O'REILLY"

Introducing

GO

BUILD RELIABLE,
SCALABLE PROGRAMS

R

‘\T\\\‘\Q\\ N
DA
N

Caleb Doxsey

vww .allitebooks.cond

http://www.allitebooks.org

9

O'REILLY"

Introducing Go

Perfect for beginners familiar with programming basics, this hands-on guide
provides an easy introduction to Go, the general-purpose programming
language from Google. Author Caleb Doxsey covers the language's core
features with step-by-step instructions and exercises in each chapter to
help you practice what you learn.

Go is a general-purpose programming language with a clean syntax and
advanced features, including concurrency. This book provides the one-on-
one support you need to get started with the language, with short, easily
digestible chapters that build on one another. By the time you finish this
book, not only will you be able to write real Go programs, you'll be ready to
tackle advanced technigues.

m Jump into Go basics, including data types, variables, and
control structures

m Learn complex types, such as slices, functions, structs, and
interfaces

m Explore Go's core library and learn how to create your own
package

m Write tests for your code by using the language's go test
program

m Learn how to run programs concurrently with goroutines and
channels

m Get suggestions to help you master the craft of programming

Caleb Doxsey, a software engineer at DataDog, builds monitoring software for
the cloud. He has 10 years of experience developing software in a wide variety
of languages. An early Go user, he particularly enjoys helping new programmers
learn the language.

PROGRAMMING/GO

US $24.99 CAN $28.99
ISBN: 978-1-491-94195-9

MIVHNVANAIE
AL AN T

81491

vww allitebooks.conl

Twitter: @oreillymedia
facebook.com/oreilly

http://www.allitebooks.org

Introducing Go

Build Reliable, Scalable Programs

Caleb Doxsey

Beijing + Boston + Farnham - Sebastopol + Tokyo KOA{={|HAE

vww allitebooks.cond

http://www.allitebooks.org

Introducing Go
by Caleb Doxsey

Copyright © 2016 Caleb Doxsey. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Brian MacDonald and Meghan Blanchette Indexer: WordCo Indexing Services, Inc.
Production Editor: Shiny Kalapurakkel Interior Designer: David Futato

Copyeditor: Jasmine Kwityn Cover Designer: Karen Montgomery
Proofreader: James Fraleigh lllustrator: Rebecca Demarest

January 2016: First Edition

Revision History for the First Edition
2016-01-06: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491941959 for release details.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

978-1-491-94195-9
[LST]

vww allitebooks.cond

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491941959
http://www.allitebooks.org

Table of Contents

INErOdUCHION. .o vii
1. Getting Started.oovveerii i i e e e 1
Machine Setup 1
Text Editors 2

The Terminal 2
Environment 2

Go 3
Your First Program 4
How to Read a Go Program 5
Exercises 8

D 3/ L 9
Numbers 10
Integers 10
Floating-Point Numbers 10
Example 11
Strings 12
Booleans 13
Exercises 16
3oVariables. ..o 17
How to Name a Variable 20
Scope 20
Constants 21
Defining Multiple Variables 22
An Example Program 22
Exercises 23

vww allitebooks.cond

http://www.allitebooks.org

4. Control STrUCTUTES. .. e v ettt ittt ie i e e aas 25
The for Statement 26
The if Statement 27
The switch Statement 29
Exercises 31

5. Arrays, Slices, and Maps.oovviriiiiiiiiii ittt 33
Arrays 33
Slices 36

append 37
copy 37
Maps 38
Exercises 42

T 11 o 1] T 43
Your Second Function 43
Variadic Functions 47
Closure 47
Recursion 48
defer, panic, and recover 49

panic and recover 50
Pointers 51
The * and & operators 51
new 52
Exercises 53

7. Structsand Interfaces.oovviiiiiiii i i i 55

Structs 56
Initialization 56
Fields 57

Methods 57
Embedded Types 58

Interfaces 59

Exercises 62

T o T T -1 3 63

The Core Packages 63
Strings 64
Input/Output 67
Files and Folders 68
Errors 70
Containers and Sort 70

iv | Tableof Contents

vww allitebooks.cond

http://www.allitebooks.org

Hashes and Cryptography 73
Servers 75
TCP 75
HTTP 77

RPC 78
Parsing Command-Line Arguments 79
Creating Packages 79
Documentation 81
Exercises 82

TR -2 ({1 T 83
Exercises 86

10, CONMCUITENCY. oot ettt et etesenneeneennesenesennsonnsssnsssnnsonnssnnes 87
Goroutines 87
Channels 89
Channel Direction 91
Select 91
Buffered Channels 92

An Example 93
Exercises 96

L O L4) (] 3 97
Study the Masters 97
Make Something 98
Team Up 98

Ao ANSWELS. . ettt i 99
INdeX....ooeee 109
Table of Contents | v

vww allitebooks.cond

http://www.allitebooks.org

vww allitebooks.cond

http://www.allitebooks.org

Introduction

Although originally designed by Google for the kinds of problems Google works on
—large, distributed network applications—Go is now a general-purpose program-
ming language useful in a wide variety of software domains. Many companies have
started using Go because of its simplicity, ease of use, performance, low barrier of
entry, and powerful tooling.

This book was written to help new programmers learn Go. Although there is an
abundance of technical resources available for Go, most are geared toward experi-
enced engineers. My goal here is to provide a more gentle introduction to the
language.

Who Should Read This Book

This book is written for relatively inexperienced programmers who know nothing
about Go. Although not exhaustive, it does cover all of the basics, and should leave
you well positioned to tackle the more advanced material available on the language.
The book also covers rudimentary programming skills via the exercises at the end of
each chapter.

Navigating This Book

This book is organized as follows:

o Chapters 1 through 4 introduce the Go toolset and the basics of the language
o Chapters 5 through 7 describe more complex types and functions
o Chapters 8 and 9 describe packages and testing

« Chapter 10 introduces concurrency

For best results, the book should be read in order, as each chapter builds on the con-
cepts covered in the preceding chapters. Each chapter ends with a set of exercises, and

vii

vww allitebooks.cond

http://www.allitebooks.org

it’s important to actually complete them—it’s by solving problems like these that you
learn to program. In particular, typing out the examples (and not just reading them)
can help significantly.

Online Resources

You'll want to check out the following resources:

o The Official Go Website
o The Go Tour

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program ele-
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

Using Code Examples

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless youre reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi-
cant amount of example code from this book into your product’s documentation does
require permission.

vii | Introduction

vww allitebooks.cond

http://www.golang.org
http://tour.golang.org
http://www.allitebooks.org

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Introducing Go by Caleb Doxsey
(O’Reilly). Copyright 2016 Caleb Doxsey, 978-1-4919-4195-9”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online

Safari Books Online is an on-demand digital library that deliv-
{ e ers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea-
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf-
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at bit.ly/introducing-go.

To comment or ask technical questions about this book, send email to bookques-
tions@oreilly.com.

Introduction | ix

mailto:permissions@oreilly.com
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com
http://bit.ly/introducing-go
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our web-
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

x | Introduction

http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER1
Getting Started

Go is a general-purpose programming language with advanced features and a clean
syntax. Because of its wide availability on a variety of platforms, its robust well-
documented common library, and its focus on good software engineering principles,
Go is a great programming language to learn.

This book assumes no prior knowledge of Go, and is intended to serve as an easy
introduction to the language. All of the language’s core features will be covered in
short, concise chapters that should prepare you to write real Go programs and tackle
some of the more advanced resources available on the language (online documenta-
tion, books, talks, etc.).

Although this book is suitable for inexperienced programmers, if you have never pro-
grammed before you will probably find the material too difficult to follow. You may
benefit from consulting a more general programming resource before diving into the
material here, but in all honesty, most students need the kind of hands-on, personal
support that you might find in a classroom setting or one on one with an experienced
developer.

Machine Setup

This book contains many code samples and exercises. For best results, you should try
to run these examples on your own computer as you work your way through each
chapter.

But before you can write your first Go program, there are a few things you will need
to set up.

Text Editors

Go is a very readable, succinct language and so any text editor will work for editing
files. There are plug-ins that add a few helpful features (like autocomplete and
format-on-save) for many popular editors, but those plug-ins are not necessary to
learn the language. If you're not sure what to use, I recommend using GitHub’s Atom
—it’s free, cross-platform, and easy to install from the Atom website.

The Terminal

Go is a compiled language, and like many languages, it makes heavy use of the com-
mand line. If youre coming from a language that does most things through an IDE
(such as Java or C#), this may be a bit intimidating, but thankfully, the Go tools are
fairly easy to use. As a reminder, here’s how you can get to a terminal:

Windows
On Windows, the terminal (also known as the command prompt) can be brought
up by pressing the Windows key + R (hold down the Windows key, then press
R), typing cmd. exe, and hitting Enter.

OS X
On OS X, the terminal can be reached by navigating to Finder - Applications -
Utilities - Terminal.

Environment

Environment variables are a mechanism provided by your operating system for alter-
ing the behavior of a program without having to change it. An environment is a col-
lection of these variables, each of which has a name and a corresponding value. For
example, there is a TEMP environment variable that stores the location of a directory
on your computer where temporary files are stored.

