure 10-13, adjusting the Ruby and Git paths
to correspond to yours.

| autoexec - Notepad
File Edit Format View Help
SET PATH=D:\Rubyl193\bin\;D:\git\bin\;

Figure 10-13. Creating a Windows .bat file

e Open a shell, navigate to the location of the .bat file, and type the file name (see Figure 10-14).

:shat >autoexec
:N\bat >SET PATH=D:“Rubyl?3~bin~;D:N\gitS\bhin\;

:zNbat >

Figure 10-14. Running the batch file

Now, Ruby should be accessible from the shell. Keep in mind that each time you open a new shell, you need to
run this command to be able to access Ruby and Git. This can be a pain, but it works. If you already have such a . bat
file, then just add these entries in the SET PATH section. For example, my autoexec.bat looks like what’s shown
in Figure 10-15.

304

http:///

CHAPTER 10 © MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

SET JAVA HOME=C:\Program Files\Java\jdk1.7.0_09\

SET PATH-C:\WINDOWS\system32;D:\apache-maven-3.0.4\bin\;D:\apache-ant-1.8.4\bin\;D:\Forge_1.1.3\bin;D:\git\bin\;D:\Rubyl83\bin\

Figure 10-15. Windows batch file sample for settings paths

Another approach is to use Windows wizards:
1. From the Desktop, right-click My Computer and click Properties.
2. Click the Advanced System Settings link in the left column (Figure 10-16).

Control Panel Home
View basic information about your computer

'@' Device Manager

'@:‘ Remote settings

Windows edition

Windows 7 Ultimate

@ System protection Copyright © 2009 Micresoft Corporation. All rights reserved.

"@:‘ Advanced systern settings Service Pack1

Figure 10-16. Windows 7 Control Panel

3. IntheSystem Properties window, click the Environment Variables button.

4. Locate the Path variable (Figure 10-17) and add to it the Ruby and Git paths.

System variables

Variahle Value -
05 Windows_NT B
C:YWWindows\system3Z;C:\Windows; C: ...
PATHEXT .COM; .EXE;.BAT;.CMD;.VBS; VBE; . 15;....
PROCESSOR_A... AMDG&4 v

| Mew.. || Edt. || Deete |

Figure 10-17. Adding Ruby and Git paths in Windows 7

5. Restart your machine and test Ruby and Git from the shell.

Installing the OpenShift Gem

Finally, we’ll install the OpenShift gem. After Ruby and Git are correctly installed, we’ll use the RubyGems package
manager (included in Ruby) to install the OpenShift client tools. This is straightforward and consists of a simple

command, gem install rhc, as shown in Figure 10-18. This command downloads and installs the rhc gem from
www. Tubygems .org/gems/rhc.

305

http://www.rubygems.org/gems/rhc
http://www.rubygems.org/gems/rhc
http:///

CHAPTER 10 © MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

D=“>gem install rhc|
Fetching:s net—-ssh-2.6.6.gem (108x)>

Fetching: archive-tar—minitar-0.5.2 _gem (108:x>
Fetching: highline—-1.6.16.gem {188:x)

Fetching: commander—4.1.3.gem <(188:x>

Fetching: httpclient—2.3.3_.gem (188:x>
Fetching: open4-1.3.8.gemn (188>

Fetching:

Successfully installed net-ssh-2.6.6

uccessfully installed archive—-tar—minitar-0.5.2
ucceszfully installed highline—1.6.16

uccessfully installed commander—4.1.3

uccessfully installed httpclient—-2.3.3

uccessfully installed opend-1.3.8

uccessfully installed vrhc-1.5.13

7 gemz installed

Installing »i documentation for net-ssh-2.6.6...
Installing »i documentation for archive—-tar—-minitar-8.5.2...
Installing »i documentation for highline-1.6.16...
Installing ri documentation for commander—4.1.3...
Installing »i documentation for httpclient-2.3.3...
Installing ri documentation for opend—-1.3.8...
Installing ri documentation for rhc—1.5.13...
Installing RDoc documentation for net—-ssh-2.6.6...
Installing RDoc documentation for archive—tar—minitar-8.5.2...
Installing RDoc documentation for highline-1.6.16...
Installing RDoc documentation for commander—4.1.3...
Installing RDoc documentation for httpclient—2.3.3...
Installing RDoc documentation for opend-1.3.8...
Installing RDoc documentation for rhe—1.5.13...

Dzs>

Figure 10-18. Downloading and installing the OpenShift gem

After installation completes, run the rhc setup command (this is recommended when you install the rhc tools
for the first time). To do this, sign in with your e-mail address and password, then you'll be prompted to answer a few
questions. The first is about creating a token on your disk for accessing the server without using your password. Type yes
and the token will be saved in the C: /Users/{USER}/.openshift/express.conf file, as shown in Figure 10-19.

g:\)rhc setuﬁ
penShift 1ent Tools (RHC> Setup Wizawrd

This wizard will help you upload your S8H keys, set your application namespace.
and check that other programs like Git are properly installed.

Login to openzhift_redhat.com: rafanadalworldBfyahoo.comn
Passwoprd @ MR

OpenShift can create and store a token on disk which allows to you to access
the server without using your password. The key is stored in your home
directory and should be kept secret. You can delete the key at any time by
running ‘rhec logout’ .

Generate a token now? (yesinol

Generating an authorization token for this client ... lasts about 1 day

Saving configuration to CG:sUsers“Anghel Leonard“.openshift“express.conf ...

Figure 10-19. The rhc setup shell wizard; generating a token

Remember the SSH public key needed to securely encrypt communication between your local machine and your
applications? Well, you should now be informed that you don’t have such a key and that OpenShift can create and upload
to the server an SSH key for you. Type yes; the SSH key will be saved locally in the C: /Users/{USER}/.ssh/id_rsa.pub file
and uploaded to the server, as shown in Figure 10-20.

306

http:///

CHAPTER 10 © MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

Mo SSH keys were found. We will generate a pair of keys for you.

[Created: €:-Users/finghel Leonard/.ssh/id_rsa.puh]

Your public 88H key must bhe uploaded to the OpenShift server to access code.
Upload now? (yesino? yes

fince you do not have any keys associated with your OpenShift account. your new
key will bhe uploaded as the ‘default’ key.

Type: szsh—-rsa
Fingerprint: 83:72:28:9d:a6:23:63:17:bh: 1 :f6:f6:04:h?:d1:6h
Uploading key ‘default’ from C:sUsersz“Anghel Leonard:.sshhid_rsza_.pub __._

Figure 10-20. The rhc setup shell wizard; creating and uploading the SSH key

After a few informational messages and a list of applications that can be created on OpenShift, you should see
a message like “Your client tools are now configured” (see Figure 10-21).

You are using A of 3 total gears
The following gear sizes are available to you: =small

Mour client tools are now configured.|

Figure 10-21. The rhc setup shell wizard; the configuration was successful

This message confirms that rch was successfully created and everything is set to start developing applications.
The SSH key was successfully generated and uploaded. You can check this in your personal management
console, in the My Account wizard, as shown in Figure 10-22.

Public Keys

OpensShift uses a public key to securely encrypt the connection between your
and your application and to authorize you to upload code. Learn
SSH

default AAAB3NZA. edMCebit

Add a new key...

Figure 10-22. Accessing your SSH key using the My Account wizard

Note This section describes installing the rhc tools only on Windows. But rhc can also run on other operating
systems, such as Mac OS X, Fedora 16, 17, and 18, Red Hat Enterprise Linux 6.4, Ubuntu, and more. To see how to install rhc on
these operating systems, please see the instructions at www.openshift.com/developers/rhc-client-tools-install.

307

http://www.openshift.com/developers/rhc-client-tools-install
http:///

CHAPTER 10 © MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

Fixing a Known Issue

In Windows 7 it’s very possible to get the error “Permission denied (publickey, gssapi-keyex, gssapi-with-mic)” when
you try to execute Git commands. The easiest way to fix this is to copy the two files named id_rsa from the
C:/Users/{USER}/.ssh folder to the {GIT_HOME}/.ssh folder. This should fix the issue!

Migrating the RafaEShop Application to OpenShift
with JBoss AS 7

Now let’s see how to migrate the RafaEShop application from your computer to OpenShift cloud on JBoss AS 7. We're
going to look at two scenarios: one for migrating this application as a WAR (Web Archive) and one as a Maven project.

Note Of course, if you are interested in only one of the scenarios, only read about that one and ignore all references
to the other.

To start, though, there are several steps to complete that are common to both.

Step 1: Create a base folder. Create a folder named JBossAS on one of your local disks (such as D: /JBossAS).
We will use this as the base folder for our two scenarios.

Step 2: Create two scenario folders. In the D: /JBossAS folder, create two subfolders, one named war, and the
other named mvn.

Step 3: Create a default project based on the JBoss Application Server 7.1 cartridge.

Before deploying an application such as RafaEShop, you need to create a default JBoss Application Server 7.1
application. This is one of the cartridges supported by OpenShift, as shown in Figure 10-23.

JBoss Application Server 7.1

Figure 10-23. JBoss Application Server 7.1 cartridge

This step can be accomplished from the OpenShift GUI or from the shell. I prefer the latter, so open a shell and
navigate to the D: /JBossAS/war folder. Use the rhc tools to create the new project by using the following command,
which is also shown in Figure 10-24:

rhc app create -a RafaEShopW -t jbossas-7

308

http:///

CHAPTER 10 © MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

D:~JBosshS warirhc app create —a RafaEShopW -t jhossas—7
Application Options

Hamespace: hogm
Cartridges: jhossas-7
Gear Size: default

Scaling: no
Creating application *RafaEShopYW’' ... done
Waiting for your DHS name to he availahle ... done

Dovnloading the application Git repository ...

Cloning into *'RafaEShopW’ ...

Warning: Permanently added the RSA host key for IP address *107.28_46_229' to th
e list of known hosts.

remote: Counting ohjects: 39, done.

remote: Compressing objects: 188x (31,313, done.

rRemote: Total 392 <delta 1). reused B (delta Bdeceiving ohjects: 43Ix 17-39>
Receiving ohjects: &%« (2739

Receiving ohjects: 188x (39-39>. 19.9? KiB, done.

Resolving deltas: 188x {1-1>, done.

Your application code is now in *RafaEShopll’

RafaFEShopll @ http:/sRafaEShopll-hogm.rhclovwd.con/ (uwid:
514ffd57500446021 e 0D0B8 7>

Created: 7:31 AM

Gears: 1 <defaults to smalld>
Git URL:

ggh://514f Fd57508446021 80088 7ERaf aES hopli-hogm. rhc louwd . con/™/git RafaEShopll . git/
85H: 514ffd57508446021eB0BA8 ?PRaf aEShopll-hogm.rhc loud . com

Jbossas—7 (JBoss Application Server 7.1

Gears: 1 small

RESULT :
fpplication RafaEShopW was created.

Figure 10-24. Creating the JBoss Application Server 7.1 default application

Note During this step, you may receive the question “Are you sure you want to continue connecting (yes/no)?’
The answer is yes. OpenShift needs to add this host to the list of trusted hosts.

Switch to the D: /JBossAS/mvn folder and repeat this step, this time typing the following:
rhc app create -a RafaEShopM -t jbossas-7

Now you have two identical default applications. We'll deploy the RafaEShop application as a WAR file under
RafaEShopW and as a Maven project under RafaEShopM.

At this point, if you check the D: /IBossAS/war and D: /JBossAS/mvn folders, you'll see that the applications were
created in the RafaEShopW and RafaEShopM subfolders. Here you'll find several folders and files, described in the
D:/JBossAS/war/RafaEShopW/README. txt and the D:/JBossAS/war/RafaEShopM/README. txt) files, from which I've
copied the following fragment:

deployments/ - location for built wars

src/ - Maven src structure

pom.xml - Maven build file

.openshift/ - location for openshift specific files

.openshift/config/ - location for configuration files such as standalone.xml (used to modify jboss config such
as datasources)

309

http:///

CHAPTER 10 © MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

.openshift/action_hooks/pre_build - Script that gets run every git push before the build (on the CI system
if available)
.openshift/action_hooks/build - Script that gets run every git push as part of the build process (on the CI
system if available)
.openshift/action_hooks/deploy - Script that gets run every git push after build but before the app is restarted
.openshift/action_hooks/post_deploy - Script that gets run every git push after the app is restarted
.openshift/action_hooks/pre start_jbossas-7 - Script that gets run prior to starting AS7
.openshift/action_hooks/post_start jbossas-7 - Script that gets run after AS7 is started
.openshift/action_hooks/pre stop_jbossas-7 - Script that gets run prior to stopping AS7
.openshift/action_hooks/post_stop_jbossas-7 - Script that gets run after AS7 is stopped
.openshift/markers - directory for files used to control application behavior. See README in markers directory
Read the entire file for complete details. The application links are available in your personal management
console, as shown in Figure 10-25. The links are functional, and they open the default welcome page of the
applications.

All Applications

RafaEShopW @ntpirarae

RafaEShopM @ntpirar

ADD APPLICATION

Figure 10-25. Two JBoss Application Server 7.1 application links

If you click on an application’s link, you'll see the application details, such as the Git repository associated with
the application, and you'll be able to manage cartridges (see Figure 10-26).

RafaESho pw @ hitp /IR hopW-hogm.rhcloud.com/
ALIASES

Cartridges

JBoss Application Server 7.1

gm_rhcloud .com/~/git/RafaE

Enable Jenkins builds Delete this application

ADD CARTRIDGE

Figure 10-26. RafaEShopW application details

310

http:///

CHAPTER 10 © MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

Now that you've seen the structure of a default JBoss Application Server 7.1 application, it’s time to go further.
Step 4: Add a MongoDB NoSQL Database 2.2 cartridge (see Figure 10-27).

MongoDB NoSQL Database 2.2

it 1B is : > i performance

open source Nos

Select »

Figure 10-27. MongoDB NoSQL Database 2.2 cartridge

This will add a MongoDB server instance ready to be populated with data. By default, OpenShift will create a
MongoDB database with the same name as the application. As you can see in Figure 10-27, there’s a Select button
that lets you add this cartridge using a dedicated wizard. I'll let you explore that approach on your own, while I show
you how to do this from the shell using rhc. Use the following rhc command, which is also shown in Figure 10-28,
to add the MongoDB to the RafaEShopW application:

rhc cartridge add -a RafaEShopW -c mongodb-2.2

D:\JBossAS\warehc cartridge add —a RaFaFShopll —¢ mongodb—2.2
Adding mongodb—2.2 to application 'RafaEShopll’ ... Success

mongodh—-2_.2 (MongoDB No2QL Databhasze 2.2)

Gears: Located with jhossas—7

Connection URL:
mongodhb:.//50PENSHIFT _MONGODB_DB_HOST : $0PENSHIFT_MONGODB_DB_PORT /
Database Mame: RafaEShopl

Passuword: hi_gnlUdFgEByg
Username : admin
RESULT =

fAdded mongodb-2.2 to application RafaEShopW
MongoDB 2.2 databhase added. FPlease make note of these credentials:

Root User: admin
Root Password: hi_gnUdFgEBg
Database Mame: RafaEShopl

Connection URL:

mongodh:/ %0PENSHIFT _MONGODB_DB_HOST : S0PENSHIFT _MONGODB_DB_FORT~

You can manage your new MongoDB by alse embedding rockmongo—-1.1
The rockmongo username and password will bhe the same as the MongoDB credentials
ahove .

Figure 10-28. Adding the MongoDB NoSQL Database 2.2 cartridge using rhc tools

Repeat this step to obtain a MongoDB instance for the RafaEShopM application by switching to the D:/JBossAS/mvn
folder and typing the following command:

rhc cartridge add -a RafaEShopM -c mongodb-2.2

Notice that the MongoDB database was added and you have access to it through the listed credentials.
The MongoDB cartridge is now available in your personal management console, as shown in Figure 10-29.

311

http:///

CHAPTER 10 © MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

RafaESho pw @ hitp a ogm.rhcloud.com

Cartridges

JBoss Application Server 7.1

MongoDB NoSQL Database 2.2

Figure 10-29. MongoDB cartridge is listed in the RafaEShopW application

Step 5: Add the RockMongo 1.1 cartridge, as shown in Figure 10-30. (This step is optional.)

RockMongo 1.1
NVeb based Mo DB administration tool
riridge to be

Select »

Figure 10-30. RockMongo 1.1 cartridge

Adding the RockMongo administration tool is not mandatory, but it can be very useful to have access to the
MongoDB database through a friendly web GUI that makes it easy to manage database content (add and delete
collections, query data, manage users, import and export data, and so on). You can add this cartridge from the shell
(for the RafaEShopW application) by using the following command, which is also shown in Figure 10-31:

rhc cartridge add -a RafaEShopW -c rockmongo-1.1

312

http:///

CHAPTER 10 © MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

D:“JBossAS wardrhc cartridge add —a RafaEShopW! —c¢ rockmongo—1.1]
Adding rockmongo—1.1 to application "RafaEShopW' ... Success

rockmongo—1.1 (RockMongo 1.1>

Gears: Located with jhossas—7, mongodbh-2.2
Connection URL: https:~ ~sRafaEShopl-—hogm.rhcloud.consrockmongo”
RESULT :

Added rockmongo—1.1 to application RafaEShopl!

Puckmungu—i.l added. Please make note of these MongoDB credentials
again:

RockMongo User = admin
RockMongo Password: hi_gnUdFgEBg

URL: [https :#/Raf aEShopW-hogn.rhc loud.com rocknongo. |

Figure 10-31. Adding the RockMongo 1.1 cartridge using rhc tools

Of course, you can also try the visual approach by pressing the Select button.

After you add the RockMongo cartridge, you can access it from the listed URL
https://RafaEShoph-hogm.rhcloud.com/rockmongo/. (The credentials are the same as for the MongoDB
managed instance: user: admin, password: hi_gnUdFgEBg). In Figure 10-32, I accessed the RockMongo interface
for the MongoDB instance belonging to the RafaEShopW application.

&« C & O httpsy//rafaeshopw-hogm.rhcloud.com,/rockmongo/index.php?action=admin.index

LDCalhDStE | Tools ¥ | Master

Server | Status | Datzbases | Processlist | Command | Execute | Master/Slave

©

Command Line (db.serverCmdLineOpts())
RafaEShopW (3)

= fusr/bin/mongod --auth --nojournal --smallfiles --guiet -£
& admin {(2) /var/lib/openshift/514££457500446021e000087/ /mongodb-2.2//ete/mongodb. conf run
& local
Connection
Host 127.7.182.129
Port 27017
Username RRLIERS
Password RRLIERS
Web Server
Web server Zpache/2.2.15
PHF version PHF 5.3.3
FHE extension mongo/1.3.4

Figure 10-32. RockMongo interface for the RafaEShopW database

Repeat this step to add the RockMongo cartridge to the RafaEShopM application. Switch to D: /JBossAS/mvn and
type the following:

rhc cartridge add -a RafaEShopM -c rockmongo-1.1

Sign in to OpenShift to see the RockMongo cartridge, as shown in Figure 10-33.

