
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Estelle Weyl

Mobile HTML5

www.allitebooks.com

http://www.allitebooks.org

Mobile HTML5
by Estelle Weyl

Copyright © 2014 Estelle Weyl. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Simon St. Laurent and Meghan Blanchette
Production Editor: Kristen Brown
Copyeditor: Kiel Van Horn
Proofreaders: Troy Mott and Jasmine Kwityn

Indexer: Lucie Haskins
Cover Designer: Randy Comer
Interior Designer: David Futato
Illustrator: Rebecca Demarest

November 2013: First Edition

Revision History for the First Edition:

2013-11-12: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449311414 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. Mobile HTML5, the image of a Racket-tailed Drongo, and related trade dress are trademarks of
O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trade‐
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-449-31141-4

[LSI]

www.allitebooks.com

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449311414
http://www.allitebooks.org

Table of Contents

Introduction. xi
Native Applications Versus Web Applications xii
What’s New(t)? New Elements and APIs xvii
What’s New in CSS? xix
Mobile-Specific Considerations xx
Why This Book? xx
What’s in This Book xxii
Conventions Used in This Book xxiii
Using Code Examples xxiii
Safari® Books Online xxiv
How to Contact Us xxiv
Acknowledgments xxv

1. Setting the Stage to Learn Mobile HTML5, CSS3, and JavaScript APIs. 1
CubeeDoo: HTML5 Mobile Game 2
Development Tools 4

Text Editor 4
Browser 5
Debugging Tools 5
Desktop Debuggers 6
Remote Debugging 8

Testing Tools 15
Emulators and Simulators 15
Online Tools 17
Phones 18
Automated Testing 20

2. Upgrading to HTML5. 23
HTML5 Syntax 24

Elements 24

iii

www.allitebooks.com

http://www.allitebooks.org

Attributes 25
Global and Internationalization Attributes 26
HTML 4 Attributes Made Core in HTML5 29
New to HTML5: Global Accessibility and Interactive Attributes 31

HTML Element/Attribute Syntax 35
Self-Closing Elements 37
Best Practices 38
The Required Components 39
Elements Found in the <head> 44
<meta>: Adding Metadata 45
Mobile Meta Tags 47
Mobile Vendor-Specific Values 49
The <base> of Your Web Page 50
<link>s Aren’t Just for Stylesheets 51

3. Elements That Are New in HTML5. 59
Sectioning Elements in HTML5 60

<section> 61
<article> 62
<section> Versus <article> 62
<nav> 63
<aside> 64
<header> 64
<footer> 65
CubeeDoo Header and Footer 65
Not New, but Not Often Used: <address> 66
Grouping Content: Other New HTML5 Elements 66
<main> 67
<figure> and <figcaption> 67
<hr> 68
 and Attribute Changes 68

Text-Level Semantic Elements New to HTML5 68
<mark> 69
<time> 70
<rp>, <rt>, and <ruby> 71
<bdi> 72
<wbr> 72

Changed Text-Level Semantic Elements 72
<a> 72
Text-Level Element Changes from HTML 4 74
Unchanged Elements 75

Embedded Elements 76
Changes to Embedded Elements 76

iv | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Interactive Elements 78
<details> and <summary> 78
<menu> and <menuitem> 80
All of XHTML Is in HTML5, Except... 81

In Conclusion 82

4. HTML5 Web Forms. 83
Attributes of <input> (and Other Form Elements) 85

The type Attribute 85
The required Attribute 85
Minimum and Maximum Values: The min and max Attributes 86
The step Attribute 87
The placeholder Attribute 88
The pattern Attribute 89
The readonly Attribute 91
The disabled Attribute 91
The maxlength Attribute 91
The size Attribute 92
The form Attribute 92
The autocomplete Attribute 93
The autofocus Attribute 94

<input> Types and Attributes 94
Re-introduction to Input Types You Think You Know 94
Text: <input type=“text”> 95
Password: <input type=“password”> 96
Checkbox: <input type=“checkbox”> 97
Radio: <input type=“radio”> 97
Submit: <input type=“submit”> 98
Reset: <input type=“reset”> 99
File: <input type=“file”> 100
Hidden: <input type=“hidden”> 101
Image: <input type=“image”> 101
Button: <input type=“button”> 102
Styling Input Types 102

New Values for <input> Type 102
Email: <input type=“email”> 104
URL: <input type=“url”> 106
Telephone: <input type=“tel”> 107
Number: <input type=“number”> 108
Range: <input type=“range”> 111
Search: <input type=“search”> 112
Color: <input type=“color”> 112

Date and Time Input Types 113

Table of Contents | v

www.allitebooks.com

http://www.allitebooks.org

Date: <input type=“date”> 114
Datetime: <input type=“datetime”> 116
Datetime-local: <input type=“datetime-local”> 116
Month: <input type=“month”> 116
Time: <input type=“time”> 116
Week: <input type=“week”> 117

Form Validation 118
Easy UI Improvements with CSS 122

New Form Elements 123
The <datalist> Element and the list Attribute 123
The <output> element 126
<meter> 127
<progress> 128
<keygen> 129

Other Form Elements 130
The <form> element 130
<fieldset> and <legend> 130
<select>, <option>, <optgroup> 130
<textarea> 130
<button> 131
The <label> Element 131

In Conclusion 132

5. SVG, Canvas, Audio, and Video. 133
HTML5 Media APIs 133

SVG 134
Including SVG in Your Documents 136
Clown Car Technique: SVG for Responsive Foreground Images 136
Learning SVG 138
CubeeDoo SVG 139
Canvas 141
Canvas Versus SVG 146

Audio/Video 147
Media Types 147
Adding <video> to Your Website 148
Attributes of <video> and <audio> 149
Video and Audio and JavaScript 153
Styling Video 156

6. Other HTML5 APIs. 159
Offline Web Applications 159

Am I Even Connected to the Internet? 159
Application Cache 160

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Local and Session Storage 164
SQL/Database Storage 174

Enhanced User Experience 179
Geolocation 179
Web Workers 182
Microdata 184
Cross-Document Messaging 187

Accessible Rich Internet Applications (ARIA) 188
Accessibility 188

In Conclusion 191

7. Upgrading to CSS3. 193
CSS: A Definition and Syntax 194

CSS Syntax 195
Using External Stylesheets: <link> Revisited 197
Media Queries 199
CSS Best Practices 202

CSS Selectors 206
Basic Selectors 207

More CSS3 Selectors 210
General Selectors 210
Using the Selectors 211
Relational Selectors: Rules Based on Code Order 212
Attribute Selectors 216
Pseudoclasses 222
State Pseudoclasses 225
Structural Pseudoclasses 226
The Math of the nth Types 227
More Pseudoclasses 230
Pseudoelements 233

Other Selectors: Shadow DOM 236
Specificity Trumps Cascade: Understanding CSS Specificity 237

In Conclusion 238

8. Expanding Options with CSS3 Values. 239
CSS Color Values 239

Hexadecimal Values 240
rgb() Syntax 241
Adding Transparency with RGBA 242
Hue, Saturation, and Lightness: HSL() 243
CMYK 244
Named Colors 244
CurrentColor 245

Table of Contents | vii

www.allitebooks.com

http://www.allitebooks.org

Browser Color Values 245
CSS Units of Measurement 249

CSS Length Values 249
Angles, Times, and Frequencies 252
CSS Angle Measurements 252
Times 254
Frequencies 254

Avoiding TRouBLe: Shorthand Properties and Value Declarations 255
In Conclusion 257

9. CSS3: Modules, Models, and Images. 259
CSS Box Model Properties 260

border 261
border-style 262
border-color 262
border-width 263
The CSS Box Model 264
box-sizing 265

Learning CSS3 266
border-radius 268

CSS Gradients 271
Gradient Type: Linear or Radial 271
Radial Gradients 272
Linear Gradients 272
background-size 282
Stripey Gradients 285
Repeating Linear Gradients 287

Shadows 291
Text Shadow 292
Fitting Text with width, overflow, and text-overflow 294
Box Shadow 295
Putting It All Together: CubeeDoo 298

10. CSS3: Transforms, Transitions, and Animations. 303
CSS Transitions 304

The transition-property Property 306
The transition-duration Property 309
The transition-timing-function Property 309
The transition-delay Property 310
The Shorthand transition Property 311
Multiple Transitions 312

CSS3 Transforms 314
The transform-origin Property 314

viii | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

The transform Property 315
Multiple Transforms 320
Transitioning Transformations 321
3D Transform Functions 321
Other 3D Transform Properties 323
Putting It All Together 325

CSS3 Animation 328
Keyframes 329
Transitions, Animations, and Performance 336

11. CSS Features in Responsive Web Design. 339
Media Queries, Breakpoints, and Fluid Layouts 339
Multiple Columns 340
Border Images 342

Setting Border Images 344
Flexbox 349

flex 352
Feature Detection with @supports 354

Responsive Media 355
Serving Images 356
CSS Masking: Creating Transparent JPEGs 362
Client Hints 362

12. Designing Mobile Applications. 365
Considerations Before You Start 366
Design Considerations 367

Tools: Productivity Applications 368
Entertainment: Immersive Applications 369
Utility 370
What Is Right for You? 371

The Mobile Platform: Rich with Possibilities 372
Small Screen 372
Less Memory 373
One Window, One Application at a Time 375
Minimal Documentation 375
Development Considerations 376

Targeting Mobile WebKit 377
Status Bar 377
Navigation Bar 378
Startup Image 380
Home Screen Icons 381

Minimize Keyboard Entry 382
Be Succinct 382

Table of Contents | ix

Make it Obvious 382
Minimize Required Input 383
Minimize Text 383

Other User Experience Considerations 383

13. Targeting Mobile Devices and Touch. 385
Scaling Down to Size 385

@viewport 386
Touch Me 386

Touch Areas 387
Mouse Events, Touch Events 387
Pseudo or Not-So-Pseudo Click Events 390

Hardware Access 393
Phone Movement and Direction 393
Device Status 394
Native Web Apps, Packaged Apps, and Hybrids 396

Testing 397

14. Mobile Performance. 401
Battery Life 401

Use Dark Colors 402
Use JPEGs 402
Reduce JavaScript 403
Eliminate Network Requests 404
Hardware Acceleration 405

Latency 408
Reduce the Number of HTTP Requests 408
Reduce Size of Requests 412
Memory 415
Optimize Images 416

UI Responsiveness 422
Touch Events 422
Animation 423

In Conclusion 423

A. CSS Selectors and Specificity. 425

Index. 435

x | Table of Contents

1. We will be using the term “HTML5” to mean what is also called “HTML: The Living Standard.”

Introduction

We’re going to learn how to develop mobile web applications. Note the word “web.” This
book focuses on web application development for mobile devices like Android, iPod,
iPhone, BlackBerry, and tablets. This book is not about native application development
requiring the iOS or Android SDK. Nothing we will learn is operating system specific.

Mobile web applications are websites or web applications that leverage the markup of
desktop web applications with the functionality of touch-enabled devices. Web appli‐
cations, whether accessed via a phone, tablet, or laptop, are built with HTML, CSS, and
JavaScript, optionally with image, video, and audio assets and server-side technologies.

By upgrading to using newer HTML5, CSS3, and JavaScript features, we can create web
applications with the look and feel of native applications. Because mobile web apps are
web based, they are compatible with desktops, smartphones, tablets, and any other de‐
vice that has a modern browser. Because our web applications are web based, we can
distribute them directly to our users, with no need to be listed in the Apple App Store
or Google Play, with their sometimes complex, expensive, and lengthy approval pro‐
cesses.

This book will teach you what you need to know to create applications that work in a
browser using CSS3, HTML5,1 and JavaScript. This is about technologies you already
know: technologies that are portable to most devices. Everything discussed is operating
system agnostic.

In other words, what we learn will not only work on the iPhone, the iPad, and Android
devices, but also on other mobile platforms, including Firefox OS and Windows Phone,
and on modern desktop browsers and other devices that have a modern browser (such
as gaming consoles like the Wii). Yes, this book is focusing on developing for mobile,
but what you learn here is usable on a plethora of devices, big and small, as long as that
device has a browser that adheres to modern web standards.

xi

2. Apple actually censors applications. No risqué pictures. No adult violence. It appears that cute violence can
get approval, so if you want to include violence, target children?

3. You have to pay Apple an annual “developer fee” to submit your native iPhone applications to the App Store,
whether or not your application is successful or even approved.

The abilities of applications on native platforms stayed rather consistent for over 10
years, but the past several years have seen the web platform increase its ability to handle
web applications, with almost the same fidelity as native applications.

The iPhone added canvas, application cache, database, and SVG. Safari 4.0 included
those features, adding video, audio, and web workers. Later in 2009, we saw the addition
of geolocation and canvas—not just to the iPhone, but to Chrome, Opera, Firefox, In‐
ternet Explorer, and Android.

With web browsers, we’ve been able to take advantage of HTML, CSS, the DOM, SVG,
and XHR for years. In this book, we expand our horizons to include HTML5 and CSS3:
the skills needed to make web applications that are comparable to native applications,
features that are already supported in modern mobile and desktop browsers.

Native Applications Versus Web Applications
Yes, you can sell native iPhone applications in the App Store, which sounds cool. You
can sell native Android applications via Google Play, Amazon, or a plethora of other
online venues. But with web-based applications, you can bypass the app stores with their
approval2 processes,3 annual fees, and sales fees, and market directly to your consumer
base via your website and through other marketing channels. Yes, you miss the very
slim opportunity of having your application noticed among the hundreds of thousands
of applications available through the app store, but the benefits of web application versus
native application development greatly outweigh the costs.

With web applications, it is easier to build and iterate. You can make changes to your
live web application whenever you want—multiple times a day if need be.

With a native iPhone app for example, you have the 3-week+ approval process. Once
your application is approved and pushed to production, you have to wait for users to
sync and update their application. With web applications built using CSS3 and HTML5,
your changes are live basically immediately, but can also be accessible when the user is
offline—just like native applications.

If you accidentally forget to include your boss or misspell your mother’s name in the
credits of your native application, those oopsies are going to haunt you not only until
you are able to push the correction through the app store, but they’ll stick around until
the user syncs your app with an updated iTunes download. That could be a long time.

xii | Introduction

I am skilled at becoming “obsolete.” I never updated from the origi‐
nal versions of Bump, Twitterific, and Gowalla on my original iPhone.
I assume I am not the only one who has “antique” iPhone applica‐
tions. Don’t assume that your native application users update their
applications.

By using HTML5 to develop your web applications, your application can be available
offline, just like a native application. Although the native application can take weeks to
update, the web application can be forced to update itself the next time your application
is used when connected to the Internet. We’ll cover this when we discuss offline appli‐
cations in Chapter 6.

HTML5 web application development takes advantage of the HTML and CSS skills you
already know. We’re building upon your existing skills rather than asking you to learn
completely new ones. Not a different technology, not a different platform. Not a new
language that only works on one platform!

Using browser markup of HTML5 and CSS3 gives you the potential to be cross-platform
over time. Native iPhone applications work on the iPod touch and on ithe Phone, and
most likely on the iPad, but not on Windows, BlackBerry, or Android (and they never
will). Native Android applications work only on Android devices, not on iOS-based
products. Native GoogleTV applications will never work on iOS either. Et cetera. Unlike
native applications, your HTML5/CSS3 web applications can be made to work on all
WebKit, IE10, Blink, Opera Mobile (not mini), and Firefox mobile browsers. And your
web applications will work on other devices that have modern browsers that by default
support features of HTML5 and CSS3.

Web applications built with HTML5 and CSS3, for the most part, already work in
modern browsers. While not supported in Internet Explorer 8 or earlier versions, In‐
ternet Explorer 9 has support for some, but not all, of HTML5 and CSS3. Internet
Explorer 10 has come a long, long way in supporting many features in the ever-evolving
specifications.

Since the release of the iPhone SDK in 2008, most of the applications for the iPhone
have been created as native apps. Before the release of the SDK, we only had web ap‐
plications. People moved from web applications to native applications because HTML5
just wasn’t ready. Now that mobile browsers support many HTML5 APIs, we are able
to create fast, responsive, and visually appealing web applications.

One last reason: video! The iPhone, iPod, and iPad do not support Flash, and they never
will. However, all iOS devices have the Safari WebKit browser that supports the HTML5
<video> element, which we’ll discuss in Chapter 5.

Introduction | xiii

Pep Talk (or Leaving Old Internet Explorer Behind)
With the proliferation of standards-compliant and forward-thinking browsers, which
handheld devices have helped disseminate, we now have the opportunity to move the
discipline of web development forward into the twenty-first century.

While learning the lessons of this book, I want you to forget about old versions of
Internet Explorer. The Web is moving forward, and it’s moving forward fast. Have you
been holding back from learning and using CSS3 and HTML5 because of IE6, IE7, or
even IE8? These old browsers are not found on mobile devices, and their popularity on
desktop computers is dwindling. Stop holding yourself back.

Because of the continued omnipresence of legacy, non-standards-compliant browsers
—most notably, Internet Explorer 6 through 8—web developers have been held back
from developing kickass websites. Catering to the whims and quirks of IE6 and IE7
forced us to use archaic code; it prevented us from implementing, without some trep‐
idation, advanced older standards as well as not-so-new proposed standards. In this
book, we’ll learn all about technologies that we can use because we don’t have to cater
to behind-the-times browsers.

As you work through this book, take HTML5 and CSS3 as far as you can. Don’t think:
“Oh, this may not work in browser X.” Instead think: “This is awesome!” Learn the skills.
Learn the syntax. You’ll be ahead of the game when all browsers eventually support these
newer features. And, in the meantime, you’ll have learned some major skills and possibly
created a kickass web application.

The Browser Landscape
Safari, Chrome, Firefox, Opera, and IE10 (in both their desktop and mobile versions)
all support modern web standards, including HTML 4.01, XHTML, and parts of
HTML5; almost all of CSS 2.1 and most of CSS3; JavaScript, including AJAX technol‐
ogies; and DOM Level 2. Windows was a bit late to the game, but newer phones are
supporting HTML5. Did you even know anyone with a Windows mobile phone in 2010?
Not until February 2012 when I asked “Who here has a Windows phone?” in a confer‐
ence hall did someone answer “me.” Now Windows phones are becoming a little more
popular. We’re not catering to the old “Windows Mobile,” but this book does cater to
those buying the new Windows phone.

This book focuses on designing and developing websites for mobile browsers, providing
us the opportunity to use the most cutting-edge web technologies. We’ve decided that
we don’t need to think about archaic browsers (you’re with me on that one, right?).
However, I like my websites and web applications to render correctly (though not nec‐
essarily identically) on all browsers. I assume you do, too. When relevant, we’ll briefly
discuss quirks, tips, and tricks to handle the feature at hand in other common, non‐
mobile browsers.

xiv | Introduction

Web Applications Versus Native Applications: A Brief History
Within a week of the original iPhone launch in June 2007, the first iPhoneDevCamp
was held in San Francisco, CA. When the iPhone was originally released, there was no
SDK available. Therefore, all the original iPhone applications were web based.

When the iPhone first launched, the iPhone’s OS was less powerful than the newer
phones on the market today, and being on the EDGE network, downloads were painfully
slow. With these limitations, a main focus in developing applications was ensuring less
than 10 KB downloads, less than 10 KB of images, and less than 10 KB of JavaScript.

At the first iPhoneDevCamp, participants developed their own documentation, helping
each other gain the skills to develop fun (all web-based) iPhone applications. Originally,
there was no default onOrientationChange event. Instead, we added a timer to regularly
check the phone’s orientation, and switched CSS classes with JavaScript based on the
returned value.

During that first weekend after the iPhone’s launch, Joe Hewitt wrote iUI, the first Java‐
Script and CSS library for the iPhone and shared it with the developers present. He,
Nicole Lazarro, and three others created Tilt, the first iPhone game that used iPhone’s
motion-sensing capacity. Dori Smith created iPhone Bingo, a purely JavaScript iPhone
game. Richard Herrera, Ryan Christianson, Wai Seto, and I created Pickleview, a
Twitter/Major League Baseball AJAX mash-up that allows users to virtually watch any
baseball game and tweet about it. It was liberating: for the first time, I was using multiple
background images, border images, CSS3 selectors, and opacity without having to worry
about supporting a multitude of browsers, browser versions, and operating systems.

For the first nine months of the iPhone’s life, there were only web applications and
Apple-controlled native applications: there was no native iPhone app development in
the wild. Because of bandwidth limitations and a dearth of Apple developer documen‐
tation, iPhone web applications didn’t skyrocket. Because of the inability of the iPhone
WebKit Safari browser to access native iPhone OS features, web application develop‐
ment for the iPhone did not take off. Application development for the iPhone finally
skyrocketed with the release of the SDK.

Release of the SDK: Beginning of Third-Party Applications
The iPhone SDK was first released on March 6, 2008. The iPhone SDK allowed third-
party (i.e., non-Apple) developers to make applications for the iPhone (and later the
iPod touch and iPad), with availability in the App Store following in July of 2008. With
the release of the SDK, and the opening of the App Store, not to mention the ability for
developers to make money from selling their Apps in the App Store, the focus of iPhone
development quickly and wholeheartedly switched to building native iPhone
applications.

Introduction | xv

The fact that the focus of iPhone application development has been mostly on the de‐
velopment of native iPhone applications since the release of the SDK makes sense to a
great extent—but we’re going to change that! In 2008, the limitations of web-application
over native-application development discouraged focusing on web apps, as the follow‐
ing lists show:
Cons for web apps in 2008

• 10 MB file-size limit in iPhone Safari
• Lack of storage for data via web apps, and very limited cache
• Lack of support for most CSS3 and HTML5 features in not only Safari for the

iPhone, but all browsers

Pros for native apps in 2008
• Ease of development using XCode
• Ability to sell applications in the App Store

In 2013, however, the tables have turned. The arguments for developing web apps versus
native apps has caught up, if not surpassed, the arguments against, as the following lists
show:
Pros for web apps in 2013

• Easier to build and iterate (developers can push multiple times a day, providing
for quick iteration)

• Uses existing skills in HTML and CSS (building upon skills rather than re‐
quiring developers to master completely different ones)

• Same technology, same platform
• Potential to be cross-platform

Cons for native iPhone apps in 2013
• 3-week+ approval process for distributing in the App Store
• Risk of censorship of content and noninclusion by application stores
• $99+ annual Apple Developer membership fee, plus 30% sales fee
• Long waits to push code changes to production, as well as for users to sync and

update their application (with HTML5, your changes are live immediately)

xvi | Introduction

4. HTML5 has become an umbrella term. HTML5 is just a component of the HTML5 “umbrella.” Bruce Lawson
has suggested the term NEWT for this large umbrella, for “New Exciting Web Technologies.” I would have
thought that term silly, but I loved the newt mascot.

5. Opera Mini does not have good HTML5 support, and never will. It is a different type of browser—a proxy
browser—intentionally having limited features in favor of lower bandwidth usage. Opera Mini requests web
pages through Opera’s servers, which process and compress them before sending them to the mobile phone,
dramatically reducing the amount of data transferred. The preprocessing increases compatibility with web
pages not designed for mobile phones, but limits the interactivity and features of the site.

What’s New(t)? New Elements and APIs
HTML54 has been in the works for many years, since efforts began in 2004 on what was
originally called Web Applications 1.0. While not finalized, some parts are fairly com‐
plete and already supported—oftentimes fully supported—by modern browsers.
Modern, or A-grade, browsers include Safari, Chrome, Internet Explorer 10+, Firefox,
and Opera. IE8 and older is not in this list. IE9 has some HTML5 support, but is a
browser that is holding back the Web. So, while not all browsers provide support for
HTML5, it is supported by all WebKit/Blink browsers, Opera Mobile,5 Firefox OS, and
the new Windows phones. It is finally time to start playing with HTML5.

HTML5 is an umbrella term describing the new web API standards, some of which are
in the HTML5 specification (e.g., drag-and-drop), and some that aren’t (e.g., geoloca‐
tion).

With HTML5 and the associated APIs, we are no longer limited to native applications.
Between the specification for HTML5 and those of the associated APIs, we could kill a
tree if we wanted to print it all. I won’t describe all of the features in this book, but I will
cover some of the more useful ones you can implement today, such as the subjects
covered in the following sections.

Semantic Grouping Tags
HTML5 provides new tags used for defining logical groups of tags or sections in your
markup. Grouping semantically, instead of using the nonsemantic <div> and
elements to define headers, footers, navigation, etc., assists search engines in defining
your site structure. We’ll cover the new grouping elements in Chapter 3.

Web Forms
There are millions of forms on the Web, and millions of scripts for each of those forms
to validate emails, create pop-up calendars, ensure required elements are filled in before
submission, and clear out the placeholder text when a form element receives focus. With
HTML5, you may no longer need to validate forms with JavaScript! Form elements have
been updated in HTML5 with new features and methods for defining data types.

Introduction | xvii

In Chapter 4, we’ll look at some of these revamped form elements, learning how to create
native sliders, placeholder text, and calendar date pickers, plus validating email ad‐
dresses, ensuring all required fields are entered, and displaying custom keyboards based
on input type—all without JavaScript!

SVG and Canvas
With HTML5, images no longer have to be embedded objects. HTML5 adds both <svg>
and <canvas> as native HTML elements, which are enhanced with CSS and accessible
via the DOM. By adding either element, the browser provides a blank canvas in which
you can “draw” programmatically. We will cover <svg> and <canvas> in Chapter 5.

Video and Audio
To date, all browser video and audio have required plug-ins. With HTML5, we now
have native browser support for video and audio. And they’re scriptable! HTML5
browsers natively support webM and mp4 formats. With the DOM, you can control video
and audio, including muting, forwarding, and stopping. With CSS, you can style the
players. While iOS devices may never support Flash or Silverlight, all mobile browsers
support HTML5 video and audio. We will learn about <video> and <audio> in Chap‐
ter 5.

Geolocation API
Geolocation is not part of the HTML5 specifications, but rather an associated API, and
a very useful module at that. Geolocation is the identification of the geographic location
of mobile and desktop devices. The geolocation API is covered in Chapter 6.

Offline Content and Storage
Stating the obvious: phones are mobile devices. Internet service goes in and out (espe‐
cially for those of us bound to use AT&T). The HTML5 application cache, local storage,
and database APIs enable the use and enjoyment of web applications even when AT&T
drops you. The APIs that enable your applications to work offline are discussed in
Chapter 6.

Other APIs
In Chapter 6, we will also briefly cover microdata, ARIA, and web workers. Though it
has no visual or functional effect on your web pages or web application, microdata is a
method by which you can add machine-readable semantics to your content to feed the
search engine spiders. ARIA, or Accessible Rich Internet Applications, has no visual
impact on your content either, but enables better accessibility by providing attributes
that explain the role and function of hijacked elements (elements that are used to convey

xviii | Introduction

www.allitebooks.com

http://www.allitebooks.org

information that is not the default usage of the element). We also briefly cover web
workers, which enable you to use additional JavaScript threads to run intensive Java‐
Script without impeding the UI thread. Chapter 6 is indeed an exciting chapter!

What’s New in CSS?
CSS3 provides us with some new great features. CSS3 selectors, described in Chap‐
ter 7, provide us with a method of targeting just about every element on the page without
adding a single class, including media queries to enable responsive web development.
RGBA and HSLA are new alpha-transparent color values, which are discussed in Chap‐
ter 8, along with other value types. For designers and prototypers, Chapters 9 and 10
will likely be the most exciting chapters of the book, covering new and not-so-new CSS3
features, including:

• Multiple backgrounds
• Transitions
• Transforms
• 3D transforms
• Gradients
• background-size

• border-image

• border-radius

• box-shadow

• text-shadow

• opacity

• animation

• columns

• text-overflow

Web Fonts
Web fonts allow you to use font faces other than the traditional half dozen web-safe
fonts. Different browsers have different implementations, including different support
for iPhone versus desktop. While all smartphone browsers support @font-face, it is a
sans-serif font—Helvetica, Roboto, or whatever the default operating system font is—
that should be the font of choice when developing for mobile. I can’t encourage requiring
mobile users to download huge font files. I do encourage using smaller icon fonts in
Chapter 11, but web fonts are not largely covered in this book. If you are interested in

Introduction | xix

learning more about web fonts for desktop, there is a link in the online chapter resources
to a tutorial I wrote. These resources are available at http://www.standardista.com/
mobile, and contain links to external resources, code examples, and all the links refer‐
enced in this book.

Mobile-Specific Considerations
With desktop browsers, most people navigate a stationary Web with a mouse and a
keyboard. On phones and tablets, we often navigate the Web with our fingers, rotating,
shaking, touching, and tapping the device, but we don’t—and can’t—click anything.
Even the skinniest, scrawniest of users still has “fat fingers” compared to the precision
possible with a mouse. And, with relatively small screens and often with smaller user
attention spans, there are different considerations when it comes to the user interface
and the limited space for including content.

Mobile tablets are often used at home on WiFi, or other wireless access points. Mobile
phones can use these same access points, but generally access the Web via inconsistent
and limited shared services. They also have smaller screens, so not much room for
developer toolbars, or bandwidth for ginormous JavaScript libraries and images.

Chapter 11 covers responsive web development features. Chapter 12 covers design
considerations. We cover mobile and touch screen unique-event handlers in Chap‐
ter 13. Mobile performance, debugging, and device limitations are covered in Chap‐
ter 14.

Why This Book?
As web developers, we’ve been stuck in the past. We’ve been catering to a browser that
is over 12 years old. When you don’t have to worry about cross-browser compatibility,
and you don’t have to live within the constraints of CSS2, development gets exciting.
Mobile devices ship with advanced browsers that implement cutting-edge technology.
Use that technology!

Mobile has opened up this exciting new world. WebKit with HTML5 support is on
Android tablets, iPhones, OpenMoko, BlackBerry phones, and more. In addition to
BlackBerry, Android, and iOS devices, WebKit is the engine for the Bolt, Dolphin,
Ozone, and Skyfire browsers. Firefox, Opera, and IE are also found on cell phones, and
the advanced Presto-based Opera browser is still found on a multitude of non-
“computer” devices. Opera and Chrome are porting to Blink. Soon, everyone will have
a fully fledged web browser on their phone, on their TV, in their car, and even in their
refrigerators.

xx | Introduction

http://www.standardista.com/mobile
http://www.standardista.com/mobile

Screen Size
Right now, on the desktop, we may feel held back by Internet Explorer’s lack of support
for new and upcoming standards. With the proliferation of standards-compliant
browsers and the dwindling use of older versions of Internet Explorer, we’ll soon be
able to rely on CSS3 everywhere. Moving to mobile, we can think past CSS2 constraints.
However, we have new issues to deal with: real estate constraints! One size does not fit
all. The mobile browser is, obviously, smaller than the desktop browser.

For some sites, you can have a one-size-fits-all approach, but most HTML files and CSS
documents do not fit all browser sizes.

Depending on the complexity of the content and design, you may want to serve up
different HTML and different CSS depending on the medium.

Sometimes you may just be able to temporarily hide certain content. At other times,
you’ll want to serve a smaller header and smaller images. You may also want to have a
multicolumn layout on a wide screen, and a single column layout on the phone. You
will want to alter appearances based on device size: for example, a three-column layout
is easiest to read on the desktop. Placing those columns vertically on top of the other
makes more sense in the mobile arena.

Mobile web design is all about keeping it simple. You can only fit so much in the small
area that the phone provides. Scrolling is only for longer articles, not for home or nav‐
igational pages.

You may want to provide separate markup for the mobile version of your website. But
you don’t have to. And unless you’re creating a real web application rather than a simple
website, you really shouldn’t.

User Goals
Internet access on mobile devices used to be thought of as something only for people
on the go. Yes, some mobile browser users are simply quickly looking for access to
specific information. They may be checking their online grocery list, looking up the
ingredients for a casserole, or trying to find the best Italian restaurant within a five-
minute walk.

While perhaps that user is not currently interested in the corporate structure of the food
supplier, it doesn’t mean that when they are interested in locating that information that
they won’t try to do so from the same mobile device. While we may perform such in-
depth research on a desktop computer, more and more users are only accessing the
Internet with their mobile devices.

Perhaps your average mobile user will just want to get an address, a phone number, or
a status update on the go, and will not want to delete, reorganize, edit, or research stuff
on her iPhone. But she might. The mobile device may be her only computer. So while

Introduction | xxi

you should make sure the most necessary information is easily accessible, you do want
to ensure your users can perform all tasks that can be done on a widescreen monitor in
the mobile space if needed.

You also have to think about usability. Touch screen devices use fingers instead of mice
as input devices. Fingers are fatter than cursors. For touch screen devices, action targets
need to be large and have padding. We discuss suggested user interface changes for
touch devices in Chapter 13.

Nonpresentational images should be removed from mobile device markup: images are
generally optimized for the desktop not the mobile device; they take up space that should
be reserved for content when real estate is scarce, and bandwidth can be very slow and
very expensive. Yes, include content images if the images are contextual, but use (or
omit) background images for images that are decorative in nature.

What’s in This Book
In Chapter 1, we’ll get our development environments set up and discuss the examples
used throughout this book.

Chapters Chapter 2–6 discuss what is new in HTML5. We discuss best practices in
coding semantic markup that is compatible with all modern browsers, both in the desk‐
top and mobile spaces. We cover the new HTML5 semantic elements, Web Forms 2.0,
and several of the HTML5 APIs and related APIs, like geolocation. We’ll touch on SVG,
canvas, web forms, video, audio, AppCache and database, and web workers.

Chapters 7–11 introduce everything that is up and coming in CSS3, from new color
types, to shadows, to border images, to rounded corners, to animation—you will have
all the tools you need to create beautiful web applications for both mobile and modern
desktop browsers, with responsive web design features highlighted in Chapter 11.

In Chapters 12–14, we focus on the mobile platform, including touch events, user ex‐
perience design, and mobile performance considerations. Lessons covered will ensure
site performance, user experience, and reliability of web pages on all platforms.

Yes, our goal is to develop kickass websites for mobile. The first step to creating a great
website for a mobile device is to create a great website! While you should be developing
your website in the desktop browser for ease of development, you should design and
develop with mobile always in mind. Then, with minimal modifications, your site will
look great and perform well on most, if not all, platforms. Our goal is to develop web
applications that work on the phone, by creating web applications that work on all
modern browsers.

xxii | Introduction

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
The chapter resources are available at http://www.standardista.com/mobile. There you
can find links to external resources, code examples, and all the links referenced in this
book.

This book is here to help you get your job done. In general, when example code is offered
with this book, you may use it in your programs and documentation. You do not need
to contact us for permission unless you’re reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex‐
ample code from this book into your product’s documentation does require permission.

Introduction | xxiii

http://www.standardista.com/mobile

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Mobile HTML5 by Estelle Weyl (O’Reilly).
Copyright 2014 Estelle Weyl, 978-1-449-31141-4.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online (www.safaribooksonline.com) is an on-
demand digital library that delivers expert content in both book and
video form from the world’s leading authors in technology and busi‐
ness.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/mobilehtml5_1e.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

xxiv | Introduction

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/mobilehtml5_1e
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Thank you to Bruce Lawson, Adam Lichtenstein, Jennifer Hanen, Tim Kadlec, Jeff Bur‐
toft, Tomomi Imura, and Justin Lowery.

Bruce Lawson coauthored the first book on HTML5, Introducing HTML5 (New Riders).
He’s one of the founders of HTML5Doctor.com, and was a member of W3C’s Mobile
Web Best Practices Working Group. He evangelizes open web standards for Opera, the
oldest browser manufacturer, whose mobile, desktop, TV, and embedded browsers are
used by 300 million people across the world (see www.opera.com). Follow Bruce on
Twitter at @brucel, or www.brucelawson.co.uk.

Justin Lowery created the look for CubeeDoo. He is a UX architect at his company,
Cerebral Interactive, which specializes in the design and development of web and mobile
applications. He’s been a graphic/print designer since 2001 and a web developer since
2006. He’s also an informatics nurse (RN), which lends well to his current focus on
revolutionizing information technology for health care education. Follow Justin at
@cerebralideas, or www.cix.io.

Adam Lichtenstein is a frontend developer and a OOCSS/Sass junkie. He is the creator
of FormFace, which focuses on semantic building and styling of HTML5 forms. He is
currently the frontend developer and designer at Wufoo and authoring his first book
on frontend development. When not coding or writing about coding, his main hobby
is thinking about coding. Follow him at @seethroughtrees, or http://seethrough
trees.github.io.

Jenifer Hanen is a mobile designer, developer, and photographer with a passion to make
everyone fall as deeply in love with mobile as she is. Ms. Hanen developed her first
public website for a friend’s band in 1996 and has had a mobile and web consultancy
since 2000, as well as stints as an adjunct web design and art history professor. Follow
her at @msjen, or http://blackphoebe.com/msjen.

Tomomi Imura is an open web advocate and frontend engineer with mobile focus who
has been active in the mobile space since before it was cool. She has been developing
mobile web, platform UI/UX, and frameworks at Yahoo! Mobile and webOS at Palm
before joining Nokia, to work with the W3C and evangelize HTML5. Follow her at
@girlie_mac, or http://girliemac.com.

Introduction | xxv

http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://html5doctor.com
http://www.opera.com
http://twitter.com/brucel
http://www.brucelawson.co.uk
http://twitter.com/cerebralideas
http://www.cix.io
http://seethroughtrees.github.io
http://www.wufoo.com/
http://twitter.com/seethroughtrees
http://seethroughtrees.github.io
http://seethroughtrees.github.io
http://twitter.com/msjen
http://blackphoebe.com/msjen
http://twitter.com/girlie_mac
http://girliemac.com

Jeff Burtoft is an HTML5 Evangelist for Microsoft and an avid supporter of the Java‐
Script/HTML5 community. Mr. Burtoft is a huge proponent of web standards, and loves
all programming languages, as long as they are JavaScript. Additionally, he is coauthor
of HTML5 Hacks (O’Reilly Media) and a founding blogger of html5hacks.com. He lives
in South Texas with his wife and three kids. Follow him on Twitter at @boyofgreen.

xxvi | Introduction

http://shop.oreilly.com/product/0636920026273.do
http://html5hacks.com
http://twitter.com/boyofgreen

1. IE6 was cutting edge when it was released in 2001. With an almost monopoly on browser market share, there
was little competition, and it was never updated.

CHAPTER 1

Setting the Stage to Learn Mobile HTML5,
CSS3, and JavaScript APIs

If you’re anything like me, you’ve hated older versions of Internet Explorer for years.
Those browsers were full of fail. However, they failed the same way everywhere for their
entire life spans.1 We all knew IE6 sucked, but it sucked in the same way. Once we figured
out how to polyfill for IE6, we had it figured out.

In the mobile landscape, we also have failure, but we have failure in newer, more diverse,
ever-changing ways. Different browser versions on different devices may support many
new features, but may do so in different ways. Or, they may support a feature, but that
feature may not be usable. For example, a modern device may or may not support
localStorage. The devices that support localStorage may or may not allow you to write
to it. Even if the browser allows you to read from localStorage, reading from it may take
a long time and hinder performance. And, even if the browser generally allows you to
write to it, localStorage itself may have reached the storage limit.

We can’t cover all the quirks in all the browsers for all operating systems and devices
here. Even if I knew all of the quirks (and I don’t), the quirks could fill a tome, and said
tome would be outdated before I finished writing it. This book is, in fact, out of date.
The landscape is ever changing. There is no way to produce a book that is up to date
because by the time it goes to print—or even by the time you finish a chapter—the
landscape has changed. While some of the browsers, features, phones, and sites men‐
tioned may already be obsolete, the best practices brought forth in this book should be
relevant for the next few years. A guiding principle for this book: if you use best practices
and code to standards, your code will work in current devices and all future devices.

1

I included browser support for features, but not lack of support for browser features, as
it is expected that all browsers will move forward in the right direction. What is a quirk
in a browser today may be resolved tomorrow.

For these reasons, when using a feature, you do need to both feature detect and you
need to test to ensure you can successfully use the supported feature.

This book is using device-, OS-, and browser-agnostic markup and no JavaScript libra‐
ries. I’ve gone library free, coding in vanilla JavaScript, to ensure that you learn actual
code. By coding in vanilla JavaScript, I’ve hopefully removed any confusion there may
be as to whether a method is native or a framework method.

This doesn’t mean you shouldn’t use libraries. On the contrary! Open source libraries
are some of the best places to find out about browser quirks. Open source projects have
hundreds, sometimes thousands, of contributors. These contributors provide for thou‐
sands of eyes developing and testing on a multitude of devices, finding the quirks, re‐
porting the quirks, and checking in fixes to the libraries to handle the quirks or provide
workarounds and polyfills. These thousands of eyes are also reporting bugs, alerting
browser vendors as to what is not working to standards so that these bugs can be fixed
in future browser releases.

Popular open source libraries and HTML5 JavaScript API polyfills are the best resources
for quickly discovering various browser quirks and solutions. They should be consid‐
ered an important part of your development tool chest. Even if you don’t use them, do
read the source code to learn about the mobile browser bugs others have discovered.

The best way to learn HTML5, CSS3, and the associated JavaScript APIs as you read
about them is to code. Let’s code.

CubeeDoo: HTML5 Mobile Game
The way I learned HTML5 and CSS3 was to mark up a web application for a single
mobile browser and push it to its limits. My first foray into CSS3 was a Twitter/Major
League Baseball web application mash-up called Pickleview, written the weekend the
iPhone first came out in 2007. At the time, Safari for the iPhone was the most advanced
browser on the market (except for maybe Opera). By programming it for a single
browser, I didn’t have to worry about IE6, IE7, or Firefox 2 (Chrome didn’t exist yet).
Back in 2007, that was the state of the Web.

In 2010, I redid the exercise of coding with the most modern HTML5 and CSS3 in a
single browser. A few friends and I created a memory game with animations, storage,
offline capabilities, and every new feature that could be found in Chrome 12 on a desktop
that wasn’t in Safari 3.1 for mobile. By using a single browser and leveraging all of the
new technology I could, I was able to learn to code newer HTML5, CSS3, and JavaScript
modules that weren’t yet usable in production because of the need to support legacy

2 | Chapter 1: Setting the Stage to Learn Mobile HTML5, CSS3, and JavaScript APIs

www.allitebooks.com

http://www.allitebooks.org

browsers. By 2010, some browsers had come a long way since 2007. Others (IE, I am
looking at you here), not so much.

In 2013, most browsers support HTML5 and CSS3. As developers, we are being held
back by having to support older desktop browsers, namely Internet Explorer 9 and
earlier. On mobile, we have our own “IE6.” We are held back by feature phones and by
smartphones running Android 2.3 to some extent. But even feature phone browsers
and Android 2.3 both support many modern features.

To learn to code HTML5, CSS3, and the associated JavaScript APIs, temporarily forget
about older browsers. Together we’ll learn what is possible with these newer technolo‐
gies. I’ve put the majority of the features that have broad support in modern browsers
into the code examples in this book.

CubeeDoo, as shown in Figure 1-1, is a completely frontend-coded memory game. I’ll
be using code examples from this game, along with a native iPhone settings application
replica (as seen in Figure 9-3) throughout the book. The game is marked up with
HTML5 elements. Some of the themes include matching icons created with generated
content. CSS transforms, transitions, and animations, along with gradients, rounded
corners, and other CSS features are used to create the look and feel of the game. The
game also includes SVG, JSON, the deprecated but mobile-supported webSQL, local‐
Storage, sessionStorage, data attributes, HTML5 forms, audio, media queries, and data
URIs.

Figure 1-1. Screenshot of CubeeDoo memory game

CubeeDoo: HTML5 Mobile Game | 3

The code in this book uses no frameworks of any kind. As mentioned earlier, everything
is handcoded in vanilla JavaScript, HTML5, and CSS. The goal is to teach you the actual
APIs, not polyfills. In production, you will likely want to use polyfills, but to smartly
use polyfills, you need to understand what the polyfills do. This book teaches you that.

This book covers CSS3, HTML5, and the associated APIs. The focus is learning the
technologies in a mobile landscape. We live in a mobile world, but there is no “mobile
web.” There is simply the Web. But if you focus on the desktop only, the version of the
Web you create may not work for the increasing population that only accesses the Web
via mobile devices. And, if you only focus on desktop, you’ll only concern yourself with
the lowest common denominator of older Internet Explorer versions.

Never push to production an application that only works in a single browser. However,
to learn technologies that are nascent, ignoring “older” browsers can provide you the
opportunity to learn, to challenge yourself, to think outside the box, and to get to the
top of your game. Take what you learn in this book and, using a single browser, code to
the limits of what the browser can do. Experiment. You’ll fall in love with web devel‐
opment all over again.

All you need is a browser, an IDE, and some time.

Development Tools
Before starting to develop your first mobile web application, you’ll want to set up your
development environment with the best “tools of the trade.” Good news! You already
have these tools.

All you need to follow along with this book is a computer with a text editor and browser.
You don’t even need a phone, though having a mobile device will be hugely helpful.

Text Editor
You should be developing in a plain-text editor or integrated development environ‐
ment (IDE). An IDE is software that generally includes a text editor, debugger, and any
other features or plug-ins, such as a file transfer protocol (FTP), that you may need to
get the job done. People have their preferred IDEs. Pick whatever suits you. My pref‐
erence is Sublime Text, but you can use TextMate, Dreamweaver, Eclipse, WebStorm,
or whatever makes you happy. While you only need a plain-text editor, you’ll discover
that using an IDE can help you organize and streamline your development process. I
recommend selecting an IDE and becoming best friends with it. IDEs can be hugely
powerful tools that make developing pleasant—almost a dream.

4 | Chapter 1: Setting the Stage to Learn Mobile HTML5, CSS3, and JavaScript APIs

2. Blink is a fork of WebKit’s WebCore component made at revision 147503. It is the browser engine in Chrome
since version 28, Opera starting with version 15, and other Chromium-based browsers going forward.

Browser
You also need a browser. I prefer developing in Chrome Canary, which is the beta version
of Google Chrome. I prefer this browser because of the debugger. All modern browsers
have debuggers, but the Chrome debugger is one of the best, and the Canary debugger
provides me insight and access to all the new bells and whistles before they even enter
into a browser release.

If you don’t have an Apple computer, you won’t easily be able to develop native iPhone,
iPad, or iPod touch applications. If you don’t have Windows 8, it would be hard to
develop what are formally known as Metro-style applications. No worries! For what we
are learning, all you need is a modern browser. The operating system or the device does
not matter. You can test all the examples in this book on Windows, Unix, Android
phones and tablets, and Macs—you name it.

Your IDE and desktop browser will be your main tool for mobile web development.
Your mobile application is previewed and debugged in your desktop browser through‐
out the development process. There are features that your desktop browser will not
succeed at emulating, including mobile rendering accuracy, JavaScript performance,
memory and bandwidth limits, and API availability. However, these differences can be
overcome with other tools and by testing directly on real or virtual devices.

While you will enjoy developing in your favorite browser, you should have in your
toolkit multiple browsers available for testing. You will want access to Internet Explorer
for easier testing of the Windows Phone environment. Safari or Google Chrome will
enable you to test Android, Bada, Blackberry, and iOS. You’ll also want Firefox for Gecko
devices. Opera is currently needed for testing all the devices that run the Presto ren‐
dering engine, but as Opera Mobile 14 is Chromium-based, and the most recent Opera
and Chrome are on Blink,2 the browsers you need for development need to be updated
to match the landscape you are developing in.

If you haven’t done so already, download Safari if you’re on a Mac, or the latest Internet
Explorer if you’re on Windows. Download Chrome, Firefox, and Opera on your device
as well, even if you’re on Unix. You can also download Chrome Canary, Aurora, Opera
Next, and WebKit Nightly builds to test in the next releases of the major browsers. These
are the current desktop browsers at the time of this writing, but the landscape is ever
changing.

Debugging Tools
Browsers come with development tools. Developer tools are built-in browser tools that
allow you to inspect and debug your source code. Using the tools, you can manipulate

Development Tools | 5

3. Firefox comes with web developer tools, but most developers use Firebug, a Firefox add-on.

the Document Object Model (DOM), edit and debug JavaScript code, edit and debug
CSS, analyze resource requests, and audit the performance of web content and web
applications on live content.

Developer tools are generally hidden because most users, other than developers, don’t
utilize these browser features. Mobile browsers often have some debugging capabilities
in the device browser. These limited debugging tools are usually available via the device
settings interface. Though device-level debugging may be available, it is much easier to
debug applications in the much more robust tools you access on your desktop.

Desktop Debuggers
If you’ve been developing websites for any amount of time, you’re likely familiar with
Firebug,3 F12, Web Inspector, and/or DragonFly. Firebug is a Mozilla extension. F12,
Web Inspector, and DragonFly ship with Internet Explorer, Chrome/Safari, and Opera,
respectively. These developer tools all allow the debugging, editing, and monitoring of
a website’s CSS, HTML, DOM, and JavaScript, and enable you to analyze features like
HTTP requests, local storage, and memory consumption.

Firebug is available from getFirebug.com. Safari’s developer tools can be found under
the Develop menu, but has to be made available via Preferences→Advanced, by checking
“Show develop menu in menu bar.” In Chrome, you can open the developer tools via
View→Developer→Developer Tools.

You can also open Chrome, Safari, Firebug, and Opera debuggers using Command-
Option-I or Control-I. F12 and Firebug can also be opened by clicking F12. These tools
are the browsers’ best tool for debugging CSS, JavaScript, and HTML.

You will want to become familiar with the Web Inspector, Error Console, and User Agent
switcher. These debuggers allow you to inspect a web page’s CSS, HTML, JavaScript,
DOM, and headers. Whether you use Web Inspector, Firebug, DragonFly, F12, Devel‐
oper Tools, or some combination of these, get to know your debugging tools. Your
debugger will become your other best friend.

Likely you have several years of experience using browser-debugging tools for desktop
applications, so we won’t dive deeply into them here. However, even if you’ve been using
them for five years, chances are you’re just scraping the surface of debugger awesome‐
ness. I encourage you to dive deeper on your own, exploring every millimeter with a
click and a right-click. We cover the developer tools Timeline tab in Chapter 14.
Mobile viewport

To mimic the mobile viewport, you can simply resize the desktop browser window to
the size of the mobile viewport you want to test. The desktop browser viewport is the

6 | Chapter 1: Setting the Stage to Learn Mobile HTML5, CSS3, and JavaScript APIs

http://getFirebug.com

browser window. In mobile, the viewport is what you see, but not necessarily what is
painted to the screen, but resizing the window should be close enough for most of the
testing you’ll need to do.

When you resize your browser manually, you can get random sizes. In the Overrides
panel of the Settings window, as shown in Figure 1-2, Chrome Developer Tools provides
several preset device sizes. Access the Web Inspector settings window by clicking the
gear in the bottom right of Developer Tools.

Figure 1-2. Chrome Developer Tools Settings Overrides panel

When you select a device from the User Agent select menu, Chrome switches the user
agent to the selected device user agent, and creates a viewport within the browser

Development Tools | 7

window that is the size of the selected device. This provides you with a browser viewport
that is the same size as the viewport of the selected device.

If your device is not listed, simply enter the device width and height in the two input
boxes under device metrics. You can toggle between landscape and portrait mode di‐
mensions by clicking on the toggle button to the right of the device metrics. Check out
ScreenQueri.es to preview exact device screen sizes. You can also enable touch-event
emulation, or use thumbs.js as a TouchEvent polyfill.

The Chrome Developer Tools also enable you to override geolocation to emulate a
specific longitude and latitude, and, even if your laptop has a gyroscope, you can emulate
a specific device orientation.

After you’ve developed the first stage of your application with your desktop browser,
you will want to test it on a mobile device. The main hurdle with testing on a mobile
device is that you will not have access to the powerful inspectors that you have grown
accustomed to on your desktop. This is why remote web inspectors are awesome.

Remote Debugging
There are tools to remotely debug your mobile browser via your desktop browser. Re‐
mote debuggers enable your desktop browser to communicate with external devices to
remotely execute and capture code. Just like regular debugging, you can use these remote
debuggers to inspect your HTML and CSS, manipulate your DOM and make live edits,
and debug your scripts.

The Opera browser engine is being replaced. While I don’t know what the future brings,
Opera has supported remote debugging of the Opera mobile browser through the Opera
desktop Dragonfly debugger since 2008. It has allowed remotely inspecting HTML and
CSS, updating the DOM, adding breakpoints, and anything else that could be done with
Dragonfly on the desktop.

WebKit began supporting remote debugging via the USB port with Android 4 and iOS
6. To use Chrome to remotely debug, you start Chrome via the command line with a
flag, instead of via its icon:

chrome.exe --remote-debugging-port=9222 --user-data-dir=remote-profile

or
/Applications/Chromium.app/Contents/MacOS/Chromium --remote-debugging-port=9222

To debug the Firefox mobile browser, add the Debug API, formerly the Crossfire ex‐
tension, to Firebug.

Of course, the current state is always changing and improving. Keep up to date with
Remote Debugging Protocol of the Browser Testing and Tools Working Group if this
is a discussion you’re passionate about.

8 | Chapter 1: Setting the Stage to Learn Mobile HTML5, CSS3, and JavaScript APIs

http://beta.screenqueri.es/
http://www.w3.org/2011/08/browser-testing-charter.html

Android debugging tools

The Android SDK includes the API libraries and developer tools necessary to build,
test, and debug apps for Android. You can debug web applications directly from your
devices or from emulators the SDK enables you to create, as seen in Figure 1-3.

Figure 1-3. Android 4.2.2 emulator running on OS X

Downloading the SDK at http://developer.android.com/sdk/ will provide you with the
Android Debug Bridge (ADB), debugging, console monitoring, and emulator creating
and launching capabilities.

In the downloaded assets, find the tool folder and open android to access adb. The
ADB provides various device-management capabilities, including moving and syncing
files to the emulator, running a UNIX shell on the device or emulator, and providing a
general means to communicate with connected emulators and devices.

Development Tools | 9

http://developer.android.com/sdk/

If you prefer, the ADB plug-in is a Chrome extension that runs an ADB daemon and
enables remote debugging for mobile without needing to download the SDK.

In the same tools folder, open Monitor to access the Android Debug Monitor. The
monitor contains a console by which you can debug your applications, including view‐
ing any console.log()s you may have included in your site. The devices being de‐
bugged are listed in the device panel on the left in Figure 1-4, and the console log is at
the bottom.

Figure 1-4. The Android Debug Monitor

When the Monitor is open, under the Window menu you’ll find the Android Virtual
Device Manager, as shown in Figure 1-5. Via this window you can create new emulator
testing devices and launch them, as shown in Figure 1-3.

10 | Chapter 1: Setting the Stage to Learn Mobile HTML5, CSS3, and JavaScript APIs

https://github.com/repenaxa/ADBPlugin

Figure 1-5. The Android Virtual Device Manager provides for the creation of emulators
of a limited number of selectable devices, or an unlimited number of independently de‐
fined configurations

weinre

Weinre, short for web inspector remote, is a powerful remote debugger that lets you
inspect and debug JavaScript, HTML, and CSS. Weinre is part of the PhoneGap project;
you can use it locally or hosted at debug.phonegap.com. Weinre is also the basis of Adobe
Edge Inspect, described in the section on page 13.

Development Tools | 11

http://debug.phonegap.com

4. Originally, it was Java based. Before WebSockets, it leveraged CORS, JSON, and XHR.

Weinre is a remote debugger that enables you to connect your current mobile browser
window with a stripped-down version of the remote WebKit inspector. Weinre now
leverages Node.js and WebSockets.4

At the time of this writing, it is a pared-down debugger. With weinre, we’re provided
with a live view of the DOM and access to the JavaScript console, but no breakpoints
or stack traces are available. The JavaScript console does list errors as you would expect,
so debugging is more difficult, but doable.
Using weinre

Weinre can be installed via Java or JavaScript. To install with JavaScript, download and
install Node.js, which includes npm, the node package manager. At the command line,
enter:

npm -g install weinre

to install weinre. You can now start weinre at the command line by typing:
weinre

By default, the weinre server will run at localhost:8080 until stopped with Control-
C, the computer is rebooted, or the server is otherwise killed.

To be able to debug, add a weinre script to the application with:
<script src="http://localhost:8080/target/target-script-min.js#anonymous">
</script>

In any WebKit browser on the desktop, you can open http://localhost:8080/client/
#anonymous to access the debugger. The inspector will display in the full browser win‐
dow looking very similar to the Chrome Developer Tools, but with limited functionality
and fewer tabs.

In the Remote tab, you’ll find a list of the current mobile browser windows available for
debugging that are running on the same network as your weinre script. The Elements,
Resources, Network, Timeline, and Console tabs, as shown in Figure 1-6, are similar to
those of the desktop web inspector. You may note that Sources, Profiles, and Audit tabs
are missing from this stripped-down debugger (though these may be added back in the
future).

12 | Chapter 1: Setting the Stage to Learn Mobile HTML5, CSS3, and JavaScript APIs

www.allitebooks.com

http://www.allitebooks.org

Figure 1-6. Weinre debugger

Adobe Edge Inspect and Ghostlab

To simplify the design debugging process, virtually automating the preceding steps for
you, Adobe Edge Inspect enables you to debug in a manner similar to weinre, on which
it is based. It does this by obfuscating the tasks of starting the server, entering the URL
in the browser, and adding scripts to your markup.

You install Adobe Edge Inspect on all of your remote devices and as a Chrome browser
extension on your desktop. With both the testing device and the desktop on the same
network, you can create a connection with the device.

Opening Edge in your mobile device will provide you with a passcode to the device to
be entered into the desktop Edge browser extension. Turn on Edge in your desktop
browser by first opening up the application and signing into Adobe.

Once you’ve signed in, click on the Edge browser extension icon, as shown in
Figure 1-7, which tells the browser to look for devices on the network. When it finds
your device, add the passcode from the device into the Edge window.

The passcode ensures that you are giving permission to your computer and mobile
device to communicate with each other, preventing other unwanted computers from
controlling your device and your computer from controlling other people’s phones.

Once a connection between your computer and one or many devices is made, you can
control which page is loaded in all of your mobile browsers at once. The currently open
tab in Chrome will be retrieved and displayed on the mobile device(s) connected via
Edge Inspect.

Development Tools | 13

Figure 1-7. Adobe Edge Inspect connecting a Nexus 7 and Google Chrome for
debugging

To debug a web page from a device, navigate to the page you want to debug in Chrome
or on the device. When you click on the Chrome extension Adobe Edge Inspect menu,
click the < > next to the device you want to debug. Weinre will start on your local
machine, and the device and web page title will be listed as an active link under the
Remote tab in weinre, which is the leftmost tab displayed in Figure 1-6.

The free version of Adobe Edge Inspect only allows for interacting with a single device
at a time. The monthly subscription allows you to control all of your devices at the same
time. It also helps in taking screenshots.

If you are on a Mac and want to test multiple devices, Ghostlab enables you to similarly
test multiple devices. If you’re thinking of purchasing either, Ghostlab’s one-time fee
may save you money over Adobe Edge’s monthly subscription.
JavaScript debugging with Aardwolf

If debugging JavaScript is your main concern, you can try Aardwolf. Aardwolf is a
remote JavaScript debugger with which you can execute and capture JavaScript. Aard‐
wolf works by rewriting your code on the server and adding debugging hooks. Similar
to weinre with a Node.js backend, it uses synchronous XHR calls to enable breaking on
breakpoints. You can use Aardwolf to remotely step through your code, with support
for watching objects, breakpoints, and call stacks.
BlackBerry 10 Debugger

While weinre is awesome, the debugger that comes with Blackberry 10 is more powerful.

Like weinre, the BlackBerry Browser uses a client-server architecture to make Web
Inspector functionality available. Unlike with weinre, in this case, the BlackBerry
Browser acts as a web server, and serves the web page over HTTP over a USB or WiFi

14 | Chapter 1: Setting the Stage to Learn Mobile HTML5, CSS3, and JavaScript APIs

http://vanamco.com/ghostlab/

connection. You inspect the content remotely on a desktop browser. You can use any
WebKit-based desktop browser on the same WiFi network to navigate to the IP address
and port number used by the BlackBerry Browser and begin inspecting the code.

To use the inspector, you must enable debugging under BlackBerry Browser options.
Once Web Inspector is enabled, the browser or application displays the IP address and
port number it will use to serve the content.

To enable the Web Inspector on BlackBerry 10, from the browser application, swipe
down from the top bezel to display the browser’s menu bar. Click the settings icon and
then Developer Tools to turn the Web Inspector on. If you’re using the tablet, this can
be found under Options→Privacy & Security instead. The browser displays the IP ad‐
dress and the port number required to connect from your desktop browser. If prompted,
type your device password to complete the enabling process. Click Back to save and
return to the browser window. You can now open a connection to the BlackBerry
Browser to remotely inspect displaying pages.

Testing Tools
It is best to run your sites on actual devices, but it is impossible to test on all devices as
there are thousands of devices, with new ones coming out all the time. It is therefore
suggested that you test on a representative group of devices, covering different config‐
urations of operating systems, browsers, device sizes, and device capabilities, such as
different screen resolutions, memory constraints, and bandwidth access.

It can be expensive and time consuming to test on real devices. In addition to the de‐
bugging tools covered in the previous section, there are several tools to help us achieve
maximum testing abilities.

Emulators and Simulators
An emulator is software that duplicates or emulates the functions of a mobile device (or
devices) on a computer, so that the emulated behavior closely resembles the behavior
of the actual device. This focus on exact reproduction of behavior is the difference
between emulating and simulating. In simulation, an abstract model of the mobile op‐
erating system is simulated.

Emulators allow mobile software to be used on your desktop, enabling you to run and
debug your code without having all the devices. Even if you are testing in emulators and
simulators, you still can’t test in emulators of all the devices. Emulators and simulators
simply get you started and quicken the development and debugging process. You should
still test on an array of different mobile devices.

When you run your website in a simulator, you are running it in a simulation application
on your desktop. Some simulators are for individual devices, and others allow you to

Testing Tools | 15

choose what device you want to emulate. For example, the iOS Simulator allows you to
choose iPhone or iPad. Via menus, you can change the orientation between portrait and
landscape. There are virtual buttons to represent the buttons of the device. And, on
nontouch devices, you can use your mouse to mimic touch events.

The simulator does not exactly replicate device hardware and there’s no guarantee your
application will work identically on the actual device. There are certain libraries that
will compile and link fine when targeting the simulator (because it is really running on
the desktop), but then will not compile when you target the device.

Simulators and emulators generally include a full SDK for testing native applications in
a faux native environment. To test our code, we want emulators and simulators that
contain a browser, which each emulator and simulator does. You will likely want to
download and test your website in the browsers of the following emulators and simu‐
lators:
Android Emulator

The free Android emulator for Windows, Mac OS, and Linux is available in con‐
junction with the SDK from http://developer.android.com. As described in “Android
debugging tools” on page 9, download the base SDK, then each Android OS sepa‐
rately. The download provides an Android terminal command in Mac/Linux and
an SDK Setup.exe application for Windows.

The Android emulator enables you to limit memory for the virtual device to better
simulate the phone. In the Android Virtual Device Manager, select the device and
click Edit (shown in Figure 1-5). On the hardware, click New and select Device
RAM size from the Property drop-down menu.

iOS Simulator
Only available for Mac OS X, the iOS Simulator offers a free simulation environment
including Mobile Safari. Be warned that the iPhone SDK is about 2 GB, so it will
take a long time to download.

This is a simulator, not an emulator. There are no hardware emulation or perfor‐
mance indicators. It looks to see how your code is working and how your website
is rendering, but it generally fails to measure website performance.

If you simply want to see what your design looks like, with no emulation or simu‐
lation, there are many tools like iPhoney and iPadPeek that simply open your web‐
site in a browser that looks like an older device model.

BlackBerry Simulator
BlackBerry simulators for the Windows operating system include the proxy server,
plug-ins for Eclipse and Visual Studio for web developers, and the simulators.

16 | Chapter 1: Setting the Stage to Learn Mobile HTML5, CSS3, and JavaScript APIs

http://developer.android.com
http://developer.apple.com/iphone
http://www.marketcircle.com/iphoney/
http://ipadpeek.com/
http://blackberry.com/developers

Windows Phone Emulator
The Windows Phone Emulator is only available on Windows-based computers.
Windows Phone Emulator is a desktop application that emulates a Windows Phone
device. You can download the Windows Phone SDK at http://dev.window
sphone.com/en-us/downloadsdk. The current release and information about instal‐
lation can be found at http://bit.ly/16t5utu.

Currently, the default emulator image in Visual Studio is Emulator WVGA 512 MB,
which emulates a memory-constrained Windows Phone 8 phone.

Firefox OS Simulator
The Firefox OS Simulator add-on for the Firefox browser is the emulator for Firefox
OS, providing a Firefox OS–like environment that looks and feels like a mobile
phone. Once installed, go to Web Developer→Firefox OS Simulator in your Firefox
desktop browser.

Opera Mobile Emulator
The Opera Mobile Emulator for Windows, Mac, and Linux can be downloaded at
www.opera.com/developer/tools.

Opera Mini Simulator
A full Opera Mini application of the current version of Opera Mini as a Java applet
is available at www.opera.com/mini/demo.

These are the most prevalent mobile operating systems. Most mobile operating systems,
like Symbian and WebOS, have SDKs you can load onto your desktop, enabling you to
simulate their environment. Depending on your target market, you should test all of
the operating systems your target audience is likely to use. For more emulators, visit
http://www.mobilexweb.com/emulators.

Online Tools
To quickly assess your device’s vital statistics that impact the basic media queries, open
up http://www.quirksmode.org/m/tests/widthtest.html in your device’s browser.

The W3C mobileOK Checker checks your website for best practices, and provides in‐
formation and links to help make your site more mobile device friendly. mobiReady is
an online tool leveraging the W3C mobileOK Checker, displaying the results in a way
that is more likely to convince you to take action to make your site more mobile friendly.

Useful for mobile web development, HTTP testing, and privacy, the Modify Headers
add-on for Firefox enables you to modify—add, replace, and filter—HTTP request
headers sent to web servers. Links to these resources (and all other resources listed in
this book) are in the online chapter resources.

Testing Tools | 17

http://dev.windowsphone.com/en-us/downloadsdk
http://dev.windowsphone.com/en-us/downloadsdk
http://bit.ly/16t5utu
https://addons.mozilla.org/en-US/firefox/addon/firefox-os-simulator/
http://www.opera.com/developer/tools
http://www.opera.com/mini/demo
http://www.mobilexweb.com/emulators
http://www.quirksmode.org/m/tests/widthtest.html
http://validator.w3.org/mobile/
http://mobiready.com
http://mzl.la/17bqALt
http://mzl.la/17bqALt
http://www.standardista.com/mobile

5. http://bit.ly/HaW2PV and http://bit.ly/1diKHLb.

Phones
Testing on actual devices is an essential step of the development process, but buying a
bunch of mobile devices can be quite an investment. Resizing browsers and using em‐
ulators won’t replicate actual site performance, device capabilities, pixel density, and the
impact of the mobile network.

If you are creating native applications, you obviously need to get devices with the op‐
erating systems you’re developing for. In this book, we are developing with HTML5,
CSS3, and JavaScript, not native, so our code will work in browsers on all devices. Al‐
though we’re developing for the browser, we do need to test in many devices, including
some on phone carrier networks. Always test your code in the real devices with real-
world connections, including WiFi hotspots, 3G, 4G, and even EDGE. Take a bus or
train ride and try accessing your application from various points while moving in the
city and in the suburban and rural areas between bigger cities.
Browser labs

Testing on real mobile devices is a part of the development process that can’t be omitted.
There are many browser labs, so try to find one near you. If there aren’t any device labs,
get together with others to create one.

If you prefer to have your own device lab, you need devices of different sizes, operating
systems, abilities, and browsers. You can create your own device lab with a cross-section
of the mobile landscape fairly inexpensively. It is impossible to purchase every device,
but you should try to get a sample of different sizes, browsers, and operating systems.

There are also virtual device labs such as DeviceAnywhere, and Nokia Remote Access.
These are real devices that you can access remotely. As these are actual devices, if some‐
body is using one, you need to wait in the queue.
iOS

In North America, iOS devices account for only 5% of Internet traffic overall, with over
50% of mobile traffic.5 If you don’t already have an iOS device in your household, and
your application is not solely targeted at impoverished populations in underdeveloped
countries, invest in one.

Acquire a device with the latest iOS operating system, and one with an older version of
the operating system. You can acquire an older device on Craigslist or eBay for little
money. Currently, only 1.8% of iOS users, or 0.13% of Internet users, are on iOS 4.3 or
earlier, and 12.5% of iOS users, or 0.93% of Internet users, are on iOS 5.

18 | Chapter 1: Setting the Stage to Learn Mobile HTML5, CSS3, and JavaScript APIs

http://bit.ly/HaW2PV
http://bit.ly/1diKHLb

6. http://developer.android.com/about/dashboards/index.html.

When acquiring a device, you need the browser to work. That’s it. If budget is an issue,
cracked-screen devices can be acquired for next to nothing. One device should be a
phone. The other can be a phone, iPad, or iPod touch.

Once you’ve acquired your iOS device(s), download Opera Mini, which is available for
free through iTunes.

If all your iOS devices have high-resolution displays, make sure some of your other
devices do not. Also, make sure that not all of your devices are phones—include a tablet
or two.
Android

Android is the most popular and diverse mobile operating system worldwide. Android
runs on a plethora of devices, including phones and tablets. Acquire at least two (pref‐
erably more) Android devices: a highly capable smartphone with a recent operating
system and a bargain phone running an older version. At the time of this writing, al‐
though it’s already archaic, Android 2.3 is still being sold in stores on cheap/free devices,
and is currently the most popular version of Android, with 34% of the Android market,
totaling 2.3% of global Internet users.6

In addition to multiple Android OS versions, get devices of different sizes, processing
power, resolutions, and makers. On your Android device, you can add other browsers,
including Chrome, Opera Mini and Mobile, Firefox Mobile, and Dolphin Mini and HD.
Windows

If you are going to invest in a Windows device, invest in the most recent operating
system. The Windows Phone 7 was never hugely popular, but the Windows Phone 8
has the potential to be. Both have the Metro UI interface. In addition to testing your
application to make sure your markup works, actually play with the Windows phone.
The user interaction of the device is quite different from Android and iOS. You may
realize that you will want to adjust some UI interactions to better match the default
behaviors developed by using the Windows device.
BlackBerry

The BlackBerry 10 device has the best debugger of any mobile device, but definitely not
the largest user base.

There are more of the older BlackBerry devices on the market than the BlackBerry 10.
BlackBerry users of both new and older devices surf the Web. I recommend getting a
BB6 or BB7. Fortunately, older phones are inexpensive and it is good to have a nontouch
device to test your websites on.

Testing Tools | 19

http://developer.android.com/about/dashboards/index.html

Prior to BB6, the browser was not WebKit based. There are fewer users of these really,
really old devices. If your target market is likely to be on a BB5 or less, a third BlackBerry
device may be in order.
Nokia

By Nokia, I mean the Symbian OS, not the Lumia Windows Phone.

Symbian, Series 40, Samsung, and to a lesser extent Sony Mobile and Motorola, are more
common than Android, iOS, BlackBerry, and Windows in some countries. If I suggest
a particular device, by the time this goes to print, my suggestion will be outdated. Just
realize that internationally, Nokia is a huge player in the mobile market with massive
reach. I recommend getting a feature phone that has D-pad input and a small screen so
that you can get a sense of what a large percent of the world will see when accessing
your site.
Kindle

Don’t forget about the Kindle Fire with its WebKit-based Silk browser.
WebOS

WebOS has ceased being made, but is still being used. The Palm Pre or Pixi can be
acquired for less than $30.

Automated Testing
The testing tools just listed help you test visually and manually. To really test properly,
you have to rotate, zoom, pan, click, and scream in frustration. For appearance, you
need to actually look at the rendered page in different device sizes, browsers, and op‐
erating systems. For static content, that may suffice, and tools like Adobe Edge can help.

For web applications, you likely need to automate testing. You need to continuously test
your application to make sure the code actually works, testing all your events and results.
There are several testing libraries for JavaScript.

Jasmine is a behavior-driven development framework. PhantomJS is a headless WebKit,
not a testing library, with native support for various web standards, including DOM
handling, CSS Selectors, and JSON. You can download a pre-built binary for any OS at
the PhantomJS website.

To leverage PhantomJS for automated, frontend tests, download CasperJS. To fake AJAX
calls, you can use Sinon.JS. Each site provides well-written documentation to get you
up and running with these libraries for testing in WebKit. It doesn’t solve the testing on
mobile issue.

There are online testing tools. Some, like SauceLabs, enable you to test against hundreds
of mobile and desktop browser/OS platforms.

20 | Chapter 1: Setting the Stage to Learn Mobile HTML5, CSS3, and JavaScript APIs

http://pivotal.github.io/jasmine/
http://phantomjs.org
http://casperjs.org/
http://sinonjs.org/
http://saucelabs.com

Pick what is right for you and your application—but always test.

Now let’s start coding so we have something to test.

Testing Tools | 21

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2

Upgrading to HTML5

HTML takes a few hours to learn and years of experience and discussion to master. Yes,
most software engineers, designers, and even large numbers of high school students
claim to know HTML, but they likely know only a few elements, and likely use those
few elements incorrectly.

In this chapter, we’re going to cover many of the sectioning elements of HTML5. By the
time you’re done reading this chapter, you should have a very good understanding of
the semantics of HTML5. I can’t teach you everything about HTML in three chapters.
Truthfully, I am still learning HTML—and not just because HTML5 is still an unfinished
spec. With the specifications being incomplete, there will likely still be several changes.
But don’t worry about that either. Likely, what has been implemented in browsers will
stay the same with just some nuanced differences.

I hope that in addition to learning about the various elements, their attributes, their
semantic meaning, and their purpose, you take from this an awareness that you know
less about HTML than you thought: the more you learn about HTML, the more you
realize how much more there is to learn.

We’re going to cover elements, briefly. While a chapter could be written about each
element, we do have a lot of ground to cover in a few not-so-short chapters. We’ll cover
enough for you to know how to use each element, and for you to at least know what you
don’t know.

The first thing to know is that there is no space in the term HTML5: it is HTML5, not
HTML 5.

You see? You’ve learned something! You’re already ahead of the game. Let’s dive in.

23

1. See http://www.w3.org/TR/html5-diff/ for changed elements and attributes, as well as obsolete elements and
attributes.

HTML5 Syntax
HTML5 is very similar to HTML 4 and XHTML. Most of the elements supported in
both are still supported in HTML5. Only deprecated tags and attributes have been re‐
moved. For the most part, if your document validated as HTML 4 Strict or XHTML,
your document will be valid HTML5.1 The syntaxes of HTML and XHTML are slightly
different, but both are supported. Simply change your HTML 4.01 or XHTML doctype
to <!DOCTYPE html> and it will validate as HTML5 (more on doctype later).

HTML5 improves upon HTML 4 and XHTML, encompassing the elements of previous
versions, removing deprecated elements, adding some new elements, and redefining or
fine-tuning yet other elements.

The authors of the HTML5 specifications looked into what developers were already
doing on the Web: what document sections all sites tended toward, what classes and
IDs they gave those components, what scripts most site authors reiterated, and which
library features had proliferated to ubiquity.

HTML5 attempts to handle what individual developers have been doing on their own:
creating a standard, detailing how browsers are supposed to handle these standards,
and how browsers should handle developer markup when their code is, um, less than
standard. The HTML5 specifications detail precisely how browsers are supposed to
handle, or interpret, every instance of correct and incorrect code. Through this attention
to minutiae, one of the goals of HTML5 is to inform browsers how to handle every
possible scenario, so browsers construct identical DOMs from the same markup, and
so that developers don’t continue to waste bandwidth dealing with browser differences.

Personally, I would like to see stricter standards. My view is that instead of browsers
leniently interpreting bad code, developers should code correctly. You’re reading this,
so I assume you’re in the “good code” camp. Good! That’s what you’re going to learn.

Elements
A web page is made up of a series of elements. Some elements are empty, other elements
contain text, while others contain other elements (or both elements and text). Most
elements can contain child elements or text nodes. Those that can’t contain children,
such as images and meta elements, are called empty elements.

24 | Chapter 2: Upgrading to HTML5

http://www.w3.org/TR/html5-diff/

As shown in Figure 2-1, an element is a construct consisting of an opening tag, some
optional (and occasionally required) attributes, usually some content, a closing tag, and,
if you’re coding XHTML style, an optional forward slash to self-close the tag for empty
elements such as or <input>.

Figure 2-1. The components that make up an element

In prior versions of HTML, inline elements could only contain other inline elements
and text. Depending on the element, block-level elements could contain other block-
level elements, inline elements, and/or text. Their descendant elements, like the ancestor
elements, are also made up of elements, attributes, and text.

With CSS, you can alter the appearance of any phrase element to dis‐
play as a block, and force a block or sectioning element to appear inline.
(Note that I am using inline still. In HTML5, inline refers to presen‐
tation, not to element type.)

In HTML5, we’ve said good riddance to the notion of inline versus block elements—
naming conventions based on presentation. In HTML5, elements are defined as sec‐
tioning, heading, phrase, embedded, flow, metadata, and interactive elements. Seman‐
tically, however, some of the ideas remain the same. For example, sectioning elements
should not be located inside of phrase elements.

When choosing an element, choose the most appropriate element
based on semantics, not based on default browser rendering. While
you really can use any element for any stylistic purpose, you shouldn’t.
Each element has semantic meaning.

Attributes
All elements can have attributes. Some elements have required attributes. An example
of an attribute is the href attribute of the <a> element, as shown in Figure 2-1. Attributes

HTML5 Syntax | 25

2. Boolean attributes are attributes that are either true if set or false if not. XHTML examples include
readonly="readonly", checked="checked", and disabled="disabled", which in HTML5 can (and
should) be written as readonly, checked, or disabled, respectively.

are typically name/value pairs, with the value optional for Boolean attributes.2 Attributes
provide additional information to the rendering engine about the element, and are
found in the opening element tag and not in the closing tag.

There are several attributes that are global to almost all HTML elements—including the
core, or global, attributes and the internationalization attributes (covered in the next
section)—and others that are more element-specific, which will be described in Chap‐
ter 3 when we cover the elements that they are modifying.

Global and Internationalization Attributes
HTML5 has added several internationalization and core attributes that can be applied
to almost any element. The id, class, title, style, lang, and dir attributes continue
to be supported on all elements. HTML5 adds accesskey, hidden, and tabindex, along
with five proposed interactive attributes, contenteditable, contextmenu, spell
check, draggable, and dropzone, to the list of core attributes. The attributes are dis‐
cussed next.

In addition to the global attributes, all elements can also have microdata attributes,
WIA-ARIA roles and aria- attributes, and custom data attributes, which are your own
attributes that are written as data-*, where * is your own creation. The data- prefix
was added to HTML5 to allow developers to create attributes that won’t conflict with
future versions of HTML. data-* attributes are described in the section on page 33.
Microdata and ARIA accessibility attributes are described in Chapter 6.
id

The id attribute is a unique identifier. No two elements should have the same id in a
single document, and each element can only have up to a single id. In HTML5, id values
must be at least one character long and contain no spaces. This differs from previous
versions when the value of the id had to begin with a letter in the range A–Z or a–z and
could be followed by letters (A–Za–z), digits (0–9), hyphens (-), underscores (_), colons
(:), and periods (.).

I recommend limiting your IDs to letters and digits only, but
whichever naming convention you choose to use, the important
thing is to be consistent.

26 | Chapter 2: Upgrading to HTML5

The id attribute is generally optional. However, it is required for internal page anchoring
and inside form elements when implementing explicit labels. Explicit labels are associ‐
ated with form elements via the label’s for attribute and the form element’s id attribute.
Note that the id attribute is not necessary on form elements nested within an implicit
label. Labels and the id attribute are discussed in Chapter 4.

The id attribute is also helpful, though perhaps used a little too heavily, as an anchor
for targeting with JavaScript. The id attribute, if included, can be used in CSS to target
elements. However, due to the high value, or specificity, of the id in the CSS cascade,
even though id selectors perform a tinge better, id values should be sparsely used in
CSS selectors. We’ll discuss all of that in Chapter 6. Suffice it to say that by the time you
finish this book, you’ll understand that you can target any element on a page with CSS3
selectors without the use of id selectors.
class

A class is a name of a classification, or list of names of classifications, to which the
element belongs. The class attribute specifies the element to be a member of one or
more classes. Unlike the id attribute, any number of elements can share the same class
or classes. An element may have multiple, space-separated classes.

In terms of the CSS cascade, the order of class names within the class attribute doesn’t
matter. The order in the stylesheet, however, does matter (this too will be discussed in
Chapter 6):

link text

title

The title attribute provides a human-readable description for any element to which
it is applied. The title attribute is often implemented as a “tooltip” on some visual
browsers, but other browsers, especially mobile browsers, don’t display the title at‐
tribute. While screen readers can be set to support the title attribute, most screen
readers do not read the title attribute value as a default setting, so the title attribute
cannot be relied upon for improving accessibility.

There are some elements for which the title attribute is required, such
as <abbr>, for which the value of the title attribute expands the
shortened term. Otherwise, the title attribute is generally optional.

While the title attribute is useful as an attribute for links, images, frames, and multi‐
media elements, it can come in handy as a method of providing small bits of hidden
information that can be displayed based on user interaction. For example, it is possible
to extract the content of the title attribute with CSS and create generated content for

HTML5 Syntax | 27

“tooltip” pop-ups by including the title value as generated content on a ::before
or ::after pseudoelement.

While values of the title attribute can be used for nifty tricks for progressive enhance‐
ment, due to the inaccessible nature of such a trick, it should not be relied upon for
providing important information. And, because the user can access it, only use title
if the content of the title is useful and appropriate. If you are adding content to the
title attribute to enable your analytics or add codes for use by your JavaScript, don’t!
Crafty abuses of the rel and title attributes are no longer necessary (and never were
appropriate) with the addition of the custom data attributes, described in the section
on page 33.

style

The style attribute allows you to specify style rules inline for a single occurrence of an
element. This attribute can come in handy for quick prototyping. Other than proto‐
typing, there should never be a need to use this attribute, as web standards dictate to
separate content from presentation!

An additional note: when using an inspector to look at code in tools such as Web In‐
spector for Safari or Chrome, Firebug for Firefox, Dragonfly for Opera, or F12 in IE,
styles that are added with JavaScript, or through the debugger interface, will appear
inline as the value of the style attribute. This is dynamically generated. The browser
may do it. You shouldn’t!
lang

The lang attribute is one of the two global internationalization attributes (dir being the
other). The primary language of a web page is set using the lang attribute on the
<html> element, by using the Content-Language HTTP header, or the http-
equiv="language" attribute. Used for internationalization or defining nondefault
language sections of content, the lang attribute specifies the language of an element’s
attribute values and its content, including all contained elements that do not specify
their own lang attribute.

The lang attribute enables search engines to index content by its language, and allows
screen readers to use international pronunciation rules.

The lang attribute enables styling of text depending on language. The <q> element is
supposed to render the appropriate quotation mark for the language defined in the lang
attribute, but this is not well supported.
dir

Often used in conjunction with the lang attribute, the dir attribute can be used to
change the direction of text when writing Arabic, Hebrew, or other right-to-left lan‐
guages. The default value of the dir attribute is ltr (left to right). If your web page is

28 | Chapter 2: Upgrading to HTML5

primarily in one of those right-to-left languages, set the primary direction using the dir
attribute on the <html> element.

Within the body of the page, if you have content that is in a direction other than the
default of the page, you can change the direction of the text with the dir attribute. While
not explicitly required, I recommend including the title and lang attributes whenever
you include the dir attribute on an element. Generally, the dir attribute is used for
changing parts of your text to right-to-left languages. Including the lang attribute is
necessary to inform search engines, screen readers, and other assistive technologies that
the language has changed. The title attribute provides a way for you to include a
translation of the content in the main language of your website. These attributes provide
ways of making your web content accessible not only to those with disabilities, but also
to your main “visually impaired” user: Google!

Note that dir is slightly different in HTML5, which has introduced a third value:
auto. Possible values of the dir attribute include rtl, ltr, and auto.

HTML 4 Attributes Made Core in HTML5
The preceding attributes were global, or core, attributes in previous versions of
(X)HTML, and continue to be. There are also two accessibility attributes supported on
interactive elements that are now global attributes in HTML5. These are covered in the
following sections.
tabindex

The tabindex attribute was included in prior specifications on interactive elements such
as links and form elements, allowing the developer to set the sequence by which these
element types receive focus. HTML5 has expanded the role of tabindex to include any
HTML element.

Many people use mice to navigate through a website, clicking on links and form elements
to engage the interactive elements. Others navigate through the page using a keyboard;
clicking the Tab key and moving the focus from one interactive element to the next. On
nontouch phones, users will navigate through focusable elements in four directions with
the navigational or directional pad (D-pad, for short). On smartphones, most users
generally touch the links they want to follow or the form elements they want to enter.
Once they’ve finished entering data into a form element, many dynamic keyboards
provide for a Next button to forward to the next form element. By default, only links
and form fields receive focus through this method. The sequence of the current element
to the element receiving focus via the right button on the navigation pad, the Next
button, or the Tab key is the order of the form elements in the source code, unless the
native sequence has been usurped by the tabindex attribute.

In HTML5, the global nature of the tabindex attribute adds focusability to all elements—
not just form elements and links. The attribute takes as its value an integer. As the user

HTML5 Syntax | 29

tabs, the elements with the tabindex attribute will receive focus in sequential order
based on the value of the tabindex attribute’s numeric value—for tabindexes that have
a positive value.

Don’t use tabindex with positive values unless you are able to provide tabindex values
to every interactive element on the page plus have good reason to rearrange the order,
plus be certain that you will be able to maintain the correct order through the life of the
application. Instead, mark up the page in the correct order. The default tab order is the
same as the source order. Rearranging the tab order of a page can be very confusing to
the user, and can lead to very bad user experiences. It’s best to lay out the page in an
order that makes sense, and never use the tabindex attribute. Using the default tab (and
therefore source) generally creates the best user experience.

So, if you’re not supposed to change the order of the page, why has tabindex become a
global variable? The tabindex attribute has become global to enable programmatic
focus on all elements, including noninteractive elements, generally via JavaScript
and/or keyboard focus.

Since we don’t want to actually change the tab or keyboard focus order from the source
order of the page, the only values of tabindex should be 0 or −1. The value of
tabindex="-1" (any negative value works, but −1 is the convention) can be used for
programmatic focus and tabindex="0" for accessibility reasons only, if you want to
provide keyboard access to an element other than a link or form element without
changing the order of the page.

You may be wondering what tabindex has to do with the mobile realm,
where you don’t generally tab to navigate. Note that when you fill out
a form element, the displayed keyboard on some devices includes a
Next button at the top. Also, just like you want to enable focus via
JavaScript on the desktop, you may want to do so on the phone. And,
just like on the desktop, not all users have a pointing device. Many
visually impaired people use smartphones, especially the iPhone in the
United States. In that way, tabindex helps with accessibilty.

accesskey

The accesskey is similar to the tabindex, except instead of navigating the page by
tabbing through to the element with the next higher tabindex value in sequential order,
the focus moves directly to the element for which the activated access key has been set.
Think of it as a keyboard shortcut.

The accesskey attribute’s value creates keyboard shortcuts. For example, <input ac
cesskey="s" name="search" type="text"/> creates a search input box with an

30 | Chapter 2: Upgrading to HTML5

accesskey of s. When the user presses on the letter “s,” the focus moves to the search
input.

The value of the accesskey attribute is one or more characters separated by a space.
Generally, it’s just one character, but the specifications allow for more than one keyboard
shortcut for an element. The syntax for the value of accesskey is similar to the class
attribute in that the value of this attribute is an ordered set of space-separated tokens.
However, here the order matters; tokens beyond the first are considered fallbacks for
user agents that can’t support the initial values.

While tabindex and accesskey were originally highly regarded as possible solutions
for accessibility concerns, they aren’t the accessibility solution that everyone had hoped
for. As mentioned previously, tabindex can create a bad user experience by altering the
expected sequence of the focus of the page. Similarly, accesskey can interfere with
default behaviors and shortcuts set in the client’s browser.

As of yet, I have found no use for the accesskey on smartphones, but because we’re
learning HTML5, I’ve included it here. The accesskey used to be helpful before the
advent of smartphones, when navigating websites on tiny old mobile device browsers
was a chore.

New to HTML5: Global Accessibility and Interactive Attributes
HTML5 includes several new attributes, including some new global attributes, which
are included in this section. We’ll cover some of the new element-specific attributes and
values when we discuss the elements to which they relate in the next two chapters.
hidden

When included, the hidden attribute indicates that the element is not yet, or is no longer,
relevant. Supporting browsers do not display elements with the hidden attribute, in‐
cluding display:none; in the user-agent stylesheet. It is best not to use this attribute
simply to hide elements from the user since it has semantic meaning: it indicates that
the content encompassed in this hidden attribute is either outdated or otherwise not
relevant.
contenteditable

The contenteditable attribute indicates whether an element is editable or not. When
included, user changes to your content are not saved, but they do change the DOM, so
you can capture the changes and send them back to the server to be saved. The
contenteditable attribute is supported in all of the desktop browsers and all mobile
devices except Opera Mini, with support starting in Android 3.0 and iOS 5.

When an element has the contenteditable attribute set, the dynamic keyboards on
touch devices should pop open to enable editing.

HTML5 Syntax | 31

contextmenu

The contextmenu enables the linkage of the element with a <menu> that provides more
context to that element or <command>. It takes as its value the value of the id of the
<menu> you want associated with it. This attribute has yet to be supported in any browser
other than experimentally in Chrome, so the <menu> and <command> elements are not
part of this book.
draggable

The draggable attribute indicates whether an element is draggable or not. You may
have noticed that you can drag images in most desktop browsers, but you can’t drop
them. This is the default draggable behavior in action. For the draggable attribute to
be useful, it should be used in conjunction with JavaScript event handlers such as
dragstart, drag, dragenter, dragleave, dragover, drop, and dragend. Mobile brows‐
ers, other than IE10, don’t support drag-and-drop, so the API is not covered in this
book.
dropzone

It’s one thing to drag an element, but what do you do after dragging it? HTML5 provides
us with a dropzone attribute that specifies what types of content can be dropped on an
element. You can move, copy, or create a link to the originally dragged content using
the move, copy, and link attribute values, respectively. Since drag-and-drop is not well
supported on mobile browsers, we won’t be discussing it further in this book.
spellcheck

The spellcheck attribute indicates whether an element is to have its spelling and gram‐
mar checked or not. By default, most smartphones and tablets autocorrect text areas as
you type, but not always well—there are several sites making fun of some of the
“corrections.” While they don’t support the spellcheck attribute, they do support
autocorrect.

Interestingly, although the default behavior of iOS is to autocorrect text, if the autocor
rect attribute is added to an input of type text, it actually does not spell check; it will
autocorrect only if the attribute is not included.
ARIA accessibility attributes

HTML5 supports the Accessible Rich Internet Applications (ARIA) accessibility mod‐
ule attributes of role and aria-*. ARIA is a separate module, and not part of the HTML5
specifications. With live regions, roles, and ARIA states and properties, WAI-ARIA can
help improve the accessibility of dynamically updating content and hijacked elements.

When interacting with rich Internet applications, the user visiting with a screen reader
may be having one part of the page read aloud while another part of the page is dy‐
namically updated. ARIA live regions can help indicate to the user that a part of the
page—a part that doesn’t currently have focus—has updated. With the arialive values

32 | Chapter 2: Upgrading to HTML5

www.allitebooks.com

http://www.allitebooks.org

of assertive, polite, or the default off, ARIA provides a way for the site author to
interrupt the screen reader to inform the user that part of the page has been updated.
Associated attributes include aria-atomic, aria-busy and aria-relevant.

The ARIA role attribute enables the creation of a semantic structure on repurposed
elements—for example, elements repurposed into a grid, listbox, menu, menubar,
tablist, toolbar, tree, or treegrid can be identified as such—making seemingly
nonsemantic markup accessible, usable, and interoperable with assistive technologies.
While full support of the new HTML5 elements (see Chapter 3) by screen readers may
make some of the ARIA structure roles irrelevant, adding the role values of article,
application, banner, complementary, contentinfo, document, form, heading, main,
navigation, and search to your pages now can help with screen readers that are sup‐
portive of ARIA, but not yet HTML5.

Two notes about roles: (1) once set, a role should not be dynamically changed, since
this will confuse the assistive technology, and (2) roles take precedence over element
default semantic meaning.

In addition to the role attribute and its many values, ARIA also provides for state and
property attributes. There are state attributes aria-disabled, aria-busy, aria-
expanded, aria-hidden, and property attributes such as aria-describedby, aria-
haspopup, and aria-labelledby, which provide additional information on dynamic
widgets and repurposed elements. It is best practice to use the most semantic existing
element for the job, but when you must absolutely use a specific element for a
nonintended purpose (such as a tree menu), ARIA should be used.
Custom data attributes with data-*

In HTML5, you can create your own attributes. While you could create your own at‐
tributes before, your markup would not validate. HTML5 introduces the custom data
attributes, where, as an author, you can define the name of the attribute.

Developers have been including invalid attributes and/or abusing the title and rel
attributes to provide data for interactivity. Instead of misusing HTML 4 attributes like
rel and title, simply create an attribute with the data- prefix, and your code will
validate.

For example, in our CubeeDoo game, we want to maintain the position and value of
every card so that when we compare them, we can see if the first flipped card matches
the second flipped card, and also to maintain state, in conjunction with localStorage,
when we pause the game and leave the screen. We could keep track of every card as an
array in our JavaScript. Instead, we created the data-position and data-value at‐
tributes in our markup, dynamically updating the data-value for each new board setup:

HTML5 Syntax | 33

<div id="board" class="level1">
 <div data-value="0" data-position="1">
 <div class="face"></div>
 <div class="back"></div>
 </div>
 <div data-value="0" data-position="2">
 <div class="face"></div>
 <div class="back"></div>
 </div>
 <div data-value="0" data-position="3">
 <div class="face"></div>
 <div class="back"></div>
 </div>
 <div data-value="0" data-position="4">
 <div class="face"></div>
 <div class="back"></div>
 </div>
 ...
 <div data-value="0" data-position="24">
 <div class="face"></div>
 <div class="back"></div>
 </div>
</div>

When the user selects two cards, the data-value values are compared. If they match,
we have a match. The data-position attribute enables us to track the location of each
card, changing the data-value of the two cards to 0 when matched. We also use the
value of the data-value attribute to style the front of the cards using attribute selectors,
covered in Chapter 7.

Prior to having the data-* attributes, we may have structured our cards with <div
class="..." rel="15" title="4"> or similar. While that title might have validated,
it was unhelpful and would even allow people to easily cheat (you can still cheat with
an element inspector in this game, but showing a tooltip would have made the game a
bit too easy) when hovered on the desktop. The data- prefix has been reserved for this
purpose to avoid clashes with future versions of HTML. Custom data attributes are
intended to store custom data private to the page or application. The only requirement
on these attributes is that they are not used for user-agent extensions like -moz- or -
webkit-.

Dataset API. The custom data attributes come with the dataset API. With the data
set API, you can capture the attribute/value pairs even if the custom data attribute name
is dynamically generated (i.e., you don’t know what the attribute name is after the dash):

34 | Chapter 2: Upgrading to HTML5

1 // get all the cards values and positions
2 // use dataset to get value for all the cards.
3 currCards = document.querySelectorAll('#board > div');
4 for (i = 0; i < qbdoo.cards; i++) {
5 cardinfo.push(currCards[i].dataset);
6 }
7 currentState.cardPositions = JSON.stringify(cardinfo);

While we know what attributes we’ve set, we are using the dataset API instead of
getAttribute() to teach the API when we extract the values to pause the game. The
snippet from the qbdoo.pauseGame method uses a query selector to capture all the cards
(line 3), then iterates through the cards using the dataset API to capture the key/value
pairs of any dataset attributes present as a DOMStringMap as an array value. The last line
(line 7) converts the key/value pairs we’ve captured into a JSON string. Instead, we could
have also iterated through the deck :

1 for (i = 0; i < qbdoo.cards; i++) {
2 for (key in currCards[i].dataset) {
3 deck[key] = currCards[i].dataset[key];
4 }
5 cardinfo[i] = deck;
6 }

itemid, itemprop, itemref, itemscope, and itemtype

There are five other global attributes related to microdata that have been removed from
the main part of the HTML5 specification and are now part of the microdata specifi‐
cations, including itemid, itemprop, itemref, itemscope, and itemtype. I’ve included
them here so you have all the global attributes listed together. These attributes are ex‐
plained in “Microdata API” on page 187.

HTML Element/Attribute Syntax
We’ve talked about elements and attributes, but we haven’t discussed how to include
them. Syntax is important, so let’s dive in.

To include an element in your web page, you include an opening and closing tag. Open‐
ing tags start with a left angle bracket (or less-than sign, <), followed by the element
name, followed by the right angle bracket (or greater-than sign, >).

Correct:
<a>
<p>
<div>

Incorrect:
<m> <!-- there is no 'm' element' -->
< div><!-- there can be no space before the element name -->

HTML Element/Attribute Syntax | 35

http://www.w3.org/TR/microdata/
http://www.w3.org/TR/microdata/

3. Values defined in the specifications are generally not case-sensitive, but strings that you define, such as IDs
and class names, are case-sensitive.

If there are any attributes, they are included in the opening tag, after the element name,
separated by a space. All attributes are name/value pairs. Unlike XHTML, HTML5
Boolean attribute values don’t need to be explicitly declared. The browser defaults to
true when a Boolean attribute is present but the value is omitted.

Even though HTML5 does not require it, for ease of legibility and best practices, the
attribute should be in all lowercase and the value should be in quotes. Depending on
the type of attribute, the value may be case-sensitive.3

An attribute can only appear once for each element’s opening tag. While you likely know
that, and don’t include an attribute multiple times in elements on purpose, it is a com‐
mon cause of validation errors, so take this as a friendly reminder.

Correct:

<p class="racket-tailed drongo">
<div id="content">

Valid, but not best practices:

<!-- best to quote all attribute values -->

Not valid:
<p class="racket-tailed" class="drongo">
 <!-- no duplicated attributes allowed. -->
<p class=Racket-Tailed Drongo>
 <!-- while HTML5 does not require quotes around all attributes, it is
best practice. And, if there is a space in the attribute value, the
quotes are required to unambiguously delineate the start and end of
the attribute's value! -->

To end, or close, the element, you include a left angle bracket and a forward slash,
followed by the element name (that matches the element in the opening tag) and a right
angle bracket. If the element is an empty element (see the section “Self-Closing Ele‐
ments” on page 37), you can end the element by adding the optional forward slash im‐
mediately before the right angle bracket in the opening tag:

Files for this chapter
<p class="racket-tailed drongo">Exotic Asian Bird</p>
<div id="content">. . .</div>

In between the opening and closing tags you put the content of the element, which may
include other elements and/or text nodes. Nest your elements correctly! If you include

36 | Chapter 2: Upgrading to HTML5

an element as a child of another element, the nested child element must be both opened
and closed before the closing tag of the parent element:

<div id="content">
 <p class="files">
 Examples in the
 online chapter resources
 </p>
</div>

In this example, the <div> element contains everything from the first < to the last >,
including the descendant paragraph and anchor element. Notice that the <a> is both
opened and closed within the opening and closing <p> tags, and, in turn, the <p> element
is both opened and closed within the <div>.

Self-Closing Elements
All elements have closing tags, except self-closing elements, also known as empty or
void elements, which, in XHTML syntax, we self close with a trailing backslash.

Empty elements cannot contain nested elements or text. Being self-closing, they don’t
include an end or closing tag. You can include a slash before the right angle bracket of
the opening tag if you wish. While HTML5 does not require elements to be closed,
XHTML syntax does require it via the trailing slash. Self-closing, or empty elements,
include:

 Image

 Line break

<meta/> Metadata

<hr/> Thematic break

<base/> Base URL and default target for resources and links

<link/> Link

<keygen/> Cryptographic key/pair generator form control

<area/> Image map area

<col/> Table column

<command/> Menu command

<embed/> Plug-in

<input/> Form control

<param/> Parameter for object

<source/> Audio or video media source

<track/> Timed media tracking

<wbr/> Linebreaking opportunity

HTML Element/Attribute Syntax | 37

Best Practices
There are several coding rules required for XHTML that were optional or even unsup‐
ported in HTML. While HTML5 supports both coding formats, here are some nonre‐
quired best practices:
Use lowercase for markup

In XHTML, the element tags must all be lowercase as must all the attribute names.
While HTML5 supports camelCase and everything else, please use all lowercase
markup. Nothing in the W3C states that attribute values need to be lowercase, but
some, like id, are case-sensitive, so stick to lowercase.

