JavaScript
and Node

FUNdamentals

A Collection of
Essential Basics

//

AZAT MARDAN

JavaScript and Node FUNdamentals
A Collection of Essential Basics

Azat Mardan

This book is for sale at http://leanpub.com/jsfun

This version was published on 2015-05-05

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

©2013 - 2015 Azat Mardan

http://leanpub.com/jsfun
http://leanpub.com
http://leanpub.com/manifesto

Tweet This Book!

Please help Azat Mardan by spreading the word about this book on Twitter!
The suggested tweet for this book is:

I just downloaded JavaScript and Node.js FUNdamentals!!! CC @azat_co
The suggested hashtag for this book is #JavaScriptFUNdamentals.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

https://twitter.com/search?q=#JavaScriptFUNdamentals

http://twitter.com
https://twitter.com/search?q=%23JavaScriptFUNdamentals
https://twitter.com/search?q=%23JavaScriptFUNdamentals

Also By Azat Mardan

Rapid Prototyping with]S

Oh My JS

Introduction to OAuth with Node.js

ProgWriter [programmer + writer]

Brictpoe [IpoToTunuposanue c JS

ProgWriter 2.0: Beyond Books

5 Hacks to Getting the Job of Your Dreams to Live a Happier and Healthier Life

http://leanpub.com/u/azat
http://leanpub.com/rapid-prototyping-with-js
http://leanpub.com/ohmyjs
http://leanpub.com/oauthnode
http://leanpub.com/progwriter
http://leanpub.com/rpjsru
http://leanpub.com/progwriter2
http://leanpub.com/5hacks

Contents

1. JavaScript FUNdamentals: The Powerful and Misunderstood Language of The Web . 2

1.1 EXPressiveness v v v v v it e e e e e e e e e e 2
1.2 Loose Typing o o i i i i 3
1.3 Object Literal Notation 3
1.4 Functions 4
15 AITAYS .« . o v o v e e e e e e e e e e 6
1.6 Prototypal Nature 6
1.7 Conventions 7
1.8 NoModules 8
1.9 Immediately-Invoked Function Expressions (IIFEs) 8
1.10 Keyword “this” 9
1.11 Pitfalls . . . Lo 9
1.12 Further Learning 10
2. Node.js FUNdamentals: JavaScript on The Server 11
2.1 Read-Eval-Print Loop (a.k.a. Console) in Node.js 12
2.2 Launching Node.js Scripts 13
2.3 Node.js Process Information, 13
2.4 Accessing Global ScopeinNode.js L. 14
2.5 Exporting and Importing Modules o oo oL 14
2.6 Bufferisa Node.js Super Data Type, 16
2.7 __dirname vs. process.cWd 16
2.8 Handy Utilities in Node.js 16
2.9 Reading and Writing from/to The File System in Node.js 17
2.10 Streaming DatainNode.js 17
2.11 Installing Node.js Modules with NPM 18
2.12 Hello World Server with HTTP Node.js Module 18
2.13 Debugging Node.js Programs 19
2.14 Taming Callbacksin Node.js 19
2.15 Introduction to Node.js withRyanDahl 20
2.16 Moving Forward with Express.js o oL 20
3. Express.js FUNdamentals: The Most Popular Node.js Framework 22

3.1 ExpressjsInstallation 22

CONTENTS

3.2 Express.js Command-Line Interface 22
3.3 Routesin Express.js e 23
3.4 Middleware as The Backbone of Express.js 24
3.5 Configuration of an Express.js App e 24
3.6 Jade is Haml for Express.js/Node.js. 24
3.7 Conclusion About The Express.js Framework 25
3.8 ExpressWorks 25
3.9 Update 26
4. Aboutthe Author 27
5. Review . . . oL e 29
6. Errata 30

CONTENTS

If it’s not fun, it’s not JavaScript.

O = W N -

1. JavaScript FUNdamentals: The
Powerful and Misunderstood
Language of The Web

1.1 Expressiveness

Programming languages like BASIC, Python, and C has boring machine-like nature which require
developers to write extra code that’s not directly related to the solution itself. Think about line
numbers in BASIC or interfaces, classes and patterns in Java.

On the other hand JavaScript inherits the best traits of pure mathematics, LISP, C# which lead to a
great deal of expressiveness' (and fun!).

More about Expressive Power in this post: What does “expressive” mean when referring to
programming languages?”

The quintessential Hello World example in Java (remember, Java is to JavaScript like ham is to
hamster):

public class HelloWorld ({
public static void main(String[] args) {
System.out.println("Hello World");

}

The same example in JavaScript:
console.log('Hello World')

or from within an HTML page:

"http://en.wikipedia.org/wiki/Expressive_power
®http://stackoverflow.com/questions/638881/what-does- expressive-mean-when-referring-to- programming-languages

http://en.wikipedia.org/wiki/Expressive_power
http://stackoverflow.com/questions/638881/what-does-expressive-mean-when-referring-to-programming-languages
http://stackoverflow.com/questions/638881/what-does-expressive-mean-when-referring-to-programming-languages
http://en.wikipedia.org/wiki/Expressive_power
http://stackoverflow.com/questions/638881/what-does-expressive-mean-when-referring-to-programming-languages

JavaScript FUNdamentals: The Powerful and Misunderstood Language of The Web 3

<script>
document .write('Hello World')
</script>

JavaScript allows programmers to focus on the solution/problem rather than to jump through hoops
and API docs.

