
www.allitebooks.com

http://www.allitebooks.org

For your convenience Apress has placed some of the front

matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

Foreword ... xix

About the Author ... xxi

About the Technical Reviewer ... xxiii

Acknowledgments .. xxv

Introduction .. xxvii

Chapter 1: The Campaign Process ■ ...1

Chapter 2: Evolution of Advertising Technology ■ ..21

Chapter 3: Advertising with Web Standards ■ ..37

Chapter 4: Using Canvas, SVG, and Web Fonts ■ ..61

Chapter 5: Animations and Presentations ■ ...85

Chapter 6: HTML5 APIs ■ ..121

Chapter 7: HTML5 Media ■ ...149

Chapter 8: Mobile Web Advertising ■ ...189

Chapter 9: In-Application Advertising ■ ...217

Chapter 10: Offline Storage, Tracking, Debugging, and Optimization ■ 233

Chapter 11: Dynamic Advertising with HTML5 ■ ..257

Chapter 12: Bleeding-Edge HTML5 ■ ..297

Chapter 13: HTML5 Advertising Going Forward ■ ..325

Index ...339

www.allitebooks.com

http://www.allitebooks.org

xxvii

Introduction

Why write a book geared toward advertising with a focus on HTML5? Well, for most of 2011, my job was to create,
debug, and make informed decisions on HTML, CSS, and JavaScript in the emerging browser market, and boy was
it frustrating! During December of that year, I had some free time to myself, and took the time to draft an outline to a
book that I would want to read, based on all the troubles I faced throughout the year. Needless to say, I had lots to say,
so that outline grew to be 20+ pages, covering all topics around advertising in the digital world and more importantly
how it’s being drastically altered by HTML5.

In the beginning of 2012, I ended up pitching the outline to a few folks in an efort to gauge interest from other
people in the industry, and from what I found quickly, I wasn’t the only one thinking about this stuf! In Q1 of 2012,
I felt conident that I had developed a strong enough outline on the content, and I was really excited to write this thing!
So, after signing with the kind folks at Apress, I began to write, develop, and test for most of 2012. I guess you can say
I was pretty fed up with hearing things like “Will Flash deliver on tablets?” or “Why do I need to have ive versions of
my ad for this responsive site?” Note: if these questions seem new to you, don’t be alarmed; I’ll cover all these topics
throughout the book. Needless to say, the need in the industry was strong!

With that said, let me be the irst to welcome you to the crazy world of digital advertising (if this is new to you).
his industry is fast-paced, cutting-edge, and growing constantly. If there is one thing that’s consistent with it, it’s
that it changes rapidly. I’ve been in this industry for nearly a decade and can attest that it requires someone with
high-energy, quick timing and often someone who can deal with stressful surroundings. If you’re looking for a career
change by reading this book, I feel you should know the important stuf up front. With that out of the way, let’s take
a look at the next logical question:

What is HTML5?
he W3C states the following:

HTML5 is being developed as the next major revision of HTML (HyperText Markup Language), the
core markup language of the World Wide Web. HTML5 is the proposed next standard for HTML
4.01, XHTML 1.0 and DOM Level 2 HTML. It aims to reduce the need for proprietary plug-in-based
rich Internet application (RIA) technologies such as Adobe Flash and Microsoft Silverlight.

his is a great universal outline, but I’d like to elaborate on it for you as it relates to the context of this book.
HTML5 is a speciication for the new and emerging open Web. It’s often a widely used term to loosely describe

the ability to target platforms where Flash is not accepted. However, in reality, HTML5 is much more than that
(http://platform.html5.org). It’s an evolving standard built on many web features that we’ve grown accustomed
to in rich platforms, like Adobe’s Flash environment. Since HTML5 relies on the native qualities and APIs of the
browser, it provides a faster and higher-performing approach to web and ad development because it ofers the same
robust experiences we’ve become used to seeing with plug-ins like Flash. Conversely, since HTML5 is an evolving
speciication, managed by two consortiums (W3C and WHATWG), with two diferent agendas for the speciication,
it means it’s a moving target to deploy toward because there is plenty of room for fragmentation and interpretation
among the marketplace regarding which browsers and devices can utilize which feature sets of the new speciication
and, much more importantly, when.

www.allitebooks.com

http://platform.html5.org
http://www.allitebooks.org

■ INTRODUCTION

xxviii

HTML5 is the future of the Web but more importantly the present of web advertising, especially if you want
to target users in the endlessly growing mobile and tablet landscape, which is becoming a frequent request as
more clients make the shift from proprietary platforms such as Flash to the open web standard for more reach and
penetration. It will be many years until the advertising space has fully adopted HTML5 as its main platform for
delivering and rendering ads, but this book is geared to surveying the current landscape, making some educated
assumptions, and adding some developer assistance as the shift happens.

