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Introduction

Its a pleasure for me to be able to once again introduce a new audience to MongoDB. 
Throughout my tenure as a computer engineer, it is one of several technologies that I have 
had the pleasure of working with in depth. I am cotinually supprised at the number of 
different configurations and purposes that MongoDB is put to. 

We see this book as being a small primer and introduction to MongoDB. In order 
to have such a wide variety of uses a tool must be infinitely flexible, which MongoDB is. 
At the same time, this flexibility does come with a small learning curve and that is why 
this book exists. We aim to provide people with a great way to look at many of the core 
storage features of MongoDB. To do this, we have eschewed some of the more complex 
operational features such as Sharding and Replication, we also avoided going into depth 
with a lot of the operations level mechanics.

With all this in mind, we hope that you find this book to be a great way to build  
your apetite for one of the most disruptive technologies of the 21st century! Good luck 
and enjoy.
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Chapter 1

Introduction to MongoDB

Imagine a world where using a database is so simple that you soon forget you’re even 
using it. Imagine a world where speed and scalability just work, and there’s no need for 
complicated configuration or setup. Imagine being able to focus only on the task at hand, 
get things done, and then—just for a change—leave work on time. That might sound a bit 
fanciful, but MongoDB promises to help you accomplish all these things (and more).

MongoDB (derived from the word humongous) is a relatively new breed of database 
that has no concept of tables, schemas, SQL, or rows. It doesn’t have transactions, 
ACID compliance, joins, foreign keys, or many of the other features that tend to cause 
headaches in the early hours of the morning. In short, MongoDB is a very different 
database than you’re probably used to, especially if you’ve used a relational database 
management system (RDBMS) in the past. In fact, you might even be shaking your head 
in wonder at the lack of so-called “standard” features.

Fear not! In the following pages, you will learn about MongoDB’s background and 
guiding principles, and why the MongoDB team made the design decisions that it did. 
We’ll also take a whistle-stop tour of MongoDB’s feature list, providing just enough detail 
to ensure that you’ll be completely hooked on this topic for the rest of the book.

We’ll start by looking at the philosophy and ideas behind the creation of MongoDB, as 
well as some of the interesting and somewhat controversial design decisions. We’ll explore 
the concept of document-oriented databases, how they fit together, and what their strengths 
and weaknesses are. We’ll also explore JSON and examine how it applies to MongoDB.  
To wrap things up, we’ll step through some of the notable features of MongoDB.

Reviewing the MongoDB Philosophy
Like all projects, MongoDB has a set of design philosophies that help guide its 
development. In this section, we’ll review some of the database’s founding principles.

Using the Right Tool for the Right Job
The most important of the philosophies that underpin MongoDB is the notion that one 
size does not fit all. For many years, traditional relational (SQL) databases (MongoDB is 
a document-oriented database) have been used for storing content of all types. It didn’t 
matter whether the data was a good fit for the relational model (which is used in all 
RDBMS databases, such as MySQL, PostgresSQL, SQLite, Oracle, MS SQL Server, and 
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so on); the data was stuffed in there, anyway. Part of the reason for this is that, generally 
speaking, it’s much easier (and more secure) to read and write to a database than it is to 
write to a file system. If you pick up any book that teaches PHP, such as PHP for Absolute 
Beginners, by Jason Lengstorf (Apress, 2009), you’ll probably find that almost right away 
the database is used to store information, not the file system. It’s just so much easier to 
do things that way. And while using a database as a storage bin works, developers always 
have to work against the flow. It’s usually obvious when we’re not using the database the 
way it was intended; anyone who has ever tried to store information with even slightly 
complex data, had to set up five tables, and then tried to pull it all together knows what 
we’re talking about!

The MongoDB team decided that it wasn’t going to create another database that 
tries to do everything for everyone. Instead, the team wanted to create a database 
that worked with documents rather than rows and that was blindingly fast, massively 
scalable, and easy to use. To do this, the team had to leave some features behind, which 
means that MongoDB is not an ideal candidate for certain situations. For example, 
its lack of transaction support means that you wouldn’t want to use MongoDB to 
write an accounting application. That said, MongoDB might be perfect for part of the 
aforementioned application (such as storing complex data). That’s not a problem, though, 
because there is no reason why you can’t use a traditional RDBMS for the accounting 
components and MongoDB for the document storage. Such hybrid solutions are quite 
common, and you can see them in production apps such as the New York Times website.

Once you’re comfortable with the idea that MongoDB may not solve all your problems, 
you will discover that there are certain problems that MongoDB is a perfect fit for resolving, 
such as analytics (think a real-time Google Analytics for your website) and complex data 
structures (for example, blog posts and comments). If you’re still not convinced that 
MongoDB is a serious database tool, feel free to skip ahead to the “Reviewing the Feature 
List” section, where you will find an impressive list of features for MongoDB.

Note■■  T he lack of transactions and other traditional database features doesn’t mean that 
MongoDB is unstable or that it cannot be used for managing important data.

Another key concept behind MongoDB’s design is that there should always be 
more than one copy of the database. If a single database should fail, then it can simply 
be restored from the other servers. Because MongoDB aims to be as fast as possible, it 
takes some shortcuts that make it more difficult to recover from a crash. The developers 
believe that most serious crashes are likely to remove an entire computer from service 
anyway; this means that even if the database were perfectly restored, it would still not be 
usable. Remember: MongoDB does not try to be everything to everyone. But for many 
purposes (such as building a web application), MongoDB can be an awesome tool for 
implementing your solution.

So now you know where MongoDB is coming from. It’s not trying to be the best at 
everything, and it readily acknowledges that it’s not for everyone. However, for those 
who do choose to use it, MongoDB provides a rich document-oriented database that’s 
optimized for speed and scalability. It can also run nearly anywhere you might want to 
run it. MongoDB’s website includes downloads for Linux, Mac OS, Windows, and Solaris.
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MongoDB succeeds at all these goals, and this is why using MongoDB (at least for us)  
is somewhat dream-like. You don’t have to worry about squeezing your data into a 
table—just put the data together, and then pass it to MongoDB for handling.Consider this 
real-world example. A recent application co-author Peter Membrey worked on needed 
to store a set of eBay search results. There could be any number of results (up to 100 of 
them), and he needed an easy way to associate the results with the users in his database.

Had Peter been using MySQL, he would have had to design a table to store the data, 
write the code to store his results, and then write more code to piece it all back together 
again. This is a fairly common scenario and one most developers face on a regular basis. 
Normally, we just get on with it; however, for this project, he was using MongoDB, and so 
things went a bit differently.

Specifically, he added this line of code:
 
request[‘ebay_results’] = ebay_results_array
collection.save(request)
 

In this example, request is Peter’s document, ebay_results is the key, and ebay_
result_array contains the results from eBay. The second line saves the changes. When 
he accesses this document in the future, he will have the eBay results in exactly the same 
format as before. He doesn’t need any SQL; he doesn’t need to perform any conversions; 
nor does he need to create any new tables or write any special code—MongoDB just 
worked. It got out of the way, he finished his work early, and he got to go home on time.

Lacking Innate Support for Transactions
Here’s another important design decision by MongoDB developers: The database does 
not include transactional semantics (the element that offers guarantees about data 
consistency and storage). This is a solid tradeoff based on MongoDB’s goal of being 
simple, fast, and scalable. Once you leave those heavyweight features at the door, it 
becomes much easier to scale horizontally.

Normally with a traditional RDBMS, you improve performance by buying a 
bigger, more powerful machine. This is scaling vertically, but you can only take it so 
far. With horizontal scaling, rather than having one big machine, you have lots of less 
powerful small machines. Historically, clusters of servers like this were excellent for 
load-balancing websites, but databases had always been a problem because of internal 
design limitations.

You might think this missing support constitutes a deal-breaker; however, many 
people forget that one of the most popular table types in MySQL (MYISAM—which also 
happens to be the default) doesn’t support transactions, either. This fact hasn’t stopped 
MySQL from becoming and remaining the dominant open source database for well 
over a decade. As with most choices when developing solutions, using MongoDB is 
going to be a matter of personal preference and whether the tradeoffs fit your project.
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Note■■   MongoDB offers durability when used in tandem with at least three servers, 
which is the recommended minimum for production deployments. It is possible to make the 
primary replica member wait for one or more of the secondary members to confirm receipt 
of the data before the primary itself confirms that the data has been accepted.

JSON and MongoDB
JSON (Java Script Object Notation) is more than a great way to exchange data; it’s also a 
nice way to store data. An RDBMS is highly structured, with multiple files (tables) that 
store the individual pieces. MongoDB, on the other hand, stores everything together in a 
single document. MongoDB is like JSON in this way, and this model provides a rich and 
expressive way of storing data. Moreover, JSON effectively describes all the content in a 
given document, so there is no need to specify the structure of the document in advance. 
JSON is effectively schemaless (that is, it doesn’t require a schema), because documents 
can be updated individually or changed independently of any other documents. As an 
added bonus, JSON also provides excellent performance by keeping all of the related data 
in one place.

MongoDB doesn’t actually use JSON to store the data; rather, it uses an open data 
format developed by the MongoDB team called BSON (pronounced Bee-Son), which is 
short for binary JSON. For the most part, using BSON instead of JSON won’t change how 
you work with your data. BSON makes MongoDB even faster by making it much easier for 
a computer to process and search documents. BSON also adds a couple of features that 
aren’t available in standard JSON, including the ability to add types for handling binary 
data. We’ll look at BSON in more depth in “Using Document-Oriented Storage (BSON),” 
later in this chapter.

The original specification for JSON can be found in RFC 4627, and it was written by 
Douglas Crockford. JSON allows complex data structures to be represented in a simple, 
human-readable text format that is generally considered to be much easier to read and 
understand than XML. Like XML, JSON was envisaged as a way to exchange data between 
a web client (such as a browser) and web applications. When combined with the rich way 
that it can describe objects, its simplicity has made it the exchange format of choice for 
the majority of developers.

You might wonder what is meant here by complex data structures. Historically, data 
was exchanged using the comma-separated values (CSV) format (indeed, this approach 
remains very common today). CSV is a simple text format that separates rows with a new 
line and fields with a comma. For example, a CSV file might look like this:
 
Membrey, Peter, +852 1234 5678
Thielen, Wouter, +81 1234 5678
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A human can look at this information and see quite quickly what information 
is being communicated. Or maybe not—is that number in the third column a phone 
number or a fax number? It might even be the number for a pager. To avoid this 
ambiguity, CSV files often have a header field, in which the first row defines what comes 
in the file. The following snippet takes the previous example one step further:
 
Lastname, Firstname, Phone Number
Membrey, Peter, +852 1234 5678
Thielen, Wouter, +81 1234 5678
 

Okay, that’s a bit better. But now assume some people in the CSV file have more than 
one phone number. You could add another field for an office phone number, but you face 
a new set of issues if you want several office phone numbers. And you face yet another 
set of issues if you also want to incorporate multiple e-mail addresses. Most people have 
more than one, and these addresses can’t usually be neatly defined as either home or 
work. Suddenly, CSV starts to show its limitations. CSV files are only good for storing data 
that is flat and doesn’t have repeating values. Similarly, it’s not uncommon for several 
CSV files to be provided, each with the separate bits of information. These files are then 
combined (usually in an RDBMS) to create the whole picture. As an example, a large retail 
company may receive sales data in the form of CSV files from each of its stores at the end 
of each day. These files must be combined before the company can see how it performed 
on a given day. This process is not exactly straightforward, and it certainly increases 
chances of a mistake as the number of required files grows.

XML largely solves this problem, but using XML for most things is a bit like using a 
sledgehammer to crack a nut: it works, but it feels like overkill. The reason for this is that 
XML is highly extensible. Rather than define a particular data format, XML defines how 
you define a data format. This can be useful when you need to exchange complex and 
highly structured data; however, for simple data exchange, it often results in too much 
work. Indeed, this scenario is the source of the phrase “XML hell.”

JSON provides a happy medium. Unlike CSV, it can store structured content; but 
unlike XML, JSON makes the content easy to understand and simple to use. Let’s revisit 
the previous example; however, this time you will use JSON rather than CSV:
 
{
    "firstname": "Peter",
    "lastname": "Membrey",
    "phone_numbers": [
        "+852 1234 5678",
        "+44 1234 565 555"
    ]
}
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In this version of the example, each JSON object (or document) contains all the 
information needed to understand it. If you look at phone_numbers, you can see that it 
contains a list of different numbers. This list can be as large as you want. You could also 
be more specific about the type of number being recorded, as in this example:
 
{
    "firstname": "Peter",
    "lastname": "Membrey",
    "numbers": [
        {
            "phone": "+852 1234 5678"
        },
        {
            "fax": "+44 1234 565 555"
        }
    ]
}
 

This version of the example improves on things a bit more. Now you can clearly 
see what each number is for. JSON is extremely expressive, and, although it’s quite easy 
to write JSON by hand, it is usually generated automatically in software. For example, 
Python includes a module called (somewhat predictably) json that takes existing Python 
objects and automatically converts them to JSON. Because JSON is supported and used 
on so many platforms, it is an ideal choice for exchanging data.

When you add items such as the list of phone numbers, you are actually creating 
what is known as an embedded document. This happens whenever you add complex 
content such as a list (or array, to use the term favored in JSON). Generally speaking, 
there is also a logical distinction. For example, a Person document might have several 
Address documents embedded inside it. Similarly, an Invoice document might have 
numerous LineItem documents embedded inside it. Of course, the embedded Address 
document could also have its own embedded document that contains phone numbers, 
for example.

Whether you choose to embed a particular document is determined when you 
decide how to store your information. This is usually referred to as schema design. It 
might seem odd to refer to schema design when MongoDB is considered a schemaless 
database. However, while MongoDB doesn’t force you to create a schema or enforce one 
that you create, you do still need to think about how your data fits together. We’ll look at 
this in more depth in Chapter 3.

Adopting a Nonrelational Approach
Improving performance with a relational database is usually straightforward: you buy 
a bigger, faster server. And this works great until you reach the point where there isn’t 
a bigger server available to buy. At that point, the only option is to spread out to two 
servers. This might sound easy, but it is a stumbling block for most databases. For 
example, neither MySQL nor PostgresSQL can run a single database on two servers, 
where both servers can both read and write data (often referred to as an active/active 
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cluster). And although Oracle can do this with its impressive Real Application Clusters 
(RAC) architecture, you can expect to take out a mortgage if you want to use that 
solution—implementing a RAC-based solution requires multiple servers, shared storage, 
and several software licenses.

You might wonder why having an active/active cluster on two databases is so 
difficult. When you query your database, the database has to find all the relevant data 
and link it all together. RDBMS solutions feature many ingenious ways to improve 
performance, but they all rely on having a complete picture of the data available. And 
this is where you hit a wall: this approach simply doesn’t work when half the data is on 
another server.

Of course, you might have a small database that simply gets lots of requests, so you 
just need to share the workload. Unfortunately, here you hit another wall. You need 
to ensure that data written to the first server is available to the second server. And you 
face additional issues if updates are made on two separate masters simultaneously. 
For example, you need to determine which update is the correct one. Another problem 
you can encounter: someone might query the second server for information that has 
just been written to the first server, but that information hasn’t been updated yet on the 
second server. When you consider all these issues, it becomes easy to see why the Oracle 
solution is so expensive—these problems are extremely hard to address.

MongoDB solves the active/active cluster problems in a very clever way—it avoids 
them completely. Recall that MongoDB stores data in BSON documents, so the data 
is self-contained. That is, although similar documents are stored together, individual 
documents aren’t made up of relationships. This means that everything you need is all in 
one place. Because queries in MongoDB look for specific keys and values in a document, 
this information can be easily spread across as many servers as you have available. Each 
server checks the content it has and returns the result. This effectively allows almost 
linear scalability and performance. As an added bonus, it doesn’t even require that you 
take out a new mortgage to pay for this functionality.

Admittedly, MongoDB does not offer master/master replication, in which two 
separate servers can both accept write requests. However, it does have sharding, which 
allows data to split across multiple machines, with each machine responsible for 
updating different parts of the dataset. The benefit of this design is that, while some 
solutions allow two master databases, MongoDB can potentially scale to hundreds of 
machines as easily as it can run on two.

Opting for Performance vs. Features
Performance is important, but MongoDB also provides a large feature set. We’ve 
already discussed some of the features MongoDB doesn’t implement, and you might 
be somewhat skeptical of the claim that MongoDB achieves its impressive performance 
partly by judiciously excising certain features common to other databases. However, 
there are analogous database systems available that are extremely fast, but also extremely 
limited, such as those that implement a key/value store.

A perfect example is memcached. This application was written to provide high-speed 
data caching, and it is mind-numbingly fast. When used to cache website content, it can 
speed up an application many times over. This application is used by extremely large 
websites, such as Facebook and LiveJournal.
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The catch is that this application has two significant shortcomings. First, it is a 
memory-only database. If the power goes out, then all the data is lost. Second, you can’t 
actually search for data using memcached; you can only request specific keys.

These might sound like serious limitations; however, you must remember the 
problems that memcached is designed to solve. First and foremost, memcached is a 
data cache. That is, it’s not supposed to be a permanent data store, but only to provide 
a caching layer for your existing database. When you build a dynamic web page, you 
generally request very specific data (such as the current top ten articles). This means you 
can specifically ask memcached for that data—there is no need to perform a search. If the 
cache is out-of-date or empty, you would query your database as normal, build up the 
data, and then store it in memcached for future use.

Once you accept these limitations, you can see how memcached offers superb 
performance by implementing a very limited feature set. This performance, by the way, 
is unmatched by that of a traditional database. That said, memcached certainly can’t 
replace an RDBMS. The important thing to keep in mind is that it’s not supposed to.

Compared to memcached, MongoDB is itself feature-rich. To be useful, MongoDB 
must offer a strong set of features, such as the ability to search for specific documents. 
It must also be able to store those documents on disk, so that they can survive a reboot. 
Fortunately, MongoDB provides enough features to be a strong contender for most web 
applications and many other types of applications as well.

Like memcached, MongoDB is not a one-size-fits-all database. As is usually the case 
in computing, tradeoffs must be made to achieve the intended goals of the application.

Running the Database Anywhere
MongoDB is written in C++, which makes it relatively easy to port and/or run the 
application practically anywhere. Currently, binaries can be downloaded from the 
MongoDB website for Linux, Mac OS, Windows, and Solaris. There are also various 
official versions available for Fedora and CentOS, among other platforms. You can even 
download the source code and build your own MongoDB, although it is recommended 
that you use the provided binaries wherever possible. All the binaries are available in 
both 32-bit and 64-bit versions.

Caution■■  T he 32-bit version of MongoDB is limited to databases of 2GB or less. This is  
because  MongoDB uses memory-mapped files internally to achieve high performance. 
Anything larger than 2GB on a 32-bit system would require some fancy footwork that wouldn’t 
be fast and would also complicate the application’s code. The official stance on this limitation 
is that 64-bit environments are easily available; therefore, increasing code complexity is not a 
good tradeoff. The 64-bit version for all intents and purposes has no such restriction.

MongoDB’s modest requirements allow it to run on high-powered servers or virtual 
machines, and even to power cloud-based applications. By keeping things simple and 
focusing on speed and efficiency, MongoDB provides solid performance wherever you 
choose to deploy it.



Chapter 1 ■ Introduction to MongoDB

9

Fitting Everything Together
Before we look at MongoDB’s feature list, we need to review a few basic terms. MongoDB 
doesn’t require much in the way of specialized knowledge to get started, and many of the 
terms specific to MongoDB can be loosely translated to RDBMS equivalents that you are 
probably already familiar with. Don’t worry, though; we’ll explain each term fully. Even 
if you’re not familiar with standard database terminology, you will still be able to follow 
along easily.

Generating or Creating a Key
A document represents the unit of storage in MongoDB. In an RDBMS, this would be called 
a row. However, documents are much more than rows because they can store complex 
information such as lists, dictionaries, and even lists of dictionaries. In contrast to a 
traditional database where a row is fixed, a document in MongoDB can be made up of any 
number of keys and values (you’ll learn more about this in the next section). Ultimately, 
a key is nothing more than a label; it is roughly equivalent to the name you might give to a 
column in an RDBMS. You use a key to reference pieces of data inside your document.

In a relational database, there should always be some way to uniquely identify a given 
record; otherwise it becomes impossible to refer to a specific row. To that end, you are 
supposed to include a field that holds a unique value (called a primary key) or a collection 
of fields that can uniquely identify the given row (called a compound primary key).

MongoDB requires that each document have a unique identifier for much the same 
reason; in MongoDB, this identifier is called _id. Unless you specify a value for this 
field, MongoDB will generate a unique value for you. Even in the well-established world 
of RDBMS databases, opinion is divided as to whether you should use a unique key 
provided by the database or generate a unique key yourself. Recently, it has become more 
popular to allow the database to create the key for you.

The reason for this is that human-created unique numbers such as car registration 
numbers have a nasty habit of changing. For example, in 2001, the United Kingdom 
implemented a new number plate scheme that was completely different from the 
previous system. It happens that MongoDB can cope with this type of change perfectly 
well; however, chances are that you would need to do some careful thinking if you used 
the registration plate as your primary key. A similar scenario may have occurred when the 
ISBN (International Standard Book Number) scheme was upgraded from 10 digits to 13.

Previously, most developers who used MongoDB seemed to prefer creating their 
own unique keys, taking it upon themselves to ensure that the number would remain 
unique. Today, though, general consensus seems to point at using the default ID value 
that MongoDB creates for you. However, as is the case when working with RDBMS 
databases, the approach you choose mostly comes down to personal preference. We prefer 
to use a database-provided value because it means we can be sure the key is unique and 
independent of anything else. Others, as noted, prefer to provide their own keys.

Ultimately, you must decide what works best for you. If you are confident that your 
key is unique (and likely to remain unchanged), then you should probably feel free to use 
it. If you’re unsure about your key’s uniqueness or you don’t want to worry about it, then 
you can simply use the default key provided by MongoDB.
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Using Keys and Values
Documents are made up of keys and values. Let’s take another look at the example 
discussed previously in this chapter:
 
{
    "firstname": "Peter",
    "lastname": "Membrey",
    "phone_numbers": [
        "+852 1234 5678",
        "+44 1234 565 555"
    ]
}
 

Keys and values always come in pairs. Unlike an RDBMS, where every field must 
have a value, even if it’s NULL (somewhat paradoxically, this means unknown), MongoDB 
doesn’t require that a document have a particular value. For example, if you don’t know 
the phone number for a particular person on your list, you simply leave it out. A popular 
analogy for this sort of thing is a business card. If you have a fax number, you usually put 
it on your business card; however, if you don’t have one, you don’t write: “Fax number: 
none.” Instead, you simply leave the information out. If the key/value pair isn’t included 
in a MongoDB document, it is assumed not to exist.

Implementing Collections
Collections are somewhat analogous to tables, but they are far less rigid. A collection is a 
lot like a box with a label on it. You might have a box at home labeled “DVDs” into which 
you put, well, your DVDs. This makes sense, but there is nothing stopping you from 
putting CDs or even tapes into this box if you wanted to. In an RDBMS, tables are strictly 
defined, and you can only put designated items into the table. In MongoDB, a collection 
is simply that: a collection of similar items. The items don’t have to be similar (MongoDB 
is inherently flexible); however, once we start looking at indexing and more advanced 
queries, you’ll soon see the benefits of placing similar items in a collection.

While you could mix various items together in a collection, there’s little need to do 
so. Had the collection been called media, then all of the DVDs, CDs, and tapes would be 
at home there. After all, these items all have things in common, such as an artist name, 
a release date, and content. In other words, it really does depend on your application 
whether certain documents should be stored in the same collection. Performance-wise, 
having multiple collections is no slower than having only one collection. Remember: 
MongoDB is about making your life easier, so you should do whatever feels right to you.

Last but not least, collections are effectively created on demand. Specifically, a 
collection is created when you first attempt to save a document that references it. This 
means that you could create collections on demand (not that you necessarily should). 
Because MongoDB also lets you create indexes and perform other database-level 
commands dynamically, you can leverage this behavior to build some very dynamic 
applications.
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Understanding Databases
Perhaps the easiest way to think of a database in MongoDB is as a collection of 
collections. Like collections, databases can be created on demand. This means that it’s 
easy to create a database for each customer—your application code can even do it for 
you. You can do this with databases other than MongoDB, as well; however, creating 
databases in this manner with MongoDB is a very natural process. That said, just because 
you can create a database in this manner doesn’t mean you have to or even that you 
should. All the same, you have that power if you want to exercise it.

Reviewing the Feature List
Now that you understand what MongoDB is and what it offers, it’s time to run through its 
feature list. You can find a complete list of MongoDB’s features on the database’s website 
at www.mongodb.org/; be sure to visit this site for an up-to-date list of them. The feature 
list in this chapter covers a fair bit of material that goes on behind the scenes, but you 
don’t need to be familiar with every feature listed to use MongoDB itself. In other words, 
if you feel your eyes beginning to close as you review this list, feel free to jump to the end 
of the section!

Using Document-Oriented Storage (BSON)
We’ve already discussed MongoDB’s document-oriented design. We’ve also briefly 
touched on BSON. As you learned, JSON makes it much easier to store and retrieve 
documents in their real form, effectively removing the need for any sort of mapper or 
special conversion code. The fact that this feature also makes it much easier for MongoDB 
to scale up is icing on the cake.