1.2 Loose Typing

Automatic type casting works well most of the time. It’s a great feature that saves a lot of time and
mental energy! There're only a few primitives types:

String

Number (both integer and real)
Boolean

Undefined

Null

SN

Everything else is an object, i.e., mutable keyed collections. Read Stackoverflow on What does
immutable mean??

Also, in JavaScript there are String, Number and Boolean objects which contain helpers for the
primitives:

'a' === new String('a') //false

but

'a' === new String('a').toString() //true

or

'a' == new String('a') //true

By the way, == performs automatic type casting while === not.

1.3 Object Literal Notation

Object notation is super readable and compact:

*http://stackoverflow.com/questions/3200211/what-does-immutable-mean

http://stackoverflow.com/questions/3200211/what-does-immutable-mean
http://stackoverflow.com/questions/3200211/what-does-immutable-mean
http://stackoverflow.com/questions/3200211/what-does-immutable-mean

~N O O B W N -

=N O O & W N =

W N -

B W N -

JavaScript FUNdamentals: The Powerful and Misunderstood Language of The Web 4

var obj = {

color: "green",

" "

type: "suv",
owner: {
}

Remember that functions are objects?

var obj = function () {
this.color: "green",

n "

4

this.type: "suv

this.owner: {

1.4 Functions

Functions are first-class citizens, and we treat them as variables, because they are objects! Yes,
functions can even have properties/attributes.

1.4.1 Create a Function

var f = function f () {
console.log('Hi");

return true;

or

function f () {
console.log('Hi");
return true;

Function with a property (remember functions are just objects that can be invoked, i.e. initialized):

D W N -

© 00 39 O Ol b W N =

JavaScript FUNdamentals: The Powerful and Misunderstood Language of The Web 5

var f = function () {console.log('Boo');}

f.boo = 1;

7

f(); //outputs Boo
console.log(f.boo); //outputs 1

Note: the return keyword is optional. In case it’s omitted, the function will return undefined upon
invocation.

1.4.2 Pass Functions as Params

var convertNum = function (num) {
return num + 10;

}

var processNum = function (num, fn) {

return fn(num);

processNum(10, convertNum);

1.4.3 Invocation vs. Expression

Function definition as follows:
function £ () {};

Function invocation looks like this:
£0);

Function expression always returns something, because it resolves to some value which could be a
number, a string, an object or a boolean:

function f() {return false;}

£();

On the other hand, if a function doesn’t return anything, it’s a statement:

B W N -

W N O Ol & W N =

[G
o b WO N =~ O O

JavaScript FUNdamentals: The Powerful and Misunderstood Language of The Web 6

function f(a) {console.log(a);}

1.5 Arrays

Arrays are also objects which have some special methods inherited from Array.prototype* global
object. Nevertheless, JavaScript Arrays are not real arrays. Instead, they are objects with unique
integer (usually 0-based) keys.

var arr = [];

var arr2 = [1, "Hi", {a:2}, function () {console.log('boo');}];

var arr3 = new Array();

var arrd = new Array(1,"Hi", {a:2}, function () {console.log('boo');});

1.6 Prototypal Nature

There are no classes in JavaScript because objects inherit directly from other objects which is called
prototypal inheritance. There are a few types of inheritance patterns in JS:

« Classical
« Pseudo-classical
« Functional

Example of the functional inheritance pattern:

var user = function (ops) {

return { firstName: ops.name || 'John'
, lastName: ops.name || 'Doe'
, email: ops.email || 'test@test.com'

, name: function() { return this.firstName + this.lastName}

}

var agency = function(ops) {
ops = ops || {}
var agency = user(ops)
agency.customers = ops.customers || ©
agency.isAgency = true
return agency

“https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/prototype#Properties

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/prototype#Properties
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/prototype#Properties

B W N -

JavaScript FUNdamentals: The Powerful and Misunderstood Language of The Web 7

1.7 Conventions

Most of these conventions (with semi-colons being an exception) are stylistic, and highly preferential
and don’t impact the execution.

1.7.1 Semi-Colons

Optional semi-colons, except for two cases:

1. In for loop construction: for (var i=0; i++; i<n)

2. When a new line starts with parentheses, e.g., Immediately-Invoked Function Expression
(ITFE): ; (function(){...}())

1.7.2 camelCase

camelCase, except for class names which are CapitalCamelCase, e.g.,

var MainView = Backbone.View.extend({...})
var mainView = new MainView()

1.7.3 Naming

_$ are perfectly legitimate characters for the literals (jQuery and Underscore libraries use them a
lot).

Private methods and attributes start with _ (does nothing by itself!).

1.7.4 Commas

Comma-first approach

var obj = { firstName: "John"
, lastName: "Smith"
, email: "johnsmith@gmail.com"

}

1.7.5 Indentation

Usually it’s either tab, 4 or 2 space indentation with their supporters’ camps being almost religiously
split between the options.

O = W N =

JavaScript FUNdamentals: The Powerful and Misunderstood Language of The Web 8

1.7.6 White spaces

Usually, there is a space before and after =, +, { and } symbols. There is no space on invocation, e.g.,
arr.push(1);, but there’s a space when we define an anonymous function: function () {}.

1.8 No Modules

At least until ES6°, everything is in the global scope, a.k.a. window and included via <script> tags.
However, there are external libraries that allow for workarounds:

« Common]S®
« AMD and Require.js’

Node.js uses Common]JS-like syntax and has built-in support for modules.