313

https://rafaeshopw-hogm.rhcloud.com/rockmongo/
https://rafaeshopw-hogm.rhcloud.com/rockmongo/
http:///

CHAPTER 10 © MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

MongoDB NoSQL Database 2.2

RockMongo 1.1

Figure 10-33. RockMongo cartridge is listed in the RafaEShopW application

Step 6: Add the org.hibernate:ogm module to JBoss AS 7.

In Chapter 4, in the section “Hibernate OGM in a built-in JTA environment (EJB 3, JBoss AS 7),” you saw how
to add in JBoss AS 7 the module for Hibernate OGM. The same module must be added to the D: /JBossAS/waxr/
RafaEShopW/.openshift/config/modules folder (and to the equivalent folder for RafaESHopM). Simply copy the
{3B0OSS_HOME}/modules/org/hibernate/main and {JBOSS_HOME}/modules/org/hibernate/ogm folders, as shown
in Figure 10-34.

4 4 JBossAS RafaE ShopW 4 # JBossAS RafaE ShopM
mvn 4 | mvn
4 | war 4 RafaEShopM
4 RafaEShopW 4 . .openshift
4 |, .openshift action_hooks
action_hooks 4 config
4 config 4 | modules
4 modules 4 org
4 org) 4 hibernate
4 hibernate / main
J main 4] hibernate-commons-annotations-4.0.1.Final

4] hibernate-commons-annotations-4.0.1.Final hibernate-core-4.1.9.Final
|%] hibernate-core-4.1.9.Final || hibernate-entitymanager-4.1.9.Final
4] hibernate-entitymanager-4.1.9.Final || hibernate-infinispan-4.0.1.Final
4] hibernate-infinispan-4.0.1.Final “| module
=] module ogm
Dom 4] hibernate-ogm-core-4.0.0.Beta2
4] hibernate-ogm-core-4.0.0.Beta2 4] hibernate-ogm-mongodb-4.0.0.Betal
4] hibernate-cgm-mongodb-4.0.0.Betal mongo-java-driver-2.8.0
4] mongo-java-driver-2.8.0 = module
=] module -

Figure 10-34. Adding the Hibernate OGM-specific module to JBoss AS 7

Step 7: Adjust the persistence.xml settings. You need to modify the persistence.xml file according to your cloud
application. I recommend you work on a copy of this file. The original is located in the {RafaEShop HOME}/src/conf

folder and currently contains the settings shown in Listing 10-1.

314

http:///

CHAPTER 10 © MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

Listing 10-1. Original persistence.xml File

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.0" xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd">
<persistence-unit name="HOGM_eSHOP-ejbPU" transaction-type="JTA">
<provider>org.hibernate.ogm. jpa.HibernateOgmPersistence</provider>
<class>eshop.entities.Categories</class>
<class>eshop.entities.Customers</class>
<class>eshop.entities.Inventory</class>
<class>eshop.entities.Orders</class>
<class>eshop.entities.Products</class>
<properties>
<property name="hibernate.search.default.directory provider" value="filesystem"/>
<property name="hibernate.search.default.indexBase" value="D:/eshop"/>
<property name="hibernate.search.default.locking strategy" value="single"/>
<property name="hibernate.transaction.jta.platform"
value="org.hibernate.service.jta.platform.internal.SunOneJtaPlatform"/>
<property name="hibernate.ogm.datastore.provider" value="mongodb"/>
<property name="hibernate.ogm.datastore.grid dialect"
value="org.hibernate.ogm.dialect.mongodb.MongoDBDialect"/>
<property name="hibernate.ogm.mongodb.database" value="eshop_db"/>
<property name="hibernate.ogm.mongodb.host" value="127.0.0.1"/>
<property name="hibernate.ogm.mongodb.port" value="27017"/>
</properties>
</persistence-unit>
</persistence>

You have to adjust several settings, as shown in the following set of instructions (this is specific to the
RafaEShopW application).

Apache Lucene indexes are stored in the file system, in the D: /eshop folder. You need to modify this folder path
(base folder) with a valid cloud folder path. Or, to make it much simpler, you can use a memory-based directory by
replacing the following code:

<property name="hibernate.search.default.directory provider" value="filesystem"/>
<property name="hibernate.search.default.indexBase" value="D:/eshop"/>
<property name="hibernate.search.default.locking strategy" value="single"/>

with this code:

<property name="hibernate.search.default.directory provider" value="ram"/>
<property name="hibernate.search.default.locking strategy" value="single"/>

Because the application is being deployed on JBoss AS, you need to adjust the JTA platform by replacing the
following setting:

<property name="hibernate.transaction.jta.platform"
value="org.hibernate.service.jta.platform.internal.SunOneJtaPlatform"/>

315

http://java.sun.com/xml/ns/persistence
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd
http:///

CHAPTER 10 © MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT
with this setting:

<property name="hibernate.transaction.jta.platform"
value="org.hibernate.service.jta.platform.internal.JBossAppServerJtaPlatform"/>

Also, you need to add a few properties that help JBoss AS locate and use the org.hibernate:ogm module,
as described in Chapter 4, in the section “Hibernate OGM in a built-in JTA environment (EJB 3, JBoss AS 7):"

<property name="jboss.as.jpa.adapterModule" value="org.jboss.as.jpa.hibernate:4"/>
<property name="jboss.as.jpa.providerModule" value="org.hibernate:ogm"/>
<property name="jboss.as.jpa.classtransformer" value="false"/>

<property name="hibernate.listeners.envers.autoRegister" value="false"/>

Finally, you need to set the MongoDB database name, host, port, user, and password. To do this, replace the
following code:

<property name="hibernate.ogm.mongodb.database" value="eshop_db"/>
<property name="hibernate.ogm.mongodb.host" value="127.0.0.1"/>
<property name="hibernate.ogm.mongodb.port" value="27017"/>

with this code:

<property name="hibernate.ogm.mongodb.database" value="RafaEShopW"/>
<property name="hibernate.ogm.mongodb.host" value="127.7.182.129"/>
<property name="hibernate.ogm.mongodb.port" value="27017"/>

<property name="hibernate.ogm.mongodb.username"” value="admin"/>
<property name="hibernate.ogm.mongodb.password" value="hi gqnUdFqEBg"/>

Note The MongoDB remote server IP address can be easily obtained if you connect to the MongoDB server using
RockMongo. In Figure 10-32, you can see the IP address 127.7.182.129 listed in the Host field. The port is always 27017,
while the user and password are those used for the connection with RockMongo and provided by OpenShift when you
added the MongoDB cartridge.

The “new” persistence.xml is shown in Listing 10-2.

Listing 10-2. New persistence.xml File

<?xml version="1.0" encoding="UTF-8"?>

<persistence version="2.0" xmlns="http://java.sun.com/xml/ns/persistence"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="http://java.sun.com/xml/ns/persistence

http://java.sun.com/xml/ns/persistence/persistence 2 _0.xsd">

<persistence-unit name="HOGM_ eSHOP-ejbPU" transaction-type="JTA">

<provider>org.hibernate.ogm.jpa.HibernateOgmPersistence</provider>
<class>eshop.entities.Categories</class>
<class>eshop.entities.Customers</class>
<class>eshop.entities.Inventory</class>
<class>eshop.entities.Orders</class>
<class>eshop.entities.Products</class>

316

http://java.sun.com/xml/ns/persistence
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd
http:///

CHAPTER 10 © MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

<properties>

<property name="hibernate.search.default.directory provider" value="ram"/>

<property name="hibernate.search.default.locking strategy" value="single"/>

<property name="jboss.as.jpa.adapterModule" value="org.jboss.as.jpa.hibernate:4"/>

<property name="jboss.as.jpa.providerModule" value="org.hibernate:ogm"/>

<property name="jboss.as.jpa.classtransformer" value="false"/>

<property name="hibernate.listeners.envers.autoRegister" value="false"/>

<property name="hibernate.transaction.jta.platform"
value="org.hibernate.service.jta.platform.internal.JBossAppServerJtaPlatform"/>

<property name="hibernate.ogm.datastore.provider" value="mongodb"/>

<property name="hibernate.ogm.datastore.grid dialect"
value="org.hibernate.ogm.dialect.mongodb.MongoDBDialect"/>

<property name="hibernate.ogm.mongodb.database" value="RafaEShopW"/>

<property name="hibernate.ogm.mongodb.host" value="127.7.182.129"/>

<property name="hibernate.ogm.mongodb.port" value="27017"/>

<property name="hibernate.ogm.mongodb.username"” value="admin"/>

<property name="hibernate.ogm.mongodb.password" value="hi_qnUdFqEBg"/>

</properties>
</persistence-unit>
</persistence>

Repeat Step 7 for the RafaEShopM application. All you need to modify is the MongoDB database name and
credentials. Now, you have two persistence.xml files, one for the RafaEShopW application and one for the
RafaEShopM application. Just keep them handy.

Now we're done with the steps that are common to both the WAR and Maven projects.

Monitoring the JBoss AS 7 Log

OpenShift will restart the JBoss AS instance for every Git commit session. More specifically, when you commit
changes, OpenShift stops the JBoss AS instance, uploads and processes the changes, and starts JBoss AS instance
again. If something goes wrong during the restart (for example, if there’s an error in the code or a missing JAR), then
the JBoss AS instance starts with errors, which means that the application will not be available online. In such cases,
it's very helpful to be able to look at the JBoss AS log for debugging purposes; otherwise, it’s very difficult to know
what’s happening.

You can monitor (in real-time) the server log by opening a Secure Shell (SSH) session to your application.

Note The easiest way to find the specific SSH command you need for connecting to your application is to access the
application page and copy from there (as shown in Figure 10-35 for the RafaEShopW application). More details about
remote access using SSH are available at www.openshift.com/developers/remote-access.

317

http://www.openshift.com/developers/remote-access
http:///

CHAPTER 10 © MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

RafaEShopW @i

Cartridges

JBoss Application Server 7.1

ms. See our

5sh 514ffd57500446021=000087 @R afaEShopWW-hogm.rheloud.com)

Figure 10-35. Finding the specific SSH command for an application (RafaEShopW sample)

This can be done from the shell using the following ssh command, which is also shown in Figure 10-36:

ssh 514ffd57500446021e000087@RafaEShopW-hogm.rhcloud.com

D:~JBossAS war}ssh 514ffd57500446021eAARAB7ERaf aEShopl-hogm.rhc loud.com]

You are accessing a service that is for use only by authorized users.
If you do not have authorization,. discontinue use at once.

Any wuse of the services is subject to the applicable terms of the
agreement which can bhe found at:
https:/7openshift.redhat.comnsapp-legal

Welcome to OpenShift shell
This shell will assist you in managing OpenShift applications.

t1t TMPORTANT ttt IMPORTANT *t%* THPORTANT ftt

8hell access is gquite powerful and it is possible for you to
accidentally damage your application. Proceed with care?

If vorse comes to worst, destroy your application with ‘rhc app delete’
and recreate it

t1t TMPORTANT ttt IMPORTANT *tt* THMPORTANT ftt

Type "help' for more info.

[Raf aEShooW-hoam.rhc loud.com 514Ffd575004460210800887 1> _
Figure 10-36. Executing the ssh command from the shell

This is for opening a Secure Shell session to the RafaEShopW application; it’s very intuitive to do the same thing for
the RafaEShopM application.

Next, type the tail _all command, as shown in Figure 10-37. Notice that this command will tail all available logs for
the current application. (The logs specific to JBoss AS are jbossas-7/1ogs/boot.log and jbossas-7/1logs/server.log.)

318

http:///

CHAPTER 10 © MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

[RafaEShopW-hogm.rhcloud.com 514ffd575080446021eB00887 15> [tail_all

==» jhossas—7/logs/server.log <{==

2013-83-26 BB:12:58.128 INFO [org.jboss.as.messagingl (MS8C service thread 1-32
JBASE11685: Unbound messaging object to jndi name Java:~-RemoteConnectionFactory
2813-83-26 BB:12:58,187 INF0 [org.jboss.as.osgil (MS8C service thread 1-1) JBHSB
11942: Stopping OSGi Framework

2813-A3-26 BA:12:58,124 INFO I[org.jboss.as.messagingl (MSC service thread 1-4>
JBASE11685: Unbound messaging object to jndi name Java:~/ConnectionFactory
2813-03/26 BA:12:58,.387 INFO [org.jboss.as.messagingl (MS8C service thread 1-33
JBASB11685: Unbound messaging obhject to jndi name java:-topicr/test

2013-83-26 BB:-12:58,.322 INF0O I[org.jhboss.as.messagingl (MEC service thread 1-3>
JBASA116A5: Unhound messaging ohject to jndi name java:jhbosssexported/jms topic/
test

28130326 BA:12:58,.324 INFO [org.jboss.as.messagingl (MS8C service thread 1-33
JBASH11685: Unbound messaging obhject to jndi name java:-queuerstest

201383 -26 BB:-12:-58,.328 INFO [org.jhoss.as.messagingl (MEC service thread 1-3>
IBHSBiiSBE: Unbound messaging obhject to jndi name java:jhoss-exportedsjms queue~

ke
7813/33/26 BA:12:58,.414 INFO I[org.apache_coyote_httpll Httpll1Protocoll (MEC ser
Jice thread 1-1> Pausing Coyote HTTP/i 1 on http—127_7_182 129-127_7_182 _129-888
3

20138326 BB:12:58.416 INF0 I[org.apache.coyote.httpll HttplliProtocoll (MEC ser
Jice thread 1-1> Stopping Cowote HTTP-1.1 on http—127.7.182.129-127.7.182.129-8@
ia

28130326 BA:12:58,523 INFO [org.jhboss.as.deployment._connector] (MSC service t
hread 1-3> JBASHA18418: Unbound JCA ConnectionFactory [java:/JdmsHAl

==» jhossas—"?/logs/server.log.2013-A3-25 <{==

28130325 B3:31:58,754 INFO [org.jboss._as.deployment._connector] (MSC service t
hread 1-4) JBASA1A4A6: Registered connection factory java: JmsEA

2813-83-25 B3:31:58,784 INFO [org.jhboss.as._messagingl (MEC service thread 1-23
JBASB116081 : Bound messaging object to jndi name java:-rtopic-test

20138325 B3:31:58.798 INF0O I[org.jboss.as.messagingl (MS8C service thread 1-2>
JBASA116A1 : Bound messaging obhject to jndi name java:jhoss/exported/jms-topic/te

st

28130325 B3:31:58,.777 INFO [org.hornetg.ra._HornetQResourceAdapter] (MEC serui

ze thread 1-4> HornetQ resource adaptor started

20138325 B3:31:58.799 INFO I[org.jhoss.as.connector.services.Resourcefidapteric

tivatorServiceSResourcefAdapterfictivator] (MSC service thread 1-4) 1JA280802: Depl

yyed: file:/~Rafictivatorhornetg—ra

20130325 B3:31:58,812 INFO [org.jhoss.as.deployment._connector] (MSC service t

hread 1-1> JBASH18481 : Bound JCA ConnectionFactory [Jjava:/JdmsXAl

20138325 B3:31:58.941 INF0 I[org.jhoss.as.server.deployment] (MEC service thre

ad 1-3> JBASA15876: Starting deployment of "ROOT.war"

2013-83-25 @3:32:83.0811 INFO [org.jhoss.web]l (MSC service thread 1-2> JBASA1821

4: Registering weh context:

20138325 @3:32:03,206 INFO [org.jboss.as] (MSC service thread 1-2> JBASH15874

: JBoss AS 7.1.08.Final "Thunder" started in 138%6ms — Started 211 of 326 service
{112 services are passive or on—demand>

7813/83/25 A3:32:03.58? INFO [org.ijboss.as.server] (DeploymentScanner—threads —

Figure 10-37. Tail JBoss AS logs

Now you can monitor the logs in real-time. Don’t close the monitor during commits because this process is
“connected” to the logs files; just open another shell for other commands.

Note Besides tail all, the Secure Shell session allows you to execute other commands. To see the list of these
commands with a description, type the help command after the SSH session is established.

Commit Changes

Every change made in the local application folder should be committed on OpenShift (you have to synchronize
the content of this folder with the application on OpenShift). For this, you can use Git commands (open a shell for
monitoring server logs, if you haven't already done so).

Open a new shell and navigate to the D: /JBossAS/war/RafaEShopl folder (this is also valid for the RafaEShopM
application). Type the command git add ., as shown in Figure 10-38, to prepare the content staged for the next
commit. Don’t worry about LF-CRLF warnings.

319

http:///

CHAPTER 10 © MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

D:\JBDSSHS\war\RafaEShop'ﬁ'm_it add .
warning: LF will be replaced by CH
main/module.xml.

The file will have its original line endings in your working directory.

wvarning: LF will be replaced by CRLF in .openshift-sconfig/modules/org-shibernates
ogns/module . xnl.

The file will have its original line endings in your working directory.

F in .openshiftsconfig/modules org-shibernates

Figure 10-38. Executing the git add . command

Good to know (details at www. kernel.org/pub/software/scm/git/docs/git-add.html):

git add -AStages All

git add . Stages new and modified, without deleted

git add -u Stages modified and deleted, without new

Type the command git commit -m "first commit" (the text first commit can be any text, as long as it’s different
for every execution of this command). The changes are stored and listed, in this case, in the new JBoss AS module
files, as shown in Figure 10-39.

D:~JBossAS war~RafaEShopt>git commit —m “first commit"]

[master 34714571 first commit
wvarning: LF will be replaced by CRLF in .openshift/config/modulesorgshibernates
main/module .xml.
The file will have its original line endings in your working directory.
warning: LF will be replaced by CRLF in .openshift-sconfig/modules org-hibernate
ogns/module _xml.
The file will have its original line endings in your working directory.

9 files changed. 78 insertionsC+>

create mode 188644 .openshift/config/modulessorgs/hibernatesmainshibernate—commo
ns—annotations—4_B_1 _Final. jar

create mode 188644 _openshift/config/modulessorg-shibernatesmainshibernate—core—
4.1.9.Final.jar

create mode 180644 .openshift/config/modulessorg-shibernatesmainshibernate—entit
ymanager—4.1_.%_Final. jar

create mode 188644 _openshift/configs/modulessorg-/hibernatesmainshibernate—infin
ispan—4.8.1.Final. jar

create mode 180644 .openshift- /config/modulessorg-shibernatesmain/module.xml
create mode 188644 .openshift/config modules~org-hibernatesogm-hibernate—ogm—co
re—4_A_A_BetalZ. jar

create mode 188644 _openshift/config/modulesorg-hibernatesogmshibernate—ogm—mo
ngodbh—4.68.8_Betal. jar

create mode 180644 .openshift/config/modules orgshibernatesogm/module.xml
create mode 188644 _openshift/config/modulessorg-/hibernatesogmn/mongo—java—drive
r—2_8_0._jar

Figure 10-39. Executing the git commit -m “first commit” command

Good to know (details at www. kernel.org/pub/software/scm/git/docs/git-commit.html):

If you make a commit and then find a mistake immediately afterwards, you can recover from it using the git
reset command.

Use the git push command to propagate changes to OpenShift (see Figure 10-40). During execution of this
command, which can take from a few seconds to several minutes, you can check the server log, which is updated
in real-time. Notice how the server is stopped and started during push. When no changes are detected, you'll see a
message that informs you that everything is up to date.

