
www.allitebooks.com

http://www.allitebooks.org


www.allitebooks.com

http://www.allitebooks.org


Jesse Cravens and Jeff Burtoft

HTML5 Hacks

 
 

 
 

www.allitebooks.com

http://www.allitebooks.org


ISBN: 978-1-449-33499-4

[LSI]

HTML5 Hacks

by Jesse Cravens and Jeff Burtoft

Copyright © 2013 Jesse Cravens, Jeff Burtoft. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online

editions are also available for most titles (http://my.safaribooksonline.com). For more informa-

tion, contact our corporate/institutional sales department: 800-998-9938 or corporate@oreil

ly.com.

Editors: Simon St. Laurent and Meghan

Blanchette

Production Editor: Holly Bauer

Copyeditor: Audrey Doyle

Proofreader: Rachel Leach

Indexer: Judith McConville

Cover Designer: Mark Paglietti

Interior Designer: David Futato

Illustrator: Rebecca Demarest

November 2012: First Edition

Revision History for the First Edition:

2012-11-09 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449334994 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks

of O’Reilly Media, Inc. HTML5 Hacks and related trade dress are trademarks of O’Reilly Media,

Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are

claimed as trademarks. Where those designations appear in this book, and O’Reilly Media, Inc.,

was aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors

assume no responsibility for errors or omissions, or for damages resulting from the use of the

information contained herein.

www.allitebooks.com

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449334994
http://www.allitebooks.org


Table of Contents

Preface .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  vii

1. Hacking the Semantic Way .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  1

Hack 01. Simplify Your Doc with the Right <doctype>                                                1

Hack 02. Adopt Common Structures                                                                               2

Hack 03. Make Your New HTML5 Tags Render Properly in Older Browsers         5

Hack 04. Bring Back the <input> Tag                                                                            11

Hack 05. Easily Implement Form Validation Without JavaScript                          16

Hack 06. Improve the Usability of Your Forms with New Controls                        24

Hack 07. Know What’s Going On in Your App with New DOM Events                   37

Hack 08. Add Rich Context to Your Markup with Custom Data                             40

Hack 09. Track User Events with Custom Data                                                          44

Hack 10. Make Your Page Consumable by Robots and Humans Alike with

Microdata                                                                                                                           47

2. Hacking with Style .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  53

Hack 11. Use Experimental CSS Features with Browser Prefixes                           54

Hack 12. Design with Custom Fonts Using Web Fonts                                              56

Hack 13. Use Google Web Fonts for Simple @font-face Implementation            61

Hack 14. Use CSS3 Text Effects to Make Your Text Not Suck                                 70

Hack 15. Make Elements Appear Transparent Without Altering the Opacity     73

Hack 16. Use Media Queries to Build Responsive Design                                        77

Hack 17. Make Your Web App Respond to Device Orientation Changes              81

Hack 18. Take Full Control of Your DOM with Pseudoclasses                                  85

Hack 19. Hack Up Your Sprite and Put Your Images Inline with Image Data

URIs                                                                                                                                      87

Hack 20. Build Gradients the Easy Way                                                                        92

Hack 21. Make Borders Interesting Again, with Border Treatments                     98

Hack 22. Set Multiple Background Images to the Same Element                      103

Hack 23. Free Your Page Elements from Their Traditional Space with CSS3

Transforms                                                                                                                      106

iii

www.allitebooks.com

http://www.allitebooks.org


Hack 24. Turn Transforms into Animations with CSS3 Transitions                    110

Hack 25. Make iOS-Style Card Flips with CSS Transforms and Transitions     113

Hack 26. Use Respond.js to Polyfill CSS3 Media Queries in IE                            117

Hack 27. Control Mobile Layout with the viewport <meta> Tag                          121

3. Multimedia Hacking .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  125

Hack 28. Embed Video Directly in Your Application with HTML5 Video           125

Hack 29. Choose the Right Codecs for Your Video Files                                        128

Hack 30. Create Custom Video Controls with Video APIs                                    130

Hack 31. Replace the Background of Your HTML5 Video with the <canvas>

Tag                                                                                                                                      135

Hack 32. Add Subtitles to Your HTML5 Video Element                                          139

Hack 33. Beautify Your HTML5 Video Cues                                                               143

Hack 34. Use the Cuepoint.js Polyfill for Subtitles                                                  147

Hack 35. Easily Build Audio-Rich Applications with Buzz                                     150

Hack 36. Simplify Your HTML5 Media with MediaElement.js                              154

4. Hacking Your Graphics with Canvas and SVG .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  157

Hack 37. Draw Shapes on Your HTML5 <canvas> Tag                                           158

Hack 38. Apply Styles to Your Canvas Elements                                                     164

Hack 39. Style Canvas Elements with Image Files                                                  171

Hack 40. Use the HTML5 <canvas> Tag to Create High-Res, Retina-

Display-Ready Media                                                                                                    177

Hack 41. Accelerate Animation with Canvas Drawings                                          181

Hack 42. Build “Native” Illustrations with Scalable Vector Graphics                 188

Hack 43. Style SVG Elements with CSS                                                                      192

Hack 44. Animate Illustrations with SVG                                                                    199

Hack 45. Embed SVG Directly in Your HTML                                                             204

5. User Interactions .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  209

Hack 46. Make Any Content Draggable Within Your Application                        210

Hack 47. Update the DOM with a Drag-and-Drop Data Transfer Object           214

Hack 48. Drag Files In and Out of Your Web Application                                       220

Hack 49. Make Any Element on Your Page User-Customizable with

Editable Content                                                                                                            226

Hack 50. Turn Your Web Page into a WYSIWYG Editor                                           229

Hack 51. Take Control of the Browser History Buttons with HTML5 Session

History                                                                                                                              232

6. Client-Side Data Storage Hacks .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  239

Hack 52. Embed Binary Data in an Inline URL                                                          239

Hack 53. Convert a Data URI to a Blob and Append It to Form Data with

XHR2                                                                                                                                 244

Hack 54. Use the WebStorage API to Persist User Data                                        246

Hack 55. Polyfill LocalStorage with YepNope.js and Storage.js                           252

iv TABLE OF CONTENTS

www.allitebooks.com

http://www.allitebooks.org


Hack 56. Cache Media Resources Locally with the FileSystem API                   255

Hack 57. Build a Milestone Calendar with IndexedDB and FullCalendar.js      264

7. Geolocation Hacks .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  273

Hack 58. Use the Geolocation APIs to Display Longitude and Latitude in a

Mobile Web Application                                                                                               274

Hack 59. Use Google’s Geocoding API to Reverse-Geocode a User’s

Location                                                                                                                            280

Hack 60. Update a User’s Current Location in a Google Map                              286

Hack 61. Use the Geoloqi Service to Build a Geofence                                           291

Hack 62. Use the Geoloqi Real-Time Streaming Service to Broadcast a

Remote User’s Movement                                                                                          298

Hack 63. Polyfill Geolocation APIs with Webshims                                                 302

8. WebWorker API .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  307

How Browsers Handle JavaScript                                                                                307

Hack 64. Use the BlobBuilder Interface to Create an Inline Worker                   309

Hack 65. Perform Heavy Array Computations in a Dedicated Web Worker     315

Hack 66. Use a Timer to Send Application State to Workers                               325

Hack 67. Process Image Data with Pixel Manipulation in a Dedicated

Worker                                                                                                                              338

Hack 68. Use Import Scripts to Make Twitter JSONP Requests                         343

Hack 69. Connect to Shared Workers Simultaneously from Multiple

Browser Windows                                                                                                          347

9. Hacking HTML5 Connectivity .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  351

Hack 70. Use Kaazing’s Remote WebSocket Server to Echo Simple

Messages from a Browser                                                                                          352

Hack 71. Build a Blazing-Fast WebSocket Server with Node.js and the ws

Module                                                                                                                              360

Hack 72. Build a Donation Thermometer with Web Sockets, the Pusher

API, and PHP                                                                                                                   367

Hack 73. Build Plug-Ins for jWebSocket                                                                      383

Hack 74. Push Notifications to the Browser with Server-Sent Events               394

Hack 75. Configure Amazon S3 for Cross-Origin Resource Sharing to Host

a Web Font                                                                                                                       404

Hack 76. Control an HTML5 Slide Deck with Robodeck                                        414

Hack 77. Inspect a Socket.IO Connection to Determine If It Is Native or

Emulated                                                                                                                          435

Hack 78. Build a Simple SPDY Server with node-spdy                                          435

10. Pro HTML5 Application Hacks with Node.js .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  439

HTML5 Application Design Considerations                                                               439

Hack 79. Deliver “Hello Html5” to the Browser                                                        440

Hack 80. Detect the User Agent String Within the Request Object                   448

vTABLE OF CONTENTS

www.allitebooks.com

http://www.allitebooks.org


Hack 81. Use Node.js’s Response Object to Respond to the Client with

Device-Specific Data                                                                                                    450

Hack 82. Use the Node Package Manager to Add a Web Application

Framework As a Third-Party Module                                                                       452

Hack 83. Use the Express Application Generator to Bootstrap Your App        453

Hack 84. Build a Custom Module to Handle Routing                                              455

Hack 85. Configure Express to Use a View Engine                                                  457

Hack 86. Use Jade Layouts to DRY Up Your Application’s Views                        458

Hack 87. Use a Jade Partial to Create a Common Navigation Bar in Your

Views                                                                                                                                 461

Hack 88. Use Jade Mixins to Populate Your Views with Data                               463

Hack 89. Set Up Expressive, Dynamic, Robust CSS with Stylus                         466

Hack 90. Include HTML5 Boilerplate As Your Default Starter Template           469

Become an HTML5 Hacker                                                                                             475

Index .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  477

vi TABLE OF CONTENTS

www.allitebooks.com

http://www.allitebooks.org


Preface

HTML5 is the new catchall term for “the Web.” Like Ajax and Web 2.0 before, the term

can cause confusion when used in different contexts. HTML5 is technically the fifth

revision of the HTML markup language, but you will find the term being used to de-

scribe an umbrella of next-generation web technology specifications that include

CSS3, SVG, and JavaScript APIs.

In order to understand HTML5 in this context, first it is important to understand that

HTML5 is not one technology that is applied or added to a web application. There are

more than 30 specifications within the HTML5 umbrella, and each is at a different

stage of maturity. Furthermore, each specification is also at a different state of adop-

tion and, potentially, implementation, by the major browser manufacturers.

Depending on an application’s business requirements, the app’s developer will pick

and choose the HTML5 features to take advantage of. It is entirely possible that only

a handful of the available specifications will be used for the final implementation of a

modern web application.

Critics often proclaim it is necessary to wait until HTML5 is 100% supported before

you use it in your application. This is simply not true. Many specifications have already

reached maturity and are fully implemented by modern browsers. Other specifica-

tions are at an early stage of development, or are poorly supported by some of the

major browser manufacturers. It’s important to know which specification type you are

using. Research is helpful, but the only true way to tell is to thoroughly test your apps

in all browsers.

For the specifications that are newer or that aren’t as strongly supported, some clever

developers have produced free and open source code that can be utilized to shim, or

polyfill, support in older browsers. As defined by Remy Sharp, “A polyfill, or polyfiller,

is a piece of code (or plug-in) that provides the technology that you, the developer,

vii

www.allitebooks.com

http://www.allitebooks.org


expect the browser to provide natively. Flattening the API landscape, if you will.” In our

opinion, the best polyfill is one that lets you write your code just as you would if the

feature were natively supported, and that does the work in the background when nec-

essary, being transparent to both the user and the developer. In most circumstances,

each HTML5 specification has a polyfill, or multiple competing polyfills, and is ready

to be used today. You will find references to some of the Web’s most effective polyfills

within this book.

Why HTML5?

A beginning developer might ask, “Why should I care about HTML5?” Unfortunately,

there is not a simple answer to this question. Even the most advanced web developers

will answer this question differently depending on the features they are most familiar

with.

But overall, there are some common trends that span the feature set and on which

most developers would agree. Before HTML5, the Web was not considered to be a rival

to native desktop and mobile applications. Nearly since its inception, the Web has

been considered to be an easily deployable, cross-platform solution. However, it has

been hampered due to its lack of highly important business requirements: namely,

performance, security, and graphics. The theory has been that if the modern web

browser could mature as an application platform, developers would be able to stop

creating platform-specific native applications.

The Ajax revolution took the web application world in the right direction by providing

asynchronous, background updates to the server via the XMLHttpRequest object,

JSON transfer format, and an explosion of JavaScript libraries that stretched the

boundaries of application development in the browser, many of which continue to

make up the basis for polyfill support. However, HTML5 is about the modern browser

providing the necessary support to enable sophisticated application development

natively. In order to accomplish this, features such as the ability to maintain browser

history and bookmarking during asynchronous interactions, cross-domain commu-

nication, local storage, offline support, rich graphics, and even new protocols to im-

prove the speed and efficiency of the connectivity layer still needed to be created and

improved.

Browser prefixes are most common in CSS. We urge you to read the introduction to

Chapter 2 to get a full explanation of how browser prefixes are implemented in CSS.

viii PREFACE

www.allitebooks.com

http://www.allitebooks.org


HTML5 Implementations

As an eager developer ready to move forward with implementing some of the new

features available in this text, it will be important to understand that many of the

HTML5 specifications are in experimental stages of development. One major chal-

lenge in writing a book about evolving specifications is keeping the information fresh

and up to date.

The following topics are important considerations when learning experimental web

browser specifications.

Browser-specific prefixes

In order for browser makers to be able to implement experimental features (usually

implementing specifications before they were completed), browser makers “prefix”

that feature with a shorthand that limits its use to each particular browser. A great

example of this is the implementation of requestAnimationFrame, which is a Java-

Script method in the page that aids in animation within the browser. Each browser

originally implemented this feature with browser prefixes as follows:

• requestAnimationFrame

• webkitRequestAnimationFrame

• mozRequestAnimationFrame

• oRequestAnimationFrame

• msRequestAnimationFrame

Browser prefixes are most common in CSS. We urge you to read the introduction to

Chapter 2 to get a full explanation of how browser prefixes are implemented in CSS.

Validation with HTML5 Conformance Checker

An HTML validator is a piece of software that parses your web pages against a set of

web standards as defined by a particular Document Type Definition (DTD). If you are

unfamiliar with a DTD, think of it as metadata that precedes your HTML markup in

order to instruct the browser as to what “flavor” of HTML you will be using.

The HTML validator returns a list of errors found, according to the chosen standard.

For our purposes, we will assume that we are using the HTML5 Document Type

Definition.

The HTML5 Document Type Definition is more lenient than the most recent XHMTL

definition, and the output of the W3C’s new validator reflects this difference. After all,

a validator should not throw exceptions for stylistic issues. It should be focused on

validating your HTML markup against a specification.

ixPREFACE

http://html5.validator.nu/


1 http://en.wikipedia.org/wiki/Hacker

HTML5 Lint

This means that developers should also be ready to use a lint tool in order to expose

stylistic issues within their code. Some of the more common issues to check for are

consistent indentation, lowercase tags, and omission of closing tags.

At the time of this writing, we recommend the HTML5 Lint tool.

References for HTML5 implementation statuses and feature support

We will continue to provide updates as often as possible to the examples provided

within this text on our blog.

There are also many great resources around the web to reference HTML5 implemen-

tation statuses and feature support of specific browsers.

For all modern browsers:

http://caniuse.com/

http://html5test.com/

For Chrome:

http://www.chromium.org/developers/web-platform-status

For Internet Explorer:

http://msdn.microsoft.com/en-US/ie/ff468705.aspx

For Mozilla Firefox:

https://wiki.mozilla.org/Features

For Apple Safari:

https://developer.apple.com/technologies/safari/html5.html

Why HTML5 Hacks?

The term hacker carries a negative connotation within the media, but the term has

evolved to describe a number of different technical people. Wikipedia provides three

very different definitions for the term hacker:1

x PREFACE

http://en.wikipedia.org/wiki/Hacker
http://lint.brihten.com/html/
http://html5hacks.com/blog
http://caniuse.com/
http://html5test.com/
http://www.chromium.org/developers/web-platform-status
http://msdn.microsoft.com/en-US/ie/ff468705.aspx
https://wiki.mozilla.org/Features
https://developer.apple.com/technologies/safari/html5.html


1. Hacker (computer security), someone who accesses a computer sys-

tem by circumventing its security system

2. Hacker (hobbyist), who makes innovative customizations or combina-

tions of retail electronic and computer equipment

3. Hacker (programmer subculture), who shares an anti-authoritarian ap-

proach to software development now associated with the free software

movement

It is in the context of definition 2 that we are using the term hack. Among these types

of hacks, the term refers to a self-contained proof of concept, similar to agile spikes,

or recipes. These quick solutions exercise or validate an API, feature, or technology,

and can also serve a very important role, not only in educating the software team, but

also in driving the direction of development within a project’s life cycle.

Who This Book Is For

HTML5 Hacks introduces readers to the umbrella of HTML5 specifications through

90 hacks. For beginners it can serve as a starting point for building browser-based

applications. For intermediate to advanced developers it can serve to quickly fill in the

gaps for specifications they have yet to be exposed to.

Nevertheless, this book will be what you make of it.

Contents of This Book

This book consists of 10 chapters, organized as follows:

Chapter 1, Hacking the Semantic Way

Introduces new key HTML5 markup elements and attributes

Chapter 2, Hacking with Style

Covers visual expression and behaviors with CSS3

Chapter 3, Multimedia Hacking

Discusses HTML5 audio and video tags

Chapter 4, Hacking Your Graphics with Canvas and SVG

Covers working with Canvas and SVG

Chapter 5, User Interactions

Introduces HTML5 drag-and-drop, editing elements, and other interactions

xiPREFACE



Chapter 6, Client-Side Data Storage Hacks

Discusses storage and HTML5 application cache

Chapter 7, Geolocation Hacks

Teaches how to work with geolocations

Chapter 8, WebWorker API

Covers taking advantage of the WebWorker API

Chapter 9, Hacking HTML5 Connectivity

Discusses web sockets, cross-document messaging, server-side events, and

more

Chapter 10, Pro HTML5 Application Hacks with Node.js

Teaches how to build professional HTML5 applications with Node.js

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, file extensions, path-

names, directories, and Unix utilities

Constant width

Indicates commands, options, switches, variables, attributes, keys, functions,

types, classes, namespaces, methods, modules, properties, parameters, values,

objects, events, event handlers, XML tags, HTML tags, macros, the contents of

files, or the output from commands

Constant width bold

Shows commands or other text that should be typed literally by the user

Constant width italic

Shows text that should be replaced with user-supplied values

This formatting signifies a tip, suggestion, general note, warning, or caution.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in

this book in your programs and documentation. You do not need to contact us for

permission unless you’re reproducing a significant portion of the code. For example,

xii PREFACE



writing a program that uses several chunks of code from this book does not require

permission. Selling or distributing a CD-ROM of examples from O’Reilly books does

require permission. Answering a question by citing this book and quoting example

code does not require permission. Incorporating a significant amount of example code

from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,

author, publisher, and ISBN. For example: “HTML5 Hacks by Jesse Cravens and

Jeff Burtoft (O’Reilly). Copyright 2013 Jesse Cravens and Jeff Burtoft,

978-1-449-33499-4.”

All of the code examples are located at https://github.com/html5hacks.

You can also keep up with the authors and any updates at http://html5hacks.com.

We’d Like to Hear from You

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)

(707) 829-0515 (international or local)

(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional

information. You can access this page at:

oreil.ly/HTML5_Hacks

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our web-

site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

xiiiPREFACE

 
 

 
 

https://github.com/html5hacks
http://html5hacks.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia


Safari® Books Online

Safari Books Online is an on-demand digital library that delivers
expert content in both book and video form from the world’s lead-
ing authors in technology and business.

Technology professionals, software developers, web designers, and business and cre-

ative professionals use Safari Books Online as their primary resource for research,

problem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organ-

izations, government agencies, and individuals. Subscribers have access to thou-

sands of books, training videos, and prepublication manuscripts in one fully search-

able database from publishers like O’Reilly Media, Prentice Hall Professional, Addison-

Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco

Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe

Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course

Technology, and dozens more. For more information about Safari Books Online, please

visit us online.

Acknowledgments

We would like to extend a special thank you to both of our families. This book required

a lot of evening and weekend hours to complete, and our wives and children are the

ones who sacrificed the most.

Jeff would like to thank his wife Carla who encouraged him to step out and write a

book, and for allowing their lives to be turned upside down while he worked to com-

plete it. He would also like to thank his children, Chloe, Maddy, and Jude, for being his

inspiration for creativity, and for being proud of him in everything he does. Jeff would

also like to thank Jesse, his partner and coauthor, for dreaming up ideas like this book,

and making them a reality.

Jesse would like to thank his wife Amy for all the support she gave him through the

long and late hours he spent on this book; his children, Carter and Lindley, for trying

to understand when Daddy had to work weekends and nights; his brother and sister-

in-law for providing a quiet place to write and encouragement that it was worth the

effort; and his parents for the continued boosts of inspiration to check another item

off the bucket list. And finally, he’d like to thank Jeff for having the shared determina-

tion to coauthor this book, overcome the adversity associated with an ambitious

project, and make it across the finish line.

xiv PREFACE

http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/


Guest Hackers

John Dyer is the executive director of Communications and Educational Technology

at Dallas Theological Seminary. He has been a web developer and technology writer

for more than 10 years, and he loves creating tools that make complex tasks easier

for other developers. He lives in the Dallas area with his two amazing kids and his lovely

wife, Amber.

Alex Sirota cofounded and was the CTO and Head of Product at FoxyTunes, an

Internet startup acquired by Yahoo!, where he spent more than four years building

media and entertainment web products. Previously, he cofounded Elbrus Ltd., a com-

pany that provided software solutions to Philips Medical Systems, IBM, and others.

Prior to Elbrus, he was the head of a computer facility in the Israel Defense Forces,

and he coauthored a book (published by Wiley) on Mozilla and web technologies. He

holds a bachelor’s degree in computer science from Technion–Israel Institute of Tech-

nology.

Raymond Camden is a senior developer evangelist for Adobe. His work focuses on

web standards, mobile development, and ColdFusion. He’s a published author and

presents at conferences and user groups on a variety of topics. He can be reached

through his blog, via Twitter (@cfjedimaster), or via email (raymondcam

den@gmail.com).

Phil Leggetter is a Real-Time Web Software and Technology Evangelist. He has been

developing and using real-time web technologies for more than 10 years, and his focus

is to help people use these technologies to build the next generation of interactive and

engaging real-time web applications.

Alexander Schulze is the founder of the jWebSocket project, as well as an IT consul-

tant and trainer for IT professionals. He is a speaker at various conferences and author

of several articles and books.

xvPREFACE

http://j.hn/
http://www.raymondcamden.com
mailto:raymondcamden@gmail.com
mailto:raymondcamden@gmail.com




HACK 01

1
Hacking the Semantic Way

The spirit of HTML5 is simplicity. HTML5 has made it easy to implement web stand-

ards that in the past have been difficult to implement. Instead of trying to reinvent the

Web, visionary consortiums such as the WHATWG (Web Hypertext Application Tech-

nology Working Group) and the W3C (World Wide Web Consortium) looked at the web

standards that had evolved and built upon them.

In essence, HTML5 is primarily an update to the HyperText Markup Language (HTML).

In this chapter we will start with the basic building blocks of HTML, the semantic

elements, to provide a foundation for the simple yet powerful new web browser tech-

nologies exposed within this book.

So, open up your favorite code editor, brew a pot of coffee, and get ready to code in

the most powerful language the Web has ever seen: HTML5!

Simplify Your Doc with the Right
<doctype>

If there’s an emblem representing the simplicity HTML5 brings to the markup world,

it’s the <DOCTYPE> tag. The HTML5 <doctype> tag is easy to use.

When you open an XHTML document the first thing you see, the first line of the docu-

ment, is a mess:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://

www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

The <DOCTYPE> tag of HTML past, inherited from its SGML foundations, consisted of

three main components: the tag name, the public identifier string, and the DTD

(Document Type Definition) URL. It’s a strange mix of uppercase and lowercase let-

ters, quote marks and slashes, and a URL that brings up an even less readable file. To

make it even stranger, the <DOCTYPE> tag is unique, as it is the only HTML tag since

HTML 4.01 that is in all caps.

1



HACK 02

HTML5 says farewell to all that, and keeps it simple:

<!doctype html>

The browser uses the <doctype> to know how to render the web page. Most browsers

didn’t download the DTD from the URL, but they did change their behavior based on

the <DOCTYPE>. If a browser encountered the preceding code, it would switch to

standards mode (as opposed to quirks mode) and apply XHTML transitional

formatting.

Given all that, how can HTML5 get away with a basic <doctype> such as html? The

simple answer is that the new <doctype> is a “simple answer.” The new <doctype>
was made to trigger a simplified approach to document rendering, not to meet old

expectations. Browser makers reached a consensus on how browser-specific func-

tionality should be handled, so there is no need for “quirks mode” page rendering. If

all browsers render in a standard manner, the DTD is unnecessary; thus a simple dec-

laration of html states that the browser should set aside any DTD and simply render

the page.

HTML5 is a simplified version of HTML. The tags are less complex, the features are

less complex, and most importantly, the rules are less complex.

However, in most applications you write, you will not yet be servicing a user base

that consistently supports HTML5. So how can you switch between <doctype>s

when the <doctype> is supposed to be the first line of the document? This doesn’t

leave much room for JavaScript trickery or fancy hacks. Well, good news; there is a

backward-compatible HTML5 <doctype> as well:

<!DOCTYPE html>

“But wait,” you say. “Isn’t that the same simple <doctype> presented earlier?” Yes, it

is! The only key difference is that “doctype” is now in all caps. The HTML5 specification

states that the <doctype> is case-insensitive; however, previous versions of HTML

require an all-caps version of the <doctype>. You will find that much of HTML5 is

backward-compatible with earlier versions. The vast majority of browsers on the mar-

ket today will see the new <doctype> and recognize it as simply being “standards

mode” for page rendering.

Using the backward-compatible version of the <doctype> will allow you to start using

HTML5 today, while continuing to support browsers of the past!

Adopt Common Structures

Many web documents have similar structures. Take advantage of markup that makes

it easier to share styles and expectations.

2 HTML5 HACKS

www.allitebooks.com

http://www.allitebooks.org


Web designers and developers have long conformed to structural components on a

page. A common high-level page structure may look something like the following:

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

    <html>

    <head>

    <meta http-equiv="content-type" content="text/html;charset=UTF-8" />

        <title>...</title>

    </head>

    <body>

        <div id="header">...</div>

        <div id="nav">...</div>

        <div id="article">...</div>

        <div id="footer">...</div>

    </body>

    </html>

Take note of the “structural” ids in the page. This reflects well-organized content and

a clean structure for the page. The problem with the preceding code is that almost

every element in the markup is a div. Divs are great, but they are of little use in page

definition without associating them with an id. The problem with using ids for role

association is that when you want to use them for another purpose—say, to identify

a doc tree—you run into problems: as soon as you add a tool such as YUI Grids or

WordPress to a page that actually uses the id of a div, it conflicts with your div “roles,”

and the next thing you know you are adding layers of divs just to satisfy your structural

needs. As a result, the clean page shown earlier may now look something like this:

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

    <html>

    <head>

    <meta http-equiv="content-type" content="text/html;charset=UTF-8" />

        <title>...</title>

    </head>

    <body>

        <div id="header">

        <div id="nav">

            <div id="doc2">

                <div id="wordpress-org-2833893">...</div>

            </div>

        </div>

        <div id="article">

            <div id="doc2">

3CHAPTER 1: HACKING THE SEMANTIC WAY



                <div id="wordpress-org-887478">...</div>

            </div>

        </div>

        <div id="footer">...</div>

    </body>

You can see pretty quickly where this gets messy, yet we don’t want to abandon the

idea of structural elements that declare page segments—many code readers, such

as screen readers and search bots, have come to rely on structural conventions. As

with many parts of HTML5, the new structural tags have provided a simple solution

to the problem of added complexity. Let’s build our page with structural elements:

    <!DOCTYPE html>

    <html>

    <head>

        <meta charset="UTF-8">

        <title>...</title>

    </head>

    <body>

        <header>...</header>

        <nav>...</nav>

        <article>...</article>

        <footer>...</footer>

    </body>

    </html>

Once again we have a simple, clean HTML5 solution that keeps our page easy to work

with, and easy to consume by screen readers and search bots. This same code can

meet the needs of our third-party products as well, as shown in the following solution:

    <!DOCTYPE html>

    <html>

    <head>

        <meta charset="UTF-8">

        <title>...</title>

    </head>

    <body>

        <header data-yuigrid="doc2" data-wordpress="2833893">...</header>

        <nav>...</nav>

        <article data-yuigrid="doc2" data-wordpress="887478">...</article>

        <footer>...</footer>

    </body>

    </html>

4 HTML5 HACKS



HACK 03

We’ll get into the data- attributes later in this chapter, but for now you just need to

understand that this solution allows you to keep the structural elements of the page

and let third-party components apply identifiers to the nodes, while freeing up the id
attributes for the page author to control. Take note, third-party developers: never as-

sume that the id of an element is yours to consume!

All That and More

HTML5 didn’t stop at the new tags discussed in the preceding section. Here’s a partial

list of some of the new HTML5 markup tags to take note of:

<article> <aside> <figcaption> <figure> <footer> <header> <hgroup>

<mark> <nav> <section> <time> <keygen> <meter> <summary>

A lot of these tags grew out of common use by web developers. The W3C smartly

decided to “pave the cow paths” instead of trying to change the behavior of web de-

velopers. This way, the tags are generally useful for immediate adoption.

In most cases each tag’s intent is pretty obvious. The <header> and <footer> tags

do exactly what they say: they outline the header and footer of the page (or app). You

use <nav> to wrap your navigation. The <section> and <article> tags give you

options to the overused <div> tag; use these to break up your page according to the

content (e.g., wrap your articles in the <article> tag). The <aside> tag acts in a

similar way to the <article> tag, but groups the content aside the main page content.

The <figure> tag refers to a self-contained piece of content, and so on and so on.

Note that this list is not conclusive and is always changing. Visit the w3schools website

for the most complete list I could find.

Make Your New HTML5 Tags Render
Properly in Older Browsers

Don’t wait for full HTML5 adoption across the Web. Make HTML5 structural tags ren-

der properly in all browsers.

So, now you have this whole new world of HTML5 elements that will let you be both

expressive and semantic with your markup. You’ve been freed from the shackles of

divs and can show your face at parties again!

Semantic markup is the use of markup in a meaningful way. Separation of struc-

ture and presentation leads us to define our presentation (look and feel) with CSS,

and our content with meaningful or semantic markup.

5CHAPTER 1: HACKING THE SEMANTIC WAY

http://www.w3schools.com/html5/html5_reference.asp


You’re feeling pretty good about yourself until you remember that some of your visitors

are not using HTML5 browsers, and being the web standards elitist that you are, your

page has to be backward-compatible. Don’t throw those HTML5 tags out the window

just yet. This hack will teach you how to write your code once, and use it on all the

browsers out there.

Any browser made in the past 10 years will see your HTML5 tags in one of 3 ways:

1. See the HTML5 tag and render it appropriately (congratulations, you support

HTML5!).

2. See the HTML5 tag, not recognize it, and consider it an unstyled (which defaults

to inline) DOM (Document Object Model) element.

3. See the HTML5 tag, not recognize it, and ignore it completely, building the DOM

without it.

Option 1 is a no-brainer: you’re in an HTML5 browser. Option 2 is likewise pretty easy

to address, as you simply have to set your default display parameters in your CSS.

Keep in mind that with option 2, you have no functional DOM APIs for these new tags,

so this is not true support for the tags. In other words, using this method to create a

meter element does not create a functional meter. For our use case of semantic

markup elements, however, this should not be an issue.

So, focusing on option 3, you’re using IE 6, 7, or 8 and you’re loading a page that

contains new HTML5 semantic tags. The code will look something like this:

    <!DOCTYPE html>

    <html>

    <head>

        <meta charset="UTF-8">

        <title>My New Page with Nav</title>

</head>

<body>

<div>

    <nav class="nav">

    <p>this is nav text</p>

    </nav>

</div>

</body>

</html>

There are basically two different ways to handle this lack of support.

6 HTML5 HACKS



The Fallback div

In the preceding code sample, the nav element is not recognized and is passed over

at render time. Since the DOM does not recognize these elements, option 1 uses a

fallback element that the browser does recognize, and wraps each unrecognized

element in it. The following code should make this easier to understand:

    <!DOCTYPE html>

    <html>

    <head>

        <meta charset="UTF-8">

        <title>My New Page with Nav</title>

</head>

<body>

<div>

    <nav class="nav">

        <div class="nav-div">

            <p>this is nav text</p>

        </div>

    </nav>

</div>

</body>

</html>

Voilà! We can now style the element with the nav-div class instead of the element

with the nav class, and our DOM will be complete in all common browsers. Our page

will style correctly, and we will have our new HTML5 tags in place for screen readers

and search engines that will benefit from the semantic tags.

This method will work, but there are some downsides to this solution. For starters,

having duplicate tags negates the benefit in many ways, as we are still using divs for

every structural element of the page. The biggest problem with this solution, though,

is how it corrupts the DOM tree. We no longer have a consistent parent–child rela-

tionship from browser to browser. The browsers that do recognize the HTML5 element

will have an extra “parent” to the contents of the element, so the trees will differ from

one browser to the next. You may think you don’t need to care about this, but as soon

as you start accessing the DOM with JavaScript (especially if you’re using a JavaScript

library such as YUI or jQuery) you will run into cross-browser issues.

The Real DOM Hack: The HTML5 Shim (or Shiv)

I’m happy to say there is a second, and in my opinion better, solution to our problem.

I believe this “feature” was first discovered by Sjoerd Visscher in 2002 when he

7CHAPTER 1: HACKING THE SEMANTIC WAY



switched from createElement to innerHTML and realized he lost the ability to style

unrecognized elements. Fast-forward to 2008, when John Resic realized he could ex-

ploit the same bug to make HTML5 elements recognizable in IE; he named the capa-

bility the “HTML5 shiv,” although it is technically a shim. Here are the details.

Old versions of IE don’t recognize HTML5 elements naturally, but as soon as you use

document.createElement() in the head of the document passing in an unrecog-

nized element, IE will add the element to its tag library and it can be styled with CSS.

Let’s go back to the markup:

    <!DOCTYPE html>

    <html>

    <head>

        <meta charset="UTF-8">

        <title>My New Page with Nav</title>

    <style>

    .nav {

color: red

}

        nav {

display: block;

background-color: blue

}

</style>

</head>

<body>

<div>

    <nav class="nav">

            <p>this is nav text</p>

    </nav>

</div>

</body>

</html>

Figure 1-1 shows how the preceding markup will appear in IE versions 6 through 8.

8 HTML5 HACKS



Figure 1-1. 

Styled nav element in a browser that doesn’t support the tag

Notice that the element didn’t pick up the color from the tag name or the CSS class

assigned to the tag; it simply ignored it. Now let’s throw in our JavaScript and try it

again:

    <!DOCTYPE html>

    <html>

    <head>

        <meta charset="UTF-8">

        <title>My New Page with Nav</title>

    <style>

    .nav {

color: red

}

        nav {

display: block;

background-color: blue

}

</style>

9CHAPTER 1: HACKING THE SEMANTIC WAY



<script>

    document.createElement('nav');

</script>

</head>

<body>

<div>

    <nav class="nav">

            <p>this is nav text</p>

    </nav>

</div>

</body>

</html>

Now our markup will pick up the blue background from the tag styles and the red text

from the class name; the result will look something like Figure 1-2.

Figure 1-2. 

Styled nav element in a browser that doesn’t support the tag, but with the JavaScript hack

10 HTML5 HACKS



HACK 04 Bring Back the <input> Tag

HTML5 has breathed new life into the <input> tag. It’s time to get excited once again

about this “age-old” tag.

I have to admit that I was getting a little bored with the <input> tag. Before HTML5,

any real interaction had to be done outside the tag: whether the interaction involved

validation, formatting, or graphical presentation, JavaScript was a necessary polyfill.

Well, HTML5 has given us a reason to be excited about the <input> tag again.

The <input> tag is not truly an HTML5 tag, per se. It’s the same <input> tag we have

had in every previous version of HTML, but HTML5 has added a slew of new features.

The good thing about updating an existing tag is that it’s naturally backward-

compatible. You may code your tag like this:

<input type="date"  />

and non-HTML5 browsers will simply see this:

<input />

In this hack we’ll look at a few new, common features of this wonder of a tag.

Some of the Basics

There are a few basic (but powerful) new features in the HTML5 <input> tag that are

accessible on almost any input type. We’ll start by looking at some of the simple at-

tributes and then move on to some of the more complex ones.

First on the list is the placeholder text, which is a string assigned to the placehold
er attribute that provides a hint for the input box. Placeholder text is quite useful and

quickly becoming commonplace. The text appears when the input value is empty and

disappears once the input receives focus. Then it reappears when it loses focus (pro-

viding the input box is still empty).

Another common attribute is autofocus, which, as you can guess by the name,

brings focus to an element once the document is loaded. Simply set autofocus="au
tofocus" (or just add autofocus as an attribute) and this will be the default focus

element once the page is loaded (as opposed to focusing on the first element of the

page).

The required attribute is another one of those patterns that has been accomplished

through JavaScript for years, but has finally made it into DOM functionality. Simply

add the attribute required="required" (or simply required) to your input and the

DOM will not submit the form while the requirements of that field are not satisfied.

Let’s look at a quick example:

11CHAPTER 1: HACKING THE SEMANTIC WAY

 
 

 
 



<!DOCTYPE html>

<html>

<body>

<form>

  Add your telephone: <input type="tel" name="phone" required /><br />

  <input type="submit" />

</form>

</body>

</html>

If you try hitting the Submit button without putting a value in the field, your browser

will throw up a default message along the lines of “Please fill out this field.” It’s not

perfect, but it’s a start.

The form attribute is a feature that has been a long time coming. Have you ever wanted

to have a form on your page, but without constraining the form elements to one section

of your DOM? Maybe you are on a mobile device and you would like your Submit button

to pop up from the bottom of the screen instead of residing in your form area. The

form attribute lets you create a form element for a form, even when it is not a child

node of the form. Simply set the form attribute to the id of the form (it can’t be the

form name or another attribute, something the W3C needs to address). With this

attribute, the preceding example would look something like this:

<!DOCTYPE html>

<html>

<body>

<form id="myForm">

  Add your telephone: <input type="tel" name="phone" required /><br />

</form>

  <input type="submit"  form="myForm" />

</body>

</html>

Now that we’ve covered the basics of the <input> tag, let’s move on to some of the

tag’s more interesting features.

12 HTML5 HACKS

www.allitebooks.com

http://www.allitebooks.org


1 http://www.w3.org/TR/html5/common-input-element-attributes.html#the-autocomplete-
attribute

The autocomplete Attribute

The Web definitely has a fascination with autocomplete. Since we all hate to type, we

love it when the form element knows what we want to type and just does it for us. So

HTML5 comes along and introduces autocomplete as a simple attribute. You set

autocomplete to on or off (it’s on by default) and your work is done! The code would

look something like this:

<!DOCTYPE html>

<html>

<body>

<form id="myForm">

  Add your telephone: <input type="tel" name="phone" autocomplete="on" 

/><br />

</form>

  <input type="submit"  form="myForm" />

</body>

</html>

Now, what sucks about autocomplete is where it gets its data. To explain this I’ll cite

the boring old spec from the W3C:

The user agent may store the value entered by the user so that if the user

returns to the page, the UA can prefill the form.1

So, the autocomplete value comes from the user agent. But who is the user agent?

It’s not the page developer, or JavaScript, or HTML: it’s the browser. If I fill out a few

forms and always enter the string email@mail.com into the input field designated for

an email address, the browser remembers that and prefills it for me. So it’s great for

form elements such as email address and telephone number, but it’s not incredibly

useful for a developer. The key thing to take away from this discussion is that you can

turn off the autocomplete feature when you need to.

Fortunately, all is not lost. HTML5 didn’t forget about the other use case. It’s actually

there in the spec as well, it’s just poorly named and even more poorly supported. It’s

the list attribute; at the time of this writing, the only browsers that support this

attribute are Firefox 10 and Opera 10.

13CHAPTER 1: HACKING THE SEMANTIC WAY

http://www.w3.org/TR/html5/common-input-element-attributes.html#the-autocomplete-attribute
http://www.w3.org/TR/html5/common-input-element-attributes.html#the-autocomplete-attribute
mailto:email@mail.com


The list Attribute

Think of the list attribute as being a version of autocomplete for developers. The

list attribute is tied to an id of a datalist (yes, once again this is not a name or any

other type of identifier, it has to be an id). It will look something like this:

<!DOCTYPE html>

<html>

<body>

<form action="demo_form.asp" autocomplete="on">

  First name:<input type="text" name="fname" /><br />

  Last name: <input type="text" name="lname" /><br />

  E-mail: <input type="email" name="email"  /><br />

  Favorite Animal:  <input type="text" name="animal" list="animals" /><br />

  <datalist id="animals">

   <option value="Dog">

   <option value="Dolphin">

   <option value="Duck">

   <option value="Cat">

   <option value="Bird">

   <option value="mouse">

  </datalist>

  <input type="submit" />

</form>

</body>

</html>

The level of interaction is what you would expect from an autocomplete feature: press

the “D” key on your keyboard and it should offer you the options from the list of animals

that start with D (see Figure 1-3). Once again, don’t be surprised if your favorite HTML5

browser doesn’t support this; it will in time. Keep in mind that the datalist is not

visible to the user; it’s purely a reference.

14 HTML5 HACKS



Figure 1-3. 

Datalist displaying predefined options

One of the bad things about both list and autocomplete is that you can’t style them.

I’ll rant about that some more as we get into a few of the more functional input types,

such as date, but I would expect to be able to style the results with CSS, just as I do

any form element.

The pattern Attribute

How many times have you run a regex (or regular expression) against the value of

input to see if it meets certain criteria? If you’re like me, you’ve done this more times

than you can count. This was the inspiration for the pattern attribute in HTML5.

According to the W3C spec, the pattern should “control” the input value. As you would

expect, you utilize this value with the pattern attribute set to a JavaScript format

regular expression. Let’s take a look:

<!DOCTYPE html>

<html>

<body>

15CHAPTER 1: HACKING THE SEMANTIC WAY



HACK 05

<form action="demo_form.asp" autocomplete="on">

  First name:<input type="text" name="fname" /><br />

  Last name: <input type="text" name="lname" /><br />

  E-mail: <input type="email" name="email"  /><br />

  ID Number:

  <input placeholder="enter your 5 digit id number" type="text"

    name="idNumber" pattern="[0-9]{5}" />

  <br />

  <input type="submit" />

</form>

</body>

</html>

If you don’t meet the pattern criteria the form cannot be submitted, and instead you

get a user agent message that says something like “Please match the requested for-

mat.” One of the big problems with this implementation is its lack of adherence to

modern web patterns.

Back in the day (2005 or so) we used to wait until a form was submitted to validate

each input field, and if one or more of the fields didn’t pass we would return an error

message to the user. The W3C’s implementation is so HTML 4.01. In HTML5 I would

have expected the validation to be on a specified keystroke or on a blur of the field.

Luckily HTML5 has a backup plan for some of these validation shortcomings. The next

hack discusses form validation to see how to make it all work for you!

Easily Implement Form Validation Without
JavaScript

HTML5 includes powerful form validation that works seamlessly with the slew of new

input types.

Form validation is fun again. Well, maybe not fun, but more fun than it ever was before.

OK, let’s just admit it, form validation sucks. It’s not fun, but it is necessary. In the past

you would write a form and then run some very custom code to make sure all your

inputs contained what they were supposed to contain. This was done in one of two

ways: on the server or on the client. For server-side validation you would submit your

form and run server-side code to make sure all your requirements were met, and if

they weren’t you would reload the page with an error or two on it telling the user where

the problem was. Client-side validation worked in pretty much the same way, except

16 HTML5 HACKS



you would run some JavaScript before the form was submitted to make sure all your

conditions were met. For the record, the best kind of validation is when you do both.

You should start with validation on the client to give the user an immediate response,

and then revalidate on the server to make sure your response wasn’t being hacked.

HTML5 isn’t going to help you with server-side validation, but it sure will make it easier

on the client. HTML5 once again takes a tried-and-true web standard and reinvents it

as native browser functionality. Let’s dive in!

What Does It Mean to Validate?

In HTML5 every input has the ability to have validation engaged, and a form cannot

be submitted if it doesn’t validate. In order for the form to validate, every input needs

to have its validation criteria met. It’s pretty simple: every input has a method you can

call to see if it will meet a validation test. Let’s look at a form containing an input of

type number:

<!DOCTYPE html>

<html>

<body>

<form name="myForm">

  Quantity (between 1 and 5):

  <input type="number" name="quantity" min="1" max="5" value="11" />

  <input type="submit" />

</form>

</body>

</html>

Now let’s check it with JavaScript:

<script>

if(document.myForm.quantity.checkValidity() === false){

alert('fail');

}

</script>

When the value of quantity is greater than 5 the alert will be fired. Now let’s try

something a little different. Instead of checking the input itself, let’s just check the

form. Here is the new JavaScript:

<script>

//myForm is the name of the form element

17CHAPTER 1: HACKING THE SEMANTIC WAY



if(document.myForm.checkValidity() === false){

alert('fail');

}

</script>

Notice that the validity state rolled up to the form. If any one of the inputs within the

form doesn’t meet the criteria for validation, the form rule will return false as well.

This is a key feature when you have long forms. For instance, if I have a form with 25

input fields that need to be validated, I don’t want to have to go through the form with

JavaScript and check each input field—this would require 25 different DOM hits. In-

stead, I’d rather check the form and have it determine whether all the necessary input

criteria are met on each of the 25 inputs.

Validation Criteria

So, we know how we can check to see if a form is valid or not, but how do we set the

criteria we want to validate against? Well, there are really three ways to do this in

HTML5.

The required attribute

First, we can simply add the required attribute to an input, and the input will return

a true state for its validity value only if the element has a value and the value

matches the required input criteria. In the following example, the input has to be a

number between one and five:

<input type="number" name="quantity" min="1" max="5" />

The pattern attribute

The new pattern attribute is pretty slick, especially for people who like to write regular

expressions. In this case you set a regular expression to the pattern attribute, and

your input will validate against that pattern in order to have the validity value return

true:

<input type="text" name="quantity" pattern="[0-5]{1}" />

Notice that the type was changed to text in order for the pattern to make the input

invalid; we need to remove the number type, as that will supersede the validation cri-

teria. If the type and pattern conflict (by requiring results that exclude each other),

the validation criteria will never be met, and the form will never validate.

18 HTML5 HACKS



Measurable attributes

Some input types have comparative criteria such as email, which require a strict

input pattern. Other input types have attributes such as min and max that must be

satisfied before the input can be considered valid. Let’s look at our first input example

again:

<form name="myForm">

  Quantity (between 1 and 5): <input type="number" name="quantity" min="1" 

max="5" />

  <input type="submit" />

</form>

In this case the number that is input must meet the min and max criteria in order to

be considered valid. For example, the number 11 would not validate but the number 4

would validate. In a similar manner we have the email type:

<form name="myForm">

  Enter Your Email: <input type="email" name="myEmail" />

  <input type="submit" />

</form>

The email type looks for a value that meets traditional email criteria that would match

a regular expression such as this:

var emailTest = /^[a-zA-Z0-9._-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,4}$/;

If the value of the input doesn’t have a username, an at sign (@), and a domain, it’s

considered invalid.

Let’s Call This Validation Thing Off

Sometimes you may want to skip validation. A few HTML5 validations allow you to do

this. The first is the formnovalidate attribute. As you can guess, if you apply this

attribute to a button or an input whose type is submit, the validation does not stop

the form from submitting. This attribute can be placed as follows:

<form name="myForm">

  Quantity (between 1 and 5): <input type="number" name="quantity" min="1" 

max="5" />

  Enter Your Email: <input type="email" name="myEmail" />

  <input type="submit" />

<button type="submit" formnovalidate>save</button

</form>

19CHAPTER 1: HACKING THE SEMANTIC WAY



Note that the form is still invalid. If you call the checkValidity() method on this

form, it will still return false. In the case of the formnovalidate attribute, you simply

ignore whether the form is valid or not when you submit.

The second way to escape validation is with the novalidate attribute. In a similar

manner, the novalidate attribute is added to the form element itself, and every but-

ton and input whose type is submit will skip the validation stem and submit the form

directly:

<form name="myForm" novalidate>

  Quantity (between 1 and 5): <input type="number" name="quantity" min="1" 

max="5" />

  Enter Your Email: <input type="email" name="myEmail" />

  <input type="submit" />

<button type="submit" >save</button>

</form>

The Constraint Validation API

The HTML5 spec makes allowances for us to be more specific with our validation

errors. In the previous example form, the user must enter a number between one and

five to not receive an error. If we wanted to update the error message to be a little more

suitable, we would add a custom message with the setCustomValidity() method:

<form name="myForm">

  Quantity (between 1 and 5):

  <input type="number" name="quantity" min="1"

   max="5" oninput=  "updateMessage(this)"/>

  Enter Your Email: <input type="email" name="myEmail" formnovalidate />

  <input type="submit" />

</form>

<script>

myForm.quantity. setCustomValidity('looks like your numbers ... between one 

and five')

function updateMessage(input){

if(input.value ==""){}

input.setCustomValidity('');

20 HTML5 HACKS



}

</script>

Our form will now give us an option for a friendlier, more helpful user error. Notice that

we had another method in the <script> tag and set it to the oninput of the input.

When you use setCustomValidity() you automatically trigger the other portion of

your Constraint Validation API to return false when you call the checkValidity()
method. In order to use a custom method and still have the form be considered valid

when the criteria are met, you need to throw in some JavaScript to clear out the

setCustomValidity() method once the validation criteria are met (in this case,

once the form is not blank). I still think the W3C has some room to make this even

easier for web developers in upcoming versions of the spec. This is functionality you

should be able to access without JavaScript.

Developers aren’t the only ones using the Constraint Validation API. The user agent

uses the same API when it sets up the pseudoclasses for its CSS. With CSS3 we can

change visual cues based on the “state” of a validation field. We have access to two

pseudoclasses (more on this later) to use for visualizing cues: :required, for ele-

ments that are marked as required; and :invalid, for elements that are marked as

invalid. Unlike the form-level validation that occurs when the page submits, the pseu-

doclasses are based on the current state. This will give users strong visual cues. Let’s

look at an example with a contact form where the name is required, and the phone

number and email address are not required:

//our css

<!DOCTYPE html>

<html>

<body>

<style>

input {display: block;

border: 1px solid #ccc;

}

:invalid{

border-color: #DB729C;

  -webkit-box-shadow: 0 0 5px rgba(27, 0, 97, .5);

}

:required{

border-color: #1BE032;

  -webkit-box-shadow: 0 0 5px rgba(57, 237, 78, .5);

21CHAPTER 1: HACKING THE SEMANTIC WAY



}

</style>

//our form

<form name="myForm" >

 Enter Your Name: <input type="text" name="myName" required >

 Enter Your Phone Number:

 <input type="tel" name="myPhone" pattern="\d\d\d-\d\d\d-\d\d\d\d" />

 Enter Your Email: <input type="email" name="myEmail" />

 <input type="submit" />

</form>

Figure 1-4 shows our rendered view.

Figure 1-4. 

Form with validation for required field

The CSS in the preceding code snippet adds a red border around the invalid field. The

red border will remain until the proper content is entered.

22 HTML5 HACKS

www.allitebooks.com

http://www.allitebooks.org


We had to do this in two different ways due to browser support. The easy way was the

method we used for the email address. The input knows what a valid input address

looks like (i.e., the pattern of the address, not whether it works). So once a valid string

is set to the proper value, the field will no longer appear with a red border.

The method we used for the telephone number was a little more difficult. Most modern

browsers “partially” support the tel input type for HTML5. One thing that isn’t sup-

ported is whether what is entered is indeed a valid telephone number. I could easily

type my name into that field and it would validate. Here, we needed to go back to the

pattern attribute and use a regex to determine whether it was a phone number. This

particular regex isn’t very useful, as it only checks to see if there is a digit string that

matches this pattern: xxx-xxx-xxxx. It doesn’t satisfy the use of brackets around an

area code, nor does it support any numbers in a format other than that used in the

United States. We’d need a more robust regular expression for that.

It would appear that our form is complete and ready to throw onto our website, but

there are a few final details to point out. We assigned a required state to the name,

as we desired, but note that a partially filled input will stop the form from submitting

as well (the form field is invalid but not required, but this form must validate before it

can be submitted). Adding novalidate to the form allows not only the invalid inputs

to submit, but also the required ones as well. There is no clear solution for avoiding

this, so let’s move forward and address the issue with the user if it becomes a problem.

Before we try this form again, let’s go back and update the Enter Your Name field to

display a more user-friendly error message:

<style>

input {display: block;

border: 1px solid #ccc;

}

:invalid{

border-color: #DB729C;

  -webkit-box-shadow: 0 0 5px rgba(27, 0, 97, .5);

}

:required{

border-color: #1BE032;

  -webkit-box-shadow: 0 0 5px rgba(57, 237, 78, .5);

}

</style>

//our form

<form name="myForm" >

23CHAPTER 1: HACKING THE SEMANTIC WAY



HACK 06

 Enter Your Name:

 <input type="text" name="myName" placeholder="Enter Your Name"

  oninput="updateMessage(this)" required>

 Enter Your Phone Number:

 <input type="tel" name="myPhone" pattern="\d\d\d-\d\d\d-\d\d\d\d" />

 Enter Your Email: <input type="email" name="myEmail" />

 <input type="submit" />

</form>

<script>

document.myForm.myName.setCustomValidity("To join our list..., please enter 

it here")

function updateMessage(input){

if(input.value ==""){}

input.setCustomValidity('');

}

</script>

There we have it. In the past, such validation would have required a good amount of

custom JavaScript. Now it can be done with the simplicity of HTML5!

Improve the Usability of Your Forms with
New Controls

Your forms just got easier to use. HTML5 browsers include new controls such as the

date input type, the <range> tag, and others.

We’ve been talking about form elements for the past few hacks now, and they all have

a common thread when it comes to reasoning. Many of these simple, easy-to-

implement specifications actually replace standards that web developers have been

coding to for years. This has made life easier for developers, made pages perform

more quickly (browser code instead of JavaScript), and brought uniformity across

web applications.

Let’s focus on uniformity for a bit. For example, let’s look at the date input type. In the

past, web developers have developed a date picker standard similar to the one shown

in Figure 1-5, which is from the popular YUI library.

24 HTML5 HACKS



Figure 1-5. 

The YUI date picker, which provides a clean interface for date selection

This is a huge improvement over having the user enter the date into an input field and

hoping that it meets the required format. With the YUI date picker, we can stylize the

component with CSS and make it look like it blends right in with our app. This has

served our purposes for years. Whether we are using the Internet Explorer browser

or the Firefox browser, our date picker will look the same and the user will always know

what to expect.

Along comes mobile. Mobile browsers, for the most part, surf the same Web as our

desktops. If you come across this same date picker on an iPhone, this previously great

experience becomes difficult. Since the component has no awareness of the native

content (it has a small screen in this scenario), it can’t adapt to its context. Many keen

JavaScript Ninjas have already started to think about how they can use the User Agent

Declaration (part of the request) to customize this date picker for the context of each

known user agent. This is a great idea, and many of our polyfill libraries, such as YUI,

are a step ahead and provide concessions for small screens. Unfortunately, the only

way to do this without HTML5 is to add more code. And more JavaScript, more

25CHAPTER 1: HACKING THE SEMANTIC WAY



markup, and more CSS equals page bloat and additional memory usage. Let’s use

that extra code and memory for something spectacular and leave the basic input

functionality to the browser. Each of the following form features takes something that

used to be hard to do in JavaScript and makes it easy, light, and context-aware.

The date Input Type

The date input type is one of my favorites. As in the previous date picker example, a

lot of work has gone into creating a successful date selection tool. I can’t tell you how

many times I’ve been frustrated with parts of the Web that use date selection tools

that are slow and buggy (yes, I mean you, airline and car rental sites).

The HTML5 date input type is fairly simple to implement. Out of the box it looks

something like this:

<form name="dateSelection">

Enter Departing Date: <input type="date" name="departingDate" />

 </form>

The preceding code results in the simple pull-down box shown in Figure 1-6.

Figure 1-6. 

The date input field showing a date selector

26 HTML5 HACKS

 
 

 
 



In terms of context, here’s the great thing about the preceding example. As it stands,

the date selector will be pretty tough to use on my iPhone; not only is it hard to see,

but also my fingers are pretty fat and those tap zones are pretty small. So in iOS 5 and

later, Apple has kindly implemented the date input field shown in Figure 1-7.

Figure 1-7. 

The date input field in the iOS 5 Safari browser on an iPhone

Nice job, Apple! Now let’s look at some of the other attributes we can add to give this

application a functionality similar to those great little polyfill date pickers. Here’s the

code:

<form name="dateSelection">

  Enter Departing Date: <input type="date"  min="2012-03-12" step="1"

                         max="2012-05-12" name="departingDate" />

  <input type="submit" />

</form>

Let’s look at some of these in more detail:

27CHAPTER 1: HACKING THE SEMANTIC WAY



step

Increment at which a date can be selected. The spec doesn’t clarify all the incre-

ment types that a user agent must adhere to, but day, week, month, and year are

obvious implementations.

min

A date value that represents the minimum date the input will consider valid. It’s

not clear whether the controller will allow you to choose dates below the min date,

or whether it limits selection to the valid date range. Implementations differ

among browser makers at this point.

max

A date value that represents the maximum date the input will consider valid.

As is the case with all changes that are powerful, a new set of DOM methods has been

added as well:

stepUp()/stepDown()

Can be called to increment the date that is input to either the next date or the

preceding date in the series. stepUp() calls the next day; stepDown() calls the

preceding day.

valueAsDate()

Returns a JavaScript date object, not just a date string.

This might not sound exciting, but you can replace this polyfill:

<form name="myForm">

  Birthday: <input type="text" name="bday" value="03/12/2012" />

  <input type="submit" />

</form>

<script>

var myInput = document.myForm.bday.value;

var myDate = new Date(myInput);

</script>

with this:

<form name="myForm">

  Birthday: <input type="date" name="bday" value="2012-03-12" />

  <input type="submit" />

</form>

<script>

var myInput = document.myForm.bday.valueAsDate();

</script>

28 HTML5 HACKS



It’s also interesting to note that there are a few variations on the input type of date,

and each provides noteworthy interface challenges, especially on mobile and touch

devices. Here are some similar types to keep your eye on:

• datetime

• month

• week

• time

• datetime-local

The range Input Type

Once again, let’s look at one of our great polyfill libraries to get an idea of what the

problem is. Figure 1-8 shows a screen capture of the YUI slider utility.

Figure 1-8. 

A slider component for YUI (Yahoo! User Interface) library version 3.5

29CHAPTER 1: HACKING THE SEMANTIC WAY



When you’re selecting ranges, nothing is worse than typing in values, especially when

you’re “exploring” what will happen when those ranges change. The slider has become

a standard tool on both web and desktop devices. You generally have a bar represent-

ing something like numeric values or colors, and a handle that you drag from one end

of the bar to the other. Again, let’s consider how difficult it may be to make selections

on the YUI slider if you’re on a mobile device. The handle is small, and what feels like

a short amount of movement on a mobile device could be a sizable amount to the

slider.

The HTML5 type of range allows browser makers to provide a range selection tool

with an experience that best fits the context of the device. The pattern for desktop

browsers appears to be a slider. Let’s jump into the implementation:

<form name="myForm">

Shoe size: <input type="range" name="shoeSize" min="0" max="15" step=".5" 

value="3" />

<input type="submit" />

</form>

All that, with no JavaScript—this polyfill would be hundreds of kilobytes’ worth of code.

Now let’s look at some of the attributes we added to the input:

min/max

Once again we see the ability to set a min and a max for the range. These are a bit

more profound in the range input type because they define the first step (the

bottom of the slider) and the top (the top of the slider). If no min and max are set,

the user agent (again, the browser) will assume the range is 0 to 100.

step

In the preceding example we are selecting shoe sizes that come in half or whole

sizes. Therefore, we set the step to .5 so that whole or half sizes can be chosen.

This can come in handy in very large ranges as well. Say you are applying for a

loan and you’re using a range tool to choose your loan amount. For an improved

user experience, you may want to round up to the nearest $10,000. Setting the

step to 10,000 will allow you to do just that.

value

We’ve seen value hundreds of times when it comes to input: it allows us to set

the initial value of that input. It’s of particular interest on the range input type,

because there is no “null” value. Since it is a slider, there is no point at which the

value would be undefined, so the user agent will choose a reasonable default value

for you—something in the middle of the range. In our example, we chose our

30 HTML5 HACKS



value to be 3 since the most popular shoe size in our little store is size 3. (Yes,

we do cater to elves, leprechauns, and small children.) The value allows you to

choose the “default” value that makes the most sense, not just what’s in the

middle.

The HTML5 version of the sliders also has the added benefit of being able to match

the other browser controls, as shown in Figure 1-9.

Figure 1-9. 

HTML5 range input type from Internet Explorer 10 that matches other form elements on the page

It’s also interesting to note that the range tool can be tied to a datalist (we discussed

this briefly in Hack #04). The datalist could include non-numeric values or unequal

numeric values that can be selected within the range. I haven’t seen any browser

makers implement this yet, but it will be interesting to see some possibilities.

31CHAPTER 1: HACKING THE SEMANTIC WAY



The color Input Type

You may not have thought of a color picker as being essential to a user’s web experi-

ence, but as the Web becomes more of an application environment, complex activities

such as picking colors need to be responsive and adaptive. The color input type

allows you to select a color value from within the input.

Support for this input type is still nascent, and at the time of this writing no user agent

supports it. As with all of the other unsupported input types, browsers that do not (or

do not yet) support the color input type will simply see an input tag as it would appear

for an input with the type equal to text.

The <meter> and <progress> Tags

Moving slightly out of the input space but staying within the HTML5 form, we see two

new form components that will quickly become basic building blocks for web appli-

cations. The first of the two is the <meter> tag. For a clear definition, let’s go right to

the spec:

The meter element represents a scalar measurement within a known range,

or a fractional value; for example disk usage, the relevance of a query result,

or the fraction of a voting population to have selected a particular candidate.

Think of a meter as a bar from a bar chart. It’s a graphical representation of one num-

ber as part of a greater number. Let’s look at a code example:

<form name="myForm">

30%: <meter value="3" min="0" max="10"></meter><br />

30%: <meter value="0.3" low="0.4">30%</meter>

</form>

The preceding code would result in something like Figure 1-10.

32 HTML5 HACKS

www.allitebooks.com

http://www.allitebooks.org


Figure 1-10. 

The <meter> tag as it appears in Chrome for Windows

This particular form element has some interesting UI controls. You can see from the

preceding example that the meter needs to have a value set, as well as a range, to be

effective. The min and max attributes will set the range (the meter is completely empty

and the meter is completely full, respectively), and the value will specify the current

fill level. If either of the attributes is missing, the form will assume the value—for ex-

ample, an undefined value will probably be considered zero by most user agents.

Additionally, three other attributes can be added to the meter to control the interface.

The optimum value would display a graphical representation of what the ideal value

would be. The low and high attributes are for setting thresholds when your meter is

below or above the optimal range. The interface should respond accordingly; current

browser implementations turn the meter color to yellow for “low” and red for “high.”

The <progress> tag is also new for HTML5 forms. Think of the <progress> tag as

the bar that pops up when you’re downloading a file to tell you how much longer you

have to wait. It might look something like Figure 1-11.

33CHAPTER 1: HACKING THE SEMANTIC WAY



Figure 1-11. 

The <progress> tag as it appears in Internet Explorer 10

The code implementation would be as follows:

<form name="myForm">

Downloading progress:

<progress value="35" max="100" >

</progress>

</form>

The <progress> tag has only a few configuration attributes, and both are shown in

the preceding code. The first is the max attribute that tells you what your progress

“goal” is. The max value will be the top of your meter; the bottom will always be zero.

Your value will then specify the progress, and thus, how much of the progress bar is

filled.

Once again, these two new tags are examples of web standards that traditionally were

implemented with JavaScript and CSS but can now be accomplished directly through

HTML5. Each tag should look appropriate for the context of the application.

34 HTML5 HACKS



Form Elements and Making Them Look Good

One thing all form elements have in common is that they look bad. Since I first started

working with forms nearly 15 years ago, I’ve been trying to find ways to make them

look better. A perfect example of this is the drop-down menu. Drop-downs look pretty

simple. However, it’s difficult to do anything special with them, such as adding help

text to the options or controlling the width of the menu while it has options with a lot

of text in them.

HTML5 and CSS3 bring us some good news and some bad news. The good news is

that we can use CSS to control a lot of the treatments we’ve looked at in this hack.

The bad news is that we can’t control all of them. Let’s look at a few examples.

<form name="myForm">

<input type="number" value="5" />

<input type="submit" />

</form>

//css

<style>

input[type=number]::-webkit-inner-spin-button,

input[type=number]::-webkit-outer-spin-button {

    -webkit-appearance: none;

    margin: 0;

}

</style>

In the preceding example, we have a number input type with some funky spinner

buttons on it to increment and decrement the number. We don’t want the funky

buttons, so in CSS we specify (with browser prefixes) the subcomponents we

want to alter. In this case they are -webkit-inner-spin-button and -webkit-
outer-spin-button. We are simply hiding them in this example.

Browser makers are adding flexibility for many form controls. Most browser mak-

ers allow you to alter the look of the validation error pop-up windows as well. Some

components, such as the date and color input types, may not have CSS sub-

component controls.

Keep in mind that this control is both good and bad. It’s good when you just don’t like

the experience presented by the user agent and you need to update the look and feel

on your own. In contrast, it’s bad to makes changes to these elements because they

35CHAPTER 1: HACKING THE SEMANTIC WAY



then lack the ability to adapt to the context in which they are being used. Remember

the drop-down menu I complained about earlier? Well, iOS has found a way to turn it

into a brilliant user input on the iPad and iPhone. On the iPhone it becomes a spinner

input at the bottom of the screen (see Figure 1-12). On the iPad it becomes a drop-

down window in the context of the Select Box. In both cases, the input is well suited

to its context. If you had CSS overrides on these components, who knows what the

experience would be like for the end user on an iOS device.

Figure 1-12. 

The Select Box displayed in iOS 5 on the iPhone

In Conclusion

Now that we’ve explored the inner workings of forms, you should be ready to dive into

some HTML5 applications. Forms are still the basic building blocks of pages, and to

understand forms is to understand HTML5. So let’s get going and dig in!

36 HTML5 HACKS



HACK 07 Know What’s Going On in Your App with
New DOM Events

HTML5 provides a slew of new events for you to latch on to. The world has moved

beyond mouse clicks and keyboards. Now the Web has, too.

DOM events haven’t changed much in the past 15 years. I think the last new DOM event

we got was the mouse scroll (that’s what you call that little spinner in the center of

your mouse). Even touch events are not officially supported DOM events, although

they are much more prevalent (and supported) than DOMMouseScroll.

With HTML5 we have tons of new input types to work with. As JavaScript is an event-

driven language, it helps to work with a DOM that also natively fires events when ac-

tions take place. Some of these actions are directly related to a user interaction (such

as the traditional DOM events), whereas others are related to events triggered by the

user agent (such as going offline and coming back online). Let’s start with a look at

some form events.

The oninput, onchange, and oninvalid Events

In the past we have relied on keydown and keyup events quite often to determine

what’s going on within form elements. The bad thing about key events is that they

don’t specifically apply to the input element itself, as technically it’s the document,

not the input, which is receiving the keystrokes. This led us to trick the DOM, by tem-

porarily adding key events after an input receives focus and removing the key listeners

once the blur event of an input is fired. This has been terribly inefficient.

With the oninput event, a listener can be placed directly on an input tag (or bubbled

up from one) and be associated with the actions of that input only. Let’s look at a

traditional listener with an oninput event instead of an onkeypress event:

<input id="myInput" type="text" placeholder="enter text">

<script>

document.getElementById('myInput').addEventListener('input',function(e){

 console.log("I just changed an input on:", e.target);

}, false);

</script>

Once you begin typing in the input field, the log will be fired. As you can see, the input

event is attached to the myInput field, so input into any other input field will not trigger

this event.

37CHAPTER 1: HACKING THE SEMANTIC WAY



Similarly, we have two additional events that can be attached to the input field: on
change and oninvalid. The onchange event fires once the value attribute is upda-

ted. You may not immediately see the need for an onchange event, since we do have

oninput and numerous other events that can be triggered on an input change. But

let’s think about some of the new HTML5 elements, such as the input with type set

to range. The range input or slider has no input mechanism; it simply changes. When

I drag the handle from one position to another it doesn’t fire an oninput event, only

an onchange event. Similar events are required for other input mechanisms, such as

date pickers, number wheels, and color pickers. These new input types make the

onchange event not just handy, but essential.

The oninvalid event is a similar new event that is fired when a form element is

deemed invalid. Unlike many of our other validity checks, current implementations do

not work on the form element itself, but rather on the individual inputs. Remember a

few hacks back when I was complaining about how the form elements weren’t vali-

dated in real time (such as when you enter data into the input rather than at form

submit) and that only the CSS state change was in real time? Let’s look at an example

of how we can put some of these events together to make the solution to my pet peeve

a reality!

Real-Time Form Validation with the oninput/oninvalid Events

In order to validate an input field while the user is entering data into it, we need an

event which fires as the user changes the value of the input. In the past we would have

to follow troublesome keystrokes, but with the oninput event we can easily attach a

listener to the input in question, and react to the change.

Once we catch that event we need to do some ad hoc validation checking, so for this

we will go back to the checkValidity() method (see Hack #06) to get the input to

self-validate. This can easily be fired from the oninput event. At this point, if the input

is deemed invalid the oninvalid event will be fired alongside it.

The last thing we need to do is to attach an event listener to the oninvalid event, and

have it fire a function that will indicate to the user that the value she entered is invalid.

We’ll follow this up with some CSS to reinforce the state of the input.

Let’s take a look at the code:

<!DOCTYPE html>

<html>

<body>

<style>

input[type=number]{border: 2px solid green}

input:invalid {border: 2px solid red}

38 HTML5 HACKS



</style>

<form name="myForm">

  Pick a number, any number between 1 and 5:

  <input type="number" name="quantity" min="1" max="5" /> <br />

  <input type="submit" name="mySubmit" />

</form>

<script>

document.myForm.quantity.addEventListener('input', function(e){

                                           this.checkValidity()

                                                   }, false);

document.myForm.quantity.addEventListener('invalid', function(e){

alert('Your Number needs to be between 1 and five, you chose '+this.value

+'.')

}, false);

</script>

</body>

</html>

Endless fun, right? We now have the best of both worlds: built-in validation with real-

time responsiveness.

Other New Events

While we are on the subject of events, HTML5 is proposing the adoption of a slew of

new events similar to the ones mentioned in the preceding section. Most of these

events focus on a user action, and they fire before, after, and during the event. Here’s

a list of events that had not been adopted at the time of this writing, but are likely

forthcoming:

onabort oncanplay oncanplay

through

onchange onclick

oncontextmenu oncuechange ondblclick ondrag ondragend

ondragenter ondragleave ondragover ondragstart ondrop

onduration

change

onemptied onended oninput oninvalid

onkeydown onkeypress onkeyup onloadeddata onloadedmeta

data

onloadstart onmousedown onmousemove onmouseout onmouseover

39CHAPTER 1: HACKING THE SEMANTIC WAY



HACK 08

onmouseup onmousewheel onpause onplay onplaying

onprogress onratechange onreadystate

change

onreset onseeked

onseeking onselect onshow onstalled onsubmit

onsuspend ontimeupdate onvolumechange onwaiting  

Add Rich Context to Your Markup with
Custom Data

HTML5 formalizes the ability to store data directly in the page element. The data is

simple to add, and just as simple to access.

Custom data attributes give us the ability to add more richness and depth to our

markup than we’ve ever been able to before. Custom data attributes, often called the

data-* attributes, are an easy way to add contextual data to HTML5 markup. Just

come up with an attribute name, prefix it with “data-”, and add it to any HTML markup

tag:

<ul id="carInventory" >

    <li class="auto" data-make="toyota" data-bodytype="sedan" data-

year="2005">

    Light blue Toyota Prism

    </li>

</ul>

In the preceding example, we have information we want to present to the user that we

include as text inside the tag. We also have contextual information that our app will

want to use to provide additional functionality to the user. Before HTML5, this addi-

tional data would have been stored in one of two ways. Either we would have hacked

up another attribute (such as the class attribute or the id) with a string that encoded

all this information, or we would have kept a separate data source in JavaScript that

had a reference to this tag linked to it. Neither of these options is very fun, and both

require quite a few lines of JavaScript to become useful.

Being able to place this data in the element itself not only is convenient for access

purposes, but also provides rich context. According to the HTML5 spec from the W3C,

a custom data attribute is defined as the following:

40 HTML5 HACKS



2 http://dev.w3.org/html5/spec/single-page.html#attr-data

A custom data attribute is an attribute in no namespace whose name starts

with the string “data-”, has at least one character after the hyphen, is XML-

compatible, and contains no characters in the range U+0041 to U+005A

(LATIN CAPITAL LETTER A to LATIN CAPITAL LETTER Z).2

In summary, it’s an attribute that starts with “data-” and is in all lowercase letters.

Now, let’s be clear about the purpose of this data. We’ll start with how we don’t want

to use it (let’s get all that negative stuff out of the way!).

First, the data attribute shouldn’t be used to replace an existing HTML attribute such

as class name id. For example, if you want to add a unique identifier to an element of

which there will only be one on the page, just use the id, because that is exactly what it

is designed for. Having a data-id on all your elements will probably get you a healthy

number of complaints from your friends and coworkers. Second, don’t use the data

element to make your code more “machine-readable.” This is what microformatting

is for, which we will discuss in depth in a few hacks. Your custom data attribute is

intended to provide information that is relevant for your application, not for an external

page reader (whether it is human or machine).

Now, on to the fun part! How should you use custom data attributes? Simply put, you

should use them for “anything you need,” with emphasis on the words anything and

you. Anytime you need access to data about a DOM element or to data related to the

information that element represents, store it in the custom data attribute.

In the following example we have a table that was built out dynamically in JavaScript

from a database. The database has a local key that identifies each row of data, but

that key only means something to our application; it doesn’t have any value to the

user. Before custom data attributes, we had to do something like this:

<table width="100%" border="1">

  <tr>

    <th class="key">key row</th>

    <th>Title</th>

    <th>Price</th>

  </tr>

  <tr>

    <td  class="key">323</td>

    <td>Google Hacks</td>

    <td>FREE</td>

  </tr>

  <tr>

    <td  class="key">324</td>

    <td>Ajax Hacks</td>

41CHAPTER 1: HACKING THE SEMANTIC WAY

http://dev.w3.org/html5/spec/single-page.html#attr-data


    <td>FREE</td>

  </tr>

  <tr>

    <td  class="key">325</td>

    <td>HTML5 Hacks</td>

    <td>FREE</td>

  </tr>

</table>

Then we had to use CSS to hide the first row (with a class name of key):

.key{

display: none

}

Another really bad solution involved using one of the existing attributes to store this

data. In the following example the data is stored in the id attribute:

<table width="100%" border="1">

  <tr>

    <th>Title</th>

    <th>Price</th>

  </tr>

  <tr id="323">

    <td>Google Hacks</td>

    <td>FREE</td>

  </tr>

  <tr id="324">

    <td>Ajax Hacks</td>

    <td>FREE</td>

  </tr>

  <tr id="325">

    <td>HTML5 Hacks</td>

    <td>FREE</td>

  </tr>

</table>

There are so many problems with this solution that it’s hard to know where to start.