BSON is an open standard; you can find its specification at http://bsonspec.org/. 
When people hear that BSON is a binary form of JSON, they expect it to take up much less 
room than text-based JSON. However, that isn’t necessarily the case; indeed, there are 
many cases where the BSON version takes up more space than its JSON equivalent.

You might wonder why you should use BSON at all. After all, CouchDB (another 
powerful document-oriented database) uses pure JSON, and it’s reasonable to wonder 
whether it’s worth the trouble of converting documents back and forth between BSON 
and JSON.

First, we must remember that MongoDB is designed to be fast, rather than space-
efficient. This doesn’t mean that MongoDB wastes space (it doesn’t); however, a small 
bit of overhead in storing a document is perfectly acceptable if that makes it faster to 
process the data (which it does). In short, BSON is much easier to traverse (that is, to look 
through) and index very quickly. Although BSON requires slightly more disk space than 
JSON, this extra space is unlikely to be a problem, because disks are cheap, and MongoDB 
can scale across machines. The tradeoff in this case is quite reasonable: you exchange a 
bit of extra disk space for better query and indexing performance.

http://www.mongodb.org/
http://bsonspec.org/
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The second key benefit to using BSON is that it is easy and quick to convert BSON 
to a programming language’s native data format. If the data were stored in pure JSON, a 
relatively high-level conversion would need to take place. There are MongoDB drivers for 
a large number of programming languages (such as Python, Ruby, PHP, C, C++, and C#), 
and each works slightly differently. Using a simple binary format, native data structures 
can be quickly built for each language, without requiring that you first process JSON. This 
makes the code simpler and faster, both of which are in keeping with MongoDB’s stated 
goals.

BSON also provides some extensions to JSON. For example, it enables you to store 
binary data and to incorporate a specific datatype. Thus, while BSON can store any JSON 
document, a valid BSON document may not be valid JSON. This doesn’t matter, because 
each language has its own driver that converts data to and from BSON without needing to 
use JSON as an intermediary language.

At the end of the day, BSON is not likely to be a big factor in how you use MongoDB. 
Like all great tools, MongoDB will quietly sit in the background and do what it needs to 
do. Apart from possibly using a graphical tool to look at your data, you will generally work 
in your native language and let the driver worry about persisting to MongoDB.

Supporting Dynamic Queries
MongoDB’s support for dynamic queries means that you can run a query without 
planning for it in advance. This is similar to being able to run SQL queries against an 
RDBMS. You might wonder why this is listed as a feature; surely it is something that every 
database supports—right?

Actually, no. For example, CouchDB (which is generally considered MongoDB’s 
biggest “competitor”) doesn’t support dynamic queries. This is because CouchDB has 
come up with a completely new (and admittedly exciting) way of thinking about data. A 
traditional RDBMS has static data and dynamic queries. This means that the structure 
of the data is fixed in advance—tables must be defined, and each row has to fit into that 
structure. Because the database knows in advance how the data is structured, it can make 
certain assumptions and optimizations that enable fast dynamic queries.

CouchDB has turned this on its head. As a document-oriented database, CouchDB is 
schemaless, so the data is dynamic. However, the new idea here is that queries are static. 
That is, you define them in advance, before you can use them.

This isn’t as bad as it might sound, because many queries can be easily defined 
in advance. For example, a system that lets you search for a book will probably let you 
search by ISBN. In CouchDB, you would create an index that builds a list of all the ISBNs 
for all the documents. When you punch in an ISBN, the query is very fast because it 
doesn’t actually need to search for any data. Whenever new data is added to the system, 
CouchDB will automatically update its index.

Technically, you can run a query against CouchDB without generating an index; 
in that case, however, CouchDB will have to create the index itself before it can process 
your query. This won’t be a problem if you only have a hundred books; however, it will 
result in poor performance if you’re filing hundreds of thousands of books, because each 
query will generate the index again (and again). For this reason, the CouchDB team does 
not recommend dynamic queries—that is, queries that haven’t been predefined—in 
production.
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CouchDB also lets you write your queries as map and reduce functions. If that sounds 
like a lot of effort, then you’re in good company; CouchDB has a somewhat severe 
learning curve. In fairness to CouchDB, an experienced programmer can probably pick it 
up quite quickly; for most people, however, the learning curve is probably steep enough 
that they won’t bother with the tool.

Fortunately for us mere mortals, MongoDB is much easier to use. We’ll cover how 
to use MongoDB in more detail throughout the book, but here’s the short version: in 
MongoDB, you simply provide the parts of the document you want to match against, and 
MongoDB does the rest. MongoDB can do much more, however. For example, you won’t 
find MongoDB lacking if you want to use map or reduce functions. At the same time, you can 
ease into using MongoDB; you don’t have to know all of the tool’s advanced features up front.

Indexing Your Documents
MongoDB includes extensive support for indexing your documents, a feature that really 
comes in handy when you’re dealing with tens of thousands of documents. Without an 
index, MongoDB will have to look at each individual document in turn to see whether it 
is something that you want to see. This is like asking a librarian for a particular book and 
watching as he works his way around the library looking at each and every book. With an 
indexing system (libraries tend to use the Dewey Decimal system), he can find the area 
where the book you are looking for lives and very quickly determine if it is there.

Unlike a library book, all documents in MongoDB are automatically indexed on the 
_id key. This key is considered a special case because you cannot delete it; the index is 
what ensures that each value is unique. One of the benefits of this key is that you can be 
assured that each document is uniquely identifiable, something that isn’t guaranteed by 
an RDBMS.

When you create your own indexes, you can decide whether you want them to 
enforce uniqueness. If you do decide to create a unique index, you can tell MongoDB 
to drop all the duplicates. This may or may not be what you want, so you should think 
carefully before using this option because you might accidentally delete half your data. 
By default, an error will be returned if you try to create a unique index on a key that has 
duplicate values.

There are many occasions where you will want to create an index that allows 
duplicates. For example, if your application searches by lastname, it makes sense to build 
an index on the lastname key. Of course, you cannot guarantee that each lastname will be 
unique; and in any database of a reasonable size, duplicates are practically guaranteed.

MongoDB’s indexing abilities don’t end there, however. MongoDB can also create 
indexes on embedded documents. For example, if you store numerous addresses in the 
address key, you can create an index on the ZIP or postal code. This means that you can 
easily pull back a document based on any postal code—and do so very quickly.

MongoDB takes this a step further by allowing composite indexes. In a composite 
index, two or more keys are used to build a given index. For example, you might build 
an index that combines both the lastname and firstname tags. A search for a full name 
would be very quick because MongoDB can quickly isolate the lastname and then, just as 
quickly, isolate the firstname.

We will look at indexing in more depth in Chapter 10, but suffice it to say that 
MongoDB has you covered as far as indexing is concerned.
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Leveraging Geospatial Indexes
One form of indexing worthy of special mention is geospatial indexing. This new, 
specialized indexing technique was introduced in MongoDB 1.4. You use this feature to 
index location-based data, enabling you to answer queries such as how many items are 
within a certain distance from a given set of coordinates.

As an increasing number of web applications start making use of location-based 
data, this feature will play an increasingly prominent role in everyday development. For 
now, though, geospatial indexing remains a somewhat niche feature; nevertheless, you 
will be very glad it’s there if you ever find that you need it.

Profiling Queries
A built-in profiling tool lets you see how MongoDB works out which documents to return. 
This is useful because, in many cases, a query can be easily improved simply by adding 
an index. If you have a complicated query, and you’re not really sure why it’s running 
so slowly, then the query profiler can provide you with extremely valuable information. 
Again, you’ll learn more about the MongoDB Profiler in Chapter 10.

Updating Information In-Place
When a database updates a row (or in the case of MongoDB, a document), it has a couple 
of choices about how to do it. Many databases choose the multi-version concurrency 
control (MVCC) approach, which allows multiple users to see different versions of the 
data. This approach is useful because it ensures that the data won’t be changed partway 
through by another program during a given transaction.

The downside to this approach is that the database needs to track multiple copies of 
the data. For example, CouchDB provides very strong versioning, but this comes at the 
cost of writing the data out in its entirety. While this ensures that the data is stored in a 
robust fashion, it also increases complexity and reduces performance.

MongoDB, on the other hand, updates information in-place. This means that (in contrast 
to CouchDB) MongoDB can update the data wherever it happens to be. This typically means 
that no extra space needs to be allocated, and the indexes can be left untouched.

Another benefit of this method is that MongoDB performs lazy writes. Writing to and 
from memory is very fast, but writing to disk is thousands of times slower. This means 
that you want to limit reading and writing from the disk as much as possible. This isn’t 
possible in CouchDB, because that program ensures that each document is quickly 
written to disk. While this approach guarantees that the data is written safely to disk, it 
also impacts performance significantly.

MongoDB only writes to disk when it has to, which is usually once every second or 
so. This means that if a value is being updated many times a second—a not uncommon 
scenario if you’re using a value as a page counter or for live statistics—then the value will 
only be written once, rather than the thousands of times that CouchDB would require.

This approach makes MongoDB much faster, but, again, it comes with a tradeoff. 
CouchDB may be slower, but it does guarantee that data is stored safely on the disk. 
MongoDB makes no such guarantee, and this is why a traditional RDBMS is probably a 
better solution for managing critical data such as billing or accounts receivable.
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Storing Binary Data
GridFS is MongoDB’s solution to storing binary data in the database. BSON supports 
saving up to 4MB of binary data in a document, and this may well be enough for your 
needs. For example, if you want to store a profile picture or a sound clip, then 4MB 
might be more space than you need. On the other hand, if you want to store movie clips, 
high-quality audio clips, or even files that are several hundred megabytes in size, then 
MongoDB has you covered here, too.

GridFS works by storing the information about the file (called metadata) in the files 
collection. The data itself is broken down into pieces called chunks that are stored in the 
chunks collection. This approach makes storing data both easy and scalable; it also makes 
range operations (such as retrieving specific parts of a file) much easier to use.

Generally speaking, you would use GridFS through your programming language’s 
MongoDB driver, so it’s unlikely you’d ever have to get your hands dirty at such a low 
level. As with everything else in MongoDB, GridFS is designed for both speed and 
scalability. This means you can be confident that MongoDB will be up to the task if you 
want to work with large data files.

Replicating Data
When we talked about the guiding principles behind MongoDB, we mentioned that 
RDBMS databases offer certain guarantees for data storage that are not available in 
MongoDB. These guarantees weren’t implemented for a handful of reasons. First, 
these features would slow the database down. Second, they would greatly increase the 
complexity of the program. Third, it was felt that the most common failure on a server 
would be hardware, which would render the data unusable anyway, even if the data were 
safely saved to disk.

Of course, none of this means that data safety isn’t important. MongoDB wouldn’t 
be of much use if you couldn’t count on being able to access the data when you need it. 
Initially, MongoDB provided a safety net with a feature called master-slave replication, 
in which only one database is active for writing at any given time, an approach that is 
also fairly common in the RDBMS world. This feature has since been replaced with 
replica sets, and basic master-slave replication has been deprecated and should no 
longer be used.

Replica sets have one primary server (similar to a master), which handles all the 
write requests from clients. Because there is only one primary server in a given set, it can 
guarantee that all writes are handled properly. When a write occurs it is logged in the 
primary’s ‘oplog’.

The oplog is replicated by the secondary servers (of which there can be many) and 
used to bring themselves up to date with the master. Should the master fail at any given 
time, one of the secondaries will become the primary and take over responsibility for 
handling client write requests.
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Implementing Sharding
For those involved with large-scale deployments, auto-sharding will probably prove one 
of MongoDB’s most significant and oft-used features.

In an auto-sharding scenario, MongoDB takes care of all the data splitting and 
recombination for you. It makes sure the data goes to the right server and that queries are 
run and combined in the most efficient manner possible. In fact, from a developer’s point 
of view, there is no difference between talking to a MongoDB database with a hundred 
shards and talking to a single MongoDB server. This feature is not yet production-ready; 
when it is, however, it will push MongoDB’s scalability through the roof.

In the meantime, if you’re just starting out or you’re building your first MongoDB-
based website, then you’ll probably find that a single instance of MongoDB is sufficient 
for your needs. If you end up building the next Facebook or Amazon, however, you will be 
glad that you built your site on a technology that can scale so limitlessly. Sharding is the 
topic of Chapter 12 of this book.

Using Map and Reduce Functions
For many people, hearing the term MapReduce sends shivers down their spines. At 
the other extreme, many RDBMS advocates scoff at the complexity of map and reduce 
functions. It’s scary for some because these functions require a completely different way 
of thinking about finding and sorting your data, and many professional programmers 
have trouble getting their heads around the concepts that underpin map and reduce 
functions. That said, these functions provide an extremely powerful way to query data. 
In fact, CouchDB supports only this approach, which is one reason it has such a high 
learning curve.

MongoDB doesn’t require that you use map and reduce functions. In fact, 
MongoDB relies on a simple querying syntax that is more akin to what you see in 
MySQL. However, MongoDB does make these functions available for those who want 
them. The map and reduce functions are written in JavaScript and run on the server. 
The job of the map function is to find all the documents that meet a certain criteria. 
These results are then passed to the reduce function, which processes the data. The 
reduce function doesn’t usually return a collection of documents; rather, it returns a 
new document that contains the information derived. As a general rule, if you would 
normally use GROUP BY in SQL, then the map and reduce functions are probably the 
right tools for the job in MongoDB.

Note■■   You should not think of MongoDB’s map and reduce functions as poor imitations 
of the approach adopted by CouchDB. If you so desired, you could use MongoDB’s map and 
reduce functions for everything in lieu of MongoDB’s innate query support.

www.allitebooks.com

http://www.allitebooks.org
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The MongoDB Aggregation Framework
MapReduce is a very powerful tool, but it has one major drawback; it’s not exactly easy to 
use. Many database systems are used for reporting, and SQL databases in particular make 
this very easy. If you want to group results or find the maximum and average, then it’s very 
simple to express that idea and get the result you’re looking for. Unfortunately, it’s not 
quite so simple to do that in MapReduce, and you effectively have to do all the wiring up 
yourself. This can often mean that an otherwise simple task is unnecessary challenging.

In response to this, MongoDB Inc (previously 10gen) added the aggregation 
framework. It is pipeline-based, similar to piping commands in Linux shells and allows 
you to take individual pieces of a query and string them together in order to get the result 
you’re looking for. This maintains the benefits of MongoDB’s document oriented design 
while still providing high performance.

So if you need all the power of MapReduce, you still have it at your beck and call. If 
you just want to do some basic statistics and number crunching, you’re going to love the 
new aggregation framework. You'll learn more about the aggregation framework and its 
commands in Chapters 4 and 6.

Getting Help
MongoDB has a great community, and the core developers are very active and easily 
approachable, and they typically go to great lengths to help other members of the 
community. MongoDB is easy to use and comes with great documentation; however, it’s 
still nice to know that you’re not alone, and help is available, should you need it.

Visiting the Website
The first place to look for updated information or help is on the MongoDB website 
(www://mongodb.org). This site is updated regularly and contains all the latest MongoDB 
goodness. On this site, you can find drivers, tutorials, examples, frequently asked 
questions, and much more.

Chatting with the MongoDB Developers
The MongoDB developers hang out on Internet Relay Chat (IRC) at #MongoDB on the 
Freenode network (www.freenode.net). MongoDB’s developers are based in New York, 
but they are often found chatting in this channel well into the night. Of course, the 
developers do need to sleep at some point (coffee only works for so long!); fortunately, 
there are also many knowledgeable MongoDB users from around the world who are 
ready to help out. Many people who visit the #MongoDB channel aren’t experts; however, 
the general atmosphere is so friendly that they stick around anyway. Please feel free to 
join #MongoDB channel and chat with people there—you may find some great hints and 
tips. If you’re really stuck, you’ll probably be able to quickly get back on track.

http://www.mongodb.org
http://www.freenode.net/
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Cutting and Pasting MongoDB Code
Pastie (http://pastie.org) is not strictly a MongoDB site; however, it is something you 
will come across if you float about in #MongoDB for any length of time. The Pastie site 
basically lets you cut and paste (hence the name) some output or program code, and then 
put it online for others to view. In IRC, pasting multiple lines of text can be messy or hard 
to read. If you need to post a fair bit of text (such as three lines or more), then you should 
visit http://pastie.org, paste in your content, and then paste the link to your new page 
into the channel.

Finding Solutions on Google Groups
MongoDB also has a Google group called mongodb-user (http://groups.google.com/
group/mongodb-user). This group is a great place to ask questions or search for answers. 
You can also interact with the group via e-mail. Unlike IRC, which is very transient, the 
Google group is a great long-term resource. If you really want to get involved with the 
MongoDB community, joining the group is a great way to start.

Leveraging the JIRA Tracking System
MongoDB uses the JIRA issue-tracking system. You can view the tracking site at  
http://jira.mongodb.org/, and you are actively encouraged to report any bugs or 
problems that you come across to this site. Reporting such issues is viewed by the 
community as a genuinely good thing to do. Of course, you can also search through 
previous issues, and you can even view the roadmap and planned updates for the  
next release.

If you haven’t posted to JIRA before, you might want to visit the IRC room first. You 
will quickly find out whether you’ve found something new, and if so, you will be shown 
how to go about reporting it.

Summary
This chapter has provided a whistle-stop tour of the benefits MongoDB brings to the 
table. We’ve looked at the philosophies and guiding principles behind MongoDB’s 
creation and development, as well as the tradeoffs MongoDB’s developers made 
when implementing these ideals. We’ve also looked at some of the key terms used in 
conjunction with MongoDB, how they fit together, and their rough SQL equivalents.

Next, we looked at some of the features MongoDB offers, including how and where 
you might want to use them. Finally, we wrapped up the chapter with a quick overview of 
the community and where you can go to get help, should you need it.

http://pastie.org/
http://pastie.org/
http://groups.google.com/group/mongodb-user
http://groups.google.com/group/mongodb-user
http://jira.mongodb.org/
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Chapter 2

Installing MongoDB

In Chapter 1, you got a taste of what MongoDB can do for you. In this chapter, you will 
learn how to install and expand MongoDB to do even more, enabling you to use it in 
combination with your favorite programming language.

MongoDB is a cross-platform database, and you can find a significant list of available 
packages to download from the MongoDB website (www.mongodb.org). The wealth of 
available versions might make it difficult to decide which version is the right one for you. 
The right choice for you probably depends on the operating system your server uses, the 
kind of processor in your server, and whether you prefer a stable release or would like 
to take a dive into a version that is still in development but offers exciting new features. 
Perhaps you’d like to install both a stable and a forward-looking version of the database. 
It’s also possible you’re not entirely sure which version you should choose yet. In any 
case, read on!

Choosing Your Version
When you look at the Download section on the MongoDB website, you will see a rather 
straightforward overview of the packages available for download. The first thing you need 
to pay attention to is the operating system you are going to run the MongoDB software on. 
Currently, there are precompiled packages available for Windows, various flavors of the 
Linux operating system, Mac OS, and Solaris.

Note■■   An important thing to remember here is the difference between the 32-bit release 
and the 64-bit release of the product. The 32-bit and 64-bit versions of the database 
currently have the same functionality, with one exception: the 32-bit release is limited to 
a total dataset size of approximately 2GB per server. The 64-bit version does not carry 
this restriction, however, so it’s generally preferred over the 32-bit version for production 
environments. Also, the differences between these versions are subject to change.

http://www.mongodb.org/
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You will also need to pay attention to the version of the MongoDB software itself: there 
are production releases, previous releases, and development releases. The production 
release indicates that it’s the most recent stable version available. When a newer and 
generally improved or enhanced version is released, the prior most recent stable version 
will be made available as a previous release. This designation means the release is stable 
and reliable, but it usually has fewer features available in it. Finally, there’s the development 
release. This release is generally referred to as the unstable version. This version is still 
in development, and it will include many changes, including significant new features. 
Although it has not been fully developed and tested yet, the developers of MongoDB have 
made it available to the public to test or otherwise try out.

Understanding the Version Numbers
MongoDB uses the “odd-numbered versions for development releases” approach. In 
other words, you can tell by looking at the second part of the version number (also called 
the release number) whether a version is a development version or a stable version. If the 
second number is even, then it’s a stable release. If the second number is odd, then it’s an 
unstable, or development, release.

Let’s take a closer look at the three digits included in a version number’s three parts, 
A, B, and C:

A, the first (or leftmost) number: Represents the major version •	
and only changes when there is a full version upgrade.

B, the second (or middle) number: Represents the release •	
number and indicates whether a version is a development version 
or a stable version. If the number is even, the version is stable; 
if the number is odd, the version is unstable and considered a 
development release.

C, the third (or rightmost) number: Represents the revision •	
number; this is used for bugs and security issues.

For example, at the time of writing, the following versions were available from the 
MongoDB website:

2.6.5 (Production release)•	

2.4.12 (Previous release)•	

2.7.8 (Development release)•	

Installing MongoDB on Your System
So far, you’ve learned which versions of MongoDB are available and—hopefully—were 
able to select one. Now you’re ready to take a closer look at how to install MongoDB on 
your particular system. The two main operating systems for servers at the moment are 
based on Linux and Microsoft Windows, so this chapter will walk you through how to 
install MongoDB on both of these operating systems, beginning with Linux.
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Installing MongoDB under Linux
The Unix-based operating systems are extremely popular choices at the moment for 
hosting services, including web services, mail services, and, of course, database services. 
In this chapter, we’ll walk you through how to get MongoDB running on a popular Linux 
distribution: Ubuntu.

Depending on your needs, you have two ways of installing MongoDB under Ubuntu: 
you can install the packages automatically through so-called repositories, or you can 
install it manually. The next two sections will walk you through both options.

Installing MongoDB through the Repositories
Repositories are basically online directories filled with software. Every package contains 
information about the version number, prerequisites, and possible incompatibilities. 
This information is useful when you need to install a software package that requires 
another piece of software to be installed first because the prerequisites can be installed 
at the same time.

The default repositories available in Ubuntu (and other Debian-based distributions) 
contain MongoDB, but they may be out-of-date versions of the software. Therefore, 
let’s tell apt-get (the software you use to install software from repositories) to look at a 
custom repository. To do this, you need to add the following line to your repository-list  
(/etc/apt/sources.list):
 
deb http://downloads-distro.mongodb.org/repo/ubuntu-upstart dist 10gen
 

Next, you need to import MongoDB Inc's public GPG key, used to sign the packages, 
ensuring their consistency; you can do so by using the apt-key command:
 
$ sudo apt-key adv --keyserver keyserver.ubuntu.com --recv 7F0CEB10
 

When that is done, you need to tell apt-get that it contains new repositories; you can 
do so using apt-get’s update command:
 
$ sudo apt-get update
 

This line made aptitude aware of your manually added repository. This means 
you can now tell apt-get to install the software itself. You do this by typing the following 
command in the shell:
 
$ sudo apt-get install mongodb-org
 

This line installs the current stable (production) version from MongoDB. If you 
wish to install any other version from MongoDB instead, you need to specify the version 
number. For example, to install the current unstable (development) version from 
MongoDB, type in the following command instead:
 
$ sudo apt-get install mongodb-org=2.7.8
 

http://downloads-distro.mongodb.org/repo/ubuntu-upstart
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That’s all there is to it. At this point, MongoDB has been installed and is (almost) 
ready to use!

Note■■  R unning apt-get update on a system running an older version of MongoDB 
will upgrade the software to the latest stable version available. You can prevent this from 
happening by running this command: 

echo "mongodb-org hold" | sudo dpkg --set-selections

Installing MongoDB Manually
Next, we’ll cover how to install MongoDB manually. Given how easy it is to install 
MongoDB with aptitude automatically, you might wonder why you would want to 
install the software manually. For starters, not all Linux distributions use apt-get. 
Sure, many of them do (including primarily the ones that are based on Debian 
Linux), but some don’t. Also, the packaging remains a work in progress, so it might 
be the case that there are versions not yet available through the repositories. It’s also 
possible that the version of MongoDB you want to use isn’t included in the repository. 
Installing the software manually also gives you the ability to run multiple versions of 
MongoDB at the same time.

You’ve decided which version of MongoDB you would like to use, and you’ve 
downloaded it from their website, http://mongodb.org/downloads, to your Home 
directory. Next, you need to extract the package with the following command:
 
$ tar xzf mongodb-linux-x86_64-latest.tgz
 

This command extracts the entire contents of the package to a new directory 
called mongodb-linux-x86_64-xxxx-yy-zz; this directory is located under your current 
directory. This directory will contain a number of subdirectories and files. The directory 
that contains the executable files is called the bin directory. We will cover which 
applications perform which tasks shortly.

However, you don’t need to do anything further to install the application. Indeed, 
it doesn’t take much more time to install MongoDB manually—depending on what else 
you need to install, it might even be faster. Manually installing MongoDB does have some 
downsides, however. For example, the executables that you just extracted and found in 
the bin directory can’t be executed from anywhere except the bin directory by default. 
Thus, if you want to run the mongod service, you will need to do so directly from the 
aforementioned bin directory. This downside highlights one of the benefits of installing 
MongoDB through repositories.

http://mongodb.org/downloads
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Installing MongoDB under Windows
Microsoft’s Windows is also a popular choice for server software, including Internet-based 
services. 

