
www.allitebooks.com

http://
http://www.allitebooks.org

www.allitebooks.com

http://
http://www.allitebooks.org

MongoDB and PHP

Steve Francia

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

www.allitebooks.com

http://
http://www.allitebooks.org

MongoDB and PHP
by Steve Francia

Copyright © 2012 Steve Francia. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editors: Mike Loukides and Shawn Wallace
Production Editor: Jasmine Perez
Copyeditor: Chet Chin
Proofreader: O’Reilly Production Services

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Revision History for the First Edition:
2012-01-24 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449314361 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. MongoDB and PHP and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-31436-1

[LSI]

1327093111

www.allitebooks.com

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449314361
http://
http://www.allitebooks.org

Table of Contents

Preface . vii

1. Why Mongo? . 1
The Problem of Objects and Relational Data Structures 1
The Problem with ORMs 2

ORMs Are Hairy and Complex 2
ORMs Aren’t Performant 2
ORMs Neutered SQL 2
Complicated Architecture 2
PHP Is Mostly CRUD 3

MongoDB, Optimized for Operation 3
MongoDB Is a Document Database 4
Document == Array 4
MongoDB Is Optimized for CRUD Operations 5
Optimal Interface for Developers 6
Optimal Performance 6
Optimal Simplicity 6
The Value of Consistency 6

2. PHP, MongoDB, and You . 9
Installing the Driver on Linux or MacOS X 9

Checking for the Driver 9
Installing the Driver 9
Upgrading the Driver 10

Installing the Driver on Windows 10
Connecting to a Database 11

Connecting to a MongoDB Database Server 11
Selecting a Database 11

The Basics (CRUD Operations) 11
Creating/Selecting a Collection 12
Creating a Document 12

iii

www.allitebooks.com

http://
http://www.allitebooks.org

Primary Keys and ObjectIds 14
Reading a Document 15
Updating a Document 16
Saving a Document 18
Deleting a Document 19

The MongoDB Shell 19
mongo 19
Using the Shell 19
Administrative Commands 20

Working with Sets 20
Querying Sets 20
Finding (Querying) Data in MongoDB 21
Pagination with the Cursor 22
Ranges 22
Working with Arrays 23
Conditionals 28
Working with Multiple Documents 28

Working with Indexes 29
Setting Indexes 30
Index Order 31
About Indexes 31
Compound Indexes 31
Indexing Arrays 32
Indexes and Memory 32

Database References 32
References Are Not Foreign Keys 33
When to Use References or Reference versus Embed 33
How to Create References 34
How to Access DBRefs 36

Dates and Times 37

3. Advanced MongoDB . 39
Regular Expressions 39

Creating a MongoDB Regular Expression 40
Regular Expressions and Indexes 40

Aggregation Commands 41
The Distinct Command 41
The Group Command 42
MapReduce 44

findAndModify 47
GridFS 47

What Is GridFS? 47
Using GridFS 48

iv | Table of Contents

www.allitebooks.com

http://
http://www.allitebooks.org

Mongofiles 49
Replication 49

High Availability 49
Why Three Nodes? 49
Really Easy Configuration 50
Checking the Replica Set Status 50

Sharding 51
Gotchas 52

The $ Problem 52
The Array != Array Problem 53
Request Injection Attacks 53

4. PHP Libraries and Tools . 55
Object Document Mappers (ODM) 55

Doctrine MongoDB ODM 56
Active Mongo 56
Mandango 57

Tools 57
MongoQueue 57
Genghis 58
RockMongo 58

Frameworks 58
Symfony2 59
Lithium 59
Zend 59
Fuel 59
FatFree Framework 59

5. Conclusion . 61

Table of Contents | v

www.allitebooks.com

http://
http://www.allitebooks.org

www.allitebooks.com

http://
http://www.allitebooks.org

Preface

Once every decade or so, a technology comes along that is so revolutionary that it
fundamentally alters the way we approach everything we do. The world itself has
changed. As I think back to 1995 when I first started developing Internet applications,
our data needs were relatively simple. For the next 10 years, little changed; more and
more people were using the Internet, and consequently data stores needed to scale to
larger workloads, but caching largely took care of that, as all users were accessing the
same set of data. As social media came to fruition, it was clear that the approach that
had worked for the prior 30 years was not longer sufficient. In the future, all data and
experience would need to be personalized—on a large scale. It was out of this need that
MongoDB was created. A database for today’s applications, a database for today’s
challenges, a database for today’s scale: MongoDB has that disruptive potential that
will fundamentally change the way you approach developing applications.

I’d like to publicly thank my wife and four children for being patient with me as I spent
most of my free time over the past few months writing this book.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

vii

www.allitebooks.com

http://
http://www.allitebooks.org

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “MongoDB and PHP by Steve Francia
(O’Reilly). Copyright 2011 Steve Francia, 978-1-4493-1436-1.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

viii | Preface

www.allitebooks.com

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://
http://www.allitebooks.org

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://shop.oreilly.com/product/0636920022381.do

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface | ix

http://shop.oreilly.com/product/0636920022381.do
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://

http://

CHAPTER 1

Why Mongo?

One of the problems that led to the first dot-com crash was the huge expense of
development, especially server software. A new and viable set of open source tools
emerged from the ashes of the first dot-com and became the foundation for the next
generation of the Internet. In the summer of 2001, a new acronym emerged;
LAMP—Linux, Apache, MySQL and PHP—became the platform of choice for an entire
generation of developers. And like that, PHP and MySQL were married (they were right
next to each other, after all). The two seemed destined to go together forever.

The Problem of Objects and Relational Data Structures
There was only one problem. PHP—which started as a templating language—ma-
tured and gradually embraced objects. PHP was being used in more complex applica-
tions and the language consistently changed to meet these ever-increasing demands.
The practice of writing raw SQL queries in template files quickly became unacceptable
(some say it was never acceptable). As the problems became more and more complex,
tools were written to solve the constantly growing trouble of PHP using objects (or
arrays) and MySQL (and the other relational databases) using tables, rows, and
columns.

This isn’t a problem specific to PHP. For decades, people have built tools and libraries
to automate the process of translating objects to relational data structures. The most
popular set is called Object Relational Mappers (ORMs). ORMs were built to solve the
problem of SQL. Their sales pitch is: use an ORM because it masks all the nasty details
of the datastore, so all you ever need to touch is your friendly PHP objects. Although
tools emerged that did a reasonable job of making good on that promise, they never
really worked perfectly. First, you always needed to remember that there was a rela-
tional database behind these objects that spoke in terms of tables, rows, and columns.
Second, these ORMs came at a high cost. They added a lot of complexity and overhead
to applications and persisted only a subset of SQLs features. As they developed, it
quickly became the case that learning an ORM was far more time-consuming than

1

http://

learning SQL in the first place. It is sufficient to say that although the ORMs largely
fixed the problems of SQL, they brought with them the problems of ORMs.

The Problem with ORMs
The objective of an ORM may be simple, but the solution never is.

ORMs Are Hairy and Complex
Propel and Doctrine are the two most popular ORMs for PHP. Propel follows an active
record model; Doctrine follows hibernate. Both projects are quite large, comprising
tens of thousands of lines of code. Doctrine also provides its own SQL-like query lan-
guage called DQL, so you need to know both SQL and DQL to use Doctrine.

ORMs Aren’t Performant
The core objective of the ORM is developer convenience. The core objective of an ORM
is developer convenience as they are built to translate the database's tables, rows, and
columns into your languages objects. The most common approach is called Active
Record. It is especially easy to use but carries with it some of the worst performance
compromises to do so. This is universally true, but especially in PHP. Typically they
perform reasonably well with low activity, but as load or data size increases, their per-
formance compromises become a large hindrance. A common criticism is that Ruby
on Rails doesn’t scale, and it’s best as a prototype environment. This is an accurate
criticism, but it is important to recognize that the place that it doesn't scale isn't the
controller or view, it's the Active Record layer. Not only do ORMs add a layer of over-
head at runtime, but they also consume a lot of memory.

ORMs Neutered SQL
It wasn’t just that the ORMs made it so that SQL was hidden; they stripped it down to
its most basic features. ORMs made it really quite simple to do the operational stuff
like reading and writing objects, commonly called CRUD (Create Read Update Delete)
operations, but failed in large part to support any of SQL’s advanced features. If you
don’t believe me, try to do a left outer join with an ORM or an aggregate function like
an average across a set of data. Many have even failed to provide support for database
transactions, passing along the responsibility to the application.

Complicated Architecture
In an effort to address some of the performance shortcomings of ORMs and relational
databases in general, MemCache was built. MemCache was so effective at speeding up
data retrieval that it was quickly adopted across the industry. It soon became a necessary

2 | Chapter 1: Why Mongo?

http://

element for any application looking to scale or even just perform acceptably. In fact, it
may have had the highest percentage of adoption of a single technology, nearly every
website or application on the internet uses it.

While MemCache works well to quickly access data, it does little to simplify our ap-
plications. With the addition of MemCache, ORMs or applications have to not only
manage translating objects to tables, rows, and columns, but also the additional logic
to store these objects behind a key (or set of keys) and track when to retrieve data from
MemCache versus the RDBMS and when to expire the data in MemCache to ensure
that the RDBMS and MemCache data are in sync—not a trivial task and one that often
concludes in a “good enough” state, leaving undesirable results.

PHP Is Mostly CRUD
With all the problems with ORMs, you may wonder why programmers use them at all.
People were willing to make the compromises to adopt ORMs for one big reason; PHP
applications are by and large CRUD applications. Rarely do they use all of the rich
features the relational database provides, so giving them up seemed a small price to pay
for the benefit of simplified access to the data. Additionally, there weren’t really any
other good options. For very simple projects, one could write SQL in one’s code, but
this was hard to debug and even harder to ensure that it was done securely. PHP is
famous for enabling SQL injection attacks, as inexperienced developers pass variables
right into the SQL without sanitization.

MongoDB, Optimized for Operation
Ever wonder what would happen if someone optimized a data store for the type of
operations application developers actually use?

In 2007, two brilliant developers, Eliot Horowitz and Dwight Merriman (the founders
of 10gen), set out to do just that. Both had previously worked at DoubleClick—Dwight
as CTO and founder and Eliot as an engineer—designing the system that served and
tracked hundreds of thousands of ads per second and were intimately familiar with the
challenges of building a high-volume, high-transaction, scaleable system with existing
database technologies. They knew the challenges well and what current relational da-
tabase offerings lacked. They set out to build a database optimized for operations and
scale. They called their database MongoDB.

The driving philosophy behind MongoDB was to retain as much functionality as
possible while permitting horizontal scale and, at the same time, to ensure that the
developer experience is as elegant as possible.

As they set out to build MongoDB, they looked at the features provided by relational
databases and asked what we could live without and still make it easy for the developer
to work with. Relationships make horizontal scale impossible and multiple table trans-

MongoDB, Optimized for Operation | 3

http://

actions hard to do on distributed clusters. They then looked at improving the developer
experience. Key value stores are great, but often more functionality is needed. Some-
times we need to access things by something other than the key. Since most languages
today operate on objects, what if MongoDB used a data structure that resembled an
object?

MongoDB Is a Document Database
The founders decided to build MongoDB as a document database. At the highest level
of organization, it is quite similar to a relational database, but as you get closer to the
data itself, you will notice a significant change in the way the data is stored. Instead of
databases, tables, columns, and rows you have databases, collections, and documents
(see Figure 1-1).

Figure 1-1. Relational organization versus document-based organization of data

Document == Array
Often people think of PDF files and Word documents when they hear the term “docu-
ment database,” which isn’t accurate. For all intents and purposes, a document is
equivalent to an array in PHP.

4 | Chapter 1: Why Mongo?

http://

Databases

MongoDB groups data into databases in the very same way as most relational databases
do. If you have any experience with relational databases, you should think of these the
same way. In an RDBMS, a database is a set of tables, stored procedures, views, and so
on. In MongoDB, a database is a set of collections.

Collections

Collections correlate to tables within the relational database paradigm. For most pur-
poses, you can think of them as tables (just don’t call them that). Just like tables, indexes
are applied to collections. A collection is a collection of documents and indexes.

Documents

In MongoDB, the primary object is called a document. A document doesn’t have a
direct correlation in the relational world. Documents do not have a predefined schema
like relational database tables. A document is partly a row, in that it’s where the data
is located, but it's also part columns, in that the schema is defined in each document
(not table-wide).