320

http://www.kernel.org/pub/software/scm/git/docs/git-add.html
http://www.kernel.org/pub/software/scm/git/docs/git-commit.html
http:///

CHAPTER 10 © MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

D:~JBossASswarsRaf aEShopW it push

Aa8? fapp—root/runt imesrepossrc/mainswebappl

remote: [INFO1 Webapp assembled in [199 msecs]

remote: [INFO]1 Building war: Avar-libropenshift 514ffd575880446021 080887 /app—roo
tA/runtimereposdeployments /RO0OT _war

remote: [INFO]1 WEB-INF.-webh.xml already added, skipping

remote: L[INFOI
remote: L[INFO1 BUILD SUCCESS
remote: [INFO]
remote: [INFO] Total time: 22.117s

remote: [INFO] Finished at: Tue Mar 26 B4:25:88 EDT 2813
remote: [INFO] Final Memory: 8M-165HM

remote: [INFO1
remote: Running .openshift-action_hooks- build

rémote: Running .openshift~saction_hooks~sdeploy

remote: hot_deploy_added=false

remote: MongoDB already running

remote: Found 127.7.182_129:8888 listening port

remote: Done

remote: Running .openshiftraction_hooks-/post_deploy

To sshi//514f Fd57500446021 e BABAS ?7BRaf aES ho pll-hogm. rhe loud . con ™ /git-RafaEShopll.g

it/
8h4e3ab..3471457 master —> master

Figure 10-40. Executing the git push command

Good to know (details at www. kernel.org/pub/software/scm/git/docs/git-push.html):
git push --delete Alllisted changes are deleted from the remote repository.

Migrating the RafaEShop Application as a WAR

After all this hard work, it’s time to prepare the RafaEShop WAR for deployment under JBoss AS 7 in the cloud. First,
locate the WAR in your local project RafaEShop/dist folder or in the Apress repository in the RafaEShop/dist folder.
Copy this WAR to the D:/JBossAS/war/RaftaEShopW/deployments folder. Finally, override the persistence.xml file in
the RafaEShop WAR archive (you can use any archive tool, like WinRAR).

Before committing the WAR in the cloud, there’s one more step to complete. You need to add to the /1ib
folder two more JARs, named jackson-core-asl-1.9.12.jar
(http://mvnrepository.com/artifact/org.codehaus.jackson/jackson-core-asl) and jackson-mapper-
asl-1.9.12.jar (http://mvnrepository.com/artifact/org.codehaus.jackson/jackson-mapper-asl).

Finally, commit the changes, as shown in Figure 10-41.

D:\JBossAS warsRafaEShopW>git add .|

D:~JBossASswar~RafaEShopWigit commit —m "second commit"
[master Yf78b5%al second commit

1 file changed, B insertions<{+>,. B deletions<{—>
create mode 188644 deployments-RafaEShop.war

D: \JBDSSHS\war\RafaEShupHm

Counting uh,]et:ts. 6, done.

Delta compression using up to 8 threads.
Compressing objects: 188x <(4-4>, done.

Upiting objects: ?5x (3~4>, 15.98 MiB | 1.12 HMiB-=s

Figure 10-41. Committing the RafaEShop WAR

321

http://www.kernel.org/pub/software/scm/git/docs/git-push.html
http://mvnrepository.com/artifact/org.codehaus.jackson/jackson-core-asl
http://mvnrepository.com/artifact/org.codehaus.jackson/jackson-mapper-asl
http:///

CHAPTER 10 © MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

The application was successfully deployed and started. The JBoss server log should look like what’s shown
in Figure 10-42.

25i3;ﬁ§;§§uaa-:‘iﬁgiﬁ:ﬁiéulﬂﬁav-E;;&.jbnss.as.seruerl (DeploymentScanner—t
2» JBASA18557: Deployed "RafaEShop.war'

Figure 10-42.]Boss AS log

If you're interested only in this application, you can jump to the “Test It!” section.

Migrating the RafaEShop Application as a Maven Project

Now I'll focus on the RafaEShopM application. A quick look at the /mvn/RafaEShopM folder reveals a pom.xml file

and a /src folder with three subfolders: /main/java, /main/resources, and /main/webapp. This is actually the
default application created by OpenShift; it’s a simple demo that runs on JBoss AS 7 and serves as a starting point for
developers.

Asyou can see, this demo has a Maven project structure, which means that we should be able to replace it with
the RafaEShop application. To do this, we have to add the RafaEShop components in the right places and adjust the
pom.xml accordingly.

Following are the steps for deploying the RafaEShop application as a Maven project:

Step 1: Locate the RafaEShop NetBeans project. You can download the RafaEShop NetBeans project from the
Apress repository.

Step 2: Empty the contents of /webapp folder. Just delete the current contents of the
D:/JBossAS/mvn/RafaEShopM/sxc/main/webapp folder.

Step 3: Copy the RafaEShop sources. Copy the folder {RafaEShop HOME}/src/java/eshop folder to the
D:/JBossAS/mvn/RafaEShopM/src/main/java folder, as shown in Figure 10-43.

= « JBossAS » mwn » RafaEShopM e src » main k java » v|+¢|
Mame Date modified
eshop 3/27/2013 5:42 AM
|| .gitkeep 3/27/2013 5:19 AM

Figure 10-43. Copying the /eshop folder from the RafaEShop application to the RafaEShopM application

Step 4: Copy the RafaEShop /web folder contents. Copy the contents of the {RafaEShop_HOME } /web folder to the
D:/3BossAS/mvn/RafaEShopM/src/main/webapp folder, as shown in Figure 10-44.

322

http:///

CHAPTER 10 © MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

b JBossAS » rmwn » RafaBShopM » src » main » webapp »

folder
Mame : Date modified Type Size
| FESOUrCES 3/27/2013 5:55 AM File folder
. WEB-INF 3/27/2013 5:55 AM File folder
|&| db 3/26,/2013 5:46 PM Firefox HTML Doc... 3KB
& index 3/22/2013 5:29 PM Firefox HTML Doc... 16 KB

Figure 10-44. Copying the /web folder contents from the RafaEShop application to the RafaEShopM application

Step 5: Create the /META-INF folder. Create an empty folder named META-INF in
D:/3BossAS/mvn/RafaEShopM/src/main/resources (see Figure 10-45).

b JBossAS » mvn » RafaEShopM » src » main » resources »

y - Share with « Burn Mew folder

Mame Date modified Type Size
. META-INF 3/27/2013 3:539 AM File folder
|| gitkeep 3/27/20135:19 AM GITKEEP File OKB

Figure 10-45. Creating the empty META-INF folder

Step 6: Copy persistence.xml. Earlier, in the section, “Migrating the RafaEShop Application to OpenShift
with JBoss AS 7,” you created a persistence.xml file for the RafaEShopM application. Now, copy it to the
D:/3BossAS/mvn/RafaEShopM/src/main/resources/META-INF folder (see Figure 10-46).

b JBossAS » mwvn » RafaBEShopM » src » main ¢ resources » META-INF

with + Burn Mew folder
MName : Date medified Type Size
£ persistence 372272013 5:31 PM XML Document 2 KB

Figure 10-46. Copying the persistence.xml file

Step 7: Adjust pom.xml. Edit the default pom.xml file, as shown in Listing 10-3. You have to add the necessary
dependencies (Hibernate OGM, Hibernate Search, and PrimeFaces).

Listing 10-3. Editing the pom.xm1 File

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4 0 0.xsd">

<modelVersion>4.0.0</modelVersion>
<groupId>RafaEShopM</groupId>
<artifactId>RafaEShopM</artifactId>

http://maven.apache.org/POM/4.0.0
http://www.w3.org/2001/XMLSchema-instance
http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd
http:///

CHAPTER 10 © MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

<packaging>war</packaging>

<version>1.0</version>

<name>RafaEShopM</name>

<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<maven.compiler.source>1.6</maven.compiler.source>
<maven.compiler.target>1.6</maven.compiler.target>

</properties>

<repositories>
<repository>
<id>prime-repo</id>
<name>PrimeFaces Maven Repository</name>
<url>http://repository.primefaces.org</url>
<layout>default</layout>
</repository>
<repository>
<id>jboss-public-repository-group</id>
<name>JBoss Public Maven Repository Group</name>
<url>https://repository.jboss.org/nexus/content/groups/public-jboss/</url>
<layout>default</layout>
<releases>
<enabled>true</enabled>
<updatePolicy>never</updatePolicy>
</releases>
<snapshots>
<enabled>true</enabled>
<updatePolicy>never</updatePolicy>
</snapshots>
</repository>
</repositories>

<!--
<pluginRepositories>
<pluginRepository>
<id>jboss-public-repository-group</id>
<name>JBoss Public Maven Repository Group</name>
<url>https://repository.jboss.org/nexus/content/groups/public-jboss/</url>
<layout>default</layout>
<releases>
<enabled>true</enabled>
<updatePolicy>never</updatePolicy>
</releases>
<snapshots>
<enabled>true</enabled>
<updatePolicy>never</updatePolicy>
</snapshots>
</pluginRepository>
</pluginRepositories>
-->

324

http://repository.primefaces.org</url
https://repository.jboss.org/nexus/content/groups/public-jboss/%3C/url
https://repository.jboss.org/nexus/content/groups/public-jboss/%3C/url
http:///

CHAPTER 10

<dependencyManagement>
<dependencies>
<dependency>
<groupld>org.primefaces</groupId>
<artifactId>primefaces</artifactId>
<version>3.4.2</version>
</dependency>
<dependency>
<groupId>org.hibernate</groupId>
<artifactId>hibernate-search</artifactId>
<version>4.2.0.Betai</version>
</dependency>
<dependency>
<groupld>org.hibernate.ogm</groupId>
<artifactId>hibernate-ogm-core</artifactId>
<version>4.0.0.Beta2</version>
</dependency>
<dependency>
<groupIld>org.hibernate.ogm</groupId>
<artifactId>hibernate-ogm-mongodb</artifactId>
<version>4.0.0.Betal</version>
</dependency>
</dependencies>
</dependencyManagement>

<dependencies>
<dependency>
<groupId>org.primefaces</groupld>
<artifactId>primefaces</artifactId>
<version>3.4.2</version>
</dependency>
<dependency>
<groupIld>org.hibernate</groupId>
<artifactId>hibernate-search</artifactId>
<version>4.2.0.Betai</version>
</dependency>
<dependency>
<groupId>org.hibernate.ogm</groupId>
<artifactId>hibernate-ogm-core</artifactId>
<version>4.0.0.Beta2</version>
</dependency>
<dependency>
<groupld>org.hibernate.ogm</groupIld>
<artifactId>hibernate-ogm-mongodb</artifactId>
<version>4.0.0.Betal</version>
</dependency>
<dependency>

MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

325

http:///

CHAPTER 10 © MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

<groupld>org.jboss.spec</groupld>
<artifactId>jboss-javaee-6.0</artifactId>
<version>1.0.0.Final</version>
<type>pom</type>
<scope>provided</scope>
</dependency>
</dependencies>
<profiles>
<profile>
<!-- When built in OpenShift the 'openshift' profile will be used when invoking mvn. -->
<!-- Use this profile for any OpenShift specific customization your app will need. -->
<!-- By default that is to put the resulting archive into the 'deployments' folder. -->
<!-- http://maven.apache.org/guides/mini/guide-building-for-different-environments.html -->
<id>openshift</id>
<build>
<finalName>RafaEShopM</finalName>
<plugins>
<plugin>
<artifactId>maven-war-plugin</artifactId>
<version>2.1.1</version>
<configuration>
<outputDirectory>deployments</outputDirectory>
<warName>RafaEShop</warName>
</configuration>
</plugin>
</plugins>
</build>
</profile>
</profiles>
</project>

Finally, commit the changes, as shown in Figure 10-47.

D:~JBossAS~men~RafaEShopM>git add .

D:~JBossAS~mvn~RafaEShopM>git commit —m “First commit"'
[master aB?8afc] first commit
1 file changed, 14 insertions(+>», 15 deletions<->

Dz~ JBossAS~muvn~Raf aEShopM>git push

Counting ohjects: 5, done.

Delta compression using up to 8 threads.
Compressing obhjects: 188x (3-3>. done.
Writing obhjects: 188 (3-3>. 394 hytes. done.
Total 3 <{delta 2>, reused B {(delta B>

remote: restart_on_add=false

Figure 10-47. Commit RafaEShop as an Apache Maven project

326

http://maven.apache.org/guides/mini/guide-building-for-different-environments.html
http:///

CHAPTER 10 © MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

The application was successfully deployed and started. The JBoss server log should look like what’s shown in
Figure 10-48.

@13,083/27 B3:47:21,297 INFO [org.jhoss.as.server]l (DeploymentS8canner—threads -
2> JBASA18559: Devploved "RafaEShop.war"

Figure 10-48. RafaEShop was successfully deployed

If you are interested only in this application, you can now jump to the “Test It!” section.

Migrating the RafaEShop Application to OpenShift with
GlassFish 3 AS

In the first part of this chapter you saw that OpenShift offers excellent support for JBoss AS. In just a few minutes
you can obtain a default application running on JBoss AS, and with several clicks and commands you can build and
deploy your own applications as WARs or even as Apache Maven projects.

In the second part of this chapter, we're going to see how to migrate the RafaEShop application from your
computer to the OpenShift cloud on GlassFish 3 AS. At the time of this writing, OpenShift does not provide a default
GlassFish cartridge, but it does allow you to extend OpenShift to support GlassFish (or other unsupported languages,
frameworks, and middleware) using the Do-It-Yourself application type, as shown in Figure 10-49.

Do-It-Yourself

The Do-lt-Yourself (DIY) application type is :

Figure 10-49. Do-It-Yourself cartridge

Following are the steps for creating such applications:

Step 1: Prepare GlassFish AS for OpenShift. Before creating a DIY application, you need to prepare GlassFish
for working with OpenShift. There are several modifications that affect GlassFish domain configuration, so it’s not
recommended you perform these modifications on your local GlassFish distribution. It's much better to download
anew GlassFish distribution from download. java.net/glassfish/3.1.2.2/release/glassfish-3.1.2.2.zip
(version 3.1.2.2 was used in this example) and extract the ZIP archive content in a convenient place on your computer.

Here are the modifications you'll need to make:

e Bind the HTTP listener to the application IP (represented by the environment variable
$OPENSHIFT_INTERNAL_IP).

e Disable the administrator console.
e Disable other listeners.

e Update some ports to permitted ones.

327

http:///

CHAPTER 10 © MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

These modifications will affect a single GlassFish file, {GlassFish HOME}/glassfish/domains/domaini/config/
domain.xml. The modified version of this document will be shown completely after I present the list
of modifications. You'll find more details about the contents and format of this file at
http://docs.oracle.com/cd/E19798-01/821-1753/abhar/index.html.

You should make the following modifications. These modifications are indicated by the OpenShift Blog at
https://www.openshift.com/blogs and are presented in order from the top of the document to the bottom:

Modification 1: Replace “localhost” with “OPENSHIFT INTERNAL_IP, as shown in Figure 10-50.

54 <property value="1527" name="PortNumber" />

2= <property valus="APP" name="Password" />

=11 <property value="APP" name="User" />

57 <!-— REPFLACE 'localhost' WITH OPENSHIFT INTERWAL IP -->

58 <l-- <property wvalue="localhost" name="zerverNams" /> -->

59 <property value="OPENSHIFT INTERNAL TP" name="serverName" =3
60 <property value="sun-appserv-samples" name="DatabaseName" />
a6l <property wvalue=":create=true" name="connectionAttributes" />

Figure 10-50. Modification 1
Modification 2: Replace “localhost” with “OPENSHIFT_INTERNAL_IP, as shown in Figure 10-51.

8 </serverr
=] </servers>
70 <nodes>

1 <!-—— REPLACE 'localhost' WITH OFENSHIFT INTERNAL IP ——>

2 <!-- <node name="localhost-domainl™ type="CONFIG" node-host="localhost"™ install-dir="5{com.sun.aas.productRoot}"/> —-->

3 <node name="localhost-domainl" type="CONFIG" node-hosc="OPENSHIFT INTERNWAL IP" install-dir="§{com.sun.aas.productRoot}" />
=

</nodeax
<configa>»

Figure 10-51. Modification 2

Modification 3: Remove “http-listener-2, as shown in Figure 10-52.

T6 <config name="server-config">

77 <http-servicex>

78 <access-log/>

78 <!—— REMCOVE 'http-listener-2' —->

80 <l-- <virtual-server id="server" network-listeners="http-listener-1,http-listenser-2"/> —-->
81 <virtual-server id="server" network-listeners="http-listener-1"/>

82 <virtual-server id="__ asadmin" network-listeners="admin-listener"/>

83 </http-service>

Figure 10-52. Modification 3

Modification 4: Comment the lines <iiop-service></iiop-service>, as shown in Figure 10-53.

328

http://docs.oracle.com/cd/E19798-01/821-1753/abhar/index.html
http://docs.oracle.com/cd/E19798-01/821-1753/abhar/index.html
https://www.openshift.com/blogs
http:///

CHAPTER 10 © MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

<virtual-server id="_asadmin" network-listeners="admin-listener"/>
r </http-sexrvicer
<!-— COMMENT <iiop-service> ——>

=] <1-=
<iiop-service>
<ork use-thread-pool-ids="thread-pool-1" />
<iiop-listener address="0.0.0.0" port="3700" id="orb-listener-1" lazy-init="true"/>
<iiop-listener security-enabled="true" address="0.0.0.0" port="3820" id="35L">
<33l classname="Ccom.sun.enterprise.security.ssl.GlassfishS5LInpl" cert-nickname="slas" />
</iiop-listenery>
<iiop-listener security-enabled="true" address="0.0.0.0" porc="3920" id="55L MUTUALAUIH">
<33l classname="com.sun.enterprise.security.ssl.GlassfishS55LInpl" cert-nickname="slasa" client-auth-enabled="true" /3|

94 </iiop-listener>

I </iiop-servicex

96 r —=

a7 E <admin-service auth-realm-name="admin-realm" type="das-and-server" system-jmx-connector-name="system">

Figure 10-53. Modification 4

Modification 5: Replace “0.0.0.0” with “OPENSHIFT_INTERNAL_IP” and “8686” with “7600,” as shown in
Figure 10-54.

</iiop-listener>
</iiop-service>

-
<admin-service auth-realm-name="admin-realm" type="das-and-server" system—jmx-connector-name="system">
<!-— REPLACE '0.0.0.0" WITH OPENSHIFT_INTERNRL _IP RND '8686' WITH 7600 ——>
<!'-- <jmx-connector auth-realm-name="admin-realm”™ security-enabled="falase" address="0.0.0.0" port="8686" name="syscem" /> —-->

<jmx-connector auth-realm-name="admin-realm" secu
<property wvalt

ty-enabled="false" address="OPENSHIFT INTERNAL IP" port="7600" name="system" />

Jadmin" name="adminConsocleContextRoot" />

Figure 10-54. Modification 5

Modification 6: Replace “localhost” with “OPENSHIFT INTERNAL_IP” and “7676” with “5445, as shown in
Figure 10-55.