The Go toolset uses an environment variable called GOPATH to find Go source code.
Although youre welcome to set the GOPATH to anything you want, to make things eas-
ier we will set it to be the same as your home directory:

Windows
On Windows, user information is typically stored in C:\Users\<USERNAME>,
where <USERNAME> would be replaced with your username (e.g., C:\Users
\alice). Windows comes with a predefined environment variable called USERPRO
FILE, which you can use to set your GOPATH.

Open a new terminal window and enter the following:

setx GOPATH %USERPROFILE%

2 | Chapter1: Getting Started

https://atom.io/

If you're using a version of Windows prior to Vista, this command may not work,
so you can also set environment variables by navigating to Control Panel — Sys-
tem - Advanced - Environment Variables.

0S X
On OS X, user information is typically stored in /Users/< USERNAME>, where
<USERNAME?> would be replaced with your username (e.g., /Users/alice). On

OS X, we will set GOPATH using a special initialization file for the terminal
called .bash_profile.

Open a terminal and enter the following:
echo 'export GOPATH=SHOME\n' >> ~/.bash_profile
Close the terminal, reopen it, and enter the following:
env

Among many other environment variables, you should see an entry for GOPATH.

Go

Go is both the name of the programming language and the name for the toolset used
to build and interact with Go programs. Before you begin working with Go, you'll
need to install the Go toolset.

Download and run the installer for your platform from golang.org/dl.
To confirm everything is working, open a terminal and type the following:

go version

You should see the following (your version number and operating system may be
slightly different):

go version gol.5 windows/amd64

If you get an error about the command not being recognized, try restarting your
computer.

The Go toolset is made up of several different commands and subcommands. You
can pull up a list of those commands by typing:

go help

With Go installed and working, you now have everything you need to write your first
Go program.

Machine Setup | 3

http://golang.org/dl

Your First Program

Traditionally, the first program you write in any programming language is called a
“Hello, World” program—a program that simply outputs Hello, World to your ter-
minal. Let’s write one using Go.

First, create a new folder where you can store our “Hello, World” program. Create a
folder named ~/src/golang-book/chapterl. From the terminal, you can do this by
entering the following commands:

On Windows
md src\golang-book\chapteri

On 0OS X
mkdir -p src/golang-book/chapteri1

Open your text editor, create a new file, and enter the following:

package main
import "fmt"
// this is a comment

func main() {
fmt.Println("Hello, World")
}

Make sure your file is identical to what is shown here and save it as main.go in the
folder we just created. Open up a new terminal and type in the following:

cd src/golang-book/chapter1
go run main.go

You should see Hello, World displayed in your terminal. The go run command
takes the subsequent files (separated by spaces), compiles them into an executable
saved in a temporary directory, and then runs the program. If you didn’t see Hello,
World displayed, you may have made a mistake when typing in the program. The Go
compiler will give you hints about where the mistake lies. Like most compilers, the
Go compiler is extremely pedantic and has no tolerance for mistakes.

4 | Chapter 1:Getting Started

How to Read a Go Program

Let’s look at this program in more detail:

package main
import "fmt"
// this i1s a comment

func main() {
fmt.Println("Hello, World")
}

Go programs are read top to bottom, left to right (like a book). The first line says this:
package main

This is known as a package declaration, and every Go program must start with it.
Packages are Go's way of organizing and reusing code. There are two types of Go pro-
grams: executables and libraries. Executable applications are the kinds of programs
that we can run directly from the terminal (on Windows, they end with .exe). Libra-
ries are collections of code that we package together so that we can use them in other
programs. We will explore libraries in more detail later; for now, just make sure to
include this line in any program you write.

The next line is blank. Computers represent newlines with a special character (or sev-
eral characters). Newlines, spaces, and tabs are known as whitespace (because you
can’t see them). Go mostly doesn’t care about whitespace—we use it to make pro-
grams easier to read (you could remove this line and the program would behave in
exactly the same way).

On the following line, we see this:
import "fmt"

The import keyword is how we include code from other packages to use with our
program. The fmt package (shorthand for format) implements formatting for input
and output. Given what we just learned about packages, what do you think the fmt
package’s files would contain at the top of them?"

Notice that fmt is surrounded by double quotes. The use of double quotes like this is
known as a string literal, which is a type of expression. In Go, strings represent a
sequence of characters (letters, numbers, symbols, etc.) of a definite length. Strings
are described in more detail in the next chapter, but for now the important thing to

1 Files in the fmt package start with package fmt.

How to Read a Go Program | 5

keep in mind is that an opening " character must eventually be followed by a closing
" character and anything in between the two is included in the string (the " character
itself is not part of the string).

The line that starts with // is known as a comment. Comments are ignored by the Go
compiler and are there for your own sake (or whoever picks up the source code for
your program). Go supports two different styles of comments: // comments in which
all the text between the // and the end of the line is part of the comment, and /* */
comments where everything between the asterisks is part of the comment (and may
include multiple lines).

After this, you see a function declaration:

func main() {
fmt.Println("Hello, World")

}
Functions are the building blocks of a Go program. They have inputs, outputs, and a
series of steps called statements that are executed in order. All functions start with the
keyword func followed by the name of the function (main, in this case), a list of zero
or more parameters surrounded by parentheses, an optional return type, and a body
which is surrounded by curly braces. This function has no parameters, doesn't return
anything, and has only one statement. The name matin is special because it’s the func-
tion that gets called when you execute the program.

The final piece of our program is this line:
fmt.Println("Hello, World")

This statement is made of three components. First, we access another function inside
of the fmt package called Println (that’s the fmt.Println piece); Println means
“print line” Then we create a new string that contains Hello, World and invoke (also
known as call or execute) that function with the string as the first and only argument.

At this point, you've already seen a lot of new terminology. Sometimes it’s helpful to
deliberately read your program out loud. One reading of the program we just wrote
might go like this:

Create a new executable program that references the fmt library and contains one
function called main. That function takes no arguments and doesn’t return anything. It
accesses the Println function contained inside of the fmt package and invokes it using
one argument—the string Hello, World.

The Println function does the real work in this program. You can find out more
about it by typing the following in your terminal:

godoc fmt Println

Among other things, you should see the output shown in Figure 1-1.

6 | Chapter1: Getting Started

BN Command Prompt — O =

Figure 1-1. Output of godoc fmt Println

Println formats using the default formats for its operands and writes to standard out-
put. Spaces are always added between operands and a newline is appended. It returns
the number of bytes written and any write error encountered.

Go is a very well-documented programming language, but this documentation can be
difficult to understand unless you are already familiar with programming languages.
Nevertheless, the godoc command is extremely useful and a good place to start when-
ever you have a question.

Back to the function at hand, this documentation is telling you that the Println func-
tion will send whatever you give to it to standard output (i.e., the output of the termi-
nal you are working in). This function is what causes Hello, World to be displayed.

In the next chapter, we will explore how Go stores and represents things like Hello,
World by learning about types.

How to Read a Go Program | 7

Exercises

. What is whitespace?
. What is a comment? What are the two ways of writing a comment?
. Our program began with package main. What would the files in the fmt package

begin with?

. We used the Println function defined in the fmt package. If you wanted to use

the Exit function from the os package, what would you need to do?

. Modify the program we wrote so that instead of printing Hello, World it prints

Hello, my name tis followed by your name.

8

Chapter 1: Getting Started

vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 2
Types

In the previous chapter, we used the data type string to store Hello, World. Data
types categorize a set of related values, describe the operations that can be done on
them, and define the way they are stored. Because types can be a difficult concept to
grasp, we will look at them from a couple different perspectives before we see how
they are implemented in Go.

Philosophers sometimes make a distinction between types and tokens. For example,
suppose you have a dog named Max. Max is the token (a particular instance or mem-
ber) and dog is the type (the general concept). Dog or dogness describes a set of prop-
erties that all dogs have in common. Although oversimplistic, we might reason like
this: all dogs have four legs, Max is a dog, therefore Max has four legs. Types in pro-
gramming languages work in a similar way: all strings have a length, x is a string,
therefore x has a length.

In mathematics, we often talk about sets. For example, R (the set of all real numbers)
or N (the set of all natural numbers). Each member of these sets shares properties
with all the other members of the set. For instance, all natural numbers are associa-
tive: “for all natural numbers a, b,and c,a+ (b+c¢)=(a+b)+ canda x (bx ¢) = (a x
b) x ¢ In this way, sets are similar to types in programming languages, because all the
values of a particular type share certain properties.

Go is a statically typed programming language. This means that variables always have
a specific type and that type cannot change. Static typing may seem cumbersome at
first. You'll spend a large amount of your time just trying to fix your program so that
it finally compiles. But types help us reason about what our program is doing and
catch a wide variety of common mistakes.

Go comes with several built-in data types, which we will now look at in more detail.

Numbers

Go has several different types to represent numbers. Generally, we split numbers into
two different kinds: integers and floating-point numbers.

Integers

Integers—like their mathematical counterpart—are numbers without a decimal com-
ponent. (..., =3, -2, -1, 0, 1, ...) Unlike the base-10 decimal system we use to repre-
sent numbers, computers use a base-2 binary system.