The best way to think of a document is as a multidimensional array. In an array, you
have a set of keys that map to values. The values could themselves be another array. In
practical matters, a MongoDB document is a JSON array. Documents map extremely
well to objects and other PHP data types like arrays and even multidimensional arrays.

As this text is intended for a PHP audience, the PHP array has the closest correlation
of any data type. It’s nearly a perfect 1-to-1 correlation. It’s important to note that the
PHP arrays are unique, as they permit key ⇒ value as well as enumerated keys. Not
only can both types be used as an array, but they can coexist in the same array. Addi-
tionally, PHP doesn’t have the ability to have unordered arrays. MongoDB uses JSON
for its data store, which doesn’t share these same properties. In a JavaScript JSON
representation, there is a difference between a list (which has unordered, unkeyed val-
ues) and a hash (key/value pairs). In practical use, however, this difference is rarely, if
ever, noticed.

MongoDB Is Optimized for CRUD Operations
MongoDB wasn’t written in a lab. It was written to solve real-world problems. It has
been optimized to be extremely efficient at operational procedures. Great care was
taken to optimize it in a few ways. The first thing you should notice in using MongoDB
is that documents are really powerful. You can store a lot of associated data in a single
document while keeping your data structured, normalized, and able to be queried.
Whereas you previously needed to access a dozen or more tables to retrieve data for a
given object, often in MongoDB this can be accomplished in a single document. Most
CRUD operations become very simple save, find, and delete operations.

MongoDB, Optimized for Operation | 5

http://

Optimal Interface for Developers
Because a MongoDB document is effectively a PHP object or array, creating a new
document is easy. All you need to do is create a new PHP array or object and save it.
The majority of this book will explain the various ways to interact with MongoDB from
PHP. While it may require an adjustment from the relational way of thinking (which
so many developers are accustomed to), the interface to MongoDB is a pleasure to use
and feels very natural. By and large, things work in the way you would expect them to
and in a way that will make you a more efficient developer.

Optimal Performance
MongoDB was designed from the ground up to be a very high-performance database.
By itself, MongoDB provides measurable performance increases over relational data-
bases on similar operations; however, many applications will experience a considerable
improvement in performance (20x or more isn’t uncommon). This is because the core
database operations are not only faster but also much more straightforward. For
instance, inserting a blog post into a relational database may require inserts into many
tables, such as a post table, a few inserts into a tags table, a few inserts into a
posts_to_tags table, insert into a category table, inserts into a media table and corre-
sponding joining table—the list could go on. This same overall objective can be
accomplished with a single document write in MongoDB.

In addition to simplier and faster operations, MongoDB also makes heavy use of mem-
ory mapped files. At the risk of oversimplifying things, essentially what this means is
that MongoDB performs read-through, write-through memory caching on all working
data (or as much as will fit into RAM). With MongoDB, there really isn’t a need for
MemCache for most use cases.

Optimal Simplicity
Even with very complex structured data, MongoDB is fully optimized for creating,
reading, updating, and deleting objects. As described in the previous section, many
operations that previously required complex joins or multitable transactions can usu-
ally be accomplished with a much simpler schema, which results in simpler operations
and a significantly more straightforward model layer. Additionally, without the need
to maintain cache and worrying about updating and expiring data, not only is the
application simplified, but so is the architecture.

The Value of Consistency
MongoDB is a fully consistent database in the same tradition as MySQL, PostgreSQL
and most of the relational databases. This is one differentiator between MongoDB and
the majority of the databases in the NoSQL space which are eventually consistent. Some

6 | Chapter 1: Why Mongo?

http://

eventually consistent databases, also called multi master databases, make claims to
have full consistency, but such claims fall short as they require a redefinition of the term
“consistency.”

While there is certainly a place for eventually consistent databases, most developers
don’t realize what functionality they are giving up when they accept this compromise.
It’s not just about data loss, but about functionality. With fully consistent databases,
you can do things like increment values easily or append items without worrying about
collisions. While these operations are trivial to perform in MongoDB, such operations
in eventually consistent databases are impossible without a ton of extra logic and han-
dling in the application.

To illustrate this difference, I’ll use a simple example. Say you wanted to write a very
simple voting application that tracked the username of each voter (each user can only
vote once) and the total. The logic is pretty straightforward: if a username is not in the
array, increment the total and append the username to the array. In MongoDB, this is
a very straightforward (and atomic) operation, but it's impossible to do with an
eventually consistent database.

MongoDB, Optimized for Operation | 7

http://

www.allitebooks.com

http://
http://www.allitebooks.org

CHAPTER 2

PHP, MongoDB, and You

This chapter will provide the foundational knowledge of working with MongoDB and
PHP. By the end of the chapter, you can expect to be able to install the driver and build
an application in PHP that uses MongoDB as the data store.

Installing the Driver on Linux or MacOS X
As distributions and environments vary, installation instructions will also vary. It’s
important to have a basic understanding of your operating system or distribution,
particularly as it pertains to PHP. Hopefully, these general instructions will provide
enough information for you to be able to customize them for your particular situation.

Checking for the Driver
Before you install the driver, you should first check to see if the driver is already present.
A growing number of distributions include the MongoDB driver as part of the base
install. The following command will return a bunch of information about the driver if
it is installed:

php --re mongo

If you do not have the extension installed, you will see:

Exception: Extension mongo does not exist

Installing the Driver
There are a few different ways to install the PHP MongoDB driver. If you are using
Zend Server, you are already good to go. The Zend Server ships with the MongoDB
driver already installed. Some distributions maintain their own deb or rpm packages
to install the driver, and while this approach works, it is not the recommended ap-
proach. It’s recommended to use PECL to install the driver, as it’s consistent across all
systems, provides an easy upgrade path, and is kept up to date.

9

http://

Obviously, this approach depends on PECL installed and configured properly. It is
beyond the scope of this text; many distributions include it, but in the event that you
get “command not found,” there are many online guides to installing PECL for your
given OS. Depending on your OS and configuration, you may need to “sudo pecl” for
each command.

The PHP MongoDB client extension can be installed using the following PECL
command:

pecl install mongo

If everything works properly, you’ll see:

Build process completed successfully
Installing '/usr/lib/php/modules/mongo.so'
install ok: channel://pecl.php.net/mongo-1.0.4
You should add "extension=mongo.so" to php.ini

Add the following line to your php.ini configuration and you’re good to go:

extension=mongo.so" to php.ini

Upgrading the Driver
Upgrading the driver is a bit trickier, as it’s fairly important for system consistency to
use the same upgrade approach as was used to install the driver. As stated earlier, PECL
is the preferred installation method. With PECL, it’s as simple as:

pecl update-channels
pecl upgrade mongo

You will need to restart your web server to reload the new extension.

Installing the Driver on Windows
MongoDB has full support for Windows and is one of the few NoSQL solutions to do
so. Pecl runs fine on Windows, so feel free to try that approach if you have pecl installed
and configured. As an alternative, the MongoDB project distributes a precompiled ver-
sion of the driver for windows. You can download this from github at https://github
.com/mongodb/mongo-php-driver/downloads. Make sure to put the correct dll (thread
safe or regular) into the folder where all of your other php plugins are located, then add
the appropriate line to the extensions section of your php.ini file.

While there are many ways to install AMP (Apache MySQL/MongoDB PHP) for Win-
dows, one approach I like to use is the Uniform Server. It’s an all-in-one solution that
doesn’t require much heavy lifting or configuration. In most cases, you just unpack and
run it. The Uniform Server 6 has a MongoDB plugin, which provides the MongoDB
server, the MongoDB PHP driver, and a simple browser-based admin called
phpMoAdmin. Uniform Server also provides a Windows interface to start, stop, and

10 | Chapter 2: PHP, MongoDB, and You

https://github.com/mongodb/mongo-php-driver/downloads
https://github.com/mongodb/mongo-php-driver/downloads
http://

administer the various services. More information on Uniform Server can be found
through its website, http://www.uniformserver.com.

Connecting to a Database
This text assumes you already have MongoDB installed and accessible. It is beyond the
scope of this text to instruct you in installation. Many great resources already exist to
do so. I’ll recommend the MongoDB documentation, which is always kept up to date
at http://mongodb.org.

Connecting to a MongoDB Database Server
Connecting to MongoDB from PHP is very similar to connecting to any other database.
The default host is localhost, and the default port is 27017. If using the defaults, both
(or either) can be omitted from the connection string.

Connecting to MongoDB database server at localhost port 27017:

$connection = new Mongo();

Connecting to a remote host with optional custom port:

$connection = new Mongo("172.20.10.8:65018");

Selecting a Database
Once the database server connection is established, we will use it to access a database.
The defined way to do this is:

$db = $connection->selectDB('dbname');

As is often the case, there is more than one way accomplish the same thing. As with
many other operations in MongoDB, there is a shorthand way to selecting a database:

$db = $connection->dbname;

Mongo will not throw an error if you try to select a database that doesn’t
exist but will instead create a new database with that name. This makes
it extra critical to double-check your names. If you ever connect to a
database and wonder where your data went, the first thing to do is make
sure you didn’t accidentally mistype the name and inadvertently create
a new (empty) database.

The Basics (CRUD Operations)
Because the majority of your database interactions focus on creating, manipulating,
and finding data, this section will focus on the fundamental Create, Read, Update, and

The Basics (CRUD Operations) | 11

http://www.uniformserver.com
http://mongodb.org
http://

Delete—better known as CRUD—operations as well as how to find and retrieve this
data.

Creating/Selecting a Collection
Now that we have created and connected to a database, let’s do something with it. The
first thing we need to do is create a collection. Selecting (and creating) a collection is
very similar to accessing and creating a database. We will use the database handle we
already created in the previous section:

$collection = $db->addresses;

Alternatively, we can connect to the database and select a collection in a single step:

$addresses = $connection->dbname->addresses;

Up to this point, everything has happened pretty much the same way as if you were
connecting to a relational database, but it is important to pay attention to what we
haven’t done. We haven’t typed any “CREATE DATABASE” commands. We haven’t
created any tables or collections. We haven’t defined any schemas. All we have done
is access the database through the PHP interface as provided by the MongoDB driver
and MongoDB has done all of this for us.

Creating a Document
Creating a document in MongoDB couldn’t be easier. Create an array. Pass it into the
insert method on the collection object.

$address = array(
 'first_name' => 'Peter',
 'last_name' => 'Parker',
 'address' => '175 Fifth Ave',
 'city' => 'New York',
 'state' => 'NY',
 'zip' => '10010'
);

$addresses->insert($address);

Alternatively, we could use the save method. The save method works just like the
insert method, except that if an _id value is specified and exists, save will update
instead of insert the array. In practice, I nearly always use save as it leads to much more
reusable code in most circumstances.

Important Details about Updating

MongoDB’s typical operation is asynchronous. This means that when you insert a
record, it will not return a value. This is often referred to as “fire and forget it” operation.
It provides a number of advantages when writing data, which is typically a more
expensive operation. Rather than blocking the running of the PHP script until the

12 | Chapter 2: PHP, MongoDB, and You

http://

database completes the request and returns, with MongoDB the script will not block
on this operation and will process much faster. To be clear, this behavior doesn’t pro-
vide better database performance, but rather better application performance, especially
under heavy load.

MongoDB can also insert synchronously. This will also hold execution of the PHP script
until it has finished inserting. This is similar to how MySQL, PostgreSQL and other
databases work. In this behavior, the application must wait for the database. Under
heavy load, this can cause all sorts of issues as connections stack up waiting for pro-
cesses to finish (just like the relational databases), so it’s important to use the default
unless you have a good reason for doing otherwise.

The methods update, insert, remove, and save all accept an additional parameter,
which is an array of options.

To perform synchronous operations, pass the “safe” option and set it to true in the
options array:

$addresses->insert($address, array('safe' => true));

The insert method itself will add the about-to-be-created _id to the array (or object)
passed in. This behavior is important to understand and likely represents a change from
what you are likely used to. It does this before sending the data over to the database.
The insert method does not return the primary key; rather, it sets it on the array or
object provided. To access the primary key, simply reference it:

$pk = $address['_id'];

When the safe parameter is passed in, the program will wait for the database response.
If the update doesn’t succeed, the cursor will throw a MongoCursorException. Alterna-
tively, one can also set safe to an integer. In a replicated system, this will ensure that
that number of systems receives the data before returning successfully. If it is unable
to perform the operation on the number of specified nodes, it will throw a MongoCur
sorTimeoutException after it times out. One should be careful when using this feature
to not set the number too high; for instance, if one set it to 3 for a three-node cluster,
it would work fine unless a node went down. Then it would cease to perform updates
while hanging the application for a long time on each operation. timeout is another
parameter that can be passed in the options array and will define the number of milli-
seconds before throwing a timeout exception.