<mdb-container steady-pool-size="0" max-pool-size="32" pool-resize-quantity="8" >
</mdb-container>
<jms-service type="EMBEDDED" default-jms-host="default JMS host">

<!-- REPLACE 'localhost' WITH OPENSHIFT INTERMAL IP AND '7676' WITH 5445 -->
<!-- <jms-host name="default JMS5_host" host="localhost" port="7676" admin-user-name="admin" admin-password="admin" lazy-init="true"/> -->
<jms-host name="defaunlt JMS host" host="OPENSHIFT INTERNAL IP" port="5445" admin-user-name="admin" admin-password="admin" lazy-init="trume"/
125 </jms-service>
126 <security-service>

Figure 10-55. Modification 6

Modification 7: Replace “127.0.0.1” with “OPENSHIFT_INTERNAL_IP," as shown in Figure 10-56.

<jvm-options>-Dosgi.shell. telnet.maxconn=1</jvm—options>

<!—— From which hosts users can connect —--I

<!-— REEPLACE '127.0.0.1" WITH OPENSHIFT INTEEWAL IF -->

<!'—— <jvm-options»-Dosgi.shell.telnet.ip=127.0.0.1</jvm-options> —->
<jvm-options»-Dosgl.shell. telnet. ip=0PENSHI E‘T_IHTERHAL_IP{:!jm— options>
<1—-- Gogo shell configuration -->

<jvm-options>-Dgosh. args=—-nointeractive</jvm-optcions>

Figure 10-56. Modification 7

329

http:///

CHAPTER 10 © MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

Modification 8: Comment the lines <protocol></protocol>, as shown in Figure 10-57.

243 <file-cache enabled="false"></file-cache>

= </http>

T </protocol>

<!—— COMMENT <protocol> ——>

=] <l
248 <protocol security-enabled="true" name="http-listener-2">
249 <http default-virtual-server="server"” max-connections="250">
250 <file-cache enabled="false"»</file-cacher
251 </http>

<z3l classname="comn.sun.enterprise.security.ssl.GlassfishS5LImpl" cert-nickname="slas"></s31>|

253 </protocol>
254 r -

= <protocol name="admin-listener">

E <http default-virtual-server="_ asadmin" max-connections="250" encoded-slash-enabled="true" >

Figure 10-57. Modification 8

Modification 9: Add address="OPENSHIFT_INTERNAL_IP," as shown in Figure 10-58.

281 <network-listeners>

282 <!-- ADD address="QPENSHIFT_INTERNAL_IP" -->

283 <!-- <network-listener port="8080" protocol="http-listener-1" transport="tcp" name="http-listener-1" thread-pool="http-thread-pool"></network
264 <network-listener address="0OPENSHIFT INTERNAL IP" port="8080" protocol="http-listener-1" transport="tcp" name="http-listener-1" thread-pool="

Figure 10-58. Modification 9

Modification 10: Comment the lines <network-listener></network-listener>, as shown in Figure 10-59.

264 <network-listener address="OPENSHIFT INTERNAL IP" port="8080" protocol="http-listener-1" transport="tcp" name="http-listener-1" thread-po
265 <1-- COMMENT <network-listensr> —->

266 <!-- <network-listener port="2131" protocol="http-listener—2" transport="tcp" name="http-listensr-2" thread-pool="http-thread-pool”></net
267 <!-- <network-listener port="4848" protocol="admin-listensr" transport="tcp" name="admin-listensr" thread-pool="admin-thread-pool”></netw
268 </network-listeners>

269 <TTansSports>

Figure 10-59. Modification 10

Modification 11: Delete http-listener-2, as shown in Figure 10-60.

<http-service>
<access-log/>

<!—— DELETE http-listener-2 -->
<!—— <virtual-server id="server" network-listeners="http-listener-1, http-listener-2" > —->
<wvirtual-server id="server" network-listensers="http-listener-1" >

<property name="defanlt-web-xml" value="5{com.sun.aas.instanceRoot}/config/defanlt-web.xml" />

Figure 10-60. Modification 11

330

http:///

CHAPTER 10 © MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

Modification 12: Comment the lines <iiop-service></iiop-service>, as shown in Figure 10-61.

<wirtual-server id="__ asadmin" network-listeners="admin-listener" />

</http-service>

<!—-— COMMENT <iiop-serviceX —->

<=
<iiop-servicel>

<orb use-thread-pool-ids="thread-pool-1" />

<iiop-listener port="3{IIDF_LISTENER_FDRT}" id="orb-listener-1" address="0.0.0.0" />

<iiop-listener port="${IIOP S5SL_LISTENER PORT}" id="S5S5L" address="0.0.0.0" security-enabled="true">
<ssl classname="com.sun.enterprise.security.ssl.Glassfish55LImpl" cert-nickname="slas" />

<fiiop-listener>

<iiop-listener port="${IIOP 35L MUTUALAUTH PCRT}" id="S55L MUTUALAUTH" address="0.0.0.0" security-enabled="true">

<ssl classname="com.sun.enterprise.security.ssl.Glassfish535LImpl" cert-nickname="slas" client-auth-enabled="true" /

<fiiop-listener>
</iiop-service>
-

<admin-service system-jmx-connector-name="system" type="server">
<!-- J5R 160 "system-jmx-connector™ -->

Figure 10-61. Modification 12

401
402
403
404
405
406
407

408

Modification 13: Replace “127.0.0.1” with “OPENSHIFT INTERNAL_IP,; as shown in Figure 10-62.

<1--

< V-

€=

How many concurrent users can connect to this remote shell --3>
options>-Dosgi.shell. telnet.maxconn=1</jvm-options>
From which hosts users can connect ——3>

Py —
<l

REPLACE '127.0.0.1" WITH OQPENSHIFT INTERNWAL IF -->
<jvm-options>-Do=sgi.shell.telnet.ip=127.0.0.1</jvm-options> ——>

<jvm-options>-Do=sgi.=shell. telnet. ip=0PENSHIFT INTERNAL IP</jvm-options>

<1

<JvImn—

Figure 10-62. Modification 13

[T T ST Y
W om - m

oL L L L

s

o

[T
[T Y
Ry

%

3

434
145
446
447
448
245

Gogo shell configuration —>
options>-Dgosh. args=--noshntdown -c noop=true</jvm-options>

Modification 14: Comment the lines <protocol></protocol>, as shown in Figure 10-63.

:

<file-cache />

</http>
</protocol>
<!—— CCMMENT <protocol>» —-3>

<1

-

<protocol security-enabled="true" name="http-listener-2">
<http default-virtual-server="server">
<file-cache />
</http>
<=5l classname="com.sun.enterprise.security.=s1.Glassfish550Inpl" cert-nickname="=las" />
</protocol>

<protocol name="admin-listener">

<http default-virtual-server="_ asadmin" max-connections="250">

Figure 10-63. Modification 14

Modification 15: Replace “0.0.0.0” with “OPENSHIFT_INTERNAL_IP” and “${HTTP_LISTENER_PORT}” with
“9999,” as shown in Figure 10-64.

331

http:///

CHAPTER 10 © MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

</protocols>
<network-1i,

0' WITH OPENSHIFI_INTERNAL IP AND ' ENER_PORT} '

<l-= <n k-listener address="0.0.0.0" port="${HTTP_L T}" protocol="http-listener
<network-listener address="OPENSHIFT INTERNAL IP" port="9%93" protocol="http-listener-1" transport="tcp" name="http-listener-1" thread-pool=

1" transport="tcp” name="http-listener-1" thre

Figure 10-64. Modification 15

Modification 16: Comment the lines <network-listener></network-listener>, as shown in Figure 10-65.

<network-listener address="OPENSHIFT INTERNAL IP" port="9999" protocol="http-listener-1" transport="tcp" name="http-listener-1" thread-

FORT}" protocol="http-listener-2" transporc="tcp” name="htcp-listens

<1-- <network-listener port= —protocol” transport="tcp" name="admin-listener" thread-pool="http-t

</network-listeners>
<Cransportsx

Figure 10-65. Modification 16

Note The real environment variable is $OPENSHIFT_INTERNAL_IP. The string OPENSHIFT_INTERNAL_IP is just a
placeholder, so you can use any other text.

After all the modifications are performed, the domain.xml becomes what you see in Listing 10-4.

Listing 10-4. Modified domain.xml File

<!--
DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS HEADER.
Copyright (c) 2010-2012 Oracle and/or its affiliates. All rights reserved.

The contents of this file are subject to the terms of either the GNU
General Public License Version 2 only ("GPL") or the Common Development
and Distribution License("CDDL") (collectively, the "License"). You
may not use this file except in compliance with the License. You can
obtain a copy of the License at
https://glassfish.dev.java.net/public/CDDL+GPL_1 1.html

or packager/legal/LICENSE.txt. See the License for the specific
language governing permissions and limitations under the License.

When distributing the software, include this License Header Notice in each
file and include the License file at packager/legal/LICENSE.txt.

GPL Classpath Exception:

Oracle designates this particular file as subject to the "Classpath"
exception as provided by Oracle in the GPL Version 2 section of the License
file that accompanied this code.

Modifications:

If applicable, add the following below the License Header, with the fields
enclosed by brackets [] replaced by your own identifying information:
"Portions Copyright [year] [name of copyright owner]"

332

https://glassfish.dev.java.net/public/CDDL+GPL_1_1.html
http:///

-->

CHAPTER 10 © MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

Contributor(s):

If you wish your version of this file to be governed by only the CDDL or
only the GPL Version 2, indicate your decision by adding "[Contributor]
elects to include this software in this distribution under the [CDDL or GPL
Version 2] license.” If you don't indicate a single choice of license, a
recipient has the option to distribute your version of this file under
either the CDDL, the GPL Version 2 or to extend the choice of license to
its licensees as provided above. However, if you add GPL Version 2 code
and therefore, elected the GPL Version 2 license, then the option applies
only if the new code is made subject to such option by the copyright
holder.

<?xml version="1.0" encoding="UTF-8"?>
<domain log-root="${com.sun.aas.instanceRoot}/logs" application-root="${com.sun.aas.instanceRoot}/
applications" version="10.0">

<system-applications />

<applications />

<resources>

<jdbc-resource pool-name="__TimerPool" jndi-name="jdbc/_TimerPool" object-type="system-admin" />
<jdbc-resource pool-name="DerbyPool" jndi-name="jdbc/__default" />
<jdbc-connection-pool name="__TimerPool" datasource-classname="org.apache.derby. jdbc.
EmbeddedXADataSource" res-type="javax.sql.XADataSource">
<property value="${com.sun.aas.instanceRoot}/1lib/databases/ejbtimer" name="databaseName" />
<property value=";create=true" name="connectionAttributes" />
</jdbc-connection-pool>
<jdbc-connection-pool is-isolation-level-guaranteed="false" name="DerbyPool"
datasource-classname="org.apache.derby.jdbc.ClientDataSource" res-type="javax.sql.DataSource">
<property value="1527" name="PortNumber" />
<property value="APP" name="Password" />
<property value="APP" name="User" />
<property value="OPENSHIFT_INTERNAL_IP" name="serverName" />
<property value="sun-appserv-samples" name="DatabaseName" />
<property value=";create=true" name="connectionAttributes" />
</jdbc-connection-pool>

</resources>
<servers>

<server name="server" config-ref="server-config">
<resource-ref ref="jdbc/__TimerPool" />
<resource-ref ref="jdbc/__default" />

</server>

</servers>
<nodes>

<node name="localhost-domain1" type="CONFIG" node-host="OPENSHIFT_INTERNAL_IP"
install-dir="${com.sun.aas.productRoot}" />

</nodes>
<configs>

<config name="server-config">
<http-service>
<access-log />

333

http:///

CHAPTER 10 © MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

<virtual-server id="server" network-listeners="http-listener-1" />
<virtual-server id="__asadmin" network-listeners="admin-listener" />
</http-service>
<admin-service auth-realm-name="admin-realm" type="das-and-server"
system-jmx-connector-name="system">
<jmx-connector auth-realm-name="admin-realm" security-enabled="false"
address="OPENSHIFT_INTERNAL_IP" port="7600" name="system" />
<property value="/admin" name="adminConsoleContextRoot" />
<property value="${com.sun.aas.installRoot}/1ib/install/applications/admingui.war"
name="adminConsoleDownloadLocation" />
<property value="${com.sun.aas.installRoot}/.." name="ipsRoot" />
</admin-service>
<connector-service shutdown-timeout-in-seconds="30" />
<web-container>
<session-config>
<session-manager>
<manager-properties />
<store-properties />
</session-manager>
<session-properties />
</session-config>
</web-container>
<ejb-container steady-pool-size="0" max-pool-size="32"
session-store="${com.sun.aas.instanceRoot}/session-store" pool-resize-quantity="8">
<ejb-timer-service />
</ejb-container>
<mdb-container steady-pool-size="0" max-pool-size="32" pool-resize-quantity="8" />
<jms-service type="EMBEDDED" default-jms-host="default IMS host">
<jms-host name="default_IMS host" host="OPENSHIFT_INTERNAL_IP"
port="5445" admin-user-name="admin" admin-password="admin" lazy-init="true" />
</jms-service>
<security-service>
<auth-realm classname="com.sun.enterprise.security.auth.realm.file.FileRealm"
name="admin-realm">
<property value="${com.sun.aas.instanceRoot}/config/admin-keyfile" name="file" />
<property value="fileRealm" name="jaas-context" />
</auth-realm>
<auth-realm classname="com.sun.enterprise.security.auth.realm.file.FileRealm" name="file">
<property value="${com.sun.aas.instanceRoot}/config/keyfile" name="file" />
<property value="fileRealm" name="jaas-context" />
</auth-realm>
<auth-realm classname="com.sun.enterprise.security.auth.realm.certificate.CertificateRealm”
name="certificate" />
<jacc-provider policy-configuration-factory-provider="com.sun.enterprise.security.provider.
PolicyConfigurationFactoryImpl" policy-provider="com.sun.enterprise.security.provider.PolicyWrapper"
name="default">
<property value="${com.sun.aas.instanceRoot}/generated/policy" name="repository" />
</jacc-provider>
<jacc-provider policy-configuration-factory-provider="com.sun.enterprise.security.jacc.
provider.SimplePolicyConfigurationFactory" policy-provider="com.sun.enterprise.security.jacc.
provider.SimplePolicyProvider" name="simple" />

334

http:///

CHAPTER 10 © MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

<audit-module classname="com.sun.enterprise.security.Audit" name="default">
<property value="false" name="auditOn" />
</audit-module>
<message-security-config auth-layer="SOAP">
<provider-config provider-id="XWS_ClientProvider"
class-name="com.sun.xml.wss.provider.ClientSecurityAuthModule" provider-type="client">
<request-policy auth-source="content" />
<response-policy auth-source="content" />
<property value="slas" name="encryption.key.alias" />
<property value="sl1as" name="signature.key.alias" />
<property value="false" name="dynamic.username.password" />
<property value="false" name="debug" />
</provider-config>
<provider-config provider-id="ClientProvider"
class-name="com.sun.xml.wss.provider.ClientSecurityAuthModule" provider-type="client">
<request-policy auth-source="content" />
<response-policy auth-source="content" />
<property value="slas" name="encryption.key.alias" />
<property value="slas" name="signature.key.alias" />
<property value="false" name="dynamic.username.password" />
<property value="false" name="debug" />
<property value="${com.sun.aas.instanceRoot}/config/wss-server-config-1.0.xml"
name="security.config" />
</provider-config>
<provider-config provider-id="XWS_ServerProvider"
class-name="com.sun.xml.wss.provider.ServerSecurityAuthModule" provider-type="server">
<request-policy auth-source="content" />
<response-policy auth-source="content" />
<property value="slas" name="encryption.key.alias" />
<property value="slas" name="signature.key.alias" />
<property value="false" name="debug" />
</provider-config>
<provider-config provider-id="ServerProvider"
class-name="com.sun.xml.wss.provider.ServerSecurityAuthModule" provider-type="server">
<request-policy auth-source="content" />
<response-policy auth-source="content" />
<property value="slas" name="encryption.key.alias" />
<property value="slas" name="signature.key.alias" />
<property value="false" name="debug" />
<property value="${com.sun.aas.instanceRoot}/config/wss-server-config-1.0.xml"
name="security.config" />
</provider-config>
</message-security-config>
<message-security-config auth-layer="HttpServlet">
<provider-config provider-type="server" provider-id="GFConsoleAuthModule"
class-name="org.glassfish.admingui.common.security.AdminConsoleAuthModule">
<request-policy auth-source="sender" />
<response-policy />
<property name="restAuthURL"
value="http://localhost:${ADMIN_LISTENER PORT}/management/sessions" />
<property name="loginPage" value="/login.jsf" />

335

http://localhost:${ADMIN_LISTENER_PORT}/management/sessions
http:///

CHAPTER 10 © MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

336

<property name="loginErrorPage" value="/loginError.jsf" />
</provider-config>
</message-security-config>
<property value="SHA-256" name="default-digest-algorithm" />
</security-service>
<transaction-service tx-log-dir="${com.sun.aas.instanceRoot}/logs" />
<java-config classpath-suffix="" system-classpath="" debug-options="-Xdebug
-Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=9009">
<jvm-options>-XX:MaxPermSize=192m</jvm-options>
<jvm-options>-XX:PermSize=64m</jvm-options>
<jvm-options>-client</jvm-options>
<jvm-options>-Djava.awt.headless=true</jvm-options>
<jvm-options>-Djavax.management.builder.initial=com.sun.enterprise.v3.admin.
AppServerMBeanServerBuilder</jvm-options>
<jvm-options>-XX:+UnlockDiagnosticVMOptions</jvm-options>
<jvm-options>-Djava.endorsed.dirs=${com.sun.aas.installRoot}/modules/endorsed${path.
separator}${com.sun.aas.installRoot}/1lib/endorsed</jvm-options>
<jvm-options>-Djava.security.policy=${com.sun.aas.instanceRoot}/config/server.policy</jvm-options>
<jvm-options>-Djava.security.auth.login.config=${com.sun.aas.instanceRoot}/config/login.
conf</jvm-options>
<jvm-options>-Dcom.sun.enterprise.security.httpsOutboundKeyAlias=s1as</jvm-options>
<jvm-options>-Xmx512m</jvm-options>
<jvm-options>-Djavax.net.ssl.keyStore=${com.sun.aas.instanceRoot}/config/
keystore. jks</jvm-options>
<jvm-options>-Djavax.net.ssl.trustStore=${com.sun.aas.instanceRoot}/config/
cacerts. jks</jvm-options>
<jvm-options>-Djava.ext.dirs=${com.sun.aas.javaRoot}/1ib/ext${path.separator}${com.sun.aas.
javaRoot}/jre/1lib/ext${path.separator}${com.sun.aas.instanceRoot}/lib/ext</jvm-options>
<jvm-options>-Djdbc.drivers=org.apache.derby. jdbc.ClientDriver</jvm-options>
<jvm-options>-DANTLR_USE_DIRECT_CLASS_LOADING=true</jvm-options>
<jvm-options>-Dcom.sun.enterprise.config.config environment_ factory class=com.sun.
enterprise.config.serverbeans.AppserverConfigEnvironmentFactory</jvm-options>
<!-- Configuration of various third-party 0SGi bundles like
Felix Remote Shell, FileInstall, etc. -->
<!-- Port on which remote shell listens for connections.-->
<jvm-options>-Dosgi.shell.telnet.port=6666</jvm-options>