First, it’s a horrible idea to store data in the id attribute. The id attribute is meant to

be a unique identifier for HTML elements. Since it’s associated with our database key,

the key will change when the data changes, making it impossible to use that id to

reference the element, as it’s subject to change. Storing the key as a class name is

equally bad, for similar reasons.

Now let’s turn it around and put that essential data into a custom data attribute:

42 HTML5 HACKS

www.allitebooks.com

http://www.allitebooks.org


<table width="100%" border="1">

  <tr>

    <th>Title</th>

    <th>Price</th>

  </tr>

  <tr data-key="323">

    <td>Google Hacks</td>

    <td>FREE</td>

  </tr>

  <tr data-key="324">

    <td>Ajax Hacks</td>

    <td>FREE</td>

  </tr>

  <tr data-key="325">

    <td>HTML5 Hacks</td>

    <td>FREE</td>

  </tr>

</table>

Here we have simple markup that contains a reference to our database key, without

unnecessary markup or prostitution of the id or class attribute. We didn’t even have

to write any CSS to make this work.

Accessing the Data

Another important piece of the puzzle concerns accessing the data. The W3C

HTML5 spec has a clear method for collecting data in JavaScript. A dataset object

is available on the HTML5 element that allows you to access your custom values by

name:

<div id="myNode" data-myvalue="true">my node</div>

//javascript access to value

var nodeValue = document.getElementById('myNode').dataset.myvalue 

//nodeValue = 'true'

Notice that we don’t need the “data-” in front of our value; we just call our value name

directly. This access method is great and meets the spec, but like many of our HTML5

features, it only works in HTML5 browsers. Interestingly enough, putting a custom

data attribute of sort onto an element has worked in browsers for some time (it may

not have validated, but it worked), all the way back to IE 6. However, note that the

JavaScript access method is introduced with the HTML5 spec, but don’t fret—we have

a hack for that:

43CHAPTER 1: HACKING THE SEMANTIC WAY



HACK 09

<div id="myNode" data-myvalue="true">my node</div>

//javascript access to value where nodeValue = 'true'

var nodeValue = document.getElementById('myNode').getAttribute('data-

myvalue')

Before, HTML5 browsers simply recognized the value as an attribute of the element,

so a simple getAttribute method of the element would retrieve the data. Note that

in this method, the “data-” part of the value is required to retrieve the data.

There is one more way to access this data, but it comes with a warning. Most current

browsers support a CSS3 pseudoproperty (see Chapter 3 for more about pseudo-

classes) on which you can base a style declaration. It looks something like this:

<div id='myNode' data-myvalue='true'>my node</div>

/*css declaration */

#myNode[data-myvalue]{

color: red;

}

or this:

#myNode[data-myvalue='true']{

color: red;

}

Now your CSS can style the element based on the presence of the custom data at-

tribute, or by the value of the custom data. Here’s your warning: don’t use custom data

in place of CSS classes. Class names are still the definitive way to declare reusable

style rules. Remember, custom data is not intended to represent something to the

user, but rather to provide context data for your application, which means that, in

general, you don’t want to use the previously demonstrated pseudoclasses.

Track User Events with Custom Data

Tracking user events can be difficult on highly dynamic pages with JavaScript alone.

It usually requires that you add and remove multiple listeners. With HTML5 custom

data, you can have that same rich interaction on dynamic pages with a single listener.

One of the most difficult things about generating HTML markup with JavaScript is

managing behaviors. Anyone who has worked with DOM events on a dynamic app

knows that managing behaviors can be quite a hassle. This hack shows you a way to

use custom data along with JavaScript event delegation to make an otherwise difficult

task easy and lightweight.

44 HTML5 HACKS



We’re not going to talk too much about event delegation; there are plenty of books

and other resources out there that explain the details behind all of that. But it is im-

portant to know what event delegation is and why we do it.

Event delegation is the act of passing (or bubbling, to use a more accurate term) the

captured event from an inner element to an outer element. Think about what happens

when you click a button that is inside a list element (li). Since the button is inside the

li, technically you clicked on both elements, so the browser by default passes or

“bubbles” that click up from the button to the li. First the button executes its on
click event, and then the li executes its own onclick event. Event delegation is

when you allow your event (in this case, the click event) to bubble up to a parent

element (in this case, the li), which then fires an event based on the fact that you

clicked on the button.

Generally, event delegation allows you to use fewer event listeners on a page, as any

one listener can handle an endless number of functions based on the different ele-

ments being clicked. Using event delegation generally uses less memory in your page,

and makes maintenance of dynamic pages much simpler.

In this hack we will add a tool tip to a list of elements using custom data and only one

event listener.

Let’s start with our markup:

  <div class="container">

    <h1>Choose Your weapon</h1>

    <p>

     Click on one of the selections below to find out more info

     about your character:

   </p>

    <ul id="myList">

      <li data-description="Most powerful goblin in entire kingdom" >Ludo

</li>

      <li data-description="Ruler over all goblins big and small" >

       Jareth the Goblin King

      </li>

      <li data-description="Only person who can put a stop to the Goblin 

King" >

       Sarah

      </li>

      <li data-description="Unsung hero of the goblin kingdom" >

       Hoggle

45CHAPTER 1: HACKING THE SEMANTIC WAY



      </li>

    </ul>

   <p id="displayTarg" class="well"></p>

  </div> <!-- /container -->

Figure 1-13 shows the results.

Figure 1-13. 

Our simple content

Custom data attributes allow us to “inline” data in our elements by setting a string to

the data- attribute of the element. (For a more in-depth look at custom data, see

Hack #08 .)

We are using an HTML5 page “primer” (the base page that we edit to get a quick start

on development) called twitter bootstrap. It provides us with the clean look and feel

for our markup; some of our additional class names come from that framework. Now

let’s add our listener to the unordered list (ul) so that we can take action on any of

the items inside it:

    var mainElement = document.getElementById('myList');

    var descriptionTarget = document.getElementById('displayTarg');

46 HTML5 HACKS



HACK 10

    mainElement.addEventListener('click', function(e){

        var description = e.target.getAttribute('data-description');

//remember we use getAttribute instead of

//dataset.description due to its backwards compatibility

        descriptionTarget.innerHTML = description;

        });

JavaScript event delegation is so much more powerful when you have access to ad-

ditional data within the DOM element itself. Now imagine that this data was pulled

from a database or JSON (JavaScript Object Notation) object and updated in the

DOM. The list and markup can be updated, but the JavaScript does not need to

change. The same listener can handle this list of four characters or a list of 400 char-

acters, no matter how many times the list changes.

Can It Get Any Easier?

As markup gets more complex and we start to see elements nested inside other ele-

ments, finding the right target element to pull our description from can get pretty

complicated. We are lucky to have many fine frameworks on the market that make

event delegation easy to manage. Instead of managing the event target (e.target in

the previous code) to get ahold of the right element, these frameworks allow us to

write a few lines of code to make sure we’re working with the right elements. Let’s look

at a few examples just to see how easy it is:

• YUI (Yahoo! User Interface) Library version 3.0 and later

Y.one('#myList').delegate('click', function(e){...}, 'li');

• jQuery Library version 1.7 and later

$("myList").on("click", "li", function(e) {...});

Embrace JavaScript event delegation, and make your markup more powerful with

custom data attributes. You’ll find yourself writing less code, taking up less memory,

and living an overall happier life!

Make Your Page Consumable by Robots
and Humans Alike with Microdata

HTML5 microdata provides the mechanism for easily allowing machines to consume

the data on your pages, while not affecting the experience for the user.

47CHAPTER 1: HACKING THE SEMANTIC WAY



If you’re like me, you believe that in the future, machines will rule over us humans with

an iron fist (provided, of course, that the Zombie Apocalypse doesn’t get us first).

While there isn’t anything we can do to help the zombie masses understand the In-

ternet, HTML5 does offer a feature that prepares us for that machine dictatorship. It’s

called microdata, and it’s supposed to be for machines only—no humans allowed.

You can tell by now that HTML5 adds a lot of depth to your data, but up to this point

the focus has been on your users. Microdata takes you down a slightly different path

when you think about consumers who aren’t your users. Microdata is additional con-

text you add to your markup to make it more consumable. When you build your page,

you can add these additional attributes to give further context to your markup.

Microdata can be added to any page element to identify that element as an “item” or

a high-level chunk of data. The content nested inside that item can then be labeled as

properties. These properties essentially become name–value pairs when the item
prop becomes the value name and the human-readable content becomes the value.

The relevant code would look something like this:

<div itemscope>

    <span itemprop="name">Fred</span>

</div>

Sometimes item property data isn’t in the format that a “machine” would like, and

additional attributes need to be added to clarify what the human-readable data is

saying. In that scenario your data would look like this:

<div itemscope>

    Hello, my name is <span itemprop="name">Fred</span>.

    I was born on

   <time itemprop="birthday" datetime="1975-09-29">Sept. 29, 1975</time>.

</div>

Now imagine how consumable the Web would be for those machines of the future

once microdata is utilized on every page!

In this hack we’ll use microdata to make sure our contact list is machine-readable.

Each contact entry will be identified as an item, and its contents will be labeled as a

property. Our first contact will look like this:

<li itemscope>

    <ul>

        <li>Name: <span itemprop="name">Fred</span></li>

        <li>Phone: <span itemprop="telephone">210-555-5555</span></li>

        <li>Email: <span itemprop="email">thebuffalo@rockandstone.com</span>

        </li>

    </ul>

</li>

48 HTML5 HACKS



As you can see, we have constructed one data item on our page, and when the markup

is machine-read it will see the item as something like this:

    Item: {    name: 'Fred',

        telephone: '210-555-5555',

        email: 'thebuffalo@rockandstone.com'

        }

Now let’s build ourselves a whole list:

<ul>

<li itemscope>

    <ul>

        <li>Name: <span itemprop="name">Fred</span></li>

        <li>Phone: <span itemprop="telephone">210-555-5555</span></li>

        <li>Email: <span itemprop="email">thebuffalo@rockandstone.com</span>

        </li>

    </ul>

</li>

<li itemscope>

    <ul>

        <li>Name: <span itemprop="name">Wilma</span></li>

        <li>Phone: <span itemprop="telephone">210-555-7777</span></li>

        <li>Email: <span itemprop="email">thewife@rockandstone.com</span>

        </li>

    </ul>

</li>

<li itemscope>

    <ul>

        <li>Name: <span itemprop="name">Betty</span></li>

        <li>Phone: <span itemprop="telephone">210-555-8888</span></li>

        <li>Email: <span itemprop="email">theneighbour@rockandstone.com

        </span></li>

    </ul>

</li>

<li itemscope>

    <ul>

        <li>Name: <span itemprop="name">Barny</span></li>

        <li>Phone: <span itemprop="telephone">210-555-0000</span></li>

        <li>Email: <span itemprop="email">thebestfriend@rockandstone.com

        </span></li>

    </ul>

</li>

</ul>

49CHAPTER 1: HACKING THE SEMANTIC WAY

 
 

 
 



To our human friends, the page looks something like Figure 1-14.

Figure 1-14. 

Adding microdata to the page, which does not change the view for users

To our machine friends, the code looks something like this:

    Item: {    name: 'Fred',

        telephone: '210-555-5555',

        email: 'thebuffalo@rockandstone.com'

        },

    Item: {    name: 'Wilma',

        telephone: '210-555-7777',

        email: 'thewife@rockandstone.com'

        },

    Item: {    name: 'Betty',

        telephone: '210-555-8888',

        email: 'theneighbor@rockandstone.com'

        },

50 HTML5 HACKS



    Item: {    name: 'Barny,

        telephone: '210-555-0000',

        email: 'thebestfriend@rockandstone.com'

        }

It’s that easy to add microdata to your page without sacrificing the interface for your

human friends.

Details, Details!

Microdata is pretty darn easy to implement, and the W3C spec thinks it should be just

as easy to read, which is why the W3C added a JavaScript API to be able to access the

data. Remember, each of your identified elements was marked with an attribute called

itemscope, which means the API considers them items. To get all these items, you

simply call the following:

document.getItems();

Now your items can also be segmented by type, so you can identify some of your items

as people, and others as cats. Microdata allows you to define your items by adding

the itemtype attribute, which will point to a URL, or have an inline definition. In this

case, if we defined our cat type by referring to the URL http://example.com/feline,

our cat markup would look something like this:

<li itemscope itemtype="http://example.com/feline">

    <ul>

        <li>Name: <span itemprop="name">Dino</span></li>

        <li>Phone: <span itemprop="telephone">210-555-4444</span></li>

        <li>Email: <span itemprop="email">thecat@rockandstone.com</span>

        </li>

    </ul>

</li>

And if we wanted to get items with only a specific type of cat, we would call:

document.getItems("http://example.com/feline")

Thanks to this simple API, your microdata-enriched markup is both easy to produce

and easy to consume.

51CHAPTER 1: HACKING THE SEMANTIC WAY

http://example.com/feline


www.allitebooks.com

http://www.allitebooks.org


2
Hacking with Style

I remember designing websites without CSS. It was horrible—lots of tables and images

and image maps. Back in the day, most sites took several minutes to load because

generally they were so overladen with image hacks in an effort to achieve a decent

design. Then CSS came along and it was spectacular! Suddenly the Web had stand-

ards, you could separate your functionally into your JavaScript, your markup into your

HTML file, and your look and feel into your CSS file.

Just as HTML went through a decade without seeing any true updates, CSS followed

nearly the same path, which is why I am so excited that the HTML5 revolution brought

CSS3 along with it. This chapter focuses primarily on another spec within the HTML5

family of technologies: Cascading Style Sheets version 3.0, a.k.a. CSS3. HTML5 may

bring us a whole new world of functionality, but CSS3 blows the doors open on the

user experience!

A Word About Browser Prefixes

One important thing to note within this chapter is the use of browser pre-

fixes for new CSS3 attributes. In brief, a browser prefix is an extension

placed at the beginning of a CSS3 class to be used while that feature is in

an experimental stage. For additional information on browser prefixes, see

Hack #11.

In my references and code examples, I chose to not utilize browser prefixes,

even when the prefix may be required for the example. The reason is simple:

browsers are updating at a pace at which a print book cannot keep up. It is

very likely that some functionality may require a browser prefix at the time

of this writing, but may drop the prefix by the time the book is released.

I suggest that you research the browsers you are supporting with your ap-

plication to validate which browsers need browser prefixes for which

53



HACK 11

features. It’s also good during development, or while implementing one of

the examples within this book, to attempt to use the features with the proper

CSS3 attribute directly, and then only add the browser prefix if the func-

tionality fails.

CSS3 is a powerful tool, but due to the high level of features it offers in the

experimental release phase, it can be difficult to implement at times. Using

the hacks in this chapter, however, can bring clarity to this exciting new

technology.

Use Experimental CSS Features with
Browser Prefixes

Browser makers often give you access to the experimental version of CSS3 features

before the specifications are finalized. Browser prefixes enable you to implement

some of these experimental features early on in their development.

CSS3 features came on the scene quickly with the rapid adoption of WebKit-based

browsers (WebKit is an open source browser layout engine developed by Apple). The

CSS feature richness of the WebKit-based browsers encouraged other browser mak-

ers such as Firefox, Internet Explorer, and Opera to advance their adoption of CSS3

features as well.

Browser adoption of CSS moved at such an accelerated rate that it literally outpaced

the development of the specifications. This led to browser makers implementing fea-

tures that were still in draft or experimental mode. This resulted in features being

implemented differently by different browser makers, as the feature specification was

not yet solidified.

To clear up the confusion and allow developers to implement these features while they

were still in the experimental stages, browser makers developed browser prefixes. The

browser prefix is prepended to the attribute name to limit its implementation to that

specific browser. Table 2-1 lists the most common browser prefixes.

Table 2-1. CSS browser prefixes by extension

PREFIX BROWSER

-khtml- Konqueror (really old Safari)

-moz Firefox

-o Opera

-ms Internet Explorer

-webkit Safari, Chrome, Silk, Android, and other WebKit-based browsers

54 HTML5 HACKS



It’s common to see CSS3 implemented with a style declaration, and then repeated

each time with the browser prefix of each browser that has early support for that

feature. Your CSS may look something like this:

.testClass {

width: 100%;

color: #fff;

transform: rotate(30deg);

-ms-transform: rotate(30deg); /* IE 9 */

-webkit-transform: rotate(30deg); /* all webkit browsers */

-o-transform: rotate(30deg); /* Opera */

-moz-transform: rotate(30deg); /* Firefox */

}

This gives flexibility to the developer to utilize CSS3 features on the browsers that

support them and not affect the browsers that don’t. Let’s assume you’re only com-

fortable supporting the Firefox version of the transform feature, and you want all other

browsers to fall back to nontransformed text. Your CSS would look something like this:

.testClass {

width: 100%;

color: #fff;

transform: rotate(30deg);

-moz-transform: rotate(30deg); /* Firefox */

}

Notice that the traditional transform attribute is left in place. Once the specification

for the CSS3 transform solidifies, browser makers will drop the prefix and utilize the

default attribute. It’s usually a good idea for you to add the traditional attribute when

using browser prefixes to future-proof your CSS.

The Browser Prefix Controversy

The web development community holds a split opinion on the use of browser prefixes.

Browser prefixes have been beneficial for the application of these early supported

features. Since the features were implemented before the specifications were final-

ized, prefixes did allow developers to utilize the experimental version of the function-

ality without having to worry about writing CSS that would someday stop working.

The negative aspect of browser prefixes was the added flexibility it gave developers.

For years, the web development community pushed back on browser makers to be

standards-based, encouraging them to build browsers that followed the W3C speci-

fications and guidelines instead of building uniquely supported features. The goal was

to write a single code base that rendered properly in any browser. Browser prefixes

reopen the door for developers to write code that only works in a subset of browsers.

55CHAPTER 2: HACKING WITH STYLE



HACK 12

1 The generic font families that each browser supports are the following: serif, sans-serif, mono-
space, cursive, and fantasy.

It’s ultimately up to the development community to keep browser prefixes in check.

When you write CSS with browser prefixes, consider all browsers that support that

feature. Utilize the browser prefixes when necessary, but do your part to not “fork”

the Web…again.

Design with Custom Fonts Using
Web Fonts

Your web page doesn’t have to settle for those plain old “web-safe” fonts anymore.

Freshen up your designs with CSS3 web fonts.

Web fonts aren’t actually a new concept for CSS. They were originally proposed for

CSS version 2.1, but they were dropped before the spec was finalized. Oddly enough,

one browser maker did implement the feature early on, and surprisingly, it was Inter-

net Explorer. IE has supported web fonts since IE version 5 back in 1999. However, like

most features developed for the Web in the 1990s, web fonts were implemented in a

proprietary fashion, only supporting one type of font. IE 5 supported the EOT

(Embedded OpenType) font, which was never adopted by other browser makers.

Thus, web fonts went the way of the Jedi until their rebirth in CSS3.

Having access to the proper fonts can make or break a design. For decades, web

developers had been limited to a small subset of web-safe fonts to work with, and have

pushed the limits of Arial and Verdana. Prior to the adoption of CSS3 web fonts (first

seen in Safari 3.1), CSS allowed us to specify a list of the font families we wanted to

use on our web page, and the browser would cycle through the list of fonts until it came

across a font that was installed on the user’s machine. The declaration looked some-

thing like this:

body {

font-family: Verdana,Arial,Helvetica,sans-serif;

}

There was no guarantee that the user would have access to the font we wanted to use,

so it was customary to list a few fonts in order of preference so that the browser could

select the one that best completed our design. The last font in the preceding list, sans-

serif, refers to a generic type of font that the browser is sure to support, as it’s required

to identify a font within its system for each high-level font family.1

CSS3 doesn’t actually change the way you apply the font-family attribute. You still

follow the same pattern of listing your desired fonts in order of preference. Let’s restate

the CSS rule shown earlier, this time listing our new preferred font first:

56 HTML5 HACKS



body {

font-family: Radley,Arial,Helvetica,sans-serif;

}

Without any additional changes, every browser will apply the Radley font to the body

text of the page if it has this font installed. As it’s extremely unlikely that a user will

have this specific font, the CSS3 font-face declaration can be applied to greatly

improve the chances of this particular font being available for use. The declaration

needs to be made only once per page, and it isn’t associated with any particular font-
family attribute or any CSS rule. It’s simply declared:

@font-face {

font-family: Radley; src: local('Radley'), url('Radley.woff');

}

Once your font is imported, it can be utilized by any CSS declaration. Now, in the

preceding example, any browser that supports @font-face or that has the Radley

font installed will use Radley on the page, and all other browsers will cycle through the

fallback chain until they find a font they can use.

Let’s look at a specific use of a few imported fonts. In the next example we will use our

example page to display a few unique font treatments. Figure 2-1 shows our end

product.

Figure 2-1. 

Using web fonts to utilize fonts in our design that a user doesn’t have installed on the client machine

57CHAPTER 2: HACKING WITH STYLE



We’ve added three distinctive fonts on this page (in addition to some traditional fonts

we used in the primer page). The first thing we want to do is to bring the fonts into the

page so that we can access them. This is where the import comes in:

@font-face {

  font-family: 'Radley';

  font-style: normal;

  font-weight: normal;

  src: local('Radley'), url('/f/Radley.woff') format('woff');

}

@font-face {

  font-family: 'Lovers Quarrel';

  font-style: normal;

  font-weight: 400;

  src:local('Lovers Quarrel'), url('/f/quarrel.woff') format('woff');

}

@font-face {

  font-family: 'Dosis';

  font-style: normal;

  font-weight: 400;

  src: local('Dosis Regular'), url('/f/dosis.woff') format('woff');

}

Each font has two declarations in the src. The first is the local name of the font. It’s a

good practice to specify this for all your fonts; if the user has this same font loaded

locally, we can save the user the payload of loading it from the Web. The second dec-

laration is the url. If the browser doesn’t find the font locally, it is imported into our

page. The font-family attribute specifies how we refer to the imported font on the

page (the name of the font). The only required attributes are the font-family and

the src.

Our CSS that utilizes the imported font should look pretty familiar. We identify the

imported fonts in the same way we have always assigned fonts. Here is the CSS we

wrote to customize this page font:

.fontHeader {

    font-family: Radley, Arial, sans-serif;

    }

h2.fontHeader {

    font-size: 12em;

    line-height: 1em;

    font-family: Lovers Quarrel, Arial, serif;

    text-align: center;

    color: #c91c10;

58 HTML5 HACKS



}

.smallFont {

    font-family: Dosis, Arial, sans-serif;

    text-align: justify;

    }

Notice that our fallback fonts are still listed in our font-family declaration. If the

browser fails to load the font, we want the browser to fall back to its best alternative.

With a few imports and a few new CSS declarations, we’ve given our page that custom

design that gives it much needed character, and sets it apart from the rest!

Working with Different Versions of Fonts

A lot of times you have one font that comes in normal, bold, italic, or myriad other

variations. Generally, this means loading multiple fonts to support your type. Let’s see

what the CSS would look like:

@font-face {

  font-family: 'Radley';

  src: local('Radley'), url('/f/Radley.woff') format('woff');

}

@font-face {

  font-family: 'RadleyBold';

  src: local('Radley'), url('/f/RadleyBold.woff') format('woff');

}

@font-face {

  font-family: 'RadleyItalic';

  src: local('Radley'), url('/f/RadleyItalic.woff') format('woff');

}

.fontHeader {

    font-family: Radley, Arial, sans-serif;

    }

.fontHeader.bold {

    font-family: RadleyBold, Arial, sans-serif;

    }

59CHAPTER 2: HACKING WITH STYLE



.fontHeader.italic {

    font-family: RadleyItalic, Arial, sans-serif;

    }

This works just fine; you can access the normal, bold, and italic versions of your fonts.

But it’s a real mess to implement, and it’s prone to human error. Let’s go back to those

imports and define these same characteristics when we import them:

@font-face {

  font-family: 'Radley';

  font-style: normal;

  font-weight: normal;

  src: local('Radley'), url('/f/Radley.woff') format('woff');

}

@font-face {

  font-family: 'Radley';

  font-style: normal;

  font-weight: 800;

  src: local('Radley'), url('/f/RadleyBold.woff') format('woff');

}

@font-face {

  font-family: 'Radley';

  font-style: italic;

  font-weight: normal;

  src: local('Radley'), url('/f/RadleyItalic.woff') format('woff');

}

and now the easy implementation:

.fontHeader {

    font-family: Radley, Arial, sans-serif;

    }

.fontHeader.bold {

    font-weight: 800;

    }

.fontHeader.italic {

    font-style: italic;

    }

60 HTML5 HACKS



HACK 13

By setting the style and weight on the import, we can control the style and weight with

simple, familiar attributes. This helps us keep our CSS clean, and since we now build

our declarations just like we would with any font, we are a lot less prone to error.

A Few Things to Note: Support and Performance

IE 5 started supporting web fonts more than 10 years ago, yet web developers hadn’t

really been able to use them until CSS3 support became prolific. Looking back, it might

have had something to do with the fact that IE only supported one type of font for the

Web (EOT) and no one else supported it. The CSS3 implementation opens up the

support model significantly. The CSS3 font-face attribute supports most modern

font types: TTF (TrueType fonts), OTF (OpenType fonts), WOFF (web-only font for-

mat), EOT (Embedded OpenType, IE only), and SVG-generated fonts. Not all browsers

support all font types equally.

It’s also key to note that it does take time to load a font. Browsers can still display a

web page when it’s loading fonts, but most browsers will not show the text utilizing

the imported font until the font is loaded. Be cautious, as this could result in a prob-

lematic user experience. There is no specified limit to the number of fonts you want

to use on a page, or the number of times you want to use each font, but remember

that in most cases you need to load that font from the Web, so consider the number

of fonts and the size of the fonts you are using on each page.

Use Google Web Fonts for Simple @font-
face Implementation

Web fonts are great for your design, but they can sometimes be a hassle to manage.

Google Web Fonts makes the implementation simple, and the management even

simpler.

Special thanks go to Dave Crossland from the Google Web Fonts team for contri-

buting to the content of this hack. Dave is a libre fonts specialist and can be found

at @davelab6 on Twitter.

As you learned in Hack #12, CSS3 web fonts can be a powerful design tool. They allow

you to use any font you want, whether the user has that font installed or not. With all

the benefits that come along with using web fonts, there are a few drawbacks as well.

I mentioned previously that fonts can sometimes be resource-intensive, and they take

time to load from a server and to render on a page. In most browsers (all but Firefox

at the time of this writing) this means your user doesn’t see any of your web-font-

enabled text until the fonts are fully loaded. This could be a less-than-desirable expe-

rience for a user who is waiting for a few fancy fonts to load.

61CHAPTER 2: HACKING WITH STYLE



2 http://www.google.com/webfonts#AboutPlace:about

There is another problem that can put a damper on “fun with fonts”: the legal system.

Just because you have access to a font doesn’t mean you have the right to use that

font in your web application. It definitely doesn’t mean you have the permission to

distribute the font—and yes, putting a font on a publicly accessible web server can be

considered distribution.

Now that I’ve sucked all the fun out of web fonts, let’s look at one very practical solution

from the protector of the Internet, Google! Google Web Fonts is a service that provides

access to a collection of open source fonts, which you can use freely in your web

applications. Here’s what Google says about this project:

The API service runs on Google’s servers. They are fast, reliable and tested.

Google provides the service free of charge. It is possible to add Google Web

Fonts to a website in seconds.2

Google’s service is fast and, in most cases, delivers fonts even faster than you could

yourself. In fact, every font comes with an analysis of the amount of time it will add to

your page load if you utilize that particular font. On each font page you’ll find a chart

that looks something like Figure 2-2.

Figure 2-2. 

Font page from Google Web Fonts service displaying the visual impact this particular font will have
on your page performance (right side of screen)

62 HTML5 HACKS

http://www.google.com/webfonts#AboutPlace:about


The fonts available through the Google Web Fonts service are also open source. This

helps you immensely with the legal aspect of font use. Each font you find in the service

will already be curated to make sure it is licensed for you to use. This not only helps

you avoid any questions about your permission to use the fonts, but it also means you

don’t have to worry about any issues regarding distribution.

Easy Implementation of Google Web Fonts

Google Web Fonts gives you a few easy ways to implement your web fonts (if you’re

not familiar with the CSS3 implementation, review Hack #12). To begin, fire up your

favorite HTML5 web browser and go to the Google Web Fonts page. This will land you

on the gallery view of the directory. Although you have the option to filter and browse

fonts, let’s search for a specific one. Enter the font name Bitter into the Search box

and only one font should come up. Select the Quick Use feature to get more informa-

tion about how to use the font. There are three main implementation methods: Stan-

dard, @import, and JavaScript. Let’s look at the Standard version first.

Leave it to Google to make something easy even easier. Standard implementation has

you add one line of code to your HTML document:

<link href='http://fonts.googleapis.com/css?family=Bitter'

   rel='stylesheet' type='text/css'>

When you load this stylesheet, it adds this declaration to your page:

@font-face {

  font-family: 'Bitter';

  font-style: normal;

  font-weight: 400;

  src: local('Bitter-Regular'), url('http://themes.googleusercontent.com/

static/fonts/bitter/v4/SHIc

Xhdd5RknatSgOzyEkA.woff') format('woff');

}

If you read Hack #12 , this might look familiar to you. The stylesheet is simply loading

an @font-face declaration. Once the font is loaded, it can be used by any CSS dec-

laration on any stylesheet. Simply add the name to your styles:

h1 {

font-family: Bitter, Georgia, serif; font-weight: 400;

}

The second implementation type is @import. To import the font, add this line of code

to your stylesheet or to a style block within your HTML page:

@import url(http://fonts.googleapis.com/css?family=Bitter);

63CHAPTER 2: HACKING WITH STYLE

http://google.com/webfonts


This will load the same stylesheet with the same @font-face declaration.

The third option, JavaScript, will load the same CSS stylesheet, but this time it will

load it dynamically with a script:

<script type="text/javascript">

  WebFontConfig = {

    google: { families: [ 'Bitter::latin' ] }

  };

  (function() {

    var wf = document.createElement('script');

    wf.src =('https:' == document.location.protocol?'https':'http')

    +'://ajax.googleapis.com/ajax/libs/webfont/1/webfont.js';

    wf.type = 'text/javascript';

    wf.async = 'true';

    var s = document.getElementsByTagName('script')[0];

    s.parentNode.insertBefore(wf, s);

  })(); </script>

This script dynamically loads a JavaScript file that will in turn dynamically load your

CSS file.

Although there are benefits and trade-offs to each of these loading methods, my rec-

ommendation is to try each one in your app, and look for the one that yields the best

results for your situation.

Now let’s say you want to load a few different fonts for your page. Google Web Fonts

calls this a collection, and will help you do this with as little impact as possible. Let’s

go back to the Google Web Fonts directory and select a few fonts at once. This time

click the Add to Collection button. I’m going to search for three of my favorite fonts:

Merriweather, Bitter, and Alegreya. Once you have chosen a few fonts, click the Use

button and you will be taken to a familiar page that provides you with the code to add

this collection of fonts to your pages. You’ll notice in Figure 2-3 that my page load

meter has gone up since I am loading three fonts instead of one.

Adding a collection is just as easy as adding a single font. I’ll choose the standard

method:

<link href='http://fonts.googleapis.com/css?family=Bitter|Merriweather

|Alegreya' rel='stylesheet' type='text/css'>

If we preview the CSS file added to my page, we will see three @font-face declarations

instead of one:

@font-face {

  font-family: 'Alegreya';

  font-style: normal;

64 HTML5 HACKS

http://google.com/webfonts


Figure 2-3. 

Google Web Fonts collection showing page performance impact of utilizing three fonts

  font-weight: 400;

  src: local('Alegreya'), local('Alegreya-Regular'),

url('http://themes.googleusercontent.com/static/fonts/alegreya/v3/MYF

QxfgoxFvFirdbdLj3M_esZW2xOQ-xsNqO47m55DA.woff') format('woff');

}

@font-face {

  font-family: 'Bitter';

  font-style: normal;

  font-weight: 400;

  src: local('Bitter-Regular'),

url('http://themes.googleusercontent.com/static/fonts/bitter/v4/SHIcXh

dd5RknatSgOzyEkA.woff') format('woff');

}

@font-face {

  font-family: 'Merriweather';

  font-style: normal;

  font-weight: normal;

65CHAPTER 2: HACKING WITH STYLE



  src: local('Merriweather'),

url('http://themes.googleusercontent.com/static/fonts/merriweather/v4/

RFda8w1V0eDZheqfcyQ4EHhCUOGz7vYGh680lGh-uXM.woff') format('woff');

}

Nontraditional Font Access

Although Google offers a number of options for loading web fonts, there may be some

scenarios that just don’t fit into the provided options. Don’t lose hope. There is a hack

for this situation, too! Google Web Fonts allows you to take your fonts with you. Nestled

in the corner of each Use page is a link to download all the fonts in your current col-

lection. This gives you the ability to package those fonts locally, or even use them

locally through another application such as Adobe Photoshop. This is essential for

designers who do mockups in Photoshop, and want to use the same font in their

mockup as they do in their final project.

For even greater flexibility, Google gives developers full API access to the Web Fonts

service. The team provides additional guidance on its website.

API access is essential for any developer who wants to build functionality on top of

the existing Google services.

Optimizing Your Font Usage

As if all this isn’t enough, here’s where Google Web Fonts gets really good! Loading

fonts can be a drag in terms of page load time, but Google Web Fonts has another trick

up its sleeve to make implementation a little lighter. Many times, special fonts are used

in more static portions of your page where the content is predictable. For these cir-

cumstances, Google has built a font request optimization feature (note that this fea-

ture is in beta at the time of this writing).

Each implementation loads a CSS file that contains the @font-face declaration. The

URL of the file looks something like this:

http://fonts.googleapis.com/css?family=Inconsolata

To specify a limited character set in your font file, add a query string parameter to the

end of the called text, by adding &text= to the end of the URL. Then specify your

character set after the text parameter as follows:

http://fonts.googleapis.com/css?family=Inconsolata&text=Hello

This will return an optimized font file that can reduce the download size by up to 90%.

This is a smart way to utilize your favorite fonts while keeping the file sizes manageable

for your users.

66 HTML5 HACKS

https://developers.google.com/webfonts/docs/developer_api


Common Mistakes

Utilizing fonts can require a lot of work, and doing it well can require even more work.

A lot of effort went into making Google Web Fonts easy to use, but there are a few easy-

to-make mistakes to bring to your attention.

In some cases it can be too easy to load web fonts on your page—so easy that you can

be prone to load more fonts than you need. Many Google web fonts offer more than

your standard weight (400) and style. Let’s go back to one of my favorite fonts, Bitter.

Let’s search for “Bitter” and view the Use page (see Figure 2-4).

Figure 2-4. 

Google Web Fonts Use page for the Bitter font

You’ll notice that on this page you can access multiple versions of the Bitter font.

Whether you download all weights and styles so that you have access to them or you

load some of the additional versions unintentionally, keep in mind that web fonts can

have an adverse effect on the performance of your page. The more font versions you

load, the longer it will take to render your page. It’s highly recommended that you use

the Collection Builder in Google Web Fonts to specify the exact fonts and styles you

need to load for your web application.

A second common problem has more to do with the proper use of fonts. It’s quite

common to use custom web fonts in the headers on your pages. Headers also have a

little-known “feature” called auto-bolding. Browsers provide base styles for each of

67CHAPTER 2: HACKING WITH STYLE

 
 

 
 



their HTML tags. A common example is an indentation of each list item (li) nested

inside an unordered list (ul). Another common style is to make headers larger and

heavier than all other text. Typical text has a font weight of 400; most browsers set a

default font weight for headers at 700.

Let’s look back at that Use page for the Bitter font. This particular font provides a

version in a font weight of 700 so that the font will render properly. Not all fonts provide

a version in a font weight of 700; in fact, many only provide a standard version in a font

weight of 400.

Let’s look at a font that only provides the standard font weight of 400. The font

Inconsolata is a great example (see Figure 2-5).

Figure 2-5. 

Google Web Fonts Use page for the Inconsolata font

Here is the CSS:

p{

font-family: Inconsolata, Arial, Sans Serif;

}

It’s a great-looking font. Now let’s apply that same font to a header (see Figure 2-6).

Here is the CSS:

68 HTML5 HACKS



Figure 2-6. 

Inconsolata font on an h1 header allowing its default font weight of 700 to be utilized

h1{

font-family: Inconsolata, Arial, Sans Serif;

}

Since a version of Inconsolata in a font weight of 700 isn’t available, the browser kicks

in and tries to compensate by applying its own version of bold to the font. This usually

ends in a noticeably ugly product.

Luckily, the solution is fairly simple. You need to reset the font weight to 400 for your

font that would be affected by auto-bolding. Many CSS resets (an additional CSS file

you add to your page to wipe out all the default styles set by the browser) will remove

the font weight for you with code that looks something like this:

h1, h2, h3, h4, h5 {

   font-weight: 400;

  }

I prefer this method, as it gives a predictable baseline for all browsers, but it might

make more sense for you to reset your font weight when you implement your font-
family reference to your problematic font. The code might look something like this:

69CHAPTER 2: HACKING WITH STYLE



HACK 14

 h1{

font-family: Inconsolata, Arial, Sans Serif;

font-weight: 400;

}

Either option will guarantee a pristine implementation of your web font. For more

information about Google Web Fonts, visit the product home page.

Use CSS3 Text Effects to Make Your Text
Not Suck

CSS3 text effects finally give you control over your text. Explore some of the newest

and greatest text control features with CSS3 text effects.

CSS has always been spectacular to developers and designers. We love the power of

controlling look and feel with a simple declaration. Unfortunately, as we learned the

inner workings of the style language we started to realize its shortcomings. For a lan-

guage designed to style HTML (remember the “T” stands for “Text”), we have never

had a lot of control over text. I’ve often seen the limitations of CSS text control, as

illustrated with the simple phrase shown in Figure 2-7.

Figure 2-7. 

Popular CSS example that shows the limitation of text flow control

Figure 2-7 was created from this CSS:

p.test{

    width: 45px;

70 HTML5 HACKS

http://www.google.com/webfonts


    padding:5px;

    border: 1px solid black;

    text-transform: uppercase;

}

and from this markup:

<p class="test"> CSS is awesome!</p>

This “bug” occurs because CSS cannot wrap text that doesn’t contain spaces. In the

past, we’ve had to employ JavaScript solutions or manually enter break tags, neither

of which was elegant. Finally, CSS3 solves the problem. Let’s take the same markup

we had before, a simple line of text inside a paragraph, and apply a new CSS attribute

to it (see Figure 2-8).

Figure 2-8. 

New and improved CSS example with word-wrap feature

Here is the CSS that was used to create Figure 2-8:

p.test{

    width: 45px;

    padding:5px;

    border: 1px solid black;

    word-wrap:break-word;

    text-transform: uppercase;

}

71CHAPTER 2: HACKING WITH STYLE



And here is the markup:

<p class="test"> CSS3 is awesome!</p>

Now, CSS3 is truly awesome! The word-wrap attribute allows your text to break within

a word to the next line. CSS will add a hyphen at the word break by adding an additional

attribute of word-break: hyphen. Now your HTML can lay out text just like your word

processor.

The Text Shadow Property

Sometimes what makes type so impactful isn’t just the font, but the way it’s presented.

That’s why text shadows are getting web designers so excited. In the past, shadow

text required the use of images or Flash objects. With CSS3, shadow text can be con-

trolled through a few attributes:

h2{

text-shadow: 2px 2px 4px #ccc;

}

The resultant text appears as shown in Figure 2-9.

Figure 2-9. 

An h1 header with a text shadow contrasted against an h1 header without a shadow

Let’s break down the different properties we are using with this attribute:

72 HTML5 HACKS



HACK 15

h-value

Distance of horizontal shadow, negative or positive

v-value

Distance of vertical shadow, negative or positive

blur size

Size of blur of text, optional

color

Color of shadow

It’s as simple as that—a drop shadow test without the weight of Flash or images!

Other Text Controls

CSS3 adds a list of additional text controls that give you more control over your text

and expand the usefulness of HTML as a language. Some of these new controls are

geared primarily toward publishing in non-Latin-based languages. A full list of these

controls is available in the W3C Level 3 text specification.

Make Elements Appear Transparent
Without Altering the Opacity

Opacity enables you to make items appear to be transparent, but it often comes with

unexpected side effects, especially with nested items. CSS3’s introduction of alpha

transparency gives you the freedom to use transparency without the side effects.

You can use transparency to give the illusion of depth in your design. Most commonly

you would use transparency to mute the screen with an overlay, or add a drop shadow

to a menu. Transparency gives the eye the impression of three-dimensional space

within your application.

For many years, opacity was the primary mechanism used to provide transparency.

This widely supported feature is present in virtually all browsers released in the past

six years. You can add opacity to any element with the following attribute:

.opacity {

    opacity: .5;

  }

The best thing about opacity is also the worst thing about it: opacity is an inherited

characteristic. In CSS, some properties apply to the element the declaration is written

for (such as background-color), whereas others pass on those values to their

73CHAPTER 2: HACKING WITH STYLE

http://www.w3.org/TR/css3-text/


children (such as font-family). Opacity does neither. Opacity passes on the char-

acteristic. In the preceding example, every child element inside an element with a class

of opacity will also have opacity of 50%. This isn’t an inherited property that can be

changed or reset. Let’s look at an example of nested opacity:

<div class="opacity">

    <p class="opacity">this is text</p>

</div>

In the preceding example, the text will render with opacity of .25 or 25%, since it has

inherited the characteristic of opacity twice. Sometimes the inherited characteristic

can be useful, but other times it can cause problems that require that you circumvent

the property altogether.

Introducing Alpha Transparency

CSS3 introduced two new color options with an additional parameter for alpha trans-

parency: RGBA and HSLA.

RGB and HSL are color formats you can use to generate millions of colors. The A

channel is added to each format to provide an option for setting the alpha transpar-

ency to your color. This enables you to alter the percentage of “light” that passes

through your color to allow objects behind it to be seen.

This concept is best understood through illustration. Figures 2-10, 2-11, and 2-12 show

a set of RGB (red, green, blue) color circles in different states of opacity and trans-

parency.

Figure 2-10. 

Overlapping circles with no transparency set and no opacity set

74 HTML5 HACKS



Figure 2-11. 

Overlapping circles with opacity set to 50%

Figure 2-12. 

Overlapping circles with alpha transparency set to 50%

Figure 2-10 has no opacity settings and no alpha channel, which renders it with full

visibility. Figure 2-11 has 50% opacity set on each circle and Figure 2-12 has the trans-

parency channel set to 50%.

As you can see, the color circles look nearly identical in Figures 2-11 and 2-12, but the

text inside the circles looks very different. In Figure 2-11, the text inside the circles also

took on the opacity characteristic; in Figure 2-12, the text remains unchanged. Let’s

take a look at the CSS for both of these solutions:

.one.opacity {

    background-color: rgb(0, 255, 0);

    opacity: .5;

}

 .two.opacity {

    background-color: rgb(255, 0, 0);

     opacity: .5;

}

.three.opacity {

75CHAPTER 2: HACKING WITH STYLE



    background-color: rgb(0, 0, 255 );

    opacity: .5;

}

caption: css for circles with alpha transparancy

.alpha.one {

    background-color: rgba(0, 255, 0, .5);

}

.alpha.two {

    background-color: rgba(255, 0, 0, .5);

}

.alpha.three {

    background-color: rgba(0, 0, 255, .5 );

}

The new alpha transparency allows us to set the transparency where we set the color.

This could be to a background color, a gradient, a drop shadow, or any other property

that takes a color value. It inherits with the color value only, and doesn’t affect the

presentation of child elements. There may be times when opacity and all its inherited

characteristics are what your design calls for. For all other situations, CSS3 provides

the ability to set transparency without opacity.

A Word About Color Formats

You may have noticed that we have two different color formats to choose from when

setting alpha transparency. RGBA (red, green, blue, alpha) and HSLA (hue, saturation,

lightness, alpha) are both introduced with CSS3, and for all practical purposes they

provide the same results. Don’t be confused about which pattern to utilize. Choose

the format you’re most comfortable with. Some developers prefer RGBA because it

can generally be copied directly out of the Photoshop palette; others prefer HSLA

because it gives more predictable values. In HSLA, when you raise the L value the color

gets lighter, and when you lower the S value the saturation decreases. Base your color

format choice on the look you’re seeking to achieve.

76 HTML5 HACKS



HACK 16 Use Media Queries to Build Responsive
Design

Your web page can look just as great on a mobile phone as it does on the desktop. The

secret to achieving this feat is called responsive design, and media queries are the key

to making your pages responsive.

Mobile is all the rage these days. And with HTML5, the mobile web is even hotter. The

industry decided pretty early on that it wasn’t a good idea to design different websites

for different types of visitors. You don’t want to have one website for your mobile phone

users, another for your desktop users, and a third for your tablet users. Instead, it

makes sense to develop one website that can “respond” to the type of interface you’re

using and provide an experience suitable for that device. This is what we call respon-

sive design.

There are a few techniques that make responsive design work, but the heart of a re-

sponsive page starts with the use of media queries. Before we get into the details of

how to use media queries, let’s take a look at what we want to accomplish. Figure 2-13

shows our responsive website as viewed through a desktop browser.

Figure 2-13. 

Our example site as viewed through the desktop version of Google Chrome

Figure 2-14 shows the same website on an iPhone without any responsive

characteristics.

77CHAPTER 2: HACKING WITH STYLE



Figure 2-14. 

Our example website as viewed through mobile Safari on an iPhone 4s

The website is hard to utilize in its current state. The iPhone does give us the ability

to “pinch and zoom” the page so that we can read it, but it’s not a great experience.

Although it is accessible, it certainly doesn’t cater to my device. Let’s take a look at

the markup that makes up this center column section:

<div class="row">

    <div class="span4">...</div>

    <div class="span4">...</div>

    <div class="span4">...</div>

</div>

Here’s the CSS that handles the layout:

.row {

    width: 100%;

    }

78 HTML5 HACKS



.span4 {

    width: 300px;

    float: left;

    margin-left: 30px;

    }

In order to make the website respond to our device, we want to lose the multicolumn

layout and stack all our content into one column—in essence, we want to move from

a horizontal layout to a linear one. Currently, our page splits our window space into

three columns and places content into each column. Our new layout will convert those

columns into one linear flow. Now that we don’t have three fixed-width columns next

to one another, our page will have a smaller width, and our text and content will

wrap within the iPhone viewport. With our new CSS, our page will look significantly

improved on an iPhone, as shown in Figure 2-15.

Figure 2-15. 

Our example page with a linear view on mobile Safari on an iPhone 4s

The markup stays the same for this new layout, but we have changed our CSS a bit:

79CHAPTER 2: HACKING WITH STYLE



.row {

    width: 100%;

    }

.span4 {

    width: auto;

    float: none;

    margin: 0;

    }

In Come the Media Queries

Congratulations! You have a responsive design! Now you need to program the browser

to know when to use one design over the other. In come the media queries. Media

queries allow you to place conditions around your CSS to tell it whether it should apply

the CSS declarations inside the condition or not. There are a number of characteristics

you can use to determine whether the rules should be applied. Here are some of the

highlights:

• Width

• Height

• Device width

• Device height

• Resolution

• Orientation

• Aspect ratio

For this hack we’ll focus on the device width to determine our rule. Here’s a sneak peek

at our rule:

@media (max-width: 767px)

We’ve determined that if the screen width is less than 767 px, we apply the CSS rules.

The rule will be applied if the statement within the parentheses evaluates to true (in

this case, it will evaluate to true when the window cannot get any bigger than 767 px).

We can apply this rule to our CSS in a number of ways. Remember, we are going to

wrap our CSS for the new linear layout with the media query condition so that it only

gets applied when the rule is true.

There are three different ways to apply the conditional rule:

80 HTML5 HACKS



HACK 17

<link> tag

The media query can be set in the <link> tag. Then the declarations within that

file are only applied to the page if the media query is satisfied:

<link rel="stylesheet" type="text/css"

   media="screen and (max-width: 767px)"  href="test.css" />

@media condition

A block of CSS can be wrapped within curly brackets in the CSS document, and

the CSS declarations are only applied to the document if the media query is

satisfied:

@media screen and (max-width: 767px) {

.row {

    width: 100%;

    }

.span4 {

    width: auto;

    float: none;

    margin: 0;

    }

}

@import condition

An import will bring in the external CSS file only if the media query conditions are

met. The CSS declarations in the external file will not be applied to the document

until the conditions are met.

@import url("test.css") screen and (max-width: 787px);

We’ve used media queries to change the layout of the page, but it’s also possible to

use them to condition CSS declarations of any kind. Many times, it will be advanta-

geous to change font size, image quality, spacing, and other qualities to better suit

different types of devices.

Make Your Web App Respond to Device
Orientation Changes

Your native apps are smart enough to know how you’re holding your device. Now your

web apps can be, too. Use orientation-based media queries to make your site

responsive.

Mobile devices have brought a new paradigm to web development. Unlike desktops

and laptops that have a fixed orientation (I rarely see people flip their PowerBook on

81CHAPTER 2: HACKING WITH STYLE



its side), mobile devices can be viewed in either landscape or portrait mode. Most

mobile phones and tablets have an accelerometer inside that recognizes the change

in orientation and adjusts the screen accordingly. This allows you to view content on

these devices in either aspect ratio. For example, the iPad has a screen aspect ratio

of 3:4 where the device is taller than it is wide. When you turn it on its side, it has an

aspect ratio of 4:3 (wider than it is tall). That’s an orientation change.

Using media queries, you can natively identify which orientation the device is being

held in, and utilize different CSS for each orientation. Let’s go back to our example

page and see what it would look like in landscape mode (see Figure 2-16) and portrait

mode (see Figure 2-17).

Figure 2-16. 

Our sample page in landscape mode on an iPad, with three columns of content

Here is the markup that makes each view work:

<div class="row">

    <div class="span4">...</div>

    <div class="span4">...</div>

    <div class="span4">...</div>

</div>

82 HTML5 HACKS



Figure 2-17. 

Our sample page in portrait mode on an iPad, with one column of linear content

Here is the CSS for the three-column view:

.row {

    width: 100%;

    }

.span4 {

    width: 300px;

    float: left;

    margin-left: 30px;

    }

and the CSS for the single-column view:

.row {

    width: 100%;

    }

.span4 {

83CHAPTER 2: HACKING WITH STYLE

 
 

 
 



    width: auto;

    float: none;

    margin: 0;

    }

Now we’ll wrap each CSS option in media queries so that they only apply in their proper

orientation. Remember, the media queries wrap the CSS in conditions that only apply

the declarations when the media query resolves to true. Using inline media queries

(see Hack #16  for an explanation of other implementation options), our CSS will now

look something like this:

@media screen and (orientation:landscape) {

.row {

    width: 100%;

    }

.span4 {

    width: 300px;

    float: left;

    margin-left: 30px;

    }

}

@media screen and (orientation:portrait) {

.row {

    width: 100%;

    }

.span4 {

    width: auto;

    float: none;

    margin: 0;

    }

}

With the CSS and media queries in place, our page will have three columns of content

in landscape mode, and only one in portrait mode.

Why Not Width?

If you compare device orientation to max-width pixel media queries, you may realize

you can accomplish this hack with max- and min-width queries, since the width will

change when the device changes orientation. However, there are pros and cons to

doing this.

84 HTML5 HACKS



HACK 18

Media queries based on orientation can often be simpler. You don’t need to know what

screen size to expect for landscape versus portrait view. You simply rely on the ori-

entation published by the device. You also gain consistency between devices in terms

of how the pages appear in each orientation.

The argument against orientation media queries is pretty much the same. You really

shouldn’t care if your orientation is portrait or landscape. If your screen width is 700

px, it shouldn’t matter which way the device is being held: the layout should cater to

a 700 px screen. When you design for the available space, the actual orientation be-

comes inconsequential.

Take Full Control of Your DOM with
Pseudoclasses

You’ve been working with pseudoclasses for years with the few options available in

CSS 2.1. Now, CSS3 allows you to use those implied classes on just about any element

on the page.

Pseudoclasses are some of the more exciting parts of CSS. A pseudoclass is a class

that is implied on an element based on its ability to satisfy generic criteria, such as

the fact that a button is in the disabled state or that it is the first child of your parent

element. The pseudoclass is written by preceding the class with a colon.

A few extremely popular pseudoclasses were introduced in CSS 2.1. One of the most

common was the link hover class. It looked like this:

a:hover {

    color: green;

}

The anchor pseudoclass would apply the CSS declaration when you “hovered” your

mouse over a <link> tag. It would be common to switch colors with the hover event.

CSS3 has introduced a large number of new pseudoclasses. Specifically, it has intro-

duced a lot of classes that can be based on DOM (Document Object Model) position.

Let’s look at a few:

div:first-child {

    color: blue;

    }

span:nth-child(5){ /*chooses the fifth child element */

    color: red;

85CHAPTER 2: HACKING WITH STYLE



    }

p:empty {

    display: none;

    }

Each CSS declaration applies to elements not through class names, IDs, or tag names,

but through other characteristics that meet the pseudoclass criteria.

The CSS Zebra Stripe Data Table

Let’s look at an example that focuses on DOM relations (how an element relates to its

parent element). A nice feature to have on tables with a large amount of data is a shade

that is applied to every other row. This practice, commonly called zebra striping, helps

your eyes follow a row all the way across a table. In the past, there was a JavaScript

function that would run against the table rows and would determine which were odd-

numbered rows and which were even-numbered rows. Even-numbered rows would

then have a class added to them that would shade the row, thus “striping” the table.

Using CSS pseudoclasses, we can do the same thing, but using DOM relations instead

of JavaScript. Let’s start by looking at our table markup:

<table class="zebraStripe">

    <tr>

        <th>Name</th>

        <th>Town</th>

    </tr>

    <tr>

        <td>Jeff</td>

        <td>Dayton, OH</td>

    </tr>

    <tr>

        <td>Carla</td>

        <td>Rochester, NY</td>

    </tr>

    <tr>

        <td>Chloe</td>

        <td>San Juan, PR</td>

    </tr>

    <tr>

        <td>Maddy</td>

        <td>San Juan, PR</td>

    </tr>

    <tr>

86 HTML5 HACKS



HACK 19

        <td>Jude</td>

        <td>San Antonio, TX</td>

    </tr>

</table>

Without any CSS, every row of this table will be the same color. Now let’s use an nth-
of-type pseudoclass to color our rows. This pseudoclass takes a keyword (such as

odd or even), a number, or an expression. For our example we will use the odd keyword,

but we could have easily used an expression such as 2n-1. Let’s look at our table CSS:

.zebraStripe {

    width: 100%;

    text-align: left;

    }

.zebraStripe td, .zebraStripe th {

    padding: 10px;

}

.zebraStripe tr th {

    color: white;

    background-color: #858385;

    }

.zebraStripe tr:nth-of-type(odd) td{

    background-color: #a6caf5;

    }

Our table will now appear with every other row shaded, as shown in Figure 2-18.

Shaded rows only scratch the surface of the control you have with pseudoclasses and

DOM position. There are many new ways to identify the element on the page you want

to control: first-of-type, last-of-type, only, empty, root; the list goes on. Pull out those

pseudoclasses and start hacking!

Hack Up Your Sprite and Put Your Images
Inline with Image Data URIs

Forget the hassle of ever constructing an image sprite again. You can use image data

URIs to “inline” your image directly in your HTML or CSS.

Like butter goes with bread, sprites go with CSS. An image sprite combines a number

of images together into one image. Then, instead of using image tags to display these

images, you use CSS background images to display them. In CSS, you then alter the

background position on your elements to display different portions of the sprite.

Figure 2-19 shows a common sprite.

87CHAPTER 2: HACKING WITH STYLE



Figure 2-18. 

Sample table with our zebra stripe CSS using the nth-of-type pseudoclass to apply a light blue shade
to every other row

Figure 2-19. 

Image sprite pulled from Google Gmail application

88 HTML5 HACKS

http://bit.ly/TvBhMV


This sprite has just about every icon used within the Gmail application. Now let’s look

at the code that turns this big image into each small icon.

Here is the markup:

<div class="uF">

    <div id=":99" class="uE dk dh"></div>

    <div class="uD">

        <span id=":98" class="uC">Jeffrey Burtoft</span>

    </div>

</div>

And here is the CSS:

.dh {

    background: url(images/2/icons_ns10.png) no-repeat −40px −100px;

}

.dk {

    width: 16px;

    height: 16px;

}

This code renders an icon next to my name in Gmail. You can see that the background

position defines what part of the image is shown. The height and width of the icon stop

the rest of the background image from showing. The end result looks like Figure 2-20.

Figure 2-20. 

Contact list from Google Gmail with icon from sprite

Why Do a Sprite?

Sprites were introduced as a performance technique. Web Performance 101 tells us

that the first step to improving your page performance is to reduce the number of

connections you are making to the server. Generally, the fewer connections you make,

the better the page will perform. This sprite reduces the number of connections sig-

nificantly. Without this sprite, each icon would require a small but separate connection

to the server. In a nutshell, sprites make your page load faster.

An additional common performance gain is the reduction in total file size. This reduc-

tion wouldn’t be apparent, since you generally need to add additional whitespace to

89CHAPTER 2: HACKING WITH STYLE



the sprite that you may not need in each image, but sprites do often reduce the total

size of the image payload. Since images on a page often look similar, a shared color

palette between the images reduces the file size. The more you group similar images

together, the more you save.

The Problem with Image Sprites

Although sprites solve the problem of reducing image requests, they’re not a perfect

solution. The biggest problem with using sprites is that they’re difficult to maintain.

Every time one of your icons changes you need to rework the whole sprite. If your icon

size has changed you may need to tweak the layout of the sprite, which may mean

going back and altering a lot of CSS to reposition your background images correctly.

Some automation systems are available, such as the CSS Sprites Generator, but gen-

erating sprites automatically tends to be not as effective as assembling them by hand,

since the assembly tool can never know all the use cases of your sprite image. Addi-

tionally, total file reduction usually only happens when you sprite like images together

(e.g., images with a similar color palette). This may add to the maintenance time, as

you may need to rearrange your sprites when you change colors in an icon.

Another side effect of CSS sprites is increased memory usage in the browser. CSS

sprites generally use additional whitespace to make CSS positioning possible without

unintentionally showing another part of the image. The whitespace will download quite

well, as whitespace is generally compressed out of images. The problem has to do

with rendering those images. The browser does not render images in compressed

form, so it has to render out the full, uncompressed version of the sprite. Depending

on the amount of whitespace, an image that requires 25 KB to download can render

more than 10 MB in memory usage. This is especially a problem in mobile browsers

that have limited memory available.

Hacking Up the Sprite

So, how can we solve the problems inherent in image sprites? We can use the image

data URI (Uniform Resource Identifier). This URI works in browsers as early as IE 8,

and it lets you “inline” your image right in your CSS, or even your image tag. Instead

of using a URL, which would call out to retrieve the image, the data URI includes the

Base64-encoded version of the image inline with your document. The format of the

data URI is fairly simple:

data:[<mime type>][;base64],<encoded data>

In this case, data is your protocol, <mime type> is the type of image you are using,

base64 is the type of encoding you will use for your images, and <encoded data> is your

string of encoded data. The code for a realistic inline image would look something like

this:

90 HTML5 HACKS

http://csssprites.com/




AAGXRFWHRTb2Z0d2FyZQBBZG9iZSBJbWFnZVJlYWR5ccllPAAAAs1JREFUeNq8VztvE0

EQnnsFxbJxlCAEIiAoiC0qOxJpkCAoHRIKLR0VFRJdWugQBRX8EBASDUIkSGlC4XTEps

DiIVEAcsA6x77Hsrs5+24ft7d+6FY6rc8+z8x+M983cwbg9f32yjre3kO+6+by69a2Gd

3sQ/6L+jSGdxgFNImVwqKp/WwwAOh3Q/oZn576tqc9hjVnjBGAeEaThyRP+HkEOkJ01b

rSimGYYJ+ey/TmN/fojhASfClT4Gy9UBp2HAcK5XJmAH/vXzlOgQfKFOzwP6Kvn6fGOm

h9lH29IwtAWKjXnWniUSAWobIGhNPsvgH49TM2aJnQX5pX/if8/SP+HICyBgQWoIMGQC

UuxBAHEJLvEqt/xpqKBWZevAt9uc4lA2gLCLj/2Icrq5PnP2RuR74YGePlmOiAioqEhu

UMGrrP7lEdICro/mFlONcUkD6QlQKhEJE7PQ2Db59A5YNXwg4vRGGzkW7csiFYLLInWq

6CUSgJdSSTYa1u6D19kP4bMcDRsPjkLRPAKFhPbsOWwLPOPHD3IRgXLmsFRBFYOpeA/0

CpAbIADoWOh52blfpkBdCLaRxngPUxNguMU2fTh5Pz1XQh8pBWCrbx9UjoiAkEnK3ntD

CJTAeNDzjfNti1DbBX1sCqXJXOARIf+kUIHBUJAhZB4dotmHceQ0ljHkg0oUwd6MxSfE

YUZNsw40OYKGXTMZFks36dFmOSETIpJpXv77+jg8gwBWkyrD0VkxY8asOFIlg4GIP0ib

UN3OW6EDSxs9Yedcw3MBqAryhqCQJf8HZRF+aSxjww6KLh+0AbI3Api4btmfR/XHheD8

HRYQgDN0y1bc+y6Eiu/T6+Bum8z0xB4mV1M5LlmsrAiZPmseMjpBq/CPdfkZdRrQC4YB

bwdgdfN6J9IeMv7cghGb1fYqedsRHICKgWIbOZaFz0hGTHDsd6xfsvwAB8ABqbrMgqHw

AAAABJRU5ErkJggg==

The preceding code would produce a 32 × 32 image that looks like Figure 2-21.

Figure 2-21. 

HTML5 logo icon

To implement this in your CSS, just replace your normal URL with the Base64 version

of the image:

.backgroundImageClass {

  background-image:

url(

r0AAAAGXRFWHRTb2Z0d2FyZQBBZG9iZSBJbWFnZVJlYWR5ccllPAAAAs1JREFUeNq8Vz

tvE0EQnnsFxbJxlCAEIiAoi. . . );

    }

To implement the data URI in an image tag, set the src to the preceding string:

91CHAPTER 2: HACKING WITH STYLE



HACK 20

<img src="url(

AYAAABzenr0AAAAGXRFWHRTb2Z0d2FyZQBBZG9iZSBJbWFnZVJlYWR5ccllPAAAAs1JRE

FUeNq8VztvE0EQnnsFxbJxlCAEIiAoi. . . " />

It’s that simple. But I’m sure you’re wondering how you can convert these images (that

were previously sprited as one image) into data URIs. Luckily many tools are already

available on the Web for this very task. My favorite is Data URL Maker. With this tool

you can quickly upload an image and convert it into Base64-encoded characters.

The Downsides of Data URIs

There are a few downsides to using data URIs in place of images or sprites. Looking

first at maintenance, it’s generally not as difficult to maintain data URIs as it is to

maintain sprites, but it is still difficult, as every time you change the image you need

to reconvert it. There are a few libraries out there that will help you with this aspect by

converting your images at runtime so that you get all the advantages of data URIs

without the maintenance headache.

A second downside is the fact that you lose your compression. When an image is

transported, a compressed version of the image is sent back and forth. When you

“explode” the image into a data URI, it loses its compression and appears as a very

large image, thus increasing the payload. The good news is that most HTTP servers

Gzip all requests, which is a type of compression done over HTTP. This makes up for

any loss of compression you had by converting to the base URI.

The third downside is that a data URI is not as cacheable. With traditional images, if

you use the same image more than once on a page the browser will cache the image

so that it doesn’t need to download it more than once. Many times browsers will even

cache images from page to page, when the image is used again. Since data URIs are

inline, they can’t be cached unless the parent document is cached.

So, there are pros and cons to both image sprites and inline images (data URIs). Every

application has specific characteristics. Look at the details of your app, do some test-

ing, and determine which solution is better for you.

Build Gradients the Easy Way

CSS3 gives you the ability to apply color gradients to the background of your HTML

elements. Getting the right shading from your gradient properties can be quite diffi-

cult, but the folks at ColorZilla have built a tool to make it easy!

This hack was contributed by Alex Sirota, the mind and talent behind colorZil-

la.com and the ColorZilla Ultimate Gradient Generator.

92 HTML5 HACKS

http://dataurl.net/#dataurlmaker
http://colorzilla.com
http://colorzilla.com


Gradients are images that contain smooth color transitions between two or more col-

ors. They are widely used in graphic and web design to create classy-looking back-

grounds, slick buttons, and interesting visual effects for your pages.

Historically, you needed to use an image editor such as Photoshop or GIMP to create

an image containing your gradient, save it in a file, and then apply it as a repeating

background to your page or panel. Figure 2-22 shows an example.

Figure 2-22. 

A simple gradient that is common across the Web

This gradient can easily be applied to a design as a background image:

#my-panel {

    background: url(http://www.example.com/my-gradient.png);

    background-repeat: repeat-x;

}

The preceding CSS will result in an element that looks like Figure 2-23.

Figure 2-23. 

An element with my-gradient.png applied as a repeated background image

Although this was a relatively straightforward process, it did have some major disad-

vantages. First, if you wanted to tweak your gradient you needed to go back to your

image editor and change your background image. Also, using an image required the

browser to make another HTTP request to load it, which made pages load a bit more

slowly.

93CHAPTER 2: HACKING WITH STYLE



Pure CSS Gradients

The good news is that CSS3 introduced pure CSS gradients, among many other

great features. These enable you to specify all your gradient settings—colors, orien-

tation, and so on—as pure CSS, allowing for much better flexibility and improved

performance.

In a perfect world, the previous example would simply become:

#my-panel {

    background-image: linear-gradient(rgb(0, 0, 88), rgb(0, 0, 255));

}

Another benefit of using CSS gradients is that, because we’re no longer using a stat-

ically sized image for our gradient, we can apply our gradient to a panel of any size

and have the gradient effect stretch correctly. Figure 2-24 shows an example. On the

lefthand side of the figure the panel is higher than the original gradient image, and the

gradient cannot stretch to cover the whole panel height. On the righthand side the CSS

gradient is correctly stretching to cover the whole height of the panel.

Figure 2-24. 

A gradient that is unable to cover the whole panel height (left) and a gradient that correctly stretches
to cover the whole panel height (right)

The ColorZilla Ultimate Gradient Generator

As you might have noticed, with many different browsers, each having its own quirks

and syntaxes, things are rarely simple when it comes to web development, and gra-

dients are no exception. Because there’s still no standard and finalized syntax for CSS

gradients, each browser has implemented a vendor-specific prefix for gradient dec-

laration. So, in order to support various browsers, our simple one-line pure-CSS dec-

laration becomes:

94 HTML5 HACKS



#my-panel {

 background-image: -moz-linear-gradient(rgb(0,0,88), rgb(0,0,255));

 background-image: -webkit-linear-gradient(rgb(0,0,88), rgb(0,0,255));

 background-image: -ms-linear-gradient(rgb(0,0,88), rgb(0,0,255));

 background-image: -o-linear-gradient(rgb(0,0,88), rgb(0,0,255));

}

If you want to add support for older IE versions and additional browsers, things be-

come even crazier with additional CSS declarations, each having its own syntax.

Tools such as the ColorZilla Ultimate Gradient Generator were created in order to save

you from this multibrowser syntax mess, and make pure-CSS gradients simple. With

this tool, you can use a familiar UI similar to Photoshop’s to design your gradient, and

it handles the syntax complexities, automatically producing the needed CSS decla-

rations for cross-browser gradients. Figure 2-25 shows the ColorZilla Ultimate Gra-

dient Generator interface.

Figure 2-25. 

The ColorZilla Ultimate Gradient Generator interface

To create the gradient in the previous example, specify the beginning and end colors

of your gradient by clicking on the color handles (see Figure 2-26), grabbing the re-

sultant CSS output, and adding it to your stylesheet.

95CHAPTER 2: HACKING WITH STYLE



Figure 2-26. 

Using the color handles to specify the beginning and end colors of the gradient

Now copy your CSS directly out of the tool (see Figure 2-27).

Figure 2-27. 

The CSS generated from the ColorZilla Ultimate Gradient Generator

Designing and customizing gradients

The ColorZilla Ultimate Gradient Generator has options for designing and customizing

your gradients. For example, you can create vertical, horizontal, or diagonal gradients,

as shown in Figure 2-28.

Figure 2-28. 

Vertical, horizontal, and diagonal gradients

As noted earlier, simple gradients are typically smooth transitions between two colors:

a beginning color and an end color. You can also create more elaborate gradients with

multiple color stops, in which color transitions occur between more than two colors.

In this case, the color transition starts with the first color, smoothly goes to the “first

stop” color, then the “second stop” color, and so on, until it smoothly transitions to

the final color. Figure 2-29 shows an example.

96 HTML5 HACKS



Figure 2-29. 

Gradient color stops

You can also create gradients with varying opacities, which is great for seamlessly

blending your gradient with other visual elements. For example, you can create a gra-

dient that goes from being opaque to being transparent, and then you can position it

above an image. The varying opacity of the gradient will gradually reveal or adjust the

underlying image content. Figures 2-30, 2-31, and 2-32 show how this works.

Figure 2-30. 

The original image

Figure 2-31. 

The gradient

97CHAPTER 2: HACKING WITH STYLE



HACK 21

Figure 2-32. 

The final result, with the gradient overlaying the image

Additionally, the tool includes a number of presets if you prefer not to start your gra-

dient designs from scratch, and you can also save your favorite designs in the tool.

Modernizing your old gradients

The ColorZilla Ultimate Gradient Generator allows you to import your existing gradi-

ents either from an image or from browser-specific CSS, which is a simple way to edit

your existing gradients and convert them to cross-browser CSS.

CSS gradients offer great benefits in terms of performance and flexibility, and tools

such as the ColorZilla Ultimate Gradient Generator hide the complexities of cross-

browser support behind a convenient UI. With some experimentation and imagination

you can now easily add a great deal of visual appeal to your pages.

Make Borders Interesting Again, with
Border Treatments

CSS3 makes boring borders exciting. Forget corner images and shadow “shivs.” CSS3

provides a number of new treatments that bring your borders back to life.

The border is one of the most frequently used properties in CSS. It’s applicable to any

visual HTML element and has been used in various ways to draw your eye to content

on a page. Borders have traditionally been limited in their presentation. With CSS 2.1,

we were limited to the use of solid colors, straight corners, and limited styles (solids,

dots, and dashes only).

CSS3 brings a number of new features to modernize borders. The border radius, box

shadow, and border image are the main enhancements.

98 HTML5 HACKS



The Border Radius

The border radius has been a sought-after feature for years, as it’s a design pattern

that has been mimicked with background images or pixel size elements in countless

applications. The border radius is fairly straightforward to implement:

.borderRadiusClass {

border: 1px solid #777;

border-radius: 15px 15px 15px 15px

}

The border radius implies having a border, so first you must state a border property

in your declaration. You need to start with a border for the radius to be visible. Then

you set the radius for each corner (top-left, top-right, bottom-right, and bottom-left)

with a numeric value. The image resulting from the preceding code would look like

Figure 2-33.

Figure 2-33. 

Div with a class of borderRadiusClass which gives each corner a 15 px radius

99CHAPTER 2: HACKING WITH STYLE



The Box Shadow

Web designers have long used drop shadows to give elements a sense of depth on a

web page. CSS has finally formalized this capability with the native box-shadow fea-

ture. The box-shadow feature adds true drop shadows to your elements. Implemen-

tation requires you to declare the horizontal and vertical offsets (both numeric values),

the optional blur radius, the optional spread radius, and the color of the drop shadow

(any supported color format is fine). You would define your property as follows:

.myShadowClass {

    box-shadow: 3px 3px 5px 5px #ddd;

}

Applying this to an element will produce the effect shown in Figure 2-34.

Figure 2-34. 

Div with the myShadowClass applied, giving it a 3 × 3 px drop shadow

100 HTML5 HACKS



The Border Image

One of the most powerful new features in CSS3 is the border image. In essence, this

feature lets you utilize an image file as your border, as opposed to solid colors. Border

images can be difficult to utilize at times, as the property patterns may not follow other

border attribute conventions. The border-image attribute is stated as follows:

border-image: source slice width outset repeat;

Let’s look at the function of each property:

source

Defines the path of the image you are using for the border-image

slice

Defines the inward offset, or the percent of inset to use, of the image from each

of the four corners

width

Defines the width of the image borders

outset

Defines the optional amount by which the border image extends beyond the

border box

repeat

Defines whether the image should repeat, be rounded, or stretch

Let’s take a look at this attribute in action. First we will utilize this CSS class on a button

element:

.borderImageClass {

    border-image:url(../img/borderImage.png) 29 30 stretch;

    border-width: 25px;

    color: white;

    background: transparent;

    font-weight: 800;

}

Now let’s see what our borderImageClass class looks like applied to our button (see

Figure 2-35).

101CHAPTER 2: HACKING WITH STYLE



Figure 2-35. 

Button with borderImageClass applied

Figure 2-36 shows the image we are using to create the button.

Figure 2-36. 

Image used to render the button

The inward offset of this image essentially divides the image into nine parts.

Figure 2-37 shows the image again with our inward offset drawn in.

Figure 2-37. 

Image used to render the button with an inward offset of 25% overlaid

Here we are placing our inward offset corners on each of the four corners of the button.

Since we have the repeat attribute set to stretch, we are going to stretch out the

center region of the image to fill the remainder of the borders. Our button will then

appear as it does in Figure 2-38.

102 HTML5 HACKS



HACK 22

Figure 2-38. 

Final button with image border

New border features have given us a lot of design flexibility. Gone are the days of using

fixed images for each visual treatment. Border radius and box shadow meet a lot of

our design needs, and most of the remainder can be addressed with border images.

Set Multiple Background Images to the
Same Element

The CSS3 version of the background attribute allows you to set layers of images as

the background of your elements. Each layer can have its own background properties

for designs that are more intricate than were previously possible.

Background images have always been an extremely useful feature in CSS. Prior to

CSS3, if you wanted to have multiple background images (say, a background pattern

and a logo) you had to hack up a solution that included nested elements and separate

CSS declarations. It was both tedious to write and difficult to troubleshoot. When it

was all said and done, you were left with a slew of extra markup that only existed to

facilitate the needs of the design. CSS3 now supports the long-awaited feature of

multiple background images. Any one element can have multiple background images

set to different “layers” of the background.

Multiple background images are particularly useful in a design that requires a fluid

layout, such as responsive design. If you have a text box that has an undetermined

amount of content in it, you can use CSS3 to provide “bookend” style treatments

around it. In our example we have a mountain scene that provides a panoramic view

regardless of the page size. Figure 2-39 shows our element in a small screen, and

Figure 2-40 shows the element in a larger screen.

103CHAPTER 2: HACKING WITH STYLE

 
 

 
 



Figure 2-39. 

Example of our panoramic view requiring multiple background images shown on a small screen

The syntax for multiple background images is simple and intuitive. The properties are

written just as they were in previous versions, with comma-separated lists for the

different “layers” of backgrounds:

.mybackgroundClass{

    background-image: url(../img/tree.png),url(../img/

mountains.png),url(../img/sky.png);

    background-color: #f2f7fb;

    background-position: right bottom, left bottom, top left;

    background-repeat: no-repeat, no-repeat, repeat-x;

    height: 300px;

}

Our image required three background images: the trees are in one corner, the moun-

tain and hills are in another, and our sky is repeated on the very bottom layer.

104 HTML5 HACKS



Figure 2-40. 