Quote all attributes
In XHTML, all attribute values must be encased in single or double quotes. In
HTML5, only attribute values with spaces or special characters are required to be
in quotes. Make me happy: quote all attributes.

Close all elements
In XHTML, every opening tag must have a closing tag. Empty elements such as
 and
 must be self-closing. In HTML5, some tags can be left unclosed.
While omitting the closing element reduces the number of characters on a page, it
can make your markup harder to read and therefore harder to maintain. Some
speakers/blog posts recommend omitting end tags to reduce the number of char‐
acters to make smaller files for mobile. The few bytes saved are not worth the risk.
Reducing the number of DOM elements will have more of an impact than reducing
the number of characters in this way. Make me happy: close all elements.

In terms of trailing slashes to close elements, you can include them or you can omit
them. Whichever you choose, however, be consistent.

Nest all elements
All tags must be properly nested: if you start tag <a> and then start, or nest, a
, you must close the tag before you close the tag. Nest
your tags correctly: your markup will render as expected, it will be easier to
troubleshoot, and your markup will be valid (plus, you’ll make me happy).

Provide values for all non-Boolean attributes
In XHTML, all attributes must be coded as attribute/value pairs, even Boolean
values. The default selected option in XHTML should be written selected="se
lected". In HTML5, the same can simply be coded as selected. In HTML5, pro‐
viding values for Boolean attributes is not necessary, since including the attribute
property makes a Boolean value true even if the value of the attribute is false in most
browsers. Whether you choose to include or not include Boolean values, be con‐
sistent with your decision. If you include Boolean values, always include them. If
you omit them, always omit them.

38 | Chapter 2: Upgrading to HTML5

Don’t include an empty string, ="", for a Boolean (or even non-Boolean) attribute;
rather, always include the value.

Note that if you include a Boolean value, it will be true even if you
set the value to the empty string. If you want it to be false, you
will have to use removeAttribute(attributeName) and not se
tAttribute(attributeName, '') since the empty string will re‐
sult in the Boolean attribute being true.

Note that the empty string can have unintended consequences, especially when it
comes to the form attribute as will see in Chapter 3.

Use the most semantically correct element for the job
In XHTML, elements need to be coded in a semantic manner. Tables and forms
cannot be included in paragraphs. Form elements, being phrase elements, need to
be contained within a semantic block-level element, such as a paragraph or table
cell. Yes, you can use spans and divs to contain everything on your page, but if a
header is a header, use an <h1-6> tag.

The Required Components
Elements are the building blocks that make up the Web. Without the content of a site,
CSS and JavaScript would have nothing to enhance. But, in reality, for a web page to be
valid XHTML it only requires five components:

• The document type declaration, or DTD
• The HTML root element: <html></html>
• The head of the document, a direct child of html: <head></head>
• The document title, found in the head: <title></title>
• The body of the document, a direct child of html: <body></body>

In other words, the minimum required for a valid HTML5 document using XHTML
syntax is:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8"/>
 <title>Blank Document</title>
 </head>
 <body>
 </body>
</html>

HTML Element/Attribute Syntax | 39

I’ve included the charset <meta> element, which is not required if you have the correct
HTTP headings set on your server. If you don’t have control over your server, consider
it required as well.

In truth, HTML5 doesn’t even require that many elements for a document to be valid.
Browsers implicitly include <html>, <head>, and <body> if omitted. The shortest pos‐
sible HTML5 document is actually:

<!DOCTYPE html>
<title>blank document</title>

Notice in Figure 2-2 that the browser includes the missing tags. When you omit <html>,
<head>, <body>, or closing tags, the browser will render the document correctly, adding
the nodes as rendered into the DOM and adding closing tags.

Figure 2-2. When you omit <html>, <head>, and <body>, the browser will render the
document correctly, adding the nodes as rendered into the DOM (the HTML provided
is above; the rendered document is below)

Yes, you can fit an entire HTML5 document inside a 140-character tweet. Just because
you can omit what were once three of the only five required elements on a page doesn’t
mean you should. For ease of legibility and maintenance, especially by others, pick a
coding style and stick with it: preferably code in XHTML-style syntax, and include the
five elements.

Let’s look at the five “required” components in greater detail.
The Document Type Declaration

The Document Type Declaration, doctype or DTD, informs the browser what markup
syntax you are using so that the browser knows what to expect and how to handle it.

40 | Chapter 2: Upgrading to HTML5

4. The HTML5 DTD throws older IE desktop browsers into quirks mode.

5. Obsolete features are listed at http://bit.ly/16t5Z6L.

This is always the first line that should be sent to the browser, with the exception of the
XML prologue, if parsing as XML. The previous example uses HTML5’s DTD, which
is the shortest, and the point of this book, but there are others as shown in Table 2-1.

Table 2-1. HTML 4, XHTML, and HTML5 doctypes
Page type Document Type Declaration (DTD)

HTML 4.01 Transitional <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/HTML 4/loose.dtd">

HTML 4.01 Strict <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/HTML 4/strict.dtd">

XHTML 1.0 Transitional <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

XHTML 1.0 Strict <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

XHTML 1.1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"

"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

HTML5 <!DOCTYPE html>a

a Like the rest of HTML5, the doctype is not case-sensitive.

While you may have been using an XHTML DTD for 10 years, chances are you still
copy and paste it into your documents, because you have yet to memorize it. Me too!
After typing the HTML5 doctype once, I’ve never had to look it up again.

All modern mobile browsers support all of the HTML and XHTML DTDs, including
the new, shorter HTML5 doctype declaration.

If you’re concerned about how your old code will fare with the new HTML5 doctype,
don’t worry.4 If your web page validated as HTML 4 or XHTML Strict, your markup is
valid HTML5. HTML5-supporting browsers should provide for backward compatibil‐
ity of all previous HTML and XHTML versions, including deprecated elements. How‐
ever, just because the formerly deprecated elements are supported by the browser doesn’t
mean you should use them! While <center> and may render as intended, it
doesn’t pass as valid or as good code!5 To ensure consistent, clean, and extensible code,
I recommend using XHTML syntax including quoting all attribute values and closing
all elements. HTML5 allows for lazy coding practices, but don’t be a lazy coder!
The <html> element

The <html> element is the root element of an HTML document. While it is optional in
HTML5, it’s required when using XHTML syntax. HTML 4 transitional does not require

HTML Element/Attribute Syntax | 41

http://bit.ly/16t5Z6L

6. modernizr is a JavaScript library that feature detects HTML5 and CSS3 browser support in your users’
browsers.

7. It is possible to display the contents of the <head> to the user with CSS.

the <html> element, and neither does HTML5, but we want to write good, clean,
standards-compliant code: so, for all intents and purposes, it is required and is written
as shown in Table 2-2.

The <html> element has two children nested in it: <head> and <body>. It’s good practice
(but not required) to include the lang attribute in the HTML element.

Table 2-2. HTML element and required by page type
Page type HTML element

HTML 4.01 Transitional <html>
<html lang="en">

HTML 4.01 Strict

HTML5

XHTML 1.0 Transitional <html xmlns="http://www.w3.org/1999/xhtml">
<html lang="en" xmlns="http://www.w3.org/1999/xhtml">

XHTML 1.0 Strict

XHTML 1.1

HTML5 provides for a new attribute on the <html> element. The manifest attribute,
when included, takes as its value the URL of the manifest file. Application cache, the
manifest file, and offline applications are discussed in Chapter 6.

Some HTML5 script tools like modernizr add classes to the opening <html> element.
This is completely legal. With the application cache, modernizr script for feature de‐
tection, and a language declaration, my opening <html> tag often looks like this:

<html lang="en" manifest="cache.appcache" class="no-js">

We covered the lang attribute earlier. We’ll cover the manifest attribute in offline and
storage in Chapter 6. The no-js class should be included if you are using modernizr6

to test for native implementation of the various web technologies discussed in this book.
The <head> element

The <head> of the document contains important information that, other than the
<title> element, is not displayed directly in the browser window.7 While the contents
of the <head> are generally not displayed, most browsers display the title, which is the
only required element for a valid HTML5 document, in the tab or other browser chrome.
The other contents of the <head> element inform the browser how to render the page
and “speaks” to search engine spiders about the content of the page. In terms of changes
between HTML 4 and HTML5, the never used profile attribute of the <head> element
is not included in the proposed HTML5 specifications.

42 | Chapter 2: Upgrading to HTML5

www.allitebooks.com

http://modernizr.com/
http://www.allitebooks.org

<head> is the parent element for the required <title>, and the optional <style>,
<script>, <link>, <meta>, and <base> elements.
The <title> element

The <title> element is required and must include the closing </title> tag. Your page
can validate without <head>, <body>, or even <html> tags, but will not validate without
the required <title>, and won’t parse if the closing tag is missing. Your <body> can be
empty, and you can display no content to the user. Even the <title> can contain no
text, but it’s still required!

The contents of the <title> tag should define the overall content of your document.
While the <title> may seem unimportant to the layout of your web page, the <title>
is the most important element of your document when it comes to search engines.

Note how the contents of the <title> tag appear in the browser chrome, as seen in
Figure 2-3. While this may be a nonfactor as compared to the <title>’s importance in
search engine optimization (SEO) on the desktop, when you’re looking at the tiny screen
of a cell phone, it can get ugly fast, so choose your title wisely.

Figure 2-3. The content of the <title> element displayed in the browser chrome of iOS
Safari and Firefox OS

The <body> element

We’ve added a <title>, but we still have a blank web page. All the content that you want
to display on your website needs to be in the body of the page, encompassed in a single
<body> element. The <body> is the second and last of the two child elements of the root
<html> element.

There are several presentational attributes for the body element that were deprecated
in XHTML. HTML5 goes along with that ingenious XHTML tradition: HTML5 has
none of the presentational attributes that were in HTML 4, like align, bgcolor, and
background and link coloring, since their functions are better handled by CSS. The only
attributes you will likely be adding to the <body> element are id and class, and lang
and dir if necessary.

HTML Element/Attribute Syntax | 43

When viewing the source of a web page, you’ll often encounter event handlers in the
opening <body> tag, such as onload="doSomething();". In general, you should only
be adding global attributes, such as class or id, to the opening <body> tag. Event
handlers should be in your external JavaScript file, and styling should be in your external
CSS file.

Our first, bare-bones HTML5 document could be coded like the following, with the
only noticeable differences being the character set (described later) and the document
type declaration:

<!DOCTYPE html>
<html>
<meta charset="UTF-8"/>
 <head>
 <title>My First HTML5 Web Page</title>
 </head>
<body>
</body>
</html>

And with those six components (DTD, <html> root, <head>, <meta> character set,
<title> element, and the <body> element), we’ve created a web page—a blank web page,
but a web page nonetheless. And, with relevant contents in the <title> element, our
blank web page is more findable by search engines than many sites on the Web.

As I mentioned earlier, you don’t even need that many elements:
<!DOCTYPE html>
<meta charset="utf-8">
<title> My First HTML5 Web Page </title>
<p> Hello World

While this is a valid HTML5 document, it’s not good practice. By being more explicit
in your code, developers that maintain your code later, including yourself, will be better
able to grok your code’s original intentions.

Elements Found in the <head>
The <head> may be the least sexy part of the web page markup, as it’s not visible to the
user by default. But just because it’s not sexy doesn’t mean you’re allowed to neglect it.
The head of the web document is where you, as a developer, tell the browser how to
render your page, and where you can give hints to the printer, the search engine, and
parser on how the content should be handled.

In the <head>, you will always find the <title>, but you may also come across <meta>,
<base>, <link>, <script>, <style>, <command>, and <noscript> tags.

Here is what a really busy head section could look like:

44 | Chapter 2: Upgrading to HTML5

<head>
<meta charset="UTF-8"/>
<title>Mobile HTML5</title>
<meta name="author" content="Estelle Weyl"/>
<meta name="publisher" content="O'Reilly"/>
<meta name="copyright" content="Copyright 2013"/>
<meta http-equiv="date" content="Mon, 18 Nov 2013 16:15:30 GMT"/>
<meta http-equiv="date-modified"
 content="11/18/2013" scheme="MM/DD/YYYY"/>
<meta name="keywords" content="html5 css3 svg
 border-radius canvas audio iphone android ipad"/>
<meta name="description" content="Moving from desktop to mobile:
 Learning CSS3 and HTML5."/>
<meta name="pagetopic" content="Internet"/>
<meta name="page-type" content="Instruction"/>
<meta name="audience" content="all"/>
<meta name="robots" content="index,follow"/>
<meta name="generator" content="Sublime"/>
<meta name="apple-mobile-web-app-capable" content="yes"/>
<meta name="apple-mobile-web-app-status-bar-style" content="black">
<base href="http://www.standardista.com/"/>
<script src="/js/application.js"></script>
<link rel="apple-touch-icon" href="touch-icon-iphone.png"/>
<link rel="apple-touch-icon" sizes="72x72"
 href="touch-icon-ipad.png"/>
<link rel="apple-touch-icon" sizes="114x114"
 href="touch-icon-iphone4.png"/>
<link href="/css/prettification.css" media="all" rel="stylesheet"/>
<link href="/css/tinylittledevice.css" media="only screen and
 (max-device-width: 480px)" rel="stylesheet"/>
<link href="/css/print.css" media="print" rel="stylesheet"/>
<style>
 p {color: #333333;}
</style>
</head>

That is a verbose header, and yours should never look like this, but you should under‐
stand it. So, what does it all mean? Let’s take a look...

<meta>: Adding Metadata
The <meta> element allows web developers to include various types of metadata on their
pages by specifying a property and a value. There are four attributes specific to <meta>:
charset, http-equiv, content, and name.
<meta charset=“UTF-8”>

The first <meta> element we’ll cover is the one you’re likely to use in every HTML5
document you create:

<meta charset="utf-8"/>

HTML Element/Attribute Syntax | 45

You’ve likely been adding:
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>

to your documents for years, telling the browser to treat the page as HTML and to use
the UTF-8 character set in case your server’s HTTP headers are not configured to set
the charset.

While the <title> element was supposed to be the first element after the opening
<head> tag, we made an exception for the character set declaration, as we wanted to be
sure the rendering agent knew which charset to render before characters got rendered.
While new to HTML5, this is supported in all major browsers, since browsers have been
supporting the erroneously unquoted meta:

<meta http-equiv=Content-Type content=text/html; charset=utf-8>

Note that in this incorrectly written <meta> tag, due to the lack of quotes and the space
in the value of the content attribute, the browser sees charset as a separate attribute.
This former “error,” supported by all browsers because the error was so prevalent, is now
an implemented part of the HTML5 proposed specifications.

You can (and should) serve all your files as UTF-8 from the server. If you’re running
Apache, add AddDefaultCharset UTF-8 to your .htaccess file.

With the exception of charset, the type of <meta> tag is defined by the value of either
the name or the http-equiv attribute value. Other than charset, each <meta> tag must
contain either the name or http-equiv attribute and the content attribute.

Generally, unless you’re trying to generate an HTTP response message header, a <meta>
tag has the name attribute and a content attribute, yet the values of both are basically
freeform: you create the value for the name and the value for the content. We’ll cover
the ubiquitous <meta> types first, and then delve into the more mobile-specific ones.
Description meta tag

There are some standard values, including the most important nonmobile-specific one:
description. The content of the "description" <meta> tag is what many search engines
return when your web page is included in search results. So, make sure your description
content value is a well-formed, descriptive sentence about the contents of the page,
including your keywords for the page (see Figure 2-4):

<meta name="description"
 content="CSS3, JavaScript and HTML5 as explained by Estelle Weyl">

46 | Chapter 2: Upgrading to HTML5

8. On most smaller devices, the browser is automatically fullscreen and not user changeable. On some devices,
like the Slate tablet, the browser is resizable.

Figure 2-4. The content of the description <meta> tag displayed in Google search
results

Keyword meta tag

Of all the <meta> tags, the "keyword" is the most famous. However, since the abuse of
the "keyword" meta tag by spammers last millennium, search engines don’t place high
value on its content. You can feel free to include keyword metadata, but don’t rely on it
for your search engine efforts:

<meta name="keyword" content="CSS3, HTML5, JavaScript">

<meta http-equiv=“. . .”>

While the <meta> element with name attribute is fairly freeform, the http-equiv at‐
tribute is not. The http-equiv attribute, used instead of name, can replace the server
creation of an HTTP response message header. The values of the http-equiv attribute
mimic the HTTP response headers. I created a list of the http-equiv <meta> tag values
at http://www.standardista.com/html5/http-equiv-the-meta-attribute-explained/. If you
have access to the .htaccess file on your server, use that file to set up your headers. Relying
on the <meta> tag to set your headers should be your last, not first, resort:

<meta http-equiv="cache-control" content="no-cache" />

Mobile Meta Tags
There are several <meta> tags that are specifically geared to mobile devices. Among them
are <meta> tags that tell the browser to take up the entire viewport and disable scaling,
and to change the status bar color, which we will cover in the following section.
Viewport meta tag

On the desktop, unless you’ve expanded your browser window size beyond the bounds
of your monitor, the viewport size is the size of the browser window. On most mobile
devices, the scale of the page can be controlled, but the viewport size remains the same,
determined by the size of the device’s screen.8

HTML Element/Attribute Syntax | 47

http://www.standardista.com/html5/http-equiv-the-meta-attribute-explained/

The "viewport" <meta> tag allows us to dictate the logical dimensions and scaling of
the browser viewport window on mobile. In CubeeDoo, our web application, we’ve used
the following meta tag:

<meta name="viewport"
 content="user-scalable=no, width=device-width, initial-scale=1.0"/>

This viewport <meta> tag is supported on all smartphones and mobile devices, including
iOS, Android, webOS, Windows Phone, and Opera Mobile. By setting the viewport
width equal to device-width, we’re telling the browser to set the document width to
the device width. Duh!

The viewport <meta> tag supports a comma-delimited list of directives allowing us to
dictate the width, scale, and height of the browser viewport. You can tell the browser to
not allow scaling, or to scale up to a maximum or down to a minimum value.
width=<num>|device-width

Generally, you’ll want to use the key term device-width to set the viewport width
to the width of the device, though numeric values are also valid. The default value
differs by browser, but is generally around 980. The minimum value is 200, the
maximum 10,000.

height=<num>|device-height

Set to device-height, or a value like 480 for an iPhone 4 or older, defines the
viewport height. This value is generally omitted in favor of using only width. For
reference, the minimum value is 223.

user-scalable=no|yes

Determines whether or not the user can zoom in and out to change the scale of the
viewport. Set to yes to allow scaling and no to disallow scaling. The default is yes.
Setting to no also prevents scrolling on data entry. User scaling, if allowed, can be
limited by the minimum-scale and maximum-scale properties of the viewport
<meta>.

initial-scale=<float>

Sets the initial scaling or zoom factor (or multiplier) used for viewing a web page.
The default value of 1.0 displays the web page unscaled.

maximum-scale=<float>

Sets the user’s maximum limit for scaling or zooming unless user-scalable is set
to no. The maximum value is 10, but can be a float value of 0.25 or larger.

minimum-scale=<float>

Sets the user’s minimum limit for scaling or zooming a web page. The minimum
value is 0.25.

The default width rendered by most mobile browsers is 980 px. By setting the width to
device-width, the user doesn’t need to zoom in on page load because you served them

48 | Chapter 2: Upgrading to HTML5

980 px width on a 320 px device. We could have set the viewport width to 320 for 320
px instead of device-width, but then it would only work correctly on mobile devices
of exactly 320 px width. We are setting the width of the window to the width of the
device, which is optimal: it scales the page proportionally to the device without the
author having to know the width of the device the user may be using.

However, this isn’t necessarily optimal for all websites, but rather just for mobile sites
and mobile web applications. Then, when user-scalable is enabled, the user can zoom
in to make the page more legible for those who can’t read small print.

With CubeeDoo, we are creating a mobile game. When playing, the user will be touching
the screen. We do not want our users to accidentally scale the page up or down while
trying to flip a tile, so we told the browser to make the game the full width of the screen
and to not allow scaling. Had we been creating a website instead of an app, we would
have allowed user scaling without limits for better usability, which we do in our language
picker:

<meta name="viewport" content="user-scalable=yes,
 width=device-width, initial-scale=1.0"/>

The function of the viewport <meta> tag really is presentation, and was never part of
any specifications; rather, it’s a feature initiated by Apple. The specification to convert
the functionality from HTML markup to CSS with @viewport is well under way, and is
partially supported in IE10.

Mobile Vendor-Specific Values
There are also some mobile vendor-specific values: for example, Google and Apple have
created their own meta name/value pairs for integrating with some of their services/
APIs. There are three such tags that we have used in our project, which we cover in the
following sections.
apple-mobile-web-app-capable

This <meta> tag reads “apple” but is also supported on Android; it sets whether a web
application runs in fullscreen mode. When run in fullscreen mode, none of the browser
chrome shows. The browser takes up the whole screen, with just the phone’s status bar
showing. This <meta> tag only affects the web application if the site has been book‐
marked. We’ve included this <meta> tag in our web app so that if the user chooses to
bookmark our application, we can take up as much real estate as possible:

<meta name="apple-mobile-web-app-capable" content="yes"/>

If content is set to yes, the web application runs in fullscreen mode; otherwise, it does
not.

You can use JavaScript to determine whether a web page is displayed in fullscreen mode
by using the Boolean window.navigator.standalone read-only property.

HTML Element/Attribute Syntax | 49

9. If you’re wondering why I keep referencing the Racket-tailed Drongo, it’s the bird on the cover of this book.

apple-mobile-web-app-status-bar-style

As noted previously, even when you enable full-screen mode with apple-mobile-web-
app-capable, the status bar still shows. It is the one element on the mobile device that
developers cannot remove, even with native web applications. Few people know, how‐
ever, that you do have some control over the status bar’s appearance, even if that control
is minimal: we can impact its color and transparency with the apple-mobile-web-app-
status-bar-style <meta> tag:

<meta name="apple-mobile-web-app-status-bar-style" content="black"/>

If your web app is mostly black, making the status bar match may enhance your design
and make your web app look more like a native application. The iOS values for this are
default, black, and black-translucent. Unfortunately (or fortunately, considering
some people’s lack of taste), these are currently your only options.
format-detection

The format-detection mobile <meta> tag enables or disables automatic detection of
possible phone numbers in a web page:

<meta name="format-detection" content="telephone=no"/>

By default, some devices automatically detect strings formatted like phone numbers,
creating links where none existed that allow for direct calling, or at least the launch of
the phone application with the phone number pre-entered. Specifying telephone="no"
disables this feature. We have no phone number in our application, or anything that
resembles a phone number, so we are not employing this <meta> tag in our application.

The <base> of Your Web Page
Almost never used, <base> can be really helpful when it comes to local testing. The
<base> element gives a base URL for de-referencing relative URLs. For example, sup‐
pose you have a relative image in your code such as <img src="image/drongo.gif"
alt="Meandering Racket-Tailed Drongo"/>. By including the <base src="http://
RacketTailedDrongo.com"/>, the browser will go to the image directory on the Rack‐
etTailedDrongo.com server to find drongo.gif.9

The base URL may be overridden by an HTTP header, but it’s generally helpful for local
testing. Try saving a file from the Web onto your hard drive. Add a base pointer to the
originating server in the <head> of the file. When you open the page locally, the page
will likely render correctly on your desktop, even though the file is local and you never
downloaded images or changed the path of a file in the body of your page. The syntax
is:

 <base href="http://www.mydomain.com"/>

50 | Chapter 2: Upgrading to HTML5

<link>s Aren’t Just for Stylesheets
The <link> element gets no credit. It’s a powerful, often included but rarely considered
element. The <link> element provides the ability to define relationships among your
HTML document and other documents and resources. <link> can be used to control
print rendering, to link stylesheets and scripts, to define favicons, or to provide alter‐
native forms of the current document.

We have four link tags in our web application:
<link rel="icon" href="/appleicon.png"/>
<link rel="apple-touch-icon" href="/appleicon.png"/>
<link rel="apple-touch-startup-image" href="startup.png"/>
<link rel="stylesheet" href="styles.css"/>

Add rel="shortcut icon" for IE, which requires the “shortcut” term when
favicon is not named favico.ico or not stored at site root.

The <link> element can include several attributes: href, rel, type, sizes, hreflang,
media, and title. The rev and charset attributes have both been removed from <link>
in HTML5. Here’s the syntax:

<link href="url to resource" rel="type of relationship" title="title"/>

The rel attribute specifies the named relationship from the current document to the
resource specified by the href attribute. Both the rel and href attributes are required.

Of our four <link> tags, the first three are for imagery and the fourth you are likely
most familiar with: linking to stylesheets.
Add <link>s for your stylesheets

This powerful little <link> element can be used to send different stylesheets to a phone,
tablet, and desktop. It can be used to serve up different stylesheets depending on the tilt
of any type of mobile phone or the width of the user’s browser.

While we’ve only included one stylesheet in our web application, we could have included
several, each targeting differing or overlapping media, browser sizes, DPIs, or even
browser orientations:

<link href="/css/styles.css" media="all" rel="stylesheet"/>
<link href="/css/tinylittledevice.css"
 media="only screen and (max-device-width: 480px)" rel="stylesheet"/>
<link href="/css/print.css" media="print" rel="stylesheet"/>

These examples should look familiar, with perhaps two exceptions. Note that the
type="text/css" attribute/value pair is missing. There is currently no other type of
stylesheet language (nor do I see any forthcoming), so HTML5 assumes that the type is
text/css, and explicitly stating it is not necessary. Also, media="only screen and
(max-device-width: 480px)" may be new to you. We’ll quickly cover that attribute,

HTML Element/Attribute Syntax | 51

along with the other attributes of the <link> tag, in the following sections, and go into
deeper detail on media queries in Chapter 7.
Attributes of the <link> tag

Like almost all elements, the <link> tag accepts all of the global attributes. Shown in
Table 2-3 are the other attributes of the <link> element.

Table 2-3. Attributes of the <link> element
Attribute Description

href Required. The “hyperlink reference” is the URL for the destination file of the <link>.

media Describes to which media the contents of the link will be included.

rel Specifies relationship of <link> to current document.

hreflang Language of the linked media.

type MIME type of the linked media. Optional unless the value is not of type expected by the rel relationship.

sizes New. If media is an icon, it defines the size of the icon.

The media attribute

The media attribute describes for which media the contents of the link will be included.
If not declared, the default is all, indicating that the source described by the href
attribute will always be present.

Values used to be fairly limited, with values such as screen for desktops and print for
printers, etc. Values for media included: screen, tty, tv, projection, handheld, print,
braille, aural, and all. Now you can include @media queries. The media attribute
value has been greatly expanded with CSS3. We can now serve up different stylesheets
based on more esoteric values of the media property. For example, mobile device flipping
and desktop browser resizing will change the screen aspect ratio from portrait to land‐
scape and back again, so you can serve different CSS files when in portrait versus when
in landscape mode:

<link rel="stylesheet" media="all and (orientation:portrait)" href="prtrt.css"/>
<link rel="stylesheet" media="all and (orientation:landscape)" href="lndscp.css"/>

The @media queries that are new in CSS3 are acceptable values for the media attribute.
Newly accepted key terms in the attribute values include:

• (min/max)-width: Viewport width
• (min/max)-height: Viewport height
• (min/max)-device-width: Screen width
• (min/max)-device-height: Screen height
• orientation: Portrait(h>w) | landscape(w>h)

52 | Chapter 2: Upgrading to HTML5

• (min/max)-aspect-ratio: Width/height
• (min/max)-device-aspect-ratio: Device-width/height

Several <link> attributes that were in HTML 4 have since been removed from the
HTML5 spec, including the coords, shape, urn, target, charset, methods, and rev
attributes. Also, the title attribute has special semantics on this element.
The rel attribute

The rel attribute specifies the named relationship from the current document to the
resource specified by the href attribute. The rel attribute is stated as being optional,
but if you don’t include it, your browser will not correctly link the resource to your
document. A stylesheet link without rel="stylesheet" will not correctly render any
styles: your browser will just download the file and think “Well, that was a waste of
bandwidth.” (Yes, browsers can think, and they make fun of us all the time.) Table 2-4
lists some values of the rel attribute along with the value’s definition.

Table 2-4. The rel attribute
rel attribute
value

Definition of rel attribute value of link element

stylesheet The most commonly used value of the rel attribute, informing the browser that the linked file should
be used to render the presentation of the current document.
When including stylesheet, type="text/css" is no longer a required attribute/value pair, as
text/css is the only type of stylesheet language, and is therefore inferred.

next The link references the next document in a guided tour or next document in an ordered series. The spec
was originally meant to aid in the preloading of the subsequent file, improving user experience.

prev The link references the previous document in a guided tour or previous document in an ordered series.

index Index for the document.

help The link references a document offering help, (e.g., describing the wider context and offering further links
to relevant documents). This is aimed at reorienting users who have lost their way.

contents Links to a document containing a table of contents for the document or site.

alternate Specifies an alternate version of the document. When used in conjunction with the hreflang attribute,
it implies the linked file is a translation of the document. When used in conjunction with the media
attribute, it implies a media-specific version, such as for a printer. When combined with stylesheet,
it indicates that there is an alternate stylesheet for the user to select.

copyright References a copyright statement for the document or site.

glossary A document with definitions of terms used in the current document.

icon The favicon for the page or website.

apple-touch-

icon

Defines which icon is displayed on the user’s screen when a web application is bookmarked and added to
the screen.

apple-touch-

startup-image

A startup image that is displayed while the web application launches. This is especially useful when your
web application is offline. If not included, some browsers will display a screenshot of the web application
the last time it was accessed.

HTML Element/Attribute Syntax | 53

Android and iOS both support the apple-touch-icon and apple-touch-startup-
image. Windows Phone has tiles instead of icons. To include tile information, include:

<meta name="msapplication-TileColor" content="#<color>"/>
<meta name="msapplication-TileImage" content="<image reference>"/>

<style>

The <style> element provides a method for you to add styles to a document. Unlike
styles imported via the <link> element, the styles included in the <style> tag in the
head of the page are applied to the current page only, and are therefore not natively
accessible in the cache for other documents to use. Unlike styles added using the style
attribute on an element, which only impact the element on which the attribute is placed
until the scoped attribute is supported, styles included within <style> are applicable
to the matched selectors in the entire document.

The <style> element used to require the type attribute (generally, type="text/css").
It can be omitted in HTML5, in which case its presence with the value of "text/css"
is implied. Like the <link> tag, the <style> accepts the media attribute.

New in HTML5, but not yet supported in any browser, is the scoped attribute. Adding
the scoped attribute to the <style> element tells the rendering agent to apply that CSS
only within the scope, or section, in which that style is found. This will be useful when
creating widgets appearing on sites over which you may have no control, ensuring that
the CSS for your widget doesn’t accidentally overwrite the hosting website’s CSS.

<style> and mobile performance: standards anti-pattern. For the past 12 years, it has al‐
ways been recommended to use <link> to include site-wide styles instead of <style>.
Including CSS via <style> may reduce the number of HTTP requests, but it does not
allow for caching. This is obviously not optimal.

Due to latency issues of extra HTTP requests, a mobile anti-pattern has emerged.

To reduce latency, the site CSS is included inline in the main response inside one or
more style tags. With JavaScript, the content of the style blocks are extracted and saved
in localStorage, and the key values are added to the cookie string. Additional HTTP
requests include the cookie with the names of the styles (and other resources) that are
stored in localStorage. Server side, the server reads the cookie, checks which resources
(if any) are still needed, then sends along only the files that are not yet in localStorage
embedded in the one response. This results in a large download on first request, and
much smaller downloads on subsequent requests, with the original site load and all
subsequent site reloads being a single HTTP request and response.

While this is an anti-pattern, reducing the number of HTTP requests can greatly im‐
prove performance. The improvement in performance can well outweigh the costs of
sending a fairly large file (with content that was required anyway) and the cost of ac‐
cessing data stored in localStorage.

54 | Chapter 2: Upgrading to HTML5

Adding a <script> to your web page

The <script> tag allows you to include blocks of JavaScript or link to an external Java‐
Script (or other script type) file. The type attribute was required in XHTML and was
almost always type="text/javascript". In HTML5, the type is assumed to be text/
javascript. As long as your script is JavaScript, the type attribute should be omitted.
Also, the language attribute has been made obsolete.

When src is included, it may seem like the element is empty, since there is no text
between the opening and closing tags. Include a full closing tag anyhow, and do not put
any JavaScript between those tags.

JavaScript performance tips. Although we are discussing elements within the <head> of
the document, the <script> element can be found inside the <body> or <head> of the
document, and sometimes (usually, really) the end of the body is the best suited location
for the <script> element.

Why? JavaScript is generally parsed immediately when downloaded, halting the down‐
load of the document in its tracks until the JavaScript has finished being downloaded,
parsed, and executed. This can greatly slow down the perceived download time of the
page. For this reason, it is recommended to include scripts toward the end of the docu‐
ment, instead of in the <head>.

Consider your visitors to be non-JavaScript users during the time it takes to download,
parse, and execute all the components of your web page. Wouldn’t you prefer them to
be looking at some content rather than a blank screen? This is why JavaScript perfor‐
mance and source order matters.

There are two attributes that can alter the order of execution of the JavaScript: the defer
and async attributes. Both are Boolean, with async being a new addition in HTML5.
async indicates that the script should execute asynchronously, when it becomes avail‐
able. defer indicates that the script should execute after the document has finished
parsing. If neither attribute is present, the JavaScript is parsed when encountered. Both
are only valid for external scripts and invalid for inline scripts.

As stated earlier, JavaScript is parsed immediately when encountered (unless async and/
or defer are included and supported by the browser). Browsers stop downloading ad‐
ditional elements from the server until the JavaScript is fully downloaded, parsed, and
executed. By including the JavaScript at the end of the document instead of the head,
the perceived download time is much shorter. When the script is in the <head>, the page
“hangs” while it loads and executes the JavaScript. With the <script> in the footer, while
it actually takes the exact same amount of time to download and execute the script, the
perceived download time is much faster as there is no visible halting in the download.

There is a new solution to the issue of the hanging UI due to slow JavaScript in HTML5.
Web workers, described in Chapter 6, enable multiple threads of JavaScript to execute

HTML Element/Attribute Syntax | 55

concurrently. Dynamically generating the script tag is another trick to improving
performance.
When a user has JavaScript turned off, <noscript>

You can include a <noscript> element with content that is made visible only if the user
has JavaScript disabled. Generally, it’s best to progressively enhance static functionality
of a page, making the <noscript> obsolete. However, there are some project managers
that insist on sites completely reliant on JavaScript. In these cases, you can use <no
script> in the body of the document to include directions to your user to turn JavaScript
back on. JavaScript is by default enabled in all mobile browsers and other modern
browsers, including mobile WebKit, Blink, Opera Mobile, Windows, and Firefox.
A <body> of elements

The <body> is always the second and last child of the <html> element, the first child
being the <head>. Everything displayed to the user within the main window of the
browser is found within the <body> element. While the <head> contains all the metadata
for the page, the <body> contains all the visible (and occasionally some nonvisible)
content.

The next chapter discusses the elements that are actually displayed to the client: the
<body> element and all of its children. As mentioned earlier in the discussion of required
elements, the <body> has no element-specific attributes, but has many event handlers,
including:

• onafterprint

• onbeforeprint

• onbeforeunload

• onblur

• onerror

• onfocus

• onhashchange

• onload

• onmessage

• onoffline

• ononline

• onpopstate

• onredo

• onresize

• onstorage

56 | Chapter 2: Upgrading to HTML5

• onundo

• onunload

It is best to include these event handlers within your external JavaScript and not within
the <body> element. I’ve included them here so that you know what is available, but I
highly recommend and completely encourage you to keep content separate from pre‐
sentation separate from behavior.

Now it is time to focus on the actual content of our pages.

HTML Element/Attribute Syntax | 57

CHAPTER 3

Elements That Are New in HTML5

HTML5 provides us with new and mostly semantic elements; it redefines some existent
elements and makes other elements obsolete (think of “obsolete” as the new, politically
correct version of “deprecated”). As we saw in Chapter 2, we have the root <html>
element, document metadata described in the <head> section, and scripting elements.
HTML5 provides us with sectioning elements, heading elements, phrase elements, em‐
bedded elements, and interactive elements. Interactive form elements are covered in
Chapter 4. The media-related embedded elements will be discussed in Chapter 5. We
won’t discuss table elements, since, for the most part, they haven’t changed in HTML5.
The other elements are discussed in the next section.

In prior specifications, elements were described as being either inline, for text-level
semantics, or block, for flow content. HTML5 doesn’t use the terms block or inline to
describe elements anymore. The HTML5 authors correctly assume that CSS is respon‐
sible for the presentation, and all browsers, including all mobile browsers, come with
stylesheets that define the display of elements. So, while HTML5 no longer defines
elements in terms of block or inline, the default user-agent stylesheets style some ele‐
ments as block and others as inline, but the delineation has been removed from the
specification.

With HTML5, we have most of the HTML 4 elements and the addition of a few new
ones. HTML5 also adds several attributes and removes mostly presentational elements
and attributes that are better handled by CSS. In Chapter 2, we covered the new global
attributes. In this chapter, we cover many of the new elements of HTML5, and some of
the existent elements that have had major changes. Other elements such as form and
embedded content elements will be discussed in their own, separate chapters.

59

1. The hgroup element that was originally added to HTML5 was made obsolete. It has not yet been removed
from the WHATWG spec, but has been removed from the W3C HTML5 and W3C HTML5.1 specifications.

Sectioning Elements in HTML5
The sectioning root is the <body> element. Other HTML 4 sectioning elements included
in the HTML5 spec are the rarely used <address> element and the leveled headings
from <h1> to <h6>. HTML5 adds several new sectioning elements, such as:1

• section

• article

• nav

• aside

• header

• footer

It also maintains support for these older sectioning elements:

• body

• h1–h6

• address

The new sectioning elements encompass content that defines the scope of headings and
footers. The new sectioning elements, like <footer>, <aside>, and <nav>, do not replace
the <div> element, but rather create semantic alternatives. Sectioning elements define
the scope of headings and footers: does this heading belong to this part of the page or
the whole document? Each sectioning content element can potentially have its own
outline. A sectioning element containing a blog post, for example, can have its own
header and footer. You can have more than one header and footer in a document. In
fact, the document, each section, and even each blockquote can have its own foot
er. Because each section has its own scope for headings, you are not limited to a single
<h1> on a page, or even limited to six heading levels (<h1> through <h6>). Let’s cover
the new sectioning elements.

The authors of HTML5 scanned billions of documents, counting each class name, to
determine what web developers were calling the various sections of their page. Opera
repeated the study, including the names of IDs in addition to class names. Due to
Dreamweaver and Microsoft Word, style1 and MsoNormal were very, very popular.
Ignoring the software-generated classes and obviously presentational class names like
left and right, they discovered that web developers were using semantic sectioning

60 | Chapter 3: Elements That Are New in HTML5

2. Because of its semantic value, screen readers announce the beginning and end of each <section>. Unless
your page is comprised of semantic sections of content, use the nonsemantic <div>, which is not called out
by the screen reader.

names like main, header, footer, content, sidebar, banner, search, and nav almost as
if they were included in a default Dreamweaver template (they weren’t).

Reflecting what developers were doing, more than 25 new elements have been added to
HTML5. Originally missing was the “main” or “content” elements. The reason? Any‐
thing that is not part of a navigation, sidebar, header, or footer is part of the main content.
The <main> element is a late addition to the specification, and is described on page 67.

Using the new elements, like <header> and <footer>, which replace and make more
semantic the semantically neutral <div id="header"> and <div id="footer">, we can
create the standard web layout in a more semantic way. These new elements, shown in
Figure 3-1 in what is a common page layout, enable including semantics to the layout
of a document.

Figure 3-1. Typical web page layout using HTML5 sectioning elements

<section>
The <section> element can be used to thematically group content, typically with a
heading. The <section> element represents a generic document or application section,
but is not a generic container element: it has semantic value. If you are simply encom‐
passing elements for styling, use the nonsemantic <div> instead:2

<section>
 <header>
 <h1>Mobile Web Applications with HTML5 and CSS3 </h1>
 </header>

Sectioning Elements in HTML5 | 61

 <h2>HTML5</h2>
 <p>Something about HTML5.</p>
 <h2>CSS3</h2>
 <p>Something about CSS3.</p>
 <footer>Provided by Standardista.com</footer>
</section>

<article>
The <article> element is similar to <section>, but like a news article, it could make
sense independent of the document or site in which it is found. The <article> is a
component of a page that consists of a self-contained composition in a document, page,
application, or site that is intended to be independently distributable or reusable, such
as for syndication:

<article>
 <header>
 <h1> Mobile Web Applications with HTML5 and CSS3 </h1>
 <p><time datetime="2013-11-11T12:31-08:00">11.11.13</time></p>
 </header>
 <h2>HTML5</h2>
 <p>Something about HTML5.</p>
 <h2>CSS3</h2>
 <p>Something about CSS3.</p>
 <footer>
 <p>Provided by Standardista.com</p>
 </footer>
</article>

Originally, the HTML5 specifications included a Boolean pubdate attribute, but that
has been removed from the specification, as microdata vocabulary can be used to pro‐
vide such information.

<section> Versus <article>
There is some debate in the spec-writing community that these two elements are too
similar. You should use <article> versus <section> when the encapsulated content is
a discrete item of content. It is often a judgment call. The only difference in the two code
snippets given in the previous two sections is that I’ve added an optional <time> to the
<article> example.

In terms of explaining the similarities, differences, and functionalities of these two el‐
ements, use the analogy of the Sunday newspaper (for those of you too young to re‐
member what a newspaper is, it’s that thing you recycle or start chimney fires with). The
Sunday newspaper has several sections: the front page, news, real estate, classified,
weekly magazine, comics, and so on. Each of these sections has articles. Those articles
have headers, and some, especially in-depth news reports, have nested sections. Similar

62 | Chapter 3: Elements That Are New in HTML5

to the Sunday paper, articles and sections can be nested within each other and within
themselves.

An <article> can be a forum post, a magazine or newspaper article, a blog entry, a
user-submitted comment, an interactive widget or gadget, or any other independent
item of content.

The general rule is that the <section> element is appropriate only if the element’s con‐
tents can be listed explicitly in the document’s outline, such as saying “the ‘<section>
versus <article>’ section is in this book.” The HTML5 sections grouping you are read‐
ing right now would be in a <section> tag if it were online.

Examples of sections would be chapters, the various tabbed pages in a tabbed dialog
box, or the numbered sections of a thesis. A website’s home page could be split into
sections for an introduction, news items, and contact information.

Authors are encouraged to use the <article> element instead of the <section> element
when it makes sense to syndicate the contents of the element.

<nav>
The <nav> element is used for major navigational blocks within a document, providing
for a section of a page that links to other pages or to parts within the page. By major or
main navigation, think drop-down menus or other large groups of links that a visitor
to your site using a screen reader may want to skip listening to on their way to hearing
the main content of your page.

Small groups of links, like legalese and other links often found in the footer, can be
encapsulated in the <footer>. If your <footer> has a large navigational section, you
can nest a <nav> in it.

By encapsulating your site navigation in the <nav> element, you are telling sightless
readers (think visually impaired, but also think searchbots like Google’s spiders) that
this is the navigation to your site. When the <nav> element becomes well supported by
screen readers, we will be able to stop including “skip navigation” links that we’ve been
using for accessibility. If you want to provide for additional accessibility right now, use
the WAI-ARIA role="navigation":

<nav role="navigation">

 Home
 CSS3
 HTML5
 Javascript
 Accessibility

</nav>

Sectioning Elements in HTML5 | 63

<aside>
The <aside> contains content that is tangentially related to the main content: related
enough to be taken out of the flow, but not actually part of the content. The <aside>
content is separate from the main content, and can be used for typographical effects like
pull quotes or sidebars, for advertising, for groups of navigational elements, and for
other content that is considered separate from, including tangentially related to, the
main content of the page. Basically, if you can pull the <aside> out of the page, and the
main content still makes sense, you’re using the element correctly.

<aside> content does not need to be relegated to the sidebar. For example, when the
bottom section of your document contains more than footer-type content, creating what
is called a fat footer, you can put your <aside> at the bottom of the page instead of or
in addition to a <footer>:

<section>
 <h1>......</h1>
 <!-- main content of page -->
<section>
<aside>
 <dl>
 <dt>HTML5</dt>
 <dd>The next major revision of the HTML standard.</dd>
 </dl>
 </aside>

<header>
The <header> groups introductory or navigational aids and contains the section’s head‐
ing (an <h1>–<h6> element), but this is not required. The <header> element can also be
used to wrap a section’s table of contents, a search form, or any relevant logos: basically,
anything that makes up a header.

There can be more than one <header> on a page: the main <header> for the document,
containing the logo, the main navigation, and the titles of your site and login, and sep‐
arate <header> elements for each <section> and/or <article> code blocks. For ex‐
ample, your blog may have a document header with logo, search, tagline, and main
navigation in the main <header>, with a separate <header> element for each blog post
for the post title, author, and publication date.

Think of the <header> as a semantic replacement for the main <div
id="header"> and the multiple section headings <div class="head
ing"> of yore.

64 | Chapter 3: Elements That Are New in HTML5

<footer>
The <footer> element typically contains information about its section or article, such
as who wrote it, links to related documents, copyright data, and more. Like the <head
er>, you can have more than one <footer> in a document: one representing the global
footer, and other <footer> elements for each individual <section> and/or <article>,
such as social networking links and a link to comments at the bottom of each post in a
blog.

The <footer> element should encompass the footer for the nearest ancestor sectioning
content. Similar to the <header>, each <footer> will be associated with the nearest
ancestor <article>, <section>, or <body>. If the closest parent sectioning content is
<body>, then the <footer> represents the footer for the whole document, replacing the
formerly ubiquitous <div id="footer">, and adding semantic meaning.

Author contact information belongs in an <address> element (described momentarily),
which can be in a <footer>. Footers don’t have to be at the end of a document or article,
though they usually are. Footers can also be used for appendixes, indexes, and other
such content:

<footer>
 <p>Copyright 2013
 <address>estelle@standardista.com</address>
 </p>
</footer>

Note that the footer and aside are slightly different sectioning elements: the headers of
your <footer>s and <aside>s will not be included in the outline for your document.

CubeeDoo Header and Footer
With games on mobile devices, we want to provide as much room as possible for the
board. However, if our users have a desktop screen, we have all this extra room! So,
depending on browser size, we include a header and footer above and below the game
in larger screens:

1 <article>
2 <header>
3 <h1>CubeeDoo</h1>
4 <h2>The Mobile Memory Matching Game</h2>
5 </header>
6 <section id="game" class="colors">
7 <div id="board" class="level1">
8 <!-- game board goes here -->
9 </div>
10 <footer> <!-- footer for the section -->
11 <div class="control scores">Scores</div>
12 <div class="control menu" id="menu">Menu</div>
13

Sectioning Elements in HTML5 | 65

14 <li id="level">Level: <output>1</output>
15 <li id="timer">
16 <div id="seconds"></div>
17
18 <button id="mutebutton">Mute</button>
19 <li id="score">Score: <output>0</output>
20
21 </footer>
22 </section>
23 <footer><!-- footer for the article -->
24
25 About Estelle
26 About Justin
27
28 </footer>
29 </article>

We’ve contained our page in an <article> with the game (lines 6–22) a <section>
nested within that article. The document has a <header> (lines 2–5) and <footer> (lines
23–28). In the article header, we have a title and a subtitle marked up as an <h1> and
<h2>. The page has two footers. In addition to the document footer that is relevant and
is visible in all the pages on our site, there is also a <footer> (lines 10–21) for the game’s
main screen that is encapsulated in a <section>.

Not New, but Not Often Used: <address>
The <address> element is not new to HTML5. It’s been around for a while, and is well
supported, being rendered in italic by most user agents. Almost no developers imple‐
ment it, so I’m reminding you about its existence here. And, no, the <address> element
is not for your contact information.

Unlike many elements, the semantics of <address> aren’t completely obvious. Actually,
it’s quite nuanced. The <address> element represents the “contact information for its
nearest article or body element ancestor.” If that is the <body> element, then the contact
information applies to the document as a whole. If it is an <article>, then the address
applies to that article only. Basically, it’s not meant for your street address on your contact
page, which would seem to make sense.

Grouping Content: Other New HTML5 Elements
Most of the formerly block-level elements have been divided into sectioning and group‐
ing elements. The grouping set of elements includes lists, <p>, <pre>, <blockquote>,
and <div>. We have three new elements, <main>, <figure>, and <figcaption>. The
<hr> element has been provided with semantic meaning in HTML5, so has been in‐
cluded under the new category because the old <hr> had no semantic meaning and
didn’t group anything (see Table 3-1).

66 | Chapter 3: Elements That Are New in HTML5

Table 3-1. Grouping elements
New grouping elements Older grouping elements

main

figure

figcaption

hr (changed)

p

pre

blockquote

ol

li

ul

dl

dd

dt

div

We’ll only cover the new grouping elements and changes to the older grouping elements,
as you should already be familiar with the existent ones.

<main>
The <main> element defines the main content of the page. Because it’s the main content
of the page, the <main> must be unique to the page. The <main> element is not sectioning
content like the elements just described, and therefore has no effect on the document
outline. <main> should encompass the content that is unique to the page and exclude
site-wide features like the site header, footer, and main navigation.

Being the main content, it can be the ancestor but not the descendant of articles, asides,
footers, headers, and navigation sections. No, I did not just contradict myself. Using the
example of a blog, the <main> would encompass the blog posts, along with the post’s
header and footer, but would not encompass the site-wide header, footer, navigation,
and aside.

<figure> and <figcaption>
The <figure> element encompasses flow content, optionally with a <figcaption>
caption, that is self-contained and is typically referenced as a single unit from the main
flow of the document.

OK, that was totally W3C-speak. Lay terms? You know how you’re always struggling
with how to include an image with a caption? You now have a semantic way to do it.

The <figure> element should be used on content that, if removed, would not affect the
meaning of the content. For example, most of the chapters in this book have had tables
and figures with captions. Had we removed those images, this content might be more
difficult to digest, but the flow of the text would not be affected. Those figures would
be perfect candidates for the <figure> element:

Sectioning Elements in HTML5 | 67

<figure>
 <img src="madeupstats.jpg" alt="Marketshare for chocolate
 in the USA is 27% dark chocolate, 70% milk chocolate,
 and 3% white chocolate." />
 <figcaption>Browser statics graph by chocolate type</figcaption>
</figure>

In the preceding example we used both <figure> and <figcaption>, and bogus sta‐
tistics.

Only found as the first or last child of a figure element, the <figcaption> is a caption
or legend for the rest of the contents of the <figure> it’s nested in. The inline contents
of the <figcaption> provide a caption for the contents of its associated <figure>.

<hr>
The empty <hr> element has garnered new semantic meaning in HTML5. Whereas it
used to be defined purely in presentational terms, a horizontal rule, it has been given
the semantic purpose of representing a “paragraph-level thematic break” or “hard re‐
turn.” The <hr> is useful to delineate scene change, or a transition to a new topic within
a section of a wiki.

The element-specific attributes of the <hr/> element have all been deprecated.

 and Attribute Changes
In addition to the global and internationalization changes described in Chapter 2, the
value attribute on list items and the type attribute on ordered lists, deprecated in pre‐
vious specifications, have returned. In addition, the Boolean reversed attribute has
been added to ordered lists, reversing the order of the numbers and enabling descending
order.

Text-Level Semantic Elements New to HTML5
There are more than 20 text-level semantic elements in HTML5. Some of these elements
are new, some have been repurposed, some have attribute changes, some have remained
the same, and a very few, like <acronym>, have been removed from the specification
altogether. The elements are shown in Table 3-2.

68 | Chapter 3: Elements That Are New in HTML5

Table 3-2. Text-level semantic elements
New Changed Unchanged Obsolete

mark

time

ruby

rt

rp

bdi

wbr

data

a

small

s

cite

i

b

u

q

samp

kbd

sub

sup

bdo

span

br

em

strong

dfn

abbr

code

var

acronym

big

center

font

strike

tt

<mark>
The <mark> element is used to mark text due to its relevance in another context. “Huh?”
you may ask. Think of <mark> as “marking text,” rather than giving strong or emphasized
importance to it. A good use is highlighting search terms in search results, or text in
one block that you reference in the next.

Have you ever used native search in Safari desktop? You know how it grays out the page,
highlighting occurrences of the term you were seeking?

Were you to create that effect, or the effect of viewing a cached page in Google search,
it would be correct to use <mark> for all the results that were found, with:

mark {background-color: yellow;}
mark:focus {background-color: blue;}

in your CSS. This would give you an effect similar to the results shown in Figure 3-2.

While presentational in explanation, it does have semantic meaning. Text that is marked
gets semantically (and with CSS, visually) highlighted to bring the attention to a part of
the text that might not have been considered important in its original unmarked
presentation.

Text-Level Semantic Elements New to HTML5 | 69

Figure 3-2. Searching for a string in Opera Mobile highlights occurrences of matching
text

<mark> can be used to indicate a part of the document highlighted due to its current,
though not necessarily permanent, relevance. For example, when searching for
“HTML5,” to highlight the search term in the resulting page, the most semantic method
would be to code it as follows, styling <mark> with CSS:

<p><mark>HTML5</mark> is currently under development as the
 next major revision of the HTML standard. Like its
 immediate predecessors, HTML 4.01, and XHTML 1.1,
 <mark>HTML5</mark> is a standard for structuring and
 presenting content on the World Wide Web.</p>

You can add scripts to your search functionality to encapsulate search term results with
the <mark> tags, and then you can style the marks with CSS to show how many search
results were found and where they are.

<time>
The <time> element is used to define a specific time or date, providing a precise,
machine-readable time that may get parsed by user agents to be reused for other pur‐
poses, such as entry into a calendar. In your average game, appropriate uses of the <time>

70 | Chapter 3: Elements That Are New in HTML5

3. Date values must be machine-readable dates. Date strings are defined at http://www.w3.org/TR/NOTE-
datetime.

4. From https://dl.dropboxusercontent.com/u/1330446/tests/ruby.html.

element would be the date and time that high scores were achieved, and even the du‐
ration of the game or time left.

The datetime attribute enumerates the date. If the datetime attribute is present, then
its value must be a valid date string.3 If the datetime attribute is not present, then the
element’s text content must be a valid, machine-readable date.

“I play CubeeDoo on Saturday mornings” would not be a good candidate for inclusion
of the <time> element. “Let’s play next Saturday at 11:00 a.m. (I like to sleep in)” would
be a better place to include the element, since it is an exact date and time that can be
specified:

<time datetime="2013-11-30T11:00-8:00">next Saturday at 11:00 a.m.</time>

In CubeeDoo, we could use the <time> element to encapsulate the times that the highest
scores were achieved if you list the dates: while the user sees a human-readable time,
the datetime attribute provides a machine-readable time.

<rp>, <rt>, and <ruby>
The <ruby>, or ruby annotation, element allows spans of phrasing content to be marked
with ruby annotations. This has nothing to do with the Ruby programming language.
Rather, ruby annotations are notes or characters used to show the pronunciation of East
Asian characters (Figure 3-3).

The <rp>, or ruby parenthesis, element can be used to provide parentheses around a
ruby text component of a ruby annotation, to be shown by browsers that don’t support
ruby annotations, hidden when the browser does support it. The <rt>, or ruby text,
element marks the ruby text component of a ruby annotation.

Figure 3-3. <ruby> and <rt> used to write Japanese (Translation: [Confucius says]
One must draw the line somewhere4)

Use together with the <rt> and/or the <rp> tags: the <rp> element provides information,
an explanation, and/or pronunciation of the <ruby> contents. The optional <rp> ele‐
ment defines what to show browsers that do not support <ruby>. We don’t use this in
CubeeDoo and ruby is only partially supported on mobile devices. If you are interested

Text-Level Semantic Elements New to HTML5 | 71

http://www.w3.org/TR/NOTE-datetime
http://www.w3.org/TR/NOTE-datetime
https://dl.dropboxusercontent.com/u/1330446/tests/ruby.html

5. If the href attribute is not specified, the <a> represents a placeholder hyperlink.

in more information, there is a link to a good explanation of these three elements and
their implementations in the online chapter resources.

<bdi>
The <bdi> element (in contrast to the existing <bdo> element, which overrides the di‐
rection of text) isolates a particular piece of bidirectional content. It is needed because
of the way the Unicode bidirectional algorithm deals with “weak” characters. <bdo
dir="rtl"> will invert a whole line even if only a span is encompassed. <bdi> ensures
that only the contents between the opening and required closing </bdi> tag are reversed.
The CSS3 Writing Modes specification has added some properties, like text-combine-
horizontal, to help move presentational aspects of content out of the HTML content
layer and into CSS, where it belongs.

<wbr>
The <wbr> element represents a line break opportunity within content that otherwise
has no spaces. For example, sometimes URLs can be very, very, very long. Too long to
fit in the width of your column:

<p>
Is<wbr/>CubeeDoo.<wbr/>
Part<wbr/>Of<wbr/>HTML5.com?
</p>

To ensure that the text can be wrapped in a readable fashion, the individual words in
the URL are separated using a <wbr> element. Add the <wbr> element to indicate where
the browser can break to a new line. The <wbr> is an empty element with no element-
specific attributes.

Changed Text-Level Semantic Elements
A few elements from HTML have been modified in HTML5, including a, small, s, cite,
i, b, and u.

<a>
As you well know, the <a> element represents a hyperlink. While not new, we include
a description here since there are changes to the element in HTML5, and there are
special mobile actions depending on the value of the now-optional href attribute.5

First, note that some attributes of the <a> element are now obsolete, such as the name
attribute. To create an in-page anchor, put the id attribute on the closest element to your

72 | Chapter 3: Elements That Are New in HTML5

http://www.standardista.com/mobile

6. The media, ping, and download attributes are under discussion, but are expected to be included in the
specifications.

7. Skype can also be launched from the browser. Check out http://dev.skype.com/skype-uri for more details.

target in the document and create a hyperlink to that element using the id. For example,
 is an anchor link that targets the element with an id of anchor
id. Also obsolete are the shape, coords, charset, methods, and rev attributes.

The target attribute of <a>, which was deprecated in XHTML Strict, is back. There are
a few new attributes, including download, media, and ping.6 The download attribute
indicates the hyperlink is intended for downloading. The value, if included, is the name
the filesystem should use in saving the file. The media attribute takes as its value a media
query list for which the destination of the hyperlink was designed. The ping attribute
accepts a space-separated list of URLs to be pinged when a hyperlink is followed, in‐
forming the third site that an action was taken, without redirecting through that site.

Also different in HTML5 is that the <a> element can encompass both inline and block-
level content, or in HTML5 parlance, sectioning and phrase elements. For example, this
is now a valid HTML5 hyperlink:

 <header>
 <h1>This is my title</h1>
 <p>This is my tagline</p>
 </header>

Mobile-specific link handling

Mobile devices have a few link types that receive special treatment when displayed in a
browser or in the mobile device’s email client.7

You’re likely familiar with mailto: links. When clicked, it opens your computer’s or
mobile device’s email application, creates a new message, and addresses it to the target
of the link. You can also include the subject and content for the email.

The tel: link will open the mobile device’s calling application and calls the number
used as the link’s target. In iOS, a confirmation dialog pops up before redirecting to the
phone application and dialing the number for you. When a tel: link is clicked in
Android, users are brought directly to the phone application with the telephone number
from the link pre-entered, but doesn’t dial for you. Similarly, the sms: link will open up
messaging.

If you are unfamiliar with SMS links, the syntax is:
sms:<phone_number>[,<phone-number>]*[?body=<message_body>]

Changed Text-Level Semantic Elements | 73

http://dev.skype.com/skype-uri

Clicking on the following hyperlink will open an alert that asks if you want to call the
number in the link or cancel in iOS, and brings up the key pad with the number pre-
populated on Android. The SMS link opens up the messaging application. Remember
that not all devices have SMS capabilities:

1 (650) 555-1212
Text me

Telephone number detection is on by default on most devices. For example, Safari on
iPhone automatically converts any number that takes the form of a phone number of
some countries to a phone link even if it isn’t a link, unless you explicitly tell the device
not to (see “format-detection” on page 50 in Chapter 2).

Other links handled differently are Google Maps, YouTube links, iTunes links, and
Google Play. When a regular link to a Google Maps page is included in a web page or
an email, some mobile devices will open the device’s map application, rather than open‐
ing the map in the current or new browser window. Recognizing the link, the phone
will launch the Maps application instead:

 Map of SF

Links to YouTube and to the iTunes store (in iOS) will launch the YouTube widget and
iTunes respectively. Links on Android for Android applications will open a pop-up that
asks if you want to follow the link or open the link in Google Play.

There are examples of these link types in the online chapter resources.

Text-Level Element Changes from HTML 4
We all thought the presentational elements of <i>, , <s>, <u>, and <small> were
destined to become deprecated, or made obsolete. Instead, they have newfound glory
with semantic meaning.

The <i> element should be used instead of a to offset text from its surrounding
content without conveying any extra emphasis or importance, such as when including
a technical term, an idiomatic phrase from another language, a thought, or a ship name.

The element represents a span of text to be stylistically offset without conveying
any extra importance, such as keywords in a document abstract, product names in a
review, or other spans of text whose typical typographic presentation is bold.

The <s> element encompasses content that is no longer accurate or relevant and is
therefore “struck” from the document. The <s> element has been around for a long time,
but before HTML5 only had a presentational definition. HTML5 provides <s> with
semantic value.

Similarly, the <u> element has been given semantic value. The <u> element represents
text offset from its surrounding content without receiving any extra emphasis or im‐

74 | Chapter 3: Elements That Are New in HTML5

http://www.standardista.com/mobile

portance, and for which the typographic convention dictates underlining, such as mis‐
spelled words or Chinese proper names.

The <small> element should be used to represent the “fine print” part of a document.
While <small> text doesn’t need to be displayed in tiny print, it should be reserved for
the fine print, such as legalese in a sweepstakes or side effects in a pharmaceutical ad
(which, if you think about it, should really be in a huge font).

While I didn’t think <cite> was heading for the realm of distant memories, it too has
acquired new meaning. The <cite> element now solely represents the cited title of a
work; for example, the title of a book, song, film, TV show, play, legal case report, or
other such work. In previous versions of HTML, <cite> could be used to mark up the
name of a person: that usage is no longer considered conforming.

Unchanged Elements
While you likely know the usage of all the text elements that preceded HTML5 and
haven’t had any semantic updates, some may be used less often. Table 3-3 shows a quick
summary.

Table 3-3. Unchanged elements
Element Description

em Text with emphatic stress.

strong Text with strong importance.

q Text quoted from another source.

dfn The defining instance of a term.

abbr Abbreviation or acronym. Note that acronym has been made obsolete. Include a title attribute with the full term.

code Fragment of computer code.

var Math or programming variable or placeholder meant to be replaced with another value.

samp Sample output from a program or computing system.

kbd Representation of user (keyboard) input.

sub Subscript.

sub Superscript.

bdo Directionality formatting control providing a way to specify a direction override.

span Generic, nonsemantic wrapper for phrasing content.

br Line break.

There are also the <ins> and elements, which are considered editing elements,
representing insertion and deletion, respectively.

Changed Text-Level Semantic Elements | 75

8. The <picture> element for responsive images is currently under consideration. The draft specification is at
http://www.w3.org/TR/html-picture-element/.

Embedded Elements
The 12 embedded elements include six new elements and six old elements. The new
elements include the following:8

• embed

• video

• audio

• source

• track

• canvas

And these are the existing elements:

• img

• iframe

• object

• param

• map

• area

The embedded elements include the media elements, <video>, <audio>, <source>,
<track>, and <canvas>, which we will discuss in Chapter 5. The other “new” element
is <embed>, which has been implemented for years but was never part of the HTML 4
or XHTML specifications. We’ll discuss this new element and visit the previously exis‐
tent elements, as some attributes have been made obsolete.

Changes to Embedded Elements
<iframe>

The <iframe> element is not new to HTML5, but it does have different attributes than
before. <iframe> lost longdesc, frameborder, marginwidth, marginheight, scroll
ing, and align attributes, and gained srcdoc, sandbox, and seamless.

The srcdoc attribute value is HTML that is used to create a document that will display
inside the <iframe>. In theory, any element that can be used inside the <body> can be
used inside the srcdoc. You should escape all quotes within the srcdoc value with

76 | Chapter 3: Elements That Are New in HTML5

http://www.w3.org/TR/html-picture-element/

" or your value will end prematurely. If a browser supports the srcdoc attribute,
the srcdoc content will be used. Browsers that do not support the srcdoc attribute will
display the file specified in the src attribute instead:

<iframe srcdoc="<p>Learn more about the
<a href="http://developers.whatwg.org/the-iframe-element.html
#attr-iframe-srcdoc">srcdoc attribute."
src="http://developers.whatwg.org/the-iframe-element.html
#attr-iframe-srcdoc"></iframe>

The sandbox attribute enables a set of extra overrideable restrictions on any content
hosted by the <iframe>. The effect of adding the attribute is to embed the externally
sourced content as if it were served from the same domain, but with severe restrictions.
Plug-ins, forms, scripts, and links to other browsing contexts within the <iframe> are
disabled. The content of the <iframe> is treated under a unique origin and cannot
traverse the DOM or read cookie information. These features are overwritable by setting
a value to the sandbox attribute that conforms to a specific syntax.

The allow-same-origin keyterm allows the content to be treated as being from the
same origin instead of forcing it into a unique origin. The allow-top-navigation
keyword allows the content to navigate its top-level browsing context; and the allow-
forms, allow-pointer-lock, allow-popups, and allow-scripts keywords re-enable
forms, the pointer-lock API, pop-ups, and scripts, respectively. Include zero or more
space-separated values depending on your needs, but realize that each value can create
a security risk:

<iframe sandbox="allow-same-origin allow-forms allow-scripts"
 src="http://maps.google.com" seamless></iframe>

The seamless attribute makes the <iframe> appear seamless: as if it’s a native part of
the parent document. When supported, it is expected that it will allow CSS rules to
cascade from parent through to the contents of the <iframe>, enable links to navigate
the parent, and grow and shrink as necessary to expand to fit the parent, all on same
origin only.

The empty element lost the border, vspace, hspace, align, longdesc and name
attributes. There is discussion around adding a srcset attribute to provide for alter‐
native images based on width, height, or pixel density.

Unless an image is part of the content of your page, and necessary for context, you will
want to use background images instead. We cover background images, and how to serve
different background images for different screen sizes and devices of differing DPIs in
Chapter 9.

Embedded Elements | 77

9. The Clown Car Technique is described in full detail at http://github.com/estelle/clowncar/.

If you do want to support responsive foreground images, until browsers natively support
the srcset attribute, the <picture> element, or client hints, the Clown Car Techni‐
que9 <object> tag can be employed to serve SVG files (discussed in Chapter 5) that
provide a single raster image based on media queries.
<object>

The <object> element requires the data and type attributes. Several attributes, includ‐
ing align, hspace, vspace, and border were made obsolete in favor of CSS. Also obsolete
are the archive, classid, code, codebase, and codetype, which should be set in the
<param> instead. Instead of using the old declare attribute, repeat the <object> at each
occurrence. Instead of using the now-obsolete standby attribute, optimize the resource
so it loads quickly, and incrementally if applicable. While not often used, <object> is
well supported.
<param>

The empty <param> element lost the type and valuetype attributes in favor of the name
and value attributes.
<area>

The empty <area> element lost the nohref attribute, and gained the rel, ping (see the
section “<a>” on page 72 for a description), media, and hreflang attributes.

<embed>

The <embed/> element is likely not new to you. It’s just new to the specifications. The
<embed> element is an integration point for content that will be displayed with a third-
party plug-in (e.g., Adobe Flash Player) rather than a native browser control like <vid
eo> and <audio>. Like the element, it is an empty element and should be self
closing. Include the URL of the embedded source with the src attribute and MIME-
Type of your source with the type attribute.

Interactive Elements
The interactive elements currently include form elements, the changed <menu> element,
the new <detail>, <summary>, and <command> elements.

<details> and <summary>
Have you ever created a node that, when clicked on, opens up more details about the
content of the node? And, when clicked on again, the details disappear? When sup‐
ported, the <details> and child <summary> enable doing this natively in HTML5
without any JavaScript (Figure 3-4).

78 | Chapter 3: Elements That Are New in HTML5

http://github.com/estelle/clowncar/

Figure 3-4. Clicking on the always visible <summary> toggles the visibility of the
<details>

The <details> element can be used to encompass a disclosure widget from which the
user can obtain additional information or controls, such as content that may best fit
into footnotes, endnotes, and tooltips. The <details> element has an open attribute
that is also new in HTML5. With the open attribute, the content of the <details> will
initially be visible. Without the open attribute, the details will be hidden until the user
requests to see them.

The <summary> element should be included as a child element of the <details> element,
with its text node providing a summary, caption, or legend for the rest of the contents
of the <summary> element’s parent details element. The contents of the <summary> show
by default whether the open attribute is set or not. By clicking on the <summary>, the

Interactive Elements | 79

user can show and hide the rest of the content of the <detail> element. This interactivity
is a default behavior of the <details>/<summary> element combo and, when supported,
requires no JavaScript:

<details>
 <summary>5 of 5 stars from three reviews</summary>

 5 stars from Amazon
 5 stars from Costco
 5 stars from Barns & Noble

 </details>

When supported, the contents of <details> (except for the <summary>) are hidden, as
the optional open attribute is not included (the default is to hide everything other than
the summary). The rest of the contents should display when the <summary> is clicked.
The <summary>, not to be confused with the summary attribute of the <table> element,
a child of the <details> element, is the control that toggles the rest of the <details>
content between visible and hidden (as if display: none; was set). The <summary>
element represents a summary, caption, or legend for the rest of the contents of the
parent <details> element.

Because the <summary> is the control to open and close the <details> element, it is
always visible (in both the details open and not open states). Until all browsers support
this functionality, it’s easy to replicate with JavaScript. Simply add an event listener to
the summary element that adds and removes the open attribute on the parent <details>
element, and add the following styles to your CSS:

details * {display: none;}
details summary {display: auto;}
details[open] * {display: auto;}

If that last line doesn’t make sense to you yet, don’t worry! We cover attribute selectors
in Chapter 8.

<menu> and <menuitem>
The <menu> element, deprecated in HTML 4.01 and XHTML, has resurfaced. Originally,
it was defined as a “single column menu list.” In HTML5, the <menu> element has been
redefined to represent a list of commands or controls.

The <menu> element has been redefined in HTML5 to list form controls. The value of
the <menu>’s id attribute can be included as the value of a <button>’s menu or <input>’s
menuitem attribute to provide a menu or context menu for a form control. A menu can
contain <menuitem> elements that cause a particular action to happen. The type at‐
tribute set to toolbar should be used when using <menu> to mimic a toolbar or when
using context to create a content menu. The value of the label attribute determines
the menu’s label. They can be nested to provide multiple levels of menus.

80 | Chapter 3: Elements That Are New in HTML5

<menuitem>

The <menuitem> element, found only inside the <menu>, defines a command button or
context menu item. The type of command is defined by the type attribute, which can
have as its value radiobutton for selecting one from a list of items, checkbox for options
that can be toggled, or command to create a button upon which you can add an action.
Though it sounds like a typical form control, it is not intended for the submission of
information to a server. <menuitem> is an interactive element included to enable inter‐
activity with the current contents of a web page.

The <menuitem> is an empty element with no closing tag. You should make sure to
include a label attribute whose value is what will be displayed to the user. Other at‐
tributes include icon, disabled, checked, radiogroup, default, and command. The
command attribute’s value is the command definition. The title attribute, if included,
should describe the command.

When implemented, you can create menu controls similar to the right-click menu con‐
trols that display in the Windows environment. So far, there is only experimental support
for this on desktop, and no support on mobile.

All of XHTML Is in HTML5, Except...
Almost all of the elements from XHTML are still available and valid in HTML5. The
elements that are obsolete include the following:

• basefont

• big

• center

• font

• strike (use)
• tt

• frame (<iframe> is still valid)
• frameset

• noframes

• acronym (use <abbr>)
• applet (use <object>).
• isindex

• dir

As mentioned earlier, a few elements, instead of being made obsolete, have gained more
semantic meaning. , <hr>, <i>, <u> and <small>, while completely presentational in

Interactive Elements | 81

prior specs, now have semantic meaning and are defined beyond their appearance.
<menu> has gained a purpose to be useful for toolbars and context menus. now
means “important” rather than “strongly emphasized.” <a> can now encompass blocks
instead of just inline content, and doesn’t need to have the href attribute present.

Some attributes are now obsolete. Some attributes have been added. Most of the changes
are in web form elements, which we’ll cover in great detail in Chapter 4. Otherwise, a
few things to note that have not been previously detailed include:

• <table> no longer has the width, border, frame, rules, cellspacing, and cell
padding attributes.

• has regained the reverse and start attributes.
• <col> and <colspan> lost all their element-specific attributes except for span.
• <td> and <th> had their attributes narrowed down to headers, rowspan, and col
span, obliterating abbr, axis, width, align, and valign. Scope was removed for
<td> but remains for <th>.

• <tr> and <thead> are attribute-less other than the global attributes.

In Conclusion
The HTML5 spec is huge. This section has introduced you to the syntax and semantics
of HTML5, and to some of the new elements. This chapter was intended as a quick (or
not so quick) explanation of the new elements in HTML5.

We’re not done with HTML5. We are going to cover some wonderful features of web
forms in Chapter 4, and show you how the Web Form features of HTML5 can help you
quickly develop fantastic user interfaces with minimal JavaScript.

82 | Chapter 3: Elements That Are New in HTML5

1. When you set focus on a form element, the page jumps to that form field, skipping over the preceding
associated label for that input; this is bad for accessibility and can negatively impact user experience, especially
on small devices where the label may get cut off. Due to accessibility issues with both these methods, you may
want to avoid using either one.

CHAPTER 4

HTML5 Web Forms

If you’re a web geek like me, perhaps the coolest new features of HTML5 are the new
form features. Yes, Canvas is fabulous. SVG is wonderful. JavaScript APIs provide for
targeting DOM nodes with selectors; matching with media queries; and easily adding,
removing, and toggling class names all without needing to include a JS framework (if
you don’t believe me, wait; we’ll cover these topics later). CSS3 enables quick prototyping
of any designer’s whimsy. So, why are HTML5 forms my favorite? Because HTML5 web
forms provide enhanced usability and reduced reliance on JavaScript validation.

With HTML5, we are able to do form validation and several other tricks in a more
declarative way. HTML5 allows developers to provide enhanced form usability features
such as validation and error messaging without JavaScript. Reduced reliance on Java‐
Script can reduce development and maintenance time, making our lives much easier.

For example, instead of adding a setFocus() method on onload to provide focus to a
form element, we now have an autofocus attribute (which you still shouldn’t use).1

Instead of providing multiple JavaScript functions to require, validate, and provide focus
on error to email addresses, HTML5 web forms enable labeling form controls as re‐
quired, provides native validation of multiple input types (both standard types like email
format, and formats the developer can define with regular expressions), and provides
useful error messaging for the user as to what the error was.

In the past, we’ve been adding a plethora of attributes and event handlers to our form
elements. With default values and behaviors provided by HTML5, when universally
supported and used, we might just be able to write <form>!

83

Before, we were very limited with what type of data we could specify. The type attribute
of the <input> element was limited—with 'text' used for most data entry form fields
no matter what type of data was expected—showing the QWERTY keypad for data entry
on mobile devices. With HTML5 web forms, we can tell the browser what data types to
accept, dictate the data entry patterns that are acceptable, and provide suggestions or
tips to the user. Mobile browsers are providing improved HTML5 web form support,
including displaying relevant virtual keyboards based on expected input type (like a
phone keypad if the input type expects a phone number), and enhanced UI features,
like calendars and color pickers.

Before HTML5, developers used CSS for appearance, JavaScript for validation, and
backend code for ensuring a required element was completed. While you should defi‐
nitely continue separating the three concerns and always validate user data on the back‐
end, with HTML5 we will eventually be able to omit the frontend JavaScript layer, or at
least simplify it greatly.

With HTML5, the browser can check that required elements are completed with the
correct datatype, in the correct range, with the correct syntax, etc., preventing the form
from submitting if data is incorrect. These features are über cool and are nearing full
browser support. In this chapter, we’ll discuss all the new features and whether they are
already or soon to be supported.

Mobile devices have been supporting some of the HTML5 web form features for a while,
and other features are just beginning to get support. On most touch devices with virtual
keyboards, browsers will present users with the correct minimal keyboard, showing the
keypad most relevant to completing the web form input type. Other mobile browsers
handle most of the new web form UI features and native validation. No matter what
level of support mobile devices have the day you are coding your forms, you should
definitely be using all of the HTML5 web form features, as all the features are progressive
enhancements. Newer browsers will have advanced features, but even the oldest of mo‐
bile browsers from the mid-1990s would present your HTML5 form elements in an
accessible manner.

To indicate that a form control expects a particular type of input, you can specify the
types using the type attribute. Before, we were limited to a small group of input types
and we had to jump through hoops to validate them client-side before allowing sub‐
mission to the server. With HTML5, not only are we provided with more input types,
but now we also have native validation of many datatypes. Soon, the thousands of Java‐
Script validation scripts we’ve programmed will be obsolete as we rely on the browser’s
native form validation. Until we have full native support of the features described in the
next section, we can fake support for all of them with minimal JavaScript. With a little
JavaScript—and taking advantage of the new attributes and input types, while still
using UI Selectors (see the section “Styling to enhance usability” on page 122), attribute

84 | Chapter 4: HTML5 Web Forms

selectors (see Chapter 7), and input-specific dynamic keyboards, we can improve usa‐
bility in all modern browsers while HTML5 web form support improves.

Attributes of <input> (and Other Form Elements)
Before diving into the old and new input types, you should understand some of the new
and old attributes of the <input> element.

The type Attribute
We just discussed the only required input attribute: the type attribute. Although re‐
quired, it will work if omitted, defaulting to type="text":

<label>Phone: <input type="tel" name="phone"></label>
<label>Website: <input type="url" name="website"></label>

With HTML5, there are 23 possible values of the type attribute. They are covered in
the section “<input> Types and Attributes” on page 94. Note that if a browser doesn’t
support a new input type, the type defaults to the text type. These new types are an
enhancement. Forms are fully accessible if the browser doesn’t understand the new
types, so don’t wait for full browser support before implementing the new input types.

The required Attribute
To mark a form field as required, the required attribute can be used. When a user tries
to submit a form, if a form field is required and is left empty or contains an invalid
value, the form should not submit, and focus will move to the first invalid form element.
Supporting browsers provide the user with an error message, such as “You have to
specify a value” if left empty or “12-12 is not in the format this page requires” when the
pattern is wrong (the pattern attribute is described on page 89), or other similar message.

The required attribute is valid on any input type except buttons, range, color, and
hidden:

<label>Email: <input type="email" name="email" required="required" /></label>
<label>Phone: <input type="tel" name="phone" required /></label>

The syntax is either simply required or required="required" if you are coding
with strict XHTML syntax.

Form elements with no value selected do not need to match the appropriate format
expected for their type unless they are required controls. An email type with no value
selected is empty, and therefore doesn’t need to match any email format. However, if the
required attribute is present, it will stop submission for being empty or being of the
wrong format.

Attributes of <input> (and Other Form Elements) | 85

Pro Tip: Browsers that support the required attribute also support
the :required and :invalid pseudoclasses. You can provide visual
cues to the user to indicate which fields are required, indicating suc‐
cessful data entry with CSS:

input:focus:invalid {
 background-color: #CCCCCC;
}
input:valid {
 background-color: #00FF33;
}
input:required {
 border: 2px solid #0066FF;
}

We discuss CSS3 UI selectors in Chapter 7.

Accessibility Tip: For improved accessibility, whenever the required
attribute is included, include the ARIA attribute: aria-

required="true" (we discuss ARIA, or Accessible Rich Internet Ap‐
plications, in Chapter 6):

<input type="tel" name="phone" required aria-required="true"/>

Minimum and Maximum Values: The min and max Attributes
To set the range of values that are allowed, the min and max attributes can be used.

The min and max attributes can be applied to the date/time inputs, number and range
only. If the browser provides a UI widget for the input type, it disables selecting a value
outside the min/max range by not showing values below and above the allowable range
set by the min and max attributes.

On browsers that fully support the number input type, the browser displays a spinner
that is limited in range, and will go down to the min and up to the max values. In UIs
that provide for free form data entry, like the number input type, if the form element is
required, the form will not submit if the value is outside of the range set by min and/or
max in supporting browsers.

In the range input type, the leftmost value will be set to the min value and the right value
will be set to max if it is larger than min. These attribute features will be discussed with
the number and range input types in the next section.

Minimum and maximum values have often been incorporated into form validation,
which makes these attributes very helpful for web developers. For example, if you’re
writing a reservation system, you already know what times you have available to seat
people. You can encode this information in the page’s form itself, so the user never ends

86 | Chapter 4: HTML5 Web Forms

up submitting an invalid time, avoiding the dreaded error message. Instead, the page
already knows when the available slots are, and only lets the user select a valid time:

<label>Reservation Time:
 <input type="time" min="17:00" max="22:00" name="dinner" required>
</label>

In the online restaurant reservation system example, you serve dinner starting at 5:00
p.m., with your last seating at 10:00 p.m. In supporting browsers, without any JavaScript,
you can ensure that your system only accepts reservations during those hours.

The step Attribute
The step attribute is implicitly included in date/time input types, range and number,
but can also be explicitly defined on those input types. For example, if you have a five-
and-dime store, where every price is divisible by 5, and the maximum price is $1.00,
you can include the following in your price-setting GUI:

<p>
 <label for="cost">Price </label>
 <input type="number" min="5" max="100" step="5" name="cost" id="cost"/>
</p>

If the UI provides a widget, such as the range slider, moving the slider will increment
the value by the value of the step attribute. Similarly, the number type’s spinner will
increase and decrease by the value of the step.

In UIs that provide for freeform data entry, like the number input type, supporting
browsers will not submit the form if the value is not a valid step greater than the min‐
imum value. For example, in the preceding example, 7 would not be valid. Had the
minimum been 2 and the step 5 (as in the following code sample), 7 would have been
valid, but 100 would not have been:

<p>
 <label for="cost">Price </label>
 <input type="number" min="2" max="100" step="5" name="cost" id="cost" required/>
</p>

In the online chapter resources, the number, range, month, and time examples include
examples using the step attribute.

In the step examples, I used explicit labels with the for attribute. Prior
to this, I employed implicit labels. The for attribute is explained lat‐
er in this chapter.

Attributes of <input> (and Other Form Elements) | 87

http://www.standardista.com/mobile

The placeholder Attribute
Possibly the most common JavaScript form feature is including placeholder text inside
a form control, providing a hint or instruction on expected datatypes. Originally on
focus but now on data entry, the placeholder text disappears. On data deletion, if the
input is empty, the placeholder text reappears. User-agent stylesheets style the place‐
holder text as background text so as to make it apparent that the form element is still
empty. HTML5 provides us with this functionality natively with improved accessibility.
The placeholder attribute does what our oft-coded, rarely accessible placeholder func‐
tion used to do, greatly improving form accessibility without the need for JavaScript.

One difference between our inaccessible scripts and the accessible placeholder at‐
tribute is the placeholder text disappears on change rather than on focus. In most
modern browsers, the placeholder text remains in place as long as no text has been
entered into the input field.

The placeholder attribute is a short hint for the user about what data should be entered.
If a long hint is needed, describe the input type in a title attribute or in text next to
the <input> element, but not in place of the <label> or placeholder. To ensure that
your forms are accessible, include labels for your form elements: <label>s, not <ti
tle>s or <placeholder>s, provide for form accessibility.

While the placeholder attribute is only relevant to the text, search, url, telephone,
email, and password types, until all browsers correctly support date and color types,
it makes sense to include a placeholder value so the user knows what format to enter,
especially if the pattern attribute, described next, is included. We’ve included place
holder values in most of the chapter code examples and online chapter resources.

The :placeholder-shown UI pseudoclass has been added to the CSS Selectors Level 4
specification. When supported, this pseudoclass will enable the styling of <input> ele‐
ments based on the presence, or lack of presence, of the placeholder text (see Appen‐
dix A):

input:placeholder-shown {}
input:not(:placeholder-shown) {}

Include the attributes discussed in this chapter even if they aren’t fully
supported in all browsers. Attributes that aren’t understood are ignor‐
ed. These “ignored” attributes are still useful when used in conjunc‐
tion with JavaScript to fake support for browsers.
You can use JavaScript to capture the contents of the unsupported
attributes such as placeholder, min, max, pattern, and unsupported
input types to polyfill support.

88 | Chapter 4: HTML5 Web Forms

http://www.standardista.com/mobile

The pattern Attribute
The pattern attribute is supported wherever the placeholder attribute is allowed,
which makes sense. The pattern attribute contains a JavaScript-style regular expression
that the <input>’s value must match before the form can be submitted.

The pattern attribute allows for specifying a regular expression against which the con‐
trol’s value is to be checked. The pattern attribute is currently case-sensitive and must
be a complete match. The regular expression language used for this attribute is the same
as that used in JavaScript, except that the pattern attribute must match the entire value,
not just a subset. If you want to allow the user to add more characters than provided by
your regular expression, add * at the end to allow for more characters.

Table 4-1 provides the very basics of regular expressions.

Table 4-1. Some of the metacharacters of regular expressions used in pattern matching
for the value of the pattern attribute

Metacharacter Meaning

? Match the preceding character 0 or 1 times only.

* Match the preceding character 0 or more times.

+ Match the previous character 1 or more times.

{n} Match the preceding character n times exactly.

{n,m} Match the preceding character at least n times but not more than m times.

[] Match anything inside the square brackets for one character position once and only once. [123] will match 1,
2, or 3.

[n-m] The dash inside square brackets is the range separator and allows us to define a range; [123] could be written
[1-3].

[^n-m] The caret inside the brackets is a negation character, and will match any character except n through m.

\d Match any digit. Equivalent to [0-9].

\D Match any nondigit character. Equivalent to [^0-9].

\s Match any whitespace characters (space, tab, etc.).

\S Match any nonwhitespace character.

\w Match any letter or number. Equivalent to [0-9A-Za-z].

\W Match any character that is not a letter or number. Equivalent to [^0-9A-Za-z].

() Parentheses can be used to group (or bind) parts of the expression together.

| The vertical bar or pipe means find the lefthand or righthand values: gr(a|e)y will find “gray” or “grey.”

Note that explaining regular expressions is beyond the scope of this book, but several
code examples in the online chapter resources have regular expressions that you can
learn from. Just realize that if you make a mistake (if your pattern is not a valid regular
expression), it will be ignored for the purposes of validation, as if it were not specified.

Attributes of <input> (and Other Form Elements) | 89

http://www.standardista.com/mobile

When including a pattern, it’s good practice to include a title attribute to give a
description of the pattern. To use our color pattern and credit card number examples:

<label for="col"> Color: </label>
<input pattern="#[0-9A-Fa-f]{6}"
 name="col" type="color" placeholder="#ffffff "
 id="col" title="A hash sign followed by 6 hexadecimal digits"/>
<label for="cc"> Credit Card: </label>
<input type="text" pattern="[0-9]{13,16}"
 name="cc" id="cc" title="13 to 16 digit credit card number"
 placeholder="credit card #"/>

Some mobile browsers support the color input type, providing a color widget for color
selection. This is covered later in the chapter. Other browsers support the pattern
attribute, but have yet to support the color input type. While we wait for full support,
we can employ the pattern attribute, as shown in the preceding code, to require the
correct input format in these semi-supporting browers.

In supporting browsers, if the user’s input does not match the pattern provided via the
pattern attribute, the form will not submit and the browser will put focus on the first
invalid input type, providing a validation error message, as shown in Figure 4-1, in
browsers that already support native validation.

Figure 4-1. Native validation displays an error message when a pattern mismatch oc‐
curs (BlackBerry 10)

90 | Chapter 4: HTML5 Web Forms

CSS Tip: Use the :invalid pseudoclass to target elements for styling
that have content that does not match the pattern attribute, or is other‐
wise invalid. The :valid pseudoclass will match when the content
matches the pattern, or is otherwise a valid entry.

The readonly Attribute
This readonly attribute, when present, makes a form control not editable. The attribute
applies to text, password, email, URL, date/time, and number input types, as well as the
<textarea> element. It does not apply to radio buttons, checkboxes, file upload controls,
range controls, select elements, or any of the button types, since they are not editable
anyhow. It’s not a new attribute, so it is supported in all browsers, including older ver‐
sions of IE. The readonly attribute is Boolean, so can be written either of these two
ways:

<input type="text" value="Not Editable" readonly/>
<input type="text" value="Not Editable" readonly="readonly"/>

The disabled Attribute
The disabled attribute disables a form element. It can be applied to any form control
except the <output> element. In HTML 4, the disabled attribute did not apply to the
<fieldset> element. Now, when applied to a <fieldset> element, it overrides the
disabled attributes of any child form controls, even if they are part of a different form
(see the section “The form Attribute” on page 92). In other words, a form control will be
disabled if it has its disabled attribute set, or if it has a parent <fieldset> that has its
disabled attribute set.

CSS Tip: Use the :disabled pseudoclass to target disabled elements
for styling.

So, what is the difference between readonly and disabled? Neither can be modified,
but the readonly attribute can be tabbed to and is submitted along with the form. The
disabled form control cannot receive focus, nor is it submitted with the form.

The maxlength Attribute
The maxlength attribute applies to text, password, url, search, telephone, and email
input types, and <textarea> elements, but not to date/time or number input types. In
HTML 4, this attribute only applied to the text and password types.

Attributes of <input> (and Other Form Elements) | 91

While you can include maxlength on email and URLs, I generally recommend that you
don’t use maxlength unless necessary for a compelling reason. While supported in all
browsers, why should the user interface be allowed to determine that an email address
or URL is too long? Understandably used for security reasons and if there are real
character limits, for good user experience you should consider the consequences before
adding this attribute. Even Twitter doesn’t use it, as users want to enter more than 140
characters sometimes, and then omit words or delete characters where they can to fit
into the 140-character limit.

The size Attribute
The size attribute is another older attribute. It historically had two functions: to define
the number of options meant to be shown by a form control like a <select>, and to
define the number of characters to display in a form control by controlling the width
of the control. The size attribute of the <input> element should be deprecated in favor
of using CSS to specify the layout of the form.

The size attribute was actually deprecated for a time, but was put back into the draft
HTML5 specifications. The size attribute does not determine how many characters
can be entered (use maxlength instead) or how many options can be selected (use
multiple instead).

The form Attribute
New in HTML5, form controls don’t have to be nested within a form. The new form
attribute allows a form element to be associated with any form on the page. They can
also be nested in one form but submitted with another.

A form control can have a form attribute with the id of the <form> with which the form
control is associated. In this way, you can put form controls anywhere on a page, in‐
cluding outside of the form with which it should be submitted.

This is a bit complex to explain, so let’s take a look at an example:
<form id="form1">
 <!-- all nested form content here -->
</form>

<p>
 <label for="userid">User ID</label>
 <input type="text" id="userid" name="user" form="form1"/>
</p>

The #userid <input> is not a descendant of #form1. In previous versions of HTML,
the name and value of #userid would not be sent with the form upon form submission.
In browsers that support the HTML5 form attribute, because the id of the form is

92 | Chapter 4: HTML5 Web Forms

2. Google is working on a requestAutocomplete() API as a web standard to allow form fields to request form
completion information the browser knows.

included as the value of the #userid form attribute, when #form1 is submitted, #user
id will be sent along with the form even though it is not a descendant of the form.

Before HTML5 web forms, form controls had to be nested within an ancestor <form>.
With HTML5, form controls and fieldsets are associated with the forms given in their
form attribute, or, if they don’t have one, with the nearest ancestor <form>.

Note that an empty string, form="", will disassociate the element from
all forms, even the form for which the form element is a descendant,
which can have unintended consequences. Generally, you will want to
use removeAttribute('form') rather than setAttribute('form',
''); to avoid disassociating a form field from the <form> element in
which it is nested.

The autocomplete Attribute
Autocompletion is a native feature in many browsers.2 When a browser enables auto‐
complete functionality, it may store the value entered by the user so that if the user
returns to the page, the browser can pre-fill the form. The autocomplete attribute is the
method by which the site author (you) can suggest to the user agent that you do or don’t
want the autocomplete feature turned on for a particular form field. autocomplete takes
one of three values: on, off, or default. The on keyword will map to the on state, and
the off keyword maps to the off state.

The off state indicates that the form control’s data is sensitive, like a password, or that
it will never be reused, like a CAPTCHA. The user will have to enter the data each time,
and the browser should not pre-fill the value. Conversely, the on state indicates that the
user can expect to be able to rely on their browser to remember previously entered values
for that control. Omitting the value puts the form control in the default state, which
means the form control should have the same autocomplete value of the form it is
associated with:

<p>Login: </p>
<p>
 <label for="user">Username: </label>
 <input type="text" name="user" id="user" autocomplete="on"/>
</p>
<p>
 <label for="pwd"> Password:</label>
 <input type="password" name="pwd" id="pwd" autocomplete="off"/>
</p>

Attributes of <input> (and Other Form Elements) | 93

The autofocus Attribute
The autofocus attribute specifies that the form control should have focus when the
page loads. Only one form element can have autofocus in any given page. The Boolean
autofocus attribute can be included in a single <input> (except type hidden), <but
ton>, <select>, or <textarea> per page. If more than one element is assigned the
autofocus attribute, the last element with the autofocus attribute set will get focus.

As mentioned earlier, for usability and accessibility reasons, I recommend against using
the autofocus attribute. If you were using jQuery as an exact shim for the attribute, it
would read:

$('[autofocus]').last().focus();

That line of code reads, “Find all the elements with the autofocus attribute, get the last
one and give that focus.” This is likely not what you would want. For better usability,
you want to highlight the first element, not the last, which is the opposite of what this
does.

Note that focusing on a text field on onload is disabled in iOS because the keyboard will
show up.

HTML5 has added a plethora of very useful input types and attributes. There are now
23 input types, and even more input attributes. As we’ve already seen, some attributes
belong to only certain input types. Browsers that don’t support a specific input type
attribute may still support other attributes in the <input>. A browser may support
attributes on the text input type (such as maxlength or size), and will therefore support
those attributes on a type it doesn’t support, as the input will default to text type. For
example, as displayed previously, while not all browsers support the color input type,
they all support the disabled attribute on all input types.

<input> Types and Attributes
There are now 23 values for input type. Some are old. Some are new in HTML5. We’ll
cover them all.

Re-introduction to Input Types You Think You Know
Let’s first recap the input types we’ve been able to use prior to HTML5. While you may
think “I’ve been coding HTML for years; I already know this stuff,” most developers
haven’t really thought about all the different <input> types. This recap may be helpful
even if you’re a pro.

94 | Chapter 4: HTML5 Web Forms

Pro Tip: Generally, you will want to style buttons differently than text
and other input types. You can use attribute selectors to target form
input fields based on their type value. This code snippet makes the
borders of all input elements except those of input type submit have a
dark gray border:

input:not([type=submit])){
 border: 1px solid #666666;
}

We discuss attribute selectors and the :not pseudoclass in Chapter 8.

Text: <input type=“text”>
Displayed as a data entry box, the text input type, type="text", often called “text box”
or “text field,” allows the user to input one line of text. This is also the default value for
the required type attribute: if the type is omitted or not supported, it will default to text.

text is the default value for the <input> element. If the type at‐
tribute is missing or the value is misspelled or unsupported, the
browser will treat the input as type="text". This means that if a
browser does not support a new HTML5 input type, it will display the
default text type. So, feel free to use all the HTML5 input types even
if you’re still supporting Netscape 4.7. In the worst case, your users will
see text boxes.

The value attribute is optional. If included, the value of the value attribute will display
inside the text box on page load. Only include a value for the value attribute if you are
pre-filling a form for the user using data you would like to receive back.

Other attributes include name, disabled, form, maxlength, readonly, size, autocom
plete, autofocus, list, pattern, required, and placeholder. The new attributes we
discussed are what make the text input type so interesting and useful in HTML5:

<label for="username">Username</label>
<input type="text" name="username" id="username"/>

<input> Types and Attributes | 95

It is not a good idea to include instructions as the value of the value
attribute, as users most likely will submit the instructions you provid‐
ed instead of filling out the form field. The values submitted on form
submit will be whatever is contained in the input box at the time of
submission. So, unless the form is pre-populated, do not include the
value attribute. The placeholder attribute should be used to pro‐
vide a hint, supplying the correct solution to this very old problem.

If you want to include instructions as the default value displayed in your text box, do
so using the placeholder attribute.

As mentioned earlier, it is a good idea—generally good user experience—to pre-
populate the text input boxes with values from a database if your user is registered, the
information is available, and the information poses no security issues.

Password: <input type=“password”>
The password input type, type="password" or “password” field, is like the text field just
described except the value entered by the user or the default value entered via the value
attribute is obfuscated in the UI. Instead of displaying “pAssW0rd,” the user will see
“••••••••.” Although hidden from the user interface, the password value is sent to the
server as plain text.

Note that if you’re requesting a user password, use the form’s POST
method over SSL. While the password is obfuscated in the browser
window, the password is sent to the server as plain text. If you were to
use GET, the URL of your form confirmation page might read:

https://www.website.com/index.php?user=Estelle&password=pAssW0rd

When requesting a password in a form, use the form’s POST method over the HTTPS
protocol. While using the POST method still submits the password value in plain text, it
is sent behind the scenes so is not as blatant of a security risk:

<label for="password">Password</label>
<input type="password" name="password" id="password"/>

Also note that in WebKit you can make nonpassword types look like password input
types with the CSS -webkit-text-security property. Set -webkit-text-security to
circle, square, disc, or none to alter the presentation and control the appearance of
the icons that are obfuscating the value entered by the user.

By default and for better usability with tiny smartphone keyboards, some mobile devices
temporarily display the last character entered in a password field.

96 | Chapter 4: HTML5 Web Forms

Checkbox: <input type=“checkbox”>
The checkbox input type, type="checkbox", better known as a “checkbox,” has as a
default presentation a small square: with a checkmark if selected, empty if not selected,
or a horizontal line through the middle if the state is indeterminate. Checkboxes are
great for yes or no type answers, or when multiple answers can be checked: for example,
you have either read and agree to the web form’s associated privacy policy or you haven’t
and don’t. On a travel site, you may be willing to fly out of San José or San Francisco,
but not Oakland.

Remember to always include a name and value for each of your checkboxes. On form
submission, if a checkbox is checked, the name and value attribute values will be sub‐
mitted as a name/value pair. Unchecked checkboxes are omitted from the data submit‐
ted by the form:

<input type="checkbox" name="remember" value="true">
<label for="remember">Remember me</label>

Pro Tip: You can style checkboxes based on whether the checkbox is
checked or not with the CSS :checked pseudoclass selector. In the
following example, the label immediately following a checkbox will
turn gray when the checkbox preceding it is checked:

input[type=checkbox]:checked + label {
 color: #cccccc;
}

If that CSS doesn’t make sense to you, don’t worry! We discuss attribute selectors, the +
adjacent sibling selector, and the :checked pseudoclass in Chapter 8.

Radio: <input type=“radio”>
The radio input type, type="radio", better known as a “radio button,” has as a default
presentation a small circle: either filled if selected or empty if not selected.

Radio buttons are generally presented in groups of related values where only one value
can be selected, such as multiple-choice questions that accept only one answer. If you
have a multiple-choice question that can take more than one answer, use checkboxes.
If you only have one option and not a group of buttons, use a checkbox instead of a
radio button.

The various radio buttons presented in a related group should all have the same value
for the name attribute and differing values for the value attribute. There are a few things
to remember about radio buttons:

<input> Types and Attributes | 97

• Only one radio button of a group of same named radio buttons can be selected.
• Upon form submission, only the value of the value attribute of the selected radio

button is sent to the server, along with the name. So, remember to include a unique
value attribute for each radio button.

• Users can select radio buttons, but cannot change their values.
• A radio button can only be deselected by selecting another radio button in the same

group. In other words, once a radio button in a same named group is selected, it is
impossible to unselect all of the radio buttons in that group: you can click on a
different radio button to deselect what was previously selected and select the new
radio button instead. However, there is no way outside of JavaScript or resetting
the form to bring it back to the state of no radio buttons in that group being selected.