About Consistency

A common misconception is that “safe” means consistent. MongoDB is a fully consis-
tent system, unlike multimaster systems (dynamo), which are eventually consistent.
This means that any time you read from a master, you will always get the same data.
In a multimaster system, it’s possible to retrieve a record from two different masters
and get back two different versions of that same record. One may want to use the
synchronous behavior if writing to a collection with an index enforcing uniqueness.

The Basics (CRUD Operations) | 13

http://

Then the application can ensure that the write happened and handle the case if the
write was denied because of an existing value.

About fsync

Another available option is fsync, which forces a write to disk (and also implies “safe”).
One of the write performance optimizations MongoDB uses is that it pools writes and
flushes them to the disk every so often rather than constantly writing. Prior to MongoDB
1.8, the fsync option was the only way to ensure that the changes weren’t vulnerable
to being lost in the event of a failure (kernel panic, hardware failure, etc.) occuring
between the time the change was accepted and when it was actually written to disk.
From version 1.8 on, MongoDB has included a write-ahead journal, which ensures that
data loss doesn’t occur. With journaling enabled, there isn’t really a need for fsync,
and it shouldn’t be used.

Primary Keys and ObjectIds
MongoDB uses primary keys, just like most other databases. Primary keys need to be
unique. Unless otherwise configured, MongoDB will automatically create a primary
key for each document. In MongoDB, these are called ObjectIds. ObjectIds in MongoDB
are not strings or integers, but objects. This is very important, as you will see in a minute
as we try to query for this document.

The ObjectId is composed of a timestamp, as well as information about the machine
it was created on. As an object, it has methods that you can run. The most helpful is
likely the getTimestamp method, which will return the timestamp:

$id->getTimestamp();

About Primary Keys

While MongoDB will provide a uniqueId for the document if one doesn’t exist, it will
also readily accept one provided to it. Simply set the _id element of the array to an
ObjectId, int, string, or other. This is especially useful when using a collection that is
often referenced and contains an immutable key—for example, a username that would
be referenced and displayed by various other objects but isn’t changable (depending
on your application and business rules). Objects that already have a naturally occuring
unique identifier should be considered in place of an ObjectId. Doing so would save
not only additional space but also the overhead of another index.

It is important to note that an array can’t be used as the primary key.

14 | Chapter 2: PHP, MongoDB, and You

http://

Reading a Document
MongoDB doesn’t use a structured query language (SQL) or any kind of query lan-
guage; rather, you provide an array of what you would like returned. It retains the
flexibility in large part of SQL but is in most cases much simpler.

Like a key value store, you can access the document by the primary key:

$id = new MongoId('4ba667b0a90578631c9caea1');
$pp = $addresses->findone(array('_id' => $id));

Unlike a key value store, you can access the document by any other key:

$pp = $addresses->findone(array(
 'first_name' => 'Peter',
 'last_name' => 'Parker'
));

As you can see, it is very straightforward to access documents from MongoDB. It’s
important to note here that this is without the benefit of any external libraries other
than the driver.

This doesn’t require a pre-existing index (though like any query it would benefit from
one). This is an important distinction as many other NoSQL solutions claim to have
the ability to perform secondary indexes, but not ad hoc queries like the query above,
but require a separate index to be previously established and maintained.

About ObjectIds

It nearly goes without saying that it is important that the primary key matches what
you are querying for. If you provide a string and it is expecting an object, it won’t match.
So if your primary key is ObjectId("4ba667b0a90578631c9caea1"), this is not the same
as the string "4ba667b0a90578631c9caea1". This is a common mistake of new MongoDB
users. As you are free to use any primary key you want, you could use a UUID or other
string, but there are advantages to using an ObjectId. One advantage is that unlike
UUIDs, ObjectIds have a predefined order to them and won’t require loading the index
on insert. Another advantage is that because the ObjectId also contains a timestamp,
you can avoid a created_at field in most cases. Additionally, the ObjectId is 12 bytes,
whereas a UUID is 16 bytes.

Retrieving Select Values

By default, MongoDB will return the entire document (or set of documents) rather than
a set of values. The find and findone methods accept a second parameter that is an
array of the fields to return:

$pw = $db->users->findOne(array('username' => 'spf13'), array('password'));
print($pw);

The Basics (CRUD Operations) | 15

http://

Updating a Document
Updating a document is just as straightforward. The update method takes two param-
eters. The second is what to do (action) and the first is what to do it to (criteria). There
is also a third optional parameter whereby you can pass in an array of options.

Updates in MongoDB are quite performant for the most part. MongoDB takes
advantage of memory mapped files and buffers actually writing to disk. Additionally,
MongoDB does in place updates on disk, provided that there is room. By default,
MongoDB pads each document a small amount so that updates of a similar size can do
in place writes.

Changing a Value

Use update to change a value:

$addresses->update(
 array('_id' => new MongoId('4ba667b0a90578631c9caea1')),
 array('$set' => array('zip' => '10011'))
);

There are a few things to take note of here. Your first instinct may have been to simply
pass in the array containing the new key ⇒ value into the second parameter. You can
certainly do that, but MongoDB will interpret that as you wanting to replace the entire
document with the provided array. Not what we want to do here.

To avoid this behavior, we use an operator. In this example, are using $set, which does
exactly what we want, only setting (either adding or changing) the value specified and
leaving the remainder of the document intact.

As an alternative approach, we could have read the document into PHP,
modified the array, and provided the entire array in the second param-
eter. As a standalone operation, this would have had the same end result,
but with a few potentially negative side effects. First, the in place
updates are slightly more efficient. Second, the in place operators (like
$set) are atomic. What if two different users read the same document
into PHP at the same time, modified it in PHP and then performed a
save operation and passed in the new array? A simple example might be
that while you are editing a blog post, another user adds a comment to
that post that is stored in the same document. Whichever document is
written last will overwrite the first even if the first changed different keys
from the second. In this example, the comment would mysteriously
disappear. The in place operators prevent this often undesirable
behavior.

Up to this point, we haven’t done anything we couldn’t have done in a relational
database. For the next example, we will add a nested array to our document.

16 | Chapter 2: PHP, MongoDB, and You

http://

Adding a Value

Use update to add a value:

$addresses->update(
 array('first_name' => 'Peter', 'last_name' => 'Parker'),
 array('$set' =>
 array('superpowers' =>
 array('agility', 'stamina', 'spidey sense', 'web shooters',
 'super human strength', 'super human intelligence')
)
)
);

We have just added a new value to the document using the same $set operator in the
previous example. We did this all without modifying any tables, and without using any
join tables. The new value is in itself another array, which is transparently stored as
part of the same document.

Appending a Value to an Array

Another example of using an in place operator. A unique property of MongoDB is that
an array is a native data type. One of the neat things you can do is append values
atomically to an array:

$addresses->update(
 array('first_name' => 'Peter', 'last_name' => 'Parker'),
 array('$push' => array('superpowers' => 'wall crawling'))
);

This example is especially important that the operator is atomic. If you didn’t take this
approach and multiple comments were appended to a blog post by reading in the post
document and manually adding another comment onto the list, then saving it, you
would lose comments. An advantage of using a fully consistent database is the ability
to have these atomic operations that facilitate such operations.

One thing to pay attention to when appending values is that if frequently done on the
same document, the updates will require more space than allocated on disk for that
document, causing MongoDB to find a new spot on disk for that document. Done too
frequently, this causes a lot of thrashing on disk and can hinder performance (every
once in a while is fine). An example of such bad behavior would be a logging application
that appends a new value to the document every minute. A much better approach would
be to prepopulate the expected fields. For example, in this logging application, one
would initially create a document with all 1,440 keys set to a placeholder like “0”, then
every minute update the key for that minute rather than appending it. It’s a fairly specific
case, but an important one to point out—and one we encounter a lot.

The Basics (CRUD Operations) | 17

http://

A note on terminology

Nested arrays such as we have just created are called by a variety of
names: embedded document, nested array, nested hash, embedded hash,
dictionary, and so on. This can be confusing, just remember that they
are all the same thing.

Upsert and Multiple

Two of the options are worthy of note here.

Upsert changes the behavior so that if the criteria provided doesn’t exist, it will create
a new document with that criteria.

Multiple enables the method to update more than one document.

These two options are exclusive. There is no way upsert multiple
documents.

Saving a Document
What’s the difference between update, insert, and save?

Save is simply a wrapper for insert and update. If an _id is provided, it will update;
otherwise, it will insert. You can safely use save pretty much all the time, unless you
want to be very explicit as to which of the two operations you are performing.

For the sake of example, as well as providing data to query against later, we will add
another record using save. This time, we will pass an object instead of an array to show
the versatility of the save method. The methods save, insert, and update all accept
objects or arrays as the data parameter:

class Hero {}

$hero = new Hero();

$hero->first_name = 'Eliot';
$hero->last_name = 'Horowitz';
$hero->address = '134 Fifth Ave';
$hero->city = 'New York';
$hero->state = 'NY';
$hero->zip = '10010';
$hero->superpowers = array('agility', 'super human intelligence', 'wall crawling');

$addresses->save($hero);

18 | Chapter 2: PHP, MongoDB, and You

www.allitebooks.com

http://
http://www.allitebooks.org

Deleting a Document
Deleting is as straightforward as adding and updating and follows the same pattern as
updating:

$criteria = array('_id'=> new MongoId('4ba667b0a90578631c9caea1'));
$addresses->remove($criteria, array("justOne" => true));

Unlike update, the remove method by default will remove all documents
matching the provided criteria. There is an additional optional param-
eter, which is an array of options. One of these is justOne, which would
limit the deletion to a single document. As a best practice, justOne
should be used wherever it is applicable.

The MongoDB Shell
This is probably as good a time as any to introduce the MongoDB Shell. Although you
certainly could develop a successful application without using it, you should be aware
of it as you will likely find good reasons to use it. The MongoDB Shell is a JavaScript-
based tool for administering the database and accessing and manipulating data. It is
similar to the PHP (or other language) driver, with the following primary differences:

1. It’s a shell, so it works in a synchronous fashion (in other words, all methods are
run in “safe” mode).

2. The interface is JavaScript.

3. It can issue administrative commands.

mongo
On the command line, type:

mongo

or, on Windows:

mongo.exe

This will automatically connect to a database (default to localhost port 27017). Once
it loads, you select the database you want to access and you can run queries.

Using the Shell
Following the same commands as the previous section, only this time in the shell:

> use dbname
> db.addresses.insert({ "first_name" : "Peter",
 "last_name" : "Parker",
 "address" : "175 Fifth Ave",
 "city" : "New York",

The MongoDB Shell | 19

http://

 "state" : "NY",
 "zip" : "10010" });
> db.addresses.findOne();

{
 "_id" : ObjectId("4e79eeee4a1817c38f000000"),
 "first_name" : "Peter",
 "last_name" : "Parker",
 "address" : "175 Fifth Ave",
 "city" : "New York",
 "state" : "NY",
 "zip" : "10010"
}

When using the shell, you can just call ObjectId(), which will return an ObjectId object.

Shell Is JavaScript

The shell doesn’t just have a JavaScript interface; it’s a full-fledged JavaScript inter-
preter. You can set variables, write functions, objects, and so on. Often a JavaScript file
loaded by the shell is a good way to perform administrative operations, such as loading
fixtures, converting data, and others.

Administrative Commands
Although it’s beyond the scope of this text, you can run all sorts of administrative
commands through the MongoDB shell. Some examples include checking stats, con-
figuring a collection for sharding or shutting down the server.

As an example, here is how one would shut down a server:

db._adminCommand("shutdown")

Working with Sets
One of the advantages of working with MongoDB is that it retains most of the set
functionality of SQL databases. MongoDB has powerful set functionality that easily
allows for things like querying ranges, sorting data, paginating data, and more.

Querying Sets
Now that we’ve established a solid foundation of CRUD (which all operate on a single
record), we will introduce working with sets of records. In our previous examples, when
we queried we used the method findone, which retrieves one or zero documents. In the
following examples, we will use the method find, which retrieves any number of docu-
ments. We will also introduce a few more of the operators that will permit querying on
ranges.