Example of our panoramic view requiring multiple background images shown on a larger screen

How It Works

Here’s how it works. Each background-image declaration creates a background

“layer” on your element. If you have four background-image declarations, you will

have four layers (note that we have three in our class). Each property can have a

comma-delimited list as well. The first background-position will be associated with

the first background-image layer, and so on and so forth. If any given background

property has more declarations than there are background-image declarations (e.g.,

five background-repeat declarations but only four background-image declara-

tions), the remaining declarations will be ignored. If there are too few property dec-

larations (e.g., three background-repeat declarations and four background-
image declarations), the property list will cycle—the first property will be used over

again and it will cycle through the whole property list until the list of background-
images is exhausted. If a background-color is declared, it will only apply to the final

(and bottom) “layer.”

Shorthand syntax can also be used in a similar manner. With the shorthand style, the

whole property is declared as a comma-delimited list:

.mybackgroundClass{

 background: url(../img/tree.png) right bottom no-repeat,

105CHAPTER 2: HACKING WITH STYLE



HACK 23

  url(../img/mountains.png) left bottom no-repeat,

  #f2f7fb url(../img/sky.png) top left repeat-x;

 height: 300px;

}

Notice that a background color can only be defined on the final “layer” which renders

as the bottom layer.

This easy-to-implement feature shows the power and simplicity you will find all across

the HTML5 family of technologies.

Free Your Page Elements from Their
Traditional Space with CSS3 Transforms

CSS3 transforms give you the ability to add perspective to your HTML elements. Use

CSS3 transforms to arrange your elements in the 2D or 3D space.

HTML generally is a linear presentation, as all the elements are essentially rectangles.

Transforms allow you to take advantage of the different planes to give your design

perspective. There are two types of transforms: 2D and 3D. Let’s look at the options

provided in the 2D transforms:

Skew

Defines a 2D skew along the x- and y-axes

Scale

Provides a 2D scale on the x- and y-axes

Rotate

Provides a 2D rotation at a defined degree

Translate

Translates (or displaces) the element at a 2D defined location

Let’s apply each transform to a single class and then roll them up into a shorthand

class as well:

.elementSkew {

    transform:skew(30deg);

}

.elementScale {

    transform:scale(1,0.5);

}

.elementRotate {

    transform:rotate(30deg);

106 HTML5 HACKS



}

.elementTranslate {

  transform:translate(25px, 25px);

}

.elementRotate-skew-scale-translate {

  transform:skew(30deg) scale(1,.5) rotate(30deg) translate(25px,25px);

}

Each element shown in Figure 2-41 has its corresponding class assigned to it. Notice

the use of the x- and y-axes to transform each element. Our traditional square can

take on many different perspectives with transforms.

Figure 2-41. 

Repeated rectangle with corresponding class names added to demonstrate the transform effect

CSS3 Transforms in 3D

Three-dimensional transforms are implemented in a similar manner to 2D transforms,

but you are given access to the third plane. Here are the options provided in 3D

transforms:

translate3d

Translates (or displaces) the element at a 3D defined location on the x-, y-, and

z-axes

107CHAPTER 2: HACKING WITH STYLE



scale3d

Specifies a 3D scale operation on the x-, y-, and z-axes

rotateX

Specifies a clockwise rotation by the given angle about the x-axis

rotateY

Specifies a clockwise rotation by the given angle about the y-axis

rotateZ

Specifies a clockwise rotation by the given angle about the z-axis

perspective

Value that determines the perceived distance of the 3D object (smaller numbers

make objects appear closer)

Once again, we will create a class for each property. This is how the CSS will appear:

.elementTranslate3d{

    transform: translate3d(75%, −25%, 0);

}

.elementScale3d{

    transform: scale3d(.5, 1.25,1);

}

.elementRotateX {

    transform:rotateX(100deg);

}

.elementRotateY {

-webkit-transform:rotateY(10deg);

}

.elementRotateZ {

    transform:rotateZ(10deg);

}

.elementPerspective{

    perspective: 800px;

}

Let’s take the same boring boxes from our first example, and apply our new 3D classes

to them (see Figure 2-42).

108 HTML5 HACKS



Figure 2-42. 

Repeated rectangle with corresponding class names added to demonstrate the transform effect

You may not see a lot of value in 3D transforms right off the bat. When you move an

element on the z-axis (or the 3D plane) it tends to just look like a different effect (such

as 2D skew or a line), but hold on for the next hack where 3D meets transitions for

some amazing effects.

Even More Advanced Effects

Transforms give you enormous control over your page elements. Bringing in the third

dimension has additional benefits on many of today’s modern mobile devices. Utiliz-

ing 3D transforms engages the GPU of your device and gives you the benefit of hard-

ware acceleration. For more information on the pros and cons of 3D transforms, see

this great description from HTML5Rocks.com:

There may be some very rare cases when you want to be incredibly precise

with your transformations. For advanced users, CSS3 transforms give access

to both the matrix (for 2D) and 3Dmatrix (for 3D), which give users the ability

to specify the transform in 6 different values and 16 different values, respec-

tively. All I can say is good luck with that! High school geometry was a long

time ago!

109CHAPTER 2: HACKING WITH STYLE

http://www.html5rocks.com/en/tutorials/speed/html5/


HACK 24 Turn Transforms into Animations with
CSS3 Transitions

You can turn 2D and 3D transforms into custom animations with the simple-to-use

transition attribute.

Animations have always been fascinating for web developers. The only animation

mechanism available to us in the past has been JavaScript, but it has always been so

laborious to constantly redraw our elements on the page—like creating those old flip-

book animations my parents use to make back before there were televisions. A num-

ber of JavaScript libraries, including jQuery and YUI, have simplified the process of

animating elements, but in the end it was still JavaScript moving elements. The results

have always been disappointing.

Then along came this ray of light called transitions. Transitions aren’t animations per

se, but they do allow us to add a property to a CSS declaration that changes another

property over a specified duration, and wow, is it smooth!

Transitions are pretty darn easy to use as well. Let’s break down the process and look

at the attribute syntax. Your transitions could look as simple as this:

.elementTransition {

    transition: width 2s;

    width: 100%;

}

It doesn’t get much easier than that, right? For this class, we are stating two properties:

transition-property

Defines which property will be transitioned

transition-duration

Defines how long it will take to complete the transition

While we are at it, let’s look at our other two definable properties:

transition-timing-function

Describes a few predefined transition styles; the default is ease

transition-delay

Defines when the transition will start

In the sample class shown earlier we are stating our timing and what value we are

transitioning “to.” The most obvious follow-up question is what are we transitioning

“from.” The simple answer is whatever that value was defined as before we added the

class. Let’s look at the full example. We’ll start with our simple markup:

110 HTML5 HACKS



<div class="elementStart">

    <button id="myAction">Hello world!</button>

</div>

And here is the CSS class that defines the original view of our markup:

.elementStart {

    width: 50%;

    border: 1px solid green:

    height: 300px;

}

Notice that first we defined the width of our element to be set to 50%. This is the

starting value we will be transitioning from. To start the transition, we need to add the

new class (named elementTransition) to our element via some timer or user ac-

tion. In this case, we will add a simple onclick to the button inside our div that will

add our new class and start the transition. It’s one simple line of JavaScript:

document.getElementById('myAction').onclick = function(e){var a =

e.target.parentNode;a.className = a.className += ' elementTransition';};

Put these together in your document and see what happens (see Figures 2-43 and

2-44).

Figure 2-43. 

Illustration of the div before adding the button class name that starts the transition

111CHAPTER 2: HACKING WITH STYLE



Figure 2-44. 

Illustration of the div after adding the button class name that starts the transition

Transition to What?

The transition attribute is not the only attribute that can take a transition. Here are

some additional attributes that can be transitioned, according to the W3C spec:

background bottom color font-size height left

margin opacity outline padding right transforms

text-shadow visibility width z-index   

Make 3D Transitions with Transforms

CSS3 transitions really shine when they are coupled with CSS3 3D transforms. A 3D

transform on its own may seem to lack a clear purpose. Setting a 3D rotate, for ex-

ample, to (90, 90, 90) will make your object appear as a line on your page, but pair

that value with the transition attribute and you now have what looks like a 3D ani-

mation as your box appears to turn on its side. The CSS should be very similar to that

of the 2D transform. Remember, we have two definitions for the transform. The first

definition is the starting point of the div. The second is added later and tells the tran-

sition where to end.

112 HTML5 HACKS



HACK 25

Transition Events

In many cases you may want to trigger an event at the end of one of your transitions.

Your browser will publish an event when each event completes. The syntax follows the

same structure as user events. In JavaScript, you simply add an event listener to the

element that is receiving the transition:

document.getElementById('myAction').addEventListener("transitionend",

 myFunction, true);

Once any transition completes on that event, the event will be fired and the myFunc
tion function will be called. Make sure you explore the experience on each browser,

as there is no way to tell whether each browser will have the same meaning of “com-

plete” to determine when the event is fired.

Make iOS-Style Card Flips with CSS
Transforms and Transitions

Wow your users with custom animations they are used to seeing in native applications.

This hack shows you how to re-create a common iOS animation in CSS.

Mobile applications have increased our expectations when it comes to user experi-

ence, and Apple has led the way with its iconic and realistic applications. Apple has

built a number of user patterns that work so well and make so much sense that we

have come to expect them in all applications. One of those iconic patterns is the card

flip. One of the most memorable uses of the card flip is in the iOS weather application,

where it presents your weather on the screen, which has an “i” icon in the corner. When

you tap on the “i”, the card flips over and allows you to configure it with the settings

on the reverse (see Figure 2-45).

Figure 2-45. 

iOS weather application, transitioning from the information to the settings side

We can re-create this animation using some simple markup and CSS. Let’s start by

creating the markup:

113CHAPTER 2: HACKING WITH STYLE



<div class="viewPort">

    <div id="card" class="card">

        <div class="frontView">HTML5 Hacks</div>

        <div class="backView">Rocks!</div>

    </div>

</div>

We’ve built out a few simple structural elements for our component. Let’s review them:

viewPort

In our example, this is the parent container for our component, but on a mobile

device where this “card” will take up the whole screen, it’s important to under-

stand your viewing area. On a mobile device, any transitions that would cause

part of our elements to be outside this div would be cut off by the window.

card

This parent container is key for this transition, as it gives us a common parent for

the two sides for the card.

frontView and backView

The markup in each of these divs will become the content for the two sides of

the card.

Styling the Elements

The viewPort, which is the parent container in this component, plays a key role in the

cards’ behavior. Let’s take a look at the CSS:

 .viewPort {

      width: 200px;

      height: 260px;

      position: relative;

      margin: 0 auto 40px;

      border: 1px solid #CCC;

      perspective: 800px;

    }

In the preceding code, the viewPort is actually the container that sets the size of the

two-sided card. In our example we have a pixel width set, but in an example for a device

such as an iPhone, where this would be a full-screen treatment, the height and width

would simply be 100%. One additional key attribute in this declaration is the per
spective. The perspective is a property that sets the “apparent” distance of the

3D rendering. Technically, it is stating how many pixels the 3D image is away from the

view. We use the perspective to set the depth of our flip to match that of Apple’s

native card flip.

114 HTML5 HACKS



The card element is the div that actually gets flipped with a transition, so our original

transaction property is assigned to this element in our CSS:

.card {

      width: 100%;

      height: 100%;

      position: absolute;

       transition: transform 1s;

        transform-style: preserve-3d;

        transform-origin: right center;

}

Take special note of the transforms within this declaration. We set the transform style

to 3D in order to have access to the x-, y-, and z-axes. Our transform origin sets the

distance our element is from the “origin” or nucleus of the transform. In this case, we

want our rotation to stay to the right and centered. Last but not least, on this element

we set the transition attribute. We specify the property that gets transitioned (in

this case, the transform) and the time duration, which is one second.

Since the card is the element that’s getting the transition, we need to specify the value

we are transitioning to. In this case, we start at right center, and we set an additional

class name on the card element to define the new transform property, which is where

we are transitioning:

.card.flipped {

    transform: translateX( −100% ) rotateY( −180deg );

}

Our transform started at right center, and transitioned to our end point of −100% on

the x-axis and rotated −180 degrees on the y-axis. The transition happens when we

add the new class to our card element, which will leave us with markup that looks like

this:

<div class="viewPort">

    <div id="card" class="card flipped">

        <div class="frontView">HTML5 Hacks</div>

        <div class="backView">Rocks!</div>

    </div>

</div>

This simple transition is what gives us the appearance of the card flip.

The last two elements in our component are the front and back of the cards. Surpris-

ingly enough, there isn’t a whole lot of CSS to each card:

.card .frontView, .card .backView {

      height: 100%;

115CHAPTER 2: HACKING WITH STYLE



      width: 100%;

      background: black;

      line-height: 260px;

      color: white;

      text-align: center;

      font-weight: bold;

      font-size: 5em;

      position: absolute;

      backface-visibility: hidden;

    }

    .card .backView {

      -webkit-transform: rotateY( 180deg );

       transform: rotateY( 180deg );

    }

There are really only two “functional” CSS attributes on these elements to call

attention to here. The first applies to both elements, and is the attribute backface-
visibility. The backface-visibility defines whether you can see the element

inverted when you turn it around, or whether the element disappears. The default is

visible, so in order to not have our divs bleed through when the card is flipped, we

will set this attribute to false.

The second attribute applies to the back of the card only. We set a simple rotateY
transform of 180deg. This turns the back around completely, and our positioning al-

lows the two cards to occupy the same space, thus appearing as the front and back

of the same card. You may be wondering whether we need to switch up the transform

when we flip the card. Well, we don’t. This is a great example of how to build a complex

context with transforms. We have a nested transform where the card has a transform,

and then the back face of the card inside it also has a transform. In this scenario, the

back face of the card will always have a 180-degree rotation from the front of the card,

and only the parent card is flipped back and forth to control which of the card faces is

shown.

Putting It All Together

We have all the ingredients of a traditional iOS card flip. All we are missing are a few

lines of JavaScript that we can call to tell the card when to flip. For this scenario, I’ve

added a button to the bottom of the page with the controls class, and this JavaScript:

116 HTML5 HACKS

 
 

 
 



HACK 26

document.querySelector('.controls').addEventListener('click',

  function(){

    var elem = document.querySelector('.card');

    elem.className = (elem.className == 'card')?'card flipped':'card';

});

This simple listener will add the flipped class to the card element if it doesn’t have

the class, and will take it away if it does. Figure 2-46 shows how our pure CSS card flip

looks now.

Figure 2-46. 

iOS-style card flip re-created in CSS using CSS3 transforms and CSS3 transitions

Now we have a good, old-fashioned iOS card flip.

Use Respond.js to Polyfill CSS3 Media
Queries in IE

Media queries are key to developing a responsive design, which can be problematic

for browsers and phones that don’t yet support the feature. Respond.js was developed

to fill that need. Now you can build a responsive website from which everyone can

benefit.

Responsive design can be an efficient way to build websites. Instead of writing one

website, one mobile website, and one tablet website, you just write one website that

works well on all devices. One of the foundational tools of responsive design is CSS

media queries, but unfortunately media queries don’t work in Internet Explorer ver-

sions earlier than IE 8. That’s a problem for us web standards folks. The basic principle

of modern web standards is to write an application once, and have it function on all

standards-based web browsers. The lack of web standards could severely hinder the

adoption of HTML5 features, as functional features such as media queries would have

no backward-compatible support in older browsers.

117CHAPTER 2: HACKING WITH STYLE



Luckily, God created polyfills. In the HTML5 community we talk a lot about these

wonderful things. A polyfill is a traditional web component, such as JavaScript or

Flash, which is used in place of an HTML5 feature when that feature is not supported

by the browser. This allows us to adopt HTML5 features as they arrive on the market,

and still hold true to our web standards principles.

Media queries now have a first-class polyfill as well, and it’s called Respond.js. Devel-

oped by Scott Jehl, Respond.js is a JavaScript polyfill that recognizes when media

queries are not supported, and runs a script that loops through the content of your

CSS file and identifies the media queries being implemented. The script actually uses

Ajax to load a version of the CSS file as text so that it can parse it and interprets the

CSS inside the conditional media query rules. The script then listens for the appro-

priate width and height changes on your window and applies the CSS according to the

rules you defined in your media queries. It’s that easy!

Just Add JavaScript

The implementation couldn’t be simpler. Use the media-query-based CSS that you

would normally use for your responsive website, and after you have added your CSS

<link> tags, add this small JavaScript file into your <head> tag:

<head>

    <meta charset="utf-8">

    <title>Respond JS Test Page</title>

    <link href="test.css" rel="stylesheet">

    <link href="test2.css" media="screen and (min-width: 37.5em)"

    rel="stylesheet"> <!-- 37.5em = 600px @ 16px -->

    <script src="../respond.src.js"></script>

</head>

Let’s take a look at the results. In Hack #16  we built a rad responsive website with media

queries, and if you have an HTML5 browser, the website will work great (see

Figure 2-47).

Now let’s look at the same site in IE 8 (see Figure 2-48).

The problem with our website is that it doesn’t service all our visitors, because many

of them surf the Web with a browser that doesn’t support media queries. So let’s add

our script tag to the head of our page, and load the page again (see Figure 2-49).

118 HTML5 HACKS



Figure 2-47. 

Our responsive website as viewed in the Google Chrome browser, version 15

Figure 2-48. 

Our responsive website as viewed in Microsoft Internet Explorer version 8

119CHAPTER 2: HACKING WITH STYLE



Figure 2-49. 

Our responsive website as viewed in Microsoft Internet Explorer version 8 after adding Respond.js to
the page

I told you it was easy!

Caveats and Quid Pro Quo

There are a few keys to achieving success with Respond.js. First, you will want to place

the respond.js file directly after your last CSS <link> tag. If you give your browser

time to load content before loading the respond.js script, your non-HTML5 users will

likely see a flash of improperly styled content. This isn’t a functionality issue, as the

site will fix itself once the respond.js file is run, but it could be a negative or confusing

loading experience for your users. Second, keep in mind that Respond.js is specifically

designed to polyfill media queries based on height and width. If you have your media

queries set to orientation, this library won’t help. The media attributes on link ele-

ments are fully supported, but only if the linked stylesheet contains no media queries.

If it does contain queries, the media attribute will be ignored and the internal queries

will be parsed normally. In other words, @media statements in the CSS take priority.

Additionally, Respond.js works by requesting a pristine copy of your CSS via Ajax, so

if you host your stylesheets on a CDN (or a subdomain), you’ll need to upload a proxy

page to enable cross-domain communication.

A full list of implementation details and instructions for setting up a proxy page for

CDNs is available on the Respond.js GitHub page.

120 HTML5 HACKS

https://github.com/scottjehl/Respond


HACK 27 Control Mobile Layout with the viewport
<meta> Tag

Browser makers have conformed to the use of a <meta> tag that helps your mobile

and small-screen devices load a page as the author desired. This one tag can be the

difference between a viewable website and one that is “made for mobile.”

When smartphones with fancy HTML5 browsers hit the market, they opened up the

Web at a whole new level. After years of being limited to a WAP (Wireless Application

Protocol)-based Web of limited markup on alternate versions of sites, we now had the

entire Web accessible from the palm of our hand. Smartphones generally adopted a

technique of scaling the entire page down so that it would fit on a small screen (with

limited pixels). Basically, the average 920 px website would be scaled down to 320 px

(or whatever the device’s pixel width happened to be).

Browser makers wanted to encourage developers to build interfaces with appropriate

screen sizes, so they introduced a few new tags that aren’t sanctioned by any stand-

ards group, but are generally agreed upon by browser makers. One of the most com-

mon, and generally most useful, tags is the viewport <meta> tag.

The viewport <meta> tag addresses the problem of avoiding the auto-scale feature

on smartphones for websites that are designed for viewing at a specific scale. Let’s

take a look at the tag:

<meta name="viewport" content="width=device-width,initial-scale=1.0">

</meta>

This <meta> tag, like all <meta> tags, should be a child of the <head> tag. It follows

the pattern of other HTML <meta> tags by having a name and a content attribute.

The content attribute holds some or all of the following properties:

width

The width of the viewport in pixels

height

The height of the viewport in pixels

initial-scale

The viewport’s initial scale as a multiplier

minimum-scale

The minimum amount that the viewport can be scaled

maximum-scale

The maximum amount that the viewport can be scaled

121CHAPTER 2: HACKING WITH STYLE



user-scalable

Defines whether the user can scale the page (through pinch and zoom)

This tag also allows you to specify characteristics of your site and control the presen-

tation for your visitors. A picture is worth a thousand words, so let’s take a look at an

example. Figure 2-50 shows a responsive web page with the <meta> tag, and

Figure 2-51 shows the same page without the <meta> tag.

Figure 2-50. 

Sample web page designed for a mobile phone and using the viewport <meta> tag as viewed on an
iPhone 4s Safari browser

We’re aiming to control a few key aspects of our design. First and most noticeably is

the initial-scale property. This property is set to 1.0, which means there is no

scale on the page, and one pixel is equal to one pixel. The second property is width,

which we set to device-width (note that some devices, such as Windows Phone 7,

override device-width to a standard width for that phone). This tells our page that

the viewport will be set to the width of our device’s screen. This is particularly helpful

in designs that are set to 100% width. The width can be set to clearly constrain the

page.

One property I did not include in this tag is the user-scalable property, set to no.

Many websites use this parameter to disable pinch and zoom. Although the text is

significantly larger, it may not be large enough for some users. I want to leave the

122 HTML5 HACKS



Figure 2-51. 

Sample web page designed for a mobile phone without the use of the viewport <meta> tag as
viewed on an iPhone 4s Safari browser

option for them to zoom in further if necessary. Generally, I leave the pinch and zoom

feature on, unless I am using pinch and zoom for something else on the page (such

as zooming into a map). You’ll find this property set to no quite often, but for my users’

sake, I try to leave it on whenever possible.

Will the Real HTML5 Spec Please Stand Up?

If you caught it earlier, I mentioned that this particular feature wasn’t originally a

specification, but more a convention agreed upon by browser makers. Due to the lack

of standardization, there is a deviation in how some of these features are supported

among different devices. Luckily, browser makers are on our side and they like to see

conventions become standards. Fortunately, along came the W3C standard for view-

port properties.

The big surprise was that instead of using a <meta> tag, the W3C decided to make

the feature part of the CSS3 specification and call it CSS device adaptation. The good

news is that it’s still just as easy to implement. The W3C even walks you through an

easy conversion from <meta> tag to CSS declaration on its spec.

123CHAPTER 2: HACKING WITH STYLE

http://dev.w3.org/csswg/css-device-adapt/


From a high level, device adaptation is fairly simple. Let’s look at how we would declare

the same <meta> tag we’ve been using for this hack:

@viewport {

    width: device-width;

    initial-scale=1.0"

}

The viewport property can be placed inside a style block on the page, or on any

stylesheet. It can even be wrapped in a media query. I encourage you to review the

specification before implementing it, as some of the property names have changed

slightly. At the time of this writing, the specification is so new that I hesitate to print

the specific properties, as they are subject to change.

124 HTML5 HACKS



HACK 28

3
Multimedia Hacking

HTML5 introduces new native multimedia functionality that upgrades audio and video

elements into first-class elements. Because they are native elements (as opposed to

plug-ins), they can be styled with CSS, can be accessed via JavaScript, and will utilize

the GPU.

In addition to being flexible, this functionality is also easy to use—in most cases it’s

as easy as embedding an image in the page. HTML5 audio and HTML5 video have very

similar implementation methods and very similar JavaScript APIs. Although most of

this chapter presents hacks that utilize HTML5 video, take note that many of the same

hacks can be performed with the audio element as well. The API for “play” on a video

element is the same as the API for “play” on an audio element.

If there is anything to get excited about in HTML5, it’s how web developers have been

freed from using “browser plug-ins” to deliver multimedia. Gone are the days of users

having to download and install a different plug-in for every website just to view a video

clip.

Embed Video Directly in Your Application
with HTML5 Video

Video is now mainstream in HTML5. Forget plug-ins, forget supporting video players,

and welcome to the world of native video through HTML5. See why it’s such a big deal

to have video as its own page element.

What’s the big deal with HTML5 video? We’ve been playing video on the Web for years.

The answer is that the Web is changing. In years past it was pretty easy to predict what

technologies your users would support when they came to your website: the site could

use Flash, or Silverlight, or any other technology website developers could find to

make it work.

In today’s world of desktop cell phones, tablets, and e-readers all sharing the same

Web, it’s important to standardize on a format for video and audio that all players can

125



consume. This need has really come to a head with Apple directly excluding plug-ins

such as Flash and Silverlight in order to better control battery and power consumption

on iOS devices. This in turn has thrust HTML5 video into the mainstream. On today’s

Web, if you want to support all your users HTML5 video is essential.

Writing the Code

HTML5 video isn’t just flexible; it’s also easier for developers to implement. You

can place HTML5 video on your page with a simple tag. Let’s look at a sample

implementation:

<video width="320" height="240" autoplay="autoplay"

  poster="examples/sanfran.jpg" source="examples/sanfran.m4v">

</video>

The preceding code will cause your video to appear on the screen as shown in

Figure 3-1.

Figure 3-1. 

Google Chrome rendering a page with the HTML5 <video> tag

You’ve got quite a bit of control built directly into the tag itself. Let’s look at the most

common attributes:

126 HTML5 HACKS



width and height

With these attributes you can set the size of the video directly in the tag itself.

These attributes will determine what size the embedded video is on the page, not

the size of the file you are loading. The height and width do not necessarily need

to match the original source. These attribute values are represented in pixels,

which equates to stating “340” and not “340 px.” You can set height and width

with CSS to return the same results.

controls

Setting the controls attribute allows you to hide or show the native controls for

your video. The default is set to show. You may want to hide the controls if you’re

going to build your own controls with JavaScript.

autoplay

This attribute sets your video to start playing as soon as the source is ready. It

defaults to off (thank God). I beg you to not use this parameter on your website’s

home page.

autobuffer

This is similar to autoplay but without actually playing the video. This attribute

defaults to off. Once the source is located, turning on autobuffer causes the

video to start downloading, so it can be played as soon as the user initiates it. This

is another attribute to use with caution, as it will use the data plan of your mobile

users. Only use this attribute when you’re fairly confident your users are going to

start the video.

poster

This attribute allows you to set a path to an image you want to use as your video

poster board. This is the image that represents the video to your users before it

starts playing, and it is often a screen capture from the video itself. If you don’t

have a poster board set, the first frame of the video will be used to represent the

image, once that frame is loaded.

loop

This attribute allows you to set your video to start over again once it reaches the

end. The default value is off.

As you can see, there is a lot of flexibility in the <video> tag itself. Video can be a

powerful way to get a message across, but be cautious about using some of these

attributes as the added flexibility could result in adverse experiences for your users.

127CHAPTER 3: MULTIMEDIA HACKING



HACK 29

Video As a First-Class Element

HTML5 <video> tags finally give you native control over your video. Unlike embedded

objects such as Flash objects, HTML5 <video> tags can be treated just like any other

element on your page. One of the greatest advantages of this is the ability to control

the element with CSS. Just as with any other element on the page, your <video> tag

can have borders, text color (for subtitles), opacity, or any other CSS characteristic.

In addition, <video> tags provide JavaScript APIs that give you added functionality.

You can use JavaScript to start, stop, buffer, skip ahead, or control your video in other

ways. This allows you to build your own custom controls for your videos, or even build

a more advanced buffering system for loading videos.

As a first-class element, the HTML5 <video> tag also gives you access to the data

loaded onto your page. Plus, <video> tags can interact with other page elements such

as the canvas element, which would allow you to do frame-by-frame exports from

your <video> tag onto the <canvas> tag, which could in turn be manipulated to per-

form other functions. Be careful when using the <video> tag, though, as security

measures are built into the HTML5 canvas element which limit you from importing

video from a different origin into your canvas file.

Choose the Right Codecs for Your
Video Files

Unfortunately for the Web, one video file type still doesn’t “rule them all.” In this world

of different browsers supporting different codecs, be sure your videos can be viewed

on all your target browsers.

A video codec is basically an algorithm for a video compression format. Raw video

would be much too large in terms of file size to transport over the Web, so it must be

compressed for delivery. And browsers must support the codec of your encoded file

to be able to play the file. Now here comes the sad part. Today’s modern HTML5

browsers each support a subset of codecs, so there is no one video codec that can be

used to play your video on every browser.

You have to go through the work of encoding your video numerous times for different

browsers, but the good news is that you don’t have to write your <video> tag differ-

ently for each browser. Let’s start by looking at a traditional <video> tag with the

source of the video set as the src attribute of the tag:

<video width="320" height="240" autoplay="autoplay"

 poster="examples/sanfran.jpg" src="examples/sanfran.m4v">

</video>

128 HTML5 HACKS



The preceding code is nice and neat, but it only allows you to set one source for your

<video> tag. Let’s rewrite that tag to set the source as its own tag:

<video width="320" height="240" autoplay="autoplay"

 poster="examples/sanfran.jpg">

    <source src=examples/sanfran.ogv type=video/ogg>

    <source src=examples/sanfran.mp4 type=video/mp4>

    Your browser does not support the video tag.

</video>

This nested tag is the <source> tag. This tag is used specifically to set multiple sour-

ces for media tags. Your browser will play the first video file in the list of <source> tags

that it supports. If no supported sources are found, you will have a blank <video> tag.

The text we included inside the <video> tag is for non-HTML5 browsers. If the browser

doesn’t recognize the <video> tag, it will fall back to show the text.

Which Codecs to Support

Now here comes the hard part: figuring out which codec you need to support. Let’s

look at the most popular codec types on the market, and the pros and cons of each:

H.264 (MP4)

Apple Safari and Microsoft Internet Explorer support this codec. This is not a free

codec. At the time of this writing it is released as a royalty-free codec, but since

a governing group controls it (of which Apple is a part), the policy could change

at any time. This is the basis for reluctance among other browser makers to adopt

support for this codec. In version 9, Google Chrome has also started to support

this codec, which makes it even more viable as a web codec.

OGG/Theora

This is truly a free, open-standard codec. Its downside is the lack of supporting

tools. Since none of the big browser makers support it, there aren’t a lot of tools

out there to do the encoding for the video files. At the time of this writing, Firefox,

Opera, and Google Chrome support this codec.

WebM

This format is based on the VP8 codec that is owned by Google. This is a high-

quality form of compression that is free and open source, which makes WebM a

good web codec. However, since Google owns the codec, it potentially could

change the open source status of the project in the future. Almost every browser

maker supports this codec. Apple Safari browsers don’t support this codec in any

shape or form.

129CHAPTER 3: MULTIMEDIA HACKING



HACK 30

Aren’t you glad that the standard supports more than one source file at once? As there

is no one codec that is supported by all major browsers, it’s necessary to provide at

least two different files to cover all major browsers. To be compatible with Apple and

Internet Explorer browsers, you must support H.264, and then either OGG or WebM

can be used to cover the other browsers.

Create Custom Video Controls with
Video APIs

It’s great that HTML5 video comes with its own controls, but at times they don’t meet

the needs of your application. Learn how to use the HTML5 video APIs to create your

own controls in JavaScript.

It’s fantastic to have built-in controls in every video element. However, in some cases

the default controllers just don’t meet your needs. For those cases, the HTML5 <vid
eo> tag provides a rich set of APIs that you can control through JavaScript. These

APIs are flexible enough to allow you to build an entirely new set of controls for your

video. Let’s look at some of the more relevant controls.

Before building out the JavaScript code, let’s start with some basic markup. We’ll have

a video element and a list of buttons below it:

<video id="myVideo" width="400" height="200" autoplay="autoplay"

poster="../sanfran.jpg" src=" examples/sanfran.m4p "></video>

<button class="button skipBack">skip back</button>

<button class="button stop">stop</button>

<button class="button play">play/pause</button>

<button class="button skipAhead">skip ahead</button>

<button class="button volumeUp">volume up</button>

<button class="button VolumeDown">volume down </button>

So we’ve got our basic markup for our video. Now we want to start building out our

custom controls. Then, once our custom controls are ready, we’ll remove the native

controls from the video element. To build out these controls, we’ll start by building a

JavaScript reference to our video element:

var myVideoEl = document.querySelector('#myVideo');

130 HTML5 HACKS



It’s important that we build a reference to this element so that we can use the reference

instead of going back to the DOM (Document Object Model) every time. Now that we

have the video element identified, we will use it to call out custom controllers. The

code should look something like this:

myViedoEl.play();

myVideoEl.pause();

myVideoEl. currentTime

If we were going to use the same controls we have access to in the HTML5 element,

there wouldn’t be any point in building custom controls: we would just use the ones

provided for us. So we’re going to provide some special features. Let’s start with the

easy ones, the Play and Pause controls:

//ref to my video tag

var myVideoEl = document.querySelector('#myVideo');

//add listeners to the play pause button

document.querySelector('.play').addEventListener('click',function(e){

         if(myVideoEl.paused === true){

                        myVideoEl.play();

         }else{

         myVideoEl.pause();

}

)};

In the preceding code we added a listener to the button that checks to see if the video

is paused. If it is paused we start to play the video, and if it is not paused we pause the

video. This provides us with the play and pause functionally through our toggle button.

Next we want to add the Stop button. HTML5 video does not have a true stop capa-

bility, so we need to build it. In this case, we are assuming that stop means stop: we

will not only stop playing the video (pause it), but also stop loading it. The easy way

to do this is to remove the source reference of the <video> tag programmatically.

Let’s add another listener to our JavaScript to perform the stop:

document.querySelector('.stop').addEventListener('click',function(e){

         myVideoEl.src = '';

})

This will stop the video from playing, as well as stop the data from downloading. But

when the user hits Play again the video needs to start again. So, since we removed the

source of our video element, let’s go back into our play/pause function to add a few

lines of code to address this:

131CHAPTER 3: MULTIMEDIA HACKING

 
 

 
 



document.querySelector('.play').addEventListener('click',function(e){

         if(myVideoEl.currentTime == 0){ //we know it is stopped

myVodelEl.src = 'examples/sanfran.m4p'

}

         if(myVideoEl.paused === true){

                        myVideoEl.play();

         }else{

         myVideoEl.pause();

}

)};

Now when the Play and Pause buttons are hit the source will be added back into the

video element if it’s empty.

The next two buttons in our control bar will be treated similarly. These buttons are the

Skip Forward and Skip Back buttons. For our example we will skip five seconds forward

in the video or five seconds back. Again, we will control these buttons by adding a few

lines of JavaScript to what was previously illustrated:

document.querySelector('.skipAhead').addEventListener('click',

     function(e){

         myCurrentTime = myVideoEl. currentTime;

         myVideoEl.currentTime = myCurrentTime+5;

})

document.querySelector('.skipBack').addEventListener('click',

    function(e){

         myCurrentTime = myVideoEl. currentTime;

         myVideoEl.currentTime = myCurrentTime-5;

})

For skipping through our video, we simply use the currentTime API to get the current

time of the video being played, and then we update the currentTime to be the current

value plus or minus five seconds.

Our last two buttons are the volume controls. Volume is represented as a positive

numeric value between 0 and 1. Our volume controls will simply increment in fractional

numbers. Let’s take a look at the code:

document.querySelector('.volumeUp').addEventListener('click',

     function(e){

         var myCurrentVolume = myVideoEl. volume;

         if(myCurrentVolume >0){

         myVideoEl. volume = myCurrentVolume -.1;

132 HTML5 HACKS



}

})

document.querySelector('.volumeUp').addEventListener('click',

    function(e){

         var myCurrentVolume = myVideoEl. volume;

         if(myCurrentVolume <1){

         myVideoEl. volume = myCurrentVolume +.1;

}

})

So there we have it. Let’s compile all our JavaScript together and review:

var myVideoEl = document.getElementById('myVideo');

document.querySelector('.play').addEventListener('click',

     function(e){

         if(myVideoEl.currentTime == 0){//we know it is stopped

myVodelEl.src = 'examples/sanfran.m4p';

}

         if(myVideoEl.paused === true){

                        myVideoEl.play();

         }else{

         myVideoEl.pause();

}

)};

document.querySelector('.stop').addEventListener('click',

     function(e){

         myVideoEl.src = '';

})

document.querySelector('.skipAhead').addEventListener('click',

     function(e){

         myCurrentTime = myVideoEl. currentTime;

         myVideoEl.currentTime = myCurrentTime+5;

})

document.querySelector('.skipBack').addEventListener('click',

     function(e){

         myCurrentTime = myVideoEl. currentTime;

         myVideoEl.currentTime = myCurrentTime-5;

133CHAPTER 3: MULTIMEDIA HACKING



})

 document.querySelector('.volumeUp').addEventListener('click',

      function(e){

         var myCurrentVolume = myVideoEl. volume;

         if(myCurrentVolume >0){

         myVideoEl. volume = myCurrentVolume −1;

}

})

document.querySelector('.volumeUp').addEventListener('click',

     function(e){

         var myCurrentVolume = myVideoEl. volume;

         if(myCurrentVolume <10){

         myVideoEl. volume = myCurrentVolume −1;

}

})

Now that we have run all our JavaScript on the page, one problem still remains. We

have two sets of controls: our new controls and the default controls. Since we have

our new controls built out, we will add one additional line of JavaScript to turn off the

default controls of this <video> tag:

 document.getElementById('myVideo').controls = false;

After adding the markup, our JavaScript, and a few lines of CSS to pretty it up, we

have new video controls that meet the needs of our application. Figure 3-2 shows the

results.

134 HTML5 HACKS



HACK 31

Figure 3-2. 

Video element with custom controls built on top of our HTML5 video element APIs

A Word About Audio

We’ve focused completely on <video> tags for this hack, but we don’t want to neglect

the fact that HTML5 audio fits into the same specifications as the <video> tag

(HTMLMediaElement), so the same APIs exist for audio as they do for video. We can

swap out our <video> tag for an <audio> tag, and all the same controls will work.

Replace the Background of Your HTML5
Video with the <canvas> Tag

With HTML5 video, a <canvas> tag, and a little bit of JavaScript you can make

Hollywood-style (I’m using the term loosely) effects on your video in real time.

Being able to play video directly on your web application is pretty cool, but being able

to manipulate that same video in real time is awesome. We’ve all see the green screen

effects from “making of” videos in which an actor is filmed in front of a green screen,

and then a new background is composited into the shot to make it look like the actor

is kung-fu fighting at the top of the Golden Gate Bridge, or something cool like that.

We’re going to accomplish the same thing with a <video> tag, two <canvas> tags,

and a few lines of JavaScript.

To get started we’ll look at our markup, and then walk through how each component

is used:

135CHAPTER 3: MULTIMEDIA HACKING



<div class="row">

  <div class="span5">

    <video id="sourceVideo" src="/examples/video.ogv" controls="true">

    </video>

    <canvas id="hiddenCanvas" width="320" height="192"></canvas>

  </div>

  <div class="span5">

    <canvas id="displayCanvas" width="320" height="192"></canvas>

  </div>

</div>

We basically have three page elements to work with, and each has a key role in our

“production.”

Source Video

The source video is the video we start with. It’s basically a video of a rascally little boy

on a green background. The source video will be played and the pixels from each frame

will be pulled out and displayed on our first <canvas> tag for processing. Figure 3-3

shows a frame from our source video to give you an idea of what we will be working

with.

Figure 3-3. 

Screen capture from our video file showing a young boy in front of a green background

Hidden Canvas

The hidden canvas is where the source video will be dumped frame for frame. Our

JavaScript will pull each frame from the video source and write it to this <canvas>
tag. This gives us a 2D context of data for us to do pixel-level analysis.

136 HTML5 HACKS



Display Canvas

The display canvas is the canvas we actually see. As we play our video and copy the

frames to the first <canvas> tag, we will pull that pixel-level data from the first canvas

and analyze it to find the green screen portion of our video. The identified green pixels

will then be removed and replaced with transparent pixels, allowing the background

already set on this canvas to shine through. We will initially set our <canvas> tag to

the background shown in Figure 3-4.

Figure 3-4. 

Background image set on the display <canvas> tag before the video data is overlaid

The Nuts and Bolts

We have our markup and we have identified the HTML5 elements we will be using for

our application. Now we need to put together the JavaScript that will make all of this

work. This JavaScript will reside in the script tag at the bottom of our page.

First we need to make pointers to each element. We also need to create pointers to

the 2D content of our <canvas> tags. The 2D content is the “surface” of our <can
vas> tag that we will be moving data into and out of.

var sourceVideo = document.getElementById("sourceVideo");

var hiddenCanvas = document.getElementById("hiddenCanvas");

var displayCanvas = document.getElementById("displayCanvas");

var hiddenContext = hiddenCanvas.getContext ("2d");

var displayContext = displayCanvas.getContext ("2d");

Now we need to set up our listener on the video element so that we know when the

video starts playing. This will start running the JavaScript we will lay out in a moment,

but first let’s set that listener:

sourceVideo.addEventListener('play', function(){runAnalysis()});

137CHAPTER 3: MULTIMEDIA HACKING



With our environment set up, we need to build a function that will make sure the video

is playing. We do this by determining that the state of the video is not paused or ended.

We will then invoke a new method called frameConversion, which will run our video

conversions. Finally, we will make this a self-calling method so that it will loop through

itself until the video is paused or ended.

runAnalysis: function() {

    if (sourceVideo.paused || sourceVideo.ended) {

    return;

    }

    frameConversion();

    setTimeout(function () {

        runAnalysis();

    }, 0);

  },

The next method is where all the magic happens. This is where we grab the video data,

run the analysis, replace the pixels, and write it to our display canvas. We then do it

over and over again.

var frameConversion = function(){

  hiddenContext.drawImage(sourceVideo,0,0,sourceVideo.videoWidth,

  sourceVideo.videoHeight);

  var frame = hiddenContext.getImageData(0,0,sourceVideo.videoWidth,

  sourceVideo.videoHeight);

    var length = frame.data.length;

    for (var i =0; i <length; i++){

            var r = frame.data [i * 4 + 0];

            var g = frame.data [i * 4 + 1];

            var b = frame.data [i * 4 + 2];

     if(g>110 && g<200 && r<190 && r>100 && b<200 && b>110){

         frame.data[i * 4 + 3] = 0;

        }

     }

    displayContext.putImageData(frame, 0, 0);

    return

};

Our frame conversion method is called repeatedly from the initial setup method. We

could streamline and improve the performance of this application in a number of ways,

but for the sake of simplicity we will leave it as it is.

138 HTML5 HACKS



HACK 32

The Results

So, we have our video feeding into our <canvas> tag, then running analysis on the

data in that canvas which we process and display on our display canvas. We started

with our rascally little boy video and our background image, and we ended with the

wonderful Hollywood-style production shown in Figure 3-5.

Figure 3-5. 

Our display canvas with our background image overlaid with our processed video source

As you can see, putting different HTML5 elements together can result in powerful

effects. A green screen tool is just the beginning of what you can create.

Add Subtitles to Your HTML5
Video Element

Video can be a powerful communications tool for the Web, but to fully reach your user

base, your <video> and <audio> tags need to be accessible. HTML5 provides you

with easy-to-implement subtitles through the new <track> tag, and WebVTT files.

Subtitles can be amazingly beneficial for web-based video files. Primarily, subtitles

are important for hearing-impaired users who may be able to watch your video, but

without subtitles wouldn’t know what was being said. Subtitles can also be used to

provide multilingual assistance. If your video is in English, you can provide Spanish,

French, and German subtitles to allow non-English speakers the opportunity to enjoy

the content as well.

139CHAPTER 3: MULTIMEDIA HACKING



As an auxiliary benefit, you may also be helping the “speaker-impaired.” Speaker-

impaired users are people like me, who lost the power supply from their desktop

computer speakers and refuse to buy a new one because they’re going to find it one

of these days. If my computer sound doesn’t work, subtitles can help me, too!

Easy Implementation

Subtitles are one of the easiest features to implement. You simply add a <track> tag

as a child of your <video> tag, and add a few attributes to it. Let’s take a look at the

<track> tag as it appears in our markup:

<video id="myVideo" width="320" height="240" controls="controls"

poster="examples/sanfran.jpg" src="examples/sanfran.m4v">

<track src="/examples/subtitles.srt" default="true" kind="subtitles"

 srclang="en" label="English"></track>

</video>

Here’s a description of each attribute:

src

This is the common attribute used in HTML to point to a source file. In this case,

it points to a VTT file (more on that in the next section).

default

One of your track elements can have this attribute set for each video element.

As the name implies, it identifies the default track for that video element. If more

than one track element has this attribute within a video file, the first one in the

list will be identified as the default track.

label

This attribute identifies the title to be used for the track (think “English” instead

of “en”).

kind

This identifies the track file type. Its properties can be any of the following:

• Captions

• Chapters

• Descriptions

• Metadata

• Subtitles

140 HTML5 HACKS



srclang

This specifies the language of the track. The value must be a valid language code

and is a required attribute if the track is of type subtitle.

The VTT File

The subtitles are actually stored in the WebVTT file that is referenced in the <track>
tag. WebVTT stands for Web Video Text Tracks and is a fairly simple file to format. Let’s

look at our sample file:

1

00:00:01.000 --> 00:00:05.000

This is the first line of text, displaying from 1-5 seconds

2

00:00:05.000 --> 00:00:11.000

And the second line of text

on two lines

The file contains cues. Each cue is numbered and has time settings in the format

hh:mm:ss.mmm. The subtitles will follow the time range. The preceding sample will

display the first cue from the first second to the fifth second of the video, and the

second cue from the fifth second to the eleventh second.

Putting it all together, your video subtitles will appear as shown in Figure 3-6.

141CHAPTER 3: MULTIMEDIA HACKING



Figure 3-6. 

Video file with subtitle captions from the VTT file

Karaoke Anyone?

Subtitles can also be presented with inline timing tags. These will present your sub-

titles in a “karaoke” or painted-on style. To accomplish this, we put timing tags within

each cue text as follows:

1

00:00:01.000 --> 00:00:05.000

<00:00:01.000>This is the first line of text, <00:00:03.000>displaying

from 1-5 seconds

This cue will present the first half of the cue at second one, and will paint on the second

line of the cue on second three (see Figure 3-7).

142 HTML5 HACKS



HACK 33

Figure 3-7. 

WebVTT file with timestamps displaying text one segment at a time

Summary

It’s recommended that you include track elements within all your <video> tags that

contain audio information. To increase the scope of your audience, it’s also good to

include multilingual subtitles if possible. The Web has no boundaries, and now your

HTML5 video files don’t either.

Beautify Your HTML5 Video Cues

Video cues are powerful, but they can be pretty ugly. Luckily, there’s a spec for that!

Style your HTML5 video cues with formatting, or even CSS.

Video cues are pretty simple out of the box. They appear as basic white text over your

video and show up when the timing from your WebVTT file dictates. The WebVTT

specification allows you to identify formatting for your cues, which gives you some

basic presentation formatting. Additionally, it allows you to utilize CSS for more ad-

vanced styling.

Let’s take a quick peek at what we are working with before we begin to spice it up (see

Figure 3-8).

143CHAPTER 3: MULTIMEDIA HACKING



Figure 3-8. 

HTML5 video file with basic WebVTT cues presented on the screen

Basic Formatting from WebVTT

Some basic formatting applies directly to video cues as part of the WebVTT specifi-

cation. Here are the key attributes:

D:vertical/D:vertical-lr

Changes the orientation of the text to be vertical or vertical with text from left to

right.

L:X

Determines the position from the top of the screen. This can be a value or a per-

centage. If it’s a percentage it will be positioned from the top of the video frame;

if it’s a value it will be placed on that line.

T:X%

Determines the position of the text horizontally. This is displayed as a percentage

only.

A:start/A:middle/A:end

Determines the alignment of the text within the frame.

S:X%

Determines the width of the text box on the video frame.

144 HTML5 HACKS



Each format should be placed beside the time range as follows:

 1

00:00:01.000 --> 00:00:10.000 A:middle T:50%

This provides your basic formatting. For more advanced styling let’s turn to CSS.

CSS Styling

For more advanced formatting, we can place format-friendly tags directly within the

cues of our WebVTT file. Let’s look at a sample:

00:00:01.000 --> 00:00:10.000 A:middle T:50%

Hello <b class="name">reader</b>, enjoy your <e>video</e>

HTML formatting is added directly into the text of the cue. Without any CSS styling,

the cue would be presented as plain text, as shown in Figure 3-9.

Figure 3-9. 

HTML formatting of text cue without any CSS styling

As you can see, the text was presented as HTML, where the tag elements are not

displayed. To spice up our formatting, let’s add some CSS that will make our cues

stand out:

145CHAPTER 3: MULTIMEDIA HACKING



.name {

    font-weight: 600;

      }

With our CSS, the formatted cue will now look like Figure 3-10.

Figure 3-10. 

WebVTT HTML-formatted cue with our CSS included which shows the word “reader” in boldface

Pseudoclasses Within a Track Cue

To easily identify the cue, you can use a CSS pseudoclass. Three pseudoclasses are

available:

::cue

::future

::past

The cue identifies the entire cue; the future and past are used to identify those states

of the cue text when an inline timing tag is used within the cue.

146 HTML5 HACKS



HACK 34

A set of attributes can be used within this pure text environment. The set is limited to

the following:

• 'color'

• 'text-decoration'

• 'text-outline'

• 'text-shadow'

• 'background'

• 'outline'

• 'font'

• 'line-height'

• 'white-space'

All other attributes will be ignored when applied to text inside a cue.

Use the Cuepoint.js Polyfill for Subtitles

At the time of this writing, IE 10 is the only HTML5 browser that supports subtitles.

This hack presents a great little polyfill that will bridge the gap on video tracks until

browsers catch up with our needs.

If you have read any of the past few hacks, you probably realize how powerful the track
element can be. Having a track of cues that accompany your video or audio files helps

you to comply with the Americans with Disabilities Act (ADA), translate your files into

multiple languages, and even simply enhance the message of your video.

From my perspective, track files are almost essential for audio and video within web

applications. That being said, we have a problem because, at the time of this writing,

all modern browsers support the HTML5 <video> and <audio> tags, but none sup-

port the use of subtitles with a track element. When an HTML5 feature isn’t natively

available within our browser, we as developers rely on HTML5 polyfills (the use of

JavaScript to backfill missing HTML5 functionality) to make the feature usable to all

our users.

Using Cuepoint.js

In comes Cuepoint.js. This is a neat little JavaScript polyfill that allows you to overlay

subtitles or other cues on top of your native HTML5 video files. It then uses the HTML5

147CHAPTER 3: MULTIMEDIA HACKING



video APIs to align the proper cues with the proper time markings on the video or

audio file. Cuepoint.js doesn’t rely on track elements pointing to WebVTT files like

our native subtitles do, but rather is controlled through a simple JavaScript

declaration.

Cuepoint.js relies on a systematic markup structure to identify the video file along

with the other necessary HTML elements. Let’s start our example by looking at our

necessary markup:

 <div id="cuePlayer" class="row">

    <video id="video" width="680" controls="controls"

     poster="examples/sanfran.jpg" src="examples/sanfran.m4v">

    </video>

    <div id="subtitles">An Easy polyfill</div>

</div>

We start with a wrapper div identifying our player with an id of cuePlayer. Inside

that are the two necessary elements: video with an id of video and an empty div
with an id of subtitles. From here there is only one more step to get it going. We

need to add a few lines of JavaScript. We’ll start by adding the cuepoint.js JavaScript

file to the page:

<script src="/assets/js/cuepoint.js" type="text/javascript"></script>

We’ll simply put this at the bottom of our page so that we can be sure our necessary

markup has already been loaded. Next we will write our configuration object in a script

tag directly below this file:

//Slides object with a time (integer) and a html string

var slides = {

0: "This is the first subtitle. You can put html in here if you like",

4: "Easy Cues for HTML5 Video.",

7: "An Easy polyfill",

}

//Start cuepoint and pass in our the subtitles we want

cuepoint.init(slides);

The configuration file consists of two components. The first is an array of paired values

that consists of a time marker and a string of text. That string can be plain text or

HTML markup. The second component is the initial method call in which you pass in

the reference to your array. For this example, I added a few lines of CSS that make the

subtitles overlay the video and provide a bit of smooth styling. Here’s the CSS for this

example:

148 HTML5 HACKS



#subtitles{

    position:absolute;

    bottom:40px;

    width:100%;

    height:40px;

    color:#FFF;

    line-height:40px;

    padding:0 20px;

}

#cuePlayer {

      overflow: hidden;

      position: relative;

}

#video {

          margin: 0 auto 10px auto;

          background: #555;

}

Once you add these components to your page, the results will look like Figure 3-11.

Figure 3-11. 

Video using the Cuepoint.js polyfill to support HTML5 video subtitles

149CHAPTER 3: MULTIMEDIA HACKING

 
 

 
 



HACK 35

Remember, it’s always important to use subtitles when your video has an audio track,

and Cuepoint.js allows you to provide that essential functionality to all your users,

regardless of the functionality of their browser.

Easily Build Audio-Rich Applications
with Buzz

The term sound effects is traditionally ostracized in the web app world and passed off

as cheesy and uncharacteristic. With the onset of highly metaphorical applications

and HTML5 gaming, being able to tastefully use audio on a website is becoming in-

creasingly necessary. Buzz is an HTML5 audio library that is designed to make that

implementation simple and lightweight.

Audio tags make a lot of sense if you’re embedding an audio sample into your web

application. If you’re building something like a library of podcasts, you may have a

page full of tags that appear as follows:

<div class="clipName">My new Pod Cast</div>

<div class="audio player">

  <audio controls src="mysoundFile.ogg" />

</div>

This is great because HTML5 provides all the necessary features, such as buffering

and controls. Gone are the days of building your own audio player in Flash or Java.

HTML5 provides this capability out of the box.

Now, if you want to use your audio files in a less traditional manner, the <audio> tag

may not meet all your needs out of the box. For example, if you wanted to have a sound

effect for page turns, or a buzzer go off in a game when the user chooses the wrong

answer, suddenly you need to start building a JavaScript framework for loading, man-

aging, and controlling your audio files. Luckily, Jay Salvat has provided a solution.

The Buzz Library

Buzz is a library that provides a set of APIs to help you manage all the creative uses

of audio in your applications. Best of all, it has a built-in polyfill to provide backward

compatibility for browsers that don’t yet support the HTML5 standard. To get an idea

of how impactful this can be to your application, visit Jay’s website to see his Buzz

demo. Figure 3-12 shows a screen grab from the demo.

150 HTML5 HACKS

http://buzz.jaysalvat.com/demo


Figure 3-12. 

Screen grab from the Buzz demo, which builds a simple game that tastefully utilizes audio files that
perform natively in almost all browsers

Using the Audio APIs

Jay allows you to simply call a JavaScript method that uses the HTML5 audio APIs to

manage your sound. Here is some sample code that shows how easy it is to implement

your sound files:

var mySound = new buzz.sound( "/sounds/myfile", {

    formats: [ "ogg", "mp3", "acc" ]

});

mySound.play()

    .fadeIn()

    .loop()

    .bind( "timeupdate", function() {

       var timer = buzz.toTimer( this.getTime() );

       document.getElementById( "timer" ).innerHTML = timer;

    });

In this example we are simply starting a new sound and letting Buzz determine what

version of the file it should load. We then play the file, which will dynamically load the

sound if it hasn’t done so already, fade it in, set it to loop, and start it on a simple timer.

You can easily use this code in any of your JavaScript applications.

151CHAPTER 3: MULTIMEDIA HACKING



Using the Buzz APIs

Buzz has a lot to offer—in fact, too much to cover in this hack—so we will only look at

some of the highlights of the library. I encourage you to visit the online documentation

for a detailed list of all available APIs.

The documentation is divided into four sections. Let’s look at some of the highlights

of each.

Buzz

This is the nuts and bolts of the library. Buzz handles loading the library, the methods

that determine what file type to utilize for each browser, and preparing the audio files.

This code example shows how easy it is to create a single new audio file, or a whole

group at once:

//a single file

var mySound = new buzz.sound("/sounds/mysound.ogg");

//a group of files

var myGroup = new buzz.group([

    new sound("/sounds/mysound1.ogg"),

    new sound("/sounds/mysound2.ogg"),

    new sound("/sounds/mysound3.ogg")

)}

Sound

Sound provides the APIs for utilizing the sounds. It provides some nice options on top

of what we get from HTML, such as fade and stop (as opposed to just pause). Each

method from this group is preceded with the sound. prefix. Here are some common

API calls:

mySound.load();

mySound.pause();

sound.loop/sound.unloop();

sound.increaseVolume( [volume] )

This library of easy-to-implement methods can be embedded directly into your

HTML5 applications.

Group

Group provides the APIs for managing groups of data files. The methods in this section

all have the prefix group.. Here are some popular sample calls from the API:

152 HTML5 HACKS

http://buzz.jaysalvat.com/documentation/buzz/


//playing all loaded sound files

var mySound1 = new sound("/sounds/mysound1.ogg"),

    mySound2 = new sound("/sounds/mysound2.ogg"),

    mySound3 = new sound("/sounds/mysound3.ogg");

buzz.all().play();

yGroup.play();

yGroup.pause();

Events

The inclusion of events is a big boost in the usefulness of this library. Events are inte-

grated into the core of JavaScript, so being able to use them with your audio files

becomes a very natural thing. These events are helpful when you are attaching visual

features or other audio features to the implementation of audio. Let’s look at a few

events from Buzz:

• abort

• canplay

• canplaythrough

• dataunavailable

• emptied

• empty

• ended

• error

• loadstart

• end

You can attach a listener to each of those events with a line of JavaScript:

mySound.bind("loadeddata", function(e) {

    document.getElementById('loading').style.display = "none";

});

Implementing Buzz

To implement Buzz in your web application, simply call the JavaScript file and make

a few API calls. Your script tag should look something like this on your page:

<script src="/js/buzz.js"></script>

153CHAPTER 3: MULTIMEDIA HACKING



HACK 36

Audio has gotten a bad rap over the years, but what’s old is new again. Users have new

expectations as to what they get from HTML5 apps. Don’t be afraid to pull Buzz into

your app, and play sounds when the app calls for it. Be creative again!

Simplify Your HTML5 Media with
MediaElement.js

HTML5 media is generally easy to implement, but with flexibility comes complexity.

MediaElement.js was made to bring simplicity back to even the most complex of mul-

timedia environments.

This hack was provided by John Dyer, creator of MediaElement.js. John is a long-

time web developer and is currently the director of Web Development at Dallas

Theological Seminary.

In my own situation, I had a backlog of several thousand older H.264-encoded MP4s

that couldn’t easily be re-encoded to WebM. I wanted to use the HTML5 API, but to

do so, I needed a cross-browser way to support H.264 playback with a consistent API.

To make this happen, I created MediaElement.js, a JavaScript library that helps all

browsers from IE 6 and later think they support HTML5 and H.264 playback.

To get started, go to MediaElementJS.com and download the library, then add jQuery

and the two files shown here to your page:

<script src="jquery.js"></script>

<script src="mediaelement-and-player.min.js"></script>

<link rel="stylesheet" href="mediaelementplayer.css" />

To make the player work, the easiest way to get started is to just add the mejs-
player class to your <audio> and <video> tags and they will automatically be con-

verted to a fully functioning player with an identical set of controls in all browsers.

For video:

<video class="mejs-player" src="video.mp4" width="320" height="180">

</video>

For audio:

<audio class="mejs-player" src="music.mp3"></audio>

If you want more control over how the player works, you can manually instantiate the

player in JavaScript and set several options:

154 HTML5 HACKS

http://mediaelementjs.com


<video src="video.mp4" width="320" height="180"></video>

<script>

$('video').mediaelementplayer({

    // an array of controls for the player

features:['playpause', 'progress', 'current', 'duration', 'tracks',

'volume', 'fullscreen'],

    // the volume when the player launches

    startVolume: 0.8,

    // event that fires when the player has been created

    success: function(mediaElement, domNode, player) {

        // do more stuff here

    }

});

</script>

This allows you to use H.264-encoded MP4 files across all browsers and mobile de-

vices. You can also use older FLV files you might still need to support (using the Flash

shim) or even Windows Media files (using the built-in Silverlight plug-in).

Responsive Video

If you are working with a responsive layout and need your video content to resize

accordingly, MediaElement.js will automatically adjust the size of the player and con-

trols to fill the surrounding element. To enable the responsive adjustment, make sure

to set a width and height that correspond to the video’s aspect ratio, and also include

100% in the style attribute (according to the HTML5 spec, percentage values are not

allowed in the width and height attributes, so you must use style).

<div id="container">

<video src="video.mp4" width="320" height="180"

style="width: 100%; height: 100%;"></video>

</div>

Event Listeners

MediaElement.js supports all the events in the HTML5 Media API. For example, if you

want to play another video when the current one ends, you can listen for the ended
event on the mediaElement object. This works best if you add all your code inside the

success event so that the Flash fallback has time to load.

<script>

$('video').mediaelementplayer({

    success: function(mediaElement, domNode, player) {

155CHAPTER 3: MULTIMEDIA HACKING

http://www.w3.org/TR/html5/the-video-element.html#mediaevents


        mediaElement.addEventListener('ended', function() {

            mediaElement.setSrc('nextvideo.mp4');

            mediaElement.load();

            mediaElement.play();

        }, true);

    }

});

</script>

Captions and Subtitles

The HTML5 spec also includes a <track> tag that is used to load external text files

that contain captions, subtitles, or chapter breaks. The proposed format is WebVTT,

or Web Video Text Tracks, a simple text-based format that begins with a single-line

declaration (WEBVTT FILE) and then lists start and end times separated by --> char-

acters, followed by the text to display between the two times. Here’s a simple WebVTT

file that will display two lines of text at two different time intervals:

WEBVTT FILE

00:00:02.5 --> 00:00:05.1

This is the first line of text to display.

00:00:09.1 --> 00:00:12.7

This line will appear later in the video.

At the time of this writing, few browsers automatically support WebVTT, but

MediaElement.js has a built-in WebVTT parser that will display the text in all browsers.

To add a track, save your WebVTT file as subtitles.vtt (make sure you add text/vtt to

your server’s MIME types) and add the file using the <track> tag:

<video width="320" height="180">

    <source src="video.mp4" type="video/mp4" />

<track src="subtitles.webm" srclang="en" kind="subtitles"

 label="English" />

</video>

Wrapping It Up

MediaElement.js offers a bunch of other features, including the ability to play back

YouTube videos through the YouTube API, pre- and post-roll ads, custom skins, and

more, so check it out.

156 HTML5 HACKS

http://dev.w3.org/html5/webvtt/
http://medialementjs.com/


4
Hacking Your Graphics with

Canvas and SVG

Over the past decade Adobe Flash became very popular because it allowed us to

create and manipulate imagery directly within our web pages. This demand resulted

in development of the Canvas specification.

The <canvas> tag is one of the most flexible of the new HTML5 tags. This has made

the <canvas> tag the new foundation for web-based gaming and other interactive

components. The <canvas> tag itself, much like the name, is a blank slate. It’s a

“drawing” surface that gives developers the freedom and flexibility to create imagery

that can blend with and complement the rest of the DOM (Document Object Model).

The “underdog” HTML5 illustration tool presented in this chapter is Scalable Vector

Graphics (SVG). SVG is probably the oldest technology discussed in this book—it has

been supported in some browsers for the past 12 years as it was first supported by

Microsoft’s Internet Explorer version 6. Rarely does anyone have anything nice to say

about IE 6, but in terms of its support of SVG it was ahead of its time.

SVG is an XML markup language that is very similar to HTML, and will probably be

pretty easy for those of you who are experienced with HTML. SVG basically does for

graphics what HTML did for text. SVG is lightweight and flexible, and can scale to any

size with the same lightweight file.

Although there may seem to be a lot of overlap between these two languages, you will

quickly see where each technology shines. It’s clear why the HTML5 family encom-

passes both of these powerhouse visual tools.

157



HACK 37 Draw Shapes on Your HTML5
<canvas> Tag

Flash became insanely popular because of the flexibility it brought to the browser.

With Flash the Web was free from decorating DOM elements and became a platform

for real drawing and animation. HTML5 brings this same type of flexibility and power

directly to the DOM with the HTML5 <canvas> tag. This hack starts us off slow by

walking through the creation of basic shapes on a canvas.

The <canvas> tag provides you with a blank slate to create your imagery. In order to

do this you first need to create a <canvas> tag in the DOM, and then identify the

context. The <canvas> tag is created as a DOM element:

    <canvas id="myCanvas" width="200" height="200"></canvas>

This basic <canvas> tag will be presented as a 200 × 200-px empty block on the page.

To add to it, we need to identify the context:

    var myCanvas = document.getElementById('myCanvas')

    var myCtx = myCanvas.getContext('2d');

Notice that we identify the '2d' context which may seem to imply that there would

also be a '3d' context, but don’t be fooled: “3d” isn’t really addressed by the <can
vas> tag; it has only an x- and y-axis. Now that we have the context identified, we have

a host of APIs at our fingertips.

Drawing to a <canvas> tag is all about the '2d' context and finding the appropriate

coordinates on the grid. Generally, one pixel on the screen correlates to one point in

the canvas (this value can vary when you zoom in or out on a small screen such as on

a mobile browser, or when your element is resized with CSS). The key point on our

grid is (0,0) or the origin, which is the top-lefthand corner of our canvas. Our canvas

is 200 × 200, which means it contains 200 points on the x-axis and 200 points on the

y-axis. Figure 4-1 shows how our canvas would appear with grid lines on the x- and y-

axes over 10 points.

158 HTML5 HACKS



Figure 4-1. 

The 200 × 200 <canvas> tag with grid markers every tenth point on both the x- and y-axes

Drawing Rectangles

We’ll start with one of the simplest shapes: the rectangle. These are easy to draw into

the context of our <canvas> tag. The '2d' context gives us access to the API to draw

three basic types of rectangles:

fillRect

Draws a rectangle with a solid color fill

strokeRect

Draws a rectangle that has a border but no fill

clearRect

Clears a rectangle-shaped transparency that removes any imagery or fills in the

defined area

Taking our sample canvas from before, let’s combine these three shapes onto our

<canvas> tag:

    var myCanvas = document.getElementById('myCanvas')

    var myCtx = myCanvas.getContext('2d');

    myCtx.strokeRect(10,10, 180, 180);

    myCtx.clearRect(50,50, 100, 100);

The preceding code laid on top of our <canvas> tag looks like Figure 4-2.

159CHAPTER 4: HACKING YOUR GRAPHICS WITH CANVAS AND SVG



Figure 4-2. 

The 200 × 200 canvas demonstrating the different rectangle APIs in the <canvas> tag

Each of the three APIs follows the same pattern. They are passed four parameters:

the x and y coordinates, along with the width and height of the rectangle.

Drawing Paths

Rectangles are just the tip of the iceberg when it comes to drawing on a canvas. Most

imagery is produced by combining a series of lines. Like all methods in the <can
vas> tag, these drawing APIs are available on the '2d' context. Paths require a few

steps to start and complete a drawing. To start a drawing (a single path or series of

paths), we use this method:

    myContext.beginPath();

This method takes no arguments; it simply initiates a drawing. Once the path has

begun, we need to determine where we are going to start and end the path. To start

the path, we will use the moveTo method. This is similar to determining where you

would move your pencil on a piece of drawing paper. Think of it as picking up a pencil

and putting it down directly on your starting point. From there, we will use the line
To method to determine where our line will end. Here is the first line of our grid:

myContext.beginPath();

myContext.moveTo(0,0);

myContext.lineTo(200,0);

160 HTML5 HACKS



At this point our canvas will still be blank, as we have not yet closed our path. To close

the path we use the following method:

    myContext.closePath();

Now we have one line on our canvas. To create our grid, we want to draw multiple lines

within our path. To accomplish this, we will begin the path, and then create a series of

moveTo and lineTo methods. Once we have all our grid lines, we will write them to

the canvas with our stroke method. Our code will look something like this:

   var myCanvas = document.getElementById('myCanvas')

    var myContext = myCanvas.getContext('2d');

    var ctx = myContext;

    myContext.beginPath();

    for(i=0; i<201; i++){

    myContext.moveTo(0,i);

    myContext.lineTo(200,i);

    i+=10;

    }

    for(i=0; i<201; i++){

    myContext.moveTo(i,0);

    myContext.lineTo(i, 200);

    i+=10;

    }

    myContext.stroke();

Paths have a number of different JavaScript APIs that create different line effects. In

many cases we may have a few lines that we want to connect and consequently fill the

area. To accomplish this we can simply call the following method:

myContent.fill();

Smile, the Canvas Loves You!

We can get pretty far with straight lines in our drawings, but we can use the canvas to

draw arcs as well. Remember, the <canvas> tag will always be a square, but we can

draw any shape inside the square. To draw an arc on the canvas, call the following

method off the canvas context:

arc(x, y, radius, startAngle, endAngle, anticlockwise);

161CHAPTER 4: HACKING YOUR GRAPHICS WITH CANVAS AND SVG



As illustrated in the preceding code, a number of arguments are passed into the arc
method. The first two are the coordinates for the arc’s center, followed by the arc

radius. The startAngle and endAngle parameters declare the start and end points

of the arc in radians, which are measured from the x-axis. The final optional anti
clockwise parameter, when set to true, draws the arc in a counterclockwise direc-

tion. The default is false, which would draw the arc in a clockwise direction.

Looking back at the radius argument, we want to make a special note. In CSS, we are

comfortable with declaring values in degrees, but in this case the arc radius is meas-

ured in radians. It’s quite common to see an inline conversion from radians to degrees

using the JavaScript math equation for pi:

myRadians = (Math.PI/180)*degrees

Let’s put this to good use by creating something recognizable on the <canvas> tag.

When I think of circles I think of two things: smiley faces and bombs. To keep the

violence level down, we’ll work on the smiley face in this chapter. Using a similar 200

× 200 <canvas> tag let’s center our outer circle directly in the middle of our tag, and

then draw our head:

    smileCtx.beginPath();

    smileCtx.arc(100,100,99,0,Math.PI*2);

We now have a canvas with a circle on it, as shown in Figure 4-3.

Figure 4-3. 

The <canvas> tag with a circle centered on the element

162 HTML5 HACKS



This isn’t very exciting. So next we will add the mouth. For this we will use the move
To method, and then draw a half circle (notice that the radius will be PI instead of

PI*2 as it was for the full circle):

    smileCtx.moveTo(170,100);

    smileCtx.arc(100,100,70,0,Math.PI);   // Mouth

The last two components are the eyes. Since we want our eyes to be solid fills, we need

to make separate strokes for each of them so that we can apply the fill. The first step

to accomplish this is to close the current stroke. We will then start a new stroke, move

to a new start point, draw a new circle, and call our fill parameter for each eye:

    smileCtx.stroke();

    smileCtx.beginPath();

    smileCtx.moveTo(60, 65);

    smileCtx.arc(60,65,12,0,Math.PI*2);  // Left eye

    smileCtx.fill();

Let’s put all this code together, and see our masterpiece:

    var mySmile = document.getElementById('mySmile')

    var smileCtx = mySmile.getContext('2d');

    smileCtx.beginPath();

    smileCtx.arc(100,100,99,0,Math.PI*2); // head

    smileCtx.moveTo(170,100);

    smileCtx.arc(100,100,70,0,Math.PI);   // Mouth

    smileCtx.stroke();

    smileCtx.beginPath();

    smileCtx.moveTo(60, 65);

    smileCtx.arc(60,65,12,0,Math.PI*2);  // Left eye

    smileCtx.fill();

    smileCtx.beginPath();

    smileCtx.moveTo(140,65);

    smileCtx.arc(140,65,12,0,Math.PI*2);  // Right eye

    smileCtx.fill();

Our canvas now holds all three strokes to form the face, as shown in Figure 4-4.

163CHAPTER 4: HACKING YOUR GRAPHICS WITH CANVAS AND SVG



HACK 38

Figure 4-4. 

The 200 × 200 <canvas> tag with the smiley face

Advanced Drawing

We’ve plowed right through lines and arcs, but many illustrations call for lines that

can’t be accomplished by either of these shapes. The Canvas specification includes

two additional tools for creating custom shapes:

quadraticCurveTo(cp1x, cp1y, x, y);

bezierCurveTo(cp1x, cp1y, cp2x, cp2y, x, y);

Each of these methods has control points and an ending x,y point. The control points

determine the curvature of the path. The bezierCurveTo method has a second con-

trol point for an uneven curvature. Additional information about the implementation

of each method is available in the W3C spec.

Apply Styles to Your Canvas Elements

We don’t live in a black-and-white Web, which makes it essential to be able to apply

colors and styles to your <canvas> tag elements. Style your canvas elements with

this familiar CSS syntax.

If you need to catch up on how to create shapes, strokes, or fills on your <can
vas> tag, read Hack #37 .

164 HTML5 HACKS

 
 

 
 

http://www.w3.org/TR/2dcontext/#building-paths


Shapes and strokes have little effect on our applications if we can’t apply color and

styles to them. The specification for canvas styles borrows heavily from CSS, so a lot

of the syntax should be familiar to you.

Color

Canvas elements can be colored with any CSS color value style, and they even support

transparency with RGBA and HSPA colors. Also, canvas strokes and shapes have a

default color value of black.

Let’s look at a code example for drawing a grid of lines across a 200 × 200 <can
vas> tag:

    var myCanvas = document.getElementById('myCanvas')

    var myContext = myCanvas.getContext('2d');

    myContext.beginPath();

    for(i=0; i<201; i++){

        myContext.moveTo(0,i);

        myContext.lineTo(200,i);

        i+=10;

    }

    for(i=0; i<201; i++){

        myContext.moveTo(i,0);

        myContext.lineTo(i, 200);

        i+=10;

    }

    myContext.stroke();

This example draws vertical lines every 10 points, and then loops around again to draw

horizontal lines every 10 points. As stated previously, the default color for each line is

black. To give the look of graph paper we want to make the lines a light blue color. We

can accomplish this by adding a single line of code:

    myContext.strokeStyle = '#99C4E5';

Since the whole grid is accomplished through one stroke, we only need to declare the

style once. To add a bit of depth to our grid we will make the horizontal lines slightly

darker than the vertical lines. Since we are going to style the lines in two different ways,

we need to add a few lines of JavaScript to our code to separate our illustration into

two different strokes. To accomplish this, we will end the stroke after the first for loop

and then start a new stroke for the second for loop:

    var myCanvas = document.getElementById('myCanvas2')

    var myContext = myCanvas.getContext('2d');

    myContext.strokeStyle = '#1487E0';

165CHAPTER 4: HACKING YOUR GRAPHICS WITH CANVAS AND SVG



    myContext.beginPath();

    for(i=0; i<201; i++){

        myContext.moveTo(0,i);

        myContext.lineTo(200,i);

        i+=10;

    }

    myContext.stroke();

    myContext.beginPath();

    myContext.strokeStyle = '#B1CADD';

    for(i=0; i<201; i++){

        myContext.moveTo(i,0);

        myContext.lineTo(i, 200);

        i+=10;

    }

As soon as we started the second stroke with the beginPath method, we set a new,

darker stroke style for the horizontal lines.

There are two different methods for adding color to your shapes. strokeStyle ap-

plies to lines and the outline of shapes, and fillStyle applies to shapes or strokes

that have a fill applied to them. It’s important to note that once you set a stroke or fill

style, the setting will persist in the context until it is changed back to the original value,

or until it is set to a new value.

Gradients

Just as with other HTML5 elements, adding gradients can provide for deep visual

depth, and can be quite useful. Let’s take a look at our example of a simple black-and-

white smiley face, before applying a few gradients to spice it up:

    var mySmile = document.getElementById('mySmile')

    var smileCtx = mySmile.getContext('2d');

    smileCtx.beginPath();

    smileCtx.arc(100,100,99,0,Math.PI*2); // head

    smileCtx.moveTo(170,100);

    smileCtx.arc(100,100,70,0,Math.PI);   // Mouth

    smileCtx.stroke();

    smileCtx.beginPath();

    smileCtx.moveTo(60, 65);

    smileCtx.arc(60,65,12,0,Math.PI*2);  // Left eye

166 HTML5 HACKS



    smileCtx.fill();

    smileCtx.beginPath();

    smileCtx.moveTo(140,65);

    smileCtx.arc(140,65,12,0,Math.PI*2);  // Right eye

    smileCtx.fill();

The preceding code provides us with the basic smiley face shown in Figure 4-5.