Our system is made up of 10 different digits. Once we've exhausted our available dig-
its, we represent larger numbers by using 2 (then 3, 4, 5, etc.) digits put next to each
other. For example, the number after 9 is 10, the number after 99 is 100, and so on.
Computers do the same, but they only have 2 digits instead of 10. So counting looks
like this: 0, 1, 10, 11, 100, 101, 110, 111, and so on. The other difference between the
number system we use and the one computers use is that all of the integer types have
a definite size. They only have room for a certain number of digits. So a 4-bit integer
might look like this: 0000, 0001, 0010, 0011, 0100. Eventually we run out of space and
most computers just wrap around to the beginning (which can result in some very
strange behavior).

Go’s integer types are uint8, uint16, uint32, uint64, int8, int16, int32, and int64.
8, 16, 32, and 64 tell us how many bits each of the types use. uint means “unsigned
integer” while int means “signed integer” Unsigned integers only contain positive
numbers (or zero). In addition, there two alias types: byte (which is the same as
uint8) and rune (which is the same as 1nt32). Bytes are an extremely common unit
of measurement used on computers (1 byte = 8 bits, 1,024 bytes = 1 kilobyte, 1,024
kilobytes = 1 megabyte, etc.) and therefore Go's byte data type is often used in the
definition of other types. There are also three machine dependent integer types: uint,
int, and uintptr. They are machine dependent because their size depends on the
type of architecture you are using.

Generally, if you are working with integers, you should just use the int type.

Floating-Point Numbers

Floating-point numbers are numbers that contain a decimal component (i.e., real
numbers). For example, 1.234, 123.4, 0.00001234, and 12340000 are all floating-point
numbers. Their actual representation on a computer is fairly complicated and it’s not
really necessary to know the particulars in order to use them. So, for now, you only
need to keep the following in mind:

10 | Chapter2:Types

o Floating-point numbers are inexact. Occasionally it is not possible to represent a
number. For example, computing 1.01 - 0.99 using floating-point arithmetic
results in 0.020000000000000018—a number extremely close to what we would
expect, but not exactly the same.

o Like integers, floating-point numbers have a certain size (32 bit or 64 bit). Using
a larger-sized floating-point number increases its precision (i.e., how many digits
it can represent).

o In addition to numbers, there are several other values that can be represented:
“not a number” (NaN, for things like 0/0) and positive and negative infinity (+«

and -«).

Go has two floating-point types: float32 and float64 (also often referred to as single
precision and double precision, respectively). It also has two additional types for rep-
resenting complex numbers (numbers with imaginary parts): complex64 and
complex128. Generally, we should stick with float64 when working with floating-
point numbers.

Example

Let’s write an example program using numbers. First, create a folder called chapter2
and make a main.go file containing the following:

package main
import "fmt"

func main() {
fmt.Println("1 + 1 =", 1 + 1)
}

If you run the program, you should see this:

$ go run main.go

1+41=2
Notice that this program is very similar to the program we wrote in Chapter 1. It con-
tains the same package line, the same import line, and the same function declaration,
and it uses the same Println function. However, instead of printing the string Hello,
World, we print the string 1 + 1 = followed by the result of the expression 1 + 1.
This expression is made up of three parts: the numeric literal 1 (which is of type int),
the + operator (which represents addition), and another numeric literal 1. Let’s try the
same thing using floating-point numbers:

fmt.Println("1 + 1 =", 1.0 + 1.0)

Notice that we use the .0 to tell Go that this is a floating-point number instead of an
integer. Running this program will give you the same result as before.

Numbers | 11

Go supports the following standard arithmetic operators:

+
Addition
Subtraction
*
Multiplication
/
Division
%
Remainder

This small set of basic operators, along with some of the helper functions available in
the math package, is sufficient to create surprisingly sophisticated programs. Another
type we use in almost every Go program is a string.

Strings

As we saw in Chapter 1, a string is a sequence of characters with a definite length
used to represent text. Go strings are made up of individual bytes, usually one for
each character (characters from some languages, such as Chinese, are represented by
more than one byte).

String literals can be created using double quotes "Hello, World" or backticks
‘Hello, World'. The difference between these is that double-quoted strings cannot
contain newlines and they allow special escape sequences. For example, \n gets
replaced with a newline and \t gets replaced with a tab character.

The following are some common operations on strings:

len("Hello, World")
Finds the length of a string

"Hello, World"[1]
Accesses a particular character in the string (in this case, the second character)

"Hello, " + World"
Concatenates two strings together

Let’s modify the program we created earlier to test these out:

package main

12 | Chapter2:Types

import "fmt"

func main() {
fmt.Println(len("Hello, World"))
fmt.Println("Hello, World"[1])
fmt.Println("Hello, " + "World")

}

A few things to notice:

o A space is also considered a character, so the string’s length is 12, not 11, and the
third line has "Hello, " instead of "Hello".

o Strings are indexed starting at 0, not 1. [1] gives you the second element, not the
first. Also notice that you see 101 instead of e when you run this program. This is
because the character is represented by a byte (remember a byte is an integer).

One way to think about indexing would be to show it like this instead: "Hello,
World",. Youd read that as “The string Hello, World sub 1, “The string Hello,
World at 1, or “The second character of the string Hello, World.”

« Concatenation uses the same symbol as addition. The Go compiler figures out
what to do based on the types of the arguments. Because both sides of the + are
strings, the compiler assumes you mean concatenation and not addition (addi-
tion is meaningless for strings).

Strings and numbers are both extremely useful. Most programs either represent
mathematical formulas or involve the manipulation and transformation of data,
which is usually represented as a string (or a byte slice, as we will see later). But there’s
a third basic type that is needed by almost any program, and that’s a boolean.

Booleans

A boolean value (named after George Boole) is a special 1-bit integer type used to
represent true and false (or on and off). Three logical operators are used with boolean
values:

&& and
|| or

! not

Here is an example program showing how they can be used:

func main() {
fmt.Println(true && true)
fmt.Println(true && false)
fmt.Println(true || true)
fmt.Println(true || false)

Booleans | 13

fmt.Println(!true)

14 | Chapter2: Types

Running this program should give you:

$ go run main.go
true
false
true
true
false

We usually use truth tables to define how these operators work:

Expression Value

true && true true
true && false false
false && true false
false && false false

true || true true
true || false true
false || true true
false || false false

Expression Value

Itrue false

Ifalse true

We often use booleans to make decisions in our program and represent binary dis-
tinctions (Has a feature been enabled? Is this user an administrator? Have I found the
value I was looking for?). As you see more examples and write more code, you will
gain a better understanding of how and when to use them.

These are the simplest types included with Go, and they form the foundation from
which all later types are built. In the next chapter, we will see how these types can be
used to store data in your program with variables.

Booleans | 15

Exercises

. How are integers stored on a computer?

We know that (in base 10) the largest one-digit number is 9 and the largest two-
digit number is 99. Given that in binary the largest two-digit number is 11 (3),
the largest three-digit number is 111 (7) and the largest four-digit number is 1111
(15), what’s the largest eight-digit number? (Hint: 10'-1 = 9 and 10°-1 = 99)
Although overpowered for the task, you can use Go as a calculator. Write a pro-
gram that computes 32,132 x 42,452 and prints it to the terminal (use the * oper-
ator for multiplication).

. What is a string? How do you find its length?
. What's the value of the expression (true && false) || (false && true) || !

(false && false)?

16

| Chapter2: Types

CHAPTER 3
Variables

Up until now, we have only seen programs that use literal values (numbers, strings,
etc.), but such programs aren’t particularly useful. To make truly useful programs, we
need to discuss two new concepts: variables and control flow statements. This chapter
will explore variables in more detail (we'll discuss control flow statements in Chap-
ter 4).

A variable is a storage location, with a specific type and an associated name. Let’s
change the program we wrote in Chapter 1 so that it uses a variable:

package main
import "fmt"

func main() {
var x string = "Hello, World"
fmt.Println(x)
}
Notice that the string literal from the original program still appears in this program,
but rather than send it directly to the Println function, we assign it to a variable
instead. Variables in Go are created by first using the var keyword, then specifying
the variable name (x) and the type (string), and finally, assigning a value to the vari-

able (Hello, World). Assigning a value is optional, so we could use two statements,
like this:

package main
import "fmt"
func main() {

var x string
x = "Hello, World"

17

fmt.Println(x)
}

Variables in Go are similar to variables in algebra, but there are some subtle differ-
ences. First, when we see the = symbol, we have a tendency to read that as “x equals
the string Hello, World” There’s nothing wrong with reading our program that way,
but it’s better to read it as “x takes the string Hello, World” or “x is assigned the
string Hello, World” This distinction is important because (as their name would
suggest) variables can change their value throughout the lifetime of a program. Try
running the following:

package main
import "fmt"

func main() {
var x string

x = "first"
fmt.Println(x)
x = "second"

fmt.Println(x)
}

In fact, you can even do this:

var x string

x = "first "
fmt.Println(x)
X = X + "second"
fmt.Println(x)

This program would be nonsense if you read it like an algebraic theorem. But it
makes sense if you are careful to read the program as a list of commands. When we
see x = x + "second", we should read it as “assign the concatenation of the value of
the variable x and the string literal second to the variable x.” The right side of the = is
done first and the result is then assigned to the left side of the =.

The x = x + y form is so common in programming that Go has a special assignment
statement: +=. We could have written x = x + "second" as x += "second" and it
would have done the same thing (other operators can be used the same way).