20 | Chapter 2: PHP, MongoDB, and You

http://

So far, as we only have a single document in our database, we will use the shell to
quickly create 250,000 documents. Just create a PHP file with the following code and
run it:

<?php
$conn = new Mongo();
$db = $conn->selectDB('test');
$db->numbers->drop();

for ($i = 0; $i < 250000; $i++) {
 $db->numbers->save(array('num' => $i));
}
?>

You could also do this in the shell with the following:

use test;
db.numbers.drop();
for(i=0; i < 250000; i++) {
 db.numbers.save({num: i});
}

Finding (Querying) Data in MongoDB
As stated earlier, MongoDB is both flexible and easy to work with. Now that we have
a set of data, let’s ask for the first two records. We will write a query with a limit that
will return a MongoCursor Object. We will need to iterate over this object to access
the data on contains:

$results = $db->numbers->find()->limit(2);

foreach ($results as $document){
 print_r($document);
}

And the output is:

Array
(
 [_id] => MongoId Object
 (
 [$id] => 4e7b32174a18176795000000
)
 [num] => 0
)
Array
(
 [_id] => MongoId Object
 (
 [$id] => 4e7b32174a18176795000001
)
 [num] => 1
)

We are just barely scratching the surface of what the MongoCursor can do.

Working with Sets | 21

http://

Pagination with the Cursor
The MongoDB cursor makes pagination easy. These cursor methods can be chained
off of the cursor object that find returns and each other. Combining limit with skip
makes pagination easy. These can also be combined with order. Extending the example
from the previous section:

$db->numbers->find()->limit(2)->skip(20)->sort(array('num'=> -1));

foreach ($results as $document){
 print_r($document);
}

results in the output:

Array
(
 [_id] => MongoId Object
 (
 [$id] => 4ea78e034a1817dd9103d07b
)

 [num] => 249979
)
Array
(
 [_id] => MongoId Object
 (
 [$id] => 4ea78e034a1817dd9103d07a
)

 [num] => 249978
)

Notice that the order of the methods doesn’t matter, as the actual query
itself isn’t performed until it is iterated over.

Ranges
MongoDB has a set of operators to handle range operations. These include $gt, $lt,
$gte, and $lte, which stand for greater than, less than, greater than or equal, and less
than or equal.

Let’s say you want all numbers under 15. Replacing the find in the script from earlier:

$results = $db->numbers->find(array('num' => array('$lt' => 15)));

Notice that we used single quotes around $lt so that it is treated as a string rather than
a variable. This returns the following expected results:

22 | Chapter 2: PHP, MongoDB, and You

http://

Array
(
 [_id] => MongoId Object
 (
 [$id] => 4e7b32174a18176795000000
)
 [num] => 0
)

...

Array
(
 [_id] => MongoId Object
 (
 [$id] => 4e7b32174a1817679500000e
)
 [num] => 14
)

Working with Arrays
Just like ranges, MongoDB comes with a set of operators for working with arrays; these
include $all, $in, $nin, and $size.

Finding a Value in an Array

To find any record that has a value in an array, simply query for it:

$set = $addresses->find(
 array('superpowers' => 'agility')
);

The power of a flexible schema is revealed here. This query will match any document
that has a key superpowers set to the value agility or to an array that contains the value
agility. You are welcome to mix and match. A good example of when this mixing of
types may be useful is if you were writing a CMS system in which most articles have a
single author but occasionally people co-author an article. In this example, the query
would return the expected results regardless.

$in

The introduction of arrays as a data type opens a realm of new possibilities. Just like
in SQL, you can provide a set of values to return multiple documents (records). $in is
analgous to SQL’s IN in this manner. However, unlike SQL, it can also be used to query
against an array. When querying against an array, the document matches when any of
the values match any of the values in $in.

The first example should feel very familiar, as its usage is similar to SQL. It would read
“find me any record who has a state with the value NY or CA.” The fact that our data set

Working with Sets | 23

http://

doesn’t include any values of CA is irrelevant, and it results in the expected response of
all records with NY as a state.

$set = $addresses->find(
 array('state' =>
 array('$in' =>
 array('NY', 'CA')
)
)
);

The following example will return all the current entries in our address collection, as
all entries have either the value flight or agility in their superpowers array:

$set = $addresses->find(
 array('superpowers' =>
 array('$in' =>
 array('flight', 'agility')
)
)
);

$nin

$nin stands for Not In. It’s the opposite of $in and can be used in both ways mentioned
earlier. Be aware, though, that if not used carefully it can return a large number of
documents or expensive queries, so please use with care.

This example returns only the Clark Kent record, as we have excluded the other records,
which have either agility or web crawling in their values.

$set = $addresses->find(
 array('superpowers' =>
 array('$nin' =>
 array('agility', 'wall crawling')
)
)
);

$all

$all works similar to $in. It permits you to query against an array, but unlike $in, it
will return only documents whose array contains all of the values provided. The array
in the document may contain more values than those provided but must have the pro-
vided values to match. In short, $in uses or where $all uses and. It’s important to know
that unlike $in or $nin, $all—because it requires all values—won’t match a single value
(unless there is only one value in your $all array, in which case you shouldn’t use it
anyway).

If we took the earlier $in example and changed it to $all, it would result in a null set,
as none of the records have both flight and agility. Instead, we will use a pretty
specific criteria that will result in the Peter Parker record:

24 | Chapter 2: PHP, MongoDB, and You

http://

$set = $addresses->find(
 array('superpowers' =>
 array('$all' =>
 array('agility', 'spidey sense')
)
)
);

Matching Entire Arrays

If you want an array to match all and only the values provided, then no operator is
needed—simply query on an array with an array. This is similar to the first example
used, but rather than setting the key to a single value, we will pass in an array. This
requires it to be a perfect and complete match instead of searching for any value in the
array. Because it is looking for an exact match and not comparing value by value, the
order is important. It must be in the same order for it to match.

$set = $addresses->find(
 array('superpowers' =>
 array (
 'agility',
 'stamina',
 'spidey sense',
 'web shooters',
 'superhuman strength',
 'superhuman intelligence',
 'wall crawling',
 'really really good looking',
)
)
);

$slice

$slice gives one the ability to retrieve only a section of an array. It is useful in situations
such as when a blog post document has an embedded array of comments but you want
to show only 20 on a page. $slice can either take a single value or an array. The single
value returns that number of elements, in which the array takes two parameters, of
which the first parameter is skip and the second is how many to return. Operating on
our address example from earlier, here is the syntax for both approaches. It’s important
to note that this will return the entire document (every key), but in the key, the
$slice operator is used on it will return only the slice specified.

$addresses->find(array(),array('superpowers' => array('$slice' => 2)));
$addresses->find(array(),array('superpowers' => array('$slice' => array(2, 3))));

The output of the first line (only one document) is:

Array (
 [_id] => MongoId Object (
 [$id] => 4ea8b8344a181784a1000001
)
 [first_name] => Eliot

Working with Sets | 25

http://

 [last_name] => Horowitz
 [address] => 134 Fifth Ave
 [city] => New York
 [state] => NY
 [zip] => 10010
 [superpowers] => Array (
 [0] => agility
 [1] => super human intelligence
)
)

If you want to retrieve only the slice itself and not the entire document, you can come
pretty close by retrieving the _id and the slice:

print_r($addresses->findone(
 array('first_name' => 'Peter', 'last_name' => 'Parker'),
 array('_id' => 1, 'superpowers' => array('$slice' => 2))));

which results in:

Array (
 [_id] => MongoId Object (
 [$id] => 4ea8b8344a181784a1000001
)
 [superpowers] => Array (
 [0] => agility
 [1] => super human intelligence
)
)

$size

$size is a very specific operator with limited use. It will query for the exact number of
elements in an array. It doesn’t use an index (though the query can still use an index
on other criteria) and cannot be used in ranges.

This example will return any document that has five elements in the superpowers array,
which in our data set would result in the Clark Kent document.

$set = $addresses->find(
 array('superpowers' =>
 array('$size' => 5)
)
);

$elemMatch

Say you wanted to match a city and state in a address array nested within a person’s
document. While it’s not likely, it is possible that they may have a home in Westport,
Connecticut, and work in New York, New York. If you simply searched for
address.city = "Westport" and address.state = "CT", you would find not only this
document but any document in which a city “Westport” existed in any address and
any document in which state “CT” existed. Even if you use $and, you would get any
document that has both present in any of the elements, but not necessarily the same

26 | Chapter 2: PHP, MongoDB, and You

http://

element. $elemMatch lets you specify that you want all of the provided conditions to
exist in the same element of an array.

So far, we haven’t created any documents that have nested nested arrays. Here’s a
document and the $elemMatch query to match.

Note that it will match only documents where there is a locations array and inside of
one (or more) of the entries in that array, the key’s state and city both exist and are set
to “NY” and “New York”, respectively.

$tengen = array(
 'name' => '10gen',
 'locations' => array(
 array(
 'street no' => '100',
 'street' => 'Marine Parkway',
 'suite' => '175',
 'city' => 'Redwood City',
 'state' => 'CA',
 'zip' => '94065'
),
 array(
 'street no' => '134',
 'street' => '5th Avenue',
 'floor' => '3rd',
 'city' => 'New York',
 'state' => 'NY',
 'zip' => '10011'
),
));

$db->company->save($tengen);

$set = $db->company->find(array('locations' => array('$elemMatch' => array('state'
=> 'NY', 'city' => 'New York'))));

Using Dot Notation

If you want to select a specific key nested inside of an array, the easiest approach is to
use dot notation. While PHP doesn’t support dot notation, MongoDB does.

It’s important to remember that this is the established way to query keys inside of an
(associated) array. Remember that we can’t just pass in an array, because that would
do an exact comparison. We can’t just pass in the value, because it’s nested inside an
array.

Using the $tengen example from earlier, we could query that structure with dot
notation:

$db->company->find(array('locations.zip' => '10011'));

Working with Sets | 27

http://

Conditionals
MongoDB provides a full set of operators for boolean logic. These include $or, $nor,
$not, $and, and $exists and can be nested and combined with other operators to create
any combination. The $and operator was introduced in 2.0.

It’s important to note that these operators should only be used when working with
different keys. If working with the same keys, $in and $nin are more efficient.

The following example can be read as “Find me all records that have either the state
NY or the city New York and either the first name Eliot or the last name Parker.”

In our data set, it would result in both documents with NY as a state:

$set = $addresses->find(
 array('$and' => array(
 array('$or' => array(
 array('state' => 'NY'),
 array('city' => 'New York')
)
),
 array('$or' => array(
 array('first_name' => 'Eliot'),
 array('last_name' => 'Parker')
)
)
))
);

Working with Multiple Documents
MongoDB permits you to run updates and deletions on multiple documents at the same
time.

Updating Multiple Records

By default the update (or save) methods only work on a single document. Both have an
additional parameter that accepts an array of options. To update all documents that
match the criteria provided, simply pass in array("multiple" => true) in the third
parameter.

Multiple updates are individually atomic, but not atomic as a group.
MongoDB doesn’t have the ability to have atomicity across the update
set, but each individual document will be updated atomically.

A Multiple update is also nonblocking, meaning that other updates can
happen while the update is occurring, even on the same data. The way
to prevent this is to provide the $atomic option, which confusingly isn’t
atomic, but isolated. When set to true, the multi update (or delete) will
be blocking, ensuring that no other operations happen during this
operation on that data set.

28 | Chapter 2: PHP, MongoDB, and You

www.allitebooks.com

http://
http://www.allitebooks.org

Deleting Multiple Records

remove provides the same “options” parameter; however, by default, remove operates
on multiple records, so no additional action is needed. If you want to limit it to one
document, the justOne option set to true will do the trick.

Working with Indexes
MongoDB uses indexes in much the same way as MySQL and PostgreSQL do. For the
most part, all the knowledge you’ve obtained from working with relational databases
will apply to MongoDB. Like most relational databases, MongoDB utilizes a BTree
index. There are a few unique features of a document database that have special
behaviors. Specifically, due to the flexible schema, not all documents have the same
fields. Additionally, documents can contain nested arrays that themselves contain keys
and values. Indexes can be applied not only to values, but also to arrays.