To hide your code from global scope, make private attributes/methods use closures and immediately-
invoked function expressions® (or IIFEs).

1.9 Immediately-Invoked Function Expressions (IIFEs)

(function () {
window.yourModule = {

};
YO,

This snippet shows an example of an object with private attribute and method:

*https://wiki.mozilla.org/ES6_plans

®http://www.commonjs.org/

"http://requirejs.org/
®http://en.wikipedia.org/wiki/Immediately-invoked_function_expression

https://wiki.mozilla.org/ES6_plans
http://www.commonjs.org/
http://requirejs.org/
http://en.wikipedia.org/wiki/Immediately-invoked_function_expression
http://en.wikipedia.org/wiki/Immediately-invoked_function_expression
https://wiki.mozilla.org/ES6_plans
http://www.commonjs.org/
http://requirejs.org/
http://en.wikipedia.org/wiki/Immediately-invoked_function_expression

O O B W N~

JavaScript FUNdamentals: The Powerful and Misunderstood Language of The Web 9

(function () {
window.boo = function() ({
var _a = 1;
var inc = function () {
_a++;
console.log(_a);
return _a;
};
return {
increment: inc
b
}
10));

var b = window.boo();
b.increment();

Now try this:

b.increment();
b.increment();
b.increment();

1.10 Keyword “this”

Mutates/changes a lot (especially in jQuery)! Rule of thumb is to re-assign to a locally scoped variable
before attempting to use this inside of a closure:

var app = this

$('a').click(function(e){
console.log(this) //most likely the event or the target anchor element
console.log(app) //that's what we want!
app.processData(e)

1))

When in doubt: console.log!

1.11 Pitfalls

JS is the only language that programmers think they shouldn’t learn. Things like === vs. ==, global
scope leakage, DOM, etc. might lead to problems down the road. This is why it’s important to
understand the language or use something like CoffeeScript, that takes way most of the issues.

JavaScript FUNdamentals: The Powerful and Misunderstood Language of The Web 10

1.12 Further Learning

If you liked this article and would like to explore JavaScript more, take a look at this amazing free
resource: Eloquent JavaScript: A Modern Introduction to Programming’.

Of course for more advanced JavaScript enthusiasts and pros, there’s my book Rapid Prototyping
with JS'° and intensive programming school HackReactor'*, where I teach part-time.

*http://eloquentjavascript.net/
°http://rpjs.co
http://hackreactor.com

http://eloquentjavascript.net/
http://rpjs.co
http://rpjs.co
http://hackreactor.com
http://eloquentjavascript.net/
http://rpjs.co
http://hackreactor.com

2. Node.js FUNdamentals: JavaScript
on The Server

Node.js is a highly efficient and scalable non-blocking I/O platform that was built on top of
Google Chrome V8 engine and its ECMAScript. This means that most front-end JavaScript (another
implementation of ECMAScript) objects, functions and methods are available in Node.js. Please refer
to JavaScript FUNdamentals' if you need a refresher on JS-specific basics.

Developers can install Node.js from its website? (Figure 4-1) and follow this overview of main Node.js
concepts.

'http://webapplog.com/js-fundamentals/
®http://nodejs.org

http://webapplog.com/js-fundamentals/
http://nodejs.org
http://webapplog.com/js-fundamentals/
http://nodejs.org

Node.js FUNdamentals: JavaScript on The Server 12

node.js

€« C # [nodejs.org

Node.js is a platform built on scalable network
t and

efficient, perfect for data-intensive real-time applications that run across distributed devices.

Current Version: v0.10.22

Eﬂvoxer‘ Fandi.st

Figure 4-1: Node.js home page

2.1 Read-Eval-Print Loop (a.k.a. Console) in Node.js

Like in many other programming language and platforms, Node.js has a read-eval-print loop tool
which is opened by $ node command. The prompt changes to > and we can execute JavaScript akin to
Chrome Developer Tools console as shown in Figure 4-2. There are slight deviations in ECMAScript
implementations in Node.js and browsers (e.g., {}+{}), but for the most part the results are similar.

Node.js FUNdamentals: JavaScript on The Server 13

800 2. node (node) o

& ~ % node
> 1+1

2

> var a

fx: 1, y: '2'}

» "2' }
function(obj) {obj.x++}

Figure 4-2: Node.js console

So as you see, we can write JavaScript in the console all day long, but sometime we can to save script
so we can run them later.

2.2 Launching Node.js Scripts

To start a Node.js script from a file, simply run $ node filename,e.g.,$ node program.js.If all we
need is a quick set of statements, there’s a -e option that allow to run inline JavaScript/Node.js, e.g.,
$ node -e "console.log(new Date());".

2.3 Node.js Process Information

Each Node.js script that is running is a process in its essence. For example, ps aux | grep 'node’
will output all Node.js programs running on a machine. Conveniently, developers can access useful
process information in code with process object, e.g., node -e "console.log(process.pid)" as
illustrated in Figure 4-3.

Node.js FUNdamentals: JavaScript on The Server 14

800 1. azat.mardanov@DSAD02579: ~/code (zsh) A
(node) i (bash) (~/code (zsh)

& code node -e

41279

& code node -e "console.log(process.cwd())"
FUsers/azat .mardanov/code

& code node -e "console.log(process.pid)”
41280

& code node -e "console.log(process.pid)”
41284

& code

onsole.log{process.pid)"

Figure 4-3: Node.js process examples using pid and cwd.