<p>What is your favorite color (pick one):</p>

 <label>red:
 <input type="radio" name="favoritecolor" value="red"/>
 </label>

 <label>green:
 <input type="radio" name="favoritecolor" value="green"/>
 </label>

 <label>blue:
 <input type="radio" name="favoritecolor" value="blue"/>
 </label>

Note that all of the radio buttons in this group have the same name value. name values
should be identical for all radio buttons in a group. IDs, if included, must be unique.

Note that we are using implicit labels in this example. For accessibili‐
ty reasons, always include a label—whether implicit or explicit—for
each input. For explicit labels, make the for attribute of the label match
the id of the form element. <label> is detailed later in this chapter.

Submit: <input type=“submit”>
The submit input type, type="submit", more commonly known as a “submit button,”
submits the form when clicked. The submit button sends the form data unless prevented
by having the disabled attribute set or prevented with JavaScript by return false or

98 | Chapter 4: HTML5 Web Forms

preventDefault() on its event handler. When the disabled attribute is set, the “dis‐
abled” state has the disabled UI and is not clickable by the user. The JavaScript method
of preventDefault() or return false does not change the appearance or the
clickability:

<input type="submit" value="Submit this Form"/>

Note that if included, the onsubmit event should be associated with the
<form> element, not the submit button, as it is the form being sub‐
mitted, not the button.

The default presentation of the submit input type is a button displaying the content of
the value attribute, centered. If the name attribute is included, the name/value pair will
be submitted along with the rest of the form on submit.

In HTML5, the submit button does not need to be contained within the <form> that it
will be submitting. You can associate a form element with a <form> that is not its ancestor
with the form attribute: form="id_of_form_to_submit" will submit the form indicated
by the value of the form attribute.

And with our submit button, we have covered enough HTML to complete the Cubee‐
Doo sign-in form:

<form>

 <label for="username">Username</label>
 <input type="text" name="username" id="username"/>

 <label for="password">Password</label>
 <input type="password" name="password" id="password"/>

 <input type="checkbox" name="remember" value="true"/>
 <label for="remember">Remember me</label>

 <input type="submit" name="submit" value="Sign in"/>

</form>

Reset: <input type=“reset”>
The reset input type, type="reset", is better known as the “reset button.” The reset
button restores the form data to the original default values unless prevented by the

<input> Types and Attributes | 99

disabled attribute or through JavaScript. If included, the onreset event should be as‐
sociated with the <form> element, not the reset button, as it is the form being reset, not
the button.

Since accidentally clicking the reset button instead of the submit button on form
completion is one of the most annoying user experiences, don’t include a reset button.
If you must, place it relatively far from the submit button and far from where user
experience design suggests the submit button should be located to help avoid accidental
resets.

The reset button used to be popular, but you’ll almost never see it anymore due to the
horrendous user experience of accidentally obliterating everything you entered:

<input type="reset" value="Reset this Form"/>

The only time that you really do want to use the reset button is if you have radio button
groups that you want to enable the user to deselect.

The default presentation of the reset button is a button displaying the content of the
value attribute. Unlike the submit button, the name/value pair of the reset button is not
sent to the server on form submission.

File: <input type=“file”>
The file input type, type="file", is different from the other input types. Its purpose
is to enable the user to upload, attach, or otherwise interact with a local file from their
computer or network. The input of file type is disabled on iOS prior to 6.0 (on Safari
for iPhone/iPad). Older versions of the iPhone, iPod, and iPad display the input file
type as disabled. The file type is also disabled on IE10 on Windows Phone 8, but
enabled on Windows 8 RT for tablets.

Most browsers allow for only limited, if any, styling of the input box and button, and
don’t allow for styling or text changes of the associated browse/choose button. However,
browsers are now beginning to expose the shadow DOM. It is actually possible to style
the form elements, including the file input type in some browsers:

input[type="file"] {
 /* Style of "choose file" text here */
}
input[type="file"]::-webkit-file-upload-button {
 /* style the choose file button here */
}

The file input type’s attributes can include name, disabled, accept, autofocus, mul
tiple, required, and capture. If a value is included, it is ignored.

The accept attribute may be used to specify a comma-separated list of content types
that a server processing the form will handle correctly. The file input type doesn’t have
the min or max attributes to set the number of files that must be uploaded, but logically

100 | Chapter 4: HTML5 Web Forms

3. The media capture draft is in the last call.

it defaults to 0 and 1 respectively, with the ability to overwrite by including the multi
ple attribute.

In some mobile browsers the accept attribute allows for accessing the camera, micro‐
phone, and camcorder on some devices:

<input type="file" name="image" accept="image/*;capture=camera">
<input type="file" name="video" accept="video/*;capture=camcorder">
<input type="file" name="audio" accept="audio/*;capture=microphone">

These are not universally supported, but will work in some browsers, including Android
3.0 browser, Chrome for Android (0.16), FF Mobile 10.0, and Opera Mobile 14.

The specifications have recently been modified.3 The capture component that used to
be part of the accept attribute is now a seperate Boolean attribute. The preceding code
has become the following:

<input type="file" name="image" accept="image/*" capture>
<input type="file" name="video" accept="video/*" capture>
<input type="file" name="audio" accept="audio/*" capture>

It is up to the device to decide on which supported media capture mechanism to use,
or to act as if no capture attribute had been included if there is no appropriate capture
control mechanism available.

Hidden: <input type=“hidden”>
The hidden input type, type="hidden", only needs three attributes: type="hidden",
name="somename", and value="some value". The hidden type is not displayed to the
user, but rather is used to communicate information to the server. hidden types are often
used to maintain session IDs, user IP addresses, or data garnered from previous pages
of a multipage form.

Many developers also take advantage of the hidden type to maintain state or otherwise
help handle their frontend JavaScript voodoo. HTML5 provides us with alternative op‐
tions like <output> and localStorage, and good old-fashioned cookies that can make
this misuse of hidden types obsolete. I say “misuse” since you only want to use hidden
types for name/value pairs that you want to send to the server.

Image: <input type=“image”>
The image type input, type="image", is similar to the submit type in behavior, and takes
all the attributes, namely src and alt. If the value and name attributes are in‐
cluded, the name/value pair of the image button will be submitted along with the form.

<input> Types and Attributes | 101

http://www.w3.org/TR/html-media-capture/

If you are looking to take a picture or upload a picture, see the section “File: <input
type=“file”>” on page 100.

Button: <input type=“button”>
The button input type, type="button", referred to as “button,” does absolutely nothing
without event handlers, and therefore should generally only be added to the form with
JavaScript as progressive enhancement. The default presentation of the button is a but‐
ton displaying the content of the value attribute:

<input type="button" value="I do nothing"/>

Many people confuse the button input type with the <button> ele‐
ment, which is more easily styled than the input of type="button",
and can actually do something, like submit or reset the form, without
JavaScript. Use input type="button" if you want to match a form
control with the appearance of a submit button. Otherwise, you’ll
generally want to use <button> instead, as it is more readily styled.

Styling Input Types
Each browser provides default styling to the various form elements. In WebKit and
Mozilla browsers, we can affect the default appearances with the not yet standard ap
pearance property. The vendor prefixes -webkit-appearance and -moz-appearance
enable us to change the appearance of buttons and other controls to resemble native
controls, and provide us with a better ability to override default appearance of form
controls.

There are too many supported values for appearance to mention them all. Just realize
that any feature for which the user agent presents a default UI, from checkboxes to
buttons to ranges, the default stylesheet will include appearance values such as checkbox,
button, and slider-horizontal (nesting a shadow DOM <div> with sliderthumb-
horizontal). You can control appearance values with CSS.

Resources on the various values of the appearance property can be found in the online
chapter resources.

New Values for <input> Type
Now comes the cool stuff!

In the past, we were using the text input type for everything: dates, email addresses,
phone numbers, and URLs. Then we had to validate client-side before sending to the
server. No more! (Well, “no more” when HTML5 is fully supported and you implement

102 | Chapter 4: HTML5 Web Forms

http://www.standardista.com/mobile
http://www.standardista.com/mobile

everything you’ve learned in this chapter.) The <input> element has been greatly ex‐
panded. HTML5 defines 13 new values for the type attribute of the HTML <input>
element:

• search

• tel

• url

• email

• datetime

• date

• month

• week

• time

• datetime-local

• number

• range

• color

Mobile and desktop browser support for HTML5 forms has greatly improved. Just like
with radio, checkbox, and button input types, the graphical representation of these
new input types will often reflect the type. In addition, if the browser is on a touch
device with a dynamic UI keyboard (rather than a physical keyboard), the keyboard
provided will reflect the input type.

For example, when on phones with dynamic keyboards like the BlackBerry 10, if the
type is tel, when the user gives focus to the input, the telephone keypad is displayed
instead of the full keyboard, as shown later in Figure 4-4.

Most browsers support the user interface :invalid pseudoclass CSS
selector. Instead of (or in addition to) using JavaScript to do client-
side validation and error messaging, you can indicate invalid input
values with CSS:

input:focus:invalid {background-color: #CCCCCC;}

New Values for <input> Type | 103

Email: <input type=“email”>
The email type displays similar to a text field, and is used for specifying an email address.

On a touchscreen, focusing on this element will bring up a keyboard optimized for email
address entry. The email type has been supported on the iPhone since iOS 3.1, providing
a keyboard with A–Z, @, period, and a button reading _123 that leads to a modified
numeric keyboard, as seen in Figure 4-2:

<p>
 <label for="email">Email: </label>
 <input id="email" type="email" name="email"
 placeholder="name@domain.com" required multiple/>
</p>

The email input type supports the Boolean multiple attribute, allowing for multiple,
comma-separated email addresses.

To include more than one address, separate email addresses with a
single comma, or a comma and space(s).

Other attributes the email input type should support according to the current draft of
the spec include name, disabled, form, autocomplete, autofocus, list, maxlength,
pattern, readonly, required, size, and placeholder. There are examples in the online
chapter resources.

104 | Chapter 4: HTML5 Web Forms

http://www.standardista.com/mobile
http://www.standardista.com/mobile

Figure 4-2. An email field in a form with dynamic keyboards on Blackberry 10, iPod,
Windows Phone, and Firefox OS

New Values for <input> Type | 105

URL: <input type=“url”>
Like the email type, the url type displays similar to a text field, and is used for specifying
a web address. On a touchscreen, focusing on this element will bring up a keyboard
optimized for web address entry on many devices. On iOS devices, the url type provides
the smartphone user with a keyboard with A–Z, period, forward slash, and “.com,” but
no colon, as shown in Figure 4-3. The BlackBerry is similar, but with no slash, and no
colon either.

Figure 4-3. Dynamic keyboards for the URL input on Firefox OS, iPod, Blackberry 10,
Windows Phone and Chrome on an Android tablet

Browsers supporting the url input type report the input as valid if the URL begins with
an Internet Protocol, any Internet Protocol—even made-up ones like Q:. (Q:// works
just as well as ftp://.) A web address without a protocol, like www.yahoo.com, will not
validate.

Browsers currently do not check the actual URL, as the HTML5 specifications suggest,
because there is no code to check for a valid URI/IRI according to the current URL
specifications. A bug has been reported for the W3C on this. In the meantime, at least
we get a slightly more relevant keyboard (Figure 4-3), though they really should add the
colon in the default keyboard state.

106 | Chapter 4: HTML5 Web Forms

To allow only specific protocols, you can employ the pattern attribute:
<p>
 <label for="url">Web Address: </label>
 <input id="url" type="url"
 pattern="^(http|https|ftp)\://[a-zA-Z0-9\-\.]+\.[a-zA-Z]*"
 placeholder="http://www.domain.com" required />
</p>

Telephone: <input type=“tel”>
tel is short for telephone. Unlike the url and email types, the tel type does not enforce
a particular syntax or pattern. Letters and numbers, or any noncarriage return characters
for that matter, are valid. Different countries have different types of valid phone num‐
bers. Different systems prefer different ways of writing the number. For example, in the
United States, +1(415)555-1212 is just as well understood as 415.555.1212.

So, why have a tel input type? The default keyboard displayed for the tel input type is
a telephone keypad, as shown in Figure 4-4. Use the best input type for the data type
you want: your users will thank you for it!

You can encourage a particular phone format by including a placeholder with the
preferred syntax and a comment after the form field with an example. You can require
a format by using the pattern attribute and you can use the setCustomValidity()
method (see the section “Form Validation” on page 118) to provide for custom error mes‐
saging during client-side validation:

<p>
 <label for="tel">Telephone: </label>
 <input id="tel" type="tel" placeholder="XXX-XXX-XXXX"
 pattern="[0-9]{3}-[0-9]{3}-[0-9]{4}" required />
</p>

New Values for <input> Type | 107

Figure 4-4. The telephone input type and associated keypads

Number: <input type=“number”>
The number type provides a text field for specifying a number. When supported on a
touch pad, focusing on an input element of type number will bring up a number pad
keyboard like the ones shown in Figure 4-5. The attributes of min, max, and step can be
included.

108 | Chapter 4: HTML5 Web Forms

Figure 4-5. Entering numbers into a numeric form field

The min attribute is the minimum value allowed. The max attribute value is the maximum
value allowed. The step attribute indicates the step between available values. The default
step value is 1, allowing for floats if the min, max, or step attributes have a float set as a
value.

The user interface of desktop browsers that fully support this feature provide for in‐
crementing or decrementing the counter without keyboard entry. This spinner is not
yet seen on mobile browsers. Even when the number input type provides a spinner UI
with up and down arrows, it also accepts freeform keyboard data entry. When using the
spinner (currently only supported in some desktop browsers), clicking or touching the

New Values for <input> Type | 109

4. For example, at the time of this writing, Safari on iOS 6 supports pattern, but does not support number and
does not provide for validation on submission.

arrows steps the number up or down by the value of step, displaying only valid values.
If the form element is a required field, the form will not submit if there is a nonvalid
entry. Invalid entries include a nonnumber, a number less than the min or greater than
the max, or an invalid number of steps above the min. Instead, when an attempt is made
to submit the form, the incorrect value gets focus:

<input type="number" min="0" step="5">

To be valid, the value must be a number equal to min + n * step where n is any integer
value with a result within the min/max range. For example, if min=2, max=10, and
step=5, 7 is valid and 10 is not:

<p>Any number between 100 and 999</p>
<p>
 <label for="number">number: </label>
 <input id="number" type="number" placeholder="100 to 999"
 pattern="[1-9][0-9]{2}" min="100" max="999" required />
</p>
<p>Enter a number between 0 and 1,000 that is divisible by 5</p>
<p>
 <label for="even">Number divisible by 5: </label>
 <input id="even" type="number" placeholder="0, 5, 10 …"
 pattern="[0-9]*[05]" min="0" max="1000" step="5" required />
</p>
<p>Enter a positive Float less than 10.0</p>
<p>
 <label for="float">Floating number: </label>
 <input id="float" type="number" placeholder="0.1"
 pattern="[0-9](?\.[0-9])?" min="0.1" max="9.9" step="0.1"/>
</p>

With the new HTML5 form input types, we also get new APIs. For the step attribute,
we have the stepUp() and stepDown() methods:

input.stepUp(x)
input.stepDown(x)

These two methods change the form control’s value by the value given in the step
attribute, multiplied by x, or 1 if no parameter is passed, within the values provided by
the min and max attributes.

The pattern attribute is not supported in the number type, but I have included it as it
is more widely supported than the number input type. The pattern attribute can be
considered a graceful degradation for browsers that support the pattern attribute but
don’t fully support an input type.4

110 | Chapter 4: HTML5 Web Forms

If a browser supports the number type, that supersedes the pattern. A pattern of
pattern="[0-9]*" or pattern="\d+|\d+\.\d+" is almost equivalent to the number
type, though matching the ability to have min, max, and step can lead to an unwieldy
regular expression.

Range: <input type=“range”>
The range input type displays as a slider, like those in Figure 4-6, that lets the user drag
or tap along its length to select a value. As with the number type, its minimum value is
set with the min attribute, its maximum value with the max attribute, and its discrete step
size with the step attribute. While the range input type has been around since Safari
2.0, only with the release of Safari 5 have min, max, and step been fully supported, so it
is finally usable in mobile WebKit. Opera, Blackberry, IE10, and Chrome support range
as well. Mobile Firefox began to support range with version 23. Android has partial
support.

Figure 4-6. Sliders created by a range control on Windows Phone, Blackberry 10,
iPhone, and Chrome

The default value of the slider is the midpoint between the minimum and the maximum.
You can change where the thumb lands on the slider with the value attribute. If the
range is 20 to 30, the default value will be 25. If you don’t set a min, max, or step, they’ll
default to 0, 100, and 1, respectively. As there is a default value, when supported, a range
input type always returns a value.

One question I get is: “Can you make the slider vertical instead of horizontal?” The
answer is: “Yes, in some browsers.” The way to do it in WebKit is:

input[type=range]{-webkit-appearance: slider-vertical;}

You can also declare a height that is a larger value than the width, which will create a
vertical range in older Presto-based versions of Opera.

New Values for <input> Type | 111

Search: <input type=“search”>
Input type search provides for a search field. While the specifications don’t mandate a
particular UI for new form types, the search field often looks like a round-cornered text
box. In many browsers, though not all, when the search is nonempty, a search-cancel-
button appears in the right of the box that, when clicked, clears the field, as shown in
Figure 4-7.

Figure 4-7. The search input type on Blackberry 10 (note the delete icon in the filled out
search field) and iOS 6.1 (note the “search” key)

Some devices will display a keyboard with the word “search” or the magnifying glass
where the “go” or “enter” button normally is on the keyboard field.

Color: <input type=“color”>
When fully supported, the color input type displays a color picker widget, such as the
“color well” shown in Figure 4-8. The color input type, like all new input types, will
display as a regular text box when not fully supported. The values of selected colors are
submitted in lowercase hexadecimal color format. The default value of color pickers is
#000000, which means, when supported, a color input type always returns a value.

112 | Chapter 4: HTML5 Web Forms

Figure 4-8. Color picker on the BlackBerry 10 and in Opera on Mac

For a while, some browsers supported named colors, such as “indianred.” Named colors
support is not in the specifications and support has been removed.

Native color picker UI interfaces in supporting browsers are nifty but not ubiquitous
yet. To “fake” support for hex color values, only accept values that match the regular
expression #[a-zA-Z0-9]{6} by using the pattern attribute with a placeholder indi‐
cating that hexadecimal color values are required. Neither of these attributes is sup‐
ported by the color input type as per the specifications, but they are simply ignored in
browsers that fully support the color input type:

<label for="clr">Color: </label>
<input id="clr" name="clr" type="color" placeholder="#000000"
 pattern="#[0-9A-Fa-f]{6}" required />

Date and Time Input Types
There are several new date and time input types including date, datetime, datetime-
local, month, time, and week. All times are based on ISO 8601 dates. Supporting brows‐
ers provide interactive widgets replicative of the device’s native calendar widget. All of
the date/time types have a code sample in the online chapter resources. The value for
date is better supported across browsers than any of the other date and time input types.

Date and Time Input Types | 113

http://www.standardista.com/mobile

Date: <input type=“date”>
The date input type provides a date with year, month, and day (no time or day or time
zone). The expected user interface presentation is a date control. When supported, the
browser provides a calendar control.

Different cultures write their dates differently. While some browser controls put the
month first and others put the day first, the date gets converted to the same syntax of
YYYY-MM-DD before getting sent to the server:

<p>
 <label for="date">Date: </label>
 <input id="date" name="date" type="date"
 placeholder="YYYY-MM-DD" required />
</p>
<p>
 <label for="dob">Date of Birth: </label>
 <input id="dob" name="dob" type="date"
 placeholder="YYYY-MM-DD" min="1900-01-01" required />
<p>

Until date is supported in all browsers, you can use pattern matching. However, if
pattern matching is relied upon, the users won’t get a native calendar widget. Also, you
might want to use JavaScript validation to account for leap years and the like, as a regular
expression for dates is kind of horrific.

Supporting browsers, as shown in Figure 4-9, provide a date picker and don’t allow
direct data entry, ensuring the user submits a valid date (perhaps not the correct date,
but a valid date).

The date type is the full date, with no time or time zone. This is the best supported of
the various date/time input types. We’ll cover the others briefly for when they are
supported.

114 | Chapter 4: HTML5 Web Forms

Figure 4-9. The date picker that appears on iOS, BlackBerry, Android, and Firefox OS
when the input of date type receives focus

Date and Time Input Types | 115

Datetime: <input type=“datetime”>
The datetime input provides two fields: one for the date (year, month, day) and one for
the time (hour, minute, second, fraction of a second) with the time zone set to UTC
with minutes and seconds, but not fractions of a second. You can include the min, max,
and step attributes to limit the possible values, such as min="2012-03-01T12:00Z".

You may prefer to use pattern matching, but again, you’ll need to validate the input for
true times and valid dates:

<p>
 <label for="datetime">datetime: </label>
 <input id="datetime" name="datetime" type="datetime" placeholder="YYYY-MM-DD"
 min="2010-01-01T00:00Z"max="2011-12-31T23:59Z" required />
</p>
<p>
 <label for="dte">datetime: </label>
 <input id="dte" name="dte" type="text" placeholder="YYYY-MM-DDT00:00Z"
 pattern="\d{4}\-\d{2}\-\d{2}T\d\d\:\d\dZ" required />
</p>

Datetime-local: <input type=“datetime-local”>
The datetime-local value is identical to datetime, except it is not UTC time. (The Z
is not included.)

Month: <input type=“month”>
The month input type is supposed to include the month and year, with no day of month
and no time zone. Default values differ by device, with defaults such as a min value of
0001-01 and default max value of 2147483647-12. Therefore, I recommend including a
min and max value. You can also include the step attribute. For example, use step="6"
to limit your month choice to January or July:

<p>
 <label for="month">Month: </label>
 <input id="month" name="month" type="month" placeholder="YYYY-MM" required
 min="2010-01" max="2020-01" step="6"/>
</p>

Unlike JavaScript, which indexes starting with 0, January is represented as 01.

Time: <input type=“time”>
The time input type provides a mechanism for inputting time in military (24 hour)
format. Times must be greater than or equal to 0 and must be less than 24 hours, with
tighter restrictions imposable by the min and max attributes.

116 | Chapter 4: HTML5 Web Forms

The time increments in seconds, not minutes. Including a step of 60 for 60 seconds, will
create a better user experience. In our example, the step attribute is set to 900, for 60
sec × 15 min, or 15-minute increments:

<p>
 <label for="time">Meeting time: </label>
 <input type="time" min="09:00" max="17:00" name="time" id="time"
 step="900" placeholder="12:00" required />
</p>

This type is not for elapsed time, but rather for time of day. When supported, browsers
are expected to show a time widget, such as a clock, with no time zone.

Week: <input type=“week”>
The week input type allows for a date consisting of the number of the week within the
year, with no month, day, or time. The value will range from 01 to 52, with a year. For
example, the first week of the year will output 2014-W01.

The week calendar does not start with January 1. Rather, week 01 is the week that con‐
tains January 4th, which may not necessarily include January 1st:

<input type="week" name="week" id="week" min="2010-W01" max="2020-W02" required />

The week input type is the least supported of the date/time input types. We’ll get there
eventually...

In all, we now have 23 input types to play with. The various input types include:

• button

• checkbox

• color

• date

• datetime

• datetime-local

• email

• file

• hidden

• image

• month

• number

• password

• radio

Date and Time Input Types | 117

• range

• reset

• search

• submit

• tel

• text

• time

• url

• week

Form Validation
Currently, web developers use JavaScript scripts to perform form validation on the client
side. We’re getting closer and closer to the day when we can simply write the following
simple form, and the browser will prevent submission when invalid with no need for
client-side JavaScript validation (you must always do server-side validation). The user
won’t be able to submit this form unless all three inputs have values, with the latter two
needing to be of a single email address and a single URL, respectively:

<form>

 <label>
 Name: <input name="name" required"/>
 </label>

 <label>
 Email: <input name="email" type="email" required />
 </label>

 <label>
 Website: <input name="website" type="url" required />
 </label>

 <input type="submit" value="Send"/>

</form>

On submit, the browser checks if all conditions are met: if all the fields are completed
and the email and url are correctly formatted, the form will successfully submit. If there

118 | Chapter 4: HTML5 Web Forms

is a mistake or omission of a required form control, an error message will be displayed
to the user, like the one shown in Figure 4-10.

Figure 4-10. Error messaging for required fields that were not completed before an at‐
tempt was made at form submission

When required fields are left empty, or an input’s value does not match its type or
pattern attribute, error messages will be shown like the ones shown in Figure 4-11.
Most browsers support native form validation, with iOS and Android support lagging
at this time.

Figure 4-11. Form fields with messaging signaling that validation failed

Native browser form validation detects invalid data, and flags those errors with focus
and error messaging. Native validation in HTML5-supporting browsers occurs before
submitting the form to the server, submitting the form only if all rules set by attributes
in the form fields pass native browser validation tests.

By preventing invalid data from being submitted, the browser saves a round trip to the
server. While native validation will eventually be used to supplant client-side JavaScript
validation, it will never supplant server-side validation. Browser validation is not suf‐
ficient to handle all errors. Always include server-side validation because malicious
users will always be able to forge HTTP requests or otherwise mess with data submis‐
sion.

When form validation is natively provided, the first invalid form element will display
the error message and receive focus when the user tries to submit a form that is not fully
valid. Eventually with native client-side validation, it may be possible to ensure correct
form completion client-side with no JavaScript. HTML5 greatly minimizes the need for
client-side form validation, but we still have a ways to go.

Form Validation | 119

5. To be precise, there are ten validity properties, but the specification is evolving. We’ve included the original
eight that are relevant to this chapter and already have browser support.

The HTML5 specifications provide for DOM methods and properties to enable vali‐
dating without the cross-browser hoops we’ve been jumping through. HTML5 intro‐
duces eight form control properties via the validity state object.5

Validity is part of the validity constraint API. It is accessible from all form controls
that support validation, and can be accessed with the form controls validity property:

var element = document.querySelector('#form_control_id');
var validityStateObject = element.validity;

or
var validityStateObject = document.form_id.form_control_id.validity;

The validityStateObject contains references to several validity properties:
element.validity.valueMissing

If a required element, as set with the required attribute, has no value set, the
valueMissing property is true; false otherwise. The valueMissing property looks
at whether a value is missing or not, not whether it is valid or not.

element.validity.typeMismatch

Returns true if the element’s value is not in the correct syntax; false otherwise.
For example, if the type is number, email, or url and the value is not a number,
email, or URL respectively, then that typeMismatch will return true.

element.validity.patternMismatch

If a form control requires a certain pattern as set with the pattern attribute, and
the value of the form control does not match the pattern, the patternMismatch
property is true; false otherwise. The pattern attribute limits the value to specific
formats as defined by the pattern value’s regular expression. The patternMis
match is basically the property that enforces any pattern rule set on a form control.

As mentioned earlier, when including the pattern attribute, also set a title de‐
scribing the rules of the format for improved accessibility.

element.validity.tooLong

When the maxlength attribute is set on a form control, the tooLong property returns
true if the element’s value is longer than the provided maximum length; false
otherwise, ensuring that a value does not contain too many characters. The max
length attribute should actually prevent the user from entering too many charac‐
ters. This property double-checks to ensure that the maxlength was adhered to.

120 | Chapter 4: HTML5 Web Forms

element.validity.rangeUnderflow

rangeUnderflow enforced the minimum value of a form control when the min
attribute is set. rangUnderflow returns true if the element’s value is lower than the
defined minimum.

element.validity.rangeOverflow

rangeOverflow is the counterpart to rangeUnderflow: it enforces the maximum
value of a form control when the max attribute is set.

element.validity.stepMismatch

Returns true if the element’s value doesn’t fit the rules given by the step attribute;
false otherwise. The stepMismatch ensures that the form controls value conforms
to the step value in conjunction with the min value. The value must be a multiple
of the step added to the minimum value.

element.validity.valid

If the form control has no validity problems, the ValidityState object’s valid
property will return true; otherwise it will return false. Think of this property as
a summary of the preceding seven properties and the customError (described next):
if all return false, valid will be true. If any fail (are true), valid is false.

element.validity.customError

In addition to these validity properties, we have a customError property that re‐
turns true if the element has a custom error enabling the handling of errors, but
doesn’t actually check for validity.

By default, all form controls have customError of an empty string: empty strings
are falsey. To be truthy, you have to call setCustomValidity(message) onto a form
control, where message is the text that will be placed in the validation bubble as
shown in Figures 4-1, 4-10, and 4-11. Setting a message puts the form control into
the customError state of true as the custom error message is no longer empty. Until
it is falsey, you will be unable to submit the form.

When the custom validity message is set, the control will be invalid and return the
customError constraint as true. To clear the error, simply call setCustomValidi
ty("") on the control, passing an empty string value.

If you set customError to true by setting a custom validity message
the form will not submit even if the form is otherwise valid. Make sure
to reset the value to an empty string to enable valid forms to submit.

Form Validation | 121

6. This feature is in WebKit, but not in Blink. As this book is going to print, this feature has been removed from
Chrome. I expect we will be able to style the validation bubbles with Web Components, and will update the
status of this feature in the online chapter resources.

Easy UI Improvements with CSS
In addition to changing the content of the error messaging, in some browsers you can
also control the appearance of those error messages. The preceding error and other UI
features of web forms are styleable to some extent.
Controlling validation bubbles

WebKit provides a native look and feel for their validation error speech bubbles. The
error bubble is made up of four containing elements that are part of the shadow DOM.
These four elements are styleable via pseudoelements that apply to separate sections of
the bubble:

::-webkit-validation-bubble
::-webkit-validation-bubble-arrow-clipper
::-webkit-validation-bubble-arrow
::-webkit-validation-bubble-message

The containing element is the absolutely positioned ::-webkit-validation-bubble.
The ::-webkit-validation-bubble-arrow-clipper child clips the ::-webkit-

validation-bubble-arrow at 16 pixels high, creating a tail for the bubble. The ::-
webkit-validation-bubble-message contains the text node of the actual error mes‐
sage. The default styling is in the user style agent, and can be overwritten with your own
CSS.6

Styling to enhance usability

Like the error messaging, HTML5-supportive browsers stylize all the form controls to
some extent. As a developer, you are a pro-user (hopefully) and likely know the subtleties
of how a cursor changing over disabled versus active form controls indicates expected
user behavior. Most of your users are not pro-users, so use styling to improve the usa‐
bility of your forms.

For example, to make the user understand that a form control was required, you may
have included an asterisk, perhaps encased in a class, to make the asterisk appear more
prominently. This mandated including extra markup, such as:

*

This required adding content for presentational reasons, and did nothing other than
inform some sighted users that the element might be required. The asterisk provided
no useful information to the actual form control.

With HTML5 attributes being included to create differing states of form controls, you
can use CSS to stylize the required, disabled, checked, read-only, valid, invalid, focused,

122 | Chapter 4: HTML5 Web Forms

http://www.standardista.com/mobile
http://bit.ly/1idOlUH

hovered, etc., form controls. There are various pseudoclasses by which you can style
form elements based on state, including:

input:required,
input:invalid {
 background-color: #FFFFFF;
 border: 1px solid #FF0000;
}
input:valid {
 border: 1px solid #999999;
}
input:read-only {
 background-color: #DDDDDD;
 border: 1px solid #666666;
}
input:checked + label {
 color: #666666;
 font-style: italic;
}

We’ll cover CSS in Chapters 6, 7, and 8, so if you are not familiar with pseudoclasses
and elements feel free to skip ahead and come back to this section after you’ve mastered
those chapters.

Adding the ARIA attribute aria-required="true" and data entry instructions via the
title or aria-labeledby attributes provides for even better accessibility support.

New Form Elements
There are several form elements we haven’t mentioned yet. We have five new form
elements in HTML5: <datalist>, <output>, <keygen>, <progress>, and <meter>.
We’ll also cover differences in a few other elements that predate HTML5.

The <datalist> Element and the list Attribute
For the text, email, url, date-related, time-related, and numeric types of the <input>
element, the new list attribute points to a list of values that the browser should offer
to the user in addition to allowing the user to pick an arbitrary value.

The list attribute takes as its value the id of its associate <datalist>. <datalist> is
a new HTML5 element.

The <datalist> element represents a set of <option> elements that represent prede‐
fined options for the <input> elements that associate themselves with that <data
list> via the form field’s list attribute. Several form controls can use the same <data
list>, but each form control that supports the list attribute can be associated with
only one <datalist>.

New Form Elements | 123

The <datalist> provides a list of data values, in the form of a list of <option> elements.
When the form element has a list attribute, the options in the <datalist> provide
author-specified autocompletion values for the control. The user can still enter freeform,
but options are provided like a <select>, as shown in Figure 4-12:

<p>
<label for="url">Animals: </label>
<input id="animals" type="text" placeholder="animals and sounds"
 requiredlist="animalnames" name="animals"/>
</p>
<datalist id="animalnames">
 <option value="quack">duck</option>
 <option value="banana slug" label="sssss"/>
 <option value="sheep" label="bah"/>
 <option value="horse" label="neigh"/>
</datalist>

Figure 4-12. The appearance of the <datalist> in supporting browsers (Opera 10.6 is
displayed in this screenshot)

Think of it as similar in functionality to the Google autosuggest. In the case of <data
list>, the list of suggested terms is hardcoded or dynamically generated. When the
user starts typing, options from the data list that match the characters typed are sug‐
gested via a drop-down of the <datalist>’s <option> values or labels, if present. Similar
to Google search autocomplete, it can be dynamically updated via an AJAX request.
There is an example of the <datalist> element in the online chapter resources.
Graceful degradation of the <datalist>

The element’s contents can include fallback content for browsers not yet supporting
<datalist>, providing users of older browsers with the choice to enter freeform data
or select from an list of options made up of <option> elements that represent the pre‐
defined or suggested values for the form elements linking to it. Each suggestion has a
value and a label. The default rendering of <datalist> and its children is hidden.

The <datalist> provides options for the form control, but still allows for freeform data
entry. This is a very nice enhancement that you may not want legacy browsers to miss.
To enable users of user agents that don’t support <datalist>, which includes most
mobile browsers, encompass the options within a <select>. Supporting browsers will
ignore everything other than the options within the <datalist> and nonsupporting
browsers will ignore the <datalist> tag, showing the descendant content it understands
(see Figure 4-13):

124 | Chapter 4: HTML5 Web Forms

http://www.standardista.com/mobile

<p>
 <label for="url">Web Address: </label>
 <input id="url" type="url" placeholder="http://www.domain.com"
 requiredlist="mydatalist" name="url"/>
</p>
<datalist id="mydatalist">
 <p><label>Or select from the list</label>
 <select name="url2">
 <option value=http://www.standardista.com label="Standardista"/>
 <option value="http://www.oreilly.com" label="O'Reilly"/>
 <option value="http://www.evotech.net" label="Evolution Technologies"/>
 </select>
 </p>
</datalist>

Figure 4-13. With this gracefully degrading implementation of <datalist>, the noncom‐
pliant browser shows the children of <datalist>, ignoring the element it doesn’t under‐
stand (notice the URL keyboard configuration, and the <p> and <datalist> are visible:
touching the Next button will activate the select menu in the datalist)

The fallback content will only be shown in browsers that don’t support <datalist>,
as shown in Figure 4-13. Supporting browsers will ignore <p>, <label>, and
<select>, and all other elements within a <datalist> other than <option>, as displayed

New Form Elements | 125

in Figure 4-12. When using the JavaScript-less method of graceful degradation, make
sure the server is set to receive data from both form fields.

There is an even better fallback that requires a little bit of JavaScript. The HTML looks
like:

<input type="text" name="animal" list="dl_animals" id="animals" />
<datalist id="dl_animals">
 <select id="slct_animal">
 <option value="moo">Cow</option>
 <option value="sssss">Banana Slug</option>
 <option value="bah">Sheep</option>
 </select>
</datalist>

The JavaScript that makes it work is:
var select = document.getElementById('slct_animal'),
 input = document.getElementById('animals');
select.addEventListener('change', function() {
 input.value = this.value;
}, false);

The CSS looks like:
input[list],
datalist select {
 float: left;
 height: 1.4em;
 position: relative;
}
input[list] {
 z-index: 2;
 width: 20em;
}
datalist select {
 width: 1.2em;
}

In the preceding example, we’ve added a select with no name attribute, so the select
will not be submitted with the form. We’ve also styled the select to appear as a select
spinner to the right of the input with the list attribute.

The <output> element
The <output> element acts like a element, except that it is considered to be a
form control for the purposes of the DOM. The <output> element, which is new to
HTML5, can have the form, name, and for attributes, and the onchange, onforminput,
and onformchange events in addition to the universal attributes and event handlers.

126 | Chapter 4: HTML5 Web Forms

The output does not have a value attribute. Rather, the value is defined by its inline
contents between the opening and closing tag. As such, the <output> element must have
both a start tag and an end tag. The value can be set and retrieved via the DOM.

The for attribute value is a bit different for the <output> element than the <label>
element: the for attribute takes as its value a space-separated list of the IDs of other
elements associated with the output.

The <output> element should be used when the user will never directly manipulate the
value, and when the value can be derived from other values, such as the result of an
equation based on the values of the elements listed in the for attribute.
CubeeDoo

In CubeeDoo, we use the <output> form element to store the score, level, and seconds
left in the current round. In our code example, the current score, current level, and time
left are contained in <output> and are updated via DOM manipulation. The HTML is
very simply marked up with:

<output name="score">0</output>
<output name="level">1</output>
<output name="time">120</output>

We pre-populate the values because when the page loads at game start, the score is zero,
the user is on the first level, and the default time on the clock is 2 minutes. In our
JavaScript, we dynamically maintain and update the values.

<meter>
The <meter> is generally used as a gauge to provide a measurement within a known
range. The <meter> is used to indicate the current value in relation to the minimum
and maximum values, like a needle gauge. Possible implementations include displaying
password strength during user entry and similar visual feedback indicators.

The <meter> element’s attributes, which take floats as their value, include min, max,
high, low, and optimum. The optimum attribute provides the value for the point that
marks the optimal position for the meter. The min and max are the minimum and max‐
imum values respectively. The high and low attributes should be the lowest value that
can be considered a high value, and the highest value that can be considered a low value,
respectively.

For example, grades may go from 0% to 100%, so you would have a min of 0 and a max
of 100. Using the typical American system as an example (with A being 90% and better,
a B being between 80% and 89%, etc.), it is generally considered to be good to have a B
+ (87%) or better and bad to have a C– (73%) or lower. If you’re not doing so well in
school (getting a 61%), your grade meter could look something like this:

<p>Grade: <meter value="61" min="0" max="100" low="73" high="87">D-</meter></p>

New Form Elements | 127

The UI provides a meter with the left side being the minimum value and the right being
the maximum value. A colored bar fills the meter from the left to right, proportionally,
based on the value. Depending on the attributes and the current value (and the browser),
the bar may be red, green, or yellow. The bar should be green if the value falls between
the high and low value, and red or yellow if it falls outside of those values, depending
on the optimum value (as shown in Figure 4-14).

Figure 4-14. The UI and colors of <meter>

The <meter> element should not to be used to show progress. Instead, use the <pro
gress> element for that purpose. Use the <meter> when you know what the minimum
and maximum values are, such as grades (max="100"), and when the values go both up
and down, like blood pressure or a gas tank. Otherwise, if the value is only going in one
direction, use <progress>.

There is an example in the online chapter resources.

<progress>
The <progress> is similar to <meter> but is used to indicate progress toward a goal or
task rather than as a gauge. Unlike the <meter> that shows the current value in relation
to a minimum and maximum value, the <progress> indicator represents how far a task
has progressed between the start of the task and the estimated completion of it. For

128 | Chapter 4: HTML5 Web Forms

http://www.standardista.com/mobile

example, the <progress> element, as shown in Figure 4-15, can be employed to display
the progress of a time-consuming function in JavaScript.

The <progress> element takes a value and max attribute, with both being positive floats,
and the value being less than the max. There is an example in the online chapter re‐
sources.

Figure 4-15. The <progress> element in Firefox OS and Chrome for Android

<keygen>
The self-closing <keygen> provides for a key/pair generator/input control. Useful to
client-side application developers for authorization protocols, the <keygen> element
represents a control for generating a public-private key pair and for submitting the
public key from that key pair. Accepting the attributes of challenge, keytype, autofo
cus, name, disabled, and form, the keytype value is rsa and the challenge attribute
takes as its value a challenge string that is submitted along with the public key. Opera,
WebKit, and Firefox all support this element, rendering it as a select menu generating
encrypted keys, though all provide different options.

There is an example in the online chapter resources.

New Form Elements | 129

http://www.standardista.com/mobile
http://www.standardista.com/mobile
http://www.standardista.com/mobile

Other Form Elements
The following sections provide quick descriptions of the various form elements. We are
including these elements that you are most likely familiar with to delineate new features
of HTML5.

The <form> element
The <form> element has had a few changes. The form now automatically validates the
input types on submission. The new Boolean novalidate (novalidate="novali
date") attribute was added to enable the form to not be natively validated upon sub‐
mission.

The form controls no longer need to be children of an ancestor <form>: instead the form
attribute on the form controls can be included to dictate with which form the control
is associated. The autocomplete attribute has also been added to the <form> element.

In addition, the action attribute is no longer required. If omitted, the form will submit
to itself, as if action were set to the current page.

<fieldset> and <legend>
The <fieldset> groups form controls together. The remainder of the <fieldset>’s
children form the group. The optional first child of the <fieldset> is the <legend>,
which gives the <fieldset> group its name. The <legend> element is the title or caption
for the rest of the contents of the <fieldset> in which it finds itself. The <legend> can
only be found as a child of a <fieldset>, and must have a closing tag.

The Boolean disabled attribute, if specified, causes all the form control descendants of
the <fieldset> element, excluding children of the <legend>, to be disabled. The form
attribute can be used to associate the <fieldset> element with a specific form (see the
description of the form attribute). The name attribute represents the element’s name.

<select>, <option>, <optgroup>
The <select> tag specifies a selection menu. A <select> must contain one or more
<option> elements or one or more <optgroup> containing <option>s. In Safari, if the
size attribute is explicitly set for this tag, the input box resembles a combo box, other‐
wise it will resemble a pop-up menu.

<textarea>
The <textarea> is a free-form text field, nominally with no line-break restrictions. This
tag specifies a scrollable, multiline text-input block.

130 | Chapter 4: HTML5 Web Forms

New in HTML5 is the wrap attribute. The <textarea> element may have a wrap attribute
specified with the values of soft (default) and hard: soft means the text is submitted
without line breaks other than explicitly entered line breaks, and hard includes explicit
line breaks. If setting the wrap to hard, specify a cols attribute.

In HTML 4, we were required to specify the <textarea>’s size onscreen by specifying
values for rows and cols. In HTML5, the rows and cols attributes of the <textarea>
element are no longer required attributes as they were in HTML 4, unless you set the
wrap attribute to hard, then the cols attribute is required. Otherwise, cols and rows
are now optional. CSS should be used to define width and height instead. The closing
tag is required.

<button>
The <button> element comes with three types: submit, reset, and button (the default
is submit). Unlike the <input type="button"/>, the <button> element is not self-
closing: you must include the </button> closing tag. This element remains unchanged
from previous versions.

The <label> Element
The <label> element is not new to HTML5, but since it is often misused, it’s worth
reviewing.

The <label> provides a caption in the user interface for a form control. The caption is
associated with a specific form control by using the for attribute for an explicit label,
or by putting the form control inside the <label> element itself creating an implicit
label.

The value of the for attribute in the explicit label must match the value of the form
control’s id.

It is important to note that the form control/label relationship is not just for improved
accessibility for screen readers. Clicking or touching the label provides a click event on
the associated form control: touching on the label of a checkbox toggles the checkbox’s
state, making the form field more accessible to all users, not just those using screen
readers or voiceovers. Clicking or touching the <label> associated with a radio button
toggles the checked status of that radio button. Touching a <label> associated with a
text field gives focus to that field, prompting the user to enter data.

Other Form Elements | 131

In Conclusion
When HTML5 input elements and attributes are fully supported, sites will require less
JavaScript client-side validation as the browsers will be doing most of the heavy lifting.
However, servers should still perform data validation, as malicious users will be able to
bypass any client-side type-checking and validation, and legacy user agents will likely
not disappear completely for the foreseeable future.

132 | Chapter 4: HTML5 Web Forms

CHAPTER 5

SVG, Canvas, Audio, and Video

We’ve covered most of the new elements of HTML5, with the exception of elements
uniquely associated with web APIs currently under development and the well-
supported media-related elements of SVG, Canvas, Audio, and Video. The former are
subject to change, so aren’t covered in this book. The latter are covered here.

We’ve covered the main features you’re likely to use in your day-to-day work as a
frontend web developer, enabling you to use modern features when developing for
mobile browsers. All modern mobile browsers (with the exception of Opera Mini) sup‐
port <canvas>, <video>, and <audio>, as well as web APIs like geolocation, localStorage,
offline web applications, etc.

A book could be written about each of the individual topics covered in this chapter, and,
for the most part, already have been written. We’ll provide you with enough information,
hopefully, to decide, “Hey, I do need to read the book on that” or to decide, “Hmmm,
not interested quite yet.” While we won’t deep dive into any of these topics, you’ll have
enough knowledge to get started. And, more importantly, you’ll understand the benefits
and drawbacks of these technologies in the mobile arena.

HTML5 Media APIs
The original HTML specification was purely for textual content and did not even include
the element. We’ve come a long way since then. HTML5 provides for creating
scalable, vector-based graphics with SVG and blank drawing space with <canvas>. In
addition to supporting graphics, HTML5 supports <video> and <audio> inclusion
without third-party plug-ins.

133

SVG
With SVG, you can create complex scalable vector graphics. Introduced in 2001, SVG is
an open standard for defining two-dimensional vector graphics. The “scalable” aspect
of SVG means the same graphic can look equally sharp on a large monitor as it does on
a small mobile screen, without any modifications.

The SVG spec defines an XML grammar for shapes, lines, curves, images, and text,
including features such as transparency, arbitrary geometry, filter effects (shadows,
lighting effects, etc.), scripting, and animation.

Because it is a text-based image format, the file size can be very small. Because it has an
object model, it can be changed with scripting. Because it is vector based, it can scale
without pixelated or jagged edges. Because it is declarative, it is easy to understand.
Because SVG supports animation, it can be animated.

There are various forms of SVG, with various levels of browser support. Basic support
of standalone .svg files exists in all mobile devices and modern browsers, with support
in Android beginning with Android 3. SVG as a source for the element has been
supported since iOS 3.2, Android 3.0, and mobile IE8.

The SVG file format as a value for the CSS background-image property has been sup‐
ported since Android 3 and iOS 3.2, and it has been long supported in Opera Mobile.
We’ve even been able to use the <svg> element in HTML5 pages since iOS 5, Android
3, and IE9 (along with all other modern browsers). Android 2.3.3 and below, Amazon
Silk, and HP’s now defunct WebOS are the only mobile browsers lacking full SVG sup‐
port. Static SVG is even supported in Opera Mini (as is <canvas>, which is supported
in all mobile browsers), but can’t be animated, as Opera Mini’s JavaScript support does
not allow for that.

As it’s an XML-based language, SVG’s root element is not <html>. Rather, it’s <svg>.
Like all XML documents, SVG begins with an XML prologue and an SVG DTD. The
<svg> root element contains all of the document’s content. SVG does not have a <head>
and <body>. Rather, all of the content, including nested <svg> elements, are contained
in the root <svg>.

A good starter SVG is the Japanese flag, which is simply a white rectangular flag with a
red sun or disc in the center, as shown in Figure 5-1.

134 | Chapter 5: SVG, Canvas, Audio, and Video

Figure 5-1. The Japanese flag made with SVG

1 <!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"
2 "http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">
3 <svg xmlns="http://www.w3.org/2000/svg" height="220" width="320" version="1.0">
4 <title>Japanese Flag</title>
5 <desc>Red circle on white flag</desc>
6 <rect x="10" y="10" width="300" height="200"
7 style="fill: #ffffff; stroke: #e7e7e7;"/>
8 <circle cx="160px" cy="107px" r="60px" fill="#d60818"/>
9 </svg>

So what does that all mean? Lines 1–3 are the SVG DTD and then the root <svg> element,
respectively. Something to note about the root element is that the size of the vector
graphic is declared. To be able to use the CSS background-position when the back‐
ground image is of type SVG, the size of the SVG must be declared. This is important
if you are creating an SVG sprite file.

You can use <title>, line 4, if the SVG file is used independently of other resources.
The <desc> in line 5 is where you can put a text-only description that will not be natively
displayed when the SVG is rendered. Including good content in your <desc> or <title>
provides for accessibility. As not all screen readers support SVG, adding the aria-
label attribute can improve accessibility.

The <rect> in line 6 provides for a rectangle. Available shapes and lines include <path>,
<rect>, <circle>, <ellipse>, <line>, <polyline>, and <polygon>. We provided four
attribute values, x, y, width, and height, for the x-offset, y-offset (both for positioning),
width, and height, respectively. We have also included a style attribute.

Like a regular HTML document, you can use CSS to provide style to elements in your
SVG document. You can declare your styles inline using the style attribute, as I did in
the previous example, or you can include an embedded or external stylesheet, targeting
elements with selectors, just as you would in an HTML file.

HTML5 Media APIs | 135

1. Currently, WebKit and Mozilla prevent importing scripts and raster images in SVG via the tag, even
when the raster images are from the same origin.

The property names are slightly different than the CSS you may be used to, but they are
human readable. The fill property is similar to the background property. In this case,
we provided a background color. The stroke property is similar to the CSS border
property. We could have provided a gradient or pattern.

While you can use most CSS properties and values in your SVG files, for content security
reasons, some browser manufacturers1 prevent SVG file types from importing raster
images or scripts when included as a foreground image with .

The <circle> in line 8 provides for a disc with a solid red background. Instead of a
height and width, the <circle> has the r attribute, for radius. Instead of being posi‐
tioned based on a top-left corner, like the <rect>, the <circle> is positioned based on
the center of the circle, the cx is the x-axis coordinate of the center of the circle, and the
cy is the y-axis coordinate of the center of the circle.

If you look at the circle attributes, you’ll note that we used fill as CSS property on the
<rect>, and as an attribute on the <circle>.

Including SVG in Your Documents
You can include SVG directly in your document with the , <object>, and <embed>
tags:

or:
<embed type="image/svg+xml" src="flag.svg" width="320" height="220"/>

or:
<object data="flag.svg" type="image/svg+xml" width="320" height="220"></object>

Note that although the <embed> and <object> don’t have the alt attribute, SVG can be
made accessible. You can improve accessibility by describing the illustration with <desc>
or <title>, and adding an aria-label attribute with a value that matches the SVG title.
By including the height and width in the <svg>, you shouldn’t need to include them on
the , <embed>, or <object> elements, but do include them in your CSS.

Clown Car Technique: SVG for Responsive Foreground Images
SVG can be used to create and serve responsive images. We can leverage browser support
for SVG and SVG support for both media queries and raster images to create responsive
images, using media queries within SVG to serve up the right image.

136 | Chapter 5: SVG, Canvas, Audio, and Video

We know from CSS background images it is indeed possible to only download needed
images. Similarly, to prevent the SVG from downloading all the included images, we
use CSS background images instead of foreground images in our SVG file. In our re‐
sponsive SVG, we include all the images that we may need to serve and show only the
appropriate image based on media queries (media queries are discussed in more depth
in Chapter 7):

<svg xmlns="http://www.w3.org/2000/svg"
 viewBox="0 0 300 329" preserveAspectRatio="xMidYMid meet">

<title>Put the alt attribute here</title>

<style>
 svg {
 background-size: 100% 100%;
 background-repeat: no-repeat;
 }

 @media screen and (max-width: 400px) {
 svg {
 background-image: url(images/small.png");
 }
 }

 @media screen and (min-width: 401px) and (max-width: 700px) {
 svg {
 background-image: url(images/medium.png);
 }
 }

 @media screen and (min-width: 701px) and (max-width: 1000px) {
 svg {
 background-image: url(images/big.png);
 }
 }

 @media screen and (min-width: 1001px) {
 svg {
 background-image: url(images/huge.png);
 }
 }
</style>
</svg>

To preserve the aspect ratio of the containing element and ensure that it scales uniformly,
we include the viewbox and preserveAspectRatio attributes. The value of the view
box attribute is a list of four space- or comma-separated numbers: min-x, min-y, width,
and height. By defining the width and the height of our viewbox, we define the aspect
ratio of the SVG image.

HTML5 Media APIs | 137

2. http://www.iheni.com/just-how-accessible-is-svg/.

3. The data URI needs to be escaped for IE9 and later. This is just a brief overview of the Clown Car Technique.
More details and examples, along with fallbacks for browsers that don’t support SVG, can be found at http://
github.com/estelle/clowncar.

Because of the security issues with and SVG importing raster images, we use the
<object> to include the responsive image in our site. The <object> element allows an
external resource to be treated as an image:

<object data="awesomefile.svg" type="image/svg+xml"></object>

By default, the <object> will be as wide as the parent element. However, just as with
images, we can declare a width or height with the width and height attributes or with
the CSS width and height properties. Because of the viewbox and preserveAspectRa
tio declarations in our SVG file, the <object> will by default maintain the declared
aspect ratio if only one dimension (height or width) is declared.

Because this technique uses <object> instead of , we have no alt attribute. To
make this technique accessible when and if screen readers support SVG,2 ensure the
contents of the SVG <title> contain what you would have included as the alt attribute.

The <object> embeds the SVG. The SVG pulls in the background image that matches
the @media query based on the size of the <object>, not the viewport. With the preceding
code, two HTTP requests are made: one for the SVG and one for the appropriate image.
To reduce it to a single HTTP request, include an escaped data URI3 for the <object>’s
data attribute.

I call this the Clown Car Technique since we are including many large images (clowns)
into a tiny single SVG image file (car).

Learning SVG
We’ve just touched the surface of SVG. SVG can be made accessible, scales to any screen
resolution, and supports animation via the SVG syntax or via JavaScript, with full control
over each element using the SVG DOM API. There is so much more that can be done
with SVG, which is beyond the scope of this book. The W3C spec provides more in‐
formation about all the elements, attributes, and animation API.

The Japanese flag is a very simple SVG. SVG can get very complicated very fast. If you
are familiar with Adobe Illustrator, you may have noticed that you can export your
illustrations as SVG. While this is a good way to create exacting SVG files, it creates a
lot of code and the program is expensive.

Amaya is free software that supports a subset of SVG, including basic shapes, text,
images, foreignObject, alpha transparency, transformations, and animations. You can
download Amaya directly from the W3C. Amaya is helpful in learning SVG, as the

138 | Chapter 5: SVG, Canvas, Audio, and Video

http://www.iheni.com/just-how-accessible-is-svg/
http://github.com/estelle/clowncar
http://github.com/estelle/clowncar
http://www.w3.org/TR/SVG/
http://www.w3.org/Amaya

source can be inspected and edited. You may also want to check out Inkscape, which is
an open source vector graphics editor, with capabilities similar to Illustrator, CorelDraw,
or Xara, using the W3C standard SVG file format.

CubeeDoo SVG
In CubeeDoo, we employ SVG twice. We have an SVG sprite for the background image
of our game’s “shapes” theme, and as an SVG data URI for the mute icon.

We offer the user a few themes. We have numbers, colors, and shapes, among others.
We are able to produce our shapes with a simple SVG sprite. The code we used to create
the SVG sprite, as seen in Figure 5-2 for the face side of one of our decks of cards, is as
follows:

1 <!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"
2 "http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">
3 <svg xmlns="http://www.w3.org/2000/svg" height="400" width="400" version="1.0">
4 <desc>Squares, circles, diamonds and triangles sprite</desc>
5
6 <!-- Color squares -->
7 <rect x="10" y="10" width="80" height="80" style="fill: #d60818;"/>
8 <rect x="10" y="110" width="80" height="80" style="fill: #ffff33;"/>
9 <rect x="10" y="210" width="80" height="80" style="fill: #00FF00;"/>
10 <rect x="10" y="310" width="80" height="80" style="fill: #0000FF;"/>
11
12 <!-- Color Circles -->
13 <circle cx="150" cy="50" r="40" style="fill: #d60818;"/>
14 <circle cx="150" cy="150" r="40" style="fill: #ffff33;"/>
15 <circle cx="150" cy="250" r="40" style="fill: #00FF00;"/>
16 <circle cx="150" cy="350" r="40" style="fill: #0000FF;"/>
17
18 <!-- diamonds -->
19 <polygon points="250,10 210,50 250,90 290,50" style="fill: #d60818;"/>
20 <polygon points="250,110 210,150 250,190 290,150" style="fill: #FFFF33;"/>
21 <polygon points="250,210 210,250 250,290 290,250" style="fill: #00FF00;"/>
22 <polygon points="250,310 210,350 250,390 290,350" style="fill: #0000FF;"/>
23
24 <!-- Triangles -->
25 <polygon points="310,10 350,90 390,10" style="fill: #d60818;"/>
26 <polygon points="310,110 350,190 390,110" style="fill: #FFFF33;"/>
27 <polygon points="310,210 350,290 390,210" style="fill: #00FF00;"/>
28 <polygon points="310,310 350,390 390,310" style="fill: #0000FF;"/>
29 </svg>

Line 1 is the DTD. In line 3, we declare the root element, and include the height and
width of the SVG image. While not required by the specifications, you must include
these attributes if you plan on using an SVG image as a background image. Line 4
provides a description, which helps both in accessibility and in search engine
optimization.

HTML5 Media APIs | 139

http://inkscape.org

Figure 5-2. SVG sprite of shapes

Lines 7 through 10 provide the declarations for four squares. Line 9 reads: “Create a
rectangle starting 10 px from the left, 210 px from the top. Make the rectangle 80 px
wide and 80 px tall. Fill this shape in with #00FF00.”

<rect x="10" y="210" width="80" height="80" style="fill: #00FF00;"/>

Lines 13 through 16 define four circles or discs. Line 16 reads: “Find the point 150 px
from the left and 350 px from the top, and make that the center of our 40 px radiused
circle that has a background color of #0000FF.”

<circle cx="150" cy="350" r="40" style="fill: #0000FF;"/>

Lines 18 to 28 declare eight polygons: four diamond shaped and three triangles. Polygons
are declared by defining the corners. Line 19 reads: “This shape has four corners, with
the top point at 250 px from the left and 10 px from the top. The second point is at 210
px from the left and 50 px from the top. The bottom point is 90 px from the top, and
the right-most point is 290 px from the left and 50 px from the top. The area within
those four points should be filled in with #d60818, which is a shade of red.”

<polygon points="250,10 210,50 250,90 290,50" style="fill: #d60818;"/>

We chose to make squares, circles, diamonds, and upside-down triangles.

We could also have included these small images as data URIs directly in our CSS file, or
as foreground images. For example, you can include encoded SVG as data URIs:

140 | Chapter 5: SVG, Canvas, Audio, and Video

background-image: url(data:image/svg+xml,%3Csvg%20xmlns%3D%22http%3A%2F%2F
www.w3.org%2F2000%2Fsvg%22%20version%3D%221.0%22%3E%3Crect%20x%3D%220%22%20y
%3D%220%22%20fill%3D%22%23abcdef%22%20width%3D%22100%25%22%20height
%3D%22100%25%22%20%2F%3E%3C%2Fsvg%3E);

In CubeeDoo, we also include a mute icon. The data URI for that icon is:
background-image:
 background-image:
 url("data:image/svg+xml;utf8,%3Csvg%20xmlns=
'http://www.w3.org/2000/svg'%20width='100'%20height='100'%3E
%3Cpolygon%20points='39,13%2022,28%206,28%206,47%2022,48%2039,63
%2039,14'%20style='stroke:#111111;stroke-width:5;stroke-linejoin:round;
fill:#111111;'%20/%3E%3Cpath%20d='M%2048,50%2069,26'%20%20style='fill:none;
stroke:#111111;stroke-width:5;stroke-linecap:round'%20/%3E%3Cpath%20
%20d='M%2069,50%2048,26'%20style='fill:none;stroke:#111111;stroke-width:5;
stroke-linecap:round'%20/%3E%3C/svg%3E");

The paths in this example are barely human readable. They were created using Amaya.
However, the syntax should be familiar. We are using the CSS background-image prop‐
erty. Instead of using url(path/mute.jpg), or even url(path/mute.svg), we employ
url("data:image/svg+xml;utf8,<svg... /></svg>");, putting the entire SVG file,
escaped, within the quotes.

For versions of Internet Explorer that support SVG (currently IE9 and IE10), data URIs
should be escaped, as per the specifications.

Canvas
The HTML5 Canvas specification is a JavaScript API for creating drawings. The canvas
API allows the definition of a canvas context object as the <canvas> element on your
HTML page, inside which we can draw. We can even include canvas drawings in your
CSS as background images.

We can draw in both 2D and 3D (WebGL) context. 2D is available in all of the modern
web browsers. WebGL is gaining ground in the mobile space, and should only be in‐
cluded when hardware is accelerated (if at all) for performance reasons.

2D context provides a simple yet powerful API for performing quick drawing operations
on a 2D bitmap surface. There is no file format, and you can only draw using script. You
do not have any DOM nodes for the shapes you draw—with <canvas> you’re drawing
pixels, not vectors. The single node makes canvas appear mobile friendly, but the high
CPU usages of JavaScript animation can quickly drain a mobile battery (though battery
usage performance is improving with hardware acceleration).
Your first <canvas>

Being a very basic introduction to canvas, we are only going to cover basic shapes and
lines. If you are unfamiliar with JavaScript, the syntax may at first seem a bit confusing.
If you are familiar, it should make sense.

HTML5 Media APIs | 141

The first step is adding the <canvas> element to your document. In terms of HTML,
the only step is adding the <canvas> element to your document:

<canvas id="flag" width="320" height="220">
 You don't support Canvas. If you did, you would see a flag.
</canvas>

That is it for the HTML part of canvas. I could simply have written <canvas></
canvas>. The id was included for ease of JavaScript targeting, though I could also target
it via the DOM. I have also included alternative content for users that don’t support or
otherwise can’t see the <canvas> content.

Other than the aria-label attribute, <canvas>, as currently imple‐
mented, is a completely non-accessible API.

With that, we’ve created our blank drawing board, or canvas. Everything else takes place
in our JavaScript. In this example, we are creating the Japanese flag again, as seen in
Figure 5-3.

The next step is drawing to our canvas. From now on, everything is in JavaScript. We
target the <canvas> node with basic JavaScript in one of three ways:

document.getElementById('flag')
document.getElementsByTagName('canvas')[0]
document.querySelector('#flag')

We then initialize a 2D context and start drawing using 2D context API commands.
Again, we draw the Japanese flag:

1 <script>
2 var el= document.getElementById("flag");
3
4 if (el && el.getContext) {
5 var context = el.getContext('2d');
6 if (context) {
7 context.fillStyle = "#ffffff";
8 context.strokeStyle = "#cccccc";
9 context.lineWidth = 1;
10 context.shadowOffsetX = 5;
11 context.shadowOffsetY = 5;
12 context.shadowBlur = 4;
13 context.shadowColor = 'rgba(0, 0, 0, 0.4)';
14 context.strokeRect(10, 10, 300, 200);
15 context.fillRect(10, 10, 300, 200);
16 context.shadowColor='rgba(0,0,0,0)';
17 context.beginPath();
18 context.fillStyle = "#d60818";
19 context.arc(160, 107, 60, 0, Math.PI*2, false);

142 | Chapter 5: SVG, Canvas, Audio, and Video

4. Firefox 4+ supports canvas in CSS as well, dynamically creating a virtual canvas element with JavaScript and
with -moz-element('#myCanvas') in the CSS.

20 context.closePath();
21 context.fill();
22 }
23 }
24 </script>

Line 2 finds the <canvas> element by matching the element’s id attribute. Before cre‐
ating the 2D context, we check to make sure that the canvas element has been found
and that the browser supports canvas, checking for the existence of the getContext
method in line 4.

You can use feature-detection scripts like Modernizr to feature detect
whether a browser supports canvas and other modern features. Mod‐
ernizr provides for feature detecting all features, or single features that
you are actually employing. We’re not using Modernizr here because
we’re showing you how to feature detect directly. Other than mini‐
mizing external scripts and HTTP requests, there is actually no rea‐
son to not use Modernizr if it otherwise makes sense.

In line 5, we create a reference to a context using the getContext(contextId) method
of the canvas element: 2d is the correct context for <canvas>. If context creation is
successful, checked in line 6, we are finally free to draw in our canvas, which we do in
the rest of the script.

Figure 5-3. Japanese flag created as a canvas

While still experimental, if we want to include the canvas drawing as a background in
a WebKit browser via CSS,4 instead of calling the canvas element within our DOM, we
could include it as a background image:

HTML5 Media APIs | 143

http://modernizr.com
http://bit.ly/1cXjICc

background: -webkit-canvas(theCanvas);

in our CSS, and:
var context = document.getCSSCanvasContext("2d", "theCanvas", 320, 220);

in our JavaScript, where the 2nd parameter is the name of the canvas that we use, un‐
quoted, in our CSS.

Through line 6, and even through line 13, we haven’t drawn anything yet. All we have
done up through line 6 is to define a canvas context in which we can draw and redraw
pixels.

Before drawing a shape, we must define the look and feel of the shape we want to draw
by setting properties on the context object. We define the look of the border (stroke
and linewidth) properties, the background color (fill) and the shadow (shadowOff
setX, shadowOffsetY, shadowBlur, and shadowColor) of our first rectangle, which we
draw with the strokeRect() method in line 14. We pass the same parameters as our
SVG example: (10, 10, 300, 200). The four values are the x-offset, the y-offset, width,
and height, respectively.

Once the script executes a command, the script forgets about what it has done, and
moves onto the next line of code. Unlike our SVG example in the preceding section, the
rectangle we’ve drawn on our canvas is not part of the DOM. Being properties, the
stroke, fill, linewidth, and border properties are still remembered, but the browser
and script are not aware of what has been drawn. If you do want to capture what is drawn
on the canvas and where, use the getImageData()method on the context to capture the
red, green, blue, and alpha transparency values of your pixels.

When we draw our second rectangle using the fillRect method in line 15, which paints
rectangles using the previously set fillStyle property, we need to pass the coordinates
again, as the DOM does not remember our first rectangle (though it can access pixel
information).

Both rectangle method calls (lines 14 and 15) have the same parameters—10, 10, 300,
200—we’ve drawn our fill rectangle directly on top of our drop shadow rectangle. We
could have created an object with those coordinates and passed it to both methods, but
we can’t tell the canvas to access the first rectangle’s coordinates and copy to the second
after the method call.

We first stroked the rectangle, then we filled it. Had the reverse order been the case, the
shadow would have been on top of the background color. As the origin coordinates are
the same, and the border width is only 1 pixel, the final border will only be 0.5 pixels
wide, as the fill covers the inner half of the border stroke.

As mentioned earlier, as we start the process of drawing the disc or sun on our flag, once
you paint onto the canvas, the DOM has no recollection of what you’ve painted. Yes, it’s
true that the JavaScript remembers the values of the properties you’ve set, like our

144 | Chapter 5: SVG, Canvas, Audio, and Video

shadowColor. It also remembers the most recent drawing steps whether or not they have
been drawn. However, the pixels that are places on the canvas are just pixels of color.
As we don’t want a shadow on the red circle, we must set the shadowColor to transparent
before drawing it, which we do in line 16.

We start our instructions for our circle with beginPath() (line 17) and end with close
Path()(line 20). The script remembers the drawing steps whether or not they have been
drawn. If we drew a circle, and then some lines without opening and closing the context,
when we drew the lines, the steps to draw the circle would still be in memory, and your
new line may cut through that circle, cutting it in half. We avoid this by opening and
closing the drawing paths with beginPath() and closePath(), respectively.

We define our circle: context.arc(x-offset, y-offset, radius, startAngle,
endAngle, anticlockwise) adds points to an arced path creating a virtual circumfer‐
ence of a circle described by the arguments context.arc(160, 107, 60, 0,

Math.PI*2, false);. Starting at the given start angle, in our case 0, which is on the
right horizon, and ending at the given end angle, going in the given direction, which in
our case is clockwise. Had our end angle been less than 2Π, our circle would have been
flattened: the start and end points connected by a straight line. Π would have created a
half circle.

We also redefine the fill color, from white to red (line 18). We then paint the circle
we created using the fill() method (line 21) that fills the described arc in the fillStyle
color.

We haven’t even touched the surface of what <canvas> can do. http://ie.microsoft.com/
testdrive/Graphics/CanvasPad/Default.html is a fun page where you can learn simple
shapes, colors, shadows, text, images, transformation, animation, and mouse movement
with <canvas>.
<canvas> code example

In our game example, to make higher levels a little more difficult, we can include a
changing background for the game board. We can include shapes that are on the front
side of the cards in our animation just to make the higher levels insanely difficult.

In the online chapter resources, I’ve included a few canvas code examples. Try drawing
the Japanese flag. Then convert your flag into a static Pac-Man, making the red circle
yellow, with a mouth, a black circle for an eye, and three little edible dots. The online
chapter resource examples also include some text to provide you with code that is be‐
yond the scope of this book, including a function to invert the colors of the Pac-Man
so that you may learn how to access the pixels already drawn to your canvas and other
methods of drawing to the page.

While we’ve included an example of <canvas> in CubeeDoo for this book, we currently
would not include a dynamic canvas element for production for mobile web applica‐
tions. The battery consumption of running canvas animation via JavaScript with the

HTML5 Media APIs | 145

http://ie.microsoft.com/testdrive/Graphics/CanvasPad/Default.html
http://ie.microsoft.com/testdrive/Graphics/CanvasPad/Default.html
http://www.standardista.com/mobile

current state of implementation would make your users very, very sad, but support for
hardware acceleration of <canvas> is improving.

Canvas Versus SVG
HTML5 Canvas and SVG have several similarities and are often compared and con‐
trasted. They are both web technologies that allow you to create rich graphics inside the
browser, but they are fundamentally different.

As we’ve seen, in SVG, you “draw” with XML. For canvas, you draw with JavaScript.
Canvas is the painting of pixels onto a canvas: once painted, each pixel is forgotten. SVG,
on the other hand, creates DOM nodes, accessible until deleted or until the user navi‐
gates away from the page. They both have their advantages and disadvantages.

SVG drawings are resolution independent, making SVG an excellent choice for user
interfaces of all sizes, as it allows scaling for all screen resolutions. SVG is an XML file
format enabling easy accessibility. SVG can be animated using a declarative syntax, or
via JavaScript. Each element becomes part of and is accessible via the SVG DOM API
in JavaScript. However, anything that accesses the DOM repeatedly slows the page down,
which is especially important and noticeable in the mobile environment.

Canvas is all drawn in pixels. Zooming can lead to pixelation. Canvas is inherently not
accessible: accessibility is limited mainly to including fallback content should canvas
not render. Interactivity requires redrawing of each pixel. There are no DOM nodes for
anything you draw. There’s no animation API. Instead, timers or requestAnimation
Frame are generally used for updating the canvas at quick intervals. Canvas gives you a
surface to draw onto with the API of the context you choose. Canvas, however, is very
well suited for editing of images, generating raster graphics such as for games or fractals,
and operations requiring pixel-level manipulation. Drawings created with the canvas
API can also be exported as images.

The <canvas> 2D context is well supported in all browsers (since IE9). SVG is also well
supported, but in varying formats (since IE9 and Android 3). While both SVG and
Canvas are well supported, they both have their drawbacks.

SVG may not perform well. Mobile browsers have difficulty handling increased DOM
elements. Each additional DOM node uses up memory, and needs to be recalculated
when the page is reflowed. For these reasons, you should limit the number of DOM
nodes added to your web applications when developing for mobile. SVG is made up of
DOM nodes, and these increased number of DOM elements can harm performance
and, in more extreme cases, can crash some mobile browsers. Canvas, on the other hand,
when animating (versus drawing a single image), can drain your users’ battery. Canvas
has been hardware-accelerated in all major browsers, making the draw time and update
time much faster, as well as improving battery consumption.

Weigh the pros of cons of both before deciding to use either (or neither).

146 | Chapter 5: SVG, Canvas, Audio, and Video

WebGL

3D, or WebGL, support is still nascent, with major performance issues, excessive battery
consumption, and limited implementation on mobile devices. (Try the Blackberry 10
at the time of this writing for the best implementation. WebGL was also recently im‐
plemented in Firefox OS.) When available on older mobile devices, because CPU usage
eats up battery life, and JavaScript makes for heavy CPU usage, you may want to think
twice before including WebGL: you don’t want to drain your users’ batteries. Devices
that support WebGL, like BlackBerry 10, put WebGL on the GPU, which performs better
and consumes less power than if it were on the CPU, but I am still hesitant to recommend
its use. If you do choose to implement WebGL, always be aware of performance, such
as memory usage and battery consumption.

Audio/Video
Prior to HTML5, there was no standards-based way to embed video in a web page.
Instead, web videos were displayed through third-party plug-ins like Flash or Quick‐
Time. In addition, without an easy way of creating accessible media, when video files
were included, they were often inaccessible to the visually and hearing impaired.

HTML5 defines a standard way to embed video and audio into web pages, using the
<video> and <audio> elements. Both <audio> and <video> are supported in all mobile
browsers (except Opera Mini), but not all browsers support the same video formats at
this time. Before we discuss how to include video and audio into a document, we need
to discuss media file codecs and browser support, since we’ll need to include different
media types for different browsers, and fallbacks for browsers that don’t support your
media type.

Media Types
With browser support of the HTML5 <video> and <audio> elements and standard
media types, there will no longer be a requirement for third-party plug-ins for this type
of media. At this time, however, different browsers support different video and audio
codecs. As you likely know, the iPad and iPhone do not support Flash. They do support
the <video> and <audio> elements, supporting the H.264 video and AAC audio formats
(described in the next section). Modern browsers all support HTML5 video, but do so
with different video formats. Firefox, Chrome, Android, and Opera support Ogg/
Theora (.ogv). IE9, Safari, Chrome, Android, and iOS support MPEG4/h.264 (.mp4).
Firefox 4+, Chrome, Opera, and Android (2.3+) support WebM/VP8 (.webm), as does
IE9 if the required codecs are installed on the system. See Table 5-1.

Audio/Video | 147

Table 5-1. Browser video codec support (Ogg and WebM can be separately installed in
IE9)

 iPhone/iPad Android BlackBerry Opera
Mobile

Opera
Mini

Windows/IE Chrome
Android

Firefox
Android

<video> Yes Yes 7 11 9 yes yes

Ogg 2. 11 (9*) yes

H.264 Yes 3.0a 7 9 yes yes*

WebM 2.3 14 (9*) yes yes
a See http://www.broken-links.com/2010/07/08/making-html5-video-work-on-android-phones/.

There are several video codecs. The three most relevant codecs are Theora/Ogg, VP8,
and H.264. Theora/Ogg (.ogv) is an open standard natively supported by Firefox 3.5,
Chrome 4, and Opera 10.5+, and works in IE only after installing a plug-in. WebM, used
with the VP8 video codec, is a newer format that is supported natively in the newest
versions of Chrome, Mozilla Firefox, and Opera 10.6.

VP8 is currently royalty free. There is a patent, but Google, the owner, provides for
royalty-free licensing. Unfortunately, while well supported in modern browsers, WebM/
VP8 video codec faces patent issues with Nokia that may make it unlikely to be adopted
as an Internet standard anytime soon.

H.264 provides for low, medium, and high bandwidth devices, is playable through
Adobe Flash, and mobile devices including Android and iPhone, but is not an open
standard. Licensing can be quite costly. Originally, Chrome stated that it would drop
support for it, but hasn’t yet. Firefox added support in 2013 if it is installed in the op‐
erating system. Opera on mobile does the same.

At this time, there is no format that works in all browsers, as demonstrated in
Table 5-1. To make your video work everywhere, you have to encode your video in more
than one format.

For right now, for mobile phones in the United States, H.264 is the way to go. Just keep
yourself updated for the possibility that support may change. If the “mobile” devices
you support include GPS systems, video games, etc., remember that Opera is the most
popular mobile browser around the world, and even in the United States for other-than-
phone-and-PC devices.

Adding <video> to Your Website
While simply including H.264 for mobile may work if you are targeting the US smart‐
phone market, for maximum device compatibility, two versions of the video need to be
produced. Make a WebM version (VP8 video and Vorbis audio) and an MP4 version
(H.264 video and AAC audio). Link to both video files using the HTML5 <video>

148 | Chapter 5: SVG, Canvas, Audio, and Video

http://www.broken-links.com/2010/07/08/making-html5-video-work-on-android-phones/

element and the child <source> tags, and include a Flash-based video player as a default
option.

Attributes of <video> and <audio>
There are several attributes for <video> and <audio> elements that control the appear‐
ance and behavior of the embedded media.

The <video> and <audio> elements support:
src

The src attribute, or “source attribute,” takes as its value the URL for the video or
audio file. It can be replaced by multiple <source> child nodes.

autoplay

The Boolean autoplay attribute, if present, tells the browser to start playing the
video automatically, not waiting for the user to press play. This should only be
included on web pages where the primary content of the page is the video.

loop

If the Boolean loop attribute is present, the video or audio will loop, once started
it will play continuously until paused or stopped. When the video or audio clip
reaches its end, if the loop attribute is present, it will start from the beginning again.

controls

If the Boolean controls attribute is included, the browser should display the media
controls (timing, play, pause, etc.).

preload

The preload attribute hints to the browser how much it should download before
the video starts playing. If omitted or included and set to none, the media does not
preload. If included or included and set to auto, the media will be downloaded. If
set to metadata, the dimensions, length, and other metadata should be retrieved,
but the whole media object need not be downloaded.

The following attributes apply to <video> only, not to <audio>:
poster

The poster attribute takes as its value the URL of an image to be used as a visual
placeholder until the video starts playing. If not included, the video player will show
the first from of the video, which generally appears as a black rectangle.

width

The width attribute takes as its value the width of the video container (in pixels).

height

The height attribute takes as its value the height of the video box (in pixels).

Audio/Video | 149

Here is a sample <video> declaration (a description of each component is given in
Table 5-2):

<video autoplay controls loop poster="poster.jpg" preload="metadata"
src="video.mp4" height="360" width="480">Fallback Text</video>

Table 5-2. The components of a sample <video> declaration
Component Description

<video> The video tag.

autoplay If set, the video starts when page loads.

controls If set, a control bar is shown.

loop If set, the video continuously loops.

poster="/img/poster.jpg" If set, a preview image is shown.

preload="metadata" Can be none, metadata, and auto.

src="/video/video.mp4" Link to the video file.

height="360" Height of the video.

width="480"> Width of the video

Fallback Text Can be any valid HTML code. Linking to the video is standard practice.

</video> The closing </video> tag is required

HTML5 <audio> and <video> allow for associating captions with the embedded media.
These elements are part of the HTML5 DOM that allows for CSS styling and provides
for a powerful API giving developers control over movie playback through a whole slew
of new JavaScript methods and properties, including play(), pause(), muted, and
ended.

When HTML5 video is fully supported, with all browsers supporting the same codec,
the code will be as simple as this:

<video src="myVideo.mp4" width="400" height="300"
 controls poster="myImage.jpg">
 You don't support HTML5, but you can still
 download the video here.
</video>

Unfortunately, that code won’t work cross-browser quite yet. As explained previously,
not all browsers support the same codec: we have to provide different sources to different
browsers.

To enable that, HTML5 provides us with the <source> element. The <source> element
allows the specifying of more than one media resource. The <source> element has three
attributes (other than the global attributes) including src, type, and media.

150 | Chapter 5: SVG, Canvas, Audio, and Video

To dynamically change the media being played, modify the src at‐
tribute of the <video> and <audio> tags. Modifying the src attribute
of a <source> element will not work. Use the canPlayType() meth‐
od to select a type that the browser supports.

The type attribute denotes the type of the media resource, so that the browser can
determine if it understands the media type before downloading it. If specified, its value
must be a valid MIME type.

Until all browsers support a single codec, the code is still not too complicated. In our
game example, we could add an instructional video explaining how to play the game.
We didn’t include this video, but we could have. Had we opted to include a video, sup‐
porting video for all browsers would currently look something like this:

<video width="400" height="300" preload="none" poster="posterImg.jpg"
 controls>
 <source src="myVideo.mp4" type="video/mp4; codecs=avc1.42E01E, mp4a.40.2"/>
 <source src="myVideo.webm" type="video/webm; codecs=vp8, vorbis"/>
 <source src="myVideo.ogg" type="video/ogg; codecs=dirac, speex"/>
 <object width="400" height="324" type="application/x-shockwave-flash"
 data="myVideo.swf"/>
 <param name="movie" value="myVideo.swf"/>
 <param name="flashvars"
 value="image=posterImg.jpg&file=myVideo.mp4"/>
 <!-- fallback -->

 <img src="posterImg.jpg" width="400" height="300"
 alt="Awesome Video"/>

 </object>
</video>

If your browser supports it, HTML5 video is used. If the browser does not support the
first media type and the code if included, it will try the next. If HTML5 video is not
supported, Adobe Flash is used. If neither Flash nor <video> are supported, the place‐
holder image will be displayed. You may also want to include video download links.

The preceding Flash file source is declared to be 24 px taller than the
other versions: this is because the Flash controls take up 24 px of height
below the video instead of overlaying the video like HTML5 video
formats.

If we were targeting just modern mobile devices, we could have omitted Flash and added
tracks (described in the section “The <track> element” on page 152):

Audio/Video | 151

<video width="400" height="300" preload="none" poster=
 "posterImg.jpg" controls>
 <source src="myVideo.mp4" type="video/mp4;
 codecs=avc1.42E01E, mp4a.40.2"/>
 <source src="myVideo.webm" type="video/webm;
 codecs=vp8, vorbis"/>
 <source src="myVideo.ogg" type="video/ogg;
 codecs=theora, vorbis"/>
 <img src="posterImg.jpg" width="400" height="300"
 alt="Title of Video" title="Your browser does
 not support video"/>
 <track kind="subtitles" label="English" src="en.vtt"
 srclang="en" default></track>
 <track kind="subtitles" label="Deutsche" src="de.vtt"
 srclang="de"></track>
</video>

Video files usually contain both audio and video tracks. Audio tracks contain markers
to synchronize the audio with the video. Individual tracks can have metadata, such as
the aspect ratio of a video track, or the language of an audio track. Containers can also
have metadata, such as the title of the video itself, cover art for the video, episode num‐
bers (for television shows), and so on.

Similarly, you can add <audio> to your documents:
<audio id="sound">
 <source src="music.mp3" type="audio/mp3"/>
 <source src="music.ogg" type="audio/ogg"/>
 <!-- flash version of the audio for non supporting browsers -->
</audio>

An article on Dev.Opera provides very detailed instructions on detecting support.
The <track> element

To make videos and audio files accessible to users with hearing impairments, or even
accessible to nonnative speakers, you can add captions to your video with a <track>
element linking to a subtitling file.

Included as the child of a <video> or <audio> element, <track>’s src attribute links to
a timed track, or time-based data. The kind attribute sets what kind of data is included
by the src attribute. Values of the kind attribute include subtitles, captions, de
scriptions, chapters, or metadata.

You can include multiple track elements as children of a media element, but they must
be of unique kind and language combinations:
subtitles

The default value of the kind attribute, indicates a translation of the dialogue and
is displayed over the video or audio by default. This is most useful when the con‐
versations are inaudible or in a foreign language.

152 | Chapter 5: SVG, Canvas, Audio, and Video

http://dev.opera.com/articles/view/everything-you-need-to-know-about-html5-video-and-audio/

captions

Denotes a track file that provides a transcription or translation of the dialogue
similar to subtitles, but includes sound effects, musical cues, and other audio in‐
formation that could fully replace the soundtrack if the audio is unavailable. This
is most useful when videos are muted or the user is hearing impaired.

descriptions

Tracks are descriptions of the video component of the media resource, intended for
audio synthesis when the video is unavailable. This is helpful for the visually im‐
paired and for those who otherwise can’t see the video or read track text.

chapters

Denotes a track defining chapter titles, intended to be used for navigating the media.

metadata

Denotes a track that is intended for use by scripts and is not displayed to the human
user.

Include the source of the track file with the required src attribute. The srclang attribute
gives the language of the text <track> data. The label attribute gives a user-readable
title for the <track> used by the browser to list subtitle, caption, and audio description
tracks in their user interface.

The default attribute, if specified, indicates that the <track> is to be enabled if the
user’s preferences do not indicate that another <track> would be more appropriate.
There can only be one default <track> element.

HTML5 <audio> and <video> allow for associating captions with the embedded media.
These elements are part of the HTML5 DOM, which allows for CSS styling and provides
for a powerful API giving developers control over movie playback through a whole slew
of new JavaScript methods and properties, including play(), pause(), muted, and
ended.

Video and Audio and JavaScript
If you’re going to use JavaScript to control the <audio> and <video> elements, you will
need to use feature detection to ensure support and avoid throwing a JavaScript error:

if (createElement('audio').canPlayType) { /* audio is supported */}

You can include native controls, or create your own. <audio> and <video> support the
play() and pause() methods. To create your own, you can add HTML for the controls
and JavaScript to play and pause the audio, with code similar to this:

<div id="controls" style="display: none">
 <button id="playButton">Play</button>
 <button id="pauseButton">Pause</button>
</div>

Audio/Video | 153

<script>
 if (document.createElement('audio').canPlayType) {
 if (document.createElement('audio').canPlayType('audio/mp3') ||
 (document.createElement('audio').canPlayType('audio/ogg')) {
 // HTML5 <audio> and an included audio type is supported
 document.getElementById('player').style.display = 'block';
 } else {
 ... Include flash or other audio here ...
 }
</script>

To create your own controls, you can include the following:
var videoClip = document.querySelector('#clip');
var playButton = document.querySelector('#playButton');
var pauseButton = document.querySelector('#pauseButton');

playButton.addEventListener('touchEnd', function() {
 playVideo();
});
pauseButton.addEventListener('touchEnd', function() {
 pauseVideo();
});

function playVideo() {
 //play the video
 videoClip.play();
 // update the controls
 playButton.disabled = true;
 pauseButton.disabled = false;
}

function pauseVideo() {
 //pause the video
 videoClip.pause();
 // update the controls
 playButton.disabled = false;
 pauseButton.disabled = true;
}

function MuteUnMute() {
 //change the button value
 document.getElementById('mute').value = videoClip.muted ? 'Mute' : 'Unmute';
 //change the state of the video
 videoClip.muted = videoClip.muted ? false : true;
}

154 | Chapter 5: SVG, Canvas, Audio, and Video

CubeeDoo

In our game example, we have a few sounds. In addition to optional annoying back‐
ground music, when someone gets to the next level, makes a match, fails to make a
match, etc., the game makes a sound indicating if there was a success or failure.

A background sound, if included, would use the actual <audio> tag, since the back‐
ground music is user controllable. The feedback sounds are based on user action and
success, so I dynamically generated them with JavaScript.

Here are the two methods we can employ to include sound. We can include the audio
directly in our HTML:

<audio id="nonmatchsound" preload src="notmatch.mp3"></audio>
<audio id="matchsound" preload src="match.mp3"></audio>

We’ve preloaded the audio, but do not autoplay or loop our audio files. Instead, we use
JavaScript to initiate playing the matched or nonmatched sound:

playSound: function(matched) {
 if (qbdoo.mute) {
 return false;
 }
 if (matched) {
 qbdoo.matchfound.play();
 } else {
 qbdoo.failedmatch.play();
 }
 },

Alternatively, we don’t have to put the audio in our HTML. Instead, we add the audio
to the DOM with JavaScript, without appending the audio files to the page:

playSound: function(matched) {
 //if sound is off for game, skip
 if (qbdoo.mute) {
 return false;
 }
 // if we haven't created the audio node, create it.
 if (!qbdoo.audio) {
 qbdoo.audio = document.createElement('audio')
 }
 if (matched) {
 qbdoo.audio.src = qbdoo.matchedSound;
 }
 else {
 qbdoo.audio.src = qbdoo.failedMatchSound;
 }
 qbdoo.audio.play();
 },

We’ve only included audio to demonstrate the use of <audio>. Never autoplay music; it
is bad user experience. You’ll note the game includes a mute button. If you do include

Audio/Video | 155

sound and it is on by default, if the user selects to mute the sound, remember this
selection in localStorage, which we cover in Chapter 6.

Styling Video
The <video> element is an HTML element. Like all elements, <video> is styleable. You
can use CSS to define the width and height of the video. You can mask it, round the
corners, and even reflect its contents. With canvas you can sample the pixels and invert
them (which we may also be able to do with CSS Filters).
Responsive video sizing

More importantly, you may want to resize videos based on device size and aspect ratio.
Thierry Koblentz proposed an effective method for allowing browsers to determine
video dimensions based on the width of the containing block (or the width of the page)
using intrinsic dimensions. A width change, such as an orientation change, triggers a
new height calculation, allowing videos to resize and giving them the ability to scale the
same way images do.

To create the resizable video, you create a resizable box with the proper ratio (4:3, 16:9,
etc.), then make the video inside that box stretch to fit the dimensions of the box by
using padding, percentages, and absolute positioning. The padding is generally set as a
percentage of either 56.25% or 75% of the width, depending on the aspect ratio. Taking
advantage of the box model, the <video> is absolutely positioned to take up the entire
height and width of the padding area.

If you need to include a resizable video for your responsive website:
.wrapper {
 position: relative;
 height: 0;
 width: 100%;
 padding-bottom: 56.25%;
 / * or */
 padding-bottom: 75%;
}
video {
 position: absolute;
 width: 100%;
 height: 100%;
 left: 0;
 top: 0;
 }

Things to know about <video> implementation

Unlike Flash, which is a plug-in controlled by one company, and therefore behaves
similarly everywhere, different browsers and operating systems have slightly different
quirks when it comes to <video>. On the iPhone, Android, and Windows Phone 8,

156 | Chapter 5: SVG, Canvas, Audio, and Video

http://www.alistapart.com/articles/creating-intrinsic-ratios-for-video/

videos are always fullscreen. On the iPad, the controls have a fullscreen button, and it
even works with the pinch gesture. Video uses GPU on iOS and Windows, but Android
played video off the CPU until Android 4:

• Make sure that your server is supporting the video mime types or Firefox may fail.
Add AddType video/ogg.ogv and the like to the .htaccess file if not already sup‐
ported.

• iPhone and iPad will not autoplay, even if the attribute is included.
• The appearance of the controls are based on the native browser controls. As men‐

tioned earlier, the look and feel can be overwritten with JavaScript. Check out http://
videojs.com/ if you would like to skin your controls.

• If you want to start including your own videos, there is an open source, GPL-
licensed, multiplatform, multithreaded video transcoder, available for Mac OS X,
Linux, and Windows called Handbrake.

Remember that video and sound uses a lot of battery power. While both are supported
on all smartphones, with great power comes great responsibility: it is your job to ensure
that your web applications don’t drain your users’ batteries. Use caution when including
battery-draining features.

Audio/Video | 157

http://videojs.com/
http://videojs.com/
http://handbrake.fr/

CHAPTER 6

Other HTML5 APIs

Offline Web Applications
Until now, users of web applications have only been able to use applications while con‐
nected to the Internet. When offline, web-based email, calendars, and other online tools
have been unavailable, and for the most part, continue to be.

While offline, users may still access some portions of sites they have visited by accessing
what is in the browser cache, but that is limited and difficult to manage. If a user gets
bumped offline in the middle of a process, like writing an email or filling in a form,
hitting submit can lead to a loss of all the data entered.

The HTML5 specification provides a few solutions, including local and session storage
for storing data locally, and an offline application HTTP cache for ensuring applications
are available even when the user is offline. HTML5 contains several features that address
the challenge of building web applications that don’t lose all functionality while offline,
including indexDB, offline application caching APIs, connection events, status, as well
as the localStorage and sessionStorage APIs.

Am I Even Connected to the Internet?
One thing you may want to know when implementing offline features is if the user is
indeed connected to the Internet. HTML5 defines an onLine property on the Navigator
object so you can determine whether the user is currently online:

var isOnline = navigator.onLine;

This will return true or false. Note that if it returns true, it could mean the user is on an
intranet and does not necessarily mean the user has access to the Internet.

159

Application Cache
If you want to create web-based games that are able to compete with native games on
mobile devices, you have to ensure that players can access your game even when they
are not online. We want CubeeDoo players to be able to play whether they’re at home
on their WiFi, camping in the Mojave desert (why enjoy nature when you could be
flipping cards?), or even flying over the Pacific. Application cache enables you to create
web-based applications that are accessible even when the user is not currently online.

In the past, desktop browsers have only been able to save the HTML file and associated
media to a local folder. This method works for static content, but it never updates and
is generally a bad user experience.

With the ubiquity of web-based applications, it is more important than ever that web
applications are accessible when the user is offline. While browsers have been able to
cache the components of a website, HTML5 addresses some of the difficulties of being
offline with the application cache (“AppCache”) API.

AppCache allows you to specify which files should be cached and made available offline,
enabling your website to work correctly when your user is offline even if they reload a
page. Using the AppCache interface gives your web application the following advan‐
tages: (1) offline browsing, (2) faster reloads, and (3) reduced server load. With appli‐
cation cache offline browsing, your entire site can be navigable even when a user is
offline.

AppCache on most mobile browsers enables the local storage of up to 5 MB (or limits
you to 5 MB, depending on your perspective). Different browsers may have different
limits. While users can change these limits in their browser preferences, you should
always code to browser default values, unless all your users are power users.

For AppCache to work, you must include the manifest attribute in the opening <html>
tag, the value of which is the URL of a text file listing which resources should be cached.
In your HTML file, include manifest="URL_of_manifest":

<!doctype HTML>
<html manifest="cubeedoo.appcache">
<meta charset="utf-8"/>
<title>....

With the inclusion of the manifest attribute on the <html> element linking to a valid
manifest file, when a user downloads this page, the browser will cache the files listed in
the manifest file, the manifest file itself, and the current document, making them avail‐
able even when the user is offline. Even though the current document is by default
cached, it is best to list it among the cached files in the manifest.

160 | Chapter 6: Other HTML5 APIs

The document linking to the manifest file is cached by default.

So how does it work? When a browser sees a manifest attribute, it downloads the
manifest file and attempts to cache the files listed in that manifest. If the user opens a
locally stored website when offline, it uses the already cached files. If online, the browser
accesses the cached site first, and only then does it check to see whether updates have
been made to the cache manifest file and therefore the cache.

If changes have been made to the cache manifest file, the browser will download the
entire cache before making updates to the cache in memory. The browser looks for
changes in the manifest file, not the rest of the files on the server, to determine whether
the cache should be refreshed. In other words, to get the cache to update, you need to
edit the manifest file itself. Updating your other assets is not enough. Remember this
when the “comment” is detailed in the section “Updating the cache” on page 162.

After loading the site from the cache, it fetches the manifest file from the server. If the
manifest has changed since the page was last visited, the browser re-downloads all the
assets and re-caches them. If the browser fails to re-download all of the assets, it con‐
tinues to use the old cache. However, if the browser successfully downloads all the
required files, it still continues to use the old cache, switching to the newer cache the
next time the user accesses the site.
The cache manifest file

The .appcache file is a text file that lists the resources the browser should cache to enable
offline access to your application. The file must start with the following string: CACHE
MANIFEST. The required string is then followed by a list of files to be cached, and optional
comments and section headers.

Your .appcache file should be served with the MIME-type text/cache-manifest. Add:
 AddType text/cache-manifest .appcache

to your .htaccess file or server configuration. This used to be required, but is now op‐
tional. The manifest file is permanently stored in the browser cache. An .appcache may
look something like this:

CACHE MANIFEST
#version01

#files that explicitly cached
CACHE:
index.html
css/styles.css
scripts/application.js

Offline Web Applications | 161

#Resources requiring connectivity
NETWORK:
signin.php
dosomething.cgi

FALLBACK:
/ 404.html

Note that the files listed in the cache manifest file are relative to the manifest file.

To create a comment, include a # as the first character of the line and the remainder of
the line will be ignored.

Section headers add more control to how AppCache treats your web files and assets.
There are four possible section headers: CACHE, FALLBACK, SETTINGS, and NETWORK, each
followed by a colon.

The files following the CACHE header are explicitly cached. If no header is defined, or if
files are listed above the headers, those files are cached as if they followed the CACHE
header. Note that secure (HTTPS) files can only be cached if from the same origin as
the manifest.

The file containing the cache manifest file in the <html> element is always added to the
cache whether or not it’s listed under the CACHE header.

Do not list the manifest file itself, or the site may never update.

The files following the NETWORK heading are explicitly not cached, and are therefore only
accessible when the user is online.

FALLBACK files include paired files: files to show, and fallback files to backfill if the former
file is not available. (If the first file in the pair is not available, the second file listed on
the line will be served.) If included, the SETTINGS header should be last and list the single
line value prefer-online.

Do not list the cache.appcache file as a file to be cached in your mani‐
fest file, or your site may never update.

Updating the cache

The browser cache is not updated or overwritten until a change is made to the manifest
file or by using applicationCache JavaScript methods. Making an update to a file listed
in the manifest, such as your JavaScript, CSS, or HTML, is not sufficient: a change needs
to occur in the manifest file itself.

A standard practice is to add a comment within the manifest file to force a file update.
In the preceding snippet, changing the comment #version01 to #version02 will inform
the browser that the cache should be updated. Using a timestamp instead of a version

162 | Chapter 6: Other HTML5 APIs

number may be more intuitive for you. Note that what you put in the comment is not
important, only that it creates a change in the file that the browser will detect.

The version number for our cache is basically the comment on the second line. When
the user requests that web page, the browser first loads the site from the cache if the
cache is present. Then it downloads the .appcache file from the server and compares it
with the one in memory. If there is a change to the manifest file—such as a change in
that version number—it will download the rest of the cache. This is why we add a
comment. It is much easier to change a comment than to change a filename (and all the
files linking to it). Changing the comment with a version number or timestamp has
become the standard way of informing the browser that the manifest file should be
considered updated.

Once an application is offline it remains cached until the user clears their browser’s data
storage for your site, the .appcache file is modified, or the application cache is pro‐
grammatically updated.

The browser first loads the site from the cache. Only then does it check to see if there
are changes in the manifest file. When a change is noted, all the files listed in the manifest
file are downloaded. The cache is not updated, however, until all the files are successfully
retrieved from the server. If the manifest file or a resource specified in it fails to down‐
load, the entire cache update process fails—there is no risk of your user seeing a partially
updated version of your web application.

You can force an update to the cache without altering the manifest file programmatically.
To explicitly update the cache, call applicationCache.update(). When the status is
ready, swap the old cache for the new one:

var appCache = window.applicationCache;

if (appCache.status == appCache.UPDATEREADY) {
 appCache.swapCache();
}

The possible status values include UNCACHED, IDLE, CHECKING, DOWNLOADING, UPDATE
READY, and OBSOLETE. If the manifest file or a resource specified in it fails to download,
the entire cache update process fails and the browser will keep using the old application
cache.

While these steps update the cache, they do not update what the user is currently viewing.
The user will continue viewing the previously cached version of the site until the next
time he or she tries to access the web application. It thus takes two loads of your site for
the user to get the new content.

You can force the new site on the user by reloading the site based on an updateready
event handler, but having the site reload while the user is interacting with it could be
bad user experience; do so thoughtfully.

Offline Web Applications | 163

In terms of CubeeDoo, we can add all of the files to the manifest file. We would have
excluded the secure login form if we had one. We also include a comment with the
version number (or the date, or something that makes sense to you), which we will
update if we ever make changes to any of the files listed under the CACHE: or FALL
BACK: headers:

CACHE MANIFEST
#version01

CACHE:
index.html
css/cubeedoo.css
scripts/cubeedoo.js
assets/matched.mp3
assets/notmatched.mp3
images/shapes.svg

NETWORK:
login.html

FALLBACK:
/ 404.html

When we are ready to deploy our application, we will add the manifest attribute to our
index page’s <html> tag. But don’t do it now. There is very little that is more annoying
than developing and testing a web application that is completely cached in the browser:

<html lang="en-us" manifest="cubeedoo.appcache">

Browsers will also clear the cache if they are unable to find the cache manifest file on
the server. Linking to a nonexistent file, thereby returning a 404 Not Found response,
will cause the browser to clear the cache.