Another difference between Go and algebra is that we use a different symbol for
equality: == (two equals signs next to each other). == is an operator like + and it
returns a boolean. For example:

var x string = "hello"
var y string = "world"
fmt.Println(x == y)

18 | Chapter3:Variables

vww allitebooks.cond

http://www.allitebooks.org

This program should print false because hello is not the same as world. On the
other hand:

var x string = "hello"
var y string = "hello"
fmt.Println(x == y)

This will print true because the two strings are the same.

Because creating a new variable with a starting value is so common, Go also supports
a shorter statement:

X := "Hello, World"

Notice the : before the = and that no type was specified. The type is not necessary
because the Go compiler is able to infer the type based on the literal value you assign
the variable (because you are assigning a string literal, x is given the type string).
The compiler can also do inference with the var statement:

var x = "Hello, World"
The same thing works for other types:

X =5
fmt.Println(x)

Generally, you should use this shorter form whenever possible.

Idiomatic Go

Languages often have a set of informal, conventional rules. For example, in English,
there are rules that govern the order of adjectives in a sentence. If, instead of “my
small black cat,” you were to say, “my black small cat,” it would strike native speakers
as very strange.

Programming languages often exhibit the same phenomenon. Although there are
often many ways to do something, not all of those ways are seen as a natural expres-
sion of the language. You may write an expression (var x int = 5) which is semanti-
cally valid in the language (it compiles), but which may look strange to experienced
Go programmers.

Go programmers (as well as programmers in other communities) often refer to this
as the idiomatic usage of the language. Learning idiomatic Go is a worthwhile pursuit,
but at this stage, you should probably focus on simply writing correct programs, as
that’s challenging enough. Don’t let the best be the enemy of the good.

Variables | 19

How to Name a Variable

Naming a variable properly is an important part of software development. Names
must start with a letter and may contain letters, numbers, or the underscore symbol
(). The Go compiler doesn’'t care what you name a variable, but you should choose
names that clearly describe the variable’s purpose. Suppose we had the following:

X := "Max"
fmt.Println("My dog's name is", x)

In this case, x is not a very good name for a variable. A better name would be:

name := "Max"
fmt.Println("My dog's name is", name)

or even:

dogsName := "Max"
fmt.Println("My dog's name is", dogsName)

In the preceding snippet, we use camelCase, which is a style for writing compound
words in which the first letter of each new word or phrase is capitalized. It is also
sometimes referred to as mixedCase, BumpyCaps, camelBack, or HumpBack (in
some other languages, the first letter is also capitalized).

Scope

Let’s take another look at the program we saw at the beginning of the chapter:

package main
import "fmt"

func main() {
var x string = "Hello, World"
fmt.Println(x)

}

Another way of writing this program would be like this:

package main
import "fmt"
var x string = "Hello, World"

func main() {
fmt.Println(x)
}
Notice that we moved the variable outside of the main function. This means that
other functions can access this variable:

20 | Chapter3:Variables

var x string = "Hello, World"

func main() {
fmt.Println(x)

}

func f() {
fmt.Println(x)

}

The f function now has access to the x variable. Now suppose that we wrote this
instead:

func main() {
var x string = "Hello, World"
fmt.Println(x)

}

func f() {
fmt.Println(x)

}

If you run this program, you should see an error:
.\main.go:11: undefined: x

The compiler is telling you that the x variable inside of the f function doesn't exist. It
only exists inside of the main function. The range of places where you are allowed to
use x is called the scope of the variable. According to the language specification, “Go
is lexically scoped using blocks” Basically, this means that the variable exists within
the nearest curly braces ({ }), or block, including any nested curly braces (blocks),
but not outside of them. Scope can be a little confusing at first; as we see more Go
examples, it should become more clear.

Constants

Go also has support for constants. Constants are essentially variables whose values
cannot be changed later. They are created in the same way you create variables, but
instead of using the var keyword we use the const keyword:

package main
import "fmt"
func main() {

const x string = "Hello, World"
fmt.Println(x)

Constants | 21

This:

const x string = "Hello, World"
x = "Some other string"

Results in a compile-time error:
.\main.go:7: cannot assign to x

Constants are a good way to reuse common values in a program without writing
them out each time. For example, P1 in the math package is defined as a constant.

Defining Multiple Variables

Go also has another shorthand when you need to define multiple variables:

var (
a=>5
b =10
c =15
)

Use the keyword var (or const) followed by parentheses with each variable on its
own line.

An Example Program

Here’s an example program that takes in a number entered by the user and doubles it:

package main
import "fmt"

func main() {
fmt.Print("Enter a number: ")
var input floaté64
fmt.Scanf("%f", &input)

output := input * 2

fmt.Println(output)
}
We use another function from the fmt package to read the user input (Scanf). &input
will be explained in a later chapter; for now, all you need to know is that Scanf fills
input with the number we enter.

22 | Chapter3:Variables

Exercises

What are two ways to create a new variable?

What is the value of x after running x := 5; x += 1?

What is scope? How do you determine the scope of a variable in Go?

What is the difference between var and const?

Using the example program as a starting point, write a program that converts
from Fahrenheit into Celsius (C = (F — 32) * 5/9).

6. Write another program that converts from feet into meters (1 ft = 0.3048 m).

Gk W=

Exercises | 23

CHAPTER 4
Control Structures

Now that you know how to use variables, it’s time to start writing some useful pro-
grams. First, let’s write a program that counts to 10, starting from 1, with each num-
ber on its own line. Using what you've learned so far, you could write this:

package main
import "fmt"

func main() {
fmt.Println(1)
fmt.Println(2)
fmt.Println(3)
fmt.Println(4)
fmt.Println(5)
fmt.Println(6)
fmt.Println(7)
fmt.Println(8)
fmt.Println(9)
fmt.Println(10)

}

Or this:

package main
import "fmt"

func main() {
fmt.Println(1

NouhwN

25

8

9

10°)

}
But both of these programs are pretty tedious to write. What we need is a way of
doing something multiple times.

The for Statement

The for statement allows us to repeat a list of statements (a block) multiple times.
Rewriting our previous program using a for statement looks like this:

package main
import "fmt"

func main() {
i:=1
for 1 <= 10 {
fmt.Println(i)
i=1+1

}

First, we create a variable called 1 that we use to store the number we want to print.
Then we create a for loop by using the keyword for, providing a conditional expres-
sion that is either true or false and finally supplying a block to execute. The for
loop works like this:

1. We evaluate (run) the expression i1 <= 10 (“i less than or equal to 10”). If this
evaluates to true, then we run the statements inside of the block. Otherwise, we
jump to the next line of our program after the block (in this case, there is nothing
after the for loop, so we exit the program).

2. After we run the statements inside of the block, we loop back to the beginning of
the for statement and repeat step 1.

Thei = 1 + 1line is extremely important, because without it, 1 <= 10 would always
evaluate to true and our program would never stop (when this happens, it’s referred
to as an infinite loop).

As an exercise, let’s walk through the program like a computer would:

1. Create a variable named 1 with the value 1.
2. Isi1 <= 107? Yes.
3. Print 1.

26 | Chapter4: Control Structures

Setitoi + 1(1nowequals2).
Isi <= 10? Yes.
Print 1.

Setitoi + 1(1now equals 3).

¥ »® N ke

Setitoi + 1(inow equals1l).
10. Isi <= 10? No.
11. Nothing left to do, so exit.

Other programming languages have a lot of different types of loops (while, do, until,
foreach, ...) but Go only has one that can be used in a variety of different ways. The
previous program could also have been written like this:

func main() {
for 1 := 1; 1 <= 10; 1++ {
fmt.Println(i)
}
}

Now the conditional expression also contains two other statements with semicolons
between them. First, we have the variable initialization, then we have the condition to
check each time, and finally, we increment the variable. Adding 1 to a variable is so
common that we have a special operator (++); similarly, subtracting 1 can be done
with --.

We will see additional ways of using the for loop in later chapters.

The if Statement

Let’s modify the program we just wrote so that instead of just printing the numbers
1-10 on each line, it also specifies whether or not the number is even or odd:

1 odd
2 even
3 odd
4 even
5 odd
6 even
7 odd
8 even
9 odd
10 even

Theif Statement | 27

First, we need a way of determining whether or not a number is even or odd. An easy
way to tell is to divide the number by 2. If you have nothing left over, then the num-
ber is even; otherwise, it's odd. So how do we find the remainder after division in Go?
We use the % operator. 1 % 2 equals 1,2 % 2 equals 0,3 % 2 equals 1, and so on.

Next, we need a way of choosing to do different things based on a condition. For that,
we use the if statement:

ifFi%2==0{
// even

} else {
// odd

}

An if statement is similar to a for statement in that it has a condition followed by a
block. if statements also have an optional else part. If the condition evaluates to
true, then the block after the condition is run; otherwise, either the block is skipped,
or if the else block is present, that block is run.

if statements can also have else if parts:

ifi%2==0{
// divisible by 2
} else if 1 % 3 ==0 {
// divisible by 3
}else if L %4 ==0 {
// divisible by 4
}
The conditions are checked top down and the first one to result in true will have its
associated block executed. None of the other blocks will execute, even if their condi-
tions also pass (so, for example, the number 8 is divisible by both 4 and 2, but the //
divisible by 4 block will never execute because the // divisible by 2 block is
done first).

