
Zachary Radtka
& Donald Miner

Hadoop
with Python

Zachary Radtka & Donald Miner

Hadoop with Python

978-1-491-94227-7

[LSI]

Hadoop with Python
by Zachary Radtka and Donald Miner

Copyright © 2016 O’Reilly Media, Inc.. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editor: Meghan Blanchette
Production Editor: Kristen Brown
Copyeditor: Sonia Saruba

Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

October 2015: First Edition

Revision History for the First Edition
2015-10-19 First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491942277 for release details.

While the publisher and the authors have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the authors disclaim all responsibility for errors or omissions, including without
limitation responsibility for damages resulting from the use of or reliance on this
work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is sub‐
ject to open source licenses or the intellectual property rights of others, it is your
responsibility to ensure that your use thereof complies with such licenses and/or
rights.

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491942277

Table of Contents

Source Code. vii

1. Hadoop Distributed File System (HDFS). 1
Overview of HDFS 2
Interacting with HDFS 3
Snakebite 7
Chapter Summary 13

2. MapReduce with Python. 15
Data Flow 15
Hadoop Streaming 18
mrjob 22
Chapter Summary 26

3. Pig and Python. 27
WordCount in Pig 28
Running Pig 29
Pig Latin 31
Extending Pig with Python 35
Chapter Summary 40

4. Spark with Python. 41
WordCount in PySpark 41
PySpark 43
Resilient Distributed Datasets (RDDs) 44
Text Search with PySpark 50

v

Chapter Summary 52

5. Workflow Management with Python. 53
Installation 53
Workflows 54
An Example Workflow 55
Hadoop Workflows 58
Chapter Summary 62

vi | Table of Contents

Source Code

All of the source code in this book is on GitHub. To copy the source
code locally, use the following git clone command:

$ git clone https://github.com/MinerKasch/HadoopWithPython

vii

CHAPTER 1

Hadoop Distributed File System
(HDFS)

The Hadoop Distributed File System (HDFS) is a Java-based dis‐
tributed, scalable, and portable filesystem designed to span large
clusters of commodity servers. The design of HDFS is based on GFS,
the Google File System, which is described in a paper published by
Google. Like many other distributed filesystems, HDFS holds a large
amount of data and provides transparent access to many clients dis‐
tributed across a network. Where HDFS excels is in its ability to
store very large files in a reliable and scalable manner.

HDFS is designed to store a lot of information, typically petabytes
(for very large files), gigabytes, and terabytes. This is accomplished
by using a block-structured filesystem. Individual files are split into
fixed-size blocks that are stored on machines across the cluster. Files
made of several blocks generally do not have all of their blocks
stored on a single machine.

HDFS ensures reliability by replicating blocks and distributing the
replicas across the cluster. The default replication factor is three,
meaning that each block exists three times on the cluster. Block-level
replication enables data availability even when machines fail.

This chapter begins by introducing the core concepts of HDFS and
explains how to interact with the filesystem using the native built-in
commands. After a few examples, a Python client library is intro‐
duced that enables HDFS to be accessed programmatically from
within Python applications.

1

http://research.google.com/archive/gfs.html

Overview of HDFS
The architectural design of HDFS is composed of two processes: a
process known as the NameNode holds the metadata for the filesys‐
tem, and one or more DataNode processes store the blocks that
make up the files. The NameNode and DataNode processes can run
on a single machine, but HDFS clusters commonly consist of a dedi‐
cated server running the NameNode process and possibly thousands
of machines running the DataNode process.

The NameNode is the most important machine in HDFS. It stores
metadata for the entire filesystem: filenames, file permissions, and
the location of each block of each file. To allow fast access to this
information, the NameNode stores the entire metadata structure in
memory. The NameNode also tracks the replication factor of blocks,
ensuring that machine failures do not result in data loss. Because the
NameNode is a single point of failure, a secondary NameNode can
be used to generate snapshots of the primary NameNode’s memory
structures, thereby reducing the risk of data loss if the NameNode
fails.

The machines that store the blocks within HDFS are referred to as
DataNodes. DataNodes are typically commodity machines with
large storage capacities. Unlike the NameNode, HDFS will continue
to operate normally if a DataNode fails. When a DataNode fails, the
NameNode will replicate the lost blocks to ensure each block meets
the minimum replication factor.

The example in Figure 1-1 illustrates the mapping of files to blocks
in the NameNode, and the storage of blocks and their replicas
within the DataNodes.

The following section describes how to interact with HDFS using
the built-in commands.

2 | Chapter 1: Hadoop Distributed File System (HDFS)

Figure 1-1. An HDFS cluster with a replication factor of two; the
NameNode contains the mapping of files to blocks, and the DataNodes
store the blocks and their replicas

Interacting with HDFS
Interacting with HDFS is primarily performed from the command
line using the script named hdfs. The hdfs script has the following
usage:

$ hdfs COMMAND [-option <arg>]

The COMMAND argument instructs which functionality of HDFS will
be used. The -option argument is the name of a specific option for
the specified command, and <arg> is one or more arguments that
that are specified for this option.

Common File Operations
To perform basic file manipulation operations on HDFS, use the dfs
command with the hdfs script. The dfs command supports many
of the same file operations found in the Linux shell.

It is important to note that the hdfs command runs with the per‐
missions of the system user running the command. The following
examples are run from a user named “hduser.”

List Directory Contents
To list the contents of a directory in HDFS, use the -ls command:

$ hdfs dfs -ls
$

Interacting with HDFS | 3

Running the -ls command on a new cluster will not return any
results. This is because the -ls command, without any arguments,
will attempt to display the contents of the user’s home directory on
HDFS. This is not the same home directory on the host machine
(e.g., /home/$USER), but is a directory within HDFS.

Providing -ls with the forward slash (/) as an argument displays
the contents of the root of HDFS:

$ hdfs dfs -ls /
Found 2 items
drwxr-xr-x - hadoop supergroup 0 2015-09-20 14:36 /hadoop
drwx------ - hadoop supergroup 0 2015-09-20 14:36 /tmp

The output provided by the hdfs dfs command is similar to the
output on a Unix filesystem. By default, -ls displays the file and
folder permissions, owners, and groups. The two folders displayed
in this example are automatically created when HDFS is formatted.
The hadoop user is the name of the user under which the Hadoop
daemons were started (e.g., NameNode and DataNode), and the
supergroup is the name of the group of superusers in HDFS (e.g.,
hadoop).

Creating a Directory
Home directories within HDFS are stored in /user/$HOME. From
the previous example with -ls, it can be seen that the /user directory
does not currently exist. To create the /user directory within HDFS,
use the -mkdir command:

$ hdfs dfs -mkdir /user

To make a home directory for the current user, hduser, use the
-mkdir command again:

$ hdfs dfs -mkdir /user/hduser

Use the -ls command to verify that the previous directories were
created:

$ hdfs dfs -ls -R /user
drwxr-xr-x - hduser supergroup 0 2015-09-22 18:01 /user/
hduser

4 | Chapter 1: Hadoop Distributed File System (HDFS)

Copy Data onto HDFS
After a directory has been created for the current user, data can be
uploaded to the user’s HDFS home directory with the -put com‐
mand:

$ hdfs dfs -put /home/hduser/input.txt /user/hduser

This command copies the file /home/hduser/input.txt from the local
filesystem to /user/hduser/input.txt on HDFS.

Use the -ls command to verify that input.txt was moved to HDFS:

$ hdfs dfs -ls
Found 1 items
-rw-r--r-- 1 hduser supergroup 52 2015-09-20 13:20
input.txt

Retrieving Data from HDFS
Multiple commands allow data to be retrieved from HDFS. To sim‐
ply view the contents of a file, use the -cat command. -cat reads a
file on HDFS and displays its contents to stdout. The following com‐
mand uses -cat to display the contents of /user/hduser/input.txt:

$ hdfs dfs -cat input.txt
jack be nimble
jack be quick
jack jumped over the candlestick

Data can also be copied from HDFS to the local filesystem using the
-get command. The -get command is the opposite of the -put
command:

$ hdfs dfs -get input.txt /home/hduser

This command copies input.txt from /user/hduser on HDFS
to /home/hduser on the local filesystem.

HDFS Command Reference
The commands demonstrated in this section are the basic file opera‐
tions needed to begin using HDFS. Below is a full listing of file
manipulation commands possible with hdfs dfs. This listing can
also be displayed from the command line by specifying hdfs dfs
without any arguments. To get help with a specific option, use either
hdfs dfs -usage <option> or hdfs dfs -help <option>.

Interacting with HDFS | 5

Usage: hadoop fs [generic options]
 [-appendToFile <localsrc> ... <dst>]
 [-cat [-ignoreCrc] <src> ...]
 [-checksum <src> ...]
 [-chgrp [-R] GROUP PATH...]
 [-chmod [-R] <MODE[,MODE]... | OCTALMODE> PATH...]
 [-chown [-R] [OWNER][:[GROUP]] PATH...]
 [-copyFromLocal [-f] [-p] [-l] <localsrc> ... <dst>]
 [-copyToLocal [-p] [-ignoreCrc] [-crc] <src> ...
<localdst>]
 [-count [-q] [-h] <path> ...]
 [-cp [-f] [-p | -p[topax]] <src> ... <dst>]
 [-createSnapshot <snapshotDir> [<snapshotName>]]
 [-deleteSnapshot <snapshotDir> <snapshotName>]
 [-df [-h] [<path> ...]]
 [-du [-s] [-h] <path> ...]
 [-expunge]
 [-find <path> ... <expression> ...]
 [-get [-p] [-ignoreCrc] [-crc] <src> ... <localdst>]
 [-getfacl [-R] <path>]
 [-getfattr [-R] {-n name | -d} [-e en] <path>]
 [-getmerge [-nl] <src> <localdst>]
 [-help [cmd ...]]
 [-ls [-d] [-h] [-R] [<path> ...]]
 [-mkdir [-p] <path> ...]
 [-moveFromLocal <localsrc> ... <dst>]
 [-moveToLocal <src> <localdst>]
 [-mv <src> ... <dst>]
 [-put [-f] [-p] [-l] <localsrc> ... <dst>]
 [-renameSnapshot <snapshotDir> <oldName> <newName>]
 [-rm [-f] [-r|-R] [-skipTrash] <src> ...]
 [-rmdir [--ignore-fail-on-non-empty] <dir> ...]
 [-setfacl [-R] [{-b|-k} {-m|-x <acl_spec>} <path>]|[--set
<acl_spec> <path>]]
 [-setfattr {-n name [-v value] | -x name} <path>]
 [-setrep [-R] [-w] <rep> <path> ...]
 [-stat [format] <path> ...]
 [-tail [-f] <file>]
 [-test -[defsz] <path>]
 [-text [-ignoreCrc] <src> ...]
 [-touchz <path> ...]
 [-truncate [-w] <length> <path> ...]
 [-usage [cmd ...]]