Windows doesn’t come with a repository application like apt-get, so you’ll need 
to download and extract the software from the MongoDB website to run it. Yes, the 
preceding information is correct. You do not need to walk through any setup process; 
installing the software is a simple matter of downloading the package, extracting it, and 
running the application itself.

For example, assume you’ve decided to download the latest stable version of 
MongoDB for your 64-bits Windows 2008 server. You begin by extracting the package 
(mongodb-win32–x86_64-x.y.x.zip) to the root of your C:\ drive. At this point, all you 
need to do is open a command prompt (Start ➤ Run ➤ cmd ➤ OK) and browse to the 
directory you extracted the contents to:
 
> cd C:\mongodb-win32–x86_64-x.y.z\
> cd bin\
 

Doing this brings you to the directory that contains the MongoDB executables. That’s 
all there is to it: as I noted previously, no installation is necessary.

Running MongoDB
At long last, you’re ready to get your hands dirty. You’ve learned where to get the 
MongoDB version that best suits your needs and hardware, and you’ve also seen how to 
install the software. Now it’s finally time to look at running and using MongoDB.

Prerequisites
Before you can start the MongoDB service, you need to create a data directory for 
MongoDB to store its files in. By default, MongoDB stores the data in the /data/db 
directory on Unix-based systems (such as Linux and OS X) and in the C:\data\db 
directory on Windows.

Note■■   MongoDB does not create these data directories for you, so you need to create 
them manually; otherwise, MongoDB will fail to run and throw an error message. Also, be 
sure that you set the permissions correctly: MongoDB must have read, write, and directory 
creation permissions to function properly.

If you wish to use a directory other than /data/db or C:\data\db, then you can tell 
MongoDB to look at the desired directory by using the --dbpath flag when executing  
the service.
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Once you create the required directory and assign the appropriate permissions, 
you can start the MongoDB core database service by executing the mongod application. 
You can do this from the command prompt or the shell in Windows and Linux, respectively.

Surveying the Installation Layout
After you install or extract MongoDB successfully, you will have the applications shown in 
Table 2-1 available in the bin directory (in both Linux and Windows).

Table 2-1.  The Included MongoDB Applications

Application Function

-- bsondump Reads contents of BSON-formatted rollback files.

-- mongo The database shell.

-- mongod The core database server.

-- mongodump Database backup utility.

-- mongoexport Export utility (JSON, CSV, TSV), not reliable for backup.

-- mongofiles Manipulates files in GridFS objects.

-- mongoimport Import utility (JSON, CSV, TSV), not reliable for recoveries.

-- mongooplog Pulls oplog entries from another mongod instance.

-- mongoperf Check disk I/O performance.

--mongorestore Database backup restore utility.

--mongos Mongodb sharding routerprocess.

--mongosniff Sniff/traces MongoDB database activity in real time, Unix-like 
systems only.

--mongostat Returns counters of database operation.

--mongotop Tracks/reports MongoDB read/write activities.

-- mongorestore Restore/import utility.

Note: All applications are within the --bin directory.

The installed software includes 15 applications (or 14, under Microsoft Windows) 
that you will be using in conjunction with your MongoDB databases. The two “most 
important” applications are the mongo and mongod applications. The mongo application 
allows you to use the database shell; this shell enables you to accomplish practically 
anything you’d want to do with MongoDB.
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The mongod application starts the service or daemon, as it’s also called. There are 
also many flags you can set when launching the MongoDB applications. For example, the 
service lets you specify the path where the database is located (--dbpath), show version 
information (--version), and even print some diagnostic system information (with the 
--sysinfo flag)! You can view the entire list of options by including the --help flag when 
you launch the service. For now, you can just use the defaults and start the service by 
typing mongod in your shell or command prompt.

Using the MongoDB Shell
Once you create the database directory and start the mongod database application 
successfully, you’re ready to fire up the shell and take a sneak peak at the powers of MongoDB.

Fire up your shell (Unix) or your command prompt (Windows); when you do so, 
make sure you are in the correct location, so that the mongo executable can be found. 
You can start the shell by typing mongo at the command prompt and hitting the Return 
key. You will be immediately presented with a blank window and a blinking cursor (see 
Figure 2-1). Ladies and gentlemen, welcome to MongoDB!

Figure 2-1.  The MongoDB shell

If you start the MongoDB service with the default parameters, and start the shell with 
the default settings, you will be connected to the default test database running on your 
local host. This database is created automatically the moment you connect to it. This is 
one of MongoDB’s most powerful features: if you attempt to connect to a database that 
does not exist, MongoDB will automatically create it for you. This can be either good or 
bad, depending on how well you handle your keyboard.

Tip■■   There’s an on-line demo shell available on the MongoDB website where you can try 
out any of the commands listed. 

Before taking any further steps, such as implementing any additional drivers that will 
enable you to work with your favorite programming language, you might find it helpful to 
take a quick peek at some of the more useful commands available in the MongoDB shell 
(see Table 2-2). 
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Tip■■   You can get a full list of commands by typing the help command in the MongoDB shell.

Installing Additional Drivers
You might think that you are ready to take on the world now that you have set up 
MongoDB and know how to use its shell. That’s partially true; however, you probably 
want to use your preferred programming language rather than the shell when querying 
or otherwise manipulating the MongoDB database. 10gen offers multiple official drivers, 
and many more are offered in the community that let you do precisely that. For example, 
drivers for the following programming languages can be found on the MongoDB website:

C•	

C++•	

C#•	

Erlang•	

Go•	

Java•	

JavaScript•	

Node.js•	

Perl•	

PHP•	

Python•	

Ruby•	

Scala•	

In this section, you will learn how to implement MongoDB support for two of the 
more popular programming languages in use today: PHP and Python.

Table 2-2.  Basic Commands within the MongoDB Shell

Command Function

show dbs Shows the names of the available databases.

show collections Shows the collections in the current database.

show users Shows the users in the current database.

use <db name> Sets the current database to <db name>.

www.allitebooks.com

http://www.allitebooks.org
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Tip■■   There are many community-driven MongoDB drivers available. A long list can be 
found on the MongoDB website, www.mongodb.org.

Installing the PHP Driver
PHP is one of the most popular programming languages in existence today. This language 
is specifically aimed at web development, and it can be incorporated into HTML easily. 
This fact makes the language the perfect candidate for designing a web application, such 
as a blog, a guestbook, or even a business-card database. The next few sections cover your 
options for installing and using the MongoDB PHP driver.

Getting MongoDB for PHP
Like MongoDB, PHP is a cross-platform development tool, and the steps required to set 
up MongoDB in PHP vary depending on the intended platform. Previously, this chapter 
showed you how to install MongoDB on both Ubuntu and Windows; we’ll adopt the same 
approach here, demonstrating how to install the driver for PHP on both Ubuntu and 
Windows.

Begin by downloading the PHP driver for your operating system. Do this by firing 
up your browser and navigating to www.mongodb.org. At the time of writing, the website 
includes a separate menu option called Drivers. Click this option to bring up a list of 
currently available language drivers (see Figure 2-2).

Figure 2-2.  A short list of currently available language drivers for MongoDB

http://www.mongodb.org/
http://www.mongodb.org/
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Next, select PHP from the list of languages and follow the links to download the 
latest (stable) version of the driver. Different operating systems will require different 
approaches for installing the MongoDB extension for PHP automatically. That’s right; just 
as you were able to install MongoDB on Ubuntu automatically, you can do the same for 
the PHP driver. And just as when installing MongoDB under Ubuntu, you can also choose 
to install the PHP language driver manually. Let’s look at the two options available to you.

Installing the PHP Driver on Unix-Based Platforms Automatically
The developers of PHP came up with a great solution that allows you to expand your 
PHP installation with other popular extensions: PECL. PECL is a repository solely 
designed for PHP; it provides a directory of all known extensions that you can use to 
download, install, and even develop PHP extensions. If you are already acquainted 
with the package-management system called aptitude (which you used previously to 
install MongoDB), then you will be pleased by how similar PECL’s interface is to the 
one in aptitude.

Assuming that you have PECL installed on your system, open up a console and type 
the following command to install the MongoDB extension:
 
$ sudo pecl install mongo
 

Entering this command causes PECL to download and install the MongoDB 
extension for PHP automatically. In other words, PECL will download the extension for 
your PHP version and place it in the PHP extensions directory. There’s just one catch: 
PECL does not automatically add the extension to the list of loaded extensions; you will 
need to do this step manually. To do so, open a text editor (vim, nano, or whichever text 
editor you prefer) and alter the file called php.ini, which is the main configuration file 
PHP uses to control its behavior, including the extensions it should load.

Next, open the php.ini file, scroll down to the extensions section, and add the 
following line to tell PHP to load the MongoDB driver:
 
extension=mongo.so 

Note■■   The preceding step is mandatory; if you don’t do this, then the MongoDB  
commands in PHP will not function. To find the php.ini file on your system, you can use 
the grep command in your shell: php –i | grep Configuration.

The “Confirming That Your PHP Installation Works” section later in this chapter will 
cover how to confirm that an extension has been loaded successfully.

That’s all, folks! You’ve just installed the MongoDB extension for your PHP 
installation, and you are now ready to use it. Next, you will learn how to install the driver 
manually.
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Installing the PHP Driver on Unix-Based Platforms Manually
If you would prefer to compile the driver yourself or for some reason are unable to use 
the PECL application as described previously (your hosting provider might not support 
this option, for instance), then you can also choose to download the source driver and 
compile it manually.

To download the driver, go to the github website (http://github.com). This site 
offers the latest source package for the PHP driver. Once you download it, you will need to 
extract the package, and make the driver by running the following set of commands:
 
$ tar zxvf mongodb-mongdb-php-driver-<commit_id>.tar.gz
$ cd mongodb-mongodb-php-driver-<commit_id>
$ phpize
$ ./configure
$ sudo make install
 

This process can take a while, depending on the speed of your system. Once the 
process completes, your MongoDB PHP driver is installed and ready to use! After you 
execute the commands, you will be shown where the driver has been placed; typically, 
the output looks something like this:
 
Installing '/ usr/lib/php/extensions/no-debug-zts-20060613/mongo.so'
 

You do need to confirm that this directory is the same directory where PHP stores its 
extensions by default. You can use the following command to confirm where PHP stores 
its extensions:
 
$ php -i | grep extension_dir
 

This line outputs the directory where all PHP extensions should be placed. If this 
directory doesn’t match the one where the mongo.so driver was placed, then you must 
move the mongo.so driver to the proper directory, so PHP knows where to find it.

As before, you will need to tell PHP that the newly created extension has been placed 
in its extension directory, and that it should load this extension. You can specify this by 
modifying the php.ini file’s extensions section; add the following line to that section:
 
extension=mongo.so
 

Finally, a restart of your web service is required. When using the Apache HTTPd 
service, you can accomplish this using the following service command:
 
sudo /etc/init.d/apache2 restart
 

That’s it! This process is a little lengthier than using PECL’s automated method; 
however, if you are unable to use PECL, or if you are a driver developer and interested in 
bug fixes, then you would want to use the manual method instead.

http://github.com/
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Installing the PHP Driver on Windows
You have seen previously how to install MongoDB on your Windows operating system. 
Now let’s look at how to implement the MongoDB driver for PHP on Windows.

For Windows, there are precompiled binaries available for each release of the PHP 
driver for MongoDB. You can get these binaries from the previously mentioned github 
website (http://github.com). The biggest challenge in this case is choosing the correct 
package to install for your version of PHP (a wide variety of packages are available). If 
you aren’t certain which package version you need, you can use the <? phpinfo(); ?> 
command in a PHP page to learn exactly which one suits your specific environment. We’ll 
take a closer look at the phpinfo() command in the next section.

After downloading the correct package and extracting its contents, all you need to 
do is copy the driver file (called php_mongo.dll) to your PHP’s extension directory; this 
enables PHP to pick it up.

Depending on your version of PHP, the extension directory may be called either Ext 
or Extensions. If you aren’t certain which directory it should be, you can review the PHP 
documentation that came with the version of PHP installed on your system.

Once you place the driver DLL into the PHP extensions directory, you still need to 
tell PHP to load the driver. Do this by altering the php.ini file and adding the following 
line in the extensions section:
 
extension=php_mongo.dll
 

When done, restart the HTTP service on your system, and you are now ready to use 
the MongoDB driver in PHP. Before you start leveraging the magic of MongoDB with PHP, 
however, you need to confirm that the extension is loaded correctly.

Confirming That Your PHP Installation Works
So far you’ve successfully installed both MongoDB and the MongoDB driver in PHP. 
Now it’s time to do a quick check to confirm whether the driver is being loaded correctly 
by PHP. PHP gives you a simple and straightforward method to accomplish this: the 
phpinfo() command. This command shows you an extended overview of all the modules 
loaded, including version numbers, compilation options, server information, OS 
information, and so on.

To use the phpinfo() command, open a text or HTML editor and type the following:
 
<? phpinfo(); ?>
 

Next, save the document in your webserver’s www directory and call it whatever you 
like. For example, you might call it test.php or phpinfo.php. Now open your browser and 
go to your localhost or external server (that is, go to whatever server you are working on) 
and look at the page you just created. You will see a good overview of all PHP components 
and all sorts of other relevant information. The thing you need to focus on here is the 
section that displays your MongoDB information. This section will list the version 
number, port numbers, hostname, and so on (see Figure 2-3).

http://github.com/
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Once you confirm that the installation was successful and that the driver loaded 
successfully, you’re ready to write some PHP code and walk through a MongoDB example 
that leverages PHP.

Connecting to and Disconnecting from the PHP Driver
You’ve confirmed that the MongoDB PHP driver has been loaded correctly, so it’s time to 
start writing some PHP code! Let’s take a look at two simple yet fundamental options for 
working with MongoDB: initiating a connection between MongoDB and PHP, and then 
severing that connection.

You use the Mongo class to initiate a connection between MongoDB and PHP; 
this same class also lets you use the database server commands. A simple yet typical 
connection command looks like this:
 
$connection = new Mongo();
 

If you use this command without providing any parameters, it will connect to 
the MongoDB service on the default MongoDB port (27017) on your localhost. If your 
MongoDB service is running somewhere else, then you simply specify the hostname of 
the remote host you want to connect to:
 
$connection = new Mongo("example.com");
 

Figure 2-3.  Displaying your MongoDB information in PHP
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This line instantiates a fresh connection for your MongoDB service running on the 
server and listening to the example.com domain name (note that it will still connect to 
the default port: 27017). If you want to connect to a different port number, however (for 
example, if you don’t want to use the default port, or you’re already running another 
session of the MongoDB service on that port), you can do so by specifying the port 
number and hostname:
 
$connection = new Mongo("example.com:12345");
 

This example creates a connection to the database service. Next, you will learn how 
to disconnect from the service. Assuming you used the method just described to connect 
to your database, you can call $connection again to pass the close() command to 
terminate the connection, as in this example:
 
$connection->close();
 

The close doesn’t need to be called, except in unusual circumstances. The reason 
for this is that the PHP driver closes the connection to the database once the Mongo object 
goes out of scope. Nevertheless, it is recommended that you call close() at the end of 
your PHP code; this helps you avoid keeping old connections from hanging around until 
they eventually time out. It also helps you ensure that any existing connection is closed, 
thereby enabling a new connection to happen, as in the following example:
 
$connection = new Mongo();
$connection->close();
$connection->connect();
 

The following snippet shows how this would look like in PHP:
 
<?php
 
// Establish the database connection
$connection = new Mongo()
 
// Close the database connection
$connection->close();
 
?>

Installing the Python Driver
Python is a general-purpose and easy-to-read programming language.

These qualities make Python a good language to start with when you are new to 
programming and scripting. It’s also a great language to look into if you are familiar 
with programming, and you’re looking for a multi-paradigm programming language 
that permits several styles of programming (object-oriented programming, structured 
programming, and so on). In the upcoming sections, you’ll learn how to install Python 
and enable MongoDB support for the language.
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Installing PyMongo under Linux
Python offers a specific package for MongoDB support called PyMongo. This package 
allows you to interact with the MongoDB database, but you will need to get this driver 
up and running before you can use this powerful combination. As when installing 
the PHP driver, there are two methods you can use to install PyMongo: an automated 
approach that relies on setuptools or a manual approach where you download the 
source code for the project. The following sections show you how to install PyMongo 
using both approaches.

Installing PyMongo Automatically

The pip application that comes bundled with the python-pip package lets you automatically 
download, build, install, and manage Python packages. This is incredibly convenient, 
enabling you to extend your Python modules installation even as it does all the work for you.

Note■■   You must have setuptools installed before you can use the pip application. 
This will be done automatically when installing the python-pip package.

To install pip, all you need to do is tell apt-get to download and install it, like so:
 
$ sudo apt-get install python-pip
 

When this line executes, pip will detect the currently running version of Python 
and installs itself on the system. That’s all there is to it. Now you are ready to use the pip 
command to download, make, and install the MongoDB module, as in this example:
 
$ sudo pip install pymongo
 

Again, that’s all there is to it! PyMongo is now installed and ready to use.

Tip■■   You can also install previous versions of the PyMongo module with pip using the 
pip install pymongo=x.y.z command. Here, x.y.z denotes the version of the module.

Installing PyMongo Manually

You can also choose to install PyMongo manually. Begin by going to the download section 
of the site that hosts the PyMongo plugin (http://pypi.python.org/pypi/pymongo). Next, 
download the tarball and extract it. A typical download and extract procedure might look 
like this in your console:
 
$ wget http://pypi.python.org/packages/source/p/pymongo/pymongo-2.5.1.tar.gz
$ tar xzf pymongo-2.5.1.tar.gz
 

http://pypi.python.org/pypi/pymongo
http://pypi.python.org/packages/source/p/pymongo/pymongo-2.5.1.tar.gz
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Once you successfully download and extract this file, make your way to the extracted 
contents directory and invoke the installation of PyMongo by running the install.py 
command with Python:
 
$ cd pymongo-2.5.1
$ sudo python setup.py install
 

The preceding snippet outputs the entire creation and installation process of the 
PyMongo module. Eventually, this process brings you back to your prompt, at which time 
you’re ready to start using PyMongo.

Installing PyMongo under Windows
Installing PyMongo under Windows is a straightforward process. As when installing 
PyMongo under Linux, Easy Install can simplify installing PyMongo under Windows as 
well. If you don’t have setuptools installed yet (this package includes the easy_install 
command), then go to the Python Package Index website (http://pypi.python.org) to 
locate the setuptools installer.

Caution■■   The version of setuptools you download must match the version of Python 
installed on your system.

For example, assume you have Python version 2.7.5 installed on your system. You 
will need to download the setuptools package for v2.7.x. The good news is that you don’t 
need to compile any of this; rather, you can simply download the appropriate package 
and double-click the executable to install setuptools on your system! It is that simple.

Caution■■   If you have previously installed an older version of setuptools, then you will 
need to uninstall that version using your system’s Add/Remove Programs feature before 
installing the newer version.

Once the installation is complete, you will find the easy_install.exe file in Python’s 
Scripts subdirectory. At this point, you’re ready to install PyMongo on Windows.

Once you’ve successfully installed setuptools, you can open a command prompt and 
cd your way to Python’s Scripts directory. By default, this is set to C:\Pythonxy\Scripts\, 
where xy represents your version number. Once you navigate to this location, you can use 
the same syntax shown previously for installing the Unix variant:
 
C:\Python27\Scripts> easy_install PyMongo
 

http://pypi.python.org/
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Unlike the output that you get when installing this program on a Linux machine, 
the output here is rather brief, indicating only that the extension has been downloaded 
and installed (see Figure 2-4). That said, this information is sufficient for your purposes 
in this case.

Figure 2-4.  Installing PyMongo under Windows

Figure 2-5.  The Python shell

Confirming That Your PyMongo Installation Works
To confirm whether the PyMongo installation has completed successfully, you can open 
up your Python shell. In Linux, you do this by opening a console and typing python.  
In Windows, you do this by clicking Start ➤ Programs ➤ Python xy ➤ Python 
(commandline). At this point, you will be welcomed to the world of Python  
(see Figure 2-5).

You can use the import command to tell Python to start using the freshly installed 
extension:
 
>>> import pymongo
>>>
 



Chapter 2 ■ Installing MongoDB

36

Note■■   You must use the import pymongo command each time you want to use PyMongo.

If all went well, you will not see a thing, and you can start firing off some fancy 
MongoDB commands. If you received an error message, however, something went wrong, 
and you might need to review the steps just taken to discover where the error occurred.

Summary
In this chapter, we examined how to obtain the MongoDB software, including how to 
select the correct version you need for your environment. We also discussed the version 
numbers, how to install and run MongoDB, and how to install and run its prerequisites. 
Next, we covered how to establish a connection to a database through a combination of 
the shell, PHP, and Python.

We also explored how to expand MongoDB so it will work with your favorite 
programming languages, as well as how to confirm whether the language-specific drivers 
have installed correctly.

In the next chapter, we will explore how to design and structure MongoDB 
databases and data properly. Along the way, you’ll learn how to index information to 
speed up queries, how to reference data, and how to leverage a fancy new feature called 
geospatial indexing.

www.allitebooks.com
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Chapter 3

The Data Model

In the previous chapter, you learned how to install MongoDB on two commonly used 
platforms (Windows and Linux), as well as how to extend the database with some 
additional drivers. In this chapter, you will shift your attention from the operating system 
and instead examine the general design of a MongoDB database. Specifically, you’ll learn 
what collections are, what documents look like, how indexes work and what they do, and 
finally, when and where to reference data instead of embedding it. We touched on some 
of these concepts briefly in Chapter 1, but in this chapter, we’ll explore them in more 
detail. Throughout this chapter, you will see code examples designed to give you a good 
feeling for the concepts being discussed. Do not worry too much about the commands 
you’ll be looking at, however, because they will be discussed extensively in Chapter 4.

Designing the Database
As you learned in the first two chapters, a MongoDB database is nonrelational and 
schemaless. This means that a MongoDB database isn’t bound to any predefined 
columns or datatypes as relational databases are (such as MySQL). The biggest benefit 
of this implementation is that working with data is extremely flexible because there is no 
predefined structure required in your documents.

To put it more simply: you are perfectly capable of having one collection that 
contains hundreds or even thousands of documents that all carry a different structure—
without breaking any of the MongoDB databases rules.

One of the benefits of this flexible schemaless design is that you won’t be restricted 
when programming in a dynamically typed language such as Python or PHP. Indeed, 
it would be a severe limitation if your extremely flexible and dynamically capable 
programming language couldn’t be used to its full potential because of the innate 
limitations of your database.

Let’s take another glance at what the data design of a document in MongoDB looks 
like, paying particular attention to how flexible data in MongoDB is compared to data in 
a relational database. In MongoDB, a document is an item that contains the actual data, 
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comparable to a row in SQL. In the following example, you will see how two completely 
different types of documents can coexist in a single collection named Media (note that a 
collection is roughly equivalent to a table in the world of SQL):
 
{
    "Type": "CD",
    "Artist": "Nirvana",
    "Title": "Nevermind",
    "Genre": "Grunge",
    "Releasedate": "1991.09.24",
    "Tracklist": [
        {
        "Track" : "1",
        "Title" : "Smells Like Teen Spirit",
        "Length" : "5:02"
        },
        {
        "Track" : "2",
        "Title" : "In Bloom",
        "Length" : "4:15"
        }
    ]
}
  
{
    "type": "Book",
    �"Title": "Definitive Guide to MongoDB: A complete guide to dealing with 

Big Data using MongoDB 2nd , The",
    "ISBN": "987-1-4302-5821-6",
    "Publisher": "Apress",
    "Author": [
        "Hows, David"
        "Plugge, Eelco",
        "Membrey, Peter",
        "Hawkins, Tim    ]
}
 

As you might have noticed when looking at this pair of documents, most of the fields 
aren’t closely related to one another. Yes, they both have fields called Title and Type; but 
apart from that similarity, the documents are completely different. Nevertheless, these 
two documents are contained in a single collection called Media.

MongoDB is called a schemaless database, but that doesn’t mean MongoDB’s data 
structure is completely devoid of schema. For example, you do define collections and 
indexes in MongoDB (you will learn more about this later in the chapter). Nevertheless, 
you do not need to predefine a structure for any of the documents you will be adding, as is 
the case when working with MySQL, for example.
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Simply stated, MongoDB is an extraordinarily dynamic database; the preceding 
example would never work in a relational database, unless you also added each possible 
field to your table. Doing so would be a waste of both space and performance, not to 
mention highly disorganized.

Drilling Down on Collections
As mentioned previously, collection is a commonly used term in MongoDB. You can think 
of a collection as a container that stores your documents (that is, your data), as shown in 
Figure 3-1.

Database

Collections

Documents

Figure 3-1.  The MongoDB database model

Now compare the MongoDB database model to a typical model for a relational 
database (see Figure 3-2).
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As you can see, the general structure is the same between the two types of databases; 
nevertheless, you do not use them in even remotely similar manners. There are several 
types of collections in MongoDB. The default collection type is expandable in size: the 
more data you add to it, the larger it becomes. It’s also possible to define collections that 
are capped. These capped collections can only contain a certain amount of data before 
the oldest document is replaced by a newer document (you will learn more about these 
collections in Chapter 4).