Putting it all together, we have:

func main() {
for 1 := 1; 1 <= 10; 1++ {
fF1%2==0({
fmt.Println(i, "even"
} else {
fmt.Println(i, "odd")
}

28 | Chapter4: Control Structures

Let’s walk through this program:

Create a variable 1 of type int and give it the value 1.

Is i less than or equal to 102 Yes: jump to the if block.

Is the remainder of 1 + 2 equal to 02 No: jump to the else block.
Print 1 followed by odd.

Increment i (the statement after the condition).

Is 1 less than or equal to 107 Yes: jump to the if block.

Is the remainder of 1 + 2 equal to 0? Yes: jump to the if block.

Print 1 followed by even, and so on until 1 is equal to 11.

¥ ® N ATk w D=

The remainder operator, while rarely seen outside of elementary school, turns out to
be really useful when programming. You'll see it turn up everywhere from zebra
striping tables to partitioning data sets.

if statements are quite useful, but they can occasionally be quite verbose, so Go
includes a related statement: the switch.

The switch Statement

Suppose you wanted to write a program that printed the English names for numbers.
Using what you've learned so far, you might start by doing this:

if 1 ==0 {
fmt.Println("Zero")
} else if 1 == 1 {
fmt.Println("One")
} else if 1 == 2 {
fmt.Println("Two")
} else if 1 == 3 {
fmt.Println("Three")
} else if 1 == 4 {
fmt.Println("Four")
} else if 1 == 5 {
fmt.Println("Five")
}

Writing a program in this way would be pretty tedious, so another way of achieving

the same result is to use the switch statement. We can rewrite our program to look
like this:

The switch Statement | 29

switch i1 {
0:

case
case
case
case
case
case

5e

A wWwN R

fmt.
fmt.
fmt.
fmt.

fmt
fmt

Println("Zero")
Println("One")
Println("Two")
Println("Three")

Println("Four")
.Println("Five")

default: fmt.Println("Unknown Number")

}

A switch statement starts with the keyword switch followed by an expression (in this
case, 1) and then a series of cases. The value of the expression is compared to the
expression following each case keyword. If they are equivalent, then the statements
following the : are executed.

Like an if statement, each case is checked top down and the first one to succeed is
chosen. A switch also supports a default case that will happen if none of the cases
matches the value (similar to how the else works in an if statement).

for, if, and switch are the main control flow statements. Additional statements will
be explored in later chapters.

30 | Chapter4: Control Structures

Exercises

1. What does the following program print?
i:=10
if 1> 10 {
fmt.Println("Big")
} else {
fmt.Println("Small")
}

2. Write a program that prints out all the numbers between 1 and 100 that are
evenly divisible by 3 (i.e., 3, 6, 9, etc.).

3. Write a program that prints the numbers from 1 to 100, but for multiples of
three, print “Fizz” instead of the number, and for the multiples of five, print
“Buzz”” For numbers that are multiples of both three and five, print “FizzBuzz”

Exercises | 31

CHAPTER 5
Arrays, Slices, and Maps

In Chapter 2, we learned about Go’s basic types. In this chapter, we will look at three
more built-in types: arrays, slices, and maps.

Arrays

An array is a numbered sequence of elements of a single type with a fixed length. In
Go, they look like this:

var x [5]int

x is an example of an array that is composed of five ints. Try running the following
program:

package main
import "fmt"

func main() {
var x [5]int
x[4] = 100
fmt.Println(x)
}

You should see this:
[0 0600 100]

x[4] = 100 should be read “set the fifth element of the array x to 100.” It might seem
strange that x[4] represents the fifth element instead of the fourth, but like strings,
arrays are indexed starting from 0. Arrays are accessed in a similar way. We could
change fmt.Println(x) to fmt.Println(x[4]) and we would get 100.

Here’s an example program that uses arrays:

33

func main() {
var x [5]float64

x[0] = 98
x[1] = 93
x[2] = 77
x[3] = 82
x[4] = 83

var total float64 = 0

for 1 := 0; 1 < 5; i++ {
total += x[1]

}

fmt.Println(total / 5)

}
This program computes the average of a series of test scores. If you run it, you should
see 86.6. Let’s walk through the program:

1. First, we create an array of length 5 to hold our test scores, then we fill up each
element with a grade.

2. Next, we set up a for loop to compute the total score.

3. Finally, we divide the total score by the number of elements to find the average.

This program works, but Go provides some features we can use to improve it. Specifi-
cally, t < 5and total / 5 should throw up a red flag for us. Say we changed the
number of grades from 5 to 6. We would also need to change both of these parts. It
would be better to use the length of the array instead:

var total float64 = 0

for 1 := 0; 1 < len(x); i1++ {
total += x[1]

}

fmt.Println(total / len(x))

Go ahead and make these changes and run the program. You should get an error:

$ go run tmp.go
command-line arguments
.\tmp.go:19: 1invalid operation: total / 5 (mismatched types float64 and int)

The issue here is that len(x) and total have different types. total is a float64 while
len(x) is an int. So we need to convert len(x) into a float64:

fmt.Println(total / float64(len(x)))

This is an example of a type conversion. In general, to convert between types, you use
the type name like a function.

Another change to the program we can make is to use a special form of the for loop:

34 | Chapter5: Arrays, Slices, and Maps

var total floaté4 = 0
for 1, value := range x {
total += value

}
fmt.Println(total / float64(len(x)))

In this for loop, 1 represents the current position in the array and value is the same
as x[1]. We use the keyword range followed by the name of the variable we want to
loop over.

Running this program will result in another error:

$ go run tmp.go
command-line arguments
.\tmp.go:16: 1 declared and not used

The Go compiler won't allow you to create variables that you never use. Because we
don’t use 1 inside of our loop, we need to change it to this:

var total floaté4 = 0
for _, value := range x {
total += value

}
fmt.Println(total / floate4(len(x)))

A single underscore (_) is used to tell the compiler that we don’t need this (in this
case, we don’t need the iterator variable).

Go also provides a shorter syntax for creating arrays:
x := [5]floate4{ 98, 93, 77, 82, 83 }

We no longer need to specify the type because Go can figure it out. Sometimes arrays
like this can get too long to fit on one line, so Go allows you to break it up like this:

x := [5]float64{
98,
93,
77,
82,
83,
}

Notice the extra trailing , after 83. This is required by Go and it allows us to easily
remove an element from the array by commenting out the line:

x := [4]float64{
98,
93,
7,
82,
// 83,

Arrays | 35

Because the length of an array is part of its type name, working with arrays can be a
little cumbersome. Adding or removing elements as we did here requires also chang-
ing the length inside the brackets. Because of this and other limitations, you rarely see
arrays used directly in Go code. Instead, you will usually use a slice, which is a type
built on top of an array.

Slices

A slice is a segment of an array. Like arrays, slices are indexable and have a length.
Unlike arrays, this length is allowed to change. Here’s an example of a slice:

var x []floaté64

The only difference between this and an array is the missing length between the
brackets. In this case, x has been created with a length of zero.

If you want to create a slice, you should use the built-in make function:
x := make([]floaté4, 5)

This creates a slice that is associated with an underlying float64 array of length 5.
Slices are always associated with some array, and although they can never be longer
than the array, they can be smaller. The make function also allows a third parameter:

x := make([]float64, 5, 10)

As illustrated in Figure 5-1, 10 represents the capacity of the underlying array that the
slice points to:

X

Figure 5-1. A slice of length 5 with a capacity of 10

Another way to create slices is to use the [low : high] expression:

arr := [5]float64{1,2,3,4,5}

X := arr[0:5]
low is the index of where to start the slice and high is the index of where to end it
(but not including the index itself). For example, while arr[0:5] returns
[1,2,3,4,5],arr[1:4] returns [2,3,4].

For convenience, we are also allowed to omit low, high, or even both low and high.
arr[0:] is the same as arr[0:1len(arr)], arr[:5] is the same as arr[0:5], and
arr[:]isthesameasarr[0:1len(arr)].

36 | Chapter5: Arrays, Slices, and Maps

In addition to the indexing operator, Go includes two built-in functions to assist with
slices: append and copy.

append

append adds elements onto the end of a slice. If there’s sufficient capacity in the
underlying array, the element is placed after the last element and the length is incre-
mented. However, if there is not sufficient capacity, a new array is created, all of the
existing elements are copied over, the new element is added onto the end, and the
new slice is returned.

The definition of append can be a bit confusing but it’s easier to grasp once you see it
used. Here is an example:

func main() {
slicel := []int{1,2,3}
slice2 := append(slicel, 4, 5)
fmt.Println(slicel, slice2)

}

After running this program, slicel has [1,2,3] and slice2 has [1,2,3,4,5].
append creates a new slice by taking an existing slice (the first argument) and append-
ing all the following arguments to it.

copy

copy takes two arguments: dst and src. All of the entries in src are copied into dst
overwriting whatever is there. If the lengths of the two slices are not the same, the
smaller of the two will be used.