2.4 Accessing Global Scope in Node.js

As you know from JS FUNdamentals®, browser JavaScript by default puts everything into its
global scope. This was coined as one of the bad part of JavaScript in Douglas Crockford’s famous
[JavaScript: The Good Parts]. Node.js was designed to behave differently with everything being
local by default. In case we need to access globals, there is a global object. Likewise, when we need
to export something, we should do so explicitly.

In a sense, window object from front-end/browser JavaScript metamorphosed into a combination
of global and process objects. Needless to say, the document object that represent DOM of the
webpage is nonexistent in Node.js.

2.5 Exporting and Importing Modules

Another bad part in browser JavaScript is that there’s no way to include modules. Scripts are
supposed to be linked together using a different language (HTML) with a lacking dependency

*http://webapplog.com/

http://webapplog.com/
http://webapplog.com/

© © 0 1 O O b W N =

[N

O O B W N~

Node.js FUNdamentals: JavaScript on The Server 15

management. Common]JS* and Require]S® solve this problem with AJAX-y approach. Node.js
borrowed many things from the Common]JS concept.

To export an object in Node.js, use exports.name = object;, e.g.,

var messages = {
find: function(req, res, next) {
}
add: function(req, res, next) {
H
format: 'title | date | author'
}

exports.messages = messages;

While in the file where we import aforementioned script (assuming the path and the file name is
route/messages. js):

var messages = require('./routes/messages.js');

However, sometime it’s more fitting to invoke a constructor, e.g., when we attach properties
to Express.js app (more on Express.js in Express.js FUNdamentals: An Essential Overview of
Express.js°). In this case module.exports is needed:

module.exports = function(app) {
app.set('port', process.env.PORT || 3000);
app.set('views', __dirname + '/views');
app.set('view engine', 'jade');
return app;

In the file that includes the example module above:

“http://www.commonjs.org/
*http://requirejs.org/
“http://webapplog.com/express-js-fundamentals/

http://www.commonjs.org/
http://requirejs.org/
http://webapplog.com/express-js-fundamentals/
http://webapplog.com/express-js-fundamentals/
http://www.commonjs.org/
http://requirejs.org/
http://webapplog.com/express-js-fundamentals/

O = W N =

Node.js FUNdamentals: JavaScript on The Server 16

var app = express();
var config = require('./config/index.js');
app = config(app);

The more succinct code: var = express(); require('./config/index.js')(app);

The most common mistake when including modules is a wrong path to the file. For core Node.js
modules, just use the name without any path, e.g., require(‘name’). Same goes for modules in node_-
modules folder. More on that later in the NPM section.

For all other files, use . with or without a file extension, e.g.,

var keys = require('./keys.js'),
messages = require('./routes/messages.js');

In addition, for the latter category it’s possible to use a longer looking statements with __dirname
and path. join(), e.g., require(path.join(__dirname, ,routes’, ‘messages’));’

If require() points to a folder, Node.js will attempt to read index. js file in that folder.

2.6 Buffer is a Node.js Super Data Type

Buffer is a Node.js addition to four primitives (boolean, string, number and RegExp) and all-
encompassing objects (array and functions are also objects) in front-end JavaScript. We can think
of buffers as extremely efficient data stores. In fact, Node.js will try to use buffers any time it can,
e.g., reading from file system, receiving packets over the network.

2.7 _dirname vs. process.cwd

__dirname is an absolute path to the file in which this global variable was called, while process. cwd
is an absolute path to the process that runs this script. The latter might not be the same as the former
if we started the program from a different folder, e.g., $ node ./code/program. js.

2.8 Handy Utilities in Node.js

Although, the core of the Node.js platform was intentionally kept small it has some essential utilities
such as

< O O b W N =

O b= W N =

Node.js FUNdamentals: JavaScript on The Server 17

« URL’

+ Crypto®

« Path’

String Decoder’

The method that we use in this tutorials is path. join and it concatenates path using an appropriate
folder separator (/ or \\).

2.9 Reading and Writing from/to The File System in
Node.js

Reading from files is done via the core fs module''. There are two sets of methods: async and sync.
In most cases developers should use async methods, e.g., fs.readFile'*:

var fs = require('fs');
var path = require('path');
fs.readFile(path. join(__dirname, '/data/customers.csv'), {encoding: 'utf-8'}, fu\
nction (err, data) {
if (err) throw err;
console. log(data);

1)

And the writing to the file:

var fs = require('fs');

fs.writeFile('message.txt', 'Hello World!', function (err) {
if (err) throw err;
console.log('Writing is done.');

});

2.10 Streaming Data in Node.js

Streaming data is a term that mean an application processes the data while it’s still receiving it. This
is useful for extra large datasets, like video or database migrations.

Here’s a basic example on using streams that output the binary file content back:

"http://nodejs.org/api/url.html

®http://nodejs.org/api/crypto.html

*http://nodejs.org/api/path.html
http://nodejs.org/api/string_decoder.html
"http://nodejs.org/api/fs.html

12http:/ /nodejs.org/api/fs.html#fs_fs readfile_filename_options_callback

http://nodejs.org/api/url.html
http://nodejs.org/api/crypto.html
http://nodejs.org/api/path.html
http://nodejs.org/api/string_decoder.html
http://nodejs.org/api/fs.html
http://nodejs.org/api/fs.html#fs_fs_readfile_filename_options_callback
http://nodejs.org/api/url.html
http://nodejs.org/api/crypto.html
http://nodejs.org/api/path.html
http://nodejs.org/api/string_decoder.html
http://nodejs.org/api/fs.html
http://nodejs.org/api/fs.html#fs_fs_readfile_filename_options_callback

Node.js FUNdamentals: JavaScript on The Server 18

var fs = require('fs');
fs.createReadStream('./data/customers.csv').pipe(process.stdout);

By default, Node.js uses buffers for streams.