Before we dig in, I’ll review what this book is and what it is not in order to set expectations accordingly. First, you
must understand that the HTML5 speciication is not set for completion and inalization for years to come. On top of
that understanding, the browser manufacturers will have to release inal updates and bug ixes before full adoption
within the market occurs and emerging features can be used safely across browsers.

Second, this book assumes you have some basic knowledge of the Web and development, which means you
understand HTML, CSS, JavaScript Flash, and the use of APIs because there are code samples throughout.

Next, you shouldn’t be using a dated browser and attempting to work with HTML5 and the code samples in the
chapters. IE6, I’m looking at you! If this seems strange to you, trust me you’ll understand more as you read the book.
So, be sure to download one of these browsers before continuing:

Chrome•฀ : http://google.com/chrome

Mozilla•฀ : http://mozilla.org/en-US/firefox

Opera•฀ : http://opera.com

Safari•฀ : http://apple.com/safari

Internet Explorer•฀ : http://ie.microsoft.com

Next, this book is not a beginner’s guide to coding or ad development but a guide to assisting web developers
who understand code practices and how it relates to advertising on the Web, while also providing insight as to why
certain things occur in the complex world of advertising.

Finally, with this book, you’ll learn about HTML5 and its efects on web advertising but at the end of the day,
I want you to understand how to take advantage of this cool technology within the browsers that support it. Also,
I’d love to include every facet of advertising technology with regard to HTML5 in this book, but truth is there is just too
much out there that’s evolving and changing, and that’s a good thing! his industry is moving so fast that any attempt
to document some features would do a disservice to you and myself for wasting efort. Before we start, if you’re
interested in where the HTML5 speciication develops from, please visit the following sites because the information
there is always changing:

•฀ http://whatwg.org

•฀ http://w3c.org

With that primer out of the way, let’s move on to Chapter 1 and start learning about the future of digital
advertising.

www.allitebooks.com

http://google.com/chrome
http://mozilla.org/en-US/firefox
http://opera.com
http://apple.com/safari
http://ie.microsoft.com
http://whatwg.org
http://w3c.org
http://www.allitebooks.org

1

Chapter 1

The Campaign Process

Welcome to HTML5 advertising. The goal of this initial chapter is to get a complete, end-to-end view of the entire
campaign process before we dig into the big stuff. Understanding the campaign process will provide insight into how
everyone works together to get campaigns out the door on time. Furthermore, this book also aims to clarify where
creative and development fit into the scheme. After breaking down the process into its vital parts and deconstructing
them one by one, we’ll tie everything back together again to present you the big picture.

This chapter’s sections will outline many things, from typical media buying and creative development to
launching a campaign and reporting on campaign performance. Technology, terminology, process, and general
industry acronyms (which are likely confuse new readers and users)—all these will be reviewed. Also reviewed will
be different ways to approach the development of a campaign—through discussion of brand time versus direct
response creatives and the importance of clear calls to action and by keeping the user experience in mind at all times.
We’ll discuss fundamentals of brand storytelling and how advertisers use it to engage potential customers. We’ll also
provide both an understanding of creative specs and limitations as they relate to publishers and directions on where
to go next when launching a digital advertising campaign. Lastly, we’ll quickly summarize what we’ve covered and
familiarize you with the terminology. Ready to get started? Then let’s begin . . .

Digital Strategy
Since you’re reading this book, you may have wondered, “How are those ads that I see online made?” or “Who actually
comes up with them?” In online advertising, digital strategy is concerned with an approach to developing a creative
marketing message for a brand or advertiser that aligns with the their goals, vision, and business objectives. This
strategy could take the form of a message you’re familiar with; something like “Back to School Sale” or “Memorial Day
Sale.” Digital strategy, usually the first step in the process, allows creative agencies to create mock-ups and designs and
pitch new ideas to their clients (advertisers). Depending on the agency’s size and structure, this process will typically
involve a creative or art director and one or more copywriters, project managers, and technical gurus, all working to
sell the idea so effectively that the advertiser buys into the marketing message. Though Figure 1-1 should give you a
better idea of how this works, keep in mind that every agency is run differently. So consider this just a sample.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ THE CAMPAIGN PROCESS