Local and Session Storage
With application cache, we can get our web applications saved onto devices so they’re
available offline. Application cache enables you to store the files, but sometimes you
also need to store data. For example, when our CubeeDoo player is offline (and online),
we want to maintain our high scores with the names, times, and scores of these over‐
achievers along with the current game state when a player pauses the game. For these
features, we could use localStorage, IndexedDB, or the deprecated Web SQL Database.

We’re going to use localStorage to pause the game and use the deprecated (and yet still
pervasive) Web SQL Database to save high scores. We could have done the inverse. We
can’t, however, use IndexedDB, since it is not yet supported on iOS or Android (though
IE10, Blink, and Firefox added support in recent releases).

164 | Chapter 6: Other HTML5 APIs

LocalStorage and sessionStorage are easy-to-use key/value stores. You may be thinking
“but we have cookies, so what is the big whoop-dee-doo?” There are a lot of drawbacks
to cookies, which localStorage solves.
The cookie comparison

The main uses for cookies are session management, personalization, and tracking.
Server cookies are strings sent from the web server to the browser and back again with
each HTTP request and response. The browser can return an unchanged cookie to the
server, introducing state into an otherwise stateless HTTP transaction. Client-side
cookies are JavaScript-generated strings that can be used to enable state, pass informa‐
tion back and forth to the server, or even simply to maintain values client-side, such as
items in a shopping cart.

Browsers can store 300–400 cookies with a maximum size of 4 KB per cookie, and a
limit of 20 cookies per server or domain. All cookies are sent with each HTTP request.
While this automatic sending of information may be used to your favor, one of the big
downsides in terms of mobile is the increased bandwidth. Also, passing cookies back
and forth can be a security risk.

Whereas cookies are limited to 20 cookies at 4 KB each for a total of 80 KB per domain,
the new local and session storage standards allow for more space. The size depends on
the browser, but is generally in the MB rather than KB range.

LocalStorage is used for long-term storage of lots of data for a particular domain within
a single browser. LocalStorage data persists after the browser or browser window is
closed. LocalStorage data is accessible across all browser windows.

SessionStorage data is confined to the browser window that it was created in, and gets
deleted when the session ends. SessionStorage is accessible to any page from the same
origin opened in that window. If you open a window and navigate from page to page in
the same site in the same window, every page navigated to within that same browser
window will have access to the sessionStorage. If the user has multiple windows opened
—for example, viewing your site in three separate browser windows—each browser
window would have its own individual copy of the sessionStorage, but would share the
same localStorage key/value pairs.

Long-term and session cookies are both sent to the server with every HTTP request. If
you need to send information to the server, cookies may be the right solution. However,
saving state via cookies, like many of us did before HTML5, meant sending lots of useless
information to and from the server, wasting bandwidth. LocalStorage and sessionStor‐
age both save bandwidth.

SessionStorage and localStorage both have the same five methods and a single property,
as shown in Table 6-1.

Offline Web Applications | 165

Table 6-1. SessionStorage and LocalStorage methods and properties
Method/property Description

setItem(key, value) Sets the value for the given key. For example, define the session variable with:
sessionStorage.setItem('keyname', 'data value')
localStorage.setItem('keyname', 'data value')

getItem(key) Retrieves the value for the given key. Returns null if the key does not exist:
sessionStorage.getItem('keyname')
sessionStorage.keyname
localStorage.getItem('keyname')
localStorage.keyname

removeItem(key) Removes the key and its associated value. Unset the value with:
sessionStorage.removeItem('keyname')
localStorage.removeItem('keyname')

clear() Removes all key/value pairs. Clear all the key value pairs with:
sessionStorage.clear()
localStorage.clear()

key(position) Returns the key for the value in the given numeric position:
sessionStorage.key(position)
localStorage.key(position)

length The read-only length property indicates how many key/value pairs are currently stored in
sessionStorage:

sessionStorage.length
localStorage.length

Using sessionStorage and localStorage is extremely easy. It is like a regular object with
a predefined name: sessionStorage and localStorage, respectively.

There is an argument as to the speed or performance of these storage APIs. While hitting
the hard drive to retrieve data is slower than hitting a JSON value in the browser, hitting
the hard drive on a mobile device is generally more performant than making an HTTP
request.
LocalStorage to enhance mobile performance

Some websites, like http://m.bing.com, have taken advantage of localStorage to reduce
the number of HTTP requests a page load makes. As briefly described in “<style> and
mobile performance: standards anti-pattern” on page 54, they include the scripts and
styles in the first hit to the server, then extract the JavaScript and CSS into separate
localStorage name/value pairs. Each script has a unique identifier as the name in the
name/value pair, which is stored inside a cookie.

When the user makes a request for a new page, the cookie gets sent along with the request
informing the server which files are already stored in the user’s browser. The server then
only sends the needed files. This reduces a page request to a single HTTP request.

166 | Chapter 6: Other HTML5 APIs

http://m.bing.com

1. For more information on sessionStorage, see http://www.nczonline.net/blog/2009/07/21/introduction-to-
sessionstorage/.

While the first request may have a large file size, subsequent requests are small as all of
the assets are stored locally in localStorage. While including scripts and styles within a
page is an anti-pattern of performance and standards, it has been used effectively to
improve the performance on some mobile web applications and sites.1

Data and user settings persistence is not just helpful in terms of user experience, but
can also benefit web users whose data or WiFi may not be consistent, be it due to over‐
loaded cell towers, lack of data, or the user wanting to limit their data usage.

Because application cache isn’t the panacea we are all hoping for, developers have de‐
veloped their own best practices for offline application storage, generally mixing ap‐
plication cache with localStorage. The Financial Times has a good article explaining
their process, reasoning, and code.
CubeeDoo

In CubeeDoo, we use localStorage to save state for pausing the game, and sessionStorage
to store the username and the game’s default values. You can use sessionStorage or
localStorage for all three, or any combination of the two. I chose to use both to demon‐
strate both.

We are leveraging the storage APIs to reduce the need to save state server-side. In fact,
there is no server backend for CubeeDoo. Our server only needs to store and serve static
files. All of the features such as high scores that generally sit on a database in the cloud
are on the user’s device.

LocalStorage is used to maintain state when the game is paused. When the user pauses
the game, we use the custom data attributes and the dataset API to set and get the values
and locations of each card. We store the card values in localStorage, along with all the
other relevant data—such as time left, current level, current score, etc.—required to
continue the game where and how we left off. Had we used sessionStorage, pausing the
game would have worked just as well, but the information would have been cleared
when the user closed the browser window, as sessionStorage key/value pairs are cleared
when a browser session is terminated.

SessionStorage is used to temporarily store the user’s name. The benefit of using ses‐
sionStorage instead of localStorage for the username is that a separate player’s username
can be maintained in a second tab in the same browser. The drawback (or benefit) is
that when the user closes the browser, the username (used for listing and storing high
scores) is cleared.

We stored the original state of the game—the default values—with sessionStorage. It’s
employed to save the default game settings when the game is initially loaded. When the

Offline Web Applications | 167

http://www.nczonline.net/blog/2009/07/21/introduction-to-sessionstorage/
http://www.nczonline.net/blog/2009/07/21/introduction-to-sessionstorage/
http://bit.ly/1aFW4Xu
http://bit.ly/1aFW4Xu

user progresses through the game, the levels increase, then the time allowed per level
decreases, and so on. When the user starts a new game, instead of refreshing the page,
we pull the original values out of sessionStorage. In this way, starting a new game does
not require a page reload to access the game settings, which may have changed during
the previous game. We could have saved these variables as properties on a global object
in our script, but reloading would have reset the values to the default values set in our
JavaScript.

I’ve chosen to store these default values in sessionStorage because, with HTML5, I can!
I used sessionStorage instead of localStorage so those values don’t maintain state be‐
tween sessions.

I’ve included the following functions (among many others):
storeValue

Stores default game values.

alterValue

Updates stored default values.

pauseGame

Pauses game. Stores current state in localStorage.

playGame

Resets the game to pre-paused state, putting the cards back in their place and re‐
starting the timer.

reset

Clears localStorage set up when game was paused, clearing the saved paused state
of the game.

Note qbdoo is the top-level namespace for CubeeDoo, and has several properties you
can control:

1 var qbdoo = {
2 //game settings
3 currentLevel: 1,
4 currentTheme: "numbers",
5 gameDuration: 120,
6 score: 0,
7 matchedSound: 'assets/match.mp3',
8 failedMatchSound: 'assets/notmatch.mp3',
9 mute: true,
10 cardCount: 16,
11 iterations: 0,
12 iterationsPerLevel: 2,
13 possibleLevels: 3,
14 maxHighScores: 5, ...

168 | Chapter 6: Other HTML5 APIs

You can set the default values such as the number of cards, iterations per level, initial
duration of a round, and so on. You, as the developer, can alter any of these default
values. As the user plays the game, some of these values get altered. We store the original
values, and restore these values as they get altered in sessionStorage.

The storeValues() function stores the initial game values:
1 storeValues: function(newgame) {
2 var currentState = {};
3 //capture values for play
4 currentState.currentTheme = qbdoo.currentTheme;
5 currentState.timeLeft = qbdoo.timeLeft;
6 currentState.score = qbdoo.score;
7 currentState.cardCount = qbdoo.cardCount;
8 currentState.mute = qbdoo.mute;
9 currentState.iterations = qbdoo.iterations;
10
11 // get all the cards values and positions
12 // use dataset to get value for all the cards.
13 if (newgame == 'newgame') {
14 currentState.currentLevel = qbdoo.currentLevel;
15 currentState.score = 0;
16 currentState.gameDuration = qbdoo.gameDuration;
17 sessionStorage.setItem('defaultvalues',
 JSON.stringify(currentState));
18 return;
19 } else {
20 return currentState;
21 }
22 },

The storeValues() function is called when the game is initialized to store the default
values set in our JavaScript file. As the user plays the game, some of these values change.
By storing these values, when the user starts a new game by clicking on the new button,
we do not need to reload the page. Instead, the default values are captured in lines 4–9,
and updated in 14–16 if the user is starting a new game (without reloading the page).

When the function initially called, we set the values on the locally scoped current
State object. In line 17, we use JSON’s stringify() method to turn that object into a
JSON string. We then save that string in sessionStorage with the key defaultvalues
using sessionStorage’s setItem() method. We use the key defaultvalues to retrieve
the value with the getItem() method, which we do in our playGame() function.

We’ve included an alterAValue() function to update or return the default values set
with storeValues(), should a user choose to change settings or should the progression
of the game change the user’s settings.

23 alterAValue: function(item, value) {
24 var currentState = JSON.parse(sessionStorage.getItem('defaultvalues'));
25 if (value) {
26 currentState[item] = value;

Offline Web Applications | 169

27 } else {
28 qbdoo[item] = currentState[item];
29 }
30 sessionStorage.setItem('defaultvalues', JSON.stringify(currentState));
31 return value;
32 },

The parameter of the alterAValue() function is the item to be set or retrieved and an
optional value for the item, if the item is to be set. When the user changes the theme of
the cards or mutes/unmutes the audio, the item and value are sent as arguments with
the function call. The alterAValue() function fetches the item from sessionStorage,
alters the object property required, then re-saves the default values for the game in
sessionStorage to reflect the new value.

The function retrieves the default setting from sessionStorage with the getItem()
method in line 24. The return value is the JSON string we had stored in sessionStorage
with the setItem() method earlier with the storeValues() function. Because we stored
a JSON string, when we retrieve the value with the getItem() method, a JSON string
is returned. We parse it with the JSON.parse() method to define our locally scoped
currentState object.

If two values are passed to the alterAValue() function, the first parameter is the game
property to be altered. The second parameter is the new value of that game property.
The currentState object is updated to reflect that change. If only one parameter is
passed, the alterAValue() function returns the value of that game property.

We’ve included pauseGame()and playGame() functions, to pause and play the game,
along with associated functions:

33 pauseGame: function(newgame) {
34
35 var currentState = {}, i, cardinfo = [];
36 if (qbdoo.game.classList.contains('paused')) {
37 qbdoo.playGame();
38 return false;
39 }
40
41 qbdoo.pauseOrPlayBoard('pause');
42 currentState = qbdoo.storeValues();
43 currentState.currentLevel = qbdoo.currentLevel;
44
45 for (i = 0; i < qbdoo.cardCount; i++) {
46 cardinfo.push(qbdoo.cards[i].dataset);
47 }
48
49 currentState.cardPositions = JSON.stringify(cardinfo);
50 localStorage.setItem('pausedgame', JSON.stringify(currentState));
51
52 qbdoo.clearAll();

170 | Chapter 6: Other HTML5 APIs

53
54 },

The pauseGame() function is called when the pause/play button is clicked in the upper
righthand corner of our game, toggling between paused and play states. The current
state of the game—whether paused or in play—is determined by the class on the game.
In lines 36–38, we note that if the game is already paused, as indicated by the presence
of the paused class, the playGame() function, described in the next section, is called. If
the game is not already paused, we call the pauseOrPlayBoard() method in line 41 that
toggles the game’s class and clears the timer interval.

To pause the game, we need to store the current state of the game. We need to store the
remaining card face values and locations as well as the state of the game. We capture
some of the stored state of the game values with a call to the storeValues() method in
line 42, which we described earlier. We add the current level with the currentLevel
property to the state object in line 43.

We then iterate through all the cards, pushing the dataset key/value pairs into the
cardinfo array in lines 45–47. We turn that array into a JSON string, adding the card
positions into the state object in line 49. We then stringify the entire currentState
object and store the JSON string we’ve created in the browser as the pausedgame key’s
value in line 50 in localStorage.

In the last line, we clear the board by calling the clearAll() method. That function
clears the cards from view by changing the value of the custom data attribute data-
value to 0 for all cards. We hide all of the cards that have a data-value value of 0. We
discuss CSS selectors and how we target based on attributes in Chapter 7.

classList. Note that we used the term classList on line 36. The classList object, added
to all nodes within the DOM, provides us with the ability to add, remove, toggle, and
query the existence of classes on any DOM node. classList returns a token list of the
class attribute of the element:
node.classList.add(class)

Adds the class to the node.

node.classList.remove(class)

Removes the class from the node’s list of classes if it was present. If the class was
not present, it does not throw an error.

node.classList.toggle(class)

Adds the class to the node’s list of classes if the class was not already present, and
removes it if it was.

node.classList.contains(class)

Returns a Boolean: true if the DOM node’s list of classes contains a specific class;
false otherwise.

Offline Web Applications | 171

classList has been supported since iOS 5, Android 3, and IE10.

When the user pauses the game, the pause button becomes a play button. This change
is done with CSS based on the paused class we added with the pauseGame() function.
When the user then clicks on that same button again, the conditional in line 36 returns
true, calling the playGame() function:

55 playGame: function(newgame) {
56 var cardsValues, cards, i, currentState = {};
57
58 if (newgame == 'newgame') {
59 currentState = JSON.parse(sessionStorage.getItem('defaultvalues'));
60 qbdoo.timeLeft = qbdoo.gameDuration = currentState.gameDuration;
61 } else {
62 // get state via local storage
63 currentState = JSON.parse(localStorage.getItem('pausedgame'));
64
65 if (qbdoo.game.classList.contains('paused')) {
66 qbdoo.game.classList.remove('paused');
67 }
68 qbdoo.timeLeft = currentState.timeLeft;
69 }
70 qbdoo.reset('pausedgame');
71
72 qbdoo.currentTheme = currentState.currentTheme;
73 qbdoo.mute = currentState.mute;
74 qbdoo.currentLevel = currentState.currentLevel;
75 qbdoo.score = currentState.score;
76 qbdoo.cardCount = currentState.cardCount;
77 qbdoo.iterations = currentState.iterations;
78
79 qbdoo.setupGame(currentState.cardPositions);
80 },

The playGame() function is called when the user restarts a game from pause and when
the user starts a new game after losing a previous game. If the user is restarting the game,
we want to continue the game from where we left off. If we want to start a new game,
we want to reset the default values of the game. The playGame() function handles both.

If starting a new game, with lines 58–60, the function retrieves the default values for the
game from sessionStorage with the getItem() method, parsing the string and assigning
it to the currentState object. We also reset the gameDuration to its appropriate value,
and change the timeLeft to that value.

Otherwise, if the game is started from pause, we get the saved state with card positions
and values from localStorage with the getItem() method, passing the pausedgame key
instead of the defaultvalues key, which is a sessionStorage key, getting the paused
state and parsing the JSON string into the currentState object. The function also
changes the class of the board to drop the paused class.

172 | Chapter 6: Other HTML5 APIs

The end of the function sets the game properties based either on the defaultvalues
captured from sessionStorage or the paused values captured from localStorage, before
calling the setupGame method to start the game.

In line 70, we call the reset() function, which deletes the paused game values stored
in localStorage, using the removeItem() method, which has as its only argument the
key name for the localStorage key/value pair we want to delete:

81 reset: function(item) {
82 localStorage.removeItem(item);
83 }

In CubeeDoo, when we pause the game, we use custom data attributes and a custom
dataset to extract the card position and values, the JSON.stringify() method to turn
the game object into a JSON string, and then store that string in localStorage.

In terms of sessionStorage, the important line here is line 30. We created a sessionStorage
entry with a key of defaultvalues and a value of a JSON string representing our current
state object. Lines 6 through 25 (in the earlier code snippet) create the properties of that
object, with lines 18 through 25 using custom data attributes and the dataset API (cov‐
ered in Chapter 2) to capture the key/value pairs showing each card’s position and value.

When we restart the game, we get the item from localStorage:
gameState = localStorage.getItem('cubeedoo');

And then we delete the stored state from memory with:
localStorage.removeItem('cubeedoo');

Items that are stored in localStorage and sessionStorage are visible in the various de‐
buggers, as shown in Figure 6-1.

Figure 6-1. Contents of localStorage and sessionStorage are visible via the browser’s de‐
bugging/web inspector tools

Offline Web Applications | 173

Note that while you can see the localStorage and sessionStorage items in your debugger,
some debuggers don’t automatically update the view. You may have to close your de‐
bugger and reopen to see the current state of your resources.

Our other use of sessionStorage is fairly simple as well.

If the username doesn’t exist, we prompt the user for their username and add it both to
the namespaced player property and to sessionStorage:

if (!player || player == 'UNKNOWN') {
 player = qbdoo.player = prompt('Enter your name') || 'UNKNOWN';
 sessionStorage.setItem('user', player);
 }

We assign the player name on page load with:
 player: sessionStorage.getItem('user') || '',

If the user refreshes the page, the username is captured from sessionStorage. Otherwise,
it defaults to blank. While we could have used cookies, this information doesn’t need to
be sent back and forth to the server. I could also have used localStorage, but for the case
of this book example, I wanted the “security” of when the user closes the browser and
the username is deleted, as is what happens with sessionStorage.

The quirk with CubeeDoo is that whoever loses the game gets credit for the full game:
if one user starts the game, and pauses it, the cards and current score status are saved
in localStorage. Since the username is in sessionStorage, if the browser is closed out
after a pause, any username stored in sessionStorage is lost. When a user continues on
from the paused state, they can enter a name. If you don’t want a second user to continue
on from where the first user left off, even if they are the same person, use sessionStorage
instead of localStorage to store the paused state of the game. If you don’t want to bug
the user for their username, even if they haven’t played in a month or two, use local‐
Storage instead of sessionStorage to store the username. If you don’t care, still implement
one or the other or both. This stuff is fun!

SQL/Database Storage
Web databases were new to HTML5, and were well supported. Actually, Web SQL Da‐
tabase is still well supported, especially in the mobile space. However, the specification
was abandoned, and will not be supported in browsers that never supported it (IE and
Firefox). Because the alternative, IndexedDB, is not ready for prime time, and Web SQL
Database is almost fully supported in WebKit and Opera Mobile browsers, I’m covering
it! Realize, however, that Web SQL is obsolete, and is just a stopgap until Android and
iOS support IndexDB.

So, what is it? Web databases are databases that are hosted and persisted inside a user’s
browser. The client-side SQL database allows for structured data storage: tables with
rows and columns, not just name/value pairs. This can be used to store emails locally

174 | Chapter 6: Other HTML5 APIs

for an email application or for a cart in an online shopping site. The API to interact with
this database is asynchronous, which ensures that the user interface doesn’t lock up
(localStorage is synchronous). Because database interaction can occur in multiple
browser windows at the same time, the API supports transactions.

Just like SQL, Web SQL has several methods and properties, detailed in the following
sections.
Web SQL methods

openDatabase method. An openDatabase() method of the window object takes four
parameters: the database name, version, display name, and database size. openData
base() creates a database object. The database needs to be opened before it can be
accessed. You need to define the name, version, description, and the size of the database:

window.openDatabase(database_name, database_version, display_name, db_size);

This method returns a reference to the database, which is referenced for all database
transactions.

In CubeeDoo, the high scores can be maintained in two ways: either localStorage or
Web SQL. We check to see if Web SQL is supported, and if so use it. If not, we set the
script to use localStorage. We fork our code based on the qbdoo.storageType property:

storageType: (!window.openDatabase)? "WEBSQL": 'local',

Because Web SQL is currently supported but will forever be obsolete, don’t use it without
first checking for support!

To maintain the high scores in a database, we need to create that database:
var dbSize = 5 * 1024 * 1024; // 5MB variable for dbSize
if (!qbdoo.db) {
 if (window.openDatabase) {
 qbdoo.db = openDatabase("highscoresDB", "1.0", "Scores", dbsize);
 }
}

transaction method. The transaction() method of the database object takes up to three
arguments: the transaction, error, and success callback functions. transaction() is a
method of the database object we created using the openDatabase() method, not a
window object like the openDatabase() method that created the database. You pass it
a SQL transaction object on which you can use the executeSQL() method:

db.transaction(transaction_callback, error_callback, success_callback)

Offline Web Applications | 175

executeSQL() method. The executeSQL() method takes one to four arguments: a SQL
statement, arguments, a SQL statement callback, and a SQL statement error callback.
The SQL statement callback gets passed the transaction object and a SQL statement
result object that gives access to the rows:

db.transaction(function(trnactn) {
 trnactn.executeSql('SELECT * FROM scores', [], callbackFunc,
 db.onError);
 });

In CubeeDoo, we combine the two to get and set scores:
saveHighScores: function(score, player) {
 qbdoo.db.transaction(function(tx) {
 tx.executeSql("INSERT INTO highscoresTable (score, name, date)
 VALUES (?, ?, ?)", [score, player, new Date()], onSuccess, qbdoo.onError);
 });
 function onSuccess(tx, results){
 // not needed
 }
},

With offline SQL database storage, you can create tables, delete rows, and basically run
any SQL command that you might run on your database server. Client-side SQL data‐
base storage (Web SQL Database) is supported in Safari, Chrome, and Opera, but will
never be supported in Firefox or Internet Explorer. However, since it is supported in
WebKit and Opera, it can be used for mobile web applications for improved perfor‐
mance, with localStorage as a fallback until IndexDB is well supported.
CubeeDoo high scores code

As noted earlier, in CubeeDoo we use Web SQL to store the high scores, with a local‐
Storage backup in case Web SQL is not supported. I feature detected, and set the stor‐
ageType on the qbdoo object:

storageType: (window.openDatabase)? "WEBSQL": 'local',

I then included functions to create the table, save high scores, load the high scores,
render the high scores, and to delete the scores from the database. I included a method
for sorting high scores for the local storage scores method of retrieving high scores. I
didn’t need to sort the Web SQL scores when saving, as I can retrieve sorted scores with
SQL using ASC or DESC on the column by which I want to sort.

We have to create the table in our database with the SQL create statement:
createTable: function() {
 var i;
 qbdoo.db.transaction(function(tx) {
 tx.executeSql("CREATE TABLE highscoresTable (id REAL UNIQUE, name TEXT,
 score NUMBER, date DATE)", [],
 function(tx) {console.log('highscore table created'); },

176 | Chapter 6: Other HTML5 APIs

 qbdoo.onError);
 });
 },

We save high scores with the SQL insert statement, or we store in localStorage with
the setItem() method if the browser doesn’t support Web SQL:

saveHighScores: function(score, player) {
 if (qbdoo.storageType === 'local') {
 localStorage.setItem("highScores", JSON.stringify(qbdoo.highScores));
 } else {
 qbdoo.db.transaction(function(tx) {
 tx.executeSql("INSERT INTO highscoresTable (score, name, date)
 VALUES (?, ?, ?)", [score, player, new Date()],
 onSuccess,
 qbdoo.onError);
 });
 function onSuccess(tx,results){
 // not needed
 }
 }
},

We have two functions to load high scores depending on whether we’re using local‐
Storage or Web SQL. We use the SQL select statement to select the high scores from
the database, sorting in descending order:

loadHighScoresLocal: function() {
 var scores = localStorage.getItem("highScores");
 if (scores) {
 qbdoo.highScores = JSON.parse(scores);
 }
 if (qbdoo.storageType === 'local') {
 qbdoo.sortHighScores();
 }
 },

loadHighScoresSQL: function(){
 var i, item;
 qbdoo.db.transaction(function(tx) {
 tx.executeSql("SELECT score, name, date FROM highscoresTable
 ORDER BY score DESC", [], function(tx, result) {

 for (i = 0, item = null; i < result.rows.length; i++) {
 item = result.rows.item(i);
 qbdoo.highScores[i] = [item['score'], item['name'], item['date']];
 } //end for
 }, onError); // end execute
 function onError(tx, error) {
 if (error.message.indexOf('no such table')) {
 qbdoo.createTable();
 } else {
 console.log('Error: ' + error.message);

Offline Web Applications | 177

 }
 }
 qbdoo.renderHighScores();
 }); // end transaction
},

The renderHighScores() function creates a list of the high scores:
// put the high scores on the screen
renderHighScores: function(score, player) {
 var classname, highlighted = false, text = '', i;
 for (i = 0; i < qbdoo.maxHighScores; i++) {
 if (i < qbdoo.highScores.length) {
 if (qbdoo.highScores[i][1] == player && qbdoo.highScores[i][0] == score) {
 classname = ' class="current"';
 } else {
 classname = '';
 }
 text += "<li" + classname + ">" + qbdoo.highScores[i][1].toUpperCase() +
 ": " + parseInt(qbdoo.highScores[i][0]) + " ";
 }
 }
 qbdoo.highscorelist.innerHTML = text;
},

The SQL drop statement can be used to delete the table if the user chooses to delete the
scores. If Web SQL is not supported, the reset() function uses the localStorage remov
eItem() method:

eraseScores: function() {
 if (qbdoo.storageType === 'local') {
 qbdoo.reset("highScores");
 } else {
 qbdoo.db.transaction(function(tx) {
 tx.executeSql("DROP TABLE highscoresTable", [],
 qbdoo.createTable,
 qbdoo.onError);
 });
 }
 qbdoo.highscorelist.innerHTML = '';
},

onError: function(tx, error) {
 console.log('Error: ' + error.message);
},

reset: function(item) {
 localStorage.removeItem(item);
}

178 | Chapter 6: Other HTML5 APIs

IndexedDB

For client-side storage of structured data, we will soon have IndexedDB. IndexedDB,
when finalized and supported, will provide for high-performance data searches using
indexes. While DOM Storage is useful for storing smaller amounts of data, IndexedDB
provides for an asynchronous solution for storing larger amounts of structured data.
Since it is not currently widely supported in mobile browsers, we are not covering it
here. If you prefer to use APIs that are actually moving forward as specifications, there
is a polyfill to enable using IndexedDB syntax in Web SQL supporting browsers.

As support improves, I will add IndexedDB to the online chapter resources. At the time
of this writing, the only support in the mobile space is in IE10, and prefixed with different
syntax in BlackBerry 10.

Enhanced User Experience
In addition to providing for offline web applications and uniform support for media,
HTML5 includes several APIs that enable developers to enhance user experience.
HTML5 includes a geolocation API enabling browsers to determine user location (with
user consent, of course), web workers to improve script runtime of web applications,
microdata to improve the semantics of web content, cross-document messaging API
should allow documents to safely communicate with each other regardless of their
source domain, and ARIA, to enable developers making the rich Internet applications
accessible.

Geolocation
Geolocation allows users to share their physical location with your application if they
choose to. Especially useful in social networking, geotagging, and mapping (but appli‐
cable to any type of application), geolocation enables developers to enhance the user
experience, making content, social graphs, and advertisements more relevant to the
location of the user.

The browser will request the permission of the user before accessing geolocation in‐
formation (see Figure 6-2). Geolocation is an opt-in feature: when your web application
requests geolocation information, the browser will ask the user if permission to share
geolocation information is granted via banner or alert. The user can grant permission
or deny it, and optionally remember the choice on that site. If permission is granted,
the geolocation information will be accessible to your scripts and any third-party scripts
included in the page, letting your application determine the location of the user, and
capable of updating location information as the user moves around.

Enhanced User Experience | 179

https://github.com/axemclion/IndexedDBShim
http://www.standardista.com/mobile

Figure 6-2. Permission must be granted for a website to receive a user’s geolocation
information

Location information is approximate, garnered from IP addresses, cell towers, WiFi
networks, GPS, or even getting the information through manual data entry by the user.
While approximate, you’ll notice that it can be freakishly accurate.

The geolocation API does not care how the client determines location as long as the
data is received in a standard way. The geolocation API is asynchronous.

To determine browser support for geolocation, use:
 if (navigator.geolocation) {
 //geolocation is supported
}

The geolocation object provides for the getCurrentPosition() and watchCurrentPo
sition() methods that asynchronously return the user’s current location, either once
or continuously. The watchCurrentPosition() method can be used for active location
applications such as GPS/navigation applications. For our web application, we don’t
need direction information, so the getCurrentPosition() method would suit our
needs, and wouldn’t drain the battery by repeatedly seeking location information. We
don’t need location information for CubeeDoo, but we can still learn it:

180 | Chapter 6: Other HTML5 APIs

if (navigator.geolocation) {
 navigator.geolocation.getCurrentPosition(handle_success, handle_errors);
}

If successful, the callback function returns the current position with the coords object
containing the more commonly used latitude and longitude properties, as well as the
altitude, accuracy, altitudeAccuracy, heading, and speed properties. The following
script will return the alert with the current latitude and longitude, and is available in
the online chapter resources:

if (navigator.geolocation) {
 navigator.geolocation.getCurrentPosition(handle_success,handle_errors);

 function handle_success(position) {
 alert('Latitude: ' + position.coords.latitude + '\n Longitude: '
 + position.coords.latitude);
 }

 function handle_errors(err) {
 switch(err.code) {
 case err.PERMISSION_DENIED:
 alert("User refused to share geolocation data");
 break;
 case err.POSITION_UNAVAILABLE:
 alert("Current position is unavailable");
 break;
 case err.TIMEOUT:
 alert("Timed out");
 break;
 default:
 alert("Unknown error");
 break;
 }
 }

}

If successful, both the getCurrentPosition() and watchCurrentPosition() methods
success callbacks will return a location object with the coords object, with the following
properties:

• position.coords.latitude

• position.coords.longitude

• position.coords.altitude

• position.coords.accuracy

The watchCurrentPosition() method also returns the following properties:

• position.coords.heading

Enhanced User Experience | 181

http://www.standardista.com/mobile

• position.coords.speed

The properties are kind of self-explanatory. Other than the Kindle and Opera Mini,
geolocation is supported everywhere, and has been for a while (since IE9 on desktop).

We don’t need location information for CubeeDoo, but we did include pinpointing
current location on a map as an example in the files:

1 function getLocation() {
2 if (navigator.geolocation) {
3 navigator.geolocation.getCurrentPosition(success, error);
4 console.log('got position');
5 } else {
6 error('not supported');
7 }
8 }
9 function error(text) {
10 text = text || 'failed';
11 console.log(text);
12 }
13 function success(location) {
14 var lat = location.coords.latitude;
15 var long = location.coords.longitude;
16 var url = "http://maps.google.com/maps?q=" + lat + "," + long;
17 }

The getLocation() function feature detects in line 2 to see if geolocation is supported
by the browser. Note that geolocation is on the navigator object (rather than window
or document, like most method and properties we use). We get the current position
with the getCurrentPosition() method of the geolocation object in line 3. If suc‐
cessful, the success callback uses the returned coords object’s latitude and longi
tude properties to add a pinpoint to a Google map in lines 14–16. We included an error
callback function on line 9. The message is usually a timeout, permission denied, or
position unavailable if there is a failure.

Web Workers
All of the JavaScript, including page reflows and repaints, runs on the single UI thread
that also handles repainting of user interactions, non-hardware-accelerated animations,
etc. If there is a task with a heavy script load, the browser may slow to a crawl, greatly
harming user experience. Web workers allow JavaScript to delegate heavy tasks to other
processes so that scripts run in parallel. This enables the main thread to do the exciting
UI stuff while the web worker does any heavy lifting you pass to the worker without
slowing the main script thread. Web workers are useful in allowing your code to perform
processor-intensive calculations without blocking the user interface thread.

Workers enable web content to run scripts in background threads, even AJAX. The
worker thread can perform tasks without interfering with the user interface.

182 | Chapter 6: Other HTML5 APIs

You know how sometimes web applications take a long time and you have to wait for
the hourglass or rainbow beach ball to disappear before being able to interact with the
page? Web workers are a solution. Workers perform JavaScript on a background thread
leaving the main UI thread free to manipulate the DOM and repaint the page, if nec‐
essary. Web workers cannot manipulate the DOM. If actions taken by the background
thread need to result in changes to the DOM, they should post messages back to their
creators to do that work. The postMessage() method can be employed.

If your JavaScript includes some resource-intensive calculations, you can pass this to a
web worker to process while the main thread continues running. Before creating a
worker, ensure that the browser supports web workers. Web workers support heavy
JavaScript processing that might crash a non-web-worker–supporting browser:

if (window.Worker) {
 //browser supports web workers
}

To create a web worker, you call the Worker() constructor, specifying the URI of a script
to execute in the worker thread. The URI is relative to the file calling the script:

if (window.Worker) {
 var webWorker = new Worker('subcontractor.js'); //create it
}

Communicating with the web worker is accomplished via the postMessage() method.
Once created, set the worker’s onmessage property to an appropriate event handler
function to receive notifications from the web worker. You terminate a worker with the
terminate() or close() method. The terminate() method is immediate, stopping all
current processes:

if (window.Worker) {
 var webWorker = new Worker('subcontractor.js'); //create it
 webWorker.postMessage(some_message);
}

In the worker (in this case, the subcontractor.js), receive the message from the main
thread and act on it:

//in the subcontractor.js file
self.onmessage = function(event) {
 // handle the message
 var stuff = event.data;
 // and send it back to the main thread
 postMessage(stuff);
};

Workers can use timeouts and intervals just like the main thread can. This can be useful,
for example, if you want to have your worker thread run code periodically instead of
nonstop. You can control the worker by employing the setTimeout(), clearTime
out(), setInterval(), and clearInterval() methods.

Enhanced User Experience | 183

Worker threads have access to a global function, importScripts(), which lets them
import scripts or libraries into their scope. It accepts as parameters zero or more URIs
of resources to import:

/* imports two scripts */
importScripts('scripts/jquery-min.js', 'application.js');

Web workers do not have access to the DOM. They don’t have access to the console
either. You may also get a security error when testing locally, which can make developing
with web workers a little more difficult than regular JavaScript.

In CubeeDoo, we have no intensive JavaScript that we need to run, or background AJAX
processes. While we don’t employ the benefits of web workers in CubeeDoo, there is a
Fibonacci sequence example in the online chapter resources. Also, we’ve included a web
worker to handle our high score sort function. Sorting five numbers is certainly doable
without the need of a web worker. However, if we kept the top 1,000,000 scores, sorting
that many values would be a good use of a web worker (but a bad use of localStorage).

Were we to have used web workers for sorting the high scores, we would have replaced
our sorting function with a web worker call:

var webWorker = new Worker('js/sort.js');
 webWorker.postMessage(qbdoo.highscores);
 webWorker.onmessage(function(event) {
 qbdoo.highscores(event.data);
 });

The web worker script, in turn, needs to expect and accept the highscores via the
onmessage property, and needs to post back the sorted scores via postMessage:

self.onmessage = function(event) {
 var sortedScores = sortScores(event.data);
 self.postMessage(sortedScores);
};

Microdata
Another feature of HTML5 is microdata. While microdata will not impact your site in
any visible way, it is an increasingly relevant feature when it comes to search engine
optimization and data scraping.

Microdata will replace the need for microformats. Microformats are standardized sets
of vocabularies that are both human and machine-readable. They are web page con‐
ventions used to describe common information types including events, reviews, address
book information, and calendar events via class attributes. Each entity, such as a person,
event, or business, has its own properties, such as name, address, and phone number.

184 | Chapter 6: Other HTML5 APIs

http://www.standardista.com/mobile

Microdata lets you create your own vocabularies beyond HTML5 and extend your web
pages with custom semantics. Microdata uses the new to HTML5 attributes of item
scope, itemprop, itemref, and itemtype.

The itemscope attribute is used to create an item, indicating that the scope of the item
begins in the opening tag in which the attribute is included, and ends at that element’s
closing tag. The itemprop, or item property attribute, is used to add a property to an
item. If an itemprop has associated properties that are not descendants of that item
prop, you can associate those properties with that itemprop by using the itemref, or
item reference attribute. The entity that has the itemscope attribute also accepts the
itemref attribute that takes as its value a space-separated list of IDs of entities that
should be crawled in addition to the itemprop’s descendants.

Microdata is most useful when it is used in contexts where other authors and readers
are able to cooperate to make new uses of the markup. You can create your own types
of microdata or use predefined data vocabularies. Some predefined vocabularies can be
found at http://www.data-vocabulary.org/.
Microdata versus microformats

Microformats are very similar to microdata. In fact, microdata can be viewed as an
extension of the existing microformat idea, which attempts to address the deficiencies
of microformats without the complexity of the often preferred systems like RDFa. In‐
stead of using the new itemscope, itemprop, itemtype, etc., attributes, Microformats
repurpose the class attribute to provide human and machine-readable semantic mean‐
ing to data—in essence, microdata.

In general, microformats use the class attribute in the opening HTML tags (often
 or <div>) to assign brief, descriptive names to entities and their properties.
Unlike microdata, microformats are not part of the HTML5 specification.

Here’s an example of a short HTML block showing my contact information for myself:

 <img src="http://standardista.com/images/estelle.jpg"
 alt="photo of Estelle Weyl"/>
 Estelle Weyl
 1234 Main Street
San Francisco, CA 94114
 415.555.1212

Here is the same HTML marked up with the hCard (person) microformat.
<ul id="hcard-Estelle-Weyl" class="vcard">
 <img src="http://standardista.com/images/estelle.jpg"
 alt="photo of Estelle Weyl" class="photo"/>
 Estelle Weyl
 <li class="adr">
 1234 Main Street
 San Francisco, CA,

Enhanced User Experience | 185

http://www.data-vocabulary.org/

 94114
 USA

 <li class="tel">415.555.1212

In the first line, class="vcard" indicates that the HTML enclosed in the describes
a person: in this case, me. The microformat used to describe people is called hCard but
is referred to in HTML as vCard. While confusing, it isn’t a typo.

The rest of the example describes properties of the person, including a photo, name,
address, URL, and phone, with each property having a class attribute describing the
property. For example, fn describes my “full name.”

Properties can contain other properties. In the example, the property adr encompasses
all the components of my fake address, including street address, locality, region, and
postal code. With a little CSS, we can hide elements with class hidden and add a line
break between street address and locality. To create your own hCard, visit http://micro
formats.org/code/hcard/creator.

The same content could be written with microdata:
<ul id="hcard-Estelle-Weyl" itemscope
 itemtype="http://microformats.org/profile/hcard">
 <img src="http://standardista.com/images/estelle.jpg"
 alt="photo of Estelle Weyl" class="photo"/>
 Estelle Weyl
 <li itemprop="adr">
 1234 Main Street
 San Francisco,
 CA,
 94114
 USA

 <li itemprop="tel">415.555.1212

Or you can combine the two:
<ul id="hcard-Estelle-Weyl" class="vcard" itemscope
 itemtype="http://microformats.org/profile/hcard">
 <img src="http://standardista.com/images/estelle.jpg"
 alt="photo of Estelle Weyl" class="photo"/>
 <a class="url fn" href="http://www.standardista.com"
 itemprop="fn">Estelle Weyl
 <li class="adr" itemprop="adr">
 1234 Main Street
 San Francisco,
 CA,
 94114
 USA

186 | Chapter 6: Other HTML5 APIs

http://microformats.org/code/hcard/creator
http://microformats.org/code/hcard/creator

 <li class="tel" itemprop="tel">415.555.1212

Microdata does not alter the appearance of a document. Rather, it just enhances the
semantics of that document. Search engines will not display content that is not visible
to the user. Providing search engines with more detailed information, even if you don’t
want that information to be seen by visitors to your page, can be helpful. To enable the
Web to be a single global database, being able to parse the available data into meaningful
data points is required. Microdata and microformats help make otherwise nondescript
data meaningful to parsers.
Microdata API

Not yet well supported, the microdata DOM API provides access to the microdata items.
The document.getItems(itemType) returns a nodeList containing the items with the
specified types, or all types if no argument is specified. The document.getItems()
method returns a nodeList containing all the microdata items on a page when no ar‐
gument is passed. You can specify a specific itemtype URL as the argument to return
only items of that type.

Once you’ve returned your nodeList, you can then access the different properties with
the properties attribute:

var allMicrodata = document.getItems();
var firstItemName = allMicrodata.properties['name'][0].itemValue;

Each item is represented in the DOM by the element on which the relevant item
scope attribute is found.

Cross-Document Messaging
Cross-document messaging allows documents to communicate with each other re‐
gardless of their source domain, in a way designed to protect us from cross-site scripting
attacks.

Web applications often include services from several different domains. The current
way of doing mash-ups has many security risks. When you include third-party Java‐
Script on your website, those external scripts, over which you have no control, have
access to your domain’s cookies and can forge requests that appear to come from the
user. Iframes are not the solution to the problem, since your document cannot com‐
municate with the contents of an iframe embedded within the page if that iframe comes
from a different domain.

The HTML5 cross-document messaging API attempts to solve both of these issues by
enabling the registration of event handlers for incoming messages from other domains,
and sending messages to other domains.

Enhanced User Experience | 187

To verify that the message is coming from the expected domain:
window.addEventListener('message', function(e) {
 if (e.origin == 'http://the_domain.com') {
 // the origin of the message is verified. Test to see if
 // it's in the correct format before using
 }, false);

Send a message to another domain:
var theFrame = document.getElementById("myIFrame").contentWindow;
theFrame.postMessage("The message", "http://www.the_domain.com");

CORS: Cross-Origin Resource Sharing

As CubeeDoo is a small, self-contained application with limited visitors and no third-
party app integration, we aren’t using any cross-document messaging or cross-origin
resource sharing (CORS). If you are creating more popular applications, you’ll likely be
using content delivery networks (CDN) or integrating third-party applications. For
example, if we were hosting our font on a CDN, we would need to use CORS to tell
Firefox and Internet Explorer that it is OK to render fonts from a different domain.
Security

Security is a major concern in cross-domain messaging. Always check the origin
property to ensure that messages are only accepted from domains that you expect to
receive messages from. After you’ve confirmed that the message is coming from the
expected server, confirm that the data received is in the expected format. You should
never rely on someone else’s server not being compromised.

Accessible Rich Internet Applications (ARIA)
Accessibility
HTML5, just like prior versions, can be made to be completely accessible. It just requires
a little bit of planning. ARIA, or Accessible Rich Internet Applications, is the first part
of HTML5 that is supported by all modern browsers. Most popular JavaScript libraries
also provide support for ARIA implementation. In addition to ARIA, HTML5 provides
the ability to enhance accessibility in the fact that it does not use Flash (yes, they talk
the accessibility talk, but no one has figured out how to make Flash walk the accessibility
walk) or other embedded objects. It uses <video>, <audio>, <svg>, and <canvas>,
HTML elements that, with the exception of <canvas>, are inherently accessible. As part
of the DOM, they are easily targetable to increase accessibility.

As we create more and more dynamic web applications, the content becomes less and
less inherently accessible to differently abled users. You can use ARIA properties to
provide the basic type, state, and changes created via JavaScript widgets to screen readers
and other assistive technologies. For example, when checking for airfares, selecting a

188 | Chapter 6: Other HTML5 APIs

checkbox entitled “nonstop only” may lead to a dynamic response that updates the
airfare rates without reloading the page. If a user is visually impaired, how do they know
that part of the page was updated since they can’t actually see the update? On a finance
page, how does a user know that the stock ticker is continually updated? The ARIA API
provides for unobtrusive (and obtrusive) ways of providing such information to the
user.

As previously stated, ARIA stands for Accessible Rich Internet Applications. With the
proliferation of Internet applications, there has been an increase in the number of sites
requiring JavaScript and that update without page refreshes. This imposes accessibility
issues that weren’t addressed by Web Content Accessibility Guidelines, or WCAG 1, as
those specifications were written when “sites must work without JavaScript” was a rea‐
sonable accessibility specification.

With the increase of web-based “applications” (versus “sites”) requiring JavaScript, and
improved support of JavaScript in assistive technologies, new accessibility issues have
emerged. ARIA attempts to handle some of those issues. Through the inclusion of roles,
states, and properties, your dynamically generated content can be made accessible to
assistive technologies. Additionally, static content can be made more accessible through
these additional, enhanced semantic cues.

By including ARIA accessibility features on your website, you are enhancing the acces‐
sibility of your site or application. By including roles, states, and properties, ARIA en‐
ables the developer to make the code semantically richer for the assistive technology
user. ARIA enables semantic description of element or widget behavior and enables
information about groups and the elements within them. ARIA states and properties
are accessible via the DOM.

Similar to including the title attribute, ARIA is purely an enhancement and will not
harm your site in any way. In other words, there is no valid reason to not include these
features! Most JavaScript libraries, such as jQuery and Dojo, already support ARIA.
Modern browsers, including IE8, support ARIA.

The easiest to include and most important properties of ARIA are the inclusions for the
role attribute, and inclusion of states and properties:

• Only use ARIA roles, attributes, and properties when regular HTML markup does
not support all of the semantics required.

• Apply the ARIA role attribute in cases where the markup needs to be semantically
enhanced and in cases where elements are being employed outside of their semantic
intent. This includes setting up relationships between related elements (grouping).

• Set the properties and initial state on dynamic and user-changing elements. States,
such as “checked,” are properties that may change often. Assistive technology that
supports ARIA will react to state and property changes.

Accessible Rich Internet Applications (ARIA) | 189

• Support full, usable keyboard navigation. Elements should all be able to have key‐
board focus.

• Make the user interface visually match the defined states and properties in browsers
that support the ARIA CSS pseudoclasses.

The role attribute enables the developer to create semantic structure on repurposed
elements. While to a sighted user, the example of a span repurposed as a checkbox is
not noticeable, the role attribute makes this seemingly nonsemantic markup accessible,
usable, and interoperable with assistive technologies. Once set, however, a role at‐
tribute’s value should not be dynamically changed, since this will confuse the assistive
technology.

Example: your designer insists that they want the checkboxes on your page to look a
certain way. “Impossible,” you say. You know that you can use CSS to make a span look
like a checkbox. The sighted user would never know that you weren’t using <input
type="checkbox"..., but for accessibility concerns, you know a screen reader user will
not know it’s a checkbox. With the ARIA role attribute included in your code, and both
a browser and screen reader that support ARIA, you can make your repurposed span
accessible with:

It’s not enough to simply use role in the preceding example. If you include spans trans‐
formed into checkboxes, you will need to include equivalent but unobtrusive touch,
keyboard, and mouse events for each interaction. Best practices dictate that you should
use the most semantically appropriate element for the job, so in practice you should not
do this.

There are currently over 60 roles, including:

alert dialog listitem option spinbutton

alertdialog directory log presentation status

application document main progressbar tab

article form marquee radio tablist

banner grid math radiogroup tabpanel

button gridcell menu region textbox

checkbox group menubar row timer

columnheader heading menuitem rowgroup toolbar

combobox img menuitemcheckbox search tooltip

complementary link menuitemradio scrollbar tree

contentinfo list navigation separator treegrid

definition listbox note slider treeitem

190 | Chapter 6: Other HTML5 APIs

There is no need to include role if an element is employed as intended (you don’t have
to include role="checkbox" on <input type="checkbox"/>). However, if you use a
span to appear and function like a checkbox, include the ARIA role attribute: . Choose the role type from this list that is most similar to the role
you are assigning to the element you are employing in a nonsemantically correct man‐
ner.

If you are interested in learning more about WAI-ARIA, Web Accessibility Initiative—
Accessible Rich Internet Applications, http://www.w3.org/WAI/intro/aria.php is the
place to start.

In Conclusion
This chapter is intended to give you an idea of the APIs that are being included in
HTML5. Each of these sections merit books of their own. In fact, some, like microfor‐
mats, already have their own books. In other cases, such as cross-document messaging,
the issue is too nascent to write about. Please check out the online chapter resources for
links to more in-depth articles on each of these topics.

In Conclusion | 191

http://www.w3.org/WAI/intro/aria.php
http://www.standardista.com/mobile

CHAPTER 7

Upgrading to CSS3

CSS3 has been in the works for over a decade. WebKit/Blink, Opera, and Firefox have
been supporting some features for a long time now. With IE10 and IE11, we’re almost
there! It’s time we took advantage of some awesome new (and sometimes not so new)
features. Especially when it comes to CSS selector support, mobile browsers are there.

When you don’t have to worry about older versions of Internet Explorer (IE8 and ear‐
lier), you can use any CSS3 selector. All of them are supported in all modern browsers,
and all of them are supported on all smartphone and tablet browsers.

The CSS2 specifications were adopted in 1998. CSS3 has been in development since
then. The CSS3 specifications are still in development, and will likely never be finalized.

“Huh?” you ask. CSS 2.1 and earlier specifications were monolithic specifications. CSS3
is an umbrella term for all specifications after CSS 2.1. Instead of a monolithic specifi‐
cation, there are now modules for each CSS component, and new modules and new
features keep getting added. Some of these specifications, like colors and selectors, are
level 3, with work having commenced on level 4. Other specifications are at level 1. All
of these modules, whatever the level, are under the umbrella called “CSS3.” Each module
goes through the spec writing and finalization process at its own pace.

WebKit/Blink, Opera, and Mozilla have not waited for module specifications to be fi‐
nalized. With Internet Explorer 9, Microsoft finally joined the game. Most of the rec‐
ommended features have been part of the draft specifications for years. In most areas,
the recommended specifications are stable enough that most browser developers have
begun implementing these CSS3 features.

While web developers may still have to ensure graceful degradation of our websites on
the desktop for the various IEs, the ubiquity of CSS3 and HTML5 support in the mobile
market and on non-Windows operating systems (think PlayStation, Wii, etc.) means
we’re not just playing with these technologies, we can implement them. We are reaching
millions, even billions, of people through HTML5 and CSS3 supportive browsers, which

193

1. As noted in Chapter 3, <i> and have received new semantic meaning in HTML5. Use these elements
sparingly, when semantically appropriate.

are the default browsers of most mobile phones, tablets, and almost all other non-
Windows desktop OS-based devices.

In this chapter, we’ll cover CSS selectors, and how to use selectors to target DOM nodes
in JavaScript (without jQuery).

We’ll first give a brief overview of the CSS3 syntax, which is the same as the syntax of
previous CSS recommendations. Then we’ll take an in-depth look at CSS3 selectors,
selectors that enable semantic targeting of elements in HTML documents, including
targeting any element in your document without touching the HTML or adding a class
or ID, before diving into query selectors.

CSS: A Definition and Syntax
Before diving into CSS3, you need to know the basics of creating a CSS rule set. We will
cover the syntax briefly for those who may be new to CSS, and then dive into some very
advanced element targeting with CSS selectors.

First off, we need to know what CSS means.

Cascading Style Sheets, or CSS, make up the presentational layer of the Web. With CSS,
you can define the look and feel of your site in one location, and that one file can impact
the look and feel of your entire site. If there is a design change, with CSS, you can make
a change to the one presentational file, and that change will be immediately apparent
site wide. When your boss or other client says, “You know what, I changed my mind ...
let’s make the links purple instead of green,” with a correctly coded site using an external
CSS file, that change can take one minute. It doesn’t matter if your site has one page of
HTML or one million. Change one line in your CSS file, and you can successfully update
the appearance of all your web pages.

In earlier versions of HTML there were a series of presentational elements, such as
 and <center>, which were used to enable webmasters to design sites. For proper
web standards, however, the content layer, or HTML, should be separate from the pre‐
sentational layer (the CSS) and from the behavioral layer (the JavaScript). Had you used
, the request to change to purple would be a challenge. You
would have to update every occurrence of color="green" in every web page.

Using elements for presentation is so 1996! In fact, many of these presentational ele‐
ments that were commonly used in 1996 have been deprecated or made obsolete in favor
of using CSS for presentation. Don’t use <center>, , <i>,1 , <tt>, or other
presentational elements for presentational effect, even if not obsolete. Instead, use CSS.
Here’s how...

194 | Chapter 7: Upgrading to CSS3

CSS Syntax
Before implementing rules with selectors, properties, and values, we need to learn the
syntax. Stylesheets are made up of rules, which are selectors followed by a block state‐
ment with properties and values. Most CSS rules look similar to this:

selector {
 property1: value1;
 property2: value2;
}

The selector tells the browser what element(s) to match. The property is the feature of
the element that you want to affect, and the value is a value that you want to set for that
property of that element.

Properties support specific value types and/or value keywords, which we discuss in
Chapter 8.

CSS selectors enable you to target elements in your markup with the styles you define
in the style declaration block. The style declaration block consists of the properties and
values between the curly braces. All the properties and values for a rule are encased in
curly braces, creating a declaration block:

p {
 color: blue;
 margin-bottom: 12px;
}

The statement reads: “paragraphs should have blue text and have a margin of 12 pixels
below it.”

Note that in this example, values and properties are separated by a colon and each
declaration ends with a semicolon.

The semicolon on the last declaration in a block is officially optional, but don’t omit it!
You may save a few characters by not including the optional final semicolon, but since
a single missing required semicolon, parentheses, or curly brace can make the rest of
your stylesheet fail, I highly recommend always including the final optional semicolon.
The bandwidth cost of including it is chump change compared to the time you may
have to spend troubleshooting failing CSS caused by a missing character.

CSS styles impact the element that is targeted by the selector. Elements can be targeted
generally, by their element name, or with exacting precision by defining elements based
on their relationships to other elements, their position in the document flow, their at‐
tributes, attribute values, current state, or through unique IDs. We’ll cover all the se‐
lectors in the next section.

A style like this one can be put into one of three locations: inline, in embedded styles,
or in an external stylesheet.

CSS: A Definition and Syntax | 195

Styles can be declared as an inline style as part of the opening <p> tag using the style
attribute:

<p style="color:blue; margin-bottom: 12px;">

Styles can be embedded within the head of the document:
<style>
 p {
 color: blue;
 margin-bottom: 12px;
 }
</style>

Note that we write <style> and not <style type="text/css"> in the
examples given here. In HTML5, type="text/css" is implied and
therefore omittable.

Styles can, and should, be included in an external stylesheet, linked to using the <link>
element:

<link rel="stylesheet" src="styles.css"/>

Best practices recommend using external stylesheets. By using an external stylesheet,
you can link all of your web pages to a single stylesheet, ensuring that all your pages
have the same look and feel, and reducing site maintenance as design changes can be
made to the whole site by editing a single file. Use <link> rather than @import to down‐
load your stylesheets in parallel for faster load time.

By using an external stylesheet, the styles for the site only have to be downloaded once:
on the users’ initial visit to any page within your site. The CSS file is generally cached
by the client browser. Therefore, the bytes of the CSS are only downloaded once. Also,
keeping your style information in a separate document separates your content from
your presentation. Separating content from presentation from behavior is a key tenet
in web standards.

While best practices dictate using external stylesheets, due to issues of mobile network
latency, the anti-pattern of including embedded styles and storing the style in local
storage have the benefit of reducing HTTP requests. This topic was discussed in Chap‐
ter 2 when we covered the <style> element. Whether you link to your styles or you
embed them as part of the anti-pattern, do ensure that you reduce the number of lookups
and HTTP requests.

196 | Chapter 7: Upgrading to CSS3

Using External Stylesheets: <link> Revisited
To include an external stylesheet, we employ the <link> element. We discussed the
<link> tag in Chapter 2, so I won’t reiterate all the attributes and values. Instead, let’s
look at the attributes and values that are relevant to CSS. The points that do require
emphasis include the attributes found in the external stylesheet link:

<link type="text/css" rel="stylesheet" src="styles.css" media="all"/>

In XHTML, the type attribute defining the MIME type as type="text/css" was re‐
quired. This supposedly informed the browser that the linked file is text (not an appli‐
cation or binary), with CSS markup. As noted previously, this attribute is not required
in HTML5, unless you are using something other than CSS, which you won’t likely be
doing. Ever. When the relation, or rel, is set to "stylesheet", the type is assumed to
be test/css unless otherwise indicated, and the default of media is "all":

<link rel="stylesheet" src="styles.css"/>

Don’t forget to include the rel attribute written as the rel="stylesheet" attribute/
value pair. Without this attribute, the browser won’t know the purpose of your file and
will not render it as CSS. If your CSS fails to render, check to make sure you included
this attribute. This is the cause of many headaches: hard to spot but easy to resolve. The
rel attribute value tells the browser what relation the linked file has to the file.

When present and set to "stylesheet", the type is implied, and the browser knows to
parse the content of the file as text/css.

The src (or source) attribute should have a URL as its value, pointing to the external
stylesheet containing your CSS.

The <link> element is an empty element. If you are using an XHTML-styled markup,
you can self-close it with a slash before the closing bracket.
The media attribute

The media attribute, if not included, defaults to media="all", which means all media.
The main values that have been part of CSS for years are:
all

Rendered for all devices, including all types listed here.

braille

Rendered only for Braille tactile-feedback devices.

embossed

Paged Braille printers.

CSS: A Definition and Syntax | 197

handheld

Intended for handheld devices, usually with small screen and limited bandwidth.
Note that although smartphones and the iPad are handheld devices, they have full-
featured browsers and respond to screen and all, and not to handheld.

print

Rendered by printers, PDFs, and the “print preview” mode of most browsers.

projection

Intended for projectors and other projected presentations.

screen

Color computer screens, including laptop, desktop, and smartphone browsers, in‐
cluding devices like phones, tablets, and phablets.

speech

Intended for speech synthesizers. Note: CSS 2 had a similar media type called aural
for this purpose.

tty

Intended for media using a fixed-pitch character grid (such as teletypes, terminals,
or portable devices with limited display capabilities).

tv

Intended for television-type devices, when there is sound but no ability to scroll.

As noted earlier, smartphones have full browsers, and therefore implement linked style‐
sheets that have the attribute media="screen", media="all", and no media declara‐
tions, as the default is all.

You can use a single stylesheet without the media declaration, and target different types
using @media:

@media screen {
 p {
 color: blue;
 }
}

@media print {
 p {
 color: red;
 }
}

198 | Chapter 7: Upgrading to CSS3

Media Queries
In CSS3, the media attribute is not limited to the values in the preceding list. Media
queries allow us to target CSS to a device or browser based on the height, width, reso‐
lution, and orientation of the browser window or device, or, in the case of SVG, to the
parent container. If you want to use the same HTML page but different stylesheets for
smartphones, tablets, and desktop web browsers, you can use the media attribute to
indicate which CSS file should be rendered in different-sized screens:

<link media="only screen and (max-device-width: 480px)"
 href="mobile.css" rel="stylesheet"/>

While there are many device properties with which we can target devices and browsers
to style, the most common properties are shown in Table 7-1.

Table 7-1. The more relevant @media properties in the mobile landscape
Property Minimum property Maximum property Description

width min-width max-width viewport width

height min-height max-height viewport height

device-width min-device-width max-device-width screen width

device-height min-device-height max-device-height screen height

orientation portrait(h>w)
landscape(w>h)

aspect-ratio min-aspect-ratio max-aspect-ratio width/height

device-aspect-

ratio

min-device-aspect-

ratio

max-device-aspect-

ratio

device-width/height

You can target a device specifically; for example, you can target an iPhone in portrait
mode specifically with:

<link media="only screen and (width: 320px) and (orientation: portrait)"
 href="iphone.css" rel="stylesheet"/>

However, this is a bad idea. Mobile devices come in all shapes and sizes...well, at least
all sizes. Instead of defining a separate stylesheet for every possible device of every pixel
width and height, create media queries with ranges of sizes, creating breakpoints where
a change in layout might make sense. For example, it may make sense to put your
extended navigation bar on top for a tablet user, but better to put the content above the
extended navigation on a very small device so the user doesn’t have to scroll to get the
important content.

CSS: A Definition and Syntax | 199

2. If you need to figure out the width and height of your viewport with JavaScript, you can do so, but you will
force a layout:

width = window.innerWidth;
height = window.innerHeight;

Media queries can be used to provide different CSS property values based on device and
viewport size and orientation. For example, media queries can (and often should) be
used to serve different media to different screen sizes. There is no reason to serve a 1,400
px wide image to a 320 px wide phone:2

@media screen and (min-width: 440px) {
 #content { background-image: url(/images/small/bg.jpg);
}
@media screen and (min-width: 1000px) {
 #content { background-image: url(/images/large/bg.jpg);
}

Note that in these @media blocks we used two widths that are not necessarily standard
device widths. When choosing breakpoints in your designs and markup, don’t pick
breakpoints based on popular device sizes. Rather, pick breakpoints that make sense in
terms of your user interface design. The quickest method for choosing breakpoints is
to test them in browsers. Slowly grow or shrink your screen on your desktop. When the
design starts to look bad, that is a good place for a breakpoint.

We’ll discuss @media and responsive features further in Chapter 11.

In addition to targeting based on size and orientation, you can also target based on a
browser’s support of animation, transitions, and 3D transforms with:

@media screen and (transform-3d) {
 .transforms {}
}

Here the property in the parentheses may need to be vendor prefixed in browsers that
still require prefixing from the aforementioned three properties.

Browsers will eventually support @supports:
@supports (display: table-cell) and (display: list-item) {
 .query .supports { display: block; }
}

Where the supports query, similar to the media query, can target CSS to different devices
based on browser CSS feature support. However, at the time of this writing, this feature
has some desktop browser support, but no mobile browser support.

200 | Chapter 7: Upgrading to CSS3

3. window.matchMedia is supported in all mobile browsers except IE, starting with iOS 5 and Android 3.

window.matchMedia

CSSOM, the CSS Object Model, provides us with extensions to the window interface.
window.matchMedia, when supported,3 returns a new MediaQueryList (mql) object
representing the parsed results of the specified media query string that has a matches
property:

var mql = window.matchMedia(mediaquery);
if (mql.matches) {
 //if it matches the media query
}

Where mediaquery is a media query.

For example, you can test to see if the viewport is less than 500 px wide:
var mqobj = window.matchMedia('(orientation: portrait)');
if (mqobj.matches) {
 document.querySelector('body').classList.add('portrait');
}

if (window.matchMedia("(max-width: 500px)").matches) {
 // the view port is no more than 500 pixels wide
} else {
 // the view port is more than 500 pixels wide
}

We are also provided with a way to listen to media change events. We can test to see if
the orientation is currently in portrait or landscape mode, and listen for changes:

var mqobj = window.matchMedia('(orientation: portrait)');
mqobj.addEventListener('orientationchange', bodyOrientationClass);

function bodyOrientationClass() {
 if (mqobj.matches) { // orientation is portrait
 document.querySelector('body').classList.remove('landscape');
 document.querySelector('body').classList.add('portrait');
 } else {
 document.querySelector('body').classList.remove('portrait');
 document.querySelector('body').classList.add('landscape');
 }
}

We first create a media query list object and include an addEventListener listener
method of the media query list object, which calls a function to respond to the event.
I’ve included a function that checks to see if it matches the media query, and handles it.

We can remove the listener with:
myobj.removeEventListener('orientationchange', bodyOrientationClass);

CSS: A Definition and Syntax | 201

CSS Best Practices
In order to maintain quality and improve download speed for your site, here are five
tips (or rules!) to put in your tool belt that will enable you to write better CSS.
1. Minimize HTTP requests

To improve download speed, minimize the number of separate stylesheets to minimize
the number of HTTP requests. The overhead of an HTTP request can be extreme.
Reducing the number of requests can dramatically reduce a page’s download time.

HTTP requests are often the largest time consumer in terms of download time, espe‐
cially over mobile networks. As such, it is generally better to include one longer style‐
sheet that includes all the styles for your site rather than several smaller stylesheets, each
styling a component of your site.

While it may be beneficial to modularize your styles within your stylesheet, with styles
for each “module” of your website grouped together, in production, serve all of your
CSS in one longer file. Instead of having style.css, home.css, about.css, footer.css, side
bar.css, etc., include a single all.css.

Downloading and caching one larger CSS file will generally create a better user expe‐
rience than having the client download page-specific stylesheets, even if those page-
specific stylesheets are smaller. The cost of making an extra HTTP request is oftentimes
greater than the cost of having a few lines of unused CSS. Additionally, by using a single
CSS file, all of your styles for the entire site are cached when the first page’s content is
downloaded: no waiting for additional CSS files to download as the user navigates
through your website.

That being said, note that mobile memory is more limited than desktop device memory,
so don’t go crazy with super large file sizes. While I recommend server-side preproces‐
sors, like Sass, to help make writing CSS easier and faster, if you don’t know what you’re
doing, your CSS files can become much larger than necessary. If you know what you
are doing, these tools can help you modularize and minify your CSS, greatly reducing
the bytes needed. Use these tools wisely.
2. Use external stylesheets

Use an external stylesheet, linked to within the <head> of your files. The benefits of
including this single external stylesheet include:

• You change your styles for the whole site in one location.
• Users download and cache the stylesheet once on their first visit (and don’t have to

download it again when they visit a second, third, and fourth page).
• Users only have to download your stylesheet once, saving HTTP requests on

secondary page visits.

202 | Chapter 7: Upgrading to CSS3

4. Yahoo! provides an excellent CSS reset file at http://developer.yahoo.com/yui/reset/. Add background-
repeat: no-repeat; to it, and you’re golden.

• You’re preserving the separation of content from presentation.

While rule number 1 (minimize HTTP requests) may lead one to believe that it is better
to embed the CSS and save an HTTP request, the price paid of adding a single HTTP
request is generally well worth the benefits of having an external stylesheet (though
there is an anti-pattern exception, as noted in Chapter 2). The browser can cache the
external stylesheet references by all your pages, so it only has to be downloaded once.
Embedded styles, on the other hand, are downloaded with every page.

While the download time cost associated from a single HTTP request is generally less
than the cost associated with downloading the bytes of in-page CSS when the second,
third, and fourth pages of your site are downloaded, HTTP requests over 3G networks
can have a lot of latency. For websites accessed over a tethered network, the extra HTTP
request for an external stylesheet is worth it. This isn’t always the case with mobile.

As noted in Chapter 2, some mobile sites use an anti-pattern. They embed the CSS, and
even the JavaScript, into the first server response. Then they use JavaScript to extract
the embedded scripts and put them into local storage using the localStorage API. By
providing each script with a unique ID, the script can be stored, retrieved, and referenced
with that unique key. The script identifier is also added to a cookie. On following page
loads, as with all HTTP requests, cookies are sent along with the HTTP request, in‐
forming the server which scripts the user already has, allowing the server to decide
which scripts, if any, to send on subsequent requests. This anti-pattern can lead to a very
large download on first page load, with much smaller subsequent requests. While lo‐
calStorage has some drawbacks, such as the time it takes for the device to access the
localStorage data, it can be a viable tool in minimizing HTTP requests, which helps with
latency issues in mobile. We discussed localStorage in Chapter 6.
3. Normalize browsers with a CSS reset or normalizer

Browsers come with their own stylesheet called a user agent (UA) stylesheet. This native
stylesheet sets up default styles, such as italics for , bolding, and font size increases
for <h1-h6>, indenting and bullets on s. Unfortunately, not all browsers and not all
browser versions come with the same UA stylesheets. For example, margins on para‐
graphs and the body change from browser to browser. It is recommended to start with
a reset4 or normalizer CSS file to make all browsers behave similarly: to remove or
normalize many of the default styles in favor of a uniform styling for all browsers.

To normalize, begin your stylesheet with a low specificity setting of baseline styles to
remove cross-browser differences in UA stylesheets. By setting defaults, you avoid
browser inconsistencies of both current and future browsers.

CSS: A Definition and Syntax | 203

http://developer.yahoo.com/yui/reset/

5. Normalize.css is a small CSS file providing for cross-browser consistency of default styling (rather than re‐
setting) of HTML elements. Created by Jonathan Neal and Nicolas Gallagher, it targets only the styles that
need normalizing.

6. The documentation of the source code of HTML5BoilerPlate on GitHub provides lots of useful tips.

Even if you are developing your website purely for a single browser—for example, a
single version of WebKit (which, of course, I recommend against doing)—I still rec‐
ommend using a CSS reset/normalizer.5 I include margin: 0; padding: 0; and
background-repeat: no-repeat; in my reset on most elements. By including these
three lines of markup in my reset, I save hundreds of lines of code by not having to
repeat any of them.

If you use * in your reset, do so with caution, as you likely don’t
want to remove default styling on some elements, like form fields.
In addition, it increases memory usage and rendering time.6

4. Use the weakest specificity for ease of overwriting

Another recommendation is to use elements and classes in your selectors, rather than
IDs. Decreased specificity reduces the number of selectors needed to override a rule.
The weaker your specificity, especially when creating your reset and original template,
the easier it will be to override a value for one-off styles. Begin by styling the basic HTML
tag selectors.

Avoid IDs, as IDs have the greatest value in the cascade. Although ID’d selectors may
perform slightly better when it comes to rendering time, the time savings is small. Using
IDs limits the target of your CSS to a single subset area, and overriding ID’d styles
requires even stronger ID’d specificity. So, although there is a miniscule performance
hit, use the least amount of specificity needed in a selector to create more general rules
and to better enable overwriting a property value.

Then you can create specific styles for the sections to override the defaults.

For example:
<p id="myP" class="blue">This is
 <strong class="warning">important</p>

Could be targeted with:
body p#myP.blue strong.warning {
 color: red;
}

204 | Chapter 7: Upgrading to CSS3

http://necolas.github.io/normalize.css/
https://github.com/h5bp/html5-boilerplate

Or simply:
.warning {
 color:red;
}

We often come across CSS with selectors as specific as the former, but the latter does
the trick.

You’re not only saving bytes of code with the latter, but it’s easier to code, read, maintain,
and, mostly, override. Imagine if your designer adds a caveat: “If that paragraph is in
the sidebar, I want the red to be more chartreuse.” There are two issues here: one, I have
no clue what “chartreuse” is. At least I can Google it. The main issue is that to change
the color, you have to be even more specific! So:

body aside.sidebar p#myP.blue strong.warning {
color: #7FFF00;
}

Or, if you were less specific to begin with:
aside .warning {
color: #7FFF00;
}

If you’re using Sass or another compiler, you may find yourself with selectors that are
10 rules deep. As a general rule, I limit my selectors to three deep, which feels like a good
balance between performance, specificity, and ease of maintenance.

For more information on CSS Specificity, see “Specificity Trumps Cascade: Under‐
standing CSS Specificity” on page 237 and Appendix A.

5. Don’t use inline styles or the !important modifier

That’s it. No explanation required. Inline styles and the !important key term are bad
practices. Don’t use them (other than for prototyping).

If you need an explanation: the !important keyword overrides the cascade for the
property in which the !important declaration is included. A property value for a selector
with low specificity that includes the !important modifier in a declaration, that value
has greater specificity than any other value for that same property and cannot be over‐
written. For example:

p {color: green !important;}
p#myP {color: blue;}

<p style="color: red" id="myP">

In this case, the paragraph text will be green no matter what, because the !important
modifier was used.

CSS: A Definition and Syntax | 205

7. Chapter 9 of Advanced CSS by Moscovitz and Lewis, published by Friends of Ed, dedicates an entire chapter
to optimizing CSS for performance.

The !important modifier was added to CSS to enable users to override web author
styles. For all intents and purposes, assume that the !important key term is the domain
of your power users, not you as a developer.

The only time I use !important is for debugging. I add !important temporarily to see
if my selector is hitting my element at all. When the addition of !important doesn’t alter
my element as intended, I realize I have a typo in my selector, or I thought my
was a link <a>, or some similar error.

No matter how specific you are, even with the addition of !impor
tant, you cannot overwrite an !important in a property declaration
in the UA stylesheet. There aren’t many in most UA stylesheets, but
those property values that include them cannot be overwritten by your
own styles.

The tips listed here are best practices and simplify the efforts of writing CSS. There are
several other best practices for creating maintainable stylesheets, such as grouping se‐
lectors by section, commenting for future readability, and indenting for current read‐
ability, but we won’t delve into the best practices for human readability,7 as there are
“different strokes for different folks.”

The best advice I have is to pick your best practices and stick with them. For example,
I don’t care if you use spaces or tabs for indentation, but whatever you choose, stick with
it: consistency rules!

CSS Selectors
If you’re familiar with CSS, skip to the section “More CSS3 Selectors” on page 210. If not,
we’ll cover the basics. And, even if you are a pro, don’t skip “More CSS3 Selectors.” You
may be surprised at how powerful CSS selectors have become.

Selectors are CSS patterns used to determine which style rule blocks apply to which
elements in the document tree. Selectors range from simple element types to rich con‐
textual patterns targeting DOM nodes based on attributes, source order, or family tree
relations. If all conditions in the pattern are true for a certain element or pseudoelement,
rules are applied to that element.

206 | Chapter 7: Upgrading to CSS3

All mobile browsers support the CSS 2.1 and CSS3 selectors dis‐
cussed in this chapter, as do all desktop browsers, with the exception
of IE8 and earlier.

Basic Selectors
If you have any experience with CSS, you likely know how to target elements using
element, class, and ID selectors, or a combination of them. These are the most often
used type, class, and ID selectors: the basic CSS selectors that were provided to us in the
original versions of CSS.

You’ll discover that with CSS3, you can target with incredible precision almost any node
in your document, generally without even having to add a class or ID. But first we need
to ensure full understanding of the building blocks of CSS.
Type selector

The type selector or element selector will target all elements of a particular type:
a {
 color: blue;
}
p {
 color: pink;
}
strong {
 color: green;
}

The preceding CSS dictates that your links will be blue, your paragraphs will be pink,
and your strongly emphasized text will be green.

<p>This is a paragraph with an
 emphasized link
</p>

In this example, due to nesting, the word “emphasized” will be green, the “link” will be
blue and the rest of the paragraph will be pink, unless any of those elements inherit CSS
that is more specific and alters the colors.

We can declare multiple elements in a selector group by separating them with a comma,
creating a list of type selectors:

p, li {
 text-transform: uppercase;
}

CSS Selectors | 207

We declare descendant elements by separating them with a space:
p strong {
 color: pink;
}

li a {
 color: black;
}

If I were to include this CSS, the text in this paragraph, along with the text in any other
paragraph and list item, would be uppercase and the word “emphasized” would be pink,
since the strong element is a descendant of the <p> element. However, the word “link”
would still be blue, not black, since the <a> is in a <p> and does not have an as an
ancestor.

Old versions of Internet Explorer do not support the type selector on
elements it doesn’t know, including all of the new elements in HTML5.
All mobile browsers that you are likely trying to target will render
elements they don’t recognize, and understand all CSS3 selectors.

Class selector

The class selector will target all elements with that particular case-sensitive class:
.copyright {
 font-size: smaller;
}
.urgent {
 font-weight: bold;
 color: red;
}
<p class="copyright">This is a paragraph with an
 <strong class="urgent">emphasized link
</p>

With the added classes, the entire paragraph will be in a smaller font, and the word
“emphasized” will be both bold and red, instead of green. The reason it is red instead of
green is because a class selector has more strength or specificity in terms of the cascade.

You can have more than one class on an element in your HTML: simply separate the
class names with a space in the value of the class attribute. Note that the order of the
classes in the class attribute on any element is not important: the order of the classes
in the stylesheet is what determines precedence. The following are equal:

<p class="class1 class2">some text</p>
<p class="class2 class1">some text</p>

In terms of the cascade, a single class selector has more weight than any number of type
selectors.

208 | Chapter 7: Upgrading to CSS3

We could have written:
p.copyright {
 font-size: xx-small;
}

Then, since there is no space between the p and the class, only paragraphs with a class
of copyright will be xx-small. <li class="copyright"> would be smaller, but not
xx-small, since it is targeted by the general selector of .copyright, but not by the more
specific p.copyright.

As noted in the best practices section, it is recommended to use the least amount of
specificity to target an element. In this case, it is recommended to use .copyright instead
of p.copyright. The shorter selector is less specific, potentially targeting more elements:
all elements with the .copyright class. Unless you are trying to override just the para‐
graphs that have this class, use the selector with the least specificity.

Class names are case-sensitive: copyright does not equal Copyright
or copyRight.

ID selector

The ID selector targets the single element in your document with that particular ID.
Remember that IDs are case-sensitive and must be unique in a document:

#divitis {
 color: orange;
 font-size: larger;
}
<p class="copyright" id="divitis">This is a paragraph with an
 <strong class="urgent">emphasized link
</p>

In this example, the paragraph will be orange and larger, not smaller, since ID selectors
have more specificity than class selectors, and therefore overwrite the .copyright and
p.copyright selectors.

#divitis a{} is more specific than .copyright a{} which is more specific than p a
{}, which is more specific than a {}. See Table 7-2 for a visualization of the specificity
values of type, class, and ID selectors, and “Specificity Trumps Cascade: Understanding
CSS Specificity” on page 237.

In terms of the cascade, a single ID selector has more weight or specificity than any
number of class selectors or type selectors, so use them sparingly, if at all. They’re difficult
to out-specify. To out-specify an ID selector, you need to write an even more detailed
rule that uses the same or greater number of ID selectors.

CSS Selectors | 209

Class and ID selectors are case-sensitive. Type selectors are not.

More CSS3 Selectors
Even if you’re familiar with CSS, the following will be useful: there are many tidbits you
may not know or may not have considered.

The selector matches the element or item that the CSS will be applied to. In the era of
CSS 2 and desktop support, we’ve been thinking “element”: we’ve limited ourselves to
type, class, and id selectors, with a smattering of link-related pseudoclasses, and pos‐
sibly, though not necessarily wisely, the universal * selector.

In targeting elements in our stylesheets, let’s stop thinking about element type, and
instead focus on the document model. With CSS3 we can more easily target styles based
on an element’s position within a document, an element’s relation to other elements,
and even an element’s attributes and UI state.

CSS3 greatly expands our horizons and our ability to microtarget with new attribute
selectors, structural selectors, pseudoclasses, and combinators. Actually, the combina‐
tors (described in the next section)—along with some attribute selectors—were in CSS
2, but only starting with IE8 did Internet Explorer fully support the CSS 2.1 selectors.
Opera, Chrome, Safari, Firefox, and Internet Explorer (starting with IE9) support all of
the CSS 2.1 and CSS3 selectors, with one caveat: for security reasons, some other brows‐
ers have stopped fully supporting the :link and :visited pseudoclasses of the <a>
element.

All mobile (and desktop) browsers, including Opera, Chrome, Safari,
Firefox, and Internet Explorer, starting with IE9, support all of the CSS
2.1 and CSS3 selectors.

General Selectors
The general selectors, including the universal selector, type selector, class selector, and
ID selectors, have been around since the last millennium.
Universal selector: *

Added in CSS 2, the universal selector matches every element on the page. The syntax
is an asterisk (*):

* {
 color: blue;
}
footer * {

210 | Chapter 7: Upgrading to CSS3

 color: white;
}

A standalone universal selector affects every element, from the root down to the last
child. Instead of using it as a global selector, narrow the scope with a combinator: target
all elements of a known ancestor, such as all elements contained in your <footer>, but
avoid targeting your entire document. Other unintended consequences can be removing
default styling from form fields.
Type selector: E

The element selector, or type selector, matches all the elements of that type. In your
stylesheets, include the tag name only, with no special symbols, to represent that element
in the selector:

section, aside, p {
 color: red
}

Class selector: .class

The class selector, discussed previously, matches any element of a particular case-
sensitive class. In your stylesheet, include the ID value preceded with a period:

.myClass {
 color: green;
}

ID selector: #id

The ID selector matches any element with that exact, case-sensitive id. Of all the selector
types, the ID selector has the greatest specificity (described in the next section). In your
stylesheet, include the class name preceded with a hash mark (#):

#myId {
 color: black;
}

Using the Selectors
An element can have more than one class but can only have one ID. If an id is included
in an element, that ID must be unique for the page:

<p class="firstclass secondclass" id="myparagraph">

This paragraph element can be targeted a multitude of ways, in order of specificity as
shown in Table 7-2.

More CSS3 Selectors | 211

Table 7-2. Selector combinations targeting the paragraph in order of specificity, lowest
to highest

Selector Explanation Specificity

p All paragraphs. 0-0-1

.firstclass All elements with that class. 0-1-0

.secondclass

p.firstclass All paragraphs that have that class. 0-1-1

p.secondclass

.firstclass.secondclass Any element that has both classes. 0-2-0

p.firstclass.secondclass All paragraphs that have both classes. 0-2-1

#myparagraph The unique element that has that ID. 1-0-0

p#myparagraph The element with that ID, if it’s a paragraph. Otherwise, matches nothing. 1-0-1

p#myparagraph.firstclass The paragraph with that ID if it has that class. Otherwise, does not match
the element with that ID.

1-1-1

p#myparagraph.secondclass

p#myparagraph.first

class.secondclass

The paragraph with that ID if it has both those classes. Otherwise, does
not match the <p> with that ID.

1-2-1

Be as minimally specific as you need to be! If you can target the element with just a type
selector, only use the type selector. If you need to use a class, use just a single class if you
can. Less specific selectors target more elements, leading to a more unified site, and are
easier to override by using the CSS cascade and/or with minimally increased specificity.

While all the selectors in Table 7-2 are valid, the last few selectors should rarely, if ever,
be used. Because of the high specificity, I avoid using ID selectors, including the id
attribute on elements generally only in labels, for targeting with JavaScript, and an‐
choring. If you start off being as minimally specific as possible, you’ll never need the
last five or six selectors in Table 7-2.

Relational Selectors: Rules Based on Code Order
We’ve covered classes based on a single element’s type, class, and ID. CSS also enables
targeting selectors based on an element’s relationship to other elements.

In the preceding selectors, we were generally using one element, with class and ID to
discuss and learn the cascade. In the real world, there isn’t just one element in a page.
All elements are either a parent or child of another element (except the root element
and text nodes—but they are parents and children, respectively). Most are both. Most
elements will have parents, children, and siblings in the markup. In fact, most are the
ancestors, descendants, and siblings of a plethora of elements.

CSS provides several relational selectors to help us target elements based on these re‐
lationships. For our examples, we’ll use the following code:

212 | Chapter 7: Upgrading to CSS3

<div id="myParent">
 <p class="copyright" id="divitis">This is a paragraph with a
 <strong class="urgent">strongly emphasized link</p>
 <p class="second classitis">This is another paragraph with an
 emphasized link</p>
</div>

Once you’re done reading this chapter, you’ll realize that you can remove all the classes
and IDs in this code snippet and still style each element individually.
Descendant combinator: E F

The descendant combinator, symbolically written as E F, with one or more spaces, is
when the selector for element F is a child or other descendant of element E. In our prior
example:
p strong {}

Targets the element that is a descendant of a paragraph, even if it is not
a direct child.

#myParent a{}

Targets both links <a> since, while not direct children, they are descendants of the
element with id="myParent".

.copyright .urgent {}

Targets the elements with a class of urgent that is a descendant of an element with
a class of copyright.

li strong {}

Doesn’t target our text, since is not a descendant of a list item in our
example code.

Q: Can you tell the difference between these two selectors?

#myparagraph.myclass { }

#myparagraph .myclass { }

A: The first one has no space between “#myparagraph” and “.myclass” while the second
one does.

Translated into English, the first selector reads: Select the element that has an ID of
myparagraph and also has a class name of myclass.

Translated into English, the second selector reads: Select all elements with the class
name myclass that are descendants of the element with an ID of myparagraph.

Remember that spacing and punctuation are important in CSS!

More CSS3 Selectors | 213

Child combinator: E > F

The child combinator, symbolically written E > F, is a selector in which the selector for
element F is the direct child of element E. This is different than the more general de‐
scendant combinator E F, described earlier, which allows for F being a child, grandchild,
or great-, great-, great-grandchild. The child combinator, with the greater than symbol
(>), requires that the child F be a direct child of element E:
div > p {}

Matches both paragraphs, as both paragraphs are direct children of the parent
<div>.

p > strong {}

Does not match anything in our example, since is a direct child of <a>,
not <p>.

While all mobile browsers support the child selector, and have for a very long time, few
people have been employing it because of the lack of support in really old desktop
browsers. All modern mobile browsers support all CSS3 selectors, so stop worrying and
start using! Note that while the > symbol is very handy in being more specific in what
you want to target, E F has the same specificity in terms of weight as E > F.

In CubeeDoo, we make use of the child combinator. When we go up in levels, our cards
shrink in size. To tell the <div>s, which are direct children of the #board and no other
nodes, to change height based on the class of the board, we can target them directly
without touching the HTML to add classes:

#board > div {
 position: relative;
 width:23%;
 height:23%;
 margin: 1%;
 float: left;
 transform-style: preserve-3d;
 transition: 0.25s;
 box-shadow: 1px 1px 1px rgba(0,0,0,0.25);
 cursor: pointer; /* for desktop */
}
#board.level2 > div {
 height: 19%;
}
#board.level3 > div {
 height: 15%;
}

These property values will affect the card containers, but not the front or back of the
cards. We want to define CSS properties for the card container, but don’t want those
properties to be applied to the front and back of the card: we want each card to be 23%

214 | Chapter 7: Upgrading to CSS3

as wide as the board, which is the viewport. We don’t want the front of the card to only
be 23% as wide as a single card though.

We’ve declared them all as <div>s. How can we target a <div> without affecting its
descendant <div>s? By using the child > combinator to specify a specific relationship.
#board > div matches only the <div> nodes that are direct children of #board. The
CSS property/values will not be added to the grandchildren, though some properties,
like color, can be inherited.

All the cards will have a height of 23% because there are four rows of cards on level 1.
However, when the #board has a class of level2 or level3, we overwrite the heights of
the cards to be 19% and 15%, respectively, as the game then has four and five rows,
respectively. If we hadn’t included the child combinator, the front and back of the cards
would have been targeted with the height declaration as well. Those nested <div>s would
be 23%, 19%, or 15% of the height of their parent <div> or card, or really, really tiny.

We’ve also used the child selector to target the <footer> that is the direct child of the
<article>, enabling us to style the main footer and descendants of that footer without
also targeting section footers:

article > footer,
article > footer ul {
 text-align: center;
 margin: auto;
 width: 100%;
}
article > footer li {
 float: none;
 display: inline-block;
}
article > footer p {
 clear: both;
}

Adjacent sibling combinator: E + F

The adjacent sibling combinator targets the second element in the selector if both the
elements separated by the + sign share the same parent and the targeted element (F)
occurs immediately after the first element of the selector (E) in the mark up:
p:first-of-type + p {}

Targets the second paragraph, and the second paragraph only, as both paragraphs
are direct children of the <div>, but only if the second paragraph comes immedi‐
ately after the first with no elements in between.

General sibling combinator: E ~ F

The general sibling combinator is similar to the adjacent sibling combinator in that it
targets the second element in the selector if both the elements separated by the ~ (tilde)
share the same parent. However, unlike the adjacent sibling selector, the targeted

More CSS3 Selectors | 215

element F does not need to occur immediately after the E in the markup. Instead, it has
to be any sibling F element that occurs after the first element E. Unlike the adjacent
sibling selector, the general sibling selector can match more than one node.

Table 7-3 recaps the relational selectors and provides some examples.

Table 7-3. Relational selector definitions and examples
Name Syntax Example Example explanation recapped

descendant E F .content p Any paragraph that is a descendant (child, grandchild, great-grandchild, etc.)
of an element with class of content.

child E > F ul.main > li A list item that is a direct child of the unordered list with a class of main. Will
not target nested list items, just the direct children in the DOM of the parent
 that has a class of main.

adjacent sibling E + F h1 + p Any paragraph that shares the same parent as the h1, and comes directly after
the h1 in the markup.

general sibling E ~ F h1 ~ p Any paragraph that shares the same parent as an h1, that appears after the
h1 in the markup.

Attribute Selectors
In Chapter 2, we learned about adding attributes to elements. The nifty thing with CSS
is that you can use CSS selectors to target elements based on those attributes, and even
the values of those attributes. CSS 2 provided a few very useful attribute selectors. CSS3
adds several more, enabling substring matching of the attribute value.

The CSS 2 attribute selectors include targeting elements that have a specific attribute
with any value, attributes that have a specific exact value, attributes whose values contain
a specific, space-separated word, and language attributes.

Note the repeated use of the word “specific” in the preceding paragraph. With CSS you
can be very precise in targeting specific elements based on their attributes.

To introduce the CSS 2.1 attribute selectors, we will match the following two lines of
HTML with the four attribute selector types detailed in Table 7-4:

 <a href="http://x.com/selectors.pdf" hreflang="en-us" rel="nofollow"
 title="CSS selectors and browser support">Specifishity

 <input type="checkbox" name="spec" id="spec" value="web workers rock"/>
 <label for="spec">Are web workers in the specifications?</label>

216 | Chapter 7: Upgrading to CSS3

Table 7-4. CSS 2 attribute selectors enable matching by attribute presence, attribute
value, language attribute, and by matching space-separated words within an attribute
value

Selector Example Description

E[attr] a[rel]

input[type]

label[for]

Has the attribute, with any value.

E[attr=val] a[rel="nofollow"]

input[type="checkbox"]

Has the attribute with the exact value
val.a

E[attr|=val] a[hreflang|="en"] Value is exactly val or begins with val
immediately followed by −.

E[attr~=val] a[title~="browser"]

input[value~="workers"]

Matches any space-separated full word in
the attribute value.

a The case sensitivity depends on the language and the case sensitivity of the attribute value. The quotes are required if the
attribute value within the element would have required the quotes.

Since CSS 2.1, we’ve been able to match selectors based on the mere presence of an
attribute, the presence of an attribute with an exact value, the presence of an attribute
whose value contains an exact space-separated word, and the presence of an attribute
whose value is an exact value, or begins with an exact value followed by a hyphen.

Note that the quotes in the attribute value in these examples are optional. Had there
been a space in the value of the attribute selector, quotes would have been required. I
prefer to use them since consistency is good, and sometimes they are required: so be
consistent and quote your attributes. Also note that the attribute value within the at‐
tribute selector is case-sensitive if the attribute value in the HTML was case-sensitive.

The language subcode attribute selector is not well known and a rarely used CSS feature.
It is useful for adding visual cues such as language-specific flags as background images
or italicizing content in a foreign language.

For an attribute selector such as a[hreflang|=fr], we can target matching links with
a small French flag indicating that the link leads to a page written in French. Figure 7-1
shows a simple example of providing cues based on an attribute:

<style>
a[hreflang] {
 padding-right: 18px;
 background-position: 100% 0;
 background-repeat: no-repeat;
}

a[hreflang|="en"] {
 background-image: url(img/usa.png);
}

More CSS3 Selectors | 217

a[hreflang|="es"] {
 background-image: url(img/esp.png);
}
a[hreflang|=fr] {
 background-image: url(img/fra.png);
}
</style>

 English
 Français
 Español

Figure 7-1. Using attribute selectors to indicate language

In the body of the page, only links to French language files will have an hreflang
attribute with a value of fr. By using the attribute selector to target the language, you
don’t have to know where the element is, what parent the element has, etc. By using
attribute selectors, no matter who or how the website gets updated, proper elements can
get styled correctly. With attribute selectors, you can target elements via their attributes;
no need to muddy up your HTML with extra classes in such scenarios.

CSS3 added even more powerful attribute selectors, including attribute values that begin
with a specific substring, end with the specific substring, and ones that contain a sub‐
string anywhere within the attribute value.

218 | Chapter 7: Upgrading to CSS3

8. a[href^=http] matches any fully qualified URL, whether it’s HTTP or HTTPS, and other links with a path
that start with HTTP. It would be more specific to write a[href^="http://"], a[href^="https://"].
You can combine attribute selectors, such as a[href^=http][href$=pdf], which would match external links
to PDF files and other links that start with HTTP and end with PDF, but writing a[href^="http://"]
[href^="https://"] would match nothing, as no link can start with both http: and https:.

Understanding these selectors is quicker with examples. So, rather than describing each
of the attribute selectors, we will continue matching the lines of HTML shown rendered
in Figure 7-1 with the various attribute selector types. Table 7-5 is a grid of the attribute
selectors new to CSS3:

 <a href="http://x.com/selectors.pdf" hreflang="en-us" rel="nofollow"
 title="CSS selectors and browser support">Specificity

 <input type="checkbox" name="spec" id="spec" value="web workers rock"/>
 <label for="spec">Are web workers in the specifications?</label>

Table 7-5. CSS3 attribute selectors enable matching by substring from the start of a val‐
ue, end of a value, or substring anywhere within the attribute value

Selector Example Description

E[attr^=val] a[href^="http"]

input[value^="web"]

The val matches the beginning of the attribute value.

E[attr$=val] a[href$=".pdf"]

input[name$="spec"]

The val matches the end of the attribute value.

E[attr*=val] a[href*=":"] The val matches anywhere in the attribute value.

The attribute selectors enable you to target elements with CSS based on their attributes
and attribute values. There are some useful examples in the preceding list. For example,
a[href^=http] targets any fully qualified URL,8 and a[href$=".pdf"] indicates that
the link is likely pointing to a file of PDF format.

In your stylesheet, you may want to indicate nonrelative links with an icon that indicates
the link points to a different domain, or that the link points to a file in PDF format rather
than to a web page, or you can even append text to the link to indicate the link type. For
example, users may want to be warned before tapping on links that will download files
or open new windows. You can indicate file type, as shown in Figure 7-2, using attribute
selectors with string matching:

More CSS3 Selectors | 219

9. CSS selectors Level 4 will enable case-insensitive matching. See Appendix A.

 Link 1
 Link 2
 Link 3
 Link 3

<style>
 a[target="_blank"]::after {content: " (opens in new window)";}
 a[href$=".zip"]::after {content: " (.zip file)";}
 a[href$=".pdf"]::after {content: " (.pdf file)";}
</style>

Figure 7-2. Generated content based on element attributes

Quoting the attribute value is optional in some cases, but is required when nonalpha‐
numeric characters such as spaces and colons are included. The attribute name is not
case-sensitive, but the attribute value is case-sensitive if it is not an HTML value. For
example, [type=CHECKBOX] and [type=checkbox] will both target your checkboxes no
matter how you marked them up, but a[href^=http] and a[href^=HTTP] will only
target lowercase and uppercase protocols respectively.9

You can even style different types of links differently based on the width of the viewport
using media queries. For example, if the device is wide enough, you can include a back‐
ground image before a link and the document type after the link, omitting this en‐
hancement if the viewport is really narrow:

220 | Chapter 7: Upgrading to CSS3

10. We also have numbers and shapes. Numbers will be discussed later in this chapter. Shapes was covered in
Chapter 5 when we covered SVG.

@media screen and (min-width: 480px) {
 a[href^="mailto:"] {
 padding-left: 30px;
 background: url(emailicon.png) no-repeat left center;
 }
}
@media print, screen and (min-width: 640px) {
 a[href^="mailto:"]::after {
 content: "(" attr(data-address) ")";
 opacity: 0.7;
 }
}

The preceding snippet adds an email icon link as a background image on a link if the
browser width is 480 px wide or larger, and adds the email address as listed in the data-
address attribute if the browser is 640 px or wider, or printed.

CSS 2.1 provided for generating content with CSS. In the previous examples, we gen‐
erated a bit of text informing the user of the type of file that a link will download or that
it is an email link, determining the link type based on the value of the link URL. While
generating content is a helpful feature, generally you do not want to include text at all,
but especially text that is necessary for understanding the context of the page. You should
only generate text as progressive enhancement. Do not use generated content for actual
content.

There are two features from CSS 2.1 in this example. We are using attribute selectors
along with the ::after pseudoelement, and generating content with the CSS 2.1 con
tent property. Attribute selectors can be used for not just for targeting elements, but
can also be used to enhance the usability of the page by adding generated content using
CSS 2.1 generated content (described in “Pseudoclasses” on page 222).

In terms of specificity, all attribute selectors, no matter how specific that attribute se‐
lector is, have the same weight as a class selector.
CubeeDoo

The whole CubeeDoo game relies on the data-value attribute. We target the look of
the face of the card based on the value of the data-value attribute. The color theme of
the game is completely defined by changing the board’s class to colors.10 The back‐
ground color of the <div class="back"> changes, depending on the value of the data-
value attribute of the parent:

.colors div[data-value="0"] .back {background-color:transparent;}

.colors div[data-value="1"] .back {background-color:#F00;}

.colors div[data-value="2"] .back {background-color:#090;}

.colors div[data-value="3"] .back {background-color:#FF0;}

More CSS3 Selectors | 221

.colors div[data-value="4"] .back {background-color:#F60;}

.colors div[data-value="5"] .back {background-color:#00F;}

.colors div[data-value="6"] .back {background-color:#909;}

.colors div[data-value="7"] .back {background-color:#F0F;}

.colors div[data-value="8"] .back {background-color:#633;}

.colors div[data-value="9"] .back {background-color:#000;}

.colors div[data-value="10"] .back {background-color:#fff;}

.colors div[data-value="11"] .back {background-color:#666;}

.colors div[data-value="12"] .back {background-color:#ccc;}

Pseudoclasses
A pseudoclass is similar to a class, but instead of being developer defined by putting the
class attribute in the opening tag of the HTML element, pseudoclasses are classes based
on the position in the DOM or on the current state of the user interface. A pseudoclass
has the same weight as a regular class in terms of specificity and the cascade as delineated
in Appendix A and described in “Specificity Trumps Cascade: Understanding CSS Spe‐
cificity” on page 237.

There are two link pseudoclasses: :link and :visited. :link matches unvisited links
and :visited matches visited links. Although these two pseudoclasses can be used to
improve usability, these pseudoclasses create a security risk. Safari reduced support for
them with their release of Safari 5, and other browser vendors have since followed suit.
Unlike all the other pseudoclasses, the styling for these two are very limited. These are
the only two class types for which styling is limited.

With the global attribute tabindex, the :hover, :active, and :focus user-action
pseudoclasses are not limited to links and forms anymore. Both links and form elements
have always been able to have focus and/or be active. Therefore, :focus and :active
have been relevant to all interactive elements. With tabindex, any element can be in‐
teractive. :focus and :active are therefore applicable to elements with a tabindex
attribute (see Chapter 2).

Include :focus with :hover declarations for better usability and
accessibility.

As you know, when you have a mouse, any element can be hovered. CSS reflects this.

The :hover pseudoclass can be added to any element. However, on a touch device, you’re
not hovering. You’re touching. Mobile devices treat touching as hovering, with some
mobile browsers and operating systems adding a few features. Features or properties
you may want to style include:

222 | Chapter 7: Upgrading to CSS3

-webkit-tap-highlight-color

Allows you to set the background-color of the underlay when a user touches a link
or otherwise clickable element. By default, the tap highlight color is semitranspar‐
ent. You may want to style this, but don’t disable it. Having the browser indicate to
the user that an element is being tapped is good user experience. Hiding the fact
that it is being touched is bad user experience.

-webkit/moz/ms-user-select

Available on desktop and mobile browsers with a prefix, when set to none you can
prevent the user from selecting text, or at least appearing like they can select text
(it doesn’t actually prevent selecting content). This is an experimental feature, not
currently in the specifications, though I expect to see it added back in. It must be
vendor prefixed, and is supported everywhere except Opera before Blink, even
though it is nonstandard.

-webkit-touch-callout

When set to none, it prevents the call-out toolbar (to select, copy, or paste) from
appearing when the user holds down a link.

In addition to the new feature of having support for the user-action pseudoclasses, CSS3
provides us with two other user-interface pseudoclasses and a slew of user-interaction
pseudoclasses.

You can target elements that are :enabled and :disabled. The :checked pseudoclass
can target inputs of type="checkbox" and type="radio" that are checked.

Table 7-6 lists the user interface pseudoclasses, and what those selectors match.

Table 7-6. The various CSS pseudoclasses, and what each pseudoclass selector matches
Pseudoclass What it matches

:link Unvisited links. Supported since CSS 1, this pseudoclass isn’t fully supported in newer browsers for security
reasons.