Figure 4-5. 

The <canvas> tag with the smiley face illustration

As every child who wasn’t raised by wolves knows, smiley faces are supposed to be

yellow. Let’s redraw our smiley face with a yellow background:

    var mySmile = document.getElementById('mySmile')

    var smileCtx = mySmile.getContext('2d');

    smileCtx.beginPath();

    smileCtx.fillStyle = '#F1F42E';

    smileCtx.arc(100,100,99,0,Math.PI*2); // head

    smileCtx.stroke();

    smileCtx.fill();

167CHAPTER 4: HACKING YOUR GRAPHICS WITH CANVAS AND SVG



    smileCtx.beginPath();

    smileCtx.moveTo(170,100);

    smileCtx.arc(100,100,70,0,Math.PI);   // Mouth

    smileCtx.stroke();

    smileCtx.beginPath();

    smileCtx.fillStyle = 'black';

    smileCtx.moveTo(60, 65);

    smileCtx.arc(60,65,12,0,Math.PI*2);  // Left eye

    smileCtx.fill();

    smileCtx.beginPath();

    smileCtx.moveTo(140,65);

    smileCtx.arc(140,65,12,0,Math.PI*2);  // Right eye

    smileCtx.fill();

This gives us a more iconic version of our smiley face, as shown in Figure 4-6.

Figure 4-6. 

The same canvas smiley face with a yellow fill on the head circle

In order to accommodate the introduction of color, we had to make a few changes to

our code. First, we extracted the mouth from the same stroke that made the head so

168 HTML5 HACKS



that the fill would not overwrite the line used for the mouth. Then we added a fill

method to the end of the head circle to color it yellow. The last change we made was

to reset the fill color back to black for the eyes. Again, once we set the style, we needed

to reset it to black to return to the default value.

Now, to prove that we have some artistic talent, we will change our yellow color to a

yellow gradient. We can apply two types of gradients:

createLinearGradient(x1,y1,x2,y2)

createRadialGradient(x1,y1,r1,x2,y2,r2)

The createLinearGradient method is passed four different arguments: the start

point (x1,y1) and the end point (x2,y2) of the gradient.

The createRadialGradient method is passed six arguments. The first three define

an inner circle with coordinates (x1,y1) and one radius (r1) and an outer circle with

coordinates and a second radius.

Our example will use a radial gradient to give our smiley face three-dimensional depth.

First we will set our gradient to a variable, and then we will add a series of color stops

to the gradient. In our code example, we’ll replace the fillStyle with our gradient:

    var mySmile = document.getElementById('mySmile')

    var smileCtx = mySmile.getContext('2d');

    var radgrad = smileCtx.createRadialGradient(100,100,10,100,100,100);

    radgrad.addColorStop(.5, 'rgba(247,241,192,1)');

    radgrad.addColorStop(1, 'rgba(244,225,56,1)');

    smileCtx.beginPath();

    smileCtx.fillStyle = radgrad;

    smileCtx.arc(100,100,99,0,Math.PI*2); // head

    smileCtx.stroke();

    smileCtx.fill();

    smileCtx.beginPath();

    smileCtx.moveTo(170,100);

    smileCtx.arc(100,100,70,0,Math.PI);   // Mouth

    smileCtx.stroke();

    smileCtx.beginPath();

    smileCtx.fillStyle = 'black';

    smileCtx.moveTo(60, 65);

    smileCtx.arc(60,65,12,0,Math.PI*2);  // Left eye

169CHAPTER 4: HACKING YOUR GRAPHICS WITH CANVAS AND SVG



    smileCtx.fill();

    smileCtx.beginPath();

    smileCtx.moveTo(140,65);

    smileCtx.arc(140,65,12,0,Math.PI*2);  // Right eye

    smileCtx.fill();

We have simply replaced our fill color with the gradient as a fill. This gives us the added

depth we want to make our smiley face stick out from the crowd (see Figure 4-7).

Figure 4-7. 

The smiley face canvas drawing with a gradient in place of a solid fill color

Additional Styles

You can accomplish a transparency effect with a color of your choosing, or you can

apply the transparency globally to a stroke. To adjust the transparency level, use the

globalAlpha method:

globalAlpha = .2;

Unlike the color styles, the globalAlpha method only applies to the current stroke.

Once a new stroke is started, the globalAlpha method resets to 1.

170 HTML5 HACKS



HACK 39

Because they play such a large role in illustrations, lines are given additional control

values in your <canvas> tag. You can set the following values for a stroke on your

<canvas> tag:

lineWidth

A numerical value that represents the width in points

lineCap

The shape of the end of a line, which can be declared as butt, round, or square

lineJoin

The shape of a line joint, which can be declared as round, bevel, or miter

miterLimit

Determines how far the outside connection point can be placed from the inside

connection point, when the lineJoin type of miter is selected

Patterns and shadows can also be applied to canvas elements, and they follow similar

syntax to CSS implementations. For details on these features and more, see the W3C

specification on the <canvas> tag.

Style Canvas Elements with Image Files

Shapes in a <canvas> tag have some of the same controls as other page elements.

In this hack, you’ll learn how to take your canvas illustrations one step further by uti-

lizing images as fills.

The Canvas specification gives you a lot of flexibility to create your HTML5 illustra-

tions. Other hacks have covered basic shapes, colors, gradients, and other styles, so

this hack will focus on importing another object for use on your canvas element.

The Basic Fill

For details on fills and other styles, see Hack #38 .

To illustrate the use of an image as a fill, we’ll start by looking at a smiley face example

with a basic yellow color fill for the head (see Figure 4-8).

171CHAPTER 4: HACKING YOUR GRAPHICS WITH CANVAS AND SVG

http://www.w3.org/TR/2dcontext/
http://www.w3.org/TR/2dcontext/


Figure 4-8. 

The 200 × 200 <canvas> tag with a drawing of a smiley face

We set the background color by adding a color fill to the circle that makes up the head.

Once the stroke is started, it’s a simple line of code:

 smileCtx.fillStyle = '#F1F42E';

Our end result will have a simple image used as a repeating background (see

Figure 4-9).

Figure 4-9. 

The 200 × 200 <canvas> tag with a drawing of a smiley face and a repeating heart background
image

172 HTML5 HACKS



To change that solid color to an image, we will use a very similar API:

smileCtx.fillStyle = myPattern;

You can see in the preceding code that we are using the same API for an image back-

ground as we are for a fill color (similar to the background attribute in a CSS decla-

ration). However, a bit of additional overhead is required when using an image.

Using an Image as a Fill

In JavaScript, to use an image you first must have a reference to it. In our case, we will

start by creating the image dynamically, and then setting its src attribute:

var img = new Image();

img.src = '/assets/img/heart.png';

The image we are using is the small icon-size image shown in Figure 4-10.

Figure 4-10. 

The small image used as a repeating background

That was easy enough; we now have a variable called img that references our image

file. The second step is to set that image as a pattern to be utilized by the <canvas>
tag:

    var myPattern = smileCtx.createPattern(img,'repeat');

    smileCtx.fillStyle = myPattern;

To accomplish this, we used a canvas method called createPattern. This requires

two parameters: the first is the reference to the image file, and the second is our

DOMstring repetition. Similar to a CSS implementation, we can set the DOMstring
repetition to repeat, repeat-x, repeat-y, or no-repeat. If no value is specified, it

defaults to repeat.

Now let’s put all of this together and see what it looks like. Here is a view of the code

used to generate our smiley face with the image as a background:

   var mySmile = document.getElementById('mySmile4')

    var smileCtx = mySmile.getContext('2d');

    // create new image object to use as pattern

    var img = new Image();

    img.src = '/assets/img/heart.png';

    // create pattern

173CHAPTER 4: HACKING YOUR GRAPHICS WITH CANVAS AND SVG



    var myPattern = smileCtx.createPattern(img,'repeat');

    smileCtx.fillStyle = myPattern;

    smileCtx.arc(100,100,99,0,Math.PI*2); // head

    smileCtx.stroke();

    smileCtx.fill();

    smileCtx.beginPath();

    smileCtx.moveTo(170,100);

    smileCtx.arc(100,100,70,0,Math.PI);   // Mouth

    smileCtx.stroke();

    smileCtx.beginPath();

    smileCtx.fillStyle = 'black';

    smileCtx.moveTo(60, 65);

    smileCtx.arc(60,65,12,0,Math.PI*2);  // Left eye

    smileCtx.fill();

    smileCtx.beginPath();

    smileCtx.moveTo(140,65);

    smileCtx.arc(140,65,12,0,Math.PI*2);  // Right eye

    smileCtx.fill();

If we were to run this code, we would probably be disappointed with the results. In

most cases, our smiley face would look like Figure 4-11.

Figure 4-11. 

The smiley face canvas rendering with the background image set as in the previous code sample

174 HTML5 HACKS



Can you identify the problem? Think about the load time. The canvas is taking ad-

vantage of real-time data. In the preceding sample, we created the image and then

set it as a background immediately. Since the pattern failed, the canvas fill reverted

back to its default state of black for the fill color. The problem has to do with the

availability of the image data, which in our case hasn’t been loaded yet.

To solve this problem we will add a few lines of JavaScript that wait for the image to

load before we execute the necessary canvas code. Browsers have supported the

image onload event for years. In this example we’ll use the image onload event to

know when we have the necessary data loaded:

var mySmile = document.getElementById('mySmile4')

    var smileCtx = mySmile.getContext('2d');

    // create new image object to use as pattern

    var img = new Image();

    img.src = '/assets/img/heart.png';

    img.onload = function(){

    // create pattern

    var myPattern = smileCtx.createPattern(img,'repeat');

    smileCtx.fillStyle = myPattern;

    smileCtx.arc(100,100,99,0,Math.PI*2); // head

    smileCtx.stroke();

    smileCtx.fill();

    smileCtx.beginPath();

    smileCtx.moveTo(170,100);

    smileCtx.arc(100,100,70,0,Math.PI);   // Mouth

    smileCtx.stroke();

    smileCtx.beginPath();

    smileCtx.fillStyle = 'black';

    smileCtx.moveTo(60, 65);

    smileCtx.arc(60,65,12,0,Math.PI*2);  // Left eye

    smileCtx.fill();

    smileCtx.beginPath();

    smileCtx.moveTo(140,65);

    smileCtx.arc(140,65,12,0,Math.PI*2);  // Right eye

    smileCtx.fill();

    }

175CHAPTER 4: HACKING YOUR GRAPHICS WITH CANVAS AND SVG



Now we’re sure that our image data has loaded, and the <canvas> tag can take full

advantage of the image for use in its pattern background.

Easy Image Data

Adding image onloads around whole segments of code can sometimes be cumber-

some. A nice shortcut available in HTML5 browsers is the use of inline image data. We

can easily remove the onload event from the preceding example and simply reference

the image data. Since the image data was loaded when the page was loaded, there is

no need to wait for the onload event to fire before we attempt to use the image. Our

new code would look like this:

    var mySmile = document.getElementById('mySmile5')

    var smileCtx = mySmile.getContext('2d');

    // create new image object to use as pattern

    var img2 = new Image();

    img2.src = '... image data here

...f5v038BfQ3g/3mcvqgAAAAASUVORK5CYII=';

    // create pattern

    var myPattern = smileCtx.createPattern(img2,'repeat');

    smileCtx.fillStyle = myPattern;

    smileCtx.arc(100,100,99,0,Math.PI*2); // head

    smileCtx.stroke();

    smileCtx.fill();

    smileCtx.beginPath();

    smileCtx.moveTo(170,100);

    smileCtx.arc(100,100,70,0,Math.PI);   // Mouth

    smileCtx.stroke();

    smileCtx.beginPath();

    smileCtx.fillStyle = 'black';

    smileCtx.moveTo(60, 65);

    smileCtx.arc(60,65,12,0,Math.PI*2);  // Left eye

    smileCtx.fill();

    smileCtx.beginPath();

    smileCtx.moveTo(140,65);

    smileCtx.arc(140,65,12,0,Math.PI*2);  // Right eye

    smileCtx.fill();

176 HTML5 HACKS



HACK 40

It may not make sense to utilize the Base64 version of your image in all cases, since

it results in added weight in the initial page load, but sometimes it may be appropriate

in order to utilize and simplify your code. It’s a good practice to have multiple imple-

mentation methods to choose from.

Use the HTML5 <canvas> Tag to Create
High-Res, Retina-Display-Ready Media

When Apple first introduced the Retina display on the iPhone 4, parts of the Web

started to look pretty shabby. The display’s higher resolution made your quick-loading

“web-ready” images look pixelated. In general, higher-resolution images mean longer

load times. This hack uses the HTML5 <canvas> tag to provide Retina-ready imagery

without the added weight.

There is a problem with our Retina screens. They look great (few people will debate

that), but the way in which they accomplish this has caused a lot of problems for web

developers. Apple first introduced the Retina display with the iPhone 4, in an attempt

to solve two problems: create a display in which the pixels were indistinguishable to

the naked eye, and not make iOS and Apple apps look like crap. To do this, Apple

marked the pixel density much higher than was necessary, and in fact gave the display

a density that was evenly divisible by the previous iPhone screen density. This enabled

Apple to update all the visual assets of the iOS SDK and the iOS operating system to

a higher resolution, and simply downsize it for older, less dense screens. For all the

other assets in the Apple apps, the company used a method called pixel doubling to

help the assets remain at the proper size.

Assets such as images and media on the Web fall prey to pixel doubling. This makes

our web pages look pixelated and jagged. The common solution to this problem is to

utilize images with twice the pixel resolution, which leaves us with images that are

larger and web pages that take significantly longer to load.

In Comes the <canvas> Tag

The <canvas> tag is a drawing space for vector illustrations. Since the <canvas> tag

is created using a set of definitions, the size of the illustration is inconsequential to

the amount of data that is necessary to create it (unlike images that required the

transfer of additional data to accommodate more pixels). This being the case, we can

make our <canvas> tag Retina-ready without any additional page weight.

Let’s start by loading a simple example of a smiley face drawn out on a 200 × 200-

point <canvas> tag. Here is the code for creating our example:

 var mySmile = document.getElementById('mySmile2')

    var smileCtx = mySmile.getContext('2d');

177CHAPTER 4: HACKING YOUR GRAPHICS WITH CANVAS AND SVG



    smileCtx.beginPath();

    smileCtx.fillStyle = '#F1F42E';

    smileCtx.arc(100,100,99,0,Math.PI*2); // head

    smileCtx.stroke();

    smileCtx.fill();

    smileCtx.beginPath();

    smileCtx.moveTo(170,100);

    smileCtx.arc(100,100,70,0,Math.PI);   // Mouth

    smileCtx.stroke();

    smileCtx.beginPath();

    smileCtx.fillStyle = 'black';

    smileCtx.moveTo(60, 65);

    smileCtx.arc(60,65,12,0,Math.PI*2);  // Left eye

    smileCtx.fill();

    smileCtx.beginPath();

    smileCtx.moveTo(140,65);

    smileCtx.arc(140,65,12,0,Math.PI*2);  // Right eye

    smileCtx.fill();

Our smiley face looks great on a standard display, but it’s pretty jagged on the Retina

display. Figure 4-12 shows how our canvas image looks on the iPhone 3Gs and the

iPhone 4.

178 HTML5 HACKS



Figure 4-12. 

The canvas image displayed on the iPhone 3GS (left), and on the iPhone 4 with a Retina display
(right)

In order to have the illustration be smooth for the Retina display, we need to counteract

the pixel doubling that is taking place. To accomplish this, we will add a few simple

lines of code to our JavaScript:

    if(window.devicePixelRatio == 2) {

        mySmile.setAttribute('width', 400);

        mySmile.setAttribute('height', 400);

        smileCtx6.scale(2, 2);

        }

We will insert this into our code right after we declare our context, but before we start

to apply our elements to the <canvas> tag. In essence, we have detected when pixel

doubling is being applied (by checking the device pixel ratio) and then doubled the

size of our <canvas> tag. These lines of code will result in the big, fat smiley face shown

in Figure 4-13.

179CHAPTER 4: HACKING YOUR GRAPHICS WITH CANVAS AND SVG

 
 

 
 



Figure 4-13. 

The smiley face twice the size it was before, thanks to the new JavaScript code

Now we need to rescale our <canvas> tag to fit our original page space. In order to

have the page render all the pixels in half the size, we will set our canvas to 400 and

then use CSS to shrink it back down to 200 px. Let’s add this CSS to the top of our

page:

#mySmile{

    height: 200px;

    width: 200px;

}

With just a few lines of code we have essentially Retina-enabled our <canvas> tag

without having to increase the page weight significantly. Let’s go back to our iPhone

3GS–iPhone 4 comparison to see our results (see Figure 4-14).

180 HTML5 HACKS



HACK 41

Figure 4-14. 

The canvas image displayed on the iPhone 3GS (left), and on the iPhone 4 with a Retina display after
the addition of the new JavaScript code

We’ve improved the experience for our Retina-display users without affecting the rest

of our user base. You can apply this technique to any <canvas> tag, whether it is a

page illustration or a canvas element used as a CSS background image. The only time

you will not benefit from using this technique is when you import an image into your

<canvas> tag that doesn’t support the Retina display’s higher resolution.

Accelerate Animation with
Canvas Drawings

Use of the <canvas> tag is often one of the most efficient ways to create animations

in your web applications. This hack digs into the nitty-gritty of creating animations

while using the <canvas> tag.

Clean animation can make or break your web applications. Native applications on

desktop and mobile devices have raised users’ expectations: if your web application

fails to include clean, concise animations, users will often write it off as being a poorly

performing app.

Canvas animation can be a powerful tool for web animations. As more and more

browser makers enable the GPU for canvas animations, it becomes even more ben-

eficial to perform your animations with a canvas element.

181CHAPTER 4: HACKING YOUR GRAPHICS WITH CANVAS AND SVG



Write and Clean

Animation on a <canvas> tag is reminiscent of early cartoon animations where each

frame is drawn out and then displayed in the correct order and at the determined

frame rate. Canvas animation basically consists of these three steps:

1. Draw on the canvas.

2. Erase what you just drew.

3. Repeat steps 1 and 2 until the animation is complete.

In JavaScript, when things need to be called over and over again we often use methods

such as setTimeout and setInterval to call our drawing methods. The problem

with each of these methods is they need to be set to a specific amount of time. If we

set that time to, say, 100 milliseconds, we would never be able to achieve a frame rate

higher than 10 frames per second.

A powerful new standard has been introduced to address this issue with the <can
vas> tag: the requestAnimationFrame method. With this method, you are asking

the browser to render the next frame as soon as it is available for rendering, as op-

posed to attempting to render at a fixed interval. The goal of requestAnimation
Frame is 60 frames per second, but it doesn’t fail if it can’t render that quickly; it simply

renders as soon as it can. Note that this method isn’t limited to use in canvas anima-

tions; it’s available for any web drawing technology, including WebGL.

Smile, You’re Being Animated!

Let’s take a good look at an example of a canvas animation. If you’ve worked your way

through the previous hacks in this chapter you have seen the smiley face examples.

Each example drew the smiley face on a 200 × 200 canvas element. For this illustration

we will draw it on a much larger canvas to give us room to move. Let’s start by dropping

our <canvas> tag onto the page:

<canvas id="moveSmile" width="800" height="200"></canvas>

Now that we have a big, fat, blank canvas, we will draw the smiley face on top of it. To

do this, we’ll pull in a few lines of JavaScript to build our page elements:

182 HTML5 HACKS



       var canvas  = document.getElementById("moveSmile");

       var smileCtx = canvas.getContext("2d");

        smileCtx.beginPath();

        smileCtx.fillStyle = '#F1F42E';

        smileCtx.arc(100,100,99,0,Math.PI*2); // head

        smileCtx.stroke();

        smileCtx.fill();

        smileCtx.beginPath();

        smileCtx.moveTo(170,100);

        smileCtx.arc(100,100,70,0,Math.PI);   // Mouth

        smileCtx.stroke();

        smileCtx.beginPath();

        smileCtx6.fillStyle = 'black';

        smileCtx6.moveTo(60, 65);

        smileCtx6.arc(60,65,12,0,Math.PI*2);  // Left eye

        smileCtx6.fill();

        smileCtx6.beginPath();

        smileCtx6.moveTo(140,65);

        smileCtx6.arc(140,65,12,0,Math.PI*2);  // Right eye

        smileCtx6.fill();

Our code simply draws out this smiley face on the lefthand side of the <canvas> tag.

For illustration purposes, a 1 px border has been added to the <canvas> tag so that

we can see the boundaries (see Figure 4-15).

Going back to our three-step process, once we draw our illustration we need to erase

what we’ve drawn:

smileCtx.clearRect(0, 0, 800, 200); //smileCtx is the 2d context

For simplicity I’m erasing the whole canvas, but to optimize performance you should

focus on erasing what is changing for the next frame. In the preceding method I am

clearing the whole canvas by setting the clearRect coordinates from the top-

lefthand corner of the canvas to the bottom-righthand corner. This erases a rectan-

gular shape the size of the canvas.

Our canvas should now be void of illustration, as shown in Figure 4-16.

183CHAPTER 4: HACKING YOUR GRAPHICS WITH CANVAS AND SVG



Figure 4-15. 

The smiley face illustration on the lefthand side of an 800-point canvas

Figure 4-16. 

The 800 × 200 <canvas> tag after the clearRect method has cleared the entire canvas context

184 HTML5 HACKS



Now, for step 3 we will redraw our smiley face, but we will move it slightly to the right.

In order to do this, we will move the x position of both our moveTo methods and our

element start position (arc in this case).

To accomplish this, we will replace each number with a simple equation to generate

the proper x coordinate each time the element is drawing:

    x+startingposition

Our code will now look like this:

        var x = 0;

        smileCtx6.beginPath();

        smileCtx6.fillStyle = '#F1F42E';

        smileCtx6.arc(x+100,100,99,0,Math.PI*2); // head

        smileCtx6.stroke();

        smileCtx6.fill();

        smileCtx6.beginPath();

        smileCtx6.moveTo(x+170,100);

        smileCtx6.arc(x+100,100,70,0,Math.PI);   // Mouth

        smileCtx6.stroke();

        smileCtx6.beginPath();

        smileCtx6.fillStyle = 'black';

        smileCtx6.moveTo(x+60, 65);

        smileCtx6.arc(x+60,65,12,0,Math.PI*2);  // Left eye

        smileCtx6.fill();

        smileCtx6.beginPath();

        smileCtx6.moveTo(x+140,65);

        smileCtx6.arc(x+140,65,12,0,Math.PI*2);  // Right eye

        smileCtx6.fill();

For the preceding code x is set to 0, but in order to move the smiley face across the

screen we need to change the x position. We’ll do this with a simple statement that

increases or decreases the x value appropriately (this will move it across the screen

and then back again).

There is one additional value we need to determine: the speed of the animation. If we

simply increment the value by 1, the smiley face will only move one pixel per iteration.

185CHAPTER 4: HACKING YOUR GRAPHICS WITH CANVAS AND SVG



We want to put a little bit of pep in this animation, so we will create a new variable

called speed and set it to 6. When this number is added to the current x position, it

will move the smiley face forward or back six pixels, thus increasing the speed. Let’s

look at the code:

var speed = 6; //px it moves on each loop determines how fast it moves

 x += speed;

if(x <= 0 || x >= 600){ //as far as we can go without cutting off

    speed = -speed;  //determines if it moves forwards or backwards;

}

Implementing requestAnimationFrame

As mentioned earlier, requestAnimationFrame is a new specification in the HTML5

family. It’s so new that most browsers only support a prefixed version of it. In order to

utilize it in modern browsers, we need to do a quick check to see which version of the

method we need to use, and then build a reference to it.

We will use the requestAnimationFrame method in our example to iterate through

our animation. To accomplish this, we will use it to call the same draw method cycli-

cally. Remember, the frame rate will be determined by requestAnimationFrame, as

it will call the draw method as soon as the browser is ready to draw another screen.

Putting It All Together

The requestAnimationFrame method is really the glue that holds this example to-

gether. To get everything working properly, we will set our variables at the top of our

page and then break our code into two methods. The first will determine the new x
value and then call the draw method.

The draw method will first clear the canvas from the previous frame and then draw

out the new frame. This method gets called over and over again. Our final code as-

sembles into this:

var x =  0;

var speed = 6; //px it moves on loop determines how fast it moves

var canvas  = document.getElementById("moveSmile");

var smileCtx = canvas.getContext("2d");

function animate(){

   reqAnimFrame = window.mozRequestAnimationFrame||window.webkitRequestAnima

tionFrame

186 HTML5 HACKS



 ||window.msRequestAnimationFrame||window.oRequestAnimationFrame

        reqAnimFrame(animate);

        x += speed;

        if(x <= 0 || x >= 600){

          speed = -speed;  //see if it moves forwards or backwards;

        }

        draw();

    }

    function draw() {

        smileCtx6.clearRect(0, 0, 800, 200);

        smileCtx6.beginPath();

        smileCtx6.fillStyle = '#F1F42E';

        smileCtx6.arc(x+100,100,99,0,Math.PI*2); // head

        smileCtx6.stroke();

        smileCtx6.fill();

        smileCtx6.beginPath();

        smileCtx6.moveTo(x+170,100);

        smileCtx6.arc(x+100,100,70,0,Math.PI);   // Mouth

        smileCtx6.stroke();

        smileCtx6.beginPath();

        smileCtx6.fillStyle = 'black';

        smileCtx6.moveTo(x+60, 65);

        smileCtx6.arc(x+60,65,12,0,Math.PI*2);  // Left eye

        smileCtx6.fill();

        smileCtx6.beginPath();

        smileCtx6.moveTo(x+140,65);

        smileCtx6.arc(x+140,65,12,0,Math.PI*2);  // Right eye

        smileCtx6.fill();

    }

    animate();

187CHAPTER 4: HACKING YOUR GRAPHICS WITH CANVAS AND SVG



HACK 42

Figure 4-17 shows a snapshot from our example. Our smiley face starts at the far-left

side of the canvas element, and then animates to the far-right side. It will then repeat

this step over and over again.

Figure 4-17. 

A frame from the smiley face animation showing the smiley face moving from one side of the canvas
element to the other and back again

Build “Native” Illustrations with Scalable
Vector Graphics

Scalable Vector Graphics (SVG) is usually the most “familiar” graphics format in the

HTML5 family of technologies. This hack will quickly get you working with the SVG

format as though it were part of the DOM (hint: it really is part of the DOM!).

Scalable Vector Graphics is the W3C’s recommendation for web illustrations. Similar

to Flash, SVG is a markup language for describing two-dimensional vector graphics,

but it’s an open XML-based language as opposed to being proprietary. Think of SVG

as being the graphical equivalent to HTML, and like HTML, SVG works seamlessly with

other browser technologies such as JavaScript, CSS, and the DOM.

Why SVG?

Compared to all the other graphics and media-based technologies introduced in

HTML5, SVG has some major advantages. The primary advantage is the technology

188 HTML5 HACKS



itself. Being an XML-based language, SVG doesn’t require an editing program like

Flash, Photoshop, or even Paint. You can create and edit SVG images with any simple

text editor, or with your favorite web editor. The S in SVG stands for Scalable, and

scalable it is! SVG is resolution-independent. Your SVG images can be zoomed in or

out, and even printed at any size, and they will still maintain their quality, which is the

primary benefit of the technology.

Being pure XML, SVG is natively searchable, indexable, and easily compressible. It’s

also quite natural to embed text within your SVG files and then style them with CSS.

It’s also easy to make SVG graphics compliant with the Americans with Disabilities

Act (ADA), by embedding descriptions of the images within the SVG file itself.

Creating Your SVG Image

In most cases SVG is managed in its own file. This is a text-based file ending with .svg.

You would then embed that file into the DOM in a manner similar to how you would

work with an image. In our example, we’ll start with a new SVG file named smiley.svg

and embed it into our sample page with the following code:

<object data="smiley.svg" type="image/svg+xml" />

Technically, our SVG file is an object on the page, not an image, and therefore is em-

bedded with an object file. At this point we will see our object in the DOM, but it will

not display anything, as the SVG file is blank. But we will fix that.

Now, to really impress our friends and enemies we’ll build an SVG object that dem-

onstrates the cross-cultural symbol for love, peace, and hope: the smiley face.

Drawing with XML

Unlike a JPEG or PNG image, where the image is transmitted in Unicode, an SVG image

is drawn out by a series of rules that follow the XML schema. This tends to make the

images lightweight and ultra-scalable. In the preceding code example, we created an

object element that has a data attribute pointing to an SVG file. This SVG file contains

a few lines of code that draw out our smiley face. Before we start, let’s see how our

end product will look (see Figure 4-18).

This cheeky smiley face is truly simple. The SVG file consists of only five elements,

and each element becomes a discrete DOM element once it’s imported into the page.

As DOM elements, they follow all the same rules and have access to the same APIs as

all other page elements. Let’s take a quick look at each element comprising our smiley

face:

 <circle cx="300" cy="164" r="160" fill="yellow" stroke="black"

stroke-width="2" />

189CHAPTER 4: HACKING YOUR GRAPHICS WITH CANVAS AND SVG



Figure 4-18. 

The smiley face SVG image represented in our sample web page template

This first element is the yellow circle that represents the head of the smiley face. As

you can glean from the preceding code, the element is actually a circle element that

has attributes representing the following:

cx, cy

These are the x and y positions of the circle as it relates to the SVG object in the

page.

r

This is the radius of the circle represented in points (a numeric value).

fill

This refers to how the inside of the object is painted. An element can be filled with

a color, a gradient, or a pattern (such as an imported image).

stroke

This represents the actual shape of the object or line (including the text). The

stroke can be colored with the same options as the fill.

190 HTML5 HACKS



stroke-width

This is only necessary when you have a stroke declared. As is obvious in the at-

tribute name, this declares the width of the stroke in points. The default is 1.

The next two elements are the eyes of the smiley face. They contain many of the same

attributes as the previous circle. The two circles are identical to each other except for

the x positions that draw them on different sides of the head.

  <circle cx="210" cy="100" r="20" fill="black" />

  <circle cx="380" cy="100" r="20" fill="black" />

The clip path may be an unexpected element for this illustration. Not to give away the

ending, but the final element will be another circle that represents the smiling mouth

in the illustration.

  <clipPath id="MyClip">

    <rect x="30" y="200" width="600" height="100" />

  </clipPath>

The clip path is a parent element to other SVG elements that have a clipping effect

instead of a painting effect. The clip path has a single attribute:

id

The id looks a lot like a DOM id because it is a DOM id, and it’s necessary in this

case for us to reference the clip path by another SVG element.

The clip path contains another element:

    <rect x="30" y="200" width="600" height="100" />

This is exactly what it looks like. You were already introduced to the circle element;

well, this is a rectangle element. If the rect element wasn’t contained by a clip path,

it would draw a 600 × 100 rectangle on the SVG object.

  <circle cx="300" cy="160" r="120" fill-opacity="0" stroke="black"

  stroke-width="5" clip-path="url(#MyClip)" />

This final object is the mouth. This circle has two new attributes that we want to

look at:

fill-opacity

This is a value between 0 and 1 that declares how opaque our fill should be. Since

we want the circle to appear empty, we have it set to 0.

191CHAPTER 4: HACKING YOUR GRAPHICS WITH CANVAS AND SVG



HACK 43

clip-path

This references the DOM id for the clip path within our SGV file. When we refer-

ence the clip path, the shape gets applied to this element, in a manner that clips

off anything (fill or stroke) within the image.

We could have drawn a line for the mouth of the smiley face, but it would have been a

lot more work to draw out that shape in XML than it would be to just declare a whole

circle, and then clip half of it off.

When we take all those SVG elements and wrap them in an <svg> tag, we can see how

simple the code really is:

<svg version="1.1"

     baseProfile="full"

     xmlns="http://www.w3.org/2000/svg">

  <circle cx="300" cy="164" r="160" fill="yellow" stroke="black"

   stroke-width="2" />

  <circle cx="210" cy="100" r="20" fill="black" />

  <circle cx="380" cy="100" r="20" fill="black" />

  <clipPath id="MyClip">

    <rect x="30" y="200" width="600" height="100" />

  </clipPath>

  <circle cx="300" cy="160" r="120" fill-opacity="0" stroke="black"

   stroke-width="5" clip-path="url(#MyClip)" />

</svg>

These 11 lines of code are all we need to draw out our friendly smiley face. The code

is significantly lighter than a JPEG or even a GIF that would represent the same image.

Additionally, you inherit all the benefits of first-class DOM objects, as we previously

discussed.

Style SVG Elements with CSS

SVG has the same privileges as all other DOM elements, including the ability to be

styled with CSS. This hack demonstrates how easy it is to create elements with SVG,

and then turn them into illustrations with CSS.

The most powerful part of SVG is its standing in the DOM. SVG elements are first-class

elements in HTML5, and they have every privilege that other DOM elements have.

That being said, it’s simple to control the presentation of these elements with CSS.

For a refresher on how to implement SGV, see Hack #42 , which discusses how to

create SVG elements.

192 HTML5 HACKS



SVG has the ability to control the presentation of its elements by setting attributes on

the elements themselves. Here are some of the more popular presentation attributes

in SVG:

• fill

• stroke

• stroke-width

• fill-opacity

• height

• width

• x, y

• cx, cy

• orientation

• color

• cursor

• clipPath

Many times it makes sense to embed these attributes within the SVG itself where it

can be downloaded as one file. Other times it may be more flexible to create our base

SVG elements within the SVG file, and style them with a language we are very familiar

with: CSS.

Starting with SVG

To get started we will illustrate a simple smiley face with SVG elements. This is a basic

illustration that consists of five elements, and nine lines of code:

<svg version="1.1"

     baseProfile="full"

     xmlns="http://www.w3.org/2000/svg">

  <circle cx="300" cy="164" r="160" fill="yellow" stroke="black"

   stroke-width="2" />

  <circle cx="210" cy="100" r="20" fill="black" />

  <circle cx="380" cy="100" r="20" fill="black" />

  <clipPath id="MyClip">

    <rect x="30" y="200" width="600" height="100" />

  </clipPath>

  <circle cx="300" cy="160" r="120" fill-opacity="0" stroke="black"

   stroke-width="5" clip-path="url(#MyClip)" />

</svg>

193CHAPTER 4: HACKING YOUR GRAPHICS WITH CANVAS AND SVG



This simple code snippet gets stored in a file called smiley.svg and embedded into our

page with an <object> tag as follows:

<object data="smiley.svg" type="image/svg+xml" />

Once the object is on the page, we see the SVG image as it should appear (see

Figure 4-19).

Figure 4-19. 

SVG representation of a smiley face

Stripping Away the Noise

In order to move our visual aspects of the illustration to CSS, we need to strip all the

visual aspects out of our SVG. We basically want to leave ourselves with some raw

shapes that we can manipulate. We will do this by removing most of the attributes

from the SVG file. The one attribute we will not remove is the circle radius, as there is

no CSS equivalent to this. Here is what our plain Jane SVG will look like:

<svg version="1.1"

     baseProfile="full"

     xmlns="http://www.w3.org/2000/svg">

  <circle r="160" class="head"  />

  <circle r="20" class="eye leftEye" />

  <circle r="20" class="eye rightEye" />

194 HTML5 HACKS



  <clipPath id="MyClip">

    <rect class="clipBox" width="100%" height="100%" />

  </clipPath>

  <circle r="120" class="mouth"  />

I want to point out a few things about the preceding SVG code. First, note the rect
element with the class of clipBox. We have inserted a width and height of 100%. At

the time of this writing, current implementations of clip boxes require some height
and width attributes set in the element to take effect. Second, I have added a class
attribute to each element and assigned at least one class name to each element.

Although I could have assigned all the CSS via pseudotags based on DOM position, I

prefer to use class names, as they’re more flexible if the DOM should change.

Since our elements have no look and feel to them, we end up with an SVG element

that looks like Figure 4-20.

Figure 4-20. 

Our SVG components as they appear unstyled

Our SVG elements have no visual characteristics or positioning, so we’re starting with

a series of circles stacked on top of the SVG object. Think of your SVG object as being

like an iframe (an HTML element that loads a new page inside your current page),

having its own separate DOM. As an aside, if you don’t want to use an <object> tag

to create your element on the page, you can use an iframe to create SVG elements on

the page as well.

195CHAPTER 4: HACKING YOUR GRAPHICS WITH CANVAS AND SVG



In the preceding example we have a few simple class names, such as head and eye.

If we write CSS declarations based on these class names and put them in our master

stylesheet, they won’t actually affect our SVG elements, as the CSS will not cascade

down to the SVG elements. To resolve this issue we need to load our CSS in one of

three ways. The first way is with inline CSS where we put a style attribute on the

element itself and set our styles directly in the element:

<circle class="head"  r="160"  style= fill: yellow; stroke: black;

stroke-width: 2px; "/>

The second way is by attaching a class name to the element (as we have) and then

referencing it in an embedded style block. It’s important to remember that the style

block needs to be directly in the SVG file, not in the page DOM:

<circle class="head"  r="160" />

<style>

.head {fill: yellow; stroke: black; stroke-width: 2px;}

</style>

The third method, and our choice for this hack, is to attach a class name to the element

and then reference an external stylesheet. Again, it’s important to reference the style-

sheet from the SVG file and not from the HTML page file. There is also a bit of a twist

on this stylesheet. SVG is XML-based but it isn’t HTML, so our traditional link reference

will not work properly within the SVG file. For external CSS, the SVG specification

references an ancient specification on referencing a stylesheet within an XML docu-

ment. My only assumption was that this specification was part of the Dead Sea Scrolls

discovery or something. You can find the old specification at w3.org.

According to this specification, the stylesheet is loaded with a tag at the top of the

SVG file, like so:

<?xml-stylesheet type="text/css" href="/assets/css/svg.css"?>

This, of course, will have an href that will point to the location of your stylesheet on

the server, so yours may look different from this example.

Building the CSS

Now that our structure is in place, let’s dig into the CSS that we will use to return our

little smiley face to its full glory. We basically have two factors to deal with for each

element. The first is the visual attributes, and the second is the position. The visual

attributes are quite simple: you will see in our CSS that we have basically taken our

old inline attributes of stroke, fill, stroke size, and the like and set them in CSS. Here

is a sample from our CSS:

  .head{

        fill: yellow;

196 HTML5 HACKS

http://www.w3.org/1999/06/REC-xml-stylesheet-19990629/


        stroke: black;

        stroke-width: 2px;

        }

    .mouth {

        stroke: black;

        fill-opacity: 0;

        stroke-width: 5px;

    }

That was simple enough. The second factor to address is positioning. In order to not

have all our elements stacked up on top of one another, we need to tell them where

to go. For this, we will pull out one of our new CSS3 attributes called transform, which

we will use to move our elements into place. Here is a sample of our CSS3 transforms

within our CSS:

    .eye {

       transform:translate(210px, 100px);

        }

    .rightEye {

        transform:translate(380px, 100px);

        }

The transform specifies the translate (or repositioning) of each element from its

current position, which again is with the radius centered at (0,0) or the top-left corner

of the SVG element.

Each element has CSS specified to provide the visual attributes and the positioning.

When we put it all together, our CSS file contains the following declarations:

    .head{

        fill: yellow;

        stroke: black;

        stroke-width: 2px;

      transform:translate(300px, 164px);

        }

    .eye {

        fill: black;

       transform:translate(210px, 100px);

        }

    .rightEye {

        transform:translate(380px, 100px);

        }

197CHAPTER 4: HACKING YOUR GRAPHICS WITH CANVAS AND SVG



    .mouth {

        stroke: black;

        fill-opacity: 0;

        stroke-width: 5px;

        clip-path: url(#MyClip);

       transform:translate(0px, 0px);

    }

    .clipBox {

        width: 600px;

        height: 100px;

      transform:translate(30px, 200px);

    }

For more information on how the clip path works, see Hack #42  where we clarify

how and why we use clip paths.

With this CSS, our finished product looks identical to the one we started with where

all our attributes were directly within the SVG elements. Figure 4-21 shows our finished

product.

198 HTML5 HACKS



HACK 44

Figure 4-21. 

The SVG element using CSS for styling

Animate Illustrations with SVG

Easily turn your SVG illustrations into SVG animations by adding a few lines of HTML

or CSS. That’s right, no JavaScript is necessary for this easy animation.

Before HTML5, animation was cumbersome. It was never intended to be done on the

Web, which might be why developers worked so hard to make it happen. Before

HTML5, all animation had to be done with JavaScript. It took us back to the days of

stop-frame animation where we had to move the object being animated one frame at

a time. With JavaScript, we would slowly change the attribute we were trying to ani-

mate one or two pixels at a time. Whether it was height (to make a window slide open)

or position (to animate something across the screen), JavaScript would repetitively

alter the style attributes until the “animation” was complete. As you can imagine, it

wasn’t only code-heavy, but processor-heavy as well.

Along comes SVG, bringing with it some easy-to-perform, hardware-accelerated ani-

mations. In this hack we’ll look at two animation options in our SVG tool belt.

The SVG <animateMotion> Tag

SVG is completely XML-based. So it only makes sense that it has a tag for animation.

Let’s start with a simple box and bouncing ball. This requires only a few lines of SVG:

199CHAPTER 4: HACKING YOUR GRAPHICS WITH CANVAS AND SVG



Figure 4-22. 

SVG elements without any animation

<svg version="1.1"

     baseProfile="full"

     xmlns="http://www.w3.org/2000/svg">

    <rect x="100" y="0" width="400" height="100"  fill="pink"

     stroke="black" stroke-width="1" />

    <circle cx="120" cy="50" r="20" fill="blue" stroke="black"

     stroke-width="1" />

  </svg>

From this code we end up with a rectangle with a circle inside it (see Figure 4-22).

In order to animate this ball moving from one side of the rectangle to the other, we will

add a new tag and nest it inside the circle element, as a child element (think of it as

a command associated with the circle element). Let’s look at our new SVG and then

we will walk through the details of the new tag:

200 HTML5 HACKS

 
 

 
 



<svg version="1.1"

     baseProfile="full"

     xmlns="http://www.w3.org/2000/svg">

    <rect x="100" y="0" width="400" height="100"  fill="pink"

    stroke="black" stroke-width="1" />

    <circle cx="120" cy="50" r="20" fill="blue" stroke="black"

    stroke-width="1">

      <animateMotion path="M 0 0 H 380 Z" dur="3s"

      repeatCount="indefinite" />

    </circle>

  </svg>

This new animateMotion tag allows us to animate the circle element while all other

elements stay fixed. In this tag we are utilizing three attributes:

path

The path is the hardest part of this tag. It appears to be a random list of numbers

and letters that somehow give us a perfect path from one end of the rectangle to

the other. This path is actually a wrap-up of our motion command. Breaking it

down, the M represents the command to “move to” a new location, the 0 0 is the

x,y start position, and H tells it to move horizontally. From there, 380 is the distance

it should move measured in points, and the Z command closes the path and tells

it to start back at the beginning. This notation is all part of the SMIL (Synchronized

Multimedia Integration Language) Specification, the details of which you can ac-

cess on the W3C website.

dur (duration)

This attribute defines how long it will take to complete a full path. Values are

represented in seconds with the format of 3s.

repeatCount

This attribute defines how many times the path will “repeat.” Don’t be fooled by

the word repeat; a value of 1 will run the path only once, and a value of 5 will run

the path five times. In our case, we set it to indefinite, so it will run until the

page is closed or the value is changed.

Our ball will now bounce back and forth within the rectangle. With SVG, animation is

at the root of the language. Just as any other component becomes a value in the DOM,

so does our <animation> tag, and it can be accessed and altered with JavaScript.

Figure 4-23 shows a view of our end product.

201CHAPTER 4: HACKING YOUR GRAPHICS WITH CANVAS AND SVG

http://www.w3.org/TR/REC-smil/


Figure 4-23. 

SVG animating the ball back and forth inside the box with only one line of code

Flexibility in Structure

In our first example, we made the <animation> tag a child tag to the element that

was being animated. In many cases you may have a group of tags that you want to

animate. To address such situations we will pull out some code from a previous hack

of our smiley face created in SVG. If we want to animate this smiley face back and forth

on the screen, we certainly don’t want to have to animate each element separately.

This would be both time-consuming to code and intensive on our processor, as the

engine would be calculating each element separately. Let’s look at two different code

samples showing how to animate a group of SVG tags together.

Here is our first sample:

<svg version="1.1"

     baseProfile="full"

     xmlns="http://www.w3.org/2000/svg">

  <g>

  <circle cx="300" cy="164" r="160" fill="yellow" stroke="black"

  stroke-width="2" />

  <circle cx="210" cy="100" r="20" fill="black" />

  <circle cx="380" cy="100" r="20" fill="black" />

  <clipPath id="MyClip">

202 HTML5 HACKS



    <rect x="30" y="200" width="600" height="100" />

  </clipPath>

  <circle cx="300" cy="160" r="120" fill-opacity="0" stroke="black"

  stroke-width="5" clip-path="url(#MyClip)" />

  <animateMotion path="M 0 0 H 300 Z" dur="3s"

  repeatCount="indefinite"></animateMotion>

  </g>

</svg>

Here is our second sample:

<svg version="1.1"

     baseProfile="full"

     xmlns="http://www.w3.org/2000/svg">

  <animateMotion path="M 0 0 H 300 Z" dur="3s" repeatCount="indefinite">

  <circle cx="300" cy="164" r="160" fill="yellow" stroke="black"

  stroke-width="2" />

  <circle cx="210" cy="100" r="20" fill="black" />

  <circle cx="380" cy="100" r="20" fill="black" />

  <clipPath id="MyClip">

    <rect x="30" y="200" width="600" height="100" />

  </clipPath>

  <circle cx="300" cy="160" r="120" fill-opacity="0" stroke="black"

  stroke-width="5" clip-path="url(#MyClip)" />

  </animateMotion>

</svg>

In the first sample we had a parent element to our code, named g, which is code for

“group”. Once we group our code together, it’s treated as one element (on that level)

and our <animateMotion> tag simply becomes another child tag to the g element

whose job is to animate the group of elements.

In the second sample, instead of introducing the new tag we simply use the <anima
teMotion> tag as a parent to enclose the tags that produce the smiley face. The

<animateMotion> parent tag animates the tags nested inside it as a group, and the

process is streamlined significantly as compared to animating each element

individually.

One Last Option

Don’t you just love SVG? Just like HTML, there is always more than one way to ac-

complish everything. This flexibility allows you to pick the method that works best in

your particular situation. With SVG animation, there is no shortage of options.

203CHAPTER 4: HACKING YOUR GRAPHICS WITH CANVAS AND SVG



HACK 45

Keeping in mind that SVG elements become DOM elements just like any other HTML

page elements, we can animate our SVG just as we would HTML, by using CSS. In

the preceding sample that introduced the g element, we can remove the <animate
Motion> tag completely, and set an id on the g element. From here, we can use a

CSS3 transform to create the same animation. For more on applying CSS to SVG

elements, see Hack #43 .

Embed SVG Directly in Your HTML

You can embed SVG directly within your HTML file, negating the need for an exter-

nal .svg file. With HTML5, your SVG elements can live in the same DOM as your HTML,

and you’ll be removing some of the barriers of managing the two code bases

separately.

SVG is powerful and can be quite complex, creating limitless illustrations and anima-

tions with a simple XML-based language. But in some cases you may only have a

simple illustration that doesn’t require the rigor of an external file to manage the code.

Just as HTML5 provides the ability to inline images directly in your markup, SVG can

be embedded directly within your HTML as well.

Looking at the code that is involved, you can see that it’s exactly what you’d expect it

to be. We have our HTML page, and instead of using an <object> tag that points to

an external SVG file, we see the entire content of the previously external SVG file di-

rectly within our HTML. In our example, we will use our trusty old smiley face SVG

illustration embedded directly within our HTML:

<doctype !html>

<html>

<head>

<meta charset="utf-8">

    <title>SVG Sample</title>

<link href="assets/css/bootstrap.css" rel="stylesheet" />

<link href="assets/css/bootstrap-responsive.css" rel="stylesheet" />

<head>

<body>

<div class="navbar...  ...</div>

<h1> My Inline SVG Sample</h1>

<div id="svgWrapper" class="row">

<svg version="1.1"

     baseProfile="full"

     xmlns="http://www.w3.org/2000/svg">

  <circle cx="300" cy="164" r="160" fill="yellow" stroke="black"

  stroke-width="2" />

  <circle cx="210" cy="100" r="20" fill="black" />

204 HTML5 HACKS



  <circle cx="380" cy="100" r="20" fill="black" />

  <clipPath id="MyClip">

    <rect x="30" y="200" width="600" height="100" />

  </clipPath>

  <circle cx="300" cy="160" r="120" fill-opacity="0" stroke="black"

  stroke-width="5" clip-path="url(#MyClip)" />

</svg>

</div>

</body>

</html>

In the preceding example, once the renderer sees the SVG declaration tag it switches

parsers from HTML to SVG. When the tag closes it goes back from SVG to HTML. Our

results look exactly as they did when the SVG was in an external file (see Figure 4-24).

Figure 4-24. 

The SVG smiley face illustration where the SVG is inline with the HTML

205CHAPTER 4: HACKING YOUR GRAPHICS WITH CANVAS AND SVG



Why Inline?

Aside from the obvious “ease of use” argument, there are additional benefits to

putting your SVG inline. Above all, inline SVG can be used as a performance enhance-

ment. In some scenarios, you may benefit from not having to load the external file (as

it will require an additional call to your server) and can put the SVG code directly in

the page. Keep in mind that this is not always a performance enhancement, especially

when you have a large amount of SVG code, which your browser may be able to load

in parallel with your elements to save time. In cases like ours, when your illustration

consists of only a few lines of code, it will generally be better in terms of performance

to inline it and remove the additional call.

An additional benefit of inline SVG can be for DOM reference. In general, your SVG file

is a separate DOM from your page when it’s loaded in an external SVG file (think of it

as an iframe, an HTML element that loads a separate page inside the element). That

being the case, any CSS that affects your SGV must be placed in or linked from your

SVG file, and therefore can’t be applied to the HTML or the page. JavaScript similarly

needs to access the SVG elements through the SVG object and falls prey to the same

limitations as accessing items in an iframe. Moving the SVG into the DOM directly

removes those barriers and allows you to truly treat your SVG elements just as any

other DOM element.

Let’s look at a quick and quirky example of how inline SVG is affected by CSS decla-

rations. In our example, we have a simple CSS declaration:

<style>

circle {

stroke: red;

 stroke-width: 12px;

}

 </style>

This style block is embedded directly into our HTML page, and in our page we have

two SVG smiley faces. The first face is loaded as an external SVG image (Figure 4-25),

and the second is loaded as an inline SVG image (Figure 4-26).

206 HTML5 HACKS



Figure 4-25. 

An SVG smiley face, loaded as an external .svg file

Figure 4-26. 

An SVG smiley face, loaded inline in the HTML document

207CHAPTER 4: HACKING YOUR GRAPHICS WITH CANVAS AND SVG



As you can see, the CSS applies to none of the circles within our embedded SVG and

to every circle within our inline SVG. Embedded SVG may not always be the best choice

for your documents, but it’s always nice to have options.

208 HTML5 HACKS



5
User Interactions

It may seem like HTML5 has a lot to do with how things work under the covers. We

discussed a new way to draw, a new way to present imagery, a new way to perform

animation, new ways to store data, and new ways to talk to the server. This chapter

focuses on a different aspect of HTML5: the new way you interact with the page.

Drag-and-drop might not be a new idea. We’ve had drag-and-drop in apps for years,

where we as developers built some slick JavaScript engine that helped us drag things

from one spot on the page to another. Drag-and-drop was really an industry-changing

idea when it was introduced, but HTML5 has taken this capability one step further.

HTML5 drag-and-drop is not just about what you can drag around the page, although

it does that; it’s also about dragging things between your browser and your computer.

HTML5 drag-and-drop lets you bring data into a web app simply by dragging it. It also

lets you take data out with the same drag-and-drop interface you’ve grown used to

over the years. Drag-and-drop takes your web applications one step closer to being

integrated into your operating system.

Editable content takes data entry to a new level as well. In the past, we’ve been able

to edit data within a form field. HTML5 takes this capability to the next level by allowing

us to edit content in any element of the page, whether it is in a paragraph, a list of

items, or a page header. Editable content has the potential to bring new levels of cus-

tomization to our web applications. Imagine if you allowed your user to determine

what he named every selection in a drop-down menu, or if you could enable your users

to update any information that was presented to them right in the application, without

having to go to a separate form. The implications of these capabilities point to a much

richer, more interactive web application. Editable content doesn’t have to stop at a

single paragraph either: HTML5 allows you to make the entire page editable. Basically,

it can turn any browser into a WYSIWYG editor.

Every version of a browser seems to have fewer and fewer buttons on the screen to

interact with. I think this is a good trend. The fewer buttons there are on the page, the

less confusion there is for the user. HTML5 allows us to take full control of the buttons

that are left, namely, the history buttons. In one form or another, there will always be

a way to go backward and forward on the Web—after all, hyperlinks are what make

209



HACK 46

the World Wide Web the “web” that it is today. With HTML5 history, you can make your

own history just within the page you are on. No longer do you need to rely on hash

map tricks. HTML5 also gives you full control of those buttons. As an application de-

veloper, you decide what happens when users click the history button while they are

on your page. It’s awesome. Now, let’s get started!

Make Any Content Draggable Within
Your Application

Just a few lines of code can turn any item on your page into a draggable item. HTML5

makes drag-and-drop a first-class citizen with easy implementation and brand-new

features that help you know exactly what’s going on with your web application.

Gone are the days of writing hundreds of lines of code to allow your users to drag an

item from one part of the page to another. HTML5 has capitalized on that idea and

brings us a modern version of that age-old interaction. With HTML5 the implemen-

tation is easy, and the data around it is rich. Let’s start by looking at how easy it is to

make any item on your page draggable:

<div id="myDraggableItem"  draggable="true">

  this is content I want to drag around the screen

</div>

And there you have it! Didn’t I say it was easy?

OK, if that was all you needed to do with drag-and-drop, this hack would be finished

and the book would be much thinner. Keep reading, and you’ll see that this hack pro-

vides a ton of information that will make it easy for you to implement this feature in

your applications today.

Turning On the Drag

Drag-and-drop might not be that foreign to your users. Many browsers have drag-and-

drop turned on by default for certain page elements—mainly, anchor tags and image

tags. These two items have clear pointers to the assets they are associated with. The

anchor tag has an href that can easily become a bookmark when dragged over the

bookmark bar, or a shortcut when dragged to your operating system. The shortcut

that is formed when you drag a link to the desktop may look something like Figure 5-1.

210 HTML5 HACKS



Figure 5-1. 

Shortcut formed when dragging a link to the desktop

Images have a similar behavior. Since an image tag is tied directly to a file, it can be

dragged as well. Keep in mind that not every image in a web application is an image

tag. Many images are embedded in CSS with background images, or are created

through SVG or canvas tags. This inherent draggable attribute refers specifically to

an image tag.

Adding this behavior to any item is easy, as you can see in Figure 5-2. You simply add

the draggable attribute to your page element, and it suddenly has “dragability”!

Let’s take this capability to the next level and look at all the events that are published

when we grab onto that element. Then we’ll do something with those events. Let’s

start with some standard markup. We will have a few circles on the page that are

created by adding some fancy CSS to some divs, and a “garbage can” made out of

another fancy styled div. Here’s the markup we are using:

<div class="row">

<div class="span-6 dragTarg"></div>

</div>

<div class="row">

<div class="span-6 dragItems">

<div draggable="true" class="red"></div>

<div draggable="true" class="green"></div>

<div draggable="true" class="blue"></div>

</div>

</div>

211CHAPTER 5: USER INTERACTIONS



Figure 5-2. 

Copy of the image dragged to the desktop

It’s pretty simple, and when we add the CSS, we get what’s shown in Figure 5-3.

Figure 5-3. 

Two draggable components and one target div

212 HTML5 HACKS



At this point we can pick up the targets and drag them around the page, but as soon

as we drop them they skulk back to their original positions. Without any listeners to

catch what’s going on, there isn’t much to hack about. Now let’s look at our events.

Listening for All Those Great Events

HTML5 really does take DOM (Document Object Model) events to the next level by

providing in-depth events on all interactions. Drag-and-drop alone has the following

events associated with it:

• dragstart

• drag

• dragenter

• dragleave

• dragover

• drop

• dragend

Let’s act on a few of these events by applying listeners. To accomplish this, we will add

a few lines of JavaScript to a script tag on our page. We’ll start by adding a few listeners

to the elements that will be draggable:

    var circles = document.querySelectorAll('.dragItems div');

    for(var i=0;i<circles.length;i++){

        circles[i].addEventListener('dragstart', startDrag, false);

        circles[i].addEventListener('dragend', endDrag, false);

    }

We started with a query selector that creates a collection of our circles, and then we

looped through each one to add two different listeners to them: the first listens for the

event that is published when we first start to drag the item, and the second listens for

the event when we stop dragging the item. Each listener will call its respective function:

    function startDrag(event) {

        this.style.border = '5px solid pink';

    }

    function endDrag(event) {

        this.style.display = 'none';

    }

213CHAPTER 5: USER INTERACTIONS



HACK 47

Here we have added a little bit of additional context to the elements while they are

being dragged, to emphasize which element is being moved. In this case, when we

start dragging our circle we change the border to a pink dotted line, and when we finish

dragging we add a display = 'none' to the div to make it look like it vanished from

the DOM. Remember, these events are attached to the items that are being dragged.

We also have the additional page element, the garbage can, to deal with. We will set

up that div as the drag target. Here is the JavaScript we’ll need for that:

    var dragTarg = document.querySelector('.dragTarg');

    dragTarg.addEventListener('dragenter', function(e){

        this.style.border = '3px #aaa dashed'});

    dragTarg.addEventListener('dragleave', function(e){

        this.style.border = 3px solid black''});

This interaction is fairly simple. We identify our element with a query selector, and

then we add two listeners to it. The first identifies what happens when we drag an item,

any item, over the element, and the second defines what happens when the event is

published that says the drag item is no longer over our element. All we are doing during

the period in between these events is changing the color and style of the border around

the outside of the div. This gives the user a visual cue that she is dragging over the

element on the page. Remember, the page may contain other draggable items (such

as an image or link) that, when dragged over the garbage can, will activate the

dragenter and dragleave events.

When we put this code together we have a few elements on the page that interact with

each other when we drag them. For example, we can drag any circle around the page,

and when it crosses over the garbage can the can changes its state; then when we

release the dragging element it disappears from the page (see Figure 5-4). We did all

that with just a few lines of code. Who doesn’t love HTML5!

Update the DOM with a Drag-and-Drop
Data Transfer Object

HTML5 drag-and-drop imparts a true relationship between the dragged item and the

drop zone. This hack shows you how to transfer data between the two using drag data,

and then updating the DOM from the information that is transferred.

As you might have guessed, HTML5 drag-and-drop provides a much richer interaction

than what was available in the past with just JavaScript. HTML5 publishes a slew of

DOM events telling us what is going on all along the way.

214 HTML5 HACKS



Figure 5-4. 

Page while draggable circle is dragged on top of our simple garbage can

Many times you drag an element because you want to move it to another place on the

page. This requires that your dragged item and your drop zone be able to communi-

cate the appropriate information. Luckily, HTML5 has an API for that!

For this hack we will start with four elements on the page: the drop zone (where we

want to drop the elements to), which is styled to look like my garbage can, and three

draggable items that are styled to look like colorful balls. Let’s look at the markup:

<div class="row">

<div class="span-6 dragTarg"></div>

</div>

<div class="row">

<div class="span-6 dragItems">

<div draggable="true" class="red"></div>

<div draggable="true" class="green"></div>

<div draggable="true" class="blue"></div>

</div>

</div>

215CHAPTER 5: USER INTERACTIONS



Note that our divs styled as colorful balls all have the attribute of draggable set to

true. This enables them to be dragged around the page.

Events play a big part in this interaction (for more information on events that are

published while dragging and dropping, read “Make Any Content Draggable Within

Your Application”). To grab hold of the events that are being published while the ele-

ments are being dragged, we add a few listeners to the page:

    function startDrag(event) {

        this.style.border = '5px solid pink';

    }

    function endDrag(event) {

       this.style.border = '';

    }

    var circles = document.querySelectorAll('.dragItems div');

    for(var i=0;i<circles.length;i++){

        circles[i].addEventListener('dragstart', startDrag, false);

        circles[i].addEventListener('dragend', endDrag, false);

    }

This is a pretty simple script that adds listeners to the drag start and end of each

element. The startDrag function changes the border of the element while it is being

dragged, and the endDrag function changes it back when it’s done.

Let’s keep going and add a few listeners to our garbage can div that we have desig-

nated as our drop zone:

    var dragTarg = document.querySelector('.dragTarg');

    dragTarg.addEventListener('dragenter', function(e){

        this.style.border = '3px #aaa dashed'});

    dragTarg.addEventListener('dragleave', function(e){

        this.style.border = '3px solid black'});

These two listeners are added to the drop zone. Again, they only change the appear-

ance of the items (no additional functionality has been added yet). The drop zone

changes during the drag-over (in this case, from a solid border to a dashed border),

and changes back when the item is no longer over it. When we put all this code together

we have a nice, pretty picture of a drag scenario (see Figure 5-5).

216 HTML5 HACKS



Figure 5-5. 

Single draggable div element being dragged over the drop zone

Incoming: Data Transfer Object

At this point, you may not be satisfied with this hack: you’ve probably figured out that

you can drag an item just fine, but this capability isn’t very impressive if you can’t drop

the item somewhere. We want the colorful ball divs to change position in the DOM

when they are dragged and dropped. For that to happen we need to have the dragging

item be able to pass information to the drop zone.

In comes the data transfer object. The HTML5 spec authors thought of everything,

even how to transfer data between a drag object and a drop zone. The data transfer

object holds the piece of data that is sent in a drag event. The draggable element

listener sets the data transfer in the drag start event; the data is read in the drop event.

We make a simple call to set the data:

e.dataTransfer.setData(format, data)

This sets the object’s content to the MIME type and data payload passed as its argu-

ments. In our case, we want that data to be identifying information about the drag

element itself, so we can move it in the DOM when the actual drop happens. Let’s

revisit our code sample and see if we can plug this into our dragging event:

    function startDrag(event) {

        this.style.border = '5px solid pink';

        event.dataTransfer.setData("text", this.className);

217CHAPTER 5: USER INTERACTIONS



    }

    function endDrag(event) {

       this.style.border = '';

    }

    var circles = document.querySelectorAll('.dragItems div');

    for(var i=0;i<circles.length;i++){

        circles[i].addEventListener('dragstart', startDrag, false);

        circles[i].addEventListener('dragend', endDrag, false);

    }

All we really did here was add a single line of code. We set the MIME type to text (since

we are passing a string), and then we have the item pass data about itself—in this

case, its class name. We will use the class name to identify the object in the DOM.

Publishing data isn’t very useful if there isn’t anything reading it. So our next step is

to move the content once the drop is performed. For this, we will set up a listener for

the drop event. This listener goes on the drop zone. We already have a dragenter and

a dragleave event on our drop zone, but we need a listener to attach to the drop

event. Here is our additional code:

function dropit(event){

 event.preventDefault()

   var myElement = document.querySelector('.dragItemsB .'

   +event.dataTransfer.getData('text');

   this.appendChild(myElement), false);

};

 dragTarg.addEventListener('dragover', function(e){

   e.preventDefault();

   });

    dragTarg.addEventListener('drop', dropit, false);

You might have noticed that we handled two different listeners. First, we added a

dragover listener, whose only purpose is to prevent the default action of dragover.

This is necessary to expose the drop event, which again is the only place you can have

access to your data transfer object that you published in your dragstart.

218 HTML5 HACKS



The functionality is fairly simple. We use the class name we pulled from the data

transfer object to find our dragging element in the DOM. We then do a simple append
Child to put that element inside the drop zone. Once it’s in the drop zone, our CSS

kicks in to turn that colorful ball into a colorful flat line. After the drop, the drop zone

looks like Figure 5-6.

Figure 5-6. 

Drop zone after one colorful ball element has been dropped into the drop zone

The Drop Zone Attribute

Here’s an additional tidbit about drag-and-drop. Although it can be a fun and intuitive

way for users to work with your application, many users may be accessing your site

in a different manner, such as via a screen reader. HTML5 has added an attribute that

will give some additional clarity to those users. The dropzone attribute was added to

identify areas of the document where items can be dropped. This helps nontraditional

interfaces understand where things can be dropped on the page. Let’s update our

drop zone to take advantage of this:

<div class="row">

<div class="span-6 dragTarg" dropzone="true"></div>

</div>

219CHAPTER 5: USER INTERACTIONS



HACK 48

Don’t get too excited—by no means does adding this attribute make this div any

more of a drop zone than it already was. We still need our listeners for that. Rather,

this attribute provides additional information and makes our page that much more

accessible.

Drag Files In and Out of Your
Web Application

No longer are you constrained by the limits of your browser window. HTML5 drag-and-

drop can move files from the cloud to your computer, and files from your computer

to the cloud—all with just a few lines of JavaScript.

HTML5 has the power to process data right within the browser, without going to the

server. From text to images to video, HTML5 has the horsepower. Along with that,

HTML5 drag-and-drop gives us an easy interface for getting data into and out of the

browser. We simply grab the data from our operating system and drop it into our

browser. In this hack we will transfer files to the OS from our browser, and then back

into our browser from the OS. Let’s start by dragging data to our OS from the browser.

Bringing Files Home

Being able to drag content from the browser to our OS starts with a single element in

our app. Every file we want to bring down from the cloud needs to be tied to an element

in some form or another. For this hack we will start with three divs on our page, all

styled as colorful balls. Each element will be tied to a text file in the cloud. Let’s look

at our markup:

<div class="span-6 dragItemsC">

 <div class="red" draggable="true"

 data-downloadurl="application/octet-stream:colorRed.txt:

this is the color red">

 </div>

 <div class="green" draggable="true"

data-downloadurl="application/octet-stream:colorGreen.txt:

http://chapter6.boyofgreen.c9.io/assets/test.txt">

 </div>

 <div class="blue" draggable="true" data-downloadurl="application/oc

tet-stream:test.txt:http://thecssninja.com/gmail_dragout/Eadui.ttf">

 </div>

</div>

The markup is fairly simple, and when rendered in our browser it looks like Figure 5-7.

220 HTML5 HACKS



Figure 5-7. 

Three divs rendered as colorful balls, all tied to files in the cloud

Let’s dig into our attributes here a bit. The first attribute we have on each div is the

draggable attribute, set to true. This is a foundational attribute for drag-and-drop

because it allows us to be able to pick the element out of the page and drag it around.

Some elements, such as images and hrefs, are draggable by default. In fact, if we

drag an image or an href to the OS a file will appear. For an image it would copy the

image out of the cloud, and for an href it would make a shortcut to the web page that

the link tag was pointing to. In our case, we are using divs, so the attribute is

necessary.

The second attribute we see is data-downloadurl, and each of these attributes is

pointing to a URL of a file we want to pull down from the cloud. If you read some of the

earlier hacks in this book, you may recognize the “data-” format as being a custom

data attribute. This is another HTML5 feature that allows us to add additional data to

any element within our DOM. In this case we are using it to store our URL. If you loaded

this page right now you would be able to drag these divs around the page, but if you

tried to drag them to the desktop nothing would happen. To make that data file transfer

take place, we need to add a few drag-and-drop listeners.

We will add a few lines of JavaScript to our page that adds listeners to each div. The

listeners will fire some simple functionality to help our drop know what to drop.

221CHAPTER 5: USER INTERACTIONS

 
 

 
 



   function startDrag(event){

        event.dataTransfer.setData("DownloadURL",

          this.getAttribute("data-downloadurl"))

    };

    var circles = document.querySelectorAll('.dragItems div');

    for(var i=0;i<circles.length;i++){

        circles[i].addEventListener('dragstart', startDrag, false);

    };

Let’s walk through what is going on here. The listeners are attaching to the drag
start event. The dragstart event is important in this process because it is the only

point in a drag-and-drop when you can add data to the dataTransfer object. (For

more about the data transfer object, see Hack #47 .) In this case, we attach a listener

that fires the startDrag function. This function has only one line of code in it that

pulls the data-downloadurl string from each element and adds it to an attribute of

the dataTransfer object called DownloadURL. To accomplish this, we are using a

simple setData method.

Once we have this value in place on the dataTransfer object, our HTML5-enabled

browser takes over. Let’s see what happens when we drag one of these elements out-

side our browser window now (see Figure 5-8).

Figure 5-8. 

Dragging and dropping one of our divs after the dataTransfer object is updated by our listener

222 HTML5 HACKS



Instead of getting a “not allowed” symbol when we drag, we get a pointer symbol telling

us all is well in the drag-and-drop world. Even better, once we drop the element outside

the browser window, we see that text file from the cloud appear in our OS filesystem

(in this case, the desktop). It’s drag-and-drop magic!

Bringing Files Back to the Browser

Wow, now that we have the ability to bring files from the cloud to our OS, let’s use some

of that HTML5 power to bring into the browser the files we have saved locally. It’s

important to note that the next step isn’t actually transferring files to the cloud; that

would require a different hack. What we are doing here is bringing files from the OS

into the browser, so we can manipulate that data.

We’ll start with a text file named coolKid.txt that resides on the desktop. In that text

file is a simple line that says, “Jeff really is a cool kid”; at this point we want to put that

text inside a text area in our app so that we can work with the text in the browser. This

time around, the markup we will start with is very simple. It’s a text area:

<div class="row">

<textarea id="showDrop"></textarea>

</div>

The only attribute on this text area is the id, and you guessed it, we will add listeners

to it. Let’s jump right into the JavaScript where we add the listeners:

    var showDrop = document.getElementById('showDrop');

    showDrop.addEventListener('dragover', function(e){

        e.preventDefault()

      });

    showDrop.addEventListener('drop', readData, false);

If we didn’t add JavaScript to this page and we dragged our text file over our text area,

the browser would treat the dragged file as a hyperlink and try to load it in the browser

window. In our case we would have left the app, and loaded up our line of text that

says, “Jeff really is a cool kid” (I’m Jeff, by the way, and I am a cool kid).

As you can see in the preceding code, we are adding two listeners to this element. The

first is a dragover listener, which exists for only one reason: to prevent the default

action from occurring. Without the listener, the drop event will never be fired. The next

listener calls out to a function that will handle bringing the data into our HTML5

application:

223CHAPTER 5: USER INTERACTIONS



    var readData = function(e){

    e.stopPropagation(); // Stops some browsers from redirecting.

    e.preventDefault();

    var filelist = e.dataTransfer.files;

    if(!filelist){ return}

    var filelist = event.dataTransfer.files;

    if(filelist.length > 0){

        var file = filelist[0];

            var filereader = new FileReader();

            filereader.myTarg = document.getElementById('showDrop');

            var myData = function(event){

              this.myTarg.value = this.result

            };

            filereader.onloadend = myData;

            filereader.readAsText(file);

        };

    };

This function seems relatively complex compared to the one line of code that it took

to bring the file down to our desktop, so let’s walk through what is going on. The first

thing we have to do is to stop the browser from trying to load the file in the browser

window. We have two methods that we call for that, as some browsers require both:

    e.stopPropagation(); // Stops some browsers from redirecting.

    e.preventDefault();

Next we will build a pointer (we will use this reference a few times) to our dataTrans
fer object, which you will probably remember from when you brought the file down

to the OS. In this object should be an array called files, which will list all the files (yes,

we can have more than one) that are being dragged into this element:

    var filelist = e.dataTransfer.files;

224 HTML5 HACKS



Not everything that is dragged and dropped in the window is a file, so the next step is

to check to see if we are uploading a file; if we are, the length of this array will be at

least 1. We will wrap the rest of our code in this if condition, because if there isn’t a

file in the drag, there is nothing else to do:

  if(filelist.length > 0)

.....

}

For the next step we will invoke a method that will help us read the file and get the data

we want out of it. It’s called the FileReader method, so we will invoke it as a variable

named filereader:

var filereader = new FileReader();

The next few lines of code have to do with the file reader. The first thing we will do is

to build a reference to where we want the text to appear—in this case, our text area—

into the filereader object. This will make it easy to reference later.

filereader.myTarg = document.getElementById('showDrop');

This is probably the trickiest part: we are going to set up a closure, which is basically

a partially executed function that we will use once the file is fully loaded in the browser.

This method takes another value we will add to the filereader object, called re
sults. The results value will actually be the text from our file that we will pull on in

just a moment.

var myData = function(event){this.myTarg.value = this.result};

The last two lines of code fire the closure called myData on the loadEnd event and

then fire a readAsText method that has a reference to the actual file inside it:

filereader.onloadend = myData;

filereader.readAsText(filelist[0]);

The order of events here is very important. If you try to call the readAsText method

before the file is fully loaded in the browser, you will get a blank value.

When we put all of this together we get a result that looks like Figure 5-9.

225CHAPTER 5: USER INTERACTIONS



HACK 49

Figure 5-9. 

Text area after the text file from the desktop is dragged to it

There are endless possibilities as to what you can do with local files once you get them

into the browser. In this case, I can upload that data to the server, or I can edit it some

more and drag it locally again. HTML5 brings the functionality that used to be limited

to the server, right into your browser.

Make Any Element on Your Page User-
Customizable with Editable Content

User input used to be limited to form elements such as inputs and text areas, but with

HTML5’s Editable Content feature, any element of your page can become editable.

Use this feature to allow users to customize their pages.

HTML5 opens the door for ultimate customization for our users. One of the new fea-

tures that make this especially easy is Editable Content. It might also be one of the

simplest features to implement.

In this hack we want to allow our users to customize their page content—personalize

their page, if you will. To make this possible we will make the main content of the page

editable content. Let’s look at our markup:

226 HTML5 HACKS



<div contenteditable="true" class="row" id="editable">

    <p>

     This is a really great book.

     I am so glad I am reading it because:

    </p>

    <ul>

        <li>it is witty</li>

        <li>i am now well informed about HTML5</li>

        <li>the authors are all around great guys</li>

    </ul>

</div>

The preceding markup is the main content for our page and the results should look

like Figure 5-10.

Figure 5-10. 

Our content inside an HTML5 page

You may have noticed the new attribute on our container div that says contente
ditable="true"; this attribute is all we need to make our content user-customizable.

Just as though they were typing in a text area, our users can now edit this section of

the web page right within their browser, without requiring any extra tools. The HTML

227CHAPTER 5: USER INTERACTIONS



is smart enough to know what part of the markup they are editing, and matches their

new content to the elements they are in. For example, if the user is in an unordered

list (ul) and presses Return she will add another li to the list. Pressing Return inside

a paragraph creates a new paragraph, and so on.

Now, at this point, if the user refreshes the page all the content she updated will go

away and it will reload from the server. It’s important to note that editable content is

not a back door to updating content on the server. We don’t want to update the data

in the cloud, but we do want it to stick for this user, so we will turn to another tool from

the HTML5 toolkit, called local storage. Local storage allows us to save data right in

the browser. Unlike cookies, which eventually get erased over time, local storage sticks

around until you (the app developer) or the user intentionally erases it. We’ll take the

content the user updated in this editable area, and save it off to local storage so that

we can use it again. To accomplish this we will pull out a few lines of JavaScript:

var myEdit = document.getElementById('editable');

    var setEditMemory = function(content){

        localStorage.setItem("myContent", myEdit.innerHTML);

    };

    myEdit.addEventListener('blur',setEditMemory);

We are basically adding a listener to the blur event of our editable div. Usually, divs

don’t have blur events (as they can’t naturally take focus), but since we have made

our div editable, it automatically takes focus, and therefore has a blur event fired

when we exit the editable content. That listener is simply taking the content from the

div and storing it as a string in local storage under a value name of myContent.