Generic options supported are
-conf <configuration file> specify an application configu-
ration file
-D <property=value> use value for given property
-fs <local|namenode:port> specify a namenode
-jt <local|resourcemanager:port> specify a ResourceManager
-files <comma separated list of files> specify comma separa-

6 | Chapter 1: Hadoop Distributed File System (HDFS)

ted files to be copied to the map reduce cluster
-libjars <comma separated list of jars> specify comma sepa-
rated jar files to include in the classpath.
-archives <comma separated list of archives> specify comma
separated archives to be unarchived on the compute machines.

The general command line syntax is
bin/hadoop command [genericOptions] [commandOptions]

The next section introduces a Python library that allows HDFS to be
accessed from within Python applications.

Snakebite
Snakebite is a Python package, created by Spotify, that provides a
Python client library, allowing HDFS to be accessed programmati‐
cally from Python applications. The client library uses protobuf
messages to communicate directly with the NameNode. The Snake‐
bite package also includes a command-line interface for HDFS that
is based on the client library.

This section describes how to install and configure the Snakebite
package. Snakebite’s client library is explained in detail with multiple
examples, and Snakebite’s built-in CLI is introduced as a Python
alternative to the hdfs dfs command.

Installation
Snakebite requires Python 2 and python-protobuf 2.4.1 or higher.
Python 3 is currently not supported.

Snakebite is distributed through PyPI and can be installed using
pip:

$ pip install snakebite

Client Library
The client library is written in Python, uses protobuf messages, and
implements the Hadoop RPC protocol for talking to the NameNode.
This enables Python applications to communicate directly with
HDFS and not have to make a system call to hdfs dfs.

List Directory Contents
Example 1-1 uses the Snakebite client library to list the contents of
the root directory in HDFS.

Snakebite | 7

Example 1-1. python/HDFS/list_directory.py

from snakebite.client import Client

client = Client('localhost', 9000)
for x in client.ls(['/']):
 print x

The most important line of this program, and every program that
uses the client library, is the line that creates a client connection to
the HDFS NameNode:

client = Client('localhost', 9000)

The Client() method accepts the following parameters:

host (string)

Hostname or IP address of the NameNode

port (int)

RPC port of the NameNode

hadoop_version (int)

The Hadoop protocol version to be used (default: 9)

use_trash (boolean)

Use trash when removing files

effective_use (string)

Effective user for the HDFS operations (default: None or cur‐
rent user)

The host and port parameters are required and their values are
dependent upon the HDFS configuration. The values for these
parameters can be found in the hadoop/conf/core-site.xml configura‐
tion file under the property fs.defaultFS:

<property>
 <name>fs.defaultFS</name>
 <value>hdfs://localhost:9000</value>
</property>

For the examples in this section, the values used for host and port
are localhost and 9000, respectively.

After the client connection is created, the HDFS filesystem can be
accessed. The remainder of the previous application used the ls
command to list the contents of the root directory in HDFS:

8 | Chapter 1: Hadoop Distributed File System (HDFS)

for x in client.ls(['/']):
 print x

It is important to note that many of methods in Snakebite return
generators. Therefore they must be consumed to execute. The ls
method takes a list of paths and returns a list of maps that contain
the file information.

Executing the list_directory.py application yields the following
results:

$ python list_directory.py
{'group': u'supergroup', 'permission': 448, 'file_type': 'd',
'access_time': 0L, 'block_replication': 0, 'modifica-
tion_time': 1442752574936L, 'length': 0L, 'blocksize': 0L,
'owner': u'hduser', 'path': '/tmp'}
{'group': u'supergroup', 'permission': 493, 'file_type': 'd',
'access_time': 0L, 'block_replication': 0, 'modifica-
tion_time': 1442742056276L, 'length': 0L, 'blocksize': 0L,
'owner': u'hduser', 'path': '/user'}

Create a Directory
Use the mkdir() method to create directories on HDFS.
Example 1-2 creates the directories /foo/bar and /input on HDFS.

Example 1-2. python/HDFS/mkdir.py

from snakebite.client import Client

client = Client('localhost', 9000)
for p in client.mkdir(['/foo/bar', '/input'], create_parent=True):
 print p

Executing the mkdir.py application produces the following results:

$ python mkdir.py
{'path': '/foo/bar', 'result': True}
{'path': '/input', 'result': True}

The mkdir() method takes a list of paths and creates the specified
paths in HDFS. This example used the create_parent parameter to
ensure that parent directories were created if they did not already
exist. Setting create_parent to True is analogous to the mkdir -p
Unix command.

Snakebite | 9

Deleting Files and Directories
Deleting files and directories from HDFS can be accomplished with
the delete() method. Example 1-3 recursively deletes the /foo
and /bar directories, created in the previous example.

Example 1-3. python/HDFS/delete.py

from snakebite.client import Client

client = Client('localhost', 9000)
for p in client.delete(['/foo', '/input'], recurse=True):
 print p

Executing the delete.py application produces the following results:

$ python delete.py
{'path': '/foo', 'result': True}
{'path': '/input', 'result': True}

Performing a recursive delete will delete any subdirectories and files
that a directory contains. If a specified path cannot be found, the
delete method throws a FileNotFoundException. If recurse is not
specified and a subdirectory or file exists, DirectoryException is
thrown.

The recurse parameter is equivalent to rm -rf and should be used
with care.

Retrieving Data from HDFS
Like the hdfs dfs command, the client library contains multiple
methods that allow data to be retrieved from HDFS. To copy files
from HDFS to the local filesystem, use the copyToLocal() method.
Example 1-4 copies the file /input/input.txt from HDFS and places it
under the /tmp directory on the local filesystem.

Example 1-4. python/HDFS/copy_to_local.py

from snakebite.client import Client

client = Client('localhost', 9000)
for f in client.copyToLocal(['/input/input.txt'], '/tmp'):
 print f

Executing the copy_to_local.py application produces the following
result:

10 | Chapter 1: Hadoop Distributed File System (HDFS)

$ python copy_to_local.py
{'path': '/tmp/input.txt', 'source_path': '/input/input.txt',
'result': True, 'error': ''}

To simply read the contents of a file that resides on HDFS, the
text() method can be used. Example 1-5 displays the content
of /input/input.txt.

Example 1-5. python/HDFS/text.py

from snakebite.client import Client

client = Client('localhost', 9000)
for l in client.text(['/input/input.txt']):
 print l

Executing the text.py application produces the following results:

$ python text.py
jack be nimble
jack be quick
jack jumped over the candlestick

The text() method will automatically uncompress and display gzip
and bzip2 files.

CLI Client
The CLI client included with Snakebite is a Python command-line
HDFS client based on the client library. To execute the Snakebite
CLI, the hostname or IP address of the NameNode and RPC port of
the NameNode must be specified. While there are many ways to
specify these values, the easiest is to create a ~.snakebiterc configura‐
tion file. Example 1-6 contains a sample config with the NameNode
hostname of localhost and RPC port of 9000.

Example 1-6. ~/.snakebiterc

{
 "config_version": 2,
 "skiptrash": true,
 "namenodes": [
 {"host": "localhost", "port": 9000, "version": 9},
]
}

Snakebite | 11

The values for host and port can be found in the hadoop/conf/core-
site.xml configuration file under the property fs.defaultFS.

For more information on configuring the CLI, see the Snakebite CLI
documentation online.

Usage
To use the Snakebite CLI client from the command line, simply use
the command snakebite. Use the ls option to display the contents
of a directory:

$ snakebite ls /
Found 2 items
drwx------ - hadoop supergroup 0 2015-09-20 14:36 /tmp
drwxr-xr-x - hadoop supergroup 0 2015-09-20 11:40 /user

Like the hdfs dfs command, the CLI client supports many familiar
file manipulation commands (e.g., ls, mkdir, df, du, etc.).

The major difference between snakebite and hdfs dfs is that
snakebite is a pure Python client and does not need to load any
Java libraries to communicate with HDFS. This results in quicker
interactions with HDFS from the command line.

CLI Command Reference
The following is a full listing of file manipulation commands possi‐
ble with the snakebite CLI client. This listing can be displayed from
the command line by specifying snakebite without any arguments.
To view help with a specific command, use snakebite [cmd] --
help, where cmd is a valid snakebite command.

snakebite [general options] cmd [arguments]
general options:
 -D --debug Show debug information
 -V --version Hadoop protocol version (default:9)
 -h --help show help
 -j --json JSON output
 -n --namenode namenode host
 -p --port namenode RPC port (default: 8020)
 -v --ver Display snakebite version

commands:
 cat [paths] copy source paths to stdout
 chgrp <grp> [paths] change group
 chmod <mode> [paths] change file mode (octal)
 chown <owner:grp> [paths] change owner
 copyToLocal [paths] dst copy paths to local

12 | Chapter 1: Hadoop Distributed File System (HDFS)

http://snakebite.readthedocs.org/en/latest/
http://snakebite.readthedocs.org/en/latest/

 file system destination
 count [paths] display stats for paths
 df display fs stats
 du [paths] display disk usage statistics
 get file dst copy files to local
 file system destination
 getmerge dir dst concatenates files in source dir
 into destination local file
 ls [paths] list a path
 mkdir [paths] create directories
 mkdirp [paths] create directories and their
 parents
 mv [paths] dst move paths to destination
 rm [paths] remove paths
 rmdir [dirs] delete a directory
 serverdefaults show server information
 setrep <rep> [paths] set replication factor
 stat [paths] stat information
 tail path display last kilobyte of the
 file to stdout
 test path test a path
 text path [paths] output file in text format
 touchz [paths] creates a file of zero length
 usage <cmd> show cmd usage

to see command-specific options use: snakebite [cmd] --help

Chapter Summary
This chapter introduced and described the core concepts of HDFS.
It explained how to interact with the filesystem using the built-in
hdfs dfs command. It also introduced the Python library, Snake‐
bite. Snakebite’s client library was explained in detail with multiple
examples. The snakebite CLI was also introduced as a Python alter‐
native to the hdfs dfs command.