<!-- How many concurrent users can connect to this remote shell -->
<jvm-options>-Dosgi.shell.telnet.maxconn=1</jvm-options>
<!-- From which hosts users can connect -->

<jvm-options>-Dosgi.shell.telnet.ip=OPENSHIFT_INTERNAL_IP</jvm-options>
<!-- Gogo shell configuration -->
<jvm-options>-Dgosh.args=--nointeractive</jvm-options>
<!-- Directory being watched by fileinstall. -->
<jvm-options>-Dfelix.fileinstall.dir=${com.sun.aas.installRoot}/modules/autostart/</jvm-options>
<!-- Time period fileinstaller thread in ms. -->
<jvm-options>-Dfelix.fileinstall.poll=5000</jvm-options>
<!-- log level: 1 for error, 2 for warning, 3 for info and 4 for debug. -->
<jvm-options>-Dfelix.fileinstall.log.level=2</jvm-options>
<!-- should new bundles be started or installed only?

true => start, false => only install
-->
<jvm-options>-Dfelix.fileinstall.bundles.new.start=true</jvm-options>

http:///

CHAPTER 10 © MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

<!-- should watched bundles be started transiently or persistently -->
<jvm-options>-Dfelix.fileinstall.bundles.startTransient=true</jvm-options>
<!-- Should changes to configuration be saved in corresponding cfg file? false: no, true: yes
If we don't set false, everytime server starts from clean osgi cache, the file gets rewritten.
-->
<jvm-options>-Dfelix.fileinstall.disableConfigSave=false</jvm-options>
<!-- End of 0SGi bundle configurations -->
<jvm-options>-XX:NewRatio=2</jvm-options>
</java-config>
<network-config>
<protocols>
<protocol name="http-listener-1">
<http default-virtual-server="server" max-connections="250">
<file-cache enabled="false" />
</http>
</protocol>
<protocol name="admin-listener">
<http default-virtual-server="__asadmin" max-connections="250"
encoded-slash-enabled="true">
<file-cache enabled="false" />
</http>
</protocol>
</protocols>
<network-listeners>
<network-listener address="OPENSHIFT_INTERNAL_IP" port="8080" protocol="http-listener-1"
transport="tcp" name="http-listener-1" thread-pool="http-thread-pool" />
</network-listeners>
<transports>
<transport name="tcp" />
</transports>
</network-config>
<thread-pools>
<thread-pool name="admin-thread-pool" max-thread-pool-size="50" max-queue-size="256" />
<thread-pool name="http-thread-pool" max-queue-size="4096" />
<thread-pool name="thread-pool-1" max-thread-pool-size="200" />
</thread-pools>
</config>
<config name="default-config" dynamic-reconfiguration-enabled="true">
<http-service>
<access-log />
<virtual-server id="server" network-listeners="http-listener-1">
<property name="default-web-xml" value="${com.sun.aas.instanceRoot}/config/default-web.xml" />
</virtual-server>
<virtual-server id="__asadmin" network-listeners="admin-listener" />
</http-service>
<admin-service system-jmx-connector-name="system" type="server">
<!-- ISR 160 "system-jmx-connector" -->
<jmx-connector address="0.0.0.0" auth-realm-name="admin-realm" name="system"
port="${IMX_SYSTEM CONNECTOR_PORT}" protocol="rmi_jrmp" security-enabled="false" />

337

http:///

CHAPTER 10 © MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

<!-- JSR 160 "system-jmx-connector" -->
<property value="${com.sun.aas.installRoot}/1ib/install/applications/admingui.war"
name="adminConsoleDownloadLocation" />
</admin-service>
<web-container>
<session-config>
<session-manager>
<manager-properties />
<store-properties />
</session-manager>
<session-properties />
</session-config>
</web-container>
<ejb-container session-store="${com.sun.aas.instanceRoot}/session-store">
<ejb-timer-service />
</ejb-container>
<mdb-container />
<jms-service type="EMBEDDED" default-jms-host="default_ JMS_host"
addresslist-behavior="priority">
<jms-host name="default IMS host" host="localhost" port="${IMS_PROVIDER PORT}"
admin-user-name="admin" admin-password="admin" lazy-init="true" />
</jms-service>
<log-service log-rotation-limit-in-bytes="2000000"
file="${com.sun.aas.instanceRoot}/logs/server.log">
<module-log-levels />
</log-service>
<security-service>
<auth-realm classname="com.sun.enterprise.security.auth.realm.file.FileRealm"
name="admin-realm">
<property name="file" value="${com.sun.aas.instanceRoot}/config/admin-keyfile" />
<property name="jaas-context" value="fileRealm" />
</auth-realm>
<auth-realm classname="com.sun.enterprise.security.auth.realm.file.FileRealm" name="file">
<property name="file" value="${com.sun.aas.instanceRoot}/config/keyfile" />
<property name="jaas-context" value="fileRealm" />
</auth-realm>
<auth-realm classname="com.sun.enterprise.security.auth.realm.certificate.CertificateRealm"
name="cetificate" />
<jacc-provider policy-provider="com.sun.enterprise.security.provider.PolicyWrapper"
name="default" policy-configuration-factory-provider="com.sun.enterprise.security.provider.
PolicyConfigurationFactoryImpl">
<property name="repository" value="${com.sun.aas.instanceRoot}/generated/policy" />
</jacc-provider>
<jacc-provider policy-provider="com.sun.enterprise.security.jacc.provider.SimplePolicyProvider"
name="simple" policy-configuration-factory-provider="com.sun.enterprise.security.jacc.provider.
SimplePolicyConfigurationFactory" />
<audit-module classname="com.sun.enterprise.security.Audit" name="default">
<property name="auditOn" value="false" />
</audit-module>

338

http:///

CHAPTER 10 © MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

<message-security-config auth-layer="SOAP">
<provider-config provider-type="client" provider-id="XWS_ClientProvider"
class-name="com.sun.xml.wss.provider.ClientSecurityAuthModule">
<request-policy auth-source="content" />
<response-policy auth-source="content" />
<property name="encryption.key.alias" value="slas" />
<property name="signature.key.alias" value="slas" />
<property name="dynamic.username.password" value="false" />
<property name="debug" value="false" />
</provider-config>
<provider-config provider-type="client" provider-id="ClientProvider"
class-name="com.sun.xml.wss.provider.ClientSecurityAuthModule">
<request-policy auth-source="content" />
<response-policy auth-source="content" />
<property name="encryption.key.alias" value="slas" />
<property name="signature.key.alias" value="slas" />
<property name="dynamic.username.password" value="false" />
<property name="debug" value="false" />
<property name="security.config"
value="${com.sun.aas.instanceRoot}/config/wss-server-config-1.0.xml" />
</provider-config>
<provider-config provider-type="server" provider-id="XWS_ServerProvider"
class-name="com.sun.xml.wss.provider.ServerSecurityAuthModule">
<request-policy auth-source="content" />
<response-policy auth-source="content" />
<property name="encryption.key.alias" value="slas" />
<property name="signature.key.alias" value="slas" />
<property name="debug" value="false" />
</provider-config>
<provider-config provider-type="server" provider-id="ServerProvider"
class-name="com.sun.xml.wss.provider.ServerSecurityAuthModule">
<request-policy auth-source="content" />
<response-policy auth-source="content" />
<property name="encryption.key.alias" value="slas" />
<property name="signature.key.alias" value="slas" />
<property name="debug" value="false" />
<property name="security.config"
value="${com.sun.aas.instanceRoot}/config/wss-server-config-1.0.xml" />
</provider-config>
</message-security-config>
</security-service>
<transaction-service tx-log-dir="${com.sun.aas.instanceRoot}/logs" automatic-recovery="true" />
<diagnostic-service />
<java-config debug-options="-Xdebug -Xrunjdwp:transport=dt socket,server=y,suspend=n,
address=${JAVA_DEBUGGER_PORT}" system-classpath="" classpath-suffix="">
<jvm-options>-XX:MaxPermSize=192m</jvm-options>
<jvm-options>-XX:PermSize=64m</jvm-options>
<jvm-options>-server</jvm-options>
<jvm-options>-Djava.awt.headless=true</jvm-options>
<jvm-options>-XX:+UnlockDiagnosticVMOptions</jvm-options>
<jvm-options>-Djava.endorsed.dirs=${com.sun.aas.installRoot}/modules/endorsed${path.separator}
${com.sun.aas.installRoot}/1lib/endorsed</jvm-options>

339

http:///

CHAPTER 10 © MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

<jvm-options>-
Djava.security.policy=${com.sun.aas.instanceRoot}/config/server.policy</jvm-options>
<jvm-options>-Djava.security.auth.login.config=${com.sun.aas.instanceRoot}/config/
login.conf</jvm-options>
<jvm-options>-Dcom.sun.enterprise.security.httpsOutboundKeyAlias=s1as</jvm-options>
<jvm-options>-
Djavax.net.ssl.keyStore=${com.sun.aas.instanceRoot}/config/keystore.jks</jvm-options>
<jvm-options>-
Djavax.net.ssl.trustStore=${com.sun.aas.instanceRoot}/config/cacerts.jks</jvm-options>
<jvm-options>-Djava.ext.dirs=${com.sun.aas.javaRoot}/1ib/ext${path.separator}${com.sun.aas.
javaRoot}/jre/lib/ext${path.separator}${com.sun.aas.instanceRoot}/lib/ext</jvm-options>
<jvm-options>-Djdbc.drivers=org.apache.derby. jdbc.ClientDriver</jvm-options>
<jvm-options>-DANTLR_USE_DIRECT_CLASS_LOADING=true</jvm-options>
<jvm-options>-Dcom.sun.enterprise.config.config environment factory class=com.sun.
enterprise.config.serverbeans.AppserverConfigEnvironmentFactory</jvm-options>
<jvm-options>-XX:NewRatio=2</jvm-options>
<jvm-options>-Xmx512m</jvm-options>
<!-- Port on which remote shell listens for connections.-->
<jvm-options>-Dosgi.shell.telnet.port=${0SGI_SHELL TELNET PORT}</jvm-options>

<!-- How many concurrent users can connect to this remote shell -->
<jvm-options>-Dosgi.shell.telnet.maxconn=1</jvm-options>
<!-- From which hosts users can connect -->

<jvm-options>-Dosgi.shell.telnet.ip=OPENSHIFT_INTERNAL_IP</jvm-options>
<!-- Gogo shell configuration -->
<jvm-options>-Dgosh.args=--noshutdown -c noop=true</jvm-options>
<!-- Directory being watched by fileinstall. -->
<jvm-options>-Dfelix.fileinstall.dir=${com.sun.aas.installRoot}/modules/autostart/</jvm-options>
<!-- Time period fileinstaller thread in ms. -->
<jvm-options>-Dfelix.fileinstall.poll=5000</jvm-options>
<!-- log level: 1 for error, 2 for warning, 3 for info and 4 for debug. -->
<jvm-options>-Dfelix.fileinstall.log.level=3</jvm-options>
<!-- should new bundles be started or installed only?
true => start, false => only install
-->
<jvm-options>-Dfelix.fileinstall.bundles.new.start=true</jvm-options>
<!-- should watched bundles be started transiently or persistently -->
<jvm-options>-Dfelix.fileinstall.bundles.startTransient=true</jvm-options>
<!-- Should changes to configuration be saved in corresponding cfg file? false: no, true: yes
If we don't set false, everytime server starts from clean osgi cache, the file
gets rewritten.
-->
<jvm-options>-Dfelix.fileinstall.disableConfigSave=false</jvm-options>
<!-- End of 0SGi bundle configurations -->
</java-config>
<availability-service>
<web-container-availability />
<ejb-container-availability sfsb-store-pool-name="jdbc/hastore” />
<jms-availability />
</availability-service>
<network-config>
<protocols>

340

http:///

CHAPTER 10 © MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

<protocol name="http-listener-1">
<http default-virtual-server="server">
<file-cache />
</http>
</protocol>
<protocol name="admin-listener">
<http default-virtual-server="__asadmin" max-connections="250">
<file-cache enabled="false" />
</http>
</protocol>
<protocol security-enabled="true" name="sec-admin-listener">
<http default-virtual-server="__asadmin" encoded-slash-enabled="true">
<file-cache />
</http>
<ssl client-auth="want" classname="com.sun.enterprise.security.ssl.GlassfishSSLImpl"
cert-nickname="glassfish-instance" />
</protocol>
<protocol name="admin-http-redirect">
<http-redirect secure="true" />
</protocol>
<protocol name="pu-protocol">
<port-unification>
<protocol-finder protocol="sec-admin-listener" name="http-finder"
classname="com.sun.grizzly.config.HttpProtocolFinder" />
<protocol-finder protocol="admin-http-redirect" name="admin-http-redirect"”
classname="com.sun.grizzly.config.HttpProtocolFinder" />
</port-unification>
</protocol>
</protocols>
<network-listeners>
<network-listener address="OPENSHIFT_INTERNAL_IP" port="9999" protocol="http-listener-1"
transport="tcp" name="http-listener-1" thread-pool="http-thread-pool" />
</network-listeners>
<transports>
<transport name="tcp" />
</transports>
</network-config>
<thread-pools>
<thread-pool name="http-thread-pool" />
<thread-pool max-thread-pool-size="200" idle-thread-timeout-in-seconds="120"
name="thread-pool-1" />
</thread-pools>
<group-management-service />
<management-rules />
<system-property name="ASADMIN_LISTENER_PORT" value="24848" />
<system-property name="HTTP_LISTENER_PORT" value="28080" />
<system-property name="HTTP_SSL_LISTENER PORT" value="28181" />
<system-property name="IMS PROVIDER PORT" value="27676" />
<system-property name="IIOP_LISTENER PORT" value="23700" />
<system-property name="IIOP_SSL LISTENER_PORT" value="23820" />
<system-property name="IIOP_SSL MUTUALAUTH_PORT" value="23920" />
<system-property name="JIMX_SYSTEM_CONNECTOR_PORT" value="28686" />

341

http:///

CHAPTER 10 © MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

<system-property name="0SGI_SHELL_TELNET PORT" value="26666" />
<system-property name="JAVA DEBUGGER PORT" value="29009" />
</config>
</configs>
<property name="administrative.domain.name" value="domain1" />
<secure-admin special-admin-indicator="3047aff3-3214-4ac9-aa5e-a5dad78b2eea">
<secure-admin-principal dn="CN=localhost,0OU=GlassFish,0=Oracle Corporation,
L=Santa Clara,ST=California,C=US" />
<secure-admin-principal dn="CN=localhost-instance,0U=GlassFish,0=0racle Corporation,
L=Santa Clara,ST=California,C=US" />
</secure-admin>
</domain>

Done! GlassFish is prepared and you can go on to the next step.
Step 2: Create the DIY application stub. It’s time to create the OpenShift default DIY application:

e Create an empty folder on local disk D: and name it GlassFishAS.
e Open a shell and navigate to the GlassFishAS folder.

e Typethe command rhc app create -a RafaEShop -t diy-0.1, asshown in Figure 10-66.

:\GlassFishAS}rhc app create —a RaFaEShop -t diy-8.1 |
pplication Options

Namespace: hogm
Cartridges: diy-—8.1
Gear Size: default

Scaling: no
eating application *RafaEShop’ ... done
laiting for vour DHS name to be available ... done

wnloading the application Git repository ...
loning into ’‘RafaEShop’...
arning: Permanently asded the RSA host key for IP address *187.22.157.93" to th
list of known hosts.
mote: Counting objects: 2%, done.
ceiving objects: 188x <(25-25>, 7.48 KiB. done.
solving deltas: 188x {1-1>. done.
mote : gnnpressing obhjects: 188x (21-21>,. done.
mote: Total 25 <delta 1. reused 25 <{delta 1>

our application code is now in 'RafaEShop’
faEShop @ http:- - RafaEShop-hogm.rheloud.coms (unid: 515466444382ecelbhhBB@bic2 >
Created: 3:48 PM

gaarﬁﬁL 1 (defaults to small>

it H
ch://515466444382ecel hhBBB1c2@Raf aEShop—hogm.rhe loud.con ™~ git -RafaEShop.git/
S8H: 515466444382ecelbbhBBB1c2ERafaEShop—hogm.rhc loud.com

diy-8.1 (Do-It-¥Yourself>

Gears: 1 small

ESULT:

pplication RafaEShop was created.

igclaimer: Thiz iz an experimental cartridge that provides a way to try
nsupported languages,. frameworks. and middleware on Openshift.

Figure 10-66. Creating the default DIY application

342

http:///

CHAPTER 10

MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

Just for a quick check, sign in to the OpenShift web site and locate the application link in your management

console (Figure 10-67).

All Applications

RafaEShopW @ntp:

Rafa EShOpM @ http:/Ra

RafaEShop

ADD APPLICATION

Figure 10-67. Application links listed in the management console

Note Before going further, take your time and read the D: /GlassFishAS/RafaEShop/README. txt file. This file
describes the application folders and some environment variables.

Step 3: Copy the GlassFish files. Now copy the GlassFish files into the D: /GlassFishAS/RafaEShop/diy folder,

as shown in Figure 10-68.

b GlassFishAS » RafaBSheop » diy »

i Share with « E-rnail Burn MNew folder
MNarme Date modified
glassfish3 3/27/2013 5:16 FM
| index 3/27/2013 5:10 PM

|| testrubyserver.rb 3/27/2013 510 PM

Figure 10-68. Copying GlassFish files

Type

File folder

Firefox HTML Doc...

REB File

Size

6 KB
1 KB

343

http:///

CHAPTER 10 © MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

Step 4: Modify the start and stop action hooks (you should be familiar with these files from the README. txt file).

You need to adjust the start file before starting the GlassFish server. Locate the file D: /GlassFishAS/RafaEShop/ .
openshift/action_hooks/start and append to its code the following lines. These modifications are indicated by the
OpenShift Blog at https://www.openshift.com/blogs:

cd $OPENSHIFT_REPO _DIR/diy/glassfish3/glassfish/domains/domain1/config/

mv domain.xml domain.xml_2

sed 's/'$(grep serverName domain.xml 2 | cut -d\" -f 2)'/'$OPENSHIFT INTERNAL IP'/g'
domain.xml_2 > domain.xml

../../../bin/asadmin start-domain &> $OPENSHIFT_DIY_LOG DIR/server.log

The start file should look like what you see in Figure 10-69.