We’ve successfully saved the content; now we just need to use it to update the page

content when the user revisits our page. For this we will add a few additional lines of

JavaScript when the page loads:

    if(localStorage.getItem("myContent")){

        myEdit.innerHTML = localStorage.getItem("myContent");

    }

We are simply checking to see if our myContent value has been created. If it has, we

know the user has visited the page before, and may have updated this content. So we

pull the myContent value from local storage and update our editable div with the

content. Now, the user will see the updated content every time she returns to this

page. Magical!

228 HTML5 HACKS



HACK 50

Spellcial!

Another nice feature that comes with editable content is spellcheck. That’s right, built-

in spellcheck. Much like you are used to in your desktop word processor, if you misspell

a word in HTML5, a squiggly line appears underneath it, and if you right-click on that

word you can choose a replacement word from the browser’s built-in dictionary. If for

some reason you decide you don’t want this feature in your document, you can simply

turn it off by setting the spellcheck attribute to false:

<div class="row" id="editable" contentEditable="true"

spellcheck="false">...</div>

HTML5 has given us the bulk of a word processor right in our browser! Just think about

the possibilities.

Turn Your Web Page into a
WYSIWYG Editor

Make it easy to update your web page content without ever leaving your browser. A

few simple lines of code can turn your web page into a web page editor.

Back in the day, WYSIWYG editors were all the rage. Unfortunately, it was always dif-

ficult to transition from what you saw in your editor to what you saw in the browser.

HTML5 provides the key to make it all work.

Make the Page Editable

The first step to turning your web page into a web page editor is to make all the content

on your web page editable. In previous hacks we talked about what it takes to make a

section of our page editable, and it’s just as easy to make our whole page editable. It

takes only one line of code:

document.designMode = "on"

So, to put a bit of control around this feature we will start with a web page with some

fabulous content on it (see Figure 5-11).

229CHAPTER 5: USER INTERACTIONS



Figure 5-11. 

Page before any content is edited, and with design mode off

We will use the controls we added to turn our document’s design mode off and on,

and to export the code. Let’s look at the markup for our page controls:

<div class="row">

  <p>

   use this button to make your entire document

   editable or turn it off:

  </p>

  <p><button class="btn" id="makeEdit">toggle design mode</button></p>

  <p>use this button to show the markup</p>

  <p><button class="btn" id="showMarkup">show my markup</button></p>

  <p><textarea id="exportContent"></textarea></p>

</div>

We basically have text, two buttons, and a text area. The buttons will need listeners to

have functionality. Let’s look at the JavaScript we have for this app:

   var button = document.getElementById('makeEdit');

    button.addEventListener('click', function(e){

            if(document.designMode === "off"){

                document.designMode = "on"

            }else{

230 HTML5 HACKS



            document.designMode = "off"

            }

        });

    var showMarkup = document.getElementById('showMarkup');

    showMarkup.addEventListener('click', function(e){

        var str = '<HTML>'+document.documentElement.innerHTML+'</HTML>'

        document.getElementById('exportContent').value = str;

        });

The first button is used to toggle the design view. We have a listener attached to the

click event on the button that executes some simple JavaScript. It checks to see if

design mode is off, and if it is, it turns it on. If design mode is on, it turns it off.

The second button also has a listener that fires functionality for the export of the page

content. The logic is fairly simple. At any given point this button can be clicked, and

we will run some JavaScript that will copy all the content (HTML, any inline scripts,

etc.) from the documentElement. This gives us all the content inside the HTML tags

as a string. The string of content is taken, the HTML tags and <doctype> tag (since

it is outside the body) are added back into the string, and then the string is set as the

value of the text area. We use a text area so that the string remains as text, and the

browser does not try to execute any of it.

At this point we have the entire page markup in a location where it can be copied and

reused again (see Figure 5-12).

Figure 5-12. 

Page with entire page markup inside the text area

231CHAPTER 5: USER INTERACTIONS



HACK 51

We can now make our edits directly in our web page. Keep in mind that we are editing

text on the page; we cannot resize or reposition elements. But we don’t have to worry

that our page will not render the same way it appears in our editor, since our rendered

page has become our editor!

Take Control of the Browser History
Buttons with HTML5 Session History

HTML5 provides an elegant way to programmatically control the history stack while

in your web application.

How many times have you been inside a great web app, only to click the browser back

button thinking it will undo your last navigation, but instead it takes you back to the

last website? HTML5 session history gives you an easy interface for managing the

history within your application.

In the past, developers have done tricky things to applications to enable them to “fool”

the behavior of the browser history by using hash tags within the URL. Usually, the

developer would add something like “#mynewurl” to the end of his page URL, and it

would add a new position in the history stack. Anytime you add a “#” to a URL, it

considers it a position within the page, and doesn’t leave the page when the back

button is clicked.

Session history allows you to program that behavior directly into your application. You

can even update the URL of your page without refreshing the page (be careful, though;

you don’t want to make up URLs that your server can’t resolve, in case the user book-

marks them or tries to come back at a later time). For this hack we have a <canvas>
tag onto which we will build a smiley face. We will execute each step of the build

process by clicking the back button on the browser.

Smile, It’s History!

We’ll begin with a page that has no header and only a bit of content (see Figure 5-13).

Normally, if you click the back button at this point it will take you back to the page you

were on before you came to this site. So we’ll add a few new entries to our history stack

to get us started:

    window.history.pushState('leftEye', 'makeLeftEye');

    window.history.pushState('rightEye', 'makeRightEye');

    window.history.pushState('mouth', 'makeMouth');

    window.history.pushState('face', 'makeface');

    window.history.pushState('ready', 'letsgo');

232 HTML5 HACKS



Figure 5-13. 

Page with missing content

Here we have entered five new entries into our history stack. At this point, if we re-

freshed our page we could click the back button five times before it would take us back

to the previous website. However, nothing would change about the page when we click

the back button. For that we need to set up a listener:

    window.addEventListener("popstate", drawStack, false);

This listener will fire the drawStack function every time the back button is clicked.

Since it’s an event, it will automatically pass an event object along, just as a click event

would:

  var drawStack = function(){

    switch(window.history.state)

        {

        case 'leftEye':

          makeLeftEye();

          break;

        case 'rightEye':

          makeRightEye();

          break;

233CHAPTER 5: USER INTERACTIONS



        case 'mouth':

          makeMouth();

          break;

        case 'face':

          makeFace();

          break;

        default: break

        }

    };

Inside this method we actually see a switch statement. This switch statement is

used to determine which step of our process is being called on each time the back

button is clicked, and what method will be fired to handle the functionality. If you look

back at when we added the entries to the history stack, you will see each of them went

in with a value name and a value. This switch statement is looking at the value name

to determine which position of the stack we are in. Each case in this statement fires

one of these functions:

    var mySmile = document.getElementById('mySmile2')

    var smileCtx = mySmile.getContext('2d');

    var makeFace = function(){

            smileCtx.beginPath();

            smileCtx.fillStyle = '#F1F42E';

            smileCtx.arc(100,100,99,0,Math.PI*2); // head

            smileCtx.stroke();

            smileCtx.fill();

    };

    var makeMouth = function(){

        smileCtx.beginPath();

        smileCtx.moveTo(170,100);

        smileCtx.arc(100,100,70,0,Math.PI);   // Mouth

        smileCtx.stroke();

    };

    var makeLeftEye = function(){

        smileCtx.beginPath();

234 HTML5 HACKS



        smileCtx.fillStyle = 'black';

        smileCtx.moveTo(60, 65);

        smileCtx.arc(60,65,12,0,Math.PI*2);  // Left eye

        smileCtx.fill();

    };

    var makeRightEye = function (){

        smileCtx.beginPath();

        smileCtx.fillStyle = 'black';

        smileCtx.moveTo(140,65);

        smileCtx.arc(140,65,12,0,Math.PI*2);  // Right eye

        smileCtx.fill();

    };

Each phase draws something new. If we again refresh the page and click the back

button, we will now see a yellow circle on the page (see Figure 5-14).

Figure 5-14. 

Our web page after the back button is clicked one time

If we continue to click the back button, the smile will be drawn, then the right eye, and

then the left eye. After clicking the back button four times we will have a full smiley

face (see Figure 5-15).

235CHAPTER 5: USER INTERACTIONS



Figure 5-15. 

Our web page after the back button is clicked four times

If you have a keen eye, you may have noticed that we clicked the back button four

times but we put five entries in the history stack. You may think you still have one

additional back button click on this page before you would go back to the previous

page. You would be wrong. The extra entry actually handles the initial page load. The

event that is fired for the popstate happens on history change, not on back button

clicks, so it actually fires when you load the page, as a page load adds to the history.

Other History Features

The session history has a lot more to offer than just a single pop event. Here are some

basic methods that can be called on the page history stack:

window.history.length

Number of entries in the session history.

window.history.state

Current state of the object.

window.history.go(n)

Goes backward or forward by the specified number of steps. If the value you

specify is 0, it will reload the current page.

window.history.back()

Goes backward by one step.

236 HTML5 HACKS



window.history.forward()

Goes forward by one step.

window.history.pushState(data, title [, url])

Pushes the data specified in the arguments onto the session history.

window.history.replaceState(data, title [, url])

Updates the current entry in the session history.

237CHAPTER 5: USER INTERACTIONS



 
 

 
 



HACK 52

6
Client-Side Data

Storage Hacks

As the modern web browser continues to evolve into a capable application platform,

another area of exciting advancements is occurring in client-side data storage, most

notably in the AppCache, WebStorage, IndexedDB, and FileSystem API standards.

The need for offline capabilities and performance improvements for reading and writ-

ing large amounts of data is driving browser manufacturers to build tools that allow

client-side applications to define quotas on storage capacity, retrieve sandbox data

to defined origins, and perform asynchronous reads/writes from local databases.

As we explore the storage APIs, we will continue our trend of exploring the pros and

cons of each solution, introduce third-party libraries that offer polyfill support, and

provide contextual examples for client-centric applications and the mobile web.

Embed Binary Data in an Inline URL

Data URLs offer an alternative to referencing external resources with image and link

tags. The most common scenario involves images that you can reference directly from

within an HTML document or an individual stylesheet.

In Hack #19  we explored the performance trade-offs between CSS sprites and using

data URIs within external stylesheets. In this hack we will focus on inlining image data

within our HTML markup, and even see some of the different ways to do so using

different server-side templating implementations.

Data URLs are a subtype of the Uniform Resource Identifier (URI) scheme that em-

beds resource data within the URL as a Base64-encoded string. Unlike with traditional

URLs that point to external resources such as images, stylesheets, and JavaScript

code, the browser does not make an HTTP request for remote content.

Sometimes we can improve web application performance by leveraging a technique—

for example, in an environment where connectivity bandwidth may be constrained,

such as an Internet connection aboard a U.S. naval ship. Within mobile web

239



applications, it is also often advantageous to reduce the number of HTTP requests by

embedding smaller images within a page. Furthermore, instances where you may

want to dynamically generate server-side images based on a unique profile, time of

day, or location of a site visitor may also warrant an embedded image.

Data URLs utilize the following syntax:

data:[mimetype][;base64],[data]

Within an Image Tag

For this hack, first we will make use of an online service by manually uploading an

image to dataurl.net (see Figure 6-1).

Figure 6-1. 

Uploading an image to http://dataurl.net

Once we have copied the Base64-encoded string of data from the text area on the left,

we can paste it within our document (the following code is abbreviated for brevity, but

note that the larger the image is, the longer the string of data will be):

<img src=" ...  />

240 HTML5 HACKS

http://dataurl.net/#dataurlmaker


Within an External Stylesheet

Now we’ll use the url() syntax within a CSS selector, much like we would when calling

an external background image:

#backg {

        height: 326px;

        background-image:

url(" ...

}

Don’t forget your respective markup tag:

<div id="backg"></div>

Figure 6-2 shows the results.

Figure 6-2. 

Inline image in the document, and a repeated background image within the stylesheet

See Hack #19  for more information on using data URIs within external stylesheets.

Getting Help from Your Web Application Framework

It is often not feasible to manually upload our images to dataurl.net, so in production

environments we can do this programmatically within our server-side web application

framework. Here are a few of the most popular tools for doing this:

241CHAPTER 6: CLIENT-SIDE DATA STORAGE HACKS

http://dataurl.net/#dataurlmaker


Grails

Via the Grails Rendering Plugin:

class SomeController {

    def generate = {

       def file = new File("path/to/image.png")

       renderPng(template: "thing", model: [imageBytes: file.bytes])

    }

}

In the view:

<html>

  <head></head>

  <body>

   <p>Below is an inline image</p>

   <rendering:inlinePng bytes="${imageBytes}" class="some-class" />

  </body>

</html>

Node.js

By setting up a route and creating a buffer, with the second argument as bina
ry followed by a Base64-encoded string conversion:

express = require("express")

request = require("request")

BufferList = require("bufferlist").BufferList

app = express.createServer(express.logger(), express.bodyParser())

app.get "/", (req, res) ->

  if req.param("url")

    url = unescape(req.param("url"))

    request

      uri: url

      encoding: 'binary'

    , (error, response, body) ->

      if not error and response.statusCode is 200

        data_uri_prefix = "data:" + response.headers["content-type"]

 + ";base64,"

        image = new Buffer(body.toString(),

        "binary").toString("base64")

        image = data_uri_prefix + image

        res.send "<img src=\"" + image + "\"/>"

app.listen 3000

242 HTML5 HACKS

http://gpc.github.com/grails-rendering/docs/manual/guide/single.html#7


Ruby On Rails (via the Asset Pipeline)

By using the asset_data_uri helper:

#logo { background: url(<%= asset_data_uri 'logo.png' %>) }

Django

By using a simple Django filter, such as the one mentioned at djangosnippets.org:

from django import template

from base64 import b64encode

register = template.Library()

@register.filter

def dataURI(filename, mime = None):

    """

    This filter will return data URI for given file, for more

    info go to:

    http://en.wikipedia.org/wiki/Data_URI_scheme

    Sample Usage:

    <img src="{{ "/home/visgean/index.png"|dataURI }}">

    will be filtered into:

    <img src="...">

    """

    with open(filename, "rb") as file:

        data = file.read()

    encoded = b64encode(data)

    mime = mime + ";" if mime else ";"

    return "data:%sbase64,%s" % (mime, encoded)

Disadvantages to Using Data URLs

There are some disadvantages to using data URLs, namely the following:

Caching

The browser will not cache inline images that use data URLs to store their Base64-

encoded data. If an image is used more than once in an application, it may not be

optimal to use a data URL. You will need to base the optimal balance on user

behavior and traffic to the pages where the image is repeated.

243CHAPTER 6: CLIENT-SIDE DATA STORAGE HACKS

http://djangosnippets.org/snippets/2516/


HACK 53

File size

A Base64-encoded image is one-third larger than an equivalent binary image.

Again, you will need to decide on this balance based on given user behavior and

traffic patterns.

Convert a Data URI to a Blob and Append
It to Form Data with XHR2

HTML5 has turned the web browser into a full-fledged runtime. With all that new

functionality in the client, you need ways to transmit data back to the server in a safe

and programmatic manner. This hack shows you just how to do that.

At the time of this writing, the FormData object only accepts File or Blob
objects from the File API for uploading images from within a form. Firefox offers

the proprietary canvas.mozGetAsFile(), and the W3C-recommended can
vas.toBlob() is yet to be implemented.

Imagine you are building an interface within a social media site that allows users to

theme their profile page from a form that generates styles dynamically. You want to

persist these styles in a database on the server by uploading the images in the back-

ground via an XMLHttpRequest, and load them on additional page requests. To do so

you can make use of XHR2 and the new feature that allows you to upload Blobs and

Files by attaching them to the FormData object.

Before we get into the details of FormData and XHR2, let’s create a simple Blob. First,

we’ll call new on a Blob class and then pass data to the Blob. How about a simple style

that declares our text as red?

  var stylesblob = new Blob(['body{color:red;}'], {type:'text/css'});

Now we’ll create a new link, set a few attributes, and append it somewhere in the

document:

  var link = document.createElement('link');

  link.rel = 'stylesheet';

  link.href = window.URL.createObjectURL(stylesblob);

  document.body.appendChild(link);

This is a simple demonstration of the Blob utility, but what if we need to append this

data to a form and upload the data to a remote server? First, we need to deal with the

form:

244 HTML5 HACKS



<form enctype="multipart/form-data" method="post" name="profileStyle">

    <label>username:</label>

    <input type="email" autocomplete="on" autofocus name="userid"

      placeholder="email" required/>

    <label>Styles to save!</label>

    <input type="file" name="file" required />

</form>

There are a few important items to notice here. The enctype attribute indicates

that the data will need to be chunked into a multipart data item. Also notice that we

are making use of a few new attributes: autofocus and required, mentioned in

Chapter 1.

  function sendForm() {

    var data = new FormData(document.forms.namedItem("profileStyle "));

    data.append("myfile", stylesblob);

    var req = new XMLHttpRequest();

    req.open("POST", "/styleStore", true);

    req.onload = function(oEvent) {

      if (req.status == 200) {

        console.log("Styles Saved!");

      } else {

        console.log("Error "+req.status+" occurred uploading your file")

    };

    req.send(data);

  }

The requirements for our application also include uploading an image to a separate

remote web service. The image is available as a data URL and we would like to append

it to FormData and send the request in the background.

  var durl = $("#carter_small").attr("src")

  var blob = dataURItoBlob(durl);

So, to further demonstrate, let’s first convert our dataURI to a Blob so that we can

attach it to the FormData. Let’s take a closer look at dataURItoBlob():

  function dataURItoBlob(dataURI) {

245CHAPTER 6: CLIENT-SIDE DATA STORAGE HACKS



HACK 54

    var byteString;

      if (dataURI.split(',')[0].indexOf('base64') >= 0){

          byteString = atob(dataURI.split(',')[1]);

      }else{

          byteString = unescape(dataURI.split(',')[1]);

      }

      var mimeString = dataURI.split(',')[0].split(':')[1].split(';')[0]

      var ab = new ArrayBuffer(byteString.length);

      var ia = new Uint8Array(ab);

      for (var i = 0; i < byteString.length; i++) {

          ia[i] = byteString.charCodeAt(i);

      }

      var bb = new Blob([ab], {type: mimeString});

      return bb;

  }

Once we pass the reference into our dataURItoBlob() function we check to see if it

is URLEncoded, and unescape it if necessary.

Then we set a reference to the MIME type, write the bytes of the string to an Array
Buffer, and pass the ArrayBuffer to a new Blob, along with the MIME value set to

the type property.

Now, we generate the new FormData and append the blob as a canvasImage:

  var fd = new FormData(document.forms[0]);

  fd.append("canvasImage", blob);

Use the WebStorage API to Persist
User Data

Web applications often need a way to store data. With HTML5’s LocalStorage and

SessionStorage APIs you have a simple way to store data in an easy-to-use API.

This hack was contributed by Raymond Camden, a senior developer evangelist for

Adobe Systems Inc.

246 HTML5 HACKS



Data persistence in the early days of web applications relied on one basic technology:

cookies. Although cookies were serviceable, they were burdened by privacy concerns

and limitations (in terms of storage size and their impact on network performance).

Luckily, HTML5 provides a much-improved way to handle persistent data storage:

LocalStorage. Technically called the WebStorage API, most people refer to it as Lo-

calStorage. There is also a corresponding API called SessionStorage that we will dis-

cuss later.

The Basics

LocalStorage, at a basic level, is a set of name–value pairs. So, for example, I may have

a name called “FavoriteBeer” with a value called “Abita Amber.” In this way, they are

much like cookies. Unlike cookies, the data itself is not sent to the server on every

request. Instead, the JavaScript has access to get, set, or delete these values when it

needs to.

LocalStorage values are stored per domain. That means if foo.com sets a LocalStorage

value with the name “FavoriteBeer” and goo.com tries to read that value, it will not be

able to. Goo.com can set its own value called “FavoriteBeer,” but it will exist in its own

collection of data and not interfere, or overwrite, LocalStorage values set in other sites.

Finally, you should know that LocalStorage is saved to a physical file on the user’s

machine. This has two implications. First, there is a limit to the total amount of data

you can store in LocalStorage. This limit varies per browser, but most enable 5 MB (IE

8 allows 10 MB of user data). Second, reading and writing to LocalStorage is a single-

threaded file I/O operation. Basically, “sensible” use of LocalStorage should be per-

fectly fine. Much like how cookies were useful for storing settings and basic sets of

data, LocalStorage can fit the same role as well. Note that you do not want to store

large blocks of data. For that, you may want to consider the Native File System API

instead.

Probably the best thing about LocalStorage is how well supported it is across brows-

ers, both desktop and mobile. According to caniuse.com, support is currently at

88.73%.

The API

You have two main options for working with LocalStorage. You can write and set values

using direct access to the window.localStorage object. Here are some examples:

window.localStorage.favoriteBeer = "Abita";

window.localStorage["favoriteBeer"] = "Abita";

Or you can use one of the following methods:

247CHAPTER 6: CLIENT-SIDE DATA STORAGE HACKS

http://dev.w3.org/html5/webstorage/
http://foo.com
http://goo.com
http://goo.com
http://caniuse.com


• setItem(key, value);

• getItem(key);

• removeItem(key);

• clear();

I’d be willing to bet you can figure out what the first two do. The third, removeItem,

allows you to completely remove a value from LocalStorage. And lastly, clear will

remove all values. Again, though, remember that operations on LocalStorage are

domain-specific. Calling window.localStorage.clear() while visiting foo.com will

not clear the items that had been set at goo.com.

Let’s look at a simple example.

<!doctype html>

<html>

<head>

<script>

function init() {

 //Do we have a value yet?

 if(!localStorage.getItem("visits")) localStorage.setItem("visits",0);

 //Get and increment the value

 var visits = Number(localStorage.getItem("visits")) + 1;

 //Display it

 document.querySelector("#resultDiv").innerHTML = "You have been here"

 +visits + " time(s).";

 //And store it back

 localStorage.setItem("visits", visits);

}

</script>

</head>

<body onload="init()">

<div id="resultDiv"></div>

</body>

</html>

248 HTML5 HACKS

http://foo.com
http://goo.com


This template fires off a simple function, init, when the page has loaded. We begin

by seeing if the visits key exists in localStorage. If it doesn’t, we default it to 0.

Next we get and increment the value. Since everything is stored as a string, we wrap

the call in the Number() constructor to ensure that the math operation works.

We then update the DOM and display the number of visits.

Finally, we store the value back into localStorage. The net result is a simple web

page that can track how many times you’ve visited it. If you open it in your browser

and reload it multiple times you will see the counter increase one by one. If you close

your browser and open the HTML file again, it will continue from where it left off.

Believe it or not, that’s really all there is to the API.

LocalStorage and Complex Data

One thing you may be wondering about is how to store complex data such as arrays

and objects. The value passed to setItem must be a string. So how do you store more

complex values? It’s simple: you serialize the object first. Serialization refers to con-

verting a complex object into a simpler form, in our case, a string. Of course, that

means you have to deserialize the string back into its original form later on. How you

serialize data is up to you. You can build your own code to take complex data and turn

it into strings. For example, arrays have a native method, toString, which will convert

the data into a string. I prefer to use JSON to handle these operations. It works with

pretty much any form of data, and like localStorage, it has decent browser support.

(And for those of you who are worried about nonsupported browsers, plenty of JSON

libraries exist.)

In the next example, a form with multiple values is converted into one simple object

that is stored into localStorage. Let’s take a look at the code and then we’ll walk

through the parts.

<!doctype html>

<html>

<head>

<script>

function init() {

    //If we have old data, load it

    var oldData = localStorage.getItem("formdata");

    if(oldData) {

        var realData = JSON.parse(oldData);

        document.querySelector("#yourname").value = realData.name;

249CHAPTER 6: CLIENT-SIDE DATA STORAGE HACKS



        document.querySelector("#yourage").value = realData.age;

        document.querySelector("#youremail").value = realData.email;

        document.querySelector("#yourphone").value = realData.telephone;

    }

    //listen for changes in our form fields

    document.querySelector("#myForm").addEventListener("input",

     function() {

        //get all the fields

        var data = {name:document.querySelector("#yourname").value,

                    age:document.querySelector("#yourage").value,

                    email:document.querySelector("#youremail").value,

                    telephone:document.querySelector("#yourphone").value

                   };

        console.dir(data);

        localStorage.setItem("formdata", JSON.stringify(data));

    },false);

}

</script>

</head>

<body onload="init()">

<form id="myForm">

    <p>

    <label for="yourname">Your Name</label>

    <input type="text" id="yourname">

    </p>

    <p>

    <label for="yourage">Your Age</label>

    <input type="number" id="yourage" min="0">

    </p>

    <p>

    <label for="youremail">Your Email</label>

    <input type="email" id="youremail">

    </p>

    <p>

250 HTML5 HACKS



    <label for="yourphone">Your Phone Number</label>

    <input type="tel" id="yourphone">

    </p>

</form>

</body>

</html>

Starting from the bottom, you can see a simple form with four unique fields: name,

age, email, and telephone. The interesting part is up on top in the JavaScript. The init
function has two main parts to it now.

In the first section, we look for the existence of a LocalStorage value called formda
ta. If it exists, it is assumed to be a JSON version of our data. We use the JSON API to

parse this back into “real” data that we can then assign to our form fields.

The second half handles storing the form data. We use the input event for forms,

which is fired whenever any change is made. We take all the fields, one by one,

and assign them into a new object called data. This is then serialized using

JSON.stringify and stored into LocalStorage.

With about 10 lines of code, we’ve created a form that will automatically store, and

restore, values. If the user’s browser crashes, or he accidentally closes his browser,

none of his changes are lost. (In case you’re curious, you could use removeItem in the

submit handler to clear out the form fields.)

Using SessionStorage

So far we’ve focused on LocalStorage, a persistent storage API for data in your Java-

Script applications. You also have available a semipersistent storage system called

SessionStorage. It works exactly like LocalStorage except that it is session-based,

which is simply a way of saying it works with “one typical use” of a web application.

When the user closes her browser or has not interacted with the site in a certain time

frame, it is safe to assume the value will be closed. As I just stated, the API is exactly

the same. You simply replace any call to localStorage with sessionStorage:

window.sessionStorage["favoriteBeer"] = "Abita";

Security Concerns

It should go without saying that any client-side data should not be trusted,

LocalStorage included. Much like you wouldn’t implicitly trust data sent via XHR to

your server, you should assume that any LocalStorage value can be seen and manip-

ulated by users in their browsers.

251CHAPTER 6: CLIENT-SIDE DATA STORAGE HACKS



HACK 55 Polyfill LocalStorage with YepNope.js
and Storage.js

Although the WebStorage API is widely supported across major browsers, there is still

a need for polyfill support in IE 7. One of the most popular and easy-to-use polyfill

script loaders is YepNope.js.

Remy Sharp defines polyfills as follows:

A polyfill, or polyfiller, is a piece of code (or plugin) that provides the tech-

nology that you, the developer, expect the browser to provide natively. Flat-

tening the API landscape if you will.

Shim, polyfill, and fallback are terms used to describe the scripts used to patch a

missing API within a particular browser so that a developer can write future-friendly

code that works across all major browsers.

In this hack we will use two fantastic libraries that will allow us to achieve 100% support

for local storage across all of the major browsers: YepNope.js, as mentioned in the

hack synopsis, and Modernizr, a JavaScript library that works with YepNope.js for

feature detection.

For more details on the WebStorage API, see Hack #54 .

Including Modernizr

To get started we first need a way to detect whether LocalStorage is supported. Mod-

ernizr is a JavaScript library that detects HTML5 and CSS3 features in the user’s

browser. Let’s start by adding Modernizr to the page:

  <script src="/i/js/modernizr.com-custom-2.6.1-01.js"></script>

It runs a series of object detections on page load, returns a Boolean value for each

test, and stores the data in a JavaScript object () (see Figure 6-3).

252 HTML5 HACKS

 
 

 
 



1 http://yepnopejs.com/

Figure 6-3. 

Modernizr object in Chrome console

Modernizr includes YepNope.js as an option for conditionally loading external .js

and .css resources. This is quite handy for managing the support of polyfills within

your application.

Using YepNope

YepNope is described as “an asynchronous conditional resource loader that’s super-

fast, and allows you to load only the scripts that your users need.”1 Well, as I stated

before, the only script we need is a polyfill for local storage in IE 6 and 7 and Firefox

versions 2 and 3. So first we will call yepnope, which holds a reference to a Modernizr

property for localstorage. We’ll set the value of this property to test. If the test

passes we’ll move on to complete, which will execute our application code. If it fails

it will call yepnope’s built-in script loader to download storage.js. The callback function

referenced by complete will also be called.

253CHAPTER 6: CLIENT-SIDE DATA STORAGE HACKS

http://yepnopejs.com/


      yepnope({

        test: Modernizr.localstorage,

        nope: ['../../js/storage.js'],

        complete: function (url, result, key) {

          if (url === '../../js/storage.js') {

            console.log('polyfill loaded');

          }

        // applications code

        }

      });

Using Storage.js

Storage.js is a library written by Brett Wejrowski. The script uses userData for IE 6

and 7 and globalStorage for Firefox versions 2 and 3 to implement a polyfill for

localStorage when it is not supported.

You can view the contents of the storage.js file on GitHub.

To demonstrate the effectiveness of our polyfill loader, we will implement a simple

counter that stores an incremented value in localStorage. We will attach a click

event listener to a button that fires the counter:

<button id="counter" type="button">Click me!</button>

Now we will add the counter logic within the complete callback of our YepNope script:

      yepnope({

        test: Modernizr.localstorage,

        nope: ['../../js/storage.js'],

        complete: function (url, result, key) {

          if (url === '../../js/storage.js') {

            console.log('polyfill loaded');

          }

          function counter(){

            var c = (localStorage.clickcount) ? localStorage.clickco

254 HTML5 HACKS

https://github.com/wojodesign/local-storage-js/blob/master/storage.js


HACK 56

unt++ : localStorage.clickcount=1;

            var str = "clicked " + c + " times"

            $("#clicks").html(str);

          }

          $("#counter").on("click", function(){counter()});

        }

      });

Figure 6-4 shows the results.

Figure 6-4. 

Clicks counter stored in LocalStorage

Cache Media Resources Locally with
the FileSystem API

With the FileSystem API, you can provide your browser with a sandbox where data

(both textual and binary) can be read and written.

This hack was contributed by Raymond Camden, a senior developer evangelist for

Adobe Systems Inc.

255CHAPTER 6: CLIENT-SIDE DATA STORAGE HACKS



One of the more powerful features coming soon to a browser near you is the ability to

read and write to the local filesystem. You can find the “File API: Directories and Sys-

tem” working draft on the W3C website.

Dubbed the FileSystem API, it provides the browser a safe little sandbox where data

(both textual and binary) can be read and written. Many excellent articles out there

detail the API. This hack assumes you have at least a familiarity with the basics. With

that assumption, we’re going to look at a real-world scenario where browser filesystem

access can be useful: the local caching of media resources.

Imagine for a moment that you are creating a hip, new web property. You want to make

use of several high-quality images or sound files. Now imagine you can package up all

these resources into one ZIP file, send it to the browser, and have it store a copy locally.

This is not necessarily for offline access, but as a way to minimize remote network

calls and simply offload some of the “weight” to the client. To be even more efficient,

you also want to track the date the ZIP file was last updated. You can then use a light-

weight network request to see if it has been updated before you go through the work

of processing it again. Let’s get started!

Initializing and Preparing the Filesystem

One of the first things the demo code does is determine if it can even use the

FileSystem API feature.

Right now the API is fraught with vendor prefixes (see Chapter 1). In the future, the

API needs to be generalized, but here, we start off caring only about Chrome. Notice

a variety of vendor prefixes in the code, as in the following example:

function init() {

        if(!window.webkitStorageInfo) return;

}

(In case you’re curious, the init() function is being run via a body/onload call. The

full template appears shortly.) The initialization routine begins by checking for the

existence of webkitStorageInfo. Because this demo is only concerned with dem-

onstrating the FileSystem API, we can immediately quit if it isn’t supported.

The FileSystem API differentiates between a temporary and persistent filesystem.

Their very names indicate when you would use one over the other. For this application,

we will choose a persistent filesystem so that we can store our resources until they

have to be updated. To work with the persistent filesystem, we request access from

the user. This is done via a JavaScript function, but the actual prompt is handled by

the browser, much like with geolocation. The following code block demonstrates how

to request the storage and what will be done after it has been approved (or denied):

256 HTML5 HACKS

http://dev.w3.org/2009/dap/file-system/pub/FileSystem/


window.webkitStorageInfo.requestQuota(window.PERSISTENT,

        20*1024*1024,

        function(grantedBytes) {

             console.log("I was granted "+grantedBytes+" bytes.");

             window.webkitRequestFileSystem(window.PERSISTENT,

              grantedBytes, onInitFs, errorHandler);

}, errorHandler);

Note that you have requested a size, but it’s possible the size given may be smaller.

Don’t even worry about what you’re given for now. In the future, you may want to record

this (localStorage) and ensure you stay within your quota. But the important thing

to note here is that once you’ve been approved a bucket of space you can request the

actual filesystem.

Figure 6-5 shows what the user sees using the latest version of Chrome at the time of

this writing. This UI may change in the future.

Figure 6-5. 

Browser prompt to store large data locally

The call to webkitRequestFileSystem returns a pointer for all future read/write file

and directory options. Its success handler, in this case onInitFs, is run once we’re

good to go. Finally, our errorHandler is run if anything goes wrong. Let’s take a quick

look at that before moving on:

function errorHandler(e) {

  var msg = '';

  console.dir(e);

  switch (e.code) {

    case FileError.QUOTA_EXCEEDED_ERR:

      msg = 'QUOTA_EXCEEDED_ERR';

      break;

    case FileError.NOT_FOUND_ERR:

      msg = 'NOT_FOUND_ERR';

      break;

257CHAPTER 6: CLIENT-SIDE DATA STORAGE HACKS



    case FileError.SECURITY_ERR:

      msg = 'SECURITY_ERR';

      break;

    case FileError.INVALID_MODIFICATION_ERR:

      msg = 'INVALID_MODIFICATION_ERR';

      break;

    case FileError.INVALID_STATE_ERR:

      msg = 'INVALID_STATE_ERR';

      break;

    default:

      msg = 'Unknown Error';

      break;

  };

  console.log('Error: ' + msg);

}

The preceding code was taken (and slightly modified) from the HTML5 Rocks arti-

cle. It’s just for testing and doesn’t actually present any nice response to the user. It

only uses the console to report errors. Be sure you do your testing with the console

open.

Working with the Filesystem

So, at this point we’ve established that our browser supports a filesystem. We’ve re-

quested storage from the user. And we’ve asked for a pointer to the filesystem. After

all of that, onInitFs is finally run.

It’s probably a good idea to refresh to clarify the goal at this point. The goal is to down-

load a ZIP file, extract the contents, and store it on the local filesystem. To enable that,

we’ll begin by defining a folder where our files are stored. We’ll call this variable re
sourceDIRLOC:

var resourceDIRLOC = "resources";

There isn’t anything special about this name, but you want a subdirectory to add more

stuff in the future, and not have to worry about organization. Even though this is a

sandbox separated from the rest of the filesystem, it’s important to think of this as

any other filesystem. You don’t want to make a mess—both for your users’ sake and

for your own sanity.

258 HTML5 HACKS

http://www.html5rocks.com/en/tutorials/file/filesystem/
http://www.html5rocks.com/en/tutorials/file/filesystem/


First, let’s open this directory. The API allows us to open a directory that doesn’t exist.

We do this by passing a create flag. We can only do this for one level of directory at

a time. So, for example, we can’t try to open /resources/images/highres and have the

API simply create all those nested folders. In a case like that, we need to create each

subdirectory one at a time. Luckily, this example has a simpler target:

function onInitFs(fs) {

    fileSystem = fs;

    fileSystem.root.getDirectory(fs.root.fullPath + '/' +

resourceDIRLOC, {create:true}, function(dir) {

        resourceDIR = dir;

}

Let’s copy the filesystem handle, fs, to a globally scoped variable. We need fs later,

so it’s best to copy it right away. Next, we’ll call to get the directory. Notice the path is

based on one of the properties of the filesystem handle: root.fullPath. The root

object is a directory pointer to the path of our sandbox. The fullPath is simply that:

the actual directory path. Combining that with a separator (and note, you can use /
whether or not you are on Windows) and the resource directory name, we then have

a complete path to the folder to use. The create flag handles the first-time creation.

All calls to the FileSystem API are asynchronous, so we’ll begin a callback function in

the last argument. Finally, the very first thing we’ll do in the callback is cache a pointer

to the new directory. resourceDIR is a global variable to use again later.

Now for the interesting part: the ZIP file we’ve downloaded is pretty large. We only

want to download it the first time, and after that, only if it’s been modified. To remem-

ber the modification date, we’ll use localStorage to cache it. Consider the next

block:

if(localStorage["resourceLastModified"]) {

    var xhr = new XMLHttpRequest();

    xhr.open("HEAD", resourceURL );

    xhr.onload = function(e) {

      if(this.status == 200) {

        var lastMod = this.getResponseHeader("Last-Modified");

        if(lastMod != localStorage["resourceLastModified"]) {

            fetchResource();

        } else {

          console.log("Not fetching the zip, my copy is kosher.");

        }

      }

    }

259CHAPTER 6: CLIENT-SIDE DATA STORAGE HACKS



    xhr.send();

} else {

    fetchResource();

}

The first portion of the preceding code block executes if we have a value for when

the ZIP file was last modified. (Soon we will see where to set that.) If resourceLast
Modified exists, we create a HEAD-only Ajax request. This is a lightweight network

call that just returns the headers of the remote resource. We check the Last-
Modified header. If it is different in any way, we need to reget our ZIP file. That’s done

in the fetchResource() call. Finally, we see the else block simply runs fetchRe
source().

Getting and Processing the ZIP File

Let’s take a look at the fetchResource() method. It’s responsible for getting the

remote ZIP file, unzipping it, and saving it to the filesystem. JavaScript doesn’t have

native support for working with ZIP files. I used the simple, yet powerful, zip.js library

written by Gildas Lormeau. You can find the zip.js library on GitHub. Note that you only

need the files zip.js and deflate.js.

Let’s begin by looking at fetchResource:

function fetchResource() {

    var xhr = new XMLHttpRequest();

    xhr.responseType="arraybuffer";

    xhr.open("GET", resourceURL,true);

    xhr.onload = function(e) {

        if(this.status == 200) {

        }

    }

    xhr.send();

}

The preceding code shows the portions of the function that handle the Ajax request.

For now, the onload is empty, because it’s a bit complex. Note a few things. First, the

response type is arraybuffer. We need this to process the binary data from the ZIP.

Second, the resourceURL is simply a static URL defined earlier in our code:

var resourceURL = "resources.zip";

Now let’s dig into the code that is run when the request is done:

var lastMod = this.getResponseHeader("Last-Modified");

localStorage["resourceLastModified"] = lastMod;

260 HTML5 HACKS

http://gildas-lormeau.github.com/zip.js/


The very first thing we do is cache the date the ZIP file was modified. LocalStorage

makes this incredibly easy to do. Make note of the resourceLastModified key. We

can test the code multiple times. We can either build new ZIP files and update their

last modified value via the command line, or simply use our browser’s console to de-

lete the value.

var bb = new WebKitBlobBuilder();

bb.append(this.response);

var blob = bb.getBlob("application/zip");

Next, we’ll prepare the binary data before handing it off to the ZIP library. This is a

multistep process that involves a Builder sourced by the raw response and then the

actual Blob object created by specifying our particular MIME type for our data. The

end result, though, is ZIP binary data. Now, let’s parse the ZIP file:

zip.createReader(new zip.BlobReader(blob), function(reader) {

    reader.getEntries(function(entries) {

        entries.forEach(function(entry) {

          resourceDIR.getFile(entry.filename,

                             {create:true},

                             function(file) {

                entry.getData(new zip.FileWriter(file), function(e) {

                }, function(current, total) {

                // onprogress callback

                });

          });

        });

    });

}, function(err) {

    console.log("zip reader error!");

    console.dir(err);

})

The preceding code is probably a bit confusing, as we have callbacks calling callbacks.

In a nutshell we begin by creating an instance of a ZIP reader. This is based on the

zip.js API. One of the many ways to initialize the ZIP reader instance is by passing in

our blob object. We then provide a callback to handle the reader. Within that, we call

getEntries() on the reader. This allows us to enumerate over each item in the ZIP

file.

This is the point where we begin writing data to the filesystem. Remember resource
DIR? It’s just a pointer to our directory. We’ll use it to create files within it by calling

getFile(). We’ll pass in a name, based on the ZIP file entry name. So, if the first entry

in our ZIP is foo.jpg, entry.filename is foo.jpg.

261CHAPTER 6: CLIENT-SIDE DATA STORAGE HACKS



Then, getFile() opens the file on the filesystem. Within the success handler, we can

use entry, which is the file in the ZIP file, and pull the data out with getData().

Essentially, we open a file on the filesystem and siphon out the bits from the ZIP file

entry into the file we opened. The first argument to getData is a file writer. That han-

dles the actual bits. Two empty callbacks in there could optionally monitor the pro-

gress. But since this is a relatively simple process (again, sucking the bits from one

thing to another), we can leave them alone for now.

And that’s it. To test, I used the excellent Chrome plug-in HTML5 FileSystem Explor-

er, an extension that lets you browse the filesystem associated with a website (see

Figures 6-6 and 6-7).

Figure 6-6. 

HTML5 FileSystem Explorer Chrome extension

The files listed in Figure 6-7 are all images from the ZIP file. I also built a simple function

that renders a few of these images:

document.querySelector("#testButton").addEventListener("click",

   function() {

    //Attempt to draw our images that exist in the file system

   //If they exist, we draw from there, if not, we do not display them.

            var images = ["bobapony.jpg",

                 "buy bacon.jpg",

                 "cool boba.jpg",

262 HTML5 HACKS

https://chrome.google.com/webstore/detail/nhnjmpbdkieehidddbaeajffijockaea
https://chrome.google.com/webstore/detail/nhnjmpbdkieehidddbaeajffijockaea


Figure 6-7. 

HTML5 FileSystem Explorer (seen in the top-righthand corner), which browses the filesystem asso-
ciated with a website

                 "chuck-norris.jpg"

                 ];

            for(var i=0, len=images.length; i<len; i++) {

                var thisImage = images[i];

                resourceDIR.getFile(thisImage, {create:false},

                     function(file) {

                    document.querySelector("#images").innerHTML +=

"<img src='"+file.toURL() + "'><br/>";

                });

            }

        }, false);

After the user clicks on a button, the code loops over an array of filenames to see if

they exist in the filesystem. If so, the code simply adds an image to the DOM. Note the

use of file.toURL(). I used this call to get a reference to the image that I can then

reference from HTML.

263CHAPTER 6: CLIENT-SIDE DATA STORAGE HACKS



HACK 57

Where to Go from Here

I hope this hack gave you an idea of what you can do with the filesystem. While support

is still somewhat limited, the benefits of being able to store resources locally make it

more than worthwhile, even if the API is a work in progress. Keep your eye on the File

API W3C working draft for updates.

Build a Milestone Calendar with
IndexedDB and FullCalendar.js

IndexedDB is a persistent object data store in the browser. Although it is not a full SQL

implementation and it is more complex than the unstructured key–value pairs in

localStorage, you can use it to define an API that provides the ability to read and

write key–value objects as structured JavaScript objects, and an indexing system that

facilitates filtering and lookup.

For this hack we will use IndexedDB to store milestone objects for a calendar appli-

cation. The UI will provide a simple means to create a new milestone and provide a

title, start date, and end date. The calendar will then update to show the contents of

the local data store. Figure 6-8 shows the result.

Figure 6-8. 

FullCalendar.js and IndexedDB

264 HTML5 HACKS

http://dev.w3.org/2009/dap/file-system/pub/FileSystem/
http://dev.w3.org/2009/dap/file-system/pub/FileSystem/


We need to start by including the markup for the two pieces of the UI: the calendar

and the form.

We’ll begin with the form. You may notice that the input fields for the dates include

data-date-format attributes. We will use these later for the JavaScript date pickers.

 <form>

     <fieldset>

       <div class="control-group">

         <label class="control-label">Add a Milestone</label>

         <div class="controls">

           <h2>New Milestone</h2>

           <input type="text" name="title" value="">

           <input type="text" class="span2" name="start"

             value="07/16/12" data-date-format="mm/dd/yy" id="dp1" >

           <input type="text" class="span2" name="end"

             value="07/17/12"  data-date-format="mm/dd/yy" id="dp2" >

         </div>

       </div>

       <div class="form-actions">

          <button type="submit" class="btn btn-primary">Save</button>

          <button class="btn">Cancel</button>

       </div>

      </fieldset>

 </form>

The calendar is provided by FullCalendar.js, a fantastic jQuery plug-in for generating

robust calendars from event sources. The library will generate a calendar from a con-

figuration object and a simple div.

<div id='calendar'></div>

And we can’t forget to include a few dependencies:

<link href="../assets/css/datepicker.css" rel="stylesheet">

<link href="../assets/css/fullcalendar.css" rel="stylesheet">

<script src="http://code.jquery.com/jquery-1.7.1.min.js"></script>

<script src="../assets/js/bootstrap-datepicker.js"></script>

<script src="../assets/js/fullcalendar.min.js"></script>

To improve the user experience, we will also include date pickers for choosing the

dates within the form fields for start and end dates (see Figure 6-9).

265CHAPTER 6: CLIENT-SIDE DATA STORAGE HACKS



Figure 6-9. 

Date pickers

To instantiate the date pickers we will include the following toward the beginning of

our script:

$(function(){

    $('#dp1').datepicker();

    $('#dp2').datepicker();

  });

The Milestone IndexedDB

Now we will set up a global namespace to hold our code, and set up a public mile
stones array (within the namespace) to hold our milestones temporarily while we

pass them between our database and the FullCalendar API. This should make more

sense as you continue to read. While we are at it we will need to normalize our index
edDB variable across all of the vendor-specific properties.

var html5hacks = {};

html5hacks.msArray = [];

var indexedDB = window.indexedDB || window.webkitIndexedDB ||

                window.mozIndexedDB;

266 HTML5 HACKS



if ('webkitIndexedDB' in window) {

  window.IDBTransaction = window.webkitIDBTransaction;

  window.IDBKeyRange = window.webkitIDBKeyRange;

}

Now we can begin to set up our database:

html5hacks.indexedDB = {};

html5hacks.indexedDB.db = null;

function init() {

  html5hacks.indexedDB.open();

}

init();

This will obviously fail for now, but as you can see the initialization begins by calling

the open() method on an html5hacks.indexedDB. So let’s take a closer look at

open():

html5hacks.indexedDB.open = function() {

  var request = indexedDB.open("milestones");

  request.onsuccess = function(e) {

    var v = "1";

    html5hacks.indexedDB.db = e.target.result;

    var db = html5hacks.indexedDB.db;

    if (v!= db.version) {

      var setVrequest = db.setVersion(v);

      setVrequest.onerror = html5hacks.indexedDB.onerror;

      setVrequest.onsuccess = function(e) {

        if(db.objectStoreNames.contains("milestone")) {

          db.deleteObjectStore("milestone");

        }

        var store = db.createObjectStore("milestone",

          {keyPath: "timeStamp"});

        html5hacks.indexedDB.init();

      };

267CHAPTER 6: CLIENT-SIDE DATA STORAGE HACKS



    }

    else {

      html5hacks.indexedDB.init();

    }

  };

  request.onerror = html5hacks.indexedDB.onerror;

}

First, we need to open the database and pass a name. If the database successfully

opens and a connection is made, the onsuccess() callback will be fired.

Within the onsuccess, we then check for a version and call setVersion() if one does

not exist. Then we will call createObjectStore() and pass a unique timestamp

within the keypath property.

Finally, we call init() to build the calendar and attach the events present in the

database.

html5hacks.indexedDB.init = function() {

  var db = html5hacks.indexedDB.db;

  var trans = db.transaction(["milestone"], IDBTransaction.READ_WRITE);

  var store = trans.objectStore("milestone");

  var keyRange = IDBKeyRange.lowerBound(0);

  var cursorRequest = store.openCursor(keyRange);

  cursorRequest.onsuccess = function(e) {

    var result = e.target.result;

    if(!result == false){

        $('#calendar').fullCalendar({

          header: {

            left: 'prev,next today',

            center: 'title',

            right: 'month,agendaWeek,agendaDay'

          },

          weekmode: 'variable',

          height: 400,

          editable: true,

          events: html5hacks.msArray

        });

268 HTML5 HACKS

 
 

 
 



      return;

    }else{

      console.log("result.value" , result.value);

      buildMilestoneArray(result.value);

      result.continue();

    }

  };

  cursorRequest.onerror = html5hacks.indexedDB.onerror;

};

At this point we are poised to retrieve all the data from the database and populate our

calendar with milestones.

First, we declare the type of transaction to be a READ_WRITE, set a reference to the

datastore, set a keyrange, and define a cursorRequest by calling openCursor and

passing in the keyrange. By passing in a 0, we ensure that we retrieve all the values

greater than zero. Since our key was a timestamp, this will ensure we retrieve all the

records.

Once the onsuccess event is fired, we begin to iterate through the records and push

the milestone objects to buildMilestoneArray:

function buildMilestoneArray(ms) {

  html5hacks.msArray.push(ms);

}

When we reach the last record, we build the calendar by passing a configuration object

to fullCalendar() and returning:

        $('#calendar').fullCalendar({

          header: {

            left: 'prev,next today',

            center: 'title',

            right: 'month,agendaWeek,agendaDay'

          },

          weekmode: 'variable',

          height: 400,

          editable: true,

          events: html5hacks.msArray

        });

      return;

269CHAPTER 6: CLIENT-SIDE DATA STORAGE HACKS



Adding Milestones

Now that we are initializing and building our calendar, we need to begin adding mile-

stones to the database via the form. First let’s use jQuery to set up our form to pass

a serialized data object to addMilestone() on each submission:

  $('form').submit(function() {

    var data = $(this).serializeArray();

    html5hacks.indexedDB.addMilestone(data);

    return false;

  });

Now let’s submit a few events and then view them in the Chrome Inspector to ensure

they are there (see Figure 6-10).

Figure 6-10. 

Viewing milestone objects in the Chrome Inspector

Let’s take a closer look at our addMilestone method:

html5hacks.indexedDB.addMilestone = function(d) {

  var db = html5hacks.indexedDB.db;

  var trans = db.transaction(["milestone"], IDBTransaction.READ_WRITE);

  var store = trans.objectStore("milestone");

  var data = {

    "title": d[0].value,

    "start": d[1].value,

270 HTML5 HACKS



    "end": d[2].value,

    "timeStamp": new Date().getTime()

  };

  var request = store.put(data);

  var dataArr = [data]

  request.onsuccess = function(e) {

    $('#calendar').fullCalendar('addEventSource', dataArr);

  };

  request.onerror = function(e) {

    console.log("Error Adding: ", e);

  };

};

We established our read/write connection in much the same way as our

html5hacks.indexedDB.init(), but now, instead of only reading data, we write a

data object to the data store each time by calling store.put() and passing it data.

On the onsuccess we then can call fullcalendar’s addEventSource() and pass it

the data wrapped in an array object. Note that it is necessary to transform the data

object into an array since that is what the FullCalendar API expects.

271CHAPTER 6: CLIENT-SIDE DATA STORAGE HACKS





7
Geolocation Hacks

An exploration of the future of web technologies and browser capabilities would not

be complete without covering the tools and techniques available to enable location

awareness.

Location-aware web applications provide content, functionality, and services based

on the cooperative detection of the user’s physical location. These applications can

then provide the user with real-time filtering of online information relevant to his cur-

rent location, such as place markers indicating the user’s location within a map, local

consumer reviews, local coupons and offers, and even relevant traffic and public

transportation notices.

These applications also enable users to provide their location to friends in a social

network and vice versa, creating possibilities for meetups and blended online and

physical interaction.

As you might imagine, the opportunities are not just limited to enhancing the life of

the consumer. Given real-time location data of potential consumers and their friends,

retailers can also create highly targeted, location-specific marketing campaigns for

both digital and physical products.

How Does Geolocation Work?

The web browser employs various technologies to pass parameters via a

background HTTP request to a Location Information Server that returns a

data set that includes an estimated longitude and latitude.

The technologies used to gather location data depend on the device and on

the operating system running on the device. The most common sources

are:

• Public IP address

• WiFi access points

• Bluetooth MAC IDs

273



HACK 58

• GPS

• GSM/CDMA cell tower IDs

Geolocation libraries for the Web are not new. In fact, today’s W3C Geolo-

cation specification is largely reflective of the original Google Gears API in-

troduced by Google in 2008. The API has been standardized and is one of

the most widely adopted of the HTML5 specifications covered in this book.

Fortunately, the API is also easy to use—a benefit we will explore in Hack

#58  and Hack #60.

In addition, a number of third-party services are available for creating really

interesting hacks, and they explore concepts such as reverse geocoding

and geofencing. In Hack #59  and Hack #61  we will pass our location data to

a service that will provide an enhanced API for working with location data.

In Hack #62  we will blend the power of the WebSocket API with location

awareness to make our application update in real time.

For browsers that don’t provide this functionality natively, Google’s IP geo-

coding service can serve as a polyfill, as we will explore in Hack #63.

The main drawback to this functionality is related to privacy and security,

and for good reason. After all, as responsible application developers we

should be doing what we can to protect the sensitive data of our users. In

Hack #58 we will take an in-depth look at how the browser employs cooper-

ative detection, allowing the user to opt-in to only sharing location data with

trusted web applications.

Use the Geolocation APIs to Display
Longitude and Latitude in a Mobile Web
Application

The Geolocation API exposes an easy-to-use API. With only a couple of lines of code,

you can obtain the user’s current position. What’s more, jQuery Mobile provides a

simple framework for building a cross-browser mobile web application.

In this hack we will utilize the jQuery Mobile framework to provide a relatively simple

means of authoring a cross-browser mobile application. Since this hack is focused on

displaying our current longitude and latitude and exercising the API across the mobile

web, we will only need a simple UI.

274 HTML5 HACKS



A Simple jQuery Mobile App

As always, we’ll start by building a basic page utilizing the HTML5 <doctype> and

including our dependencies:

<!DOCTYPE html>

<html lang="en">

  <head>

    <title>jQuery Mobile GeoLocation demo</title>

    <meta name="viewport" content="width=device-width,

initial-scale=1">

    <link rel="stylesheet"

href="http://code.jquery.com/mobile/1.1.1/jquery.mobile-1.1.1.min.css"

 />

    <script src="http://code.jquery.com/jquery-1.7.1.min.js"></script>

    <script src="http://code.jquery.com/mobile/1.1.1/jquery.mobile-

1.1.1.min.js"></script>

    </head>

<body>

    // jQuery mobile declarative markup here

</body>

</html>

As you can see, we have declared a dependency on one stylesheet, and three Java-

Scripts. We will build the remainder of the application using declarative HTML markup

and data- attributes that the jQuery Mobile framework will interpret.

Within the <body> tag, we can now place the following:

<div data-role="page" data-theme="a">

  <div data-role="header">

      <h1>Geo Location</h1>

  </div><!-- /header -->

  <div data-role="content">

      <ul data-role="listview" data-inset="true">

       <li>

        <a href="./longlat-embed.html" data-ajax="false">LongLat</a>

275CHAPTER 7: GEOLOCATION HACKS



       </li>

      </ul>

  </div><!-- /content -->

</div><!-- /page -->

At this point you should see what’s shown in Figure 7-1, if you access this page from a

smaller screen or shrink your desktop browser window to the size of a mobile browser.

Figure 7-1. 

jQuery Mobile simple button

276 HTML5 HACKS



As you might expect, the UI wasn’t created through magic. jQuery Mobile uses Java-

Script to consume the data- attributes present in your HTML markup to dynamically

generate more HTML and CSS. The end result is what you see in your browser.

Now we will create a separate page to link to. You many have noticed a link to longlat-

embed.html within the main page.

   <ul data-role="listview" data-inset="true">

      <li>

        <a href="./longlat-embed.html" data-ajax="false">LongLat</a>

      </li>

   </ul>

This will take us to a page that will run our JavaScript that contains our geolocation

code. Notice that we designated for this to not be a jQuery Mobile Ajax page. This

ensures that upon the click of the link we navigate to the new page. It is important that

the linked page is loaded so that its JavaScript will execute.

This page is structured similarly to the other page, with the same dependencies. I

intentionally kept the jQuery Mobile code as simple as possible. You can find more

information on working with jQuery Mobile in the excellent set of documentation

available on their website.

<div data-role="page" data-theme="a">

    <div data-role="header">

        <h1>LongLat</h1>

    </div><!-- /header -->

        <div data-role="content">

        </div><!-- /content -->

</div><!-- /page -->

In the content, we will create a div element that will contain our longitude and latitude

data once it is returned from the remote service. We will also include a back capability

to return to the previous page.

    <div class="geo-coords">

        GeoLocation: <span id="Lat">lat: ...</span>°,

               <span id="Long">long: ...</span>°

    </div>

    <a href="./jqueryMobile-embed.html"

277CHAPTER 7: GEOLOCATION HACKS

http://jquerymobile.com/demos/1.1.1/


       data-role="button"

       data-inline="true">

        Back

    </a>

Now we will address our geolocation JavaScript. If you are familiar with jQuery the

initial $ variable will look familiar in the code that follows. If not, you can learn more

about jQuery online.

Simply put, the jQuery function wrapper ensures that our page is ready before we

execute the following script. Then we will set up a global namespace object that we

will use to store our data. This type of organization will be important as our script gets

more complex moving forward.

Next, we will check to make sure the current browser supports geolocation by check-

ing the navigator object for the presence of the geolocation property. If it is avail-

able, we will call the getCurrentPosition method and pass a success and error
object.

Then we will construct both a success and error object. Within our success object

we can accept a position as a parameter and query the object for its nested coords
object which contains both latitude and longitude properties.

We will then call populateHeader(), which uses jQuery to append the returned val-

ues to the span tags that contain the IDs Lat and Long.

    $(function() {

        var Geo={};

        if (navigator.geolocation) {

           navigator.geolocation.getCurrentPosition(success, error);

        }

        //Get the latitude and the longitude;

        function success(position) {

            Geo.lat = position.coords.latitude;

            Geo.lng = position.coords.longitude;

            populateHeader(Geo.lat, Geo.lng);

        }

        function error(){

            console.log("Geocoder failed");

        }

278 HTML5 HACKS

http://docs.jquery.com/Main_Page


1 http://dev.w3.org/geo/api/spec-source.html

        function populateHeader(lat, lng){

            $('#Lat').html(lat);

            $('#Long').html(lng);

        }

    });

Now let’s return to our browser and navigate to the new page. When a user accesses

a web page that includes a call to navigator.geolocation.getCurrentPosi
tion(), a security notification bar will be presented at the top of the page. Browsers

that support the Geolocation API have their own security notification, which asks the

user to allow or deny the browser access to the device’s current location (see

Figure 7-2).

Figure 7-2. 

Google Chrome geolocation security notification

If the user allows the web application to track her physical location, the script will

continue to execute and make a request to the Location Information Server. The re-

mote server returns a data set that includes longitude and latitude. Once we have the

information and the success() callback has been called, we update the page (see

Figure 7-3).

Security and Privacy Concerns

The ability for web application developers to collect location data about end users

raises quite a bit of concern in regard to security and privacy. The W3C specification

clearly indicates that client applications should notify users and provide an interface

to authorize the use of location data, allowing them to determine which web applica-

tions they trust:

User agents must not send location information to Web sites without the

express permission of the user. User agents must acquire permission

through a user interface, unless they have prearranged trust relationships

with users, as described below. The user interface must include the host

component of the document’s URI [URI]. Those permissions that are ac-

quired through the user interface and that are preserved beyond the current

browsing session (i.e. beyond the time when the browsing context [BROWS-

INGCONTEXT] is navigated to another URL) must be revocable and user

agents must respect revoked permissions.1

279CHAPTER 7: GEOLOCATION HACKS

http://dev.w3.org/geo/api/spec-source.html


HACK 59

Figure 7-3. 

Latitude and longitude

Use Google’s Geocoding API to Reverse-
Geocode a User’s Location

Longitude and latitude data is only beneficial to the application if it can do something

more interesting than just display it. One common use case is to reverse-geocode, or

find a human-readable location based on longitude and latitude.

280 HTML5 HACKS



In Hack #58  we hacked together a simple mobile web application that displayed the

user’s current longitude and latitude. In this hack we will use the same jQuery Mobile

application and add an additional button to the home screen. This button will take us

to a separate page that displays the nearest city and state based on our current

location.

First, let’s add the additional button:

<ul data-role="listview" data-inset="true">

    <li>

        <a href="./longlat-embed.html" data-ajax="false">

            LongLat

        </a>

    </li>

    <li>

        <a href="./location-name-embed.html" data-ajax="false">

            Location By Name

        </a>

    </li>

</ul>

We also have to remember to include Google’s Maps APIs to support our geocoding

service call (more on that later):

<script src="http://maps.googleapis.com/maps/api/js?sensor=false">

</script>

We now have two buttons on our jQuery Mobile home screen (see Figure 7-4).

This takes us to a new page that will run some JavaScript that makes a call to a remote

Google service. The script is structured similarly to the longitude and latitude script

in Hack #58 , so I won’t repeat those details here.

After checking for the existence of the navigator objects’ geolocation property,

we create a geocoder variable and instantiate a new google.maps.Geocoder():

        if (navigator.geolocation) {

           geocoder = new google.maps.Geocoder();

           navigator.geolocation.getCurrentPosition(success, error);

        }

In our success object we designate the callback that will execute. There we can add

our future reverseGeo() method.

281CHAPTER 7: GEOLOCATION HACKS



Figure 7-4. 

Adding a Location By Name button

        function success(position) {

            Geo.lat = position.coords.latitude;

            Geo.lng = position.coords.longitude;

            reverseGeo(Geo.lat, Geo.lng);

        }

Now we will create a reverseGeo() method that accepts the longitude and latitude

that was returned by getCurrentPosition(). First we’ll take our latitude and lon-

gitude data and pass it to the google.maps.LatLng helper function. Then we’ll set

that value to the latLng property of an empty object.

282 HTML5 HACKS

 
 

 
 



function reverseGeo(lat, lng) {

  var latlng = new google.maps.LatLng(lat, lng);

    // make the call to a geocode service

}

The geocode() method will make a call to Google’s Geocoding API and return a large

result set that contains more information than we need. Therefore, we will need to

parse out the city and state from the result set. Our city value is stored in a property

named locality and the state is stored in administrative_area_level_1. The

code for doing this follows; Figure 7-5 shows the result.

  geocoder.geocode({'latLng': latlng}, function(results, status) {

   if (status == google.maps.GeocoderStatus.OK) {

    if (results[1]) {

      var addressComponents = results[0].address_components;

      for (var i = 0; i < addressComponents.length; i++) {

      for (var b = 0; b < addressComponents[i].types.length; b++){

       if (addressComponents[i].types[b] == "locality") {

        city = addressComponents[i];

        break;

      }

       var adminString = "administrative_area_level_1";

       if (addressComponents[i].types[b] == adminString) {

        state = results[0].address_components[i];

        break;

       }

      }

     }

    Geo.location_name = city.long_name + ", " + state.short_name;

    $('#storeLocation').html(Geo.location_name);

    } else {

      console.log("No results found");

    }

   }else {

    console.log("Geocoder failed due to: " + status);

  }

});

283CHAPTER 7: GEOLOCATION HACKS



Figure 7-5. 

Showing the location name

Here is the final script:

$(function() {

    var Geo={};

    var geocoder;

    if (navigator.geolocation) {

       geocoder = new google.maps.Geocoder();

       navigator.geolocation.getCurrentPosition(success, error);

    }

284 HTML5 HACKS



    //Get the latitude and the longitude;

    function success(position) {

        Geo.lat = position.coords.latitude;

        Geo.lng = position.coords.longitude;

        populateHeader(Geo.lat, Geo.lng);

        reverseGeo(Geo.lat, Geo.lng);

    }

    function error(){

        console.log("Geocoder failed");

    }

    function populateHeader(lat, lng){

        $('#Lat').html(lat);

        $('#Long').html(lng);

    }

    function reverseGeo(lat, lng) {

      var latlng = new google.maps.LatLng(lat, lng);

       geocoder.geocode({'latLng': latlng},

         function(results, status) {

          if (status == google.maps.GeocoderStatus.OK) {

            if (results[1]) {

             var addressComponents = addressComponents;

              for (var i = 0; i < addressComponents.length; i++) {

               for (var b=0;b< addressComponents.length;b++){

                if (addressComponents[i].types[b] == "locality") {

                         city = addressComponents[i];

                            break;

                          }

                var adminString = "administrative_area_level_1";

                if (addressComponents[i].types[b] == adminString){

                      state = results[0].address_components[i];

                      break;

                     }

                  }

                }

             Geo.location_name = city.long_name+", "+state.short_name;

             $('#storeLocation').html(Geo.location_name);

285CHAPTER 7: GEOLOCATION HACKS



HACK 60

             } else {

               console.log("No results found");

             }

           } else {

               console.log("Geocoder failed due to: " + status);

           }

       });

    }

 });

Update a User’s Current Location in a
Google Map

Sometimes the user of your application is moving and a location needs to be updated

at a regular interval. You can use a Google map to display a moving pin of the user’s

locations.

Using the Google Maps API

In this hack we will start by including the necessary dependencies for displaying

Google maps within our application. Fortunately, the Google Maps API makes this very

simple. Just be sure to include the dependency in the head of your application’s

document.

<script type="text/javascript" src="http://maps.google.com/maps/api

/js?libraries=geometry,places&amp;sensor=false"></script>

We also need an empty div element to populate with our map:

<div id="map"></div>

Including the map is as simple as setting a reference to the HTML element we want

to populate, creating a configuration object called configObj, and passing both to

an instantiation of a new Google map:

var configObj = {

            zoom: 15,

            center: latlng,

            mapTypeControl: false,

            navigationControlOptions: {

               style: google.maps.NavigationControlStyle.SMALL},

               mapTypeId: google.maps.MapTypeId.ROADMAP

286 HTML5 HACKS



          };

          var map = new google.maps.Map(document.getElementById("map"),

           configObj);

Figure 7-6 shows the result.

In case this type of programming is new to you, the properties within configObj
are optional and configurable. The complete API reference is available online.

Figure 7-6. 

Reverse-geocoding a location with Google’s Geocoding API

287CHAPTER 7: GEOLOCATION HACKS

https://developers.google.com/maps/


Now that we have a working Google map, let’s start updating our map with a map pin.

To do so, we will use getCurrentPosition() to determine our location.

  if (navigator.geolocation) {

    navigator.geolocation.getCurrentPosition(success, error)

  } else {

    error('not supported');

  }

Updating the Current Location with a Timer

An application that can auto-update would obviously make our users’ lives easier, by

not asking them to update their location as they move.

To enable an auto-update, we will create a timer that uses the navigator.geoloca
tion.watchPosition() method. This method will execute the success callback

when the location changes or when the device improves the accuracy.

        var positionTimer = navigator.geolocation.watchPosition(

            function(position){

                updateMarker(

                    marker,

                    position.coords.latitude,

                    position.coords.longitude

                );

            }

        );

Finally, we will call updateMarker(), which internally calls the Google Maps API’s

setPosition() method:

            function updateMarker(pin, lat, long){

                pin.setPosition(

                    new google.maps.LatLng(

                        lat,

                        long

                    )

                    );

             }

288 HTML5 HACKS



Improving the Map

Everything else, including the code for our Google map, will reside in the success
callback that is called once the user has allowed her location to be determined, and

the service has returned a longitude and latitude.

The position property is available within the success callback object, so we will pull

the latitude and longitude from there and pass it to the Google Maps API’s LatLng()
method:

var latlng = new google.maps.LatLng(position.coords.latitude,

 position.coords.longitude);

Now we will set up our simple marker. The map property is a reference to the HTML

local variable we used to store the Map object earlier.

  marker = new google.maps.Marker({

    position: latlng,

    map: map,

    title:"Html5 Hacks!"

  });

The following code allows us to place a circle around our map pin to emphasize the

location visually. (Be sure to try different values with the radius property.) While we

are at it, we will also center the map to the current location.

  var circle = new google.maps.Circle({

    map:map,

    radius:300

  });

  circle.bindTo('center', marker, 'position');

  map.setCenter(

   new google.maps.LatLng(

    position.coords.latitude,

    position.coords.longitude

   )

  );

Figure 7-7 shows what we end up with.

289CHAPTER 7: GEOLOCATION HACKS



Figure 7-7. 

Placing a radius around the pin

Improving Accuracy

In the introduction to this chapter I listed a number of technologies (public IP address

location, cell tower triangulation, GPS, WiFi/Bluetooth MAC addresses, and signal

strengths) that a particular device can use to pass parameters to a Location Infor-

mation Server to estimate a user’s location.

The getCurrentPosition() method, if used with the default configuration, typically

uses the first and quickest service that is available on the device, which isn’t neces-

sarily the most accurate. The most common example is a smartphone handset using

an IP address location before GPS. Determining location by IP address is known to be

very inaccurate.

290 HTML5 HACKS



HACK 61

2 http://en.wikipedia.org/wiki/Geo-fence

The enableHighAccuracy attribute provides a hint that the application would like to

receive the best possible results. This may result in slower response times or increased

power consumption. The user might also deny this capability, or the device might not

be able to provide more accurate results than if the flag wasn’t specified.

Saving Power and/or Bandwidth

One of the original intentions of enableHighAccuracy was to provide mobile handset

application developers with the option to avoid the use of GPS, which typically con-

sumes a significant amount of power. So, while it may improve accuracy, there is also

another side to the story. Oftentimes, it is necessary to strike a balance between ac-

curacy and resource consumption.

A few attributes are available that can aid in these decisions within your application

design:

maximumAge

The maximum age (ms) of the last location response (the device may cache lo-

cation responses to save power and/or bandwidth)

timeout

The maximum time (ms) until the device retries a location lookup

Use the Geoloqi Service to Build
a Geofence

With Geoloqi, you can push messages and execute events to a single end user at the

moment he crosses into a geofence, dwells within it, or departs the zone. And with the

Geoloqi JavaScript SDK you can build a location-aware app that gives the user

the ability to build a geofence.

In this hack we will build a simple geofence, a virtual perimeter for a real-world geo-

graphic area.2 We will do this by traveling to our favorite establishments in downtown

Austin, Texas. (After all, we needed a good excuse to get out.)

Building a Geofence

As we move from one establishment to the next, we will tag and push the new location

up to the Geoloqi service to store the data in a remote datastore.

291CHAPTER 7: GEOLOCATION HACKS

http://en.wikipedia.org/wiki/Geo-fence


To demonstrate the fence we will then retrace our steps, and make a call to request

the nearest tagged location. As we move back through the tagged locations, Geoloqi’s

service will perform the necessary logic to determine which stored location is nearest

to our current location.

This is only a small portion of the Geoloqi API, as a complete exploration would be

beyond the scope of this book. Hopefully, this sparks your interest enough to get you

started hacking with this service on your own. You can find the complete API online.

Getting Started

First, we need to create an account at geoloqi.com. Once we have an account, we will

create a new application (see Figure 7-8).

We will be redirected to a screen that contains the Client ID, Client Secret, and Appli-

cation Access Token (see Figure 7-9).

Once we have this information we can begin building our app.

Building the Geofencing Application

We will begin by building a jQuery Mobile form. (For more information on setting up

and including jQuery Mobile’s dependencies see Hack #58 .)

Once we have all the jQuery Mobile dependencies we will include the following form:

 <form>

   <fieldset>

     <h2>New Location</h2>

      <input type="text" name="name" value="">

      <button type="submit" class="btn btn-primary">Save</button>

      <button onclick="getLastLocation(); return false" class="btn">

       Get Last Location

      </button>

      <button onclick="getNearbyLocation();return false" class="btn">

        Get Nearby Location

      </button>

    </fieldset>

  </form>

292 HTML5 HACKS

https://developers.geoloqi.com/api
http://geoloqi.com


Figure 7-8. 

Creating a new application

The form has three main purposes. The button with type="submit" submits a new

location to the Geoloqi service by making a call to addLocation(). The second button

returns the last location that was added. The third button returns the location nearest

to our current location.

To finish the necessary HTML markup for our interface we will also include the fol-

lowing placeholders for any dynamic updates to the UI:

293CHAPTER 7: GEOLOCATION HACKS



Figure 7-9. 

Viewing the application

            <span id="lastLocation">...</span>

            <span id="nearbyLocation">...</span>

Calling the Geoloqi API

To call the Geoloqi API, first we need to include the Geoloqi JavaScript APIs within our

application’s document:

294 HTML5 HACKS



<script type="text/javascript"

src="http://api.geoloqi.com/js/geoloqi.min.js"></script>

We also need to initialize the Geoloqi library and pass in the access_token we re-

ceived when we created our application at geoloqi.com:

 geoloqi.init();

 geoloqi.auth = {

   'access_token': '142b6-cfb41aaca58aed5f73b58085e1ff21cf6ae0c9a7'};

Next, as we have done in the other hacks in this chapter, we will use navigator.geo
location.getCurrentPosition(). Review those hacks if you want more detail, but

here is the gist of it:

        Geo = {};

        if (navigator.geolocation) {

           navigator.geolocation.getCurrentPosition(success, error);

        }

        //Get the latitude and the longitude;

        function success(position) {

            Geo.lat = position.coords.latitude;

            Geo.lng = position.coords.longitude;

        }

        function error(){

            console.log("GeoLocation failed");

        }

Now let’s begin building our event handlers.

First we need to create a function that will accept the coordinates returned from our

call to navigator.geolocation.getCurrentPosition(), and persist them at

Geoloqi:

        function addLocation() {

          geoloqi.post("place/create", {

            latitude: Geo.lat,

            longitude: Geo.lng,

            radius: 100,

            name: "Lavaca Street Bar"

          }, function(response, error){

              console.log(response, error)

          });

        }

295CHAPTER 7: GEOLOCATION HACKS

http://geoloqi.com


To receive the last location we entered, we create the getLastLocation() method:

     function getLastLocation() {

          geoloqi.get('place/list', function(result, error) {

            $('#lastLocation').html(result.places[0].name);

          });

        }

To get our nearest location within our geofence we use the following:

      function getNearbyLocation() {

          geoloqi.get('place/nearby', {

            latitude: Geo.lat,

            longitude: Geo.lng,

            radius: 100

          }, function(result, error){

              $('#nearbyLocation').html(result.nearby[0].name);

          });

        }

Finally, to set up both a trigger (an event such as an SMS message or push notification)

and a place in one call, we will create an object called a geonote that will be called when

we get within 100 yards of a location. So, within our addLocation() method we will

change the post from place to geonote:

        function addLocation() {

           geoloqi.post("geonote/create", {

            latitude: Geo.lat,

            longitude: Geo.lng,

            radius: 100,

            name: "You are getting close to Lavaca Street Bar"

          }, function(response, error){

              console.log(response, error)

          });

        }

Now we will receive a message when we get close to our favorite establishments in

downtown Austin, Texas.