Another ported feature from SQL is explain. It works in a similar manner, but takes a
more standard object-oriented approach. Simply write the find (or findone) statement
as usual and append the explain function call to it:

print_r($db->numbers->find(
 array('num' => array('$gt' => 50000, '$lt' => 50002))
)->explain()
);

It would give us the following result:

Array
(
 [cursor] => BasicCursor
 [nscanned] => 250000
 [nscannedObjects] => 250000
 [n] => 1
 [millis] => 159
 [nYields] => 0
 [nChunkSkips] => 0
 [isMultiKey] =>
 [indexOnly] =>
 [indexBounds] => Array()
 [allPlans] => Array
 (
 [0] => Array
 (
 [cursor] => BasicCursor
 [indexBounds] => Array()
)
)
 [oldPlan] => Array
 (
 [cursor] => BasicCursor
 [indexBounds] => Array()

Working with Indexes | 29

http://

)
)

Please take note of a couple things. It had to scan the entire collection to return the
single document, which took 159 milliseconds. It didn’t use an index as evidenced by
the “BasicCursor” being used.

How can we make this very inefficient query run better? The answer is obvious: add
an index.

Setting Indexes
In MongoDB, setting indexes is easy to do. A single statement will do the trick. Note
that with large data sets, it will take a while to create an index.

$db->numbers->ensureindex(array('num' => 1));

Placing that above our explain from earlier and running it again will produce a
noticeable difference:

Array
(
 [cursor] => BtreeCursor num_1
 [nscanned] => 1
 [nscannedObjects] => 1
 [n] => 1
 [millis] => 2
 [nYields] => 0
 [nChunkSkips] => 0
 [isMultiKey] =>
 [indexOnly] =>
 [indexBounds] => Array
 (
 [num] => Array
 (
 [0] => Array
 (
 [0] => 50000
 [1] => 50002
)
)
)

 [allPlans] => Array
 (
 [0] => Array
 (
 [cursor] => BtreeCursor num_1
 [indexBounds] => Array
 (
 [num] => Array
 (
 [0] => Array
 (

30 | Chapter 2: PHP, MongoDB, and You

http://

 [0] => 50000
 [1] => 50002
)
)
)
)
)
)

Now the find statement has a “BtreeCursor” cursor type and is able to run in 1 milli-
second. Thanks to the index, it scanned exactly one object.

Index Order
Indexes can be created in either ascending or descending order. 1 is the default and is
ascending; −1 is descending. Using descending order is useful in a few cases. One in
particular is dates when typically accessing the most recent data.

About Indexes
A proper understanding of indexes is one of the most important things for a developer
to have, and it is so often overlooked. The proper use of indexes is critical to any well-
functioning application. Using indexes will enable more efficient use of memory and
minimize the amount of time the database spends on disk. MongoDB represents in-
dexes internally as a BTree, which is common in many relational databases. In fact, for
most things dealing with indexes in MongoDB, traditional relational logic fully applies.
Just like traditional databases, indexes can speed up queries, but will slow down writes.
MongoDB only uses one index per query and tries to pick the most optimal one. Every
collection automatically contains one index on the _id field. Indexes can also be used
to maintain uniqueness, as does the one on _id.

Compound Indexes
MongoDB supports compound indexes. If you commonly query on two fields—say,
state and city—then you should create a compound index containing both fields. You
wouldn’t want to create two indexes (one on each), as only one would be used and
either one would result in a fair amount of scanning on disk. In creating and using
compound indexes, order matters. In this example, you would want to make sure that
you create the index with state to the left. The syntax for creating a compound index
is by simply passing an array to the ensure index method. The following example would
be useful when searching for blog posts in a given time range where a specific author
commented:

$blogpost->ensureIndex(array(
 "ts" => -1,

 "comments.author" => 1

Working with Indexes | 31

http://

));

Indexing Arrays
Again, in MongoDB, the addition of an array as a data type provides interesting
possibilities. MongoDB permits indexing of arrays in two different ways:

1. You could index the entire array. In this case, it will treat it as a whole and compare
against the entire array top to bottom and left to right.

2. You could index the keys and values of an array. In this case, it will treat them
individually.

Indexes and Memory
As stated earlier, MongoDB was designed for modern systems and applications. As
many systems today are multicore machines with copious amounts of memory,
MongoDB is written to takes full advantage of them. MongoDB works most efficiently
when indexes and working data fit into memory. If as your data set grows you begin
to notice performance degradation, more than likely it is the result of your memory
being too small to contain your working data set or indexes. At a minimum, you should
ensure that your indexes fit into memory.

There is one exception to this, and it’s pretty specific but not altogether
uncommon—if your data is sequentially inserted and sequentially read. A logging ap-
plication in which the working data is only the most recent segment of data is a good
example. This application can get away with having only the working data set and the
portion of the index needed to support that working data set in memory.

It’s important to realize that MongoDB will use as much memory as you can give it.
One way to think of MongoDB is that it is both a persistent database as well as a memory
cache (like Memcache). It will benefit greatly from more memory as it is accomplishing
both of these functions.

Database References
While MongoDB is not a relational database, it does support a kind of relationship
called references.

MongoDB does have a defined reference called a DBRef, which is simply an array with
two specific elements. Unlike ObjectId and MongoDate, it is not a new type, but rather
a defined convention that the drivers understand. The two required elements are $ref ⇒
"collection name" and $id the primary key (ObjectId) in that collection and the order
matters and must be in the order specified here.

32 | Chapter 2: PHP, MongoDB, and You

http://

As it is only a convention, application developers are welcome to use their own con-
ventions if it better suits their purposes (and it often does). Often the need to store the
collection is unnecessary as they are typically consistent across similar documents. In
these cases, it would be better to store it in the application somewhere like a model
object.

DBRefs can optionally store more data as needed (it’s just an array, after all). Sometimes
it’s helpful to reference a document but store a slug/snippet/thumbnail on the reference
itself as easy access without accessing the entire other document.

References Are Not Foreign Keys
In a relational database (at least an unsharded one), foreign keys serve many purposes,
one of which is ensuring that the data contained has integrity. Databases ensure that
foreign keys don’t reference data that isn’t present; in other words, ensure you don’t
delete data that has references to it. A reference is simply a pointer and shares none of
those properties. In fact, you can create a reference to a document that doesn’t even
exist.

Additionally, foreign keys with join statements enable you to patch together different
parts of data as if it were all one table on which you can sort and perform different
operations. In MongoDB, a reference is simply a pointer and doesn’t provide this feature
either.

When to Use References or Reference versus Embed
As a warning, this topic isn’t very complex, but isn’t altogether intuitive and is very
specific to the application. There is no “one size fits all” or even “one size fits many”
here. I’ll provide some guidelines, but proper application would depend largely on data
set, data usage, access patterns, and data size.

Now that we’ve fully covered what references are and aren’t, you’re probably wonder-
ing when you would use a reference. Often you’ll be asking if a given piece of data
should be a reference or an embedded document. The following guidelines can hope-
fully provide insight into the best implementation for your application. Figure 2-1
shows when to use a reference instead of an embedded document.

Database References | 33

http://

Figure 2-1. When to use a reference versus embedding

Typically, the approach is to use an embedded array unless there is a clear reason for
doing otherwise.

How to Create References
There are two different approaches to references. You can use manual references or
DBRefs. Manual references are primary keys, whereas a DBRef is a pointer to specific
document and collection. The general rule is that if your referenced collection will
always be the same, the manual references are more convenient.

Creating Manual References

Creating manual references is as simple as storing a primary key of another document
and using findOne to access it:

$post = array(
 'title' => 'MongoDB and PHP',
 'text' => 'MongoDB an PHP are like PB and J. Good alone, great together',
 'author' => 'spf13'
);

$post2 = array(
 '_id' => $id,
 'title' => 'MongoDB, PHP and You',
 'text' => 'Before MongoDB I felt so empty using PHP. Now I have a new lease on life',
 'author' => 'spf13'
);

$user = array(

34 | Chapter 2: PHP, MongoDB, and You

http://

 '_id' => 'spf13',
 'name' => 'Steve Francia'
);

$db->articles->insert($post, true);
$db->articles->insert($post2);
$db->users->insert($user);

foreach ($db->articles->find(array('author' => $user['_id'])) as $p) {
 print_r($p);
}

Creating DBRefs

MongoDB provides a createDBRef method that accepts two parameters. The first is the
name of the collection and the second is either the ID or the object of the referenced
document. The following example will create two documents, each referencing each
other. Notice how in the example we actually create the reference to the second docu-
ment before it is even created. This saves us from a third operation of having to update
the first document.

$id = new MongoId();

$post = array(
 'title' => 'MongoDB and PHP',
 'text' => 'MongoDB an PHP are like PB and J. Good alone, great together.',
 'related' => array($db->createDBRef('articles', $id))
);

$post2 = array(
 '_id' => $id,
 'title' => 'MongoDB, PHP and You',
 'text' => 'Before MongoDB I felt so empty using PHP. Now I have a new lease on
life',
 'related' => array($db->createDBRef('articles', $post))
);

$db->articles->insert($post);
$db->articles->insert($post2);

foreach($db->articles->find() as $p) {
 print_r($p);
}

Either of the two previous examples would return the same two documents. This output
is from the second one to illustrate the structure of the DBRef:

Array
(
 [_id] => MongoId Object
 (
 [$id] => 4e80f9ef4a181706c7000001
)

Database References | 35

http://

 [title] => MongoDB and PHP
 [text] => MongoDB an PHP are like PB and J. Good alone, great together.
 [author] => spf13
 [related] => Array
 (
 [0] => Array
 (
 [$ref] => articles
 [$id] => MongoId Object
 (
 [$id] => 4e80f9ef4a181706c7000000
)
)
)
)
Array
(
 [_id] => MongoId Object
 (
 [$id] => 4e80f9ef4a181706c7000000
)

 [title] => MongoDB, PHP and You
 [text] => Before MongoDB I felt so empty using PHP. Now I have a new lease on life
 [author] => spf13
 [related] => Array
 (
 [0] => Array
 (
 [$ref] => articles
 [$id] => MongoId Object
 (
 [$id] => 4e80f9ef4a181706c7000001
)
)
)
)

How to Access DBRefs
The getDBRef method takes a DBRef array and returns the referenced document:

print_r($db->getDBRef($post2['related'][0]));

This results in the expected document ($post from earlier):

Array
(
 [_id] => MongoId Object
 (
 [$id] => 4e81d1f94a1817ed05000001
)

 [title] => MongoDB and PHP

36 | Chapter 2: PHP, MongoDB, and You

http://

 [text] => MongoDB an PHP are like PB and J. Good alone, great together
 [related] => Array
 (
 [0] => Array
 (
 [$ref] => articles
 [$id] => MongoId Object
 (
 [$id] => 4e81d1f94a1817ed05000000
)
)
)
)

Dates and Times
It’s important to make a note of how MongoDB handles dates. As PHP and many other
languages (including JavaScript) don’t have a native date type, MongoDB uses a date
object called MongoDate. If no value is passed in, it will use the current date and time.

// save a date to the database
$collection->save(array("created" => new MongoDate()));

You can also specify dates by passing in a Unix timestamp, like that generated by
strtotime:

$birth = new MongoDate(strtotime("1953-04-13 00:00:00"));

MongoDate can be passed into the date method for easy use in your application:

date('Y-M-d h:m:s', $mongodate->sec);

MongoDate stores dates as the number of milliseconds since the epoch
(similar to Unix time, which stores seconds since the epoch). This means
that it has millisecond accuracy and — like Unix time — ignores time
zones.

Dates and Times | 37

http://

www.allitebooks.com

http://
http://www.allitebooks.org

CHAPTER 3

Advanced MongoDB

Now that you have the basics down, you should feel quite ready to build most appli-
cations, or at least the majority of functionality in any application. This section will
take you into deeper functionality, enabling you to do even more with MongoDB. We
will cover regular expressions, aggregation, MapReduce, replication, and sharding.

Regular Expressions
In addition to all of the logical operators provided, MongoDB also provides a full regular
expression (regex) engine. Regular expressions are run against strings and between the
two, there really isn't any query you can’t create (within a single collection; across
multiple collections, you’ve got MapReduce and client logic at your disposal).