#!/bin/bash

The logic to start up your application should be put in this
¥ script. The application will work only if it binds to

F SDPENSHIFT_INTERNRL_IP 8080

nohup $OPENSHIFT REPC DIR/diy/testrubyserver.rb SOPENSHIFT INTERWAL IF $OPENSHIFT REPC DIR/diy > $OPENSHIFT HCMEDIR/
Fd SOPENSHIFT REPO_DIR/diy/glassfish3/glassfish/domains/domainl/config/

w domain.zxml domain.xml 2

ped 's/'$(grep serverName domain.xml 2 | cut -d\" -f 2 }'/'$OPENSHIFT INTERNAL IP'/g' domain.xml 2 > domain.xml
2 |../../../bin/asadmin start-domain &> SOPENSHIFT DIY LOG DIR/server.log

1 ot b L R

Figure 10-69. Modifying the start file

GlassFish is stopped according to the D: /GlassFishAS/RafaEShop/.openshift/action_hooks/stop file.
The default contents of this file should be replaced with the following lines. These modifications are indicated by the
OpenShift Blog at https://www.openshift.com/blogs:

#!/bin/bash

The logic to stop your application should be put in this script.

kill “ps -ef | grep glassfish3 | grep -v grep | awk '{ print $2 }'~ > /dev/null 2581
exit 0

Now it should look like what you see in Figure 10-70.

#!/bin/bash
The logic to stop vour application should be put in this script.
' > fdev/null 2»&l

L R

kill "ps -ef | grep glassfish3 | grep -v grep | awk '"{ print 52

exit 0

Figure 10-70. Modifying the stop file

Step 5: Add the MongoDB NoSQL Database 2.2 cartridge, as you saw earlier in Figure 10-27. In the first part of
this chapter, you saw how to add the MongoDB cartridge. The process is exactly the same, so type the command
rhc cartridge add -a RafaEShop -c mongodb-2.2 in the shell, as shown in Figure 10-71.

344

https://www.openshift.com/blogs
https://www.openshift.com/blogs
http:///

CHAPTER 10 © MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

:~GlassFishAS¥rhc cartridge add —a RafaEShop —c mongodbh-2.2]|
dding mongodb—2Z.2 to application "RafaEShop” ... Success

ongodbh—-2.2 (MongoDB MoSQL Datahase 2.2

Gears: Located with diy-#A_1

Connection URL:
mongodb://50PENSHIFT _MONGODB_DE_HOST :$0PENSHIFT _MONGODE_DB_FORT ./
Database Mame: RafaEShop

Password: YhH?=7elYrR4
Username : admin
RESULT =

Added mongodbh—2.2 to application RafaEShop
MongoDB 2.2 database added. Please make note of these credentials:
Root User: admin
Root Password: YhH?7s7eLYrR4
Databaze Mame: RafaEShop

Connection URL:
ongodhb: ./ $0PENSHIFT_MONGODE_DB_HOST - $OPENSHIFT_MONGODE_DB_PORT.~

ou can manage your new MongoDB by also embedding rockmongo-1.1
he rockmongo username and password will be the same as the MongoDB credentials
bove.

Figure 10-71. Adding the MongoDB cartridge

Step 6: Add the RockMongo 1.1 cartridge, as you saw earlier in Figure 10-30.
It can be useful to add the RockMongo administration tool for managing MongoDB databases using a visual
approach. Use the following command to add RockMongo, as shown in Figure 10-72:

rhc cartridge add -a RafaEShop -c rockmongo-1.1

D:\GlassFishHS#rhc cartridge add —a RafaEShop —c ruckmungu—1.1|
Adding rockmongo—1.1 to application "HaFaEfhop™ ... Success

rockmongo—1.1 ¢(RockMongo 1.13

Gears: Located with diy-#.1. mongodbh-2.2
Connection URL: https:-//RafaEShop—hogm.rhcloud.con/rocknongos

RESULT :
Added rockmongo—1.1 to application RafaEShop

rockmongo—1.1 added. Please make note of these MongoDB credentials again:

RockMongo User : admin
RockMongo Password: YhH?sYel¥rR4

URL: https:/sRafaEShop—hogm.rhcloud.consrockmongos

Figure 10-72. Adding the RockMongo cartridge

Step 7: Adjust the persistence.xml settings. Locate the persistence.xml file in the RafaEShop application.
You need to modify these file settings to work with the new MongoDB database; I recommend you make a copy of
it before modifying it. At this point, the persistence.xml file should have the contents shown in Listing 10-5.

345

http:///

CHAPTER 10 © MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

Listing 10-5. Modified persistence.xml File

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.0" xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence 2 0.xsd">
<persistence-unit name="HOGM_eSHOP-ejbPU" transaction-type="JTA">
<provider>org.hibernate.ogm.jpa.HibernateOgmPersistence</provider>
<class>eshop.entities.Categories</class>
<class>eshop.entities.Customers</class>
<class>eshop.entities.Inventory</class>
<class>eshop.entities.Orders</class>
<class>eshop.entities.Products</class>
<properties>
<property name="hibernate.search.default.directory provider"
value="filesystem"/>
<property name="hibernate.search.default.indexBase" value="D:/eshop"/>
<property name="hibernate.search.default.locking_strategy"
value="single"/>
<property name="hibernate.transaction.jta.platform"
value="org.hibernate.service.jta.platform.
internal.SunOneJtaPlatform"/>
<property name="hibernate.ogm.datastore.provider" value="mongodb"/>
<property name="hibernate.ogm.datastore.grid dialect"
value="org.hibernate.ogm.dialect.mongodb.MongoDBDialect"/>
<property name="hibernate.ogm.mongodb.database" value="eshop_db"/>
<property name="hibernate.ogm.mongodb.host" value="127.0.0.1"/>
<property name="hibernate.ogm.mongodb.port" value="27017"/>
</properties>
</persistence-unit>
</persistence>

You have to adjust several settings, as shown in the following set of instructions.

Apache Lucene indexes are stored in the file system (in the D: /eshop folder). You need to modify this folder path
(base folder) with a valid cloud folder path. As a simpler option, you can use a memory-based directory by replacing
the following code:

<property name="hibernate.search.default.directory provider"
value="filesystem"/>

<property name="hibernate.search.default.indexBase" value="D:/eshop"/>

<property name="hibernate.search.default.locking_strategy"
value="single"/>

with this code
<property name="hibernate.search.default.directory provider"
value="ram"/>

<property name="hibernate.search.default.locking strategy"
value="single"/>

346

http://java.sun.com/xml/ns/persistence
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd
http:///

CHAPTER 10 © MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

Set the MongoDB database name, host, port, user, and password. To do so, replace the following snippet of code:

<property name="hibernate.ogm.mongodb.database" value="eshop_db"/>
<property name="hibernate.ogm.mongodb.host" value="127.0.0.1"/>
<property name="hibernate.ogm.mongodb.port" value="27017"/>

with this code:

<property name="hibernate.ogm.mongodb.database" value="RafaEShop"/>
<property name="hibernate.ogm.mongodb.host" value="127.9.57.129"/>
<property name="hibernate.ogm.mongodb.port" value="27017"/>

<property name="hibernate.ogm.mongodb.username"” value="admin"/>
<property name="hibernate.ogm.mongodb.password" value="YhH7s7eLY1R4"/>

The “new” persistence.xml should be the following

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.0" xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xsi:schemalocation=
"http://java.sun.com/xml/ns/persistence http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd">
<persistence-unit name="HOGM_eSHOP-ejbPU" transaction-type="JTA">
<provider>org.hibernate.ogm. jpa.HibernateOgmPersistence</provider>
<class>eshop.entities.Categories</class>
<class>eshop.entities.Customers</class>
<class>eshop.entities.Inventory</class>
<class>eshop.entities.Orders</class>
<class>eshop.entities.Products</class>
<properties>
<property name="hibernate.search.default.directory provider"
value="ram"/>
<property name="hibernate.search.default.locking strategy"
value="single"/>
<property name="hibernate.transaction.jta.platform"
value="org.hibernate.service.jta.platform.
internal.SunOneJtaPlatform"/>
<property name="hibernate.ogm.datastore.provider" value="mongodb"/>
<property name="hibernate.ogm.datastore.grid dialect"
value="org.hibernate.ogm.dialect.mongodb.MongoDBDialect"/>
<property name="hibernate.ogm.mongodb.database" value="RafaEShop"/>
<property name="hibernate.ogm.mongodb.host" value="127.9.57.129"/>
<property name="hibernate.ogm.mongodb.port" value="27017"/>
<property name="hibernate.ogm.mongodb.username" value="admin"/>
<property name="hibernate.ogm.mongodb.password" value="YhH7s7eLYrR4"/>
</properties>
</persistence-unit>
</persistence>

Step 8: Add the RafaEShop WAR in GlassFish. Locate the RafaEShop application WAR in your local project
RafaEShop/dist folder or in the Apress repository in the RafakEShop/dist folder.

Copy this WAR to the D: /GlassFishAS/RafaEShop/diy/glassfish3/glassfish/domains/domain1/autodeploy
folder (see Figure 10-73). Finally, override the persistence.xml file in the RafaEShop WAR archive. You can use any
archive tool, such as WinRAR.

347

http://java.sun.com/xml/ns/persistence
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd
http:///

CHAPTER 10 © MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

b GlassFishAS » RafaEShop » diy » glassfish3 » glassfish » domains » domainl » autcdeploy

lew folder
Marme : Date modified Type Size
B| openshift 3/18/2013 3:43 PM WAR File 10 KB
3| RafaEShop 3/28/2013 4:05 PM WAR File 20,697 KB

Figure 10-73. Copying the RafaEShop WAR

Notice that in this folder, besides your WAR, there’s another WAR named openshift. This is the default
application generated by OpenShift when you used the DIY cartridge.

You have completed the final step. You can now upload the application to the OpenShift platform. However,
before committing the changes it’s a good idea to open a separate process for monitoring the GlassFish AS
start/stop status.

Monitoring GlassFish Start/Stop

If you read the first part of this chapter, you are already familiar with connections made using a secure shell session
and how to open such a connection from your computer. You can now open an SSH session to monitor the GlassFish
AS start/stop status in real-time using the following command, as shown in Figure 10-74:

ssh 515466444382ece1bb0001c2@RafaEShop-hogm.rhcloud.com.

D: \GlassFishHS\RafaEShupalssh L15466444382ecelbbBB81c2@Raf aEShop—hogm.rhc loud. -::un4

-3 JoE - o -Jof 3o 3o - 3o~~~ - -3 e -0 -JoE-Jef oo~~~ - k-0 -JeE - oo~ Jef oo~~~ e ook~ JeE 3o oo~ JeE oo~ k- ok e ook 3o oo

You are accessing a service that iz for use only by authorized users.
If you do not have authorization, discontinue use at once.

Any use of the services is subject to the applicable terms of the
agreement which can he found at:

https:- - openshift.redhat.com~app-legal

30 Jof o~ -Jof -uf 3o -Jaf 30 -Jof-3uf-Jof -Jaf 30 -Jof~3uf-Jof -Jof 30 -Jof 3 -Jof -Juf—Jof -Jof 3 -Jof -Juf—Jof -Jof 3 -Jof-uf-Jof -Juf 30 -Jof-uf-Jof -Juf e -Jof~af-Jof -Jaf—Jef - Jof~3uf-Jof -Jaf—Jef -Jof - Jof -Juf—Jof - Jof e -Jof-af-Jof-Jaf—ef-Jof—af-Jef-JeE-E-

Welcome to OpenShift shell
This shell will assist you in managing OpenShift applications.

$#¢ TMPORTAMT *** IMPORTANT *** IMPORTANT **%*

Shell access is guite powerful and it iz possible for vou to
accidentally damage wour application. Proceed with care?

If worse comes to worst, destroy vour application with *‘rhc app delete

and recreate it
ttt THPORTAWNT t** IMPORTANT *tt IMPORTANT ttt%

r

Type "help' for more info.

Figure 10-74. Monitoring the GlassFish start/stop status

348

http:///

CHAPTER 10 © MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

Next, type the tail_all command. This command will tail all available logs for the current application, including
the server start/stop status. Most probably, at this point you'll see some errors or notices from the RockoMongo log.
Ignore them for now and leave this process open.

Commit Changes

Each time you commit changes to your application, OpenShift will automatically stop GlassFish AS, commit the
changes, and start GlassFish AS again. Open a new shell, navigate to the D: /GlassFishAS/RafaEShop folder, and type
the following three commands:

git add .
git commit -m "first commit"
git push

Because this is the first commit, it will take some time until everything is pushed to the application.
At the end of the commit, GlassFish is started and, in the shell that’s monitoring this action, you should see
something like what'’s shown in Figure 10-75.

YusrshinAstail: diy-B.1-/logssserver.log: file truncated

Warning: asadmin extension directory is missing: Avarslibsopenshift/515466444382
ecelbbBBBlic2 . app—root runtime reposdiys/glassfish3d/glassfish/libsasadmin

Waiting for domainl to startcccanann

Successfully started the domain : domainl

domain Location: Avar-lib-sopenshift-515466444382ecelbhbBBBlc2 app—rootsruntime r
eposdiv/glassfishl/glassfish/domainsdomainl

Log File: ~var-libsopenzhift-515466444382ecelbbB8B1ic2 /app—root/runtimesrepo-div”
glassfishd-/glassfish/domains/domainl~logs/server. log

Admin Port: —1

Command start—domain executed successfully.

Figure 10-75. GlassFish domain was successfully started

Obviously, this is exactly the message we expected. If you see this message, jump directly to the section
“Monitoring the GlassFish Log.” If not, you have a problem, perhaps the one described next.

Fixing Known Issues

Sometimes, instead of success you'll get a message stating “Permission denied!” (see Figure 10-76).

emote=|_lﬂ1:lJ:.ls(1:!JJB__aJ.x:ﬁ.aA‘.laa_m._umj.ﬂg_I usrshinstail: diy-—8.1-logssserver.log: file truncated

emote:| Failed to start diy—8.1}| var/libsopenshift 515466444382ecelbhiBBflic2./app—roo ntinerepo
emote: Running .openshift/action_hooks/post_deploy |ltion_hookss/start: line 9: ../../..s/hinsasadmin:
o ssh://515466444382ecelbbBBflc2@Raf aEShop—hogn.rhc

4dbh2eaa..bffch66 master —> master

Figure 10-76. Permission denied

349

http:///

CHAPTER 10 © MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

To fix this problem, you need to grant yourself certain permissions to application files and directories. Open
anew SSH session (don't close the one monitoring the GlassFish start/stop status) and type the following chmod
commands (also shown in Figure 10-77).

chmod +x app-root/runtime/repo/diy/glassftish3/bin/*
chmod +x diy-0.1/repo/diy/glassfish3/glassfish/bin/*
chmod +x diy-0.1/runtime/repo/.openshift/action_hooks/*

[RafaEShop—hogm_rhcloud.com 515466444382ecelbbBBBic2 153 chmod +x app—rootsrunti
esrepos/div/glassfish3 bin-

[RafaEShop—hogm.rhcloud.com 515466444382ecelbhBBBic2 1~> chmod +x diy—-8.1-/repo-d
iyrglassfizhd glassfishsbins»=

[RafaEShop—hogm.rhclouwd.com 515466444382ecelbbBBBic2 1%3 chmod +x diy—8.1/runtim
srepos.openshiftsaction_hooks. =

Figure 10-77. Grant permission to application files

Start the application again by typing the command ctl_app start (see Figure 10-78).

[RafaEShop-hogn.rheloud .com 515466444382ece1bb@081c21\> ctl app start

Figure 10-78. Starting the application from the shell

Note To stop the application, type ct1l app stop. To restart the application, type ctl app restart. More details
about these commands (and others) can be obtained by typing the help command.

This time, in the shell that monitors the GlassFish domain start/stop status, you should see a success message
like the one in Figure 10-75.

Monitoring the GlassFish Log

When the GlassFish domain successfully starts, you can see the location and name of the GlassFish log file,
as in Figure 10-79 (this was extracted from Figure 10-75).

Log File: Avar/libsopenshift-515466444382ecelbbBBBlc2 app—root runtime repo-sdiy”
glassfish3/gqlassfish/domains/domainl/logs/server.log

Figure 10-79. Locating the GlassFish AS log file

The contents of server. log can be listed in a shell (you need to be patient until the application is deployed).
Open a new SSH session and type the following command, which is also shown in Figure 10-80:

tail app-root/rutime/repo/diy/glassfish3/glassfish/domains/domaini/logs/server.log

350

http:///

CHAPTER 10 © MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

[RafaEShop—hogm._rhcloud.com 515466444382ecelbbBBB1c2 15> tail app—rootsruntimer
eposdiv/glassfish3/glassfish/domains-domainl-logs/server.loyg

[#120013-A3-29TA1:592:81 87884808 | INFO iglassfish3.1.2 1 javax.enterprise.system.tool
z.deployment .org.glassfish.deployment..common i _ThreadlD=28;_ThreadName=Thread-2;:1
[AutoDeploy] [Successfully autodeplovyed :] rvarslibsopenzhift-515466444382ecelbbBd
Blc2/app—rootsruntime reposdiv-/glassfizshl- glassfizshs/domainsdomainl/autodeploy~R
af aEShop.war. i#1]

Figure 10-80. Listing the contents of the GlassFish AS log file

Based on this log content, you can easily debug your application.
In Figure 10-80, the log message indicates that the application RafaEShop was successfully deployed. Now you
can close all the shells and enjoy the application.

Test It!

Since you've gotten this far, you've probably successfully deployed the application in at least one of the three
presented approaches. No matter which approach you selected, the test can be performed is the same manner. If you
tried all three approaches, your OpenShift management console should look like the one in Figure 10-81.

All Applications

RafaEShop application deployed as a

RafaEShopW @nip: WAR on JBoss AS 7

RafaE Shop application deployed as an
RafaESh OPM @ hitp://Rafa om Apache Maven project on JBoss AS 7

RafaEShop application deployed as a

RafaEShop @ntpir WAR on GlassFish AS 3

ADD APPLICATION

Figure 10-81. All the application links listed in the management console

Note I'm going to present the steps for testing the RafaEShopW application deployed as a WAR on GlassFish AS 3. You
can easily adapt these steps for the other two approaches.

Because this is the first time you're running the application, you need to populate the MongoDB
e-commerce database. As you know, this can be done from the db.xhml administration page. The link to this is
http://rataeshopw-hogm.rhcloud.com/RafaEShop/faces/db.xhtml.

351

http://rafaeshopw-hogm.rhcloud.com/RafaEShop/faces/db.xhtml
http:///

CHAPTER 10 © MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

After populating the database, you can access the e-shop at
http://rafaeshopw-hogm.rhcloud.com/RafaEShop/faces/index.xhtml (see Figure 10-82).

el

(- } [% 8 afaeshopw-hogm.rhcloud.com/RafaEShop/faces/index.xhtml

Welcome, Guest! £ Sear

Select a category | Product Name and Description |
R Rafael Nadal 2010 Calendar $2.95 **

Caps
Collectors Size: |unavaiable | ¥ Color: [ynavaiabe | = Quantity: |4 e
Gadgets
Add To Cart

Posters

Racguets .
Product Description:
Shoes The official Rafa Nadal Calendar 2010 features ...
Tops More details:
Wristbands

Figure 10-82. Running the RafaEShopW application

Cautions

In case you need to repopulate the MongoDB database (from the db.xhtml administration page), DO NOT FORGET
to drop the existing collections. You can do this easily from the RockMongo interface by pressing the Drop All button,

as shown in Figure 10-83.