Chapter Summary | 13

CHAPTER 2

MapReduce with Python

MapReduce is a programming model that enables large volumes of
data to be processed and generated by dividing work into independ‐
ent tasks and executing the tasks in parallel across a cluster of
machines. The MapReduce programming style was inspired by the
functional programming constructs map and reduce, which are
commonly used to process lists of data. At a high level, every Map‐
Reduce program transforms a list of input data elements into a list
of output data elements twice, once in the map phase and once in
the reduce phase.

This chapter begins by introducing the MapReduce programming
model and describing how data flows through the different phases
of the model. Examples then show how MapReduce jobs can be
written in Python.

Data Flow
The MapReduce framework is composed of three major phases:
map, shuffle and sort, and reduce. This section describes each phase
in detail.

Map
The first phase of a MapReduce application is the map phase.
Within the map phase, a function (called the mapper) processes a
series of key-value pairs. The mapper sequentially processes each

15

key-value pair individually, producing zero or more output key-
value pairs (Figure 2-1).

Figure 2-1. The mapper is applied to each input key-value pair, pro‐
ducing an output key-value pair

As an example, consider a mapper whose purpose is to transform
sentences into words. The input to this mapper would be strings that
contain sentences, and the mapper’s function would be to split the
sentences into words and output the words (Figure 2-2).

Figure 2-2. The input of the mapper is a string, and the function of the
mapper is to split the input on spaces; the resulting output is the indi‐
vidual words from the mapper’s input

16 | Chapter 2: MapReduce with Python

Shuffle and Sort
The second phase of MapReduce is the shuffle and sort. As the map‐
pers begin completing, the intermediate outputs from the map
phase are moved to the reducers. This process of moving output
from the mappers to the reducers is known as shuffling.

Shuffling is handled by a partition function, known as the parti‐
tioner. The partitioner is used to control the flow of key-value pairs
from mappers to reducers. The partitioner is given the mapper’s
output key and the number of reducers, and returns the index of the
intended reducer. The partitioner ensures that all of the values for
the same key are sent to the same reducer. The default partitioner is
hash-based. It computes a hash value of the mapper’s output key and
assigns a partition based on this result.

The final stage before the reducers start processing data is the sort‐
ing process. The intermediate keys and values for each partition are
sorted by the Hadoop framework before being presented to the
reducer.

Reduce
The third phase of MapReduce is the reduce phase. Within the
reducer phase, an iterator of values is provided to a function known
as the reducer. The iterator of values is a nonunique set of values for
each unique key from the output of the map phase. The reducer
aggregates the values for each unique key and produces zero or
more output key-value pairs (Figure 2-3).

Data Flow | 17

Figure 2-3. The reducer iterates over the input values, producing an
output key-value pair

As an example, consider a reducer whose purpose is to sum all of
the values for a key. The input to this reducer is an iterator of all of
the values for a key, and the reducer sums all of the values. The
reducer then outputs a key-value pair that contains the input key
and the sum of the input key values (Figure 2-4).

Figure 2-4. This reducer sums the values for the keys “cat” and “mouse”

The next section describes a simple MapReduce application and its
implementation in Python.

Hadoop Streaming
Hadoop streaming is a utility that comes packaged with the Hadoop
distribution and allows MapReduce jobs to be created with any exe‐
cutable as the mapper and/or the reducer. The Hadoop streaming
utility enables Python, shell scripts, or any other language to be used
as a mapper, reducer, or both.

18 | Chapter 2: MapReduce with Python

How It Works
The mapper and reducer are both executables that read input, line
by line, from the standard input (stdin), and write output to the
standard output (stdout). The Hadoop streaming utility creates a
MapReduce job, submits the job to the cluster, and monitors its pro‐
gress until it is complete.

When the mapper is initialized, each map task launches the specified
executable as a separate process. The mapper reads the input file and
presents each line to the executable via stdin. After the executable
processes each line of input, the mapper collects the output from
stdout and converts each line to a key-value pair. The key consists of
the part of the line before the first tab character, and the value con‐
sists of the part of the line after the first tab character. If a line con‐
tains no tab character, the entire line is considered the key and the
value is null.

When the reducer is initialized, each reduce task launches the speci‐
fied executable as a separate process. The reducer converts the input
key-value pair to lines that are presented to the executable via stdin.
The reducer collects the executables result from stdout and converts
each line to a key-value pair. Similar to the mapper, the executable
specifies key-value pairs by separating the key and value by a tab
character.

A Python Example
To demonstrate how the Hadoop streaming utility can run Python
as a MapReduce application on a Hadoop cluster, the WordCount
application can be implemented as two Python programs: mapper.py
and reducer.py.

mapper.py is the Python program that implements the logic in the
map phase of WordCount. It reads data from stdin, splits the lines
into words, and outputs each word with its intermediate count to
stdout. The code in Example 2-1 implements the logic in mapper.py.

Example 2-1. python/MapReduce/HadoopStreaming/mapper.py

#!/usr/bin/env python

import sys

Read each line from stdin

Hadoop Streaming | 19

for line in sys.stdin:

 # Get the words in each line
 words = line.split()

 # Generate the count for each word
 for word in words:

 # Write the key-value pair to stdout to be processed by
 # the reducer.
 # The key is anything before the first tab character and the
 #value is anything after the first tab character.
 print '{0}\t{1}'.format(word, 1)

reducer.py is the Python program that implements the logic in the
reduce phase of WordCount. It reads the results of mapper.py from
stdin, sums the occurrences of each word, and writes the result to
stdout. The code in Example 2-2 implements the logic in reducer.py.

Example 2-2. python/MapReduce/HadoopStreaming/reducer.py

#!/usr/bin/env python

import sys

curr_word = None
curr_count = 0

Process each key-value pair from the mapper
for line in sys.stdin:

 # Get the key and value from the current line
 word, count = line.split('\t')

 # Convert the count to an int
 count = int(count)

 # If the current word is the same as the previous word,
 # increment its count, otherwise print the words count
 # to stdout
 if word == curr_word:
 curr_count += count
 else:

 # Write word and its number of occurrences as a key-value
 # pair to stdout
 if curr_word:
 print '{0}\t{1}'.format(curr_word, curr_count)

 curr_word = word

20 | Chapter 2: MapReduce with Python

 curr_count = count

Output the count for the last word
if curr_word == word:
 print '{0}\t{1}'.format(curr_word, curr_count)

Before attempting to execute the code, ensure that the mapper.py
and reducer.py files have execution permission. The following com‐
mand will enable this for both files:

$ chmod a+x mapper.py reducer.py

Also ensure that the first line of each file contains the proper path to
Python. This line enables mapper.py and reducer.py to execute as
standalone executables. The value #!/usr/bin/env python should
work for most systems, but if it does not, replace /usr/bin/env
python with the path to the Python executable on your system.

To test the Python programs locally before running them as a Map‐
Reduce job, they can be run from within the shell using the echo
and sort commands. It is highly recommended to test all programs
locally before running them across a Hadoop cluster.

$ echo 'jack be nimble jack be quick' | ./mapper.py
| sort -t 1 | ./reducer.py
be 2
jack 2
nimble 1
quick 1

Once the mapper and reducer programs are executing successfully
against tests, they can be run as a MapReduce application using the
Hadoop streaming utility. The command to run the Python pro‐
grams mapper.py and reducer.py on a Hadoop cluster is as follows:

$ $HADOOP_HOME/bin/hadoop jar
 $HADOOP_HOME/mapred/contrib/streaming/hadoop-streaming*.jar \
-files mapper.py,reducer.py \
-mapper mapper.py \
-reducer reducer.py \
-input /user/hduser/input.txt -output /user/hduser/output

The options used with the Hadoop streaming utility are listed in
Table 2-1.

Hadoop Streaming | 21

Table 2-1. Options for Hadoop streaming

Option Description

-files A command-separated list of files to be copied to the MapReduce cluster

-mapper The command to be run as the mapper

-reducer The command to be run as the reducer

-input The DFS input path for the Map step

-output The DFS output directory for the Reduce step

mrjob
mrjob is a Python MapReduce library, created by Yelp, that wraps
Hadoop streaming, allowing MapReduce applications to be written
in a more Pythonic manner. mrjob enables multistep MapReduce
jobs to be written in pure Python. MapReduce jobs written with
mrjob can be tested locally, run on a Hadoop cluster, or run in the
cloud using Amazon Elastic MapReduce (EMR).

Writing MapReduce applications with mrjob has many benefits:

• mrjob is currently a very actively developed framework with
multiple commits every week.

• mrjob has extensive documentation, more than any other
framework or library that supports Python on Hadoop.

• mrjob applications can be executed and tested without having
Hadoop installed, enabling development and testing before
deploying to a Hadoop cluster.

• mrjob allows MapReduce applications to be written in a single
class, instead of writing separate programs for the mapper and
reducer.

While mrjob is a great solution, it does have its drawbacks. mrjob is
simplified, so it doesn’t give the same level of access to Hadoop that
other APIs offer. mrjob does not use typedbytes, so other libraries
may be faster.

Installation
The installation of mrjob is simple; it can be installed with pip by
using the following command:

$ pip install mrjob

22 | Chapter 2: MapReduce with Python

Or it can be installed from source (a git clone):

$ python setup.py install

WordCount in mrjob
Example 2-3 uses mrjob to implement the WordCount algorithm.

Example 2-3. python/MapReduce/mrjob/word_count.py

from mrjob.job import MRJob

class MRWordCount(MRJob):

 def mapper(self, _, line):
 for word in line.split():
 yield(word, 1)

 def reducer(self, word, counts):
 yield(word, sum(counts))

if __name__ == '__main__':
 MRWordCount.run()

To run the mrjob locally, the only thing needed is a body of text. To
run the job locally and count the frequency of words within a file
named input.txt, use the following command:

$ python word_count.py input.txt

The output depends on the contents of the input file, but should
look similar to Example 2-4.

Example 2-4. Output from word_count.py

"be" 2
"jack" 2
"nimble" 1
"quick" 1

What Is Happening
The MapReduce job is defined as the class, MRWordCount. Within
the mrjob library, the class that inherits from MRJob contains the
methods that define the steps of the MapReduce job. The steps
within an mrjob application are mapper, combiner, and reducer. The
class inheriting MRJob only needs to define one of these steps.

mrjob | 23

The mapper() method defines the mapper for the MapReduce job. It
takes key and value as arguments and yields tuples of (output_key,
output_value). In the WordCount example (Example 2-4), the map‐
per ignored the input key and split the input value to produce words
and counts.