The finished product looks like this:

         geoloqi.init();

         geoloqi.auth={'access_token':'142b6-... ae0c9a7'};

         Geo = {};

296 HTML5 HACKS



         if (navigator.geolocation) {

            navigator.geolocation.getCurrentPosition(success, error);

         }

         //Get the latitude and the longitude;

         function success(position) {

            Geo.lat = position.coords.latitude;

            Geo.lng = position.coords.longitude;

         }

         function error(){

            console.log("GeoLocation failed");

         }

        function getLastLocation() {

          geoloqi.get('place/list', function(result, error) {

            $('#lastLocation').html(result.places[0].name);

          });

        }

        function addLocation() {

            geoloqi.post("geonote/create", {

            latitude: Geo.lat,

            longitude: Geo.lng,

            radius: 100,

            name: "You are getting close to Lavaca Street Bar"

          }, function(response, error){

              console.log(response, error)

          });

        }

        function getNearbyLocation() {

          geoloqi.get('place/nearby', {

            latitude: Geo.lat,

            longitude: Geo.lng,

            radius: 100

          }, function(result, error){

              $('#nearbyLocation').html(result.nearby[0].name);

          });

        }

This is just the beginning of what you can do with the Geolocation API and the Geoloqi

service. Now, take this as inspiration and build a more ambitious hack!

297CHAPTER 7: GEOLOCATION HACKS



HACK 62 Use the Geoloqi Real-Time Streaming
Service to Broadcast a Remote User’s
Movement

The combination of the Geolocation API and the Geoloqi Websockets server creates

a world of opportunity for innovative hacks. The WebSocket Protocol’s full-duplex,

bidirectional transport enables you to provide real-time updates of the remote user’s

location on a map.

The WebSocket Protocol creates a single, persistent TCP socket connection between

a client and server, allowing for bidirectional, full-duplex messages to be distributed

without the overhead of HTTP headers and cookies. In this hack we will use this light-

weight protocol to message our user location back to the server.

For more on the WebSocket Protocol refer to Chapter 9, which is dedicated to next-

generation connectivity protocols and advancements in HTTP.

The Geoloqi Real-Time Streaming Service

Geoloqi real-time streaming is provided through Node.js and Socket.IO. Socket.IO

normalizes different transport mechanisms for real-time support. If a browser does

not support the WebSocket Protocol, it will fall back to polyfill support from one of the

following alternative transport mechanisms:

• Adobe Flash Socket

• Ajax long polling

• Ajax multipart streaming

• Forever iFrame

• JSON polling

More details on Socket.IO are available in Hack #76 .

Adding the Geoloqi JavaScript SDK is as simple as including a few script tags in the

head of your document:

<script type="text/javascript"

src="https://subscribe.geoloqi.com/socket.io/socket.io.js"></script>

<script type="text/javascript"

src="http://api.geoloqi.com/js/geoloqi.min.js"></script>

298 HTML5 HACKS



Now we need to make sure we have the Geoloqi test account share token. We would

obviously replace this with a real share token once we are ready to implement it with

real users.

  window.onload = function () {

    var trip = new geoloqi.Socket('trip', 'TQ4ew3Z');

    trip.events.location = function(location) {

      console.log(location);

    }

    trip.events.disconnect = function() {

      console.log('trip socket disconnected');

    }

    trip.start();

  }

If we open the console, we will see objects being logged in the console (as shown in

Figure 7-10).

Figure 7-10. 

Google Chrome Developer Console viewing Geoloqi trip event objects

299CHAPTER 7: GEOLOCATION HACKS



These objects contain information related to the location of the user with a shared

token each time our application polls for a location.

First we will include the div element with id="map":

    <div id="map"></div>

Now let’s add a Google map to display the user’s location. In Hack #60  we discuss using

the Google Maps API in more detail. For this hack we will keep the map simple. Create

a new map and pass it to the setDefault() method of the Geoloqi Maps API:

 window.onload = function () {

        map = new google.maps.Map(document.getElementById('map'), {

          zoom: 10,

          center: new google.maps.LatLng(0, 0),

          mapTypeId: google.maps.MapTypeId.ROADMAP

        });

        geoloqi.maps.setDefault(map);

  }

Now that we have a map, we need to set up a new socket as we did in the first example.

We will again use the test account to instantiate a new geoloqi.Socket. It accepts a

Socket type, which can be either trip or group. The group type allows the developer

to subscribe to location updates for all users in a group using a group token.

For now, we will use a trip token to see only one user:

    var remoteUser = null;

    var sckt = new geoloqi.Socket('trip', 'TQ4ew3Z');

    sckt.events.location = function(location) {

     if(remoteUser === null) {

        remoteUser = geoloqi.maps.pins.Basic(

     {position: new google.maps.LatLng(

          location.latitude,

          location.longitude)

       });

      }

      remoteUser.moveTo(new google.maps.LatLng(

        location.latitude,

300 HTML5 HACKS

 
 

 
 



        location.longitude),

        true);

        }

        sckt.start();

      }

Now we should see the pin moving on the map in real time, in sync with the remote

user we are tracking. To test it yourself create an account and replace the trip token

with your own. The result should look like Figure 7-11.

Figure 7-11. 

Google map pin of a remote user updating in real time

For more information about Geoloqi socket streaming, visit the fantastic API docu-

mentation.

301CHAPTER 7: GEOLOCATION HACKS

https://developers.geoloqi.com/api
https://developers.geoloqi.com/api


HACK 63 Polyfill Geolocation APIs with Webshims

Often, web application developers are tasked with achieving cross-browser compli-

ance with the functionality they are targeting within an application. The Geolocation

API is not available natively in IE 8 and earlier, but there are alternative polyfills, such

as webshims, that you can use to get the job done.

I have included polyfill hacks throughout this book. For a general overview of the

problem that polyfills solve, read the introduction to Hack #55 . For this hack I will

assume you are familiar with Modernizr and YepNope.js.

To get started we will include our dependencies:

<script src="http://code.jquery.com/jquery-1.7.1.min.js"></script>

<script src="js/modernizr.js"></script>

<script src="js/yepnope.js"></script>

We will set up some basic markup to populate once we have received our location

coordinates:

<div class="geo-coords">

    GeoLocation: <span id="Lat">lat: ...</span>°,

                 <span id="Long">long: ...</span>°

</div>

Now we will include the yepnope script loader that uses the Modernizr.geoloca
tion property to test the browser for geolocation support. If the nope call returns

true, yepnope will dynamically load the polyfiller.js file from the webshims library,

patching the browser with geolocation support.

Once complete, the callback will be fired. For now, we will test these conditions with a

simple alert of the url of the polyfill:

    yepnope({

        test: Modernizr.geolocation,

        nope: ['../../js/polyfiller.js'],

        callback: function (url, result, key) {

            // test yepnope loader

            alert(url);

        }

    });

302 HTML5 HACKS



When we refresh a browser that lacks geolocation support, such as IE 8 and earlier,

we should see the alert.

So, now we can remove it and replace it with our webshims script.

First we will set up an option, confirmText, to configure the message displayed to

the user. Then we will call polyfill() and pass in the features we want to add. For

this hack, we will only need to add geolocation.

Now we can make a call to navigator.geolocation.getCurrentPosition() and

pass in the success and error callback objects:

    $.webshims.setOptions({

        geolocation: {

            confirmText: 'obtaining your location.

        }

    });

    //load all polyfill features

    $.webshims.polyfill('geolocation');

    $.webshims.polyfill();

    $(function() {

        var Geo={};

        function populateHeader(lat, lng){

            $('#Lat').html(lat);

            $('#Long').html(lng);

        }

        //Get the latitude and the longitude;

        function success(position) {

            Geo.lat = position.coords.latitude;

                Geo.lng = position.coords.longitude;

                populateHeader(Geo.lat, Geo.lng);

        }

        function error(){

            console.log("Geocoder failed");

303CHAPTER 7: GEOLOCATION HACKS



        }

        navigator.geolocation.getCurrentPosition(success, error);

    });

And here it is, all together:

yepnope({

    test: Modernizr.geolocation,

    nope: ['../../js/polyfiller.js'],

  callback: function (url, result, key) {

    $.webshims.setOptions({

        waitReady: false,

        geolocation: {

            confirmText: '{location} wants to know your position.

        }

    });

    //load all polyfill features

    $.webshims.polyfill('geolocation);

    $.webshims.polyfill();

    $(function() {

        var Geo={};

        function populateHeader(lat, lng){

            $('#Lat').html(lat);

            $('#Long').html(lng);

        }

        //Get the latitude and the longitude;

        function success(position) {

            Geo.lat = position.coords.latitude;

            Geo.lng = position.coords.longitude;

            populateHeader(Geo.lat, Geo.lng);

        }

        function error(){

            console.log("Geocoder failed");

        }

304 HTML5 HACKS



        if (navigator.geolocation) {

            navigator.geolocation.getCurrentPosition(success, error);

        }

    });

  }

});

305CHAPTER 7: GEOLOCATION HACKS





8
WebWorker API

The WebWorker API provides a simple set of methods for web content to run scripts

in background threads. Web workers are executed from a main browser window but

run independently and in parallel. Once a script in the main thread spawns a worker,

the worker can send messages back by posting them to a defined event handler. Data

is serialized, not cloned, as it is passed back and forth. This is important to note be-

cause poor design or use of too many workers can actually cause performance issues.

Web workers are beneficial in that they run without impacting the other user interface

scripts executed from the main window, but they do have limitations. They have limi-

ted access to core JavaScript, and no access to the Document Object Model (DOM).

However, you can perform I/O through the XMLHttpRequest object and even import

third-party scripts, as you will see in Hack #68 .

There are three types of web workers: inline, dedicated, and shared. Browser adoption

for shared workers is still very sparse, so most of the following hacks will focus on the

simpler, dedicated worker.

In the last hack in this chapter, Hack #69 , you will see how shared web workers allow

any number of browser window contexts to communicate with a single worker

simultaneously.

Why are web workers so important to web application developers today? It has to do

with how browsers handle JavaScript.

How Browsers Handle JavaScript

JavaScript runs in the same thread as the rest of the browser UI, and as the interpreter,

it pulls event handlers off the event loop as they are queued for execution. This queue

is shared with all event handlers to include those initiated by user interaction. In Hack

#65  we will compare the perceived performance of array manipulation both within the

main thread and within a dedicated worker. If you haven’t witnessed the power of

offsetting work to a worker, you will get a clear demonstration in the first hack.

307



JavaScript code bases continue to grow, and as more JavaScript runs, more applica-

tions block, waiting for the code to finish. Ultimately, we end up with unresponsive

script prompts.

How often have you seen the dialog in Figure 8-1, or something similar, telling you that

some scripts on a page are taking too long while your browser has become completely

unresponsive?

Figure 8-1. 

Unresponsive script prompt in Google Chrome

What can create unresponsiveness in the browser? Here are a few of the more com-

mon cases, some of which we will explore in the following hacks:

• Processing large arrays or JSON responses

• Prefetching and/or caching data for later use

• Analyzing video or audio data

• Polling web services

• Image filtering in Canvas

• Updating many rows of the local storage database

• Encoding/decoding a large string

308 HTML5 HACKS



HACK 64 Use the BlobBuilder Interface to Create
an Inline Worker

Sometimes developers need to keep scripts and markup together in one HTML file.

When necessary, you can create an inline worker with the BlobBuilder interface. This

hack will teach you how to parse batched Facebook data.

As I mentioned in this chapter’s introduction, there are three types of web workers:

inline, dedicated, and shared. In this hack we will utilize an inline web worker by lev-

eraging the BlobBuilder interface. We already covered blobs in Chapter 6, in Hack #53 .

Unlike dedicated and shared workers, inline workers do not require a worker to be

maintained within an external script. Inline workers are useful in that they allow the

developer to create a self-contained page. By utilizing the BlobBuilder interface, you

can “inline” your worker in the same HTML file as your main logic by creating a Blob
Builder and appending the worker code as a string.

The best way to think of a Blob is as a DOM file. The BlobBuilder interface provides

an intuitive way to construct Blob objects. If you are familiar with getters and setters,

the API should make a lot of sense to you. Just instantiate a new BlobBuilder and

use the append() method to set data to it. You can then use the getBlob() method

to get the entire Blob containing the data.

We will start by setting the type to the JavaScript/worker script so that the JavaScript

interpreters won’t parse it:

    <script id="worker1" type="JavaScript/worker">

        self.onmessage = function(event) {

            var jsonText = event.data;

            //parse the structure

            var jsonData = JSON.parse(jsonText);

            //send back the results

            // Loop through the data and send back objects with

            // name of the band and the talking_about_count number

            self.postMessage(jsonData);

        }

    </script>

309CHAPTER 8: WEBWORKER API



The Facebook Graph API and Batching Responses

Often it is desirable to reduce an application’s HTTP requests to as few as possible, if

not a single request. In this hack we want to fetch data from the fan pages of a large

number of bands within a particular genre. The data we are interested in is the talk
ing_about_count property. This property is a metric that is intended to gauge the

success of Facebook pages, and in our application we are interested in monitoring the

“buzz” of bands within our selected genre.

The talking_about_count property tallies the following Facebook user behaviors:

• Page likes

• Number of postings to a page’s wall

• Commenting on content within a page

• Sharing a page’s status update

• Answering a question posted by a page

• RSVPing to an event hosted by a page

• Mentioning a page

• Tagging a page in a photo

• Liking or sharing a check-in deal

• Checking in at a place

You get the idea. We plan to perform operations on this data. The possibilities for

working with data such as this are endless, so for the scope of this hack we will just

parse out that particular property, create an unordered list, and update the UI.

Reducing the Batch to a Single Request

We want to be optimized for mobile; we also want to cache the data locally, so we have

decided to use the Facebook Graph API’s batch support to make one single request

for all of our data (see Figure 8-2).

Facebook’s batch support allows you to pass instructions for several operations in a

single HTTP request. You can also specify dependencies between related operations

(described shortly). Facebook will process each independent operation in parallel and

will process your dependent operations sequentially. Once all operations have been

completed, a consolidated response will be passed back to you and the HTTP con-

nection will be closed.

310 HTML5 HACKS



Figure 8-2. 

Facebook Graph API’s batch support

Building the Blob

First we will use a fairly common approach to fetch the worker content from our inline

worker and append it to a Blob. We’ll use the following vendor-specific methods:

var bb = new (window.BlobBuilder || window.WebKitBlobBuilder ||

window.MozBlobBuilder )();

Now we’ll grab the content using the querySelector() method and the textCon
tent property of our selected element:

bb.append(document.querySelector('#worker1').textContent);

Finally, we need to create a blobURL and a worker. Our worker consumes a param-

eter that is really a reference to a script. So the parameter uses the createObjec
tURL() method to create a URL to our previously created Blob.

var objUrl = (window.webkitURL || window.URL);

var worker = new Worker(objUrl.createObjectURL(bb.getBlob()));

311CHAPTER 8: WEBWORKER API



Fetching Data from the Facebook Graph API

Now we can fetch the data we need by calling the public Facebook Graph API. So first

we will set our URL, making sure callback is set to ? to overcome the cross-domain

problems with JSONP (more on JSONP in Hack #68):

var url = "https://graph.facebook.com/?ids=TheFlecktones,

umphreysmcgee,SpearheadRecords&callback=?";

Next we will use jQuery’s .getJSON() method to make our XMLHttpRequest object,

serialize the response, and pass it into our worker. At this point, we will have achieved

our goal of transferring the parsing operations out of the main thread by calling work
er.postMessage() and passing the data.

        $.getJSON(url, function(json) {

        console.log(json)

        data = JSON.stringify(json);

        worker.postMessage(data); // Start the worker.

        });

If you are using Google Chrome or Safari, press Option-Command-I to open the De-

veloper Tools, and then navigate to the console (see Figure 8-3).

Figure 8-3. 

Facebook Graph API’s batch support

312 HTML5 HACKS



Now we’ll update our worker with some logic to make our data somewhat interesting.

We need to manipulate it a bit, so first we will create a new array that holds simple

objects with two properties: name and talking_about_count.

      var arr = new Array();

      for (var key in jsonData) {

        if (jsonData.hasOwnProperty(key)) {

          arr.push({ "name": jsonData[key].name,

                  "count": jsonData[key].talking_about_count

        });

        }

      }

Now that we have this new simple array, let’s sort it by creating a basic compare()
function, which we can pass to JavaScript’s native sort method. As a result, our counts

are now in descending order.

      function compare(a,b) {

        if (a.count < b.count)

           return 1;

        if (a.count > b.count)

          return −1;

        return 0;

      }

      var newarr = arr.sort(compare);

All in all, our new inline worker looks like this:

    <script id="worker1" type="JavaScript/worker">

      self.onmessage = function(event) {

        var jsonText = event.data;

        var jsonData = JSON.parse(jsonText);

      var arr = new Array();

      for (var key in jsonData) {

        if (jsonData.hasOwnProperty(key)) {

          arr.push({ "name": jsonData[key].name, "count":

jsonData[key].talking_about_count});

        }

      }

      function compare(a,b) {

313CHAPTER 8: WEBWORKER API



        if (a.count < b.count)

           return 1;

        if (a.count > b.count)

          return −1;

        return 0;

      }

      var newarr = arr.sort(compare);

      //send back to the results

      self.postMessage(newarr);

        }

    </script>

Now we can set up our listener to respond to messages that come back from the

worker. Once we get the data back from our worker thread we will handle it by updating

our UI. First, let’s take a look at the data by examining it in the console. We should see

that our data is now minimal, with only the name and talking_about_count
properties. Also, the bands should be sorted in descending order by talking_about_count.

    worker.onmessage = function(event){

    //the JSON structure is passed back

      var jsonData = event.data;

       console.log(jsonData);

    };

Let’s take another look at our new data in the console (see Figure 8-4).

Figure 8-4. 

Facebook JSONP data in the console

Now our onmessage() handler in our main thread will update the UI with the fresh

data from Facebook. We can use jQuery to append the list to the UI:

314 HTML5 HACKS



HACK 65

  var list = $('<ul>').attr('class','list');

      $("#status").append(list);

      for (var i = 0; i < newarr.length; i++) {

        var listitem = $('<li>').attr('class','listitem')

.text(newarr[i].name + " : " + newarr[i].count)

        $("#status > ul").append(listitem);

      };

Figure 8-5 shows the result.

Figure 8-5. 

Top 10 list of Jam Bands by talking_about_count

Perform Heavy Array Computations in a
Dedicated Web Worker

Dedicated web workers are a great solution for expensive computations such as array

manipulation. With this hack you can move such a computation to a worker without

impacting the performance of an interactive canvas animation in the main thread.

315CHAPTER 8: WEBWORKER API



To begin to understand the power of web workers we need to manufacture an expen-

sive operation, and create a UI that uses some type of animation that we would like

the user to be able to interact with seamlessly.

For the expensive operation we can manipulate array data, and for the animation we

can create a simple canvas that has balls bouncing as the user interacts with it.

We will then provide a simple UI that provides tools for testing heavy array manipula-

tion inside and outside a web worker. The test will be focused on the user experience.

We will not output data to show the performance of our code, but we will rely on the

popular concept of perceived performance to determine which solution is higher

performing.

An Expensive Computation

First let’s create a function that manipulates the array data by taking an input of two

large integers and outputting a two-dimensional array of all the combinations of the

two numbers. With smaller numbers, performing these operations is handled fairly

well outside the web worker, or in the main thread, in all the modern browsers. But as

we begin to increase the size of the input integers, our UI and our canvas animation

begin to demonstrate sluggishness.

Our computation will be maintained inside a process() function. At the end of the

script we will access the element in our markup with the id of textarea, and pass it

the string "PROCESSING COMPLETE" as well as set the background in red. This gives

us a clear indicator as to when the array processing is complete.

    function process() {

        console.log("WITHOUT WORKER")

        var r = $('select#row').val();

        var c = $('select#col').val();

        var a = new Array(r);

        for (var i = 0; i < r; i++) {

            a[i] = new Array(c);

            for (var j = 0; j < c; j++) {

                a[i][j] = "[" + i + "," + j + "]";

            }

        }

        var complete = "PROCESSING COMPLETE";

        $('#textarea').text(complete);

316 HTML5 HACKS



        $('#textarea').css({'background-color': '#BF3831',

'color': '#fff'});

    };

We also need to create a simple UI for demonstrating our worker test. So let’s create

select boxes that contain the values we will pass to our computations. One select box

will fire the process() function and the other will fire the processWorker() function

that will perform the same computation inside a worker (more on the processWork
er() function later in this chapter). We can also add the textarea we referenced in

our previous processing script.

              <form class="form-horizontal">

                <fieldset>

              <div class="control-group">

                    <label class="control-label"

for="select01">Select Row Value</label>

                    <div class="controls">

                      <select id="row">

                        <option>choose a value</option>

                        <option>1000</option>

                        <option>2000</option>

                        <option>3000</option>

                        <option>4000</option>

                      </select>

                    </div>

                  </div>

                  <div class="control-group">

                    <label class="control-label" for="select01">

Select Column Value</label>

                    <div class="controls">

                      <select id="col">

                        <option>choose a value</option>

                        <option>1000</option>

                        <option>2000</option>

                        <option>3000</option>

                        <option>4000</option>

                      </select>

                    </div>

                  </div>

                  <div class="control-group">

317CHAPTER 8: WEBWORKER API

 
 

 
 



                    <label class="control-label" for="textarea">

Output</label>

                    <div class="controls">

                      <textarea class="input-xlarge" id="textarea"

rows="1"></textarea>

                    </div>

                  </div>

                  <div class="control-group">

                    <label class="control-label" for="textarea">

Process</label>

                    <div class="controls">

                      <button id="worker" class="btn-small

btn-danger" href="#">With Web Worker</button>

                      <button id="non-worker" class="btn-small

btn-primary" href="#">Without Web Worker</button>

                    </div>

                  </div>

                </fieldset>

              </form>

Figure 8-6 shows the result.

We also need to use jQuery to add a few event listeners to listen for click events on

the select boxes. Our select boxes’ event handlers will be process() and process
Worker(), respectively. And finally, we will add an init() function that listens for the

window’s onload event and initializes our scripts.

    function init() {

        $('#worker').click(function() {

            var complete = "PROCESSING WITH WEB WORKER";

            $('#textarea').text(complete);

            processWorker();

        });

        $('#non-worker').click(function() {

            var complete = "PROCESSING WITHOUT WEB WORKER";

            $('#textarea').text(complete);

            process();

        });

    }

    window.onload = init;

318 HTML5 HACKS



Figure 8-6. 

Building the basic UI

The Bouncing Balls Canvas

Now let’s include the canvas animation. We’ll use a modified version of an existing

canvas demo provided by Eric Rowell. For our purposes we just need an animation

that we can interact with.

First let’s add just a bit of style to our canvas element:

    <style type="text/css">

        #canvas {

            width: 575px;

            height: 300px;

            background-color: #000;

            cursor: pointer;

        }

        #myCanvas {

            border: 1px solid #9C9898;

        }

319CHAPTER 8: WEBWORKER API

http://www.html5canvastutorials.com/labs/html5-canvas-google-bouncing-balls


        .thing {

           position:absolute;

        }

        .dying {

           color:#ff0000;

           font-weight:bold;

        }

    </style>

Now we can add the script. We won’t include Eric’s long script here, but you can see

it in the companion Git repository.

We should now have a fully functioning demonstration. As we begin to increase the

size of the values in the select boxes and press the Without Web Worker button (see

Figure 8-7), we should see the interaction among the balls in the canvas become in-

creasingly sluggish.

Figure 8-7. 

Adding the canvas animation

    function processWorker() {

        console.log("WORKER")

320 HTML5 HACKS

https://github.com/html5hacks/chapter8


        var r = $('select#row').val();

        var c = $('select#col').val();

        var worker = new Worker('assets/js/demojs/twoDarray-worker.js');

        var message = {

            "compfn": "create2Darray",

            "rowValue": r,

            "colValue": c

        }

        worker.postMessage(JSON.stringify(message));

        worker.onmessage = function (event) {

            // print results of array in result div

            // var data = event.data

            // Must stringify before appending to DOM

            // console.log('data has returned as: ' + typeof data

+ ' ...time to stringify and append to DOM');

            var complete = "PROCESSING COMPLETE";

            $('#textarea').text(complete);

            $('#textarea').css({'background-color': '#BF3831',

'color': '#fff'});

        };

    };

Spawning a Dedicated Web Worker

The WebWorker API is straightforward and easy to get started with.

First we will obtain the values from our select boxes and store them in the variables r
and c. Then we will instantiate a new web worker by using the new operator on the

Worker class and passing a URI that points to our worker script.

    function processWorker() {

        console.log("WORKER")

        var r = $('select#row').val();

        var c = $('select#col').val();

        var worker = new Worker('assets/js/demojs/twoDarray-worker.js');

    ...

321CHAPTER 8: WEBWORKER API



Now we’ll craft an object to pass to our worker. As you will see in a moment, our worker

will be organized as a library of methods. This object is actually a configuration object

that has a compfn property that instructs the worker library as to how to parse the

data. We’ll then pass our data to the worker via postMessage().

        var message = {

            "compfn": "create2Darray",

            "rowValue": r,

            "colValue": c

        }

We also need to serialize our data before passing it to the worker. To do this we can

use the JSON.stringify() method.

worker.postMessage(JSON.stringify(message));

Before we craft our worker, let’s finish our work in the main thread by setting up a

listener to handle any messages sent back to the main thread from the worker.

Here, we actually aren’t interested in the data that is returned, only that the callback

has been fired indicating that the processing is complete.

        worker.onmessage = function (event) {

            var complete = "PROCESSING COMPLETE";

            $('#textarea').text(complete);

            $('#textarea').css({'background-color': '#BF3831',

'color': '#fff'});

        };

Here is the completed processing function utilizing the WebWorker API:

    function processWorker() {

        console.log("WORKER")

        var r = $('select#row').val();

        var c = $('select#col').val();

        var worker = new Worker('assets/js/demojs/twoDarray-worker.js');

        var message = {

            "compfn": "create2Darray",

            "rowValue": r,

            "colValue": c

        }

        worker.postMessage(JSON.stringify(message));

        worker.onmessage = function (event) {

            var complete = "PROCESSING COMPLETE";

322 HTML5 HACKS



            $('#textarea').text(complete);

            $('#textarea').css({'background-color': '#BF3831',

'color': '#fff'});

        };

    };

Now we need to craft our worker script. Earlier I described the format of the script as

being a library, and being able to handle a compfn() method that allows us to divide

functionality into different methods within the library. To match common industry

conventions, we capitalize the Computations variable to indicate that we are creating

a JavaScript pseudoclass.

The create2darray is just one of many computations that we could include in this

worker library. For the scope of this hack we will only craft the one method, but it’s

important that you understand the power of this pattern moving forward.

Computations = {

  create2Darray: function (data) {

    var r = data.rowValue;

    var c = data.colValue;

    var a = new Array(r);

    for (var i = 0; i < r; i++) {

        a[i] = new Array(c);

        for (var j = 0; j < c; j++) {

            a[i][j] = "[" + i + "," + j + "]";

        }

    }

    return a;

  }

};

The secret to our worker library pattern is held within the onmessage() listener. We

use the bracket syntax to pull the name of the function out of the config object we

passed from our main thread. We use this function to match a function by that name

within the Computations class, and pass the rest of the data to be processed by that

function.

self.addEventListener('message', function(e) {

323CHAPTER 8: WEBWORKER API



    var message = JSON.parse(e.data)

    computated = Computations[message.compfn](message);

    self.postMessage(computated);

}, false);

Finally, here is our worker script in its entirety:

var Computations = {

  create2Darray: function (data) {

    var r = data.rowValue;

    var c = data.colValue;

    var a = new Array(r);

    for (var i = 0; i < r; i++) {

        a[i] = new Array(c);

        for (var j = 0; j < c; j++) {

            a[i][j] = "[" + i + "," + j + "]";

        }

    }

    return a;

  }

};

self.addEventListener('message', function(e) {

    var message = JSON.parse(e.data)

    computated = Computations[message.compfn](message);

    self.postMessage(computated);

}, false);

Figure 8-8 shows the result.

324 HTML5 HACKS



HACK 66

Figure 8-8. 

Processing complete

Use a Timer to Send Application State
to Workers

The combination of timers and web workers opens new opportunities in the develop-

ment of client-centric HTML5 applications. It is possible to make your application

artificially intelligent (in a very basic way) by giving it a set of functions called at a

regular interval. Although these operations can be performed in the main thread, it is

often optimal to perform them in a separate worker thread process.

In this hack we will gain inspiration from Angus Croll’s post, “web workers vs. the crazy

flies”.

For the most part, we will use most of Angus’s design, where he animates flies that

are eliminated over time based on array manipulations being performed within web

workers (see Figure 8-9). We will do much the same thing, but add our own flavor to

the hack.

325CHAPTER 8: WEBWORKER API

http://javascriptweblog.wordpress.com/2010/06/21/web-workers-vs-the-crazy-flies/
http://javascriptweblog.wordpress.com/2010/06/21/web-workers-vs-the-crazy-flies/


Figure 8-9. 

Angus Croll’s crazy flies

In the hack we will explore very basic concepts of artificial intelligence by using Java-

Script timers and random number generation to create a web-based visualization.

One might argue that this is not artificial intelligence, but it is a basic simulation of

intelligence demonstrating two main subproblems: localization (knowing where you

are or finding out where other things are) and mapping (learning what is around you

or building a map of the environment); see Figure 8-10.

Each time you run this script it will behave differently. It will take on a life of its own:

creating data, consuming the data, and making decisions based on the current state

of the data. Eventually, the script will run out of data to process and will stop.

Besides the enormous amount of potential with the core concept of artificial intelli-

gence within the browser, the significance of this hack is twofold. First, we are adding

timers to the mix in order to set up postMessages on a regular interval. Second, we

are evolving our worker library further than we did in Hack #65 . Our library will utilize

a few advanced syntactical techniques that you can use to make your own worker

library.

326 HTML5 HACKS



Figure 8-10. 

Localization and mapping illustrated with icons of users

In doing so, we will also extend JavaScript core to create a curry utility. We will then

use it within our setInterval() calls, a handy trick that is worth understanding if

you haven’t seen currying before (more on that later).

Here is a general idea of what we will accomplish in this hack:

1. Spawn the worker and add EventListeners.

2. Generate DOM movement (characters).

3. Start snapshot timers and capture the state of the UI.

4. At each interval, send the state of the UI to a worker (AI library).

5. Do heavy processing in the worker (AI library).

6. Pass back updates to the main thread.

7. Make updates to DOM elements.

327CHAPTER 8: WEBWORKER API



General Overview

The general idea of this hack is to generate a number of elements and append them

to the DOM. These elements will be icon elements that we will refer to as Thing objects

and we will append them to the <body> tag. But first let’s set up a few objects to hold

our data:

        var things = [], thingMap = {}, elemMap = {};

Now we’ll define a Thing class that we can instantiate when creating new Things. Our

Thing will maintain a number of different properties that we can see in the constructor

that follows. Also, when we create a Thing object we will call createThingElem(),

which will create the actual DOM element, and assign a reference by id to the ele
mMap object.

        var Thing = function(left, top, id) {

            this.id = id;

            this.minDx = −7; this.maxDx = 7;

            this.minDy = −7; this.maxDy = 7;

            this.x = this.xOld = left;

            this.y = this.yOld = top;

            this.pxTravelled = 7;

            elemMap[id] = createThingElem(left, top);

        }

Here is the createThingElem() function used to create the icons. You can see that

we are creating an icon element and appending it to the body of the document.

        var createThingElem = function(left, top) {

            var elem = document.createElement("i");

            elem.innerHTML = "";

            elem.className = "thing user-big";

            document.body.appendChild(elem);

            elem.style.left = this.x;

            elem.style.top = this.y;

            return elem;

        }

Initializing the Things

To begin, we will create an HTML form that will enable us to control the hack. We will

create the form with one select box allowing the user to choose the number of

Things to create.

Then we will create a button to generate the movement.

328 HTML5 HACKS



<form class="form-horizontal">

<fieldset>

  <div class="control-group">

    <label class="control-label" for="select01">Number of

     Characters</label>

    <div class="controls">

      <select id="number">

        <option>choose a value</option>

        <option>10</option>

        <option>15</option>

        <option>20</option>

        <option>25</option>

        <option>30</option>

        <option>35</option>

        <option>40</option>

        <option>45</option>

        <option>50</option>

      </select>

    </div>

  </div>

  <div class="control-group">

    <label class="control-label" for="textarea"></label>

    <div class="controls">

       <button id="go" class="btn-large btn-primary" href="#">

Generate Movement</button>

    </div>

  </div>

</fieldset>

</form>

Now that we have set up our UI to give us some controls, let’s initiate our script by

adding an event listener to the Generate Movement button, and a callback event han-

dler called init(). init() will accept the value that was selected in the select box.

        $('#go').click(function(e) {

            e.preventDefault();

            var num = $('select#number').val();

            var approach = "with worker";

            init(num);

        });

329CHAPTER 8: WEBWORKER API



Once init() is called, two things will happen. First, we will begin moving our Thing

icons around in the viewport, and second, we will set up another click listener on an-

other button that will start the timers. From now on we will call this our AI button. Let’s

add the additional button:

<form class="form-horizontal">

 <fieldset>

    ...

  <div class="control-group">

    <label class="control-label" for="textarea"></label>

    <div class="controls">

      <button id="ai" class="btn-large btn-primary" href="#">

Begin AI</button>

    </div>

  </div>

 </fieldset>

</form>

Figure 8-11 shows the basic UI.

Now we can begin moving the Things around by creating a while loop based on the

number passed in from the select box. On each iteration we will create a new Thing
and add it to the things array; call start on each Thing in the things array; and add

each Thing to the thingMap by setting each thing object in the things array as a

property with its id as the key in the thingMap (more on thingMap later):

init = function(num) {

    var i = −1;

    while (i++ < num) {

         things[i] = new Thing(400, 300, i);

         things[i].start();

         thingMap[things[i].id] = things[i];

    };

    ...

 };

The start() method begins the movement of the Thing icons in the DOM:

330 HTML5 HACKS



Figure 8-11. 

Building the basic UI

        Thing.prototype.start = function() {

            var thisElem = elemMap[this.id];

            var thing = this;

            var move = function() {

                thing.x = bounded(thing.x +

scaledRandomInt(thing.minDx,thing.maxDx),200,600);

                thing.y = bounded(thing.y +

scaledRandomInt(thing.minDy,thing.maxDy),100,500);

                if (!thing.dead) {

                    setTimeout(move, 1);

                }

                thisElem.style.left = thing.x;

                thisElem.style.top = thing.y;

            };

            move();

        }

Now we’ll add another click event handler to the AI button that will start the timers:

331CHAPTER 8: WEBWORKER API



init = function(num) {

    ...

    $('#ai').click(function(e) {

    e.preventDefault();

      var intervals = [];

      ...

    });

 };

At this point we’re ready to add the timer calls that invoke workers on regular intervals.

For now we will set the timers to 1000 ms or one second. We will set up four actions

that will process our data in four different ways.

 init = function(num) {

    var i = −1;

    while (i++ < num) {

         things[i] = new Thing(400, 300, i);

         things[i].start();

         thingMap[things[i].id] = things[i];

    };

    $('#ai').click(function(e) {

     e.preventDefault();

      var intervals = [];

      intervals[0] = window.setInterval(invokeWorker.curry(

'updatePaths'),1000);

      intervals[1] = window.setInterval(invokeWorker.curry(

'fireToBelow'),1000),

      intervals[2] = window.setInterval(invokeWorker.curry(

'rocketToSky'),1000);

      intervals[3] = window.setInterval(invokeWorker.curry(

'eradicateSlow'),1000);

    });

 };

You might be asking, “What is the curry function inside our setIntervals? What does

the curry give us?”

332 HTML5 HACKS

 
 

 
 



Currying uses a closure to give us the ability to dynamically create functions based on

arguments passed in. Here is the very common custom curry() function that aug-

ments JavaScript core:

     Function.prototype.curry = function() {

         if (arguments.length<1) {

             return this; //nothing to curry with - return function

         }

         var __method = this;

         var args = toArray(arguments);

         return function() {

             return __method.apply(this, args.concat(

toArray(arguments)));

         }

     }

Currying provides a handy pattern for writing less code and making your code

reusable across your application. We can better understand this by looking at the

invokeWorker() function:

       var invokeWorker = function(action) {

            // console.log(things)

            worker.postMessage({

                'action': action,

                'things': things

            });

        }

By extending JavaScript core, we can call curry on an existing function and pass it a

string. The string becomes a reference to a method in our worker library (more on

that later; for now, just know that the action parameter of invokeWorker is set to a

string variable and then set as the value of the action property of our custom object

that we send in postMessage() to our worker). In this example we don’t need to

serialize our object, since we are creating it manually through the object literal syntax.

{

  'action': action,

  'things': things

}

At this point we have icon elements moving around the screen, each having a config-

uration object associated to it. So, once a user clicks the event handler to begin the

artificial intelligence (or start the timers), the script begins to poll for these elements’

333CHAPTER 8: WEBWORKER API



information, such as their x and y coordinates, and posts the data to a web worker

library for processing. When the library has received the data, it will perform a com-

putation on the data by utilizing the action function that was passed in with our curried

function. Figure 8-12 shows the result.

Figure 8-12. 

Generating movement

The Worker Library

As we discussed before, the curried function that is being called by our setInterv
al timers is passing a reference to the action we want to take within our worker library.

It does this by creating the object within invokeWorker() and passing it to our work-

er’s postMessage() API.

var things;

var updates;

// UTILITIES

var scaledRandomInt = function(max, min) {

    return Math.round(min + Math.random()*(max-min));

334 HTML5 HACKS



}

var getDistance = function(x1,x2,y1,y2) {

    return Math.sqrt(Math.pow(Math.abs(x1-x2),2) + Math.pow(

Math.abs(y1-y2),2));

}

// ACTION Methods

var Actions = {

    fireToBelow: function(){

        var highest = things.sort(function(a, b){

            return a.y - b.y

        });

        updates = {};

        updates.action = 'fireToBelow';

        updates.id = highest[0].id;

        updates.minDy = −2;

        updates.maxDy = 3;

        updates.symbol = '';

        updates.className = 'thing user-fire';

        postMessage(updates);

    },

    rocketToSky: function(){

        var lowest = things.sort(function(a, b){

            return b.y - a.y

        });

        updates = {};

        updates.action = 'rocketToSky';

        updates.id = lowest[0].id;

        updates.minDy = −3;

        updates.maxDy = 2;

        updates.symbol = '';

        updates.className = 'thing user-plane';

        postMessage(updates);

    },

    eradicateSlowest: function(){

        var slowest = things.sort(function(a, b){

            return a.pxTravelled - b.pxTravelled

        });

        updates = {};

335CHAPTER 8: WEBWORKER API



        updates.action = 'eradicateSlowest';

        updates.id = slowest[0].id;

        updates.kill = true;

        postMessage(updates);

    },

    updatePaths: function(){

        for (var i = things.length-1; i; i--) {

            var t = things[i];

            t.pxTravelled += getDistance(t.xOld, t.x, t.yOld, t.y);

            t.xOld = t.x; t.yOld = t.y;

        }

    }

}

onmessage = function(e){

    things = e.data.things;

    Actions[e.data.action]();

}

Now that our worker library has done the necessary processing it posts the data back

to the main thread that has been listening for any new messages. Any new messages

will trigger the onmessage() event handler, which will make updates to the UI (see

Figure 8-13).

As you can see, numerous methods within our worker library are processing the data

through array manipulations. These manipulations can be very expensive, especially

as we increase the size of the data payload. One of the main points to take away from

this hack is that this library is organized to grow in a very clean, maintainable way. Just

add an additional method by creating a new property set to a function value.

Finally, the last syntactical sugar that we will use to make this library tidy and well

organized takes place within the onmessage() listener. Here there is a reference to

the Actions object, which we could refer to as a JavaScript Singleton class. In

JavaScript, we can create singletons, or classes that are only instantiated once, by

making use of a simple associated array of name–value pairs. The pattern looks like

this:

var Actions = {

    fireToBelow: function(){

        ...

    },

    rocketToSky: function(){

        ...

336 HTML5 HACKS



Figure 8-13. 

Things being eliminated

    },

    eradicateSlowest: function(){

        ...

    },

    updatePaths: function(){

        ...

    }

}

It is the same pattern as a simple JSON object.

Now we need to use the array bracket syntax to call the method of choice from within

the Singleton class. Remember, the name of the function was passed in from the

main thread. Now we can manage calls to any method within our library with only one

onmessage() handler.

onmessage = function(e){

    things = e.data.things;

    Actions[e.data.action]();

}

337CHAPTER 8: WEBWORKER API



HACK 67

Real-World Use

As I mentioned in the introduction to this hack, the core concepts of this simple script

bear enormous potential for real-world use. Here are a couple of ideas to get you

started:

• Offline analytics

• CoBrowse, user shadowing solutions

• Client-side image processing

• Background XMLHttpRequests

• Background read/write to local storage

We will explore some of these in upcoming hacks. Now go and build your own worker

library that can make decisions on its own.

Process Image Data with Pixel
Manipulation in a Dedicated Worker

One of the most practical uses of web workers involves processing image data client-

side without having to pass data back and forth from a remote server. Pixel manipu-

lation is a common way to add filter-like effects to images. Since you have access to

events exposed by the native browser API, you can apply these events based on user

input.

In this hack we will apply a grayscale filter to an image of the HTML5 logo. We will apply

the filter’s configuration based on location data and initiated on a native browser

event. The location data we will use will come from the x coordinate of the mouse’s

cursor, and the event we will use will be the mouseover event. As we mouse over the

HTML5 logo from left to right, the number will be smaller than if we were mousing over

the image from right to left. On this event, we will then pass the data to the web worker

for image processing. The filter we will create and apply will simply remove all color

except for black and white (in essence, it will be a grayscale filter).

As a result the image will become a lighter gray as we enter a mouseover from the

lefthand side of the image, and a darker gray as we enter a mouseover from the right-

hand side (see Figure 8-14).

First, let’s use jQuery to apply our event listener to the image, capture the coordinates,

and pass the event data to the process() function:

    $(".hover-img").on("mouseover", function(e){

         var x = e.pageX - this.offsetLeft;

338 HTML5 HACKS



Figure 8-14. 

HTML5 logo

         var y = e.pageY - this.offsetTop;

         console.log("X: " + x + " Y: " + y);

         process(this, x, y);

 });

Now we’ll build our processing function, which will apply our filter to the image data.

Our function will accept the image we captured in the mouseover event and the x and

y coordinates.

    function process(img, x, y) {

        //process the img based on x,y

    }

Next, we need to create a canvas in memory that is the same size as the image we

passed into the image we are capturing:

339CHAPTER 8: WEBWORKER API



        var canvas = document.createElement("canvas");

        canvas.width = img.width;

        canvas.height = img.height;

Now we’ll copy the image into the canvas, and then extract its pixels:

        var context = canvas.getContext("2d");

        context.drawImage(img, 0, 0);

        var pixels = context.getImageData(0,0,img.width,img.height);

Here we are sending the pixels to a worker thread:

        var worker = new Worker("javascripts/greyscale.js");

        var obj = {

            pixels: pixels,

            x:x,

            y:y

        }

        worker.postMessage(obj); // Copy and send pixels

At this point we need to register a handler to get the worker’s response. When we

receive the response, we will create a local variable that we will use to put the image

back into a context object. We will use the putImageData() method to do so and pass

an x and y coordinate to offset the new image data. In this case we want to put the

new image in the same place we took the original data from, so we will use 0 0. Finally,

we will use toDataURL() to add the data back to the src attribute of our image. Can-

vas has a toDataURL() method that will take the data in the canvas and create a string

that can be set to the src property of an image. Appending that image somewhere on

the document will display the data as an image.

        worker.onmessage = function(e) {

            if (typeof e.data === "string") {

                console.log("Worker: " + e.data);

            return; }

            var new_pixels = e.data.pixels; // Pixels from worker

            context.putImageData(new_pixels, 0, 0);

            img.src = canvas.toDataURL(); // And then to the img

    }

340 HTML5 HACKS



You may have noticed the debugging technique we can use. Since we cannot use a

console API within a worker, we need to check the data type of the returned message

in the event handler listening to any messages in the main thread. If the message is

of type string, we assume an error and log it.

            if (typeof e.data === "string") {

                console.log("Worker: " + e.data);

            return; }

Here is the finished product:

    function process(img, x, y) {

        // Create an offscreen <canvas> the same size as the image

        var canvas = document.createElement("canvas");

        canvas.width = img.width;

        canvas.height = img.height;

        // Copy the image into the canvas, then extract its pixels

        var context = canvas.getContext("2d");

        context.drawImage(img, 0, 0);

        var pixels = context.getImageData(0,0,img.width,img.height);

        var worker = new Worker("javascripts/greyscale.js");

        var obj = {

            pixels: pixels,

            x:x,

            y:y

        }

        worker.postMessage(obj);

        worker.onmessage = function(e) {

            if (typeof e.data === "string") {

                console.log("Worker: " + e.data);

            return; }

            var new_pixels = e.data.pixels;

341CHAPTER 8: WEBWORKER API



            context.putImageData(new_pixels, 0, 0);

            img.src = canvas.toDataURL();

        }

    }

Finally, we need to create our grayscale filter within our worker script. Here, we will

make a call to filter(), which will process the image data, removing the necessary

data to return a gray image. The dynamic magic occurs in the grayscale variable,

which multiplies the x coordinate’s position within the formula to return image data

that contains nothing more than shades of gray.

onmessage = function(e) {postMessage(filter(e.data))};

    function filter(imgd) {

        var pix = imgd.pixels.data;

        var xcord = imgd.x/1000;

        var ycord = imgd.y/1000;

        for (var i = 0, n = pix.length; i < n; i += 4) {

            var grayscale = pix[i] * xcord + pix[i+1] * .59

+ pix[i+2] * .11;

            pix[i] = grayscale;   // red

            pix[i+1] = grayscale;   // green

            pix[i+2] = grayscale;   // blue

        }

        imgd['pixels'].data = pix;

        return imgd;

    }

Figures 8-15 and 8-16 show the result.

342 HTML5 HACKS



HACK 68

Figure 8-15. 

Left-side mouseover event resulting in darker grayscale

Use Import Scripts to Make Twitter
JSONP Requests

The WebWorker API allows you to import third-party or external libraries through the

use of the importScripts() method. JSONP, or JSON with padding, is a widely used

technique for fetching JavaScript from other domains without having to adhere to the

browser’s same origin policy.

In this hack we will make a call to the Twitter Search API to obtain the last 100

tweets that contain the html5 keyword within their body. We will leverage the import
Script() function available to us in the worker context.

As with any dedicated worker, the first thing we will do is to create a new Worker and

point to an external file:

var worker = new Worker("javascripts/jsonp-worker.js");

343CHAPTER 8: WEBWORKER API



Figure 8-16. 

Right-side mouseover event resulting in lighter grayscale

Then we will set up a listener for any messages passed back to our main thread. Within

our listener, we will loop through the response and build a div for each result. In the

process, we will also append the profile image, and the name of the Twitter user that

posted the tweet.

        var worker = new Worker("javascripts/jsonp-worker.js");

        worker.onmessage = function(e) {

            console.log(e.data);

            var res = e.data;

            for ( key in res.results){

                var item = res.results[key];

                var img = $('<img>').attr('src',item.profile_image_url);

                var div = $('<div>').append(img);

                var text= $('<div>').html($.trim(item.text));

                div.append(text);

                div.attr('class','tweet');

344 HTML5 HACKS



                $('#listDiv').append(item.from_user);

                $('#list').append(div);

            }

        }

But we are getting ahead of ourselves, so first let’s make the request to Twitter from

within our worker. Our worker script is fairly straightforward. We need to set up a

callback function that we will pass within our request to Twitter. Within our callback,

we will simply pass the object back to the main thread to build out the UI. Later, we

will explore some of the possibilities for processing the data from Twitter, but for now

we will just pass the full object back to the main thread.

var callback = function (obj) {

    if (obj.hasOwnProperty("results")) {

        // process the data

        postMessage(obj);

    } else {

        postMessage("No results.");

    }

};

Making the request is simple, and involves a combination of JSONP and import
Scripts().

JSONP

JSONP or JSON with padding is a technique used to work around the browser’s same

origin policy for fetching JavaScript from another domain. A JSONP API server will

read in a callback request parameter and wrap the JSON-formatted response within

that function. The technique then takes advantage of the way the browser interprets

and executes JavaScript when a script tag is dynamically generated and appended to

the DOM.

As I mentioned in other web worker hacks, our worker thread is limited in that we

do not have DOM access, but we do have access to the special function import
Scripts(). So let’s make a call to the Twitter API to get the latest 100 tweets with

html5 as a search query. Notice the callback parameter and the function reference

to callback.

importScripts("http://search.twitter.com/search.json?

q=html5&rpp=100&since_id=1&callback=callback");

Here is the final web worker code:

345CHAPTER 8: WEBWORKER API



Figure 8-17. 

Fetching the latest HTML5-related Twitter data

var callback = function (obj) {

    if (obj.hasOwnProperty("results")) {

        // process data

        postMessage(obj);

    } else {

        postMessage("No results.");

    }

};

importScripts("http://search.twitter.com/search.json?

q=html5&rpp=100&since_id=1&callback=callback");

Figure 8-17 shows the result.

346 HTML5 HACKS



HACK 69

As I mentioned before, this is a very simple example. This approach can be very effi-

cient for processing API data within a web worker. Often, developers will want to alter

the format of the data within the worker, and then pass composites or even smaller

portions of the original data back to the main thread. Now you can, too.

Connect to Shared Workers
Simultaneously from Multiple
Browser Windows

Dedicated web workers are directly associated with their respective spawning script,

but shared web workers allow any number of browser window contexts to communi-

cate with a single worker simultaneously. As you will see in this hack, shared workers

implement a slightly different API, but overall the concepts are very much the same.

Just like dedicated workers, to create a shared web worker you pass a JavaScript

filename to your Worker instance, except this time you use the SharedWorker object.

Unlike dedicated web workers, shared workers introduce the concept of a port object

that must be designated along with the attached message event handler. After that,

we call the port’s start() method.

And finally, we are set to use our standard postMessage():

    var worker = new SharedWorker('javascripts/shared-simple.js');

    var log = document.getElementById('log');

    worker.port.addEventListener('message', function(e) {

        log.textContent += '\n' + e.data;

        if (e.data.charAt(0) == '#'){

          document.body.style.background = e.data;

        }

    }, false);

    worker.port.start();

Since any of the existing page scripts, or even scripts within other windows, can com-

municate with a shared web worker, we will create three iframes to demonstrate

communication across browser window contexts:

    <pre id="log">Log:</pre>

    <iframe src="/shared-simple-inner.html"></iframe>

    <iframe src="/shared-simple-inner2.html"></iframe>

    <iframe src="/shared-simple-inner3.html"></iframe>

347CHAPTER 8: WEBWORKER API



In each document being loaded in the iframes, we will instantiate new SharedWork
er objects that point to the same external script. The onmessage event handler will

expect two items as a response: a number that is maintained by a counter with the

worker thread, and a randomly generated color that will be set as the background

color of the document that spawned the worker.

<!DOCTYPE HTML>

<title>HTML5 Hacks: Shared Worker</title>

<pre id=log>Log:</pre>

<script>

  var worker = new SharedWorker('javascripts/shared-simple.js');

  var log = document.getElementById('log');

  worker.port.onmessage = function(e) {

   log.textContent += '\n' + e.data;

    if (e.data.charAt(0) == '#'){

      document.body.style.background = e.data;

    }

  }

</script>

Figure 8-18 shows the three iframes we included.

Within our worker we will maintain a counter that will increment with each connected

client. The number is posted back to the main thread that spawned that particular

instance of the worker. We will then generate a random color and post it back to the

same context.

var count=0;

onconnect = function(e) {

  count++;

  var port = e.ports[0];

  port.postMessage('Established connection: ' + count);

  var randomColor = '#'+(0x1000000+(Math.random())*0xffffff).to

String(16).substr(1,6);

  port.postMessage(randomColor);

}

Now, as we refresh the page we will see that the four independent spawning scripts

are receiving asynchronous responses from the worker thread. Not only do the back-

grounds get randomly generated, but each spawning script connects in a slightly dif-

ferent order each time (see Figure 8-19).

348 HTML5 HACKS

 
 

 
 



Figure 8-18. 

Including three additional iframes

349CHAPTER 8: WEBWORKER API



Figure 8-19. 

Random background colors for each worker spawned

350 HTML5 HACKS



9
Hacking HTML5 Connectivity

The HTML5 connectivity layer is made up of perhaps the most exciting of the speci-

fications in the HTML5 family. In this group are XHR2, the WebSocket Protocol, the

Server-Sent Events feature and EventSource JavaScript API, and SPDY. Many would

agree these technologies are already disrupting web application design in much the

same way Ajax did in the mid-2000s.

These technologies and protocols make up the next evolution in client/server web

technology.

The WebSocket Protocol creates a single, persistent TCP socket connection between

a client and a server, allowing for bidirectional, full-duplex messages to be distributed

without the overhead of HTTP headers and cookies. This long-awaited technology

provides a solution that was formerly created through creative uses of HTTP.

Over the past decade, web application developers have crafted technologies and

techniques such as Ajax, Comet, Flash sockets, HTTP streaming, BOSH, and Reverse

HTTP to achieve solutions that provided real-time UI updates. In the section “Polyfill

WebSocket Support with Socket.IO” (page 425) and in Hack #76 , we will rehash some of

those techniques as we set up a Node.js socket server that provides fallbacks for

browsers that have yet to implement the WebSocket specification. While we are at it,

we will also inspect the network and peer deeper into the connectivity layer by ex-

ploring the command-line interface of the ws module for Node.js in Hack #71 , and by

using the Chrome Developer Tools to inspect packets sent to and from the browser in

Hack #70  and Hack #77 .

At the same time, the Server-Sent Events feature and the EventSource JavaScript API

are standardizing HTTP streaming. Often overshadowed by web sockets, this stan-

dard is making longstanding connections over HTTP nearly trivial. In Hack #74  you will

see a Ruby implementation of HTTP streaming as multiple clients connected to an

evented web server to subscribe to push notifications.

As we are already seeing in early applications that utilize web sockets today, web

sockets do not make HTTP or Ajax techniques such as the XMLHttpRequest object

351



HACK 70

obsolete, but they do complement existing technologies by providing another tool for

web application developers to use when building solutions that need real-time data

updates. In fact, XHR has evolved into the Level 2 specification, which we got a taste

of in Hack #53 .

In Hack #75  I also will introduce the evolution of cross-domain communication as we

configure a server to accept requests from our web application.

In addition to support in modern web browsers such as Google Chrome and Opera,

there are also now web socket implementations in Java, .NET, Ruby, PHP, JavaScript

(Node.js), Objective-C, and ActionScript. We will explore some of these different im-

plementations for a Java implementation in Hack #73 , and for server-side JavaScript

in Node.js in Hack #71 .

We will also explore a third-party remote socket server at Pusher.com in Hack #72 .

And finally, in Hack #78  we will set up a simple SPDY server in Node.js to gain a better

understanding of this exciting protocol and what it has to offer.

Use Kaazing’s Remote WebSocket Server
to Echo Simple Messages from a Browser

The echo server is a web-based socket server created by Kaazing and hosted at web-

socket.org. It demonstrates the capabilities of the WebSocket Protocol by echoing

messages sent from the browser.

This example is an extension of the code provided as a test of the Echo Test server

on Websocket.org. The code was refactored to follow a more object-oriented ap-

proach. You can see the original example at websocket.org.

Let’s open an HTML file and begin by creating a basic WebSocketDemo class in Java-

Script. Since JavaScript isn’t class-based, we will follow a very common pseudoclass

pattern to manage our code. I provided the basic structure within our JavaScript tags

in the following code:

 <script language="javascript" type="text/javascript">

   WebSocketDemo = function(){

     return {

       // public methods go here.

     }

   }();

   WebSocketDemo.init("ws://echo.websocket.org/");

 </script>

352 HTML5 HACKS

http://websocket.org
http://websocket.org
http://www.websocket.org/echo.html


We also need to add a div tag with id="output". This will be where we log our

messages.

 <h2>WebSocket Test</h2>

 <div id="output"></div>

The WebSocketDemo class has four public methods—init(), onOpen(), on
Close(), and onMessage()—and one public property, ws. The ws property will

hold the instantiation of our new WebSocket object.

Now, let’s take a look at the init() method.

In WebSocketDemo.init() we pass a URL as the only parameter. It is then passed to

the instantiation of a new WebSocket. Notice that our URL is using the ws:// prefix.

The WebSocket Protocol defines ws:// for a basic web socket connection and wss://
for a web socket secure connection. For this hack, we will stick with the basics and

use the ws:// connection.

   WebSocketDemo = function(){

     return {

       ws: null,

       init: function(url){

         this.ws = new WebSocket(url);

       }

     }

   }();

   WebSocketDemo.init("ws://echo.websocket.org/");

Now, let’s create a method called onOpen() to wrap our call to send() and to listen

for the event that fires once the connection has been established:

   WebSocketDemo = function(){

     return {

       ws: null,

       init: function(url){

         this.ws = new WebSocket(url);

         this.onOpen();

       },

       onOpen: function(){

         this.ws.onopen = function(evt) {

         console.log('CONNECTED: ' + evt.type);

         WebSocketDemo.ws.send('html5 hacks');

       };

353CHAPTER 9: HACKING HTML5 CONNECTIVITY



       }

     }

   }();

   WebSocketDemo.init("ws://echo.websocket.org/");

Within the onOpen() method we have also included a console.log that will log the

event type (see Figure 9-1).

Figure 9-1. 

Logging the connection onOpen event

To establish a WebSocket connection, the client and server upgrade from HTTP to the

WebSocket Protocol during their initial handshake. There are several handshake

mechanisms, but unless you are writing server-side socket implementations, the

WebSocket JavaScript API implemented in your browser will abstract these details

away from you.

The handshake request is formatted as such (only the basic headers are shown):

GET /demo HTTP/1.1

Host: echo.websocket.org

Connection: Upgrade

Upgrade: WebSocket

Origin: null

Here is the handshake response (again, only the basic headers are shown):

354 HTML5 HACKS



HTTP/1.1 101 WebSocket Protocol Handshake

Upgrade: WebSocket

Connection: Upgrade

Server: Kaazing Gateway

Using the Google Chrome Developer Tools you can inspect this client/server interac-

tion. Click on the Network tab and select “echo.websocket.org” on the left to see the

request and response header information (see Figure 9-2).

Figure 9-2. 

Inspecting web socket request and response headers

You will notice in the request headers that there is a Connection: Upgrade header. You

will also see that the type is indicated in the Upgrade header and the receiving host is

echo.websocket.org.

HTTP1.1 included a new request header named Upgrade to provide a simple mech-

anism for transition from HTTP/1.1 to some other, incompatible future protocol.

The client sends the Upgrade header in the request, informing the server that it

would like to switch protocols. The communication is then dependent on the server

to validate the switch between protocols, if it is capable or configured to do so.

In the response, we see that an Upgrade header has been returned, and the corre-

sponding value is WebSocket. This tells the client browser that the requested upgrade

type was available and the persistent connection has been opened.

355CHAPTER 9: HACKING HTML5 CONNECTIVITY



Now, let’s evolve our code a bit, and begin to add a few more public methods that will

expose more connection events effectively demonstrating the internals of the socket

communication: onClose() and onMessage().

       onClose: function(){

         this.ws.onclose = function(evt) {

           console.log('CLOSED: ' + ': ' + evt.type);

         };

       },

       onMessage: function(msg){

         this.ws.onmessage = function(evt) {

           console.log('RESPONSE: ' + ': ' + evt.data);

           WebSocketDemo.ws.close();

         };

       }

     }

   }();

And in our init(), let’s execute our new methods:

       init: function(url){

         this.ws = new WebSocket(url);

         this.onOpen();

         this.onMessage();

         this.onClose();

       },

Now, if we refresh the browser we should see new console logs coming from our new

event methods. The send call within onOpen() passes the message “html5 hacks” to

the remote echo server, and the server echoes a response. The onMessage() event

logs the message and calls onClose (see Figure 9-3).

In the latest version of the Canary build of Chrome, we are also given a new tab in the

Dev Tools that allows us to view the traffic being sent back and forth between the

browser and the remote server. To take advantage of this capability, first you need to

get Canary. Now, follow these steps:

1. Navigate to the index.html we just created.

2. Turn on the Chrome Developer Tools, or press Apple+Shift+I (Mac OS X) or Ctrl-

Shift-I (Windows and Linux).

3. Click the Network tab, and click on Web Sockets just like we did in the earlier

example.

356 HTML5 HACKS

https://tools.google.com/dlpage/chromesxs


Figure 9-3. 

Console logs from event methods

4. Select “echo.websocket.org.”

5. Select the WebSocket Frames tab.

The information given is very beneficial and prevents you from having to install a third-

party tool:

Number

This is a counter, to demonstrate the sequence of the messages.

Arrow

This is the direction of the message.

Timestamp

This is the time the message was initiated or received.

Op-code

Op-codes are split into three categories: continuation, non-control, and control.

Continuation and non-control op-codes indicate that user messages and control

frames are used to configure the protocol itself: 1 represents a text message, and

8 represents a closed connection.

357CHAPTER 9: HACKING HTML5 CONNECTIVITY



Length

This is the number of characters in the payload.

Contents

This is the actual data in the WebSocket payload.

Figure 9-4 shows web traffic viewed with the WebSocket Frames tab in Canary.

Figure 9-4. 

Viewing web traffic with the WebSocket Frames tab in Canary

For clarity, let’s recap the interaction:

1. The client browser instantiates a new WebSocket object and passes it a URL using

the ws:// protocol.

2. The client browser then makes an HTTP request to the remote server requesting

a WebSocket connection upgrade.

3. The server responds with response headers indicating a Connection: Up
grade of type Upgrade: WebSocket.

4. This fires the onopen event.

5. With the onOpen() method the client browser calls send() and passes a payload.

6. The server responds with an echo of the same payload firing the onmessage
event.

358 HTML5 HACKS



7. The onMessage() event method logs the payload to the client console and then

calls close().

8. The onClose() event method fires and logs "CLOSED" and the event type to the

console.

Here is the final code in its entirety. This is just the beginning of a well-organized Java-

Script WebSocket library. Take it and start your own hacks!

<html>

<head>

 <meta charset="utf-8" />

 <title>WebSocket Test</title>

 <script language="javascript" type="text/javascript">

   WebSocketDemo = function(){

     return {

       ws: null,

       init: function(url){

         this.ws = new WebSocket(url);

         this.onOpen();

         this.onMessage();

         this.onClose();

       },

       doSend: function(msg){

         this.ws.send = function(evt) {

           console.log(evt.timeStamp)

         };

       },

       onOpen: function(){

         this.ws.onopen = function(evt) {

           console.log('CONNECTED: ' + evt.type);

           WebSocketDemo.ws.send('html5 hacks');

         };

       },

       onClose: function(){

         this.ws.onclose = function(evt) {

           console.log('CLOSED: ' + ': ' + evt.type);

359CHAPTER 9: HACKING HTML5 CONNECTIVITY



HACK 71

         };

       },

       onMessage: function(msg){

         this.ws.onmessage = function(evt) {

           console.log('RESPONSE: ' + ': ' + evt.data);

           WebSocketDemo.ws.close();

         };

       }

     }

   }();

   WebSocketDemo.init("ws://echo.websocket.org/");

 </script>

</head>

<body>

 <h2>WebSocket Test</h2>

 <div id="output"></div>

</body>

</html>

Build a Blazing-Fast WebSocket Server
with Node.js and the ws Module

The Node.js ws module is an easy-to-use, blazing-fast and up-to-date web socket im-

plementation that you can use to get web sockets up and running quickly. It also ships

with wscat, a command utility that can act as a client or server.

In this hack we will explore the fastest WebSocket Server I could find. I discovered the

ws module for Node.js. It just so happens that ws is not only blazing-fast, but also quite

simple to set up. The simplicity of its implementation will make this hack the ideal

introduction to web sockets.

The ws module is up-to-date against current HyBi protocol drafts, and can send and

receive typed arrays (ArrayBuffer, Float32Array, etc.) as binary data. So although

it may be simple, it’s not a toy.

360 HTML5 HACKS



If you would like to get into the gory details of the WebSocket HyBi protocol, here

are a couple of great resources to get you started:

• http://tools.ietf.org/html/draft-ietf-hybi-thewebsocketprotocol-17

• http://updates.html5rocks.com/2011/08/What-s-different-in-the-

new-WebSocket-protocol

ws also ships with a nice command-line client called wscat, which will give us a tool

for making and receiving requests without using a browser.

If you are not comfortable with the command line, this section may also help you

understand some of the basics. If you have been avoiding the command line be-

cause you just haven’t seen the value, maybe this will be the turning point. Being

able to navigate the command line can be a super-beneficial skill to have in your

tool set when troubleshooting and inspecting requests and responses over a

network.

Installing Node.js

There are already mounds of great documentation on the Web for installing and run-

ning Node.js, so I won’t re-create that here. A good starting point can be found on

GitHub.

You can also just click the Install button in the middle of the screen at nodejs.org.

Using the wscat Client to Call the Kaazing Echo Server

After getting Node.js set up and installed, you should be able to open a command

prompt and use the Node Package Manager (NPM) to install the ws module:

$ npm install -g ws

Since this is a socket library and command-line client, we will include the –g parameter

to install the scripts globally. That way, we can use this library often and for many

different applications (see Figure 9-5).

361CHAPTER 9: HACKING HTML5 CONNECTIVITY

http://tools.ietf.org/html/draft-ietf-hybi-thewebsocketprotocol-17
http://updates.html5rocks.com/2011/08/What-s-different-in-the-new-WebSocket-protocol
http://updates.html5rocks.com/2011/08/What-s-different-in-the-new-WebSocket-protocol
https://github.com/joyent/node/wiki/Installation
http://nodejs.org/


Figure 9-5. 

Using the Terminal to install the Node.js ws module

Now, watch as NPM downloads and installs the ws module and all the necessary de-

pendencies.

At this point we should be able to immediately use wscat to send a request to the

remote echo server hosted by Kaazing (see Figure 9-6):

$ wscat -c ws://echo.websocket.org

There we have it. Our command-line utility is up and running. We can act like a browser

and send messages to a remote web socket server.

Creating a Simple Server and Connecting to It with wscat

Now that our tools are in place, let’s build our own simple socket server. Navigate to

your project directory, open a file, and name it server.js:

$ cd /your-app-directory

$ touch server.js

362 HTML5 HACKS

 
 

 
 

http://echo.websocket.org


Figure 9-6. 

Using the Terminal to make a request to the Kaazing echo server

Now, that was one way to create a file. You could very easily just use your own way of

doing it. If you are more comfortable using your OS’s GUI to access the filesystem,

navigate to your empty directory, open a simple text editor, and create a file named

server.js.

In your server.js file, use require() to include the ws library and instantiate a new

WebSocketServer running on port 8080:

var WebSocketServer = require('ws').Server

  , wss = new WebSocketServer({port: 8080});

Now we can use the on() method to listen for the connection event. Once the con-

nection event fires, the callback function is called that contains another nested func-

tion that is listening for the message event from any connected clients. We then fire

the send() method, passing a payload with the string 'I am a message sent from
a ws server'.

wss.on('connection', function(ws) {

    ws.on('message', function(message) {

        console.log('received: %s', message);

363CHAPTER 9: HACKING HTML5 CONNECTIVITY



    });

    ws.send('I am a message sent from a ws server');

});

Now we save the file, and start the server:

$ node server.js

In another Terminal window we can use the wscat client to access our own server

running on port 8080 (see Figure 9-7). And we receive our message.

$ wscat -c ws://localhost:8080 -p 8

connected (press CTRL+C to quit)

< I am a message sent from a ws server

>

Figure 9-7. 

Connecting to the ws server from a separate Terminal

And finally we can send a message back to the server by manually typing testing into

the command-line interface (see Figure 9-8).

364 HTML5 HACKS



Figure 9-8. 

Sending a message back to the server

Now, switch back to the other tab, where the server is running, to see the message

from the client (see Figure 9-9).

The socket server is listening and logs testing:

$ node server.js

Message was received from a ws client: testing

Creating a Simple Client

Instead of interacting with our WebSocket Server via the wscat command-line inter-

face, let’s write a script that will handle the interaction for us. First, require the ws

library and instantiate a new WebSocket.

Then, set up two onevent handlers: one for listening for the open event for the con-

nection, and one for listening for any incoming messages. We will use the handy

echo.websocket.org echo server to mirror the response with our request.

365CHAPTER 9: HACKING HTML5 CONNECTIVITY



Figure 9-9. 

Node.js server logging the message from the client terminal

var WebSocket = require('ws')

  , ws = new WebSocket('ws://echo.websocket.org);

ws.on('open', function() {

    ws.send('I am an open Event from ws client');

});

ws.on('message', function(message) {

    console.log('received: %s', message);

});

Let’s start the client:

$ node client.js

received: I am an open EVENT from a ws client

366 HTML5 HACKS



HACK 72

On the open event the message 'I am an open EVENT from a ws client' is sent

to the remote echo server. The remote server then returns the message. The client is

listening for messages and logs the response with 'received: I am an open
EVENT from a ws client'.

There you have it. You now have a great example of a WebSocket Server running locally,

and a command-line interface to create and listen for web socket messages without

a browser.

Build a Donation Thermometer with Web
Sockets, the Pusher API, and PHP

Donation thermometers are used at a lot of charity events and donation sites, but they

tend to only update when you refresh the page. It’s now easier than ever to make these

thermometers update in real time, the instant somebody makes a donation, by using

HTML5 Web Sockets.

This hack was contributed by Phil Leggetter, a Real-Time Web Software and Tech-

nology Evangelist.

A number of real-time services and solutions are available today. For the donation

thermometer we’ll use Pusher, which uses HTML5 Web Sockets, to add real-time

functionality to the widget. This real-time functionality will not only ensure that the

donation value is instantly correct, but will also add a level of excitement which can

result in a “stickiness” that keeps the user’s attention.

Progressive Enhancement

Accessibility is always important, but potentially more so for charities, so it’s impor-

tant that the donation thermometer widget at least displays something even if Java-

Script isn’t enabled. Therefore, we’ll progressively enhance a widget.

Applications are progressively enhanced by first defining the structure using static

HTML. CSS is then applied to make the user interface more visually appealing. After

that JavaScript is used to add interactive features and potentially some visual en-

hancements. Real-time functionality can be added in exactly the same way. For the

widget we are going to do the following:

1. Generate the widget HTML on the server using PHP.

2. Stylize it using CSS.

3. Tweak the UI using JavaScript and jQuery.

367CHAPTER 9: HACKING HTML5 CONNECTIVITY



4. Use Pusher to make the widget update in real time as new donations come in.

Building the Thermometer HTML

For accessibility it’s good to have some textual values, so for the HTML we’ll focus on

that while adding some elements for the visual display.

   <div class="thermometer-widget">

     <div class="title">Donation Thermometer</div>

     <div class="cause">A Good Cause</div>

     <div class="figures">

       <div class="goal">

         <span class="label">Our Goal</span>

         <span class="value">&pound;5,000</span>

       </div>

       <div class="current_total">

         <span class="label">Raised so far</span>

         <span class="value">&pound;3,000</span>

       </div>

     </div>

   </div>

This creates a really simple display, as shown in Figure 9-10.

This isn’t very exciting, but it displays the simple values.

Adding a Thermometer to the Widget Using CSS

The next stage in progressive enhancement is to use CSS, so we’re going to add a few

more elements to the HTML (in an ideal world you wouldn’t add markup for styling,

but we’re not in that world just yet). This doesn’t affect the look of the widget if CSS

isn’t available; it just lets us add our thermometer visualization to the display.

   <div class="thermometer-widget">

     <div class="title">Donation Thermometer</div>

     <div class="cause">A Good Cause</div>

     <div class="figures">

       <div class="goal">

         <span class="label">Our Goal</span>

368 HTML5 HACKS



Figure 9-10. 

Basic display

         <span class="value">&pound;5,000</span>

       </div>

       <div class="current_total">

         <span class="label">Raised so far</span>

         <span class="value">&pound;3,000</span>

       </div>

     </div>

     <div class="display">

       <div class="thermometer">

         <div class="top"></div>

         <div class="middle">

             <div class="value"></div>

         </div>

         <div class="base current_total">

           <div class="value">&pound;3,000</div>

         </div>

369CHAPTER 9: HACKING HTML5 CONNECTIVITY



       </div>

     </div>

   </div>

It’s worth providing a bit of information regarding the structure of the HTML:

.figures

We saw this previously. It contains the key values for the widget.

.display

This is the visual thermometer display.

.display .thermometer

This has the following values:

.base

This is the round bulb at the bottom of the thermometer.

.base .value

This can be used to show the textual value of the funds that have been raised.

.middle

This is the outer part of the thermometer neck.

.middle .value

This will fill depending on the amount raised. For the moment it has no height.

.top

This is just a curved top for the thermometer.

There’s quite a lot of CSS for this, so I’m not going to include it here. You can view the

raw CSS file on GitHub.

With the additional HTML elements and the CSS applied the widget now looks like

Figure 9-11.

You may have noticed in our discussion of the HTML structure that no height has been

applied to the thermometer visualization’s .middle .value, so it doesn’t correctly

communicate the amount raised. Since we’re not allowed to use JavaScript yet, we

need to generate the height value on the server and apply the height to the element.

To do this we need to work out the percentage of the goal that has been raised and

then work out the height in pixels to apply to the value.

Here’s an example of doing this in PHP:

370 HTML5 HACKS

https://github.com/pusher/html5-hacks-thermometer/blob/master/styles.css


Figure 9-11. 

Basic display with CSS

   <?php

   $goal = 5000;

   $current_total = 3000;

   $current_percent_fraction = $current_total/$goal; // 0.6 = 60% full

   $middle_height = 165;

   $middle_height_value = $middle_height * $current_percent_fraction;

?>

When we generate the HTML we can then put an inline style on the element. The HTML

will look as follows:

   <div class="middle">

       <div class="value" style="height: 99px"></div>

   </div>

This results in the thermometer visualization actually indicating a value, as shown in

Figure 9-12.

371CHAPTER 9: HACKING HTML5 CONNECTIVITY



Figure 9-12. 

Basic display indicating a value

Tweaking the UI with JavaScript

JavaScript was made available in web browsers so that we can enrich a web page or

application. In this case we want to apply some visual effects that would otherwise

result in a very large amount of HTML markup. We’ll do this with the help of jQuery,

so remember to include the jQuery library:

   <script src="http://code.jquery.com/jquery-1.7.2.min.js"></script>

Measurement Markers

We can use JavaScript to improve the widget in a few ways. First we can improve the

general look of the thermometer by adding measurement markers to the .middle of

the thermometer. If we were to do this using HTML the markup would get very ugly,

very quickly.

372 HTML5 HACKS



In the following code we reference the .middle and .middle .value and get their

height. We access the charity goal amount and current total from the UI and parse out

the values using the getNumericVal function. Using all this information, we know

how many marks we are going to add to the .middle element. Then we add the ele-

ments that represent the marks.