To best illustrate the usage of regular expressions and how they pertain to indexes, we
will use a data set of colors:

$db->colors->save(array('color' => 'red'));
$db->colors->save(array('color' => 'blue'));
$db->colors->save(array('color' => 'green'));
$db->colors->save(array('color' => 'purple'));
$db->colors->save(array('color' => 'orange'));
$db->colors->save(array('color' => 'turquoise'));
$db->colors->save(array('color' => 'black'));
$db->colors->save(array('color' => 'brown'));
$db->colors->save(array('color' => 'teal'));
$db->colors->save(array('color' => 'silver'));
$db->colors->save(array('color' => 'tan'));
$db->colors->save(array('color' => 'navy'));
$db->colors->save(array('color' => 'yellow'));
$db->colors->save(array('color' => 'indigo'));

$db->colors->ensureIndex('color');

39

http://

Creating a MongoDB Regular Expression
MongoDB uses Perl Compatible Regular Expressions (PCRE) regular expressions, the
same ones used in PHP and JavaScript. MongoDB currently supports six flags:

i
Case insensitive

m
Multiline

x
Can contain comments

l
Locale

s
Dotall (“.”) matches everything, including newlines

u
Match unicode

MongoDB provides the MongoRegex object to create MongoDB regular expressions:

$db->colors->find(array('color' => new MongoRegex('/^b/')));

Regular Expressions and Indexes
Regular expressions can take full advantage of indexes if present. It’s important to
understand how indexes work to take advantage of them. BTree’s compare left to right.
This means that your regular expression will take advantages of indexes when it is
comparing the beginning of the string. If you use wildcards at the beginning, and literals
in the middle or end, it will have to do a full table scan, as the index is of no help. The
previous example takes full advantages of indexes. Running explain will help you see
if your query is performing as intended:

print_r($db->colors->find(
 array('color' => new MongoRegex('/^b/')))->explain()
);

This code results in the following output:

Array (
 [cursor] => BtreeCursor color_1 multi
 [nscanned] => 4
 [nscannedObjects] => 3
 [n] => 3
 [millis] => 0
 ...

The important things to look for are the “nscanned” and “n.” You will notice that in
this output, they are very close. Ideally, you would want them to be as close as possible.

40 | Chapter 3: Advanced MongoDB

http://

If we didn’t use the index, you would see “[cursor] ⇒ BasicCursor” instead.Now what
if we look for the last letter, any color ending with “e”?

print_r($db->colors->find(
 array('color' => new MongoRegex('/e$/')))->explain()
);

You will notice that it is still using an index, but it can’t find the best path and is now
doing a full index scan. While a full index scan is better than a full table scan, it doesn’t
provide nearly the performance proper index utilization does.

Array (
 [cursor] => BtreeCursor color_1 multi
 [nscanned] => 14
 [nscannedObjects] => 4
 [n] => 4
 [millis] => 0
 ...

The first example is really the only way to fully utilize an index. Additionally, it must
be done without the “i” switch, as the index isn’t case-insensitive and will need to do
a full table scan.

Aggregation Commands
Certain functionality is extended to MongoDB through the use of commands. These
work well as the drivers become forward-compatible as new features are added.
Currently, the functionality includes aggregation functionality such as group, dis
tinct, and MapReduce; it also provides operational functionality like “get last error”
as well as administrative functions like “shutdown” or “get profiling level.” This section
will focus on the aggregation functionality provided by MongoDB.

The Distinct Command
Distinct reproduces the corresponding functionality in SQL. It has many uses, none of
which are unique to MongoDB. A good example use would be to provide a list of all
tags used on blog posts. The following example will show all superpowers in the address
book using the data we created in the previous chapter. The Distinct command returns
more than just the anticipated values as shown here. Be sure to access the values array
and not the entire returned array.

print_r($db->command(
 array("distinct" => "addresses",
 "key" => "superpowers")
));

Array
(
 [values] => Array
 (

Aggregation Commands | 41

http://

 [0] => agility
 [1] => spidey sense
 [2] => stamina
 [3] => super human intelligence
 [4] => super human strength
 [5] => wall crawling
 [6] => web shooters
)

 [stats] => Array
 (
 [n] => 2
 [nscanned] => 2
 [nscannedObjects] => 2
 [timems] => 0
)

 [ok] => 1
)

Distinct will take full advantage of an index if one exists; in fact, if it is able to, it will
retrieve all values from the index and never actually touch the collection.

Distinct is limited to returning a single BSON object’s worth of data, which is equal to
the maximum document size: either 16 MB or 4 MB, depending on the MongoDB
version.

The Group Command
The MongoDB cursor also provides the ability to group data similar to the “GROUP
BY” functionality of SQL. The group command can best be viewed as a simpler version
of MapReduce (covered later in this chapter).

group comes with three fairly serious limitations:

1. It operates only on data sizes of 10,000 unique keys or less.

2. It is limited to returning a single document worth of data (4 MB in 1.6 and lower,
16 MB in 1.8 and higher).

3. It doesn’t work in sharded environments.

MapReduce does not suffer from any of these limitations and should be used as a
substitute whenever anticipating any of these situations.

One would wonder why to use group at all. As long as the three limitations are not a
hindrance, then it operates a measurable amount faster than MapReduce while also
providing a slightly simpler interface to work with.

Group Parameters

The group command takes three required parameters:

42 | Chapter 3: Advanced MongoDB

http://

key

The fields to group by in an array or object. Also accepts a function (MongoCode).
You would use a function if you wanted to group by day of the week, for example.

initial

The initial value of the aggregation counter object. This is usually a value set to 0
or to an empty array.

reduce

The reduce function is a JavaScript function that aggregates the iterated objects.
Typical operations of a reduce function include summing and counting. It performs
a similar role as the reduce function in MapReduce but operates differently. This
reduce function always takes two arguments, the current iterated document and
the aggregation counter object.

The fourth parameter can be:

condition

A find() query that needs to be true for the current iterating document to be
considered in the aggregation.

finalize

An optional function to be run on each item in the result set just before the item
is returned. Can either modify the item (e.g., add an average field given a count
and a total) or return a replacement object (returning a new object with just _id
and average fields).

Group Examples

Let’s create a simple data set to group against:

$connection = new Mongo();
$db = $connection->selectDB('dbname');

$db->animals->drop();
$db->animals->save(array("class" => 'mammal', 'name' => 'kangaroo'));
$db->animals->save(array("class" => 'mammal', 'name' => 'seal'));
$db->animals->save(array("class" => 'mammal', 'name' => 'dog'));
$db->animals->save(array("class" => 'bird', 'name' => 'eagle'));
$db->animals->save(array("class" => 'bird', 'name' => 'ostrich'));
$db->animals->save(array("class" => 'bird', 'name' => 'emu'));
$db->animals->save(array("class" => 'reptile', 'name' => 'snake'));
$db->animals->save(array("class" => 'reptile', 'name' => 'turtle'));
$db->animals->save(array("class" => 'amphibian', 'name' => 'frog'));

First, here’s a simple example. This example is simply grouping each animal into a class:

$reduce = new MongoCode(<<<'EOF'
function(doc,counter) {
 counter.items.push(obj.name);
}
EOF
);

Aggregation Commands | 43

http://

$g = $db->animals->group(
 array('class' => 1),
 array('items' => array()),
 $reduce
);

echo json_encode($g['retval']);

and results in the following output. Notice that for brevity’s sake, I’ve converted the
output to JSON.

[{"class":"mammal","items":["kangaroo","seal","dog"]},
 {"class":"bird","items":["eagle","ostrich","emu"]},
 {"class":"reptile","items":["snake","turtle"]},
 {"class":"amphibian","items":["frog"]}]

Now say you wanted to count the number of animals in each class. This code:

$reduce = new MongoCode('function(doc,counter) {
 counter.count++;
}');

$g = $db->animals->group(
 array('class' => 1),
 array('count' => 0),
 $reduce
);
echo json_encode($g['retval']);

results in the following output:

[{"class":"mammal","count":3},
 {"class":"bird","count":3},
 {"class":"reptile","count":2},
 {"class":"amphibian","count":1}]

MapReduce
MapReduce is a fairly popular approach used to distribute computing across many
threads or nodes (see Figure 3-1). MongoDB supports MapReduce. There are some
common misconceptions about MapReduce, one of which is that it is an approach to
do operations faster. This isn’t accurate. MapReduce is designed to handle extremely
large data sets and does a great job at doing so. It doesn’t, however, guarantee speed.

Overview

MapReduce is a framework for processing problems across large data sets using many
nodes for massive parallelization. Inspired by functional programming, it was intro-
duced by Google in 2004. It primarily consists of a map function to be run many times
in parallel and a reduce function that takes the output (emits) from all the maps and
“reduces” them down to a single value for each key or in the case of emitting an array,
a set of values for each key. Each implementation of MapReduce is slightly different,

44 | Chapter 3: Advanced MongoDB

http://

and MongoDB is no exception. In MongoDB, only two methods are required: the Map
and Reduce methods. Additional helper methods are also available to group, sort, and
finalize the data. It’s important to recognize that all of these methods are JavaScript,
regardless of the client language, and are executed on the database server.

The syntax for MapReduce looks like this:

$ck = array(
 'first_name' => 'Clark',
 'last_name' => 'Kent',
 'address' => '344 Clinton St., Apt. #3B',
 'city' => 'Metropolis',
 'state' => 'IL',
 'zip' => '62960',
 'superpowers' => array('superhuman strength', 'invulnerability', 'flight',
'superhuman speed', 'heat vision')
);

$addresses->save($ck);

$map = new MongoCode("function() { emit(this.state,1); }");
$reduce = new MongoCode(<<<'EOD'
function(k, vals) {
 var sum = 0;
 for (var i in vals) {
 sum += vals[i];
 }
 return sum;
}
EOD
);

Figure 3-1. MapReduce in MongoDB

Aggregation Commands | 45

http://

$mr = $db->command(array(
 "mapreduce" => "addresses",
 "map" => $map,
 "reduce" => $reduce,
 "out" => array("merge" => "stateCounts")));

$states = $db->selectCollection($mr['result'])->find();
foreach ($states as $state) {
 echo $state['value']." heros live in ". $state['_id'] . "\n";
}

Adding another document to the address book we created in Chapter 2.

Defining the map function. It’s important to recognize that the MapReduce functions
are written in JavaScript and run on the server. The map function references the
variable this to inspect the current document. Inside a map function,
emit(key,value) is called once for every value wanting to be fed to the reducer. In
most cases, this will only be one time (as the example here), but if we wanted to
count superpowers (or for a blog, tags), we would call it multiple times (or even no
times if no superpowers existed).

Defining the reduce function. Like the map function, it’s written in JavaScript. The
reduce function takes an array of all the emitted values and reduces them into a single
value. This is commonly used to aggregate data to produce things like sums. Please
note we are using a nowdoc here to enclose the function in a string.

In this simple example, it’s easy to miss that the value returned by the reduce function
matches the structure as the document emitted by the map function. In the example,
it’s a single value, but if map emitted an array (the second parameter in the emit
function call), then reduce would need to return an array. This is because the
reduce function may be run multiple times over the same document until it is done
reducing.

It has four possible values: "inline" => 1, "replace" => collectionName, "reduce"
=> collectionName, and "merge" => collection Name. Inline causes the command to
return the data itself instead of a cursor object. replace replaces the output collection
entirely (drop and create). merge keeps existing values and replaces them with new
values when the keys match. reduce keeps existing values and uses the reduce func-
tion to reduce them to a single value when keys match.

Because we used one of the methods that creates a collection, we need to perform a
find on the collection, then iterate over the cursor find returns.

The biggest limitation of MongoDB’s MapReduce implementation is that it runs on
the SpiderMonkey JavaScript interpreter, which unfortunately is single-threaded and
interpreted (instead of compiled). What this means to you is that MapReduce opera-
tions are slower than a compiled command like Distinct. They are also a bit complicated
to write.

46 | Chapter 3: Advanced MongoDB

http://

MapReduce provides the flexibility to do most anything that isn’t a built-in function.
MapReduce should only be used when built-in methods are unable to accomplish the
desired result as the native functions provide a speed improvement and are much sim-
pler to use.

findAndModify
The findAndModify command lets you atomically update and return a document in a
single operation. There are a handful of very useful use cases for this sort of operation;
for example, any time you need to increment a value and return the document with the
new value. It’s important to recognize that this kind of operation depends on a fully
consistent database, which is exactly what MongoDB is.

$result = $this->db->command(array(
 'findAndModify' => 'collectionName',
 'query' => array('fieldname' => 'userid'),
 'update' => array('$inc' => array('value' => 1)),
 'upsert' => 1,
 'new' => 1)
);

GridFS
One of the less talked about features of MongoDB is GridFS. Despite its great benefits,
it is commonly misunderstood and consequently underutilized.

We have been trained to think of a database as a place to store structured data and a
file system as a place to store files, but why? In the last few years, this line has become
rather fuzzy as operating systems have put more resources into better file systems and
storing more metadata and indexing more and more of it. Particularly fuzzy is network
file systems, which in a lot of ways, redefine the term “file system.” Network file systems
are more like a protocol than a file system, but a protocol dedicated to saving and
retrieving files.