The combiner() method defines the combiner for the MapReduce
job. The combiner is a process that runs after the mapper and before
the reducer. It receives, as input, all of the data emitted by the map‐
per, and the output of the combiner is sent to the reducer. The com‐
biner’s input is a key, which was yielded by the mapper, and a value,
which is a generator that yields all values yielded by one mapper that
corresponds to the key. The combiner yields tuples of (output_key,
output_value) as output.

The reducer() method defines the reducer for the MapReduce job.
It takes a key and an iterator of values as arguments and yields
tuples of (output_key, output_value). In Example 2-4, the reducer
sums the value for each key, which represents the frequency of
words in the input.

The final component of a MapReduce job written with the mrjob
library is the two lines at the end of the file:

if __name__ == '__main__':
 MRWordCount.run()

These lines enable the execution of mrjob; without them, the appli‐
cation will not work.

Executing mrjob
Executing a MapReduce application with mrjob is similar to execut‐
ing any other Python program. The command line must contain the
name of the mrjob application and the input file:

$ python mr_job.py input.txt

By default, mrjob writes output to stdout.

Multiple files can be passed to mrjob as inputs by specifying the file‐
names on the command line:

$ python mr_job.py input1.txt input2.txt input3.txt

mrjob can also handle input via stdin:

$ python mr_job.py < input.txt

24 | Chapter 2: MapReduce with Python

By default, mrjob runs locally, allowing code to be developed and
debugged before being submitted to a Hadoop cluster.

To change how the job is run, specify the -r/--runner option.
Table 2-2 contains a description of the valid choices for the runner
options.

Table 2-2. mrjob runner choices

-r inline (Default) Run in a single Python process

-r local Run locally in a few subprocesses simulating some Hadoop features

-r hadoop Run on a Hadoop cluster

-r emr Run on Amazon Elastic Map Reduce (EMR)

Using the runner option allows the mrjob program to be run on a
Hadoop cluster, with input being specified from HDFS:

$ python mr_job.py -r hadoop hdfs://input/input.txt

mrjob also allows applications to be run on EMR directly from the
command line:

$ python mr_job.py -r emr s3://input-bucket/input.txt

Top Salaries
Example 2-5 uses mrjob to compute employee top annual salaries
and gross pay. The dataset used is the salary information from the
city of Baltimore for 2014.

Example 2-5. python/MapReduce/mrjob/top_salary.py

from mrjob.job import MRJob
from mrjob.step import MRStep
import csv

cols = 'Name,JobTitle,AgencyID,Agency,HireDate,AnnualSalary,Gross
Pay'.split(',')

class salarymax(MRJob):

 def mapper(self, _, line):
 # Convert each line into a dictionary
 row = dict(zip(cols, [a.strip() for a in
csv.reader([line]).next()]))

 # Yield the salary

mrjob | 25

http://bit.ly/1KdvtCc

 yield 'salary', (float(row['AnnualSalary'][1:]), line)

 # Yield the gross pay
 try:
 yield 'gross', (float(row['GrossPay'][1:]), line)
 except ValueError:
 self.increment_counter('warn', 'missing gross', 1)

 def reducer(self, key, values):
 topten = []

 # For 'salary' and 'gross' compute the top 10
 for p in values:
 topten.append(p)
 topten.sort()
 topten = topten[-10:]

 for p in topten:
 yield key, p

 combiner = reducer

if __name__ == '__main__':
 salarymax.run()

Use the following command to execute the MapReduce job on
Hadoop:

$ python top_salary.py -r hadoop hdfs:///user/hduser/input/
salaries.csv

Chapter Summary
This chapter introduced the MapReduce programming model and
described how data flows through the different phases of the model.
Hadoop Streaming and mrjob were then used to highlight how
MapReduce jobs can be written in Python.

26 | Chapter 2: MapReduce with Python

CHAPTER 3

Pig and Python

Pig is composed of two major parts: a high-level data flow language
called Pig Latin, and an engine that parses, optimizes, and executes
the Pig Latin scripts as a series of MapReduce jobs that are run on a
Hadoop cluster. Compared to Java MapReduce, Pig is easier to write,
understand, and maintain because it is a data transformation lan‐
guage that allows the processing of data to be described as a
sequence of transformations. Pig is also highly extensible through
the use of the User Defined Functions (UDFs) which allow custom
processing to be written in many languages, such as Python.

An example of a Pig application is the Extract, Transform, Load
(ETL) process that describes how an application extracts data from a
data source, transforms the data for querying and analysis purposes,
and loads the result onto a target data store. Once Pig loads the data,
it can perform projections, iterations, and other transformations.
UDFs enable more complex algorithms to be applied during the
transformation phase. After the data is done being processed by Pig,
it can be stored back in HDFS.

This chapter begins with an example Pig script. Pig and Pig Latin are
then introduced and described in detail with examples. The chapter
concludes with an explanation of how Pig’s core features can be
extended through the use of Python.

27

WordCount in Pig
Example 3-1 implements the WordCount algorithm in Pig. It
assumes that a a data file, input.txt, is loaded in HDFS under /user/
hduser/input, and output will be placed in HDFS under /user/
hduser/output.

Example 3-1. pig/wordcount.pig

%default INPUT '/user/hduser/input/input.txt';
%default OUTPUT '/user/hduser/output';

-- Load the data from the file system into the relation records
records = LOAD '$INPUT';

-- Split each line of text and eliminate nesting
terms = FOREACH records GENERATE FLATTEN(TOKENIZE((chararray) $0))
AS word;

-- Group similar terms
grouped_terms = GROUP terms BY word;

-- Count the number of tuples in each group
word_counts = FOREACH grouped_terms GENERATE COUNT(terms), group;

-- Store the result
STORE word_counts INTO '$OUTPUT';

To execute the Pig script, simply call Pig from the command line
and pass it the name of the script to run:

$ pig wordcount.pig

While the job is running, a lot of text will be printed to the console.
Once the job is complete, a success message, similar to the one
below, will be displayed:

2015-09-26 14:15:10,030 [main] INFO org.apache.pig.back-
end.hadoop.executionengine.mapReduceLayer.MapReduceLauncher -
Success!
2015-09-26 14:15:10,049 [main] INFO org.apache.pig.Main - Pig
script completed in 18 seconds and 514 milliseconds (18514 ms)

The results of the wordcount.pig script are displayed in Example 3-2
and can be found in HDFS under /user/hduser/output/pig_word‐
count/part-r-00000.

28 | Chapter 3: Pig and Python

Example 3-2. /user/hduser/output/pig_wordcount/part-r-00000

2 be
1 the
3 jack
1 over
1 quick
1 jumped
1 nimble
1 candlestick

WordCount in Detail
This section describes each Pig Latin statement in the wordcount.pig
script.

The first statement loads data from the filesystem and stores it in the
relation records:

records = LOAD '/user/hduser/input/input.txt';

The second statement splits each line of text using the TOKENIZE
function and eliminates nesting using the FLATTEN operator:

terms = FOREACH records GENERATE FLATTEN(TOKENIZE((chararray)
$0)) AS word;

The third statement uses the GROUP operator to group the tuples that
have the same field:

grouped_terms = GROUP terms BY word;

The fourth statement iterates over all of the terms in each bag and
uses the COUNT function to return the sum:

word_counts = FOREACH grouped_terms GENERATE COUNT(terms),
group;

The fifth and final statement stores the results in HDFS:

STORE word_counts INTO '/user/hduser/output/pig_wordcount'

Running Pig
Pig contains multiple modes that can be specified to configure how
Pig scripts and Pig statements will be executed.

Execution Modes
Pig has two execution modes: local and MapReduce.

Running Pig | 29

Running Pig in local mode only requires a single machine. Pig will
run on the local host and access the local filesystem. To run Pig in
local mode, use the -x local flag:

$ pig -x local ...

Running Pig in MapReduce mode requires access to a Hadoop clus‐
ter. MapReduce mode executes Pig statements and jobs on the clus‐
ter and accesses HDFS. To run Pig in MapReduce mode, simply call
Pig from the command line or use the -x mapreduce flag:

$ pig ...
or
$ pig -x mapreduce ...

Interactive Mode
Pig can be run interactively in the Grunt shell. To invoke the Grunt
shell, simply call Pig from the command line and specify the desired
execution mode. The following example starts the Grunt shell in
local mode:

pig -x local
...
grunt>

Once the Grunt shell is initialized, Pig Latin statements can be
entered and executed in an interactive manner. Running Pig interac‐
tively is a great way to learn Pig.

The following example reads /etc/passwd and displays the usernames
from within the Grunt shell:

grunt> A = LOAD '/etc/passwd' using PigStorage(':');
grunt> B = FOREACH A GENERATE $0 as username;
grunt> DUMP B;

Batch Mode
Batch mode allows Pig to execute Pig scripts in local or MapReduce
mode.

The Pig Latin statements in Example 3-3 read a file named passwd
and use the STORE operator to store the results in a directory called
user_id.out. Before executing this script, ensure that /etc/passwd is
copied to the current working directory if Pig will be run in local
mode, or to HDFS if Pig will be executed in MapReduce mode.

30 | Chapter 3: Pig and Python

Example 3-3. pig/user_id.pig

A = LOAD 'passwd' using PigStorage(':');
B = FOREACH A GENERATE $0 as username;
STORE B INTO 'user_id.out';

Use the following command to execute the user_id.pig script on the
local machine:

$ pig -x local user_id.pig

Pig Latin
This section describes the basic concepts of the Pig Latin language,
allowing those new to the language to understand and write basic
Pig scripts. For a more comprehensive overview of the language,
visit the Pig online documentation.

All of the examples in this section load and process data from the
tab-delimited file, resources/students (Example 3-4).

Example 3-4. resources/students

john 21 3.89
sally 19 2.56
alice 22 3.76
doug 19 1.98
susan 26 3.25

Statements
Statements are the basic constructs used to process data in Pig. Each
statement is an operator that takes a relation as an input, performs a
transformation on that relation, and produces a relation as an out‐
put. Statements can span multiple lines, but all statements must end
with a semicolon (;).

The general form of each Pig script is as follows:

1. A LOAD statement that reads the data from the filesystem
2. One or more statements to transform the data
3. A DUMP or STORE statement to view or store the results, respec‐

tively

Pig Latin | 31

http://pig.apache.org/docs/r0.14.0/index.html

Loading Data
The LOAD operator is used to load data from the system into Pig. The
format of the LOAD operator is as follows:

LOAD 'data' [USING function] [AS schema];

Where 'data' is the name of the file or directory, in quotes, to be
loaded. If a directory name is not specified, all of the files within the
directory are loaded.