:visited Visited links. Supported since CSS 1, this pseudoclass isn’t fully supported in newer browsers for security
reasons.

:hover Any hovered element, not just links.

:active A currently user-activated element.

:focus Elements that have focus based on touch, keyboard, or mouse events or other input.

:enabled User interface element that is enabled.

:disabled Disabled user interface element.

:checked Radio button and/or checkbox that is selected.

:indeterminate Form elements that are neither checked nor unchecked.

More CSS3 Selectors | 223

11. The touchstart and touchend events are nonstandard and proprietary. Apple patented touch events, but
specifications are open standards. The touch W3C standard is pointer events. While all touch devices cur‐
rently support these nonstandard touch events, browsers will soon support pointer events, and, with the
exception of Apple, may begin deprecating touchstart and touchend. See Chapter 13.

12. You don’t actually want to use this selector as the global * selector is implied. Be more specific.

The :active pseudoclass is not evenly activated on all devices when an element receives
focus. A fix for this is to add an .active class wherever the :active pseudoclass is set
in your CSS and add and remove the .active class with touchstart and touchend
event listeners.

When it comes to mouseless touch devices, you don’t actually hover over an object.
You can hover with event handling, using touchstart and touchend, and eventually
pointerenter and pointerleave. Most touch devices handle touchstart to touchend11

as :hover, but are more finicky with :active. You can add a script in as well to make
sure all touch-supporting browsers support .hover like :hover and .active like :ac
tive on any element with a tabindex attribute:

var myLinks = document.querySelectorAll('[tabindex]');
for (var i = 0; i < myLinks.length; i++) {
 myLinks[i].addEventListener('touchstart',
 function() {
 this.classList.add('hover');
 this.classList.add('active');
 }, false);
 myLinks[i].addEventListener('touchend',
 function() {
 this.classList.remove('hover');
 this.classList.remove('active');
 }, false);
}

This adds the hover class to any element that is being hovered or activated with a finger
instead of a mouse. In your CSS, where you would call the hover pseudoclass, add the
hover class:

.hover, :hover {
 /* css for hover state */
}
.active, :active12 {
 /* css for hover state */
}

You don’t have to actually add the .hover class selector in your CSS. Most touch-enabled
device browsers will correctly handle the :hover declaration if you identify an element
and have a touchStart event:

<script>
var everything = document.querySelectorAll('a, label, span, input, [tabindex]');

224 | Chapter 7: Upgrading to CSS3

for (var i = 0; i < everything.length; i++) {
 everything[i].addEventListener('touchstart',
 function() {
 // empty
 }, false);
}
</script>
<style>
a:hover,
label:hover,
span:hover,
input:hover {
 /* css for hover state */
}
</style>

Putting everything we’ve learned together, you already have some sweet tools in your
tool belt. We can style a label based on whether its checkbox is checked!

 <input type="checkbox" name="spec" id="spec" value="web workers rock"/>
 <label for="spec">Are web workers in the specifications?</label>

 input[type=checkbox]:checked + label {color: red;}

This line should be easily understood now. It reads: “The label that comes immediately
after a checked checkbox should be red.” Our selector is using the attribute selec‐
tor, :checked pseudoclass, and adjacent sibling combinator.

State Pseudoclasses
Not yet fully supported in browsers are the UI state pseudoclasses. These CSS3 UI
module specifications introduced several pseudoclasses (delineated in Table 7-7) to de‐
fine additional user interface states that are becoming more relevant, and better sup‐
ported, with HTML5. While the :required, :valid, and :invalid pseudoclasses have
been around since before 2004, they have only become relevant recently with native
browser form validation and the required attribute added to HTML5 in web forms (see
Chapter 4).

Table 7-7. The UI state pseudoclasses and the elements they match
Pseudoclass What it matches

:default Applies to the one or more UI elements that are the default among a set of similar elements.

:valid Applies to elements that are valid based on the type or pattern expected, data validity semantics defined.

:invalid Applies to elements that do not match the data validity semantics defined by type or pattern

:in-range Applies to elements that have range limitations, and the value is within those limitations

:out-of-range Applies to elements that have range limitations, and the value is outside of those limitations

More CSS3 Selectors | 225

Pseudoclass What it matches

:required Applies to form elements that have the required attribute set.

:optional Applies to all form elements that do not have the required attribute.

:read-only Applies to elements whose contents are not user alterable.

:read-write Applies to elements whose contents are user alterable, such as text input fields or are contentEditable
(see Chapter 2).

The UI or state pseudoclasses are defined in the Basic User Interface
Module, not the CSS3 selector module. They will be included as part
of CSS Selectors Level 4.

Structural Pseudoclasses
CSS3 adds many selectors that enable developers to target elements based on the struc‐
ture of the HTML files and DOM. Table 7-8 lists all the structural pseudoclasses, with
a brief description of what they all mean. Don’t worry if some are confusing. The math
of the nth structural pseudoclasses will be explained in the following section.

Table 7-8. The structural pseudoclasses and their definitions
Pseudoclass What it matches

:root The root element, always the <html> element in HTML5 documents.

:nth-child() The element that is the nth child of its parent.

:nth-last-child(n) The nth child of its parent, counting from the last one.

:nth-of-type(n) The nth sibling of its type.

:nth-last-of-type(n) The nth sibling of its type, counting from the last one.

:first-child First child of its parent (CSS 2); same as :nth-child(1).

:last-child Last child of its parent; same as :nth-last-child(1).

:first-of-type First sibling of its type; same as :nth-of-type(1).

:last-of-type Last sibling of its type; same as :nth-last-of-type(1).

:only-child Only child of its parent.

:only-of-type Only sibling of its type.

:empty Element that has no children (including text nodes).

The :root element is fairly self evident. It’s the root element of the document, which is
always the <html> element in an HTML5 document. The nth pseudoclasses, on the other
hand, require some explaining.

226 | Chapter 7: Upgrading to CSS3

http://dev.w3.org/csswg/css3-ui/
http://dev.w3.org/csswg/css3-ui/
http://www.w3.org/TR/css3-selectors/

The Math of the nth Types
The :nth-of-type(), :nth-child(), and other structural pseudoclasses enable match‐
ing of elements based on their position relative to their ancestors and siblings. These
selectors take an argument that enables the pinpointing of elements you want to target
for styling. The argument can be a keyword, number, or a number expression.
Even and odd

The two keywords include odd and even, which cause the selector to target every other
element of that type, starting with the first element for odd or the second element for
even.

For example, a common use of the nth pseudoclasses with the odd and even key terms
is to stripe, or zebra, a table. Data tables, especially wide and/or tall ones, can be hard
to read. Simply telling every even row to have a different background color can make
it easier to read:

table {
 background-color: #ffffff;
}
tr:nth-of-type(even) {
 background-color: #dedede;
}

With this pseudoclass, the striping of the table is dynamically set by the CSS. There is
no need to add classes to the <tr> directly like we used to do. And, when sorting, you
don’t have to worry about changing the colors of any rows. Automatically, every even
row will be gray, even if you sort or remove rows.

This works for striping table rows as all <tr>s are siblings, children of <tbody>. Struc‐
tural selectors count elements that have the same parent. It’s not “all the table rows in
my document.” Rather, it counts all the sibling <tr>s, and starts counting from one again
when it reaches a second table, nested or not.
Single elements

If you only want one element targeted, based on its position, include an integer as the
parameter. Continuing with the previous example, we can write:

tr:nth-of-type(8) {
 background-color: #ff0000;
}

This CSS code will make the eighth row red. To take effect, this selector must come after
the tr:nth-of-type(even) in the stylesheet as both selectors have the same specificity
(0-1-1), so the one that is last in the cascade, or markup order, takes precedence.

More CSS3 Selectors | 227

Note that the browser counts which nth-child and nth-of-type selectors to match
from the parent element. If a table is nested in a table cell of another table, the eighth
row of both the outer table and nested table will be matched.
:nth-of-type versus :nth-child

The difference between :nth-of-type and :nth-child is a subtle one, and, as in the
case of our example, they will often target the same node. However, there is a difference:

p:nth-child(3) {color: red;}
p:nth-of-type(3) {color: blue;}

p:nth-child(3) will check the third child of every element to see if that element is a
paragraph. In the following example, <p>3</p> is the third child but the second para‐
graph, and thus would be red. p:nth-of-type(3) will count only the child paragraphs
of an element, selecting the third paragraph it finds, or <p>4</p> in this case, will be
blue:

<article>
 <p>1</p>
 <div>2</div>
 <p>3</p>
 <p>4</p>
</article>

In a table, :nth-of-type(8) is the same as :nth-child(8) since only <tr>s can be
children of a <tbody>. Had we written p:nth-of-type(8) and p:nth-child(8), we may
not have targeted the same paragraph with both those statements. The :nth-of-
type(8) counts the paragraphs in a parent element and selects the eighth paragraph
nested within the same parent, if there are at least 8. The :nth-child(8) will go through
the children (not descendants, but only direct children) of an element until it reaches
the eighth child of that element. If the eighth child happens to be a paragraph, then we
have a match. If not, the browser moves on to the next element to count its children.
Number expressions

Lastly, more confusingly, and definitely more powerful, is the fact that these selectors
support number expressions.

Number expressions are written as (xn+y), where x is the frequency and y is the offset.
For example, instead of using the key terms even and odd, we could have used (2n) for
even, and (2n-1) for odd.

To explain, (2n) means every other element, starting with 2*0, then 2*1, then 2*2, so 2,
4, 6, 8, 10, etc. (2n-1) means every other element, starting with one less than the second
element, or odd, so 1, 3, 5, 7, 9, etc. Other examples include (4n-2), which would target
every fourth elements, starting with the second, so 2, 6, 10, 14, etc.

228 | Chapter 7: Upgrading to CSS3

The + or - y only needs to be included if there is an offset. If you want to target every
fifth element starting with the fifth element, simply write (5n). Note that if you do
include an offset, it has to come last (after the n if present), or the selector will fail.

If you include a large offset, like 2n+9, the first targeted element will be the ninth. The
iterations start with n = 0, and increment by 1. With :nth-of-type(2n+9), the 9th,
11th, 13th elements will be targeted. With :nth-last-of-type(2n+9), the browser will
find the last element, count backward by 9, and target the 9th, 11th, 13th, etc., elements
from the end. In other words, the last eight elements will not be matched, and the even
or odd elements before that will be matched depending on whether there is an even or
odd number of children of the parent.

In CubeeDoo, to illustrate the :nth-of-type() selector, we’ve made the matched cards
disappear sequentially. In our CSS, we tell the second matched card to start fading away
after 250 ms, targeting the second matched card with:

#board > div.matched:nth-of-type(2) {
 -webkit-animation-delay: 250ms;
}

Similarly, we use structural selectors in our iPhone native-look example to ensure there
is no bottom border on the last language in our language list. We target the last list item
to remove its bottom border:

article ul li:last-of-type {
 border-bottom: none;
}

With this structural pseudoclass, we don’t need to know which language is last, nor do
we need to add a class to the last element. Instead, we use the current document structure
to target an element based on that structure. We used :last-of-type, but since only
s can be direct children of s, we could have also targeted this element
using :last-child, :nth-last-of-type(1), or :nth-last-child(1).

Note that using :first-of-type is more performant than using :last-of-type. We
could have, and probably should have, included border-top on our language list items,
and then written:

article ul li:first-of-type {
 border-top: none;
}

Exercise

OK, I know you’re not 12 anymore (and if you are, kudos for getting an early start on
HTML5 and CSS3), but since these expressions can be confusing, let’s do some mid-
chapter exercises. The exercises should help you to see how useful these expressions can
be.

More CSS3 Selectors | 229

Exercise
Write the equations to target the following elements:

1. You have 30 elements, and want to target elements 3, 8, 13, 18, 23 and 28
2. Element 17
3. You have 10 elements, and want to target elements 1, 3, 5, 7, and 9
4. You have 50 elements, and want to target elements 10, 20, 30, 40, 50
5. You have 30 elements, and want to target elements 6, 10, 14, 18, 22, 26, 30

Answers:

1. (5n-2) or (5n+3)
2. (17)

3. (odd) or (2n-1) or (2n+1)
4. (10n)

5. (4n+2)

When including pseudoclass, you are adding specificity.

Do not include any whitespace before the opening parenthesis, or
between the multiplier and the n. Also, the offset needs to come last.

More Pseudoclasses
There are a few more pseudoclasses that we haven’t covered, shown in Table 7-9.

Table 7-9. :target, :lang and :not pseudoclasses
Pseudoclass Name What it matches

E:target target pseudoclass Element being the target of a currently active intra-page anchor.

E:lang(L) language pseudoclass Element in language denoted by the 2-letter abbreviation (L).

E:not(s) negation pseudoclass Element E that does not match the selector(s) in the parenthesis. Elements that match
E except those that also match s.

230 | Chapter 7: Upgrading to CSS3

:target

The :target pseudoclass is applied or becomes active when the element is the current
target of the document. For example, if you have a div with an ID, and your user clicks
on an anchor link making that div active, any styles set in the :target style block will
be applied until focus of the target moves elsewhere.

For example, #main:target will be applied to <div id="main"> when the URL reads
thispage.html#main. You can style elements based on whether they are the current
target of the page. There is an example of showing and hiding tabbed content using only
CSS in the online chapter resources.
:lang(en)

The E:lang() or language pseudoclass matches element E if E is in the language passed
as a parameter in the :lang() parenthetical. The element E does not have to have the
lang attribute directly applied to it, but rather just has to be a descendant of an element
with the matching language applied.

For example, your HTML document is declared to be in US English with the <html
lang="en-us"> language declaration. Any selector E with E:lang(en) will be a match,
but E:lang(fr) will not match, unless a subsection of your page is declared to be in
French. For example, if you have a <blockquote lang="fr-fr"> within that document,
p:lang(fr) will match any paragraph that is within the block quote, but the p:lang(en)
that matched the rest of the paragraphs in your document will not match those within
the block quote.
:not(s), or the negation pseudoclass

The negation pseudoclass, :not(s), represents an element that is not represented by
the argument s. A selector with an E:not(s) will match all elements E that do not also
match the argument that is in the parenthetical. E:not(F) basically reads “match all
elements E that aren’t also F.”

The argument between the parentheses is a simple selector. By simple selector, I
don’t mean easy selector. Rather, I mean a selector with no ancestral/descendant
relationship:

input[type=checkbox]:not(:checked)

In the preceding example, the selector matches all inputs of type checkbox that are not
currently checked. :checked may not seem simple if CSS3 selectors are new to you. But,
it is considered simple as there is no DOM tree relationship specified.

Selectors with the :not pseudoclass match whatever is to the left of the colon, and then
exclude from that matched group those that also match what is on the right side of the
colon.

More CSS3 Selectors | 231

http://www.standardista.com/mobile

p:not(.copyright)

Matches all paragraphs except those with the copyright class.

:not(a)

Matches everything that is not a link.

p a:not(:visited)

Matches all nonvisited links that are found in a paragraph.

li:not(:last-of-type)

Matches all list items except the last in a list.

input:not([type=radio]):not([type=checkbox])

Matches all inputs except those of input type radio or checkbox.

h1:not(header > h1):not(#main h1)

Does nothing, as header > h1 and #main h1 are not simple selectors, so the selector
fails and is ignored.

Note that you can use multiple pseudoclasses together, as seen in the input :not example
given earlier:

ul > li:nth-of-type(n+2):nth-last-of-type(n+2)

The preceding code will target all of the list items except the first and last list items in
an unordered list, as would the two simpler versions:

ul > li:not(:first-of-type):not(:last-of-type)
ul > li:not(:first-child):not(:last-child)

In terms of specificity, the :not has no weight, but the argument passed in the paren‐
theses adds specificity:

li:not(#someID) /* 1-0-1 the ID selector adds 1-0-0 to the specificity */
li:not([title]) /* 0-1-1 the attribute selector adds 0-1-0 to the specificity */

Real world example

In the following code, we have a checkbox for other and a text area that we only want
to show if other is checked:

 <input type="checkbox" value="other" id="other">
 <label for="other"> other: </label>
 <input type="text">

We can combine some of our selectors to hide/show this input based on user interaction:
input[type="checkbox"]:not(:checked) ~ input {
 display: none;
}

232 | Chapter 7: Upgrading to CSS3

This code finds checkboxes that are not checked, then finds any sibling inputs within
the same parent and hides them. If they checkbox is checked, the display: none prop‐
erty value will not apply to the text input box.

Pseudoelements
Pseudoelements can target text that is part of the document but not targetable in the
document tree. For example, all text nodes have a first letter. However, unless you en‐
compass it with a , that first letter is not a separate, targetable part of the DOM.

Pseudoelements, as the name suggests, create pseudoelements. With the ::first-
letter pseudoelement, you can access the first letter of an element as if that first letter
were a separate DOM element (which it isn’t) and style it. Pseudoelements allow devel‐
opers to target otherwise inaccessible information without adding first-letter or first-
line logic to the markup.

:first-letter refers to the first letter of an element’s text node. The correct syntax is
double-colon notation, ::first-letter, but we generally use single-colon notation
because of IE’s lack of support for the double colon.

Similarly, :first-line and ::first-line refer to the first line of text in an element.
While the double-colon notation is more accurate, the single-colon notation is better
supported across browsers.

Possibly new to you is the ::selection pseudoelement. With the ::selection
pseudoelement, you can target highlighted text. ::selection was removed from the
current CSS3 selectors specification because it was holding up the finalization process,
but it is supported in all browsers (and has been supported in Firefox for a long time,
but still with the -moz- prefix).

If you are creating a game, you may want to disable mobile selection of images and text.
As already mentioned, there are a few properties we can include to control or prevent
selection behavior:

.willNotBeSelectable {
 -webkit-tap-highlight-color: #bada55;
 -webkit-user-select: none;
 -webkit-touch-callout: none;
 -ms-touch-action: none;
}

We can control the background color of touched elements with tap-highlight-
color. We can prevent the device from asking the user if they want to copy and/or paste
content with user-select: none;. This property is useful for games: if our user holds
down a card for too long in CubeeDoo, we do not want the user to be distracted by a
pop-up asking if they want to save a contentless card. The touch-callout property is
similar, but prevents the dialog from popping up with images. The touch-action

More CSS3 Selectors | 233

property when set to none prevents operating system pop-ups when panning in
Windows.
::before and ::after

The ::before and ::after pseudoelements are slightly different. Instead of targeting
text that is in the document, these two pseudoelements provide a way to refer to content
that does not exist in the markup or DOM. The ::before and ::after pseudoelements
provide the ability to generate content. For example, you can add an exclamation point
to the end of every element with the class of warning:

.warning::after {content: '!';}

Not only can you add content, but you can style the content. One of the most common
uses for generated content has been the .clearfix solution, using the :after pseu‐
doelement to clear floats. Earlier in the chapter, you saw other valid uses, including the
flag icon based on language (Figure 7-1) and text generation based on file types and link
types (Figure 7-2).

When creating generated content, you must use the content property, even if it’s an
empty string, or there will be nothing to display. The generated content appears inside
the element, before the content/text nodes of that parent element or after the last child
or text node. While the generated content will appear on screen as if it were actual
content, it is not added to the DOM.

All browsers support the :before and :after pseudoelements, including IE since IE8.

CubeeDoo. As an example, in CubeeDoo, we use generated content to add content for
our numbers and shapes themes:

.numbers div[data-value="1"] .back:after{ content:'1';}

.numbers div[data-value="2"] .back:after{ content:'2';}

.numbers div[data-value="3"] .back:after{ content:'3';}

.numbers div[data-value="4"] .back:after{ content:'4';}

.numbers div[data-value="5"] .back:after{ content:'5';}

.numbers div[data-value="6"] .back:after{ content:'6';}

.numbers div[data-value="7"] .back:after{ content:'7';}

.numbers div[data-value="8"] .back:after{ content:'8';}

.numbers div[data-value="9"] .back:after{ content:'9';}

.numbers div[data-value="10"] .back:after{ content:'10';}

.numbers div[data-value="11"] .back:after{ content:'11';}

.numbers div[data-value="12"] .back:after{ content:'12';}

.shapes div[data-value="1"] .back:after{ content:'★';}

.shapes div[data-value="2"] .back:after{ content:'⚫';}

.shapes div[data-value="3"] .back:after{ content:'⬣';}

.shapes div[data-value="4"] .back:after{ content:'◼';}

.shapes div[data-value="5"] .back:after{ content:'⬆';}

.shapes div[data-value="6"] .back:after{ content:'►';}

234 | Chapter 7: Upgrading to CSS3

.shapes div[data-value="7"] .back:after{ content:'♦';}

.shapes div[data-value="8"] .back:after{ content:'♥';}

.shapes div[data-value="9"] .back:after{ content:'♣';

.shapes div[data-value="10"] .back:after{ content:'♠';}

.shapes div[data-value="11"] .back:after{ content:'☻'}

.shapes div[data-value="12"] .back:after{ content:'⬇';}

By simply changing the class of the game board, we are able to change the theme. For
the color scheme, we changed the background colors based on the data-value attribute.
In our SVG image sprite example, we simply changed the background-position based
on the data-value attribute and the position of the target image in the sprite. To change
the theme to numbers and shapes, we used generated content to actually generate num‐
bers and icon shapes.

Generated content by default appears inline. However, it is fully styleable other than
animation, but the ability to animate generated content should be coming soon, and is
already present in Firefox.

We’ve explored an example of using media queries to determine the width of the window
and serve different generated content progressive enhancements to links based on
whether they will fit on the screen. Progressively enhancing links is just one of the many
uses of generated content.

Generated content can be used as an image replacement method, displaying attributes
as values in print (or on screen), to create an ordered list out of any element with coun‐
ters, or style the numbers of ordered lists, display language-appropriate quotation
marks, create styled tool tips and thought bubbles, etc. For a tutorial on generated con‐
tent, check out the online chapter resources for a link.
Understanding double-colon notation

A pseudoelement starts with two colons (::) followed by the name of the pseudoele‐
ment. The double colon replaced the single-colon for pseudoelements in CSS3 to make
an explicit distinction between pseudoclasses and pseudoelements. For backward com‐
patibility, the single-colon syntax is acceptable for pre-CSS3 selectors. Therefore, ::af
ter is a pseudoelement and :after is also a pseudoelement, but with pseudoclass no‐
tation; whereas :hover is always a pseudoclass, not a pseudoelement, and only allows
for a single colon.

These two colons, :: (double-colon notation), were introduced by the W3 in order to
“establish a discrimination between pseudoclasses and pseudoelements. For compati‐
bility with existing stylesheets, user agents must also accept the previous one-colon
notation for pseudoelements introduced in CSS levels 1 and 2 (namely, :first-
line, :first-letter, :before, and :after).”

More CSS3 Selectors | 235

http://www.standardista.com/mobile

13. Mozilla pseudoelements and pseudoclasses can be found at http://mzl.la/1cdK4mx.

Other Selectors: Shadow DOM
You thought we were done? So did we! There are other pseudoclasses and pseudoele‐
ments that browser vendors are creating but are not yet part of the specifications. For
example, to style form-validation error messages in WebKit, you are provided with four
pseudoelements:

::-webkit-validation-bubble {}
::-webkit-validation-bubble-arrow-clipper {}
::-webkit-validation-bubble-arrow {}
::-webkit-validation-bubble-message {}

You are not limited to these four validation bubble selectors. There are a plethora of
pseudoelements in all browsers, with WebKit currently allowing us to easily target these
native UI features with our own styles. For example, there are pseudoelements to enable
styling for progress bars:13

::-webkit-progress-bar {}
::-webkit-progress-value {}

To discover what pseudoelements can be targeted and what the correct syntax is for
those pseudonodes, the Chrome web inspector allows you to inspect the shadow DOM.

Figure 7-3. The shadow DOM inspected in the browser development tools

You’ll note in Figure 7-3 that there is an arrow next to the range input type. Inputs are
empty elements and therefore do not have nested children. Clicking on that arrow,
however, exposes the shadow DOM, or user agent components that, in this case, make
up the range’s slider. By clicking on the pseudo webkit-slider-runnable-track, we
can observe the user agent styles for the track. You can style this element by using ::-
webkit-slider-runnable-track as the pseudoelement selector. By clicking on the
nested div, we see that the child can be targeted with -webkit-slider-thumb, and has
its own styles. You can learn about all of the different styleable shadow DOM compo‐
nents via the web inspector:

236 | Chapter 7: Upgrading to CSS3

http://mzl.la/1cdK4mx

input[type="range"]::-webkit-slider-runnable-track {
 -webkit-flex: 1 1 0px;
 min-width: 0px;
 -webkit-align-self: center;
 box-sizing: border-box;
 display: block;
 -webkit-user-modify: read-only;
}
input[type="range"]::-webkit-slider-thumb,
input[type="range"]::-webkit-media-slider-thumb {
 -webkit-appearance: sliderthumb-horizontal;
 box-sizing: border-box;
 display: block;
 -webkit-user-modify: read-only;
}

With the introduction of web components, Blink-based browsers may be reducing ac‐
cess to the styling of some of shadow DOM pseudoelements in favor of web components.

Specificity Trumps Cascade: Understanding CSS Specificity
CSS declarations may appear to conflict with each another. You may declare the same
element, in different selector blocks, to be both larger and smaller, both pink and orange.
The way the CSS specifications are written, however, you can always determine which
property values will be applied, and there will never be a discrepancy between browsers:
you can always determine which rule will take precedence based on the order and spe‐
cificity or weight of the selector declarations.

The CSS cascade is a set of rules that define which rule takes precedence in seemingly
conflicting declarations. More specific rules override more general rules. If equal in
specificity, later rules override earlier rules. If weighted equally, closer (or later in the
cascade) rules override farther (earlier in the cascade) rules. All the rules to be applied
are applied from most general to most specific, with each successively more specific or
closer rule overriding previous conflicting declarations for a property.

The selector you select, type, class, id, or one of the pseudoclasses, attribute selectors,
etc., determine the weight or specificity of a rule. Only when two conflicting declarations
have the same weight are they then compared in terms of order precedence.

The general selector (*), and the child, adjacent, and general sibling combinators (the
>, +, and ~) add no weight to the specificity. The element and pseudoelement selectors
all have the same, lowest level weight.

Classes, attribute selectors, pseudoclasses, including structural selectors and UI selec‐
tors, all have the same weight, with a single class, attribute, or pseudoclasses selector
having more weight than any quantity of element selectors.

The :not negation pseudoclass has no value in itself, but the specificity of the parameter
is added to the weight of the selector. When an element has two or more classes as the

Other Selectors: Shadow DOM | 237

value of the class attribute, the source order of those classes in the HTML does not
matter. It is the specificity of the selectors and source order of the declarations of those
individual classes in the CSS that counts.

A single ID selector has greater weight than a selector with any number of classes.

Two things alter the general equation: inline styles are more specific than embedded or
linked styles, and properties with the key term !important after the value are even more
specific than inline styles. However, since best practices (see #5 in the section “CSS Best
Practices” on page 202) dictate that we should never use inline styles or !important
declarations in production (on live sites), we really only need to focus on and understand
the cascade.

If this was at all confusing, http://specifishity.com delineates class, element, and ID
weight in terms of the cascade, with selector combinations targeting a paragraph in
order of specificity, lowest to highest, using fish, sharks, and plankton. Appendix A
provides a list of the selectors and their weight in terms of specificity.

In Conclusion
That’s it! We’ve only touched upon what there is to learn about the CSS cascade, spe‐
cificity, selectors, and syntax, but hopefully enough to get everything done that you may
need to do. Appendix A includes a little cheat sheet to remind you of all the CSS3
selectors that all mobile devices fully support.

238 | Chapter 7: Upgrading to CSS3

http://specifishity.com

CHAPTER 8

Expanding Options with CSS3 Values

As we develop mobile applications on our modern browser on smartphones, we don’t
have to worry about older browsers’ lack of support for CSS3 selectors, properties, and
values. The iPhone, iPod, iPad, modern Android phones, Galaxy tablet, Microsoft Sur‐
face, and all other WebKit, Firefox, Opera, and Windows 8 devices have one of the most
modern, standards compliant browsers. With smartphone browsers (excluding some
older Windows 7 phones, but that is changing rapidly), we can now move forward and
code with the most cutting-edge CSS3 and HTML5. There’s no longer a reason to hold
back.

In this chapter, we start on our journey to becoming cutting-edge CSS3 developers. In
the last chapter, we learned about CSS3 selectors: cutting-edge ways of targeting ele‐
ments with CSS. In this chapter, we start with cutting-edge CSS3 values. In Chapter 9,
we will learn how to use some cutting-edge CSS3 properties.

There are new values, including new value types, in the CSS3 specifications. In this
chapter, we will cover both the old and new values of colors, lengths, and angles. We’ll
learn what values are useable in all browsers, what values are new in CSS3 but already
supported in most browsers, and some keyword values that are unique to specific
browsers.

CSS Color Values
Prior to CSS3, we had three types of color formats: there was the hexadecimal format
(and the shorthand hex format), rgb() format, and named colors. CSS3 adds support
for HSL, HSLA, RGBA, and a few other color types described in the following sections.

RGB, RGBA, and the hexadecimal color formats take red, green, and blue values. Similar
to Photoshop’s HSB (hue, saturation, brightness) color format, HSL and HSLA both
take hue, saturation and light as values. RGBA and HSLA both provide for declaring
alpha transparency on the selected color.

239

Let me translate by example: Table 8-1 shows the formats, including the new formats
in CSS3.

Table 8-1. The various CSS color declaration formats
Color syntax Example code Definition

#RRGGBB #ff00ff Hexadecimal format

#RGB #f0f Shorthand hexadecimal format

rgb(r,g,b) rgb(255, 0, 255)

rgb(100%, 0, 100%)

Red, green, blue

hsl(h,s,l) hsl(300, 100%, 50%) Hue, saturation, lightness

cmyka(c,m,y,k) cmyk(29%, 55%, 0, 0) Cyan, magenta, yellow, black

hsla(h,s,l,a) hsla(300, 100%, 50%, 1) Hue, saturation, lightness, alpha

rgba(r,g,b,a) rgba(255, 0, 255, 1)

rgba(100%, 0, 100%, 1)

Red, green, blue, alpha

named colors fuchsia Limited list of named color values

transparent transparent Transparent

currentColor currentColor The color of the text (the current color)
a CMYK colors, not supported in any browser, are defined by the paged media module, not the color module like the rest of the
colors listed.

Hexadecimal Values
You can declare the hexadecimal value of your red, green, and blue with hexadecimal
values ranging from 0 to 255 in the format of 00 to FF, case-insensitive. Put the three
values together, in red, green, blue order, preceded by a hash (#), and that’s the color.

For example, #FFFFFF stands for a complete saturation of red, green, and blue, creating
white. The opposite is the complete absence of color, so no red, green, or blue, written
as #000000, creating black. A mix and match of hexadecimal values from 00 to FF, case
insensitive, for the red, green, and blue values, combined together in the order of red,
green, and blue, can create millions of colors. Saturated red, with no green or blue will
show as bright red, and is written as #FF0000. Less red saturation will be less bright, but
still red, and can be written as #CC0000.

Did I mention case insensitivity? It doesn’t matter if you use #FFCC00 or #ffcc00; the
value syntax for colors, as for all key term property values, are case-insensitive.

The color input type, described in Chapter 3, submits color values in
the lowercase hexadecimal format, with a default value of #000000 in
supporting browsers.

240 | Chapter 8: Expanding Options with CSS3 Values

1. 8-digit hex values, with the last 2 digits defining the alphatransparency (with FF being fully opaque and 00
meaning fully transparent), are part of CSS Colors Level 4.

The RGB hexadecimal notation also has a shorthand, of #RGB, where the R, G, and B
are a single character, A–Fa–f0–9, case-insensitive, that are put together and preceded
by a hash mark. Identical to the long format, the browser expands the RGB value, such
as #369 expands to #336699. #FF9900 can be shortened to #F90, but #F312AB cannot be
written in shorthand.1

I find shorthand harder to read, so I don’t use them, but there is nothing actually wrong
with their use in terms of web standards. Also, whereas I tend to code in all lowercase,
I find hexadecimal colors easier to read when using capital letters. It’s personal prefer‐
ence. But whatever syntax you choose to use, stick with it.

Note that when using the <input type="color"> input type, where supported, the
default value returned is #000000, and the values are submitted in lowercase.

All browsers support all of the hexadecimal values, both shorthand and longhand.

If you’ve been developing sites since the ’90s, you may recall the discussion of web-safe
colors. With the vast improvement of color support on all devices, not just LCD screens,
web-safe colors have become a nonissue, even for handheld devices. It is safe to use any
color combination. While some color combinations may not be pretty or legible, they
will render.

rgb() Syntax
Instead of using the hexadecimal values for colors, as described in the previous section,
you can use base-10 values or percentages for your mix of red, green, and blue.

Instead of preceding your color with a hashtag, the syntax is the key term or functional
notation rgb followed by your comma-separated values in parentheses. Whitespace is
optional, but I find adding whitespace makes the color easier to read:

#FFFFFF = #FFF = rgb(255, 255, 255) = rgb(100%, 100%, 100%).

All browsers support all of the RGB color combinations in general. Some browsers allow
the mixing of rgb() numbers with percentages, but the specifications clearly state that
this is not expected behavior, and not all browsers support it, so avoid mixing value
types.

Right:
rgb(255, 255, 255)
rgb(100%, 100%, 100%)

Wrong:
rgb(255, 100%, 255);

CSS Color Values | 241

Adding Transparency with RGBA
New in CSS3 is RGBA. RGBA is similar to RGB, but with an added A for alpha
transparency.

The rgb() specifications were extended to include rgba() in CSS3 to include alpha, to
allow specification of the opacity of a color. The first three values are still red, green,
blue. The fourth value is the opacity level. The value 1 means fully opaque, 0 is fully
transparent, 0.5 is 50% opaque. Include any float between and including 0 and 1.

Extending our white example, opacity of 1 means fully opaque, so the following are all
equal:

rgb(255, 255, 255)
rgb(100%, 100%, 100%)
rgba(255, 255, 255, 1)
rgba(100%, 100%, 100%, 1)

These are all equal to white, since 1 means fully opaque. But don’t get confused: rgba(0,
0, 0, 0) is transparent, not black, because the level of opacity is none.

Note that the keyterm transparent is transparent black, or rgba(0,
0, 0, 0), not rgba(255, 255, 255, 0), which may make a huge
difference if you are transitioning colors.

Figure 8-1 demonstrates that rgba(0, 0, 0, 1) is fully opaque black. As you reduce
the alpha transparency value, the closer you get to zero, the more transparent it is. You’ll
notice in Figure 8-1 that the background shows more clearly through the more trans‐
parent background color declarations.

RGBA is extremely useful for creating drop shadows on elements. Drop
shadows on text or boxes go from the declared color to full transpar‐
ent over a few pixels. Start with a partially transparent color instead of
a solid color; shadows are see-through.
Instead of:

text-shadow: 5px 4px 6px #666666;

Use:
text-shadow: 5px 4px 6px rgba(0, 0, 0, 0.4);

242 | Chapter 8: Expanding Options with CSS3 Values

Figure 8-1. The alpha transparency value allows you to declare color that ranges from
fully opaque to fully transparent

Unlike RGB, there is no hexadecimal notation for RGBA. There has been some discus‐
sion of including an eight-character hexadecimal value for RGBA, but that has so far
not been added into a draft specification, nor has an eight-character notation been added
to any mobile browser.

Hue, Saturation, and Lightness: HSL()
HSL is a new color type added in CSS3. HSL stands for hue, saturation, and lightness.
The HSL format simplifies color palette creation, as you can pick a hue as the base and
then manipulate the lightness/darkness and saturation of the hue selected.

Monitors display colors in hues of red, green, and blue, which is different from the
human eye. HSL mimics the human eye. We see colors in terms of hues with different
saturations and lightness. HSL is generally more intuitive for designers to understand.

The syntax hsl() appears similar to rgb(), but instead of including the values for red,
green, and blue, the color value accepts values in degrees from 0 to 359 for hue, and
percentages for saturation and lightness, with 50% as the norm for lightness.

Values for hues include: 0 = red, 60 = yellow, 120 = green, 180 = cyan, 240 = blue, 300
= magenta, and everything in between. Since this book is in black and white (and shades
of gray), we can’t really show you. But there is a link to my HSL color picker in the online
chapter resources.

Lightness is the amount of light, or brightness: 100% is white (very, very light), 50% is
the actual hue, and 0% is black, with a complete lack of light. Saturation of 100% will be
the hue, saturation of 0 will give you a shade of gray from white to #808080 to black
depending on the lightness, and 100% gives you the color fully saturated.

CSS Color Values | 243

http://www.standardista.com/mobile
http://www.standardista.com/mobile

Similar to rgb() with rgba(), hsl() also has an alpha transparent version, hsla(). The
syntax is the functional notation of hsla(), with hue in degrees, saturation in percentage,
lightness in percentage, and an alpha value from 0–1, encompassed in the parentheses
in that order.

For example: hsla(300, 100%, 50%, 0.5) is magenta, fully saturated with average
lightness at 50% opacity.

With HSL, or HSLA, the values are the hue, saturation, lightness, and alpha transpar‐
ency. To create white and black, the hue can be any value, not necessarily 0, with full
lightness (100%) for white or complete lack thereof (0%) for black.

CMYK
Have you ever changed the ink in a color printer? Notice what colors you changed? Most
likely you added cartridges of cyan (which is a color similar to turquoise), magenta
(which is a hot pink), yellow, and black. CMYK stands for cyan, magenta, yellow, and
black, which is the system that printers use: print designers (and your color printer) use
CMYK, not RGB.

Computer monitors display in RGB. Humans who are not color blind generally see
colors as HSL. Printers, on the other hand, determine colors based on CMYK. CMYK
is not supported in any browser, and may never be since it is designed for print. Yes,
CMYK is kind of irrelevant for mobile development, but I’m including it here to be
thorough. CMYK is in the CSS3 paged media module, not the color module.

Named Colors
We haven’t yet described the color keywords like aqua, fuchsia, and lime, for four main
reasons:

• They are limited in the number of values you can choose from, and therefore less
specific than the millions of values provided by RGB and HSL.

• They are prone to typos and therefore unintended consequences (e.g., IE only sup‐
ports gray colors with an “a,” such as lightgray rather than lightgrey).

• Not all keyword values are supported in quite the same way on all browsers or
displays due to implementation details.

• And I think they should be avoided for these three reasons.

Even the keyterm transparent, which is a much faster way of writing rgba(0, 0, 0,
0) has issues. As I mentioned earlier, transparent is a transparent black, which may

244 | Chapter 8: Expanding Options with CSS3 Values

2. transparent will produce ugly grays when transitioning to colors other than white. Some browsers have
begun supporting transparent as transparent black or transparent white, but when transitioning to any
hue, you may still see the grays in most browsers.

3. System color specifications.

produce ugly grays when transitioning to a color.2 If you want to transition from
'transparent' to the #FF0000 shade of red, use rgba(255, 0, 0, 0), which is a trans‐
parent red, instead. There is a list of named colors along with the hexadecimal, RGB,
and HSL values in the online chapter resources.

CurrentColor
One more keyword was added in CSS3: currentColor. The currentColor takes on the
value of the 'color:' property, or the color of the text, of the element on which it is
applied.

Supported in all mobile browsers, currentColor can be really useful with text shadows
for creating bolder text on fonts like Helvetica Neue Light:

.bolderText {text-shadow: 0 0 1px currentColor;}

With high-DPI devices, some font families are really too thin to read. You can add a
slight shadow directly behind the text in the color of the text to make it slightly more
legible. This is possible even without knowing the text color, by declaring currentCol
or as the shadow color.

Browser Color Values
Similar to the currentColor and transparent keywords that are in the W3C CSS3 draft
specifications, there are a plethora of system colors defined in CSS 2.1.3 These named
colors differ between browsers and operating systems. While rarely used, I’ve included
them here because they can be useful when creating a native-looking web application:
activeBorder

Default active window border.

activeCaption

Default active window caption.

appWorkspace

Default background color of application workspace or interface.

background

Default operating system background color.

buttonFace

Default button face.

CSS Color Values | 245

http://www.w3.org/TR/CSS21/ui.html#system-colors
http://www.standardista.com/mobile

buttonHighlight

Default highlighted button.

buttonShadow

Default button’s shadow.

buttonText

Default button’s text.

captionText

Default caption’s text.

grayText

Default gray text.

highlight

Default highlight.

highlightText

Default highlighted text.

inactiveBorder

Default inactive border.

inactiveCaption

Default inactive caption.

inactiveCaptionText

Default caption’s inactive text.

infoBackground

Default info’s background.

infoText

Default info.

match

Color match.

menu

Default menu.

menuText

Default menu’s text.

scrollbar

Default scrollbar.

threeDDarkShadow

Default 3D’s dark shadow.

246 | Chapter 8: Expanding Options with CSS3 Values

threeDFace

Default 3D’s face.

threeDHighlight

Default highlighted 3D.

threeDLightShadow

Default 3D’s light shadow.

threeDShadow

Default 3D’s shadow.

windowFrame

Default window’s frame.

windowText

Default window’s text.

There are some colors that are browser specific, including:

• -webkit-activelink: Hyperlink that is being clicked
• -webkit-focus-ring-color: Color surrounding a UI element that has focus
• -webkit-link: Visited hyperlink color
• -webkit-text: Text color window; default window
• -moz-buttonDefault

• -moz-buttonHoverFace

• -moz-buttonHoverText

• -moz-cellHighlightText

• -moz-comboBox

• -moz-ComboboxText

• -moz-Dialog

• -moz-DialogText

• -moz-dragtargetzone

• -moz-EvenTreeRow

• -moz-Field

• -moz-FieldText

• -moz-html-CellHighlight

• -moz-html-CellHighlightText

• -moz-mac-accentdarkestshadow

• -moz-mac-accentdarkshadow

CSS Color Values | 247

• -moz-mac-accentface

• -moz-mac-accentlightesthighlight

• -moz-mac-accentlightshadow

• -moz-mac-accentregularhighlight

• -moz-mac-accentregularshadow

• -moz-mac-chrome-active

• -moz-mac-chrome-inactive

• -moz-mac-focusring

• -moz-mac-menuselect

• -moz-mac-menushadow

• -moz-mac-menutextselect

• -moz-MenuHover

• -moz-MenuHoverText

• -moz-MenuBarText

• -moz-MenuBarHoverText

• -moz-nativehyperlinktext

• -moz-OddTreeRow

• -moz-win-communicationstext

• -moz-win-mediatext

Firefox also has prefixed colors.

Using browser colors, you could write something like this:
#myElement {
 color: -webkit-focus-ring-color;
 background-color: -webkit-link;
 text-shadow: 3px 3px 3px -webkit-text;
 -webkit-box-shadow: 4px 4px 4px -webkit-activelink;
}

There are code examples of all these key terms in the online chapter resources. Open
the page in browsers with different browser engines to see subtle differences. Note that
I camelCased the list for ease of reading: the values are, in fact, case-insensitive.

Remember, browsers ignore lines of CSS they don’t understand. You can declare a color,
then immediately follow that declaration with the same property and the color key term
listed above. If the browser doesn’t understand the color value, it will ignore that line of
CSS and implement the previously declared color.

248 | Chapter 8: Expanding Options with CSS3 Values

https://developer.mozilla.org/en/CSS/color_value
http://www.standardista.com/mobile
http://standardista.com/sandbox/webkitcolors.html.

Which color syntax should I use?

There are many ways to write colors in CSS. Dark red can be written as #800000, maroon,
rgba(128, 0, 0), rgba(128, 0, 0, 1.0), hsl(0, 100%, 13%), or hsla(0, 100%,
13%, 1.0).

If you are working with a large team or still supporting old desktop browsers, use six-
character hexadecimal syntax, as it is likely the best understood by nondesigners. Or,
use a CSS preprocessor like Sass, and create variables for your team members to use.
Variables will be coming to CSS, but we are not there yet.

If you are using transparencies and gradients, pick hsla() or rgba() syntax. Otherwise,
you really can use whatever syntax you are most comfortable with.

Mobile browsers and all other modern browsers support all of these syntaxes. We each
have our own preferences. It doesn’t matter what your preference is, but pick a preference
and stick with it.

CSS Units of Measurement
Many property values are keywords unique to a property. The key terms that are unique
(or semiunique) to a property will be described with their property’s description when
covered in the next chapters. Other values, like the colors just described, can be values
for many different properties.

We’ve learned almost everything there is to know about color values, but colors aren’t
the only value type that is common for many properties. We also have lengths, times,
frequencies, and angles.

CSS Length Values
In terms of lengths, there are both relative and absolute lengths. Table 8-2 is a quick
summary of all of the length value types.

Table 8-2. Length units in CSSa

Unit Meaning

em Relative to the font size of the parent element.

ex Relative to the height of the lowercase x.

ch Relative to the size of the character 0 (zero).

rem Relative to the root font size.

vw Relative to the viewport width: the viewport with is 100 vw.

vh Relative to the viewport height: the viewport height is 100 vh.

vmin Equal to the smaller of vh or vm.

vmax Equal to the larger of vh or vm.

CSS Units of Measurement | 249

Unit Meaning

px Relative the screen resolution not the viewport size; generally 1 point, or 1/72 of an inch.

in Inch.

cm Centimeter.

mm Millimeter.

pt Point is 1/72 of an inch.

pc Pica, or 1/12 of a point.

% Relative to the parent element, it’s normally defined self or other element defined by the property.
a All values are well supported with the exception of vmax and ch, which are not supported in Android and Opera, and vmax is
not supported in Safari.

The most common value types in CSS include pixels and percents. The new length units,
like rem, vh, vw, vmin, and vmax are very powerful, especially when developing for a
multitude of devices of unknown sizes.

One of my favorite new features is the rem unit. CSS3 introduced the rem unit, which
stands for “root em.” While the em unit is relative to the font size of the parent of that
element, potentially causing compounding, the rem is relative to the font size of the root
element: in our case <html>. By defining a single font size on the root element, you can
define all rem units to be a percentage of or relative to that font size. rem is supported in
all mobile browsers, since IE9, iOS 4, and Opera 12 (it’s always been supported on
Android).

Note that zero-length values, or null value, for any of these can be
simply written as 0. All other value types require the unit for zero, such
as 0deg for zero-degrees.

Pixels can be considered both a relative and absolute. Pixels are a relative measurement
because the measurement is based on the resolution of the monitor or screen, rather
than the viewport size. However, pixels are also an absolute size because lengths given
in pixels are immutable: they can only be increased via zoom features.

Images, such as JPEG photos and GIFs have an absolute width and height, defined in
pixels. Increasing or decreasing the size of these image types with CSS or via the width
and height attributes of the image tag distort the image.

Several properties that expect length values may also accept keyword values such as
auto and inherit:

p {
 height: auto;
 font-size: inherit;
}

250 | Chapter 8: Expanding Options with CSS3 Values

dpi, dpc, dppx

The original iPhone viewport was 480 × 320 pixels. iDevices with high DPIs, like the
iPhone 4 and iPod touch 4G, that are physically the same size of 320 × 480, have a screen
size of 960 × 640. The iPad viewport is much larger at 1024 × 768 pixels, and changes
to 768 × 1024 px with orientation change. The third generation iPad has higher DPI
and a 2048 × 1536 resolution. Safari for Desktop, Chrome for Desktop, Nokia tablets,
OpenMoko, Android phones, and other WebKit browsers all come in different sizes.
And even if you can measure the size of a device, a pixel is not really a pixel anymore
when it comes to devices with differing DPIs. For example, the iPhone 4 may have a
high DPI, so the resolution looks better, but images sent to the device as foreground or
background images are still defined in the pixels you would expect as if the DPI were
the same as the lower resolution devices. Table 8-3 shows the various resolution units
and their meaning.

Table 8-3. Resolution units
Unit Meaning

dpi Resolution in dots per inch.

dpc Resolution in dots per centimeter.

dppx Resolution in dots per pixel.

With the emergence of devices with different resolutions, CSS3 provides us with reso‐
lution units to include in our media queries. We can target different images to different
device resolutions based on dpi, dpc, or dppx.
CubeeDoo

When it comes to our application, we have used px for images and background images,
rem for fonts, and vh and vm for the widths of input fields. We managed to create the
entire application without importing a single nonscalable image. Had we used images,
we would have used ddpx in our media queries to serve higher resolution images to
higher resolution devices:

@media
only screen and (-webkit-min-device-pixel-ratio: 2),
only screen and (min--moz-device-pixel-ratio: 2),
only screen and (-o-min-device-pixel-ratio: 2/1),
only screen and (min-device-pixel-ratio: 2),
only screen and (min-resolution: 192dpi),
only screen and (min-resolution: 2dppx) {

 /* styling for high resolution devices */

}

CSS Units of Measurement | 251

Angles, Times, and Frequencies
With some new CSS3 features, such as transforms and animations, length units do not
suffice. We also need to learn and understand angles, times, and frequencies. These
measurements have been around and used in aural stylesheets, but now with browser
support for transitions, transforms, and animations, angles and times have become
relevant to the screen as well. The units of angles, times, and frequencies are shown in
Table 8-4, and described in greater detail in the sections that follow.

Table 8-4. Units for angles, times, and frequencies
Unit Meaning

deg degrees

grad grads

rad radians

turn turns

ms milliseconds

s seconds

Hz hertz

kHz kilohertz

The default unit for all of the length, angle, time, and frequency values is zero, and all
the values are interpreted as floats. When including any of these units of measurement,
make sure to include the unit shorthand listed in Table 8-4. Unlike length units, omitting
the unit for angles, times, and frequencies is not valid CSS and the declaration will be
ignored.

Originally, all of these units, frequencies, and times, other than the new turn unit, were
introduced as aural values. The units used for aural stylesheets are angles, specified in
rad (radians), deg (degrees), or grad (gradians). Frequencies are specified in Hz (hertz)
or kHz (kilohertz). Times are specified in ms (milliseconds) or s (seconds).

When including any of these units of measurement, make sure to
include the unit shorthand. Unlike length units, omitting the unit for
angles, times, and frequencies will throw an error and the declara‐
tion will be ignored.

CSS Angle Measurements
Angle measurement types include degrees, gradians, radians, and turns. We’ll introduce
them here, but only use degrees in our examples since they make more sense to nonmath
nerds like myself!

252 | Chapter 8: Expanding Options with CSS3 Values

Degrees

Degrees range from 0 deg to 360 deg, with those two being equal. Positive degrees go
clockwise, negative degrees go counterclockwise. For example, −90 deg is one quarter
of the way around counterclockwise, turning it on its left side. 90 deg will turn it clock‐
wise 90 degrees.

The CSS for the figure (in part) reads (see Figure 8-2):
.image1, image5 {
 -webkit-transform: rotate(-5deg);
 -ms-transform: rotate(-5deg); /* for IE9 */
 transform: rotate(-5deg);
 }
.image2, image4 {
 -webkit-transform: rotate(7deg);
 -ms-transform: rotate(7deg);
 transform: rotate(7deg);
 }

Figure 8-2. Rotating elements a few degrees can create interesting effects while still
being legible

Grads

A grad, or gradian, is equivalent to 1⁄400 of a full circle. Similar to degrees, a positive
grad value will go clockwise, a negative value goes counterclockwise. 100grad will be at
a 90% angle (see Figure 8-3).

Figure 8-3. 90 deg is the same as 100 grad is the same as 1.571 rad

CSS Units of Measurement | 253

Rads

A rad, or radian, is equal to 180/π degrees, or about 57.3 degrees. There are 2π radians
in a circle. An angle of 1 radian on a circumference of a circle creates an arc with an
equal length to the radius of the circle. 1.570796326794897rad is the same value as 100
grad and as 90 deg.
Turns

A turn is a rotation and is equal to 360 deg. For example, 2turn = 720deg. Note that
turn is singular, and there is no space between the number and its unit. The two fol‐
lowing lines are equivalent:

transform: rotate(900deg);
transform: rotate(2.5turn);

Times
Time units are much easier to explain than rads! There are two units of measurement:
seconds (ms) and milliseconds (s). There are 1,000 milliseconds in a second. The format
of a time value is a number followed by s for seconds or ms for milliseconds. As with all
nonlength units, always include the s or ms, even if your value is 0s. The two following
lines are equivalent:

animation-duration: 0.5s;
animation-duration: 500ms;

Frequencies
Frequency values are used with aural (or spoken) cascading stylesheets. There are two
value units: Hz or hertz, and kHz or kilohertz. 1,000Hz = 1kHz (case-insensitive). Fre‐
quencies can be used to change the pitch of a voice reading text. A low frequency is a
bass sound, a high frequency is a treble.

With the following CSS snippet, a low-pitched voice, such as a deep-toned male voice,
will speak the words for the paragraph with class="low", and the audio will change to
a high-pitched tone when a quote with class squeal is encountered. The two following
lines are not equivalent:

p.low { pitch: 105Hz; }
q.squeal {pitch: 135Hz;}

CubeeDoo

In our game, we use CSS degrees to flip the cards, and timing is in both CSS and Java‐
Script. The game’s timer is in seconds in JavaScript. The smooth transforms of the cards
from front to back and back to front again are done by transforming the cards 180 deg
over 200 ms. We’ll cover how to do that—animations and transforms—in the next
chapter.

254 | Chapter 8: Expanding Options with CSS3 Values

Avoiding TRouBLe: Shorthand Properties and Value
Declarations
We’ve covered most of the values that are not property specific. There is just one more
CSS quirk that we need to cover before diving into actual CSS3 properties, and that is
the idea of shorthand, and the shorthand TRouBLe order.

CSS provides us with some shorthand properties. There are two types of shorthand
properties: those that enable developers to define top, right, bottom, and left values of
a property in a single property, and those that enable developers to define several com‐
monly associated properties from a CSS module into a single call.

For example, instead of writing:
.sameValues {
 padding-top: 3px;
 padding-right: 3px;
 padding-bottom: 3px;
 padding-left: 3px;
}
.twoValues {
 padding-top: 3px;
 padding-right: 6px;
 padding-bottom: 3px;
 padding-left: 6px;
 }
.threeValues {
 padding-top: 3px;
 padding-right: 6px;
 padding-bottom: 12px;
 padding-left: 6px;
 }
.fourValues {
 padding-top: 3px;
 padding-right: 6px;
 padding-bottom: 9px;
 padding-left: 12px;
 }

You can write:
.sameValues {
 padding: 3px;
}
.twoValues {
 padding: 3px 6px;
 }
.threeValues {
 padding: 3px 6px 12px;
 }

Avoiding TRouBLe: Shorthand Properties and Value Declarations | 255

.fourValues {
 padding: 3px 6px 9px 12px;
 }

Note that in writing this shorthand, the order of the values is very important. Sometimes,
especially with CSS3 properties (as we’ll see in Chapter 9), order will be important when
defining associated properties in shorthand format. Other times, the order of the values
in shorthand notation, which define several associated properties, is not important. In
this instance, the shorthand declarations that define the four sides of a box have a very
specific, and somewhat confusing, order. Hence the pneumonic that is a double enten‐
dre: TRouBLe, for top, right, bottom, left.

If only one value is present, the value will be assigned to all four sides. If two properties
are present, the first value is for the top/bottom, and second value is for left/right. If
three values are present, the first value is top, the second value refers to both left and
right, and the third value is bottom. Otherwise, the order is top, right, bottom, left, or
TRouBLe as a pneumonic for remembering the sequence.

For those who learn better by example, Table 8-5 details what is represented when one,
two, three, and four values are given for a shortcut.

Table 8-5. Sides that are affected when one, two, three, and four values are given for a
shortcut property value

Examples Values Order

3px All four sides have the same value TRBL

2px 4px Top/bottom: 2px
Left/right: 4px

TB RL

3px 1px 5px Top: 3px
Left/right: 1px
Bottom: 5px

T RL B

1px 2px 3px 4px Top: 1px
Right: 2px
Bottom: 3px
Left: 4px

T R B L

Note that there is an exception to this rule: for the CSS background-position property,
the order is LR TB, not TB LR, when two values are provided.

The shorthand for defining several commonly associated properties is generally, with a
few exceptions, not concerned with the order of the values. Most shorthands can save
a lot of typing. For example

.myClass {
 border: 1px solid #ff0000;
}

256 | Chapter 8: Expanding Options with CSS3 Values

Could also be written as:
.myClass {
 border-width: 1px;
 border-style: solid;
 border-color: #ff0000;
}

Which itself is shorthand for:
.myClass {
 border-top-width: 1px;
 border-top-style: solid;
 border-top-color: #ff0000;
 border-right-width: 1px;
 border-right-style: solid;
 border-right-color: #ff0000;
 border-bottom-width: 1px;
 border-bottom-style: solid;
 border-bottom-color: #ff0000;
 border-left-width: 1px;
 border-left-style: solid;
 border-left-color: #ff0000;
}

Without the shorthand, describing the border of a box would take 12 lines. With the
shorthand border property, we are able to border a box in one line, using fewer char‐
acters in the one line than in most individual longhand property/value declarations.

I will make special note of shorthand property order when the order makes a difference.
I mention it here so that you too take note and don’t think I was just trying to help with
your insomnia.

In Conclusion
In this brief chapter, we’ve covered more than 60 property values—actually, more than
a million if you count all the possible color values we can create. We learned about the
different color value types of CSS, the new color additions in CSS3, and different angle
and length units. We also covered the value order for box model property values: a
confusing yet vitally important topic. Now we can safely jump in to learning about the
properties with which these, and other value types, can be associated. The fun is about
to start!

In Conclusion | 257

CHAPTER 9

CSS3: Modules, Models, and Images

Unlike CSS2, CSS3 has been divided into a set of modules. By splitting CSS3 into mod‐
ules, the W3C has been able to work on different modules at different speeds, with some
modules already at the Recommendation level, and others moving toward final rec‐
ommendations at a slower pace.

There are over 20 modules in the CSS3 specifications, with each module deserving its
own chapter (or two, or three). Unfortunately, we can’t cover all of them. In this chapter,
we will cover the CSS topics that are relevant in creating the look and feel of CubeeDoo.
To include a few more properties, we will also look at re-creating the look and feel of
the native iPhone settings screen.

The native iPhone application look and feel can be done with simple CSS. With border-
radius, background properties, gradients, text-shadow, box-shadow, background-
size, text-overflow, and some older, well-known and supported CSS 2.1 and earlier
properties, we can create the look of an iPhone. We’ll then apply those features to
CubeeDoo.

No images means we can create the native iPhone application look without requiring
extra HTTP requests and without needing a graphics program. Because we’re using CSS,
should your project manager choose to alter the color scheme of your application, you
can do so without having to open up an image-editing program.

CSS3 allows for creating websites with less code and fewer images than you may be
accustomed to, and fewer images mean fewer HTTP requests, which improves perfor‐
mance. CSS3 also allows for multiple background images on a single element, which
may help reduce the number of DOM nodes required to create the look and feel of your
site. Reducing the number of DOM nodes improves performance, especially when it
comes to page reflows and memory consumption.

Some of the CSS3 features are new. Others have been supported for years. One thing to
note, however, is that just because using some of these features can save on the number

259

1. The W3C specifications are http://www.w3.org/TR/css3-speech/, http://www.w3.org/TR/css3-page/, and
http://www.w3.org/TR/css3-ruby/, if you would like to delve into the speech, paged media, and ruby CSS
modules.

of HTTP requests, using CSS3 instead of images is not always the best solution. You
have to weigh the pros of maintenance and HTTP requests saved against the time needed
for the browser to calculate and draw CSS graphics and the memory limitations of
mobile devices. Some CSS effects, like very large radial gradients, use up memory, and
can make the browser sluggish if you request a device to draw repeatedly to the memory.

Less code can mean both better performance and easier site maintenance. However, not
all CSS features perform well on devices with limited memory. When we cover “risky”
CSS topics, I will explain any performance ramifications of that feature, and how to
avoid slowing down or crashing the user’s browser.

As some CSS3 and HTML5 features can have performance drawbacks, I won’t leave
images out completely. We’ll cover multiple background images and border-image, two
features that use images to quickly and easily create buttons and backgrounds in Chap‐
ter 11.

We will not cover the speech, paged media, or ruby modules since they are for aural
readers, printers, and Asian language sites, respectively.1 We will cover transforms,
transitions, and animations in the next chapter.

Although it predates CSS3, we will spend time on the CSS box model. The CSS box
model is the basis of web page layout since CSS’s inception, so it’s important to fully
grasp.

CSS Box Model Properties
Before we jump into the new CSS3 properties and values, it is important to understand
the CSS box model and the properties that make up the box model. All modern mobile
browsers support and have always supported border, margin, and padding properties:

• border-bottom

• border-bottom-color

• border-bottom-style

• border-bottom-width

• border-color

• border-left

• border-left-color

• border-left-style

260 | Chapter 9: CSS3: Modules, Models, and Images

http://www.w3.org/TR/css3-speech/
http://www.w3.org/TR/css3-page/
http://www.w3.org/TR/css3-ruby/

• border-left-width

• border-right

• border-right-color

• border-right-style

• border-right-width

• border-style

• border-top

• border-top-color

• border-top-style

• border-top-width

• border-width

• margin

• margin-bottom

• margin-left

• margin-right

• margin-top

• padding

• padding-bottom

• padding-left

• padding-right

• padding-top

border
The border properties and border shorthand can be used to set borders on any rendered
element. Border shorthand values can be used to style the top, right, bottom, and left
sides of an element. Longhand properties can be used to style a single property on a
single side (either top, right, bottom, or left). For example, border-style: dotted; will
set the border on all four sides of an element to dotted, whereas border-style-right:
dashed; will set only the right border to dashed.

The important things to know about border are:

• border-style is required for a border to show up.
• border-style is required for border-image to work (see Chapter 11).

CSS Box Model Properties | 261

• When declaring the width and/or height of an element, the width of the left and
right borders will be added to the width of your element, and the height of your top
and bottom borders will be added to the height of your element as per the W3C
box model, as shown in Figure 9-2. This box model annoyance can be overridden
with the box-sizing property, described in the section on page 265.

If using the shorthand, the border style is required, with width and color
declarations being optional, and being set to the default values if
omitted.

border-style
The border-style property sets the style of an element’s four borders.

There are no new border-style values in CSS3, but there are different ways of styling
borders with properties such as border-radius and border-image, described in up‐
coming sections.

The values for the border-style property values include the keywords of dashed,
dotted, double, groove, hidden, inset, none, outset, ridge, and solid.

The style of hidden is displayed like none, and takes up no space in the box model. If
you want a transparent border that takes up space in the box model, select a border-
style value other than none or hidden and set the color to transparent. The hidden
value is only really relevant in defining table element border styles.

Older WebKit browsers ignored border-color when rendering inset, outset,
groove, and ridge border styles. This has been resolved in newer versions of WebKit.

A visible value for border-style is required for a border to show up, as the default value
is none. If you want to override a border on an element, set the border-style to the
default of none.

A visible border is required for the border-image property to work, which we’ll cover
in Chapter 11.

border-color
The border-color property allows you to define the color of the border on elements
upon which you are setting a border. You can use any of the CSS color value types as
described in the section “CSS Color Values” on page 239 in Chapter 8. The default value
is currentColor: if border-style is declared, but no border-color is defined, the bor‐
der color will be the color of the text, or currentColor.

262 | Chapter 9: CSS3: Modules, Models, and Images

Making triangles with CSS

Borders are part of a nifty trick in creating triangles. To make a text box look like a quote
bubble with generated content, create a box with height and width set to zero, set three
of the border colors to transparent, and the fourth side’s border will make the triangle.

blockquote {
 background-color: green;
 position: relative;
 color: white;
 padding: 15px 25px;
 margin: 10px 10px 0;
 }
blockquote:after {
 border: 15px solid;
 border-color: green transparent transparent;
 top: 100%; left: 10px;
 width: 0; height: 0;
 position: absolute;
 content: '';
}

In the preceding code snippet, I created a pseudoelement with no width or height,
showing just one of the four border sides, which creates the appearance of a triangle.
There is a link to an example of this in the online chapter resources. Figure 9-1 shows
the code in action.

Figure 9-1. Speech bubble with tail created with the top border of generated content

How would you make the speech bubble tail occur on the right or the left of the content,
instead of below it?

border-width
The border-width property sets the width of an element’s four borders. The keyword
values of the border-width property include thin, medium, thick, and inherit, with
the default value being medium. You can also use any of the length values (px, em, etc.)
described in Chapter 8.

CSS Box Model Properties | 263

http://www.standardista.com/mobile

2. background-clip and background-origin can be employed to change this default behavior.

To make the border for the triangle in Figure 9-1, we created a 15 px thick border on
generated content that has no height or width. We made only the top border visible by
declaring the top border green and all others as transparent.

The border-width property is important to the border-image property: if you don’t
declare the border-width portion of the border-image shorthand, the border-image
will inherit the border-width values.

Border width is also important to understand in terms of shadows and inset shadows.
You can create some interesting effects using thick borders and shadows: we’ll cover
that later in this chapter.

The CSS Box Model
All HTML elements are drawn to the screen as a rectangular box. The CSS box model
defines the rectangle (or box) made up of margins, border, padding, and content that
make up every element. The box model allows us to space out our elements across the
page, defining the width of the content, the space between the content of an element
and its border, and the space between multiple elements.

As shown in Figure 9-2, the components of the box model include content, padding,
border, and margin:
Content

The content of the box, where text and images appear.

Padding
The padding is the space between the content and the border. If an element has a
background image or color, the padding area will have that color or image as a
background by default.2

Border
The border surrounds the padding and is inside the margin: the border starts where
the padding ends. They do not overlap. The border takes up space in the box model.
If the element has a background image or color, and the border is dashed or other‐
wise fully or partially transparent, by default the background will show through the
border.

Margin
The margin is the area on the outside of the border. The margin is transparent. If
the element has a background color or image, it will be contained within the border,
and will not show through the margin area.

264 | Chapter 9: CSS3: Modules, Models, and Images

3. When two elements are next to each other, their adjacent margins collapse.

Figure 9-2. The W3C box model

In order to set the width and height of an element, you need to fully understand how
the box model works. In the traditional box model, the declared width and height given
to an element is for the content area only. The width and height you declare include the
padding and borders.

Width = left border + left padding + width + right padding + right
border
Height = top border + top padding + height + bottom padding +
bottom border

Note in Figure 9-2 that the margin area is colorless. That is because the width is not
included in the width and height calculations of the width and height properties. The
margin, if greater than 0, does take up space.

The size the element occupies in your layout is the content, the padding, border, and
margin.3

Total width = left margin + left border + left padding + width +
right padding + right border + right margin
Total height = top margin + top border + top padding + height +
bottom padding + bottom border + bottom margin

box-sizing
The box-sizing is one of the best, if not the best, features given to us by CSS3, especially
if you think Microsoft got the box model right in IE, and the W3C got it wrong. Before,
if we declared an element to be 100% width, we avoided declaring a border or padding

CSS Box Model Properties | 265

on that element, as it would end up being wider than its container. The box-sizing
property solved this: simply set the box-sizing property to border-box:

.box {
 width: 100%;
 padding: 10px;
 border: 1px solid currentColor;
 -webkit-box-sizing: border-box; /* for older Android (3.0) */
 -moz-box-sizing: border-box; /* for firefox */
 box-sizing: border-box;
}

If you want 100% to be 100% in spite of padding and border, you can
mimic the IE6/IE7 box model by setting the box-sizing property to
border-box.

The box-sizing property has been supported since IE8, but must be prefixed in all
versions of Firefox, and in mobile WebKit browsers up to iOS 4.3, Android 3.0, and
Blackberry 7.

Until calc() is fully supported, box-sizing: border-box is a panacea!
Margins

Another part of the box model that some people find confusing is the effect of margins
on two adjacent elements. Positive margins are not additive: if two adjacent abutting
elements have positive margins, the distance between them will be the larger of the two
margins, not the sum of both margins. Unless one of those margins is negative; then
the distance between the elements will be the sum of positive and negative margins.

Learning CSS3
Now that the box model is out of the way, we can jump into some very useful CSS3
features. We’re going to start by creating the look and feel of the native iPhone app with
CSS only. The HTML for our examples is:

<!DOCTYPE html>
<html>
<head>
 <meta charset="UTF-8"/>
 <title>iPhone Look and feel</title>
 <meta name="viewport" content="width=device-width; initial-scale=1.0;"/>
</head>
<body>
<header>
 <nav>

 <li class="button cancel">Cancel

266 | Chapter 9: CSS3: Modules, Models, and Images

 <li class="button done">Done

 <h1>Languages</h1>
</nav>
</header>
<article>

 <li lang="en-us">English
 <li lang="fr-fr">Français
 <li lang="es-es">Español
 ...

</article>
</body>
</html>

With this bit of HTML code, and some CSS, we’ll be creating a web page that looks like
the languages system preferences on the iPhone, as shown in Figure 9-3.

Figure 9-3. Using CSS only, no images, we are going to create the look and feel of the
original native iPhone settings application

Learning CSS3 | 267

border-radius
New in CSS3, but not really new to mobile browsers, is native rounded corners created
with the border-radius property. Border radius is a quick, lightweight way to improve
your UI without increasing download time.

Prior to being able to create native rounded corners with the CSS border-radius prop‐
erty, web developers created rounded corners by including extra markup. The four-
corner method required four added elements, each with background images, absolutely
positioned in each of an element’s four corners. The sliding door method, the most
popular of the methods, also required images and additional markup.

While all these methods created the look of native rounded corners, they required
otherwise unnecessary elements be added to the page as hooks and containers for re‐
quired background images, and they required the creation and download of images.
For performance, we want to minimize the number of HTTP requests, download time,
bandwidth usage, and DOM nodes. We also can enjoy saving the effort of creating
images, and then re-creating them as border radius length, color scheme, or other design
changes are made.

The biggest drawback of the image solutions for developers were that any changes made
to border color, background color, containing element background color, roundness,
or dimensions would require new images to be made. The drawback for users (and
therefore the corporate bottom line) is that image methods slow down the download
speed and impact the performance on handheld devices with limited memory. The
border-radius property enables developers to include rounded corners natively: no
more corner images! Another bonus is no pixelation on zoom!

The border-radius property is shorthand for:
border-top-right-radius:
border-bottom-right-radius:
border-bottom-left-radius:
border-top-left-radius:

... in that order.

The syntax for the border-radius property is:
border-radius: length{1,4} / length{1,4} /* shorthand */
border-(top|bottom)-(left|right)-radius: length length /* longhand */

In the shorthand, the values before the slash, if a slash is included, are the horizontal
radii, and the values after the slash are the vertical radii, as shown in Figure 9-4. For the
longhand values, each can take two values: the first value is the horizontal radius, the
second, if present, is the vertical radius. No slash is included in the longhand syntax. If
only one value is present, the vertical radius will be the same as the horizontal radius,

268 | Chapter 9: CSS3: Modules, Models, and Images

creating a symmetrical rounded corner with the second value copied from the first. If
either length is zero, the corner is square, not round.

When four values are given, the order of the corners is topleft, topright, bottom
right, bottomleft. Similar to TRBL of borders, if you only declare two values, then the
first is for topleft/bottomright, and the second value is for topright/bottomleft.

Figure 9-4. border-radius examples, including different radius sizes and elliptical
shapes

If targeting a radius value with the DOM, the values are:
myObj.style.borderTopLeftRadius
myObj.style.borderTopRightRadius
myObj.style.borderBottomRightRadius
myObj.style.borderBottomLeftRadius

Note that the dash (-) has a meaning in JavaScript. We don’t want to subtract radius
from left from top from border, which is what border-top-left-radius would do. In
JavaScript, the CSS property is camelCased when included as a property of the style
property of the DOM node. That being said, to keep presentation and behavior separate,
avoid using JavaScript to alter CSS property values. Instead, define your styles in style‐
sheet style blocks, and use JavaScript to change class or state.
border-radius for native-looking buttons on the iPhone and in CubeeDoo

Let’s put our knowledge to work! Native iPhone applications, as shown earlier in
Figure 9-3, have several elements with rounded corners: the Cancel and Done buttons,
and the main content of the page. By relying on CSS3, we can create these rounded
elements of any size, color, and edge radius without any images. Let’s focus on the CSS
for the content area:

1 article ul {
2 border: 1px solid #A8ABAE;
3 border-radius: 10px;

Learning CSS3 | 269

4 background-color: #FFFFFF;
5 width: 300px;
6 margin: 10px auto;
7 }

Line 2 of our CSS creates a 1 px gray border. In line 3, we include the border-radius
property to add a 10 px radius to our border. If you are supporting Android 2.1 or iOS
3.2, you can include a -webkit- prefixed property immediately before the prefixless
property. You may not want to do this: older versions of Android didn’t handle border
radius very well: omitting the prefixed border radius saves a bit of memory in these
older, less performant browsers, and avoids the bug where scrolling makes the border-
radius temporarily disappear. Your application will look a little different in older ver‐
sions of Android, with no rounded corners. Your users likely won’t notice the missing
rounded corners, but they’ll notice if your application fails. For that reason, I stopped
including the prefixes for rounded corners a long time ago.

In line 6, we employed the margin shorthand property to move the unordered list 10
px down from the navigation and center the content area by setting the left and right
margins to auto. Since two values for margin were declared, the first value is for Top
and Bottom, and the second value is for Left and Right. (Confused? See “Avoiding
TRouBLe: Shorthand Properties and Value Declarations” on page 255 in Chapter 8.)

We’ve also stylized the list items. The CSS for the list items is:
8 article ul {
9 list-style-type: none;
10 }
11 article li {
12 line-height: 44px;
13 border-bottom: 1px solid #A8ABAE;
14 padding: 0 10px;
15 }
16 article li:last-of-type {
17 border-bottom: none;
18 }

Most of that CSS should be very familiar to you. Note the :last-of-type pseudoclass
in line 16. Structural selectors were covered in Chapter 7. With article li:last-of-
type {border-bottom: none;}, we are able to tell the browser to not include a bottom
border on the last list item in every that is found in an <article>.

I did not use article li:not(:last-of-type) to set the borders on all of the elements
except the last one, but I could have. We have a border bottom on the itself, if we
don’t omit the border bottom from the last , there will be a double border at the
bottom of each unordered list.

What else has rounded corners? Feel free to add rounded corners to the Done and Cancel
buttons on the iPhone app and the buttons and cards on CubeeDoo. The code for the
rounded corners is in the chapter files.

270 | Chapter 9: CSS3: Modules, Models, and Images

4. The original WebKit gradient syntax was used through Chrome 9, iOS Safari 4.3, Android 3.2, and Blackberry
7.

CSS Gradients
Using the border radius property, we were able to create rounded corners, and create
the look and feel of the content area of the native application with no added HTML
elements, no images, and very few lines of CSS.

In addition to having rounded corners, the Cancel and Done buttons have gradient
backgrounds. We could include a separate background image on the Cancel button, and
a background image of a different color for the Done button. With a small border-
radius we could create a close approximation of the native iPhone buttons. We could
then throw another background image in for the back of the navigation, and another
background image for the background of the whole page. In fact, the iPhone has a PNG
sprite with the buttons on it that the native iOS applications all use as border images.
Yes, we can do that, too. However, with CSS3, this plethora of images, even a single
sprite, and their additional HTTP requests, are unnecessary. The native iOS application
layout can actually be done completely with CSS, without importing a sin‐
gle .svg, .gif, .webp, .png, or .jpeg.

Gradients are not properties, they are values. Gradients can be used anywhere an image
can be, including background-images, list-style-images, and border-images. They
are supported in all modern browsers, but with varying prefixed syntaxes in older
browsers.

A gradient is a CSS image generated by the browser based on developer-defined colors
fading from one color to the next. Browsers support linear and radial, and repeating
linear and radial gradients. Conical gradients have been added to CSS Images Level 4,
but are not ready for production and aren’t covered here.

We’ll cover the current vendor-prefixed syntax supported in all browsers but only now
necessary in WebKit browsers. The prefixless version of CSS gradients has gained sup‐
port and should be included as the default value in your CSS. We still need to cover the
prefixed syntax and the very old WebKit syntax so we can support older mobile devices.

Gradient Type: Linear or Radial
There are two main types of gradients: linear and radial. Most gradients you include
will be linear. So, you’ll want to start your property value with:

background-image: -webkit-gradient(linear, /* Really old WebKit4 */
background-image: -webkit-linear-gradient(/* Android, iOS thru 6.1, BB10 */
background-image: linear-gradient(/* iOS7, Chr26+, IE 10+, FF 16+, O12.1+ */

CSS Gradients | 271

5. -moz- and -o- prefixed examples are not included as they are no longer needed in modern browsers. Include
these additional prefixes if you are supporting Firefox 4–15 and/or Opera 11.1–12.0

For radial gradients, you would include:
background-image: -webkit-gradient(radial, /* Really old WebKit */
background-image: -webkit-radial-gradient(/* Android, iOS thru 6.1, BB10 */
background-image: radial-gradient(/* IE 10, FF16, O12.1, Chr26, iOS7 */

In the following examples, we’ll use only the WebKit vendor prefix for prefixed version
of the second syntax, and the nonprefixed version will reflect the third and final syntax.
Hopefully, this will make the markup more readily understandable. Vendor prefixes are
no longer needed in Mozilla or Opera browsers,5 and were never used in any version of
Internet Explorer.

Radial Gradients
We are not covering radial gradients in this book. If you would like to learn more about
radial gradients, there is a link to a tutorial in the online chapter resources.

This book is about mobile development. Radial gradients and mobile devices aren’t
always best of friends. When you create a radial gradient, the entire gradient is put into
memory. If the radial gradient is small, single colored, with no transparency or grada‐
tions, the memory it uses will be small. However, this radial gradient is rarely the sce‐
nario. Whereas linear gradients are small images that are tiled in browser memory, radial
gradients are a single much larger image that can take up a lot of memory and even
crash mobile browsers on devices with limited RAM.

Images that are too large get tiled in memory. While devices differ, I make the safe
assumption that images that are more than 1024 px get tiled in memory. With radial
gradients, you can quickly achieve such large images.

It is OK to use radial gradients on mobile devices. Just realize that there can be perfor‐
mance issues that you have to consider.

Linear Gradients
The syntax for the prefixed linear gradient is:

-prefix-linear-gradient(<angle|keyterm>, <colorstop>, [<colorstop>,] <colorstop>)

Where angle is the angle in degrees of the gradient path or a key term combination of
top or bottom and/or left or right indicating the starting point of the gradient line
and, at minimum, one declared color, with optionally more colors, and optionally the
position of said colors along the gradient path.

The syntax for the final linear gradient syntax is:

272 | Chapter 9: CSS3: Modules, Models, and Images

http://www.standardista.com/mobile

linear-gradient([<angle>| to <keyword>], <colorstop>, [<colorstop>,] <colorstop>)

The main differences are (1) the to keyword, (2) how the keyword’s gradient angles
work, and (3) the value of the angles.

With the prefixed syntax, we indicated where the gradient line came from. The prefixless
keyword syntax includes the word to, indicating where the line is heading to, rather
than where it came from.

Prefixed, the gradient line starts at the point that would be the end of the hypotenuse
of a right triangle whose other two points were the midpoint of the box, and the closest
corner.

The simplified unprefixed syntax added the to keyword to differentiate it: now the
gradient line goes from one side or corner to the opposite side or corner, passing through
the center of the box. Confused? Don’t worry. I’ll explain.
Gradient angles and directions

For linear gradients, the direction of the fade is controlled in the CSS by the <angle> or
key term. You can include a keyterm or value for the angle in degrees, rads, grads, or
turns.

When an angle is given, the gradient path passes through the center point of your back‐
ground image at the angle specified. There is a difference between prefixed and unpre‐
fixed syntax, however. The prefixed syntax angles go in the direction of the angle, and
0 deg is up, with 90 deg to the right. The prefixed angles go counterclockwise, and 0 deg
is to the right. See Figure 9-5.

Figure 9-5. Gradient angle direction, both for the experimental prefixed syntax and the
final nonprefixed syntax

CSS Gradients | 273

When declaring linear gradients, first include the prefixed versions for older browsers.
When prefixed, 0 deg is to the right, and angles go counterclockwise, which may be
counterintuitive. The last CSS property/value pair should be the default value without
a prefix. When no prefix is present, 0 deg points upward or north, and positive angles
increase as you rotate clockwise, with 90 deg pointing to the right. The gradient line
passes through the center of the element at the angle specified.

Instead of using angles, you can declare the gradient path using key terms. The keywords
are the sides top, bottom, left, or right, or corners such as top left or bottom right.

In the prefixed syntax, the key term is the starting point of the gradient path. The gradient
will start in the general area described by the key term, passing through the center of
the background-image, to the opposing side or corner area. For example, top will head
from the top center point to the bottom center point, passing through the center point
of the element box, and top right will start in the top right area, passing through the
center point, to the bottom left area, though not necessarily to the corner itself.

The default CSS declaration should include the value, with no prefix, prepended with
the word to (when using keywords), indicating where the gradient line should end. The
gradient line will start from one side or corner, pass through the midpoint, and end at
the side or corner indicated by the key term. For example, to top will head from the
bottom center point to the top center point passing through the center point of the
element box, and to top right will start in the bottom left corner, passing through the
center point, to the top right corner.

The default values are top, or 270 deg for the prefixed version, and to bottom or 180
deg in the final, unprefixed version, which have the exact same appearance, as shown
in Figure 9-6. To make the gradient fade from black to white as it goes from top to
bottom, you could write any of the following:

/* prefixed */
-webkit-linear-gradient(#000000, #FFFFFF);
-webkit-linear-gradient(top, #000000, #FFFFFF);
-webkit-linear-gradient(270deg, #000000, #FFFFFF);

/* un-prefixed */
linear-gradient(#000000, #FFFFFF);
linear-gradient(to bottom, #000000, #FFFFFF);
linear-gradient(180deg, #000000, #FFFFFF);

274 | Chapter 9: CSS3: Modules, Models, and Images

Figure 9-6. A simple gradient, and the various methods of declaring it

To create a gradient that has a path that goes from the top left to the bottom right, as
shown in Figure 9-7, you could write the following two lines, which are similar but not
identical:

/* top left to bottom right */
-webkit-linear-gradient(top left, #000000, #FFFFFF);
linear-gradient(to bottom right, #000000, #FFFFFF);

Figure 9-7. Simple gradient going from top left to bottom right

Note that while prefixed 315deg or unprefixed 135deg will create the same gradient as
each other, those gradients are not the same as top left or to bottom right, which
are not identical to each other.

Prefixed 315deg and unprefixed 135deg will go from top left or to bottom right if
your element is a square, but only the to bottom right will go from corner to corner
if your background image is an elongated rectangle. Why? When an angle is used, the
gradient path passes through the center of the defined background image at that angle,
no matter the aspect ratio of the box.

CSS Gradients | 275

By default, the gradient path passes through the center of the defined
element because, by default, the background image is 100% of the
width and height of the defined element. If you change the back‐
ground position or the background size, the gradient path will not
actually pass through the center of the defined element, but will al‐
ways pass through the center of the background image you are defin‐
ing, no matter the size or position.

With the final syntax, or nonprefixed syntax, the key terms define that the gradient path
ends in one corner after passing through the center of the background. With the prefixed
or older syntax, when not a square, the gradient path extends beyond the edges of your
rectangle, allowing for the start and end of your gradient to be displayed. So when
prefixed, it only goes from corner to corner in this case if our box is an actual square,
as shown in Figure 9-8:

background-image: -webkit-linear-gradient(top left, #000000, #FFFFFF);
background-image: linear-gradient(bottom right, #000000, #FFFFFF);

Figure 9-8. When using key terms, the gradient lines will differ between prefixed (black
line) and nonprefixed (gray line) syntax if corners are used and the background image
is not a square

In Figure 9-8, the black line shows the gradient path for top left, passing through the
center of the background image, represented by a tiny white square in the middle. The
gray path is the path the gradient takes when it supports the un-prefixed gradient with
to bottom right instead of top left. In the prefixed version, the end points of the
gradient path are beyond the boundary of the image, defined as the farthest corners of
the box from the center of the background image where a line drawn perpendicular to
the gradient-line would intersect the corner of the box in that direction.

276 | Chapter 9: CSS3: Modules, Models, and Images

Gradient colors

Now that we know how to declare the angle of the gradient, we can include the colors
of the gradient. We created a linear gradient that faded from black to white along the
entire path of the gradient. To continue with our very exciting black to white example,
what if we wanted to fade from solid color to solid color, displaying the solid colors on
both ends for about 10% of the width of the element? That is easy to do by defining
color stops.

To declare a color stop, declare the color and the position of the stop. If your first stop
is not at 0%, the first color will be solid from 0% or 0 px until the first color stop, where
it will begin to fade into the next color. The same is true if your last color stop is not at
100%.

If you don’t declare the position of the color stop (you just declare the color), the color
stops will be evenly distributed across the full width (or height) of the background image,
with the first color stop at 0% and the last at 100%.

The position can be declared as a percentage of the width of the background image, or
as an absolute length. If our background image is 200 px tall, these four declarations are
equivalent (Figure 9-9):

-webkit-linear-gradient(top, #000000 10%, #FFFFFF 90%);
-webkit-linear-gradient(top, #000000 20px, #FFFFFF 180px);
linear-gradient(to bottom, #000000 10%, #FFFFFF 90%);
linear-gradient(to bottom, #000000 20px, #FFFFFF 180px);

Figure 9-9. Colors are solid from 0 to the first color stop and from the last color stop to
the edge of the box

Notice that in the Figure 9-9 example, the top and bottom are both solid colors for 10%
of the height of the element, before starting to fade from black to white. From the top
to the 10% mark the image is solid black. From the 90% mark to the bottom, the image
is solid white. It fades from black to white for 80% of the height.

CSS Gradients | 277

The two arrows indicate the color stops, where the solid color ends and where it starts
fading into the next color. We are not limited to two colors. You can add as many color
stops as necessary to make the effect you are looking for (but remember, just because
you can doesn’t mean you should).

Sometimes you also have more than two colors. For example, if you want to revert back
to the look and feel of a 1996 website coded with cool 2013 features of linear gradients,
you can create a rainbow background:

1 background-image: linear-gradient(
2 red,
3 orange,
4 yellow,
5 green,
6 blue,
7 purple);

This can also be written as:
1 background-image: linear-gradient(
2 red 0%,
3 orange 20%,
4 yellow 40%,
5 green 60%,
6 blue 80%,
7 purple 100%);

These equivalent gradients will create a rainbow with red on top, fading into orange,
yellow, green, blue, then purple equally over the height of the element, as seen in the
online chapter resources.

If you want your background to be an ugly striped rainbow instead of an ugly gradient
rainbow (those are your only two options), we can create striping with hard color stops.
A hard color stop is two color stops at the same point creating a sudden change in color
rather than a gradual gradient:

1 background-image: linear-gradient(
2 red 16.7%,
3 orange 16.7%,
4 orange 33.3%,
5 yellow 33.3%,
6 yellow 50%,
7 green 50%,
8 green 66.7%,
9 blue 66.7%,
10 blue 83.3%,
11 purple 83.3%);

278 | Chapter 9: CSS3: Modules, Models, and Images

http://www.standardista.com/mobile

This gradient will be red for the first 16.7% since the first color stop is at that mark.
Remember, if your first stop is not at 0%, the first color will be solid until the first color
stop. At the color stop of 16.7%, it will begin to fade into the next color. The next color
stop is also at 16.7%. Our fade into orange is over 0%: this is what creates the striping
effect. There is no gradual change from one color to the next. Rather, we have hard color
stops. Hard stops are good for striping, and also used in popular effects like candy
buttons.

If we want a gradient to be only slightly opaque (or, if you’re a glass half full type of
person, slightly transparent), use HSLA or RGBA colors:

linear-gradient(180deg,
 rgba(0,0,0,0.1) 10%,
 rgba(0,0,0,0.9) 90%);

iPhone and CubeeDoo linear gradients. Now that we understand gradients, we can create
the navigation bar for our faux iOS app, which is a fairly simple linear gradient.

First we have the iOS header bar. We first define a regular blue bar—everything except
the gradient:

1 header {
2 /* the general appearance */
3 padding: 7px 10px;
4 background-color: #6D84A2;
5 display: block;
6 height: 45px;
7 -moz-box-sizing: border-box;
8 box-sizing: border-box;
9 line-height: 30px;
10 border-bottom: 1px solid #2C3542;
11 border-top: 1px solid #CDD5DF;

Lines 3 through 11 define the general appearance. Note in line 4 that we have declared
a background color. When using gradients or any type of background image, you always
want to declare a background color, in case the background image fails, such as for older
browsers that don’t support gradients. Another reason to declare a background color is
instead of creating gradients of every color for every template color scheme you create,
you can create a few translucent white gradients, and use them over your solid back‐
ground colors, creating a single, reusable gradient for all of your color schemes.

As we’ve included both height and padding, we’ve declared box-sizing: border-box
to use the IE box model. We’ve also included the -moz- prefix, which is still necessary
as the property is still considered experimental, though it is supported everywhere.

Let’s first start by declaring solid colors. The header bar is solid in the top half, and then
gets darker from the halfway mark to the bottom. We declare a solid color for the top
and start fading at the 50% mark:

CSS Gradients | 279

15 background-image: -webkit-linear-gradient(top,
16 rgb(176, 188, 205) 50%,
17 rgb(129, 149, 175) 100%);
18 background-image: linear-gradient(to bottom,
19 rgb(176, 188, 205) 50%,
20 rgb(129, 149, 175) 100%);

The gradient’s first color stop is at 50%, therefore the background will be solid blue (no
fading) until that point. The background then fades into a different color blue in the
bottom half.

If we want our gradient to work in BlackBerry 7, Android 3.0, and other archaic brows‐
ers, we also have to include the original prefixed syntax:

12 background-image: -webkit-gradient(linear, 0 0, 0 100%,
13 color-stop(0.5, rgb(176, 188, 205)),
14 color-stop(1.0, rgb(129, 149, 175)));

For much older WebKit devices, through iOS 4.3, Android 3.0, and BB7, the syntax is:
-webkit-gradient(linear, <start point>, <end point>,
 color-stop(<float>, <color>)[, color-stop(<float>, <color>),
 color-stop(<float>, <color>)])

Where the starting point and end points define the path of the gradient, and each color
stop includes the keyword color-stop followed by a float between 0 and 1 as a percent
of the size of the image. The color stop includes the floating position point and the color,
separated by a comma, in parentheses.

The start and end points are a pair of space-separated values of numbers, percentages,
or the keywords top, bottom, left, and right for point values. You must use two values
for any point that you include.

The stop(s) are optional color-stops indicating the color and position of the stop.
background-image:
 -webkit-gradient(linear, left top, left bottom,
 color-stop(0.1, red),
 color-stop(0.3, orange),
 color-stop(0.5, yellow),
 color-stop(0.7, green),
 color-stop(0.9, blue)
);

This example creates a rainbow, from top to bottom (left top to left bottom), starting
with solid red, that starts fading into orange at 10% of the way in then to yellow, green,
and blue, becoming solid blue at the 90% mark through to 100%. There is a link to an
explanation in the online chapter resources.

280 | Chapter 9: CSS3: Modules, Models, and Images

http://www.standardista.com/mobile

This works. But let’s make our gradients more reusable. Instead of creating a new gra‐
dient for every color, we can create a translucent white gradient to place on top of buttons
and navigation bars of any color: create one gradient and use it everywhere. We can
create a reusable gradient by using RGBA (or HSLA) to provide a transparent to slightly
opaque gradient enabling us to quickly change color schemes if desired:

21 background-color: rgb(129, 149, 175);
22 background-image: -webkit-gradient(linear, 0 0, 0 100%,
23 color-stop(0.5, rgb(255, 255, 255, 0.4)),
24 color-stop(1.0, rgb(255, 255, 255, 0)));
25 background-image: -webkit-linear-gradient(
26 rgba(255, 255, 255, 0.4) 50%,
27 rgba(255, 255, 255, 0));
28 background-image: linear-gradient(
29 rgba(255, 255, 255, 0.4) 50%,
30 rgba(255, 255, 255, 0));
31

In this second example, we’ve removed top and to bottom from the latter two syntaxes
since it is the default, and the 100%, since by default, if the position is omitted, the last
color stop is at 100%.

By using alpha transparency instead of solid colors, we are able to create the iPhone
native application look, as demonstrated in the online chapter resources. The trans‐
parency, however, allows for quick and easy color scheme changes. We can use this same
gradient for our header for all of our color schemes. If we had a green color scheme we
could simply change the background color to a darkish green.

How about the button gradients? The button gradients also have a gradient that covers
half of the height of the button. We could use the same gradient syntax as before, except
we invert the gradient (since the bottom is solid on the buttons, whereas the top is solid
on the bar):

.nav li {
 background-image: -webkit-linear-gradient(bottom,
 rgba(255, 255, 255, 0.4) 50%,
 rgba(255, 255, 255, 0));
 background-image: linear-gradient(to top,
 rgba(255, 255, 255, 0.4) 50%,
 rgba(255, 255, 255, 0));
}
.cancel {background-color: #4A6C9B;}
.done {background-color: #2463DE;}

But that isn’t exactly what we want. Eye candy buttons actually have a hard change, not
a soft change, when the gradient and the solid color meet. To look right, we want our
gradient to only take up 50% of the height. There are three ways to do this:

CSS Gradients | 281

http://www.standardista.com/mobile

• We can position the gradient at the 50% mark using background-position
property.

• We can make the background image only take up half the height of the buttons with
the background-size property.

• We can make the gradient have a hard stop.

You already know how to position a background image with the CSS 1 background-
position property (background-position: 0 15px), so let’s do it with the CSS3
background-size property to make it more flexible (and learn about this new property).

background-size
The background-size property specifies the size of your background images. The value
can be any absolute or relative length, or the key terms contain, cover, and auto.

The contain value scales the image down if necessary while preserving its aspect ratio,
which may leave uncovered space. A rectangular background image in a square element
set as background-size: contain will not fill the entire area, but rather will scale the
background image down until it fully fits within its container. The area that is left un‐
covered depends on the values of the background-position property, and on the value
of the background-repeat property.

The cover value scales the image so that it covers the whole area, completely covering
the element, but perhaps not showing part of the image if the element box and the image
do not have the same aspect ratio. A rectangular background image in a square element
set as background-size: cover will be cut off. auto leaves the background image the
same size as the original. The three keyterm values are illustrated in Figure 9-10.

Figure 9-10. Background-size auto, cover, contain, and length values (with
background-repeat: no-repeat)

You can also specify the background size in absolute or relative lengths. If defining in
absolute or relative lengths, you can include one or two values. If one value is declared,
the width will be that value, and the height will scale up or down so that there is no

282 | Chapter 9: CSS3: Modules, Models, and Images

distortion, as shown in the last example in Figure 9-10. If you prefer to scale based on
the height, declare auto for the width.

If you provide two values, they are in the order width and height, and the background
image will be stretched (or shrunk) to match your stated values. In Figure 9-10, we see
that at 150 px by 150 px (in a 250×250 box), the image is distorted to fit the defined size.

Only in the case when both width and height are defined do we get the possibility of
distortion. Contain, cover, auto, and declaring only one value, will always maintain the
original aspect ratio of the image. If you need to declare a width or height, you can
declare just one to ensure that no distortion occurs, setting the other value to auto.

We can use background-size on the gradient for our buttons, as we want the top to be
a gradient, and the bottom to be solid. The difference with the candy buttons is that we
don’t want the gradient to fade into the solid color. Rather, we want a hard stop. As
noted previously, there are a few ways to create this effect. Here in Example 9-1, we are
making use of the background-size property.

Example 9-1. iOS buttons
1 .button {
2 background-image:
3 -webkit-gradient(linear, 0 100%, 0 0%,
4 from(rgba(255,255,255, 0.1)),
5 to(rgba(255,255,255,0.4)));
6 background-image:
7 -webkit-linear-gradient(bottom,
8 rgba(255, 255, 255, 0.1),
9 rgba(255, 255, 255, 0.4));
10 background-image:
11 linear-gradient(to top,
12 rgba(255, 255, 255, 0.1),
13 rgba(255, 255, 255, 0.4));
14 background-repeat: no-repeat;
15 background-size: 100% 50%;
16 }
17 .cancel {
18 background-color: #4A6C9B;
19 float: left;
20 }
21 .done {
22 background-color: #2463de;
23 float: right;
24 }

We’ve defined a gradient that is similar to the header gradient, but goes from bottom to
top instead of top to bottom. We then make it occupy only the top of the button by
employing the background-size property: telling the gradient to only occupy 50%
height by 100% width.

CSS Gradients | 283

We don’t want our background gradient to tile, or repeat vertically, so we include
background-repeat: no-repeat. We could have also declared:

background-size: 2px 50%;
background-repeat: repeat-x;

Make the background only 2 px wide, and repeat that image horizontally. We use 2 px
(or larger) instead of 1 px because of a bug in some versions of Chrome. We declare all
background properties separately instead of using the background shorthand so we
don’t accidentally overwrite any background property values, resetting them by accident
to their default values.

By default, gradient background images fill up the entire background of an element.
However, since we are defining the size of the gradient as different than the default 100%
by 100%, we need to consider whether we want the background image to repeat. In this
case, we didn’t.

When I create a CSS reset, I generally include a blanket statement
setting background-repeat: no-repeat on most elements. Al‐
though no-repeat is not the browser default, it is most often the de‐
signer’s preference. By not using the background shorthand, I don’t
overwrite my reset.

DPI and background-size

The background-size property is the property that makes high-resolution images work
on high DPI devices.

High-resolution images look nice and crisp on high DPI devices, but all images go across
the wires at the same resolution. If you want to display high-resolution images, you
display an image that is generally twice as wide and twice as tall as the display size. This
is where the background-size property plays a vital role in mobile CSS.

Let’s say your corporate logo is 100 px tall by 300 px wide. For most devices, a 100 px ×
300 px PNG would be appropriate. For high DPI devices, a 200 px × 600 px PNG will
look even better. The resolution of the images are the exact same: one is just four times
larger than the other. To fit that larger image in the original space—the 100 by 300 CSS
pixels—and make it a crisp-looking higher resolution image, use background-size.

The default value for background-size is auto, which will make the image appear 200
px × 600 px. If your #logo div is 100 px × 300 px, you can declare:

#logo {
 width: 300px; height: 100px;
 background-image: url(logo.png);
 background-size: contain; /* OR */
 background-size: 300px 100px;

284 | Chapter 9: CSS3: Modules, Models, and Images

}
@media
 screen and (-webkit-min-device-pixel-ratio: 2),
 screen and (min--moz-device-pixel-ratio: 2),
 screen and (-min-moz-device-pixel-ratio: 2),
 screen and (-o-min-device-pixel-ratio: 2/1),
 screen and (min-device-pixel-ratio: 2),
 screen and (min-resolution: 192dpi),
 screen and (min-resolution: 2dppx) {
 #logo {
 background-image: url(hidpi/logo.png);
 }
}

Declaring background-size: contain; or background-size: 300px 100px; both
work, as the width and height of the div are the same size you want the image to be.

There is a downside to the background-size property: images with background-size
declared take twice as long to render the image: the time to decode the image and the
time to resize. The extra few milliseconds can be an issue if you are animating larger
images or are otherwise experiencing lots of reflows and repaints.

Stripey Gradients
We’ve covered most of the background images on our fake iOS application, but not all.
How about the striped background of the iOS app? Do we need a GIF for that? Not so
fast. As noted earlier, we can make stripes with CSS gradients. The background of the
iOS app is a gradient: a striped gradient.

If you declare two color stops at the same position you will not get a color fading into
another—a gradient—but rather a hard line. This is an important trick in creating
shapes. For example, to make stripes you could define:

background-image:
 -webkit-gradient(linear, 0 0, 100% 0,
 color-stop(0.4, #ffffff),
 color-stop(0.4, #000000),
 color-stop(0.6, #000000),
 color-stop(0.6, #ffffff));
background-image:
 -webkit-linear-gradient(right,
 #ffffff 40%,
 #000000 40%,
 #000000 60%,
 #ffffff 60%);
background-image:
 linear-gradient(to left,
 #ffffff 40%,
 #000000 40%,
 #000000 60%,
 #ffffff 60%);

CSS Gradients | 285

6. Background size was set to 2 px, instead of 1 px—though any other nonzero positive height should work—
because of a bug in Chrome that does not properly repeat gradients smaller than 2 px.

This gradient will go from right to left, starting white and ending white with a black
stripe down the middle from 40% to 60%, as shown in Figure 9-11.