There is a bit of setup here to access the elements and values and work out how many

marks we need to draw. Because of this, and because we want to reuse this in the

following examples, I’ve wrapped this up in a setUp function. Now we can concentrate

on just improving the UI.

     function getNumericVal(el, selector) {

       var el = el.find(selector);

       var val = el.text();

       val = parseInt(val.replace(/\D/g, ''), 10);

       return val;

     }

     function setUp(thermometerSelector) {

       var config = {};

       config.el = $(thermometerSelector);

       config.middleEl = config.el.find('.display .middle');

       config.middleValueEl = config.middleEl.find('.value');

       config.currentTotalEl = config.el.find('.current_total .value');

       config.numberOfMarks = parseInt(config.middleEl.height()/10, 10);

       config.goalValue = getNumericVal(config.el,

          '.figures .goal .value');

       config.currentTotalValue = getNumericVal(config.el,

          '.figures .current_total .value');

       config.pixelsPerValue = config.middleValueEl.height()/config.current

TotalValue;

       config.valuePerMark = config.goalValue/config.numberOfMarks;

       return config;

     }

Now that we have all the elements referenced and values set up we can add the

markers to the thermometer:

     function addThermometerMarks(middleEl, numberOfMarks,

        valuePerMark) {

       for(var i = 1; i <= numberOfMarks; ++i) {

         var amount = parseInt(valuePerMark * i);

         var markEl = $('<div class="mark"></div>');

         markEl.css({'position': 'absolute', 'bottom': (i*10) + "px"});

373CHAPTER 9: HACKING HTML5 CONNECTIVITY



         markEl.attr('title', '£' + amount);

         var tooltip = $('<div class="tooltip">&pound;' +

              amount + '</div>');

         markEl.append(tooltip);

         middleEl.append(markEl);

       }

     }

     $(function() {

       var config = setUp('.thermometer-widget');

       addThermometerMarks(config.middleEl, config.numberOfMarks,

config.valuePerMark);

     });

It would be nicer if the markers were at more rounded values, but I’m not trying to

build a real product, just show what’s possible.

This results in the thermometer display shown in Figure 9-13.

Figure 9-13. 

Adding markers

374 HTML5 HACKS



Marker Values, Hover Highlights, and Tool Tips

The thermometer markings aren’t of much use if we don’t know what values they

represent, so let’s display the values when the user hovers over the marker elements

by displaying a tool tip. We’ll also add a small highlight effect. You’ll see from the pre-

ceding piece of code that we already got tooltip elements, so now we just need to

show them on hover. We do this by adding a class to the marker that changes the

display:none style to display:block when the user hovers over the element with

his mouse.

     function addMarkHighlights(middleEl) {

       middleEl.find('.mark').hover(function() {

         var el = $(this);

         el.addClass('mark-selected');

       },

       function() {

         var el = $(this);

         el.removeClass('mark-selected');

       });

     }

     $(function() {

       var config = setUp('.thermometer-widget');

       addThermometerMarks(config.middleEl, config.numberOfMarks,

config.valuePerMark);

       addMarkHighlights(config.middleEl);

     });

This results in the donation thermometer widget shown in Figure 9-14. [Again, check

out the raw CSS for full details.]

375CHAPTER 9: HACKING HTML5 CONNECTIVITY

https://github.com/pusher/html5-hacks-thermometer/blob/master/styles.css


Figure 9-14. 

Marker values, hover highlights, and tool tips

Animating Value Changes

The final effect that we can add is to animate the thermometer’s .middle .value
height and the textual values by increasing them from 0 to the current total.

Let’s get a utility function out of the way. The following adds commas to values:

     function addCommas(number) {

       var number = number+''; var l = number.length; var out = '';

       var n = 0;

       for (var i=(l-1);i>=0;i--) {

         out = '<span class="l">'+number.charAt(i)+'</span>'+out;

         if ((l-i)%3 == 0 && i != 0) {

              out = '<span class="lcom">,</span>'+out;

         }

         n++;

376 HTML5 HACKS



       }

       return out;

     }

Next, let’s animate the text. This is really just a visual thing. It doesn’t need to be too

clever, so we’ll just increment the value every 50 ms by a calculated amount. We’re

also going to return the setInterval identifier so that it can be cleared elsewhere if

required.

See mozilla.org for information on requestAnimationFrame as an alternative to

setInterval for animations.

     function animateText(el, fromValue, toValue) {

       var total = fromValue;

       var interval = setInterval(function() {

         if(total < toValue) {

           // 2000ms for the animation, we update every 50ms

           total += parseInt((toValue-fromValue) / (2000/50));

           total = Math.min(total, toValue);

           el.html('&pound;' + addCommas(total));

         }

         else {

           clearInterval(interval);

         }

       }, 50);

       return interval;

     }

Now let’s animate the thermometer visualization. This is very easy, thanks to the

jQuery.animate function:

     function animateThermometer(valueEl, fromHeight, toHeight,

totalEl, totalValue, callback) {

       // animate down really quickly. If a users sees it then it

       // won't look too bad.

       valueEl.animate({'height': fromHeight + 'px'}, 'fast',

       function() {

         // animate back up slowly. Cool!

377CHAPTER 9: HACKING HTML5 CONNECTIVITY

https://developer.mozilla.org/en/DOM/window.requestAnimationFrame
http://api.jquery.com/animate/


         valueEl.animate({'height': toHeight}, '2000', function() {

           totalEl.html('&pound;' + addCommas(totalValue));

           callback();

         });

       });

     }

Finally, let’s link up all these functions and fully stylize and animate the thermometer.

We’ll also shift some of the comment setup calls into an addBehaviours function.

     function animateValues(valueEl, totalEl, fromValue, toValue,

goalValue, pixelsPerValue) {

       var fromHeight = pixelsPerValue*fromValue;

       var toHeight = Math.min(pixelsPerValue*toValue,

pixelsPerValue*goalValue);

       var interval = animateText(totalEl, fromValue, toValue);

       animateThermometer(valueEl, fromHeight, toHeight,

totalEl, toValue,

         function() {

           clearInterval(interval);

         });

       return interval;

     };

     function addBehaviours(config, setInitialValues) {

       setInitialValues = (setInitialValues === undefined?

true: setInitialValues);

       addThermometerMarks(config.middleEl, config.numberOfMarks,

config.valuePerMark);

       addMarkHighlights(config.middleEl);

       if(setInitialValues) {

         animateValues(config.middleValueEl, config.currentTotalEl, 0,

                       config.currentTotalValue, config.goalValue,

config.pixelsPerValue);

       }

378 HTML5 HACKS

 
 

 
 



     }

     $(function() {

       var config = setUp('.thermometer-widget');

       addBehaviours(config);

     });

If you view the widget now you’ll see the values and thermometer bar animate, which

is a nice little effect.

Adding Real-Time Updates

It feels like we’ve had to work quite hard to get this far. But the awesome news is that

adding real-time updates to the charity thermometer widget is super-easy.

First, let’s add the Pusher JavaScript library to the page:

   <script src="http://js.pusher.com/1.12/pusher.min.js"></script>

We connect to Pusher by creating a new Pusher instance and passing in an application

key (to get this you’ll need to sign up for a free Pusher account). We’ll also subscribe

to a public donations-channel to which a new_donation event will be bound. This

event will be triggered any time a new donation is made to the cause. The event itself

will tell us who has donated, how much he donated, and what the new total is. The

JSON for this will look as follows:

   {

     "who": "Phil Leggetter",

     "howMuch": "20",

     "newTotal": "3020"

   }

Now that we know this we can also create a function called animateDonation that

calls our animateValues function with the updated values to display our real-time

update. The code for all of this is as follows:

     function animateDonation( middleValueEl, currentTotalEl,

currentTotal, newTotal, pixelsPerValue, goalValue ) {

       var newHeightPixels = parseInt(pixelsPerValue * newTotal, 10);

       return animateValues(middleValueEl, currentTotalEl,

currentTotal, newTotal, goalValue, pixelsPerValue);

     };

     $(function() {

379CHAPTER 9: HACKING HTML5 CONNECTIVITY



       var config = setUp('.thermometer-widget');

       addBehaviours(config, false);

       var pusher = new Pusher("006c79b1fe1700c6c10d");

       var channel = pusher.subscribe('donations-channel');

       var animateInterval = null;

       channel.bind('new_donation', function(data) {

         if(animateInterval) {

           clearInterval(animateInterval);

         }

         var newTotal = data.newTotal;

         var currentTotalValue = getNumericVal(config.el,

'.figures .current_total .value');

         animateInterval = animateDonation(config.middleValueEl,

config.currentTotalEl, currentTotalValue, newTotal,

config.pixelsPerValue, config.goalValue);

       });

     });

The animateDonation function returns the animation interval, which gives us the

opportunity to cancel an ongoing animation if a new update comes in. This stops two

animations running at the same time, where we can see some really crazy things.

We’re now ready to create the code that triggers the update. We’re going to use PHP,

and the Pusher PHP library by Squeeks for this, but it’s really simple to achieve the

same thing in other languages using one of the Pusher Server libraries. We’re going

to create a web service that allows donations to be made. It’ll just consist of who and

how_much parameters. We’ll store this data in a MySQL database (but we won’t cover

the details of setting that up here) and update the running total. Here’s the code for

that, before we add the Pusher code:

   <?php

     require('config.php');

     $con = mysql_connect("localhost", $db_username, $db_password);

     if (!$con)

     {

       die('Could not connect: ' . mysql_error());

380 HTML5 HACKS

https://github.com/squeeks/Pusher-PHP
http://pusher.com/docs/rest_libraries


     }

     mysql_select_db($db_name, $con);

     $who = mysql_real_escape_string($_GET['who']);

     $how_much = mysql_real_escape_string($_GET['how_much']);

     if( !$who || !how_much || !is_numeric($how_much) ) {

       die('unsupported who and how_much values');

     }

     $running_total = 0;

     $last_update = "SELECT *

FROM $db_tablename ORDER BY id DESC LIMIT 1";

     $result = mysql_query($last_update);

     if($result) {

       $row = mysql_fetch_array($result);

       $running_total = $row['running_total'];

     }

     $running_total = $running_total + $how_much;

     $insert_query = "INSERT INTO $db_tablename (who, how_much,

running_total) ";

     $insert_query .= sprintf( "VALUES('%s', %f, %f)", $who,

$how_much, $running_total );

     $insert_result = mysql_query($insert_query);

     if(!$insert_result) {

       die('insert query failed' . mysql_error());

     }

     mysql_close($con);

   ?>

The config.php include contains the database details.

Now let’s add the real-time magic. All we have to do is to include the Pusher PHP

library, create a Pusher instance, put the data we want to send into an array, and

trigger the event by calling $pusher->trigger(). The variables passed into the

Pusher constructor are defined in config.php.

381CHAPTER 9: HACKING HTML5 CONNECTIVITY



 require('Pusher.php');

 $pusher = new Pusher($pusher_key, $pusher_secret, $pusher_app_id);

 $channel_name = 'donations-channel';

 $values = array('who' => $who, 'howMuch' => $how_much, 'newTotal' =>

$running_total);

 $pusher->trigger($channel_name, 'new_donation', $values);

That’s it! It’s really that easy to trigger a real-time event. And since we’ve done all the

hard work on the client, the real-time charity thermometer updates in real time. Be-

cause the PHP is taking values from a GET request, we can test the functionality by

navigating to our PHP file, which we’ll call donate.php, passing the required GET query

string parameters:

donate.php?who=Phil&how_much=100

Here’s an example of a form that would submit to the PHP file we just created. There’s

also some JavaScript supplied which means the form is submitted using Ajax.

<form id="donate_form" action="donate.php">

 <label for="who">Name</label><input type="text" value="Anon"

name="who" /><br />

 <label for="how_much">How Much</label><input type="number"

value="100.00" name="how_much" /><br />

 <label for="reset_total">Reset?</label><input name="reset_total"

type="checkbox" value="1" />

 <input type="submit" value="Donate!" />

</form>

<script>

$(function() {

 $( '#donate_form' ).submit(function() {

   var form = $(this);

   var values = form.serialize();

   $.ajax({

     url: 'donate.php',

     data: values

382 HTML5 HACKS



HACK 73

   });

   return false;

 });

});

</script>

Summary

So, what have we achieved?

• Progressively enhanced a widget that starts its life as static, boring HTML

• Added CSS and a few extra HTML elements to turn the widget into something

more visually appealing

• Used JavaScript to update the UI further by adding markers which would turn the

HTML into a mess, and added animations

• Used Pusher to add real-time updates to the widget so that whenever a new don-

ation comes in the values update

The really interesting thing is that adding the real-time components to the widget took

a fraction of the time that everything else required. So, if you’ve already got a dynamic

application, it’s really simple to add a sprinkling of real-time magic to enhance that

application even further and make it much more engaging.

Build Plug-Ins for jWebSocket

jWebSocket is a cross-platform, real-time communication framework consisting of a

server and clients for stationary and mobile, web-based and native. With it you can

create HTML5-based streaming and communication applications on the Web. jWeb-

Socket comes with its own server implementations but also seamlessly integrates

existing servers such as Tomcat, Glassfish, and Jetty.

This hack was contributed by Alexander Schulze, founder of the jWebSocket

project.

In addition to the JavaScript client for browser-based real-time web applications, cli-

ents for mobile devices based on Android, iOS, Windows Phone, BlackBerry, and Java

ME are available. For stationary devices jWebSocket comes with support for Java SE,

C#, and Python.

383CHAPTER 9: HACKING HTML5 CONNECTIVITY



jWebSocket is free and open source. One of its major benefits is that it comes with a

powerful core that you can easily extend via plug-ins and web socket applications for

up to hundreds of thousands of concurrent connections. SSL encryption and a mes-

sage filter system provide a high level of security.

Due to the standardization of the IETF and the W3C, web sockets provide a high level

of protection for your investments, and code maintainability across all modern plat-

forms. Their use of permanent, full-duplex TCP connections instead of half-duplex

HTTP connections ensures a significant increase in speed for your applications, as

well as improved responsibility and higher user satisfaction.

jWebSocket is designed to build innovative HTML5-based streaming and communi-

cation applications on the Web. HTML5 Web Sockets will replace existing XHR ap-

proaches as well as Comet services with a new, flexible, and ultra-high-speed bidir-

ectional TCP socket communication technology. Fallbacks for backward compatibility

ensure that your application still works transparently, even in older environments.

jWebSocket is dedicated to applications such as online gaming, online collaboration,

and real-time streaming and messaging services. It is a perfect basis for complex

computation clusters, service-oriented architectures, and any kind of interface be-

tween new and already established communication technologies.

Thanks to the large number of plug-ins provided with the installation packages, jWeb-

Socket is appropriate for covering everything from simple communication needs to

complex heterogeneous real-time messaging and data synchronization solutions.

The plug-ins are ready to use but also can be extended to match individual require-

ments.

In this hack I will show how to set up the server, use the client libraries to establish

communication, and extend jWebSocket with both client-side and server-side

plug-ins.

Running the jWebSocket Server

The jWebSocket Server is written entirely in Java, so it runs on almost all operating

systems, including Windows, Mac OS X, and Linux. It is open source and free for

download. To get it, simply download the jWebSocket Server Package,

jWebSocketServer-<version>.zip, from the download area of the jWebSocket website.

It includes the jWebSocketServer-<version>.jar file, all required libraries, and

jWebSocketServer-<version>.bat and .sh scripts to start the server.

Unpack the archive into a folder of your choice (e.g., /etc for Unix/Linux, /Applica

tions for Mac OS X environments, or c:\program files\ for Windows environments).

The archive contains a jWebSocket-<version> folder, which is the root folder for the

jWebSocket Server.

384 HTML5 HACKS

http://jwebsocket.org
http://jwebsocket.org


The jWebSocketServer-<version>.jar file in the /bin folder includes all required libra-

ries and provides the ready-to-use folder structure. It can easily be started from the

shell or command-line window without any installation or special configuration.

• For Windows: jWebSocketServer.bat

• For Linux: jWebSocketServer.sh

• For Mac OS X: jWebSocketServer.command

Like normal desktop applications the server is terminated when you log off the system.

Thus, for production systems it is recommended that you use either the jWebSocket

Service (for Windows) or the jWebSocket Web Application (for all operating systems).

Appropriate scripts to install and uninstall the service are included in the installation

package.

Prerequisites on the server

Since the jWebSocket Server is based on pure Java technology, please ensure that

your server has the Java Runtime Environment (JRE) 1.6 or later installed and that the

JAVA_HOME environment variable refers to the root folder of this Java installation. You

should add to your PATH environment variable the path to the Java executable. Other-

wise, you may need to adjust the provided start batch or script.

jWebSocket “Hello World” for Browsers

Creating your first jWebSocket “Hello World” client from scratch is simple. Even if your

jWebSocket Server is not yet running, for your first tests you can use the jWebSocket

live server at ws://jwebsocket.org:8787.

Basically, the client initiates web socket communication between it and the server.

Once the connection is established the client sends messages either to the server or

to other clients via the server. In the opposite direction the server sends messages to

the client by using the same connection. Unless the connection is terminated either

by the server or by the client, both partners can bidirectionally exchange arbitrary

messages. That’s almost everything you need to start your first jWebSocket project.

Embedding the jWebSocket script

The only thing you need to do to use jWebSocket in your web pages and open your

site to the world of bidirectional real-time applications is to put a single script tag into

the head section of your HTML code:

<script type="text/javascript"

src="<path_to_jWebSocket.js>/jwebsocket.js">

</script>

385CHAPTER 9: HACKING HTML5 CONNECTIVITY

http://ws://jwebsocket.org:8787


This makes jWebSocket available to your page. You can use either the full inline doc-

umented source code in jWebSocket.js, which is the best choice for learning jWeb-

Socket, or the minified version in jWebSocket_min.js recommended for your produc-

tion system.

Creating the jWebSocketClient instance

jWebSocket provides the jWebSocketJSONClient class within the jWebSocket-

specific namespace jws. This class provides the methods to connect and disconnect

as well as to exchange messages with the server by using the JSON protocol. The

namespace avoids naming conflicts with other frameworks.

// jws.browserSupportsWebSockets checks if web sockets are available

// either natively, by the FlashBridge or by the ChromeFrame.

if( jws.browserSupportsWebSockets() ) {

  jWebSocketClient = new jws.jWebSocketJSONClient();

  // Optionally enable GUI controls here

} else {

  // Optionally disable GUI controls here

  var lMsg = jws.MSG_WS_NOT_SUPPORTED;

  alert( lMsg );

}

Connecting and Logging On

To initiate the connection from the client to the server you can use the logon method

of the jWebSocketClient. This method connects to the server and passes the user-

name and password for the authentication in one go.

log( "Connecting to " + lURL + " and logging in as '" + gUsername +

"'..." );

var lRes = jWebSocketClient.logon( lURL, gUsername, lPassword, {

  // OnOpen callback

  OnOpen: function( aEvent ) {

    log( "<font style='color:#888'>jWebSocket connection established.

</font>" );

  },

  // OnMessage callback

  OnMessage: function( aEvent, aToken ) {

    log( "<font style='color:#888'>jWebSocket '" + aToken.type

         + "' token received, full message: '" + aEvent.data +

"'</font>" );

  },

  // OnClose callback

386 HTML5 HACKS



  OnClose: function( aEvent ) {

    log( "<font style='color:#888'>jWebSocket connection closed.

</font>" );

  }

});

The server assigns a unique ID to the client so that a certain client can always be

uniquely addressed even if the same user logs in at multiple browser instances.

Sending and Broadcasting Tokens

If the connection was successfully established the client sends its messages via the

send method to another client, or broadcasts it to all connected clients by using the

broadcast method of the jWebSocketClient.

// lMsg is a string

if( lMsg.length > 0 ) {

  var lRes = jWebSocketClient.broadcastText(

    "",   // broadcast to all clients (not limited to a certain pool)

    lMsg  // broadcast this message

  );

  if( lRes.code != 0 ) {

    // display error

  }

}

Sending messages is always nonblocking—that is, both the send and the broadcast

do not wait until a potential result is returned. An optional result is returned asyn-

chronously, as described next.

Processing Incoming Messages

Messages from the server to the client are pushed asynchronously. Therefore, the

jWebSocketClient class provides the OnMessage event. As already shown in the

logon method, your application simply adds a listener to this event and processes

the message as desired.

  // OnMessage callback

  OnMessage: function( aEvent, aToken ) {

    log( "<font style='color:#888'>jWebSocket '" +

      aToken.type + "' token received, full message: '" +

      aEvent.data + "'</font>"

    );

  }

387CHAPTER 9: HACKING HTML5 CONNECTIVITY



You will find the full reference to the jWebSocket token set in the online developer

guide.

Logging Off and Disconnecting

On demand, both the server and the client can terminate an existing connection. On

the client side this is done by the close method of the jWebSocketClient.

if( jWebSocketClient ) {

  jWebSocketClient.close();

}

The server automatically terminates the connection after a certain period of inactivity

on the line. In this case the OnClose event is fired, which can be handled by the cor-

responding callback as shown in the logon method earlier. The timeout can be con-

figured and you can optionally run a keepalive or a reconnect watchdog.

Extending jWebSocket with Plug-Ins

One of the most powerful features of jWebSocket is its extensibility with plug-ins. Plug-

ins extend jWebSocket Server functionality by providing methods to process incoming

messages from clients, as well as other events such as client connected or client dis-

connected. Incoming messages are filtered by the jWebSocket filter chain and thus

come with a high level of security.

Plug-ins can be loaded either programmatically by your code—especially for devel-

opment purposes—or dynamically at runtime by simply referencing it in the jWeb

Socket.xml configuration file, which is recommended for production environments or

if you want to distribute your plug-ins.

Unlike WebSocket apps, plug-ins are supposed to implement general services rather

than application-specific logic. The main benefit of plug-ins is that they are treated as

separate, self-sufficient pieces of software which can even be distributed separately

—open source or closed source—or shared across multiple applications.

Creating your first plug-in and providing its functions to your website is a simple

process:

1. Create a server-side plug-in.

2. Add your plug-in to the jWebSocket Server.

3. Create a client-side plug-in (recommended to keep modules and namespaces

clean).

4. Use the features of your plug-ins in your web pages.

388 HTML5 HACKS



Create a server-side plug-in

The first step to extend the functionality of the jWebSocket Server is to create a server-

side plug-in. A plug-in usually is implemented as a descendant of the TokenPlugIn
class, which is included in jWebSocket. To develop your own plug-ins it is recom-

mended that you create them in separate packages. This will make it easier to dis-

tribute them later as single .jar files that can be added to each jWebSocket Server

instance.

The following listing shows a simple plug-in with a single requestServerTime
“command”:

public class SamplePlugIn extends TokenPlugIn {

  private static Logger log = Logging.getLogger(SamplePlugIn.class);

  // if namespace changed update client plug-in accordingly!

  private static String NS_SAMPLE = JWebSocketConstants.NS_BASE +

".plugins.sample";

  private static String SAMPLE_VAR = NS_SAMPLE + ".started";

  public SamplePlugIn() {

    if (log.isDebugEnabled()) {

      log.debug("Instantiating sample plug-in...");

    }

    // specify default name space for sample plugin

    this.setNamespace(NS_SAMPLE);

  }

  @Override

  public void connectorStarted(WebSocketConnector aConnector) {

    // this method is called every time when a client

    // connected to the server

    aConnector.setVar(SAMPLE_VAR, new Date().toString());

  }

  @Override

  public void connectorStopped(WebSocketConnector aConnector,

CloseReason aCloseReason) {

    // this method is called every time when a client

    // disconnected from the server

  }

  @Override

  public void engineStarted(WebSocketEngine aEngine) {

389CHAPTER 9: HACKING HTML5 CONNECTIVITY



    // this method is called when the engine has started

    super.engineStarted(aEngine);

  }

  @Override

  public void engineStopped(WebSocketEngine aEngine) {

    // this method is called when the engine has stopped

    super.engineStopped(aEngine);

  }

  @Override

  public void processToken(PlugInResponse aResponse,

WebSocketConnector aConnector, Token aToken) {

    // get the type of the token

    // the type can be associated with a "command"

    String lType = aToken.getType();

    // get the namespace of the token

    // each plug-in should have its own unique namespace

    String lNS = aToken.getNS();

    // check if token has a type and a matching namespace

    if (lType != null && lNS != null && lNS.equals(getNamespace())) {

      // get the server time

      if (lType.equals("requestServerTime")) {

        // create the response token

        // this includes the unique token-id

        Token lResponse = createResponse(aToken);

        // add the "time" and "started" field

        lResponse.put("time", new Date().toString());

        lResponse.put("started", aConnector.getVar(SAMPLE_VAR));

        // send the response token back to the client

        sendToken(aConnector, lResponse);

      }

    }

  }

}

390 HTML5 HACKS



Add your plug-in to the jWebSocket Server

The following listing demonstrates how to add your new plug-in to the plug-in chain

of the jWebSocket Server:

// start the jWebSocket server sub system

JWebSocketFactory.start( ... );

// add your plug-in to the plug-in chain of the jWebSocket Server

TokenServer lTS = (TokenServer)JWebSocketFactory.getServer("ts0");

SamplePlugIn lSP = new SamplePlugIn();

lTS.getPlugInChain().addPlugIn(lSP);

The JWebSocketFactory class loads and starts the jWebSocket Server, including all

its required libraries, default plug-ins, and filters. First the TokenServer is obtained

by its id, which is configured in the jWebSocket.xml configuration file. Next, the new

plug-in is instantiated and added to the plug-in chain of the TokenServer. That’s it;

all the functions of the new plug-in are now available to clients.

Creating a Client-Side Plug-In

In general there are two ways to access the server-side plug-in. First, you can simply

use the sendToken method of the jWebSocket.js JavaScript library and implement a

listener to its OnMessage method. However, I would encourage you to provide a sep-

arate JavaScript file as a client-side plug-in to keep the module and API clean and

make it easier to distribute your package later in two files (a server-side and a client-

side plug-in).

The following listing shows how you can create a client jWebSocket plug-in. It provides

the method requestServerTime to the JavaScript jWebSocketTokenClient—and

thus to the descending jWebSocketJSONClient class as well by inheritance.

jws.SamplesPlugIn = {

  // namespace for shared objects plugin

  // if namespace is changed update server plug-in accordingly!

  NS: jws.NS_BASE + ".plugins.samples",

  processToken: function( aToken ) {

    // check if namespace matches

    if( aToken.ns == jws.SamplesPlugIn.NS ) {

      // here you can handle incoming tokens from the server

      // directy in the plug-in if desired.

      if( aToken.reqType == "requestServerTime" ) {

        // this is just for demo purposes

391CHAPTER 9: HACKING HTML5 CONNECTIVITY



        // don't use blocking call here!

        alert( "jWebSocket Server returned: " + aToken.time );

      }

    }

  },

  requestServerTime: function( aOptions ) {

    var lRes = this.createDefaultResult();

    if( this.isConnected() ) {

      var lToken = {

        ns: jws.SamplesPlugIn.NS,

        type: "requestServerTime"

      };

      this.sendToken( lToken,  aOptions );

    } else {

      lRes.code = −1;

      lRes.localeKey = "jws.jsc.res.notConnected";

      lRes.msg = "Not connected.";

    }

    return lRes;

  }

}

// add the jWebSocket Samples PlugIn into the TokenClient class

jws.oop.addPlugIn( jws.jWebSocketTokenClient, jws.SamplesPlugIn );

Use the plug-ins in your web pages

The final action to make the plug-in capabilities available to your application is to add

a link to your new client plug-in to your web page(s):

<script type="text/javascript" src="<url>/res/js/jWebSocket.js">

</script>

<script type="text/javascript" src="<url>/res/js/jwsSamplesPlugIn.js">

</script>

Included jWebSocket Plug-Ins

jWebSocket already comes with a huge and continuously growing set of ready-to-use

plug-ins. Table 9-1 gives a quick overview.

392 HTML5 HACKS



Table 9-1. Plug-ins included with jWebSocket

PLUG-IN PURPOSE

API-Plug-in Publishing WebSocket APIs, such as WSDL for Web Services

Arduino-Plug-in Hardware remote control and monitoring with Arduino

Benchmark-Plug-in Speed measurement and communication profiling support

Channel-Plug-in Implementation of the Channel-based communication model

Chat-Plug-In Support for chat rooms, group and private real-time chats

Events-Plug-in Implementation of the Event-based communication model

Filesystem-Plug-in Public and private folders with real-time update notifications

JCaptcha-Plug-in Captcha support

JDBC-Plug-in Database access, cache, synchronization and update notifications

JMX-Plug-in WebSocket interface to the Java EE Management Extensions

JMS-Plug-in WebSocket interface to the Java EE Messaging Services

jQuery-Plug-in Real-time data exchange support for jQuery and jQuery Mobile

Logging-Plug-in Debugging, server and client logging with web sockets

Mail-Plug-in Mail support for SMTP, POP3, and IMAP via web sockets

Monitoring-Plug-in Remote server monitoring with the Sigar Library

Reporting-Plug-in Support for Jasper Report via web sockets

RPC-Plug-in Remote Procedure Calls, Client-to-Server, Server-to-Client, Client-to-Client

Sencha-Plug-in Real-time data exchange support for Sencha/Sencha Touch/ExtJS

Shared-Canvas-Plug-in Demo for sharing an HTML5 canvas in real time; a virtual whiteboard

Shared-Objects-Plug-in Support for real-time data synchronization between clients

SMS-Plug-in Support for various providers to distribute SMS messages

Statistics-Plug-in Access and user statics for WebSocket-based services

Streaming-Plug-in Demo for realizing streaming services via web sockets

Test-Plug-in Developer support for token, response, and error processing

Twitter-Plug-in WebSocket interface to the Twitter streaming services

XMPP-Plug-in WebSocket interface to the Jabber/XMPP communication services

If Java is your programming language of choice, you should now be ready to begin

integrating web sockets into your applications—and if you really get excited, maybe

even roll your own plug-in for jWebSocket.

393CHAPTER 9: HACKING HTML5 CONNECTIVITY

 
 

 
 



HACK 74 Push Notifications to the Browser with
Server-Sent Events

Created by Opera, Server-Sent Events standardizes Comet technologies. The stan-

dard intends to provide you with native, real-time updates through a simple JavaScript

API called EventSource, which connects to servers that asynchronously push data

updates to clients via HTTP streaming. Server-Sent Events uses a single, unidirec-

tional, persistent connection between the browser and the server.

Unlike the WebSocket API, Server-Sent Events and the EventSource object use HTTP

to enable real-time server push capabilities within your application. HTTP streaming

predates the WebSocket API, and it is often referred to as Comet or server push. The

exciting part here is that the Server-Sent Events API intends to standardize the Comet

technique, making it trivial to implement in the browser.

What Is HTTP Streaming?

In a standard HTTP request and response between a web browser and a web server,

the server will close the connection once it has finished processing the request. HTTP

streaming, or Comet, differs in that the server maintains a persistent, open connec-

tion with the browser.

It is important to note that not all web servers are capable of streaming. Only evented

servers such as Node.js, Tornado, and Thin are equipped to incorporate an event loop

that is optimal for supporting HTTP streaming. These nonblocking servers handle

persistent connections from a large number of concurrent requests very well.

A complete discussion of evented versus threaded servers is beyond the scope of this

book, but that being said, in this hack I will provide a very simple evented server im-

plementation example to get you started. I am providing simple browser-based Java-

Script to connect to the server, and a server-side implementation using Ruby, Thin,

and Sinatra.

For the record, this is also very easy to do with Node.js. Keep an eye on the companion

Git repositories for an update in the future.

Ruby’s Sinatra

The Sinatra documentation describes itself as a “DSL for quickly creating web appli-

cations in Ruby with minimal effort.”

This text has focused primarily on Node.js (HTTP server) and Express.js (web appli-

cation framework) to quickly generate server-side implementations for hacking out

functionality. It would be a disservice to not mention Ruby, Rails, and Sinatra in the

same or similar light as I have Node.js in this text.

394 HTML5 HACKS



Although learning Ruby is another learning curve, in the larger scheme of program-

ming languages it is a less daunting curve than most. And as most die-hard Rubyists

will preach, it is arguably the most elegant and fun to write of all modern programming

languages.

Ruby on Rails, and its little brother Sinatra, are also great web application frameworks

to start with if you are new to web application development.

Much like Node.js and Express.js, Sinatra makes building small server implementa-

tions nearly trivial. So for the context of HTML5 Hacks, this allows us to focus our

efforts on programming in the browser.

For now, let’s build a simple HTTP streaming server using Sinatra. To get started with

Ruby on Rails or Sinatra, check out the great documentation available at rubyon-

rails.org and sinatrarb.com, respectively.

Alternatively, you can skip the following by creating a Git clone on the http://github/

html5hacks/chapter9 repository and following the instructions.

Building Push Notifications

Our goal in this hack is to build a simple streaming server and use the EventSource
object to open a persistent connection from the browser. We will then push notifica-

tions from one admin browser to all the connected receivers. Sounds simple, right?

Let’s get started.

A Simple HTTP Streaming Server

First we will open a file and name it stream.rb. Then we will add the following:

require 'json'

require 'sinatra'

Next, we’ll set up a public folder, and set the server to use the evented Ruby server,

Thin:

set :public_folder, Proc.new { File.join(root, "public") }

set server: 'thin'

Now we need to set up two routes for serving our two pages: index and admin. We will

use ERB as our templating language. The details of ERB are beyond the scope of this

book, but our use is very minimal. For more on ERB go to ruby-doc.org.

get '/' do

   erb :index

end

395CHAPTER 9: HACKING HTML5 CONNECTIVITY

http://guides.rubyonrails.org/getting_started.html
http://guides.rubyonrails.org/getting_started.html
http://www.sinatrarb.com/intro
http://github/html5hacks/chapter9
http://github/html5hacks/chapter9
http://ruby-doc.org/stdlib-1.9.3/libdoc/erb/rdoc/ERB.html


get '/admin' do

   erb :admin

end

We’d like to timestamp each notification, so here is a very simple function definition:

def timestamp

  Time.now.strftime("%H:%M:%S")

end

We also want to set up two empty arrays: one to hold the connections and the other

to hold our notifications.

connections = []

notifications = []

Now, for the routes: when our browser loads its page, we have JavaScript running

which will use the EventSource object to connect to a URL at http://localhost:4567/

connect. (More on EventSource later.)

For now, you can see the magic of the evented HTTP stream. The connection is held

open until a callback is fired to close the stream.

get '/connect', provides: 'text/event-stream' do

  stream :keep_open do |out|

    connections << out

    #out.callback on stream close evt.

    out.callback {

      #delete the connection

      connections.delete(out)

    }

  end

end

Finally, any data that is posted to the /push route is pushed out to each connected

device:

post '/push' do

  puts params

  #Add the timestamp to the notification

  notification = params.merge( {'timestamp' => timestamp}).to_json

  notifications << notification

396 HTML5 HACKS

http://localhost:4567/connect
http://localhost:4567/connect


  notifications.shift if notifications.length > 10

  connections.each { |out| out << "data: #{notification}\n\n"}

end

As I said before, you can just follow the instructions at the Git repository to pull down

and build this code. Or if you have been following along, launch a Terminal, navigate

to the directory where your code is, and run the following:

$ ruby stream.rb

Figure 9-15 shows the Sinatra server starting up.

Figure 9-15. 

Starting the Sinatra server

All right, now we have our Sinatra app up and running with custom routes to handle

incoming requests from our browser.

If this doesn’t make complete sense yet, just hang loose. In the upcoming subsections,

the rest of the items will start to fall into place.

397CHAPTER 9: HACKING HTML5 CONNECTIVITY



Setting Up the HTML Pages

We will be building two pages: one for the admin to push out notifications, and the

other for the connected receivers to receive the notifications. Both of these “views”

will share the same layout, as shown here:

<html>

  <head>

    <title>HTML5 Hacks - Server Sent Events</title>

    <meta charset="utf-8" />

    <script

src="http://ajax.googleapis.com/ajax/libs/jquery/1/jquery.min.js">

</script>

    <script

src="http://ajax.googleapis.com/ajax/libs/jqueryui/1/jquery-ui.js">

</script>

    <script src="jquery.notify.js" type="text/javascript"></script>

    <link rel="stylesheet" type="text/css" href="style.css">

    <link rel="stylesheet" type="text/css" href="ui.notify.css">

  </head>

  <body>

        <!—- implementaion specific here  -->

  </body>

</html>

The admin page will contain an <input> tag and a simple button:

<div id="wrapper">

    <input type="text" id="message" placeholder="

Enter Notification Here" /><br>

    <input type="button" id="send" data-role="button">push</input>

</div>

Our receiver pages will display a simple piece of text:

<div id="wrapper">

  <p>Don't Mind me ... Just Waiting for a Push Notification

from HTML5 Hacks.</p>

</div>

By launching one browser window to http://localhost:4567/admin we should now see

our admin form (see Figure 9-16).

398 HTML5 HACKS

http://localhost:4567/admin


Figure 9-16. 

The initial admin page

Navigate to http://localhost:4567 in your browser and you should see what’s shown

in Figure 9-17.

399CHAPTER 9: HACKING HTML5 CONNECTIVITY

http://localhost:4567


Figure 9-17. 

The initial index page

Adding a Bit of jQuery

We need to add a bit of JavaScript to attach an event listener to the send button. This

snippet will prevent the default submission of the form and post the notification object

to the server as JSON.

Notice the URL /push maps to the route we defined in our Sinatra app:

 $('#send').click(function(event) {

    event.preventDefault();

    var notification = { notification: $('#notification').val()};

    $.post( '/push', notification,'json');

 })

400 HTML5 HACKS



Now, let’s open five browser windows: one admin at http://localhost:4567/admin and

four more receivers at http://localhost:4567 (see Figure 9-18).

Figure 9-18. 

Opening five browser windows

Looking good. Now it’s time to set up our EventSource.

EventSource

The EventSource API is a super-simple JavaScript API for opening a connection with

an HTTP stream.

Because our receiver pages are just “dumb” terminals that receive data, we have an

ideal scenario for Server-Side Events. If you wanted bidirectional communication to

occur, there are numerous WebSocket examples within this chapter.

Earlier, when we discussed the Sinatra app, you saw how to expose a route for the

browser to connect to an HTTP stream. Well, this is where we connect!

        var es = new EventSource('/connect');

        es.onmessage = function(e) {

          var msg = $.parseJSON(event.data);

              // ... do something

        }

401CHAPTER 9: HACKING HTML5 CONNECTIVITY

http://localhost:4567/admin
http://localhost:4567


Now we can add a simple notification with the available data:

        var es = new EventSource('/connect');

        es.onmessage = function(e) {

          var msg = $.parseJSON(event.data);

            // ... Notify

        }

And here is the final script for the admin:

      $(function() {

        $('#send').click(function(event) {

          event.preventDefault();

          var notification = {message: $('#notification').val()};

          $.post( '/push', notification,'json');

        })

      });

Installing jQuery.notify

For our push notifications we will use Eric Hynds’ great jQuery plug-in, jQuery-notify.

In order to display the notification, we’ll need to include some markup on the receiver

page:

<div id="container" style="display:none">

    <div id="basic-template">

        <a class="ui-notify-cross ui-notify-close" href="#">x</a>

        <h1>#{title}</h1>

        <p>#{text}</p>

    </div>

</div>

This creates a hidden div tag in the bottom of the document (see Figure 9-19). We

are not showing the CSS that uses "display: none" to hide it, but you can see more

by examining the source code in the companion Git repo.

402 HTML5 HACKS

https://github.com/ehynds/jquery-notify


Figure 9-19. 

Hidden div tag

In order for jQuery.notify to initialize, we must first call the following:

$("#container").notify({

            speed: 500,

            expires: false

        });

Here is the final script for the receiver:

      $(function() {

        $("#container").notify({

            speed: 500,

            expires: false

        });

        var es = new EventSource('/connect');

        es.onmessage = function(e) {

          var msg = $.parseJSON(event.data);

            $("#container").notify("create", {

                title: msg.timestamp,

                text:  msg.notification

        });

        }

      })

It’s that simple. The EventSource API is minimal and plugging it into a web framework

such as Sinatra or Node.js is straightforward.

403CHAPTER 9: HACKING HTML5 CONNECTIVITY



HACK 75

Now, as we submit notifications from the admin page, our receiver pages are updated

with timestamped notifications, as shown in Figure 9-20.

Figure 9-20. 

Pushing notifications to the connected browsers

Configure Amazon S3 for Cross-Origin
Resource Sharing to Host a Web Font

Cross-Origin Resource Sharing (CORS) is a specification that allows applications to

make requests to other domains from within the browser. With CORS you have a se-

cure and easy-to-implement approach for circumventing the browser’s same origin

policy.

In this hack we will explore hosting a web font on a cloud drive. In order to do so, we

will learn how to configure an Amazon S3 bucket to accept requests from other

domains.

If you are not already familiar with web fonts and @font-face, refer to Hack #12 .

In the next section I provide a bit more background on Amazon S3 and the same origin

policy, before we get into the details of CORS.

404 HTML5 HACKS



What Is an Amazon S3 Bucket?

Amazon S3 (Simple Storage Service) is simply a cloud drive. Files of all kinds can be

stored using this service, but web application developers often use it to store static

assets such as images, JavaScript files, and stylesheets.

For performance improvements, web developers like to employ Content Delivery Net-

works (CDNs) to serve their static files. While Amazon S3 is not a CDN in and of itself,

it’s easy to activate it as one by using CloudFront.

A bucket refers to the directory name that you choose to store your static files.

To get started let’s set up an account at Amazon and navigate to the Amazon Man-

agement Console; see Figure 9-21.

Figure 9-21. 

S3 Management Console

If we click on Create a Bucket we should see the prompt shown in Figure 9-22.

Let’s name the bucket and choose a region (see Figure 9-23). As I stated earlier, you

can choose a region to optimize for latency, minimize costs, or address regulatory

requirements.

We will go ahead and name our bucket none other than “html5hacks.” You should now

see an admin screen that shows an empty filesystem (see Figure 9-24).

405CHAPTER 9: HACKING HTML5 CONNECTIVITY

http://console.aws.amazon.com
http://console.aws.amazon.com


1 http://en.wikipedia.org/wiki/Same_origin_policy

Figure 9-22. 

Creating an S3 bucket in the S3 Management Console

Well, that was simple. So why are we doing this? Let’s start with some simple browser

security—something called the same origin policy.

Same Origin Policy

As the browser becomes more and more of an application platform, application de-

velopers have compelling reasons to write code that makes requests to other domains

in order to interact directly with the content. Wikipedia defines same origin policy as

follows:

In computing, the same origin policy is an important security concept for a

number of browser-side programming languages, such as JavaScript. The

policy permits scripts running on pages originating from the same site to

access each other’s methods and properties with no specific restrictions,

but prevents access to most methods and properties across pages on dif-

ferent sites.1

As stated in Wikipedia’s definition, the same origin policy is a good thing; it protects

the end user from security attacks. But it does cause some challenges for web

developers.

406 HTML5 HACKS

http://en.wikipedia.org/wiki/Same_origin_policy


Figure 9-23. 

Naming an S3 bucket in the S3 Management Console

This is where CORS comes into the picture. CORS allows developers of remote data

and content to designate which domains (through a whitelist) can interact with their

content.

Using Web Fonts in Your Application

There are a number of ways to use a web font within your web pages, such as calling

the @font-face service, bundling the font within your application, hosting the web font

in your own Amazon S3 bucket (more on this later), or converting the file to Base64

and embedding the data inline in a data-uri. By the way, the last technique is similar

to the one outlined in Hack #13 .

Each of these techniques has limitations.

• When calling the @font-face service you are limited to the fonts within the par-

ticular service’s database.

• Bundling the font within your application does not make use of HTTP caching, so

your application will continue to download the font file on every page request.

Furthermore, you cannot reuse the font within other applications.

407CHAPTER 9: HACKING HTML5 CONNECTIVITY



Figure 9-24. 

The html5hacks S3 bucket

• Hosting the font in an Amazon S3 bucket works great, except with Firefox, which

enforces the same origin policy on all resources. So the response from the remote

server will be denied.

• Converting the font to Base64 adds additional weight to the stylesheet, and does

not take advantage of caching.

An exploration into the different types of web fonts is beyond the scope of this hack,

so I will assume that you have already selected the web font BebasNeue.otf.

You can download free and open fonts from sites such as dafont.com.

Uploading Your Font to Your Amazon S3 Bucket

Now, all we have to do is to upload the font onto our filesystem in the cloud (see

Figure 9-25).

408 HTML5 HACKS

http://www.dafont.com


Figure 9-25. 

An uploaded BebasNeue font

Adding the Web Font to Your Web Page

In order to add a web font to our page, we need to add a single stylesheet to an HTML

page.

Here is our page. Let’s call it index.html, and add a <link> tag pointing to our base

stylesheet, styles.css.

<html>

  <head>

    <title>S3 - font</title>

    <meta charset="utf-8" />

    <link rel="stylesheet" type="text/css" href="styles.css">

  </head>

  <body>

    <h1 class="test">HTML5 Hacks</>

  </body>

</html>

In our styles.css let’s add the following and point to our uploaded file. Also, let’s assign

the font to our H1 header via the test class name.

409CHAPTER 9: HACKING HTML5 CONNECTIVITY



@font-face { font-family: BebasNeue; src:

url('https://s3.amazonaws.com/html5hacks/BebasNeue.otf'); }

.test {

  font-family: 'BebasNeue';

}

Now we’ll open a browser and point to our newly created HTML page. In Opera (see

Figure 9-26), Safari, and Chrome our header tag is being styled correctly.

Figure 9-26. 

Opera browser showing the BebasNeue font

But if we view it in Firefox, we are having issues (see Figure 9-27).

If we examine the request for our font in the Chrome Dev Tools Network tab, we will

see that the response from the server is empty (see Figure 9-28).

What gives? Well, by default, Firefox will only accept links from the same domain as

the host page. If we want to include fonts from different domains, we need to add an

Access-Control-Allow-Origin header to the font.

So, if you try to serve fonts from any CDN, Firefox will not load them.

410 HTML5 HACKS



Figure 9-27. 

Firefox browser failing to show the BebasNeue font

What Is CORS?

The CORS specification uses the XMLHttpRequest object to send and receive head-

ers from the originating web page to a server that is properly configured in order to

enable cross-site requests.

The server accepting the request must respond with the Access-Control-Allow-
Origin header with either a wildcard (*) or the correct origin domain sent by the

originating web page as the value. If the value is not included, the request will fail.

Furthermore, for HTTP methods other than GET or POST, such as PUT, a preflight re-

quest is necessary, in which the browser sends an HTTP OPTIONS request to establish

a handshake with the server before accepting the PUT request.

Fortunately, after enough backlash from the development community, Amazon made

CORS configuration available on Amazon S3 via a very simple XML configuration.

Let’s get started.

411CHAPTER 9: HACKING HTML5 CONNECTIVITY



Figure 9-28. 

Firefox browser showing an empty response

Configuring CORS at Amazon S3

You should already be at your Amazon Management Console. Click on Proper-

ties→Permissions→Edit CORS configuration, and you should receive a modal prompt.

The configuration can accept up to 100 rule definitions, but for our web font we will

only need a few. For this example we will use the wildcard, but if you are doing this in

production, you should whitelist the domains to prevent others from serving your font

from your S3 account on their own web pages. It wouldn’t be the end of the world, but

it might get costly.

The first rule allows cross-origin GET requests from any origin. The rule also allows all

headers in a preflight OPTIONS request through the Access-Control-Request-
Headers header. In response to any preflight OPTIONS request, Amazon S3 will return

any requested headers.

The second rule allows cross-origin GET requests from all origins. The * wildcard

character refers to all origins.

<CORSConfiguration>

<CORSRule>

412 HTML5 HACKS

http://console.aws.amazon.com


   <AllowedOrigin>*/AllowedOrigin>

   <AllowedMethod>GET</AllowedMethod>

 </CORSRule>

</CORSConfiguration>

So, let’s add our new configuration to our Editor and save (see Figure 9-29).

Figure 9-29. 

Configuring CORS in the S3 Management Console

Now, let’s return to Firefox and reload the page. We should now see the header font

styled with our BebasNeue web font, as shown in Figure 9-30.

413CHAPTER 9: HACKING HTML5 CONNECTIVITY



HACK 76

Figure 9-30. 

Firefox browser successfully showing the BebasNeue font

There is much more to learn about CORS, most notably, HTTP POST usage with certain

MIME types, and sending cookies and HTTP authentication data with requests if so

requested by the CORS-enabled server. So get out there and starting creating your

own CORS hacks.

Control an HTML5 Slide Deck
with Robodeck

Robodeck uses an HTML5 Sencha 2.0 mobile remote control web application to en-

able you to control a Deck.js HTML5 slide deck presentation via web sockets and XHR.

Robodeck runs on Node.js, uses the Express.js application framework to serve the

HTML, JavaScript, and CSS, and uses Socket.IO for web socket support. Robodeck

also demonstrates the use of the HTML5 Geolocation APIs.

Have you ever wanted to build a presentation using just HTML5, JavaScript, and CSS,

that rivals the visual capabilities of PowerPoint and Keynote, or deliver that presen-

tation by navigating to a URL with your web browser? How about controlling that pre-

sentation with your mobile device? Or have others log in to your presentation and

make updates, such as their location, while you are presenting?

414 HTML5 HACKS



Robodeck is a culmination of HTML5 hacks, all wrapped up in one framework. It is a

project hosted at GitHub, and demo’ed at Heroku (see Figure 9-31), that provides a

starting point for building such presentations. This hack will walk through the creation

of this framework.

Figure 9-31. 

Robodeck demo hosted at Heroku

This hack exposes you to both the server-side implementation and the client Java-

Script in more detail than the previous hacks. The beauty of Node.js is that we can

write and maintain our application code in one language: JavaScript. This simplicity

makes Node.js the ideal implementation for getting started with web sockets.

Deck.js

Deck.js is one of many HTML5 presentation frameworks that use JavaScript and CSS3

2D/3D transitions and animations to create elegant presentations for the Web without

the need for PowerPoint or Keynote. Robodeck uses Deck.js because of its powerful

API, which makes it simple to advance slides and perform other actions on the deck.

A more detailed look at the API is available online.

415CHAPTER 9: HACKING HTML5 CONNECTIVITY

http://imakewebthings.com/deck.js/
http://imakewebthings.com/deck.js/docs/


Let’s download Deck.js to a location on our computer (see Figure 9-32), and wait until

we have a basic application built before we move these files to the appropriate

directory.

Figure 9-32. 

Deck.js home page

Node.js and Express

We will use Node.js as our simple web server to handle requests and responses from

the browser, and the Express framework to deliver the HTML and markup to the

browser.

This hack assumes you already have Node.js installed. If you don’t, follow the fan-

tastic documentation already provided at nodejs.org.

To get started navigate to your projects directory from the command line and execute

the Express application generator. For more information on generating applications

with Express, see Hack #83 .

$ cd your-projects-directory

$ express robodeck

$ cd robodeck

416 HTML5 HACKS

http://nodejs.org


Now you can list the files in your directory with the ls command:

$ ls

Procfile    README        app.js        node_modules    package.json

    Public        routes      views

You should now have the files and directories necessary to build and run a simple

Node.js/Express application.

First, we need to include the necessary modules in our manifest file, package.json:

{

    "name": "robodeck"

  , "version": "0.0.1"

  , "private": true

  , "dependencies": {

      "express": "2.5.8"

    , "jade": ">= 0.0.1"

    , "socket.io": "latest"

    , "useragent": "latest"

    , "googlemaps": "latest"

  }

}

You can see here that we have included a few modules to build this project. We have

already introduced Express, but we will also use Jade as our HTML metalanguage. For

more information on Jade see Hack #85 .

We also include Socket.IO, which we will touch on in the next section, and Google Maps

to enable a web service for doing reverse geocoding. There will be more on our geo-

location implementation in an upcoming section within this hack, and the Geolocation

APIs were also covered extensively in Chapter 6.

Once we have our manifest filled out, we will use the Node Package Manager to install

the modules:

$ cd robodeck

$ npm install

$ node app.js

Express server listening on port 3000

And finally, we will launch a browser and navigate to http://localhost:3000. Figure 9-33

shows the result.

417CHAPTER 9: HACKING HTML5 CONNECTIVITY

http://localhost:3000


Figure 9-33. 

Initial Express application

Establishing Routes

We now have the beginnings of a basic Express web application. Let’s open the app.js

file and take a look. We can see that our basic Express app is only accepting requests

from one URL scheme, the root. This is why we get the basic response when we nav-

igate to http://localhost:3000.

// Routes

app.get('/', routes.index);

app.listen(3000, function(){

  console.log("Express server listening on port %d in %s mode",

app.address().port, app.settings.env);

});

In order to support two separate applications, we need to accept incoming requests

from two separate URLs: one for our Deck.js application which will continue to use the

root URL, and another that we will create for our Sencha 2.0 mobile application. For

simplicity, we will use http://localhost:3000/x.

418 HTML5 HACKS

http://localhost:3000
http://localhost:3000/x


We will also need to accept XMLHttpRequests from our Sencha 2.0 mobile applica-

tion: one from the URL http://localhost/next to advance the slide deck, and the other

from the URL http://localhost/prev to slide the deck back.

Hack #84  is dedicated to the concept of building routes in Node.js. So if you want the

complete lowdown on how routes work, read that particular hack. If not, you can copy

the following code into your app.js file:

app.get('/', function(req, res) {

    routes.desktop(req, res);

});

app.get('/x', function(req, res) {

      routes.iphone(req, res);

});

///////// ACCEPT XHR CALLS FROM REMOTE MOBILE APP

app.get('/next', function(req, res) {

  console.log('NEXT- ' + 'server time: ' + getTime() + ',

client time: ' + req);

  send(JSON.stringify({ "cmd": 'next' }));

});

app.get('/back', function(req, res) {

  console.log('PREV ' + getTime());

  send(JSON.stringify({ "cmd": 'prev' }));

});

Now, we have established four independent routes for incoming requests.

In our routes directory we will house an index.js file that will contain the logic for re-

sponding to the routes:

exports.desktop = function(req, res){

  res.render('desktop', { layout: 'basic' });

};

exports.iphone = function(req, res){

  res.render('smartphone', { layout: 'mobile' });

};

Here, we have told Express where to look for the views that will build the HTML markup

to return to the client browser, based on the particular route called. Notice that there

are four routes, but only two layout views.

419CHAPTER 9: HACKING HTML5 CONNECTIVITY

http://localhost/next
http://localhost/prev


This is because two of our routes, /next and /previous, will not need to return a

response in the form of HTML markup. Those routes will, in turn, generate a web

socket message that will be sent only to the clients that are listening. The clients that

have connected at the root URL and received the desktop view will also receive a script

tag with a Socket.IO script that instructs the client to listen for incoming web socket

messages. In the callback of that subscriber event handler, we will call the Deck.js

APIs, which will perform the CSS transition on the slide deck.

Building Desktop and Mobile Views

So let’s build out our two views.

Chapter 10 provides more information about Jade views. But for the sake of this hack,

we can use the following code to create two layouts and views: one for our mobile

application and the other to display our Deck.js application.

As you will recall, we designated two views in our routes: desktop and iPhone. Each

view uses a different layout view as well. You can think of the layout as the container

and the view as the internal markup included within the container.

First, let’s take a look at the desktop view’s basic layout:

!!!

html

  head

    title robodeck

    link(rel='stylesheet', href='/stylesheets/style.css')

    link(rel='stylesheet', href='./deck.js/core/deck.core.css')

    link(rel='stylesheet',

href='./deck.js/extensions/goto/deck.goto.css')

    link(rel='stylesheet',

href='./deck.js/extensions/hash/deck.hash.css')

    link(rel='stylesheet',

href='./deck.js/extensions/menu/deck.menu.css')

    link(rel='stylesheet',

href='./deck.js/extensions/navigation/deck.navigation.css')

    link(rel='stylesheet',

href='./deck.js/extensions/scale/deck.scale.css')

    link(rel='stylesheet',

href='./deck.js/extensions/status/deck.status.css')

    // Style theme. More available in /themes/style/ or create your own.

    link(rel='stylesheet', href='../deck.js/themes/style/neon.css')

420 HTML5 HACKS



    // Transition theme.

    // More available in /themes/transition/ or create your own.

    link(rel='stylesheet',

href='../deck.js/themes/transition/horizontal-slide.css')

    script(src='../modernizr.custom.js')

    script(src='../socket.io/socket.io.js')

  body.deck-container

    != body

You can see the inclusion of the Deck.js CSS and the Socket.IO JavaScript depen-

dencies declared within the markup. Now we’ll work on the desktop view, which will

be included inside the basic layout. This is where we will begin to use the declarative

markup needed to create our slides for Deck.js. You will see that each slide is indicated

by using the HTML5 section tag with a CSS class attribute of slide.

// Create any number of elements with class slide within the container

section.slide

    h1 robodeck

    h2 Interactive Demo - Connecting and GeoLocation

    ol

        li Connect to http://robodeck.herokuapp.com

        li Your Browser will detect Web Socket Support

        li If necessary, your browser will fallback to Comet techniques

        li Once connection is established,

your browser will pass GeoLocation to server

        li Server pushes GeoLocation data to all clients

section.slide#remote

    h1 HTML5 Rocks

    h2 Interactive Demo - Remote Control Pub/Sub

    ol

        li We connect to the same application with a Sencha 2.O

HTML5 Mobile Web app

        li We advance the deck by publishing NEXT or PREV command

messages to the server

        li All connected clients are subscribing to the commands

        li Client JavaScript then controls the deck

section.slide#thanks

    h1 Thank You!

    ol Interactive Demo - the end.

421CHAPTER 9: HACKING HTML5 CONNECTIVITY



This markup provides three slides. Navigate to your browser and use the right-arrow

key to advance the deck to the second slide. Figure 9-34 shows the second one that

includes the title “HTML5 rocks.” Notice the hash tag on the URL: http://localhost:

3000/#remote matches the id remote indicated in the second slide.

We have also included a section that will be updated once a web socket message is

sent indicating the current total clients connected, and the geolocations of each of

those clients (more on this later).

footer

div#clients

    p#viewers

    div#locationsWrapper

        p#locations

    p#tweets

Figure 9-34. 

Robodeck second slide

The Deck.js JavaScript dependencies are included in the basic.jade view toward the

bottom of the page. This is for performance reasons, to ensure that the markup is

loaded before the scripts begin to load and execute.

422 HTML5 HACKS

http://localhost:3000/#remote
http://localhost:3000/#remote


script(src='../jquery-1.7.min.js')

script(src='../deck.js/core/deck.core.js')

script(src='../deck.js/extensions/hash/deck.hash.js')

script(src='../deck.js/extensions/menu/deck.menu.js')

script(src='../deck.js/extensions/goto/deck.goto.js')

script(src='../deck.js/extensions/status/deck.status.js')

script(src='../deck.js/extensions/navigation/deck.navigation.js')

script(src='../deck.js/extensions/scale/deck.scale.js')

And finally, we will need to instantiate the Deck.js deck by calling:

script

    $(function() {$.deck('.slide');});

Now for the mobile route, we will need the mobile layout, which will contain the re-

sources required to respond to requests from mobile devices. Remember, mobile de-

vices should access the application from localhost:3000/x in order to receive the

mobile-optimized application.

In the mobile layout, we will include the following markup skeleton:

 !!!

html

  head

    title robodeck mobile

    // sencha 1.0

    // link(rel='stylesheet',

href='../javascripts/sencha/resources/css/sencha-touch.css')

    // script(src='http://maps.google.com/maps/api/js?sensor=true')

    // script(src='./javascripts/sencha/sencha-touch-debug.js')

    // sencha 2.0

    link(rel='stylesheet',

href='app/lib/touch/resources/css/sencha-touch.css',

title='senchatouch', id='senchatouch')

    link(rel='stylesheet',

href='app/css/style.css', title='android', id='android')

    script(src='app/lib/touch/sencha-touch.js')

    script(src='app/app/app.js')

    script(src='app/app/views/Viewport.js')

    script(src='app/app/views/Home.js')

    // other

    script(src='./modernizr.custom.js')

423CHAPTER 9: HACKING HTML5 CONNECTIVITY



    // script(src='./socket.io/socket.io.js')

  body.deck-container

    != body

The mobile layout contains all of the Sencha 2.0 dependencies to create the HTML5

mobile web application.

The smartphone view is injected within the mobile container and is intended to be for

nontablet web clients. We could also have tablet-specific views, or we could use CSS3

media queries to respond to the different viewports by configuring our markup with

metadata (more on CSS3 media queries in Hack #16).

For now, we will keep it simple and return the same view to all clients accessing the

localhost:3000/x URL.

Because of the way Sencha 2.0 works, nothing is needed inside the smartphone view.

All of the code necessary to generate a Sencha 2.0 app is included within the Java-

Script files already included in the mobile layout view. This approach differs from other

similar frameworks such as jQuery Mobile, but this “JavaScript as the kernel” design

is what makes Sencha 2.0 unique and popular among some JavaScript developers.

We will discuss Sencha in more detail in an upcoming section.

For now, we will continue to support the empty smartphone.jade view in case we want

to include some other scripts in the future, such as the Socket.IO client, or switch to

jQuery Mobile.

Public Files

Just as in the web socket hacks provided earlier in this chapter, in order to achieve

communication through web sockets you must maintain code on both the server and

the client. You should also have a /public directory within your application that will

hold all of the static resources for your application.

To begin let’s move our Deck.js JavaScript files into the /public directory so that we

can access our basic presentation from the browser. Our directory structure should

now look like Figure 9-35.

424 HTML5 HACKS



Figure 9-35. 

Adding Deck.js to the public directory

Polyfill WebSocket Support with Socket.IO

Socket.IO aims to make real-time apps possible in every browser and mobile device,

blurring the differences between the different transport mechanisms.

For more on polyfills, refer to this book’s Preface or to Hack #55 .

In order to provide real-time connectivity on every browser, Socket.IO selects the most

capable transport at runtime, from among those in the following list, without it af-

fecting the API:

• WebSocket

• Adobe Flash socket

• Ajax long polling

• Ajax multipart streaming

• Forever iFrame

• JSONP polling

Figure 9-36 shows the Socket.IO home page.

425CHAPTER 9: HACKING HTML5 CONNECTIVITY



Figure 9-36. 

Socket.IO home page

Fortunately the Node.js community has made it extra simple to include Socket.IO

within your application and to be up and running with a web socket server in no time.

We already installed the socket.io module in the beginning of this hack, so now we

will require it and begin to use the API.

To get started we need to open our app.js file and add the following before the

app.config and app.routes calls:

// Clients is a list of users who have connected

var clients = [];

function send(message) {

  clients.forEach(function(client) {

      client.send(message);

  });

}

Here, we create an array of clients and a special send function that will iterate through

the array of connected clients and send them a message.

426 HTML5 HACKS



Now we’ll add the following app.listen (1511) declaration:

app.listen(process.env.PORT || 1511);

var sio = io.listen(app);

sio.sockets.on('connection', function(client) {

  clients.push(client);

  send(JSON.stringify({ "clients": clients.length }));

  client.on('disconnect', function () {

    var index = clients.indexOf(client.id);

    clients.splice(index, 1);

  });

});

Here, we begin to create our Socket.IO implementation on the server.

Notice that we are passing the Express app object to the listen() method of the

Socket.IO application so that both will be listening on the same port.

We then set up an event handler to handle the client connection event. Next, we push

the unique client to the clients array and send an initial web socket message, con-

taining the current number of clients connected.

Also, notice that the client will be removed from the clients array when a disconnect

event is fired, ensuring that the client total remains accurate.

This is our first web socket message, and it is used within the Deck.js desktop view to

update the UI with the number of clients viewing the Deck.js presentation.

One other dependency is required for this UI update to actually work, and that is the

addition of the Socket.IO library on the client side.

Adding the Socket.IO Client JavaScript to Our Views

Now, back to our /public directory that holds all of our static resources. This is where

the client-side JavaScript will live that creates the WebSocket object that will make

the initial request to the server requesting an upgrade to the WebSocket Protocol.

This client JavaScript will also establish the publish-and-subscribe system that will

handle and send messages over the network.

Here we will create /socket.io for our socket.io files alongside our deck.js files.

427CHAPTER 9: HACKING HTML5 CONNECTIVITY



Let’s download the socket.io client JavaScript files and place them in the /socket.io

directory. Our directory structure should now look like Figure 9-37.

Figure 9-37. 

Adding the socket.io client JavaScript to the /public directory

Finally, let’s add some JavaScript to our basic.jade view to enable Socket.IO to begin

listening for messages from the server:

script

    var socket = io.connect();

    socket.on('message', function (data) {

        var json = JSON.parse(data);

        if (json.clients) {

            // update the DOM

            $('#viewers').text('viewers:' + json.clients);

        }

    });

Once a message is retrieved with a clients property, we access the DOM with jQuery

and update the Viewers section with a current value.

428 HTML5 HACKS



You can test this functionality by opening a number of tabs within your browser, or

even separate browser instances anywhere on your network that has access to local-

host:3000 and access to the presentation at the root URL http://localhost:3000. Each

instance will receive a web socket message and update all connected clients with the

client total (see Figure 9-38).

Figure 9-38. 

Real-time updates of client data

Adding Geolocation APIs and Reverse Geocoding with the
googlemaps Module

Now that we have an application that is retrieving web socket messages, let’s add

additional data (the clients’ longitude and latitude) by leveraging the Geolocation APIs

available within your browser, and the Node.js googlemaps module to reverse-

geocode the client’s location based on the two-part data.

We will then send the new location returned from the Google lookup service back to

the client for a dynamic update within the browser.

First let’s add the necessary code to the client. Within our basic.jade file, we will use

the Geolocation APIs available in the browser to prompt the user for access to her

location. All browsers have slightly different prompts; in Safari the prompt looks like

Figure 9-39.

429CHAPTER 9: HACKING HTML5 CONNECTIVITY

http://localhost:3000


Figure 9-39. 

Apple Safari requesting geolocation

For more details and code snippets see Hack #59 .

Setup for Mobile and Install of Sencha 2.0

Sencha Touch 2 is a high-performance HTML5 mobile application framework that

enables developers to build fast and impressive apps that work on all mobile web

browsers. For the purposes of this hack, we have chosen the framework for this very

reason. Just as we chose Socket.IO for its cross-platform, real-time communication

support, we also want our mobile remote control application to be able to run on as

many devices as possible.

Communicating from the Remote Control

As our final piece of functionality, we need the ability to advance our slide deck by

sending one-way requests in the background over XMLHttpRequest from our client

applications connected at http://localhost:3000/x. To do this we want to utilize the

Sencha 2.0 HTML5 mobile web application framework.

Our UI will contain a Forward button and a Back button (see Figure 9-40).

430 HTML5 HACKS

http://localhost:3000/x


Figure 9-40. 

Robodeck mobile built with Sencha 2.0

In the views section you saw that we included all the dependencies necessary to build

a Sencha 2.0 application. In order for those links to access the correct files we need

to download Sencha 2.0 and install the files in the /public directory. Our /public di-

rectory will now look like Figure 9-41.

431CHAPTER 9: HACKING HTML5 CONNECTIVITY

http://www.sencha.com/products/architect/download/


Figure 9-41. 

Adding Sencha 2.0 to the /public directory

Now we will only need to update two files from within Sencha’s app directory to use

Sencha’s declarative syntax for building applications.

First we will open the app.js file located in the app/app directory and create a new

Ext.regApplication. Now we’ll define the namespace in the name property and use

the launch method to declare the entry point to the application.

Ext.regApplication({

    name: 'robodeck',

    launch: function() {

        this.views.Viewport = new this.views.Viewport();

    }

});

Let’s open the Viewport.js file located in the app/app/views directory and configure

the viewport. All of this should be fairly straightforward; for detailed information refer

to the Sencha documentation.

The key declaration to notice is the creation of the Ext.TabPanel called Viewport:

robodeck.views.Viewport = Ext.extend(Ext.TabPanel, {

    fullscreen: true,

    layout: 'card',

    tabBar: new Ext.TabBar({

        dock: 'bottom',

        ui: 'dark',

        layout: {

432 HTML5 HACKS

 
 

 
 

http://docs.sencha.com/touch/2-0/


            pack: 'center'

        }

    }),

    initComponent: function() {

        //put instances of cards into app.views namespace

        Ext.apply(robodeck.views, {

          Home: new robodeck.views.Home(),

        });

        //put instances of cards into viewport

        Ext.apply(this, {

           items: [

                robodeck.views.Home

            ]

        });

        robodeck.views.Viewport.superclass.initComponent.apply

(this, arguments);

    }

});

Finally, in the app/app/views directory, we’ll open Home.js, where we will define our

own custom xhr() function and call it from within the click handler of our two custom

buttons, Forward and Back.

var server = 'http://' + document.location.host;

function xhr(url) {

  var request = new window.XMLHttpRequest();

  request.open('GET', url, true);

  request.send();

}

robodeck.views.Home = Ext.extend(Ext.Panel, {

  ...

  items: [

    {

      xtype: 'button',

      text: 'Forward',

           handler: function(){

              console.log('pressed -- Next');

              xhr(server + '/next');

      }

    },

433CHAPTER 9: HACKING HTML5 CONNECTIVITY



    {

      xtype: 'button',

      text: 'Back',

           handler: function(){

              console.log('pressed -- Back');

              xhr(server + '/back');

      }

    }

  ],

  ...

});

And that’s really all we need to send XMLHttpRequests at the click of a button within

our Sencha 2 mobile application.

Finally, remember the routes we set up in the beginning of this hack to accept the

requests to the URLs http://localhost:3000/next and http://localhost:3000/back?

Now we can make use of them. Once the request is received, we trigger a web socket

send() method:

app.get('/next', function(req, res) {

  send(JSON.stringify({ "cmd": 'next' }));

});

app.get('/back', function(req, res) {

  send(JSON.stringify({ "cmd": 'prev' }));

});

In our connected clients we listen for the message, and if it has a cmd property we

dynamically call that command from the $.deck object:

    socket.on('message', function (data) {

        var json = JSON.parse(data);

        ...

        if (json.cmd) {

            console.log('cmd: ' + json.cmd);

            console.log("CMD MESSAGE");

            // call deck.js api

            $.deck(json.cmd)

        }

        ...

    });

All connected clients should see the move forward and backward, given the button

clicks of the mobile remote application.

434 HTML5 HACKS

http://localhost:3000/next
http://localhost:3000/back


HACK 77

HACK 78

Inspect a Socket.IO Connection to
Determine If It Is Native or Emulated

Chrome Developer tools can help with debugging network traffic. You can also disable

web sockets to demonstrate the power of Socket.IO polyfills.

In this hack we’ll investigate the power of Socket.IO. Earlier, I explained that Socket.IO

provides the ability to polyfill socket support for browsers that don’t have a socket

implementation enabled yet. In previous hacks we used the Chrome Developer Tools

to inspect WebSocket information.

One way to test the ability of Socket.IO to fall back to another mechanism is to go into

the Chrome Dev Tools console and enter WebSocket = undefined (see Figure 9-42).

Figure 9-42. 

Turning off WebSocket support in Chrome

Then, if you click in the Network tab, you’ll notice that the browser has closed the

WebSocket connection and fallen back to XHR-polling. You will see HTTP requests

being sent on regular intervals to check for any updates (see Figure 9-43).

Build a Simple SPDY Server with
node-spdy

SPDY is a protocol created and used by Google to reduce web page load time. It doesn’t

replace HTTP; rather, you can use it to compress and simplify HTTP requests.

Let’s start this hack with a disclaimer: this hack will be short and simple. An exploration

of SPDY is simply too large for this book. Besides, we have already exceeded 400

pages!

That being said, SPDY is too important to the future of web technologies and the

HTML5 connectivity layer to not be mentioned.

So, the goal of this hack will be to get you up and running with the very basics of SDPY,

and add another tool to your tool belt.

435CHAPTER 9: HACKING HTML5 CONNECTIVITY



Figure 9-43. 

XHR-polling polyfill from Socket.IO

node-spdy

To serve up our simple SPDY implementation we will default to Node.js as we often

have throughout this text. We will make use of Fedor Indutny’s node-spdy.

You can pull down the hello_world example from GitHub.

Let’s go ahead and git clone the entire directory, and then navigate to the

hello_world example:

    $ cd your-code-directory

    $ git clone git://github.com/indutny/node-spdy.git

Now we’ll navigate into the directory and run npm install:

    $ cd node-spdy

    $ npm install

Now we can start our SPDY server:

    $ node app.js

We are up and running on port 3232.

436 HTML5 HACKS

https://github.com/indutny/node-spdy/tree/master/examples/hello_world


Let’s navigate to https://localhost:3232/, and we should see “Hello World” (see

Figure 9-44). Be sure to include the “https://” in the URL, or your request will not be

accepted.

Figure 9-44. 

Simple “Hello World” from node-spdy

We made a simple request, and the server responded with “Hello World.” You are not

going to see a major improvement to your response because it is just too simple.

SPDY shines when you use it with applications that make a large number of connec-

tions and transfer significant amounts of data. The string “Hello World” hardly falls

into that category of applications.

What’s Next?

Well, that’s it. I warned you in the disclaimer. This should be enough to get you started.

Try adding some logic that creates an abnormal number of requests or passes large

payloads. Hook up a performance tool and see if you can tell the difference. Stay tuned

in the html5hacks.com/blog for updates on SPDY.

437CHAPTER 9: HACKING HTML5 CONNECTIVITY

https://localhost:3232/
http://html5hacks.com/blog




10
Pro HTML5 Application Hacks

with Node.js

Up to this point, this book has provided a sample collection of hacks that cover a large

portion of the HTML5 feature suite. But what about building professional HTML5 ap-

plications?

As you can see in the latter chapters of the book, some of the HTML5 specifications

are advancing the technologies at the connectivity layer. In order to begin creating

hacks that examine those specifications, we need to employ a web server. We also

want to be able to write our markup quickly and deploy our changes easily. The Node.js

tool set makes these concepts simple and easy to learn. Node.js is also written in

JavaScript, so we can use the same programming language in both the browsers and

the server.

It is certainly arguable that other programming languages and web frameworks, such

as PHP and Ruby on Rails, provide similar environments, but for the purposes of cre-

ating “quick and dirty” hacks to exercise new HTML5 APIs, there is no better choice

than Node.js.

The hacks in this chapter will guide you all the way through to having an HTML5 boil-

erplate starter app that can be easily deployed to a remote server. If you so desire,

you can even skip ahead to the final hack and download a starter kit for building pro-

fessional HTML5 applications in Node.js.

HTML5 Application Design Considerations

In addition to providing hacks that teach you the basics of using these cutting-edge

tools, this chapter will also touch on some of the most common modern HTML5 ap-

plication design challenges presented to developers today, including considerations

for the mobile web, client-side performance optimizations, cross-browser compati-

bility, and DRYing (Don’t Repeat Yourself) up your code base.

439



HACK 79

Why Node.js?

First, let’s start with one of the most hyped technologies of late, Node.js. We didn’t

select this server for the hype surrounding it. We selected it for the following key

reasons:

• Node.js provides an HTTP server, so we can serve files.

• Node.js also exposes a JavaScript API, so we can use the same programming

language on the server and client to build applications.

• There are a number of tools that make deployment of Node.js apps simple and

fast. Since our goal is to create hacks, we will leverage as many of these tools as

possible.

Installation

I won’t go into great detail on how to install Node.js. For a local setup, just go to http://

nodejs.org/#download to download an installer.

If you want to install via a package manager go to https://github.com/joyent/node/

wiki/Installing-Node.js-via-package-manager.

The official documentation for installation, given the specifics of your local environ-

ment, is available at https://github.com/joyent/node/wiki/Installation.

Once you have installed Node.js, open a terminal and check your installation.

Installing on Mac OS X via Homebrew

If you are using a Mac, perhaps the easiest way to get up and running quickly is to

install via Homebrew. Once you have Homebrew, installation is as simple as running

the following:

brew install node

user$ node -v

v0.4.7

Deliver “Hello Html5” to the Browser

With this classic “Hello World” hack you’ll be able to use Node.js to handle requests

from browsers and respond with content.

Let’s get a handle on our first HTTP request and response with Node.js. We’ll start as

simple as possible: we’ll use the example “Hello World” application from nodejs.org.

440 HTML5 HACKS

http://nodejs.org/#download
http://nodejs.org/#download
https://github.com/joyent/node/wiki/Installing-Node.js-via-package-manager
https://github.com/joyent/node/wiki/Installing-Node.js-via-package-manager
https://github.com/joyent/node/wiki/Installation
http://mxcl.github.com/homebrew/


To get started, we only need to navigate to an empty directory within our filesystem

and create an empty file, such as server.js.