Every collection in MongoDB has a unique name. This name should begin with 
a letter, or optionally, an underscore (_) when created using the createCollection 
function. The name can contain numbers and letters; however, the $ symbol is reserved 
by MongoDB. Similarly, using an empty string (“ ”) is not allowed; the null character 
cannot be used in the name and it cannot start with the “system.” string. Generally, it’s 
recommended that you keep the collection’s name simple and short (to around nine 
characters or so); however, the maximum number of allowed characters in a collection 
name is 118, minus the number of charaters in the database and the additional separating 
period character. Obviously, there isn’t much practical reason to create such a long name.

The above mentioned combination of databasename “period” collection name is 
called a namespace. A single database has a default limit of 24,000 namespaces. Each 
collection accounts for at least two namespaces: one for the collection itself and one 
more for the default _id index created in the collection. If you were to add more indexes 
per collection, however, another namespace would be used. In theory, this means that 
each database can have up to 12,000 collections by default, assuming each collection only 
carries one index. However, this limit on the number of namespaces can be increased 
by providing the nssize parameter when executing the MongoDB service application 
(mongod).

Database

Tables

Rows

Figure 3-2.  A typical relational database model
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Using Documents
Recall that a document consists of key-value pairs. For example, the pair "type" : "Book" 
consists of a key named type, and its value, Book. Keys are written as strings, but the 
values in them can vary tremendously. Values can be any of a rich set of datatypes,  
such as arrays or even binary data. Remember: MongoDB stores its data in BSON format 
(see Chapter 1 for more information on this topic).

Next, let’s look at all of the possible types of data you can add to a document, and 
what you use them for:

•	 String: This commonly used datatype contains a string of text  
(or any other kind of characters). This datatype is used mostly for 
storing text values (for example, "Country" : "Japan"}.

•	 Integer (32b and 64b): This type is used to store a numerical value 
(for example, { "Rank" : 1 } ). Note that there are no quotes 
placed before or after the integer.

•	 Boolean: This datatype can be set to either TRUE or FALSE.

•	 Double: This datatype is used to store floating-point values.

•	 Min / Max keys: This datatype is used to compare a value against 
the lowest and highest BSON elements, respectively.

•	 Arrays: This datatype is used to store arrays (for example, 
["Membrey, Peter","Plugge, Eelco","Hows, David"]).

•	 Timestamp: This datatype is used to store a timestamp. This can 
be handy for recording when a document has been modified or 
added.

•	 Object: This datatype is used for embedded documents.

•	 Null: This datatype is used for a Null value.

•	 Symbol: This datatype is used identically to a string; however, it’s 
generally reserved for languages that use a specific symbol type.

•	 Date *: This datatype is used to store the current date or time in 
Unix time format (POSIX time).

•	 Object ID *: This datatype is used to store the document’s ID.

•	 Binary data *: This datatype is used to store binary data.

•	 Regular expression *: This datatype is used for regular expressions. 
All options are represented by specific characters provided in 
alphabetical order. You will learn more about regular expressions 
in Chapter 4.

•	 JavaScript Code *: This datatype is used for JavaScript code.
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The asterisks mean that the last five datatypes (date, object ID, binary data, regex, 
and JavaScript code) are non-JSON types; specifically, they are special datatypes that 
BSON allows you to use. In Chapter 4, you will learn how to identify your datatypes by 
using the $type operator.

In theory, this all probably sounds straightforward. However, you might wonder how 
you go about actually designing the document, including what information to put in it. 
Because a document can contain any type of data, you might think there is no need to 
reference information from inside another document. In the next section, we’ll look at 
the pros and cons of embedding information in a document compared to referencing that 
information from another document.

Embedding vs. Referencing Information in Documents
You can choose either to embed information into a document or reference that 
information from another document. Embedding information simply means that 
you place a certain type of data (for example, an array containing more data) into the 
document itself. Referencing information means that you create a reference to another 
document that contains that specific data. Typically, you reference information when you 
use a relational database. For example, assume you wanted to use a relational database 
to keep track of your CDs, DVDs, and books. In this database, you might have one table 
for your CD collection and another table that stores the track lists of your CDs. Thus, you 
would probably need to query multiple tables to acquire a list of tracks from a specific CD.

With MongoDB (and other nonrelational databases), however, it would be much 
easier to embed such information instead. After all, the documents are natively capable 
of doing so. Adopting this approach keeps your database nice and tidy, ensures that all 
related information is kept in one single document, and even works much faster because 
the data is then co-located on the disk.

Now let’s look at the differences between embedding and referencing information by 
looking at a real-world scenario: storing CD data in a database.

In the relational approach, your data structure might look something like this:
 
|_media
    |_cds
        |_id, artist, title, genre, releasedate
    |_ cd_tracklists
        |_cd_id, songtitle, length
 

In the nonrelational approach, your data structure might look something like this:
 
|_media
    |_items
        |_<document>
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In the nonrelational approach, the document might look something like the following:
 
{
    "Type": "CD",
    "Artist": "Nirvana",
    "Title": "Nevermind",
    "Genre": "Grunge",
    "Releasedate": "1991.09.24",
    "Tracklist": [
        {
        "Track" : "1",
        "Title" : "Smells Like Teen Spirit",
        "Length" : "5:02"
        },
        {
        "Track" : "2",
        "Title" : "In Bloom",
        "Length" : "4:15"
        }
    ]
}
 

In this example, the track list information is embedded in the document itself. This 
approach is both incredibly efficient and well organized. All the information that you 
wish to store regarding this CD is added to a single document. In the relational version 
of the CD database, this requires at least two tables; in the nonrelational database, it 
requires only one collection and one document.

When information is retrieved  for a given CD, that information only needs to be 
loaded from one document into RAM, not from multiple documents. Remember that 
every reference requires another query in the database.

Tip■■  T he rule of thumb when using MongoDB is to embed data whenever you can.  
This approach is far more efficient and almost always viable.

At this point, you might be wondering about the use case in which an application has 
multiple users. Generally speaking, a relational database version of the aforementioned 
CD app would require that you have one table that contains all your users and two tables 
for the items added. For a nonrelational database, it would be good practice to have 
separate collections for the users and the items added. For these kinds of problems, 
MongoDB allows you to create references in two ways: manually or automatically. In 
the latter case, you use the DBRef specification, which provides more flexibility in case a 
collection changes from one document to the next. You will learn more about these two 
approaches in Chapter 4.
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Creating the _id Field
Every object within the MongoDB database contains a unique identifier to distinguish 
that object from every other object. This identifier is called the _id key, and it is added 
automatically to every document you create in a collection.

The _id key is the first attribute added in each new document you create. This 
remains true even if you do not tell MongoDB to create the key. For example, none of the 
code in the preceding examples used the _id key. Nevertheless, MongoDB created an _id 
key for you automatically in each document. It did so because _id key is a mandatory 
element for each document in the collection.

If you do not specify the _id value manually, the type will be set to a special BSON 
datatype that consists of a 12-byte binary value. Thanks to its design, this value has 
a reasonably high probability of being unique. The 12-byte value consists of a 4-byte 
timestamp (seconds since epoch, or January 1st, 1970), a 3-byte machine ID, a 2-byte 
process ID, and a 3-byte counter. It’s good to know that the counter and timestamp fields 
are stored in Big Endian format. This is because MongoDB wants to ensure that there is an 
increasing order to these values, and a Big Endian approach suits this requirement best.

Note■■  T he terms Big Endian and Little Endian refer to how individual bytes/bits are 
stored in a longer data word in the memory. Big Endian simply means that the most  
significant value is saved first. Similarly, Little Endian means that the least significant value 
is saved first.

Figure 3-3 shows how the value of the _id key is built up and where the values  
come from.

0 1 2 3 4 5 6 7 8 9 10 11

Time machine Pid inc

Figure 3-3.  Creating the _id key in MongoDB

Every additional supported driver that you load when working with MongoDB  
(such as the PHP driver or the Python driver) supports this special BSON datatype and 
uses it whenever new data is created. You can also invoke ObjectId() from the MongoDB 
shell to create a value for an _id key. Optionally, you can specify your own value by using 
ObjectId(string), where string represents the specified hex string.
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Building Indexes
As mentioned in Chapter 1, an index is nothing more than a data structure that collects 
information about the values of specified fields in the documents of a collection. This 
data structure is used by MongoDB’s query optimizer to quickly sort through and order 
the documents in a collection.

Remember that indexing ensures a quick lookup from data in your documents. 
Basically, you should view an index as a predefined query that was executed and had its 
results stored. As you can imagine, this enhances query-performance dramatically. The 
general rule of thumb in MongoDB is that you should create an index for the same sort of 
scenarios where you would want to have an index in MySQL.

The biggest benefit of creating your own indexes is that querying for often-used 
information will be incredibly fast because your query won’t need to go through your 
entire database to collect this information.

Creating (or deleting) an index is relatively easy—once you get the hang of it, anyway. 
You will learn how to do so in Chapter 4, which covers working with data. You will also 
learn some more advanced techniques for taking advantage of indexing in Chapter 10, 
which covers how to maximize performance.

Impacting Performance with Indexes
You might wonder why you would ever need to delete an index, rebuild your indexes, or 
even delete all indexes within a collection. The simple answer is that doing so lets you 
clean up some irregularities. For instance, sometimes the size of a database can increase 
dramatically for no apparent reason. At other times, the space used by the indexes might 
strike you as excessive.

Another good thing to keep in mind: you can have a maximum of 64 indexes per 
collection. Generally speaking, this is far more than you should need, but you could 
potentially hit this limit someday.

Note■■  A dding an index increases query speed, but it reduces insertion or deletion speed. 
It’s best to consider only adding indexes for collections where the number of reads is higher 
than the number of writes. When more writes occur than reads, indexes may even prove to 
be counterproductive.

Finally, all index information is stored in the system.indexes collection in your 
database. For example, you can run the db.system.indexes.find() command to take 
a quick peek at the indexes that have been stored so far. To see the indexes created for a 
specific collection, you can use the getIndexes command:
 
db.collection.getIndexes()
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Implementing Geospatial Indexing
As Chapter 1briefly mentioned, MongoDB has implemented geospatial indexing since 
version 1.4. This means that, in addition to normal indexes, MongoDB also supports 
geospatial indexes that are designed to work in an optimal way with location-based 
queries. For example, you can use this feature to find a number of closest known items 
to the user’s current location. Or you might further refine your search to query for a 
specified number of restaurants near the current location. This type of query can be 
particularly helpful if you are designing an application where you want to find the closest 
available branch office to a given customer’s ZIP code.

A document for which you want to add geospatial information must contain either a 
subobject or an array whose first element specifies the object type, followed by the item’s 
longitude and latitude, as in the following example:
 
> db.restaurants.insert({name: "Kimono", loc: { type: "Point",  
coordinates: [ 52.370451, 5.217497] } } )
 

Note that the type parameter can be used to specify the document’s object type, 
which can be a Point, a LineString or a Polygon. As can be expected, the Point type is 
used to specify that the item (in this case, a restaurant) is located at exactly the spot given, 
thus requiring exactly two values, the longitute and latitude. The LineString type can be 
used to specify that the item extends along a specific line (say, a street), and thus requires 
a beginning and end point, as in the following example:
 
> db.streets.insert( {name: "Westblaak", loc: { type: "LineString", 
coordinates: [ [52.36881, 4.890286],[52.368762, 4.890021] ] } } )
 

The Polygon type can be used to specify a (nondefault) shape (say, a shopping area). 
When using this type, you need to ensure that the first and last points are identical, to 
close the loop. Also, the point coordinates are to be provided as an array within an array, 
as in the following example:
 
> db.stores.insert( {name: "SuperMall", loc: { type: "Polygon", coordinates: 
[ [ [52.146917, 5.374337], [52.146966, 5.375471], [52.146722, 5.375085], 
[52.146744, 5.37437], [52.146917, 5.374337] ] ] } } )
 

In most cases, the Point type will be appropriate.
Once this geospatial information is added to a document, you can create the index 

(or even create the index beforehand, of course) and give the ensureIndex() function the 
2dsphere parameter:
 
> db.restaurants.ensureIndex( { loc: "2dsphere" } )
 

www.allitebooks.com

http://www.allitebooks.org


Chapter 3 ■ The Data Model

47

Note■■  T he ensureIndex() function is used to add a custom index. Don’t worry about 
the syntax of this function yet—you will learn how to use ensureIndex() in depth in the 
next chapter.

The 2dsphere parameter tells ensureIndex() that it’s indexing a coordinate or 
some other form of two-dimensional information on an Earth-like sphere. By default, 
ensureindex() assumes that a latitude/longitude key is given, and it uses a range of -180 
to 180. However, you can overwrite these values using the min and max parameters:
 
> db.restaurants.ensureIndex( { loc: "2dsphere" }, { min : -500 , max : 500 } )
 

You can also expand your geospatial indexes by using secondary key values  
(also known as compound keys). This structure can be useful when you intend to query 
on multiple values, such as a location (geospatial information) and a category  
(sort ascending):
 
> db.restaurants.ensureIndex( { loc: "2dsphere", category: 1 } ) 

Note■■  A t this time, the geospatial implementation is based on the idea that the world is 
a perfect sphere. Thus, each degree of latitude and longitude is exactly 111km (69 miles) in 
length. However, this is only true exactly at the equator; the further you move away from the 
equator, the smaller each degree of longitude becomes, approaching zero at the poles.

Querying Geospatial Information
In this chapter, we are concerned primarily with two things: how to model the data and how 
a database works in the background of an application. That said, manipulating geospatial 
information is increasingly important in a wide variety of applications, so we’ll take a few 
moments to explain how to leverage geospatial information in a MongoDB database.

Before getting started, a mild word of caution. If you are completely new to 
MongoDB and haven’t had the opportunity to work with (geospatial) indexed data in the 
past, this section may seem a little overwhelming at first. Not to worry, however; you can 
safely skip it for now and come back to it  later if you wish to. The examples given serve 
to show you a practical example of how (and why) to use geospatial indexing, making it 
easier to comprehend. With that out of the way, and if you are feeling brave, read on.

Once you’ve added data to your collection, and once the index has been created, 
you can do a geospatial query. For example, let’s look at a few lines of simple yet powerful 
code that demonstrate how to use geospatial indexing.
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Begin by starting up your MongoDB shell and selecting a database with the use 
function. In this case, the database is named restaurants:
 
> use restaurants
 

Once you’ve selected the database, you can define a few documents that contain 
geospatial information, and then insert them into the places collection (remember: you 
do not need to create the collection beforehand):
 
> db.restaurants.insert( { name: "Kimono", loc: { type: "Point", 
coordinates: [ 52.370451, 5.217497] } } )
 
> db.restaurants.insert( {name: "Shabu Shabu", loc: { type: "Point", 
coordinates: [51.915288, 4.472786] } } )
 
> db.restaurants.insert( {name: "Tokyo Cafe", loc: { type: "Point", 
coordinates: [52.368736, 4.890530] } } )
 

After you add the data, you need to tell the MongoDB shell to create an index based 
on the location information that was specified in the loc key, as in this example:
 
> db.restaurants.ensureIndex ( { loc: "2dsphere" } )
 

Once the index has been created, you can start searching for your documents. Begin 
by searching on an exact value (so far this is a “normal” query; it has nothing to do with 
the geospatial information at this point):
 
> db.restaurants.find( { loc : [52,5] } )
>
 

The preceding search returns no results. This is because the query is too specific.  
A better approach in this case would be to search for documents that contain information 
near a given value. You can accomplish this using the $near operator. Note that this 
requires the type operator to be specified, as in the following example:
 
> db.restaurants.find( { loc : { $geoNear : { $geometry : { type : "Point", 
coordinates: [52.338433, 5.513629] } } } } )
 

This produces the following output:
 
{
  "_id" : ObjectId("51ace0f380523d89efd199ac"),
  "name" : "Kimono",
  "loc" : {
    "type" : "Point",
    "coordinates" : [ 52.370451, 5.217497 ]
  }
}
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{
  "_id" : ObjectId("51ace13380523d89efd199ae"),
  "name" : "Tokyo Cafe",
  "loc" : {
    "type" : "Point",
    "coordinates" : [ 52.368736, 4.89053 ]
  }
}
{
  "_id" : ObjectId("51ace11b80523d89efd199ad"),
  "name" : "Shabu Shabu",
  "loc" : {
    "type" : "Point",
    "coordinates" : [ 51.915288, 4.472786 ] 
  }
}
 

Although this set of results certainly looks better, there’s still one problem: all of the 
documents are returned! When used without any additional operators, $near returns the 
first 100 entries and sorts them based on their distance from the given coordinates. Now, 
while we can choose to limit our results to say, the first two items (or two hundred, if we 
want) using the limit function, even better would be to limit the results to those within 
a given range.

This can be achieved by appending the $maxDistance operator. Using this operator 
you can tell MongoDB to return only those results falling within a maximum distance 
(measured in meters) from the given point, as in the following example and its output:
 
> db.retaurants.find( { loc : { $geoNear : { $geometry : { type : "Point", 
coordinates: [52.338433, 5.513629] }, $maxDistance : 40000 } } } )
{
  "_id" : ObjectId("51ace0f380523d89efd199ac"),
  "name" : "Kimono",
  "loc" : {
    "type" : "Point",
    "coordinates" : [ 52.370451, 5.217497 ]
  }
}
 

As you can see, this returns only a single result: a restaurant located within 40 kilometers 
(or, roughly 25 miles) from the starting point.

Note■■  T here is a direct correlation between the number of results returned and the time 
a given query takes to execute.
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In addition to the $geoNear operator, MongoDB also includes a $geoWithin operator. 
You use this operator to find items in a particular shape. At this time, you can find items 
located in a $box, $polygon, $center and $centerSphere shape, where $box represents 
a rectangle, $polygon represents a specific shape of your choosing, $center represents a 
circle, and $centerSphere defines a circle on a sphere. Let’s look at a couple of additional 
examples that illustrate how to use these shapes.

Note■■   With version 2.4 of MongoDB the $within operator was deprecated and replaced 
by $geoWithin. This operator does not strictly require a geospatial indexing. Also, unlike the 
$near operator, $geoWithin does not sort the returned results, improving their performance.

To use the $box shape, you first need to specify the lower-left, followed by the  
upper-right coordinates of the box, as in the following example:
 
> db.restaurants.find( { loc: { $geoWithin : { $box : [ [52.368549, 
4.890238], [52.368849, 4.89094] ] } } } )
 

Similarly, to find items within a specific polygon form, you need to specify the 
coordinates of your points as a set of nested arrays. Again note that the first and last 
coordinates must be identical to close the shape properly, as shown in the following 
example:
 
> db.restaurants.find( { loc :
  { $geoWithin :
    { $geometry :
      { type : "Polygon" ,
        coordinates : [ [
          [52.368739, 4.890203], [52.368872, 4.890477], [52.368726, 4.890793],
          [52.368608, 4.89049], [52.368739, 4.890203]
        ] ]
      }
    }
  } )
 

The code to find items in a basic $circle shape is quite simple. In this case, you 
need to specify the center of the circle and its radius, measured in the units used by the 
coordinate system, before executing the find() function:
 
> db.restaurants.find( { loc: { $geoWithin : { $center : [ [52.370524, 
5.217682], 10] } } } )
 

Note that ever since MongoDB version 2.2.3, the $center operator can be used 
without having a geospatial index in place. However, it is recommended to create one to 
improve performance.
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Finally, to find items located within a circular shape on a sphere (say, our planet) you 
can use the $centerSphere operator. This operator is similar to $center, like so:
 
> db.restaurants.find( { loc: { $geoWithin : { $centerSphere : [ [52.370524, 
5.217682], 10] } } } )
 

By default, the find() function is ideal for running queries. However, MongoDB also 
provides the geoNear() function, which works like the find() function, but also displays 
the distance from the specified point for each item in the results. The geoNear() function 
also includes some additional diagnostics. The following example uses the geoNear() 
function to find the two closest results to the specified position:
 
> db.runCommand( { geoNear : "restaurants", near : { type : "Point", 
coordinates: [52.338433, 5.513629] }, spherical : true})
 

It returns the following results:
 
{
  "ns" : "stores.restaurants",
  "results" : [
    {
      "dis" : 33155.517810497055,
      "obj" : {
        "_id" : ObjectId("51ace0f380523d89efd199ac"),
        "name" : "Kimono",
        "loc" : {
          "type" : "Point",
          "coordinates" : [
            52.370451,
            5.217497
          ]
        }
      }
    },
    {
      "dis" : 69443.96264213261,
      "obj" : {
        "_id" : ObjectId("51ace13380523d89efd199ae"),
        "name" : "Tokyo Cafe",
        "loc" : {
          "type" : "Point",
          "coordinates" : [
            52.368736,
            4.89053
          ]
        }
      }
    },
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    {
      "dis" : 125006.87383713324,
      "obj" : {
        "_id" : ObjectId("51ace11b80523d89efd199ad"),
        "name" : "Shabu Shabu",
        "loc" : {
          "type" : "Point",
          "coordinates" : [
            51.915288,
            4.472786
          ]
        }
      }
    }
  ],
  "stats" : {
    "time" : 6,
    "nscanned" : 3,
    "avgDistance" : 75868.7847632543,
    "maxDistance" : 125006.87383713324
  },
  "ok" : 1
}
 

That completes our introduction to geospatial information for now; however, you’ll 
see a few more examples that show you how to leverage geospatial functions in this 
book’s upcoming chapters.

Using MongoDB in the Real World
Now that you have MongoDB and its associated plug-ins installed, and you have gained 
an understanding of the data model, it’s time to get to work. In the next five chapters 
of the book, you will learn how to build, query, and otherwise manipulate a variety of 
sample MongoDB databases (see Table 3-1 for a quick view of the topics to come). Each 
chapter will stick primarily to using a single database that is unique to that chapter; we 
took this approach to make it easier to read this book in a modular fashion.
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Table 3-1.  MongoDB Sample Databases Covered in This Book

Chapter Database Name Topic

4 Library Working with data and indexes

5 Test GridFS

6 Contacts PHP and MongoDB

7 Inventory Python and MongoDB

8 Test Advanced Queries

Summary
In this chapter, we looked at what’s happening in the background of your database.  
We also explored the primary concepts of collections and documents in more depth;  
and we covered the datatypes supported in MongoDB, as well as how to embed and 
reference data.

Next, we examined what indexes do, including when and why they should be  
used (or not).

We also touched on the concepts of geospatial indexing. For example, we covered 
how geospatial data can be stored; we also explained how you can search for such data 
using either the regular find() function or the more geospatially based geoNear database 
command.

In the next chapter, we’ll take a closer look at how the MongoDB shell works, 
including which functions can be used to insert, find, update, or delete your data. We will 
also explore how conditional operators can help you with all of these functions.
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Chapter 4

Working with Data

In the previous chapter, you learned how the database works on the backend, what 
indexes are, how to use a database to quickly find the data you are looking for, and what 
the structure of a document looks like. You also saw a brief example that illustrated how 
to add data and find it again using the MongoDB shell. In this chapter, we will focus more 
on working with data from your shell.

We will use one database (named library) throughout this chapter, and we will 
perform actions such as adding data, searching data, modifying data, deleting data, 
and creating indexes. We’ll also look at how to navigate the database using various 
commands, as well as what DBRef is and what it does. If you have followed the 
instructions in the previous chapters to set up the MongoDB software, you can follow the 
examples in this chapter to get used to the interface. Along the way, you will also attain a 
solid understanding of which commands can be used for what kind of operations.

Navigating Your Databases
The first thing you need to know is how to navigate your databases and collections. With 
traditional SQL databases, the first thing you would need to do is to create an actual 
database; however, as you probably remember from the previous chapters, this is not 
required with MongoDB because the program creates the database and underlying 
collection for you automatically the moment you store data in it.

To switch to an existing database or create a new one, you can use the use function in 
the shell, followed by the name of the database you would like to use, whether it exists or 
not. This snippet shows how to use the library database:
 
> use library
Switched to db library
 

The mere act of invoking the use function, followed by the database’s name, sets 
your db (database) global variable to library. Doing this means that all the commands 
you pass down into the shell will automatically assume they need to be executed on the 
library database until you reset this variable to another database.
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Viewing Available Databases and Collections
MongoDB automatically assumes a database needs to be created the moment you save 
data to it. It is also case-sensitive. For these reasons, it can be quite tricky to ensure that 
you’re working in the correct database. Therefore, it’s best to view a list of all current 
databases available to MongoDB prior to switching to one, in case you forgot the 
database’s name or its exact spelling. You can do this using the show dbs function:
 
> show dbs
admin
local
 

Note that this function will only show a database that already exists. At this stage, the 
database does not contain any data yet, so nothing else will be listed. If you want to view 
all available collections for your current database, you can use the show collections 
function:
 
> show collections
system.indexes
 

Note that the system.indexes collection is created automatically the moment data is 
saved. This collection contains an index based on the _id key value from the document 
just inserted; it also includes any custom-created indexes that you’ve defined.

Tip■■  T o view the database you are currently working in, simply type db into the  
MongoDB shell.

Inserting Data into Collections
One of the most frequently used pieces of functionality you will want to learn about is 
how to insert data into your collection. All data is stored in BSON format (which is both 
compact and reasonably fast to scan), so you will need to insert the data in BSON format 
as well. You can do this in several ways. For example, you can define it first, and then save 
it in the collection using the insert function, or you can type the document while using 
the insert function on the fly:
 
> document = ( { "Type" : "Book", "Title" : "Definitive Guide to MongoDB 2nd 
ed.,
The", "ISBN" : "978-1-4302-5821-6", "Publisher" : "Apress", "Author": [
"Hows, David", "Plugge, Eelco", "Membrey, Peter", “Hawkins, Tim” ] } )
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Note■■   When you define a variable in the shell (for example, document = ( { ... } ) ), 
the contents of the variable will be printed out immediately.