Here is an example of copy:

func main() {
slicel := []int{1,2,3}
slice2 := make([]int, 2)
copy(slice2, slicel)
fmt.Println(slicel, slice2)
}

After running this program slicel has [1,2,3] and slice2 has [1,2]. The contents

of slicel are copied into slice2, but because slice2 has room for only two ele-
ments, only the first two elements of slicel are copied.

Slices are typically used to represent lists of items, particularly when you need to
access the nth item quickly—for example, player #33, or the 10th most popular search
query. But what if you want to look up an entry by something other than integer?
What if you wanted to look up a player on a team by last name? Go has another built-
in type that can do this: a map.

Slices | 37

Maps

A map is an unordered collection of key-value pairs (maps are also sometimes called
associative arrays, hash tables, or dictionaries). Maps are used to look up a value by its
associated key. Here’s an example of a map in Go:

var x map[string]int

The map type is represented by the keyword map, followed by the key type in brackets
and finally the value type. If you were to read this out loud, you would say “x is a map
of strings to ints”

Like arrays and slices, maps can be accessed using brackets. Try running the follow-
ing program:
var x map[string]int

x["key"] = 10
fmt.Println(x)

You should see an error similar to this:

panic: runtime error: assignment to entry in nil map

goroutine 1 [running]:
main.main()
main.go:7 +0x4d

goroutine 2 [syscall]:

created by runtime.main
C:/Users/ADMINI~1/AppData/Local/Temp/2/bindi

t269497170/src/pkg/runtime/proc.c:221

exit status 2

Up until now, we have only seen compile-time errors. This is an example of a runtime

error. As the name would imply, runtime errors happen when you run the program,
while compile-time errors happen when you try to compile the program.

The problem with our program is that maps have to be initialized before they can be
used. We should have written this:

x := make(map[string]int)

x["key"] = 10

fmt.Println(x["key"])
If you run this program, you should see 10 displayed. The statement x["key"] = 10
is similar to what we saw with arrays; however, instead of being an integer, the key is a
string because the map’s key type is string. We can also create maps with a key type
of int:

x := make(map[int]int)

x[1] = 10
fmt.Println(x[1])

38 | Chapter5: Arrays, Slices, and Maps

vww allitebooks.cond

http://www.allitebooks.org

This looks very much like an array, but there are a few differences. First, the length of
a map (found by doing len(x)) can change as we add new items to it. When initially
created, it has a length of 0; after x[1] = 10 it has a length of 1. Second, maps are not
sequential. We have x[1], and with an array that would imply there must be an x[0],
but maps don’t have this requirement.

We can also delete items from a map using the built-in delete function:
delete(x, 1)
Lets look at an example program that uses a map:

package main
import "fmt"

func main() {
elements := make(map[string]string)
elements["H"] = "Hydrogen"
elements["He"] = "Helium"
elements["Li"] = "Lithium"
] =

elements["Be" "Beryllium"
elements["B"] = "Boron"
elements["C"] = "Carbon"
elements["N"] = "Nitrogen"
elements["0"] = "Oxygen"
elements["F"] = "Fluorine"
elements["Ne"] = "Neon"

fmt.Println(elements["L1"])
}
elements is a map that represents the first 10 chemical elements indexed by their
symbol. This is a very common way of using maps: as a lookup table or a dictionary.
Suppose we tried to look up an element that doesn’t exist:

fmt.Println(elements["Un"])

If you run this, you should see nothing returned. Technically, a map returns the zero
value for the value type (which for strings is the empty string). Although we could
check for the zero value in a condition (elements["Un"] == ""), Go provides a bet-
ter way:

name, ok := elements["Un"]

fmt.Println(name, ok)
Accessing an element of a map can return two values instead of just one. The first
value is the result of the lookup, the second tells us whether or not the lookup was
successful. In Go, we often see code like this:

Maps | 39

First, we try to get the value from the map. Then, if it’s successful, we run the code

Like we saw with arrays, there is also a shorter way to create maps:

if name, ok := elements["Un"]; ok {

fmt.Println(name, ok)

}
inside of the block.
elements := map[string]string{
"H": "Hydrogen",
"He": "Helium",

Maps are also often used to store general information. Let's modify our program so
that instead of just storing the name of the element, we store its standard state (state

}

"Li": "Lithium",
"Be": "Beryllium",

"B": "Boron",
"C": "Carbon",
"N": "Nitrogen",
"0": "Oxygen",
"F": "Fluorine",
"Ne": "Neon",

at room temperature) as well:

func main() {

elements := map[string]map[string]string{

"H": map[string]string{
"name":"Hydrogen",

"state":"gas",

"He": map[string]string{

"name" : "Helium",

"state":"gas",

"Li": map[string]string{

"name":"Lithium",
"state":"solid",

"Be": map[string]string{
"name":"Beryllium",

"state":"solid",

"B": map[string]string{

"name" :"Boron",
"state":"solid",

"C": map[string]string{

"name":"Carbon",
"state":"solid",

"N": map[string]string{

40

Chapter 5: Arrays, Slices, and Maps

"name":"Nitrogen",
won

"state":"gas",

"0": map[string]string{
"name":"Oxygen",

"state":"gas",

"F": map[string]string{
"name" :"Fluorine",
"state":"gas",

"Ne": map[string]string{
"name":"Neon",

"state":"gas",
1,
}

if el, ok := elements["L1"]; ok {
fmt.Println(el["name"], el["state"])
}
}

Notice that the type of our map has changed from map[string]string to
map[string]map[string]string. We now have a map of strings to maps of strings to
strings. The outer map is used as a lookup table based on the element’s symbol, while
the inner maps are used to store general information about the elements. Although
maps are often used like this, in Chapter 7 we will see a better way to store structured
information.

Maps | 41

Exercises

1. How do you access the fourth element of an array or slice?
2. What is the length of a slice created using make([]int, 3, 9)?
3. Given the following array, what would x[2:5] give you?
X = [6]str"Lng{"a" s "b" s "c" s "d" » "e" s ”f”}
4. Write a program that finds the smallest number in this list:

x := []int{
48,96,86,68,
57,82,63,70,
37,34,83,27,
19,97, 9,17,

42 | Chapter5:Arrays, Slices, and Maps

CHAPTER 6
Functions

A function (also known as a procedure or a subroutine) is an independent section of
code that maps zero or more input parameters to zero or more output parameters. As
illustrated in Figure 6-1, functions are often represented as a black box.

Inputs —» . — Outputs

Figure 6-1. A black box function

In previous chapters, the programs we have written in Go have used only one func-
tion:

func main() {}

We will now begin writing programs that use more than one function.

Your Second Function

Let’s take another look at the following program from Chapter 5:

func main() {
xs := []float64{98,93,77,82,83}

total := 0.0

for _, v := range xs {
total += v

}

fmt.Println(total / float64(len(xs)))

83

This program computes the average of a series of numbers. Finding the average like
this is a very general problem, so it’s an ideal candidate for definition as a function.

The average function will need to take in a slice of float64s and return one float64.
Insert this before the main function:

func average(xs []float64) floaté4 {
panic("Not Implemented")

}

Functions start with the keyword func, followed by the function’s name. The parame-
ters (inputs) of the function are defined like this: name type, name type, .. Our
function has one parameter (the list of scores) that we named xs. After the parame-
ters, we put the return type. Collectively, the parameters and the return type are
known as the function’s signature.

Finally, we have the function body, which is a series of statements between curly
braces. In this body, we invoke a built-in function called panic that causes a runtime
error (we'll see more about panic later in this chapter). Writing functions can be diffi-
cult, so it’s a good idea to break the process into manageable chunks, rather than try-
ing to implement the entire thing in one large step.

Now let’s take the code from our main function and move it into our average func-
tion:
func average(xs []float64) floaté64 {
total := 0.0
for _, v := range xs {
total += v

}
return total / float64(len(xs))

}

Notice that we changed the fmt.Println to be a return instead. The return state-
ment causes the function to immediately stop and return the value after it to the
function that called this one. Modify main to look like this:

func main() {
xs := []float64{98,93,77,82,83}
fmt.Println(average(xs))

}

Running this program should give you exactly the same result as the original. A few
things to keep in mind:

Parameter names can be different
The calling and callee functions are allowed to use different names for the
parameters. For example, we could have done this:

44 | Chapter6: Functions

func main() {
someOtherName := []float64{%8,93,77,82,83}
fmt.Println(average(someOtherName))

}

And our program would still work.

Variables must be passed to functions
Functions don’t have access to anything in the calling function unless it’s passed
in explicitly. This won't work:

func f() {
fmt.Println(x)
}

func main() {
X =5
O

}

We need to either do this:

func f(x int) {
fmt.Println(x)
}

func main() {
X =5
f(x)

}

Or this:

var x int = 5
func f() {

fmt.Println(x)
}

func main() {
O
}

Functions form call stacks
Functions are built up in a call stack. Suppose we had this program:

func main() {
fmt.Println(f1())
}

func f1() int {
return f2()

}

Your Second Function | 45

func f2() int {
return 1

}

We could visualize it as shown in Figure 6-2.

2 | retun
fl f2() fl f1 | return
[main | f10 [main main main [main |

Figure 6-2. A call stack

Each time we call a function, we push it onto the call stack, and each time we
return from a function, we pop the last function off of the stack.