We’ll add the following to the file:

var http = require('http');

http.createServer(function (req, res) {

 res.writeHead(200, {'Content-Type': 'text/plain'});

 res.end('Hello Html5\n');

}).listen(1337, "127.0.0.1");

console.log('Server running at http://127.0.0.1:1337/');

Now we can execute the code with the file by running the following from the command

line:

$node server.js

Let’s walk through what is going on here. At the top of the file there is a require
method which is part of Node.js’s Dependency Module Management System that fol-

lows the CommonJS specification. Once the HTTP module is included, we can call

http.createServer() and pass it a function that accepts a request and a re
sponse object as parameters. Each object has its own set of methods and properties.

Later, we will examine them a little more closely by logging both the request and the

response to the console.

http.createServer(function (req, res) {

 res.writeHead(200, {'Content-Type': 'text/plain'});

 res.end('Hello Html5\n');

}).listen(1337, "127.0.0.1");

Here you can see that writeHead() is used to return a response code and write the

contents to a buffer, along with the object that contains the response headers. The

end() method then accepts a string.

The last item to notice here is the listen() method chained onto the end of crea
teServer(). Once createServer() has completed and returned, the next method

in the stack is listen(), which is passed to the port number to listen on. The crea
teServer() method returns an object that inherits the http.Server prototype.

Those are the basics of setting up and running a Node.js server.

Before we print out our request, let’s turn off the logging of the additional request for

favicon.ico, so the console doesn’t print the two requests made from the browser. This

will make our logs slightly easier to read.

var http = require('http');

http.createServer(function (req, res) {

441CHAPTER 10: PRO HTML5 APPLICATION HACKS WITH NODE.JS



// control for favicon

 if (req.url === '/favicon.ico') {

   res.writeHead(200, {'Content-Type': 'image/x-icon'} );

   res.end();

   console.log('favicon requested');

   return;

 }

 else {

   console.log('REQUEST: ' + req);

   console.log(req);

   res.writeHead(200, {'Content-Type': 'text/plain'});

   res.end('Hello Html5\n');

 }

}).listen(1337, "127.0.0.1");

console.log('Server running at http://127.0.0.1:1337/');

In this hack, we are interested in understanding the very basics of HTTP and how

Node.js helps us build web applications quickly and easily.

We will begin by examining the HTTP request and response objects. To simplify,

think of the request as an input and the response as an output.

The server and the HTTP module will process the incoming request, and return a

response based on all the parameters and information included in the incoming

request.

Here is the request object:

{ socket:

  { fd: 8

  , type: 'tcp4'

  , secure: false

  , _readWatcher: { callback: [Function], socket: [Object] }

  , readable: true

  , _writeQueue: []

  , _writeQueueEncoding: []

  , _writeQueueFD: []

  , _writeWatcher: { socket: [Circular],

callback: [Function: _doFlush] }

  , writable: true

  , _writeImpl: [Function]

442 HTML5 HACKS

 
 

 
 



  , _readImpl: [Function]

  , _shutdownImpl: [Function]

  , remoteAddress: '127.0.0.1'

  , remotePort: 50722

  , server:

    { connections: 2

     , paused: false

     , pauseTimeout: 1000

     , watcher: [Object]

     , _events: [Object]

     , type: 'tcp4'

     , fd: 6

    }

  , _outgoing: [ [Object] ]

  , __destroyOnDrain: false

  , ondrain: [Function]

  , _idleTimeout: 120000

  , _idleNext:

    { fd: 9

     , type: 'tcp4'

     , secure: false

     , _readWatcher: [Object]

     , readable: true

     , _writeQueue: []

     , _writeQueueEncoding: []

     , _writeQueueFD: []

     , _writeWatcher: [Object]

     , writable: true

     , _writeImpl: [Function]

     , _readImpl: [Function]

     , _shutdownImpl: [Function]

     , remoteAddress: '127.0.0.1'

     , remotePort: 50726

     , server: [Circular]

     , _outgoing: []

     , __destroyOnDrain: false

     , ondrain: [Function]

     , _idleTimeout: 120000

     , _idleNext: [Object]

     , _idlePrev: [Circular]

     , _idleStart: Fri, 10 Feb 2012 05:46:34 GMT

     , _events: [Object]

443CHAPTER 10: PRO HTML5 APPLICATION HACKS WITH NODE.JS



     , ondata: [Function]

     , onend: [Function]

     , _onOutgoingSent: [Function]

    }

  , _idlePrev: [Circular]

  , _idleStart: Fri, 10 Feb 2012 05:46:34 GMT

  , _events:

     { timeout: [Function]

     , error: [Function]

     , close: [Function]

     }

  , ondata: [Function]

  , onend: [Function]

  , _onOutgoingSent: [Function]

  }

, connection: [Circular]

, httpVersion: '1.1'

, headers:

  { host: 'localhost:1337'

  , connection: 'keep-alive'

  , 'cache-control': 'max-age=0'

  , 'user-agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X ...'

  , accept: 'text/html,application/xhtml+xml,...'

  , 'accept-encoding': 'gzip,deflate,sdch'

  , 'accept-language': 'en-US,en;q=0.8'

  , 'accept-charset': 'ISO-8859-1,utf-8;q=0.7,*;q=0.3'

  }

, url: '/'

, method: 'GET'

, statusCode: null

, client: [Circular]

, httpVersionMajor: 1

, httpVersionMinor: 1

, upgrade: false

}

444 HTML5 HACKS



1 “The Hypertext Transfer Protocol (HTTP) is an application protocol for distributed, collaborative,
hypermedia information systems.[1] HTTP is the foundation of data communication for the World
Wide Web.” (Wikipedia)

A Little Background on HTTP1

When the Node.js HTTP server module accepts a request from a client such as your

browser, it creates a new object to hold all the information. If you look into the object

you will see a number of important properties: URL, methods, and headers.

Understanding these three properties will get you started in understanding the basics

of HTTP and web servers.

URL

A Uniform Resource Locator (URL) is a reference to a resource available on the Inter-

net. You can think of it as an address to documents and other resources.

The first part of the URL (or the text before ://) is the protocol identifier. It tells the

client (most often a web browser) which protocol to connect with. In this particular

case, HTTP is the protocol (http://). The next part is the resource name (or the text

after ://), which contains an IP address or a domain name.

A URL is one type of Uniform Resource Identifier (URI); it is a more general term as-

sociated with numerous types of addresses that refer to objects on the Internet.

Methods

HTTP defines methods (sometimes referred to as verbs) to indicate the desired action

to be performed on the identified resource. What this resource represents, whether

preexisting data or data that is generated dynamically, depends on the implementa-

tion of the server.

In this example, the connecting browser uses the GET method to request a string of

text that contains “Hello Html5.”

Headers

HTTP headers make up the parameters passed as a message in an HTTP transaction.

The message is made up of a group of fields, which are formatted in a colon-separated

associative array. The data format is a string, which makes the data easy to view and

debug.

Another property that is of interest to HTML5 is the upgrade property. As mentioned

in Hack #76 , you will see that we make requests using the Upgrade method.

445CHAPTER 10: PRO HTML5 APPLICATION HACKS WITH NODE.JS

http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol


In this example, the upgrade property is set to false. As I mentioned earlier, the

creators of HTTP were forward-thinking enough to build in a way for the browser to

request an upgrade to a different protocol. This is the handshake mechanism for

WebSocket.

If you would like to examine the object further, read the official API documentation of

the request object.

And now, let’s print out our response object to the console:

var http = require('http');

http.createServer(function (req, res) {

console.log('RESPONSE: ' + res);

console.log(res);

}).listen(1337, "127.0.0.1");

console.log('Server running at http://127.0.0.1:1337/');

Once the server has processed all the information included in the request, and has

run through the logic included within the web framework, it creates a response object.

Here is the response object:

{ socket:

  { fd: 9

  , type: 'tcp4'

  , secure: false

  , _readWatcher: { socket: [Object], callback: [Function] }

  , readable: true

  , _writeQueue: []

  , _writeQueueEncoding: []

  , _writeQueueFD: []

  , _writeWatcher: { callback: [Function: _doFlush],

socket: [Circular] }

  , writable: true

  , _writeImpl: [Function]

  , _readImpl: [Function]

  , _shutdownImpl: [Function]

  , remoteAddress: '127.0.0.1'

  , remotePort: 50807

  , server:

     { connections: 2

     , paused: false

446 HTML5 HACKS

http://nodejs.org/api/http.html#http_class_http_serverrequest
http://nodejs.org/api/http.html#http_class_http_serverrequest


     , pauseTimeout: 1000

     , watcher: [Object]

     , _events: [Object]

     , type: 'tcp4'

     , fd: 6

     }

  , _outgoing: [ [Circular] ]

  , __destroyOnDrain: false

  , ondrain: [Function]

  , _idleTimeout: 120000

  , _idleNext:

     { fd: 8

     , type: 'tcp4'

     , secure: false

     , _readWatcher: [Object]

     , readable: false

     , _writeQueue: []

     , _writeQueueEncoding: []

     , _writeQueueFD: []

     , _writeWatcher: [Object]

     , writable: true

     , _writeImpl: [Function]

     , _readImpl: [Function]

     , _shutdownImpl: [Function]

     , remoteAddress: '127.0.0.1'

     , remotePort: 50805

     , server: [Circular]

     , _outgoing: [Object]

     , __destroyOnDrain: false

     , ondrain: [Function]

     , _idleTimeout: 120000

     , _idleNext: [Object]

     , _idlePrev: [Circular]

     , _idleStart: Fri, 10 Feb 2012 06:07:08 GMT

     , _events: [Object]

     , ondata: [Function]

     , onend: [Function]

     , _onOutgoingSent: [Function]

     }

  , _idlePrev: [Circular]

  , _idleStart: Fri, 10 Feb 2012 06:07:35 GMT

  , _events:

447CHAPTER 10: PRO HTML5 APPLICATION HACKS WITH NODE.JS



HACK 80

    { timeout: [Function]

    , error: [Function]

     , close: [Function]

     }

  , ondata: [Function]

  , onend: [Function]

  , _onOutgoingSent: [Function]

  }

, connection: [Circular]

, output: []

, outputEncodings: []

, _last: false

, chunkedEncoding: false

, shouldKeepAlive: true

, useChunkedEncodingByDefault: true

, _hasBody: true

, finished: false

}

If you would like to examine the object further, read the official API documentation of

the response object at.

The request and response are held in memory as JavaScript objects. In Hack #80  and

Hack #81  we will do some hacking on these objects.

Detect the User Agent String Within the
Request Object

You can interrogate the HTTP request object to find valuable information about the

client user agent.

As you can see, quite a few properties are included in Node.js’s request and re
sponse objects. In Hack #79  we explored a few of them. Here, we will focus on the

request headers and extract the user agent string in order to determine the type of

client device that originated the request.

User agent sniffing is a common practice, especially with the recent explosion in the

use of the mobile web and the fragmentation of mobile web browsers. So this is a very

relevant hack when building HTML5 web applications.

Sometimes it is necessary for application developers to know the type of client device

that is making a request for data. If the data is available after parsing the user agent

448 HTML5 HACKS

http://nodejs.org/api/http.html#http_class_http_serverresponse
http://nodejs.org/api/http.html#http_class_http_serverresponse


headers, the application can then query a lookup web service that contains detailed

properties about the particular device. Properties such as screen size, camera access,

and hardware acceleration, just to name a few, can then be used to build conditional

logic around which assets and markup are returned to the client.

It has long been considered a bad practice to sniff user agents from within browser

JavaScript, so this makes this design decision a controversial one among developers.

Although server-side device detection or user agent sniffing is a somewhat common

practice, many frontend developers see it as an unnecessary practice. The continued

maturity of client-side JavaScript frameworks and native browser APIs is quickly

changing the design of many mobile-ready web applications. Concepts such as re-

sponsive web design (that makes use of CSS3 media queries and object detection)

have made it possible to alter content using JavaScript and CSS3 within the browser

without the server needing to be aware of the type of client that has made the request.

In most cases, a balanced approach is most optimal, allowing both the server and the

client to provide the functionality they do best.

For now, we will start simple by hacking a user agent string from the node request
object and then demonstrate that we can make logical decisions based on simple

device data in our response object.

Within our main server.js file, we will add a very basic user agent parsing script. From

within the code block where we console.log the request object, we can pull out the

user agent property from the request headers. Also, let’s create a global object called

DeviceData to namespace our data.

var ua = req.headers['user-agent'],

DeviceData = {};

Now that we have the user agent string, we can use regular expressions to parse it for

information pertinent to our goal.

First, we can test for mobile within the string and set the mobile property of Devi
ceData to true:

// Mobile?

if (/mobile/i.test(ua))

  DeviceData.mobile = true;

While we are at it, let’s test for Apple products:

// Apple device?

if (/like Mac OS X/.test(ua)) {

  DeviceData.iOS = /CPU( iPhone)? OS ([0-9\._]+) like Mac OS

449CHAPTER 10: PRO HTML5 APPLICATION HACKS WITH NODE.JS



HACK 81

X/.exec(ua)[2].replace(/_/g, '.');

  DeviceData.iPhone = /iPhone/.test(ua);

  DeviceData.iPad = /iPad/.test(ua);

}

We now have the basics of device detection. Obviously, this is a simplified example of

a production-ready system. In a production system, the application would most likely

pass the user agent string to another application that fronts a database, or to a third-

party web service. The application or web service could then look up information, log

errors, collect analytics, or make updates to the current data.

Use Node.js’s Response Object to
Respond to the Client with Device-
Specific Data

You can use the response object in Node.js to display client-specific information in

the browser.

Now that we have hacked our request object, let’s tackle the response. We can begin

by calling the writeHead() method and passing the success response code, along

with the Content-Type set to text/plain. This is a pretty standard response. Then

we will call the end() method and pass it a specific string based on the properties we

added to our global DeviceData object.

res.writeHead(200, {'Content-Type': 'text/plain'});

  if (DeviceData.mobile) {

    res.end('Hello Html5\n Request from a Mobile Device');

  }

  if (DeviceData.iOS || DeviceData.iPhone || DeviceData.iPad) {

    res.end('Hello Html5\n Request from an Apple Device');

  }

  else {

    res.end('Hello Html5\n Request from some other Device');

  }

So our final server.js file looks like this:

var http = require('http');

http.createServer(function (req, res) {

 // control for favicon

450 HTML5 HACKS



 if (req.url === '/favicon.ico') {

     res.writeHead(200, {'Content-Type': 'image/x-icon'} );

     res.end();

     // console.log('favicon requested');

     return;

 }

 else {

   // console.log('REQUEST: ' + req);

   console.log(req.headers);

   var ua = req.headers['user-agent'],

  DeviceData = {};

   // Mobile?

   if (/mobile/i.test(ua))

   DeviceData.mobile = true;

   // Apple device?

   if (/like Mac OS X/.test(ua)) {

     DeviceData.iOS = /CPU( iPhone)? OS ([0-9\._]+) like Mac OS

X/.exec(ua)[2].replace(/_/g, '.');

     DeviceData.iPhone = /iPhone/.test(ua);

     DeviceData.iPad = /iPad/.test(ua);

   }

   res.writeHead(200, {'Content-Type': 'text/plain'});

   if (DeviceData.mobile) {

     res.end('Hello Html5\n Request from a Mobile Device');

   }

   if (DeviceData.iOS || DeviceData.iPhone || DeviceData.iPad) {

     res.end('Hello Html5\n Request from an Apple Device');

   }

   else {

     res.end('Hello Html5\n Request from some other Device');

   }

};

}).listen(1337, "127.0.0.1");

console.log('Server running at http://127.0.0.1:1337/');

451CHAPTER 10: PRO HTML5 APPLICATION HACKS WITH NODE.JS



HACK 82 Use the Node Package Manager to Add a
Web Application Framework As a Third-
Party Module

Adding modules to Node.js applications is simple with the Node Package Manager

(NPM). Adding the Express web application framework to your application is as simple

as adding it to your application manifest and installing it via NPM.

First, we need to understand how Node.js handles third-party modules. NPM is the

package management system written for Node.js. Inspired by Linux package man-

agement systems, it helps by automating the process of installing, upgrading, con-

figuring, and removing third-party modules from your computer and Node.js

applications. NPM maintains a remote repository of version and dependencies infor-

mation that application developers can query and pull modules from to include in their

applications.

Since version 0.6.3 (stable), Node.js now ships with NPM. Let’s double-check:

user$ npm -help

With NPM we get a simple tool for managing packages of modules. Let’s see the basics.

First we’ll update the package.json manifest file to include our first third-party

dependency:

{

  "name": "html5hacks-node"

, "version": "0.0.1"

, "private": true

, "dependencies": {

    "express": "latest"

  }

}

Now we’ll use the d parameter to install the dependencies from our package.json

manifest:

user$ npm install -d

We now have added our first module to our code base and we should be able to access

the latest version of the Express web framework to enhance our application.

452 HTML5 HACKS



HACK 83 Use the Express Application Generator to
Bootstrap Your App

Express’s application generator executable helps you build the skeleton for your ap-

plication from the command line.

Why Use Express?

In earlier hacks we were operating on the request and response objects using only

the HTTP module. Node.js ships with another “core” module called Connect that pro-

vides an additional layer of functionality on top of HTTP.

The HTTP module’s createServer method returns an object that you can use to

respond to HTTP requests. That object inherits the http.Server prototype.

Connect also offers a createServer method, which returns an object that inherits

an extended version of http.Server. Connect’s extensions are mainly there to make

it easy to plug in middleware. That’s why Connect describes itself as a “middleware

framework.”

Express does to Connect what Connect does to the HTTP module: it offers a create
Server method that extends Connect’s Server prototype. So all the functionality of

Connect is there, plus view rendering and a handy DSL for describing routes. Ruby’s

Sinatra is a good analogy.

The quickest way to get started with Express is to utilize the executable Express to

generate an application. First we’ll create the app:

$ npm install -g express

$ express /mydir && cd /mydir

OR

$ npm install -g express

$ mkdir mydir

$ cd mydir

$ express

This will generate the following application skeleton in the directory you designate:

create : .

create : ./package.json

create : ./app.js

create : ./public

create : ./public/javascripts

create : ./public/images

453CHAPTER 10: PRO HTML5 APPLICATION HACKS WITH NODE.JS



create : ./public/stylesheets

create : ./public/stylesheets/style.css

create : ./routes

create : ./routes/index.js

create : ./views

create : ./views/layout.jade

create : ./views/index.jade

Let’s take a closer look at the app.js file. This is what you get by default:

/**

* Module dependencies.

*/

var express = require('express')

 , routes = require('./routes');

var app = module.exports = express.createServer();

// Configuration

app.configure(function(){

 app.set('views', __dirname + '/views');

 app.set('view engine', 'jade');

 app.use(express.bodyParser());

 app.use(express.methodOverride());

 app.use(app.router);

 app.use(express.static(__dirname + '/public'));

});

app.configure('development', function(){

 app.use(express.errorHandler({

  dumpExceptions: true,

  showStack: true }));

});

app.configure('production', function(){

 app.use(express.errorHandler());

});

// Routes

app.get('/', routes.index);

454 HTML5 HACKS



HACK 84

app.listen(3000);

console.log("Express server listening on port %d in %s mode",

app.address().port, app.settings.env);

But let’s break this down into the bare essentials to get running:

// 1. Declare our Module Dependencies

var express = require('express')

 , routes = require('./routes');

// 2. Instantiate an Express Server

var app = module.exports = express.createServer();

// 3. Configure the Application

app.configure(function(){

 app.set('views', __dirname + '/views');

 app.set('view engine', 'jade');

 app.use(express.static(__dirname + '/public'));

});

// 4. Set up Routes

app.get('/', routes.index);

// 5. Listen on Port 3000

app.listen(3000);

console.log("Express server listening on port %d in %s mode",

app.address().port, app.settings.env);

Now we can install dependencies:

$ npm install -d

and start the server:

$ node app.js

Build a Custom Module to Handle Routing

Modularize the handling of requests made to your application within your own custom

module.

In our main app.js file, we will make a few changes. First, our generator already created

a new module that will isolate all our routing logic.

455CHAPTER 10: PRO HTML5 APPLICATION HACKS WITH NODE.JS



For the sake of demonstration, and in case you have the need to use static HTML files,

we will disable the layout engine and configure Express to serve static HTML files from

the /public directory. We will also turn off layout support.

Here is the app.js file:

var express = require('express')

 , routes = require('./routes');

var app = module.exports = express.createServer();

app.configure(function(){

 // disable layout

 app.set("view options", {layout: false});

 app.use(express.static(__dirname + '/public'));

 // make a custom html template

 app.register('.html', {

   compile: function(str, options){

    return function(locals){

      return str;

    };

  }

 });

});

// Routes

app.get('/', function(req, res){

 res.render("index.html");

});

app.listen(process.env.PORT || 3000);

console.log("Express server listening on port %d in %s mode",

app.address().port, app.settings.env);

The routes module contains the file index.js, which contains our routing logic:

exports.index = function(req, res){

 res.render('index', { title: 'Index' })

};

And here is a basic index.html file containing the markup:

456 HTML5 HACKS



HACK 85

<!DOCTYPE html>

<html lang="en">

 <head>

   <meta charset="utf-8">

   <title>HTML5 Hacks</title>

 </head>

 <body>

   <p>HTML5 Hacks</p>

 </body>

</html>

Now, we have created our first module and we are using routes to serve markup to the

browser. As your application grows, you will need to continue to modularize its func-

tionality so that your app.js file does not become difficult to maintain.

Configure Express to Use a View Engine

Configuring Express to render views with a view engine provides flexibility and sim-

plicity to our HTML templating approach.

In Hack #84 , we disabled the layout engine and configured Express to serve static

HTML files. The next logical step is to begin simplifying and optimizing our views

strategy. A common coding best practice is to keep our code DRY (Don’t Repeat

Yourself). We will hack that together here. While we are at it, we will also briefly

introduce a metalanguage called Jade and demonstrate that we can configure Express

to use as an alternative to HTML. There will be more to come in our next hack about

Jade and Stylus. Then we will begin to take witness of the productivity gains provided

by these tools.

For now, let’s look at our new changes.

Here is the app.js file:

var express = require('express')

 , routes = require('./routes');

var app = module.exports = express.createServer();

app.configure(function(){

 app.set('views', __dirname + '/views');

 app.set('view engine', 'jade');

 app.use(express.static(__dirname + '/public'));

});

457CHAPTER 10: PRO HTML5 APPLICATION HACKS WITH NODE.JS

 
 

 
 



HACK 86

// Routes

app.get('/', function(req, res){

 res.render("index.html");

});

app.listen(process.env.PORT || 3000);

console.log("Express server listening on port %d in %s mode",

app.address().port, app.settings.env);

The routes module containing the file index.js still contains the same routing logic:

exports.index = function(req, res){

 res.render('index', { title: 'Index' })

};

But now we have an index.jade file containing the markup in a less verbose, simpler

syntax:

!!! 5

html(lang='en')

head

 meta(charset='utf-8')

 title HTML5 Hacks

body

 p HTML5 Hacks

In the next few hacks, we will take a closer look at Jade and her sister language, Stylus.

Use Jade Layouts to DRY Up Your
Application’s Views

DRY (Don’t Repeat Yourself) is a common software design idiom. This hack will

demonstrate this best practice in your views.

To manage our markup and CSS within our Express application, we will be using two

fantastic tools: Jade and Stylus. Jade is a dynamic metalanguage that compiles to

HTML. Stylus is a dynamic metalanguage that compiles to CSS. As with the other

tools, we will not go into great detail, as this is not an API reference book.

Our reasoning for selecting these “shortcut” languages is simple. We want to ensure

that our hacking environment remains organized and doesn’t become unwieldy. If you

are already writing HTML and CSS, the learning curve for these technologies will not

be steep. The time you will save in the long run will make their use worth the time and

energy you will spend learning to use the tools.

458 HTML5 HACKS



There are other similar metalanguages, such as HAML, Less, and Sass, of which you

may already be familiar. These tools are somewhat different, but the concepts are the

same.

Before we jump into our hacks, we will need to get somewhat acquainted with the

Jade syntax.

You had a taste of the simplified syntax in the previous hacks, but if you would like to

get a little deeper, see the official Jade website and the official documentation.

In Hack #85 , we set up a basic app utilizing Jade. We introduced the concept of DRY

(Don’t Repeat Yourself). Now, we will hack together a few more views, a basic layout,

and a few partials to demonstrate this important concept. Both layouts and partials

are techniques to “include” markup dynamically in order to aggregate multiple .jade

files into one output.

First, we need another route. In our main app.js file, let’s add the following:

app.get('/', routes.index);

app.get('/example1', routes.example1);

In our index.js file, let’s add a new example route:

exports.index = function(req, res){

 res.render('index', { title: 'Index' })

};

exports.example1 = function(req, res){

 res.render('example1', { title: 'Example1' })

};

And finally, in our views directory, we can add a new basic.jade file. Now, when our

request is made for http://localhost/example1 content will be returned from that par-

ticular example1.jade file.

If we continue to add more routes and corresponding views, our new files will without

a doubt contain duplicate markup, duplicate assets, and so on. Well, that is not very

DRY. This is where layouts and partials come into play. Think of the layout as the shared

container, and partials as any duplicate content that should be included within the

internals of a view.

So let’s create a layout.jade file to contain all our shared container information, such

as our head, our title attribute, and all our JavaScript and CSS dependencies:

!!! 5

html(lang='en')

head

459CHAPTER 10: PRO HTML5 APPLICATION HACKS WITH NODE.JS

http://jade-lang.com/
https://github.com/visionmedia/jade#readme
http://localhost/example1


 meta(charset='utf-8')

 title HTML5 Hacks

 meta(name='description', content='')

 meta(name='author', content='')

 // Styles

 link(href='assets/css/bootstrap.css', rel='stylesheet')

 script(src='assets/js/application.js')

body

!= body

Now, the markup returned from the view will be injected into the body of the document

via the != body call. Here is the index.jade file:

P HTML5 Hacks

Now view your application at http://localhost:3000, and you will see your two files,

layout.jade and index.jade, aggregated together and output to the browser (see

Figure 10-1).

Figure 10-1. 

Initial simple view

460 HTML5 HACKS

http://localhost:3000


HACK 87

Layout is turned on by default, but if you ever have the need, such as in Hack #84, you

can turn it off with the following configuration:

// disable layout

app.set("view options", {layout: false});

Use a Jade Partial to Create a Common
Navigation Bar in Your Views

Now you can reuse content within your views through the use of partials.

To demonstrate this capability, let’s inject some shared content, such as a navigation

bar, by creating a file named nav.jade and placing it into our views/partials directory:

ul.nav

 li.active

   a(href='/example1') Example1

 li

   a(href='/example2') Example2

 li

   a(href='/example3') Example3

We will also need to update our main app.js file, with our new routes:

app.get('/', routes.index);

app.get('/example1', routes.example1);

app.get('/example2', routes.example2);

app.get('/example3', routes.example3);

Now we need to build the three new example files. We’ll start with example1.jade:

p Example 1

then another simple file, example2.jade:

p Example 2

and finally the last one, example3.jade:

p Example 3

Here is the layout with the call to partials/nav included:

!!! 5

html(lang='en')

461CHAPTER 10: PRO HTML5 APPLICATION HACKS WITH NODE.JS



head

 meta(charset='utf-8')

 title HTML5 Hacks

 meta(name='description', content='')

 meta(name='author', content='')

body

!= partial('partials/nav')

!= body

Our browser should now look like Figure 10-2.

Figure 10-2. 

Navigation partial

As we navigate through the application by clicking the links within our navigation bar,

we will see that we are now sharing the layout and the navigation partial with each

example page. This hack is a very simple demonstration of how to keep our assets

organized, as you might imagine that as your hacks grow in size and complexity, fol-

lowing this approach should serve you well.

462 HTML5 HACKS



HACK 88

Before we depart from our exploration of Jade, let’s finish up with one more hack that

will demonstrate the power of our new template engine.

Use Jade Mixins to Populate Your Views
with Data

Jade mixins are another tool in your toolkit that you can utilize in your views to reduce

code bloat. You can use mixins to help iterate through data from a web service, from

a database, or in memory.

Let’s say we have a complex object being stored in memory or being persisted in a

database. We would like to print out a few lists to display the data stored in this object.

To do this, we will use mixins. The power behind this feature is that we can now pass

objects to our views, iterate through the data, and dynamically display its properties

onto the screen. With mixins, we can pass parts of data as objects, nest mixins within

mixins, and keep our code tidy, concise, and DRY.

First, let’s take a look at passing a complex object from our route to our view. You may

wonder why we are working with a complex object. Typically, the objects returned from

most web service APIs have multiple levels of nesting. This is also typical of a data

blob we might access from a NoSQL database such as MongoDB, CouchDB, or Redis.

In our hack, we will emulate data returned from a Frozen Yogurt Shop application. For

now, let’s hardcode the object and pass it as the second argument to our response
object’s render method.

exports.example3 = function(req, res){

 res.render('example3', {

"name": "Yogurt Shop Daily Data",

"toppings":

    [

            { "id": "5001", "type": "Walnuts" },

            { "id": "5002", "type": "Jelly Beans" },

            { "id": "5005", "type": "Cherries" },

            { "id": "5007", "type": "Powdered Sugar" },

            { "id": "5006", "type": "Chocolate Sprinkles" },

            { "id": "5003", "type": "Chocolate Syrup" },

            { "id": "5004", "type": "Cocunut" }

    ],

"yogurts":

         [

              { "id": "5001", "type": "Tart", "flavors":

                   [

                        { "id": "5001", "type": "Green Tea" },

463CHAPTER 10: PRO HTML5 APPLICATION HACKS WITH NODE.JS



                        { "id": "5002", "type": "Euro" },

                        { "id": "5005", "type": "Orange" }

                    ]

              },

              { "id": "5002", "type": "Sweet", "flavors":

                    [

                        { "id": "5001", "type": "Vanilla" },

                        { "id": "5002", "type": "Chocolate" },

                        { "id": "5005", "type": "Mexican Bean" }

                    ]

               },

               { "id": "5005", "type": "Cake", "flavors":

                    [

                        { "id": "5001", "type": "Cherry Cheesecake" },

                        { "id": "5002", "type": "Apple Fritter" },

                        { "id": "5005", "type": "Carrot Cake" }

                     ]

               }

         ]

    })

};

Now, we should have access to the data in our view via the locals object. In order to

iterate through this data and display it in our view, Jade provides some very helpful

features. One of those is mixins.

Wikipedia defines a mixin as “A class that provides a certain functionality to be

inherited or just reused by a subclass, while not meant for instantiation (the gen-

eration of objects of that class). Mixins are synonymous with abstract base classes.

Inheriting from a mixin is not a form of specialization but is rather a means of

collecting functionality. A class or object may ‘inherit’ most or all of its functionality

from one or more mixins, therefore mixins can be thought of as a mechanism of

multiple inheritance.” —From Wikipedia page on mixins

Our example3.jade file can now utilize this functionality (see Figure 10-3):

h2 Yogurts and Toppings

mixin toppings(data)

 ul.data

   - each item in data

     li= item.type

464 HTML5 HACKS

http://en.wikipedia.org/wiki/Mixin


h2= name

h3 Toppings

mixin toppings(toppings)

Figure 10-3. 

Basic list

Now we can add more logic to our example3.jade file. We can also nest a mixin within

another mixin.

h2 Yogurts and Toppings

mixin toppings(data)

 ul.data

   - each item in data

     li= item.type

mixin yogurts(data)

465CHAPTER 10: PRO HTML5 APPLICATION HACKS WITH NODE.JS



HACK 89

 ul.data

   - each item in data

     li= item.type

mixin flavors(data)

 ul.data

   - each item in data

     li= item.type

mixin yogurts_nest(data)

 ul.data

   - each item in data

     li= item.type

     mixin flavors(item.flavors)

h2= name

h3 Toppings

mixin toppings(toppings)

h3 Yogurts

mixin yogurts(yogurts)

h3 Yogurts with Flavors

mixin yogurts_nest(yogurts)

Through the power of the Jade metalanguage and some of its robust features, we are

able to create clear and concise markup to manage our views (see Figure 10-4).

Set Up Expressive, Dynamic, Robust CSS
with Stylus

Stylus makes CSS for your Express application easier to write and maintain.

As mentioned earlier, Stylus is a dynamic metalanguage that compiles to CSS.

The feature set for Stylus is exhaustive, so we will have to pick and choose the best

for the scope of the following hacks. This is not Grandma’s CSS; Stylus provides a slew

of support to the laborious task of writing CSS selectors. Again, a metalanguage like

Stylus will always be optional, but the benefits will be apparent once you dive in.

466 HTML5 HACKS



Figure 10-4. 

Topping and yogurt lists

First, let’s add the Stylus module to our current application. In this hack we will simply

include Stylus and compile a .styl file to .css.

var express = require('express')

 , routes = require('./routes')

 , stylus = require('stylus');

var app = module.exports = express.createServer();

app.use(stylus.middleware({

 debug: true,

 src: __dirname + '/public',

 dest: __dirname + '/public',

 compile: compileMethod

}));

467CHAPTER 10: PRO HTML5 APPLICATION HACKS WITH NODE.JS



function compileMethod(str) {

 return stylus(str)

  .set('compress', true);

};

// Configuration

app.configure(function(){

 app.set('views', __dirname + '/views');

 app.set('view engine', 'jade');

 app.use(express.bodyParser());

 app.use(express.methodOverride());

 app.use(app.router);

 app.use(express.static(__dirname + '/public'));

});

// Routes

app.get('/', routes.index);

app.listen(3000);

console.log("Express server listening on port %d in %s mode",

app.address().port, app.settings.env);

Here is a new style.styl stylesheet, where we will leverage our new syntax:

body

 font 12px Helvetica, Arial, sans-serif

 background #D6396E

 text-align left

ul

 list-style none

If we switch back to our style.css, we will notice that our stylesheet is being compiled

at runtime:

body{font:12px Helvetica,Arial,sans-serif;background:#D6396E;

text-align:left}

ul{list-style: none}

We now have an app up and running on Node.js with Express, Jade, and Stylus working

together to render output to the web browser (see Figure 10-5).

468 HTML5 HACKS



HACK 90

Figure 10-5. 

Styled topping and yogurt lists

Include HTML5 Boilerplate As Your
Default Starter Template

Use HTML5 Boilerplate, the professional, frontend, developer-based HTML/CSS/

JavaScript template, for a fast, robust, and future-safe site.

HTML5 Boilerplate has evolved into the de facto standard for developing a baseline

to address the most common issues and considerations needed to build professional

web applications today.

We will be taking a deeper look at some of the items in the exhaustive list of reasons

why we should be using a boilerplate to start any HTML5 hack or production-ready

application. Go online to see the full list. The developers involved have committed

exhaustive research into each of these areas, and this boilerplate has evolved into a

fantastic collection of best practices.

The approach you take to including HTML5 Boilerplate within your project varies de-

pending on your environment. Let’s start with the simplest way, and then we can in-

tegrate it into our Node.js applications using Jade and Stylus.

Begin by downloading the archive file.

Now open the index.html file and you will see the following boilerplate HTML markup:

469CHAPTER 10: PRO HTML5 APPLICATION HACKS WITH NODE.JS

http://html5boilerplate.com
http://github.com/h5bp/html5-boilerplate/zipball/v3.0.2


<!doctype html>

<!—

paulirish.com/2008/conditional-stylesheets-vs-css-hacks-answer-neither/

-->

<!--[if lt IE 7]>

<html class="no-js lt-ie9 lt-ie8 lt-ie7" lang="en">

<![endif]-->

<!--[if IE 7]>    <html class="no-js lt-ie9 lt-ie8" lang="en">

<![endif]-->

<!--[if IE 8]>    <html class="no-js lt-ie9" lang="en"> <![endif]-->

<!--[if gt IE 8]><!--> <html class="no-js" lang="en"> <!--<![endif]-->

<head>

  <meta charset="utf-8">

  <title>HTML5 Hacks</title>

  <meta name="description" content="">

  <!-- Mobile viewport optimized: h5bp.com/viewport -->

  <meta name="viewport" content="width=device-width">

  <!-- Place favicon.ico and apple-touch-icon.png in the root

directory: mathiasbynens.be/notes/touch-icons -->

  <link rel="stylesheet" href="css/style.css">

  <!-- More ideas for your <head> here: h5bp.com/d/head-Tips -->

  <!-- All JavaScript at the bottom, except this Modernizr build.

       Modernizr enables HTML5 elements & feature detects for

optimal performance.

       Create your own custom Modernizr build:

www.modernizr.com/download/ -->

  <script src="js/libs/modernizr-2.5.3.min.js"></script>

</head>

<body>

  <!-- Prompt IE 6 users to install Chrome Frame. Remove this

if you support IE 6.

  chromium.org/developers/how-tos/chrome-frame-getting-started -->

  <!--[if lt IE 7]><p class=chromeframe>Your browser is

<em>ancient!</em> <a href="http://browsehappy.com/">Upgrade to a

different browser</a> or <a

href="http://www.google.com/chromeframe/?redirect=true">install

Google Chrome Frame</a> to experience this site.</p>

470 HTML5 HACKS



<![endif]-->

  <header>

  </header>

  <div role="main">

    <p>Welcome to HTML5</p>

  </div>

  <footer>

  </footer>

  <!-- JavaScript at the bottom for fast page loading -->

  <!-- Grab Google CDN's jQuery, with a protocol relative URL;

fall back to local if offline -->

  <script

src="//ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.js">

</script>

<script>

  window.jQuery || document.write('

  <script src="js/libs/jquery-1.7.1.min.js"><\/script>')

</script>

  <!-- scripts concatenated and minified via build script -->

  <script src="js/plugins.js"></script>

  <script src="js/script.js"></script>

  <!-- end scripts -->

</body>

</html>

For the sake of this hack, I have removed some of the less significant code and com-

ments as they are out of scope. An entire book could be written about the issues and

considerations being addressed within this template. We will focus on the items that

are most related to HTML5; this will certainly be enough to get you started.

Open index.html in your web browser, and you will have a starting point for your HTML5

hacks. Let’s take a closer look at the seven most relevant aspects of this boilerplate:

<doctype>

As mentioned in Hack #01 , our HTML5 <doctype> declaration is included for us.

471CHAPTER 10: PRO HTML5 APPLICATION HACKS WITH NODE.JS



Conditional-stylesheets

Conditional-stylesheets were developed to overcome CSS rendering bugs in a

number of highly adopted browsers. Since not all browsers correctly implement

the CSS specifications released by the W3C, writing cross-browser CSS can be

complex. The Conditional-stylesheets approach helps to ensure that your site

renders consistently across as many popular browsers as possible, and alleviates

some of the pain for frontend engineers.

The concept originated from the method of conditional commenting for Internet

Explorer, and has since evolved with input from other frontend engineers. You can

follow the evolution at paulirish.com.

The solution predates the HTML5 Boilerplate but has become an important tool

to use when starting to build an HTML5 application, thus the reason for its inte-

gration into the boilerplate.

Modernizr

Modernizr provides a starting point for making the best websites and applications

that work exactly right no matter what browser or device your visitors use.

Included with Modernizr are media query tests and the built-in YepNope.js micro

library as Modernizr.load(), as mentioned in Hack #55 , Hack #63 , and Hack #76 .

Chrome Frame

Google Chrome Frame is an open source plug-in that integrates Google Chrome

into Internet Explorer. With Google Chrome Frame, you get Chrome’s V8 Java-

Script Interpreter, HTML5 canvas tag support, and other open web technologies

not available in Internet Explorer.

Header and footer elements

A mentioned in Hack #02 , our template gives us header and footer elements by

default.

Google CDN’s jQuery

jQuery is a commonly used utility library that essentially extends the capabilities

of the browser. It is cross-browser-tested to handle any differences across brows-

er experiences.

A CDN is a Content Delivery Network that aims to solve the problem of network

latency for static resources such as stylesheets, images, and JavaScript.

Optimized JavaScript

Our JavaScript should be concatenated and minified via build scripts, and also

included at the bottom of the page. These are three of the basic rules for highly

optimized web pages made popular by Steve Souders. For more information, visit

stevesouders.com.

472 HTML5 HACKS

http://paulirish.com/2008/conditional-stylesheets-vs-css-hacks-answer-neither
http://stevesouders.com/hpws/rules.php


Integrating with the Node.js/Express Application

Unfortunately, this only provides a benefit for hacking on HTML5 features that are not

dependent on communication with an HTTP or WebSocket Server. In order to have a

fully capable application that can be deployed to a remote server, we need to integrate

this boilerplate into our basic web application that we built in the beginning of this

chapter.

Fortunately, I have done most of the heavy lifting for you, by setting up a project and

deploying it to GitHub. If you are familiar with Git, pulling down this code is as simple

as:

$ git clone git@github.com:html5hacks/chapter9.git

$ npm install

$ node app.js

Now that you have the app running, let’s update the index.jade and layout.jade files to

reflect what we have learned from HTML5 Boilerplate. Here are our original .jade

files—layout.jade:

!!! 5

html(lang='en')

head

 meta(charset='utf-8')

 title HTML5 Hacks

 meta(name='description', content='')

 meta(name='author', content='')

 // Styles

 link(href='assets/css/bootstrap.css', rel='stylesheet')

 script(src='assets/js/application.js')

body

!= partial('partials/nav')

!= body

and index.jade:

P HTML5 Hacks

After adding the additional markup and script declarations from our boilerplate we

end up with this:

!!! 5

//if lt IE 7

    html(class="no-js ie6 oldie", lang="en")

//if IE 7

    html(class="no-js ie7 oldie", lang="en")

473CHAPTER 10: PRO HTML5 APPLICATION HACKS WITH NODE.JS



//if IE 8

    html(class="no-js ie8 oldie", lang="en")

// [if gt IE 8] <!

html(class="no-js", lang="en")

    // <![endif]

head

 meta(charset='utf-8')

 title HTML5 Hacks

 meta(name='description', content='')

 meta(name='author', content='')

 meta(name='description', content='')

 // Styles

 link(href='css/style.css', rel='stylesheet')

 script(src='js/libs/modernizr-2.5.3.min.js')

body

  // [if lt IE 7]><p class=chromeframe>Your browser is

<em>ancient!</em> <a href="http://browsehappy.com/">

// Upgrade to a different browser</a> or <a

href="http://www.google.com/chromeframe/?redirect=true">install

// Google Chrome Frame</a> to experience this site.</p>

<![endif]

  header

  != partial('partials/nav')

  div(role="main")

  != body

  footer

  // JavaScript at the bottom for fast page loading

  // Grab Google CDN's jQuery, with a protocol relative URL;

fall back to local if offline

  script(

src='http//ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.js')

  script

window.jQuery || document.write('

<script src="js/libs/jquery-1.7.1.min.js"> <\/script>')

  script(src='js/plugins.js')

  script(src='js/script.js)

As you can see, having our markup, styles, and script declarations in .jade files makes

managing this template a less complex endeavor.

474 HTML5 HACKS

 
 

 
 



Become an HTML5 Hacker

The title of this chapter is “Pro HTML5 Application Hacks with Node.js” because at

this point you should be ready to build production-deployable applications that use

many of the HTML5 specifications you learned in the other chapters of this book.

The intent was to celebrate and share in the hacker tradition by presenting you with

step-by-step hacks targeted at transforming your current tools into a suite of tools

that are sure to have set you on your way to becoming an HTML5 Guru.

Now, go get started—you should have everything you need to quickly create and de-

ploy your own HTML5 hacks!

For more information visit http://html5hacks.com/join.

475CHAPTER 10: PRO HTML5 APPLICATION HACKS WITH NODE.JS

http://html5hacks.com/join




We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

A
accelerometers, 82

Access-Control-Allow-Origin, 411

accessible websites

dropzone attribute, 219

subtitles, 139, 147

Adobe Photoshop

color palette, 76

fonts, 66

alpha transparency, 73–76

Amazon S3 bucket, 404

animateMotion tag, 199–201

animation

in donation thermometer, 376

web workers and, 316, 319

with canvas tag, 181

with CSS3 transitions, 110

with Scalable Vector Graphics, 199–

204

application generator, 453

arcs, drawing, 161–164

array manipulations, 325

artificial intelligence, 325

audio APIs, 135, 150

auto-bolding, 67

autocomplete attribute, 13

autofocus attribute, 11, 245

B
background images

multiple, 103–106

video, 135–139

Base64 encoding

data storage, 239, 241

image data, 90, 177

web fonts, 407

bezierCurveTo method, 164

Blob objects, 244

BlobBuilder interface, 309

border image, 101–103

border radius, 99

border treatments, 98

box shadow, 100

browser plug-ins

for filesystem browsing, 262

for image uploading, 241

for multimedia, 125

browser prefixes, 53–56, 256

browsers

detecting features, 252

echoing messages from, 352

file transfer from, 220

file transfer to, 223

history, 232–237

pushing notifications to, 394

same origin policy, 404

shared web workers, 347

bucket, 405

Buzz audio library, 150–154

C
calendars, milestone, 264

Camden, Raymond, 246, 255

canvas tag

animation, 181

background images, 135–139

colors, 164–166

gradients, 166–171

477



high-res media, 177–181

image data, 176

image fill, 171–176

shapes, 158–164

transparency, 170

canvas.mozGetAsFile ( ), 244

canvas.toBlob ( ), 244

captions, 156

card flips, 113–117

CDN (Content Delivery Network), 120,

405

Chrome

Developer Tools, 355, 410

FileSystem Explorer plug-in, 262

Frame, 471

cloud drive, hosting a web font on, 404

CloudFront, 405

code bloat, reducing, 463

color input type, 32

colors

canvas tag, 164–166

HSPA colors, 165

RGBA colors, 165

ColorZilla Ultimate Gradient Generator,

92, 94

Comet technique, 394

CommonJS specification, 441

compfn ( ) method, 323

complex data, storage of, 249

conditional logic, 449

conditional-stylesheets, 471

Connect middleware, 453

connectivity, 351

Constraint Validation API, 20–24

cookies, 247

Croll, Angus, 325

cross-document messaging

Amazon S3 bucket, 405

Cross Origin Resource Sharing, 411

Cross-Origin Resource Sharing, 404

same origin policy, 406

web fonts, 407

Cross-Origin Resource Sharing (CORS),

404, 407, 411

cross-platform functionality

conditional-stylesheets, 471

jWebSocket plug-ins, 383

Sencha Touch 2, 430

Crossland, Dave, 61

CSS

cross-browser, 471

device adaptation, 123

styling SVG elements, 192–198

writing with Stylus, 466

CSS3 (Cascading Style Sheets version

3.0), 53–124

alpha transparency, 73

animations, 110

border treatments, 98

browser prefixes, 53

card flips, 113

custom fonts, 56

device adaptation, 123

device orientation, 81

experimental features, 54

gradients, 92

image data URIs, 87

media queries, 77

multiple background images, 103

pseudoclasses, 85

respond.js, 117

text effects, 70

2D/3D transforms, 106

viewport meta tag, 121

Cuepoint.js, 147–150

curry utility, 327, 332

custom video/audio controls, 130–135

D
data storage, client-side, 239–271

FileSystem API, 255

form data, 244

image tags, 240

in external stylesheet, 241

inline URLs, 239

milestone calendars, 264

polyfills for, 252

and web application framework, 241

WebStorage API, 246

478 INDEX



data transfer object, 217–219

data URIs, 87–92, 244, 245, 407

data URLs, 239, 243, 245

date input type, 24

date pickers, 265

Deck.js, 415

Dependency Module Management Sys-

tem, 441

design mode, 230

device adaptation, 123

device orientation, 81–85

device-specific response, 450

display canvas, 137

div tags, problems with, 3, 7

Django, 243

doctype tag, 1, 471

document.createElement, 8

DOM (Document Object Model)

canvas tag, 158–188

element, 6

pseudoclasses, 85

DOM events

for drag-and-drop, 213, 214

form events, 37

list of, 39

new types of, 37

real-time validation, 38

domain name, 445

donation thermometer

adding with CSS, 368

animating value changes, 376

building in HTML, 368

hover highlights, 375

measurement markers, 372

progressive enhancement widget,

367

real-time updates, 367, 379, 383

UI tweaking, 372

drag-and-drop, 210–226

adding listeners, 213

browser to OS transfer, 220

data transfer object, 214–219, 217

DOM events, 213

making contents draggable, 210

OS to browser transfer, 223

turning on the drag, 210

drop zone, 215–220

DRY (Don’t Repeat Yourself), 457, 458

DTD (Document Type Definition), 1

Dyer, John, 154

E
Editable Content feature, 226–229

EOT (Embedded OpenType) font, 56, 61

event listeners, 155

evented servers, 394

EventSource object, 394, 395

Express, 416, 418, 452

Express application generator, 453, 458

external libraries, 343

F
Facebook, 310

fallback (see polyfills)

fetchResource ( ) method, 260

File API, 244

File objects, 244

FileSystem API

initializing, 256

working with, 258

ZIP file processing, 260

filter-like effects, 338

filters, grayscale, 338

Firefox

client-side data storage, 253

File object acceptance in, 244

same origin policy, 408

font-face declaration, 57

font-family attribute, 56

form attribute, 12

Form Data object, 244

form usability, 24–36

color input type, 32

date input type, 24

meter tag, 32

progress tag, 33

range input type, 29

form validation

Constraint Validation API, 20

479INDEX



elimination of, 19

how it works, 17

real-time, 38

server- vs. client-side, 16

validation criteria, 18

formnovalidate attribute, 19

FullCalendar.js, 264

G
generic font families, 56

Geocoding API, 280

geofence, 291–297

geolocation

broadcast movement, 298–301

geofence, 291–297

how it works, 273

longitude and latitude, 274–279

moving location pin, 286–291

polyfills for, 302–304

reverse-geocode location, 280–284

Robodeck, 429

Geolocation APIs, 274

Geologi JavaScript SDK, 291, 298

Geoloqi real-time streaming, 298

geonote object, 296

Google Maps API, 286–291

Google Web Fonts, 61–70

@font-face implementation, 61

common mistakes, 67

implementation methods, 63

loading collections, 64

nontraditional fonts, 66

optimization feature, 66

Google’s Geocoding API, 280

GPS vs. IP address, 290

gradients

building with CSS3, 92–98

canvas tag, 166–171

Grails Rendering Plugin, 241

graphics (see canvas tag shapes; SVG)

grayscale filters, 338

green screen effects, 135

H
H.264 (MP4) codec, 129, 154

headers, 445

hearing-impaired users, 139

heavy array computations, 315

Hello World app, 440

hidden canvas, 136

high-res media, 177–181

history stack, 232–237

Homebrew, 440

hover class, 85

HSLA colors, 74, 76

HSPA colors, 165

HTML5 Boilerplate

downloading template, 469

integrating with Node.js, 473

significant code, 471

HTML5 shim, 8

HTTP requests

reducing, 240, 310

responding to, 440–448

HTTP streaming, 394, 395

Hypertext Transfer Protocol (HTTP),

445

I
iframe, 195, 347

illustrations, with SVG, 188–192

image data

canvas tag, 176

pixel manipulation, 338

image fill, 171–176

image sprites, 87–92

image tags, 240

importScripts ( ) method, 343

IndexedDB, 264, 266

inline webworkers, 309–314

input tag, 11–16

Internet Explorer

client-side data storage, 252

geolocation, 302

media queries, 117

iOS-style applications, card flips, 113

IP address, 445

IP vs. GPS location, 290

480 INDEX



J
Jade, 457, 458

Jade mixins, 463

JavaScript

and webworkers, 307

APIs for video control, 128

EventSource object, 394

pseudoclass, 323, 352

timers, 326

WebSocket library, 359

Jehl, Scott, 118

jQuery, 270, 312, 372, 471

jQuery Mobile framework, 274, 281, 292

jQuery.notify, 402

JSON, 249, 308, 343

JSON with padding, 345

JSONP, 312, 343

jWebSocket

cross-platform framework of, 383

logging off, 388

logging on, 386

messages, 387

plug-ins, 388–393

server initiation, 384

tokens, 387

“Hello World” client, 385

K
Kaazing’s echo server, 352, 361

karaoke, 142

L
layouts, in Jade, 459

layouts, mobile vs. desktop, 420

libraries, importing, 343

linear view, 79

link hover class, 85

list attribute, 14

listeners, adding, 213, 216, 223

localization, 326

LocalStorage API, 246–251, 252

Location Information Server, 273, 290

location-aware web applications (see

geolocation)

longitude and latitude, 274

Lormeau, Gildas, 260

M
Mac OS X, Node.js installation, 440

mapping, 326

markup elements, 1–51

custom data, 40

doctype tag, 1

DOM events, 37

form usability, 24

form validation, 16

in older browsers, 5

input tag, 11

list of new tags, 5

microdata, 47

structural elements, 3

track user events, 44

measurable attributes, 19

media queries

orientation-based, 81, 120

respond to polyfill queries, 117

responsive design, 77

MediaElement.js, 154–156

metalanguages, 459

meter tag, 32

methods, 445

microdata, 47–51

milestone calendars, 264

mixins, 463

mobile web

cross-platform communication, 383

device orientation, 81

linear view, 79

longitude and latitude, 274–279

mobile views, 420, 423

page layout, 121

presentation capabilities, 414

reducing HTTP requests, 240, 310

remote control, 430

responsive design, 77, 449

retina-display-ready media, 177–181

Modernizr, 252, 302, 471

mouseover events, 338, 375

multilingual assistance, 139, 147

481INDEX



multimedia, 125–156

audio-rich applications, 150

MediaElement.js, 154

native functionality, 125, 128

subtitles, 139, 147

video APIs, 130

video backgrounds, 135

video codecs, 128

video cues, 143

video embedding, 125

N
navigation bars, 461

Node Package Manager (NPM), 361,

452

node-spdy, 435

Node.js

application generator, 453

as simple web server, 416

detect user agent string, 448

device-specific response, 450

HTML5 Boilerplate, 469–474

HTTP streaming, 394

installation, 440

navigation bar, 461

populating views with data, 463

real-time streaming, 298

reasons for choosing, 439

respond to HTTP requests, 440–448

routing module, 455

third-party module, 452

uploading images, 241

view engine, 457

views best practice, 458

web socket implementation, 360

writing CSS, 466

nodejs.org, 440

non-Latin-based languages, 73

nonblocking servers, 394

novalidate attribute, 20

O
OGG/Theora codec, 129

onchange event, 37

oninput event, 37

oninvalid event, 37

opacity, 73

open source fonts, 62

Opera, 394

orientation-based media queries, 81

OTF (OpenType fonts), 61

P
partials, 459, 461

path attribute, 201

paths, drawing, 160

pattern attribute, 15, 18

perceived performance, 316

persistent data storage, 247

PHP (Hypertext Preprocessor), 367,

380

pixel doubling, 177

pixel manipulation, 338

placeholder attribute, 11

polyfills

geolocation, 302

local storage, 252

media queries, 117

real-time streaming, 298

Robodeck, 425

subtitles, 147

XHR-polling, 435

presentations (see Robodeck)

progress tag, 33

protocol identifier, 445

pseudoclasses, 85–87, 146

push notifications, 395

Pusher API, 367, 380

Q
quadraticCurveTo method, 164

quirks mode page rendering, 2

R
range input type, 29–31

real-time functionality, 367, 383, 384,

394, 425

rectangles, drawing, 159

remote control, 430

remote websocket server, 352

482 INDEX



request objects, 442, 448

requestAnimationFrame method, 182–

188

required attribute, 11, 18, 245

resource name, 445

respond.js, 117–120

response objects, 442, 450

responsive design

media queries, 77, 117

object detection, 449

responsive video, 155

retina-display-ready media

canvas tag, 177–181

reverse-geocode locations, 280–284

RGBA colors, 74, 76, 165

Robodeck

desktop and mobile views, 420

establishing routes, 418

geolocation, 429

polyfills, 425

presentation capabilities, 414

presentation framework, 415

public directory, 424

remote control, 430

Sencha 2.0, 430

web server, 416

routing, 455

Rowell, Eric, 319

Ruby On Rails, 243, 395

S
Salvat, Jay, 150

same origin policy, 404, 406

sandboxes, 255

security concerns

client-side data, 251

in geolocation, 279, 279

same origin policy, 406

Sencha 2.0, 418, 424, 430

serialization, 249

Server-Sent Events

event listeners, 400

HTML page set up, 398

HTTP streaming, 394

jQuery.notify, 402

opening connection, 401

push HTTP streaming server, 395

push notifications, 395

Sinatra, 394

server-side device detection, 449

server-side implementation, 394

servers, nonblocking, 394

session history, 232–237

SessionStorage API, 246, 251

setCustomValidity(), 20

shared content, 461

shim (see polyfills)

“shortcut” languages, 458

Sinatra, 394

Sirota, Alex, 92

slide attribute, 421

slider utility, 29

SMIL (Synchronized Multimedia Inte-

gration Language), 201

smiley face

animating in canvas tag, 182–181

drawing in canvas tag, 161–164, 177–

181

drawing in SVG, 189–192, 192–198

social media sites

geolocation, 273

monitoring buzz, 310

themed profiles, 244

Socket.IO, 298, 425, 435

sound effects, 150

SPDY server, 435

spellcheck feature, 229

Squeeks, 380

Storage.js, 252, 254

structural elements, 3–5

Stylus, 458, 466

subtitles, 139, 147–150, 156

SVG (Scalable Vector Graphics)

animation, 199–204

building illustrations in, 188–192

embedded vs. inline, 204–208

styling with CSS, 192–198

SVG-generated fonts, 61

483INDEX



T
talking_about_count property, 310

TCP socket communication, 384

text effects, 70–73

text flow control, 70

text shadow property, 72

Thin, 394

third-party libraries, 343

third-party modules, 452

3D transforms, 107

timers

and web workers, 325

element creation, 328

element initialization, 328

real-world uses, 338

worker library, 334

tooltip elements, 375

Tornado, 394

toString method, 249

track cue, 146, 147, 156

transitions, 110–113

transparency

canvas tag, 170

CSS3’s alpha transparency, 73

triggers, 296

TTF (TrueType fonts), 61

Twitter Search API, 343

2D transforms, 106

U
Uniform Resource Identifier (URI), 87

Uniform Resource Identifier (URI)

scheme, 239, 445

Uniform Resource Locator (URL), 445

unrecognized elements

forcing recognition, 8

unresponsive script prompts, 308

user agent sniffing, 448

user agent string, 448

user events, tracking with custom data,

44

V
verbs, 445

video APIs, 130–135

video codecs, 128–130

video cues, 143–147

video embedding, 125–128

view engines, 457

viewport meta tag, 121–124

virtual perimeter (see geofence)

W
WAP (Wireless Application Protocol),

121

web fonts, 56–70

Amazon S3 Bucket, 407

bold/italic, 59

browser support/performance, 61

creating custom fonts with, 56

Google Web Fonts, 61

Web Fonts service, Google API access,

66

web pages, WYSIWYG editing of, 229–

232

web sockets

build a donation thermometer, 367–

383

building with Node.js, 360–367

controlling a slide deck, 414–434

cross-platform plug-ins, 383

echoing simple messages, 352–359

native vs. emulated, 435

WebSocket Protocol, 351

web-based visualization, 326

WebKit-based browsers, 54

WebM codec, 129

WebSocket HyBi protocol, 361

WebSocket Protocol, 298

WebStorage API, 246

WebVTT (Web Video Text Tracks), 141,

143, 156

webworkers, 307–348

and client-centric apps, 325

dedicated, 315–324, 338–342

inline worker, 309–314

JavaScript and, 307

pros and cons of, 307

shared, 347

third-party libraries, 343

484 INDEX



Wejrowski, Brett, 254

window.history methods, 236

WOFF (web-only font format), 61

word-wrap attribute, 71

writeHead ( ) method, 450

ws Module, 360

WYSIWYG editor, 229–232

X
XHR-polling polyfills, 435

XHR2, 244

Y
YepNope.js, 252, 302

YUI date picker, 24

YUI slider utility, 29

Z
zebra stripe data tables, 86

ZIP files, 260

zip.js library, 260

485INDEX

 
 

 
 



About the Authors

Jesse Cravens is a senior engineer at frog, where he works with the world’s leading

companies, helping them to design, engineer, and bring to market meaningful prod-

ucts and services. He possesses a deep background in web application development

and has recently been focusing on single-page web application architecture, the mo-

bile web, and HTML5.

He previously held senior development and technical management positions at USAA,

leading a team of mobile application developers in the planning, designing, develop-

ment, testing, implementation, and maintenance of USAA’s industry-leading iOS, An-

droid, Blackberry, and mobile web applications for their eight million members de-

ployed worldwide.

Jesse holds a B.A. in Art from Rice University and a master’s degree in Curriculum

and Instruction from the University of Texas at San Antonio. He currently resides in

Austin, TX, with his wife and two children. He can be reached at jessecravens.com.

Jeff Burtoft is an HTML5 Evangelist for Microsoft, where he has the pleasure of

working with the HTML5 community every day. He is also a blogger at

HTML5Hacks.com and has personally released several Hybrid Mobile Applications

into some of the popular mobile app markets.

Jeff has been in the web development community for over 10 years. His work experi-

ence is varied, with positions such as web master of a startup company and multi-

media consultant for the Department of Defense. Jeff has also spent over five years

working as the principal front-end engineer for a Fortune 500 Company in San Anto-

nio, TX. Jeff has a B.A. in Rhetorical Studies from Duquesne University and a certifi-

cation in Latin American Business from Inter-American University in San Juan, Puerto

Rico. Throughout the years, Jeff’s first love has been the web: HTML, JavaScript, CSS,

and now HTML5.

Jeff lives in Bellevue, WA, with his wife and three children. In his free time, he enjoys

writing mobile apps and playing video games with his kids.

Colophon

The text, heading, and title font is Benton Sans; the code font is Ubuntu Mono.

 
 

 
 

http://jessecravens.com
http://html5hacks.com

	Copyright
	Table of Contents
	Preface
	Why HTML5?
	HTML5 Implementations

	Why HTML5 Hacks?
	Who This Book Is For
	Contents of This Book
	Conventions Used in This Book
	Using Code Examples
	We’d Like to Hear from You
	Safari® Books Online
	Acknowledgments
	Guest Hackers


	Chapter 1. Hacking the Semantic Way
	Hack 01 Simplify Your Doc with the Right <doctype>
	Hack 02 Adopt Common Structures
	All That and More

	Hack 03 Make Your New HTML5 Tags Render Properly in Older Browsers
	The Fallback div
	The Real DOM Hack: The HTML5 Shim (or Shiv)

	Hack 04 Bring Back the <input> Tag
	Some of the Basics
	The autocomplete Attribute
	The list Attribute
	The pattern Attribute

	Hack 05 Easily Implement Form Validation Without JavaScript
	What Does It Mean to Validate?
	Validation Criteria
	Let’s Call This Validation Thing Off
	The Constraint Validation API

	Hack 06 Improve the Usability of Your Forms with New Controls
	The date Input Type
	The range Input Type
	The color Input Type
	The <meter> and <progress> Tags
	Form Elements and Making Them Look Good
	In Conclusion

	Hack 07 Know What’s Going On in Your App with New DOM Events
	The oninput, onchange, and oninvalid Events
	Real-Time Form Validation with the oninput/oninvalid
      Events
	Other New Events

	Hack 08 Add Rich Context to Your Markup with Custom Data
	Accessing the Data

	Hack 09 Track User Events with Custom Data
	Can It Get Any Easier?

	Hack 10 Make Your Page Consumable by Robots and Humans Alike with
    Microdata
	Details, Details!


	Chapter 2. Hacking with Style
	Hack 11 Use Experimental CSS Features with Browser Prefixes
	The Browser Prefix Controversy

	Hack 12 Design with Custom Fonts Using Web
    Fonts
	Working with Different Versions of Fonts
	A Few Things to Note: Support and Performance

	Hack 13 Use Google Web Fonts for Simple @font-face Implementation
	Easy Implementation of Google Web Fonts
	Nontraditional Font Access
	Optimizing Your Font Usage
	Common Mistakes

	Hack 14 Use CSS3 Text Effects to Make Your Text Not Suck
	The Text Shadow Property
	Other Text Controls

	Hack 15 Make Elements Appear Transparent Without Altering the
    Opacity
	Introducing Alpha Transparency
	A Word About Color Formats

	Hack 16 Use Media Queries to Build Responsive Design
	In Come the Media Queries

	Hack 17 Make Your Web App Respond to Device Orientation Changes
	Why Not Width?

	Hack 18 Take Full Control of Your DOM with Pseudoclasses
	The CSS Zebra Stripe Data Table

	Hack 19 Hack Up Your Sprite and Put Your Images Inline with Image Data
    URIs
	Why Do a Sprite?
	The Problem with Image Sprites
	Hacking Up the Sprite
	The Downsides of Data URIs

	Hack 20 Build Gradients the Easy Way
	Pure CSS Gradients
	The ColorZilla Ultimate Gradient Generator

	Hack 21 Make Borders Interesting Again, with Border Treatments
	The Border Radius
	The Box Shadow
	The Border Image

	Hack 22 Set Multiple Background Images to the Same Element
	How It Works

	Hack 23 Free Your Page Elements from Their Traditional Space with CSS3
    Transforms
	CSS3 Transforms in 3D
	Even More Advanced Effects

	Hack 24 Turn Transforms into Animations with CSS3 Transitions
	Transition to What?
	Make 3D Transitions with Transforms
	Transition Events

	Hack 25 Make iOS-Style Card Flips with CSS Transforms and
    Transitions
	Styling the Elements
	Putting It All Together

	Hack 26 Use Respond.js to Polyfill CSS3 Media Queries in IE
	Just Add JavaScript
	Caveats and Quid Pro Quo

	Hack 27 Control Mobile Layout with the viewport <meta> Tag
	Will the Real HTML5 Spec Please Stand Up?


	Chapter 3. Multimedia Hacking
	Hack 28 Embed Video Directly in Your Application with HTML5 Video
	Writing the Code
	Video As a First-Class Element

	Hack 29 Choose the Right Codecs for Your Video
    Files
	Which Codecs to Support

	Hack 30 Create Custom Video Controls with Video APIs
	A Word About Audio

	Hack 31 Replace the Background of Your HTML5 Video with the <canvas>
    Tag
	Source Video
	Hidden Canvas
	Display Canvas
	The Nuts and Bolts
	The Results

	Hack 32 Add Subtitles to Your HTML5 Video
    Element
	Easy Implementation
	The VTT File
	Karaoke Anyone?
	Summary

	Hack 33 Beautify Your HTML5 Video Cues
	Basic Formatting from WebVTT
	CSS Styling
	Pseudoclasses Within a Track Cue

	Hack 34 Use the Cuepoint.js Polyfill for Subtitles
	Using Cuepoint.js

	Hack 35 Easily Build Audio-Rich Applications with Buzz
	The Buzz Library
	Using the Audio APIs
	Using the Buzz APIs
	Implementing Buzz

	Hack 36 Simplify Your HTML5 Media with MediaElement.js
	Responsive Video
	Event Listeners
	Captions and Subtitles
	Wrapping It Up


	Chapter 4. Hacking Your Graphics with Canvas and SVG
	Hack 37 Draw Shapes on Your HTML5 <canvas> Tag
	Drawing Rectangles
	Drawing Paths
	Smile, the Canvas Loves You!
	Advanced Drawing

	Hack 38 Apply Styles to Your Canvas Elements
	Color
	Gradients
	Additional Styles

	Hack 39 Style Canvas Elements with Image Files
	The Basic Fill
	Using an Image as a Fill
	Easy Image Data

	Hack 40 Use the HTML5 <canvas> Tag to Create High-Res,
    Retina-Display-Ready Media
	In Comes the <canvas> Tag

	Hack 41 Accelerate Animation with Canvas
    Drawings
	Write and Clean
	Smile, You’re Being Animated!
	Implementing requestAnimationFrame
	Putting It All Together

	Hack 42 Build “Native” Illustrations with Scalable Vector Graphics
	Why SVG?
	Creating Your SVG Image
	Drawing with XML

	Hack 43 Style SVG Elements with CSS
	Starting with SVG
	Stripping Away the Noise
	Building the CSS

	Hack 44 Animate Illustrations with SVG
	The SVG <animateMotion> Tag
	Flexibility in Structure
	One Last Option

	Hack 45 Embed SVG Directly in Your HTML
	Why Inline?


	Chapter 5. User Interactions
	Hack 46 Make Any Content Draggable Within Your
    Application
	Turning On the Drag
	Listening for All Those Great Events

	Hack 47 Update the DOM with a Drag-and-Drop Data Transfer Object
	Incoming: Data Transfer Object
	The Drop Zone Attribute

	Hack 48 Drag Files In and Out of Your Web
    Application
	Bringing Files Home
	Bringing Files Back to the Browser

	Hack 49 Make Any Element on Your Page User-Customizable with Editable
    Content
	Spellcial!

	Hack 50 Turn Your Web Page into a WYSIWYG
    Editor
	Make the Page Editable

	HACK 51Take Control of the Browser History Buttons with HTML5 Session History
	Smile, It’s History!
	Other History Features


	Chapter 6. Client-Side Data Storage Hacks
	Hack 52 Embed Binary Data in an Inline URL
	Within an Image Tag
	Within an External Stylesheet
	Getting Help from Your Web Application Framework
	Disadvantages to Using Data URLs

	Hack 53 Convert a Data URI to a Blob and Append It to Form Data with
    XHR2
	Hack 54 Use the WebStorage API to Persist User
    Data
	The Basics
	The API
	LocalStorage and Complex Data
	Using SessionStorage
	Security Concerns

	Hack 55 Polyfill LocalStorage with YepNope.js and Storage.js
	Including Modernizr
	Using YepNope
	Using Storage.js

	Hack 56 Cache Media Resources Locally with the
    FileSystem API
	Initializing and Preparing the Filesystem
	Working with the Filesystem
	Getting and Processing the ZIP File
	Where to Go from Here

	Hack 57 Build a Milestone Calendar with IndexedDB and
    FullCalendar.js
	The Milestone IndexedDB
	Adding Milestones


	Chapter 7. Geolocation Hacks
	Hack 58 Use the Geolocation APIs to Display Longitude and Latitude in a
    Mobile Web Application
	A Simple jQuery Mobile App
	Security and Privacy Concerns

	Hack 59 Use Google’s Geocoding API to Reverse-Geocode a User’s
    Location
	Hack 60 Update a User’s Current Location in a Google Map
	Using the Google Maps API
	Updating the Current Location with a Timer
	Improving the Map
	Improving Accuracy
	Saving Power and/or Bandwidth

	Hack 61 Use the Geoloqi Service to Build a
    Geofence
	Building a Geofence
	Getting Started
	Building the Geofencing Application
	Calling the Geoloqi API

	Hack 62 Use the Geoloqi Real-Time Streaming Service to Broadcast a Remote
    User’s Movement
	The Geoloqi Real-Time Streaming Service

	Hack 63 Polyfill Geolocation APIs with Webshims

	Chapter 8. WebWorker API
	How Browsers Handle JavaScript
	Hack 64 Use the BlobBuilder Interface to Create an Inline Worker
	The Facebook Graph API and Batching Responses
	Reducing the Batch to a Single Request
	Building the Blob
	Fetching Data from the Facebook Graph API

	Hack 65 Perform Heavy Array Computations in a Dedicated Web Worker
	An Expensive Computation
	The Bouncing Balls Canvas
	Spawning a Dedicated Web Worker

	Hack 66 Use a Timer to Send Application State to Workers
	General Overview
	Initializing the Things
	The Worker Library
	Real-World Use

	HACK 67Process Image Data with Pixel Manipulation in a Dedicated Worker
	Hack 68 Use Import Scripts to Make Twitter JSONP Requests
	JSONP

	Hack 69 Connect to Shared Workers Simultaneously from Multiple Browser Windows

	Chapter 9. Hacking HTML5 Connectivity
	Hack 70 Use Kaazing’s Remote WebSocket Server to Echo Simple Messages from
    a Browser
	Hack 71 Build a Blazing-Fast WebSocket Server with Node.js and the ws
    Module
	Installing Node.js
	Using the wscat Client to Call the Kaazing Echo Server
	Creating a Simple Server and Connecting to It with wscat
	Creating a Simple Client

	Hack 72 Build a Donation Thermometer with Web Sockets, the Pusher API, and
    PHP
	Progressive Enhancement
	Building the Thermometer HTML
	Adding a Thermometer to the Widget Using CSS
	Tweaking the UI with JavaScript
	Measurement Markers
	Marker Values, Hover Highlights, and Tool Tips
	Animating Value Changes
	Adding Real-Time Updates
	Summary

	Hack 73 Build Plug-Ins for jWebSocket
	Running the jWebSocket Server
	jWebSocket “Hello World” for Browsers
	Connecting and Logging On
	Sending and Broadcasting Tokens
	Processing Incoming Messages
	Logging Off and Disconnecting
	Extending jWebSocket with Plug-Ins
	Creating a Client-Side Plug-In
	Included jWebSocket Plug-Ins

	Hack 74 Push Notifications to the Browser with Server-Sent Events
	What Is HTTP Streaming?
	Ruby’s Sinatra
	Building Push Notifications
	A Simple HTTP Streaming Server
	Setting Up the HTML Pages
	Adding a Bit of jQuery
	EventSource
	Installing jQuery.notify

	Hack 75 Configure Amazon S3 for Cross-Origin Resource Sharing to Host a Web
    Font
	What Is an Amazon S3 Bucket?
	Same Origin Policy
	Using Web Fonts in Your Application
	Uploading Your Font to Your Amazon S3 Bucket
	Adding the Web Font to Your Web Page
	What Is CORS?
	Configuring CORS at Amazon S3

	Hack 76 Control an HTML5 Slide Deck with
    Robodeck
	Deck.js
	Node.js and Express
	Establishing Routes
	Building Desktop and Mobile Views
	Public Files
	Polyfill WebSocket Support with Socket.IO
	Adding the Socket.IO Client JavaScript to Our Views
	Adding Geolocation APIs and Reverse Geocoding with the googlemaps
      Module
	Setup for Mobile and Install of Sencha 2.0
	Communicating from the Remote Control

	Hack 77 Inspect a Socket.IO Connection to Determine If It Is Native or
    Emulated
	Hack 78 Build a Simple SPDY Server with node-spdy
	node-spdy
	What’s Next?


	Chapter 10. Pro HTML5 Application Hacks with Node.js
	HTML5 Application Design Considerations
	Why Node.js?
	Installation
	Installing on Mac OS X via Homebrew

	Hack 79 Deliver “Hello Html5” to the Browser
	A Little Background on HTTP“The Hypertext Transfer Protocol (HTTP) is an application
          protocol for distributed, collaborative, hypermedia information
          systems.[1] HTTP is the foundation of data communication for the
          World Wide Web.” (Wikipedia (http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol))

	Hack 80 Detect the User Agent String Within the Request Object
	Hack 81 Use Node.js’s Response Object to Respond to the Client with
    Device-Specific Data
	Hack 82 Use the Node Package Manager to Add a Web Application Framework As
    a Third-Party Module
	Hack 83 Use the Express Application Generator to Bootstrap Your App
	Why Use Express?

	Hack 84 Build a Custom Module to Handle Routing
	Hack 85 Configure Express to Use a View Engine
	Hack 86 Use Jade Layouts to DRY Up Your Application’s Views
	Hack 87 Use a Jade Partial to Create a Common Navigation Bar in Your
    Views
	Hack 88 Use Jade Mixins to Populate Your Views with Data
	Hack 89 Set Up Expressive, Dynamic, Robust CSS with Stylus
	Hack 90 Include HTML5 Boilerplate As Your Default Starter Template
	Integrating with the Node.js/Express Application

	Become an HTML5 Hacker

	Index
	About the Authors