Figure 9-11. Stripes created with linear gradient with hard stops

The gradient for our body background image has hard stops. For this effect, we create
a hard color stop, ending the first color and starting the next color with no fade. It is a
7 px wide background image, repeated:

1 background-color: #C5CCD4;
2 background-image:
3 -webkit-gradient(linear, 0 0, 100% 0,
4 color-stop(0.7142, #C5CCD4),
5 color-stop(0.7142, #CBD2D8));
6 background-image:
7 -webkit-linear-gradient(left,
8 #C5CCD4 0.7142%,
9 #CBD2D8 0.7142%);
10 background-image:
11 linear-gradient(to right,
12 #C5CCD4 0.7142%,
13 #CBD2D8 0.7142%);
14 background-size: 7px 2px;6

15 background-repeat: repeat;

Because the color stops are in the same location, the first color will abruptly “fade” into
the next color, creating a hard line. Before the first stop, the color is the color of the first
stop. After the last stop, the color is the color of the last stop.

The only thing with the gradient code we created in lines 2–13 is that it created one
background image that will, by default, cover 100% of the element on which it is applied.
For the background image for the body of our web application, we need our image to
tile into columns or pinstripes. For that effect, we need to size the image and tile it both

286 | Chapter 9: CSS3: Modules, Models, and Images

horizontally and vertically, or at least horizontally. We do that with the background-
repeat and background-size properties.

Because we’ve declared the background size to be 7 px wide, the background image will
have a 5 px stripe of #C5CCD4 followed by a 2 px wide stripe of #CBD2D8. We then repeated
that tiny image both vertically and horizontally. We could also have created this gradient
using pixels instead of percentages:

background-image:
 -webkit-gradient(linear, 0 0, 100% 0,
 color-stop(5px, #C5CCD4),
 color-stop(5px, #CBD2D8));
background-image:
 -webkit-linear-gradient(left,
 #C5CCD4 5px,
 #CBD2D8 5px);
background-image:
 linear-gradient(to right,
 #C5CCD4 5px,
 #CBD2D8 5px);

Or, instead of using background-size and background-repeat, we could instead have
created a repeating gradient with the repeating-linear-gradient() value.

Repeating Linear Gradients
CSS3 provides us with background-size and background-repeat, which enables us to
create interesting effects, including the stripey background. However, CSS3 also pro‐
vides us with repeating-linear-gradient:

background-image:
 -webkit-repeating-linear-gradient(left,
 #C5CCD4 0,
 #C5CCD4 5px,
 #CBD2D8 5px,
 #CBD2D8 7px);
background-image:
 repeating-linear-gradient(to right,
 #C5CCD4 0,
 #C5CCD4 5px,
 #CBD2D8 5px,
 #CBD2D8 7px);
background-size: 7px 7px;
background-repeat: repeat;

There are a few quirks to note about repeating gradients. The width of the gradient will
be the value of the last color stop: in our case, 7 px. You must declare the 0 value and
the last value. Unlike regular linear gradients, it does not default those values for you.

CSS Gradients | 287

7. For example, Chrome has a weird bug. It seems to think the background size should be 110 px, repeats oddly
below that, and fails at times when the repeating linear gradient is wider than 100 px.

Also, not all browsers support the native sizing feature of repeating gradients.7 If you
use repeating linear gradients, until this is fixed, check to see if you need to include a
background-size and repeat the gradient with background-repeat, as done in lines 14
and 15.

Repeating linear gradients have similar browser support as unprefixed regular linear
gradients. They are currently supported in all major browsers, since BlackBerry 10, iOS
5, Safari 5.1, and Chrome 10, with vendor prefixes still required in some WebKit brows‐
ers. As noted earlier, they don’t render correctly in Chrome or Chrome for Android.
However, I often like the effect of Chrome’s poor handling of repeating linear gradients.
Gradients in CubeeDoo

Although Chrome for Android doesn’t correctly render repeating linear gradients, I’ve
included a repeating gradient for the background of the CubeeDoo application. I ac‐
tually like the effect of the quirky Chrome rendering, and don’t mind a slightly different
background in different browsers until it is correctly supported across all browsers.

In smaller devices, the CubeeDoo board takes up the full viewport. In larger devices,
the game only takes up a portion of the screen, so the background of the page on larger
devices has a repeating linear gradient as a background, as does the game board:

body {
 background-color: #eee;
 background-image:
 -webkit-repeating-linear-gradient(-135deg,
 transparent 0,
 transparent 4px,
 white 4px,
 white 8px),
 -webkit-repeating-linear-gradient(135deg,
 transparent 0,
 transparent 4px,
 white 4px,
 white 8px);
 background-image:
 repeating-linear-gradient(-135deg,
 transparent 0,
 transparent 4px,
 white 4px,
 white 8px),
 repeating-linear-gradient(135deg,
 transparent 0,
 transparent 4px,
 white 4px,

288 | Chapter 9: CSS3: Modules, Models, and Images

 white 8px);
}

Note that we’ve actually included two gradients as two background images, creating a
diamond effect across the board.
Multiple background images

How can we include two gradients? CSS3 allows for multiple background images on a
single DOM node. Simply separate the various background images, no matter what type
of images, with commas. In the preceding example, you’ll note that in a single
background-image declaration there are two repeating linear gradients separated by a
comma.

We also included two gradients as the background image for the board, creating a
checkerboard effect. The gradient background of the board is so small, it doesn’t fully
render in lower DPI devices, but it does create a texture for all devices:

#board {
 color: #fff;
 height: 400px;
 width: 100%;
 float: left;
 text-align: center;
 background-color: #eee;
 background-image:
 -webkit-gradient(linear, 0 0, 100% 100%,
 color-stop(0.5, rgba(255,255,255,0)),
 color-stop(0.5, rgba(255,255,255,0.5))),
 -webkit-gradient(linear, 0 100%, 100% 0,
 color-stop(0.5, rgba(255,255,255,0)),
 color-stop(0.5, rgba(255,255,255,0.5)));
 background-image:
 -webkit-linear-gradient(-135deg,
 rgba(255,255,255,0) 50%,
 rgba(255,255,255,0.5) 50%),
 -webkit-linear-gradient(135deg,
 rgba(255,255,255,0) 50%,
 rgba(255,255,255,0.5) 50%);
 background-image:
 linear-gradient(-135deg,
 rgba(255,255,255,0) 50%,
 rgba(255,255,255,0.5) 50%),
 linear-gradient(135deg,
 rgba(255,255,255,0) 50%,
 rgba(255,255,255,0.5) 50%);
 background-size: 2px;
}

You’ll note that we are again declaring multiple background images on a single node,
and only one background-size value. When only one value is declared in background-
size, the length value is for both the height and width. When there is only one value

CSS Gradients | 289

for multiple background images, all background images will be the same size. If the
background images were of different sizes, you would declare multiple background sizes
separated by commas, with the order of the background-size declarations being the
same order as the background-image declarations.

I recommend against using the background shorthand property, as it sets all the back‐
ground properties to their default values, even if you didn’t intend for that to happen.
If you do use the shorthand with multiple background images, only declare the
background-color on the last background declaration.
Candy buttons and hard stops

Now that we know how to do hard stops with gradients, let’s revisit our candy buttons.
We employed the background-size property to fake a hard edge on the gradient, but
we could have used a gradient with a hard color stop:

background-image: -webkit-gradient(linear, 0% 0%, 0% 100%,
 color-stop(.5, rgba(255, 255, 255, 0)),
 color-stop(.5, rgba(255, 255, 255, 0.1)),
 color-stop(1, rgba(255, 255, 255, 0.4)));
background-image: -webkit-linear-gradient(bottom,
 rgba(255, 255, 255, 0) 50%,
 rgba(255, 255, 255, 0.1) 50%,
 rgba(255, 255, 255, 0.4));
background-image: linear-gradient(to top,
 rgba(255, 255, 255, 0) 50%,
 rgba(255, 255, 255, 0.1) 50%,
 rgba(255, 255, 255, 0.4));

As you can see, there are many ways to skin a cat, or, in this case, handle a gradient.
Tools for gradients

Although it is important to understand how to create linear gradients (which is why we
went into great detail about it), sometimes it is easier to use a tool. The online chapter
resources have links to resources, tools, and gradient libraries, to help you get up and
running.

You may note that we’ve included a background color. Always include a background
color because your site will be viewed in browsers that don’t support gradients, you may
push a typo in your gradient code, or your tile may fail to repeat itself. By including a
background color, you can prevent the effect of having missing contrast between text
and background in case your background image/gradient fails.

If using gradients for bullets on a list item, the size of the image can‐
not be specified in WebKit. WebKit will default the gradient image to
a size relative to the font size of the list item.

290 | Chapter 9: CSS3: Modules, Models, and Images

http://www.standardista.com/mobile
http://www.standardista.com/mobile

Shadows
Now that we have a good understanding of linear gradients, background-size, and
rounded corners, let’s revisit our buttons to give them more depth. We have most of the
newer CSS features down ... except for shadows and perhaps the less commonly known
text-overflow property.

The code for our buttons includes the following:
1 .button {
2 background-color: #4A6C9B;
3 background-image:
4 -webkit-gradient(linear, 0 100%, 0 0%,
5 from(rgba(255,255,255,0.1)),
6 to(rgba(255,255,255,0.4)));
7 background-image:
8 -webkit-linear-gradient(bottom,
9 rgba(255, 255, 255, 0.1),
10 rgba(255, 255, 255, 0.4));
11 background-image:
12 linear-gradient(to top,
13 rgba(255, 255, 255, 0.1),
14 rgba(255, 255, 255, 0.4));
15 background-size: 100% 50%;
16 background-repeat: no-repeat;
17 color: #FFFFFF;
18 border: 1px solid #2F353E;
19 border-color: #2F353E #375073 #375073; /* T LR B */
20 border-radius: 4px;
21 text-decoration: none;
22 font-family: Helvetica;
23 font-size: 12px;
24 font-weight: bold;
25 height: 30px;
26 padding: 0 10px;
27 text-shadow: 0 −1px 0 rgba(0, 0, 0, 0.6);
28 overflow: hidden;
29 max-width: 80px;
30 white-space: nowrap;
31 text-overflow: ellipsis;
32 -webkit-box-shadow:
33 0 1px 0 rgba(255,255,255, 0.4);
34 -webkit-box-shadow:
35 0 1px 0 rgba(255,255,255, 0.4),
36 inset 0 1px 0 rgba(255,255,255,0.4);
37 box-shadow:
38 0 1px 0 rgba(255,255,255, 0.4),
39 inset 0 1px 0 rgba(255,255,255,0.4);
40 }

Shadows | 291

That’s a lot of code! With our great new gradient skills, most of it (through line 26)
should be familiar to you, but there may be a few properties that you may not be familiar
with, such as such text-shadow, box-shadow, and text-overflow. Fear not! We have
those covered.

I created a blue to darker blue button with a background color that shows through our
translucent white gradient. Lines 18–20 create a border of different blue hues with a
radius of 4 pixels. Line 15 defines the size of our gradient: the top part of the button is
a gradient and the bottom has a solid background color showing through, so I defined
a gradient image that is full width, but only half the height of our element.

Since the gradient image does not take up 100% of the area of the element, it will tile
vertically by default. We don’t want it to. By declaring background-repeat: no-
repeat on line 16, the image will not repeat. Had I defined the image to have a size of
2 px width (background-size: 2px 50%;), we would have had to repeat the image
horizontally with background-repeat: repeat-x;.

The rest, through line 26, provides for text color, typeface, weight, and size, and removal
of link underlining. While the HTML sample code has no links, often links are styled
as buttons, and links are underlined by default. Had I used a link instead of a , the
links would have displayed as an inline element by default, giving height no meaning.
But, as we’re floating our buttons in the nav, whatever element has the class of cancel
and done will display as block.

The text-shadow on line 27 is new to us, though not new to the CSS specification! Let’s
discuss.

Text Shadow
Text shadows were added to CSS 2, and removed in CSS 2.1. They’re back! But in reverse
order.

Apple likes to have their text pop. On Apple.com, they’ve created popping text by in‐
cluding images for their text because they want to ensure their website looks similar in
all browsers. Yes, they actually have a sprite image for their navigation copy, and another
image for the gray navigation bar behind it. They have us all download over 3.5 MB of
images on first page load because they want to ensure that all visitors, even those on IE6
(if people aren’t paying to upgrade their 10-year-old computer, I don’t think they’re
switching to a Mac) have the same experience.

In the mobile space, we don’t have to worry about craptastic desktop browsers like older
IEs not supporting text-shadows. We don’t have to include sprites for our navigation.
We can use text-shadow instead of images—keeping the number of HTTP requests
low and making internationalization much less of a hassle.

292 | Chapter 9: CSS3: Modules, Models, and Images

http://apple.com

The text-shadow property specifies a text shadow to be added to the text content of an
element. The syntax for text-shadow values is a space-separated list of leftOffset,
topOffset, blur, and shadow-color. The two shadow offsets are required. The blur
radius and color values are optional:

text-shadow: <leftOffset> <topOffset> <blurRadius> <color>[,
 <leftOffset> <topOffset> <blurRadius> <color>][,
 <leftOffset> <topOffset> <blurRadius> <color>];

There are two offset length values: (1) the horizontal distance to the right of the text if
it’s positive, or to the left of the text if the value is negative, and (2) the vertical distance
below the text if it is positive, or above the text if it is negative.

The third value defines the width of the blur. The larger the blur value, the bigger the
blur, making the text shadow bigger and less opaque. Negative values are not allowed.
If not specified, the blur radius value defaults to zero, creating a sharp shadow edge.

The offsets are required, but they can be set to zero. If they are both set to zero, the
shadow will be a glow, showing evenly on all sides. This feature, along with current
Color (see Chapter 8) can be used to your benefit.

Some fonts, like Helvetica Neue Light, when viewed in high DPI devices, are too thin
to read. By declaring:

text-shadow: 0 0 1px currentColor;

the text can be made more legible. The one line of CSS creates a 1 px glow directly behind
the text in the current color of the font. By using currentColor, you can make a single
property/value declaration for all your text without worrying about different elements
having different color text.

When multiple shadows are included, the shadow effects are applied in the reverse order
in which they are specified: the last shadow is drawn first and each preceding text shadow
is placed on top of it.

Text shadows can be created to be very, very wide. Even so, a text shadow has no effect
on the box model. A text shadow can increase beyond the boundaries of its parent
element without increasing the size of that element’s box. Because of this, if you put a
very wide negative horizontal offset, you may inadvertently cover the preceding text
(there is an example in the online chapter resources).

A trick to good-looking text shadows is to include a blur value and to provide a slightly
transparent version of the shadow color, generally rgba(0,0,0,0.4); for a slightly gray
shadow. While seemingly gray, the translucent black allows for background colors/
image to show through the shadow.

However, I am not a designer. And I am definitely not Apple’s designer. Apple appears
to use a one pixel dark-gray top shadow. We add this to page title (the <h1>) and to our
buttons on our Languages page to make the text pop:

Shadows | 293

http://www.standardista.com/mobile

8. To add ellipses to multiple-line text, there are vendor-specific, nonstandards values, including the property
of -webkit-line-clamp and value of text-overflow: -o-ellipsis-lastline;, for WebKit and Opera
respectively.

text-shadow: 0 −1px 0 rgba(0, 0, 0, 0.6);

The preceding code provides for a 1 px text shadow sitting on top of the letters that is
slightly transparent.

Note that text-shadow is not a prefixed property. Also note that large
translucent shadows combined with other CSS properties can take a
long time to paint and can use up memory.

Fitting Text with width, overflow, and text-overflow
Lines 28 through 31 of our code example above ensure that the button does not take up
too much room. We have very limited space on our mobile devices. In our Languages
example, we are trying to fit three elements in that top navigation area: two buttons and
the page title. So, we need to ensure not only that the buttons don’t take too much space,
but that our h1 isn’t too wide either. “Languages” fits here, but what if our page title were
“Supported Languages”?

Generally, declaring a width on an inline element, like <button>, has no effect. However,
since we’re floating our buttons, visible floated elements are default displayed as block
(instead of list-item, inline, inline-block, etc.), so width works!
text-overflow property

The text-overflow property is part of the Basic UI specification. The text-
overflow property allows you to clip text that is too wide for its container. The ellip
sis value causes ellipses, or three periods, to be appended to the text at the point where
it is clipped:

text-overflow: ellipsis | clip

Employing text-overflow: ellipsis; is not enough to cut off text and include el‐
lipses. If the text wraps or is allowed to extend beyond the boundaries of the containing
block, then the words won’t be cut off and the ellipses will not appear.8 Ellipses will only
appear when the containing box has overflow set to something other than visible
(visible allows the text to flow out of the box) and white-space set to nowrap or pre.
You can also use the clip value, which will clip the text but without putting ellipses.

By using the ellipses key term, the clipping will occur after whatever last letter can
completely fit into the parent box. There has been discussion about breaking on specific
characters rather than letters. Firefox has included this experimental string value since
Firefox 9.

294 | Chapter 9: CSS3: Modules, Models, and Images

While you really should never clip text, the limited real estate on the navigation bar of
a mobile application often requires it. It is generally not good user experience design to
hide text in this (or any other) way. If you are going to clip text, use ellipses to improve
user experience. The ellipses informs the user that text has been clipped:

h1 {
 white-space: nowrap;
 width: 180px;
 overflow: hidden;
 -o-text-overflow: ellipsis; /* opera mini, mobile */
 text-overflow: ellipsis;
}

The white-space, overflow, and, generally, width properties have to be declared for
the text-overflow property to work, which means it doesn’t work on elements that are
displayed inline.
white-space property

The white-space property specifies how whitespace inside an element is handled. Val‐
ues for the white-space property include normal, nowrap, pre, pre-line, pre-wrap,
and inherit. When set to normal, text will wrap at the end of the line, and whitespace
will be reduced to a maximum value of one space. Setting the value to nowrap will force
the text to not line break to fit the width of its parent container. The prewrap is often
more legible than nowrap: while it maintains or preserves the original whitespace, it
wraps when it reaches the end of its containing block.

For text-overflow: elipses; to work, the text can’t wrap. This is why we have in‐
cluded this CSS 1 feature here.

Box Shadow
Box shadows are most noticeably used to create drop shadows to make elements pop
off the screen. In CubeeDoo, we use box-shadow to make the cards pop off the board a
bit. In our effort at creating a CSS3 native iPhone application look, we employ the box-
shadow property to create two subtle shadow effects on the buttons.

The box-shadow property enables the developer to add drop shadows or inset shadows,
or both, to elements. One or more box-shadows can be attached to a box, by which you
can create some pretty nifty effects. Shadows are drawn just outside the border, or just
inside the border in the case of inset.

In terms of the box-model, shadows are similar to outline and text-shadow, in that
they do not influence the layout: they may overlap other boxes. It is supported in all
browsers starting with IE9. Include the default vendor-less syntax and the -webkit-
vendor prefix version for Android 3.0 and iOS 5.

Shadows | 295

9. Lines 1–2 are for Android up to 3.0 and iOS 3.2, which do not support the inset property. Lines 3-5 is for
older WebKit browsers, including and up to Safari 5, iOS 4.3, Android 3.0, and BB 7. Lines 6–8 are for Safari
5.1, Opera 10.5+, Opera Mobile 11+, Chrome 9+, IE9+, and Firefox 4+. Not supported in Opera Mini.

The syntax and rendering of box-shadow is similar to text-shadow, but with two ad‐
ditional optional features, blur spread and inset:

box-shadow: inset <leftOffset> <topOffset> <blurRadius> <spread> <color>[,
 inset <leftOffset> <topOffset> <blurRadius> <spread> <color>][,
 inset <leftOffset> <topOffset> <blurRadius> <spread> <color>];

The values for box-shadow property include none for no shadow (the default), or a list
of space-separated values for left-offset, top-offset, blur radius, spread radius, and color,
with the optional inset keyword for inner shadows (versus drop shadows). If more
than one box shadow is to be included, separate each shadow with a comma.

The vertical and horizontal offset values are both required. Similar to text-shadow, the
first three values define the horizontal position, vertical position, and blur radius in that
order. The fourth value—the blur spread—makes the shadow grow bigger if positive,
and shrink if negative. The inset key term, if included, makes the shadow an inset
shadow instead of a drop shadow. The inset key term, blur radius, blur spread, and
color values are optional.

Note that inset is only an option for box-shadow and is not part of text-shadow. Also
note that Android up to 3.0 and iOS 3.2 require the -webkit- vendor prefix, and do not
support the inset values. iOS 4.x and Blackberry 7 require the -webkit- vendor prefix
as well, but support inset shadows.

For example (not from the online chapter resources):
1 -webkit-box-shadow:
2 3px 4px 5px 6px rgba(0,0,0, 0.4);
3 -webkit-box-shadow:9

4 3px 4px 5px 6px rgba(0,0,0, 0.4),
5 inset 1px 1px 1px #FFFFFF;
6 box-shadow:
7 3px 4px 5px 6px rgba(0,0,0, 0.4),
8 inset 1px 1px 1px #FFFFFF;

Within each grouping we have two comma-separated box shadows. The values making
up each of the two box shadows is a space-separated list, including:

• The left or horizontal offset of the shadow is the first length value. A negative value
will put the shadow on the left.

• The top or vertical offset is the second length value. A negative value will put the
shadow above the box.

296 | Chapter 9: CSS3: Modules, Models, and Images

• The optional blur radius is the third length value. Negative values are not allowed.
If it is 0, the shadow is solid. The larger the value, the blurrier the shadow will be.

• The optional blur spread is the fourth length value, if it is present. Positive values
make the shadow grow bigger. By default, the shadow is the same size as the element.

• The optional color. Using alpha transparency is recommended if your blur radius
is greater than 0, as the effect is much prettier if you start from a slightly transparent
version of black than if you start with an opaque version of gray. However, trans‐
lucent shadows use more memory and can take longer to paint, which is an issue
on devices with limited RAM or if you’re animating and/or repainting the element
frequently. If the color is not defined, browsers will by default use currentColor.

• The optional inset key term, if present, will create an inset shadow instead of a
drop shadow.

In our example, the first shadow will be a 5 px wide gray transparent shadow on the
bottom right of the element. The second box shadow value in each grouping includes
the optional key term inset. This second shadow will be a fully opaque white 1 px
outline (or inline?) on the inside of the box. The shadows appear on the outside and
inside of the border, if there is one, respectively.

The values of the x-offset, y-offset, and optional blur radius and spread radius need to
be written in that order. The order of the last two values in the declaration (inset and
color) location aren’t important, but keep the order consistent for ease of reading and
maintenance. The order of shadows when including multiple shadow values does make
a difference. Similar to text-shadows, box-shadows are drawn in the reverse order of
their declarations. Drop shadows are always drawn behind the box, as if it had a lower
z-index, and do not show through alpha transparent boxes (unlike alpha transparent
text, where text shadows show through), as shown in the online chapter resources.

A thick border with an inset shadow can make for an interesting effect, but animating
a large translucent shadow can actually crash a browser, as all shadows, images, and
gradients are calculated and painted to the screen from back to front, even if they are
never made visible to the user.

On mobile, all properties are drawn to the page even if not visible. Be
warned that if you add 20 shadows and gradients, even if they are
overlapping, beyond the confines of the page, under another ele‐
ment, or otherwise not visible, they are still painted. Repainting 20
layers and calculating the added effect of transparencies on each pix‐
el may take too long to animate at 60 fps.

While shadows have been supported since the first iPhone, shadows can use a lot of
memory and can hang the browser, especially if the shadows are semitransparent (versus

Shadows | 297

http://www.standardista.com/mobile

opaque), and even more so when the element on which the shadow is set is animated.
The browser must recalculate each pixel on each repaint, even if the shadow is not visible.

In mobile browsers, large shadows, especially inset shadows, use a lot
of memory and can hang the browser.

Lines 37–39 of our CSS for the candy buttons include a double shadow:
 box-shadow:
 0 1px 0 rgba(255,255,255, 0.4),
 inset 0 1px 0 rgba(255,255,255,0.4)

This declaration will include two semitransparent white shadows: a 1 px shadow on the
outside bottom of the box and a 1 px shadow inside the button, at the top of the box.
We also declared this with the -webkit- prefix with two shadows and also with the inset
shadow removed for very old Android browsers.

Putting It All Together: CubeeDoo
We have several shadows in CubeeDoo. Here are some excerpts from the CSS. This is
not all the code that is in the CSS files. I am only including the selectors, properties, and
values that should make sense to you up to this point:

1 #board > div {
2 box-shadow: 1px 1px 1px rgba(0,0,0,0.25);
3 }
4 .back {
5 border: 5px solid white;
6 }
7 .back:after,
8 .face:after {
9 position: absolute;
10 content: "";
11 top: 0;
12 left: 0;
13 right: 0;
14 bottom: 0;
15 border-radius: 3px;
16 pointer-events: none;
17 }
18 .back:after {
19 background-repeat: no-repeat;
20 background-color: #fff;
21 background-size:
22 50% 50%,
23 0 0;
24 background-image:
25 url('data:image/svg+xml;utf8,<svg width="40" height="40"
 xmlns="http://www.w3.org/2000/svg"><g><text xml:space="preserve"

298 | Chapter 9: CSS3: Modules, Models, and Images

10. The parent is set to position relative, so the generated content will be relative to that.

 text-anchor="middle" font-family="serif" font-size="40" id="svg_1"
 y="30" x="20" stroke-width="0" stroke="rgb(119, 160, 215)"
 fill="rgb(119, 160, 215)">❀</text></g></svg>'),
26 -webkit-linear-gradient(-15deg,
 rgba(0, 0, 0, 0), rgba(0, 0, 0, 0.05));
27 background-image:
28 url('data:image/svg+xml;utf8,<svg width="40" height="40"
 xmlns="http://www.w3.org/2000/svg"><g><text xml:space="preserve"
 text-anchor="middle" font-family="serif" font-size="40" id="svg_1"
 y="30" x="20" stroke-width="0" stroke="rgb(119, 160, 215)"
 fill="rgb(119, 160, 215)">❀</text></g></svg>'),
29 linear-gradient(75deg,
 rgba(0, 0, 0, 0), rgba(0, 0, 0, 0.05));
30 box-shadow:
31 inset 1px 1px 0 currentcolor,
32 inset −1px −1px 0 currentcolor,
33 1px 1px 1px rgba(0,0,0,0.1);
34 color: rgb(119, 160, 215);
35 }
36 #board > div.flipped {
37 box-shadow: −1px 1px 1px rgba(0,0,0,0.25);
38 }
39 .control {
40 border: 1px solid rgba(0, 0, 0, 0.25);
41 box-shadow: inset 1px 1px 0 rgba(255, 255, 255, 0.5);
42 background-image:
43 -webkit-linear-gradient(-15deg,
44 rgba(0, 0, 0, 0),
45 rgba(0, 0, 0, 0.025));
46 background-image:
47 linear-gradient(75deg,
48 rgba(0, 0, 0, 0),
49 rgba(0, 0, 0, 0.025));
50 text-shadow: 1px 1px 0px rgba(255, 255, 255, 0.5);
51 border-radius: 5px;
52 }

There are many things to note in this example. Let’s go line by line:

1. We are targeting <div> elements that are the direct children of the #board using a
child selector combinator in line 1. The element we’re targeting is the card container.
We give the cards in their default state a slight drop shadow in line 2.

2. We define the appearance of our generated content by creating pseudoelements in
lines 7 through 17. We include the required content attribute in line 10, and posi‐
tion these 0 px from the top, left, bottom, and right, forcing the absolutely posi‐
tioned10 generated content to be the exact size and position of their parent node.

Shadows | 299

We also include a border-radius of 3 px to make the corners rounded like their
parent nodes.

Setting generated content position: absolute, with all 4 sides
offset to 0, will make the generated content the same size as the
parent.

3. Lines 17 to 35 style the back of the card. We start off by declaring the background
properties, including background-repeat and background-color. We have two
background images with different background sizes, so we declare the two values
separated by a comma as the value of the background-size property.

4. The back of the cards have a blue band, a little flower, and a gradient to make it pop.
The band effect is done with box-shadow. The flower and popping gradient are
done with background images.

5. We declare two background images in two separate ways. The first background
image is SVG, as covered in Chapter 5. The second image is a gradient. They are
separated with a comma. We declare this image combination twice (or three times
if you want to support old WebKit) because gradient syntax has changed, and SVG
is not supported in older Android. You would think that we could simply have
included the ❀ in generated content, but because we are flipping the card in later
chapters and support for animating generated content is not yet ubiquitous, we
create our generated content look with a background SVG.

6. To create the blue band as shown in Figure 9-12, we use two inset shadows: a top/
left inset shadow and a bottom right inset shadow. Note that the blue band actually
follows the curves of the rounded corners. The blue band is 5 px from the edge of
the card. We were able to create this stripe effect because in line 5 we added a 5 px
border. And, as we know, shadows and inset shadows are on the outside and inside
of the border respectively.

7. The last of those three borders, the one on line 33, creates a drop shadow for the
card.

8. On line 34, we declare the color. Seemingly, this would be a moot point since there
is no text in this element. Even the ❀ “text” is done with SVG and not generated
content. But, by including the color here, the currentColor in our drop-shadow
obeys this declaration.

300 | Chapter 9: CSS3: Modules, Models, and Images

Figure 9-12. CubeeDoo: The blue bands are created with a large border and two
inset shadows

9. When the user flips a card, the shadow stays with the card. This is likely not the
effect you want. Our light source has stayed the same, so our shadow should be in
the same location relative to the board, not the card, when we flip it. Line 36 uses
the child selector combinator, but really doesn’t have to, since no other div is going
to have the flipped class. When the div is flipped, we change the left offset of the
card so that visually it is always in the same location. We will learn about trans‐
forming (flipping or rotating) cards in Chapter 11.

10. Lines 39 to 52 control the controls, which are the CubeeDoo buttons. To create the
effect of a double border (black and white) for the top left, we include a translucent
black border and add a white inset shadow in lines 40 and 41.

11. We include a translucent gradient as the background of the buttons to give the
buttons dimension. Note that the angles are written differently for the prefixed
syntax versus the unprefixed syntax, but will appear the same.

12. We also added translucent white text shadow to the buttons as well as rounded
corners in lines 50 and 51.

We’ve covered all the features of creating the look of a native iPhone application without
the use of images, and all the features of the default look and feel of CubeeDoo. We
succeeded in creating CSS3 only versions of these interfaces without opening up an
image editing application or making an extra HTTP request.

Shadows | 301

With CSS3 and SVG, which we discussed in Chapter 5, you really can create just about
any shape without images.

However, sometimes images are the right solution as they’re supported in all browsers,
and they’re easy. We will cover some image solutions, including border image and mul‐
tiple background images, in Chapter 11.

302 | Chapter 9: CSS3: Modules, Models, and Images

1. It is possible to drain battery animating certain CSS property values, but generally, browsers are well optimized
for CSS.

CHAPTER 10

CSS3: Transforms, Transitions, and
Animations

On the desktop, most of the “animations” you have likely seen aren’t actually CSS ani‐
mations, but rather Flash, Canvas, or JavaScript animations. On mobile devices, it is
important to use CSS3 transitions, transforms, and animations to animate elements
whenever possible instead of these other techniques.

So why not animate with Flash, JavaScript, or <canvas>? Flash is not supported on
mobile iOS devices, and never will be. Adobe, the makers of Flash, discontinued devel‐
opment of the mobile Flash Player, with the last release being Flash Player 11.1 for
Android and the BlackBerry PlayBook in late 2011.

Flash is still being developed for desktop, but with Flash not supported or installed on
any new devices, you’ll be missing out on a huge chunk, if not all, of the mobile market.
And, for those using older devices with browsers that support Flash, you’ll be draining
their battery.

Similarly, animations done with JavaScript, when not hardware-accelerated, block the
UI thread. This can make the rest of the application, if not the animation itself, choppy,
nonresponsive, a memory hog, and a battery drainer.

On mobile, CSS animations are an awesome alternative to these other technologies.
Browsers are optimized to handle CSS, so you lose less memory, CPU, and battery.1 And,
animations, transforms, and transitions are supported on all modern smartphone
browsers, so there is no reason to not use them.

303

2. Vendor prefixing is needed: -webkit- up through iOS6, Android, BlackBerry 10, and Chrome through 25;
-o- for Opera up to 12; and -moz- for Firefox up to 15. Support began in IE with IE10 unprefixed. I recom‐
mend still including -webkit-, but the other prefixes are optional as browsers requiring them are already
almost obsolete.

Well, there is. An important note about transitions, transforms, and animations: just
because you can, doesn’t mean you should. Use instructional animations to show pro‐
cedures or tasks that are hard to describe with static pictures. Accompany the instruc‐
tions with text that explains the animation.

Animation can be used to draw attention to an element on the page, such as a form
submission error message, a success message on a one page application, or an update
to the page that is important that the user may not otherwise have noticed.

Don’t animate unless you want to draw attention, and don’t animate elements that need
to be read or interacted with. Games, of course, are an exception to these rules.

These features of CSS are very captivating when used wisely and sparingly. Don’t over‐
use, unless you’re using these features in gaming, or your site will be reminiscent of a
Geocities site from the 1990s.

CSS Transitions
Transitions allow CSS properties to change from one value to another over a period of
time. If you’ve ever used :hover to change the color of a link, you’ve used a transition,
but likely a transition of zero milliseconds in duration. With CSS transitions, you can
make that color change, and a whole lot of other properties change, over a period of
time.

CSS transitions apply to any change from one state to another state. The transition
shorthand property is made up of four properties: (1) transition-property, which
defines which properties are affected, (2) transition-duration, which sets the during
of the transition effect, (3) the transition-timing-function, which delineates how
the timing will accelerate, decelerate, or otherwise change during the transition, and (4)
the transition-delay, which sets how long to wait before starting the transition after
the transition is initiated.

To create a transition, set the styles of the element you want to transition. In the prop‐
erties of the initial state, you include the name of the property or properties you want
to affect in the transition, along with the time of the transition, the speed, and the delay,
if any. Here is the syntax as shown in the spec:2

304 | Chapter 10: CSS3: Transforms, Transitions, and Animations

nav a {
 background-color: rgb(255,255,255);
 border: 5px solid #000000;
 transition-property: background-color;
 transition-timing-function: linear;
 transition-duration: 0.8s;
 transition-delay: 200ms;
}

This is the initial keyframe. A keyframe is a drawing that defines the starting or ending
points of any smooth transition in animation (or in film). Keyframes aren’t explicitly
employed in transitions. They are used when creating animations using the animation
properties, which we discuss later in this chapter. Getting an understanding now may
help make animations less confusing later.

You then define the value of the properties listed in the value of transition-
property: in this case, the value of the background-color. We could have used the key
term all if we had wanted to transition all the transitionable properties that change
between the default and transitioned state, such as the hover state:

nav a:hover, nav a.hover {
 background-color: rgb(0, 0, 0);
 border: 5px dashed #CCCCCC;
}

In the preceding example, when the user hovers over a link in the navigation section of
the document, the background of the link will go from white to black, as shown in
Figure 10-1. The border color and style will change immediately on hover. The transition
of the background color will start after 200 milliseconds; take 800 milliseconds to tran‐
sition, and transition at an even keel. In Figure 10-1, you’ll note the border changed
immediately, but the background color waited the 200 ms delay before starting to tran‐
sition.

Figure 10-1. Time-lapse of background-color transition, showing how the border
changes instantly on hover while the background color transitions over 800 ms after a
delay of 200 ms

This may be a lot to grasp, so let’s go over the various transition values. There are no
screenshots in this section, since “effects” are hard to perceive in print. However, there
are examples in the online chapter resources.

CSS Transitions | 305

http://www.standardista.com/mobile

The transition-property Property
The transition-property lists the properties that will be transitioning during the ani‐
mation. Properties that can be made to transition include:

• background-color

• background-position

• background-size

• border (color and width, but not style)
• border-color

• border-radius

• border-width

• border-spacing

• box-shadow

• bottom

• clip

• color

• columns

• column-width

• column-count

• column-gap

• column-rule (color and width, but not style)
• crop

• flex

• flex-basis

• flex-grow (except from or to 0)
• flex-shrink (except from or to 0)
• font-size

• font-size-adjust

• font-stretch

• font-weight

• height

• left

• letter-spacing

306 | Chapter 10: CSS3: Transforms, Transitions, and Animations

• line-height

• margin

• max-height

• max-width

• min-height

• min-width

• opacity

• order (part of flex)
• outline-color

• outline-offset

• outline-width

• padding

• perspective

• perspective-origin

• right

• text-decoration-color

• text-indent

• text-shadow

• top

• transform

• transform-origin

• vertical-align

• visibility

• width

• word-spacing

• z-index

In general, any pair of property values where you can conceivably
figure out a midpoint is transitionable. Note that depending on the
transition timing function, the midpoint between two values may not
display at the middle of the transition. Ease in, ease out, and other
cubic-bezier timing function transitions will have different midpoints.

CSS Transitions | 307

For example, top: 0 to top: 100px; has a midpoint of 50 px and is therefore transi‐
tionable, but display: block to display: none; (used as example property values in
Table 10-1) does not have a midpoint and is not transitionable. You can transition from
height: 600px to height: 700px; but not from height: auto; to height: 700px;.

Table 10-1. Determining if property values are transitionable
Property Initial value Final value Midpoint? Transitionable

height 100 px 200 px 150 px ✓
height auto 200 px ? ✗
opacity 0 1 0.5 ✓
display block none ? ✗

While you can’t currently transition background images, including gradients, you can
transition background-position and background-size to create some interesting ef‐
fects.

The exception to this midpoint rule is visibility. Visibility is a property that seemingly
you wouldn’t be able to transition, but you can include it in transitions and animations.
The value will actually jump from visible to hidden at the end of the transition effect
if those are the property values set. There is discussion of making all properties transi‐
tionable and animatable, but we aren’t there yet.

The value of the transition-property property is a comma-separated list of any num‐
ber of these property names, or the keyword all. Only the properties listed as the value
of the transition-property will transition over time when the transition gets initiated,
unless all is declared:

nav a {
 -webkit-transition-property: background-color; /* iOS6-, BB, Android, Ch25-*/
 -moz-transition-property: background-color; /* FF4 to 15 */
 -o-transition-property: background-color; /* O 10.5 to 12 */
 transition-property: background-color; /* IE10, FF16+, 012.5+, Ch26+, iOS7 */

I’ve included -moz- and -o-, to demonstrate support for older browsers. -ms- has never
been needed, and Firefox and Opera are not needed in currently used mobile browsers.
The only prefix we need to include for the transition properties in the mobile space, or
at all, is -webkit-.

If a property that is not transitionable is included in the value of the transition-
property property, the value will be ignored, changing state instantly instead of tran‐
sitioning over time. The value that can’t transition over time will not, but the transition
itself will not fail.

308 | Chapter 10: CSS3: Transforms, Transitions, and Animations

The transition-duration Property
The transition-duration property sets how long the transition will take to go from
start to finish, from the first keyframe to the last keyframe. You can set how many
seconds or milliseconds the transition will take to animate from the original value to
the transitioned value.

We learned about time units in Chapter 8. This is the first time we use it. The following
2 lines are all equal, using millisecond or second units (but target different browsers):

-webkit-transition-duration: 0.5s;
 transition-duration: 500ms; ...

The transition-timing-function Property
The transition-timing-function enables control over the transition, describing how
the animation will proceed over time. The value can take one of several keywords—
ease, linear, ease-in, ease-out, ease-in-out, step-start, step-end, steps(x,
start), steps(x, end)—or take as its value a cubic Bézier function.

A cubic Bézier takes as its value four points in a plane: starting at the first point going
toward the second, and arriving at the last point from the direction of the third point.
After about three years of calculus, it might make sense! Fortunately, some cubic Bézier
curve values are included in CSS3 as predefined keywords, and links to tools to help
you better understand cubic Bézier are included in the online chapter resources.

The nonstep keyword values (ease, linear, ease-in-out, etc.) are each themselves
representing cubic Bézier curve with four fixed-point values:
ease, or cubic-bezier(0.25, 0.1, 0.25, 1.0)

The default value; increases in velocity toward the middle of the transition, slowing
back down at the end.

linear or cubic-bezier(0.0, 0.0, 1.0, 1.0)
Transitions at an even speed.

ease-in or cubic-bezier(0.42, 0, 1.0, 1.0)
Starts off slowly, with the transition speed increasing until complete.

ease-out or cubic-bezier(0, 0, 0.58, 1.0)
Starts transitioning quickly, slowing down as the transition continues.

ease-in-out or cubic-bezier(0.42, 0, 0.58, 1.0)
Starts transitioning slowly, speeds up, and then slows down again.

CSS Transitions | 309

http://www.standardista.com/mobile

3. While explaining cubic Bézier is beyond the scope of this book, there is a good tool with which you can
determine what other values you might need for your timing function. Another site, http://cubic-
bezier.com, lets you compare the forward progress of one timing function against another.

cubic-bezier(p1,p2,p3,p4)

Where the p1 and p3 values must be in the range of 0 to 1.3

The step functions—steps(x, end), steps(x, start), step-end, and step-start—
divide the duration of the transition into equal lengths of time. Each interval is an equal
step in terms of time taking the transition from original state to final state. The function
also specifies whether the step is at the start or end of the interval.

In other words, if there are five steps, steps(5, start) will have steps representing 0%,
20%, 40%, 60%, and 80% of the progress toward the final state. If you set steps(5,
end), you will have steps representing 20%, 40%, 60%, 80%, and 100% of the progress.

The value step-start is equivalent to steps(1, start) and step-end is equivalent to
steps(1, end). The steps() values are good for animating background image sprites
to create animations. There are some examples of these values in the online chapter
resources. Continuing on with our sample code:

 ...
-webkit-transition-timing-function: linear;
 transition-timing-function: linear;
 ...

The transition-delay Property
The transition-delay property specifies the number of milliseconds or seconds to
wait between a change of state causing the transition and the start of the transition effect.
The default value of 0s indicates that the animation should begin to transition imme‐
diately. Positive time values will delay the start of the transition effect for the value
indicated. Negative values cause the transition to start right away, but start midway
through the transition.

While transition-delay may seem like a useless property, it can greatly help improve
user experience. Oftentimes you don’t want hover or touch effects to be too sensitive.
If a user is dragging a finger or mouse quickly across the screen to get from point A to
point B, you don’t want all the points in between that are accidentally touched to react
to the touch too quickly. A transition delay of 50 ms generally does the trick. The in‐
tentional touches still seem reactive, but the page doesn’t flicker as object transitions get
unintentionally activated.

Negative transition delays can also serve a purpose. As long as the absolute value of the
delay is less than the transition-duration, the transition, when initiated, will start
midway through the transition at a point proportional to the time difference. For

310 | Chapter 10: CSS3: Transforms, Transitions, and Animations

http://www.netzgesta.de/dev/cubic-bezier-timing-function.html
http://cubic-bezier.com
http://cubic-bezier.com
http://www.standardista.com/mobile
http://www.standardista.com/mobile

4. Depends on the number of vendor prefixes you include.

example, if you have a 10 second transition-duration, and a −4 second delay, the
transition will start immediately, but at 40% through the transition:

...
-webkit-transition-delay: 250ms
 transition-delay: 0.25s;
}

The Shorthand transition Property
Putting it all together will seem a little crazy:

nav a {
 -webkit-transition-property: background-color;
 transition-property: background-color;

 -webkit-transition-duration: 0.5s;
 transition-duration: 500ms;

 -webkit-transition-timing-function: linear;
 transition-timing-function: linear;

 -webkit-transition-delay: 250ms;
 transition-delay: 0.25s;
}

Instead of including 8, 12, or 16 lines4 of code for a transition, the transition shorthand
property, which combines the four properties just covered, can be used. Note that the
order of the duration and delay values is important (i.e., they need to be in the same
order as introduced earlier):

• transition-property

• transition-duration

• transition-timing-function

• transition-delay

nav a {
 background-color: #FFFFFF;
 -webkit-transition: background-color 500ms linear 250ms;
 transition: background-color 500ms linear 250ms;
}
nav a:hover, nav a.hover {
 background-color: #FF0000;
}

CSS Transitions | 311

By putting the transition on the default state, when the element is hovered or changes
class, the transitioned properties will transition to their new values, reversing the tran‐
sition on mouse change/touch end or if the new class is removed. The transition prop‐
erties can be put on the default state or on a different state. It depends when and how
you want the element to transition.

Multiple Transitions
But what if you want to transition more than one property? Maybe you want to change
background-color, border-color, and color all on the same property? The transition
properties allow for multiple transitions in one call.

Let’s say instead of just transitioning the background-color property, we want to tran‐
sition the border property as well (you can transition the border color and width but
not style). We would have to (1) include the new border property in the transitioned
style declaration, and (2) include the border property in the transition-property
value list, either as a comma-separated series of values, or use the key term all. Note
that all should only be used if you want to transition all properties in the same way.

For instance, in earlier examples, although we defined the border and background-
color properties in both the touch or hover states, we only included the background-
color property as the value of the transition-property property. In those examples,
the background-color will transition slowly (over 250 ms), and the border color will
change immediately on hover or touch: like you are used to, like it has always done
without transition, as if the transition were set to a 0 s duration with a 0 s delay.

If you want to change both properties at the same rate and delay, you could write your
transition shorthand using the all keyword, since you are transitioning all the prop‐
erties listed in the hover status:

nav a {
 background-color: #FFFFFF;
 border: 5px solid #CCCCCC;
 -webkit-transition: all 500ms linear 250ms;
 transition: all 500ms linear 250ms;
}

When using the all keyword, all the properties transition at the same rate, speed, and
delay. If you want some but not all of your properties to transition at the same rate,
timing, and delay, comma separate the transition-property properties:

nav a {
 background-color: #FFFFFF;
 border: 5px solid #CCCCCC;
 color: red;
 -webkit-transition: border, color 500ms linear 250ms;
 transition: border, color 500ms linear 250ms;
}

312 | Chapter 10: CSS3: Transforms, Transitions, and Animations

If you don’t want all your properties to transition at the same rate, want some to have a
greater delay than others, or if you just want a few properties to have a transition effect,
include the various transition properties as a comma-separated list, including, at min‐
imum, the transition-property and transition-duration for each:

 nav a {
 background-color: #FFFFFF;
 border: 5px solid #CCCCCC;
 color: red;
 -webkit-transition:
 background-color, color 500ms linear 750ms,
 border 500ms linear 250ms;
 transition:
 background-color, color 500ms linear 750ms,
 border 500ms linear 250ms;
}

In this example, the border, which has the shortest transition-delay, will transition
first. When the border has finished transitioning, at the 750 ms point—which is the
transition-delay property, and the value of the 500 ms for the border transition plus
the 250 ms delay—the background-color and color will both then transition over half
a second:

transition-property: background-color, color, border;
transition-duration: 500ms;
transition-timing-function: linear;
transition-delay: 750ms, 750ms, 250ms;

We could also have used the longhand properties, with each property comma separated,
but that would have been more code in this scenario, as shown previously. I find the
shorthand syntax easier to write, generally shorter to write, easier to understand, and
easier to maintain.

In CubeeDoo, we transition our card flips over 0.25 s. We haven’t learned how to flip a
card yet (it’s covered in the next section), but we can tell it to flip everything, immediately
over 0.25 s with:

1 #board > div {
2 position: relative;
3 width: 23%;
4 height: 23%;
5 margin: 1%;
6 float: left;
7 -webkit-transition: 0.25s;
8 transition: 0.25s; ...

In the default, pre-flipped state, in line 7 and 8, we tell the cards that when the state is
changed, transition all (default for transition-property) the properties immediately
(default for transition-delay) in the default transition-timing-function of ease.

CSS Transitions | 313

5. Earlier versions of Internet Explorer support transitions via filter: progid:DXImageTransform.Micro
soft.Matrix().

I wrote transition: 0.25s, but I could have also written transition: all 0.25s
ease 0ms;, which may be longer, but might be easier to maintain as author intentions
are clearer with the latter.

CSS3 Transforms
Transforms allow you to resize, rotate, skew, translate, and otherwise reposition ele‐
ments. There is a 2D version of the transforms module that is supported by all browsers,
starting in IE9,5 and another for 3D, with support spreading quickly.

Unlike transitions, transforms are supported in IE9.

CSS3 transforms allow for various transformations to be applied to an element, includ‐
ing multiple transforms on a single element.

Two CSS properties are used to create a transform: the transform property specifies the
types of transformations you want to apply to the element, and the transform-
origin property sets the point of origin from where the transform takes place.

The transform-origin Property
The first step we’re covering is setting the origin of the transform. The transform-
origin property establishes the origin of transformation for an element.

The default transform-origin value is 50% 50% 0, which is the center of the element.
The first value specified is the x coordinate, or left/right value, and the second value is
the y coordinate, or the top/bottom value, with the values being calculated from the top
left corner of the element. The third value is the z-offset, which is relevant when doing
3D transforms. The values can be specified using a length, a percentage, or the keywords
left, center, right, top, center, and bottom, with the optional z-offset being a length
only that is not a percentage.

The point set by the transform-origin is the point around which the transform will
occur. As Figure 10-2 demonstrates, when the point of origin is set to the center point
of an element (the default), the element will transform, in this case rotate, around that
center point. When the transform-origin is set to a different location, such as the top
left as shown in Figure 10-2, the element transforming, such as rotating, around the

314 | Chapter 10: CSS3: Transforms, Transitions, and Animations

6. Vendor prefixing is required for IE9, Firefox 3.5 to 15, Opera through 12, and all versions of WebKit browsers.
It is no longer required beginning with Firefox 16, IE10, Opera 12.1, and Opera Mobile 11. Opera Mini does
not support transforms. All browsers that support transform-origin support all of the 2D transform func‐
tions. Opera was prefixless in version 12.1, but the -webkit- prefix became required when they changed the
browser engine away from Presto.

origin point in the top left will create a different effect. The element orbits around this
point.

Figure 10-2. The point of origin set to default and set to top left will drastically alter the
effect of a transform, showing the effect of rotating the element 90 degrees

The transform-origin on the left of Figure 10-2 is the default, so can be omitted. The
syntax for the effect on the right can be written as:

-webkit-transform-origin: top left 0; /* all webkit & blink browsers */
 -moz-transform-origin: top left; /* FF 3.5 - 15 */
 -ms-transform-origin: 0 0; /* IE9 */
 -o-transform-origin: 0 0 0; /* O 11.0-12.0 */
 transform-origin: top 0 0; /* IE10+, FF16+, O12.1 only */

... where top left, 0 0, 0 0 0, and top left 0 are all equivalent.6 Once the point of
origin is set (or omitted, so set to the default value of transform-origin: center cen
ter 0;), the type of transform is applied. This is set with the transform property with
a list of one or more transforms as the value.

The transform Property
Supported in Firefox 3.5+, Opera 10.5, Internet Explorer 9, and WebKit since before
the iPhone even came out, the CSS transform property lets you modify the coordinate
space of the CSS visual formatting model. Using it, elements can be translated, rotated,
scaled, and skewed. CSS transforms modify the coordinate space, allowing us to change
the position of the affected content without disrupting the normal flow. The location
and amount of space a transformed element takes is the location and space used by the
element before transforms were applied.

CSS3 Transforms | 315

We manipulate an element’s appearance using transform functions. The value of the
transform property is a list of space-separated transform functions applied in the order
provided. The transform functions include:
translate()

The translate(x, y) function, as shown in Figure 10-3, is similar to relative posi‐
tioning, translating, or relocating, an element by x from the left, and y from the top:

 -webkit-transform: translate(15px, −15px);
 -ms-transform: translate(15px, −15px);
 transform: translate(15px, −15px);

translateX()

The translateX(x) function is similar to the translate() function, but only the left/
right value is specified:

 -webkit-transform: translatex(15px);
 -ms-transform: translatex(15px);
 transform: translatex(15px);

translateY()

The translateY(y) function is similar to the translate() function, but only the top/
bottom value is specified:

-webkit-transform: translatey(-15px);
 -ms-transform: translatey(-15px);
 transform: translatey(-15px);

Figure 10-3. The transform’s translate functions: translate(15px, −15px), transla‐
teX(15px), and translateY(−15px), respectively

scale()

The scale(w, h) property, as shown in Figure 10-4, scales an element by w width and
h height:

316 | Chapter 10: CSS3: Transforms, Transitions, and Animations

-webkit-transform: scale(1.5, 2);
 -ms-transform: scale(1.5, 2);
 transform: scale(1.5, 2);

If only one value is declared, the scaling will be proportional. Since you likely don’t want
to distort an element, you’ll generally see only one parameter in this transform function:

transform: scale(2);

Note that when you use transform to scale up, your element may appear blurry, as would
be expected when you scale up images. For this reason, I generally recommend that if
you need to scale up, start with an element that has been scaled down, and then scale
up to scale(1).
scaleX()

The scaleX(w) function is similar to the scale() function, but only the width value is
specified. It is the same as declaring scale(w, 1):

-webkit-transform: scalex(0.5);
 -ms-transform: scalex(0.5);
 transform: scalex(0.5);

The -o- and -moz- prefixing for transforms is excluded, as Mozilla and
Presto support transforms without a vendor prefix.

scaleY()

The scaleY(h) function is similar to the scale() function, but only the height value is
specified. It is the same as declaring scale(1, h):

-webkit-transform: scaley(2);
 -ms-transform: scaley(2);
 transform: scaley(2);

Figure 10-4. The transform’s scale functions: scale(0.5, 0.75), scaleX(0.5), scaleY(0.5),
and scale(0.5), respectively

CSS3 Transforms | 317

rotate()

The rotate(angle) function, as shown in Figure 10-5, will rotate an element about the
point of origin (featured in Figure 10-2) by the angle value specified:

-webkit-transform: rotate(15deg);
 -ms-transform: rotate(15deg);
 transform: rotate(15deg);

rotateX()

The rotateX(angle) function will rotate an element about its x-axis, offset by the origin
point if one is set:

-webkit-transform: rotatex(15deg);
 -ms-transform: rotatex(15deg);
 transform: rotatex(15deg);

Rotating an element 90 deg along the x-axis will make it disappear, and 180 deg will flip
it completely over so that you see it upside down from the backside. Whether or not
you see the contents when flipped can be set with the backface-visibility property
described on page 324.

rotateY()

Similar to rotateX(), the rotateY(angle) function will rotate an element about its y-
axis at the angle value specified:

-webkit-transform: rotatey(15deg);
 -ms-transform: rotatey(15deg);
 transform: rotatey(15deg);

Figure 10-5. The transform’s rotate functions: rotate(75deg), rotateX(75deg), and rota‐
teY(75deg), respectively (rotateX rotates along the x-axis, and would disappear at 90
deg, becoming upside down with inverted text over 90 degrees)

In CubeeDoo, we use rotateY(180deg) in our animation when the user clicks on a card,
flipping the card container, so the back of the card is hidden and we can see the face.

318 | Chapter 10: CSS3: Transforms, Transitions, and Animations

We then animate it back with rotate(0deg), or if you prefer rotate(360deg) for a
continuous rotation, if the player was not successful in making a match.
skew()

The skew(x,y) function, as shown in Figure 10-6, specifies a skew along the x- and y-
axis. The x specifies the skew on the x-axis, the y specifies the skew on the y-axis. If there
is only one parameter, then it’s the same as skew(x, 0deg), or skewX(x). The values are
angles, degrees, turns or grads:

-webkit-transform: skew(15deg, 4deg);
 -ms-transform: skew(15deg, 4deg);
 transform: skew(15deg, 4deg);

skewX()

The skewX(x) function is similar to the skew() value, but only the x-axis value is speci‐
fied, and the skew will only be along the x-axis, instead of both the x- and y-axis. The
top and bottom of the box will stay level, and the left and right will skew:

-webkit-transform: skewx(15deg);
 -ms-transform: skewx(15deg);
 transform: skewx(15deg);

skewY()

The skewY(y) function is similar to the skew() value, but only the y-axis value is speci‐
fied. It is similar to declaring skew(0deg, y). The left and right sides of the box will
stay vertical, and the top and bottom will skew:

-webkit-transform: skewy(-3deg);
 -ms-transform: skewy(-3deg);
 transform: skewy(-3deg);

Figure 10-6. The transform’s skew functions: skew(15deg, 15deg), skewX(−15deg), and
skewY(−15deg), respectively

CSS3 Transforms | 319

Declaring skewX(x) or skewY(y) is similar but not the same as declaring skew(x,
0deg) and skew(0deg, y), respectively. If you only declare one of the two on an element,
it is indeed the same thing, but declaring skew(x, 0deg) and skew(0deg, y) would
lead to the latter overwriting the former, whereas skewX(x) or skewY(y) would actually
be equivalent to writing skew(x, y); because the properties are being combined, rather
than overwritten. Figure 10-6 shows the skew functions.

Multiple Transforms
The previous section showed single transforms, but you can include more than one
transform on an element. To include more than one transform, simply separate the
transform functions with spaces:

.enlargen:hover, .enlargen.hover {
 -webkit-transform: translate(−50%, −50%) scale(2) rotate(0deg);
 -ms-transform: translate(−50%, −50%) scale(2) rotate(0deg);
 transform: translate(−50%, −50%) scale(2) rotate(0deg);
}

This makes the element twice as tall and twice as wide. By translating the element 50%
up and to the left, the bottom-right corner should remain in the exact same location.
Declaring rotate(0deg) is unnecessary, since any transforms declared with a selector
with weaker specificity that included a rotate function would be overwritten, regardless
of whether we included the rotate function. I’ve included this as a reference for how
to include the rotate() transform function, and to remind you to include the unit
whenever you are using non-length units.

Even though the rotation value is zero degrees, you must include the
unit for degrees, just as you must with time (s or ms), rads, grads, turns,
Hz, and kHzs.

Note that the transition-property property values are comma separated, and the
transform functions are space separated.

This enlargen class may be something you would want to add to an image gallery,
highlighting an image that is hovered by making it four times larger (twice as wide and
twice as tall) and remove any tilt that might have been interesting as a thumbnail, but
tacky in full size.
matrix()

The matrix() transform function is a single function that defines the translation, skew,
rotation, and scaling of an element. It takes six parameters. If you use a tool to create a
transform, the software generally produces a matrix function rather than four separate
transform functions. The two following lines could be equal, with the last two matrix
values depending on the size and location of the element being transformed:

320 | Chapter 10: CSS3: Transforms, Transitions, and Animations

transform: translate(−50%, −50%) scale(2) rotate(0deg);
transform: matrix(2, 0, 0, 2, −100, −172.5)

Generally, if you see a matrix in CSS markup, it has been computer generated. You likely
won’t ever write a matrix value. I included it here so you understand what it is, but not
necessarily exactly what it means, if you come across it.

Transitioning Transformations
Under the transition-property property, I listed all the properties that could be
transformed. If you include the all keyword when declaring the transition-
property, or the shorthand transition, the transform property will be included as
part of all.

You can declare the transform individually as part of the comma-separated list of tran‐
sition properties. If including the actual transform as a property in the list, it should
include the browser vendor prefix if the browser requires it:

p {
 -webkit-transition: -webkit-transform 500ms linear 250ms;
 transition: transform 500ms linear 250ms;
 -webkit-transform: translate(0) rotate(0deg);
 -ms-transform: translate(0) rotate(0deg);
 transform: translate(0) rotate(0deg);

}

p:hover {
 -webkit-transform: translate(100px, −100px) rotate(90deg);
 -ms-transform: translate(100px, −100px) rotate(90deg);
 transform: translate(100px, −100px) rotate(90deg);
 padding: 3px;
 border: 5px solid #00ff00;
}

We included -ms- for the transform but not the transition, since transitions only re‐
ceived support in IE10, and transforms are prefixed in IE9 but not IE10.

3D Transform Functions
Browsers have been a bit slower in supporting 3D transforms, but they’re getting there.
3D transforms have been supported since iOS 3.2, Android 3, Blackberry 10, Firefox
10, IE10, Safari 4, and Chrome 12, all with vendor prefixes. 3D transforms are slated to
be supported in Opera 15 with the Blink rendering engine. 3D transforms have only
been supported since iPhone 2 (not the original), and is only supported if you have Mac
OS X v10.6 or newer.

CSS3 Transforms | 321

CSS 3D transforms enable positioning elements on the page in three-dimensional space.
Just like before, you can combine 3D transforms with transitions (and animations de‐
scribed later) to create 3D motion.

Similar to the 2D transform functions, most browsers support 3D transform properties,
starting with IE10. As of this writing, the -webkit- prefix is required for WebKit and
Blink browsers.

A few things to note about 3D transforms is that elements that are transformed into a
3D space (1) are hardware-accelerated, and (2) have their own stacking context.
translate3d()

The translate3d(x, y, z) function moves the element x to the right, y from the top,
and z toward the user (away if the value is negative). Unlike x and y, the z value cannot
be a percentage.
translateZ()

The translateZ(z) function is similar to the translate3d() function, but only affects
the z positioning. A positive z moves the element toward the user, and a negative value
moves the element away from the user. The parameter can be any length units other
than percentages.

Because of the benefits of hardware acceleration, translateZ(0) is often used as a cure-
all (similar to how zoom:1 was a panacea for IE6), to put rendering onto the GPU and
out of the CPU, improving rendering performance.

When it comes to paint times, the GPU performs better than the CPU. In animating
elements with not insignificant paint times, getting the element elevated onto its own
layer on the GPU, called a RenderLayer, will be faster and make your animation less
janky. When it sits on its own layer, any 2D transform, 3D transform, or opacity changes
can happen purely on the GPU, which will stay extremely fast—providing for the ca‐
pability of frame rates over 60 fps.

Note, as elements in a 3D context have their own stacking context, any elements you
want to appear above the transformed elements (as though they have a higher z-index),
which are not nested within the transformed element, must also be transformed into
the 3D space. To do this, developers attach transform: translateZ(0) to elements
that would otherwise not need to be transformed.
scale3d()

The scale3d(w, h, z) function scales the element’s width (w), height (h), and z-scale
(z). The z-scale affects the scaling along the z-axis in transformed children.

322 | Chapter 10: CSS3: Transforms, Transitions, and Animations

scaleZ()

Similar to the scale3d() function, the scaleZ(z) provides a value for the z-scale only,
affecting the scaling along the z-axis in the element and its descendants that are not
absolutely positioned.
rotate3d()

The rotate3d(x, y, z, angle) function will rotate an element in 3D space. The first
two forms simply rotate the element about the horizontal and vertical axes. Angle units
can be degrees (deg), radians (rad), or gradians (grad). The last form allows you to rotate
the element around an arbitrary vector in 3D space; x, y, and z should specify the unit
vector you wish to rotate around. The browser will normalize the appearance.
perspective()

The perspective(p) transform function allows you to put some perspective into the
transformation matrix. The perspective() transform function allows you to get a per‐
spective effect for a single element:

 transform: perspective(100px) rotatey(3deg);

Perspective can also be applied with the perspective property, which applies to the
children of an element.

Other 3D Transform Properties
Earlier we were introduced to some transform properties. To successfully implement
3D transforms, we are provided with some new properties, and enhancements to some
properties introduced for 2D transforms.
The transform-origin property revisited

As we learned earlier, the transform-origin property establishes the origin of trans‐
formation for an element. In 3D transforms, this property now accepts a z-offset value.
transform-origin accepts three values, allowing you to specify a z-offset for the trans‐
form origin:

transform-origin: 0 0 500px;

While the effect only got support starting with Safari 4+ on Mac OS X v10.6 and newer,
and iPhone 2.0 and newer (not the original iPhone), earlier browser versions that sup‐
ported transform-origin support this property as if only two values are declared.
The perspective property

Not to be confused with the 3D transforms perspective() function, the perspec
tive property, written with browser prefix, is used to give an illusion of depth; it de‐
termines how things change size based on their z-offset from the z=0 plane.

CSS3 Transforms | 323

Objects on the z=0 plane appear in their normal size. Something at a z-offset of p/2
(halfway between the viewer and the z=0 plane) will look twice as big, and something
at a z-offset of –p will look half as big. Thus, large values give a little foreshortening
effect, and small values lots of foreshortening. Values between 500 px and 1,000 px give
a reasonable-looking result for most content.

The default origin for the perspective effect is the center of the element’s border box,
but you can control this with perspective-origin.

Perspective does not affect the element directly, but rather it affects the appearance of
the 3D transforms on the transformed descendants of that element, enabling the de‐
scendants to share the same perspective as they are translated, or moved, around the
viewport.

So, you’re wondering, what’s the difference between perspective: 600px and trans
form: perspective(600px)? You would attach the former to a parent element so that
all of the descendants have the same vanishing point. You would attach the latter to the
actual element you’re transforming to give it its own perspective.
The transform-style property

The transform-style property defines how nested elements are rendered in 3D space.
All of these 3D transform effects are just painting effects. Those transformed children
are still rendering into the plane of their parent; in other words, they are flattened.

When you start to build hierarchies of objects with 3D transforms, parents and children
should live in a shared three-dimensional space and share the same perspective, which
propagates up from some container, not flattened. This is where transform-style
comes in.

The transform-style property takes one of two values: flat and preserves-3d. The
default value of flat flattens the transformed children into the plane of their parent.
The preserves-3d value dictates that those children live in a shared 3D space with the
element.
The backface-visibility property

The backface-visibility property specifies whether the element is visible or not when
that element is transformed such that its back face is toward the viewer. The property
takes one of two values: visible (the default) or hidden.

For example, in CubeeDoo, we flip a two-sided card to show the card face when the card
is selected. When we see the face, we don’t want to see the back of the card, and vice
versa, so we could set backface-visiblity to hidden.

324 | Chapter 10: CSS3: Transforms, Transitions, and Animations

Putting It All Together
We use a lot of the features just listed in our card flipping in CubeeDoo:

#board > div {
 position: relative;
 width: 23%;
 height: 23%;
 margin: 1%;
 float: left;
 -webkit-transition: 0.25s;
 transition: 0.25s;
 -webkit-transform: rotatey(0deg);
 transform: rotatey(0deg);
 -webkit-transform-style: preserve-3d;
 transform-style: preserve-3d;
 box-shadow: 1px 1px 1px rgba(0,0,0,0.25);
 cursor: pointer; /* for desktop */
}
#board.level2 > div {
 height: 19%;
}
#board.level3 > div {
 height: 15%;
}
.back,
.face,
.back:after,
.face:after {
 position: absolute;
 content: "";
 top: 0;
 left: 0;
 right: 0;
 bottom: 0;
 border-radius: 3px;
 pointer-events: none;
 -webkit-backface-visibility: hidden;
 backface-visibility: hidden;
}
.back {
 border: 5px solid white;
}

.back:after {
 font-size: 2.5rem;
 line-height: 100%;
 background:
 50% 50% no-repeat,
 0 0 no-repeat #fff;
 font-style: normal;

CSS3 Transforms | 325

 box-shadow: inset 1px 1px 0 currentcolor,
 inset −1px −1px 0 currentcolor,
 1px 1px 1px rgba(0,0,0,0.1);
 color: rgb(119, 160, 215);
 background-image:
 url('data:image/svg+xml;utf8,<svg width="40" height="40"
 xmlns="http://www.w3.org/2000/svg"><g><text xml:space="preserve"
 text-anchor="middle" font-family="serif" font-size="40" id="svg_1"
 y="30" x="20" stroke-width="0" stroke="rgb(119, 160, 215)"
 fill="rgb(119, 160, 215)">❀</text></g></svg>'),
 -webkit-linear-gradient(-15deg,
 rgba(0, 0, 0, 0), rgba(0, 0, 0, 0.025));
 background-image:
 url('data:image/svg+xml;utf8,<svg width="40" height="40"
 xmlns="http://www.w3.org/2000/svg"><g><text xml:space="preserve"
 text-anchor="middle" font-family="serif" font-size="40" id="svg_1"
 y="30" x="20" stroke-width="0" stroke="rgb(119, 160, 215)"
 fill="rgb(119, 160, 215)">❀</text></g></svg>'),
 linear-gradient(75deg,
 rgba(0, 0, 0, 0), rgba(0, 0, 0, 0.025));
 -webkit-transform: rotatey(0deg);
 -webkit-transform: rotatey(0deg) translatez(0);
 transform: rotatey(0deg)
 transform: rotatey(0deg) translatez(0);
}
.face {
 -webkit-transform: rotatey(180deg);
 -ms-transform: rotatey(180deg);
 transform: rotatey(180deg);
}
#board > div.flipped {
 -webkit-transform: rotatey(180deg);
 -webkit-transform: rotatey(180deg) translatez(0);
 transform: rotatey(180deg);
 transform: rotatey(180deg) translatez(0);
 box-shadow: −1px 1px 1px rgba(0,0,0,0.25);
}

In CubeeDoo, we use transforms to flip the card, and transitions to do the flip in 250
milliseconds. The cards are shells with two children: the face and back of the card.
Because we are using CSS classes to style the front of our cards, we can create all our
card faces with generated content. It is easier to maintain a single code path. So, although
we could have put the colors’ color scheme directly on the face with background-
color, and put the SVG shapes as a background-image directly on the face <div>, the
number and second shapes theme need to be generated content. To simplify, we put the
SVG and colors on the ::after pseudoelement generated content as well.

When the user taps or clicks on a card, the card flips. This is done with transform:
rotatey(180deg) translatez(0); on the card container. The issue is that the HTML
always has the back after the face in the source order:

326 | Chapter 10: CSS3: Transforms, Transitions, and Animations

<div data-value="0" data-position="2">
 <div class="face"></div>
 <div class="back"></div>
</div>

Therefore, the back will always sit on top of the face. To hide the back when the card is
flipped and show the face instead, we add backface-visibility: hidden;. That way,
when the card is facing away from us, we do not see the elements that are facing away
from us (we’ll see the face and not the back).

By adding the 3D transform of translateZ(0), we hardware accelerate it in supportive
devices, ensuring that the animation will be performed on the GPU instead of the CPU.
The reason we include four declarations:

 -webkit-transform: rotatey(180deg);
 -webkit-transform: rotatey(180deg) translatez(0);
 transform: rotatey(180deg);
 transform: rotatey(180deg) translatez(0);

... is because not all browsers support 3D transforms. If a browser doesn’t understand a
line of CSS, it skips the whole property/value declaration. Therefore, we first declare
without translateZ() for browsers that don’t understand it, then with translateZ()
for browsers that do, both prefixed and unprefixed. That third line—unprefixed yet
targeting browsers not supporting 3D—will be understood by browsers that support
transforms but not 3D transforms.

We also include transform-style: preserve-3d, as we want to ensure the front and
the back of the card—the card’s children—are in the same 3D space as the card.

As we move from game level 1 to level 2 to level 3, the height of the cards gets smaller.
Since our transition declaration of 0.25 s is on the default state, when the cards shrink,
they do so over 0.25 s.

Generally, you don’t want to transition height. Transitioning box model properties
causes the browser to reflow every frame, causing unnecessary reflows and repaints.
This is even more of an issue on mobile, and is exacerbated by having a large number
of DOM nodes. A possible solution would be to transition a transform: scaleY
(0.8), as that would maintain the cards’ width but only shrink the height, but this will
distort the shapes and number themes. We’ll leave this as is. The card height changes
only happen a maximum of two times per game. We were careful not to have too many
DOM nodes. This transition, with the recalculation of all of the DOM nodes, while not
optimal, works well enough for this scenario.

A better solution would be to animate the scaling and switch out the class based on the
animation end. As you’ll see next, animation is much more powerful than transitions.
With animations, we would be able to change a class or otherwise add event listeners
at the animation’s end.

CSS3 Transforms | 327

CSS3 Animation
As a counterpart to transitions and transforms, explicit animations provide a way to
declare repeating animated effects with keyframes.

For simple transitions, when the starting value and ending value are known, and only
a single iteration of the animation is required, the transition properties may suffice
for your animating needs. If you need finer control of the intermediate values of your
animation, or you need to repeat your animation, the animation properties of the CSS3
animation module, with keyframes, can be used.

The animation properties include:
animation-name

The name you gave your keyframe animation definition, or a comma-separated list
of multiple animation names. The default value is none, or no animation. Obviously,
therefore, you need to include an animation-name if you want an element to be
animated.

animation-duration

The length of time in seconds or milliseconds an animation takes to complete one
cycle. The default value is 0s, which means that no visible animation will take place.
In other words, the animation-duration property, with a value of greater than 0
seconds, is required.

animation-timing-function

How the animation will progress over one cycle of its duration, taking the same
values as the transition-timing-function. Although the values are discreet, you
can “animate” the animation-timing-function in your keyframe definitions. The
default value is ease.

animation-iteration-count

Number of times an animation cycle is played as an integer, or infinite. The default
value is a single iteration.

animation-direction

Whether or not the animation should play in reverse on alternate cycles (alter
nate) or not (normal).

animation-play-state

Defines whether the animation is running or paused. A paused animation displays
the current value of the animation in a static state. When a paused animation is
resumed, it restarts from the current value. The default value is running.

328 | Chapter 10: CSS3: Transforms, Transitions, and Animations

7. In CSS, IDENTs, or identifiers, including element names, classes, IDs, and keyframe animation names, and
can contain only the characters [a-zA-Z0-9] and ISO 10646 characters U+00A0 and higher, plus the hyphen
(-) and the underscore (_); they cannot start with a digit, two hyphens, or a hyphen followed by a digit.
Identifiers are not quoted.

animation-delay

Defines when the animation will start. Interestingly, if the value is negative, the
animation will start partway through the animation. For example, in a 10 second
animation, if the animation-delay is -4s, the animation will start immediately 40%
of the way through the first animation cycle.

animation-fill-mode

Defines what values are applied by the animation before the animation starts and
after it ends. There are 4 possible values:
backwards

Applies the values defined in its 0% keyframe as soon as the animation is ap‐
plied, staying on the 0% keyframe through the duration of the animation-
delay.

forwards

Maintains the values defined in the last keyframe after the animation is com‐
plete, until the animation style is removed from any selector targeting that node.

both

Implements both forwards and backwards after the end and before the start
of the animation respectively.

none

The default value, does nothing, or removes any forwards or backwards type
behaviors.

animation

The shorthand for the animation properties, space-separated values for
the animation-name, animation-duration, animation-timing-function,
animation-delay, animation-iteration-count, animation-direction, and
animation-fill-mode properties. For a multiple animation declaration, include a
grouping for each animation name, with each shorthand grouping separated by a
comma.

Keyframes
Keyframe animations involve setting the state of your elements at different stages of an
animation. Keyframes are specified using the @keyframes rule. The rule consists of the
keyword @keyframes, followed by an identifier giving a name for the animation followed
by a set of style rules encased in curly braces ({}). You create the identifier7 (name) of

CSS3 Animation | 329

8. Animations are supported in IE10, BlackBerry, Android, Chrome for Mobile, iOS, and all modern mobile
browsers. They are not supported in Opera Mini, which is expected. They are still prefixed only in WebKit
browsers and Boot2Gecko. Firefox dropped the prefix in Firefox 16, Opera with Opera 12.1, with Opera
Mobile never having support for the prefixed version. IE began supporting animations with IE10, sans prefix.

your animation. Do not quote the animation name or identifier. This name is the name
used as the value of the animation-name property.

The keyframe selector for a keyframe style rule consists of a comma-separated list of
values. You can use percentage values or the keywords from and to. For example:

@keyframes crazyText {
 from {
 font-size: 1em;
 }
 to {
 font-size: 2em;
 }
 }

In WebKit browsers, this would read as follows:8

@-webkit-keyframes crazyText {
 from {
 font-size: 1em;
 }
 to {
 font-size: 2em;
 }
 }

The keyword from is equivalent to the value 0%. The keyword to is equivalent to the
value 100%. Note that the percentage unit specifier must be used. Therefore, “0” is an
invalid keyframe selector.

If you need to define more than two points, more than the start and finish of an ani‐
mation, having more granular control of the animation by defining keyframes for points
in between, use percentages. For example:

@-prefix-keyframes rainbow {
 0% {
 background-color: red;
 }
 20% {
 background-color: orange;
 }
 40% {
 background-color: yellow;
 }
 60% {
 background-color: green;
 }

330 | Chapter 10: CSS3: Transforms, Transitions, and Animations

 80% {
 background-color: blue;
 }
 100% {
 background-color: purple;
 }
}

The keyframe selectors are used to specify the percentage along the duration of the
animation that the keyframe represents. An analogy would be that the 20%, 40%, 60%,
and so on are pseudoclasses of the transition duration (they’re not, but you can think
of them that way). The keyframe is specified by the style rules (the code block of property
values) declared on the keyframe selector.

The percentage or keyframe selector determines the placement of the keyframe in the
animation. To make them easy to follow, I recommend keeping the keyframe selectors
in order of the progression, from 0% to 100%, though this is not required.

Style blocks for keyframe selectors consist of properties and values. The animatable
properties are listed in “CSS3 Transforms” on page 314. Properties that are unable to be
animated are ignored in these rules.

To determine the set of keyframes, all of the values in selectors are sorted in increasing
order by time. Keyframe selectors do not cascade; therefore an animation will never
derive keyframes from more than one keyframe selector. If there are any duplicates,
then the last keyframe selector specified inside the @keyframes rule will be used to
provide the keyframe information for that time.

The animation engine will smoothly interpolate style between the keyframe selectors.
In these examples, shown in the online chapter resources with an animation duration
of 10 seconds with linear animation timing function: at the 5 second mark, the crazy
Text is at font-size: 1.5em and the element with the “rainbow” animation has a
yellowish-green background.
Applying animations

We may have defined an animation, but we haven’t attached an animation to any ele‐
ments. Once we have defined an animation with @keyframes, we apply it using, at min‐
imum, the two required properties: animation-name and animation-duration. The
other related animation properties are optional:

div {
 animation-name: crazyText;
 animation-duration: 1s;
 animation-iteration-count: 20;
 animation-direction: alternate;
 animation-delay: 5s;
 animation-fill-mode: both;
}

CSS3 Animation | 331

http://www.standardista.com/mobile

The preceding rule attaches the “crazyText” animation, sets the duration to 1 second
per iteration, makes it execute a total of 20 times with every other iteration play in
reverse, waiting 5 seconds before commencing the first iteration.

The animation-fill-mode of both means that when this <div> is first rendered to the
page, the font-size will be set to 1em as per the 0% or from keyframe, prior to the 5
second delay before the first iteration starts.

The font-size will then double in size over one second, then shrink back to 1em over
the next second because we set animation-direction: alternate. Had we set
animation-direction: normal, or omitted the animation-direction property alto‐
gether, the font-size would have doubled in size over one second, and then jumped
back to 1em before doubling over one second again in the second iteration and all sub‐
sequent iterations.

When the animation has completed the 20 iterations, 25 seconds after the animation
was applied (20 one-second iterations plus a five-second delay), the font-size will
remain at the last keyframe because we set animation-fill-mode: both. With
animation-direction: alternate, the font-size will be 1em. Had we omitted the
animation-direction property altogether or set animation-direction: normal, then
the last keyframe would have been at 2 em. The <div> will remain at this font size
“forever” unless a font-size declaration targeting this node overrides it.

This could have been written, with some padding and the rainbow animation added,
with the shorthand:

div {
 padding: 20px;
 animation:
 crazyText 1s 20 5s alternate both,
 rainbow 4s infinite alternate;
}

Bouncing ball animation

As with transitions, any property that has a discoverable midpoint can be animated.
Two exceptions are visibilility and animation-timing-function. Neither has a
midpoint, but both can be added to a keyframe style block.

If you include the animation-timing-function in a keyframe, the animation will
switch from the default or current timing function to the newly declared timing function
at that point. Rarely used, this can actually come in handy. For example, if you are
creating a bouncing ball, gravity dictates that the ball will get progressively faster (or
ease-in) as it drops, and progressively slower as it bounces up (or ease-out):

332 | Chapter 10: CSS3: Transforms, Transitions, and Animations

9. To learn more about how to code animations, the online chapter resources have links to an animation tutorial
deck that shows every animation property “in action.”

@keyframes bouncing {
 0% {
 bottom: 200px;
 left: 0;
 animation-timing-function: ease-in;
 }
 40%, 70%, 90%{
 animation-timing-function: ease-out;
 bottom: 0;
 }
 55% {
 bottom: 50px;
 animation-timing-function: ease-in;
 }
 80% {
 bottom: 25px;
 animation-timing-function: ease-in;
 }
 95% {
 bottom: 10px;
 animation-timing-function: ease-in;
 }
 100% {
 left: 110px;
 bottom: 0;
 animation-timing-function: ease-out;
 }
}

There are several things to note about this code example (which is in the online chapter
resources). We have three keyframes that have the exact same values—the 40%, 70%,
and 90% keyframes—so we put them all on one line. We separated the keyframe selectors
with commas just as we do normal CSS selectors.

We have more than one property being animated, but we don’t declare all the values in
every keyframe block. The left-to-right motion is smooth, and therefore we only needed
to declare that property twice: in both the 0% and 100% blocks. We did move the ball
up and down numerous times with granular control, so unlike the left value, we de‐
clared the bottom value in every keyframe.

We’ve also animated or changed the animation-timing-function to make the bounce
look smooth and natural. Without it, our bouncing ball animation was very jumpy. The
animation-timing-function is the only animation property that can be included with‐
in keyframe declarations.9

CSS3 Animation | 333

http://www.standardista.com/mobile
http://www.standardista.com/mobile
http://www.standardista.com/mobile

Animating sprites

Generally when I think of HTML and animation, I think of animating a single node to
a new position, or something dreadfully boring. One feature of CSS animations is cre‐
ating character animations, like animating lemmings as they jump, or in this case float,
off a cliff.

Figure 10-7. A sprite of a lemming for character animation

To create character animation using a sprite, we use the animation-timing-function:
step(x, start) value. The step values don’t move smoothly through the keyframes.
Rather, they break up the animation into the number of steps declared and jump from
one step to the next. To animate the sprite in Figure 10-7, we move the background
image:

.lemming {
 height: 32px;
 width: 32px;
 background-image:url(lemming.gif);
 background-repeat: no-repeat;
 -webkit-animation: lemming 1s steps(8,end) alternate infinite;
 animation: lemming 1s steps(8,end) alternate infinite;
}
@-webkit-keyframes lemming {
 from {
 background-position: 0 0;
 }
 to {
 background-position: −256px 0;
 }
}

@keyframes lemming {
 from {
 background-position: 0 0;
 }
 to {
 background-position: −256px 0;
 }
}

334 | Chapter 10: CSS3: Transforms, Transitions, and Animations

Note that the sprite is 256 px wide, so our background-position: 256px 0; would
normally show no background image. With animation-timing-function, you can de‐
clare steps(x, start), which specifies that the change in the property value happens
at the start of each step and steps(x, end), which means the change in property comes
at the end of the step.

Let’s use an animation with five steps. If you declare steps(5, start) the jump will be
at the start of the step, so you’ll get five steps at the 20%, 40%, 60%, 80%, and 100%
marks—or basically the 0% really doesn’t show, because the change in property from 0
to 20% happens at the start of the step, the viewer sees the 20% mark from 0 to 20%
time. If you declare steps(5, end), the jump to the next step will be at the end of the
interval, so it will appear to show the 0%, 20%, 40%, 60%, and 80% marks. This is why
our last “step” is beyond the width of the sprite since the 100% mark is never shown.

By creating a motion sprite and animating the background-position, moving that
sprite using steps, you can create motion animations. The online chapter resources have
more examples of sprite animation.
CubeeDoo animations

In CubeeDoo, we have very simple animations. When a pair of cards is matched, the
cards are animated as they disappear. And, when a score is a high score, it is highlighted
with a blink-like animation in the high score area on larger screens:

#board > div.matched {
 -webkit-animation: fade 250ms both;
 animation: fade 250ms both;
}
#board > div.matched:nth-of-type(1) {
 -webkit-animation-delay: 250ms;
 animation-delay: 250ms;
}

@-webkit-keyframes fade {
 0% {
 -webkit-transform: scale(1.0) rotatey(180deg) rotate(0) translatez(0);
 }
 100% {
 -webkit-transform: scale(0) rotatey(180deg) rotate(720deg) translatez(0);
 }
}
@keyframes fade {
 0% {
 transform: scale(1.0) rotatey(180deg) rotate(0) translatez(0);
 }
 100% {
 transform: scale(0) rotatey(180deg) rotate(720deg) translatez(0);
 }
}

CSS3 Animation | 335

http://www.standardista.com/mobile

#highscores li.current {
 -webkit-animation:
 winner 500ms linear 8 alternate forwards;
 animation:
 winner 500ms linear 8 alternate forwards;
}
@-webkit-keyframes winner {
 0% {background-color: hsla(74, 64%, 59%,1);}
 100%{background-color: hsla(74, 64%, 59%,0)}
}
@keyframes winner {
 0% {background-color: hsla(74, 64%, 59%,1);}
 100%{background-color: hsla(74, 64%, 59%,0)}
}

When the matched class is added to a card, the fade animation gets attached to that card.
The matched class is added to the two cards that have the flipped class if the two flipped
cards match. Otherwise, if the two flipped cards aren’t a match, the flipped class is
removed, and the transition described in our sections on transitions occurs. We’ve
included 3D transforms to ensure that the animation is handled on the GPU instead of
the CPU if possible in the browser and device.

The fade animation is a misnomer. It doesn’t fade. It spins and shrinks over 250 ms. At
the end of the animation, the JavaScript removes both the flipped and matched classes,
and resets and hides the card by setting data-value="0" attribute/value pair.

When the game ends, the list of high scores is regenerated. If the current high score is
one of the top 5 high scores, the class current gets added to the score as it gets written
to the page. We control adding and removing class names with JavaScript, and we create
and execute animations with CSS purely based on the class. In the case of a high score,
the winner animation is executed, which is a fading green background color that pulses
on and off eight times: four times from fully opaque to fully transparent, and four times
from fully transparent to fully opaque. This is controlled by declaring animation-
iterations: 8; with animation-direction: alternate; in the shorthand anima
tion property. The current high score will remain with a green background until the
scores are redrawn. We didn’t put this animation in a 3D space as we are doing a very
simple repaint with no reflow, so it should perform well by default.

Transitions, Animations, and Performance
CSS animations allow you to write declarative rules for animations, replacing lots of
hard-to-maintain animation code in JavaScript.

Browsers are optimized to handle CSS animations. As such, CSS animations are more
performant than JavaScript animations. If you can, always use CSS to animate instead
of JavaScript. By using CSS, you allow the browser to optimize tweening and frame
skipping, letting the browser optimize for performance.

336 | Chapter 10: CSS3: Transforms, Transitions, and Animations

While CSS animations are more performant than JavaScript animations, there are some
drawbacks. Similar to JavaScript animations, CSS animations do suck up battery power.
But CSS doesn’t occupy the CPU like JavaScript, so will generally be less jumpy.

CSS has last priority on the UI thread. This means that if you are downloading a huge
JavaScript file that takes eight seconds to load, the page will not start animating during
those eight seconds. While this may not seem like a big issue, there is a quirk: while the
animation won’t start, the animation-delay expires. So, if you have 15 animations each
starting a second apart using animation delay of 0 s, 1 s, 2 s, and so on, the first eight
animations will all happen when the page had finally finished loading and rendering,
and the next seven animations will each occur when they were timed to occur.

To resolve this issue, you can add a loaded class to the document and base the animations
on being an element that is a descendant of the loaded class.

Also, some properties perform better than others when animated. If you change the
layout of the page forcing a reflow, the animation will not perform as well as when your
animation is simply a repaint of an object. For example, the increase font size animation
we did earlier is a stupid animation! The animation forces repeated reflows of the page:
as font resizes, the element is resized. As the element is resized, the entire document is
reflowed before the repaint. If we simply scaled the element using CSS transforms, and
animated the transform, the browser would only be redrawing the animated element,
which performs much better.

Remember that reflows are expensive and take more rendering time. To appear smooth,
you want your animation frames to be fully drawn in under 16.67 ms.

There is also an animations API to capture events from the CSS animations. animation
Start, animationEnd, and animationIteration are events that occur with every iter‐
ation of the animation. We aren’t detailing this here, but there are links to resources in
the online chapter resources.

We’re not done with CSS: we still have a few more features to discuss, which we do in
Chapter 11.

CSS3 Animation | 337

http://www.standardista.com/mobile

CHAPTER 11

CSS Features in Responsive Web Design

Your content should be designed to work on any device because it will be viewed on
every device, everywhere. The website we’re building today with the goal of displaying
it on a desktop, smartphone, and tablet may be viewed on a 52-inch TV screen or 3 ×
5-inch GPS LCD screen. By starting with a flexible foundation, your site should be able
to grow or shrink gracefully no matter the hardware that loads it.

For your website to adapt to any screen size, you want to make it as flexible as possible.
Using percents and rems, instead of pixels for widths and font size, will bring you 90%
of the way there. Add in some media queries, and you’re 95% of the way there.

There are several CSS features, other than media queries and other CSS3 features we’ve
covered so far, that are helpful in developing responsive websites and will bring you up
to the 99% mark. Why 99% and not 100%? There is always more you can do to make a
site more responsive, more accessible, prettier, faster, etc., but at some point, you have
to say “this is good enough” or “this book is way too long.”

Media Queries, Breakpoints, and Fluid Layouts
I mentioned this before, but it bears repeating: don’t create layouts for specific phone
sizes. Rather, slowly expand (or shrink) your site in a browser. When the layout starts
looking less than optimal, that is where you should alter your design for the next set of
devices. You may need eight layouts for tiny, xx-small, small, medium, large, x-large,
xx-large, and huge screens, or you may have a single layout that works well across all
devices. You won’t know until you view the layout in varying sizes, but do view your
layout in a plethora of sizes to make sure your layout works well everywhere.

As you change the size of your browser and decide that a new layout is needed, the width
at which the layout changes is called a breakpoint. Don’t just select 320, 480, 640, and
960 as breakpoints because that is what everyone else is doing. Instead, do what makes
sense for your site.

339

When you determine that you need a breakpoint, use media queries to target a span of
viewport sizes with a specific layout. You also don’t have to choose a single breakpoint.
You can alter the layout of your header, footer, navigation, and main content at different
breakpoints if that makes the most sense. There is no right or wrong, there is just better
and not as good.

Once you’ve determined where the breakpoints are for your design or for the usability
of your application, you can target the layout changes and feature highlighting with
media queries. You can also target high pixel-density displays with larger images, re‐
membering that larger images mean larger file sizes. You can use JavaScript with media
queries to send high DPI images only to high pixel-density displays with good band‐
width, and perhaps one day we’ll be able to match media queries to bandwidth—but
we’re not there yet.

We covered media queries in Chapters 2 and 7, so you should already understand the
syntax.

Multiple Columns
The CSS columns property enables us to create multiple columns for laying out text like
a newspaper. The columns property is shorthand for column-count and column-width.

The column-width property is the optimal column width, as if you were declaring a
min-column-width, which is not an actual property. The column-count is the maximum
number of columns, as if you were declaring max-column-count, which is also not an
actual property.

The column-count property has precedence. The browser adjusts the width of the col‐
umn around that suggested column-width, providing for up to as many columns as
listed as the integer value of column-count, as long as each column is at least as wide as
the length value provided as the value for column-width. Columns allow for scalable
designs that fit different screen widths.

We define the gap between columns with the column-gap property, and whether to
include a dividing line between columns by declaring a line with the column-rule rule
property. The column-gap property takes as its value a length, with the default value
being the key term normal, which is 1em in most browsers.

Using columns will make your very wide areas of content more legible. And, as viewport
sizes narrow, the number of columns will shrink. While your 24-inch monitor may see
six columns, your HTC One in portrait mode will only have one column if the following
style is set:

columns: 240px 6;

The preceding line reads “divide the element’s content into a maximum of six columns,
ensuring that no column is narrower than 240 px wide.” The iPhone is 320 px wide, so

340 | Chapter 11: CSS Features in Responsive Web Design

1. The various column properties are supported in all mobile browsers including Opera Mini, starting with
IE10, and must be prefixed for WebKit and Firefox.

you can’t fit two columns in portrait mode, but you could in landscape if there was no
padding or gap. A 1920 × 1080 display could fit eight columns, with no column gap.
However, the browser will not render more than six columns, even if more columns of
the declared width could fit in the space provided.

Similar to the border shorthand, the column-rule is shorthand for the column-rule-
width, column-rule-style, and column-rule-color properties, and takes the same
values as the border shorthand, too. As long as the column-rule-width is narrower than
the column-gap, the rule will show. These column properties are animatable, with the
exception of column-rule-style:

p {
 margin: 0 0 1em;
}
div {
 padding: 1em;
 margin: 1em;
 border: 2px solid #ccc;
 columns: 240px 6;
 column-gap: 2em;
 column-rule: 2px dashed #ccc;
}

This code snippet1 will create a multicolumn layout in a large device, and display in a
single column on a device (or parent) narrower than 480 px + 4 ems, as shown in
Figure 11-1, with examples in the online chapter resources.

Figure 11-1. Columns as seen on narrow and wide screens

Multiple Columns | 341

http://www.standardista.com/mobile/
http://www.standardista.com/mobile/

An interesting note in the preceding code is the margin set on the paragraphs: one of
the reasons developers have been reluctant to use columns in the past is because of the
way the columns sometimes leave gaps at the top or bottom of a column. Uneven bot‐
toms can be OK: you want to make sure your gap is not at the top of a column. If a node
with a margin or padding top starts a new column, there will be a gap at the top of that
column. To ensure no gaps at the top of columns, set padding and margins on the bottom
of paragraps and other children of your columns.

The column-span property enables elements to span across all columns when its value
is set to all. If an element has column-span: all; set on it, the content above it will be
divided among all the columns equally, that element will then cut across the entire
parent, and the subsequent content will again be rendered in columns.

By default, all columns will be set to approximately the same height, divided equally
across all columns. By setting the height of the parent, and the column-fill property
to fill, (rather than the balance default), the columns will be filled sequentially. While
the other column properties are well supported, column-span and column-fill are not.

To set an exact column width, the calculation needs to include the width, column-
width, column-gap, and column-rule-width properties.

To effectively use columns in a responsive layout, make sure that the parent of the
columns is a fluid width. Declare the maximum number of columns you would want
displayed in a wide screen and the minimum width you would want to see displayed in
any screen, and your content will be responsive.

While no media queries are necessary for this to work, shrink and grow your browser
window to the smallest and widest widths possible to assess whether media query break
points makes sense.

Border Images
border-image allows for a single image to be used to create decorative borders on any
element no matter the size or aspect ratio of that element. We can create decorative
borders for elements, beyond simple rounded corners, with a single, very small image
file size or even with gradients.

The border-image property virtually slices an image into nine sections, putting the
corners of that image in the corners of your element, with the width of your left and
right borders and the height of your top and bottom borders, and either repeating or
stretching the noncorner components to cover your element. You can take a single,
relatively small image and stretch it across a small button or a whole page.

Figure 11-2 shows three border images, and how one would slice them up in an image-
editing program before browsers supported the border-image shorthand property, and
how we tell the browser to virtually slice up the image now.

342 | Chapter 11: CSS Features in Responsive Web Design

Figure 11-2. Small images that we virtually slice to create border and background ef‐
fects on elements of varying sizes

Native iOS apps have buttons, like the tiny button shown in the center of Figure 11-2.
We created those buttons earlier with gradients. We could have created that button look
with the sliding door method or the several other hacks we used to make buttons last
decade. Or, we could use a single small image for every button, whether that button is
10 × 10 px or 200 × 300 px, by using CSS border-image.

Figure 11-3 shows three examples of elements with a border image set using the three
small images from Figure 11-2. Let’s learn how to do it!

Figure 11-3. Elements with border-image set, with the four-corner slices being in the
corners, and the top (T), right (R), bottom (B), and left (L) slices repeated or stretched

We’ve used the images from Figure 11-2 as the border images for the elements in
Figure 11-3, maintaining the corners while repeating (in the case of the stamp) or
stretching the middle section of the border image to cover the entire element.

In the stamp example, we’ve repeated the middle slices (T, R, B, and L) to create the
outline of a stamp. To ensure that the image is not broken, the width and height should
be multiples of the slice’s width (T and B) and height (R and L). While we’ve repeated
the top, bottom, and sides, we’ve maintained the four corners (listed as 1, 2, 3, and 4),
creating a stamp-like effect.

The border-image is a shorthand property used to declare border-image-source,
border-image-slice, border-image-width, border-image-outset, and border-
image-repeat.

The syntax for the shorthand is:
 -prefix-border-image: <source>
 <slice {1,4}> / <width {1,4}> <outset> <repeat{1,2}>;

Border Images | 343

Browsers that support border images only support the border-image shorthand prop‐
erty, rather than the separate properties that make up the shorthand. We’ll cover the
various properties that make up the shorthand border-image property, but I recom‐
mend using the shorthand instead of the longhand properties described next.

Note that the current syntax has changed several times since the first implementation.
If you’re reading a blog post on the topic, make sure it’s using the current syntax.

Setting Border Images
Border images don’t work if there is no border. The first step is to declare a border for
our elements. As we know from Chapter 9, border-style is the only required property:

.button {
 border: solid;
}
.stamp {
 border: solid;
}
.arrow {
 border: solid;
}

If we do not include a border-style with a value other than none or hidden the border
image will fail to display.
border-image-source

The border-image-source is the URL, gradient, or data URI of the image you want to
use as your border image. In the Figure 11-3 examples, while the longhand property is
not yet fully supported, it is as if we had used border-image-source:

url(stamp.gif), but instead we start our three border-image shorthand property dec‐
larations with:

.button {
 border: solid;
 border-image: url(button_bi.png) ...
}
.stamp {
 border: solid;
 border-image: url(stamp.png) ...
}
.arrow {
 border: solid;
 border-image: url(arrow.png) ...
}

Just as we can include gradients, base-64, GIF, JPEG, PNG, and even SVG images as
background images, you can include all these image types as border images.

344 | Chapter 11: CSS Features in Responsive Web Design

border-image-slice

The border-image-slice property defines from one to four lengths that set the distance
from each edge of the image marking the area that will be used to cut or slice up our
border image, as shown in Figure 11-2. The border-image-slice also defines whether
the middle part of the border-image, labeled M in Figure 11-3, is discarded or fills the
background of the element.

The border-image-slice property values represent inward offsets from the top, right,
bottom, and left (TRouBLe) edges of the image, respectively. You define four imaginary
lines that the browser then uses to divide the one border image into nine regions: four
corners, four edges, and a middle, as demonstrated in Figure 11-3. The four corners are
placed in their respective corners, scaled to fit the space allotted to them by the border
width properties. The four sides are stretched or repeated or a combo of the two (round),
depending on the values of the other border-image properties.

In addition to the four values, the unprefixed version of the border-image-slice
property takes the optional value of fill to preserve the middle part of the border
image. If the key term fill is not present, the middle part of the border image file is
discarded. Whether that middle component is stretched, repeated, or rounded depends
on the value of the border-image-repeat property described on page 347.

In our examples, we’ve sliced the image 5 px in from each side for our button; 9 px for
the stamp; and 0 px from the top and bottom, 5 px from the left, and 20 px from the
right of our arrow. We want the middle section of the image to show for the arrow and
button, but not for the stamp. If we were writing shorthand, we would have written
border-image-slice: 5px fill;, border-image-slice: 9px;, and border-image-
slice: 0 5px 0 10px fill; respectively. Instead, we include them in the shorthand
property with no length units, and the fill for the button and arrow:

.button {
 border: solid;
 border-image: url(button_bi.png) 5 fill...
}
.stamp {
 border: solid;
 border-image: url(stamp.png) 9 ...
}
.arrow {
 border: solid;
 border-image: url(arrow.png) 0 5 0 20 fill...
}

Note we’ve used no length units. If you are setting the slice values in length, and the
value will be interpreted as pixels, omit the units. If you are using percentage values,
include the percent.

Border Images | 345

border-image-width

The border-image-width property sets the width of the element’s border. If the border-
image-width property is declared as part of the border-image shorthand, it takes
precedence over the border-width property. If omitted and the border-width is omit‐
ted, the width of the borders will be 3 px in most browsers, the value of which is
medium, the default value of the border-width property.

Since there are quirks with the value of auto, it is often recommended to include border-
width as a separate property or part of the border shorthand, rather than part of the
border-image shorthand:

.button {
 border: solid 5px;
 border-image: url(button_bi.png) 5 fill...
}
.stamp {
 border: solid 9px;
 border-image: url(stamp.png) 9 / 9px ...
}
.arrow {
 border: solid;
 border-width: 0 5px 0 20px;
 border-image: url(arrow.png) 0 5 0 20 fill / 0 5px 0 20px...
}

The four corners, labeled 1, 2, 3, and 4 in Figure 11-3, will be the width of the left and
right borders and the height of the top and bottom borders. Having the border-image-
width the same width as the border-image-slice will create the best-looking border
image with no distortion. But they don’t need to have the same values. The slice will be
stretched (or shrunk) to the width of the border-image-width if the values are not the
same.