 
> db.media.insert(document)
 

Line breaks can also be used while typing in the shell. This can be convenient if you 
are writing a rather lengthy document, as in this example:
 
> document = ( { "Type" : "Book",
..."Title" : "Definitive Guide to MongoDB 2nd ed., The",
..."ISBN" : "978-1-4302-5821-6",
..."Publisher" : "Apress",
..."Author" : ["Hows, David", Plugge, Eelco", "Membrey, Peter"," "Hawkins, Tim"]
...} )
 
> db.media.insert(document)
 

As mentioned, the other option is to insert your data directly through the shell, 
without defining the document first. You can do this by invoking the insert function 
immediately, followed by the document’s contents:
 
> db.media.insert( { "Type" : "CD", "Artist" : "Nirvana", "Title" : 
"Nevermind" })
 

Or you can insert the data while using line breaks, as before. For example, you can 
expand the preceding example by adding an array of tracks to it. Pay close attention to 
how the commas and brackets are used in the following example:
 
> db.media.insert( { "Type" : "CD",
..."Artist" : "Nirvana",
..."Title" : "Nevermind",
... "Tracklist" : [
... {
... "Track" : "1",
... "Title" : "Smells Like Teen Spirit",
... "Length" : "5:02"
... },
... {
... "Track" : "2",
... "Title" : "In Bloom",
... "Length" : "4:15"
... }
... ]
...}
... )
 

www.allitebooks.com
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As you can see, inserting data through the Mongo shell is straightforward.
The process of inserting data is extremely flexible, but you must adhere to some rules 

when doing so. For example, the names of the keys while inserting documents have the 
following limitations:

The •	 $ character must not be the first character in the key name. 
Example: $tags

The period [•	 .] character must not appear anywhere in the key 
name. Example: ta.gs

The name •	 _id is reserved for use as a primary key ID; although it 
is not recommended, it can store anything unique as a value, such 
as a string or an integer.

Similarly, some restrictions apply when creating a collection. For example, the name 
of a collection must adhere to the following rules:

The collection’s name cannot exceed 128 characters.•	

An empty string (“ ”) cannot be used as a collection name.•	

The collection’s name must start with either a letter or an •	
underscore.

The collection name •	 system is reserved for MongoDB and cannot 
be used.

The collection’s name cannot contain the “\0” null character.•	

Querying for Data
You’ve seen how to switch to your database and how to insert data; next, you will learn 
how to query for data in your collection. Let’s build on the preceding example and look at 
all the possible ways to get a good clear view of your data in a given collection.

Note■■   When querying your data, you have an extraordinary range of options, operators, 
expressions, filters, and so on available to you. We will spend the next few sections  
reviewing these options.

The find() function provides the easiest way to retrieve data from multiple 
documents within one of your collections. This function is one that you will be  
using often.
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Let’s assume that you have inserted the preceding two examples into a collection 
called media in the library database. If you were to use a simple find() function on this 
collection, you would get all of the documents you’ve added so far printed out for you:
 
> db.media.find()
{ "_id" : "ObjectId("4c1a8a56c603000000007ecb"), "Type" : "Book", "Title" :
"Definitive Guide to MongoDB 2nd ed., The", "ISBN" : "978-1-4302-5821-6", 
"Publisher" :
"Apress", "Author" : ["Hows, David ", "Plugge, Eelco", "Membrey, Peter", 
“Hawkins, Tim”]}
 
{ "_id" : "ObjectId("4c1a86bb2955000000004076"), "Type" : "CD", "Artist" :
"Nirvana", "Title" : "Nevermind", "Tracklist" : [
    {
        "Track" : "1",
            "Title" : "Smells Like Teen Spirit",
            "Length" : "5:02"
    },
    {
        "Track" : "2",
        "Title" : "In Bloom",
        "Length" : "4:15"
    }
] }
 

This is simple stuff, but typically you would not want to retrieve all the information 
from all the documents in your collection. Instead, you probably want to retrieve a certain 
type of document. For example, you might want to return all the CDs from Nirvana. If so, 
you can specify that only the desired information is requested and returned:
 
> db.media.find ( { Artist : "Nirvana" } )
{ "_id" : "ObjectId("4c1a86bb2955000000004076"), "Type" : "CD", "Artist" :
 "Nirvana", "Title" : "Nevermind", "Tracklist" : [
    {
        "Track" : "1",
        "Title" : "Smells Like Teen Spirit",
        "Length" : "5:02"
    },
    {
        "Track" : "2",
        "Title" : "In Bloom",
        "Length" : "4:15"
    }
] }
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Okay, so this looks much better! You don’t have to see all the information from all 
the other items you’ve added to your collection, only the information that interests you. 
However, what if you’re still not satisfied with the results returned? For example, assume 
you want to get a list back that shows only the titles of the CDs you have by Nirvana, 
ignoring any other information, such as track lists. You can do this by inserting an 
additional parameter into your query that specifies the name of the key that you want to 
return, followed by a 1:
 
> db.media.find ( {Artist : "Nirvana"}, {Title: 1} )
{ "_id" : ObjectId("4c1a86bb2955000000004076"), "Title" : "Nevermind" }
 

Inserting the { Title : 1 } information specifies that only the information 
from the title field should be returned. The results are sorted and presented to you in 
ascending order.

Note■■  T he ascending order is based upon the insertion order of the document.

You can also accomplish the opposite: inserting { Type : 0 } retrieves a list of all 
items you have stored from Nirvana, showing all information except for the Type field.

Note■■  T he _id field will by default remain visible, unless you explicitly ask it not to  
show itself.

Take a moment to run the revised query with the { Title : 1 } insertion; no 
unnecessary information is returned at all. This saves you time because you see only 
the information you want. It also spares your database the time required to return 
unnecessary information.

Using the Dot Notation
When you start working with more complex document structures such as documents 
containing arrays or embedded objects, you can begin using other methods for querying 
information from those objects as well. For example, assume you want to find all CDs that 
contain a specific song you like. The following code executes a more detailed query:
 
> db.media.find( { "Tracklist.Title" : "In Bloom" } )
{ "_id" : "ObjectId("4c1a86bb2955000000004076"), "Type" : "CD", "Artist" :
"Nirvana", "Title" : "Nevermind", "Tracklist" : [
    {
        "Track" : "1",
        "Title" : "Smells Like Teen Spirit",
        "Length" : "5:02"
    },
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    {
        "Track" : "2",
        "Title" : "In Bloom",
        "Length" : "4:15"
    }
] }
 

Using a period [.] after the key’s name tells your find function to look for 
information embedded in your documents. Things are a little simpler when working with 
arrays. For example, you can execute the following query if you want to find a list of books 
written by Peter Membrey:
 
> db.media.find( { "Author" : "Membrey, Peter" } )
{ "_id" : "ObjectId("4c1a8a56c603000000007ecb"), "Type" : "Book", "Title" :
"Definitive Guide to MongoDB 2nd ed., The", "ISBN" : "978-1-4302-5821-6", 
"Publisher" :
"Apress", "Author" : ["Hows, David ", "Plugge, Eelco", "Membrey, Peter", 
"Hawkins, Tim"] }
 

However, the following command will not match any documents, even though it 
might appear identical to the earlier track list query:
 
> db.media.find ( { "Tracklist" : {"Track" : "1" }} )
 

Subobjects must match exactly; therefore, the preceding query would only match a 
document that contains no other information, such as Track.Title:
 
{"Type" : "CD",
"Artist" : "Nirvana"
"Title" : "Nevermind",
"Tracklist" : [
    {
        "Track" : "1",
    },
    {
        "Track" : "2",
        "Title" : "In Bloom",
        "Length" : "4:15"
    }
]
}
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Using the Sort, Limit, and Skip Functions
MongoDB includes several functions that you can use for more precise control over your 
queries. We’ll cover how to use the sort, limit, and skip functions in this section.

You can use the sort function to sort the results returned from a query. You can sort 
the results in ascending or descending order using 1 or -1, respectively. The function 
itself is analogous to the ORDER BY statement in SQL, and it uses the key’s name and 
sorting method as criteria, as in this example:
 
> db.media.find().sort( { Title: 1 })
 

This example sorts the results based on the Title key’s value in ascending order. 
This is the default sorting order when no parameters are specified. You would add  
the -1 flag to sort in descending order.

Note■■  I f you specify a key for sorting that does not exist, the values will be returned in 
their ascending insertion order.

You can use the limit() function to specify the maximum number of results 
returned. This function requires only one parameter: the number of the desired results 
returned. When you specify ‘0’, all results will be returned. The following example returns 
only the first ten items in your media collection:
 
> db.media.find().limit( 10 )
 

Another thing you might want to do is skip the first n documents in a collection. The 
following example skips the first twenty documents in your media collection:
 
> db.media.find().skip( 20 )
 

As you probably surmised, this command returns all documents within your 
collection, except for the first twenty it finds. Remember: it finds documents in the order 
they were inserted.

MongoDB wouldn’t be particularly powerful if it weren’t able to combine these 
commands. However, practically any function can be combined and used in conjunction 
with any other function. The following example limits the results by skipping a few and 
then sorts the results in descending order:
 
> db.media.find().sort ( { Title : -1 } ).limit ( 10 ).skip ( 20 )
 

You might use this example if you want to implement paging in your application. 
As you might have guessed, this command wouldn’t return any results in the media 
collection created so far, because the collection contains fewer documents than were 
skipped in this example.
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Note■■   You can use the following shortcut in the find() function to skip and limit your 
results: find ( {}, {}, 10, 20 ). Here, you limit the results to 10 and skip the  
first 20 documents.

Working with Capped Collections, Natural Order, and 
$natural
There are some additional concepts and features you should be aware of when sorting 
queries with MongoDB, including capped collections, natural order, and $natural. We’ll 
explain what all of these terms mean and how you can leverage them in your sorts in  
this section.

The natural order is the database’s native ordering method for objects within a 
(normal) collection. So, when you query for items in a collection, the items are returned 
by default in the forward natural order. This is usually identical to the order in which 
items were inserted; however, that is not guaranteed to be the case, as data can move 
when it no longer fits on its old location after being modified.

A capped collection is a collection in your database where the natural order is 
guaranteed to be the order in which the documents were inserted. Guaranteeing that the 
natural order will always match the insertion order can be particularly useful when you’re 
querying data and need to be absolutely certain that the results returned are already 
sorted based on their order of insertion.

Capped collections have another great benefit: they are a fixed size. Once a capped 
collection is full, the oldest data will be purged, and newer data will be added at the end, 
ensuring that the natural order follows the order in which the records were inserted. This 
type of collection can be used for logging and auto-archiving data.

Unlike a standard collection, a capped collection must be created explicitly, using 
the createCollection function. You must also supply parameters that specify the size 
(in bytes) of the collection you want to add. For example, imagine you want to create a 
capped collection named audit with a maximum size of 20480 bytes:
 
> db.createCollection("audit", {capped:true, size:20480})
{ "ok" : 1 }
 

Given that a capped collection guarantees that the natural order matches the 
insertion order, you don’t need to include any special parameters or any other special 
commands or functions when querying the data either, except of course when you 
want to reverse the default results. This is where the $natural parameter comes in. For 
example, assume you want to find the ten most recent entries from your capped collection 
that lists failed login attempts. You could use the $natural parameter to find this 
information:
 
> db.audit.find().sort( { $natural: -1 } ).limit ( 10 )
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Note■■   Documents already added to a capped collection can be updated, but they must 
not grow in size. The update will fail if they do. Deleting documents from a capped  
collection is also not possible; instead, the entire collection must be dropped and re-created 
if you want to do this. You will learn more about dropping a collection later in this chapter.

You can also limit the number of items added into a capped collection using the max: 
parameter when you create the collection. However, you must take care to ensure that 
there is enough space in the collection for the number of items you want to add. If the 
collection becomes full before the number of items has been reached, the oldest item in 
the collection will be removed. The MongoDB shell includes a utility that lets you see the 
amount of space used by an existing collection, whether it’s capped or uncapped. You 
invoke this utility using the validate() function. This can be particularly useful if you 
want to estimate how large a collection might become.

As stated previously, you can use the max: parameter to cap the number of items that 
can be inserted into a collection, as in this example:
 
> db.createCollection("audit100", { capped:true, size:20480, max: 100})
{ "ok" : 1 }
 

Next, use the validate() function to check the size of the collection:
 
> db.audit100.validate()
{
    "ns" : "media.audit100",
    "result" : "
        validate
        capped:1 max:100
        firstExtent:0:54000 ns:media.audit100
        lastExtent:0:54000 ns:media.audit100
        # extents:1
        datasize?:0 nrecords?:0 lastExtentSize:20736
        padding:1
        first extent:
        loc:0:54000 xnext:null xprev:null
        nsdiag:media.audit100
        size:20736 firstRecord:null lastRecord:null
        capped outOfOrder:0 (OK)
        0 objects found, nobj:0
        0 bytes data w/headers
        0 bytes data wout/headers
        deletedList: 1100000000000000000
        deleted: n: 2 size: 20560
        nIndexes:0
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    ",
    "ok" : 1,
    "valid" : true,
    "lastExtentSize" : 20736
}
 

The resulting output shows that the table (named audit100) is a capped collection 
with a maximum of 100 items to be added, and it currently contains zero items.

Retrieving a Single Document
So far we’ve only looked at examples that show how to retrieve multiple documents. 
If you want to receive only one result, however, querying for all documents—which is 
what you generally do when executing a find() function—would be a waste of CPU time 
and memory. For this case, you can use the findOne() function to retrieve a single item 
from your collection. Overall, the result is identical to what occurs when you append the 
limit(1) function, but why make it harder on yourself than you should?

The syntax of the findOne() function is identical to the syntax of the find() function:
 
> db.media.findOne()
 

It’s generally advised to use the findOne() function if you expect only one result.

Using the Aggregation Commands
MongoDB comes with a nice set of aggregation commands. You might not see their 
significance at first, but once you get the hang of them, you will see that the aggregation 
commands form an extremely powerful set of tools. For instance, you might use them to 
get an overview of some basic statistics about your database. In this section, we will take 
a closer look at how to use three of the functions from the available aggregate commands: 
count, distinct, and group.

In addition to these three basic aggregation commands, MongoDB also includes 
an aggregation framework. This powerful feature will allow you to calculate aggregated 
values without needing to use the—often overly complex—map/reduce framework. The 
aggregation framework will be discussed in Chapter 5.

Returning the Number of Documents with count( )
The count() function returns the number of documents in the specified collection. So far 
we’ve added a number of documents in the media collection. The count() function can 
tell you exactly how many:
 
> db.media.count()
2
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You can also perform additional filtering by combining count() with conditional 
operators, as shown here:
 
> db.media.find( { Publisher : "Apress", Type: "Book" } ).count()
1
 

This example returns only the number of documents added in the collection that 
are published by Apress and of the type Book. Note that the count() function ignores a 
skip() or limit() parameter by default. To ensure that your query doesn’t skip these 
parameters and that your count results will match the limit and/or skip parameters, use 
count(true):
 
> db.media.find( { Publisher: "Apress", Type: "Book" }).skip ( 2 ) .count 
(true)
0

Retrieving Unique Values with distinct()
The preceding example shows a great way to retrieve the total number of documents from 
a specific publisher. However, this approach is definitely not precise. After all, if you own 
more than one book with the same title (for instance, the hardcopy and the e-book), then 
you would technically have just one book. This is where distinct() can help you: it will 
only return unique values.

For the sake of completeness, you can add an additional item to the collection. This 
item carries the same title, but has a different ISBN number:
 
> document = ( { "Type" : "Book","Title" : "Definitive Guide to MongoDB 2nd 
ed., The", ISBN:
"978-1-4302-5821-6", "Publisher" : "Apress", "Author" :
["Hows, David","Membrey, Peter","Plugge, Eelco","Hawkins, Tim"] } )
> db.media.insert (document)
 

At this point, you should have two books in the database with identical titles. When 
using the distinct() function on the titles in this collection, you will get a total of two 
unique items. However, the titles of the two books are unique, so they will be grouped 
into one item. The other result will be the title of the album “Nevermind”:
 
> db.media.distinct( "Title")
[ "Definitive Guide to MongoDB, The", "Nevermind" ]
 

Similarly, you will get two results if you query for a list of unique ISBN numbers:
 
> db.media.distinct ("ISBN")
[ "1-4302-3051-7", "987-4302-3051-9" ]
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The distinct() function also takes nested keys when querying; for instance, this 
command will give you a list of unique titles of your CDs:
 
> db.media.distinct ("Tracklist.Title")
[ "In Bloom", "Smells Like Teen Spirit" ]

Grouping Your Results
Last but not least, you can group your results. MongoDB’s group() function is similar 
to SQL’s GROUP BY function, although the syntax is a little different. The purpose of the 
command is to return an array of grouped items. The group() function takes three 
parameters: key, initial, and reduce.

The key parameter specifies which results you want to group. For example, assume 
you want to group results by Title. The initial parameter lets you provide a base for 
each grouped result (that is, the base number of items to start off with). By default, you 
want to leave this parameter at zero if you want an exact number returned. The reduce 
parameter groups all similar items together. Reduce takes two arguments: the current 
document being iterated over and the aggregation counter object. These arguments are 
called items and prev in the example that follows. Essentially, the reduce parameter adds 
a 1 to the sum of every item it encounters that matches a title it has already found.

The group() function is ideal when you’re looking for a tagcloud kind of function. 
For example, assume you want to obtain a list of all unique titles of any type of item in 
your collection. Additionally, assume you want to group them together if any doubles are 
found, based on the title:
 
> db.media.group (
{
    key: {Title : true},
    initial: {Total : 0},
    reduce : function (items,prev)
    {
        prev.Total += 13
    }
}
)
 
[
    {
        "Title" : "Nevermind",
        "Total" : 1
    },
    {
        "Title" : "Definitive Guide to MongoDB, The",
        "Total" : 2
    }
]
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In addition to the key, initial, and reduce parameters, you can specify three more 
optional parameters:

•	 keyf: You can use this parameter to replace the key parameter 
if you do not wish to group the results on an existing key in 
your documents. Instead, you would group them using another 
function you design that specifies how to do grouping.

•	 cond: You can use this parameter to specify an additional 
statement that must be true before a document will be grouped. 
You can use this much as you use the find() query to search 
for documents in your collection. If this parameter isn’t set (the 
default), then all documents in the collection will be checked.

•	 finalize: You can use this parameter to specify a function you 
want to execute before the final results are returned. For instance, 
you might calculate an average or perform a count and include 
this information in the results.

Note■■  T he group() function does not currently work in sharded environments. For these, 
you should use the mapreduce() function instead. Also, the resulting output cannot contain 
more than 10,000 keys in all with the group() function, or an exception will be raised.  
This too, can be bypassed by using mapreduce().

Working with Conditional Operators
MongoDB supports a large set of conditional operators to better filter your results. The 
following sections provide an overview of these operators, including some basic examples 
that show you how to use them. Before walking through these examples, however, you 
should add a few more items to the database; doing so will let you see the effects of these 
operators more plainly:
 
dvd = ( { "Type" : "DVD", "Title" : "Matrix, The", "Released" : 1999,
    "Cast" : ["Keanu Reeves","Carrie-Anne Moss","Laurence Fishburne","Hugo
     Weaving","Gloria Foster","Joe Pantoliano"] } )
{
        "Type" : "DVD",
        "Title" : "Matrix, The",
        "Released" : 1999,
        "Cast" : [
                "Keanu Reeves",
                "Carrie-Anne Moss",
                "Laurence Fishburne",
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                "Hugo Weaving",
                "Gloria Foster",
                "Joe Pantoliano"
        ]
}
> db.media.insert(dvd)
 
> dvd = ( { "Type" : "DVD", Title : "Blade Runner", Released : 1982 } )
{ "Type" : "DVD", "Title" : "Blade Runner", "Released" : 1982 }
> db.media.insert(dvd)
 
> dvd = ( { "Type" : "DVD", Title : "Toy Story 3", Released : 2010 } )
{ "Type" : "DVD", "Title" : "Toy Story 3", "Released" : 2010 }
> db.media.insert(dvd)

Performing Greater-Than and Less-Than Comparisons
You can use the following special parameters to perform greater-than and less-than 
comparisons in queries: $gt, $lt, $gte, and $lte. In this section, we’ll look at how to use 
each of these parameters.

The first one we’ll cover is the $gt (greater than) parameter. You can use this to 
specify that a certain integer should be greater than a specified value in order to be 
returned:
 
> db.media.find ( { Released : {$gt : 2000} }, { "Cast" : 0 } )
{ "_id" : ObjectId("4c4369a3c603000000007ed3"), "Type" : "DVD", "Title" :
"Toy Story 3", "Released" : 2010 }
 

Note that the year 2000 itself will not be included in the preceding query. For that, 
you use the $gte (greater than or equal to) parameter:
 
> db.media.find ( { Released : {$gte : 1999 } }, { "Cast" : 0 } )
{ "_id" : ObjectId("4c43694bc603000000007ed1"), "Type" : "DVD", "Title" :
"Matrix, The", "Released" : 1999 }
{ "_id" : ObjectId("4c4369a3c603000000007ed3"), "Type" : "DVD", "Title" :
"Toy Story 3", "Released" : 2010 }
 

Likewise, you can use the $lt (less than) parameter to find items in your collection 
that predate the year 1999:
 
> db.media.find ( { Released : {$lt : 1999 } }, { "Cast" : 0 } )
{ "_id" : ObjectId("4c436969c603000000007ed2"), "Type" : "DVD", "Title" : 
"Blade Runner", "Released" : 1982 }
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You can also get a list of items older than or equal to the year 1999 by using the $lte 
(less than or equal to) parameter:
 
> db.media.find( {Released : {$lte: 1999}}, { "Cast" : 0 })
{ "_id" : ObjectId("4c43694bc603000000007ed1"), "Type" : "DVD", "Title" :
"Matrix, The", "Released" : 1999 }
{ "_id" : ObjectId("4c436969c603000000007ed2"), "Type" : "DVD", "Title" :
"Blade Runner", "Released" : 1982 }
 

You can also combine these parameters to specify a range:
 
> db.media.find( {Released : {$gte: 1990, $lt : 2010}}, { "Cast" : 0 })
{ "_id" : ObjectId("4c43694bc603000000007ed1"), "Type" : "DVD", "Title" :
"Matrix, The", "Released" : 1999 }
 

These parameters might strike you as relatively simple to use; however, you will be 
using them a lot when querying for a specific range of data.

Retrieving All Documents but Those Specified
You can use the $ne (not equals) parameter to retrieve every document in your collection, 
except for the ones that match certain criteria. For example, you can use this snippet to 
obtain a list of all books where the author is not Eelco Plugge:
 
> db.media.find( { Type : "Book", Author: {$ne : "Plugge, Eelco"}})

Specifying an Array of Matches
You can use the $in operator to specify an array of possible matches. The SQL equivalent 
is the IN operator.

You can use the following snippet to retrieve data from the media collection using 
the $in operator:
 
> db.media.find( {Released : {$in : [1999,2008,2009] } }, { "Cast" : 0 } )
{ "_id" : ObjectId("4c43694bc603000000007ed1"), "Type" : "DVD", "Title" : 
"Matrix, The", "Released" : 1999 }
 

This example returns only one item, because only one item matches the release year 
of 1999, and there are no matches for the years 2008 and 2009.
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Finding a Value Not in an Array
The $nin operator functions similarly to the $in operator, except that it searches for the 
objects where the specified field does not have a value in the specified array:
 
> db.media.find( {Released : {$nin : [1999,2008,2009] },Type : "DVD" },
{ "Cast" : 0 } )
{ "_id" : ObjectId("4c436969c603000000007ed2"), "Type" : "DVD", "Title" :
"Blade Runner", "Released" : 1982 }
{ "_id" : ObjectId("4c4369a3c603000000007ed3"), "Type" : "DVD", "Title" :
"Toy Story 3", "Released" : 2010 }

Matching All Attributes in a Document
The $all operator also works similarly to the $in operator. However, $all requires that 
all attributes match in the documents, whereas only one attribute must match for the 
$in operator. Let’s look at an example that illustrates these differences. First, here’s an 
example that uses $in:
 
> db.media.find ( { Released : {$in : ["2010","2009"] } }, { "Cast" : 0 } )
{ "_id" : ObjectId("4c4369a3c603000000007ed3"), "Type" : "DVD", "Title" :
"Toy Story 3", "Released" : 2010 }
 

One document is returned for the $in operator because there’s a match for 2010, but 
not for 2009. However, the $all parameter doesn’t return any results, because there are 
no matching documents with 2009 in the value:
 
> db.media.find ( { Released : {$all : ["2010","2009"] } }, { "Cast" : 0 } )

Searching for Multiple Expressions in a Document
You can use the $or operator to search for multiple expressions in a single query, where 
only one criterion needs to match to return a given document. Unlike the $in operator, 
$or allows you to specify both the key and the value, rather than only the value:
 
> db.media.find({ $or : [ { "Title" : "Toy Story 3" }, { "ISBN" :
"987-1-4302-3051-9" } ] } )
{ "_id" : ObjectId("4c5fc7d8db290000000067c5"), "Type" : "Book", "Title" :
"Definitive Guide to MongoDB, The", "ISBN" : "987-1-4302-3051-9",
"Publisher" : "Apress", "Author" : [“Hows, David”, "Membrey, Peter", 
"Plugge, Eelco",
"Hawkins, Tim" ] }
{ "_id" : ObjectId("4c5fc943db290000000067ca"), "Type" : "DVD", "Title" :
"Toy Story 3", "Released" : 2010 }
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It’s also possible to combine the $or operator with another query parameter. This 
will restrict the returned documents to only those that match the first query (mandatory), 
and then either of the two key/value pairs specified at the $or operator, as in this 
example:
 
> db.media.find({ "Type" : "DVD", $or : [ { "Title" : "Toy Story 3" }, {
"ISBN" : "987-1-4302-3051-9" } ] })
{ "_id" : ObjectId("4c5fc943db290000000067ca"), "Type" : "DVD", "Title" :
"Toy Story 3", "Released" : 2010 }
 

You could say that the $or operator allows you to perform two queries at the same 
time, combining the results of two otherwise unrelated queries.