Return types can have names
We can name the return type like this:

func f2() (r int) {
r=1
return

}

Multiple values can be returned
Go is also capable of returning multiple values from a function. Here is an exam-
ple function that returns two integers:

func f() (int, int) {
return 5, 6

}

func main() {
x, y = f()
}
Three changes are necessary: change the return type to contain multiple types separa-
ted by a comma, change the expression after the return so that it contains multiple
comma-separated expressions, and finally, change the assignment statement so that
multiple values are on the left side of the := or =.

Multiple values are often used to return an error value along with the result (x,
err := f()), oraboolean to indicate success (x, ok := f()).

46 | Chapter6: Functions

Variadic Functions

There is a special form available for the last parameter in a Go function:

func add(args ...int) int {

total := 0

for _, v := range args {
total += v

}

return total

}

func main() {
fmt.Println(add(1,2,3))
}

In this example, add is allowed to be called with multiple integers. This is known as a
variadic parameter.

By using an ellipsis (. . .) before the type name of the last parameter, you can indicate
that it takes zero or more of those parameters. In this case, we take zero or more ints.
We invoke the function like any other function except we can pass as many ints as
we want.

This is precisely how the fmt.Println function is implemented:
func Println(a ...interface{}) (n int, err error)

The Println function takes any number of values of any type (the special
interface{} type will be discussed in more detail in Chapter 7).

We can also pass a slice of ints by following the slice with an ellipsis:

func main() {
xs := []int{1,2,3}
fmt.Println(add(xs...))
}

Closure

It is possible to create functions inside of functions. Let's move the add function we
saw before inside of main:

func main() {
add := func(x, y int) int {
return x +y

}
fmt.Println(add(1,1))

Variadic Functions | 47

add is a local variable that has the type func(int, int) int (a function that takes
two ints and returns an int). When you create a local function like this, it also has
access to other local variables (remember scope from Chapter 3):

func main() {

X =0

increment := func() int {
X++
return x

}

fmt.Println(increment())
fmt.Println(increment())
}

increment adds 1 to the variable x, which is defined in the main function’s scope. This
x variable can be accessed and modified by the increment function. This is why the
first time we call increment we see 1 displayed, but the second time we call it we see 2
displayed.

A function like this together with the nonlocal variables it references is known as a
closure. In this case, increment and the variable x form the closure.

One way to use closure is by writing a function that returns another function, which
when called, can generate a sequence of numbers. For example, here’s how we might
generate all the even numbers:

func makeEvenGenerator() func() uint {
i := uint(0)
return func() (ret uint) {
ret = i
1 +=2
return
}
}
func main() {
nextEven := makeEvenGenerator()
fmt.Println(nextEven()) // 0
fmt.Println(nextEven()) // 2
fmt.Println(nextEven()) // 4

}

makeEvenGenerator returns a function that generates even numbers. Each time its
called, it adds 2 to the local i variable, which—unlike normal local variables—persists
between calls.

Recursion

Finally, a function is able to call itself. Here is one way to compute the factorial of a
number:

48 | Chapter6: Functions

func factorial(x uint) uint {
if x == 0 {
return 1

}

return x * factorial(x-1)
}
factorial calls itself, which is what makes this function recursive. In order to better
understand how this function works, let’s walk through factorial(2):

1. Isx == 0? No (x is 2).
2. Find the factorial of x - 1

a. Isx == 0?2 No (xis 1).
b. Find the factorialofx - 1.

i. Isx == 0? Yes, return 1.
c. Return1 * 1.
3. Return2 * 1.

Closure and recursion are powerful programming techniques that form the basis of a
paradigm known as functional programming. Most people will find functional pro-
gramming more difficult to understand than an approach based on for loops, if
statements, variables, and simple functions.

defer, panic, and recover

Go has a special statement called defer that schedules a function call to be run after
the function completes. Consider the following example:

package main
import "fmt"

func first() {
fmt.Println("1st")
}

func second() {
fmt.Println("2nd")
}

func main() {
defer second()
first()

}

This program prints 1st followed by 2nd. Basically, defer moves the call to second to
the end of the function:

defer, panic, and recover | 49

func main() {
first()
second()
}
defer is often used when resources need to be freed in some way. For example, when
we open a file, we need to make sure to close it later. With defer:

f, _ := os.Open(filename)
defer f.Close()

This has three advantages:

o It keeps our Close call near our Open call so it’s easier to understand.

o If our function had multiple return statements (perhaps one in an if and one in
an else), Close will happen before both of them.

o Deferred functions are run even if a runtime panic occurs.

panic and recover

Earlier, we created a function that called the panic function to cause a runtime error.
We can handle a runtime panic with the built-in recover function. recover stops the
panic and returns the value that was passed to the call to panic. We might be tempted
to recover from a panic like this:

package main
import "fmt"

func main() {
panic("PANIC")
str := recover() // this will never happen
fmt.Println(str)

}

But the call to recover will never happen in this case, because the call to panic imme-
diately stops execution of the function. Instead, we have to pair it with defer:

package main
import "fmt"

func main() {
defer func() {
str := recover()
fmt.Println(str)

10
panic("PANIC")

50 | Chapter6: Functions

A panic generally indicates a programmer error (e.g., attempting to access an index
of an array that’s out of bounds, forgetting to initialize a map, etc.) or an exceptional
condition that there’s no easy way to recover from (hence the name panic).

Pointers

When we call a function that takes an argument, that argument is copied to the func-
tion:

func zero(x int) {

X =0

}

func main() {
X =5
zero(x)

fmt.Println(x) // x is still 5
}

In this program, the zero function will not modify the original x variable in the main
function. But what if we wanted to? One way to do this is to use a special data type
known as a pointer:

func zero(xPtr *int) {

*xPtr = 0
}
func main() {

X =5

zero(&x)

fmt.Println(x) // x is 0@
}

Pointers reference a location in memory where a value is stored rather than the value

itself. By using a pointer (*int), the zero function is able to modify the original vari-
able.

The * and & operators

In Go, a pointer is represented using an asterisk (*) followed by the type of the stored
value. In the zero function, xPtr is a pointer to an int.

An asterisk is also used to dereference pointer variables. Dereferencing a pointer gives
us access to the value the pointer points to. When we write *xPtr = 0, we are saying
“store the int 0 in the memory location xPtr refers to” If we try xPtr = 0 instead, we
will get a compile-time error because xPtr is not an int; it’s a *int, which can only be
given another *int.

Pointers | 51

Finally, we use the & operator to find the address of a variable. &x returns a *int
(pointer to an int) because x is an int. This is what allows us to modify the original
variable. &x in main and xPtr in zero refer to the same memory location.

new

Another way to get a pointer is to use the built-in new function:

func one(xPtr *int) {
*xPtr = 1
}

func main() {
xPtr := new(int)
one(xPtr)
fmt.Println(*xPtr) // x is 1

}

new takes a type as an argument, allocates enough memory to fit a value of that type,
and returns a pointer to it.

In some programming languages, there is a significant difference between using new
and &, with great care being needed to eventually delete anything created with new.
You don’t have to worry about this with Go—it’s a garbage-collected programming
language, which means memory is cleaned up automatically when nothing refers to it
anymore.

Pointers are rarely used with Go’s built-in types, but as we will see in the next chapter,
they are extremely useful when paired with structs.

52 | Chapter6: Functions

Exercises

Y N

10.

11.

. sum is a function that takes a slice of numbers and adds them together. What

would its function signature look like in Go?

. Write a function that takes an integer and halves it and returns true if it was even

or false if it was odd. For example, half(1) should return (0, false) and
half(2) should return (1, true).

. Write a function with one variadic parameter that finds the greatest number in a

list of numbers.

Using makeEvenGenerator as an example, write a makeOddGenerator function
that generates odd numbers.

The Fibonacci sequence is defined as: fib(0) = 0, fib(1) = 1, fib(n) =
fib(n-1) + fib(n-2). Write a recursive function that can find fib(n).

What are defer, panic, and recover? How do you recover from a runtime panic?
How do you get the memory address of a variable?

How do you assign a value to a pointer?

How do you create a new pointer?

What is the value of x after running this program:

func square(x *float64) {
k) = ky * ky

}

func main() {
X = 1.5
square(&x)

}

Write a program that can swap two integers (x := 1; y := 2; swap(&x, &y)
should give you x=2 and y=1).

Exercises | 53

CHAPTER 7
Structs and Interfaces

Although it would be possible for us to write programs only using Go's built-in data
types, at some point it would become quite tedious. Consider a program that interacts
with shapes:

package main
import ("fmt"; "math")

func distance(x1, y1, x2, y2 float64) float64 {
a = x2 -x1
b :=y2-y1
return math.Sqrt(a*a + b*b)

}

func rectangleArea(x1l, y1, x2, y2 float64) float64 {
1 := distance(x1l, y1, x1, y2)
w := distance(x1, y1, x2, y1)
return 1 * w

}

func circleArea(x, y, r float64) float64 {
return math.Pi1 * r*r

}

func main() {
var rx1l, ryl floaté4 = 0, 0
var rx2, ry2 float64 = 10, 10
var cx, cy, cr float64 = 0, 0, 5

fmt.Println(rectangleArea(rx1, ryl, rx2, ry2))
fmt.Println(circleArea(cx, cy, cr))

55

This program finds the area of a rectangle and a circle. Keeping track of all the coor-
dinates makes it difficult to see what the program is doing and will likely lead to mis-
takes.