Unlike traditional filesystems, which organize and expose bits on a drive, network file
systems such as NFS, SMB, FTP, HTTP, and so on are implemented using user space
daemons. They sit on top of disk file systems that manage all the dirty details of
organizing bits on a drive while they focus on expose files over a network protocol.
GridFS is this type of network file system.

What Is GridFS?
A network file system built on top of MongoDB, GridFS is different from other network
filesystems in a few ways:

• It piggybacks on the MongoDBs protocol rather than creating its own.

GridFS | 47

http://

• It does organize bits, but inside of a MongoDB database.

• It fully supports replication and sharding (or rather works in replicated and sharded
environments).

• It can provide horizontal scale (virtually unlimited in size) and high availability.

At its core, it’s really a convention for storing files of any size in a MongoDB collection.
All of the language drivers are written to this convention.

It’s important to note that there aren’t any operating system drivers for GridFS (yet).
GridFS is fairly rudimentary as far as file systems go. Its bread and butter is the simple
operations of put, get, and delete.

To my knowledge, it is the only open source tool of its kind that easily provides a fully
replicated file system with automatic fail over and recovery. The additional benefit of
expanding the total space through horizontal scaling makes it a very appealing
technology.

Using GridFS
A typical use case for GridFS would be storage and retrieval of an avatar for a user. In
a common web application and architecture, you would likely have a few web nodes,
all of which would need to be able to store and serve from the same set of files.
Historically, you may have used NFS for this task, and more than likely, you’ve been
bitten a time or two for doing so. GridFS is perfectly suited for this task. GridFS auto-
matically separates files into acceptable sized chunks of 256KB and creates documents
to store the different chunks and, upon retrieval, combines them.

In the following example, we will store a JPEG file into GridFS. The size doesn’t matter,
as GridFS takes care of all the details. There is a practical limit of what you would pull
out of GridFS using PHP as PHP will load the entire file into memory.

The storeFile method will return the primary key of the newly created file:

$connection = new Mongo();
$db = $connection->selectDB('photos');

$grid = $db->getGridFS();

// The file's location in the File System

$path = '/tmp/';
$filename = 'mastersword.jpg';

$storedfile = $grid->storeFile(
 $path . $filename,
 array("metadata" => array("filename" => $filename)),
 array("filename" => $filename)
);

echo $storedfile;

48 | Chapter 3: Advanced MongoDB

www.allitebooks.com

http://
http://www.allitebooks.org

Mongofiles
MongoDB also ships with mongofiles, a command-line utility for working with GridFS.
With mongofiles, you can simply list, put, delete, and get files from GridFS without
any programming.

The interface is quite straightforward. Here is how we would store an image:

$ mongofiles -d images put mastersword.jpg

connected to: 127.0.0.1
added file: { _id: ObjectId('4ea224f255868dc9e6fd85e1'), filename: "mastersword.jpg",
chunkSize: 262144, uploadDate: new Date(1319249138621), md5:
"957d1ff5b3641c35e295a09e47fba3b5", length: 65115 }
done!

This code will insert the mastersword.jpg image into the images database. For full usage,
simply run mongofiles --help.

Replication
MongoDB uses replication to ensure high availability. It takes a similar approach as
MySQL and PostgreSQL, in which there is a single master where writes occur. Data
written to the master are then replicated to one or more slave nodes. It’s important to
point out that replication is never a good way to scale. It can help to scale reads in a
limited way, but its true purpose is to provide high availability. For scaling MongoDB,
see the next section, “Sharding” on page 51.

High Availability
Replica sets are an improvement on the traditional master/slave setup commonly found
in databases. Instead of a master and slave, nodes are set up in a replica set, each with
awareness of the other members. The terms used for “master” and “slave” have been
replaced by “primary” and “secondary” to distinguish them from the traditional
“master” and “slave,” though there are far more similarities than differences. Replica
sets facilitate automatic fail over and automatic recovery of nodes. A replica set consists
of at least three nodes with a maximum of eight.

Why Three Nodes?
Many people wonder why the minimum requirement is not two nodes like master/
slave. The reason for this is that the replica set needs to be able to establish a majority
to determine a primary. This can be accomplished two ways, either with three or more
nodes or by using two nodes and an arbiter. Unlike the other nodes, an arbiter doesn’t
store any data, but is there to cast a vote when a majority is needed. The reason for
more than two nodes is pretty simple.

Replication | 49

http://

To illustrate, I will use an example in which you have only two nodes, A and B. A is
currently serving as the primary and B as the secondary. Something happens so that B
cannot see A and A cannot see B. The nodes themselves don’t have any way to distin-
guish whether the other node is up or whether something has happened to their con-
nection. If both assumed that the other was down, then both would become primary,
resulting in both simultaneously writing, thus causing collisions. If both assumed that
they were unavailable, then both would become secondary and no writes would be
permitted. The only way to resolve this is by adding another party (node or arbiter)
that can cast a vote. Once we add a third node C, we can now establish a majority. If
A and C can talk to each other, then B must be down or otherwise unavailable and will
elect a primary from themselves. B, realizing that it is in the minority, will step down
(if primary) and once it becomes part of the majority, it will recover.

Really Easy Configuration
If you have ever tried to set up replication with automatic failover and recovery using
existing database solutions, you will be familiar with the many challenges this brings.
In contrast, MongoDB is extremely easy to set up using the following commands. This
is being done using the MongoDB shell. The first block creates the configuration array.
In this example, we are using three instances running on different ports on localhost.
This command only needs to be run on one of the machines. They will automatically
communicate with each other and configure the other nodes.

 > config = {
 "_id" : "myReplicaSet",
 "members" : [
 { "_id" : 0, "host" : "localhost:54321" },
 { "_id" : 1, "host" : "localhost:54322" },
 { "_id" : 2, "host" : "localhost:54323", "arbiterOnly" : true}
]
}
> rs.initiate(config)

Checking the Replica Set Status
Checking the status of the replica set is just as easy; simply connect to any of the nodes
and run rs.status():

> rs.status()

This is only intended as a brief introduction into replication with MongoDB. MongoDB
also supports tagging and priorities which can be useful when dealing with high avail-
ability across multiple data centers.

50 | Chapter 3: Advanced MongoDB

http://

Sharding
It is not the intent of this text to provide any more than a very basic introduction into
how MongoDB scales horizontally through sharding. Please consult the documentation
before attempting to implement a sharded system.

MongoDB provides truly horizontal scaling of data through sharding. Combined with
replication from the previous section, MongoDB provides a fully consistent, highly
available horizontally scaling database system.

For those not familiar with sharding, it is the practice of partitioning data so that data
is split across many nodes. Unlike replication, where each node in a replica set contains
the same data, in a sharded cluster, the data is sliced into segments and divided among
the shards. For example, in a four-node cluster, each shard would have approximately
25% of the data. While a shard could consist of a single node, in most cases each shard
would contain a replica set.

The practice of partitioning data across many servers is not new; this technique has
long been employed for scaling systems like MySQL. However, with MySQL and
similar systems, the responsibility of partitioning the data was left to the DBA or pro-
grammer. The programmer would be responsible not only for tracking what pieces
were on which system but also for ensuring even distribution of the data on each node.
Finally, when more capacity was needed, the programmer would be responsible for
manually splitting the data onto the new machine.

MongoDB automatically splits and distributes the data evenly. It also automatically
balances the data as new data is created. It automatically redistributes the data when
more nodes are added. As the final icing on the cake, the application is blissfully
unaware it is communicating with a sharded cluster as the connection is exactly the
same whether connecting to a single server or a sharded cluster. If you aren’t sold yet,
one final selling point is that you can convert from a single replica set to a sharded
cluster easily and without any downtime. I can’t stress enough that this should be done
well before approaching maximum capacity to avoid downtime.

Figure 3-2 illustrates a basic sharded MongoDB architecture. A shard typically consists
of at least three nodes as a replica set. The cluster itself requires one or three config
servers, which are the brains of the cluster. They store all the meta and routing data for
every chunk of data. The last component is the mongos, which is essentially a routing
process. The mongos communicates with the config servers and knows where to find
each piece of data. It emulates a mongod server, so the application seamlessly com-
municates with mongos just like it would mongod. So seamless is this operation that the
application for all intents and purposes doesn’t need to change when going from a
single node (or replica set) to a sharded cluster.

The minimum number of nodes required for a highly available shard (with two shards)
is nine: three config servers and three times two replica sets. The mongos is a process
that can easily run on the application servers and generally should run on the applica-

Sharding | 51

http://

tion servers, as it eliminates a network hop and consumes a modest amount of resources
on the machine.

Gotchas
As all languages are different, with different characteristics, each has its own quirks
that can sometimes cause friction. PHP has three specific traits that can cause minor
issues when working with MongoDB. Specifically, they are: using $ to denote a variable;
PHP’s unique hybrid array/associative array type; and PHP turning POST variables
with names containing “[]” into arrays.

I will cover in detail the potential pitfalls of each and how to avoid them.

The $ Problem
PHP is one of very few languages that use $ to distinguish a variable. MongoDB also
makes heavy use of the $ character not for variables, but to distinguish certain keywords
used as operators. In general, this isn’t much of an issue, provided that the developer
is careful to always use single quotes around the operator strings and not double quotes,
which would try to evaluate these characters as a variable.

Use:

$c->find(array("x" => array('$gt' => 4)));

not:

$c->find(array("x" => array("$gt" => 4)));

This behavior is configurable, but at the expense of consistency with other languages
and portability. There is a setting you can put in the php.ini file that will change the $
character for MongoDB to whatever you choose. For example, if you wanted to change
it to : you would put

mongo.cmd = ":"

Figure 3-2. A Sharded Architecture

52 | Chapter 3: Advanced MongoDB

http://

into your php.ini file. This setting can also be set using ini_set(). The previous line would
then become:

$c->find(array("x" => array(':gt' => 4)));

In my experience, this hasn’t been an issue in practice and I’ve preferred to leave the
default character, as it is quite easy to avoid using double quotes.

The Array != Array Problem
PHP also has a property unique among all programming languages. In all other lan-
guages, JavaScript included, there is a difference between an key value data construct
and an ordered list. In other languages, these go by various names such as “hash” and
“dictionary” for the “key” ⇒ “value” and “list” or “array” for the “ordered list.” Addi-
tionally, in many other languages, order is not guaranteed in the “key” ⇒ “value.” In
practice, these two systems work quite well in spite of this difference, and in nearly all
cases, you would never notice a difference.

Request Injection Attacks
Before you get all worried remembering horror stories about SQL injection attacks,
despite the similar name, request injection attacks have little in common, are much less
dangerous, and far easier to prevent. In SQL, all operations (select, delete, drop, etc.)
are passed to the database as a string into a query method. Additionally, SQL accepts
multiple commands in the same request delimited by a semicolon. Because of these
two properties, it is very easy to do undesired things in SQL. In MongoDB, each oper-
ation has a distinct method which must be explicitly called for that operation. The
find method will only find. It won’t permit other types of operations. There is also no
way to pass in user input that runs additional commands. Because of its explicit nature,
the MongoDB interface is far more secure out of the box than SQL.

Due to the dynamic typing of PHP, particularly in how it handles GET and POST
variables, it is possible for a parameter to be passed that would permit a user to access
undesired data. All a user would need to do is pass in an array instead of a string. For
example, instead of username=steve, the user would pass in username[$ne] => 'steve'. PHP
will automatically convert this into an array and MongoDB would treat it as one would
expect, returning all but the document where username=steve.

It is important to note that this attack can be used in a more malicious manner if used
in a remove instead of find.

The good news is that this is quite easy to avoid. Simply cast your GET/POST variables
into strings when expecting strings. When removing documents, make sure to use the
justOne parameter whenever appropriate.

Gotchas | 53

http://

http://

CHAPTER 4

PHP Libraries and Tools

I hope that by now, you’ve become excited about how nice the MongoDB driver is to
use. We at 10gen have worked extremely hard to make the developer experience as
pleasant as possible.

While the MongoDB driver makes it quite easy to use MongoDB from within PHP, you
may prefer to add another level of abstraction, particularly with larger applications.
One reason for doing so would be to standardize document structure across the appli-
cation, including data validation.

Many PHP libraries exist to work with MongoDB. I have selected only a handful that
I have experience with and that I feel are viable solutions. This list isn’t meant to be
exhaustive but rather to introduce the reader to libraries that may be able to help them
with their projects. I am not endorsing any of these libraries—merely introducing them
as potential solutions for the reader.