Retrieving a Document with $slice
You can use the $slice operator to retrieve a document that includes a specific area from 
an array in that document. This can be particularly useful if you want to limit a certain set 
of items added to save bandwidth. The operator also lets you retrieve the results n items 
per page, a feature generally known as paging.

In theory, the $slice operator combines the capabilities of the limit() and skip() 
functions; however, limit() and skip()do not work on an array, whereas $slice does. 
The operator takes two parameters; the first indicates the total number of items to be 
returned. The second parameter is optional; if used, it ensures that the first parameter 
defines the offset, while the second defines the limit. The limit parameter can also 
indicate a negative condition.

The following example limits the items from the Cast list to the first three items:
 
> db.media.find({"Title" : "Matrix, The"}, {"Cast" : {$slice: 3}})
{ "_id" : ObjectId("4c5fcd3edb290000000067cb"), "Type" : "DVD", "Title" :
"Matrix, The", "Released" : 1999, "Cast" : [ "Keanu Reeves", "Carrie-Anne
Moss", "Laurence Fishburne" ] }
 

You can also get only the last three items by making the integer negative:
 
> db.media.find({"Title" : "Matrix, The"}, {"Cast" : {$slice: -3}})
{ "_id" : ObjectId("4c5fcd3edb290000000067cb"), "Type" : "DVD", "Title" :
"Matrix, The", "Released" : 1999, "Cast" : [ "Hugo Weaving", "Gloria 
Foster",
"Joe Pantoliano" ] }
 

Or you can skip the first two items and limit the results to three from that particular 
point (pay careful attention to the brackets):
 
> db.media.find({"Title" : "Matrix, The"}, {"Cast" : {$slice: [2,3] }})
{ "_id" : ObjectId("4c5fcd3edb290000000067cb"), "Type" : "DVD", "Title" :
"Matrix, The", "Released" : 1999, "Cast" : [ "Laurence Fishburne", "Hugo
Weaving", "Gloria Foster" ] }
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Finally, when specifying a negative integer, you can skip to the last five items and 
limit the results to four, as in this example:
 
> db.media.find({"Title" : "Matrix, The"}, {"Cast" : {$slice: [-5,4] }})
{ "_id" : ObjectId("4c5fcd3edb290000000067cb"), "Type" : "DVD", "Title" :
"Matrix, The", "Released" : 1999, "Cast" : [ "Carrie-Anne Moss","Laurence
Fishburne","Hugo Weaving","Gloria Foster"] }
 

Note■■   With version 2.4 MongoDB also introduced the $slice operator for $push  
operations, allowing you to limit the number of array elements when appending values to an 
array. This operator is discussed later in this chapter. Do not confuse the two, however.

Searching for Odd/Even Integers
The $mod operator lets you search for specific data that consists of an even or uneven 
number. This works because the operator takes the modulus of 2 and checks for a 
remainder of 0, thereby providing even-numbered results only.

For example, the following code returns any item in the collection that has an even-
numbered integer set to its Released field:
 
> db.media.find ( { Released : { $mod: [2,0] } }, {"Cast" : 0 } )
{ "_id" : ObjectId("4c45b5c18e0f0000000062aa"), "Type" : "DVD", "Title" :
"Blade Runner", "Released" : 1982 }
{ "_id" : ObjectId("4c45b5df8e0f0000000062ab"), "Type" : "DVD", "Title" :
"Toy Story 3", "Released" : 2010 }
 

Likewise, you can find any documents containing an uneven value in the Released 
field by changing the parameters in $mod, as follows:
 
> db.media.find ( { Released : { $mod: [2,1] } }, { "Cast" : 0 } )
{ "_id" : ObjectId("4c45b5b38e0f0000000062a9"), "Type" : "DVD", "Title" :
"Matrix, The", "Released" : 1999 }
 

Note■■  T he $mod operator only works on integer values, not on strings that contain a 
numbered value. For example, you can’t use the operator on { Released : "2010" }, 
because it’s in quotes and therefore a string.
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Filtering Results with $size
The $size operator lets you filter your results to match an array with the specified 
number of elements in it. For example, you might use this operator to do a search for 
those CDs that have exactly two songs on them:
 
> db.media.find ( { Tracklist : {$size : 2} } )
{ "_id" : ObjectId("4c1a86bb2955000000004076"), "Type" : "CD", "Artist" :
"Nirvana", "Title" : "Nevermind", "Tracklist" : [
        {
                "Track" : "1",
                "Title" : "Smells Like Teen Spirit",
                "Lenght" : "5:02"
        },
        {
                "Track" : "2",
                "Title" : "In Bloom",
                "Length" : "4:15"
        }
] }
 

Note■■   You cannot use the $size operator to find a range of sizes. For example, you  
cannot use it to find arrays with more than one element in them.

Returning a Specific Field Object
The $exists operator allows you to return a specific object if a specified field is either 
missing or found. The following example returns all items in the collection with a key 
named Author:
 
> db.media.find ( { Author : {$exists : true } } )
 

Similarly, if you invoke this operator with a value of false, then all documents that 
don’t have a key named Author will be returned:
 
> db.media.find ( { Author : {$exists : false } } )
 

Warning■■   Currently, the $exists operator is unable to use an index; therefore, using it 
requires a full table scan.
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Matching Results Based on the BSON Type
The $type operator lets you match results based on their BSON type. For instance, the 
following snippet lets you find all items that have a track list of the type Embedded Object 
(that is, it contains a list of information):
 
> db.media.find ( {  Tracklist: { $type : 3 } } )
{ "_id" : ObjectId("4c1a86bb2955000000004076"), "Type" : "CD", "Artist" :
"Nirvana", "Title" : "Nevermind", "Tracklist" : [
        {
                "Track" : "1",
                "Title" : "Smells Like Teen Spirit",
                "Lenght" : "5:02"
        },
        {
                "Track" : "2",
                "Title" : "In Bloom",
                "Length" : "4:15"
        }
] }
 

The known data types are defined in Table 4-1.

Table 4-1.  Known BSON Types and Codes

Code Data Type Code Data Type

–1 MiniKey 11 Regular Expression

1 Double 13 JavaScript Code

2 Character string (UTF8) 14 Symbol

3 Embedded object 15 JavaScript Code with scope

4 Embedded array 16 32-bit integer

5 Binary Data 17 Timestamp

7 Object ID 18 64-bit integer

8 Boolean type 127 MaxKey

9 Date type 255 MinKey

10 Null type
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Matching an Entire Array
If you want to match an entire array within a document, you can use the $elemMatch 
operator. This is particularly useful if you have multiple documents within your 
collection, some of which have some of the same information. This can make a default 
query incapable of finding the exact document you are looking for. This is because the 
standard query syntax doesn’t restrict itself to a single document within an array.

Let’s look at an example that illustrates this principle. For this to work, we need 
to add another document to the collection, one that has an identical item in it, but is 
otherwise different. Specifically, we’ll add another CD from Nirvana that happens to have 
the same track on it as the aforementioned CD (“Smells Like Teen Spirit”). However, on 
this version of the CD, the song is track 5, not track 1:
 
{
        "Type" : "CD",
        "Artist" : "Nirvana",
        "Title" : "Nirvana",
        "Tracklist" : [
                {
                        "Track" : "1",
                        "Title" : "You know you're right",
                        "Length" : "3:38"
                },
                {
                       "Track" : "5",
                       "Title" : "Smells like teen spirit",
                       "Length" : "5:02"
                }
        ]
}
 
> nirvana = ( { "Type" : "CD", "Artist" : "Nirvana", "Title" : "Nirvana",
"Tracklist" : [ { "Track" : "1", "Title" : "You Know You're Right", "Length"
: "3:38"}, {"Track" : "5", "Title" : "Smells Like Teen Spirit", "Length" :
"5:02" } ] } )
 
> db.media.insert(nirvana)
 

If you want to search for an album from Nirvana that has the song “Smells Like Teen 
Spirit” as Track 1 on the CD, you might think that the following query would do the job:
 
> db.media.find ( { "Tracklist.Title" : "Smells Like Teen Spirit",
"Tracklist.Track" : "1" } )
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Unfortunately, the preceding query will return both documents. The reason for this 
is that both documents have a track with the title called “Smells Like Teen Spirit” and 
both have a track number 1. If you want to match an entire document within the array, 
you can use $elemMatch, as in this example:
 
> db.media.find ( { Tracklist: { "$elemMatch" : { Title:
"Smells like teen spirit", Track : "1" } } } )
 
{ "_id" : ObjectId("4c1a86bb2955000000004076"), "Type" : "CD", "Artist" :
"Nirvana", "Title" : "Nevermind", "Tracklist" : [
        {
                "Track" : "1",
                "Title" : "Smells Like Teen Spirit",
                "Lenght" : "5:02"
        },
        {
                "Track" : "2",
                "Title" : "In Bloom",
                "Length" : "4:15"
        }
] }
 

This query gave the desired result and only returned the first document.

$not (meta-operator)
You can use the $not meta-operator to negate any check performed by a standard 
operator. The following example returns all documents in your collection, except for the 
one seen in the $elemMatch example:
 
> db.media.find ( { Tracklist : { $not : { "$elemMatch" : { Title:
"Smells Like Teen Spirit", "Track" : "1" } } } } )

Specifying Additional Query Expressions
Apart from the structured query syntax you’ve seen so far, you can also specify additional 
query expressions in JavaScript. The big advantage of this is that JavaScript is extremely 
flexible and allows you to do tons of additional things. The downside of using JavaScript is 
that it’s a tad slower than the native operators baked into MongoDB.
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For example, assume you want to search for a DVD within your collection that is 
older than 1995. All of the following code examples would return this information:
 
db.media.find ( { "Type" : "DVD", "Released" : { $lt : 1995 } } )
 
db.media.find ( { "Type" : "DVD", $where: "this.Released < 1995" } )
 
db.media.find ("this.Released < 1995")
 
f = function() { return this.Released < 1995 }
db.media.find(f)
 

And that’s how flexible MongoDB is! Using these operators should enable you to find 
just about anything throughout your collections.

Leveraging Regular Expressions
Regular expressions are another powerful tool you can use to query information. Regular 
expressions—regex, for short—are special text strings that you can use to describe your 
search pattern. These work much like wildcards, but they are far more powerful and 
flexible.

MongoDB allows you to use these regular expressions when searching for data in 
your collections; however, it will attempt to use an index whenever possible for simple 
prefix queries.

The following example uses regex in a query to find all items in the media collection 
that start with the word “Matrix”:
 
> db.media.find ( { Title : /Matrix*/i } )
 

Using regular expressions from MongoDB can make your life much simpler, so we’d 
recommend exploring this feature in greater detail as time permits or your circumstances 
can benefit from it.

Updating Data
So far you’ve learned how to insert and query for data in your database. Next, you’ll learn 
how to update that data. MongoDB supports quite a few update operators that you’ll 
learn how to use in the following sections.

Updating with update()
MongoDB comes with the update() function for performing updates to your data. The 
update() function takes three primary arguments: criteria, objNew and options.
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The criteria argument lets you specify the query that selects the record you want to 
update. You use the objNew argument to specify the updated information; or you can use 
an operator to do this for you. The options argument lets you specify your options when 
updating the document, and has two possible values: upsert and multi. The upsert 
option lets you specify whether the update should be an upsert—that is, it tells MongoDB 
to update the record if it exists, and create it if it doesn’t. Finally, the multi option lets 
you specify whether all matching documents should be updated or just the first one (the 
default action).

The following simple example uses the update() function without any fancy 
operators:
 
> db.media.update( { "Title" : "Matrix, The"}, {"Type" : "DVD", "Title" :
"Matrix, The", "Released" : 1999, "Genre" : "Action"}, { upsert: true} )
 

This example overwrites the document in the collection and saves it with the new 
values specified. Note that any fields that you leave out are removed (the document is 
basically being rewritten). Because the upsert argument is specified as true, any fields 
that do not exist yet will be added (the Genre key/value pair, in this case).

In case there happen to be multiple documents matching the criteria and you wish 
to upsert them all, the upsert and multi options can be added while using the $set 
modifier operator as shown here:
 
> db.media.update( { "Title" : "Matrix, The"}, {$set: {"Type" : "DVD", 
"Title" :
"Matrix, The", "Released" : 1999, "Genre" : "Action"} }, {upsert: true, 
multi: true} )
 

Note■■  A n upsert tells the database to “update a record if a document is present or to 
insert the record if it isn’t.”

Implementing an Upsert with the save( ) Command
You can also perform an upsert with the save() command. To do this, you need to specify 
the _id value; you can have this value added automatically or specify it manually yourself. 
If you do not specify the _id value, the save() command will assume it’s an insert and 
simply add the document into your collection.

The main benefit of using the save() command is that you do not need to specify 
that the upsert method should be used in conjunction with the update() command. 
Thus, the save() command gives you a quicker way to upsert data. In practice, the save() 
and update() commands look similar:
 
> db.media.update( { "Title" : "Matrix, The"}, {"Type" : "DVD", "Title" :
"Matrix, The", "Released" : "1999", "Genre" : "Action"}, { upsert: true} )
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> db.media.save( { "Title" : "Matrix, The"}, {"Type" : "DVD", "Title" :
"Matrix, The", "Released" : "1999", "Genre" : "Action"})
 

Obviously, this example assumes that the Title value acts as the id field.

Updating Information Automatically
You can use the modifier operations to update information quickly and simply in your 
documents, but without needing to type everything in manually. For example, you might 
use these operations to increase a number or to remove an element from an array.

We’ll be exploring these operators next, providing practical examples that show you 
how to use them.

Incrementing a Value with $inc
The $inc operator enables you to perform an (atomic) update on a key to increase the 
value by the given increment, assuming that the field exists. If the field doesn’t exist, it will 
be created. To see this in action, begin by adding another document to the collection:
 
> manga = ( { "Type" : "Manga", "Title" : "One Piece", "Volumes" : 612,
"Read" : 520 } )
{
        "Type" : "Manga",
        "Title" : "One Piece",
        "Volumes" : "612",
        "Read" : "520"
}
> db.media.insert(manga)
 

Now you’re ready to update the document. For example, assume you’ve read another 
four volumes of the One Piece manga, and you want to increment the number of Read 
volumes in the document. The following example shows you how to do this:
 
> db.media.update ( { "Title" : "One Piece"}, {$inc: {"Read" : 4} } )
> db.media.find ( { "Title" : "One Piece" } )
{
        "Type" : "Manga",
        "Title" : "One Piece ",
        "Volumes" : "612",
        "Read" : "524"
}
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Setting a Field’s Value
You can use the $set operator to set a field’s value to one you specify. This goes for any 
datatype, as in the following example:
 
> db.media.update ( { "Title" : "Matrix, The" }, {$set : { Genre :
"Sci-Fi" } } )
 

This snippet would update the genre in the document created earlier, setting it to 
Sci-Fi instead.

Deleting a Specified Field
The $unset operator lets you delete a given field, as in this example:
 
> db.media.update ( {"Title": "Matrix, The"}, {$unset : { "Genre" : 1 } } )
 

This snippet would delete the Genre key and its value from the document.

Appending a Value to a Specified Field
The $push operator allows you to append a value to a specified field. If the field is an 
existing array, then the value will be added. If the field doesn’t exist yet, then the field will 
be set to the array value. If the field exists, but it isn’t an array, then an error condition will 
be raised.

Begin by adding another author to your entry in the collection:
 
> db.media.update ( {"ISBN" : "978-1-4302-5821-6"}, {$push: { Author : 
"Griffin,
Stewie"} } )
 

The next snippet raises an error message because the Title field is not an array:

> db.media.update ( {"ISBN" : "978-1-4302-5821-6"}, {$push: { Title :
"This isn't an array"} } )
Cannot apply $push/$pushAll modifier to non-array

The following example shows how the document looks in the meantime:
 
> db.media.find ( { "ISBN" : "978-1-4302-5821-6" } )
{
    "Author" :
    [
        "Hows, David",
        "Membrey, Peter",
        "Plugge, Eelco",
        "Griffin, Stewie",
    ],
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    "ISBN" : "978-1-4302-5821-6",
    "Publisher" : "Apress",
    "Title" : "Definitive Guide to MongoDB 2nd ed., The",
    "Type" : "Book",
    "_id" : ObjectId("4c436231c603000000007ed0")
}

Specifying Multiple Values in an Array
When working with arrays, the $push operator will append the value specified to the 
given array, expanding the data stored within the given element. If you wish to add 
several separate values to the given array, you can use the optional $each modifier as in 
this example:
 
> db.media.update( { "ISBN" : "978-1-4302-5821-6" }, { $push: { Author : { 
$each: ["Griffin, Peter", "Griffin, Brian"] } } } )
{
    "Author" :
    [
        "Hows, David",
        "Membrey, Peter",
        "Plugge, Eelco",
        "Hawkins, Tim",
        "Griffin, Stewie",
        "Griffin, Peter",
        "Griffin, Brian"
    ],
    "ISBN" : "978-1-4302-5821-6",
    "Publisher" : "Apress",
    "Title" : "Definitive Guide to MongoDB 2nd ed., The",
    "Type" : "Book",
    "_id" : ObjectId("4c436231c603000000007ed0")
}
 

Optionally, you can use the $slice operator when using $each. This allows you to 
limit the number of elements within an array during a $push operation. $slice takes 
either a negative number or zero. Using a negative number ensures that only the  
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last n elements will be kept within the array, whereas using zero would empty the array. 
Note that the $slice operator has to be the first modifier to the $push operator in order to 
function as such:
 
> db.media.update( { "ISBN" : "978-1-4302-5821-6" }, { $push: { Author : { 
$each: ["Griffin, Meg", "Griffin, Louis"], $slice: -2 } } } )
{
    "Author" :
    [
        "Griffin, Meg",
        "Griffin, Louis"
    ],
    "ISBN" : "978-1-4302-5821-6",
    "Publisher" : "Apress",
    "Title" : "Definitive Guide to MongoDB 2nd ed., The",
    "Type" : "Book",
    "_id" : ObjectId("4c436231c603000000007ed0")
}
 

As you can see, the $slice operator ensured that not only were the two new values 
pushed, the data kept within the array was also limited to the value specified (two). The 
$slice operator can be a valuable tool when working with fixed-sized arrays.

Adding Data to an Array with $addToSet
The $addToSet operator is another command that lets you add data to an array. However, 
this operator only adds the data to the array if the data is not already there. In this way, 
$addToSet is unlike $push. By default, the $addToSet operator takes one argument. 
However, you can use the $each operator to specify additional arguments when using 
t$addToSet. The following snippet adds the author Griffin, Brian into the authors array 
because it isn’t there yet:
 
> db.media.update( { "ISBN" : "1-4302-3051-7" }, {$addToSet : { Author :
"Griffin, Brian" } } )
 

Executing the snippet again won’t change anything because the author is already in 
the array.

To add more than one value, however, you should take a different approach and use 
the $each operator, as well:
 
> db.media.update( { "ISBN" : "1-4302-3051-7" }, {$addToSet : { Author :
{ $each : ["Griffin, Brian","Griffin, Meg"] } } } )
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At this point, our document, which once looked tidy and trustworthy, has been 
transformed into something like this:
 
{
    "Author" :
    [
        "Hows, David",
        "Membrey, Peter",
        "Plugge, Eelco",
        "Hawkins, Tim",
        "Griffin, Stewie",
        "Griffin, Peter",
        "Griffin, Brian",
        "Griffin, Louis",
        "Griffin, Meg"
    ],
    "ISBN" : "1-4302-3051-7",
    "Publisher" : "Apress",
    "Title" : "Definitive Guide to MongoDB, The",
    "Type" : "Book",
    "_id" : ObjectId("4c436231c603000000007ed0")
}

Removing Elements from an Array
MongoDB also includes several methods that let you remove elements from an array, 
including $pop, $pull, $pullAll. In the sections that follow, you’ll learn how to use each 
of these methods for removing elements from an array.

The $pop operator lets you remove a single element from an array. This operator lets 
you remove the first or last value in the array, depending on the parameter you pass down 
with it. For example, the following snippet removes the last element from the array:
 
> db.media.update( { "ISBN" : "1-4302-3051-7" }, {$pop : {Author : 1 } } )
 

In this case, the $pop operator will pop Meg’s name off the list of authors. Passing 
down a negative number would remove the first element from the array. The following 
example removes Peter Membrey’s name from the list of authors:
 
> db.media.update( { "ISBN" : "1-4302-3051-7" }, {$pop : {Author : -1 } } )
 

Note■■   Specifying a value of -2 or 1000 wouldn’t change which element gets removed. 
Any negative number would remove the first element, while any positive number would 
remove the last element. Using the number 0 removes the last element from the array.
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Removing Each Occurrence of a Specified Value
The $pull operator lets you remove each occurrence of a specified value from an array. 
This can be particularly useful if you have multiple elements with the same value in your 
array. Let’s begin this example by using the $push parameter to add Stewie back to the list 
of authors:
 
> db.media.update ( {"ISBN" : "1-4302-3051-7"}, {$push: { Author :
"Griffin, Stewie"} } )
 

Stewie will be in and out of the database a couple more times as we walk through this 
book’s examples. You can remove all occurrences of this author in the document with the 
following code:
 
> db.media.update ( {"ISBN" : "1-4302-3051-7"}, {$pull : { Author : 
"Griffin,
Stewie" } } )

Removing Multiple Elements from an Array
You can also remove multiple elements with different values from an array. The $pullAll 
operator enables you to accomplish this. The $pullAll operator takes an array with all 
the elements you want to remove, as in the following example:
 
> db.media.update( { "ISBN" : "1-4302-3051-7"}, {$pullAll : { Author :
["Griffin, Louis","Griffin, Peter","Griffin, Brian"] } } )
 

The field from which you remove the elements (Author in the preceding example) 
needs to be an array. If it isn’t, you’ll receive an error message.

Specifying the Position of a Matched Array
You can use the $ operator in your queries to specify the position of the matched array 
item in your query. You can use this operator for data manipulation after finding an array 
member. For instance, assume you’ve added another track to your track list, but you 
accidently made a typo when entering the track number:
 
> db.media.update( { "Title" : "Nirvana" }, {$addToSet : { Tracklist :
{"Track" : 2,"Title": "Been a Son", "Length":"2:23"} } } )
 
{
    "Artist" : "Nirvana",
    "Title" : "Nirvana",
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    "Tracklist" : [
        {
                "Track" : "1",
                "Title" : "You Know You're Right",
                "Length" : "3:38"
        },
        {
                "Track" : "5",
                "Title" : "Smells Like Teen Spirit",
                "Length" : "5:02"
        },
        {
                "Track" : 2,
                "Title" : "Been a Son",
                "Length" : "2:23"
        }
    ],
    "Type" : "CD",
    "_id" : ObjectId("4c443ad6c603000000007ed5")
}
 

It so happens you know that the track number of the most recent item should be 3 
rather than 2. You can use the $inc method in conjunction with the $ operator to increase 
the value from 2 to 3, as in this example:
 
> db.media.update( { "Tracklist.Title" : "Been a son"},
{$inc:{"Tracklist.$.Track" : 1} } )
 

Note that only the first item it matches will be updated. Thus, if there are two 
identical elements in the comments array, only the first element will be increased.

Atomic Operations
MongoDB supports atomic operations executed against single documents. An atomic 
operation is a set of operations that can be combined in such a way that the set of 
operations appears to be merely one single operation to the rest of the system. This set of 
operations will have either a positive or a negative outcome as the final result.

You can call a set of operations an atomic operation if it meets the following pair of 
conditions:

1.	 No other process knows about the changes being made until 
the entire set of operations has completed.

2.	 If one of the operations fails, the entire set of operations (the 
entire atomic operation) will fail, resulting in a full rollback, 
where the data is restored to its state prior to running the 
atomic operation.
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A standard behavior when executing atomic operations is that the data will be 
locked and therefore unable to be reached by other queries. However, MongoDB does not 
support locking or complex transactions for a number of reasons:

In sharded environments (see Chapter 12 for more information •	
on such environments), distributed locks can be expensive and 
slow. MongoDB’s goal is to be lightweight and fast, so expensive 
and slow goes against the principle.

MongoDB developers don’t like the idea of deadlocks. In their •	
view, it’s preferable for a system to be simple and predictable 
instead.