The USING keyword is optional and is used to specify a function to
parse the incoming data. If the USING keyword is omitted, the
default loading function, PigStorage, is used. The default delimiter is
the tab character ('\t').

The AS keyword allows a schema to be defined for the data being
loaded. Schemas enable names and datatypes to be declared for indi‐
vidual fields. The following example defines a schema for the data
being loaded from the file input.txt. If no schema is defined, the
fields are not named and default to type bytearray.

A = LOAD 'students' AS (name:chararray, age:int);

DUMP A;
(john,21,3.89)
(sally,19,2.56)
(alice,22,3.76)
(doug,19,1.98)
(susan,26,3.25)

Transforming Data
Pig contains many operators that enable complex transforming of
data. The most common operators are FILTER, FOREACH, and GROUP.

FILTER
The FILTER operator works on tuples or rows of data. It selects
tuples from a relation based on a condition.

The following examples use the relation A that contains student data:

A = LOAD 'students' AS (name:chararray, age:int, gpa:float);

DUMP A;
(john,21,3.89)
(sally,19,2.56)
(alice,22,3.76)

32 | Chapter 3: Pig and Python

(doug,19,1.98)
(susan,26,3.25)

The following example filters out any students under the age of 20,
and stores the results in a relation R:

R = FILTER A BY age >= 20;

DUMP R;
(john,21,3.89)
(alice,22,3.76)
(susan,26,3.25)

Condition statements can use the AND, OR, and NOT operators to cre‐
ate more complex FILTER statements. The following example filters
out any students with an age less than 20 or a GPA less than or equal
to 3.5, and stores the results in a relation R:

R = FILTER A BY (age >= 20) AND (gpa > 3.5)

DUMP R;
(john,21,3.89)
(alice,22,3.76)

FOREACH
While the FILTER operator works on rows of data, the FOREACH oper‐
ator works on columns of data and is similar to the SELECT state‐
ment in SQL.

The following example uses the asterisk (*) to project all of the fields
from relation A onto relation X:

R = FOREACH A GENERATE *;

DUMP R;
(john,21,3.89)
(sally,19,2.56)
(alice,22,3.76)
(doug,19,1.98)
(susan,26,3.25)

The following example uses field names to project the age and gpa
columns from relation A onto relation X:

R = FOREACH A GENERATE age, gpa;

DUMP R;
(21,3.89)
(19,2.56)
(22,3.76)

Pig Latin | 33

(19,1.98)
(26,3.25)

GROUP
The GROUP operator groups together tuples that have the same group
key into one or more relations.

The following example groups the student data by age and stores the
result into relation B:

B = GROUP A BY age;

DUMP B;
(19,{(doug,19,1.98),(sally,19,2.56)})
(21,{(john,21,3.89)})
(22,{(alice,22,3.76)})
(26,{(susan,26,3.25)})

The result of a GROUP operation is a relation that has one tuple per
group. This tuple has two fields: the first field is named group and is
of the type of the grouped key; the second field is a bag that takes
the name of the original relation. To clarify the structure of relation
B, the DESCRIBE and ILLUSTRATE operations can be used:

DESCRIBE B;
B: {group: int,A: {(name: chararray,age: int,gpa: float)}}

ILLUSTRATE B;
--
| B | group:int | A:bag{:tuple(name:chararray, |
 age:int,gpa:float)} |

| | 19 | {(sally, 19, 2.56), (doug, 19, 1.98)} |

Using the FOREACH operator, the fields in the previous relation, B, can
be referred to by names group and A:

C = FOREACH B GENERATE group, A.name;

DUMP C;
(19,{(doug),(sally)})
(21,{(john)})
(22,{(alice)})
(26,{(susan)})

34 | Chapter 3: Pig and Python

Storing Data
The STORE operator is used to execute previous Pig statements and
store the results on the filesystem. The format of the STORE operator
is as follows:

STORE alias INTO 'directory' [USING function];

Where alias is the name of the relation to store, and 'directory'
is the name of the storage directory, in quotes. If the directory
already exists, the STORE operation will fail. The output files will be
named part-nnnnn and are written to the specified directory.

The USING keyword is optional and is used to specify a function to
store the data. If the USING keyword is omitted, the default storage
function, PigStorage, is used. The following example specifies the
PigStorage function to store a file with pipe-delimited fields:

A = LOAD 'students' AS (name:chararray, age:int, gpa:float);

DUMP A;
(john,21,3.89)
(sally,19,2.56)
(alice,22,3.76)
(doug,19,1.98)
(susan,26,3.25)

STORE A INTO 'output' USING PigStorage('|');

CAT output;
john|21|3.89
sally|19|2.56
alice|22|3.76
doug|19|1.98
susan|26|3.25

The provided Pig Latin statements are great general-purpose com‐
puting constructs, but are not capable of expressing complex algo‐
rithms. The next section describes how to extend the functionality
of Pig with Python.

Extending Pig with Python
Pig provides extensive support for custom processing through User
Defined Functions (UDFs). Pig currently supports UDFs in six lan‐
guages: Java, Jython, Python, JavaScript, Ruby, and Groovy.

Extending Pig with Python | 35

When Pig executes, it automatically detects the usage of a UDF. To
run Python UDFs, Pig invokes the Python command line and
streams data in and out of it.

Registering a UDF
Before a Python UDF can be used in a Pig script, it must be regis‐
tered so Pig knows where to look when the UDF is called. To regis‐
ter a Python UDF file, use Pig’s REGISTER statement:

REGISTER 'udfs/myudf.py' USING streaming_python AS my_udf;

Once the UDF is registered, it can be called from within the Pig
script:

relation = FOREACH data GENERATE my_udf.function(field);

In this example the UDF, referenced as my_udf, contains a function
called function.

A Simple Python UDF
A simple Python UDF, located in pig/udfs/my_first_udf.py, that
returns the integer value 1 each time it is called, is shown in
Example 3-5.

Example 3-5. pig/udfs/my_first_udf.py

from pig_util import outputSchema

@outputSchema('value:int')
def return_one():
 """
 Return the integer value 1
 """
 return 1

Some important things to note in this Python script are the from
statement on the first line, and the output decorator, @outputSchema
decorator, on the third line. These lines enable the Python UDF to
define an alias and datatype for the data being returned from the
UDF.

The Pig script in Example 3-6 registers the Python UDF and calls
the return_one() function in a FOREACH statement.

36 | Chapter 3: Pig and Python

Example 3-6. pig/simple_udf.pig

REGISTER 'udfs/my_first_udf.py' USING streaming_python AS pyudfs;

A = LOAD '../resources/input.txt';
B = FOREACH A GENERATE pyudfs.return_one();
DUMP B;

When the Pig script is executed, it will generate an integer value 1
for each line in the input file. Use the following command to execute
the script (sample output is shown as well):

$ pig -x local simple_udf.pig
...
(1)
(1)
(1)

String Manipulation
Python UDFs are an easy way of extending Pig’s functionality and
an easy way to transform and process data.

The Python UDF in Example 3-7 contains two functions: reverse()
and num_chars(). The reverse() function takes in a chararray and
returns the chararray in reverse order. The num_chars() function
takes in a chararray and returns the number of characters in the
chararray.

Example 3-7. pig/udfs/string_funcs.py

from pig_util import outputSchema

@outputSchema('word:chararray')
def reverse(word):
 """
 Return the reverse text of the provided word
 """
 return word[::-1]

@outputSchema('length:int')
def num_chars(word):
 """
 Return the length of the provided word
 """
 return len(word)

Extending Pig with Python | 37

The Pig script in Example 3-8 loads a text file and applies the
reverse() and num_chars() Python functions to each unique word.

Example 3-8. pig/playing_with_words.pig

REGISTER 'udfs/string_funcs.py' USING streaming_python AS
string_udf;

-- Load the data from the file system
records = LOAD '../resources/input.txt';

-- Split each line of text and eliminate nesting
terms = FOREACH records GENERATE FLATTEN(TOKENIZE((chararray) $0))
AS word;

-- Group similar terms
grouped_terms = GROUP terms BY word;

-- Count the number of tuples in each group
unique_terms = FOREACH grouped_terms GENERATE group as word;

-- Calculate the number of characters in each term
term_length = FOREACH unique_terms GENERATE word,
string_udf.num_chars(word) as length;

-- Display the terms and their length
DUMP term_length;

-- Reverse each word
reverse_terms = FOREACH unique_terms GENERATE word,
string_udf.reverse(word) as reverse_word;

-- Display the terms and the reverse terms
DUMP reverse_terms;

Use the following command to execute the script (sample output
shown):

$ pig -x local playing_with_words.pig
...
(be,2)
(the,3)
(jack,4)
(over,4)
(quick,5)
(jumped,6)
(nimble,6)
(candlestick,11)
...
(be,eb)

38 | Chapter 3: Pig and Python

(the,eht)
(jack,kcaj)
(over,revo)
(quick,kciuq)
(jumped,depmuj)
(nimble,elbmin)
(candlestick,kcitseldnac)

Most Recent Movies
The following example uses movie data from the groupLens datasets
and external libraries to calculate the 10 most recent movies.

The Python UDF in Example 3-9 contains two functions:
parse_title() and days_since_release(). The parse_title()
function uses Python’s regular expression module to remove the
release year from a movie’s title. The days_since_release() func‐
tion uses the datetime module to calculate the number of days
between the current day and a movie’s release date.

Example 3-9. pig/udfs/movies_udf.py

from pig_util import outputSchema
from datetime import datetime
import re

@outputSchema('title:chararray')
def parse_title(title):
 """
 Return the title without the year
 """
 return re.sub(r'\s*\(\d{4}\)','', title)

@outputSchema('days_since_release:int')
def days_since_release(date):
 """
 Calculate the number of days since the titles release
 """
 if date is None:
 return None

 today = datetime.today()
 release_date = datetime.strptime(date, '%d-%b-%Y')
 delta = today - release_date
 return delta.days

Extending Pig with Python | 39

http://grouplens.org/datasets/movielens/

The Pig script in Example 3-10 uses the Python UDFs to determine
the 10 most recent movies.