352

http://rafaeshopw-hogm.rhcloud.com/RafaEShop/faces/index.xhtml
http:///

CHAPTER 10 © MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

= C #& | 8 nttps//rafaeshopw-hogm.rhcloud.com/rockmongo/in

analhnstE | Tools ¥ | Master

(f| Server (g Databases » [& RafaEShopW
gy Overview
Statistics | Wew Collecticon | Comn

= RaEaESthW.{E) e =
[fZ] categories c (9)
] customers_c (3) 1z Empty? Ho
] inventory c (59) " i & cclle§ticns:
[products c (25) categorles c
[system.indexes (5) Clear A1l Fustcme:s_c
] system.users {1} 13?33zzzfgt
= :Zx;;fi;? ’ sy3temn. indexes
&= local 3ystem.users
Objects 113
Data Size 22.33k
Storage Size 164k
Extents g
Indexes 5
Index Size 35.92k

Figure 10-83. Dropping database collections from the RockMongo interface

Then restart the server. You can use either the ctl_app restart command or the management console,
as shown in Figure 10-84.

RafaESho pW @ hitp-/RafaEShopW-hogm.rhcloud.com

The application 'RafaEShopW' has been restarted

Figure 10-84. Restarting the application

Restarting the server will reset the Lucene indexes (since they are stored in RAM), which means that you also
need to drop the database collections and repopulate the database from the db.xhml administration page.

Trying to populate the MongoDB database without using the db.xhtml administration page will cause errors.
Because the application isn’t capable of indexing an existing database, the Lucene indexes will not be updated.

Don’t worry that initially the orders_c collection is missing. This will be created when the first purchase
order is submitted.

353

http:///

CHAPTER 10 © MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

Good To Know

OpenShift allows you to remotely connect to available services using port forwarding (generally speaking, this
technique lets you connect remote computers to services within a private local area network). This can be done using
the rhc command rhc port-forward -a RafaEShoplW, as shown in Figure 10-85.

D:~JBossAS~warphc port—Fforward —a RafaEShopV

Checking available ports...

Forwarding poprts

Only one usage of each socket address (protocol-snetwork address port) is
normally permitted. — bhind(2)> while forwarding port BBB8A. Tryving local
port BH081

To connect to a service running on OpenShift. use the Local address

Service Local OpenShift

httpd 127.8.8.1:8888 =» 127.7.182.130:8688A
Java 127.A.8.1:3528 =» 127.7.182.129:3528
Java 127.8.8.1:4447 =» 127.7.182.129:4447
Java 127.8.8.1:5445 =» 127.7.182.129:544%
Java 127.A.8.1:5455 =» 127.7.182.129:5455
Java 127.A.8.1:86881 =» 127.7.182.129:8688
Java 127.8.8.1:9998 =» 127.7.182.129:92978
java 127.8.8.1:9999 =¥

127.7.182.129:9929%

Press CTRL-C to terminate vort forwarding

Figure 10-85. Port forwarding

In Figure 10-85, you can see the available ports for the RafaEShopW application. Notice that the mongod server
is also listed.

Disclaimer

When this book was written, the applications I discussed were available online. I can’t guarantee that when you read
this book, OpenShift will make these applications available (if the applications don’t have much traffic, OpenShift
might shut down the servers).

Summary

In this final chapter, you saw how to migrate the RafaEShop application to the OpenShift PaaS. The chapter began
with several introductory tasks, such as creating an account on OpenShift, activating and signing into this account,
and becoming familiar with OpenShift web interface. Further, you saw how to deploy RafaEShop as a WAR and as
an Apache Maven project on JBoss AS 7 running in the cloud. In the second part of this chapter, you configured a
GlassFish AS 3 domain for running in OpenShift, and you deployed the RafaEShop application on this domain.

354

http:///

Index

A

@Access annotation, 176
Apache Maven command line
mvn command execution, 13-14
pom.xml file, 13
settings.xml document, 11-13
Apache Maven projects, 52

B

Bean managed transactions (BMT), 39
Bidirectional association, 179
Bootstrap
Hibernate Native APIs, 40-41
architecture, 49
configuration property, 45
hibernate.cfg.xml file, 48-49
hibernate.transaction.jta.platform, 45
HibernateUTtil class, 47
non-programmatically settings, 46
NoSQL data store, 46
SessionFactory, 44
steps—loading properties, 44
JPA (see Java Persistence API (JPA))
JTA (see Java Transaction API (JTA))
MongoDB, 40
OGM obsolete configuration, 50
Built-in JTA Environment
EJB 3/BMT, GlassFish AS 3
bmt collection content, 80
develop application, 77
HOGMviaHNAPI_JTA_EJB_BMT_GlassFish3
application, 79
Lucky Number- the BMT Approach, 78-79
prerequisites, 76
UserTransaction, 78
EJB 3/CMT, GlassFish AS 3
cmt collection content, 83
develop application, 80

HOGMviaHNAPI_JTA_EJB_CMT_GlassFish3
application, 82

Lucky Number—the CMT Approach, 81-82

prerequisites, 80

no EJB, GlassFish AS 3

collection content, 76

develop application, 71

getCurrentSession approach, 73

HibernateUrtil Class, 72-73

HOGMviaHNAPI_JTA_GlassFish3
application, 76

openSession approach, 74

prerequisites, 71

TestManagedBean Class, 75

C

@Cacheable annotation

first-level cache, 148

JARs, 150

javax.persistence.cache.retrieveMode controls, 155
javax.persistence.cache.storeMode controls, 155
JUnit test, 152

persistence.xml, 150

Players entities, 152

second-level cache, 149

supported values, 150

testing, 155

Tournaments entites, 152

Callback methods, 163

@Column annotation, 138

Composite key class, 266-267

Container Managed Transactions (CMT), 39

D

Data persistence

data grid, 6-7
data storage, 4
entity instance, 5

355

http:///

INDEX

Data persistence (cont.) products_c, 245
entity serialization, 7 SQL schema, 241
MongoDB, 7 E-commerce database query
primary and foreign key, 4 admin GUI, 281
relational database model, 6 Babolat AeroPro Drive GT Racquet, 276
tuple, 4 checking inventory, 279
Data query customer entity, 277
CRUD operations, 8 E-Shop GUI, 271
JBoss Teiid data virtualization system, 8 JPA style, 269
JP-QL query, 8 JSP and servlets, 269
Lucene indexes, 9 localhost testing, 270
Data storage product category
BSON object, 26 EshopBean.java, 271-272
collection, 33 extraction, 274-275
GLOBAL_COLLECTION strategy, 32 Lucene, 275
IN_ENTITY strategy, 30 names and ids, 272-273
Java entity, 26 pagination, 276
JPA term, 30 promotional products, 273
junction table, 29 RafaEShop application, 270
many-to-many association, 29 restore database, 271
POJO class, 26-27 restoring inventory , 280
primary key, 28 user interface, 270
relational data model, 25 web site, 269
Default callback methods, 164 @ElementCollection annotation
Denormalization, 2 defining two collections, 159

feature of, 158

testing, 160
E, F testing LAZY loading for, 160
@Embeddable annotation, 143
@Embedded annotation, 143
@EmbeddedId annotation, 133
@Entity annotation, 123
@EntityListeners annotation, 163
@Enumerated annotation, 146
@ExcludeDefaultListeners annotation, 163
@ExcludeSuperclassListeners annotation, 163
External callback methods, 163

Eager loading, 122

Eclipse IDE
JUNO, 19
Marketplace, 19
MongoDB library, 21
pom.xml, 20

E-commerce database model
architecture, 242
categories_c, 243
customers collection

@AttributeOverride annotation, 254 G

document, 250 @GeneratedValue annotation, 125

embeddable class, 254, 256

JPA entity, 251-254 H
inventory collection

composite key class, 266 Hibernate OGM

JPA entity, 263-265 architecture

optimistic locking, 263 data persistence (see Data persistence)

pessimistic locking, 263 data query (see Data query)
NoSQL store, 241 datastore provider and dialect, 3
orders collection GridDialect, 4

element-collection, 261 JDBC layer, 2-3

embeddable class, 261 bootstrapping (see Bootstrap)

JPA entity, 257-260 CRUD operations, 205

overselling, 256 Players entity, 211

shipping address, 256 via Hibernate Native API, 212

shopping cart, 256 via the Java Persistence API, 213

356

http:///

distribution
4.0.0.Beta2, 10
Apache Maven command line

(see Apache Maven command line)

change log, 10
Eclipse IDE (see Eclipse IDE)
JARs, 9
Maven Central Repository, 10-11
MongoDB artifacts, 14-15
NetBeans IDE (see NetBeans IDE)

EJB 3, GlassFish AS 3
CMTBean Class, 87
dependencies node, 84
HOGMviaJPA_EE_GlassFish application, 88
jpa collection content, 88
LuckyNumberEntity Class, 84-85
persistence.xml, 86

EJB 3,JBoss AS 7
HOGMviaJPA_EE_JBossAS Application, 93
jpa collection content, 94
JPA facet, 90
JPA implementation, 91-92
module.xml, 89-90
persistence.xml, 92-93
prerequisites, 89

features and expectations, 2

GlassFish 3 and Spring 3 application
dispatcher-servlet.xml, 111
Entity Class, 107, 109
HOGMviaJPA_SPRINGS3 application, 113
LuckyNumberDAO Bean, 110-111
persistence.xml, 109-110
prerequisites, 107
spring collection content, 113
web.xml, 112

Java SE and MongoDB applications
Dependencies node, 53
“helloworld” collection content, 55
Libraries node, 53
prerequisites, 52

JBoss AS 7 and Seam 3 application
Complete EJB Code, 105-106
features, 100
forge console, 102
HOGMviaJPA_SEAMS3 application, 106
install forge tools, 101
JBoss Tools, 101
persistence.xml, 103
prerequisites, 100
seam collection content, 106

JPA 2.0 annotations
@Access annotation, 176
@Cacheable annotation, 148
cascadable operations considerations, 122
@Column annotation, 138
eager and lazy loading considerations, 122

INDEX

@ElementCollection annotation, 158
@Embedded and @Embeddable annotations, 143
@Embeddedld annotation, 133

@Entity annotation, 123

@EntityListeners annonations, 163
@Enumerated annotation, 146
@ExcludeDefaultListeners annonations, 163
@ExcludeSuperclassListeners annotations, 163
@Id annotation, 124

@1dClass annotation, 135

Java supported types, 121

@ManyToMany annotation, 197
@ManyToOne annotation, 188
@MappedSuperclass annotation, 155
@OneToMany annotation, 188

@0OneToOne annotation, 179

@Table annotation, 137

@Temporal annotation, 140

@Transient annotation, 142

unsupported annotations, 202

@Version annotation, 171

MongoDB distribution, 21-22
Non-JTA Environment

Basic HibernateUtil Class, 57

build.xml, 117-118

DAO Class, 60-61

Hibernate Configuration File, 59

HibernateUtil Class, 58-59

HOGMviaHNAPI_JDBC_Tomcat7 application, 63

HOGMviaJPA_RESOURCELOCAL_Tomcat?
application, 116

“jdbc” collection content, 63

jpa_rl collection content, 116-117

LuckyNumberDAO Class, 115-116

LuckyNumberPojo Class, 56

LuckyNumberPojo.hbm.xml, 59-60

Lucky Number Servlet, 62

persistence.xml, 114

prerequisites, 113

Persistence API (JPA 2.0) (see Persistence API (JPA 2.0))
standalone JTA environment

collection content, 71

dependencies node, 64

develop application, 94

HibernateUTtil Class, 66, 68
HOGMviaHNAPI_JTA_Tomcat7 application, 70
HOGMviaJPAJTA_Tomcat7 application, 99
JBoss TS documentation, 95

jpa collection content, 99
LuckyNumberDAO Class, 68-69, 97-98
LuckyNumberEntity Class, 64-66
LuckyNumberServlet, 70

MongoDB connection, 96
Persistence.xml, 96-97

prerequisites, 63, 94

synthesis, 118-119

357

http:///

INDEX

Hibernate OGM and MongoDB
data storage

BSON object, 26

collection, 33
GLOBAL_COLLECTION strategy, 32
IN_ENTITY strategy, 30

Java entity, 26

JPA term, 30

junction table, 29
many-to-many association, 29
POJO class, 26-27

primary key, 28

relational data model, 25

properties

authentication, 24

host and port, 24

IP address, 24

MongoDB server, 25

NoSQL store, 23
time-consuming operations, 25
WriteConcern.NORMAL, 24

query, 35
transaction management, 35
Hibernate OGM JP-QL parser, 205, 239
Hibernate Search and Apache Lucene query, 205
@DateBridge annotation, 218
directory provider, 221
@Field annotation, 217
Hibernate Search vs. Apache Lucene, 214
@Id annotation, 218
@Indexed annotation, 217
JARs, 217
@NumericField annotation, 218
Players Class, 214
Players Class with annotations, 218
Players entity, 216
Players entity with annotations, 219
via JPA

annotated Players entity, 237

annotated Tournaments entity, 238
HOGM_MONGODB_JPA_HS application, 237
select25To28AgeAction Method, 236
selectAllAction Method, 232
selectByYearAction Method, 233
selectJAction Method, 235
selectRafaelNadalAction Method, 234
step-by-step approach, 231

via Native API

358

annonated Players Class, 228

annonated Tournaments Class, 228
HOGM_MONGODB_HNAPI_HS application, 227
select25To28AgeAction Method, 226
selectAllAction Method, 223

selectByYearAction Method, 224

selectJAction Method, 225

selectRafaelNadalAction Method, 225
step-by-step approach, 222

@Id annotation
and AUTO strategy, 125
and Custom Generator, 131
and GenericGenerator, 130
and IDENTITY strategy, 126
OGM support, 124
overview, 124
and SEQUENCE strategy, 127
simple @Id, 124
and TABLE strategy, 129
@IdClass annotation, 135
Internal callback method, 163-164

J, K

Java Persistence API (JPA)
annotations, 37
Caucho Resin, 43
entity class, 38
entity manager, 38
generic persistence.xml file, 44
main components, 38
object related mapping, 37
persistence metadata, 37
persistence provider, 41
persistence unit, 38
persistence.xml file, 41-43
Java Transaction API (JTA)
ACID properties, 39
high-level API, 40
transaction management, 39
types, 40
JPA listeners
BaseballPlayers entity, 169
Callback methods, 163
delete listener, 166
onPrePersist and onPostPersist method, 165
orm.xml, 164
Players mapped superclass, 166
TennisPlayers entity, 168
testing, 170-171
update listener, 165

L

Lazy loading, 122

@ManyToMany annotation
bidirectional, 200

http:///

COLLECTION strategy, 202
GLOBAL_COLLECTION strategy , 201
IN_ENTITY strategy, 199

overview, 197

Players entity, 198

Tournaments entity, 198
unidirectional, 199

@ManyToOne annotation

COLLECTION strategy, 191
GLOBAL_COLLECTION strategy, 190
IN_ENTITY strategy, 195

overview, 188

Photos entity, 194

Players entity, 194

unidirectional, 189

@MappedSuperclass annotation, 155
MongoDB database migration

MongoHQ cloud
account creation, 284
connection test, 294
eshop_db database, 288-289
home page, 283
logging in, 285
MongoDB URI, 286
mongodump/mongorestore, 287
name creation, 286
Sandbox database type, 285
TestCloudAuth application, 296
user creation, 286-287
user document, 287

MongoLab cloud
account creation, 290
connection test, 294
database creation, 291
eshop_db database, 292-293
home page, 289
login, 290
mongostore command, 292
TestCloudAuth application, 296

MongoDB native query, 205

find method
age, 207
data and time class, 208
first document , 207
$in operator, 209
$ne (not equal) operator, 210
MongoDB driver, 206
players collection, 206
remove method, 210
save method, 210

N

NetBeans IDE

POM project creation, 16
project name and location, 17

INDEX

settings.xml file, 17
user library, 18

(0

Object-relational mapping, 37
@OneToMany annotation
atp_players and players_photos collections, 195
bidirectional, 189
COLLECTION strategy, 191
GLOBAL_COLLECTION strategy, 190
IN_ENTITY strategy, 193
overview, 188
Photos entity, 192
Players entity, 193
testing, 196
unidirectional, 188
@OneToOne annotation
bidirectional, 180
COLLECTION strategy, 182
embeddable class, 185
GLOBAL_COLLECTION strategy, 181
IN_ENTITY strategy, 183
mappedBy element, 184
overview, 179
Players entity, 183
testing, 187
unidirectional, 180
Optimistic locking, 171, 263

P

Pessimistic locking, 263
Prerequisites, 83
Primary table, 137

Q

Querying technique
Hibernate OGM and CRUD operations, 205, 211
Hibernate OGM JP-QL Parser, 239
Hibernate Search and Apache Lucene (see Hibernate
Search and Apache Lucene query)
MongoDB native query (see MongoDB native query)

R

RafaEShop application

ctl_app restart command, 353

disclaimer, 354

Dropping database, 352

e-shop access, 352

GlassFish 3 AS
application link, 343
chmod commands, 350
commit changes, 349

359

http:///

RafaEShop application (cont.)

ctl_app start command, 350
Do-It-Yourself cartridge, 327
domain.xml File, 332-342
file copying, 343

log file, 350

memory-based directory, 346
modifications, 327-332
MongoDB cartridge, 344
MongoDB database, 347
Permission denied, 349
persistence.xml, 346-347
preparation, 342
RockMongo cartridge, 345
server.log content, 350-351
start and stop action, 344
start/stop status, 348-349
WAR, 348

issue fixing, 308
JBoss AS 7

application links, 310

cartridge management, 308, 310
commit change, 319-321

default application, 308-309

default project, 308

folder creation, 308

Hibernate OGM-specific module, 314
Maven project, 322-323, 325-326

MongoDB NoSQL Database 2.2 cartridge, 311

persistence.xml, 314, 316
RafaEShopM, 309
RafaEShopW, 309, 314
RockMongo 1.1 cartridge, 312-313
RockMongo interface, 313
scenario folders, 308
server log monitoring, 317
SSH command, 317-318
tail_all command, 318-319
WAR, 321

Web Archive, 308

legal terms, 299

My Account wizard, 300
namespace creation, 301
signing in, 299

SignUP link, 298

User management console tabs, 299

Port forwarding, 354

RHC client tools installation
batch file, 304
Git, 302-304
OpenShift gem, 305-307
Ruby, 301-304
SET PATH section, 305
Windows 7 Control Panel, 305

S

Secure Shell (SSH) section, 318
Secure Shell (SSH) session, 317
seqhilo, 127

T

@Table annotation, 137
@Temporal annotation, 140
TestMongoHQAuth, 296
@Transient annotation, 142

U

Unidirectional association, 179
UUID, 130
UUID2, 130

VW, X, Y, Z
@Version annotation
define @Version field, 172

monitor version field incrementation, 173

OptimisticLockException

management console, 351 LockModeType.OPTIMISTIC, 175
OpenShift account LockModeType.
communication, 301 OPTIMISTIC_FORCE_INCREMENT, 175

Create Application wizard, 300
email, activation, 298

overview, 171
testing, 173

http:///

Pro Hibernate and
MongoDB

Anghel Leonard

Apress

http:///

Pro Hibernate and MongoDB
Copyright © 2013 by Anghel Leonard

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material

is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-5794-3
ISBN-13 (electronic): 978-1-4302-5795-0

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning

Lead Editor: Steve Anglin

Technical Reviewer: Manuel Jordan

Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Louise Corrigan, Morgan Ertel,
Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham,
Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Gwenan Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Kevin Shea

Copy Editor: Sharon Terdeman

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit waw.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales-eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to
Www.apress.com/source-code/.

http://orders-ny@springer-sbm.com
http://www.springeronline.com
http://rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com
http://www.apress.com/source-code/
http:///

This book is dedicated to Rafael Nadal.
Of course, it is also dedicated to my parents and my wife.
Love you all, each and every one.