MongoDB is designed to work well for real-time problems. When •	
an operation is executed that locks large amounts of data, it would 
also stop some smaller light queries for an extended period of 
time. Again, this goes against the MongoDB goal of speed.

MongoDB includes several update operators (as noted previously), all of which can 
atomically update an element:

•	 $set: Sets a particular value.

•	 $unset: Removes a particular value.

•	 $inc: Increments a particular value by a certain amount.

•	 $push: Appends a value to an array.

•	 $pull: Removes one or more values from an existing array.

•	 $pullAll: Removes several values from an existing array.

Using the Update if Current Method
Another strategy that atomic update uses is the update-if-current method. This method 
takes the following three steps:

1.	 It fetches the object from the document.

2.	 It modifies the object locally (with any of the previously 
mentioned operations, or a combination of them).

3.	 It sends an update request to update the object to the new 
value, in case the current value still matches the old  
value fetched.
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You can review the result of the operation to see how many documents were updated 
and if there were any errors. Consider the following update:
 
> db.media.update( { "Tracklist.Title" : "Been a son"},
{$inc:{"Tracklist.$.Track" : 1} } )
 

When you issue this command you should see the following result:
 
WriteResult({ "nMatched" : 1, "nUpserted" : 0, "nModified" : 1 })
 

We can see from this result, that our update matched one document and modified 
one document.

In this example, you incremented Tracklist.Track using the track list title as an 
identifier. But now consider what happens if the track list data is changed by another user 
using the same method while MongoDB was modifying your data. Because Tracklist.Title 
remains the same, you might assume (incorrectly) that you are updating the original data, 
when in fact you are overwriting the changes.

This is known as the ABA problem. This scenario might seem unlikely, but in a multi-
user environment, where many applications are working on data at the same time, this 
can be a significant problem.

To avoid this problem, you can do one of the following:

Use the entire object in the update’s query expression, instead of •	
just the _id and comments.by field.

Use •	 $set to set the field you care about. If other fields have 
changed, they won’t be affected by this.

Put a version variable in the object and increment it on each •	
update.

When possible, use a •	 $ operator instead of an update-if-current 
sequence of operations.

Note■■   MongoDB does not support updating multiple documents atomically in a single 
operation. Instead, you can use nested objects, which effectively make them one document 
for atomic purposes.

Modifying and Returning a Document Atomically
The findAndModify command also allows you to perform an atomic update on a 
document. This command modifies the document and returns it. The command takes 
three main operators: <query>, which you use to specify the document you’re executing 
it against; <sort>, used to sort the matching documents when multiple match, and 
<operations>, which you use to specify what needs to be done.
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Now let’s look at a handful of examples that illustrate how to use this command. The 
first example finds the document you’re searching for and removes it once it is found:
 
> db.media.findAndModify( { "Title" : "One Piece",sort:{"Title": -1}, 
remove:
true} )
{
        "_id" : ObjectId("4c445218c603000000007ede"),
        "Type" : "Manga",
        "Title" : "One Piece",
        "Volumes" : 612,
        "Read" : 524
}
 

This code returned the document it found matching the criteria. In this case, it found 
and removed the first item it found with the title “One Piece.” If you execute a find() 
function now, you will see that the document is no longer within the collection.

The next example modifies the document rather than removing it:
 
> db.media.findAndModify( { query: { "ISBN" : "987-1-4302-3051-9" }, sort:
{"Title":-1}, update: {$set: {"Title" : " Different Title"} } } )
 

The preceding example updates the title from “Definitive Guide to MongoDB, The” 
to “Different Title”—and returns the old document (as it was before the update) to your 
shell. If you would rather see the results of the update on the document instead, you can 
add the new operator after your query:
 
> db.media.findAndModify( { query: { "ISBN" : "987-1-4302-3051-9" }, sort:
{"Title":-1}, update: {$set: {"Title" : " Different Title"} }, new:true } )
 

Note that you can use any modifier operation with this command, not just $set.

Renaming a Collection
It might happen that you discover you have named a collection incorrectly, but you’ve 
already inserted some data into it. This might make it troublesome to remove and read 
the data again from scratch.

Instead, you can use the renameCollection() function to rename your existing 
collection. The following example shows you how to use this simple and straightforward 
command:
 
> db.media.renameCollection("newname")
{ "ok" : 1 }
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If the command executes successfully, an OK will be returned. If it fails, however  
(if the collection doesn’t exist, for example), then the following message is returned:
 
{ "errmsg" : "assertion: source namespace does not exist", "ok" : 0 }
 

The renameCollection command doesn’t take many parameters (unlike some 
commands you’ve seen so far); however, it can be quite useful in the right circumstances.

Removing Data
So far we’ve explored how to add, search for, and modify data. Next, we’ll examine how to 
remove documents, entire collections, and the databases themselves.

Previously, you learned how to remove data from a specific document (using 
the $pop command, for instance). In this section, you will learn how to remove full 
documents and collections. Just as the insert() function is used for inserting and 
update() is used for modifying a document, remove() is used to remove a document.

To remove a single document from your collection, you need to specify the criteria 
you’ll use to find the document. A good approach is to perform a find() first; this ensures 
that the criteria used are specific to your document. Once you are sure of the criterion, 
you can invoke the remove() function using that criterion as a parameter:
 
> db.newname.remove( { "Title" : "Different Title" } )
 

This statement removes the book added previously or any other item in your 
collection that has the same title. The fact this statement removes all books by that title is 
one reason why it’s best to specify the item’s _id value—it’s always unique.

Or you can use the following snippet to remove all documents from the newname 
library (remember, we renamed the media collection this previously):
 
> db.newname.remove({})
 

Warning■■   When removing a document, you need to remember that any reference to 
that document will remain within the database. For this reason, be sure you manually  
delete or update those references as well; otherwise, these references will return null 
when evaluated. Referencing will be discussed in the next section.

If you want to remove an entire collection, you can use the drop() function. The 
following snippet removes the entire newname collection, including all of its documents:
 
> db.newname.drop()
true
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The drop() function returns either true or false, depending on whether the 
operation has completed successfully. Likewise, if you want to remove an entire database 
from MongoDB, you can use the dropDatabase() function, as in this example:
 
> db.dropDatabase()
{ "dropped" : "library", "ok" : 1 }
 

Note that this snippet will remove the database you are currently working in (again, 
be sure to check db to see which database is your current database).

Referencing a Database
At this point, you have an empty database again. You’re also familiar with inserting 
various kinds of data into a collection. Now you’re ready to take things a step further and 
learn about database referencing. As you’ve already seen, there are plenty of scenarios 
where embedding data into your document will suffice for your application (such as the 
track list or the list of authors in the book entry). However, sometimes you do need to 
reference information in another document. The following sections will explain how to go 
about doing so.

Just as with SQL, references between documents in MongoDB are resolved by 
performing additional queries on the server. MongoDB gives you two ways to accomplish 
this: referencing them manually or using the DBRef standard, which many drivers also 
support.

Referencing Data Manually
The simplest and most straightforward way to reference data is to do so manually. When 
referencing data manually, you store the value from the _id of the other document in 
your document, either through the full ID or through a simpler common term. Before 
proceeding with an example, let’s add a new document and specify the publisher’s 
information in it (pay close attention to the _id field:
 
> apress = ( { "_id" : "Apress", "Type" : "Technical Publisher", "Category" 
:
["IT", "Software","Programming"] } )
{
        "_id" : "Apress",
        "Type" : "Technical Publisher",
        "Category" : [
                "IT",
                "Software",
                "Programming"
        ]
}
> db.publisherscollection.insert(apress)
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Once you add the publisher’s information, you’re ready to add an actual document 
(for example, a book’s information) into the media collection. The following example adds 
a document, specifying Apress as the name of the publisher:
 
> book = ( { "Type" : "Book", "Title" : "Definitive Guide to MongoDB 2nd 
ed., The",
"ISBN" : "987-1-4302-5821-6", "Publisher" : "Apress","Author" : ["Hows, 
David",”"Plugge, Eelco","Membrey,Peter",Hawkins, Tim”] } )
{
        "Type" : "Book",
        "Title" : "Definitive Guide to MongoDB 2nd ed., The",
        "ISBN" : "987-1-4302-5821-6",
        "Publisher": "Apress",
        "Author" : [
                "Hows, David"
                "Membrey, Peter",
                "Plugge, Eelco",
                “Hawkins, Tim”
        ]
}
> db.media.insert(book)
 

All the information you need has been inserted into the publisherscollection and 
media collections, respectively. You can now start using the database reference. First, 
specify the document that contains the publisher’s information to a variable:
 
> book = db.media.findOne()
{
        "_id" : ObjectId("4c458e848e0f00000000628e"),
        "Type" : "Book",
        "Title" : "Definitive Guide to MongoDB, The",
        "ISBN" : "987-1-4302-3051-9",
        "Publisher" : "Apress",
        "Author" : [
                "Hows, David"
                "Membrey, Peter",
                "Plugge, Eelco",
                "Hawkins, Tim"
        ]
}
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To obtain the information itself, you combine the findOne function with some dot 
notation:
 
> db.publisherscollection.findOne( { _id : book.Publisher } )
{
        "_id" : "Apress",
        "Type" : "Technical Publisher",
        "Category" : [
                "IT",
                "Software",
                "Programming"
        ]
}
 

As this example illustrates, referencing data manually is straightforward and doesn’t 
require much brainwork. Here, the _id in the documents placed in the users collection 
has been manually set and has not been generated by MongoDB (otherwise, the _id 
would be an object ID).

Referencing Data with DBRef
The DBRef standard provides a more formal specification for referencing data between 
documents. The main reason for using DBRef over a manual reference is that the 
collection can change from one document to the next. So, if your referenced collection 
will always be the same, the referencing data manually (as just described) is fine.

With DBRef, the database reference is stored as a standard embedded (JSON/
BSON) object. Having a standard way to represent references means that drivers and data 
frameworks can add helper methods that manipulate the references in standard ways.

The syntax for adding a DBRef reference value looks like this:
 
{ $ref : <collectionname>, $id : <id value>[, $db : <database name>] }
 

Here, <collectionname> represents the name of the collection referenced (for 
example, publisherscollection); <id value> represents the value of the _id field for 
the object you are referencing; and the optional $db allows you to reference documents 
that are placed in other databases.

Let’s look at another example using DBRef from scratch. Begin by emptying your two 
collections and adding a new document:
 
> db.publisherscollection.drop()
true
> db.media.drop()
true
> apress = ( { "Type" : "Technical Publisher", "Category" :
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["IT","Software","Programming"] } )
{
        "Type" : "Technical Publisher",
        "Category" : [
                "IT",
                "Software",
                "Programming"
        ]
}
> db.publisherscollection.save(apress)
 

So far you’ve defined the variable apress and saved it using the save() function. 
Next, display the updated contents of the variable by typing in its name:
 
> apress
{
"Type" : "Technical Publisher",
"Category" : [
     "IT",
     "Software",
     "Programming"
],
"_id" : ObjectId("4c4597e98e0f000000006290")
}
 

So far you’ve defined the publisher and saved it to the publisherscollection 
collection. Now you’re ready to add an item to the media collection that  
references the data:
 
> book = { "Type" : "Book", "Title" : "Definitive Guide to MongoDB 2nd ed., 
The",
"ISBN" : "978-1-4302-5821-6", "Author": ["Hows, David”,"Membrey, 
Peter","Plugge,
Eelco",”Hawkins, Tim"], Publisher : [ new DBRef ('publisherscollection',
apress._id) ] }
 
{
        "Type" : "Book",
        "Title" : "Definitive Guide to MongoDB 2nd ed., The",
        "ISBN" : "987-1-4302-5821-6",
        "Author" : [
                "Hows, David"
                "Membrey, Peter",
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                "Plugge, Eelco",
                "Hawkins, Tim"
 
        ],
        "Publisher" : [
                DBRef(“publishercollection”, “Apress”)
        ]
}
> db.media.save(book)
 

And that’s it! Granted, the example looks a little less simple than the manual method 
of referencing data; however, it’s a good alternative for cases where collections can 
change from one document to the next.

Implementing Index-Related Functions
In the previous chapter, you took a brief look at what indexes can do for your database. 
Now it’s time to briefly learn how to create and use indexes. Indexing will be discussed in 
greater detail in Chapter 10, but for now let’s look at the basics. MongoDB includes a fair 
number of functions available for maintaining your indexes; we’ll begin by creating an 
index with the ensureIndex() function.

The ensureIndex() function takes at least one parameter, which is the name of a key 
in one of your documents that you will use to build the index. In the previous example, 
you added a document to the media collection that used the Title key. This collection 
would be well served by an index on this key.

Tip■■  T he rule of thumb in MongoDB is to create an index for the same sort of scenarios 
where you’d want to create one in MySQL.

You can create an index for this collection by invoking the following command:
 
> db.media.ensureIndex( { Title : 1 } )
 

This command ensures that an index will be created for all the Title values from  
all documents in the media collection. The :1 at the end of the line specifies the direction 
of the index: 1 stores the items in ascending order, whereas -1 stores them in  
descending order.
 
// Ensure ascending index
db.media.ensureIndex( { Title :1 } )
 
// Ensure descending index
db.media.ensureIndex( { Title :-1 } )
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Tip■■   Searching through indexed information is fast. Searching for non-indexed  
information is slow, as each document needs to be checked to see if it’s a match.

BSON allows you to store full arrays in a document; however, it would also be 
beneficial to be able to create an index on an embedded key. Luckily, the developers of 
MongoDB thought of this, too, and added support for this feature. Let’s build on one of 
the earlier examples in this chapter, adding another document into the database that has 
embedded information:
 
> db.media.insert( { "Type" : "CD", "Artist" : "Nirvana","Title" :
"Nevermind", "Tracklist" : [ { "Track" : "1", "Title" : "Smells Like Teen
Spirit", "Length" : "5:02" }, {"Track" : "2","Title" : "In Bloom", "Length" 
:
"4:15" } ] } )
 
{ "_id" : ObjectId("4c45aa2f8e0f000000006293"), "Type" : "CD", "Artist" :
"Nirvana", "Title" : "Nevermind", "Tracklist" : [
        {
                "Track" : "1",
                "Title" : "Smells Like Teen Spirit",
                "Length" : "5:02"
        },
        {
                "Track" : "2",
                "Title" : "In Bloom",
                "Length" : "4:15"
        }
] }
 

Next, you can create an index on the Title key for all entries in the track list:
 
> db.media.ensureIndex( { "Tracklist.Title" : 1 } )
 

The next time you perform a search for any of the titles in the collection—assuming 
they are nested under Tracklist—the titles will show up instantly. Next, you can take this 
concept one step further and use an entire (sub)document as a key, as in this example:
 
> db.media.ensureIndex( { "Tracklist" : 1 } )
 

This statement indexes each element of the array, which means you can now search 
for any object in the array. These types of keys are also known as multi keys. You can also 
create an index based on multiple keys in a set of documents. This process is known as 
compound indexing. The method you use to create a compound index is mostly the same; 
the difference is that you specify several keys instead of one, as in this example:
 
> db.media.ensureIndex({"Tracklist.Title": 1, "Tracklist.Length": -1})
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The benefit of this approach is that you can make an index on multiple keys (as in the 
previous example, where you indexed an entire subdocument). Unlike the subdocument 
method, however, compound indexing lets you specify whether you want one of the two 
fields to be indexed in descending order. If you perform your index with the subdocument 
method, you are limited to ascending or descending order only. There is more on 
compound indexes in Chapter 10.

Surveying Index-Related Commands
So far you’ve taken a quick glance at one of the index-related commands, ensureIndex(). 
Without a doubt, this is the command you will primarily use to create your indexes. 
However, you might also find a pair of additional functions useful: hint() and min()/max(). 
You use these functions to query for data. We haven’t covered them to this point because 
they won’t function without a custom index. But now let’s take a look at what they can do 
for you.

Forcing a Specified Index to Query Data
You can use the hint() function to force the use of a specified index when querying for 
data. The intended benefit of using this command is to improve the query performance. 
To see this principle in action, try performing a find with the hint() function without 
defining an index:
 
> db.media.find( { ISBN: " 978-1-4302-5821-6"} ) . hint ( { ISBN: -1 } )
error: { "$err" : "bad hint", "code" : 10113 }
 

If you create an index on ISBN numbers, this technique will be more successful. Note 
that the first command’s background parameter ensures that the indexing is done on the 
background:
 
> db.media.ensureIndex({ISBN: 1}, {background: true});
> db.media.find( { ISBN: " 978-1-4302-5821-6"} ) . hint ( { ISBN: 1 } )
 
{ "_id" : ObjectId("4c45a5418e0f000000006291"), "Type" : "Book", "Title" 
: "Definitive Guide to MongoDB, The", "ISBN" : " 978-1-4302-5821-6", 
"Author" : ["Hows, David","Membrey, Peter", "Plugge, Eelco",”Hawkins,Tim”], 
"Publisher" : [
       {
                "$ref" : "publisherscollection",
                "$id" : ObjectId("4c4597e98e0f000000006290")
        }
] }
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To confirm that the given index is being used, you can optionally add the explain() 
function, returning information about the query plan chosen. Here, the indexBounds 
value tells you about the index used:
 
> db.media.find( { ISBN: " 978-1-4302-5821-6"} ) . hint ( { ISBN: 1 } 
).explain()
{
     "cursor" : "BtreeCursor ISBN_1",
     "isMultiKey" : false,
     "n" : 1,
     "nscannedObjects" : 1,
     "nscanned" : 1,
     "nscannedObjectsAllPlans" : 1,
     "nscannedAllPlans" : 1,
     "scanAndOrder" : false,
     "indexOnly" : false,
     "nYields" : 0,
     "nChunkSkips" : 0,
     "millis" : 0,
     "indexBounds" : {
          "ISBN" : [
                  [
                          {
                                  "$minElement" : 1
                          },
                          {
                                  "$maxElement" : 1
                          }
                  ]
          ]
     },
     "server" : "localhost:27017"
}

Constraining Query Matches
The min() and max() functions enable you to constrain query matches to only those 
that have index keys between the min and max keys specified. Therefore, you will need 
to have an index for the keys you are specifying. Also, you can either combine the two 



Chapter 4 ■ Working with Data

99

functions or use them separately. Let’s begin by adding a few documents that enable you 
to take advantage of these functions. First, create an index on the Released field:
 
> db.media.insert( { "Type" : "DVD", "Title" : "Matrix, The", "Released" :
1999} )
> db.media.insert( { "Type" : "DVD", "Title" : "Blade Runner", "Released" :
1982 } )
> db.media.insert( { "Type" : "DVD", "Title" : "Toy Story 3", "Released" :
2010} )
> db.media.ensureIndex( { "Released": 1 } )
 

You can now use the max() and min() commands, as in this example:
 
> db.media.find() . min ( { Released: 1995 } ) . max ( { Released : 2005 } )
{ "_id" : ObjectId("4c45b5b38e0f0000000062a9"), "Type" : "DVD", "Title" :
"Matrix, The", "Released" : 1999 }
 

If no index is created, then an error message will be returned, saying that no index 
has been found for the specified key pattern. Obviously, you will need to define which 
index must be used with the hint() function:
 
> db.media.find() . min ( { Released: 1995 } ) .
max ( { Released : 2005 } ). hint ( { Released : 1 } )
{ "_id" : ObjectId("4c45b5b38e0f0000000062a9"), "Type" : "DVD", "Title" :
"Matrix, The", "Released" : 1999 }
 

Note■■  T he min() value will be included in the results, whereas the max() value will be 
excluded from the results.

Generally speaking, it is recommended that you use $gt and $lt (greater than and 
less than, respectively) rather than min() and max() because $gt and $lt don’t require an 
index. The min() and max() functions are used primarily for compound keys.

Summary
In this chapter, we’ve taken a look at the most commonly used commands and options 
that can be performed with the MongoDB shell to manipulate data. We also examined 
how to search for, add, modify, and delete data, and how to modify your collections and 
databases. Next, we took a quick look at atomic operations, how to use aggregation, and 
when to use operators such as $elemMatch. Finally, we explored how to create indexes 
and when to use them. We examined what indexes are used for, how you can drop them, 
how to search for your data using the indexes created, and how to check for running 
indexing operations.

In the next chapter, we’ll look into the fundamentals of GridFS, including what it is, 
what it does, and how it can be used to your benefit.
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Chapter 5

GridFS

We live in a world of high-definition video, 12MP cameras, and storage media that can 
hold 50GB of data on a disc the size of a CD-ROM. In that context, the 16MB limit for the 
maximum size of a MongoDB document might seem laughably inadequate. Indeed, you 
might wonder why MongoDB, which has been designed as a database for today’s high-tech 
age, has such a seemingly strange limitation. The short answer is performance.

If data were stored in the document itself, it would obviously get very large, which 
in turn would make the data harder to work with. For example, pulling back the whole 
document would require loading the files in the document, as well. You could work 
around this issue, but you would still need to pull back the entire file whenever you 
accessed it, even if you only wanted a small section of it. You can’t ask for a chunk of data 
in the middle of a document—it’s an all-or-nothing proposition. Fortunately, MongoDB 
features a unique and somewhat elegant solution to this problem. MongoDB enables 
you to store large files quite easily, yet it also allows you to access parts of the file without 
retrieving the entire thing—all while maintaining high performance. It achieves this by 
leveraging a specification known as GridFS.

Note■■   One interesting thing about GridFS is that it isn’t actually a software feature. For 
example, there isn’t any special server-side code in MongoDB that manages GridFS. Instead, 
GridFS is a simple specification used by all of the supported drivers on MongoDB. The key 
benefit of such a specification is that files stored by one driver can be accessed by any other 
driver that follows the same convention.

This approach adheres closely to the MongoDB principle of keeping things simple. 
Because GridFS uses standard MongoDB features, it’s easy to implement and work with 
the specification from the driver’s point of view. It also means you can poke around by 
hand if you really want to, as to MongoDB files in the GridFS specification are just normal 
collections containing documents.
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Filling in Some Background
Chapter 1 touched on the fact that we have been taught to use databases for even simple 
storage for many years. For example, the book one of us bought to help improve his PHP 
more than 15 years ago introduced MySQL in Chapter 3. Considering the complexity of 
SQL and databases in the real world (not to mention in theory), you might wonder why 
a book intended for beginners would practically start off with SQL. After all, it was a PHP 
book and not a MySQL book.

One thing most people don’t appreciate until they try it is that reading and writing 
data directly to disk is hard. Some people don’t agree with us on this point—after all, 
opening and reading files in Python might seem trivial. And it is: in simpler scenarios, 
working with files is rather painless when using PHP. If all you want to do is read in lines 
and process them, you’re unlikely to have any trouble.

On the other hand, things become a lot harder if you want to search a file or store 
complicated or structured data. Even if you can work out how to do this and create a 
solution, your solution is unlikely to be faster or more efficient than relying on a database 
instead. Today’s applications depend on finding and storing data quickly—and databases 
make this possible for those of us who can’t or don’t want to write such a system 
ourselves.

One area that is glossed over by many books is the storing of files. Most books that 
teach you to use a database to store your data also teach you to read and write to the 
filesystem instead when you need to store files. In some ways, this isn’t usually a problem, 
because it’s much easier to read and write simple files than to process what’s in them. 
There are some issues, however. First, the developer must have permission to write 
those files in the first place, and that requires giving the web server permission to write 
to the local filesystem. This might not seem likely to pose a problem, but it gives system 
administrators nightmares—getting files onto a server is the first stage in being able to 
compromise it.

Databases can store binary files; typically, it’s just not elegant for them to do so. 
MySQL has a special column type called BLOB. PostgreSQL requires special procedures 
to be followed to store such files—and the data isn’t stored in the table itself. In other 
words, it’s messy. These solutions are obviously bolt-ons. Thus, it’s not surprising that 
people choose to write data to the disk instead. But that approach also has issues. Apart 
from the problems with security, it adds another directory that needs to be backed up, 
and you must also ensure that this information is replicated to all the appropriate servers. 
There are filesystems that provide the ability to write to disk and have that content fully 
replicated (including GFS); but these solutions are complex and add overhead; moreover, 
these features typically make your solution harder to maintain.

MongoDB, on the other hand, enforces a maximum document size of 16MB. This is 
more than enough for storing rich documents, and it might have sufficed a few years ago 
for storing many other types of files as well. However, this limit is wholly inadequate for 
today’s environment.
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Working with GridFS
Next, we’ll take a brief look at how GridFS is implemented. As the MongoDB website 
points out, you do not need to understand or be aware of the underlying implementation 
of GridFS to use it. In fact, you can simply let the driver handle the heavy lifting for you. 
For the most part, the drivers that support GridFS implement file handling in a language-
specific way. For example, the MongoDB driver for Python works in a manner that is 
wholly consistent with Python, as you’ll see shortly. If the ins-and-outs of GridFS don’t 
interest you, then just skip ahead to the next section. We promise you won’t miss anything 
that enables you to use MongoDB effectively!

GridFS consists of two parts. More specifically, it consists of two collections. One 
collection holds the filename and related information such as size (called metadata), 
while the other collection holds the file data itself, usually in 256K chunks. The 
specification calls for these to be named files and chunks, respectively. By default, the 
files and chunks collections are created in the fs namespace, but this can be changed. 
The ability to change the default namespace is useful if you want to store different types of 
files. For example, you might want to keep image and movie files separate.