Example 3-10. pig/recent_movies.pig

REGISTER 'udfs/movies_udf.py' USING streaming_python AS movies_udf;

-- Load the data from the file system
records = LOAD '../resources/movies' USING PigStorage('|')
 AS (id:int, title:chararray, release_date:chararray);

-- Parse the titles and determine how many days since the release
date
titles = FOREACH records GENERATE movies_udf.parse_title(title),
movies_udf.days_since_release(release_date);

-- Order the movies by the time since release
most_recent = ORDER titles BY days_since_release ASC;

-- Get the ten most recent movies
top_ten = LIMIT most_recent 10;

-- Display the top ten most recent movies
DUMP top_ten;

The following command is used to execute the script (sample output
shown):

$ pig -x local recent_movies.pig
...
(unknown,)
(Apt Pupil,6183)
(Mighty, The,6197)
(City of Angels,6386)
(Big One, The,6393)
(Lost in Space,6393)
(Mercury Rising,6393)
(Spanish Prisoner, The,6393)
(Hana-bi,6400)
(Object of My Affection, The,6400)

Chapter Summary
This chapter introduced and Pig and Pig Latin. It described the basic
concepts of Pig Latin, allowing simple Pig scripts to be created and
executed. It also introduced how to extend the functionality of Pig
Latin with Python UDFs.

40 | Chapter 3: Pig and Python

CHAPTER 4

Spark with Python

Spark is a cluster computing framework that uses in-memory primi‐
tives to enable programs to run up to a hundred times faster than
Hadoop MapReduce applications. Spark applications consist of a
driver program that controls the execution of parallel operations
across a cluster. The main programming abstraction provided by
Spark is known as Resilient Distributed Datasets (RDDs). RDDs are
collections of elements partitioned across the nodes of the cluster
that can be operated on in parallel.

Spark was created to run on many platforms and be developed in
many languages. Currently, Spark can run on Hadoop 1.0, Hadoop
2.0, Apache Mesos, or a standalone Spark cluster. Spark also natively
supports Scala, Java, Python, and R. In addition to these features,
Spark can be used interactively from a command-line shell.

This chapter begins with an example Spark script. PySpark is then
introduced, and RDDs are described in detail with examples. The
chapter concludes with example Spark programs written in Python.

WordCount in PySpark
The code in Example 4-1 implements the WordCount algorithm in
PySpark. It assumes that a data file, input.txt, is loaded in HDFS
under /user/hduser/input, and the output will be placed in HDFS
under /user/hduser/output.

41

Example 4-1. python/Spark/word_count.py

from pyspark import SparkContext

def main():

 sc = SparkContext(appName='SparkWordCount')

 input_file = sc.textFile('/user/hduser/input/input.txt')
 counts = input_file.flatMap(lambda line: line.split()) \
 .map(lambda word: (word, 1)) \
 .reduceByKey(lambda a, b: a + b)
 counts.saveAsTextFile('/user/hduser/output')

 sc.stop()

if __name__ == '__main__':
 main()

To execute the Spark application, pass the name of the file to the
spark-submit script:

$ spark-submit --master local word_count.py

While the job is running, a lot of text will be printed to the console.
The results of a word_count.py Spark script are displayed in
Example 4-2 and can be found in HDFS under /user/hduser/output/
part-00000.

Example 4-2. /user/hduser/output/part-00000

(u'be', 2)
(u'jumped', 1)
(u'over', 1)
(u'candlestick', 1)
(u'nimble', 1)
(u'jack', 3)
(u'quick', 1)
(u'the', 1)

WordCount Described
This section describes the transformations being applied in the
word_count.py Spark script.

The first statement creates a SparkContext object. This object tells
Spark how and where to access a cluster:

sc = SparkContext(appName='SparkWordCount')

42 | Chapter 4: Spark with Python

The second statement uses the SparkContext to load a file from
HDFS and store it in the variable input_file:

input_file = sc.textFile('/user/hduser/input/input.txt')

The third statement performs multiple transformations on the input
data. Spark automatically parallelizes these transformations to run
across multiple machines:

counts = input_file.flatMap(lambda line: line.split()) \
 .map(lambda word: (word, 1)) \
 .reduceByKey(lambda a, b: a + b)

The fourth statement stores the results to HDFS:

counts.saveAsTextFile('/user/hduser/output')

The fifth statement shuts down the SparkContext:

sc.stop()

PySpark
PySpark is Spark’s Python API. PySpark allows Spark applications to
be created from an interactive shell or from Python programs.

Before executing any code within Spark, the application must create
a SparkContext object. The SparkContext object tells Spark how and
where to access a cluster. The master property is a cluster URL that
determines where the Spark appliction will run. The most common
values for master are:

local

Run Spark with one worker thread.

local[n]

Run Spark with n worker threads.

spark://HOST:PORT

Connect to a Spark standalone cluster.

mesos://HOST:PORT

Connect to a Mesos cluster.

Interactive Shell
In the Spark shell, the SparkContext is created when the shell
launches. The SparkContext is held in the variable sc. The master

PySpark | 43

for the interactive shell can be set by using the --master argument
when the shell is launched. To start an interactive shell, run the
pyspark command:

$ pyspark --master local[4]
...
Welcome to
 ____ __
 / __/__ ___ _____/ /__
 _\ \/ _ \/ _ `/ __/ '_/
 /__ / .__/_,_/_/ /_/_\ version 1.5.0
 /_/
Using Python version 2.7.10 (default, Jul 13 2015 12:05:58)
SparkContext available as sc, HiveContext available as sqlCon-
text.
>>>

For a complete list of options, run pyspark --help.

Self-Contained Applications
Self-contained applications must first create a SparkContext object
before using any Spark methods. The master can be set when the
SparkContext() method is called:

sc = SparkContext(master='local[4]')

To execute self-contained applications, they must be submitted to
the spark-submit script. The spark-submit script contains many
options; to see a complete listing, run spark-submit --help from
the command line:

$ spark-submit --master local spark_app.py

Resilient Distributed Datasets (RDDs)
Resilient Distributed Datasets (RDDs) are the fundamental pro‐
gramming abstraction in Spark. RDDs are immutable collections of
data, partitioned across machines, that enable operations to be per‐
formed on elements in parallel. RDDs can be constructed in multi‐
ple ways: by parallelizing existing Python collections, by referencing
files in an external storage system such as HDFS, or by applying
transformations to existing RDDs.

44 | Chapter 4: Spark with Python

Creating RDDs from Collections
RDDs can be created from a Python collection by calling the Spark
Context.parallelize() method. The elements of the collection are
copied to form a distributed dataset that can be operated on in par‐
allel. The following example creates a parallelized collection from a
Python list:

>>> data = [1, 2, 3, 4, 5]
>>> rdd = sc.parallelize(data)
>>> rdd.glom().collect()
...
[[1, 2, 3, 4, 5]]

The RDD.glom() method returns a list of all of the elements within
each partition, and the RDD.collect() method brings all the ele‐
ments to the driver node. The result, [[1, 2, 3, 4, 5]], is the
original collection within a list.

To specify the number of partitions an RDD should be created with,
a second argument can be passed to the parallelize() method.
The following example creates an RDD from the same Python col‐
lection in the previous example, except this time four partitions are
created:

>>> rdd = sc.parallelize(data, 4)
>>> rdd.glom().collect()
...
[[1], [2], [3], [4, 5]]

Using the glom() and collect() methods, the RDD created in this
example contains four inner lists: [1], [2], [3], and [4, 5]. The
number of inner lists represents the number of partitions within the
RDD.

Creating RDDs from External Sources
RDDs can also be created from files using the SparkContext.text
File() method. Spark can read files residing on the local filesystem,
any storage source supported by Hadoop, Amazon S3, and so on.
Spark supports text files, SequenceFiles, any other Hadoop Input‐
Format, directories, compressed files, and wildcards, e.g., my/direc‐
tory/*.txt. The following example creates a distributed dataset from a
file located on the local filesystem:

Resilient Distributed Datasets (RDDs) | 45

>>> distFile = sc.textFile('data.txt')
>>> distFile.glom().collect()
...
[[u'jack be nimble', u'jack be quick', u'jack jumped over the
candlestick']]

As before, the glom() and collect() methods allow the RDD to be
displayed in its partitions. This result shows that distFile only has
a single partition.

Similar to the parallelize() method, the textFile() method
takes a second parameter that specifies the number of partitions to
create. The following example creates an RDD with three partitions
from the input file:

>>> distFile = sc.textFile('data.txt', 3)
>>> distFile.glom().collect()
...
[[u'jack be nimble', u'jack be quick'], [u'jack jumped over
the candlestick'], []]

RDD Operations
RDDs support two types of operations: transformations and actions.
Transformations create new datasets from existing ones, and actions
run a computation on the dataset and return results to the driver
program.

Transformations are lazy: that is, their results are not computed
immediately. Instead, Spark remembers all of the transformations
applied to a base dataset. Transformations are computed when an
action requires a result to be returned to the driver program. This
allows Spark to operate efficiently and only transfer the results of the
transformations before an action.

By default, transformations may be recomputed each time an action
is performed on it. This allows Spark to efficiently utilize memory,
but it may utilize more processing resources if the same transforma‐
tions are constantly being processed. To ensure a transformation is
only computed once, the resulting RDD can be persisted in memory
using the RDD.cache() method.

46 | Chapter 4: Spark with Python

RDD Workflow
The general workflow for working with RDDs is as follows:

1. Create an RDD from a data source.
2. Apply transformations to an RDD.
3. Apply actions to an RDD.

The following example uses this workflow to calculate the number
of characters in a file:

>>> lines = sc.textFile('data.txt')
>>> line_lengths = lines.map(lambda x: len(x))
>>> document_length = line_lengths.reduce(lambda x,y: x+y)
>>> print document_length
59

The first statement creates an RDD from the external file data.txt.
This file is not loaded at this point; the variable lines is just a
pointer to the external source. The second statement performs a
transformation on the base RDD by using the map() function to cal‐
culate the number of characters in each line. The variable
line_lengths is not immediately computed due to the laziness of
transformations. Finally, the reduce() method is called, which is an
action. At this point, Spark divides the computations into tasks to
run on separate machines. Each machine runs both the map and
reduction on its local data, returning only the results to the driver
program.

If the application were to use line_lengths again, it would be best
to persist the result of the map transformation to ensure that the
map would not be recomputed. The following line will save
line_lengths into memory after the first time it is computed:

>>> line_lengths.persist()

Python Lambda Functions
Many of Spark’s transformations and actions require function
objects to be passed from the driver program to run on the cluster.
The easiest way to define and pass a function is through the use of
Python lambda functions.

Lambda functions are anonymous functions (i.e., they do not have a
name) that are created at runtime. They can be used wherever func‐
tion objects are required and are syntactically restricted to a single

Resilient Distributed Datasets (RDDs) | 47

expression. The following example shows a lambda function that
returns the sum of its two arguments:

lambda a, b: a + b

Lambdas are defined by the keyword lambda, followed by a comma-
separated list of arguments. A colon separates the function declara‐
tion from the function expression. The function expression is a sin‐
gle expression that produces a result for the provided arguments.