For a more immersive training, take a loot at stream-adventure'’> and Stream Handbook*“.

2.11 Installing Node.js Modules with NPM

NPM comes with the Node.js platform and allows for seamless Node.js package management. The
way npm install work is similar to Git in a way how it traverses the working tree to find a current
project®®. For starter, keep in mind that we need either the package. json file or the node_modules
folder, in order to install modules locally with $ npm install name, for example $ npm install
superagent; in the program.js: var suparagent = require('superagent');.

The best thing about NPM is that it keeps all the dependencies local, so if module A uses module
B v1.3 and module C uses module B v2.0 (with breaking changes comparing to v1.3), both A and
C will have their own localized copies of different versions of B. This proves to be a more superior
strategy unlike Ruby and other platforms that use global installations by default.

The best practice is not to include a node_modules folder into Git repository when the project is a
module that supposed to be use in other application. However, it’s recommended to include node_-
modules for deployable applications. This prevents a breakage caused by unfortunate dependency
update.

Note: The NPM creator like to call it npm (lowercase'®).

2.12 Hello World Server with HTTP Node.js Module

Although, Node.js can be used for a wide variety of tasks, it’s mostly knows for building web
applications. Node.js is thrives in the network due to its asynchronous nature and build-in modules
such as net and http.

Here’s a quintessential Hello World examples where we create a server object, define request handler
(function with req and res arguments), pass some data back to the recipient and start up the whole

thing.

Phttp://npmjs.org/stream-adventure
https://github.com/substack/stream-handbook
Phttps://npmyjs.org/doc/files/npm-folders.html
http://npmjs.org/doc/misc/npm-faq.html#Is-it-npm-or-NPM-or-Npm

http://npmjs.org/stream-adventure
https://github.com/substack/stream-handbook
https://npmjs.org/doc/files/npm-folders.html
https://npmjs.org/doc/files/npm-folders.html
http://npmjs.org/doc/misc/npm-faq.html#Is-it-npm-or-NPM-or-Npm
http://npmjs.org/stream-adventure
https://github.com/substack/stream-handbook
https://npmjs.org/doc/files/npm-folders.html
http://npmjs.org/doc/misc/npm-faq.html#Is-it-npm-or-NPM-or-Npm

O O b W N -

o I O O P+ W N =

[N
W N~ O

Node.js FUNdamentals: JavaScript on The Server 19

var http = require('http');

http.createServer(function (req, res) {
res.writeHead(200, {'Content-Type': 'text/plain'});
res.end('Hello World\n');

}).listen(1337, '127.0.0.1');

console.log('Server running at http://127.0.0.1:1337/"');]

The req and res parameters have all the information about a given HTTP request and response
correspondingly. In addition, req and res can be used as streams (look in the previous section).

2.13 Debugging Node.js Programs

The best debugger is console.log(), but sometime we need to see the call stack and orient ourselves
in async code a bit more. To do that, put debugger statements in your code and use $ node debug
program. js to start the debugging process. For more developer-friendly interface, download node
inspector™®.

2.14 Taming Callbacks in Node.js

Callbacks™ are able to Node.js code asynchronous, yet programmers unfamiliar with JavaScript,
who come from Java or PHP, might be surprised when they see Node.js code described on Callback
Hell*:

fs.readdir(source, function(err, files) {
if (err) {
console.log('Error finding files:
} else {
files.forEach(function(filename, fileIndex) {

1

+ err)

console.log(filename)
gm(source + filename).size(function(err, values) {

if (err) {

console.log('Error identifying file size: ' + err)
} else {

console.log(filename + ' : ' + values)

aspect = (values.width / values.height)
widths. forEach(function(width, widthIndex) {

"http://nodejs.org/api/debugger.html
Bhttps://github.com/node-inspector/node-inspector
https://github.com/maxogden/art-of-node#callbacks
%http://callbackhell.com/

http://nodejs.org/api/debugger.html
https://github.com/node-inspector/node-inspector
https://github.com/node-inspector/node-inspector
https://github.com/maxogden/art-of-node#callbacks
http://callbackhell.com/
http://callbackhell.com/
http://nodejs.org/api/debugger.html
https://github.com/node-inspector/node-inspector
https://github.com/maxogden/art-of-node#callbacks
http://callbackhell.com/

14
15
16
17
18
19
20
21
22
23
24
25

Node.js FUNdamentals: JavaScript on The Server 20

height = Math.round(width / aspect)

console.log('resizing ' + filename + 'to ' + height + 'x' + height)

this.resize(width, height).write(destination + 'w' + width + '_' + f\
ilename, function(err) {

1

if (err) console.log('Error writing file: + err)

)
}.bind(this))
}
H
)
}
)

There’s nothing to be afraid of here as long as two-space indentation is used. ;-) However, callback
code can be re-write with the use of event emitters, promises or by utilizing the async library.

2.15 Introduction to Node.js with Ryan Dahl

Last, but not least, take a few minutes and watch this Introduction to Node.js with Ryan Dahl video?'.

2.16 Moving Forward with Express.js

For more meticulous Node.js instructions, take a look at Rapid Prototyping with JS: Agile JavaScript
Development?” and Node School?® (Figure 4-1).