Getting Started with the Command-Line Tools
Now that we have some of the background out of the way, let’s look at how to get started 
with GridFS by exploring the command-line tools available to leverage it. First, we will 
need a file to play with. To keep things simple, let’s use the dictionary file. On Ubuntu, you 
can find this at /usr/share/dict/words. However, there are various levels of symbolic 
links, so you might want to run this command first:
 
root@core2:/usr/share/dict# cat words > /tmp/dictionary
 

Note■■   In Ubuntu, you might need to use apt-get install wbritish to get the  
dictionary file installed.

This command copies all the contents of the file to a nice and simple path that you 
can use easily. Of course, you can use any file that you wish for this example; it doesn’t 
need to be any particular size or type.

Rather than describe all the options you can use with, let’s jump right in and 
start playing with some of the tool’s features. This book assumes that you’re running 
mongofiles on the same machine as MongoDB. If you’re not, then you’ll need to use the 
–h option to specify the host that MongoDB is running on. You’ll learn about the other 
options available in the mongofiles command after putting it through its paces.
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First, let’s list all the files in the database. We’re not expecting any files to be in there 
yet, but let’s make sure. The list command lists the files in the database so far:
 
$ mongofiles list
connected to: 127.0.0.1
$
 

OK, so that probably wasn’t very exciting. Keep in mind that mongofiles is a proof-
of-concept tool; it’s probably not a tool you will use much with your own applications. 
However, mongofiles is great for learning and testing. Once you create a file, you can use 
the tool to explore the files and chunks that are created.

Let’s kick things up a notch and the put command to add the dictionary file created 
previously (remember: you can use any file that you like for this example):
 
$ mongofiles put /tmp/dictionary
connected to: 127.0.0.1
added file: { _id: ObjectId('51cb61b26487b3d8ce7af440'), filename: "/tmp/
dictionary", chunkSize: 262144, uploadDate: new Date(1372283314621), md5: 
"40c0825855792bd20e8a2d515fe9c3e3", length: 4953699 }}}
done!
$
 

This example returns some useful information; however, let’s double-check the 
information it shows by confirming that the file is there. Do so by rerunning the list 
command:
 
$  mongofiles list
connected to: 127.0.0.1
/tmp/dictionary 4953699
$
 

This example shows the dictionary file, along with its size. The information clearly 
comes from the files collection, but we’re getting ahead of ourselves. Let’s take a 
moment to step back and examine the output returned from the put command in this 
example.

Using the _id Key
As you know, each document in MongoDB includes a unique identifier stored in the _id 
key. Like MySQL’s auto_increment field, the _id key is not of much direct interest, apart 
from the fact that it allows you to pick out a specific file.
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Working with Filenames
The output from the put command also shows a Filename key, which itself needs a little 
explanation. Generally, you will want to keep this field unique to help prevent major 
confusion; however, that’s not entirely necessary. In fact, if you run the put command 
again, you’ll end up with two documents that look identical. In this case, the files and 
metadata are identical, apart from the _id key. You might be surprised by this and 
wonder why MongoDB doesn’t update the file that exists rather than create a new one. 
The reason is that there could be many cases where you would have filenames that are 
identical. For example, if you built a system to store student assignments, then chances 
are pretty good that at least some of the filenames would be the same. MongoDB cannot 
assume that identical filenames (even those with identical sizes) are in fact the same file. 
Thus, there are many cases where it would be a mistake for MongoDB to update the file. 
Of course, you can use the _id key to update a specific file; and you’ll learn more about 
this topic in the upcoming Python-based experiments.

Determining a File’s Length
The put command also returns a file’s length, which is both useful information and 
critical to how GridFS works. While it is nice to know how big a file is for reference, the 
file’s size also plays a big part when you write your own applications. For example, when 
sending a file over the Web (through HTTP, for example), you need to specify how big the 
file is. Not all servers do this; for example, when downloading files from certain sites, you 
may have noticed that your browser can tell you the speed you’re downloading the file at, 
but not how long it will take to finish downloading the file. This is because the server did 
not provide size information.

Knowing the size of your file is important in one other respect. Earlier, we mentioned 
that a file is broken up into chunks—that is, the file is split into smaller pieces. By default, 
the chunk size is 256K, but that can be changed to another value if you wish. To work out 
how many chunks a file takes up, you need to know two things. First you must know how 
big each chunk is; and second, you must know the file size, so that you can tell how many 
chunks there are.

You might think that this shouldn’t be important. After all, if you have a 1MB file 
and the chunk size is 256K, then you know that you must start with chunk number four if 
you want to access data starting at the 800K mark. Yet you still need to know how big the 
overall file is for the following reason: if you don’t know the size, you cannot work out how 
many valid chunks there are. In the previous example, there’s nothing to stop you asking 
for data that starts at 1.26MB (that is, the sixth chunk). In this case, that chunk doesn’t 
exist, but there is no way to know that without a reference to the file size. Of course, the 
driver handles all of this for you, so there’s no need to worry too much about it; however, 
knowing how GridFS works “behind the scenes” will certainly help when it comes to 
debugging your applications.
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Working with Chunk Sizes
The put command also returns the chunk size because, although there is a default chunk 
size, this default can be changed on a file-by-file basis. This allows flexible sizing. If your 
website streams video, you might want to have many chunks so that you can easily skip 
to any part of a given video with ease. If you had one big file, you would have to return the 
whole file, and then find the starting point for the specified section in it. With GridFS, you 
can pull back data at the chunk level. If you’re using the default size, then you can start 
retrieving data from any 256K chunk. Of course, you can also specify the bit of data you 
actually want (for example, you might want only five minutes in the middle of a sixty-
minute movie). This is a very efficient system, and 256K is a pretty good chunk size for 
most purposes. If you decide to change it, you should have a good reason for doing so. As 
always, don’t forget to benchmark and test the performance of your custom chunk size; 
it’s not uncommon for theoretically better systems to fail to live up to expectations.

Note■■   MongoDB has a 16MB restriction on document size. Because GridFS is simply a 
different way of storing files in the standard MongoDB framework, this restriction also exists 
in GridFS. That is, you can’t create chunks larger than 16MB. This shouldn’t pose a problem, 
because the whole point of GridFS is to alleviate the need for huge document sizes. If you’re 
worried that you’re storing huge files, and this will give you too many chunk documents, you 
needn’t worry—there are MongoDB systems in production with significantly more than a 
billion documents!

Tracking the Upload Date
The uploadDate key does exactly what its name suggests: it stores the date the file was 
created in MongoDB. This is a good time to mention that the files collection is just a 
normal MongoDB collection, containing normal documents. This means that you can 
add any additional key and value pairs that you need, in the same way you would for any 
other collection.

For example, consider the case of a real-world application that needs to store 
text content that you extract from various files. You might need to do this so you could 
perform some additional indexing and searching. To accomplish this, you might add a 
file_text key and store the text in there. The elegance of the GridFS system means that 
you can do anything with this system you can do with any other MongoDB documents. 
Elegance and power are two of the defining characteristics of working in MongoDB.

Hashing Your Files
MongoDB ships with the MD5 hashing algorithm. You may have come across the 
algorithm previously when downloading software over the Internet. The theory behind 
MD5 is that each file has a unique signature. Changing a single bit anywhere in that file 
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will drastically (and noticeably) change the signature. This signature is used for two 
reasons: security and integrity. For security, if you know what the MD5 hash is supposed 
to be and you trust the source (perhaps a friend gave it to you), then you can be assured 
that the file has not been altered if the hash (often called the checksum) is correct. This 
also ensures that the file integrity has been maintained and that no data has been lost or 
damaged. The MD5 hash of a particular file acts like a fingerprint for a file. The hash can 
be also used to identify files that have different filenames but have the same contents.

Warning■■   The MD5 algorithm is no longer considered secure, and it has been 
demonstrated that it is possible to create two different files that have the same MD5 
checksum, even though their contents are different. In cryptographic terms, this is called a 
collision. Such collisions are bad because they mean it is possible for an attacker to alter 
a file in such a way that it cannot be detected. This caveat remains somewhat theoretical 
because a great deal of effort and time would be required to create such collisions 
intentionally; and even then, the files could be so different as to be obviously not the same 
file. For this reason, MD5 is still the preferred method of determining file integrity because it 
is so widely supported. However, if you want to use hashing for its security benefits, you are 
much better off using one of the SHA family specifications—ideally SHA-256 or SHA-512. 
Even these hashing families have some theoretical vulnerabilities; however, no one has yet 
demonstrated a practical case of creating intentional collisions for the SHA family of hashes. 
MongoDB uses MD5 to ensure file integrity, which is fine for most purposes. However, if you 
want to hash important data (such as user passwords), you should probably consider using 
the SHA family of hashes instead.

Looking Under MongoDB’s Hood
At this point, you have some data in a MongoDB database. Now let’s take a closer look 
at that data under the covers. To do this, you’ll again use some command-line tools to 
connect to the database and query it. For example, try running the find() command 
against the file created earlier:
 
$ mongo test
MongoDB shell version: 2.6.5
connecting to: test
 
> db.fs.files.find()
{ "_id" : ObjectId("51cb61b26487b3d8ce7af440"), "filename" : "/tmp/
dictionary", "chunkSize" : 262144, "uploadDate" : ISODate("2013-06-
26T21:48:34.621Z"), "md5" : "40c0825855792bd20e8a2d515fe9c3e3", "length" : 
4953699 }
>
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The output should look familiar—after all, it’s the same data that you saw earlier in 
this chapter. Now you can see that the information printed by mongofiles was taken from 
the file’s entry in the fs.files collection.

Next, let’s take a look at the chunks collection (we have to add a filter; otherwise, it 
will show us all of the raw binary data as well):
 
$ mongo test
MongoDB shell version: 2.6.5
connecting to: test
> db.fs.chunks.find({},{"data":0});
{ "_id" : ObjectId("51cb61b29b2daad9857ca205"), "files_id" :  
ObjectId("51cb61b26487b3d8ce7af440"), "n" : 4 }
{ "_id" : ObjectId("51cb61b29b2daad9857ca206"), "files_id" :  
ObjectId("51cb61b26487b3d8ce7af440"), "n" : 5 }
{ "_id" : ObjectId("51cb61b29b2daad9857ca207"), "files_id" :  
ObjectId("51cb61b26487b3d8ce7af440"), "n" : 6 }
{ "_id" : ObjectId("51cb61b29b2daad9857ca208"), "files_id" :  
ObjectId("51cb61b26487b3d8ce7af440"), "n" : 7 }
{ "_id" : ObjectId("51cb61b29b2daad9857ca209"), "files_id" :  
ObjectId("51cb61b26487b3d8ce7af440"), "n" : 8 }
{ "_id" : ObjectId("51cb61b29b2daad9857ca20a"), "files_id" :  
ObjectId("51cb61b26487b3d8ce7af440"), "n" : 9 }
{ "_id" : ObjectId("51cb61b29b2daad9857ca20b"), "files_id" :  
ObjectId("51cb61b26487b3d8ce7af440"), "n" : 10 }
{ "_id" : ObjectId("51cb61b29b2daad9857ca20c"), "files_id" :  
ObjectId("51cb61b26487b3d8ce7af440"), "n" : 11 }
{ "_id" : ObjectId("51cb61b29b2daad9857ca20d"), "files_id" :  
ObjectId("51cb61b26487b3d8ce7af440"), "n" : 12 }
{ "_id" : ObjectId("51cb61b29b2daad9857ca20e"), "files_id" :  
ObjectId("51cb61b26487b3d8ce7af440"), "n" : 13 }
{ "_id" : ObjectId("51cb61b29b2daad9857ca20f"), "files_id" :  
ObjectId("51cb61b26487b3d8ce7af440"), "n" : 14 }
{ "_id" : ObjectId("51cb61b29b2daad9857ca210"), "files_id" :  
ObjectId("51cb61b26487b3d8ce7af440"), "n" : 15 }
{ "_id" : ObjectId("51cb61b29b2daad9857ca211"), "files_id" :  
ObjectId("51cb61b26487b3d8ce7af440"), "n" : 16 }
{ "_id" : ObjectId("51cb61b29b2daad9857ca212"), "files_id" :  
ObjectId("51cb61b26487b3d8ce7af440"), "n" : 17 }
{ "_id" : ObjectId("51cb61b29b2daad9857ca201"), "files_id" :  
ObjectId("51cb61b26487b3d8ce7af440"), "n" : 0 }
{ "_id" : ObjectId("51cb61b29b2daad9857ca202"), "files_id" :  
ObjectId("51cb61b26487b3d8ce7af440"), "n" : 1 }
{ "_id" : ObjectId("51cb61b29b2daad9857ca203"), "files_id" :  
ObjectId("51cb61b26487b3d8ce7af440"), "n" : 2 }
{ "_id" : ObjectId("51cb61b29b2daad9857ca204"), "files_id" :  
ObjectId("51cb61b26487b3d8ce7af440"), "n" : 3 }
{ "_id" : ObjectId("51cb61b29b2daad9857ca213"), "files_id" :  
ObjectId("51cb61b26487b3d8ce7af440"), "n" : 18 }>
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You might wonder why the output here has so many entries. As noted previously, 
GridFS is just a specification. That is, it uses what MongoDB already provides. While 
we were testing the commands for the book, the dictionary file was added a couple of 
times. Later, this file was deleted when we emptied the fs.files collection. You can 
see for yourself what happened next! The fact that some documents were removed 
from a collection has no bearing on what happens in another collection. Remember: 
MongoDB doesn’t treat these documents or collections in any special way. If the file had 
been deleted properly through a driver or the mongofiles tool, that tool would also have 
cleaned up the chunks collection.

Warning■■  A ccessing documents and collections directly is a powerful feature, but you 
need to be careful. This feature also makes it much easier to shoot yourself in both feet 
at the same time. Make sure you know what you’re doing and that you perform a great 
deal of testing if you decide to edit these documents and collections manually. Also, keep 
in mind that the GridFS support in MongoDB’s drivers won’t know anything about any 
customizations that you’ve made.

Using the search Command
Next, let’s take a closer look at MongoDB’s search command. Thus far, there is only a 
single file in the database, which greatly limits the types of searches you might conduct! 
So let’s add something else. The following snippet copies the dictionary to another file, 
and then imports that file:
 
$ cp /tmp/dictionary /tmp/hello_world
$ mongofiles put /tmp/hello_world
connected to: 127.0.0.1
added file: { _id: ObjectId('51cb63d167961ebc919edbd5'), filename: "/tmp/
hello_world", chunkSize: 262144, uploadDate: new Date(1372283858021), md5: 
"40c0825855792bd20e8a2d515fe9c3e3", length: 4953699 }done!
root@core2:~# mongofiles list
connected to: 127.0.0.1
/tmp/dictionary    4953699
/tmp/hello_world    4953699
$
 

The first line copies the file, and the second line imports it into MongoDB. As in 
the earlier example, the put command prints out the new document that MongoDB has 
created. Next, you might run the mongofiles command list to check that the files were 
correctly stored. If you do so, you can see that there are now two files in the collection; 
unsurprisingly, both files have the same size.
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The search command works exactly as you would expect. All you need to do is tell 
mongofiles what you are looking for, and it will try to find it for you, as in this example:
 
$  mongofiles search hello
connected to: 127.0.0.1
/tmp/hello_world    4953699
$  mongofiles search dict
connected to: 127.0.0.1
/tmp/dictionary    4953699
$
 

Again, nothing too exciting happens here. However, there is an important takeaway 
that’s worth noting. MongoDB can be as simple or as complex as you need it to be. The 
mongofiles tool is only for reference use, and it includes very basic debugging. The good 
news: MongoDB makes it easy to perform simple searches against your files. The  
even better news: MongoDB also has your back if you want to write some insanely  
complicated searches.

Deleting
The mongofiles command delete doesn’t require much explanation, but it does deserve 
a big warning. This command deletes files based on the filename. Thus, if you have more 
than one file with the same name, this command will delete all of them. The following 
snippet shows how to use the delete command:
 
$ mongofiles delete /tmp/hello_world
connected to: 127.0.0.1
$ mongofiles list
connected to: 127.0.0.1
/tmp/dictionary 4953699
$
 

Note■■   Many people have commented in connection with this issue that deleting multiple 
files with the same name is not a problem because no application would have duplicate 
names. This is simply not true; and in many cases, it doesn’t even make sense to enforce 
unique names. For example, if your app lets users upload photos to their profiles, there’s a 
good chance that half the files you receive will be called photo.jpg or me.png.

Of course, if you are unlikely to use mongofiles to manage your live data—and in truth no 
one ever expected it to be used that way—then you just need to be careful when deleting 
data in general.
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Retrieving Files from MongoDB
So far, you haven’t actually pulled any files out from MongoDB. The most important 
feature of any database is that it lets you find and retrieve data once it’s been put in. The 
following snippet retrieves a file from MongoDB using the mongofiles command get:
 
$ mongofiles get /tmp/dictionary
connected to: 127.0.0.1
done write to: /tmp/dictionary
$
 

This example includes an intentional mistake. Because it specifies the full name and 
path of the file you want to retrieve (as required), mongofiles writes the data to a file with 
the same name and path. Effectively, this overwrites the original dictionary file! This isn’t 
exactly a great loss, because it is being overwritten by the same file—and the dictionary 
file was only a temporary copy in the first place. Nevertheless, this behavior could give 
you a rather nasty shock if you accidentally erase two weeks of work. Trust us, you won’t 
figure out where all your work went until sometime after the event! As when using the 
delete command, you need to be careful when using the get command.

Summing Up mongofiles
The mongofiles utility is a useful tool for quickly looking at what’s in your database. If 
you’ve written some software, and you suspect something might be amiss with it, then 
you can use mongofiles to double-check what’s going on.

It’s an extremely simple implementation, so it doesn’t require any fancy logic that 
could complicate accomplishing the task at hand. Whether you would use mongofiles in 
a production environment is a matter of personal taste. It’s not exactly a Swiss army knife; 
however, it does provide a useful set of commands that you’ll be grateful to have if your 
application begins misbehaving. In short, you should be familiar with this tool because 
someday it might be exactly the tool you require to solve an otherwise nettlesome 
problem.

Exploiting the Power of Python
At this point, you have a solid idea of how GridFS works. Next, you will learn how to 
access GridFS from Python. Chapter 2 covered how to install PyMongo; if you have any 
trouble with the examples, please refer back to Chapter 2 and make sure everything is 
installed correctly.

If you’ve been following along with the previous examples in this chapter, you should 
now have one file in GridFS. You’ll also recall that the file is a dictionary file, so it contains 
a list of words. In this section, you will learn how to write a simple Python script that 
prints out all the words in the dictionary file. Sure, it would be simpler and more efficient 
to simply cat the original file—but where would the fun be in that?
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Begin by firing up Python:
 
Python 2.6.6 (r266:84292, Oct 12 2012, 14:23:48)
[GCC 4.4.6 20120305 (Red Hat 4.4.6-4)] on linux2
Type "help", "copyright", "credits" or "license" for more information.>>>
 

The standard driver for Python is called PyMongo, and it was written by Mike Dirolf. 
Because the PyMongo driver is supported directly by MongoDB, Inc., the company 
that publishes MongoDB, you can rest assured that it will be regularly updated and 
maintained. So, let’s go ahead and import the library. You should see something like  
the following:
 
>>> from pymongo import Connection
>>> import gridfs
>>>
 

If PyMongo isn’t installed correctly, you will get an error similar to this:
 
>>> import gridfs
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ImportError: No module named gridfs
>>>
 

If you see the latter message, chances are something was missed during installation. 
In that case, pop back to Chapter 2 and follow the instructions to install PyMongo again.

Connecting to the Database
Before you can retrieve information from a database, you must first establish a connection 
to it. When you were using the mongofiles utility earlier in this chapter, you probably 
noticed the reference to 127.0.0.1. This value is also known as the localhost, and it 
represents your computer’s loopback address. This value is simply a shortcut for telling a 
computer to talk to itself. The reason mongofiles mentioned this IP address is that it was 
actually connecting to MongoDB through the network. The default is to connect to the 
local machine on the default MongoDB port. Because you haven’t changed the default 
settings, mongofiles can find and connect to your database without any trouble.

When using MongoDB with Python, however, you need to connect to the database 
and then set up GridFS. Fortunately, this is easy to do:
 
>>> db = Connection().test
>>> fs = gridfs.GridFS(db)
>>>
 

The first line opens the connection and selects the database. By default, mongofiles 
uses the test database; hence, you’ll find your dictionary file in test. The second line 
sets up GridFS and prepares it for use.
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Accessing the Words
In its original implementation, the PyMongo driver used a file-like interface to leverage 
GridFS. This is somewhat different from what you saw in this chapter’s earlier examples 
with mongofiles, which were more FTP-like in nature. In the original implementation of 
PyMongo, you could read and write data just as you do for a normal file.

This made PyMongo very much like Python to use, and it allowed for easy 
integration with existing scripts. However, this behavior was changed in version 1.6 of the 
driver, and this functionality is no longer supported. While very Python-like, the behavior 
had some problems that made the tool less effective overall.

Generally speaking, the PyMongo driver attempts to make GridFS files look and 
feel like ordinary files on the filesystem. On the one hand, this is nice because it means 
there’s no learning curve, and the driver is usable with any method that requires a file. On 
the other hand, this approach is somewhat limiting and doesn’t give a good feel for how 
powerful GridFS is. Important changes were made to how PyMongo works in version 1.6, 
particularly in how get and put work.

Note■■   This revised version of PyMongo isn’t too dissimilar from previous versions of the 
tool, and many people who used the previous API have found it easy to adapt to the revised 
version. That said, Mike’s changes haven’t gone down well with everybody. For example, 
some people found the file-based keying in the old API to be extremely useful and easy to 
use. The revised version of PyMongo supports the ability to create filenames, so the missing 
behavior can be replicated in the revised version; however, doing so does require a bit  
more code.

Putting Files into MongoDB
Getting files into GridFS through PyMongo is straightforward and intentionally similar 
to the way you do so using command-line tools. MongoDB is all about throughput, and 
the changes to the API in the revised version of PyMongo reflect this. Not only do you get 
better performance, but the changes also bring the Python driver in line with the other 
GridFS implementations.

Let’s put the dictionary into GridFS (again):
 
>>> with open("/tmp/dictionary") as dictionary:
...   uid = fs.put(dictionary)
...
>>> uid
ObjectId('51cb65be2f50332093f67b98') >>>
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In this example, you use the put method to insert the file. It’s important that you 
capture the result from this method because it contains the document _id for your file. 
PyMongo takes a different approach than mongofiles, which assumes the filename is 
effectively the key (even though you can have duplicates). Instead, PyMongo references 
files based on their _id. If you don’t capture this information, then you won’t be able to 
reliably find the file again. Actually, that’s not strictly true—you could search for a file 
quite easily—but if you want to link this file to a particular user account, then you need 
this _id.

Two useful arguments that can be used in conjunction with the put command 
are filename and content_type. As you might expect, these arguments let you set the 
filename and the content type of the file, respectively. This is useful for loading files 
directly from disk. However, it is even handier when you’re handling files that have been 
received over the Internet or generated in memory because, in those cases, you can use 
file-like semantics, but without actually having to create a real file on the disk.

Retrieving Files from GridFS
At long last, you’re now ready to return your data! At this point, you have your unique _id,  
so finding the file is easy. The get method retrieves a file from GridFS:
 
>>> new_dictionary = fs.get(uid)
 

That’s it! The preceding snippet returns a file-like object; thus, you can print all the 
words in the dictionary using the following snippet:
 
>>> for word in new_dictionary:
...   print word
 

Now watch in awe as a list of words quickly scrolls up the screen! Okay, so this isn’t 
exactly rocket science. However, the fact that it isn’t rocket science or in any way difficult 
is part of the beauty of GridFS—it does work as advertised, and it does so in an intuitive 
and easily understood way!

Deleting Files
Deleting a file is also easy. All you have to do is call fs.delete() and pass the _id of the 
file, as in the following example:
 
>>> fs.delete(uid)
>>> new_dictionary = fs.get(uid)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/usr/lib/python2.6/site-packages/pymongo-2.5.2-py2.6-linux-x86_64.
egg/gridfs/__init__.py", line 140, in get
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    return GridOut(self.__collection, file_id)
  File "/usr/lib/python2.6/site-packages/pymongo-2.5.2-py2.6-linux-x86_64.egg/ 
gridfs/grid_file.py", line 392, in __init__
    (files, file_id))
gridfs.errors.NoFile: no file in gridfs collection Collection(Database(Conne
ction('localhost', 27017), u'test'), u'fs.files') with _id ObjectId('51cb65b
e2f50332093f67b98') >>>
 

These results could look a bit scary, but they are just PyMongo’s way of saying that it 
couldn’t find the file. This isn’t surprising, because you just deleted it!

Summary
In this chapter, you undertook a fast-paced tour of GridFS. You learned what GridFS is, 
how it fits together with MongoDB, and how to use its basic syntax. This chapter didn’t 
explore GridFS in great depth, but in the next chapter, you’ll learn how to integrate GridFS 
with a real application using PHP. For now, it’s enough to understand how GridFS can 
save you time and hassle when storing files and other large pieces of data.

In the next chapter, you’ll start putting what you’ve learned to real use—specifically, 
you’ll learn how to build a fully functional address book!
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