In the previous Spark example, the map() function uses the follow‐
ing lambda function:

lambda x: len(x)

This lambda has one argument and returns the length of the argu‐
ment.

Transformations
Transformations create new datasets from existing ones. Lazy evalu‐
ation of transformation allows Spark to remember the set of trans‐
formations applied to the base RDD. This enables Spark to optimize
the required calculations.

This section describes some of Spark’s most common transforma‐
tions. For a full listing of transformations, refer to Spark’s Python
RDD API doc.

map. The map(func) function returns a new RDD by applying a
function, func, to each element of the source. The following example
multiplies each element of the source RDD by two:

>>> data = [1, 2, 3, 4, 5, 6]
>>> rdd = sc.parallelize(data)
>>> map_result = rdd.map(lambda x: x * 2)
>>> map_result.collect()
[2, 4, 6, 8, 10, 12]

filter. The filter(func) function returns a new RDD containing
only the elements of the source that the supplied function returns as
true. The following example returns only the even numbers from
the source RDD:

>>> data = [1, 2, 3, 4, 5, 6]
>>> filter_result = rdd.filter(lambda x: x % 2 == 0)
>>> filter_result.collect()
[2, 4, 6]

48 | Chapter 4: Spark with Python

http://bit.ly/1MtRa2t
http://bit.ly/1MtRa2t

distinct. The distinct() method returns a new RDD containing
only the distinct elements from the source RDD. The following
example returns the unique elements in a list:

>>> data = [1, 2, 3, 2, 4, 1]
>>> rdd = sc.parallelize(data)
>>> distinct_result = rdd.distinct()
>>> distinct_result.collect()
[4, 1, 2, 3]

flatMap. The flatMap(func) function is similar to the map() func‐
tion, except it returns a flattened version of the results. For compari‐
son, the following examples return the original element from the
source RDD and its square. The example using the map() function
returns the pairs as a list within a list:

>>> data = [1, 2, 3, 4]
>>> rdd = sc.parallelize(data)
>>> map = rdd.map(lambda x: [x, pow(x,2)])
>>> map.collect()
[[1, 1], [2, 4], [3, 9], [4, 16]]

While the flatMap() function concatenates the results, returning a
single list:

>>> rdd = sc.parallelize()
>>> flat_map = rdd.flatMap(lambda x: [x, pow(x,2)])
>>> flat_map.collect()
[1, 1, 2, 4, 3, 9, 4, 16]

Actions
Actions cause Spark to compute transformations. After transforms
are computed on the cluster, the result is returned to the driver pro‐
gram.

The following section describes some of Spark’s most common
actions. For a full listing of actions, refer to Spark’s Python RDD API
doc.

reduce. The reduce() method aggregates elements in an RDD
using a function, which takes two arguments and returns one. The
function used in the reduce method is commutative and associative,
ensuring that it can be correctly computed in parallel. The following
example returns the product of all of the elements in the RDD:

>>> data = [1, 2, 3]
>>> rdd = sc.parallelize(data)

Resilient Distributed Datasets (RDDs) | 49

http://bit.ly/1MtRa2t
http://bit.ly/1MtRa2t

>>> rdd.reduce(lambda a, b: a * b)
6

take. The take(n) method returns an array with the first n ele‐
ments of the RDD. The following example returns the first two ele‐
ments of an RDD:

>>> data = [1, 2, 3]
>>> rdd = sc.parallelize(data)
>>> rdd.take(2)
[1, 2]

collect. The collect() method returns all of the elements of the
RDD as an array. The following example returns all of the elements
from an RDD:

>>> data = [1, 2, 3, 4, 5]
>>> rdd = sc.parallelize(data)
>>> rdd.collect()
[1, 2, 3, 4, 5]

It is important to note that calling collect() on large datasets could
cause the driver to run out of memory. To inspect large RDDs, the
take() and collect() methods can be used to inspect the top n ele‐
ments of a large RDD. The following example will return the first
100 elements of the RDD to the driver:

>>> rdd.take(100).collect()

takeOrdered. The takeOrdered(n, key=func) method returns the
first n elements of the RDD, in their natural order, or as specified by
the function func. The following example returns the first four ele‐
ments of the RDD in descending order:

>>> data = [6,1,5,2,4,3]
>>> rdd = sc.parallelize(data)
>>> rdd.takeOrdered(4, lambda s: -s)
[6, 5, 4, 3]

Text Search with PySpark
The text search program searches for movie titles that match a given
string (Example 4-3). The movie data is from the groupLens data‐
sets; the application expects this to be stored in HDFS under /user/
hduser/input/movies.

50 | Chapter 4: Spark with Python

http://grouplens.org/datasets/movielens/

Example 4-3. python/Spark/text_search.py

from pyspark import SparkContext
import re
import sys

def main():

 # Insure a search term was supplied at the command line
 if len(sys.argv) != 2:
 sys.stderr.write('Usage: {} <search_term>'.for
mat(sys.argv[0]))
 sys.exit()

 # Create the SparkContext
 sc = SparkContext(appName='SparkWordCount')

 # Broadcast the requested term
 requested_movie = sc.broadcast(sys.argv[1])

 # Load the input file
 source_file = sc.textFile('/user/hduser/input/movies')

 # Get the movie title from the second fields
 titles = source_file.map(lambda line: line.split('|')[1])

 # Create a map of the normalized title to the raw title
 normalized_title = titles.map(lambda title: (re.sub(r'\s*\
(\d{4}\)','', title).lower(), title))

 # Find all movies matching the requested_movie
 matches = normalized_title.filter(lambda x: reques
ted_movie.value in x[0])

 # Collect all the matching titles
 matching_titles = matches.map(lambda x: x[1]).distinct().col
lect()

 # Display the result
 print '{} Matching titles found:'.format(len(matching_titles))
 for title in matching_titles:
 print title

 sc.stop()

if __name__ == '__main__':
 main()

The Spark application can be executed by passing to the spark-
submit script the name of the program, text_search.py, and the term

Text Search with PySpark | 51

for which to search. A sample run of the application can be seen
here:

$ spark-submit text_search.py gold
...
6 Matching titles found:
GoldenEye (1995)
On Golden Pond (1981)
Ulee's Gold (1997)
City Slickers II: The Legend of Curly's Gold (1994)
Golden Earrings (1947)
Gold Diggers: The Secret of Bear Mountain (1995)
...

Since computing the transformations can be a costly operation,
Spark can cache the results of the normalized_titles to memory to
speed up future searches. From the example above, to load the nor‐
malized_titles into memory, use the cache() method:

normalized_title.cache()

Chapter Summary
This chapter introduced Spark and and PySpark. It described Spark’s
main programming abstraction, RDDs, with many examples of
dataset transformations. This chapter also contained a Spark appli‐
cation that returned movie titles that matched a given string.

52 | Chapter 4: Spark with Python

CHAPTER 5

Workflow Management
with Python

The most popular workflow scheduler to manage Hadoop jobs is
arguably Apache Oozie. Like many other Hadoop products, Oozie is
written in Java, and is a server-based web application that runs
workflow jobs that execute Hadoop MapReduce and Pig jobs. An
Oozie workflow is a collection of actions arranged in a control
dependency directed acyclic graph (DAG) specified in an XML
document. While Oozie has a lot of support in the Hadoop commu‐
nity, configuring workflows and jobs through XML attributes has a
steep learning curve.

Luigi is a Python alternative, created by Spotify, that enables com‐
plex pipelines of batch jobs to be built and configured. It handles
dependency resolution, workflow management, visualization, and
much more. It also has a large community and supports many
Hadoop technologies.

This chapter begins with the installation of Luigi and a detailed
description of a workflow. Multiple examples then show how Luigi
can be used to control MapReduce and Pig jobs.

Installation
Luigi is distributed through PyPI and can be installed using pip:

$ pip install luigi

53

Or it can be installed from source:

$ git clone https://github.com/spotify/luigi
$ python setup.py install

Workflows
Within Luigi, a workflow consists of a pipeline of actions, called
tasks. Luigi tasks are nonspecific, that is, they can be anything that
can be written in Python. The locations of input and output data for
a task are known as targets. Targets typically correspond to locations
of files on disk, on HDFS, or in a database. In addition to tasks and
targets, Luigi utilizes parameters to customize how tasks are exe‐
cuted.

Tasks
Tasks are the sequences of actions that comprise a Luigi workflow.
Each task declares its dependencies on targets created by other tasks.
This enables Luigi to create dependency chains that ensure a task
will not be executed until all of the dependent tasks and all of the
dependencies for those tasks are satisfied.

Figure 5-1 depicts a workflow highlighting Luigi tasks and their
dependencies.

Figure 5-1. A Luigi task dependency diagram illustrates the flow of
work up a pipeline and the dependencies between tasks

54 | Chapter 5: Workflow Management with Python

Target
Targets are the inputs and outputs of a task. The most common tar‐
gets are files on a disk, files in HDFS, or records in a database. Luigi
wraps the underlying filesystem operations to ensure that interac‐
tions with targets are atomic. This allows a workflow to be replayed
from the point of failure without having to replay any of the already
successfully completed tasks.

Parameters
Parameters allow the customization of tasks by enabling values to be
passed into a task from the command line, programmatically, or
from another task. For example, the name of a task’s output may be
determined by a date passed into the task through a parameter.

An Example Workflow
This section describes a workflow that implements the WordCount
algorithm to explain the interaction among tasks, targets, and
parameters. The complete workflow is shown in Example 5-1.

Example 5-1. /python/Luigi/wordcount.py

import luigi

class InputFile(luigi.Task):
 """
 A task wrapping a target
 """
 input_file = luigi.Parameter()

 def output(self):
 """
 Return the target for this task
 """
 return luigi.LocalTarget(self.input_file)

class WordCount(luigi.Task):
 """
 A task that counts the number of words in a file
 """
 input_file = luigi.Parameter()
 output_file = luigi.Parameter(default='/tmp/wordcount')

 def requires(self):
 """

An Example Workflow | 55

 The task's dependencies:
 """
 return InputFile(self.input_file)

 def output(self):
 """
 The task's output
 """
 return luigi.LocalTarget(self.output_file)

 def run(self):
 """
 The task's logic
 """
 count = {}

 ifp = self.input().open('r')

 for line in ifp:
 for word in line.strip().split():
 count[word] = count.get(word, 0) + 1

 ofp = self.output().open('w')
 for k, v in count.items():
 ofp.write('{}\t{}\n'.format(k, v))
 ofp.close()

if __name__ == '__main__':
 luigi.run()

This workflow contains two tasks: InputFile and WordCount. The
InputFile task returns the input file to the WordCount task. The
WordCount tasks then counts the occurrences of each word in the
input file and stores the results in the output file.