*http://www.youtube.com/embed/jo_B4LTHi3I
**http://rpjs.co
*http://nodeschool.io

http://www.youtube.com/embed/jo_B4LTHi3I
http://rpjs.co
http://rpjs.co
http://nodeschool.io
http://www.youtube.com/embed/jo_B4LTHi3I
http://rpjs.co
http://nodeschool.io

Node.js FUNdamentals: JavaScript on The Server 21

| nodeschool.io

& - C M [nodeschool.io

Install these choose-your-own-adventure style lessons and
learn how to use node.js, npm and other related tools by
writing code to solve realistic problems. The lessons run in
your terminal and work on Windows, Mac and Linux. Select a
lesson below to get started!

Learn You The KNode.js
For Much Win!

‘Learn the basics of
‘node: asynchronous i/o}

‘BEtp”

Level Me Up Scotty!

s voum mase _____________ l[cowieric]
:Learn to use leveldb, a
:simple key/value store
‘with a vibrant package
;acosystem.

me1e
g

Stream Adventure

streaming interfaces
with .pipe()

Functional Javascript

+ional programming
ds8cript. No

just vanilla JS.

Figure 4-4: Node School home page

3. Express.js FUNdamentals: The Most
Popular Node.js Framework

Express.js is an amazing framework for Node.js projects and used in the majority of such web apps.
Unfortunately, there’s a lack of tutorials and examples on how to write good production-ready
code. To mitigate this need, we released Express.js Guide: The Comprehensive Book on Express.js’.
However, all things start from basics, and for that reason we’ll give you a taste of the framework in
this post, so you can decide if you want to continue the learning further.

3.1 Express.js Installation

Assuming you downloaded and installed Node.js (and NPM with it), run this command:

$ sudo npm install -g express@3.4.3

3.2 Express.js Command-Line Interface

Now we can use command-line interface (CLI) to spawn new Express.js apps:

$ express -c styl expressfun
$ cd expressfun && npm install
$ node app

Open browser at http://localhost:3000.

Here is the full code of expressfun/app. js if you don’t have time to create an app right now:

"http://expressjsguide.com

http://expressjsguide.com
http://localhost:3000
http://expressjsguide.com

O N O O & W N~

W N DN NDNDDNDNDNDDNDDNDNDNARLS A 2 e
© © 00 9 O Ol b W N~ O © W 3O O b N~ OO O

D W N~

Express.js FUNdamentals: The Most Popular Node.js Framework 23

var express = require('express');
var routes = require('./routes');

var user = require('./routes/user');

var http = require('http');
var path = require('path');

var app = express();

// all environments

app.set('port', process.env.PORT || 3000);
app.set('views', __dirname + '/views');

app.set('view engine', 'jade');

app.use(express. favicon());
app.use(express.logger('dev'));
app.use(express.bodyParser());
app.use(express.methodOverride());

app.use(app.router);

app.use(express.static(path. join(__dirname, 'public')));

// development only
if ('development' == app.get('env')) {
app.use(express.errorHandler());

app.get('/', routes.index);
app.get('/users', user.list);
http.createServer(app).listen(app.get('port'), function(){

console.log('Express server listening on port ' + app.get('port'));

});

3.3 Routes in Express.js

If you open the expressfun/app. js, you'll see two routes in the middle:

app.get('/', routes.index);
app.get('/users', user.list);

The first one is basically takes care of all the requests to the home page, e.g.,http: //localhost : 3000/
and the latter of requests to /users, such as http://localhost:3000/users. Both of the routes
process URLs case insensitively and in a same manner as with trailing slashes.

O O b W N =~

Express.js FUNdamentals: The Most Popular Node.js Framework 24

The request handler itself (index. js in this case) is straightforward: everything from the HTTP
request is in req and write results to the response in res:

exports.list = function(req, res){
res.send("respond with a resource");

};

3.4 Middleware as The Backbone of Express.js

Each line above the routes is a middleware:

app.use(express. favicon());
app.use(express.logger('dev'));
app.use(express.bodyParser());
app.use(express.methodOverride());

app.use(app.router);

app.use(express.static(path. join(__dirname, 'public')));

The middleware is a pass thru functions that add something useful to the request as it travels along
each of them, for example req.body or req.cookie. For more middleware writings check out Intro
to Express.js: Parameters, Error Handling and Other Middleware®.

3.5 Configuration of an Express.js App

Here is how we define configuration in a typical Express.js app:

app.set('port', process.env.PORT || 3000);
app.set('views', __dirname + '/views');
app.set('view engine', 'jade');

An ordinary settings involves a name (e.g., views) and a value (e.g., path to the folder where out
templates/views live). There is more than one way to define a certain settings, e.g, app.enable for
boolean flags.

3.6 Jade is Haml for Express.js/Node.js

Jade template engine is akin to Ruby on Rails’ Haml in the way it uses whitespace and indentation,
e.g., layout. jade:

*http://webapplog.com/intro-to-express-js-parameters-error-handling-and- other-middleware/

http://webapplog.com/intro-to-express-js-parameters-error-handling-and-other-middleware/
http://webapplog.com/intro-to-express-js-parameters-error-handling-and-other-middleware/
http://webapplog.com/intro-to-express-js-parameters-error-handling-and-other-middleware/

N O O & W N =

Express.js FUNdamentals: The Most Popular Node.js Framework 25

doctype 5
html
head
title= title
link(rel="'stylesheet', href='/stylesheets/style.css')
body
block content

Other than that, it’s possible to utilize full-blown JavaScript code inside of Jade templates.