We add a slash between the border-image-slice values and the border-image-
width values. In the unprefixed version, we rely on border-width—a positive, nonper‐
centage length unit—to define the width of our borders.

Remember the box model! border-width is part of the box model and will affect these
elements. As you increase the border-image-width, your element will grow larger, un‐
less prevented from doing so with box-sizing: border-box;.
border-image-outset

The border-image-outset property specifies the amount by which the border image
area extends beyond the border box on all four sides. The default value is 0.

Because the stamp is a transparent PNG, and we have not filled it, if we added a
background-color, the color would show through the middle and through the trans‐
parent parts of the border. There are two ways to resolve this border issue: background-
clip: padding-box; or by putting the border image outside the box with the border-

346 | Chapter 11: CSS Features in Responsive Web Design

2. WebKits don’t support the round or space value, replacing them with repeat instead (which is better than
failing, I guess).

image-outset property. The former does not alter the size of the box. The latter does,
similar to the box-shadow; it makes the element appear larger, but does not impact the
box model:

.stamp {
 border: solid 9px;
 background-color: #dedeef;
 border-image: url(stamp.png) 9 / 9px / 12px ...
}

border-image-repeat

Now if you’ve been playing along, testing each line of code, at this point the button and
arrow are looking good, but the stamp not so much. The top, right, bottom, and left
slices stretch by default, with a single slice spreading across the entire width or height
of the element. That looks fine for our arrow and button, and is in fact what we need
the arrow and button to do, but it looks crappy for the stamp. We want the stamp side
slices to be repeated not stretched. For this we have the border-image-repeat property.

The border-image-repeat property allows you to delineate how noncorner images (the
sides and middle) are repeated and/or scaled in TRouBLe order. The specifications
define four possible values, but only two are well supported. stretch means that the
image should not be tiled, but rather stretched to fill the area. repeat means the image
is tiled (or repeated) to fill the area.

If the area allocated for the repeating image is not exactly divisible by the width of the
image, the last tiled image may be cut off. With round the image should be tiled (re‐
peated) to fill the area, with the image being scaled down, possibly losing its aspect ratio,
but ensuring that the image is never cropped. The unsupported space value was sup‐
posed to repeat the slice as many times as can fully fit in the area provided, with the tiles
evenly spaced, showing whitespace between the tiles if the width provided is not an
exact multiple of the image size. This value, however, has been (temporarily?) removed
from the specifications.

In our examples, we used stretch for the button and round for the stamp. You will
always want to stretch gradients, as repeating them creates harsh lines where one tile
ends and the next begins. And while it may seem to make sense to use repeat for the
stamp, we have no way of knowing if the image is evenly divisible by the width of our
design. The round distorts the image ever so slightly, but that is better than having the
image cut off.

Since round isn’t fully supported, repeat is the fallback.2

Border Images | 347

The arrow is an interesting case. We definitely don’t want to repeat it. We can stretch it,
but only slightly before the image becomes distorted. Because of the shape, we set the
top border and bottom slices to zero height so that if we do end up stretching the arrow
part, it doesn’t lose its shape:

.button {
 border: solid 5px;
 border-image: url(button_bi.png) stretch 5 fill;
}
.stamp {
 border: solid 9px;
 background-color: #dedeef;
 border-image: url(stamp.png) round 9 / 9px / 12px;
}
.arrow {
 border: solid;
 border-width: 0 5px 0 20px;
 border-image: url(arrow.png) stretch 0 5 0 20 fill / 0 5px 0 20px;
}

We don’t have to declare stretch on the arrow or button, since it is the default value.
Border-image shorthand

Notice the last code example has semicolons instead of ellipses. That completes the
various properties that make up the border-image shorthand property. However, what
we have won’t work in alld browsers. We include prefixing for mobile WebKit through
Android 4.2 and iOS 5.1 and Opera through 12.1. border-image started being supported
in IE (with IE11) with no prefix:

.stamp {
 background-color: #ccc;
 border: solid 9px transparent;
 -webkit-border-image: url(stamp.png) 9 / 9px / 12px round;
 -o-border-image: url(stamp.png) 9 round;
 border-image: url(stamp.png) round 9 / 9px / 12px;
 }

.button {
 border: solid 5px transparent;
 -webkit-border-image: url(button.png) 5;
 -o-border-image: url(button.png) 5;
 border-image: url(button.png) 5 fill;
 }

.arrow {
 border: solid transparent;
 border-width: 1px 5px 1px 20px;
 -webkit-border-image: url(arrow.png) 1 5 1 20 / 0 5px 0 20px stretch;
 -o-border-image: url(arrow.png) 1 5 1 20 / 0 5px 0 20px stretch;
 border-image: url(arrow.png) stretch 0 5 0 20 fill / 0 5px 0 20px;
 }

348 | Chapter 11: CSS Features in Responsive Web Design

At this point, you hopefully have a good understanding of how to create a border image.
There are a few tools to help you along. There are links to these tools and the demo of
our button, arrow, and stamp in the online chapter resources.

Flexbox
Modern browsers are now supporting what is expected to be the final syntax of the
flexbox layout mode, but all mobile browsers are supporting some version of flexbox,
so it is worth mentioning—especially since flexbox enables developers to easily create
flexible multicolumn layouts (as shown in Figure 11-4).

The flexbox layout mode provides flexibility in laying out web pages. The children of a
flexed container can be laid out horizontally, vertically, in source order or not. The
children can “flex” their width and height and avoid expanding beyond the size of their
parent or empty space.

To work, CSS gives us a few new properties that may still be in flux. The current new
flexbox properties include the ordering and orientation of flex-direction, flex-
wrap, flex-flow, and order properties, the flexibility properties of flex-grow, flex-
shrink, flex-basis, and the flex shorthand, the alignment properties of justify-
content, align-items, align-self, and align-content properties—as well as new
values for the display property.

Figure 11-4. The layout and visual order can be altered without touching the underly‐
ing HTML

The flexbox specifications add two values to the display property: flex and inline-
flex.

Flexbox | 349

http://www.standardista.com/mobile/
http://www.standardista.com/mobile/

3. Include the vendor prefix on the value rather than the property, as display is not experimental, but the new
values are in some browsers. Use display: -webkit-flex; in WebKit browsers and display: -ms-
flexbox; in IE 10. Opera and Firefox 20+ do not require prefixed values.

Apply the flex or inline-flex (-ms-flexbox in IE10) values to the display property
of the parent of the children you want to position.3 Flex’s default creates even columns
out of the flexed item’s children. The additional properties allow us to reverse the order,
wrap, change the order, create centered rows instead of columns, etc., all without touch‐
ing the underlying HTML content. By allowing CSS to provide flexibility in the layout,
in conjunction with media queries, we can send different layouts of the same content
to different viewport configurations.

The various layouts shown in Figure 11-4 were all based on the same HTML:
<article>
 <div>A</div>
 <div>B</div>
 <div>C</div>
</article>

So, how did we change the layout without touching the markup? Well, it wasn’t easy.
We’re still dealing with various syntaxes in different browsers:

article {
 display: -webkit-box;
 display: -moz-box;
 display: -webkit-flex;
 display: -moz-flex;
 display: -ms-flex;
 display: flex;
}

The preceding code is basic, creating columns out of the flex’s children. If you look at
the online chapter resources, you’ll notice that the divs are now flowing horizontally, as
if we had floated them left, except that no matter how much content you add to each
nested <div>, they will all be the same height.

Unfortunately, we are still supporting diverse specifications with and without prefixes.
Because display is an old property, when adding vendor prefixes, the prefix is on the
value, not the property: we included -webkit-box and -moz-box for older WebKit and
Firefox through v17. We then include the prefixed candidate recommendation for
Chrome and BB10, IE10, and Firefox 17-19. At the time of this writing, FF 20+, Opera,
IE11 beta, and Opera Mobile are prefix-free. IE10 supports the February 2012 “tweener”
syntax, which is a bit different from the candidate specification supported by the other
browsers and IE11 beta.

350 | Chapter 11: CSS Features in Responsive Web Design

http://www.standardista.com/mobile/
http://www.standardista.com/mobile/

The preceding code only created columns. We could have created rows. We could have
declared even columns. We could have reverse ordered the presentation of those col‐
umns. This can all be done with the other flexbox properties.

Note: Absolutely positioned children of a flexbox cannot be a flexbox
item, as absolutely positioned elements are taken out of the docu‐
ment flow.

Browsers have implemented the flexible box layout module as the specification evolved.
Because of this, different browsers have implemented different syntaxes. The rest of this
section uses only the current spec syntax, which may or may not be current when you
read this. I am including flexbox even though it is in a state of flux because, mixed with
media queries, flexbox is super powerful for mobile development. And even though the
syntax I am including only works in beta versions of browsers (IE11, Chrome 29+) and
Opera Mobile with Presto (Opera 12.1), the general idea of how it works will not change.
Check out the online chapter resources for the more up-to-date property and value
syntaxes.

To align the flexed children vertically instead of horizontally, we could employ the flex-
direction property that specifies the direction of the flexbox layout. Since we omitted
the property, it defaulted to the value row, creating a row out of the children. Other
options include row-reverse, column, and column-reverse.

By default, the flex container is a single line. You can explicitly set the flex-wrap prop‐
erty to nowrap to keep that default single-line layout, or set it to wrap or wrap-
reverse to allow for a multiline layout.

The flex-flow property is shorthand for flex-direction and flex-wrap properties,
which combined define the axis of the flexbox’s layout.

If you want to change the display order of the flexed items, the order property can be
used. The order value is set on the child flexbox elements, not the flexbox parent. To
reverse the order, we can use flex-direction: row-reverse;:

article {
 display: flex;
 flex-direction: row-reverse;
}

To relocate a single child, apply order: −1; or otherwise the lowest value, to make the
child element on which it is applied come first, or order: 1;, or whatever is the greatest
value among the siblings, to make it last:

article {
 display: flex;
}

Flexbox | 351

http://www.standardista.com/mobile/
http://www.standardista.com/mobile/

div:nth-of-type(2) {
 order: −1;
}

If you have an <article> with three <div>s (A, B, and C), all three columns will be in
one row, with B appearing first to sighted users as if the order were B-A-C. Had we set:

div:nth-of-type(2) {
 order: −1;
}

the order would have appeared to be A-C-B.

flex
The flex property defines the flex-grow, flex-shrink, and flex-basis features. Use
the shorthand flex instead of the three longhand properties.

Flexing is the ability of the container to alter its width or height to fill the available space,
allowing us to set sizes for our elements. The flex property is applied on flexbox chil‐
dren, not on the flexbox parent. When set on the flexbox children, the browser sets the
size of the elements on which flex is declared on a per line basis, evenly distributing
the remaining free space on the elements that don’t have flex set.

The flex property can take up to three values. The flex-grow components determines
how much the flex item will grow relative to the siblings within the flexbox parent when
free space is distributed. Similarly (or oppositely, but that’s not a word), the flex-
shrink factor determines how much the element will shrink relative to its siblings when
negative free space is distributed. The flex-basis takes the same values as the width
property, specifies the initial main size of the item, before free space is distributed ac‐
cording to the flex-shrink and flex-grow. The default is flex: 1 1 0;.

If we want A to be twice as wide as B, and B to be twice as wide as C, we could use this
(see the online chapter resources):

div:nth-of-type(1) {
 flex: 4;

}
div:nth-of-type(2) {
 flex: 2;

}
div:nth-of-type(3) {
 flex: 1;
}

352 | Chapter 11: CSS Features in Responsive Web Design

http://www.standardista.com/mobile/

When designing for different viewport sizes, using the flexbox layout properties in
conjunction with media queries can ease the development process. For a wide screen,
you may want to have three columns across the page, putting the aside on the left, the
main content in the middle, and the footer on the right, in one row across the page. For
a small phone, without touching the page content, you could put the main content on
top, followed by the contents of the aside and the footer on the bottom. Semantically, I
would put the content first. Basically, develop mobile first:

<article>
 <div>Main Content in center in wide screen, first in narrow screen</div>
 <aside>Left side in wide screen, after content in narrow screen</aside>
 <footer>Right side in wide screen, button in narrow screen</footer>
</article>

@media screen and (min-width: 600px) {
 article {
 display: flex;
 flex-direction: row;
 }
 article > * {
 flex: 1;
 }
 aside {
 order: −1;
 }
 article > div {
 flex: 3;
 }
}

Note that the order is set on the <aside>, making it appear first, as seen in the example
in the online chapter resources. All three siblings get flex: 1;, which we overwrite
with flex: 3 on the main content. This means the article will be split 20%/60%/20%
for aside/div/footer. Note that display: flex; is on the parent, and the other properties
(other than flex-direction) are on the children.

In this case, we don’t have to declare a separate layout for smaller sized screens since the
default browser layout looks pretty much the same as flex-direction: column. How‐
ever, we could have declared:

@media screen and (max-width: 600px) {
 article {
 display: flex;
 flex-direction: column;
 }
}

Remember to always view your layout in small and large formats, creating media query
breakpoint layout changes where appropriate or necessary.

Flexbox | 353

http://www.standardista.com/mobile/

4. It may also match some pre-Blink Opera browsers, as Opera Presto has added limited support for some
WebKit vendor-prefixed properties and values.

Feature Detection with @supports
While not yet supported in the mobile space, and only at the candidate recommendation
level at the W3C, @supports is already supported in Firefox and Opera. The @sup
ports at-rule will be helpful in enabling us to create separate layouts for browsers that
support flexbox, and a different layout for those that don’t, all without resorting to hacks.

When flexbox is supported, it will be a long while before all of your users’ devices support
flexbox. We will surely be seeing other new CSS features that, like flexbox, use new values
for supported CSS properties—like display: flex;. @supports is similar to @media,
but instead of matching browsers based on browser and device metrics, it will match
based on browser CSS support:

@supports (display: flex) and (background-color: red) {
 h1 {color: green;}
}

This will make all <h1>s green in browsers that support both display: flex; and
background-color: red;. It will not make any background colors red. It just tests for
support of properties and property values.

In the interim, some browsers have added some feature detection through the @media
rules:

@media screen and (-webkit-transform-3d) {
 h1 {
 -webkit-transform: translateZ(0) rotate(5deg);
 -webkit-animation: makemedizzy 1s infinite;
 }
}

The preceding code matches all WebKit devices that support 3D transforms, rotating
and animating the <h1>s within the document. The feature detection component of this
media query is prefixed. This media query will match WebKit browsers that still support
the vendor prefixing for the CSS transform property.4 To match browsers that no longer
need prefixing, use the following:

@media screen and (transform-3d) {
 h1 {
 transform: translateZ(0) rotate(5deg);
 animation: makemedizzy 1s infinite;
 }
}

Only browsers that support transform-3d will understand this media query.

354 | Chapter 11: CSS Features in Responsive Web Design

You can also use the @media query to feature detect support for animation and transi‐
tions, with and without prefixes. This feature detection will eventually be replaced by
@supports, described earlier. When implemented, @supports will support all properties
and values. @media is limited to only three properties, and does not discern between
property values.

So, why is @supports exciting, instead of just allowing browsers to ignore features they
don’t support? @supports will allow you, for example, to lay out a site using flexbox, if
supported, and columns if flexbox is not supported, without inadvertently sending col‐
umns to your flexed layout.

Responsive Media
The flexible layout lets you easily create fluid layouts. Unfortunately, flexbox properties
are not fully supported on all browsers. CSS 2.1 did provide all the tools for creating
fluid layouts: flexbox just makes it easier.

Until flexbox is fully supported on the overwhelming majority of devices, it will still be
easier to work with percentages instead of pixels to create layouts that adapt to your
screen size. Creating fluid layouts seems more difficult once you introduce fixed-width
elements, but there are a few tricks that simplify what may seem like a challenge.

A common example of needing a flexible image is the header image: you want it to take
up the whole width of the screen, no matter the device size, without zooming the page
in, making the text illegible on smaller devices. You need your image to be 100% of the
width whether you have a 440 px screen or a 640 px screen. The solution is so simple it
is actually delineated in the preceding sentence:

header img {
 max-width: 100%;
 height: auto;
}

You can declare fixed-width media, like images and video, to be of any width relative to
the width of their parent container. In the preceding case, instead of displaying in the
image’s default width (width: auto;) it will not grow bigger than its parent. Because
we defined max-width instead of width, it will stop growing once it reaches the media’s
actual width.

If you don’t mind showing a low-resolution image, you can use min-width: 100% or
simply width: 100%;. Unless you are stretching a gradient or other stretchable image,
do not declare an actual value for the height, as it will likely distort the aspect ratio of
the image. That is why we include height: auto;.

Responsive Media | 355

Serving Images
Growing and shrinking images is not the panacea that solves all our mobile image issues.
Mobile devices tend to be very limited when it comes to memory. Yet, we have high DPI
devices that look really crisp when we serve them larger images—which use up more
bandwidth and more memory. Because of limited memory, latency, and different device
resolutions, serving images in our current mobile landscape is no longer cut and dried
like it was when we only worried about desktop.
Retina®: high pixel-density displays

The iPhone 4, released in 2009, was the first device with a “Retina Display” of 326 dots
per inch (DPI). The third-generation iPad, released in 2012, has double the previous
version’s resolution with 264 DPI. The first laptop with high DPI was the Retina Display
MacBook.

The original iPhone is 320 × 480 px and the original iPad was 768 × 1024 px. The first
Retina versions of these devices were 640 × 960 px and 1536 × 2048 px, respectively.
The size of the screens remained the same, but four pixels were displayed in the area
that used to require a single pixel, creating a better resolution, denser screen.

A Retina Display is a high-definition display. I have capitalized Retina Display as it is a
trademark from Apple meaning twice the resolution. It doesn’t actually mean a specific
DPI value. Nor is high resolution limited to Apple devices. In fact, there are devices
currently on the market with higher resolution than the iPhone, but their manufacturers
have to come up with nontrademarked descriptors. The correct term is the nontrade‐
marked “high resolution.”

With the release of the iPhone 4, web developers had to handle Retina Displays, a.k.a.
high-resolution displays.

A device pixel is the smallest point of color displayed by a device, which is not exactly
the same as a CSS pixel. Understanding the difference may help make things less con‐
fusing.

The pixel density is the number, or ratio, of device pixels per CSS pixel. A device may
be able to display more than one (or less than one) device pixel in a CSS pixel. The
resolution, on the other hand, is the product of the width and height of the device, in
pixels.

The density per inch, or DPI, is the density display. The DPI is the quotient of the pixels
displayed by the size in inches by the device. For example, a 4-inch wide device dis‐
playing 800 px is:

800 pixels ÷ 4 inches = 200px per inch

A device that has a DPI of 200 pixels per inch or greater is considered high DPI. If we
take the iPad as an example, where the standard device was originally 768 × 1024 px,

356 | Chapter 11: CSS Features in Responsive Web Design

5. When you see the screen size listed as 9.5 or 9.7 inches, that is the diagonal length of the screen from top-left
corner to bottom-right corner.

and the high DPI standard size version (not the mini) was 1536 × 2048 px, even though
they were both the same size at 7.75 inches tall,5 they are 132 DPI and 264 DPI,
respectively:

1024 pixels ÷ 7.75 inches = 132 pixels per inch
2048 pixels ÷ 7.75 inches = 264 pixels per inch

The higher the DPI, the smaller the device pixel, which allows for higher quality images.
“Higher quality” images are generally just larger images. Continuing with our example,
the newer iPad has double the pixels and therefore benefits from images with four times
the pixels to display the same image as the original iPad.

Images made with image-editing software, the JPEGs and PNGs and GIFs, sent over
the wires, all have the same resolution of 72 px per inch. A low-resolution image dis‐
played on a high-resolution screen can seem blurry.

To fill the background of a full browser, we set the height and width of the image in the
foreground or background to be the original, low DPI dimensions, but we can serve
images four times the size (twice as tall and twice as wide leads to images that are four
times the original size) to make them appear beautifully crisp in high resolution devices.

This causes a few issues: you don’t need to send high DPI images to low DPI devices, as
larger images use more bandwidth and the larger the file size the more memory the file
consumes—and mobile devices are notoriously limited in terms of memory.

While we have no current API to determining how much memory is left, we can de‐
termine the bandwidth. You may choose to only send high DPI images only to users on
a fast network with a high resolution display that can make use of larger images using
a combination of JavaScript and CSS. Media queries based on connection speed have
been proposed, but the traction isn’t there (yet?).

Connection speed. You can query the current connection type with JavaScript with nav
igator.connection.type, which returns the values of UNKNOWN, ETHERNET, WIFI,
CELL_2G, CELL_3G, or CELL_4G:

var connection, speed;
var connection = navigator.connection ||
 navigator.mozConnection ||
 navigator.webkitConnection ||
 {'type':'0'};

// set download speed
switch(connection.type) {
 case connection.CELL_3G: // 3G
 speed = 'medium';

Responsive Media | 357

 break;
 case connection.CELL_2G: // 2G
 speed = 'slow';
 break;
 default:
 speed = 'fast';
}

document.body.classList.add(speed);

You can change the class of the body and target whether you import high DPI images
based on that class:

@media screen and (-webkit-min-device-pixel-ratio: 2),
 screen and (min--moz-device-pixel-ratio: 2),
 screen and (-min-moz-device-pixel-ratio: 2),
 screen and (-o-min-device-pixel-ratio: 2/1),
 screen and (min-device-pixel-ratio: 2) {

 body.fast {
 background-image: url(../hidpi/bgimg.jpg);
 }
}

Note that on some devices, images larger than 1024 px will tile in memory.
background-size

When including higher resolution images, you still want them to occupy the same
physical space as they would in non-Retina devices. The background-size property,
discussed in Chapter 9, enables us to ensure that the site appears the same no matter
the resolution.

Indeed, different displays show 72, 96, or 144 DPI. Whether you’re sending the regular
image or the Retina display image that is four times the size, you still want the back‐
ground images to display as if they were the same size, just crisper if the device can
handle it.

Use the background-size property to ensure that both your 100 × 100 px and your 200
× 200 px Retina image display as 100 × 100 px:

 .icon {
 background-size: 100px 100px;
 background-image(../lodpi/icon.jpg);
 }

@media screen and (-webkit-min-device-pixel-ratio: 2),
 screen and (min--moz-device-pixel-ratio: 2),
 screen and (-min-moz-device-pixel-ratio: 2),
 screen and (-o-min-device-pixel-ratio: 2/1),
 screen and (min-device-pixel-ratio: 2) {

358 | Chapter 11: CSS Features in Responsive Web Design

 .fast .icon {
 background-image(../hidpi/icon.jpg);
 }
}

In the preceding code, even though the high DPI image may be four times the size as
the low DPI image, they will occupy the same space.
Data URIs

In some cases, using data URIs for images may be more performant than making ad‐
ditional HTTP requests to serve regular images. Data URIs are string representations
of binary image files.

Because data URIs use strings to represent binary data, their size can become fairly large,
if not huge. For small images, like avatars and favicons, a data URI will likely improve
download performance by reducing the number of HTTP requests (and possibly DNS
lookups). For large images, like high DPI fullscreen backgrounds, it might be worth the
DNS look up and HTTP request. There is no “right” solution.

A site like Twitter, where they are displaying the avatars of all the people who follow
you, all the people you follow, and all the people they retweet, would not be able to
successfully create a cacheable sprite (described in the next section, “Sprites”) of avatars.
People are able to change their Twitter avatars whenever they like. So, even if Twitter
did create sprites, they would have to be updated with each request. For Twitter’s goals,
data URIs for avatars might make sense. Their site requires small, noncacheable, non‐
spriteable images. A separate HTTP request for each of those images would render much
slower than including the images as data URIs in a single text file with a single HTTP
request.
Sprites

A sprite is a larger image file containing several smaller images. Sprites are used to reduce
the number of HTTP requests and DNS lookups, and increase the download speeds of
web pages for background-image images. Sprites can also be used in animation.

For example, if your site uses many colorful icons or displays the favicons of a plethora
of rating sites, and you know what the limited number or recurring icons will be, you
can put all of those icons in one image. Then, using background-position, show just
sections of that image to the user. If you have single color icons, you may be able to use
font icons, described on page 361. An example of such a sprite is displayed in Figure 11-5.

Responsive Media | 359

Figure 11-5. Sprite of popular application and website icons

Sprites can also be used in animation in conjunction with the steps() animation-
timing-function values, as we did with the Lemming on page 334.

To create a dancing icon, we can use the sprite in Figure 11-6 with the following CSS:
.psy {
 width: 22px;
 height: 40px;
 background-image: url(sprite.png);
 animation:
 dance 4s steps(23, start) infinite,
 movearound 9s steps (23, start) infinite 45ms;
}

@keyframes dance {
 0% {
 background-position: 0 0;
 }
 100% {
 background-position: −506px 0;
 }
}
@keyframes movearound {
 0% {
 transform: translatex(−300px);
 }
 100% {
 transform: translatex(300px);
 }
}

Figure 11-6. Sprite for character animation

In the dance animation, we change the background position. The character we are
animating is only 22 px wide by 40 px tall. Approximately every 45 ms the background
image jumps 22 px to the left, showing the icon to the right of the previous icon. In this

360 | Chapter 11: CSS Features in Responsive Web Design

way we can make the div appear to dance. An animation that jumped three times faster
would be less janky, but would have required over 40 frames of artwork.

Small sprites reduce the number of HTTP requests, reduce the occurrence of flickering
caused by delay in image loads, plus they can be cached and can be used in animation.
Large sprites risk causing issues though, due to memory constraints on mobile devices.
Use sprites wisely, and preferably keep them under 1024 px.
image-set()

Safari 6 and Chrome 21 support image-set(), which enables you to serve different
background images for different pixel density displays:

body > header {
 background-image: url(images/header.png);
 background-image: -webkit-image-set(url(images/header.png) 1x,
 url(images/header_2x.png) 2x);
 height:60px;
}

According to the CSS Working group, this is not ready for implementation. I am in‐
cluding it here just to make you aware. Hopefully this will soon be implementable, as
images are easier to manage in a srcset syntax than media query blocks.
Font icons

Many websites and applications use a plethora of small images that are so common they
are represented in font files. For example, the flower on the back side of the CubeeDoo
cards, and the lighter shapes in the “shapes” theme are actually characters in CubeeDoo’s
default font, as displayed in Figure 11-7.

Figure 11-7. Icons used in CubeeDoo

There are over 10,000 different characters in the default character sets on the majority
of devices. Chances are you’ll find the shape you need, be it an envelope, arrow, or other.
Since font icons are just characters, you can easily change the size and color of the icon
with CSS. Font icons scale without distortion, change color without image-editing soft‐
ware, and, if part of fonts found on most devices, load without requiring additional
HTTP requests.

When you find the character you need, you can include it directly in the HTML, as
generated content using ::before and/or ::after, or include the character in SVG and
include it as a background image or data URI.

Responsive Media | 361

Whenever possible, choose font icons over images. Many companies create their own
character set for their sites with their own unique iconography.

CSS Masking: Creating Transparent JPEGs
There is one other trick I would like to cover: masking. Sometimes you need to use a
PNG because you need transparency. However, a detailed PNG produces a much larger
file size than a JPEG. But JPEGs don’t have transparency, so you may feel like you need
to use a PNG to provide that transparency. Masking allows you to create transparent
JPEGs, so you can serve a JPEG instead of a PNG, saving a lot of bandwidth and memory.

CSS masking enables us to overlay a smaller filesize JPEG with a monotone 8-bit trans‐
parent PNG to create transparent sections in the original JPEG at display. By masking
a JPEG with a transparent PNG, we can create transparencies based off the alpha of an
image, greatly reducing bytes needed:

div {
 background-image:url(images/smallerFileThanPNG.jpg);
 -webkit-mask: url(images/partToShow.png);
}

While downloading two images—the background image and the mask—may add an
additional HTTP request, the savings of bytes can be worth it. In the online chapter
resources example, the original high DPI PNG was 551 KB. Converting the PNG to a
JPEG with no transparency brought the image to 88 KB, and the monotone luminance
mask is only 4 KB, for a total of 92 KB: a huge savings over the transparent PNG.

Masking was originally a WebKit-only property, but is being standardized by the W3C.
The original syntax is still prefixed, and only supported in WebKit, with basic support
in all WebKit mobile browsers.

Client Hints
Client-Hints are not implemented yet, or even in a draft specification form. But since
they may be coming, and if they do, it will be awesome, I am mentioning it here.

Client-Hints are hints that the browser will send to the server along with the request
header. When supported, it is expected to pass three values, dpr, dw, and dh, for device
pixel ratio, device width, and device height:

Client-Hints: dh=1280, dw=768, dpr=2.0

The browser will be able to inform the server via the request header. The server can
then serve the most appropriate image sizes based on the browser specifications.

This may sound like it is similar to user-agent sniffing. Browser vendors copied each
other’s UA strings to bypass the incomplete UA sniffing-routines deployed on tons of
websites. Because developers did so much UA sniffing, browser vendors include each

362 | Chapter 11: CSS Features in Responsive Web Design

http://www.standardista.com/mobile/
http://www.standardista.com/mobile/

other’s strings to get some semblance of support. Client-Hints will hopefully not have
this problem, as there is likely little reason, other than to reduce bandwidth consump‐
tion, to lie about the height or width of your device.

Responsive Media | 363

1. The phone number should be a telephone link, with 415.555.1212 as
discussed in mobile-specific link handling in Chapter 3.

CHAPTER 12

Designing Mobile Applications

Designing mobile websites and mobile applications is different from developing for
desktops, and not just in terms of the visual design. The mobile environment—in terms
of screen size, lack of pointing device, restricted download speed, and differences in
user goals—all affect design and implementation decisions.

While many have argued that mobile websites should be limited in scope, this is not
true. You want to make available all the information to your mobile users that you would
want to make available to your desktop users. You just might not want to stick all that
content on the mobile site’s home page.

Yes, with some websites the goals of the average desktop visitor may be different than
the goal of the average mobile visitor, but you have a lot of visitors who aren’t average.
The argument is that the mobile site visitor has less time, and just needs your phone
number1 or address. Realize that a growing number of people only access the Web via
mobile devices. Your mobile visitor may just need your phone number. Or she may be
looking up your site on the trading floor wanting to make a huge investment. She needs
to be able to access your annual reports, press releases, and board of directors from her
smartphone. Just because her screen size is smaller, doesn’t mean she needs less infor‐
mation or functionality. The mobile website should have all the content and all the
functionality of the “full” website, though layout, hierarchy, and paths to discovery may
be different.

Include all the information of your full site while making sure it is usable no matter how
your user accesses the Web.

You don’t want to overwhelm visitors with too much information, but you want all of
the information to be available. Similarly, you don’t want to overwhelm your desktop

365

user either. So don’t limit the scope of your mobile site. Rather, build your website as a
mobile site first: including all the information any visitor may need in a non-
overwhelming manner. By building with mobile in mind, or even mobile first, your
desktop experience will likely be a better experience as well. By making just a few edits
to your all-inclusive mobile site, your desktop site will likely be easier to navigate and
less overwhelming than had you developed for desktop first.

The mobile environment has the constraints of varying sizes, sometimes tiny screen
sizes, varied pointing devices (mouse, stylus, skinny fingers, fat thumbs), restricted
download speeds, connectivity may not be consistent or persistent, metered bandwidth,
and differing methods of data entry. But unlike the desktop, we’re not as restricted by
lackluster browser capabilities. On the desktop, we’ve been limited by the lack of support
for CSS3, HTML5, and associated JavaScript APIs in older versions of the almost ubiq‐
uitous browser, Internet Explorer. With the iPhone, Blackberry, Firefox mobile, An‐
droid and mobile Chrome browsers, we don’t have the same browser limitations. Mobile
WebKit browsers, IE10 mobile, Opera Mobile, Firefox for Android, and Boot2Gecko,
and almost all smartphones provide support for new web technologies. When it comes
to HTML5, these mobile browsers are definitely grade A. When it comes to CSS3, mobile
browsers are some of the most advanced browsers currently available.

Considerations Before You Start
Like on the desktop, and even more important with limited real estate, you have to
consider your audience. Before designing, you need to determine who your audience
is and their goals in visiting your site. The main constant is that you know they’re mobile:
their device is wireless, battery operated, always on, always with the user, and generally,
only used by a single user.

What you must consider is your population: are you targeting boys, girls, men, or
women? Are you targeting teens, professionals, hipsters, parents? Who? If you know
who your audience is, and exactly what you expect them to do with your application or
site, you’ll be much better able to determine the look, feel, functionality, and flow of
your user interface.

Just because your current usage statistics show low web usage from a certain demo‐
graphic, that does not mean that the members of that demographic aren’t interested in
your product, it may mean that the current user experience is not adequate. With im‐
provements in performance and usability, you may gain usage in previously untapped
markets.

There is no “typical” user. The number of people who don’t have laptop or desktop
computers and who access the Web only via their mobile phone is growing. Their phone
is their primary device. Obviously, then, mobile devices are not just for people who are

366 | Chapter 12: Designing Mobile Applications

2. While it is important to have as consistent and universal as possible a graphical language, don’t assume users
are familiar with an OS-specific icon. For example, the iOS share icon may look like an expand-to-fullscreen
icon to a user of another OS.

“on-the-go,” but those who use their phone’s browser in short spurts is still an important
demographic.

Your mobile phone users may be multitasking. They may be tweeting, checking into
Facebook, Foursquare, and their beer, checking stock quotes or sports scores all while
in a meeting or class. They may be waiting in line at the sub shop or on a 15-minute bus
ride into work or school, making the time pass in a hotel lobby or airport terminal, or
even pooping.

Depending on the type of applications, the attention of your users may be for very short.
The most successful native applications—whether on mobile or on desktop—do exactly
what the user needs while delighting the user, without extraneous bells and whistles that
can detract from the user’s mission or findability of their goal. Mobile websites and
applications should do the same. No matter the device, your web application or site
needs to be simple, understandable, and relevant:
Simple

Users don’t have time to dawdle: they need to be able to immediately understand
how to use your application or navigate your site, and complete their task with it.
Otherwise, they’re going to move on to the next application.

Understandable
Make it obvious how your application works by minimizing controls, and making
it abundantly clear what each control does with minimal text and immediately
understandable iconography. Do not reinvent the wheel: opt for features, controls,
and icons that have become a standard.2

Relevant
Put the most vital information at the top of the screen where it is most visible and
most read, getting progressively general as you go down the page.

In terms of actions, put the most important call to action near the top of the screen. On
handheld devices, put the most frequently used controls on the lefthand side of the
control bar at the bottom of the screen.

Design Considerations
Former Apple CEO Steve Jobs would have been happy if all web applications on the
iPhone looked as good as Apple iPhone’s native applications. The Apple user experience
team defined colors, navigation, and graphical standards for each application depending
on the application type. These standards are still best practices for the iPhone, iPod, and

Design Considerations | 367

iPad. Similarly, other operating systems have design patterns. Links to Apple, Android,
BlackBerry, Windows Phone, Firefox OS, and other operating systems design patterns
are in the online chapter resources.

To determine which application style to use, there are several considerations: what is
the user’s motivation for using the application? What is the purpose, goal, or focus of
the application? What is the intended user experience?

Determine what type of application you are creating, and design your application based
on the defined standards for that type of application. Is your application considered to
be serious or fun? Is it a productivity tool, entertainment, or a utility?

The majority of applications are either for productivity, utility, or entertainment. Some
applications are intended to be fun, others serious.

We can break most mobile applications into five categories: fun or serious productivity
applications, fun or serious immersive applications, and utility applications. These ap‐
plication types should help you clarify design decisions. While there is no rigid classi‐
fication scheme that all mobile software must follow, these guidelines will help you create
effective applications. Depending on the seriousness of the application, you will want
to stylize differently.

Tools: Productivity Applications
People use productivity applications, or tools, to accomplish important tasks, such as
read, compose, and sort emails. Successful productivity applications or tools keep the
user experience focused on the task, provide for quickly findability, and provide a user
interface that enables the user to quickly and easily perform the necessary tasks.

Productivity applications tend to organize information hierarchically. In this way, peo‐
ple can find information by making progressively more specific choices until they arrive
at the desired level of detail, then perform tasks with the information on that level.

Productivity applications tend to use multiple views, usually displaying one level of the
hierarchy per view. The user interface should be simple, uncluttered, and composed of
standard views and controls. The focus is on the information and the task, rather than
the environment or experience.

Productivity tools may include a preferences or settings page that the user can specify.
You can store these settings server side, or as we learned in Chapter 6, in localStorage.
Productivity applications may work with lots of information and, potentially, different
ways to access and manage the information.

Similar to how native applications allow you to access the phone’s settings tools, you
may want to re-create such a settings page, to remember the user preferences: remember
the settings locally in localStorage if there is no login required, and server side as well

368 | Chapter 12: Designing Mobile Applications

http://www.standardista.com/mobile/
http://www.standardista.com/mobile/

if there is a log-in. Keep this information as a cookie if you need to pass the information
back and forth to the server, or in localStorage if you don’t.

If you do include a settings or preferences page, remember that this is a screen that will
rarely need to be accessed and altered. Simple configuration changes should be handled
in the main user interface. Preference changes should be separated out in separate
screens accessible via a menu link.

A serious tool generally uses a limited color palette, like the blue/gray of the native
iPhone application. Serious tools focus on the data, generally minimizing images and
using a limited color palette. Use standard navigation, top and bottom. Create clear
divisions in your design, and include blocks of related data and/or behavior.

Whether you use a monochromatic palette or more colors, check your
colors for contrast. A substantial percentage of the population has
various level of color blindness.

Examples of a serious tool include settings and/or account pages such as the iPhone
language picker we emulated, Dropbox, and the Yahoo! calendar for mobile. With se‐
rious tools, the focus is solely on the content, not on the application’s appearance—as
is very evident from the various unattractive Yahoo! and Google mobile versions of web
applications. Yuck!

There are serious tools, and then there are fun tools. Fun tools should make moderate
use of color and graphics. Fun tools encourage leisurely productivity. They are similar
to serious tools, but use a different, funner color scheme. Fun tools, like serious tools,
should be designed with a simple hierarchy of information.

Entertainment: Immersive Applications
Immersive applications are fullscreen, visually rich environments that focus on the user’s
experience with the application’s content. Tasks that present a unique environment,
minimize textual information, and reward users for their attention are considered im‐
mersive.

Immersive applications include games, media, and other entertainment. Our CubeeDoo
game fits into this category. The user’s focus is on the visual content and the experience,
not on the data behind the experience. While games fit into this category, immersive
applications are not necessarily games.

An immersive application tends to hide much of the device’s user interface, replacing it
with a custom user interface that strengthens the user’s sense of entering the world of
the application. Some mobile browsers allow for the hiding or changing of the browser
chrome and status bar to enhance the immersive feeling. Users expect seeking and

Design Considerations | 369

3. Why? (1) Because I said so, and (2) because you don’t want to get bad reviews or have people hate you.

discovery to be part of the experience of an immersive application, so the use of non‐
standard controls may be appropriate.

Immersive applications may work with large amounts of data, but they do not usually
expose it. Instead, immersive applications present information in the context of the
gameplay, story, or experience. Also for this reason, immersive applications often
present custom navigational methods that complement the environment, rather than
the standard, data-driven methods used in utility or productivity applications. There
may be tons of information in the application, but users are not expected to view it
sequentially or drill down through it.

With limited and/or metered bandwidth and battery power being of
greater concern in the mobile space, loading of large assets should be
sequential, with express user permission or the ability to set
preferences.

Fun entertainment

Fun entertainment, like games, are often very graphical. This is the only web application
type that may use sound without getting the express permission (hitting the play button)
of the user.3 We learned about <audio> and <video> in Chapter 5. Fun entertainment
web applications are the only time you may use play() without specifically asking per‐
mission. Like all applications of any type, there should be a simple hierarchy of infor‐
mation.
Serious entertainment

Serious entertainment is entertainment with a goal. Unlike fun entertainment, where
you may be aiming for a higher score, serious entertainment gets something done. Ex‐
amples of serious entertainment applications include the iTunes Store, Netflix, Flickr,
YouTube, and other photo and video viewing and uploading applications. Serious en‐
tertainment should incorporate a moderate use of graphics. Instead of being graphics
focused, like games, serious entertainment is content focused. These applications often
incorporate tabbed data. A standard navigation at both the top and bottom of the screen
might make sense for this application type.

Utility
The last category of applications are ones that serve a single purpose, providing all the
information a user needs at a glance. Utilities are graphically rich, single-screen appli‐

370 | Chapter 12: Designing Mobile Applications

cations with little or no hierarchy (no drilling down to find information), such as a
weather application or a native stock application.

Utility applications display a narrowly focused amount of information in an easy-to-
scan summary. Yes, these applications have more than one screen, but secondary screens
are for setting user preferences. User settings can be stored locally with localStorage (see
Chapter 6). If there is a login mechanism, you can also include server-side storage
settings.

Utility applications are generally applications that are quickly glanced at rather than
interacted with. You may check the weather five times a day and your stocks 100 times
a day on your phone. However, you only change the location of which city you are
looking at when traveling. And unless you’re a day trader, you may change your stocks
as infrequently.

Utility applications include an information button, usually on the bottom right, pro‐
viding an additional screen where the settings can be updated. Don’t forget the Done
button on that second screen to return back to the main screen. Also, in hybrid appli‐
cations, allowing the user to set how often an application updates enables the user to
have some control over battery usage.

Utility applications should be visually attractive, but like all applications, the informa‐
tion provided should not be overshadowed, but rather enhanced, by the design. The
user interface should be uncluttered with simple, standard views and controls.

What Is Right for You?
After reading about productivity, utility, and immersive application styles, think about
the type of information your application displays and the task it enables. Before deciding
on a style, define what your application does.

You may think that the type of application you should create is obvious and you’re ready
to get started, but take a step back. It’s usually not that simple. You’re not restricted to a
single application style. You may find that your application idea makes the most sense
by being a combination of characteristics from different application styles. Whatever
you choose to do, make it simple. Pare the feature list to the minimum and create an
application that does one simple thing. Observe how people use and respond to the
application, and reiterate based on those observations.

If you have an existing computer application, don’t just port it to the mobile web. People
use phones very differently from how they use desktop and laptop applications. People
also have different expectations for the user experience on different devices. Consider
how they may be interacting with it differently in a small-screen mobile manner. Don’t
remove any desktop features. Instead, if there are features that are definitely more likely
to be a priority for mobile device users, surface those features.

Design Considerations | 371

Surface the features that are more likely to be a priority for mobile
device users.

Apply the 80–20 rule to the design of your application. Estimate that the largest per‐
centage of users (at least 80 percent) will use a very limited number of features in an
application, while only a small percentage (no more than 20 percent) will use all the
features. Then, consider carefully whether you want to preload your mobile application
with the power features that only a small percentage of users want, or make them only
available on demand (I recommend the latter). Be aware that a desktop computer ap‐
plication might be the better environment in which to offer those features up front, and
that it’s usually a good idea to focus your mobile application on the features that meet
the needs of the greatest number of people.

Definitely make all the desktop features available on mobile, too. Just don’t necessarily
preload them. There is an increasing number of users who only access the Web on mobile
devices. They need to be able to do everything a desktop user would do. Make sure those
features are findable and usable, though they don’t have to take center stage on initial
load. Only download them if needed, remembering to manage battery, memory, and
bandwidth. If it makes sense for your application, you can enable the user to change
their settings so the features generally less used on mobile can be surfaced for them.

An increasing minority in the United States and a good majority in
some emerging markets are mobile only.

The Mobile Platform: Rich with Possibilities
As you plan your mobile web application, there are design and device characteristics
that you have to consider. A smartphone application is not the same as a desktop ap‐
plication, though the mobile version may be (or is) the best starting point for designing
the accompanying desktop companion site. It is important to keep this in mind as you
develop your web application for the small screen.

Small Screen
Although mobile devices may have great resolution, they are still very small. With the
small size, it’s important to focus the user interface on the essentials. Don’t include
elements in the user interface that aren’t necessary. Learn to say “No” to your client, be
they a product manager, stakeholder, or voice in your head. A crowded user interface
makes desktop websites and applications confusing and unattractive. This is amplified
on smartphones, when the screen is less than 25% of a desktop’s screen size. And learning

372 | Chapter 12: Designing Mobile Applications

to say no to “features” when designing and developing the mobile interface will help
you keep the desktop version less cluttered as well.

Less Memory
Your desktop may have 4 GB to 16 GB of RAM, but your user’s original iPad doesn’t.
My iPad had 256 MB of RAM. My Android phone, one of my more powerful mobile
devices, has 768 MB of RAM.

Note that our web applications are running in a browser, and are not themselves native
applications. The browser is a native application. Running the browser uses memory.
Running the web application uses memory. Running the mobile device’s operating sys‐
tem uses memory. We have to remember that the operating system, browser, and web
application are not the only applications likely running on a device. And all these ap‐
plications that you have no control over are using up the device’s memory. And battery.
The more processes that the RAM and device chips are running, the more load and
therefore drain to the device’s battery.

When I first purchased my 768 MB HTC phone, it only had 222 MB of RAM available
in its default state because of all the software running on it by default. That is not a lot
of memory. And when the phone runs out of memory, it runs out of memory. Most
mobile devices don’t reallocate memory. When the browser runs out of memory, it
crashes.

While there is little you can do to ensure that your users’ browsers are responsive to
memory usage warnings and cleans up memory in a timely manner, avoiding memory
leaks in your code is even more important with limited CPU.

Make sure your resource files are as small as possible: don’t load resources you don’t
need, and be careful of features that, unbeknownst to the user, use memory.

In the previous chapters, when we introduced features that may use up memory or CPU,
like radial gradients, inset shadows, and images over 1024 px, we discussed the feature’s
shortcomings within the feature description. Browser vendors are constantly updating
the capacity of their browsers and improving the performance. Soon radial gradients,
inset shadows, and huge images may not drain a phone’s memory. The online chapter
resources provide links to resources listing some of the current mobile browser pitfalls.
Manage memory

Limited memory should be a concern throughout the entire development process. We
all develop our web applications on our desktops where memory is not as limited, so
you may forget to think about it: don’t forget!

When developing on desktop, pay attention to the memory consumption of your web
application. The Chrome browser allows you to keep track of memory consumption
and performance, as shown in Figure 12-1.

The Mobile Platform: Rich with Possibilities | 373

http://www.standardista.com/mobile/
http://www.standardista.com/mobile/

4. Safari Developer Tools, Opera DragonFly, Firebug the FireFox add-on, and IE F12, starting with IE11, have
similar tools.

Figure 12-1. Memory in Chrome developer tools

Chrome provides information on how much memory each browser tab is using. To
observe your memory usage, open the developer tools in your Chrome desktop browser
(View → Developer → Developer Tools). Select the Timeline tab, then select Memory
within the Timeline view, which is the tab and subsection displayed in Figure 12-1.4

To measure memory consumption, select the record button (the gray circle at the bottom
of the developer tools). When the record button is red, it means it is recording. Play
with your application. Watch the memory increase as DOM nodes or assets are added,
and decrease with garbage collection.

Remember that while your crazy web application may be using 80 MB, your web ap‐
plication is not the only thing running on your user’s device. They are running their
OS, their browser, their phone. They have other applications running in the background.
All of these applications use up memory.

During development, you’ll be using desktop tools for testing. When device testing there
are also mobile OS specific apps that will measure memory and battery load with ap‐
plication and mobile web usage. These tools are discussed in Chapter 14.

While the Timeline Memory feature in the development tools can help you gauge how
much memory your application is consuming, you still have to test your applications
in various devices. Those devices should have numerous native applications installed
with notifications turned on, as this is how your users are experiencing your web
application.

374 | Chapter 12: Designing Mobile Applications

As a developer, you need to consider site latency, memory usage, battery consumption,
and bandwidth usage of your sites. Don’t forget to test on mobile networks, which
generally aren’t as fast as WiFi. I’ll cover performance in greater detail in Chapter 14.

One Window, One Application at a Time
Your mobile users may only be able to see one browser window at a time. On most
mobile platforms, even if your web application contains multiple screens, your users
will see them sequentially, not simultaneously.

While your mobile web application should make available the entire feature set of the
full application, instead of trying to replicate a wider feature set at once, focus on a single
task at a time. With limited memory, space, and sequential page viewing, provide the
most useful information on the main view, supplying access to additional functionality
through additional screens, or More or i-buttons linking to the larger feature set, pro‐
viding access to the larger, less frequently used feature set only when necessary.

When interacting with most smartphones (less true with some tablets), only one ap‐
plication is visible in the foreground at a time. When users switch from one application
to another, the application sometimes quits completely, while other times it continues
in the background.

Some devices allow for multitasking: the application losing focus transitions to the
background, allowing applications to remain in the background until they are launched
again or until they are terminated. This means when a user clicks on a link to YouTube,
a phone number, or a Google map, your browser, and therefore your web application,
may quit completely, or more commonly, it will continue as a background process.
Because you don’t know if your user is on a device that allows for multitasking or not,
you can’t make assumptions about whether the browser and web application will quit
or not.

Minimal Documentation
Like most people, I only look at the IKEA instructions after I finish putting furniture
together and wonder why I have three pieces left over. I am even less likely to read an
FAQ or other instructions on my phone than I am to review the printed manual on the
piece of furniture I just destroyed.

Similarly, users won’t read your instructions or help documentation before using your
application. To succeed, your application needs to be easy to use, the functionality needs
to be immediately obvious and your application and user experience need to meet your
users’ expectations. This is true no matter the device.

Use standard controls. Present information in a logical and predictable manner. Make
sure the path back is as obvious as the path forward in your application. Design your
applications to behave in a consistent, predictable fashion.

The Mobile Platform: Rich with Possibilities | 375

Even if you work for a design firm, or especially if you work for a design firm, don’t try
to be innovative in your interactions and UI: use standard user experience best practices
and design. This will make your application more intuitive. Intuitive applications are
more successful. If you must be innovative (and even if you aren’t), test, test, and retest,
with diverse users. UI and UX innovation can be good, or even very good, if the iterations
are thoroughly tested on users with a wide range of mobile literacy.

Development Considerations
Remember that your user may be mobile. Users need to be able to download your web
application quickly and see relevant content immediately within the viewable browser
window, whether that window is in portrait or landscape orientation. It’s not that scroll‐
ing isn’t allowed. Rather, you should have relevant information and a main call to action
visible without scrolling.

The user needs to be able to achieve their goals with very few finger gestures. Always
remember that your users may not have a mouse, scroll button, or keyboard available
to navigate your application. They may only have the use of one or two fingers available
for interacting with your site, navigating with one hand, as the other may be holding
the device, or maybe aren’t using their fingers at all. They may be using their voice for
navigation, which is not only for Google Glass.

User interface should focus on providing the right categories and making it easy to
perform common tasks, without asking for a lot of details that aren’t central to the task.

Distill the list of features into a single statement, a product definition statement, that
describes both the solution your product offers and defines the target market. Stay
within your definition for all of your main features.

Yes, you can and should include all lesser used features, but make those secondary
features. The context should always be the actions you expect your user to take, targeted
to your defined audience.

If a feature isn’t core to the goals of your users, don’t include it on your web application
landing page: say “No” to your marketing and sales teams. The real estate of the mobile
phone is too small, download speeds are to slow, and user interactions are too difficult
to spread your application thin. Mobile device real estate provides no room for func‐
tionality that doesn’t focus on the primary task. And by developing for mobile first, your
desktop application will benefit.

By defining your audience, you can refine your product definition for your application
to meet your audience’s main need. Through this refined product definition, you will
be better able to siphon your list of features. Eliminate features that, while they might
be useful, don’t fit into the product definition of your application. Do one thing, and do
it well. Port this logic over to the desktop: your users will love the simplicity there, too!

376 | Chapter 12: Designing Mobile Applications

Targeting Mobile WebKit
To create a web application that looks like a native mobile application, there are several
features to consider. There are <meta> tags and <link> relationships that appear to be
proprietary to Apple, but some work on Android, Chrome for Android, BlackBerry 10,
and iOS. We discussed these <meta> tags and <link> relationships in Chapter 2, but let’s
look at them again.

On iOS, you can tell the browser that we want to be an offline application:
<meta name="apple-mobile-web-app-capable" content="yes"/>

This will only work if the user has saved your web application as a bookmark with an
icon on their home screen and has accessed your web application via that bookmark
rather than navigating to it via the browser address bar. While this may seem limited,
it does enable your application to go fullscreen and look like a truly native application,
even though it is really a web application. This <meta> tag removes standard navigation
and controls in iOS WebKit browsers when the user has accessed your web application
from their saved bookmark.

While this tells the browser that you want it to look like a native application with native
application features, you still have to tell the browser what those native features are. You
can control the status bar color and navigation bar when the application is offline.

Status Bar
The status bar displays important information about the user’s device, including signal
strength, network connection, and battery life. When your site or application is viewed
within a browser on a mobile device, you cannot hide the 20-pixel-high status bar
(Figure 12-2).

Figure 12-2. iPhone status bar

The ability to hide the status bar should not be a differentiating factor in your decision
whether to build a native or web application. While you can hide the status bar when
developing a native application in some devices, you shouldn’t. Requiring a user to quit
an application to see how much battery power they have left, or to see if they have
connectivity is not a good user experience.

In iOS, you can change the color of the status bar from the default appearance as shown
in Figure 12-2 to black or translucent black by setting the application to run in full-
screen mode and setting the status bar style meta tag to default, black, or black-

Targeting Mobile WebKit | 377

translucent, which displays the status bar as gray (the default color), opaque black, or
translucent black (rgba(0,0,0,0.5)):

<meta name="apple-mobile-web-app-capable" content="yes"/>
<meta name="apple-mobile-web-app-status-bar-style" content="black">

This meta tag only works if you have set the page to be web-app-capable.

When the apple-mobile-web-app-capable meta tag content is set to yes, the web ap‐
plication runs in fullscreen mode; otherwise, it does not. This does nothing if the user
navigated to your site through the browser. It only behaves like a native application if it
was accessed like a native application.

The black-translucent makes the status bar 50% translucent above the content of the
web page or application, providing for some additional screen space, which can be useful
if your application is a game like Tetris with items coming in from the top of the screen.

We’ve included these <meta> tags in CubeeDoo. However, you may not be seeing them.
To be able to view this feature in action, you will need to add CubeeDoo as a bookmark
link on your home screen, and access the web application by clicking on that icon, in a
browser on a device that supports this feature.

Navigation Bar
The navigation bar is the address bar that appears at the top of the screen, just below
the status bar (Figure 12-3). By default, some mobile browsers like Safari on the iOS
and the Firefox OS browser display the contents of the <title> of your web page along
with the search and address bars in a 60-pixel-high navigation bar. Chrome for mobile
displays the URL, tools linking to more information about the page, other tabs that are
open, and a drop-down toolbar. Chrome for larger mobile devices, like the Nexus Gal‐
axy, displays tabbed browsing like a desktop browser.

Figure 12-3. Safari (top) and Android Chrome (bottom) navigation bars

To create a native-looking web application, we can hide the default navigation bar and
add our own application navigation bar. In our Chapter 7 example, we used CSS to
emulate the original iPhone’s native navigation bar, as shown in Figure 12-4.

378 | Chapter 12: Designing Mobile Applications

5. iOS 7 does not allow for hiding the navigation bar.

Figure 12-4. CSS navigation bar emulating the original iPhone native application navi‐
gation bar

With a little magic, you can hide the big Safari navigation toolbar even if the user hasn’t
saved your bookmark to their desktop. The fallback method is to hide the navigation
bar with JavaScript.

To hide the Safari navigation bar,5 include window.scrollTo(0, 1); in your web ap‐
plication. The following script will hide the Safari navigation bar when the page loads:

<script>
addEventListener("load", function() {
 setTimeout(hideURLbar, 0);
 }, false);

function hideURLbar() {
 window.scrollTo(0,1);
}
</script>

UX of navigation bar

When creating a navigation bar to emulate a native application’s look and feel, the initial
or home view should display only your application title, as the user hasn’t navigated into
the application yet. If your application is only one page, the home page navigation bar
can also contain controls that manage the content in the view. If your application is
more than one page, all other screens should include the title of the new location with
a Back button labeled with the title of the previous location, or the word “back” to the
left of the title.

This “back” button provides for a standard way to return to the previous screen. This
is expected user experience, so don’t alter it unless you have a very compelling reason
to. Always remember, a frustrated user can be driven to use the home button and may
not return. The navigation bar can contain a second button to the right of the title that
manages the content in the view.

Apple provides for standardized buttons. As you can see in Figure 12-4, buttons in a
navigation bar include a bezel around them. All Apple iOS controls in a navigation bar
use the bordered style. All iOS UI icons are 30 × 30 pixels for tab bar icons with a
touchable area of 44 × 44 pixels. Apple employs 20 × 20 pixels for toolbar and navigation
icons.

Targeting Mobile WebKit | 379

Android design patterns recommend a pattern of a 48-device independent pixel rhythm.
48 DP translates to about 9 millimeters (0.35 inches) with some variability, providing
touch areas in the range of recommended 7–10 millimeters target size.

Design elements that are at least 48 DP high and wide guarantee targets will never be
smaller than the minimum recommended target size of 7 mm regardless of the screen,
and 48 DP provides for good overall information density and targetability of UI. Spacing
between each UI element should be 8 DP.

Page controls. The page controls should be in a 44- to 48-pixel-high bar going across the
bottom of the screen, with the controls going from most used controls on the lefthand
side to less frequently used controls on the right. Don’t create touch gestures too close
to the browser edge as some mobile devices will capture the gesture for a device or native
browser action.

Do not place controls you wouldn’t want a user to accidentally hit in the bottom bar.
The bottom bar should be reserved for the most commonly used user actions. Include
items that may be clicked less often, like settings or delete, elsewhere, such as on the top
navigation or on a separate screen if rarely used.

In CubeeDoo, we put our page controls, even ones we expect to be hit often, at the top
of the screen. Why? Because this web app is a game. 99% of the time will be spent playing
the game, not checking high scores or other menu features. Users wouldn’t want to
accidentally press any of the controls midgame. So while the bottom page control strip
makes sense for many web applications, there is no steadfast rule. The only real rule is
use common sense (oh, and provide preferably 44 × 44 px, but at minimum 22 × 22 px,
buttons and interactive areas if you want a user to successfully hit something).
Navigation bar size and color

Changing the device orientation from portrait to landscape can change the height of
the navigation bar automatically (you should not specify the height programmatically).
In landscape orientation, the thinner navigation bar provides more space for your screen
contents. Be sure to take the difference in heights into account when you design icons
for navigation bar controls and when you design the layout of your screens.

Strive for consistency in the appearance of navigation bars and other bars in your ap‐
plication. If you use a translucent navigation bar, for example, don’t combine it with an
opaque toolbar. Also, avoid changing the color or translucency of the navigation bar in
different screens in the same orientation.

Startup Image
If the user clicks on a home screen icon, the web application will launch immediately,
perhaps before all the files are received from the server. In some browsers, including

380 | Chapter 12: Designing Mobile Applications

iOS native Safari browsers, we can control what the browser displays while waiting for
the site to be downloaded by providing a startup image.

You can also tell the browser to display a particular image while the browser is waiting
to load, parse, and lay out all your assets:

<link rel="apple-touch-startup-image" href="/screenshot.jpg"/>

This is a URL pointing to the startup image. By default, a screenshot of the web appli‐
cation the last time it was launched is used, but with this tag you can define your own
image.

This is not a splash screen. In fact, don’t use a splash screen. Your users want to get to
your content. They don’t want to be delayed (and charged bandwidth fees) because your
marketing team or CEO really like Flash-like intros.

Home Screen Icons
<link rel="apple-touch-icon"…

This is the pointer to the image that we want to be the icon of the site that resides on
the device’s home screen, should they bookmark our site. Not all devices require the
same size image or resolution, however. There are even differences between devices
from the same manufacturer. As discussed in Chapter 2, we have a new attribute for the
<link> tag that helps handle this situation:

<link rel="apple-touch-icon" href="touch-icon-iphone.png" />
<link rel="apple-touch-icon" sizes="72x72"
 href="touch-icon-ipad.png" />
<link rel="apple-touch-icon" sizes="114x114"
 href="touch-icon-hiresolution.png" />

The device will convert your icon into an icon reflective of the OS. On iOS 6 and earlier,
it will add rounded corners and a glow. If you want to create your own corners and glow
or lack of glow, include the key term precomposed in your relationship value. Use:

<link rel="apple-touch-icon-precomposed" href="path/image.png"/>

Take the time to design a beautiful icon. Users should be able to tell, just by looking at
your icon, what your site or application is about. Unless you are a very well-known
company with a very well-known brand name (think CNN), be wary of including text
in your icon.

The default iPhone icon (pre-iOS 7) is 57 × 57 pixels, with a 10 px border radius. For
the iPad, it’s 74 × 74 pixels with a 12 px radius. The icon for the iTunes Store is 512 ×
512 pixels.

If you are indeed hoping to be in the App Store, a few notes: Apple loves tactile back‐
grounds, subtle shadows, highlighted text, glossy buttons, subtle gradients, and clean,

Targeting Mobile WebKit | 381

6. Glyfish works, but popular stock icons will be looked down upon.

crisp icons. If you are submitting to the App Store, or even if you aren’t submitting to
the App Store, don’t use Apple icons, imagery, or trademarks in any applications.6

Minimize Keyboard Entry
While there is a high cost ratio for data entry on all devices, it’s even more acute on
touch devices. If you require a user to enter data, make sure it’s worth their while. Yes,
sometimes information is required. If your marketing team is pushing for a ZIP code
when a user ZIP code is not required, say “No.” Do not add barriers to entry that aren’t
absolutely necessary. This is important for mobile and desktop!

When data entry is required, make it as simple as possible. Unless security requirements
prohibit it, if you require a username and password, remember the user information!
If the user has to enter data, whenever possible, create a select list or other form of picker,
so that the user can use any method other than keyboard entry to provide the infor‐
mation. If a user needs to enter a phone number or an email, use the proper input types
(see Chapter 4) so that they get the right keyboard.

Generally, forms place labels before input fields and hints after the form field. Make
sure that these wrap on smaller devices. Or better yet, place the label above the input
area, and hints below. When devices pop-up the virtual keyboard, many simultaneously
zoom in on the focused form field, which will hide what is to the left and right of the
form field on narrow screens.

Be Succinct
That’s it. Be succinct.

Your users are staring at tiny little fonts on tiny little devices. Even on desktop, users
don’t like to read. Get to the point. Do it succinctly.

To summarize succinctly:

Make it Obvious
Your users don’t have the time or the attention to figure out complex interactions and
application. Make your application instantly understandable to users.

382 | Chapter 12: Designing Mobile Applications

Minimize Required Input
Inputting information takes users’ time and attention. If your application requires a lot
of user input before anything useful happens, you’re basically asking them to move on
to a different site or application.

Minimize Text
When your user interface text is short and direct, users can absorb it quickly and easily.
Identify the most important information, express it concisely, and display it promi‐
nently.

Other User Experience Considerations
Avoid hidden content that is only made visible (and possibly obscured by your user’s
hand) when hovered. Fingers are fat. Hands are big. When you only display something
between touch start and touch end, or only on hover, that information may not be fully
available to the touch user.

There are certain conventions that are bad on desktop and even worse on mobile. Drop-
down menus with submenus that pop-out on hover are bad for desktop and even worse
for mobile.

When you require a user to utilize a hover drop-down or pop-out menu to navigate
your site, you are requiring them to stay on top of the menu, without exiting or hovering
out of it, until they reach their destination. Users don’t hover on touch devices: they
touch. On some devices, your CSS show on :hover will work, but you will need to handle
the touch scripts necessary for these menus so that all devices display the menus and
don’t let the submenus slip away.

As you’ll note in Figure 12-5, the fastest way to go from the “Dropdown” to “Pick Me”
would take the user outside of the pop-out menu, thereby closing it. That is, if a user’s
fat finger and hand don’t obscure the contents of the page. Even with a mouse, while
the content is more readily visible, the direct line from one link to the next is partially
outside of the menu, and navigating off of the navigation generally hides it.

Other User Experience Considerations | 383

7. Google’s proposal for lazy block loading may ameliorate this.

Figure 12-5. Example of a common drop-down menu

Move away from drop-down pull-out menu patterns, and opt for click-based menus
instead. Additionally, dynamically loading additional content when lists or navigations
are too long can be a best practice. Killing excessive content above the currently visible
list may also be good practice, especially with infinite scroll,7 to reduce memory con‐
sumption and the number of DOM nodes, which slows down reflows.

The user experience considerations covered in this entire chapter hold true not just for
mobile websites and applications, but for desktop sites and native mobile applications
as well.

384 | Chapter 12: Designing Mobile Applications

CHAPTER 13

Targeting Mobile Devices and Touch

You’ve hopefully realized by now that your markup for the mobile browser is the same
code as the desktop browser. The main differences are the size of the viewport and how
the user interacts with their device. On the desktop we use a keyboard and mouse, with
a large screen and resizable browser. On touch devices, we use our chubby little fingers,
sometimes on tiny little screens, in viewports that are generally not resizable.

Those were generalizations! I have a desktop computer with a 23-inch touchscreen. I
also have a tablet with an external Bluetooth keyboard and mouse. All our web content
needs to be accessible via touch and mouse on large monitors and tiny screens. When‐
ever we develop, we need to remember that not everyone is accessing our content in the
same way.

Scaling Down to Size
When it comes to smaller viewports, we want the width of our site to be the width of
the device. The default page rendering size for most mobile browsers is 980 px wide.
That is generally not the width of the device.

Until @viewport is supported everywhere, we can use the viewport <meta> tag. This tag
is ignored by desktop browsers:

<meta name="viewport" content="width=device-width;"/>

There are several possible values for the content attribute of the viewport <meta> tag.
Unless you are developing an interactive, time-sensitive game, this is the viewport you
should include. Your users should be allowed to scale the page up and down. The pre‐
ceding code allows them to zoom in, which is important for accessibility.

In the case of CubeeDoo, we are creating a fullscreen, interactive, time-sensitive game.
We don’t want to allow the user to accidentally zoom in or out. Unlike most other
application types, when it comes to games, it can be bad user experience when the board

385

no longer fits neatly in the window. Only if you have a good reason to not allow zooming
(which we do in the case of some games), should we consider it a good idea to prevent
zooming with the following viewport <meta> tag:

<meta name="viewport" content="width=device-width;
 initial-scale=1.0; maximum-scale=1.0; minimum-scale: 1;
 user-scalable=0;"/>

This example is a little bit overkill. It reads, “Make the width of the viewport the same
width of the device. Make that the initial size, the minimum allowable scaling size, and
the maximum scaleable size, and don’t allow scaling.” I’ve included more content prop‐
erties than I need to just to show the values. More reasonably, you can write:

<meta name="viewport" content="width=device-width;
 initial-scale=1.0; user-scalable=0;"/>

Generally, you will want to use width=device-width. However, if your site is a specific
width for different breakpoints (and I don’t recommend this), you can declare a specific
width. For example, if your site’s medium breakpoint design is exactly 550 px, you can
write:

<meta name="viewport" content="width=550">

I can’t think of any time where declaring a single width for content is a good idea. Don’t
do it. This is just to show you what code you may come across, and so you know how
to filter out bad developers from your applicant pool.

@viewport
The viewport <meta> tag is using HTML features to control presentation, which should
be the domain of CSS. Mixing presentation into your content layer isn’t the right solu‐
tion. However, it’s the only solution we have at the time of this writing. The @view
port at-rule is getting some support (Opera, IE10, and WebKit nightly builds). Until
@viewport is more widely supported, the viewport <meta> is the solution.

Touch Me
We are focusing on mobile and are therefore only supporting modern browsers. All
modern browsers support the DOM addEventListener method. Because we are on
mobile (and making generalizations), we are capturing touches rather than mouse
movement and clicks.

Two of the main differences between touches and clicks are the size of the area throwing
the event and the number of events that can be thrown simultaneously. Touch areas are
much larger than mouse click areas: a finger is fat, while a mouse pointer is just a pixel.
Also, touch devices support multitouch events, as a device can be touched with multiple
fingers.

386 | Chapter 13: Targeting Mobile Devices and Touch

Different devices support different gestures and capture different numbers of fingers.
The iPad, for example, can capture up to 11 fingers or touches at once. Standard mouse
events don’t handle multiple clicks: a single mouse click produces a single click event in
a single spot.

Every touch, whether done with a finger or a stylus, is a click event, but some devices
will wait 300 to 500 milliseconds before reacting to the touch to ensure the gesture or
touch is a single tap and not a double tap. We cover this in the next section.

Note that a finger is not as exact as a mouse pointer if you are using mouse/touch
coordinates! A mouse can be very exact. A finger? Not so much.

Touch Areas
Touch devices have unique features in terms of design and usability. With the same
amount of effort, the user can access every pixel on the screen. The user uses their fingers
for selection, which has a much bigger pointing radius than a mouse.

Your design needs to reflect these differences with larger hit zones and larger gutters
between hit zones. The recommended height for buttons is 44 pixels, with a minimum
height of 22 px, with 20 px of space between clickable areas and at minimum 10 px
between these areas.

When the user touches the screen, the part under the finger and under the whole hand
can be obscured. The user may be using her right hand or she may be using her left
hand. Consider what might be hidden depending on which hand they’re using, and how
important the content that is hidden under the user’s palm is.

The finger touching the screen and even parts of the hand may hide areas of the screen.
Ensure that your labels are above their associated form field, and touch events don’t
display temporarily visible dialogues at all. But if you must include a temporary pop-
up, they need to be above the touch area, not to the side or below it.

There are a few finger gestures that are used by the operating system of the device, and
not every operating system or device uses the same gestures. You should know what
these are, especially when you are developing the user experience of your site. Some iOS
devices use four-finger detection to switch between applications. You may also want to
avoid gestures close to the edges of the viewport as several mobile devices move between
windows, tabs, or applications when the user flicks or swipes from or to the edge of the
screen. Keep all these native mobile OS features in mind when designing and developing
your application and user interactions.

Mouse Events, Touch Events
Mouse events make the Web work. It wouldn’t be a web if every document ever (well,
almost every document ever) didn’t have clickable links leading to other documents.

Touch Me | 387

1. For more information, see http://blog.jquery.com/2012/04/10/getting-touchy-about-patents/.

Games wouldn’t be games if you couldn’t interact with them. These interactions have
generally been mouse clicks.

For the past 20 years or so, developers have been adding click events to their web pages.
While we tap, touch, and tilt mobile devices, we don’t actually click our smartphones.
With many mobile devices and some laptops, we can also tilt to interact. But basically,
click events make the Web the Web. If touch devices didn’t support those ubiquitous
mouse events, the mobile web would really be broken.

Because the Web is built on mouse events, mouse events work on touch devices—devices
with no pointing devices. Mouse events are simulated after touch events are fired. Mouse
events are thrown in an emulated environment, but the order of mouse event is not
guaranteed. Every touch throws a click, mouse down, enter, exit, etc., but we can never
be sure of the order in which they occur.

Every device emulates mouse events when using touch and provides us with other spe‐
cific touch events we can capture. With touch events, there are two implementations we
need to understand: (1) Apple’s touch and gesture events, an unfinished specification,
which have been cancelled due to Apple’s patents; and (2) Microsoft’s pointer and gesture
events, which are a newer, patent-free specification, which will become the standard
and will soon be implemented in Chrome and Firefox. Standards and implementations
are still evolving.
Pointer events

Corporations, most notably Apple, patent everything, including normal, everyday
things like rounded corners and human interactions. Attempts have been made to make
some gestures proprietary: Apple actually patented touch events. Specifications are open
standards. So there was an issue. Pointer events to the rescue! Microsoft created their
own version of events—pointer events—and offered those to the W3C to be used as the
basis for the standard.1

Not to be confused with the CSS pointer-events property, pointer events is an event
model for mouse cursor, pen, touch (including multitouch), and all other pointing input
devices. Similar to the JavaScript events we’re so used to, like mouseover and mouse
out, when supported we will have the pointerdown, pointerup, pointercancel, poin
termove, pointerover, pointerout, pointerenter, and pointerleave events. In ad‐
dition to events we can listen for, the device will capture details about touch or pointing
events such as touch size, type, pressure, and angle. Currently, the only implementation
of pointer events is in IE10 with the Microsoft MS prefix, so pointermove in IE10 is
coded as MSpointermove, and in IE11 sans prefix.

388 | Chapter 13: Targeting Mobile Devices and Touch

http://blog.jquery.com/2012/04/10/getting-touchy-about-patents/

Touch events

As we all know, mice and fingers are different. When using a mouse, you have a single
pointer hovering, entering, exiting, and clicking on a single pixel. Fingers not only tap
larger areas, but people have five of them. On each hand! The device and your event
handlers need to keep track of the number of fingers interacting with the screen. You
can create and handle sophisticated gestures by using the native touch and mouse events
in conjunction with preventDefault().

Until browser vendors agree upon and support the open standard of pointer events, we
have touch events.

Touch devices and their browsers, including Android Browser, Chrome, BlackBerry
Browser, Opera, and Firefox, support the iOS touchstart, touchend, touchmove, and
the sometimes-buggy touchcancel events. The four events return a TouchEvent object,
a changedTouches collection, and the Touch object.

The Touch object is a read-only object containing the coordinate properties of the touch
point, including touch coordinates pageX, pageY, screenX, screenY, clientX, clien
tY, the target, and the identifier. The TouchList is the list of individual points of
contact for the touch event. The TouchEvent object contains the touches, targetTouch
es, and changedTouches collections, as well as the Booleans altKey, metaKey,
ctrlKey, and shiftKey.

Touch the device with one finger or a stylus, and a single event is thrown. Touch with
several fingers, and several events will be thrown. When the screen is pressed, the
touchstart is thrown. When the finger moves across the screen, the touchmove event
will be repeatedly thrown. When the pressure on the screen ceases, the touchend is fired.
The touchcancel occurs when another application, like an actual phone call, cancels
the touch.

If your user is playing a game, listening to a podcast, or watching a video clip, and the
phone rings, does it make sense to pause the game, stop the sound, or pause the video
during the call? We don’t want to upset our users by having the time run out and losing
the game every time they answer a call. In CubeeDoo, we pause the game when the
touchcancel event is fired:

document.addEventListener('touchcancel', function() {
 if (!qbdoo.game.classList.contains('paused')) {
 qbdoo.pauseGame();
 }
});

Touch devices support many gestures you may want to capture. Luke Wroblewski com‐
piled the Touch Gesture Reference Guide, defining the various touch gestures by op‐
erating system. I recommend printing it and hanging it over your desk (next to the
specificity chart from Appendix A).

Touch Me | 389

http://www.mobilexweb.com/go/touchguide

Feature detection for touch events

If you are using the same code for both touch devices and desktop browsers, you will
likely need to increase the touch area for links, and decrease the delay between a single
touch and its event.

You might think that using media queries would be the way to go: smaller screens are
likely mobile screens, and mobile screens are more likely to be touch screens. But then
you have tablets, which can have higher resolutions than many laptops and small mon‐
itors.

Feature detection seems like a solution, but it’s not perfect. Touch feature detection
detects whether the browser supports touch events, not whether the device does. You
have to test with JavaScript to check for touch event properties:

var isTouchEnabled = 'ontouchstart' in window ||
 'createTouch' in document ||
 (window.DocumentTouch && document instanceof DocumentTouch);

You can then use the isTouchEnabled Boolean to handle touch-capable and touch-
incapable devices, remembering that some devices and some users, like some feature
phones and visual- or motor-impaired users may not have any pointing devices.

To simulate single-touch events in your desktop development environment, try the
Phantom Limb utility.

Pseudo or Not-So-Pseudo Click Events
When you click with your finger there is no right-click event. Because of this, mobile
devices react when you hold down your touch instead. Because there is no keyboard,
mouse, or right-click, mobile browsers have some built-in behaviors.
Tap highlight color

There is no such thing as hover on a touch device. Because of this, we have link tap
highlight color that we can control with tap-highlight-color. You can style the high‐
light color to match your design. While the value transparent will get rid of the of‐
tentimes unsightly effect, remember that removing the appearance of a tap effect neg‐
atively affects accessibility:

#content a {
 -webkit-tap-highlight-color: #bada55;
}
#board a {
 -webkit-tap-highlight-color: transparent;
}

We don’t actually have any links in our board, but if we did, this code would make the
background of any link #bada55 on top, except for the links in the game board, which

390 | Chapter 13: Targeting Mobile Devices and Touch

http://www.vodori.com/blog/phantom-limb.html

would show no effect on tap, other than the card flip effect, which is controlled
separately.
Kill the selection dialog

When you touch and hold on text copy, or touch and drag, you may have noticed the
appearance of a selection dialogue allowing you to copy or define the selected text. You
can control this in WebKit browsers with -webkit-user-select: none;. When user-
select is set to none on a DOM node, like a paragraph or even the <body>, no copy/
define selection dialog will appear.

The pointer-events: none; property/value pair is inappropriate in this setting. While
it would prevent the user from getting the copy/define dialogue, it would also prevent
any other touch events from occurring on the user-select targeted DOM node.
Kill the images dialog

Similar to the selection dialog , when a user touches and holds an image, an image save/
copy panel appears. Adding touch-callout: none; to all images will ensure that no
image dialog appears when images are touched:

img {
-webkit-touch-callout: none;
}

For best user experience and accessibility, do not use the preceding CSS properties in
content sites. These properties should be reserved for games and other entertainment,
productivity, and tool applications.
Kill panning

You don’t want your users to accidentally pop-up an operating system menu. With CSS
you are able to disable panning. You don’t want to completely disable panning all the
time, but you can use touch-action: none; to prevent accidental panning if accidental
panning is likely to occur:

.active #board {
 -ms-touch-action: none; /* disable panning */
 }

You might be thinking, “Why not just use JavaScript’s preventDefault()?” You could
likely get that to work. However, using the four CSS properties just covered performs
better than preventDefault(). CSS is almost always more performant than JavaScript.
And, in this case, there is up to a 400 ms lag in firing touch events, so it’s best to prevent
the panning, dialoging, etc., before it ever happens.
onTouchEnd

Because the device doesn’t know if you are going to do a single tap or double tap, there
is a 300–500 ms delay after the first tap before the touch event is triggered. Touch-
enabled browsers on touch devices will wait from 300 ms to 500 ms, depending on the

Touch Me | 391

2. In Firefox and Chrome, if zooming is disabled, the click event fires immediately, and doesn’t wait the 500 ms.

device, from the time that you tap the screen to firing the click event. The reason for
this is that the browser is waiting to see if you are actually performing a double tap.
Because of this, you may want to usurp the first tap (not waiting to expire the delay
between taps) with an event handler.

If you are making a call to the server or other slow process, provide feedback to the user
that the touch has been accepted. Depending on the connection speed, a server response
can take a long, long time. You want the user to know that something is indeed hap‐
pening—that their action is being acted upon—if the server response to the action takes
more than 100 to 200 ms.

In CubeeDoo, we aren’t making server calls, so we don’t need to add a “waiting” feature.
However, we certainly don’t want to wait 300 ms before flipping the card when the user
touches the screen. In the application we are developing we know that there is no double-
click behavior that we want to handle, so waiting this long to start acting on the click is
time wasted for users.

While usurping user interaction is something you want to carefully consider before
doing, in our example there is no reason that a user would double-click: we don’t allow
for zooming or have any other double-click features. We capture the touches to the cards
with the touchend event. Making the browser react faster to touch events involves a bit
of JavaScript that allows the application to respond to touchend events rather than click
events. Touchend events are fired immediately on touch end, so they are significantly
faster than click events, which wait the 300 to 500 milliseconds.2

We need to keep the onclick handler to the cards for browsers that don’t support touch
events, but we don’t want to handle a touchend then fire off a click 300 ms later. If this
were a button or link, we would need to ensure we don’t accidentally run two events on
the same node by calling preventDefault on the touchstart event. Calling prevent
Default on touchstart events will stop clicks and scrolling from occurring as a result
of the current tap:

eventHandlers: function() {
 if ('ontouchstart' in window ||
 'createTouch' in document ||
 (window.DocumentTouch && document instanceof DocumentTouch)) {
 qbdoo.btn_pause.addEventListener('touchend',
 qbdoo.pauseGameOrNewGame);
 qbdoo.btn_mute.addEventListener('touchend',
 qbdoo.toggleMute);
 qbdoo.clearScores.addEventListener('touchend',
 qbdoo.eraseScores);
 document.addEventListener('touchcancel',
 qbdoo.pauseGameOrNewGame);
 }

392 | Chapter 13: Targeting Mobile Devices and Touch

 qbdoo.btn_pause.addEventListener('click', qbdoo.pauseGameOrNewGame);
 qbdoo.btn_mute.addEventListener('click', qbdoo.toggleMute);
 qbdoo.clearScores.addEventListener('click', qbdoo.eraseScores);
 qbdoo.themeChanger.addEventListener('change', qbdoo.changeTheme);
},

Another solution is to add click and touchend event listeners to the <body>, listening
on the capture phase. When the event listener is invoked, you determine if the click or
tap was a result of a user interaction that was already handled. If so, call preventDe
fault and stopPropagation on it. Remember that some desktops come with touch
screens, so always include both click and touch events, preventing the default click in
case of touch.
Touching to scroll

Our game doesn’t scroll. Generally, we have to touch the screen to scroll, and when we
let go the logic tells us there is the touchend event. Currently, when scrolling, the tou
chend event is thrown in most mobile browsers, with the exception of Chrome for
Android. The specifications don’t specify that touch events should be canceled when
scrolling, but that does make sense.

Chrome for Android behaves a little differently, and this behavior is being added to the
pointer events specification. The specifications for touchevents don’t deal with this
issue, but pointer events will. When pointer events are supported, scrolling, pinching,
zooming, and other device (versus page) interactions will throw a cancel event.

Different platforms also handle different gestures. Apple (iOS), Google (Android), and
Microsoft (Windows) all support different gestures that provide more refined interac‐
tions.

Hardware Access
Touch is one difference you’ll note in the mobile space. Touch isn’t reserved for mobile.
There are more and more monitors on laptops and desktops and other devices that are
accepting touch. The touch screen also isn’t the only new hardware feature that we can
interact with. Depending on the operating system, device, and browser, using CSS,
JavaScript, and HTML5, we can create browser applications that interact with system
hardware in a way that used to be reserved for natively installed applications.

Phone Movement and Direction
Most mobile devices include sensors from which we can access data using JavaScript,
including the accelerometer, magnetometer, and gyroscope. To handle the orientation
of the device, we have the deviceOrientation event specification that provides us with
three window events, detailed in the following paragraphs.

Hardware Access | 393

The accelerometer measures acceleration or linear motion on three axes. Used to detect
motion, tilting, and shaking, it measures the acceleration force in m/s2 that is applied
to the device on all three physical axes (x, y, and z), including the force of gravity. We
can handle devicemotion for accelerometer data detection:

window.addEventListener('devicemotion', function() {
 // add response to event here
});

The magnetometer measures where the device is heading, like a compass, but doesn’t
necessarily point north. The magnetometer measures the strength of the magnetic field
in three dimensions, measuring the ambient geomagnetic field for all three physical
axes (x, y, z) in μT. The compassneedscalibration event is thrown when the device
detects that the compass needs a calibration to improve data accuracy. To calibrate, the
user does a figure eight with the device:

window.addEventListener('compassneedscalibration', function() {
 // add response to event here
 // generally telling the user to make a figure 8 with the device
});

The gyroscope measures the device’s rate of rotation in rads per second around each of
the three physical axes (x, y, and z). Because it measures the rate of rotation around a
single axis based on angular momentum excluding the force of gravity, the gyroscope
can provide information on the device’s rotation and orientation if you need to measure
whether the user is spinning or turning the device. We can capture deviceorienta
tion when supported:

window.addEventListener('deviceorientation', function() {
 // add response to event here
});

Every time the user moves the device, the deviceorientation event occurs, including
the properties alpha (0–360), beta (–90–90), and gamma (–180–180) for the rotation of
the device frame around its z-, x-, and y-axis, respectively. The property measurements
are generally relative to the direction the device was held when the orientation was first
obtained making deviceorientation useful for relative movements from the original
position.

Device Status
We are not only able to figure out how the user is holding the device, but we can also
determine what state the device is in. Is the device online? If so, what type of network
connection does it have? Does the device have battery power left?

394 | Chapter 13: Targeting Mobile Devices and Touch

Network connection

The Network API exposes the navigator.connection.type attribute with a string val‐
ue of unknown, ethernet, wifi, 2g, 3g, 4g, or none. Some browsers returned integers or
constants for those values: WIFI, CELL, CELL_3G, CELL_2G, CELL_4G, and UNKNOWN. The
API returns the connection type at the first connection. Devices, though, aren’t always
connected to the Internet, and connection types can change.

The newer API is based on the quality of the connection rather than the connection
type. Considering all the phone companies lie about what connection they market, this
makes even more sense than just the logic of it all. This version isn’t as well supported,
but support is starting. In the newer spec, instead of type, the navigator.connec
tion object exposes the bandwidth and metered attributes and a change event.

The navigator.connection.bandwidth returns 0 if offline, infinite (unkown), or the
number of megabytes per second as a double. The navigator.connection.metered
property is either true or false. If true, the user’s ISP is limiting your user, and you
should be careful with bandwidth usage. For example, when supported, if the connec‐
tion is metered, you could ask the user if they want to disable images and set a cookie
for that.

The change event can be written as:
navigator.connection.addEventListener('change', function() {
 //handle event. Generally, check the bandwidth property
});

Note that the connection object is still prefixed, and can be captured as:
var connection = navigator.connection ||
 navigator.webkitConnection ||
 navigator.mozConnection;
if (connection.bandwidth != undefined) {
 if (connection.bandwidth <= 0) {
 // offline
 } else if (connection.bandwidth <= 1) {
 // Less than 1MB/s / Low quality connection
 } else if (connection.bandwidth > 1) {
 // More than 1MB/s / High quality connection
 } else {
 // unknown
 }
} else {
 // API is not available
}

Battery

The Battery Status API allows you to determine the current battery status through the
navigator.battery object. When supported, you can determine whether the battery
is currently being charged with the Boolean navigator.battery.charging property.

Hardware Access | 395

http://www.w3.org/TR/netinfo-api/

The navigator.battery.chargingTime will return, in seconds, the estimated time until
the battery is fully charged. The navigator.battery.dischargingTime provides the
time, in seconds, until a system suspension. The float navigator.battery.level, be‐
tween 0 and 1, is the battery level.

var percentBatteryLeft = navigator.battery.level * 100

We will also have the chargingchange, chargingtimechange, dischargingtime
change, and levelchange to capture.
Other APIs

Other APIs for mobile web applications include:

• Pointer Lock
• MediaStream Recording
• Ambient Light Events
• Proximity Events
• Vibration
• Web Intents

The Calendar, Messaging, Sensor, and System Information APIs have been shelved. The
Device API Working Group maintains a list of the various API statuses.

Native Web Apps, Packaged Apps, and Hybrids
On iOS devices, we can add <meta> tags that enable us to create HTML web apps that
appear fullscreen as a native application would. Apple calls this type of application a
Web.app. When we create a Wep.app, if the user “installs” the web application by adding
the site icon to the home screen, when the user accesses the site via the home screen
icon, they we will have a fullscreen experience. When accessing a web application with
the correct <meta> tags via a home screen icon, the browser UI will be hidden. In this
way and with the HTML5 APIs we covered in this book, at least on some devices, we
can create native-looking applications with an offline experience that competes with
any native application.

Sometimes faux native, as described earlier, is not enough. While each operating system
requires native applications to be programmed in different programming languages,
you can code in HTML5, CSS, and JavaScript, and convert your web application to a
native application.

Hybrid applications are HTML5, CSS, and JavaScript-based applications that are con‐
verted, or compiled, into a native application, often simple using a fullscreen web view
as the application container. Using the web technologies you already know, and the ones
you learned in this book (HTML, CSS, JavaScript), we can package and compile our

396 | Chapter 13: Targeting Mobile Devices and Touch

http://www.w3.org/TR/pointerlock/
http://www.w3.org/TR/mediastream-recording/
http://www.w3.org/TR/ambient-light/
http://www.w3.org/TR/proximity/
http://www.w3.org/TR/vibration/
http://www.w3.org/TR/web-intents/
http://www.w3.org/2009/dap/

source code into a native application for the various device operating systems. Once it
is a native application, we can distribute it in the various application stores.
PhoneGap/Apache Cordova

Apache Cordova, formerly PhoneGap, is an open source project and native web appli‐
cation framework for multiple platforms. PhoneGap enables us to export our web ap‐
plications into native applications for most or all mobile platforms.

PhoneGap enables us not just to package our web application as a native application for
the various mobile operating systems, but also provides us with access to components
of the device that may not yet be accessible via the browser.

For example, while getUserMedia() is well supported in Google Chrome on desktop,
recording video from a browser is not fully supported yet in the mobile space. PhoneGap
allows us to program in JavaScript what is not fully supported by the mobile browser.
When we export that web application into a hybrid application with PhoneGap, the
wrapper converts our JavaScript into native code, understandable by the operating sys‐
tem, providing our hybrid application with access to device features only currently
supported in the native space.

Adobe PhoneGap Build is a cloud-based Cordova compiler, so we don’t need to deal
with the native SDK on our computers.
Sencha Touch

While Sencha Touch is a UI framework, since version 2.0 it includes a native packager
for iOS and Android. It is available for both Windows or Mac development environ‐
ments. The packager and other developer tools can be downloaded from the Sencha
website.
Appcelerator Titanium

The Appcelerator Titanium framework allows creating iOS, BlackBerry, and Android
native web applications. Titanium provides a bridge, enabling you to use native UI
components from JavaScript. Titanium converts JavaScript to native code during
compiling. The free Appcelerator Titanium Studio IDE can be downloaded online.

Testing
Your primary development tools should include a desktop IDE and a desktop browser.
The Chrome browser is a good first step in development: if it doesn’t work (aside from
device-specific things like touch and calling) in Chrome, it won’t work on your phone
either. While the desktop browser is your main tool when you are marking up and
coding your application, the desktop browser is only to be used in development and
primary testing: you must test your sites in multiple browsers on multiple devices.

Testing | 397

http://build.phonegap.com
http://sencha.com/products/touch
http://appcelerator.com

Getting multiple devices can be an expensive endeavor. Realizing we haven’t all won the
lottery, we have to be shameless because we can’t afford every device.

While you should still test in as many devices as possible of different sizes, browser
versions, and operating systems under different network conditions, testing on every
possible combination is not feasible. Mobile emulators provide for an easy, inexpensive
testing solution. Testing on live mobile devices can be a slow and tedious process—a
necessary process—but emulators can make debugging more bearable. When your code
works on the desktop but doesn’t work in the emulator, it likely won’t work on the device
either.

It’s much faster to test in the emulator than on a phone. Just remember, emulators are
not mobile devices. They are similar to the device they are emulating, but they have
different limitations: your mobile device likely has very limited memory. Your desktop,
and therefore your emulator, has an abundance of RAM. There are many differences
between an emulator and a real device, but the emulator does give a good starting point.

You still need to test on devices, and we haven’t resolved the lottery issue yet. In the
meantime, you need access to real devices. If you can’t buy, borrow or steal the plethora
of devices you need to adequately test a sampling of your likely user base.

Remember your current user base and possible user base are not necessarily the same
thing. If you see you only have 1% mobile usage, it may be because the mobile experience
for your site sucks. It may have nothing to do with who would use your site on their
mobile devices if you provided a good mobile user experience. Your current mobile
usage statistics only reflects the current experience of your site in the mobile space.

There are some problems with this testing approach, though. For one thing, there are
hundreds of differences between real devices, and several platforms without emulation.
Real device testing is mandatory.

It is impossible to test all browsers on all devices, or even to test a single browser on
every device. There are too many devices, with new ones being released all the time.

I recommend getting a few different devices with different sizes, operating systems,
memory constraints, and browsers. Obviously, you can’t get all of them. If possible, get
at least one device in each operating system, including the most recent iOS in tablet,
phone, or iPod touch versions, BlackBerry (preferably 10), Windows 8 phone or tablet,
and at least two Android devices running 2.3 and 4+ or latest version.

You can’t have all of the devices, nor should you. But this sampling can give you a good
range. The Android 2.3 is still being sold, which is why I recommend owning one. You
can purchase used devices on eBay. They’re really, really cheap if they have cracked
screens or the phone part is broken. All you need is the browser to work and be visible.
You don’t need high-quality devices.

398 | Chapter 13: Targeting Mobile Devices and Touch

These devices cover your basic testing. You still want to test on more devices. If you
can’t get Samsung, BlackBerry, Nokia, or Motorola to send you a free testing device,
there is likely a device lab in your city or a remote device lab accessible online. Apple
will likely never give away free devices, but if you don’t have any Apple devices, you
likely have a friend who does.

Testing on a single device takes time. Testing on all devices is impossible. But you do
need to test. You need to QA your code on a multitude of actual devices.

During development you can use tools to test mobile web applications in a manner that
more accurately reflects the mobile environment, without having to laboriously check
on actual devices. Simulators and emulators can be used as a first line of testing. They
are discussed in Chapter 1.

You definitely want to make sure your site looks good and doesn’t fail to complete the
tasks the user expects. We’ve already covered that. It’s not enough to make sure that your
site looks good and functions. You need to make sure your site functions, or performs,
well. Up next we look at performance.

Testing | 399

CHAPTER 14

Mobile Performance

Whether or not your design or development is mobile first, your development process
should always have performance at the top of the list of concerns.

Although the modern mobile landscape has browsers that are generally more advanced
than the desktop browsers we must still cater to, the devices themselves may have similar
memory and bandwidth constraints to the Pentium III you were using back in 1999.
The mobile device itself, rather than the mobile browser, creates various constraints that
we must consider during development.

The average website is over 1 MB. While responsive web design is currently the hot
mobile topic at most conferences, mobile performance is really more important: who
cares what your website looks like on the phone if your users can’t download it or render
it on their device?

There’s a lot more to think about than the breakpoints of our adaptive design. We need
to worry about feature detection, device APIs, touch events, content strategy, condi‐
tional loading of assets, and actual device performance. We need to take battery life,
latency, memory, and UI responsiveness into consideration throughout the develop‐
ment process.

Battery Life
Unlike desktop computers that are tethered to the wall at all times, and even laptop
computers that are generally used by stationary users, mobile users do not recharge
their devices throughout the day. Mobile users expect their devices to last, at a minimum,
24 hours between recharging.

Your users do realize that calls and GPS usage consume battery power. However, if they
think they’re just using their browser to surf the Web, they don’t consider that different

401

websites will drain their battery faster than other sites. It is our job, as developers, to
manage the power consumption of our code.

You have likely noticed that CPU usage drains the battery on your laptop when un‐
plugged. CPU usage drains the battery on mobile devices just as effectively. Anything
that makes your laptop churn, warm up, or turns your computer’s fan on will also drain
the battery of mobile devices (if they’re not plugged in). Code defensively: expect that
your mobile device users are not plugged in.

To manage the energy consumption of our code, we need to manage CPU usage. Avoid
reflows. Minimize both size and activity of your JavaScript. Don’t continuously reawa‐
ken the radio with unnecessary AJAX calls. Always use CSS, rather than JavaScript, for
animations. And even though the marketing teams of devices that support WebGL insist
that their devices are optimized, don’t serve WebGL to mobile devices. At least, not yet.
WebGL battery performance is improving.

Use Dark Colors
The brighter the colors in your design, the brighter the screen has to be. For phones
with AMOLED screens, the brighter the screen, the more energy is consumed, draining
the battery. AMOLED, or active-matrix organic light-emitting diode, screens are made
of a thin layer of organic polymers that light up. Because there is no backlight, they can
be very thin. Black pixels are actually turned off, saving battery life. For these non-LCD
screen devices, lighter shades consume more energy during display than darker shades.

Obviously, there are issues other than battery consumption affecting the decision on
what colors are used in application design. Just note that the amount of energy consumed
by websites can differ significantly depending on the colors used in the design on certain
devices. Colors are by far not the only feature affecting battery consumptions. Media
elements like background images, foreground images, video, audio, animations, and
JavaScript all contribute to battery drainage. If you can, pick darker colors. If you can’t,
optimize energy in your other features.

Use JPEGs
Use JPEG images instead of PNG. JPEG compresses images better and is faster to render,
and is therefore more energy efficient.

Rendering images consumes energy. Depending on the number, size, and type of images
in your site, rendering images can be responsible for a significant percentage of the
energy used. The energy required to render images is proportional to number and size
of the images rendered. JPEGs use less energy to render than GIFs and PNGs: according

402 | Chapter 14: Mobile Performance

1. “Who Killed My Battery?: Analyzing Mobile Browser Energy Consumption.” Narendran Thiagarajan, Gaurav
Aggarwal, Angela Nicoara, Dan Boneh, and Jatinder Pal Singh. http://mobisocial.stanford.edu/papers/boneh-
www2012.pdf, page 41–50. ACM (2012).

to the study “Who Killed My Battery: Analyzing Mobile Browser Energy Consump‐
tion,”1 JPEG is the most energy efficient format for all image sizes.

By using JPEGs, you’re not only saving battery life, you’re also reducing memory and
speeding up repaints. The type of image format you use affects energy consumption
during rendering of the image. This impact is replayed when the image is redrawn to a
different size. As we noted earlier, lighter colors consume more energy during extended
display. When we are talking about image rendering costs, we are talking about the
device decoding, resizing, and drawing out the image, not the energy costs once a static
image is displayed.

Reduce JavaScript
While raster images are the biggest bandwidth hogs and all images are memory hogs,
they’re not the only culprit in memory consumption and battery drainage. JavaScript
is too! To conserve battery power and memory usage, minimize both the size and activity
of your JavaScript.

When the browser hits a <script> tag, the browser ceases downloading additional assets
and rendering the assets it has already downloaded until the JavaScript is downloaded,
parsed, and executed. The browser also does not start parsing and executing the script
file until it is fully downloaded. Which you already know.

What you may have never thought about is the memory and energy used by JavaScript.
Every time an AJAX call is made, the device’s radio reawakens to make the request,
draining the battery. Every time JavaScript is parsed, energy is consumed. While a site
may cache the JavaScript file, it still parses and executes the JavaScript on every page
load. Dynamic JavaScript, like XMLHttpRequest, increases rendering cost and can’t be
cached. Every time an event handler handles an event, JavaScript gets executed. Every
time a setTimeout iterates, JavaScript gets executed. These all consume energy.

The download, parsing, and execution of JavaScript can be the most energy-consuming
web page component. Sometimes the JavaScript isn’t necessary! Only include JavaScript
frameworks if you actually need them.

I have seen sites include jQuery just to simply select an element, and other similar things
that are easy to do with selectors and/or native JavaScript. For example, to add the class
of first to the first list item in every unordered list, you could use jQuery, but you don’t
have to:

$('ul li:first').addClass('first');

Battery Life | 403

http://mobisocial.stanford.edu/papers/boneh-www2012.pdf
http://mobisocial.stanford.edu/papers/boneh-www2012.pdf

2. classList is supported mobile browsers, with support starting with IE10, Android 3, iOS 5.

3. http://mobisocial.stanford.edu/papers/boneh-www2012.pdf

Which is almost the same as:
var firstLIs = document.querySelectorAll('ul li:first-of-type');

for (var i = 0; i < firstLIs.length; i++) {
 firstLIs[i].classList.add('first');2

}

... but the latter doesn’t add 34 KB or an extra HTTP request to your site. And while 34
KB is not a huge amount of bytes, especially in comparison to the image size that people
are adding to their sites, if you include jQuery, while the jQuery file may be cached, it
is still parsed and executed with every page load. While a single page load won’t drain
all the power your user has left, wasting four joules3 of energy with each page load adds
up fast. And unlike when your user is using GPS or playing a movie, they aren’t expecting
that a website will drain their battery.

I am not saying that you shouldn’t use JavaScript frameworks. I am just arguing that
you should make sure you really need to include the framework before doing so because
you are not only wasting memory and bandwidth, but you’re also helping drain your
user’s battery.

Don’t import a library just to target an element with CSS selectors. We have querySe
lector() and querySelectorAll() for that. Don’t import a library just to bind events:
addEventListener() works fine in all modern browsers. Don’t write a script just to
make scrolling work better. Try -webkit-overflow-scrolling: touch instead. And if
you must have scrolling down perfect, along with the little bounce, use a script. Don’t
reinvent the wheel. You won’t get the physics right. Use a library when you must, but
think long and hard about whether you really need the extra bytes, HTTP request,
memory usage, and battery drain before doing so.