Within each task, the requires(), output(), and run() methods
can be overridden to customize a task’s behavior.

Task.requires
The requires() method is used to specify a task’s dependencies.
The WordCount task requires the output of the InputFile task:

 def requires(self):
 return InputFile(self.input_file)

It is important to note that the requires() method cannot return a
Target object. In this example, the Target object is wrapped in the
InputFile task. Calling the InputFile task with the

56 | Chapter 5: Workflow Management with Python

self.input_file argument enables the input_file parameter to
be passed to the InputFile task.

Task.output
The output() method returns one or more Target objects. The
InputFile task returns the Target object that was the input for the
WordCount task:

def output(self):
 return luigi.LocalTarget(self.input_file)

The WordCount task returns the Target object that was the output
for the workflow:

def output(self):
 return luigi.LocalTarget(self.output_file)

Task.run
The run() method contains the code for a task. After the
requires() method completes, the run() method is executed. The
run() method for the WordCount task reads data from the input file,
counts the number of occurrences, and writes the results to an out‐
put file:

def run(self):
 count = {}

 ifp = self.input().open('r')

 for line in ifp:
 for word in line.strip().split():
 count[word] = count.get(word, 0) + 1

 ofp = self.output().open('w')
 for k, v in count.items():
 ofp.write('{}\t{}\n'.format(k, v))
 ofp.close()

The input() and output() methods are helper methods that allow
the task to read and write to Target objects in the requires() and
output() methods, respectively.

An Example Workflow | 57

Parameters
Parameters enable values to be passed into a task, customizing the
task’s execution. The WordCount task contains two parameters:
input_file and output_file:

class WordCount(luigi.Task):
 input_file = luigi.Parameter()
 output_file = luigi.Parameter(default='/tmp/wordcount')

Default values can be set for parameters by using the default argu‐
ment.

Luigi creates a command-line parser for each Parameter object, ena‐
bling values to be passed into the Luigi script on the command line,
e.g., --input-file input.txt and --output-file /tmp/

output.txt.

Execution
To enable execution from the command line, the following lines
must be present in the application:

if __name__ == '__main__':
 luigi.run()

This will enable Luigi to read commands from the command line.

The following command will execute the workflow, reading from
input.txt and storing the results in /tmp/wordcount.txt:

$ python wordcount.py WordCount \
--local-scheduler \
--input-file input.txt \
--output-file /tmp/wordcount.txt

Hadoop Workflows
This section contains workflows that control MapReduce and Pig
jobs on a Hadoop cluster.

Configuration File
The examples in this section require a Luigi configuration file, cli‐
ent.cfg, to specify the location of the Hadoop streaming jar and the
path to the Pig home directory. The config files should be in the cur‐

58 | Chapter 5: Workflow Management with Python

rent working directory, and an example of a config file is shown in
Example 5-2.

Example 5-2. python/Luigi/client.cfg

[hadoop]
streaming-jar: /usr/lib/hadoop-xyz/hadoop-streaming-xyz-123.jar

[pig]
home: /usr/lib/pig

MapReduce in Luigi
Luigi scripts can control the execution of MapReduce jobs on a
Hadoop cluster by using Hadoop streaming (Example 5-3).

Example 5-3. python/Luigi/luigi_mapreduce.py

import luigi
import luigi.contrib.hadoop
import luigi.contrib.hdfs

class InputFile(luigi.ExternalTask):
 """
 A task wrapping the HDFS target
 """
 input_file = luigi.Parameter()

 def output(self):
 """
 Return the target on HDFS
 """
 return luigi.contrib.hdfs.HdfsTarget(self.input_file)

class WordCount(luigi.contrib.hadoop.JobTask):
 """
 A task that uses Hadoop streaming to perform WordCount
 """
 input_file = luigi.Parameter()
 output_file = luigi.Parameter()

 # Set the number of reduce tasks
 n_reduce_tasks = 1

 def requires(self):
 """
 Read from the output of the InputFile task
 """
 return InputFile(self.input_file)

Hadoop Workflows | 59

 def output(self):
 """
 Write the output to HDFS
 """
 return luigi.contrib.hdfs.HdfsTarget(self.output_file)

 def mapper(self, line):
 """
 Read each line and produce a word and 1
 """
 for word in line.strip().split():
 yield word, 1

 def reducer(self, key, values):
 """
 Read each word and produce the word and the sum of
 its values
 """
 yield key, sum(values)

if __name__ == '__main__':
 luigi.run(main_task_cls=WordCount)

Luigi comes packaged with support for Hadoop streaming. The task
implementing the MapReduce job must subclass luigi.contrib
.hadoop.JobTask. The mapper() and reducer() methods can be
overridden to implement the map and reduce methods of a MapRe‐
duce job.

The following command will execute the workflow, reading
from /user/hduser/input.txt and storing the results in /user/hduser/
wordcount on HDFS:

$ python luigi_mapreduce.py --local-scheduler \
--input-file /user/hduser/input/input.txt \
--output-file /user/hduser/wordcount

Pig in Luigi
Luigi can be used to control the execution of Pig on a Hadoop clus‐
ter (Example 5-4).

Example 5-4. python/Luigi/luigi_pig.py

import luigi
import luigi.contrib.pig
import luigi.contrib.hdfs

60 | Chapter 5: Workflow Management with Python

class InputFile(luigi.ExternalTask):
 """
 A task wrapping the HDFS target
 """
 input_file = luigi.Parameter()

 def output(self):
 return luigi.contrib.hdfs.HdfsTarget(self.input_file)

class WordCount(luigi.contrib.pig.PigJobTask):
 """
 A task that uses Pig to perform WordCount
 """
 input_file = luigi.Parameter()
 output_file = luigi.Parameter()
 script_path = luigi.Parameter(default='pig/wordcount.pig')

 def requires(self):
 """
 Read from the output of the InputFile task
 """
 return InputFile(self.input_file)

 def output(self):
 """
 Write the output to HDFS
 """
 return luigi.contrib.hdfs.HdfsTarget(self.output_file)

 def pig_parameters(self):
 """
 A dictionary of parameters to pass to pig
 """
 return {'INPUT': self.input_file, 'OUTPUT': self.output_file}

 def pig_options(self):
 """
 A list of options to pass to pig
 """
 return ['-x', 'mapreduce']

 def pig_script_path(self):
 """
 The path to the pig script to run
 """
 return self.script_path

if __name__ == '__main__':
 luigi.run(main_task_cls=WordCount)

Hadoop Workflows | 61

Luigi comes packaged with support for Pig. The task implementing
the Pig job must subclass luigi.contrib.hadoop.PigJobTask. The
pig_script_path() method is used to define the path to the Pig
script to run. The pig_options() method is used to define the
options to pass to the Pig script. The pig_parameters() method is
used to pass parameters to the Pig script.

The following command will execute the workflow, reading
from /user/hduser/input.txt and storing the results in /user/hduser/
output on HDFS. The --script-path parameter is used to define
the Pig script to execute:

$ python luigi_pig.py --local-scheduler \
--input-file /user/hduser/input/input.txt \
--output-file /user/hduser/output \
--script-path pig/wordcount.pig

Chapter Summary
This chapter introduced Luigi as a Python workflow scheduler. It
described the components of a Luigi workflow and contained exam‐
ples of using Luigi to control MapReduce jobs and Pig scripts.

62 | Chapter 5: Workflow Management with Python

About the Authors
Zachary Radtka is a platform engineer at the data science firm
Miner & Kasch and has extensive experience creating custom ana‐
lytics that run on petabyte-scale datasets. Zach is an experienced
educator, having instructed collegiate-level computer science classes,
professional training classes on Big Data technologies, and public
technology tutorials. He has also created production-level analytics
for many industries, including US government, financial, healthcare,
telecommunications, and retail.

Donald Miner is founder of the data science firm Miner & Kasch,
and specializes in Hadoop enterprise architecture and applying
machine learning to real-world business problems.

Donald is the author of the O’Reilly book MapReduce Design Pat‐
terns and the upcoming O’Reilly book Enterprise Hadoop. He has
architected and implemented dozens of mission-critical and large-
scale Hadoop systems within the US government and Fortune 500
companies. He has applied machine learning techniques to analyze
data across several verticals, including financial, retail, telecommu‐
nications, health care, government intelligence, and entertainment.
His PhD is from the University of Maryland, Baltimore County,
where he focused on machine learning and multiagent systems. He
lives in Maryland with his wife and two young sons.

	Programming
	Copyright
	Table of Contents
	Source Code
	Chapter 1. Hadoop Distributed File System (HDFS)
	Overview of HDFS
	Interacting with HDFS
	Common File Operations
	HDFS Command Reference

	Snakebite
	Installation
	Client Library
	CLI Client

	Chapter Summary

	Chapter 2. MapReduce with Python
	Data Flow
	Map
	Shuffle and Sort
	Reduce

	Hadoop Streaming
	How It Works
	A Python Example

	mrjob
	Installation
	WordCount in mrjob
	What Is Happening
	Executing mrjob
	Top Salaries

	Chapter Summary

	Chapter 3. Pig and Python
	WordCount in Pig
	WordCount in Detail

	Running Pig
	Execution Modes
	Interactive Mode
	Batch Mode

	Pig Latin
	Statements
	Loading Data
	Transforming Data
	Storing Data

	Extending Pig with Python
	Registering a UDF
	A Simple Python UDF
	String Manipulation
	Most Recent Movies

	Chapter Summary

	Chapter 4. Spark with Python
	WordCount in PySpark
	WordCount Described

	PySpark
	Interactive Shell
	Self-Contained Applications

	Resilient Distributed Datasets (RDDs)
	Creating RDDs from Collections
	Creating RDDs from External Sources
	RDD Operations

	Text Search with PySpark
	Chapter Summary

	Chapter 5. Workflow Management with Python
	Installation
	Workflows
	Tasks
	Target
	Parameters

	An Example Workflow
	Task.requires
	Task.output
	Task.run
	Parameters
	Execution

	Hadoop Workflows
	Configuration File
	MapReduce in Luigi
	Pig in Luigi

	Chapter Summary