3.7 Conclusion About The Express.js Framework

Asyou’ve seen, it’s effortless to create MVC web apps with Express.js. The framework is splendid for
REST APIs as well. If you interested in them, visit the Tutorial: Node.js and MongoDB JSON REST
API server with Mongoskin and Express.js® and Intro to Express.js: Simple REST API app with Monk
and MongoDB*.

If you want to know what are the other middlewares and configurations, check out Express.js API
docs®, Connect docs® and of course our book 4€” Express.js Guide’. For those who already familiar
with some basics of Express.js, I recommend going through ExpressWorks® a€” an automated
Express.js workshop.

3.8 ExpressWorks

After you've mastered Node.js and Express.js basics in this book, you might want to consider
working on ExpressWorks’(Figure 5-1). This is an interactive class about the Express.js framework
which is as of today is the most popular module on NPM.

*http://webapplog.com/tutorial-node-js-and-mongodb-json-rest-api-server-with-mongoskin-and-express-js/
“http://webapplog.com/intro-to-express-js-simple-rest-api-app- with-monk-and-mongodb/
*http://expressjs.com/api.html

*http://www.senchalabs.org/connect/

"http://expressjsguide.com

®http://webapplog.com/expressworks

*http://webapplog.com/expressworks

http://webapplog.com/tutorial-node-js-and-mongodb-json-rest-api-server-with-mongoskin-and-express-js/
http://webapplog.com/tutorial-node-js-and-mongodb-json-rest-api-server-with-mongoskin-and-express-js/
http://webapplog.com/intro-to-express-js-simple-rest-api-app-with-monk-and-mongodb/
http://webapplog.com/intro-to-express-js-simple-rest-api-app-with-monk-and-mongodb/
http://expressjs.com/api.html
http://expressjs.com/api.html
http://www.senchalabs.org/connect/
http://expressjsguide.com
http://webapplog.com/expressworks
http://webapplog.com/expressworks
http://webapplog.com/tutorial-node-js-and-mongodb-json-rest-api-server-with-mongoskin-and-express-js/
http://webapplog.com/intro-to-express-js-simple-rest-api-app-with-monk-and-mongodb/
http://expressjs.com/api.html
http://www.senchalabs.org/connect/
http://expressjsguide.com
http://webapplog.com/expressworks
http://webapplog.com/expressworks

Express.js FUNdamentals: The Most Popular Node.js Framework 26

Master Express.js and have fun!

HELLO WORLD! [COMPLETED]
JADE [COMPLETED]
GOOD OLD FORM [COMPLETED]
STATIC [COMPLETED]
STYLISH CSS [COMPLETED]
PARAM PAM PAM [COMPLETED]
WHAT'S IN QUERY [COMPLETED]

[COMPLETED]

Figure 5-1: ExpressWorks menu

3.9 Update

For migrating from Express.js 3.x to 4.x take a look at this guide: Migrating Express.js 3.x to 4.x:
Middleware, Route and Other Changes*°.

Share on Twitter with ClickToTweet link: http://clicktotweet.com/HDUx0, or just click:

“T've finished JavaScript and Node.js FUNdamentals: A Collection of Essential Basics
by @azat_co #nodejs https://leanpub.com/jsfun™*

http://webapplog.com/migrating-express-js-3-x-to-4-x-middleware-route-and-other-changes/
http://ctt.ec/VQCcEb

http://webapplog.com/migrating-express-js-3-x-to-4-x-middleware-route-and-other-changes/
http://webapplog.com/migrating-express-js-3-x-to-4-x-middleware-route-and-other-changes/
http://clicktotweet.com/HDUx0
http://ctt.ec/VQcEb
http://ctt.ec/VQcEb
http://webapplog.com/migrating-express-js-3-x-to-4-x-middleware-route-and-other-changes/
http://ctt.ec/VQcEb

4. About the Author

Azat Mardan: A software engineer, author and yogi.

Azat Mardan has over 12 years of experience in web, mobile and software development. With a
Bachelora€™s Degree in Informatics and a Master of Science in Information Systems Technology
degree, Azat possesses deep academic knowledge as well as extensive practical experience.

Currently, Azat works as a Software Engineer Team Lead at DocuSign', where his team rebuilds 50
million user product (DocuSign web app) using the tech stack of Node.js, Express.js, Backbone.js,
CoffeeScript, Jade, Stylus and Redis.

Recently, he worked as an engineer at the curated social media news aggregator website Storify.com?
(acquired by LiveFyre®). Before that, Azat worked as a CTO/co-founder at Gizmo* 4€” an enterprise
cloud platform for mobile marketing campaigns, and he has undertaken the prestigious 500
Startups® business accelerator program. Previously, he was developing mission-critical applications
for government agencies in Washington, DC: National Institutes of Health®, National Center for
Biotechnology Information’, Federal Deposit Insurance Corporation®, and Lockheed Martin’. Azat
is a frequent attendee at Bay Area tech meet-ups and hackathons (AngelHack'’, and was a hackathon
2012 finalist with team FashionMetric.com'?).