—Anghel Leonard

http:///

Contents

About the AULNOFccuiiiiieeniiiiessrrrsss s a s n s nnn e annn e e ann R e n s nnnnn s Xiii
About the Technical REVIEWEYcuurusssssnmmssssnnsmsssssnssssssssnsnssssssnsnssssssnnnssssssnnsssssssnnnnsssssnnnnss XV
Acknowledgments........cccccuiiisnnmmmnnmmmmmmsssssssssssnnmmssssssssssssnnnneessssssssssnnnnnnesssssssssnnnnnnnnnsssssnnn XVii
LT LT] | Xix
Chapter 1: Getting Started with Hibernate OGMcccuveemmmnnsssnnnmmsssssssmssssssssssssssssssssssnns 1
Features and EXPECTationS.........cccceeeerereniresie e ss e e sn s e sn s snesnssn e sn s sn e sn e sn e sne e 2
Hibernate OGM ArChiteCIUrE.........coveeecceer e nnen 2
oS L 1 [0 D L OSSOSO 4

0T 1= T o N0 8

Get the Hibernate OGM DiStribULION ..o 9
Getting Hibernate OGM from the Maven Central REPOSITOrYcccoecierrienniennscre s ses e sesnens 10
Getting Hibernate OGM from the Maven Command Line..........cccovveinnenncnnncnnscse s sessesesssssssens 11
Adding MONGODB ArtifaCts........ccccceiriiiriesire s s s e s st r e e s e e s e e b a e e ne e e ae e e p e ns 14
Getting a Hibernate OGM Distribution Using the NetBeans IDE.............cccooeninnnnecnenne e sessesenaens 16
Getting the Hibernate OGM Distribution Using the EClipse IDE..........c.ccoiennnnnnnesrecese e sessesennens 19
Obtain the MongoDB DiStribULION.........ccccotieriieiesnere e sn e sn e 21

E3 1111 1P 7SS 22
Chapter 2: Hibernate 0GM and MongoDB..........ccccussemmsssnsssssssssssnsssssnsssssnsssssnsssssnnssssnnssssns 23
Configuring MongoDB-Hibernate OGM Propertiesccoceeeverrresrersssessessessessesses e sesssssesssnsenns 23
Data Storing Representationcccvcvcicisnsnss s nn 25
STOMNG ENELIES ..vcuvecerccee et a s e e e e e et R e R e e Re e e A e e R et e Re e nnis 26
STOFNG PrIMAIY KEYScoveeiieirieitre e sie et ss et s s e b st s e e e e et e d e bR e b Re e s e e e Re e ene e nnis 28
(] 10 TS0 T 0] L 29

vii

http:///

CONTENTS

Managing TraNSACLIONScccevverserrerrerserserserse s s e se s e se e sn s e s e e sn s sn s e e sn e e e snennesnennns 35
Ty P2 T T [0 L0 T g - 35
BT 1111 TS SSRRN 35
Chapter 3: Bootstrapping Hibernate OGM.............ccuccmmmmnssnmmnmmmsssssnmmmssssssnssssssssssssssssnnsnsss 37
Brief OVEIVIEW Of JPA......cecicecisceeireses e sn s s s sn s s sas s sn s snennnnns 37
Brief OVErVIEW Of JTA......oe s s 39
MongoDB and TranSaCLIONS.........cccceeeerrerererre e sresse e ssesssssessesaessesaesrssnssresrssnssnssrssresrennnsnannnns 40
Brief Overview of Hibernate Native AP ... snssesnens 40
Bootstrapping Hibernate OGM USING JPA.........oooorrerrrccrere s 41
Bootstrap Hibernate 0GM Using Hibernate Native API ... 44
Hibernate OGM Obsolete Configuration Oplions...........covecerrrcnirnicsrnes s 50
B30] 1 2 TR 50
Chapter 4: Hibernate OGM at WOrkK.........cccouunsmmnmmmssssnnmmmsssssnnssssssssnssssssssnsssssssssssssssnnnsnsss 51
GENEral Prer@QUISITEScccecrieeercrreseserse e s s r e s sn e e sn s nn s e nennnens o1
Java SE and MongoDB—the Hello World EXamplecccceercriercercrcsces e e 52
o (T (01T (T OSSR 52
DBVEIOPING..... vttt e AR e e R e AR e R e R RS R e e Re R Re R e Re A e e eRe e Re e e ReneeRenEeanes 53
TOSHING v AR R e R R e R AR SRR e e R e e e Re e e Re R e e R e e ns 55
Hibernate OGM via Hibernate Native APL............ccoiernnnenncrsssesssse s s sesse s 55
Hibernate OGM in a Non-JTA Environment (JDBC Transactions, Apache Tomcat 7)cccccevvevnverencnenenenenens 55
Hibernate OGM in a Standalone JTA Environment (JBoss JTA, Apache Tomcat 7)c.ooceecvevnencnereneesencsessnnenes 63
Hibernate OGM in a Built-in JTA Environment (no EJB, GIassFish AS 3)........ccoconnnrnnnnnsresesseseseseseseseens 71
Hibernate OGM in a Built-in JTA Environment (EJB 3/BMT, GIasSFish AS 3).......c.coceoevrrrenenerneseneresesesesessnsenes 76
Hibernate OGM in a Built-in JTA Environment (EJB 3/CMT, GIassFish AS 3).......c.cccecevvrrnencnnnenesenensesesensenenes 80
Hibernate OGM via the Java Persistence APl (JPA 2.0)ccccvvrververnernersensessessessessessessessesssssenns 83
Hibernate OGM in a Built-in JTA Environment (EJB 3, GIaSSFiSh AS 3)........ccoererererenerenencnereresesesesesesesesesesenenenes 83
Hibernate OGM in a Built-in JTA Environment (EJB 3, JBOSS AS 7)ccvvererererrersesersesersesessesessessssessssessesssssssnaens 88
Hibernate OGM in a Standalone JTA environment (Apache TOMCat 7)cccccvvverererererereriererseseesereesessesesaesenaens 94

viii

http:///

CONTENTS

Hibernate OGM in a Built-in JTA Environment (JBoss AS 7 and Seam 3 Application)c.ccoeeeeeeerercsescrennnnenes 99
Hibernate OGM in a Built-in JTA Environment (GlassFish 3 and Spring 3 Application)...........cccccenrriencrennnnene. 107
Hibernate OGM in a non-JTA Environment (RESOURCE_LOCAL, Apache Tomcat 7)cccecvvevrvevnncnncsesnsenens 113
SYNENESISvieieeeercrre e a e R e R e Re e Rernnens 118
Hibernate OGM via JPA in @n EE CONTAINETccoreeererererirercrererescsesese e seseseseseesenes 118
Hibernate OGM via Hibernate Native APl in an EE CONAINETccoeerererererererererereresesesesereseseseseseseseseseseseenes 118
Hibernate OGM via JPA in STaNdalone JTA ... seeees 119
Hibernate OGM via Hibernate Native APl in Standalone JTA............co s seseseenes 119
Hibernate OGM Via JPA IN NON=JTA ..o sesesenenes 119
Hibernate OGM via Hibernate Native APl in NON-JTA.........cccoorrrrrrrrererereresesesesese e seseseseseseseseseeses 119
3111 1P 7S 120
Chapter 5: Hibernate 0GM and JPA 2.0 Annotations.........ccccusseemmmnssssnsnmmsssssssnsssssssnnnans 121
JAVA SUPPOIEU TYPES ...evuerererererserser st st et se s e st se e s e se s e sn s e s sn s e s e s sn e snesn e e s nennesaesnennennnnns 121
Eager and Lazy Loading Considerationsc..cccvevcrnersessenssssssses s s ses s sesssssesssssnssessssssnnes 122
Cascadable Operations ConSiderations..........ccuverrerrerieererseererssesesssessesssessesssessssssesssessesssssans 122
o101 T o o oSS 123
L@y (7T 0] - £ o 123
LT T T 0] v L 124
@Embeddedid ANNOLALION ... ——————————— 133
LT T T 10 e L 135
@TabIE ANNOTALION......cucuieiiri s 137
@COIUMN ANNOTALION ... 138
LTy o To 174 T0] = 0] 140
@TranSient ANNOTALION.........cccu i 142
@Embedded and @Embeddable ANNOLAIONS ... ——————— 143
@Enumerated ANNOTALION............ociiiini i ———————— 146
@Cacheable ANNOLALION.........c.criiri i —————————— 148
@MappedSuperclass ANNOTALION...........ccccvererererererererreressessesersesessesessesasesasesaesesassessessssessssessesessssesssssssensnnens 155
@ElementCollection ANNOTALION ... ————— 158
JPA Lifecycle Events @EntityListeners, @ExcludeDefaultListeners,
@ExcludeSuperclassListeners ANNOTALIONS..........cccvererierrrerereresere e res e ressessesessesessesessesassessssessssesssssssesasaens 163

ix

http:///

CONTENTS

L@ LT 0T AT T 1 To] - Lo T 171

@ACCESS ANNOTALION........ceeieeecereee et e e e e e R e e et nnnn s 176

ASSOCIALIONSc.cereeuccereeseesesss et e e e e e e ae e e e s s ae e e s s s ae e s e s A e Re e e s e e Re e e e A e Re e e e e eRe e e e sRann e e naannnnanas 179

Direction in Entity ASSOCIALIONScoueueeeerereieeriree et nnn s 179
Unsupported JPA 2.0 ANNOTALIONScocerveeriirierierreerres e rsee e sssessesssessesssessesssssssssssssssssssnsesanes 202
E3 1111 172 2RSS 203
Chapter 6: Hibernate 0GM Querying MongoDB..........cucccsmsssesmsssnsssssnsssssssssssnsssssnnssssnnnsss 205
MONQODB NaLiVE QUETYccceueeririreririe e se s e se e se s e ss s se s e sn s sa s 206
Hibernate OGM and CRUD Operations..........c.ccucvvrnrnernessessessssses s ses s ses s s snssnssssssssnssssssnnes 211
Hibernate Search and APaChe LUCENEcccvverierrerieereries e ssesssesseessesssessessssssssssssssssssssnssssnns 214

COMIMON SEEPS ..uveviveueerrrrssesessssssesesesssseesesssss e e ssss s e s ssse e sssssse e ness s s e e e e e s R e e e e e A e Re e e e A nRe e e e A e Re e e s e nRean e nenannnaes 217

Hibernate Search/Apache Lucene Querying—OGM via Native APlccovceeerrsienenennesesessesesesesssesessssssenes 222

Hibernate Search/Apache Lucene Querying—O0GM Vi JPA...........cooverrnnrenennnnsesesssssssseses e ssssssssessssssess 231
Hibernate OGM JP-QL PAISENcccosererrrerrsnssssssesesesssssssssssssesessssssssssssssssssssssssssssssassssssssnens 239
BT 1] 11 1P SRS SRS 240
Chapter 7: MongoDB e-Commerce Database Model...........ccccusemmrnnssnnnnmmssssnssnsssssssnnnns 241
MongoDB E-commerce Database ArchiteCtureccvvecrcrcrcsces s 242
Model the Categories Collection (CategOri€S_C).......cvrrrerrerrerrerrersersersesses s s s s s sss e sessennes 243
Model The Products Collection (ProductS_C).......ceouverereriernnesesnnscsssssessssesesessessssessesessessesesnes 245
Model the Customers Collection (CUSTOMErS_C)......ccccveereersrrrerrersnn s sne e s 250
Model The Orders ColleCtion (OrUEIS_C)ccvverrerrerrerserserssrsessesssssessesssssssssssasssssassassssssesssssssssnns 256
Model The Inventory Collection (INVENTOrY_C)ccoccveericresincrncre e ses s 263
SUMMAIY ... s s e s s R e R e R e R e eR e e R e e R e e R e e ReeRe e R e eR e e R e e R e e ReeRenRenRenRenrennnrns 267
Chapter 8: MongoDB e-Commerce Database QUeryingcccusesesssssssssssssssssssssssssssnnnas 269
Display the Categories of ProduCtScccverricrsn s 271
Display the Promotional Products ... sse s sse s ssessesns 273
Display the Products From @ Category........cccoveeerriernsessssssesss e s e e s ssesessessssessssnnnes 274

Search for @ Product DY NAME ... s 276

http:///

CONTENTS

Find a Customer By E-mail ANd PaSSWOIc.ccvververrernensensensersesses s e ses e s s sessssssssesssssssses 277
LT3 11 00 278
Check the INVENTOIYcccceieeiieresrrerssere e nesr s s nn s 279
Restore the INVENTOKY ..o sa e s nne 280
Considerations for Developing the Admin GUI.........ccoereeeeecesecereere e 281
SUMMEAIY ...ttt r e a e ae e s e e Re e e R e e e Re b s e e Re e naeea e e eRnnnn e nnnrnnnes 282
Chapter 9: Migrate MongoDB Database to Cloudc..ccccmmnssammnmmssssnsnmsssssssnssssssnsnsnsss 283
Migrating the MongoDB Database to the MongoHQ Cloud.............cccovrninnncnnnnenenseeens 283
Migrating the MongoDB Database to the MongoLab Cloud...........c.ccecvvrrrrrrrrnsnnernerrer e 289
Connecting to the MongoHQ or MongoLab Cloud Database...........ccccccvvrverirnincnnencensensennaens 294
SUMMEAIY ...ttt a s e s s s e e s e ae e e e s e e e ae e n e e Re e naena e e nannnn e nnnnnnnnes 296
Chapter 10: Migrating RafaEShop Application on OpenShift.........ccccccmmrrrnnsssssnsnnnnnnn 297
Creating a Free Account on OpenShiftccoceeiiiernrnnesr e 297
Installing the OpenShift RHC Client Tools on Windows...........ccoecveencrenmsesnsesesessessssessessssenns 301
TSy e 1T T N 311) 301
INSTAIING Git.....c.ceececeercrcrcrcrerere e e e e e e e e e e e e e e e e e e es 302
Testing Ruby and Git from the SHEll ... s s rae e ae e a e sa e sa s e nesa e e nnen 303
Installing the OPENSHIft GEMccveeerer e ra s sa s e e e sae e s s s e s e sae e sae e naenananes 305
FiXing @ KNOWN ISSUEc.ccecererireresir s sn s e s s sn s sn s s s sn s e s s snssns s s s s 308
Migrating the RafaEShop Application to OpenShift with JBOSSAS 7coovvvvvcrcercercercesene 308
MONItOriNg the JBOSS AS 7 LOG......cciuieerirerreesesesssesesessssssesessssessessssssssesssnsnes 317
COMMIT CRANGES ... et e s e e e e e A e R e e s e Re e e e s Rean e nensannas 319
Migrating the RafaEShop Application @s @WAR ..o se e sasaens 321
Migrating the RafaEShop Application as @ Maven Project..........cccovreeernnescncninsesesesse e 322
Migrating the RafaEShop Application to OpenShift with GlassFish 3 AS.........ccccocvrvrvrvernne, 327
Monitoring GIaSSFiSh STArt/STOP........c.oveerrrrrrr e es 348
COMMUE CRANGESveveereereeereereraesererasersesersssessessssessssessesessesessessssessssessssessessssssassessssessensssssssessssesssssssnsssensnsens 349
FiXiNG KNOWN ISSUBScueiveireerereerererasersesessesessesessessssessssessesessessssessssesssssssessssssassesassessensssssssessssessssesssssssssanaens 349
Monitoring the GIASSFISN LOJc.ceceererererirerercresiseses s sesesesesesesesesesesesesesessseenenes 350

xi

http:///

CONTENTS

... 351
CAULIONS.....cecccccescseseseses et E e e e e e e s e e R e R e e e e e s e e e e e s e e nEnE e nE e e nE e nenene e e es 352

GOOU TO KNOWcovieeeceriecersece e sas e se s sa s e s e e s e 354
DT 1 T T 354

E3 111 P2 2SS 354
11O 355

xii

http:///

About the Author

Anghel Leonard is a senior Java developer with more than 12 years of experience
in Java SE, Java EE, and related frameworks. He has written and published more
than 50 articles about Java technologies and more than 500 tips and tricks for
JavaBoutique, O’Reilly, DevX, Developer and InformIT. In addition, he wrote two
books about XML and Java (one for beginners and one for advanced developers)
for Albastra, a Romanian publisher; three books for Packt: JBoss Tools 3 Developer
Guide, JSF 2.0 Cookbook, and JSF 2.0 Cookbook LITE; and two books for Apress:
Pro Java 7 NIO 2, and Pro Hibernate and MongoDB. Currently, he’s developing web
applications using the latest Java technologies (EJB 3.0, CD], Spring, JSE, Struts,
Hibernate, and so on). For the past two years, he has focused on developing rich
Internet applications for geographic information systems.

xiii

http:///

About the Technical Reviewer

Manuel Jordan Elera is an autodidactic developer and researcher who enjoys learning new technologies for his own
experiments and for creating new integrations.
Manuel won the 2010 Springy Award—Community Champion. In his little free time, he reads the Bible and
composes music on his guitar. Manuel is a senior member, known as dr_pompeii, of the Spring Community Forums.
Manuel has served as a technical reviewer for the following books (all published by Apress):

e Pro SpringSource dm Server (2009)

e Spring Enterprise Recipes (2009)

e Spring Recipes (Second Edition) (2010)
e Pro Spring Integration (2011)

e Pro Spring Batch (2011)

e Pro Spring 3 (2012)

e Pro Spring MVC: With Web Flow (2012)
e Pro Spring Security (2013)

You can read his blog and contact him at http://manueljordan.wordpress.com/. You can also follow his
Twitter account, @dr_pompeii.

XV

http://manueljordan.wordpress.com/
http://@dr_pompeii
http:///

Acknowledgments

Thank you, God, because without you nothing is possible. Thank you to the Apress team for trusting in me to write
this book and for the hard work you put into this project. Special thanks to Steve Anglin, Manuel Jordan, Kevin Shea,
Sharon Terdeman, and Tom Welsh.

—Anghel Leonard

xvii

http:///

	Pro Hibernate and MongoDB

	Contents at a Glance

	Contents

	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Getting Started with Hibernate OGM
	Chapter 2: Hibernate OGM and MongoDB
	Chapter 3: Bootstrapping Hibernate OGM
	Chapter 4: Hibernate OGM at Work
	Chapter 5: Hibernate OGM and JPA 2.0 Annotations
	Chapter 6: Hibernate OGM Querying MongoDB
	Chapter 7: MongoDB e-Commerce Database Model
	Chapter 8: MongoDB e-Commerce Database Querying
	Chapter 9: Migrate MongoDB Database to Cloud
	Chapter 10: Migrating RafaEShop Application on OpenShift
	Index