Structs

An easy way to make this program better is to use a struct. A struct is a type that con-
tains named fields. For example, we could represent a circle like this:
type Circle struct {
x float64

y float64
r float6e4

}

The type keyword introduces a new type. It's followed by the name of the type
(Circle), the keyword struct to indicate that we are defining a struct type, and a
list of fields inside of curly braces.

Fields are like a set of grouped variables. Each field has a name and a type and is
stored adjacent to the other fields in the struct. Like with functions, we can collapse
fields that have the same type:

type Circle struct {
x, y, r float64

}

Initialization
We can create an instance of our new Circle type in a variety of ways:
var c Circle

Like with other data types, this will create a local Circle variable that is by default set
to zero. For a struct, zero means each of the fields is set to their corresponding zero
value (0 for ints, 0.0 for floats, "" for strings, nil for pointers, etc.) We can also
use the new function:

c := new(Circle)

This allocates memory for all the fields, sets each of them to their zero value, and
returns a pointer to the struct (*Circle). Pointers are often used with structs so that
functions can modify their contents.

Using new in this way is somewhat uncommon. More typically, we want to give each
of the fields an initial value. We can do this in two ways.

The first option looks like this:

c := Circle{x: 0, y: 0, r: 5}

56 | Chapter7: Structsand Interfaces

The second option is to leave off the field names if we know the order they were
defined:

c := Circle{o, 0, 5}

This creates the same Circle as the previous example. If you want a pointer to the
struct, use &:

c := &Circle{o, 0, 5}

Fields

We can access fields using the . operator:

fmt.Println(c.x, c.y, c.r)
c.x = 10
c.y =5

Let’s modify the circleArea function so that it uses a Circle:

func circleArea(c Circle) float64 {
return math.P1 * c.r*c.r

}

In main, we have:

c := Circle{o, 0, 5}

fmt.Println(circleArea(c))
One thing to remember is that arguments are always copied in Go. If we attempted to
modify one of the fields inside of the circleArea function, it would not modify the
original variable. Because of this, we would typically write the function using a
pointer to the Circle:

func circleArea(c *Circle) float64 {
return math.P1 * c.r*c.r

}
And change main to use & before c:

c := Circle{o, 0, 5}
fmt.Println(circleArea(&c))

Methods

Although this is better than the first version of this code, we can improve it signifi-
cantly by using a special type of function known as a method:

func (c *Circle) area() float64 {
return math.P1 * c.r*c.r

}

Methods | 57

In between the keyword func and the name of the function, we've added a receiver.
The receiver is like a parameter—it has a name and a type—but by creating the func-
tion in this way, it allows us to call the function using the . operator:

fmt.Println(c.area())

This is much easier to read. We no longer need the & operator (Go automatically
knows to pass a pointer to the circle for this method), and because this function can
only be used with Circles, we can rename the function to just area.

Let’s do the same thing for the rectangle:

type Rectangle struct {
x1, y1, x2, y2 float64
}

func (r *Rectangle) area() floaté4 {
1 := distance(r.x1, r.yl, r.x1, r.y2)
w := distance(r.x1, r.yl, r.x2, r.yl)
return 1 * w

}

main has:

r := Rectangle{0, 0, 10, 10}
fmt.Println(r.area())

Embedded Types

A struct’s fields usually represent the has-a relationship (e.g., a Circle has a radius).
The following snippet shows an example of a person struct:

type Person struct {
Name string

}

func (p *Person) Talk() {
fmt.Println("Hi, my name is", p.Name)

}
Now suppose we wanted to create a new Android struct. We could do this:

type Android struct {
Person Person
Model string

}

This would work, but we would rather say an android is a person, rather than an
android has a person. Go supports relationships like this by using embedded types
(sometimes also referred to as anonymous fields)—they look like this:

58 | Chapter7: Structs and Interfaces

type Android struct {
Person
Model string

}

We use the type (Person) and don’t give it a name. When defined this way, the Person
struct can be accessed using the type name:

a := new(Android)
a.Person.Talk()

But we can also call any Person methods directly on the Android:

a := new(Android)

a.Talk()
The is-a relationship works this way intuitively: people can talk, an android is a per-
son, therefore an android can talk.

Interfaces

You may have noticed that we were able to name the Rectangle’s area method the
same thing as the Circle’s area method. This was no accident. In both real life and in
programming, relationships like these are commonplace. Go has a way of making
these accidental similarities explicit through a type known as an interface. Here is an
example of a Shape interface:

type Shape interface {
area() float64
}

Like a struct, an interface is created using the type keyword, followed by a name and
the keyword interface. But instead of defining fields, we define a method set. A
method set is a list of methods that a type must have in order to implement the inter-
face.

In our case, both Rectangle and Circle have area methods that return float64s, so
both types implement the Shape interface. By itself, this wouldn’t be particularly use-
ful, but we can use interface types as arguments to functions.

Suppose we want to write a function that calculates the area of several shapes. Using
the techniques we've discussed so far, we might start to write the function like this:

func totalArea(circles ...Circle) float64 {
var total float64
for _, c := range circles {
total += c.area()

}

return total

Interfaces | 59

And then wed try to add in Rectangles:

// THIS IS INVALID
func totalArea(circles ...Circle, rectangles ...Rectangle) float64 {
var total floaté4
for _, c := range circles {
total += c.area()

}

for _, r := range rectangles {
total += r.area()

}

return total

}

But we can’t write a function that contains two variadic parameters, so we would have
to modify the program:

func totalArea(circles []Circle, rectangles []Rectangle) float64 {
var total floaté4
for _, c := range circles {
total += c.area()

}

for _, r := range rectangles {
total += r.area()

}

return total
}
This works, but it has a major issue—whenever we define a new shape, we have to
change our function to handle it (a third parameter for Polygons, a fourth for
Squares, etc.).

This is the problem interfaces are designed to solve. Because both of our shapes have
an area method, they both implement the Shape interface and we can change our
function to this:

func totalArea(shapes ...Shape) floaté4 {
var area floaté4
for _, s := range shapes {
area += s.area()

}

return area

}
We would call this function like this:

fmt.Println(totalArea(&c, &r))
All totalArea knows about each shape is that it has an area method:

type Shape interface {
area() float64
}

60 | Chapter7: Structs and Interfaces

So totalArea would not be able to access the struct fields for the circle or rectangle
(or any other possible methods).

Nothing additional is required to implement an interface (there is no implements or
extends keyword). It’s sufficient to merely have a method with the same name and
signature.

Interfaces can also be used as fields. Consider a MultiShape that is made up of several
smaller shapes:

type MultiShape struct {
shapes []Shape
}

We can create a MultiShape like this:

multiShape := MultiShape{
shapes: []Shape{
Circle{0, 0, 5},
Rectangle{0, 0, 10, 10},
1,
}

We can even turn MultiShape itself into a Shape by giving it an area method:

func (m *MultiShape) area() floaté64 {
var area float64
for _, s := range m.shapes {
area += s.area()

}

return area

}

Now a MultiShape can contain Circles, Rectangles, or even other MultiShapes.

When building new programs, you often won’t know what your types should look
like when you start—and that’s OK. In Go, you generally focus more on the behavior
of your program than on a taxonomy of types. Create a few small structs that do what
you want, add in methods that you need, and as you build your program, useful inter-
faces will tend to emerge. There’s no need to have them all figured out ahead of time.

Interfaces are particularly useful as software projects grow and become more com-
plex. They allow us to hide the incidental details of implementation (e.g., the fields of
our struct), which makes it easier to reason about software components in isolation.
In our example, as long as the area methods we defined continue to produce the
same results, were free to change how a Circle or Rectangle is structured without
having to worry about whether or not the totalArea function will continue to work.

Go also has a mechanism for combining interfaces, types, variables, and functions
together into a single component known as a package. We will learn more about pack-
ages in the next chapter.

Interfaces | 61

Exercises

1. What’s the difference between a method and a function?

2. Why would you use an embedded anonymous field instead of a normal named
field?

3. Add a new perimeter method to the Shape interface to calculate the perimeter of
a shape. Implement the method for Circle and Rectangle.

62 | Chapter7: Structs and Interfaces

CHAPTER 8
Packages

Go was designed to be a language that encourages good software engineering practi-
ces. An important part of high-quality software is code reuse—embodied in the prin-
ciple “Don’t Repeat Yourself”

As we saw in Chapter 6, functions are the first layer we utilize to allow code reuse. Go
also provides another mechanism for code reuse: packages. Nearly every program
we've seen so far included this line:

import "fmt"

fmt is the name of a package that includes a variety of functions related to formatting
and output to the screen. Bundling code in this way serves three purposes:

o It reduces the chance of having overlapping names, and in turn keeps our func-
tion names short and succinct.

o It organizes code so that it’s easier to find code you want to reuse.

o It speeds up the compiler by only requiring recompilation of smaller chunks of a
program. Although we use the package fmt, we don't have to recompile it every
time we change our program.

The Core Packages

Instead of writing everything from scratch, most real-world programming depends
on our ability to interface with existing libraries. This chapter will take a look at some
of the most c