"http://docusign.com
*http://storify.com
*http://livefyre.com
“http://www.crunchbase.com/company/gizmo
*http://500.co/
Shttp://nih.gov
"http://ncbi.nlm.nih.gov
®http://fdic.gov
*http://lockheedmartin.com
'°http://angelhack.com
"http://fashionmetric.com

http://docusign.com
http://storify.com
http://livefyre.com
http://www.crunchbase.com/company/gizmo
http://500.co/
http://500.co/
http://nih.gov
http://ncbi.nlm.nih.gov
http://ncbi.nlm.nih.gov
http://fdic.gov
http://lockheedmartin.com
http://angelhack.com
http://fashionmetric.com
http://docusign.com
http://storify.com
http://livefyre.com
http://www.crunchbase.com/company/gizmo
http://500.co/
http://nih.gov
http://ncbi.nlm.nih.gov
http://fdic.gov
http://lockheedmartin.com
http://angelhack.com
http://fashionmetric.com

About the Author 28

In addition, Azat teaches technical classes at General Assembly'? and Hack Reactor*?, pariSOMA™
and Marakana® (acquired by Twitter) to much acclaim.

In his spare time, he writes about technology on his blog: webAppLog.com'® which is number one'’
in “express.js tutorial” Google search results. Azat is also the author of Express.js Guide'®, Rapid
Prototyping with JS* and Oh My JS*.

http://generalassemb.ly

http://hackreactor.com

"http://parisoma.com

P http://marakana.com

®http://webapplog.com
http://expressjsguide.com/assets/img/expressjs-tutorial png
Bhttp://expressjsguide.com

Phttp://rpjs.co

*°http://leanpub.com/ohmyjs

http://generalassemb.ly
http://hackreactor.com
http://parisoma.com
http://marakana.com
http://webapplog.com
http://expressjsguide.com/assets/img/expressjs-tutorial.png
http://expressjsguide.com
http://rpjs.co
http://rpjs.co
http://leanpub.com/ohmyjs
http://generalassemb.ly
http://hackreactor.com
http://parisoma.com
http://marakana.com
http://webapplog.com
http://expressjsguide.com/assets/img/expressjs-tutorial.png
http://expressjsguide.com
http://rpjs.co
http://leanpub.com/ohmyjs

5. Review

If you liked this book (or not), please leave your review on the Amazom page’.

"http://amzn.to/19qbVzn

http://amzn.to/19qbVzn
http://amzn.to/19qbVzn

6. Errata

Please help us make this book better by submitting issues via other means of communication listed
below in the Contact Us section.

7. Contact Us

Let’s be friends on the Internet!
« Tweet Node.js question on Twitter: @azat_co’
« Follow Azat on Facebook: facebook.com/profile.php?id=1640484994>

« GitHub: github.com/azat-co®

Other Ways to Reach Us

Email Azat directly: hi@azat.co*
Google Group: rpjs@googlegroups.com’ and https://groups.google.com/forum/#!forum/rpjs

Blog: webapplog.com®

HackHall’: community for hackers, hipsters and pirates
Share on Twitter with ClickToTweet link: http://clicktotweet.com/HDUx0, or just click:

“T've finished JavaScript and Node.js FUNdamentals: A Collection of Essential Basics
by @azat_co #nodejs https://leanpub.com/jsfun”

'https://twitter.com/azat_co
*https://www.facebook.com/profile.php?id=1640484994
*https://github.com/azat-co

“mailto:hi@azat.co

*mailto:rpjs@googlegroups.com
®http://webapplog.com

"http://hackhall.com

8http://ctt.ec/VQCED

https://twitter.com/azat_co
https://www.facebook.com/profile.php?id=1640484994
https://github.com/azat-co
mailto:hi@azat.co
mailto:rpjs@googlegroups.com
https://groups.google.com/forum/#!forum/rpjs
http://webapplog.com
http://hackhall.com
http://clicktotweet.com/HDUx0
http://ctt.ec/VQcEb
http://ctt.ec/VQcEb
https://twitter.com/azat_co
https://www.facebook.com/profile.php?id=1640484994
https://github.com/azat-co
mailto:hi@azat.co
mailto:rpjs@googlegroups.com
http://webapplog.com
http://hackhall.com
http://ctt.ec/VQcEb

	Table of Contents
	JavaScript FUNdamentals: The Powerful and Misunderstood Language of The Web
	Expressiveness
	Loose Typing
	Object Literal Notation
	Functions
	Arrays
	Prototypal Nature
	Conventions
	No Modules
	Immediately-Invoked Function Expressions (IIFEs)
	Keyword ``this''
	Pitfalls
	Further Learning

	Node.js FUNdamentals: JavaScript on The Server
	Read-Eval-Print Loop (a.k.a. Console) in Node.js
	Launching Node.js Scripts
	Node.js Process Information
	Accessing Global Scope in Node.js
	Exporting and Importing Modules
	Buffer is a Node.js Super Data Type
	__dirname vs. process.cwd
	Handy Utilities in Node.js
	Reading and Writing from/to The File System in Node.js
	Streaming Data in Node.js
	Installing Node.js Modules with NPM
	Hello World Server with HTTP Node.js Module
	Debugging Node.js Programs
	Taming Callbacks in Node.js
	Introduction to Node.js with Ryan Dahl
	Moving Forward with Express.js

	Express.js FUNdamentals: The Most Popular Node.js Framework
	Express.js Installation
	Express.js Command-Line Interface
	Routes in Express.js
	Middleware as The Backbone of Express.js
	Configuration of an Express.js App
	Jade is Haml for Express.js/Node.js
	Conclusion About The Express.js Framework
	ExpressWorks
	Update

	About the Author
	Review
	Errata
	Contact Us