Eliminate Network Requests
Obviously you need to download the files required to load your web application. This
uses battery, but is necessary. However, polling the Facebook, Twitter, and Pinterest
servers every 15 seconds to see if your page received more likes is not necessary and a
waste of both bandwidth and battery power. In fact, it’s the worst possible waste of both.

Determine if your application needs to poll all the time, or rarely to never. If your
application needs to be real time, such as a chat or a sports game, you will want to spend
battery power by keeping the connection alive at all times. If your application is not
polling for a necessary purpose (Facebook like counts are not necessary, and annoying),
let your mobile device terminate the connection to the cell tower.

404 | Chapter 14: Mobile Performance

http://mobisocial.stanford.edu/papers/boneh-www2012.pdf

Establishing and maintaining radio links to cell towers consumes battery power. When
the device is not making requests, it shuts down connectivity processes to save battery.
This is a good thing.

While most performance arguments revolve around input and output of data, the num‐
ber one battery drain in a mobile phone is radio. To preserve battery life, mobile devices
put the radio in a preserving power mode when the transmissions are complete and
into a deep sleep state after a few seconds of network inactivity. After the radio link is
idle for 5 seconds, it drops to a state of half power consumption and significantly lowers
bandwidth. After another 12 seconds of inactivity it drops to the idle state.

From the idle state it takes time to reach full power and bandwidth. If you are polling
your server every 15 seconds, you are waking the radio from a deep sleep. Waking the
radio can take up to 2 to 3 seconds, taking multiple round trips just to get to a state
where your application can transmit.

If your application needs to keep the connection alive, do so. Realize you’re draining
the battery and let your user know this. If you don’t need to poll at regular intervals, to
conserve battery power, keep messages as small as possible and limit the number and
frequency of network requests after page load.

Hardware Acceleration
Usually when people think of managing CPU usage, they’re thinking of their server. Yes,
you should be doing that, too. But when it comes to limited battery life, you want to
manage browser CPU usage caused by your web application. Whatever makes your
laptop fan turn on will also drain the battery of any device.

One solution is to hardware accelerate all animations. Hardware acceleration means
rendering your animations on the GPU instead of the CPU. The graphics chip requires
less power than the device’s CPU, resulting in improved battery life. Hardware acceler‐
ation carries out all drawing operations that are performed on a View’s canvas using the
GPU. Hardware-accelerated images are composited, using four times the memory of
the original. Because of the increased resources required to enable hardware accelera‐
tion, your application will consume more RAM, but less battery power. With con‐
strained memory and battery life, always consider battery and memory consumption
when designing and developing your applications.

Hardware acceleration has both benefits and drawbacks. Your animation will appear
less janky on the GPU, and you will lose less battery. However, your memory is limited.

In other words, transform: translatez(0); is not a panacea. Do not do this:
* {
 transform: translatez(0);
}

Battery Life | 405

... as you may run out of GPU memory, especially on devices with limited memory.
However, don’t be afraid to force hardware acceleration on the elements you are ani‐
mating. In fact, to reduce the traffic between CPU and GPU, it is recommended that
you put all elements that are going to be animated on the GPU on load:

.spinner {
 transform: translatez(0);
 animation: spin 1s linear infinite;
}
@keyframes spin {
 100% {
 transform: translatez(0) rotate(360deg);
 }
}

Note that in the preceding example, we add the 3D transform even when we are not
animating. If you are going to hardware accelerate an element at any time, keep that
element hardware-accelerated at all times. You don’t want to have a brief moment where
the element disappears as the device moves it to and from the CPU to GPU.
Avoid repaints and reflows

Repaints and reflows are some of the main causes of sluggish JavaScript, and a main
cause of janky animation.

A repaint is a redrawing of the screen when an element’s appearance has been altered
without affect on layout. Changing an element’s color, visibility, or background image
will cause a repaint. Repaints are generally cheap, but can be expensive, as the visibility
of all the nodes in the DOM tree and all the layers of each node must be measured.
Repaints can be costly when alpha transparency is involved.

Rendering alpha transparent blurs such as shadows or alpha transparent gradients will
always take more time to render, as the browser needs to calculate the resulting color
of every pixel based on the transparency over the color underneath it. This occurs even
if the color, in the end, is not visible because of a design element on top of it, as CSS
properties like background image and shadows are drawn from back to front.

The time to paint is really ridiculously fast. Generally, optimizing other areas will give
you more bang for your buck. However, if you are repainting repeatedly, such as a non-
hardware-accelerated transition or animation, minimizing repaint time is vital. In ani‐
mating, the browser must repaint the nodes being animated in generally less than 16.67
ms for the animation to not appear janky. These overdrawn pixels can waste a lot of
processing time for CPU-based rasterizers.

A reflow is even more critical to performance because it involves changes that affect the
layout of a portion of the page (or the whole page). Reflow of an element causes the
subsequent reflow of all child and ancestor elements as well as any elements following
it in the DOM. A reflow is the browser process for recalculating the size and positions

406 | Chapter 14: Mobile Performance

of all the DOM nodes when the browser needs to calculate the size of an element or
when it re-renders a part of or an entire document.

When the browser needs to measure or reflow a single element in the document, unless
absolutely positioned or in its own render layer, it generally reflows not just that relevant
node, but the node’s ancestral elements and all elements that come after it.

Some of the nodes that have their own render layer include the docu‐
ment itself, explicitly CSS positioned (relative, absolute, or a trans‐
formed) nodes, transparent nodes, nodes with overflow, alpha mask
or reflection, WebGL, hardware-accelerated content, and <video> el‐
ements.

During a reflow, users are blocked from interacting with the page. It’s therefore impor‐
tant to prevent reflows, and minimize reflow time when they do occur. Scripts and even
some CSS can cause a reflow. The DOM tree, styles, and assets can impact reflow speed.

There are many things that can cause a reflow, including adding, removing, updating,
or moving DOM nodes, changing the display or box model properties of a node, adding
a stylesheet or inline styles, resizing the window or changing the orientation, scrolling,
and querying style information via JavaScript.

To reduce the number of reflows, batch your style queries, change styles via changing a
CSS class rather than adding inline styles.

Instead of changing individual styles, change the class name. If the styles are dynamic,
edit the cssText property rather than the style property:

myNode.style.cssText += "; left: 50p%; top: 0;";

Batch DOM changes and do them off of the live DOM tree. Don’t ask for computed
styles unless necessary. And if you do so, batch the queries and cache the results into
local variables, working with the copy. Make your updates in a clone of the content,
make all your changes offline, then add back when complete.

This can be done in a documentFragment or a copy of the document section you’re
editing. If you need to, you can even hide the element with display: none, make your
plethora of changes, then reset the element to its default display. This method reflows
exactly twice: when you hide and when you show again. This may sound like a lot, but
this may be less than would otherwise occur if you’re making hundreds of changes
causing reflows on a live node.

To make the reflows that do occur happen faster, you should minimize the number of
DOM nodes, eliminate overly complex CSS selectors, and ensure that all animations
are hardware-accelerated.

Battery Life | 407

4. See http://www.igvita.com/2012/07/19/latency-the-new-web-performance-bottleneck/.

The deeper the DOM, the more time it takes for every reflow. Changes at one level in
the DOM tree can cause changes at every level of the DOM tree, from the last of the
nodes descendants all the way up to the document root. The more nodes you have, the
longer it takes to reflow them all.

If you make complex rendering changes such as animations, do so out of the flow. Create
a separate rendering layer with position: absolute;, position: fixed;, or
transform: translatez(0); to accomplish this.

Latency
Download and upload speeds are rarely (if ever) equal to the bandwidth marketed by
Internet service providers (ISPs). The quoted Mbps is the fastest connection one could
possibly ever hope to get, not the speed of the average connection. The speed by which
a website, including the markup, stylesheets, media, application scripts, and third-party
scripts, makes it onto our devices are affected as much by latency as by the bandwidth
of the marketing terms of EDGE or 3G, if not more so.4

Latency has a much larger impact on download speeds when a device is on a mobile
network compares to devices that are tethered or accessing the Internet via WiFi.
Download speed is greatly affected by packet loss and latency. Packets must first travel
from your device to the closest cell tower. The air between your device and that tower
is the main cause of latency. In other words, your mobile users using 3/4G already have
low bandwidth. Latency makes their web-surfing experience that much more painful.

Because mobile devices have terrible latency, reducing the download time is very im‐
portant. To optimize sites for mobile, reducing the number of HTTP requests and DNS
lookups can have the greatest impact on improving performance. If you are testing your
device on the local Starbucks WiFi, you will not experience much latency. Try testing
your application from the passenger seat of a speeding vehicle on a scenic highway: this
will give you a much better sense of the test case you want to optimize for.

Reduce the Number of HTTP Requests
There are several ways you can reduce the number of requests made by your application.
Browser cache

Leveraging your browser cache reduces requests on subsequent page loads and refreshes
since, when an asset is cached, your browser doesn’t need to re-retrieve them.

408 | Chapter 14: Mobile Performance

http://www.igvita.com/2012/07/19/latency-the-new-web-performance-bottleneck/

For nonchanging static components, like the corporate logo, set a far future Expires
header. For dynamic components such as a JSON response, use an appropriate Cache-
Control header to help the browser with conditional requests.
Combined JavaScript file

Concatenating all your JavaScript into a single file is often a good idea. Just note that
your device has memory limitations. As such, while reducing your JavaScript into a
single file may reduce the HTTP requests the most, it may make more sense to include
a couple script files: one for the overall app used on most of your page loads, and separate
modularized scripts for the more complex component(s) of your application. There is
no right answer: realize that you have both memory constraints and latency issues, and
determine what makes the most sense for your applications.

It’s also a good idea to minify and gzip your JavaScript. Using a content delivery network
may speed up your download, but may also add an extra DNS lookup.
Single stylesheet

Similarly, you can concatenate all of CSS into a single file. Tools like Sass can help you
manage modularized SCSS files, and concatenate them all to a single file for production.
But again, remember there are memory constraints. Figure out what makes the most
sense in terms of performance for your particular application. Concatenate and cache
as much as is appropriate. Minify and gzip as well.
Image sprites

When it comes to developing for the desktop, we’ve also been concatenating images
into sprites. Image sprites are a collection of images put into a single image. Image sprites
reduce the number of HTTP requests and also help save bandwidth.

While sprites are a very good way of reducing latency, they do have drawbacks. Memory
is limited on mobile, and these images are loaded into memory even if only a small part
of the image is used. In addition, large images may be tiled in memory. It is generally
recommended to keep all images for limited devices to under 1024 px in either
dimension.
Image compression

When creating images, you want to compress them as much as possible. While you
should gzip your image files too, remember that when they are decoded by the browser,
they return to their pre-gzipped file size: so again, compress as much as possible.
Data URIs/inline images

For small images and simple SVG image files, you can reduce the number of HTTP
requests for that file down to none by providing a data URI as an inline image or as a
data URI for a background image, instead of having the browser download a separate
binary file. Inline images use the data URI scheme to embed the image data in the actual

Latency | 409

5. See http://davidbcalhoun.com/2011/when-to-base64-encode-images-and-when-not-to.

6. Compass, the CSS authoring framework, has an inline helper to automate data URIs. There are many such
resources available.

7. Support for displaying only sections of images is in the works, but is not supported yet.

page. This can increase the size of your HTML document. Weigh whether saving an
HTTP request is worth the increased file size of this method.

In your CSS, to include a data URI, include your images anywhere you would normally
include your image, encompassed with url(). For example:

a[href^="mailto"] {
 background: url(-data-uri-code-UhwFUUE1l)
 no-repeat right center;
 padding-right: 25px;
}

If you were to code it as a foreground image in HTML, it would resemble this:
<img width="16" height="16" alt="email" src="data:image/gif;base64,
 R0lGOYLCVDFCrKU-data-uri-code-UhwFUUE1lBavAViFIDlTI0SlBCBMQiB" />

Where the data URI code would really be much, much longer.

Data URI strings can be very long. On average, a data URI is about 33% more bytes than
the binary raster equivalent. Both methods can (and should) have the file size reduced
by gzipping. Because of the way packets are sent, there is a cost-benefit analysis to be
considered. It can be worth sending the extra bytes of a smaller data URI image to save
on HTTP requests. It isn’t generally isn’t worth sending a data URI for several high-
resolution PNGs—while the actual download time may be just a bit more, the perceived
download time may make the extra HTTP request worthwhile. Where that performance
sweet spot is depends on device and connection.5

Should you use sprites or data URIs? Both work. I find sprites easier to work with than
having to export data URIs,6 but data URIs definitely have other benefits. Data URIs are
usable for background patterns7 and for when you have way too many images or un‐
predictable image requirements that preclude being able to use a sprite. For example, a
star rating system might be a good use case for a sprite, but avatars for a Twitter stream,
with the plethora of possibilities, can’t be sprited, making data URI a better solution.
Icons and character sets

As long as you have declared the charset of your files, you can use any characters in your
font, including ✉, ⌘, and ✔. Using a font instead of image icons is more robust. You can
create icons in any color without Photoshop. You can create icons of any size without
pixelation. Using the default font also saves on HTTP requests and memory.

410 | Chapter 14: Mobile Performance

http://davidbcalhoun.com/2011/when-to-base64-encode-images-and-when-not-to
http://compass-style.org/reference/compass/helpers/inline-data/

You are likely to find icons for all your needs in the font families preloaded onto your
users’ devices. Sometimes your designer wants to have more design control. There are
many icon font sets. These require downloading the font face, and so will incur a single
HTTP request. That is the same, or fewer, HTTP requests you would have required if
you used images instead of fonts.

You can also create your own icon font. A good resource is IcoMoon, which is a set of
open source icons and a web app for customizing and downloading optimized icon
fonts. You choose just the icons you want and download a minimized set. You can also
add icons from different sets or from SVG files.
Inspecting network requests

You can inspect the performance of your site or application by looking at the waterfall
chart in the browser developer tools on desktop, using weinre or Adobe Edge Inspect
from the mobile device, from the BlackBerry debugger, or from many other tools.

A free waterfall chart can also be obtained from online tools, like WebPageTest.org, as
shown in Figure 14-1. The chart shows the number of requests made (34 in this case).

Figure 14-1. Waterfall chart from WebPageTest.org

Latency | 411

http://icomoon.io/
http://webpagetest.org

Each request shows the time allocated for DNS lookup (if any), initial connection, time
to first byte (or latency), and content download (bandwidth with latency). The first
vertical bar is when the page started rendering, and the last vertical bar (barely visible
on the right hand side of the images) is the time until the onload event was fired.

If we look at a single line from the waterfall chart, as in Figure 14-2, we can observe the
latency of including a script from an external domain. In this case, to include an external
JavaScript file, we first must wait 406 ms just for the DNS lookup, waiting 593 ms until
the first byte of the script is downloaded. The loading of assets is halted when a script
is called until the script is downloaded, parsed, and executed. This 2,243 ms request for
show_ads.js prevented any rendering to our page for over 2 seconds. This demonstrates
the need to pay attention to latency, code order, and performance in general, and more
specifically to the impact of third-party scripts.

Figure 14-2. Detail of a single request

Your goal is to get the waterfall to be as short as possible and as narrow as possible.

Reduce Size of Requests
Latency is the biggest concern. The biggest culprit in latency is generally the number of
requests, rather than the size of requests. However, the larger the size of the requests,
the longer they take. And often, the memory consumed by the application is propor‐
tional to the size of the application files. The average website is over 1 MB, with the same
files sent to the 24-inch monitor and the 3-inch Android. To reduce latency, and posi‐
tively impact memory, reduce the size of the requests that your application is making.

The smaller the file size, the less time it will take to get from the server to the client once
the connection request is made. Minify your CSS. Minify your JavaScript. Create images
with the smallest file size possible while maintaining acceptable resolution.
Minify text-based assets

For your text-based assets—your CSS, JavaScript, JSON, and SVG files—minify every‐
thing. There are minifying services and tools to make sure text-based assets are as small
as possible. If your prefer not to minify during development, I understand. But definitely
minify before deploying your code.
Compress binary files

Different image-editing programs provide for different ways to reduce file size. Instead
of using GIFs, save your image as a PNG8. If you need animated GIFs, use CSS animation
instead. If your color palette is too large for a PNG8, pass your PNG through a tool like
ImageAlpha or automate it from the command-line with PNGCrush.

412 | Chapter 14: Mobile Performance

http://pngmini.com

JPEG compression is lossy compression, but compressing down to 40% to 60%, instead
of 80% to 99%, can lead to huge byte savings.
Gzip everything

Once you’ve made the files as small as possible, gzip them! Gzipping as many file types
as possible reduces page weight, accelerating the download speed. However, it does not
reduce the file’s impact on memory. When it comes to memory, the file size in the client
will be the same size of the file before you gzipped it. Gzipping saves bandwidth, but
the file gets deflated to its pre-gzipped, post-compressed size once it gets to its
destination.

Leverage the developer tools to inspect what has and hasn’t been compressed. Start by
disabling cache in the inspector via the settings panel. This way you’ll always have a cold
cache or baseline on which you can compare your work. This is how your visitors will
see your site load the first time they hit your site.

In the Network tab’s waterfall, in the size column, the top number in the size column is
the transferred size. The bottom is the real size. The transferred size will reflect your
minification and gzipping. The real size will show you how much memory will be al‐
located, and how much more you can save in terms of bandwidth. If there is only one
value showing, you are in “use small resources row.” To see the “large resources row,”
click on the expand rows icon at the bottom of the developer tools window, to the right
of inspect and left of record, as shown in Figure 14-3.

Figure 14-3. Toggle between large and small resources display

At the bottom of the Network tab, there is a gray line with white text: this line shows
the total file size and time to download.
Reduce image size

There is no reason to send huge images to tiny devices. Use media queries to send the
right size background images. For foreground images, use the Clown Car Technique,
libraries like Picturefill, or tools such as Sencha.io Src to send the right size image. More
information on these methods and links can be found in the online chapter resources.
More details on image sizing is discussed under the section “Memory” on page 415.

Latency | 413

http://www.standardista.com/mobile/

Skip the framework

If you can avoid importing a JavaScript framework, do it. As mentioned under the
section “Battery” on page 395, frameworks were originally created to normalize Java‐
Script across browsers. All smartphones have browsers smarter than IE8. If you’re im‐
porting frameworks for supported tasks like selectors and event listeners, code vanilla
JavaScript. jQuery adds 34 KB, an extra HTTP request, and consumes energy every time
it is parsed and executed. It’s not a huge file size. If you need a framework, use a frame‐
work. However, if you can avoid importing scripts, do that instead.

Again, don’t reinvent the wheel. Use a library when you must, but think long and hard
about whether you really need the extra bytes, HTTP request, memory usage, time to
fully parse and execute the code, and battery drain before doing so.
Minimize cookies

Obviously, you need cookies sometimes, like on authentication. Browsers and servers
send cookies back and forth with every request. If possible, eliminate unnecessary
cookies, such as for static content like images that don’t make use of the cookie. While
some may argue that localStorage can reduce the overhead of relaying cookies, local‐
Storage does take time to access, so may not be a better solution.
Defer third-party scripts

Don’t let an external script drain your battery, or become a single point of failure (SPOF).
If a script is called, the downloading of all assets ceases until that script is downloaded,
parsed, and executed. We saw a 2,243 ms request for show_ads.js in Figure 14-2, which
prevented rendering for over two seconds! If your third-party script fails to load when
called, your application will fail to load until the script times out, if at all. Defer third-
party scripts, or avoid including them at all if possible, to ensure that someone else’s
script doesn’t kill your site.
Performance anti-patterns

Because of latency issues, reducing DNS look ups and HTTP requests is vital in the
mobile space. In some scenarios, it may make sense to embed stylesheets and scripts. I
realize this is a web performance optimization anti-pattern, but bare with me.

Best practices for speeding up your website recommend making your JavaScript and
CSS files external and using a content delivery network, or CDN. However, external
files mean more HTTP requests, and using CDNs for static content adds both more
DNS lookups and more HTTP requests. While embedding CSS and JavaScript in your
HTML goes against all best practices I’ve ever espoused, if done correctly, embedding
your scripts on first load can help improve performance. Bing’s mobile website is a
perfect example.

414 | Chapter 14: Mobile Performance

Currently (as introduced in “LocalStorage to enhance mobile performance” on page
166), when you access m.bing.com for the first time from your mobile device, the entire
site loads as a single file. The CSS and JavaScript are embedded. Images are included as
data URIs. Bing for mobile puts all of their assets into a single file, necessitating only a
single HTTP request. However, that single file is 200 KB. That is huge. However, only
the first visit to Bing returns such a large file. By taking advantage of localStorage and
cookies, every subsequent request to m.bing.com returns a single file of manageable size.
While the first request returns a huge file, every subsequent request produces a response
of about 15 KB.

Bing embeds all of the files needed into the single HTML file. Using client-side Java‐
Script, Bing extracts the CSS, JavaScript, and images from the original download, and
saves the CSS, JavaScript, and image data URIs in local storage. Bing saves the names
of the stored files in a cookie. With every subsequent page request, the cookie informs
the server which files are already saved locally, allowing the server to determine which
assets, if any, need to be included in the response. In this way, subsequent responses
only include scripts, styles, and images not saved in local storage, if any, along with the
HTML.

The steps to reducing the negative effects of latency in a mobile site download by making
a web app with a single HTTP request for all HTML, CSS, JavaScript, and images include
the following steps:

1. Embed CSS and JavaScript for first page load.
2. Extract and put the above-embedded files in localStorage.
3. Set cookies with the names of the extracted embedded files.
4. On subsequent requests, check the cookies server-side.
5. Only embed new and missing scripts based on cookie values.
6. Load files from localStorage resources on load.

Note: If you’re wondering why this method may be more efficient than simply down‐
loading and caching files, not only does this method improve performance by avoiding
the latency of multiple DNS lookups and HTTP requests, but mobile devices have more
limited cache, with iOS having no persistent memory.

Pulling data out of localStorage is a performance hit. When it comes to mobile, however,
it is usually less of a hit than latency, especially latency with limited bandwidth.

Memory
Most performance recommendations focus on improving I/O speeds. It is not sufficient
to only focus on how long it takes for responses to complete in the mobile space. When
it comes to mobile and the limited memory on most mobile devices, we have to also

Latency | 415

manage what happens on the device. As developers, we generally develop on our per‐
sonal computers where memory is virtually unlimited. Mobile users, however, are run‐
ning our sites on devices with very limited memory.

Memory on personal computers has increased almost exponentially over the past two
decades. 256 MB may have been more than enough to run all software on a Pentium II
in 1997. In 2013, however, base model (i.e., slow) computers come with at least 4 GB of
RAM. An iPhone 3G has 128 MB of memory. The original iPad has 256 MB. The faster
HTC Inspire has 768 MB. The norm for new, high-end smartphones is 512 MB to 1 GB
of RAM with 1 GHz processors. Mobile devices have software written in 2013, but run
on devices that have the memory of a 1999 desktop.

While 512 MB may seem large enough to run any web application, in managing memory
it is important to remember that the browser (and web application) is not the only
process consuming the limited RAM. The operating system, background processes, and
other open applications (operating system and user-initiated) are all sharing the mem‐
ory. Mobile devices are generally running many native applications as well as user-
installed apps, with or without the user’s knowledge. Running applications are many,
including user-initiated apps like Twitter, GPS, Facebook, and apps that came with the
device but may be running unbeknownst to the user, like Calendar and Media, and
applications downloaded by the user, like Angry Birds. Native OS applications and all
apps with user notifications turned on continue to run in the background. A device with
512 MB of RAM likely has less than 200 MB of available memory. In managing memory,
remember that your web application’s most active users are likely also the ones using
other mobile applications. When testing, test with real-world devices. Run apps like
Twitter, Facebook, and Mail with notifications on all your testing devices.

The greater the number of applications running on a device, the less memory is available
for your web application. And even if none of those applications are memory hogs, the
sheer number of apps running in the background create high memory usage conditions.
High memory usage causes a slow UI, and when the browser is out of memory, it is out
of memory. The mobile browser will generally close or crash to free up memory. You
need to manage the memory requirements of your web applications to ensure they don’t
use too much memory, and slow or crash the mobile browser.

Optimize Images
Other than avoiding CSS expressions (YSlow) and optimize images (PageSpeed), the
performance optimization guidelines have to do with input/output (I/O) of bytes, and
not what happens once the site is on the device.

While gzipping files helps improve download speed, it does not help with memory
management. Once the asset is on the device, it is no longer compressed. Images use up
memory. Images over 1024 px cause greater memory issues on some devices. Reduce

416 | Chapter 14: Mobile Performance

http://developer.yahoo.com/yslow/
https://developers.google.com/speed/pagespeed/insights_extensions

your image files’ memory consumption by serving up the image with the dimensions
at which it will be displayed, and by compressing the image at that size.

There are a few tools at your disposal. ImageAlpha and ImageOptim can help convert
your large file size transparent PNGs into 8-bit PNGs with full transparency. The Sen‐
cha.io proxy determines what size image the user’s device requires and will shrink (not
grow) images before sending them to the client.

While reducing image file size has always been important for web performance, when
it comes to mobile we can’t just focus on the I/O file size. You have to consider how large
the image file is uncompressed, as memory is limited. All images use up memory. Com‐
posited images use GPU memory instead of CPU memory. So while that may be a neat
trick to free up some memory, composited images use up four times the memory of
their noncomposited counterparts, so use this trick sparingly.

As noted earlier, you want to keep the size of all of your assets down to a minimum.
There is an answer to “How big is too big?” The answer for today’s devices may not be
the same answer for tomorrow’s devices. The answer for my target market may be dif‐
ferent from your target audience.

The best advice I can give is to determine what your application limits should be before
you begin development. Decide before you design and develop your application what
the appropriate size limitations of your assets should be. As you develop, try to stay
within the limits you set for yourself. This will help you focus on performance through‐
out the whole development process. You or someone in your team may want to include
a feature that takes you beyond what you have allocated. If you weren’t thinking about
your self-imposed limit, you likely wouldn’t have questioned the asset. With the self-
imposed limit, you will need to consider the necessity of this component. If you must
include it, how can you make it smaller. Once you’ve reduced its memory and bandwidth
footprint as much as you are able and you still need it, where else can you reduce to
bring you back under your limit. In the end, you may go over your limit. However, your
site is now much smaller than it would have been had you not been negotiating with
yourself to save bandwidth, memory, and HTTP requests every step of the way.
Weigh the benefits of CSS

CSS can help reduce the number of HTTP requests and reduce the size of the requests
that are made. With gradients, border-radius, box and text shadow, and border images,
you can greatly reduce the number of HTTP requests.

CSS provides the benefits of fewer HTTP requests, easily updateable and fully scalable
effects, and easy and efficient transitions, transforms, and animations.

Latency | 417

http://pngmini.com
http://imageoptim.com
http://www.sencha.com/learn/how-to-use-src-sencha-io/
http://www.sencha.com/learn/how-to-use-src-sencha-io/

8. Many people hate CSS. They’re wrong!

While CSS is awesome,8 painting effects to the screen does have costs. Sometimes PNGs
and JPEGs use less memory and render faster than CSS effects.

Weigh the benefits of CSS. While CSS images are generally the preferred solution over
using Photoshop and uploading exported pictures, some CSS features have hidden costs
due to memory usage and rendering slowness.

Some CSS properties are more expensive to render than others. For example, drawing
blur shadows over a nonmonotone background involves measuring the resulting pixel
color based on the foreground shadow combined with the background color over every
pixel. Even if it’s an inset shadow, and not visible since a solid color or image is placed
on top of it during repaint, it is still measured, and browsers work from back to front
when painting elements to the page.

CSS features that are transformable are generally evaluated at each reflow and repaint,
using up memory. PNG, JPEG, and GIF images, unlike CSS generated images, are ren‐
dered and transitioned as bitmaps, often using less memory (but more HTTP requests).
For example, shadows, especially inset shadows, are recalculated at every repaint even
if the shadow ends up being obfuscated by another element, background image, or effect.
The combination of every semitransparent pixel with the color of the element or effect
behind it needs to be measured for every pixel, for each effect, from back to front, for
every repaint.

CSS gradients can take less time and effort than creating the effect in Photoshop. The
140-character linear gradients done with CSS not only take up fewer bytes of bandwidth
than the JPEG equivalent, but it also saves you an HTTP request. Linear gradient mem‐
ory consumption is negligible, and the bitmap created by the browser is generally small
and repeated.

On the other hand, the 140-character radial gradient declared in your CSS, which does
save bandwidth and an HTTP request, can possibly crash your browser. The browser
paints and keeps in memory the entire gradient, not just the section of gradient that is
displayed in the viewport. If you are creating a small, opaque circle, then by all means,
use native CSS radial gradients. However, if you’re creating a circle with a large radius,
the circle will be painted beyond the confines of the viewport, using up memory. If you
recall, images that are too large are tiled in memory. I recommend using linear gradients
and native rounded corners over images, but weigh the performance of radial gradients
and inset shadows against the cost of downloading an image. The latter may actually be
more performant.

Combining some CSS properties can result in a longer paint time than the paint time
of the individual properties had they been applied to separate DOM nodes.

418 | Chapter 14: Mobile Performance

Paint time is generally fast. Really fast. But paint time becomes a concern when re‐
painting. Every reflow requires a repaint. Animations require repaints. If you are ap‐
plying 27 different effects to a single element, that will be fine if you are simply painting
to the page once. However, if you are animating an element, be aware that some CSS
features, especially components that are partially transparent, can take longer to paint
than the 16.67 ms allotted for each keyframe. Hardware-accelerating the animation can
help, but has its own pitfalls.
GPU benefits and pitfalls

As mentioned earlier, hardware acceleration can greatly improve performance, espe‐
cially when animating. However, translate3d is not a panacea! Hardware-accelerated
elements are composited. Composited elements take up four times the amout of mem‐
ory. Using GPU instead of CPU will improve performance up to a point. While
hardware-accelerated elements use up less RAM, they do use up video memory, so use
the transform: translateZ(0); trick sparingly.
Viewport: Out of sight does not mean out of mind

The mobile viewport is the viewable screen area. Unlike your desktop browser where
you scroll content, on mobile devices, unless the viewport height and width are set and
scaling is disabled, the viewport is fixed and the user moves the content underneath.
The viewport is a “port” through which your users view your content. Why is this a
performance issue? Most don’t realize that the content that is drawn to the page, even
if it is not visible in the current viewport, is still in memory.
Minimize the DOM

Every time there is a reflow, every DOM node is measured. The CPU on your desktop
can handle a virtually endless number of nodes. This isn’t so for mobile devices. The
memory on mobile devices is limited and garbage collection differs so is not fully reli‐
able. To improve performance, minimize the number of nodes. Instead of allocating
DOM nodes and destroying them (or forgetting to destroy them), pool and reuse your
nodes. For example, in CubeeDoo, the maximum number of cards per game was 24.
Instead of creating new cards for each game, we created 24 cards, and reused the same
cards for each game.

CubeeDoo is a simple example of reusing nodes. Infinite scrolling is a more complex
and necessary, pooling-and-reusing scenario. A feed will add more and more entries as
you scroll down the page. Eventually the browser or device will run out of memory. The
user will generally continue scrolling down, not up. Instead of creating new nodes for
each new item, limit your application to a certain number of nodes that all devices can
handle. As the user scrolls down, pool the nodes that have been moved well off the top
of the screen and reuse them for items lower in the feed. If the user scrolls up, take those
nodes that have moved out of site off the bottom of the feed and reuse them for newer
items.

Latency | 419

Most feeds designed for desktop browsers do not pool and reuse. Infinite scrolling
without pooling and reusing can and will crash browsers. I was able to get Facebook to
use 76 MB of memory by scrolling down my feed. It eventually crashed my desktop
browser, though I can’t be sure if it was the memory consumption from the endless
nodes or some other issue. It most certainly would have crashed my mobile browser.

Instead of adding more and more nodes as you scroll down for more content, limit the
content nodes in your application to a set quantity. Reuse the top nodes as the user
scrolls down, and the bottom nodes as the user scrolls up.
Memory management

Developer tools provide us with tools to analyze and explore application memory
consumption.

The Timeline panel provides an overview of where time is spent when loading and
interacting with a site or web application. All events, from loading resources to parsing
JavaScript, calculating styles, and repainting are plotted on a timeline. The events, in‐
cluding calculating styles, reflowing, and painting, JavaScript parsing and execution,
etc., are displayed.

You can use the information provided in the Chrome Developer Tools Timeline panel,
shown in Figure 14-4, to manage memory usage. To inspect the memory, select memory
in the upper lefthand panel area, and then start capturing memory and events by press‐
ing the black circle record icon in the bottom toolbar. The record icon turns red when
recording. If you simply want to view current memory usage, simply record. If you want
to inspect all the events that cause this memory usage, click the record icon then reload
the page.

In the current Chrome Developer tools, times for loading are blue, scripting is yellow,
rendering purple, and painting is green. You can toggle visibility of each of these event
types using checkboxes in the status line at the bottom. You can also filter out events
shorter than 1 ms or 15 ms by selecting from the All drop-down filter button in the
status bar to the left of the event checkboxes. I recommend filtering to help reduce the
noise when trying to identify performance culprits.

In the Memory view, the narrow section at the very top displays the time, with blue and
red vertical lines denoting when DOMContentLoaded and loaded events were fired dur‐
ing page load.

DOMContentLoaded gets fired when the markup, CSS, and blocking JavaScripts are load‐
ed, at which point the browser begins rendering the page. Your performance goal should
be to minimize the time to DOMContentLoaded, and perhaps more importantly, to min‐
imize the time between the DOMContentLoaded and onLoad events.

420 | Chapter 14: Mobile Performance

Figure 14-4. Google Chrome Timeline memory panel

If you’re lazy loading, there may be more downloading after the onLoad event. This is
fine. The perceived download time, which generally falls between these two events,
though closer to the onLoad event, is what is important. This is what scares away potential
customers. The actual download time may be a bit longer, but your users don’t know
that. Enable them to see your content and interact with it as fast as possible. If your
social media icons and page footer lazy load “below the fold,” your users are unlikely to
notice.

If you choose to include social media icons, try using simple links to
these services rather than utilizing the JavaScript APIs provided by the
social media site. Many social widgets are performance hogs.

You can save the waterfall as a HAR JSON file for comparing page loads as you progress
in optimizing your site.

The rest of the top section provides information on overall memory usage by the cur‐
rently open site or application. You’ll note that the memory consumption generally
increases as DOM nodes increase, and decrease with garbage collection.

The middle part on the main area of the panel lists all the events, including loading,
scripts, rendering, and painting. Each entry provides information about the entry, such
as the duration, CPU time, and the line of code that called the event. Each event shows

Latency | 421

the aggregate time of loading, scripting, rendering, and painting. In this way, you can
inspect which events are negatively affecting performance.

The counter in the lower part of the main area provides statistics as to the number of
DOM nodes, event listeners, and documents in the application at each moment in time.

Touching the DOM with a read or write is expensive in terms of performance. To im‐
prove performance, cache DOM lookups and store them in variables. Also, batch DOM
queries and DOM manipulations separately, minimizing DOM manipulations by up‐
dating content fully outside of the DOM before updating the DOM.

When it comes to managing memory, image optimization, CSS rendering, and DOM
node count are not the main points of concern. These are just points that have not
necessarily been considered in the desktop space when focusing on performance.

UI Responsiveness
Mobile browsers are single threaded. In that respect, mobile browsers are similar to
desktop browsers. There is, however, more to UI responsiveness on mobile than just
being single threaded.

Touch Events
Because of latency, the browser may appear to hang after selecting an action because it
can take a while for the round trip, to the server. It is important to provide user feedback
within 200 ms after an action is taken, preferably sooner.

If you are showing or hiding an element, there’s no need to provide feedback, since the
app will be responsive. However, provide feedback to indicate that your site is respond‐
ing if your user has to wait for a round trip for a UI update. For example, disable the
submit button with a disabled appearance on form submission to inform the user that
the user interaction has been accepted. If an AJAX request is likely to take over 200 ms,
provide a spinner, progress bar, or even an animated bouncing ball. Let your UX team
determine what feedback makes sense, but make sure user feedback is provided while
the user waits for the response to his or her interaction with your site.

In addition, because the mobile device is a touch device, and “double tap” is a potential
user action, mobile devices actually wait for potential double taps before responding to
touches. On most touch devices there is a default 300 ms to 500 ms wait after the
touchend event before any action is taken. Because of this, you may want to co-opt
default events like the tap by adding an event listener to the touchend event to make
your application more responsive.

422 | Chapter 14: Mobile Performance

9. Currently, preventing zoom in limited browsers is the only reason touch browsers don’t wait for a possible
second tap. This may be expanded in the future.

When adding touch events, do not remove click events: you want your
site to work no matter how your user chooses to interact with it
(whether with their fingers, mouse, or other method).

The delay to wait for a possible double tap is not true for all scenarios.9 In Chrome and
Firefox, if zooming is disabled, there is no delay. Just because you can avoid this delay
by preventing zooming with a meta tag does not make it good user experience: don’t
prevent zooming unless you have a very valid reason that you need to do so, such as
interactive games.

Animation
Because the Web is single threaded, and JavaScript takes precedence over CSS anima‐
tions in that thread, always use CSS instead of JavaScript for nonvital animations.

Because CSS animation has lower precedence, animations will not start until the page
is loaded, as the UI thread is busy parsing scripts and rendering. Although the animation
may not start, the animation-delay counter does not wait for page load. If you have many
animations starting after varying delays, you may note that several animations may
begin simultaneously on page load as the elements with an animation delay shorter than
the time for page load all start at the same time.

As noted earlier, the smoothest animations animate at 60 frames per second on most
devices. To animate at that rate means the page has 16.67 ms to perform all calculations
and repaints. For animation to appear smooth, the animation must calculate and repaint
the nodes in less than 16.67 ms for the animation to not appear janky.

In Conclusion
This is not an exhaustive list of topics to consider in ensuring good mobile UI perfor‐
mance, but should be a good start. With mobile and desktop browsers updating at a
very rapid clip, the topics covered here are likely no longer fully up to date. However,
the recommendations are all best practices. While there may be new best practices, and
some of the issues mentioned may be resolved, following the recommendations given
here will likely be best practices for the foreseeable future.

Remember that mobile is the fastest increasing segment of our users. Don’t ignore them.
These recommendations are easy to implement, and don’t harm desktop browsers. So
I encourage including the recommendations on all your sites even if your mobile visitor
rate is negligible. After all, you never know if your mobile visitor rate is so low because

In Conclusion | 423

your audience doesn’t do mobile (unlikely) or because your mobile user experience is
bad (more likely).

As developers, we’ve tested our websites to make sure we’ve followed the points and
goals recommended by Yahoo!’s YSlow and Google’s PageSpeed. We’ve tested and tested
using our desktop browsers. We’ve assumed the web performance optimization guide‐
lines improves web application performance for all browsers, whether our users are
accessing the site on their laptop, iPad, Android phone, or even their Wii. And to a great
extent, it does. But remember that the well known and heeded optimization guidelines
aren’t our only concern when it comes to mobile.

Continue testing your website, but make sure to test on mobile devices. Emulators are
not simulators. The emulator does not simulate memory constraints and does not sim‐
ulate the device with 100 apps open. Test with memory and bandwidth capped. Test on
real devices in real scenarios: turn off the WiFi and test with many, many unclosed apps
hanging in the background. Test. Test. Test.

424 | Chapter 14: Mobile Performance

http://developer.yahoo.com/yslow/
https://developers.google.com/speed/pagespeed/insights_extensions

APPENDIX A

CSS Selectors and Specificity

CSS Selectors Level 3
Pattern Meaning Specificity and examples

Universal Selector
The universal selector has no weight in terms of specificity.

0-0-0

* Matches any element. * {}

Type selector
Type or element selectors have the lowest specificity.

0-0-1

E Matches elements of type E. em, strong

Class selectors 0-1-0

myClass Matches all elements whose class list contains the class
myClass.

.myClass

ID selectors 1-0-0

#myId Matches the element that has an ID equal to myId. #myId

Combinators
Combinators, including >, + and ~, do not impact specificity.

0-0-0

E F Matches elements F that are descendants (direct children
or not) of element E.

ol li

tr td

E > F Matches elements F that are direct children of element E. ol > li

thead > tr

E + F Matches the element F that comes immediately after
element E, if E and F share the same parent.

h1 + p

tr.current + tr

E ~ F Matches all elements F that come after element E that
share the same parent.

li:first-child ~ li

425

Pattern Meaning Specificity and examples

Attribute selectors
Attribute selectors have the same specificity as the class selector.

0-1-0

E[attr] Matches elements E that have an attr attribute, no
matter the value of the attribute.

input[type]

E[attr="val"] Matches elements E whose attr attribute value is
exactly equal to val.

input[type="check

box"]

E[attr~="val"] Matches elements E whose attr attribute value is a list
of whitespace-separated values, one of which is exactly
equal to val.

img[alt~="figure"]

E[attr^="val"] Matches elements E whose attr attribute value begins
exactly with the string val.

a[href^="mailto:"]

E[attr$="val"] Matches elements E whose attr attribute value ends
exactly with the string val.

a[href$=".pdf"]

E[attr*="val"] Matches elements E whose attr attribute value contains
the substring val.

a[href*="://"]

a[href*="twit

ter.com"]

E[attr|="val"] Matches elements E whose attr attribute equals val
or starts with val followed by a hyphen.

html[lang|="en"]

Structural pseudoclasses
Pseudoclasses have the same specificity as a class selector.

0-1-0

E:first-child Matches element E that is the first child of its parent. h1:first-child

E:last-child Matches element E that is the last child of its parent. p:last-child

E:only-child Matches element E if and only if E is the only child of its
parent.

li:only-child

E:first-of-type Matches element E that is the first E of its type, not
necessarily the first child.

li:first-of-type

E:last-of-type Matches element E that is the last E of its type, not
necessarily the last child.

li:last-of-type

E:only-of-type Matches element E if E is the only child of its parent of
that type, though not necessarily the parent’s only child.

h1:only-of-type

E:nth-child(n) Matches element(s) E that are the nth children of their
parent, where n can be an integer, an equation matching
an+b, where a is the multiplier and b the offset, or the
key terms even or odd.

tr:nth-child(odd)

E:nth-last-child(n) Matches element(s) E that are the nth child of their parent,
counting from the last child and going backward.

li:nth-last-child(5)

E:nth-of-type(n) Matches element(s) E that are the nth siblings (have the
same parent) of their type

th:nth-of-type(2)

E:nth-last-of-

type(n)

Matches element(s) E that are the nth sibling of its type,
counting from the last E.

426 | Appendix A: CSS Selectors and Specificity

Pattern Meaning Specificity and examples

E:root Matches element E if it is the root of the document, which
is always the HTML element in our HTML documents.

html:root

E:empty Matches element E if E is empty, having no children other
than a comment. If the element contains a single space,
it is not empty.

p:empty

Link, user-action, and UI element state pseudoclasses
These pseudoclasses triggered by state have the same specificity as a class selector.

0-1-0

E:link

E:visited

The link pseudoclasses match hyperlinks E when the
target has not yet been visited (:link) or has already
been visited (:visited).

a:link

a:visited

E:active

E:hover

E:focus

The user action pseudoclasses match element(s) E during
certain user actions, when the element is active, hovered,
or has focus.

a:active

img:hover

input:focus

E:enabled

E:disabled

Matches user interface element E, which is enabled or
disabled.

input:enabled

select:disabled

E:checked Matches a user interface element E, such as a radio button
or checkbox, which is checked.

input[type="ra

dio"]:checked

E:default Matches element E if it is the default among a set of similar
elements, such as the options default selected on page
load.

option:default

E:valid

E:invalid

Matches element E when the element’s value is valid or
invalid, such as matching or not matching an input’s
pattern attribute or data type.

input:valid

input:invalid

E:in-range

E:out-of-range

Matching element E if element E has a range limitation,
such as a range input type in number input type with min/
max values, and that value is either in :in-range
or :out-of-range.

input:in-range

input:out-of-range

E:required

E:optional

Matches form field element E if it is :required
or :optional.

input:required

input:optional

E:read-only

E:read-write

Matches element E if its contents are not user alterable
(:read-only), or if its contents are user alterable
(:read-write), such as text-input fields.

input:read-only

input:read-write

Target and Language

E:target An E element being the target of the referring URI. div:target

E:lang(fr) An element of type E in language fr (the document
language specifies how language is determined).

p:lang(fr)

Negation ?-?-?
(depends on parameter)

E:not(exclude) Matches all the E elements that do not match the selector
exclude. The :not has no weight in terms of
specificity, rather the contents of the argument add to the
weight.

div:not([class])

.foo:not(div)

CSS Selectors Level 3 | 427

Pattern Meaning Specificity and examples

Pseudoelements 0-0-1

E::first-line Matches the first formatted line of element E. p::first-line

E::first-letter Matches the first formatted letter of element E. p::first-letter

E::before Generates content before the content of element E, and
matches that content.

div::before

E::after Generates content after the content in element E, and
matches that content.

div::after

E::selection Not currently in the specifications, it matches the content
of element E that is currently selected or highlighted by
the user.

*::selection

*::-moz-selection

428 | Appendix A: CSS Selectors and Specificity

CSS Selector Cheat Sheet
* ::after :empty

E ::first-letter :not()

.class ::first-line :target

#id E[attribute^=value] :enabled

E F E[attribute$=value] :disabled

E > F E[attribute*=value] :checked

E + F E ~ F :indeterminatea

E[attribute] :root :default

E[attribute=value] :last-child :valid

E[attribute~=value] :only-child :invalid

E[attribute|=value] :nth-child() :in-range

:first-child :nth-last-child() :out-of-range

:linkb :first-of-type :required

:visited :last-of-type :optional

:lang() :only-of-type :read-only

::beforec :nth-of-type() :read-write

::selectiond :nth-last-of-type()
a The last nine selectors are part of CSS Basic User Interface Module Level 3 (CSS3 UI) specification, and are found in the CSS
Selectors Level 4 specification.
b Some browsers have limited support for :link and :visited for security reasons.
c Use single colon notation for support in older IE.
d Not in the CSS Selectors level 3 specification, but fully supported. Prefix with -moz- for Firefox.

CSS Selector Cheat Sheet | 429

CSS Selector Specificity

430 | Appendix A: CSS Selectors and Specificity

CSS Selectors Level 4
Selector Definition Level

Basic Selectors

* Universal selector matches all elements. 2

E Type (tag name) selector matches elements of type E. 1

.someClass Class selectors match elements having the class listed, someClass in this case. 1

#myID ID Selector matches the element with ID equal to myID. 1

Combinators

E F Descendant combinator, matches element F that is a descendant of element E. 1

E > F Child combinator, matches element F that is a child of element E. 2

E + F Next sibling combinator, matches element F that is immediately preceded by
element E.

2

E ~ F Following sibling combinator, matches elements F that are preceded by element E. 3

E /foo/ F Reference combinator, matches element F that is ID-referenced by element E’s foo
attribute (would match the form element F that was referenced by label E’s foo
attribute).

4

E! > F Determining the subject of a selector +Child combinator, matching element E that
is the parent of element F.

4

Attribute selectors

E[foo] Matches element E that has a foo attribute. 2

E[foo="bar"] Matches element E whose foo attribute value is exactly equal to bar, case
sensitivity depends on case sensitivity of attribute value.

2

E[foo="bar" i] Matches element E whose foo attribute value is exactly equal to any case
permutation of bar.

4

E[foo~="bar"] Matches element E whose foo attribute value is a list of whitespace-separated
values, one of which is exactly equal to bar.

2

E[foo^="bar"] Matches element E whose foo attribute value begins exactly with the string bar. 3

E[foo$="bar"] Matches element E whose foo attribute value ends exactly with the string bar. 3

E[foo*="bar"] Matches element E whose foo attribute value contains the substring bar. 3

E[foo|="en"] Matches element E whose foo attribute value is a hyphen-separated list of values
beginning with en.

2

Structural pseudoclasses

E:root Matches element E that is the root of the document. 3

E:empty Matches element E that has no children (not even text nodes). 3

E:blank Matches element E that has no content except maybe whitespace. 4

E:first-child Matches element E that is the first child of its parent. 2

E:last-child Matches element E that is the last child of its parent. 3

CSS Selectors Level 4 | 431

Selector Definition Level

E:only-child Matches element E that is the only child of its parent. 3

E:first-of-type Matches element E that is the first sibling of its type. 3

E:last-of-type Matches element E that is the last sibling of its type. 3

E:only-of-type Matches element E that is the only sibling of its type. 3

E:nth-child(n) Matches element E that is the nth child of its parent. 3

E:nth-last-child(n) Matches element E that is the nth child of its parent, counting from the last one. 3

E:nth-of-type(n) Matches element E that is the nth sibling of its type. 3

E:nth-last-of-type(n) Matches element E that is the nth sibling of its type, counting from the last one. 3

E:nth-match(n of

selector)

Matches element E that is the nth sibling matching selector. 4

E:nth-last-match(n of

selector)

Matches element E that is the nth sibling matching selector, counting from the last
one.

4

Grid-Structural pseudoclasses

F || E Matches element E that represents a cell in a grid/table belonging to a column
represented by element F.

4

E:nth-column(n) Matches element E that represents a cell belonging to the nth column in a grid/
table.

4

E:nth-last-column(n) Matches element E that represents a cell belonging to the nth column in a grid/
table, counting from the last one.

4

Link pseudoclass

E:any-link Matches element E being the source anchor of a hyperlink. 4

E:link Matches element E being the source anchor of a hyperlink of which the target has
not already been visited.

1

E:visited Matches element E being the source anchor of a hyperlink of which the target has
already been visited.

1

E:local-link Matches element E being the source anchor of a hyperlink of which the target is
within the current document.

4

E:local-link(0) Matches element E being the source anchor of a hyperlink of which the target is
within the current domain, though not necessarily in the current document.

4

E:target The target pseudoclass matches element E, which is the target of the referring
URL.

3

User interface pseudoclasses

E:active Matches element E that is in an activated state. 1

E:hover Matches element E that is under the cursor, or that has a descendant under the
cursor.

2

E:focus Matches element E that has user input focus. 2

E:enabled Matches user interface element E that is enabled. 3

E:disabled Matches user interface element E that is disabled. 3

432 | Appendix A: CSS Selectors and Specificity

http://dev.w3.org/csswg/selectors4/#selector

Selector Definition Level

E:read-only Matches user interface element E that is not editable. 3/4a

E:read-write Matches user interface element E that is editable, and element E that has the
contenteditable attribute set to true.

3/4

E:placeholder-shown Matches an input-control element E that is currently showing placeholder text. 3/4

E:default Matches the user interface element E that was the default option selected. 3/4

E:checked Matches the user interface element E that is checked or selected, such as a checked
checkbox or selected radio button.

3

E:indeterminate Matches the user interface element E that is in an indeterminate state (neither
checked nor unchecked).

4

E:valid Matches a user-input element E that is valid based on the lack of validity constraints
(always valid) or on the content matching the validity constraints.

3/4

E:invalid Matches a user-input element E that is invalid, as when the contents do not match
the validity constraints of the attributes.

3/4

E:in-range Matches a user-input element E whose value is in-range, such as within the
min/max bounds.

3/4

E:out-of-range Matches a user-input element E whose value is out-of-range, such as outside
the min/max bounds.

3/4

E:required Matches a user-input element E that is requires input (can not be left blank). 3/4

E:optional Matches a user-input element E that does not require input (can be left blank). 3/4

Drag-and-drop pseudoclasses

E:active-drop Matches element E that will receive the item currently being dragged.

E:valid-drop Matches element E that could receive the item currently being dragged.

E:invalid-drop Matches element E that cannot receive the item currently being dragged, but could
receive some other item.

Matching, negation, and scope pseudoclasses

E:not(s1, s2) Matches elements E that do not match either compound selector s1 or compound
selector s2. In CSS Level 3, only a single simple selector could be passed.

3/4

E:matches(s1,s2) Matches elements E that match compound selector s1 and/or compound selector
s2.

4

E:scope The scope pseudoclass matches element E being a designated reference element. 4

Language and direction pseudoclasses

E:dir(ltr)

E:dir(rtl)

Matches elements E with which left-to-right or left-to-right directionality based
on the document language.

4

E:lang(zh, *-hant) Matches elements E tagged as being either in Chinese (any dialect or writing system)
or otherwise written with traditional Chinese characters. In CSS Selectors Level 2,
the :lang() pseudoclass took only the first parameter.

2/4

CSS Selectors Level 4 | 433

http://dev.w3.org/csswg/selectors4/#compound
http://dev.w3.org/csswg/selectors4/#compound

Selector Definition Level

Time-dimensional pseudoclasses

E:current Matches element E that is currently presented in a time-dimensional canvas. 4

E:current(s) Matches element E that is the deepest :current element that matches
selector s.

4

E:past Matches element E that is in the past in a time-dimensional canvas. 4

E:future Matches element E that is in the future in a time-dimensional canvas. 4
a Added as part of CSS Basic User Interface Module Level 3 (CSS3 UI) specification, introduced into the CSS Selectors specification
with Level 4.

434 | Appendix A: CSS Selectors and Specificity

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
(hash), 240
% (CSS length unit), 250
* (universal selector), 210
+ (adjacent sibling selector), 215
/ (forward slash), 36
; (semicolon), 195
<> (angle brackets), 35–37
> (child selector), 214–215
{} (curly braces), 329
~ (general sibling selector), 215

A
<a> element, 72
AAC audio format, 147
Aardwolf, 14
<abbr> element, 75
accelerometers, 394
accessibility, 26, 32, 188–191
Accessible Rich Internet Applications (ARIA)

accessibility, 188–191
additional information, 191
attributes supported, 26, 32

accesskey attribute, 30
<acronym> element, 68
:active pseudoclass, 222
activeBorder system color, 245, 246
activeCaption system color, 245

ADB (Android Debug Bridge), 9
addEventListener method, 386
<address> element, 66
adjacent sibling selector (+), 215
Adobe Edge Inspect, 11, 13
::after pseudoelement, 28, 234
AMOLED screens, 402
Android Debug Bridge (ADB), 9
Android Debug Monitor, 10
Android devices

browser support, 5
debugging tools, 9–10
emulators for, 16
form validation and, 119
link handling, 73
testing on, 19

Android Virtual Device Manager, 10
angle brackets (<>), 35–37
angle measurements (CSS), 252, 273–276
animation (CSS3)

about, 303, 328
animating sprites, 334–335
applying, 331
bouncing ball, 332
CubeeDoo example, 335
keyframes and, 305, 329–336
performance considerations, 336, 423

animation shorthand property, 329
animation-delay CSS property, 329

435

animation-direction CSS property, 328
animation-duration CSS property, 328
animation-fill-mode CSS property, 329
animation-iteration-count CSS property, 328
animation-name CSS property, 328
animation-play-state CSS property, 328
animation-timing-function CSS property, 328
anti-patterns, 54, 196, 414
Apache Cordova project, 397
.appcache file, 161
Appcelerator Titanium framework, 397
apple-mobile-web-app-capable meta tag, 49
apple-mobile-web-app-status-bar-style meta

tag, 50
application cache API

about, 160
cache manifest file, 161
event handlers, 163
update() method, 163
updating cache, 162–164

appWorkspace system color, 245
<area> element

about, 78
self-closing, 37

ARIA (Accessible Rich Internet Applications)
accessibility, 188–191
additional information, 191
attributes supported, 26, 32

aria-label attribute, 135, 136
<article> element, 62
<aside> element, 64, 353
<samp> element, 75
aspect-ratio, media query feature, 199
async attribute (<script> element), 55
attribute selectors, 216–221
attributes, 25

(see also specific attributes)
about, 25
ARIA supported, 26, 32
best practices, 38–39
Boolean, 26, 39
case sensitivity, 38
custom data, 26, 33–35
global, 26–29, 31–35
HTML syntax, 36
HTML4 made core in HTML5, 29–31
interactive, 31–35
internationalization, 26–29
media elements, 149

microdata, 26, 35, 185
quotation marks, 38

<audio> element
about, 76
ARIA support, 188
browser support, 147
canPlayType() method, 151
controlling with JavaScript, 153
CubeeDoo game and, 155
media types, 147
<source> element and, 152

autocomplete attribute (<input> element), 93
autocorrect attribute, 32
autofocus attribute (<input> element), 94
automated testing, 20
autoplay attribute

<audio> element, 149
<video> element, 149

B
 element, 74, 194
backface-visibility CSS property, 324
background system color, 245
background-clip CSS property, 264
background-image CSS property

CubeeDoo examples, 141
gradients and, 274
multiple background images, 289
SVG format and, 134

background-origin CSS property, 264
background-position CSS property, 135, 256,

282
background-repeat CSS property, 282
background-size CSS property, 282–285, 358
Bada devices, 5
<base> element

about, 50
self-closing, 37

battery life, 401–408
Battery Status API, 395
<bdi> element, 72
<bdo> element, 72, 75
::before pseudoelement, 28, 234
binary files, compressing, 412
BlackBerry devices

browser support, 5
simulators for, 16
testing on, 19
Web Inspector, 14

436 | Index

Blink, 5, 321
block elements, 59
<blockquote> element, 66
<body> element, 43, 56
Boolean attributes, 26, 39
border properties (CSS), 260–264
border-color CSS property, 262
border-image shorthand property, 342–349
border-image-outset CSS property, 346
border-image-repeat CSS property, 347
border-image-slice CSS property, 345
border-image-source CSS property, 344
border-image-width CSS property, 346
border-radius CSS property, 268–270
border-style CSS property, 262, 344
border-width CSS property, 263
bottom keyword, 274
bouncing ball animation, 332
box model (CSS)

about, 264
postive margins, 266
properties, 260–266

box-shadow CSS property, 295–298
box-sizing CSS property, 265, 279

 element

about, 75
self-closing, 37

breakpoints, 339
browser labs, 18
browsers

addEventListener method and, 386
animation support, 330
ARIA support, 189
audio/video support, 147
box model properties and, 260
dealing with quirks, 1
form validation, 119
linear gradients and, 280
normalizing, 203
performance considerations, 408
pointer events and, 389
selecting for development environment, 5
standards compliant, xiv
SVG support, 134
touch events and, 389
transform support, 314
Web SQL Database support, 176

<button> element, 80, 131
button input type, 102, 131

buttonFace system color, 245
buttonHighlight system color, 246
buttonShadow system color, 246
buttonText system color, 246

C
cache manifest file

about, 161
CACHE section header, 162
FALLBACK section header, 162
NETWORK section header, 162
SETTINGS section header, 162

cache, updating, 162–164
candy buttons, 279, 290
<canvas> element

about, 76, 141
ARIA support, 188
beginPath() method, 145
closePath() method, 145
code example, 141–146
fill() method, 145
fillRect() method, 144
getContext() method, 143
getImageData() method, 144
SVG versus, 146

captions, adding to videos, 152
captionText system color, 246
Cascading Style Sheets (see CSS)
case sensitivity, 38, 209
CasperJS API, 20
CDNs (content delivery networks), 188
ch (CSS length unit), 249
charset attribute (<meta> element), 40, 45
checkbox input type, 97
checked attribute, 26
:checked pseudoclass, 223
child elements

about, 24
nesting, 37

child selector (>), 214–215
Chrome browsers

developer tools, 6–8
devices supported for testing, 5
remote debugging, 8
tracking memory consumption, 373
Web SQL Database and, 176

<circle> SVG element, 136
<cite> element, 75
class attribute, 27, 185, 208

Index | 437

class selector, 208, 211
classList object

add() method, 171
contains() method, 171
remove() method, 171
toggle() method, 171

click events, 390
Client-Hints, 362
closing tags, 35–38
Clown Car Technique, 78, 136–138
cm (CSS length unit), 250
CMYK color format, 240, 244
<code> element, 75
<col> element, 37, 82
color input type, 90, 112, 241
color stops, CSS gradients, 277–279, 283, 285,

290
color values (CSS), 239–249, 277–279
cols attribute (<textarea> element), 131
<colspan> element, 82
column-count CSS property, 340
column-fill CSS property, 342
column-gap CSS property, 340
column-rule CSS property, 340
column-rule-color CSS property, 341
column-rule-style CSS property, 341
column-rule-width CSS property, 341
column-span CSS property, 342
column-width CSS property, 340
columns CSS property, 340–342
columns, multiple, 340–342
command attribute (<menuitem> element), 81
<command> element, 37
comments, adding to manifest file, 162
compassneedscalibration event, 394
content delivery networks (CDNs), 188
contenteditable attribute, 31
contextmenu attribute, 32
controls attribute

<audio> element, 149
<video> element, 149

cookies, session management and, 165, 414
CORS (cross-origin resource sharing), 188
cross-document messaging API, 187
cross-origin resource sharing (CORS), 188
CSS (Cascading Style Sheets)

about, 194
angles, times, and frequencies, 252–254,

273–276

best practices, 202–206
box model properties, 260–266
color values, 239–249
gradients, 271–302
length values, 249–251
making triangles, 263
masking, 362
performance considerations, 417
resolution units, 251, 284
shorthand properties, 255–257
specificity and, 237
syntax for, 195–196
transitions, 304–314
UI improvements with, 122–123
value declarations, 255–257

CSS3
about, 193
animation, 303, 328–337
learning, 266–270
new features, xix
transforms, 314–327

CSS3 Writing Modes specification, 72
CubeeDoo game

about, 2–4
animation example, 335
<audio> element, 155
child combinator, 214
CSS angle units and, 254
CSS length values, 251
data-value attribute and, 221
gradients and, 279–282, 288
header and footer example, 65
localStorage and, 167–174
<output> element, 127
page controls, 380
pseudoelements and, 234
sessionStorage and, 167–174
shadows and, 298–302
SVG and, 139–141
transform example, 325–327
Web SQL Database and, 175–178

cubic Bézier functions, 309
curly braces {}, 329
currentColor keyword, 240, 245, 293
custom data attributes, 26, 33–35
cx attribute (<circle> SVG element), 136
cy attribute (<circle> SVG element), 136

438 | Index

D
data attribute (<object> element), 78
data URIs, 359, 409
data-* attributes, 26, 33–35
<datalist> element, 123–126
dataset API, 34
date input type, 114
datetime attribute (<time> element), 71
datetime input type, 116
datetime-local input type, 116
debugging tools, 5
default attribute (<track> element), 153
:default pseudoclass, 225
defer attribute (<script> element), 55
deg (CSS angle unit), 253, 273–276
 element, 75
<desc> SVG element, 135
descendant elements, 208
descendant selector, 213
description meta tag, 46
designing mobile applications

about, 339, 365
battery life considerations, 401–408
breakpoints, 339
capturing touches, 386–393
considerations before starting, 366
defining what application does, 371
design considerations, 367–372
device status, 394
fluid layouts, 339
home screen icons, 381
immersive applications, 369
latency considerations, 408–422
media queries, 339
minimizing keyboard entry, 382
multiple columns, 340–342
navigation bar, 378–380
other user experience considerations, 383
phone movement and direction, 393
possibilities with mobile platform, 372–376
productivity applications, 368
responsive media, 355–363
scaling down to size, 385–386
startup image, 380
status bar, 377
succinctness when, 382
targeting mobile WebKit, 377–384
testing, 397
UI responsiveness, 422

utility applications, 370
desktop debuggers, 6–8
<details> element, 78
development environment

browsers, 5
debugging tools, 5
desktop debuggers, 6–8
IDE, 4
setting up, 4
text editor, 4

device-aspect-ratio, media query feature, 199
device-height, media query feature, 199
device-width, media query feature, 199
deviceOrientation event, 393
<dfn> element, 75
dir attribute, 28
disabled attribute

about, 26
<fieldset> element, 91, 130
<input> element, 91

:disabled pseudoclass, 91, 223
display CSS property, 349
<div> element, 66
Document Type Declaration (DTD)

about, 40
HTML5 and, 24

Dojo library, 189
double-colon notation, 233, 235
download attribute (<a> element), 73
dpc (resolution unit), 251
dpi (resolution unit), 251, 284, 356
dppx (resolution unit), 251
draggable attribute, 32
DragonFly developer tool, 6
drop shadows, 242
dropzone attribute, 32
DTD (Document Type Declaration)

about, 40
HTML5 and, 24

E
element selector, 207, 211
elements, 24

(see also specific elements)
about, 24
attributes and, 25–35
best practices, 38–39, 204
block, 59
components of, 25

Index | 439

embedded, 76–78
empty, 24
found in <head>, 44
grouping, 66
inline, 25, 59
interactive, 78–82
media, 76, 147–157
nesting, 36, 38
new to HTML5, xvii–xix
reflowing, 406–408
required components, 39–44
sectioning, 60–68
self-closing, 37, 38
styles and, 195
targeting, 227
text-level, 68–75
web form, 123–131

<ellipse> SVG element, 135
em (CSS length unit), 249
 element, 75
<embed> element

about, 76, 78
self-closing, 37
SVG and, 136

embedded elements, 76–78
embedded styles, 196
empty elements, 24
:empty pseudoclass, 226
emulators, 15–17
:enabled pseudoclass, 223
Error Console, 6
even keyword, 227
event handlers

<output> element, 126
application cache API, 163
<body> element, 56
hovering with, 224
usage considerations, 44

ex (CSS length unit), 249
external stylesheets

best practices, 202
usage considerations, 196–198

F
F12 developer tool, 6
favicons, 43
Fibonacci sequence, 184
<fieldset> element, 91, 130
<textarea> element, 130

<figcaption> element, 67
<figure> element, 67
file input type, 100
Firebug extension (Mozilla), 6
Firefox browsers

color values, 248
devices supported for testing, 5
Firefox OS Simulator, 17
Modify Headers add-on, 17
remote debugging, 8
styling input types, 102
Web SQL Database and, 176

Firefox OS Simulator, 17
:first-child pseudoclass, 226
::first-letter pseudoelement, 233
::first-line pseudoelement, 233
:first-of-type pseudoclass, 226
flex shorthand property, 352–353
flex-basis CSS property, 352
flex-direction CSS property, 351
flex-flow shorthand property, 351
flex-grow CSS property, 352
flex-shrink CSS property, 352
flex-wrap CSS property, 351
flexbox layout mode, 349–355
:focus pseudoclass, 222
font icons, 361
<footer> element, 65
for attribute

<label> element, 127, 131
<output> element, 127

form attribute
<fieldset> element, 130
<input> element, 92

<form> element, 92, 130
format-detection meta tag, 50
forward slash (/), 36
from keyword, 330

G
Gecko devices, 5
general sibling selector (~), 215
geolocation

about, 179–182
overriding, 8

geolocation API
coords property, 181
getCurrentPosition() method, 180
watchCurrentPosition() method, 180

440 | Index

global attributes, 26–29, 31–35
Google Chrome browsers (see Chrome brows‐

ers)
Google Maps, 74
Google Play, 74
grad (CSS angle unit), 253, 273
gradients (CSS)

about, 271
color stops, 277–283, 285, 290
CubeeDoo game and, 288
linear, 271–282
radial, 271
repeating, 287–290
striped example, 285–287
tools for, 290

grayText system color, 246
grouping elements, 66
gyroscopes, 394
Gzipping, 413

H
H.264 video format, 147
hard color stops, gradients, 279, 283, 286, 290
hardware access

about, 393
device status, 394
phone movement and direction, 393
web apps and, 396

hash (#), 240
hCard microformat, 185
<head> element

about, 42
elements found in, 44

<header> element, 64–66
height attribute (<video> element), 149
height, media query feature, 199
hexadecimal color format, 240
hidden attribute, 31, 186
hidden input type, 101
high attribute (<meter> element), 127
highlight system color, 246
highlightText system color, 246
home screen icons, 381
:hover pseudoclass, 222
hovering with event handling, 224
<hr> element

about, 66, 68
self-closing, 37

href attribute (<link> element), 52

hreflang attribute
<area> element, 78
<link> element, 52

HSL color format, 240, 243
HSLA color format, 240
.htaccess file, 46, 47, 161
<html> element

about, 41
AppCache API and, 160
setting primary direction, 29

HTML syntax
about, 24, 35–37
adding metadata, 45
attributes, 25–35, 36
<base> element, 50
best practices, 38–39
elements, 24
<head> element, 44
<link> element, 51–57
mobile meta tags, 47–50
required components, 39–44
self-closing elements, 37

HTTP requests, 202, 359, 408–412
http-equiv attribute (<meta> element), 47

I
<i> element, 74, 194
id attribute

about, 26
anchors, 72
<datalist> element, 123
<form> element, 92
<menu> element, 80

ID selector, 209, 211
IDE (integrated development environment), 4
<iframe> element, 76
image input type, 101
ImageAlpha tool, 417
ImageOptim tool, 417
images dialog, 391
images, optimizing, 416–422
 element

about, 77
child elements and, 24
self-closing, 37
SVG and, 136

immersive applications, 369
implicit labels, 27
!important modifier, 205

Index | 441

in (CSS length unit), 250
:in-range pseudoclass, 225
inactiveBorder system color, 246
inactiveCaptionText system color, 246
:indeterminate pseudoclass, 223
IndexedDB API, 179
infoBackground system color, 246
infoText system color, 246
inline elements, 25, 59
inline styles, 196, 205
<input> element

attributes supported, 85–94
menus for form controls, 80
self-closing, 37
styling, 102
type attribute, 94–102

input types
about, 94
button, 102, 131
checkbox, 97
color, 90, 112, 241
date, 114
datetime, 116
datetime-local, 116
file, 100
hidden, 101
image, 101
month, 116
number, 108
password, 96
radio, 97
range, 111
reset, 99, 131
search, 112
submit, 94, 98, 131
tel, 107
text, 95, 102, 104
time, 116
url, 106
week, 117

<ins> element, 75
integrated development environment (IDE), 4
interactive attributes, 31–35
interactive elements, 78–82
internationalization attributes, 26–29
Internet Explorer browsers

ARIA support, 189
developer tools, 6
Web SQL Database and, 176

:invalid pseudoclass, 86, 90, 103, 225
iOS devices

browser support, 5
form validation and, 119
link handling, 73
simulators for, 16
testing on, 18

iPhone app
CSS example, 266–270
linear gradients, 279–282
native-looking buttons, 269–270
striped gradients background, 285–287

itemid attribute, 35
itemprop attribute, 35, 185
itemref attribute, 35, 185
itemscope attribute, 35, 185
itemtype attribute, 35, 185
iTunes links, 74

J
Japanese flag

Canvas example, 142
SVG example, 134

Jasmine development framework, 20
JavaScript

controlling <audio> element, 153
controlling <video> element, 153
debugging with Aardwolf, 14
form validation, 118
performance tips, 55, 403, 409
testing libraries for, 20

JPEG images, 362, 402
jQuery library, 189
JSON object

parse() method, 170
stringify() method, 169, 173

K
<kbd> element, 75
keyboard entry, minimizing, 382
keyframe selectors, 330
keyframes

about, 305, 329–331
animating sprites, 334–335
applying animation, 331
bouncing ball animation, 332
CubeeDoo example, 335

@keyframes rule, 329

442 | Index

<keygen> element
about, 129
self-closing, 37

keyword meta tag, 47
kind attribute (<track> element), 152
Kindle Fire, 20
Koblentz, Thierry, 156

L
label attribute

<menu> element, 80
<track> element, 153

<label> element, 27, 127, 131
lang attribute, 28, 42
:lang pseudoclass, 231
:last-child pseudoclass, 226
:last-of-type pseudoclass, 226
latency, mobile performance and, 54, 196, 408–

422
lazy block loading, 384
left keyword, 274
<legend> element, 130
length values (CSS), 249–251
 element, 68
<line> SVG element, 135
linear gradients

about, 271–273
angles and directions, 273–276
CubeeDoo game, 279–282
including colors, 277–279
iPhone app, 279–282
repeating, 287–290

<link> element
about, 51
adding for stylesheets, 51
attributes supported, 52
external stylesheets and, 196–198
media queries, 199–201
self-closing, 37

:link pseudoclass, 222
link types (mobile devices), 73
list attribute (<input> element), 123
localStorage object

about, 164
clear() method, 166
cookies and, 165
CubeeDoo game and, 167–174
enhancing performance, 166
getItem() method, 166

key() method, 166
length property, 166
removeItem() method, 166, 178
setItem() method, 166, 177

loop attribute
<audio> element, 149
<video> element, 149

low attribute (<meter> element), 127
lowercase markup, 38

M
magnetometers, 394
mailto: link, 73
<main> element, 67
manifest attribute (<html> element), 42, 160
manifest file, 160, 162
margin properties (CSS), 260
<mark> element, 69–70
masking (CSS), 362
match system color, 246
matchMedia() method, 201
matrix() function, CSS transforms, 320
max attribute

<input> element, 86
<meter> element, 127
<progress> element, 129

max-aspect-ratio, media query feature, 199
max-column-count, media query feature, 340
max-device-aspect-ratio, media query feature,

199
max-device-height, media query feature, 199
max-device-width, media query feature, 199
max-height, media query feature, 199
max-width, media query feature, 199
maxlength attribute (<input> element), 91
media attribute

<a> element, 73
<area> element, 78
<link> element, 52, 197–201

media elements, 76, 147–157
media queries, 199–201, 339
@media rule, 199
memory management, 373–375, 415, 420–422
menu attribute (<button> element), 80
<menu> element, 80, 82
menu system color, 246
menuitem attribute (<input> element), 80
<menuitem> element, 81
menuText system color, 246

Index | 443

<meta> element
about, 45
charset=“UTF-8”, 45
child elements and, 24
http-equiv=“...”, 47
mobile meta tags, 47–50
name=“apple-mobile-web-app-capable”, 49
name=“apple-mobile-web-app-status-bar-

style”, 50
name=“description”, 46
name=“format-detection”, 50
name=“keyword”, 47
name=“viewport”, 47–49
self-closing, 37

metacharacters, 89
metadata, adding, 45
<meter> element, 127–128
Metro-style applications, 5
microdata

about, 184
attributes related to, 26, 35
microformats versus, 185–187

microdata API, 187
microformats

about, 184
microdata versus, 185–187

midpoint rule, 307
min attribute

<input> element, 86
<meter> element, 127

min-aspect-ratio, media query feature, 199
min-column-width, media query feature, 340
min-device-aspect-ratio, media query feature,

199
min-device-height, media query feature, 199
min-device-width, media query feature, 199
min-height, media query feature, 199
min-width, media query feature, 199
mm (CSS length unit), 250
mobile devices, 18

(see also specific devices)
anti-patterns, 54, 196, 414
designing mobile applications, 386–393
development considerations, 375–376
device status, 394
home screen icons, 381
link handling, 73
memory considerations, 373–375
minimizing keyboard entry, 382

navigation bar, 378–380
phone movement and direction, 393
radial gradients and, 272
scaling, 385–386
serving images to, 356–362
small screen, 372
startup image, 380
status bar, 377
testing on, 18–20, 397
viewing constraints, 375

mobile viewport
mimicking, 6–8
performance considerations, 419

modernizr library, 42, 143
month input type, 116
mouse events, 387
Mozilla browsers (see Firefox browsers)
ms (CSS time unit), 254

N
name attribute

<fieldset> element, 130
<meta> element

apple-mobile-web-app-capable meta tag,
49

apple-mobile-web-app-status-bar-style
meta tag, 50

description meta tag, 46
format-detection meta tag, 50
keyword meta tag, 47
viewport meta tag, 47–49

<param> element, 78
named colors, 240, 244
native applications

approval process, xii
web applications versus, xii–xvi

<nav> element, 63
navigation bar, 378–380
Navigator object

connection speed, 357
network connection, 395
onLine property, 159
standalone property, 49

nesting elements, 36, 38
Network API, 395
no-js class, 42
node package manager (npm), 12
Nokia devices, 20
normalizing browsers, 203

444 | Index

<noscript> element, 56
:not pseudoclass, 231
novalidate attribute (<form> element), 130
npm (node package manager), 12
:nth-child pseudoclass, 226–229
:nth-last-child pseudoclass, 226
:nth-last-of-type pseudoclass, 226
:nth-of-type pseudoclass, 226–229
number expressions, 228
number input type, 108

O
<object> element, 78, 136
odd keyword, 227
offline web applications, 159
 element, 68, 82
onclick event handler, 392
:only-child pseudoclass, 226
:only-of-type pseudoclass, 226
opening tags, 35–38
Opera browsers

Blink and, 5
Opera Mini simulator, 17
Opera Mobile Emulator, 17
Presto rendering engine and, 5
remote debugging and, 8
Web SQL Database and, 176

Opera Mini simulator, 17
Opera Mobile Emulator, 17
<optgroup> element, 130
optimizing images, 416–422
optimum attribute (<meter> element), 127
<option> element, 130
:optional pseudoclass, 226
orientation, media query feature, 199
:out-of-range pseudoclass, 225
<output> element, 126
overflow CSS property, 294

P
<p> element

about, 66
inline styles, 196

padding properties (CSS), 260
page controls, 380
panning, disabling, 391
<param> element

about, 78

self-closing, 37
password input type, 96
pattern attribute (<input> element), 89–90
pc (CSS length unit), 250
performance considerations

animations, 336, 423
battery life, 401–408
eliminating network requests, 404
enhancing with localStorage, 166
GPU, 147, 322, 405, 419
hardware acceleration and, 405–408
HTTP requests, 408–412
JavaScript tips, 55
JPEG images and, 402
latency, 54, 196, 408–422
memory and, 415, 420–422
mobile anti-pattern, 54, 196, 414
optimizing images, 416–422
radio, 405
reducing JavaScript, 403
transitions, 336
UI responsiveness, 422

perspective CSS property, 323
perspective() function (CSS), 323
Phantom Limb utility, 390
PhantomJS, 20
PhoneGap project, 11
ping attribute

<a> element, 73
<area> element, 78

pixel density, 356
placeholder attribute (<input> element), 88
:placeholder-shown pseudoclass, 88
pointer events (CSS), 388
pointerenter event, 224
pointerleave event, 224
<polygon> SVG element, 135
<polyline> SVG element, 135
poster attribute (<video> element), 149
<pre> element, 66
preload attribute

<audio> element, 149
<video> element, 149

preserveAspectRatio attribute (<svg> element),
138

Presto rendering engine, 5
productivity applications, 368
profile attribute (<head> element), 42
<progress> element, 128

Index | 445

properties (CSS), 195
(see also specific properties)
about, 195
animation, 328
border-image, 344–349
box model, 260–266
media, 199
shorthand, 255–257
transform, 314–324
transition, 306–314

pseudoclasses, 222
(see also specific pseudoclasses)
about, 222–225
additional, 230–233
additional information, 236
in development, 236–238
state, 225
structural, 226–229

pseudoelements, 233–236
pt (CSS length unit), 250
px (CSS length unit), 250, 357

Q
<q> element, 28, 75
queries, media, 199–201, 339
quotation marks, 38

R
r attribute (<circle> SVG element), 136
rad (CSS angle unit), 254, 273
radial gradients, 271
radio input type, 97
range input type, 111
:read-only pseudoclass, 226
:read-write pseudoclass, 226
readonly attribute

about, 26
<input> element, 91
<textarea> element, 91

<rect> SVG element, 135
reflowing elements, 406–408
regular expressions, 89
rel attribute

<area> element, 78
<link> element, 52–53, 197

relational selectors, 212–216
rem (CSS length unit), 249

remote debugging
Aardwolf, 14
about, 8
Adobe Edge Inspect, 13
Android debugging tools, 9–10
BlackBerry 10 debugger, 14
weinre, 11–12

removeAttribute() method, 39, 93
repainting screens, 406
repeating-linear-gradient CSS property, 287–

290
required attribute (<input> element), 85
:required pseudoclass, 86, 225
reset input type, 99, 131
resetting browsers, 203
resolution units (CSS), 251, 284
responsive media

about, 355
Client-Hints, 362
creating transparent JPEGs, 362
serving images, 356–362

Retina displays, 356–357
reversed attribute (element), 68
RGB color format, 240–241
RGBA color format, 240, 242
right keyword, 274
role attribute, 26, 32, 189–191
:root pseudoclass, 226
rotate() function, CSS transforms, 318
rotate3d() function, CSS transforms, 323
rotateX() function, CSS transforms, 318
rotateY() function, CSS transforms, 318
rows attribute (<textarea> element), 131
<rp> element, 71
<rt> element, 71
<ruby> element, 71

S
s (CSS time unit), 254
<s> element, 74
Safari browsers

devices supported for testing, 5
link handling, 74
Web SQL Database and, 176

sandbox attribute (<iframe> element), 77
SauceLabs testing tool, 20
scalable vector graphics (SVG)

about, 134
background images and, 136

446 | Index

<canvas> versus, 146
CubeeDoo game and, 139–141
including in documents, 136
learning, 138
responsive foreground images, 136–138

scale() function, CSS transforms, 316
scale3d() function, CSS transforms, 322
scaleX() function, CSS transforms, 317
scaleY() function, CSS transforms, 317
scaleZ() function, CSS transforms, 323
scoped attribute (<style> element), 54
ScreenQueri.es site, 8
<script> element

adding to web pages, 55
ordering JavaScript execution, 55

scrollbar system color, 246
seamless attribute (<iframe> element), 77
search engine optimization (SEO), 43
search input type, 112
<section> element, 61–63
sectioning elements, 60–68
security for cross-domain messaging, 188
<select> element, 130
selection dialog, 391
::selection pseudoelement, 233
selectors (CSS)

about, 195, 206, 210
attribute, 216–221
basic, 207–209
general, 210
keyframe, 330–331
number expressions and, 228
pseudoclasses and, 222–233, 236–238
pseudoelements and, 233–235
relational, 212–216
using, 211

self-closing elements, 37–38
semicolon (;), 195
Sencha Touch framework, 397
SEO (search engine optimization), 43
serving images to mobile devices

about, 356
background size, 358
connection speed, 357
data URIs, 359
font icons, 361
Retina displays, 356–357
sprites, 359

sessionStorage object
about, 164
clear() method, 166
cookies and, 165
CubeeDoo game and, 167–174
getItem() method, 166, 170
key() method, 166
length property, 166
removeItem() method, 166
setItem() method, 166, 170

setAttribute() method, 39, 93
shadows

about, 291
box, 295–298
CubeeDoo game and, 298–302
text, 292–294

shorthand hex color format, 240
shorthand properties (CSS), 255–257, 261
simulators, 15–17
Sinon.JS, 20
size attribute (<input> element), 92
sizes attribute (<link> element), 52
skew() function, CSS transforms, 319
skewX() function, CSS transforms, 319
skewY() function, CSS transforms, 319
<small> element, 75
sms: link, 73
<source> element

about, 76
<audio> element and, 152
self-closing, 37
<video> element and, 150

 element, 75
specificity, 237
spellcheck attribute, 32
sprites

about, 359
animating, 334–335
performance considerations, 409
serving images, 359–361

SQL database storage, 174–179
src attribute

<audio> element, 149
<embed> element, 78
<link> element, 197
<track> element, 152
<video> element, 149

srcdoc attribute (<iframe> element), 76
srclang attribute (<track> element), 153

Index | 447

srcset attribute (element), 77
startup image, 380
state pseudoclasses, 225
status bar, 377
step attribute (<input> element), 87
storage

local and session, 164–174
Web SQL Database, 174–179

 element, 75, 82
structural pseudoclasses, 226–229
style attribute

about, 28
<svg> element, 135

style declaration block (CSS), 195
<style> element, 54
styles

elements and, 195
embedded, 196
in external stylehseets, 196
inline, 196, 205

stylesheets
about, 195
external, 196–198, 202
<link> element and, 51
performance considerations, 409

<sub> element, 75
submit input type, 94, 98, 131
summary attribute (<table> element), 80
<summary> element, 78
@supports rule, 200, 354
SVG (scalable vector graphics)

about, 134
background images and, 136
<canvas> versus, 146
CubeeDoo game and, 139–141
including in documents, 136
learning, 138
responsive foreground images, 136–138

<svg> element
about, 134
ARIA support, 188

T
tabindex attribute, 29, 222
<table> element, 80, 82
tags

case sensitivity, 38
closing, 35–38
meta, 47–50

opening, 35–38
tap-highlight-color CSS property, 390
target attribute (<a> element), 73
:target pseudoclass, 231
<td> element, 82
tel input type, 107
tel: link, 73
testing tools

about, 15
automated testing, 20
on devices, 18–20, 397
emulators, 15–17
online tools, 17
simulators, 15–17

text editors, 4
text input type, 95, 102, 104
text-level semantic elements

changed, 72–75
new to HTML5, 68–72
unchanged, 75

text-overflow CSS property, 291, 294
text-shadow CSS property, 292–294
<textarea> element, 91
<th> element, 82
<thead> element, 82
Theora/Ogg video format, 148
3D transform functions, CSS transforms, 321
threeDDarkShadow system color, 246
threeDFace system color, 247
threeDHighlight system color, 247
threeDLightShadow system color, 247
threeDShadow system color, 247
<time> element, 70
time input type, 116
title attribute

about, 27
<menuitem> element, 81

<title> HTML element, 43–43
<title> SVG element, 135
to keyword, 273, 330
top keyword, 274
touch events, 387, 389, 422
touch-event emulation, 8
touchend event, 224, 392
touchscreens

capturing touches, 386–393
scaling down to size, 385–386

touchstart event, 224, 392
<tr> element, 82

448 | Index

<track> element
about, 76
adding captions to videos, 152
self-closing, 37

transform CSS property, 314, 315–320
transform-origin CSS property, 314, 314, 323
transform-style CSS property, 324
transforms (CSS3)

about, 314
CubeeDoo example, 325–327
multiple, 320
3D transform functions, 321
transitioning transformations, 321
2D transform functions, 314–320

transition CSS shorthand property, 304, 311
transition-delay CSS property, 304, 310
transition-duration CSS property, 304, 309
transition-property CSS property, 304, 306–308
transition-timing-function CSS property, 304,

309
transitions (CSS)

about, 304
multiple, 312–314
performance considerations, 336
properties supporting, 306–312
transitioning transformations, 321

translate() function, CSS transforms, 316
translate3d() function, CSS transforms, 322
translateX() function, CSS transforms, 316
translateY() function, CSS transforms, 316
translateZ() function, CSS transforms, 322
transparent keyword, 240, 242, 362
triangles, making, 263
TRouBLe mnemonic, 255–257
turn (CSS angle unit), 254, 273
type attribute

<input> element, 85
<link> element, 52, 197
<menu> element, 80
<menuitem> element, 81
<object> element, 78
 element, 68

type selector, 207, 211

U
<u> element, 74
UI responsiveness, 422
universal selector (*), 210
updating cache, 162

url input type, 106
User Agent switcher, 6
user experience enhancements

about, 179
cross-document messaging API, 187
geolocation, 179–182
web workers, 182–187

UTF-8 character set, 45
utility applications, 370

V
:valid pseudoclass, 90, 225
validation

error messages, 122
form, 118–123, 236

ValidityState object
customError property, 121
patternMismatch property, 120
rangeOverflow property, 121
rangeUnderflow property, 121, 121
tooLong property, 120
typeMismatch property, 120
valid property, 121
valueMissing property, 120

value attribute
 element, 68
<progress> element, 129
<param> element, 78

values (CSS)
about, 195
angles, times, and frequencies, 252–254,

273–276
color, 239–249
declaration order, 255–257
gradients as, 271
length, 249–251

<var> element, 75
vh (CSS length unit), 249
<video> element

about, 76
adding captions, 152
adding to websites, 148
ARIA support, 188
browser support, 147
canPlayType() method, 151
controlling with JavaScript, 153
media types, 147
<source> element and, 150
styling, 156–157

Index | 449

viewbox attribute (<svg> element), 138
viewport meta tag, 47–49
@viewport rule, 386
visibility CSS property, 308
:visited pseudoclass, 222
vmax (CSS length unit), 249
vmin (CSS length unit), 249
VP8 video format, 148
vw (CSS length unit), 249

W
W3C mobileOK Checker, 17
waterfall chart, 411
<wbr> element, 37, 72
WCAG (Web Content Accessibility Guidelines),

189
web applications, 397

(see also designing mobile applications)
about, xi
automated testing, 20
hardware access and, 396
iPhone example, 266–270
native applications versus, xii–xvi
native-looking buttons, 269–270
offline, 159
testing, 397

Web Content Accessibility Guidelines (WCAG),
189

Web databases, 174
web forms

about, 83–85
elements supported, 123–131
styling to enhance usability, 122
validating, 118–123, 236

Web Inspector developer tool, 6, 14
web pages, adding <script> to, 55
Web SQL Database API

CubeeDoo game and, 175–178

executeSql() method, 176
openDatabase() method, 175
storage considerations, 174–179
transaction() method, 175

web workers
about, 182–187
close() method, 183
postMessage() method, 183
terminate() method, 183

WebGL, 147
WebKit browsers

about, xx
controlling validation bubbles, 122
remote debugging, 8, 12
styling input types, 102
targeting mobile, 377–384
Web SQL Database and, 176

WebOS devices, 20
week input type, 117
weinre (web inspector remote)

about, 11
Adobe Edge Inspect and, 11, 14
usage overview, 12

white-space CSS property, 295
WIA-ARIA roles, 26, 32
width attribute (<video> element), 149
width CSS property, 295
width, media query feature, 199
windowFrame system color, 247
Windows devices

emulators for, 17
testing on, 19

windowText system color, 247
Worker object (see web workers)
wrap attribute (<textarea> element), 131

Y
YouTube links, 74

450 | Index

About the Author
Estelle Weyl is a frontend engineer who has been developing standards-based accessible
websites since 1999. She writes two technical blogs pulling millions of visitors, and
speaks about CSS3, HTML5, JavaScript, and mobile web development at conferences
around the world.

Colophon
The animal on the cover of Mobile HTML5 is a Racket-tailed Drongo (Dicrurus para‐
diseus). This distinctive bird is notable for its elongated outer tail feathers, making it
easily recognizable in its Asian habitats. As talented vocalists, Racket-tailed Drongos
possess a wide range of calls and can mimic other birds’ songs as well.

In heavily forested areas, such as those where the Drongo normally lives, large mixed-
species flocks form as hundreds of birds forage for insects together. It is believed that
the Drongo’s ability to imitate calls has to do with this feeding situation—the Drongo
learns the alarm calls of other types of birds and repeats them. This behavior has been
likened to a person learning short, useful phrases and exclamations in a variety of lan‐
guages. Although African Grey Parrots can use human speech in the correct context,
they have never exhibited this kind of situation-reliant behavior in the wild. In contrast,
the Drongo will use its language skills to its advantage, often by imitating the call of a
raptor to create a panic among the feeding group, allowing the Drongo to steal food
unnoticed.

While Drongos can be quite aggressive when it comes to territory, they have a very
playful and extended courtship display. Two prospective mates will sing to each other,
hop and turn about on branches, and drop objects from high and then dive down to
pluck them from mid-air. Once a pair has mated, they build a small cup-shaped nest in
which to lay the clutch of three to four eggs.

The range of the Racket-tailed Drongo extends throughout the forests of the Himalayas,
the Mishmi Hills, and the islands of Borneo and Java. As such, the scholar Edward H.
Schafer considered the Drongo the basis for the divine kalavinka birds mentioned in
Chinese and Japanese Buddhist texts. These immortal beings were said to have a human’s
head and bird’s torso, with a long double tail and a beautiful voice. The name has been
alternately been translated as “exquisite-sounding bird” and “goodly sounding bird,”
making the parallels all the more striking between it and the vocally gifted Drongo.

The cover image is from a loose plate, source unknown. The cover fonts are URW
Typewriter and Guardian Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

	Copyright
	Table of Contents
	Introduction
	Native Applications Versus Web Applications
	Pep Talk (or Leaving Old Internet Explorer Behind)
	The Browser Landscape
	Web Applications Versus Native Applications: A Brief
 History
	Release of the SDK: Beginning of Third-Party Applications

	What’s New(t)? New Elements and APIs
	Semantic Grouping Tags
	Web Forms
	SVG and Canvas
	Video and Audio
	Geolocation API
	Offline Content and Storage
	Other APIs

	What’s New in CSS?
	Web Fonts

	Mobile-Specific Considerations
	Why This Book?
	Screen Size
	User Goals

	What’s in This Book
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Setting the Stage to Learn Mobile HTML5, CSS3, and JavaScript APIs
	CubeeDoo: HTML5 Mobile Game
	Development Tools
	Text Editor
	Browser
	Debugging Tools
	Desktop Debuggers
	Remote Debugging

	Testing Tools
	Emulators and Simulators
	Online Tools
	Phones
	Automated Testing

	Chapter 2. Upgrading to HTML5
	HTML5 Syntax
	Elements
	Attributes
	Global and Internationalization Attributes
	HTML 4 Attributes Made Core in HTML5
	New to HTML5: Global Accessibility and Interactive
 Attributes

	HTML Element/Attribute Syntax
	Self-Closing Elements
	Best Practices
	The Required Components
	Elements Found in the <head>
	<meta>: Adding Metadata
	Mobile Meta Tags
	Mobile Vendor-Specific Values
	The <base> of Your Web Page
	<link>s Aren’t Just for Stylesheets

	Chapter 3. Elements That Are New in HTML5
	Sectioning Elements in HTML5
	<section>
	<article>
	<section> Versus <article>
	<nav>
	<aside>
	<header>
	<footer>
	CubeeDoo Header and Footer
	Not New, but Not Often Used: <address>
	Grouping Content: Other New HTML5 Elements
	<main>
	<figure> and <figcaption>
	<hr>
	 and Attribute Changes

	Text-Level Semantic Elements New to HTML5
	<mark>
	<time>
	<rp>, <rt>, and <ruby>
	<bdi>
	<wbr>

	Changed Text-Level Semantic Elements
	<a>
	Text-Level Element Changes from HTML 4
	Unchanged Elements

	Embedded Elements
	Changes to Embedded Elements

	Interactive Elements
	<details> and <summary>
	<menu> and <menuitem>
	All of XHTML Is in HTML5, Except...

	In Conclusion

	Chapter 4. HTML5 Web Forms
	Attributes of <input> (and Other Form Elements)
	The type Attribute
	The required Attribute
	Minimum and Maximum Values: The min and max Attributes
	The step Attribute
	The placeholder Attribute
	The pattern Attribute
	The readonly Attribute
	The disabled Attribute
	The maxlength Attribute
	The size Attribute
	The form Attribute
	The autocomplete Attribute
	The autofocus Attribute

	<input> Types and Attributes
	Re-introduction to Input Types You Think You Know
	Text: <input type=“text”>
	Password: <input type=“password”>
	Checkbox: <input type=“checkbox”>
	Radio: <input type=“radio”>
	Submit: <input type=“submit”>
	Reset: <input type=“reset”>
	File: <input type=“file”>
	Hidden: <input type=“hidden”>
	Image: <input type=“image”>
	Button: <input type=“button”>
	Styling Input Types

	New Values for <input> Type
	Email: <input type=“email”>
	URL: <input type=“url”>
	Telephone: <input type=“tel”>
	Number: <input type=“number”>
	Range: <input type=“range”>
	Search: <input type=“search”>
	Color: <input type=“color”>

	Date and Time Input Types
	Date: <input type=“date”>
	Datetime: <input type=“datetime”>
	Datetime-local: <input type=“datetime-local”>
	Month: <input type=“month”>
	Time: <input type=“time”>
	Week: <input type=“week”>

	Form Validation
	Easy UI Improvements with CSS

	New Form Elements
	The <datalist> Element and the list Attribute
	The <output> element
	<meter>
	<progress>
	<keygen>

	Other Form Elements
	The <form> element
	<fieldset> and <legend>
	<select>, <option>, <optgroup>
	<textarea>
	<button>
	The <label> Element

	In Conclusion

	Chapter 5. SVG, Canvas, Audio, and Video
	HTML5 Media APIs
	SVG
	Including SVG in Your Documents
	Clown Car Technique: SVG for Responsive Foreground Images
	Learning SVG
	CubeeDoo SVG
	Canvas
	Canvas Versus SVG

	Audio/Video
	Media Types
	Adding <video> to Your Website
	Attributes of <video> and <audio>
	Video and Audio and JavaScript
	Styling Video

	Chapter 6. Other HTML5 APIs
	Offline Web Applications
	Am I Even Connected to the Internet?
	Application Cache
	Local and Session Storage
	SQL/Database Storage

	Enhanced User Experience
	Geolocation
	Web Workers
	Microdata
	Cross-Document Messaging

	Accessible Rich Internet Applications (ARIA)
	Accessibility

	In Conclusion

	Chapter 7. Upgrading to CSS3
	CSS: A Definition and Syntax
	CSS Syntax
	Using External Stylesheets: <link> Revisited
	Media Queries
	CSS Best Practices

	CSS Selectors
	Basic Selectors

	More CSS3 Selectors
	General Selectors
	Using the Selectors
	Relational Selectors: Rules Based on Code Order
	Attribute Selectors
	Pseudoclasses
	State Pseudoclasses
	Structural Pseudoclasses
	The Math of the nth Types
	More Pseudoclasses
	Pseudoelements

	Other Selectors: Shadow DOM
	Specificity Trumps Cascade: Understanding CSS Specificity

	In Conclusion

	Chapter 8. Expanding Options with CSS3 Values
	CSS Color Values
	Hexadecimal Values
	rgb() Syntax
	Adding Transparency with RGBA
	Hue, Saturation, and Lightness: HSL()
	CMYK
	Named Colors
	CurrentColor
	Browser Color Values

	CSS Units of Measurement
	CSS Length Values
	Angles, Times, and Frequencies
	CSS Angle Measurements
	Times
	Frequencies

	Avoiding TRouBLe: Shorthand Properties and Value
 Declarations
	In Conclusion

	Chapter 9. CSS3: Modules, Models, and Images
	CSS Box Model Properties
	border
	border-style
	border-color
	border-width
	The CSS Box Model
	box-sizing

	Learning CSS3
	border-radius

	CSS Gradients
	Gradient Type: Linear or Radial
	Radial Gradients
	Linear Gradients
	background-size
	Stripey Gradients
	Repeating Linear Gradients

	Shadows
	Text Shadow
	Fitting Text with width, overflow, and text-overflow
	Box Shadow
	Putting It All Together: CubeeDoo

	Chapter 10. CSS3: Transforms, Transitions, and Animations
	CSS Transitions
	The transition-property Property
	The transition-duration Property
	The transition-timing-function Property
	The transition-delay Property
	The Shorthand transition Property
	Multiple Transitions

	CSS3 Transforms
	The transform-origin Property
	The transform Property
	Multiple Transforms
	Transitioning Transformations
	3D Transform Functions
	Other 3D Transform Properties
	Putting It All Together

	CSS3 Animation
	Keyframes
	Transitions, Animations, and Performance

	Chapter 11. CSS Features in Responsive Web Design
	Media Queries, Breakpoints, and Fluid Layouts
	Multiple Columns
	Border Images
	Setting Border Images

	Flexbox
	flex
	Feature Detection with @supports

	Responsive Media
	Serving Images
	CSS Masking: Creating Transparent JPEGs
	Client Hints

	Chapter 12. Designing Mobile Applications
	Considerations Before You Start
	Design Considerations
	Tools: Productivity Applications
	Entertainment: Immersive Applications
	Utility
	What Is Right for You?

	The Mobile Platform: Rich with Possibilities
	Small Screen
	Less Memory
	One Window, One Application at a Time
	Minimal Documentation
	Development Considerations

	Targeting Mobile WebKit
	Status Bar
	Navigation Bar
	Startup Image
	Home Screen Icons

	Minimize Keyboard Entry
	Be Succinct
	Make it Obvious
	Minimize Required Input
	Minimize Text

	Other User Experience Considerations

	Chapter 13. Targeting Mobile Devices and Touch
	Scaling Down to Size
	@viewport

	Touch Me
	Touch Areas
	Mouse Events, Touch Events
	Pseudo or Not-So-Pseudo Click Events

	Hardware Access
	Phone Movement and Direction
	Device Status
	Native Web Apps, Packaged Apps, and Hybrids

	Testing

	Chapter 14. Mobile Performance
	Battery Life
	Use Dark Colors
	Use JPEGs
	Reduce JavaScript
	Eliminate Network Requests
	Hardware Acceleration

	Latency
	Reduce the Number of HTTP Requests
	Reduce Size of Requests
	Memory
	Optimize Images

	UI Responsiveness
	Touch Events
	Animation

	In Conclusion

	Appendix A. CSS Selectors and Specificity
	CSS Selectors Level 3
	CSS Selector Cheat Sheet
	CSS Selector Specificity
	CSS Selectors Level 4

	Index
	About the Author

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