Object Document Mappers (ODM)
A number of solid Object Document Mappers (ODMs) exist for PHP. The concept is
similar to the ORM, but the implementation is significantly different. The ODMs are
considerably lighter than any ORM and much much faster. I’ve listed a few I have
experience with here.

Disclaimer: Doctrine development is sponsored by OpenSky, the social
ecommerce website, where I worked as the VP of engineering. In spite
of this relationship, I’ve endeavored to be as impartial as possible in my
introduction to these libraries.

55

http://

Doctrine MongoDB ODM
Doctrine was the first viable ORM for PHP. Unlike prior solutions, which followed the
active record model, Doctrine took its inspiration from Hibernate for Java. Doctrine2
is an ambitious project that has resulted in a faster and more efficient library.

Concurrent with the development of Doctrine2, the NoSQL movement began to pick
up steam, and as an extension of the Doctrine project, Doctrine MongoDB ODM was
born.

Doctrine MongoDB ODM leverages the rich set of features Doctrine provides to enable
things like validation and events. It allows you to create objects that transparently per-
sist to MongoDB while retaining the same style of objects and behavior as the Doctrine
ORM project. In fact, you can even create a single object that has elements persisted
in each backend. OpenSky used this feature to use a hybrid of MongoDB and MySQL
to add transactional support for our orders. See http://www.spf13.com/presentations for
details.

Doctrine supports the following features:

• Provides full validation

• Seamless integration with Doctrine ORM

• Useful for hybrid solutions

• Follows same persistence model as Doctrine

• Uses a Document Manager and annotations

• Supports embedded and referenced objects

• Can use mongo’s query interface

• Supports in place updates

Doctrine MongoDB ODM can be found at https://github.com/doctrine/mongodb-odm.

Active Mongo
Active Mongo seeks to take the MongoDB interface—which returns arrays—even
further, utilizing the Active Record paradigm. In addition to providing the friendly
interface that comes with Active Record, one of the big features Active Mongo provides
is automatically calculating the diff and performing in place updates. Many of the al-
ternatives would set the entire document each time, whereas Active Mongo ensures
that the minimal amount is changed.

Active Mongo supports a simple filter mechanism that it uses for validation.

Active Mongo supports the following features:

• Uses Active Record (active document) interface

• Supports full validation

56 | Chapter 4: PHP Libraries and Tools

http://www.spf13.com/presentations
https://github.com/doctrine/mongodb-odm
http://

• Supports in place updating

• Uses native query interface

• Supports referenced documents

Active Mongo can be found at https://github.com/crodas/ActiveMongo.

Mandango
Mandango was built for speed. Specifically, it was written to be as simple and fast as
possible. Given the lean approach, it boasts a fairly significant feature set:

• Very light and fast

• Event support

• Supports embedded and referenced objects

• Uses the mongo query syntax

• Lacking validation, but events can be utilized to validate

Mandango is located at https://github.com/mandango/mandango.

Tools
Various tools exist for MongoDB. I’ve only included ones here that are PHP based, but
as they provide support and operate independent of your application, they really could
be any language.

MongoQueue
MongoQueue is an (asynchronous) queuing system using nothing but PHP and
MongoDB. It’s an excellent and popular use case for MongoDB and a great fit for PHP.

MongoQueue supports the following features:

• Fully configurable

• Distributed

• Atomic locking

• Priority support

• Worker timeout support

• Stable

MongoQueue can be found at https://github.com/skiz/mongo_queue.

Tools | 57

https://github.com/crodas/ActiveMongo
https://github.com/mandango/mandango
https://github.com/skiz/mongo_queue
http://

Genghis
Genghis is a PHP frontend for MongoDB, similar in nature to PHPMyAdmin (see
Figure 4-1). Genghis boasts single-file installation and a very usable interface.

Genghis can be found at https://genghisapp.com.

RockMongo
RockMongo is similar to Genghis except that it is more mature and isn't quite as pretty.
RockMongo can be found at http://code.google.com/p/rock-php/wiki/rock_mongo.

Frameworks
As many projects today are not written from scratch, but rather jump-started by using
an existing framework, I’ll briefly describe the current state of frameworks as it pertains
to MongoDB. As counsel, many factors should go into choosing which framework to
use for a project and support for a specific database, while it may be a factor, shouldn’t
be the only factor.

Figure 4-1. Genghis edit screen

58 | Chapter 4: PHP Libraries and Tools

www.allitebooks.com

https://genghisapp.com
http://code.google.com/p/rock-php/wiki/rock_mongo
http://
http://www.allitebooks.org

Even if a given framework doesn’t explicitly support MongoDB, don’t view this as
incompatibility. In a discussion with Paul Jones, the author of the Solar framework
(and a fan of MongoDB), I asked him if they had plans to support MongoDB. His answer
(parahprased): “Why? The driver does so much that I don’t think we could add to it
to make the experience any better.” He’s not alone; I know of a few other frameworks
that have opted to stick with the driver without adding any additional support because
it works so well.

The following frameworks have built support for MongoDB internally. Often it is not
only to use it as a core data store, but to integrate it with additional components, such
as as a backend for session handling.

Symfony2
Philosophically, Symfony2 believes you should be able to use what you want and pro-
vides a wonderful plugin architecture to permit you to do so. Sensio Labs, the parent
of the Symfony project, also sponsors the Doctrine project and the two teams have a
decent amount of overlap. Doctrine2 works quite well with Symfony2, providing both
RDBMS and MongoDB support.

Lithium
Lithium is the first framework to boast support for NoSQL solutions right out of the
box. In fact, originally it only supported MongoDB and CouchDB. The Lithium project
was started by Nate Abele, the former lead developer of the CakePHP framework.

Zend
Zend, the PHP company, has been developing its own framework for a few years. It is
widely used, and through the Shanty Mongo plugin, has MongoDB support. Shanty
Mongo is an ODM like many of the libraries mentioned here. There is currently a
proposal for MongoDB to have full support for an upcoming release of Zend Frame-
work. Additionally, a number of components will support MongoDB in upcoming
releases.

Fuel
Fuel supports MongoDB out of the box. It provides a simple wrapper that isn’t any
simpler than the driver.

FatFree Framework
The FatFree Framework—or F3, as it’s commonly called—provides M2, the Mongo
Mapper library, to interface with MongoDB.

Frameworks | 59

http://

http://

CHAPTER 5

Conclusion

Thanks for sticking with me through these pages. I’ve endeavored to not only inform
and instruct, but also to give you insight into the future of software development. I first
encountered MongoDB in the spring of 2010. I was the new head of engineering at
OpenSky, a social ecommerce company in New York City. Their existing infrastructure
was crippled by the weight of their growth, and it was clear that a better solution was
needed. As we began to plan out a restructure of the application, we put all possibilities
on the table. Initially, we decided to build OpenSky using PHP (with the Symfony2
framework) and MySQL. At the time, I felt that none of the NoSQL solutions were
ready for production use, but one technology in particular piqued my interest and I
decided we would use it to power an auxiliary component to the application. We first
used MongoDB for logging. Within a couple of weeks of using it, I had a huge epiphany.
I was amazed by the potential it brought. It had the potential to radically alter the way
we built software, not just at OpenSky, but for the industry as a whole. I saw MongoDB
as that once-in-a-decade (or two) technology that is so disruptive that it changes
everything. We very quickly threw away all that we were doing with MySQL and
switched over completely to MongoDB for our entire application. Our product
launched ahead of an aggressive schedule and never once struggled to keep up with the
explosive growth OpenSky experienced. I can easily look back on that decision as one
of the best I have made in my career.

For our team, MongoDB didn’t represent just a database, but an enabler. It enabled us
to do truly rapid and agile development. We no longer needed to spend the first third
of an iteration planning out our database schema with rigid precision (only to not get
it perfect and spend the next third of the iteration writing alter statements and conver-
sion scripts). We were enabled to build a great product without worrying about all the
complications of SQL and caching. Imagine how much time you have spent wrestling
with databases, caching layers and making sure to expire all the right data; debugging
complex queries with loads of joins or learning a new interface as each new ORM came
out. All the time you have spent dealing with security challenges of sanitizing everything
to prevent SQL injection attacks. All the schema migration scripts you’ve written. What
if you took that time and instead focused on building the best application you know

61

http://

how? For me, MongoDB has become more than just a database and is rather a tool
that’s enabled me to do what I love most: write great code.

My hope is that you have been able to feel a bit of this as you read this book. Now go
out and build something great!

62 | Chapter 5: Conclusion

http://

About the Author
Steve Francia, Chief Solutions Architect at 10gen, is responsible for all language drivers,
integrations, evangelism, web, and docs. Prior to 10gen, Steve led OpenSky to become
the first ecommerce site powered by MongoDB and one of the first PHP sites backed
by MongoDB. His previous roles include CIO/COO at Portero, VP of Development at
Takkle, and founder and CTO of Supernerd. Steve loves open source. He has contrib-
uted to dozens of open source projects, including MongoDB, Doctrine, Symfony2,
Magento, and Zoop and has started a few of his own. Steve is a frequent speaker at
conferences around the world on databases, e-commerce, big data, and application
development. He also maintains an active blog at http://www.spf13.com. Steve holds a
BA from Brigham Young University, where—among other things—he created and
taught a course on dynamic web development.

http://www.spf13.com
http://

http://

	Table of Contents
	Preface
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us

	Chapter 1. Why Mongo?
	The Problem of Objects and Relational Data Structures
	The Problem with ORMs
	ORMs Are Hairy and Complex
	ORMs Aren’t Performant
	ORMs Neutered SQL
	Complicated Architecture
	PHP Is Mostly CRUD

	MongoDB, Optimized for Operation
	MongoDB Is a Document Database
	Document == Array
	Databases
	Collections
	Documents

	MongoDB Is Optimized for CRUD Operations
	Optimal Interface for Developers
	Optimal Performance
	Optimal Simplicity
	The Value of Consistency

	Chapter 2. PHP, MongoDB, and You
	Installing the Driver on Linux or MacOS X
	Checking for the Driver
	Installing the Driver
	Upgrading the Driver

	Installing the Driver on Windows
	Connecting to a Database
	Connecting to a MongoDB Database Server
	Selecting a Database

	The Basics (CRUD Operations)
	Creating/Selecting a Collection
	Creating a Document
	Important Details about Updating
	About Consistency
	About fsync

	Primary Keys and ObjectIds
	About Primary Keys

	Reading a Document
	About ObjectIds
	Retrieving Select Values

	Updating a Document
	Changing a Value
	Adding a Value
	Appending a Value to an Array
	Upsert and Multiple

	Saving a Document
	Deleting a Document

	The MongoDB Shell
	mongo
	Using the Shell
	Shell Is JavaScript

	Administrative Commands

	Working with Sets
	Querying Sets
	Finding (Querying) Data in MongoDB
	Pagination with the Cursor
	Ranges
	Working with Arrays
	Finding a Value in an Array
	$in
	$nin
	$all
	Matching Entire Arrays
	$slice
	$size
	$elemMatch
	Using Dot Notation

	Conditionals
	Working with Multiple Documents
	Updating Multiple Records
	Deleting Multiple Records

	Working with Indexes
	Setting Indexes
	Index Order
	About Indexes
	Compound Indexes
	Indexing Arrays
	Indexes and Memory

	Database References
	References Are Not Foreign Keys
	When to Use References or Reference versus Embed
	How to Create References
	Creating Manual References
	Creating DBRefs

	How to Access DBRefs

	Dates and Times

	Chapter 3. Advanced MongoDB
	Regular Expressions
	Creating a MongoDB Regular Expression
	Regular Expressions and Indexes

	Aggregation Commands
	The Distinct Command
	The Group Command
	Group Parameters
	Group Examples

	MapReduce
	Overview

	findAndModify
	GridFS
	What Is GridFS?
	Using GridFS
	Mongofiles

	Replication
	High Availability
	Why Three Nodes?
	Really Easy Configuration
	Checking the Replica Set Status

	Sharding
	Gotchas
	The $ Problem
	The Array != Array Problem
	Request Injection Attacks

	Chapter 4. PHP Libraries and Tools
	Object Document Mappers (ODM)
	Doctrine MongoDB ODM
	Active Mongo
	Mandango

	Tools
	MongoQueue
	Genghis
	RockMongo

	Frameworks
	Symfony2
	Lithium
	Zend
	Fuel
	FatFree Framework

	Chapter 5. Conclusion