2

Creative & Art Directors

Sales

Technologists

Copywriters

Project Managers

Advertiser’s Marketer’s

Advertiser

Agency

Client Facing

Client

Production

FIgure 1-1. How a typical creative agency interacts with an advertiser

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ THE CAMPAIGN PROCESS

3

The effort may require weeks, if not months, of development and planning to ensure that the pitch is conveyed
correctly to the client. In some cases, an agency may invest all this time only to see its ideas shot down by the client
for any of several reasons: because they didn’t align with the client’s objectives, because execution costs were too
high, or worse still, because petty differences between agency teams ruined the pitch. This last situation is the most
unfortunate, in that when it happens, great ideas could go to the grave much too soon. In the end, this process exists
to develop the campaign—that is, the overall marketing message the advertiser wants to communicate to audiences
and potential customers. The campaign may exist solely online or may be broadened to other distribution channels,
including broadcast television, print, and billboards.

Another important part of the digital strategy process involves inclusion of previous campaign intelligence.
Let’s say you are an advertiser called Joe’s Hardware, situated in the American Northeast. In July you had an online
ad campaign to sell snow shovels. In analyzing the campaign’s performance, you’d most likely realize that the
shovels didn’t sell very well. Once you realize that it was probably a mistake to sell snow shovels in mid-July, what
you’ve learned can be used to turn your next campaign into a better-performing one. (Obviously this example is
oversimplified, but its lessons can be applied to more sophisticated campaigns.)

Note ■ Since dynamic campaigns allow analysis of information in real time, the creative messaging can be adjusted

while the campaign is in progress. There’s no need to wait until the campaign’s end to use what’s being learned to make

changes. There will be more on this in Chapter 11.

Digital strategy aims at identifying the marketer’s challenges, developing a unified solution to them, and
delivering a message effectively to the target audience. Taking these points and properly executing each will lay the
groundwork for a successful online advertising campaign.

Media Buying
Now that you’ve had a look at what goes into generating a successful campaign and know something of the parties
involved, let’s look at what usually is the next step: purchasing media for a particular campaign.

Note ■ Media purchasing can happen at any stage of a campaign’s life, but for this chapter’s purposes, we’ll assume

the purchase was made after the strategy was developed.

First, let’s define what we mean by media, in relation to the digital advertising industry. In short, the term refers
to the planning, implementation, and purchasing of ad inventory through various publishers or networks or the like.
Places where media purchases for digital campaigns take place include but are not limited to

publisher web sites: USA Today, ESPN, BBC, The Guardian (UK), etc.•฀

web portals: Yahoo, MSN, AOL, etc.•฀

ad networks: The Deck, Google AdSense, Chitika, etc.•฀

video players: YouTube, Vevo, Tremor Video, etc.•฀

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ THE CAMPAIGN PROCESS

4

Publisher Web Sites
Publisher web sites are the most traditional online media buys; leaderboard ads at the top of a page and square ads
along a site’s right or left hand side are typical examples. These are traditional because they’ve been around the longest.
Anyone with a popular blog or site can sell this form of ad inventory. In fact, buysellads.com and similar sites help
content producers and advertisers to do so. Anyone who is getting a bunch of unique visitors to a web page and wants
a form of passive income should consider including advertising. The New York Post web site (www.nypost.com/) is a
typical example of an ad experience on a publisher’s web site.

Web Portals
Web portals are virtually analogous to publisher web sites in terms of their ad inventory. They differ in being gateways
to other sites or to subsections of site information. Web portals include AOL Travel, Yahoo Music, and many others.
AOL’s subsections include AOL News, AOL Music, AOL Travel, and AOL Money. Each subsection, being tailored to a
specific user interest, and could include section-specific advertising inventory.

Ad Networks
An ad network, is a collection of publisher sites for which advertising can be bought and sold on a group basis, can be
big or small. Its key function is accumulating ad inventory from a contributing list of publishers and matching it with
the advertiser’s requirements. Going through an ad network allows the advertiser to reach more web properties than
can be reached by just going through publisher sites one at a time. A very good example of a successful ad network is
The Deck (http://decknetwork.net/).

Video Players
Video player media buys are quite new on the scene. They are what you’d see if you viewed a popular video on
YouTube or another content provider that shows ads to viewers in order to provide them free content. This would
be the typical 15- or 30-second in-stream video spot that plays before the content. Typically, the video autoplays; it
disables users’ ability to skip to the content until the ad has played. Video player advertising can also be a lower-third
type of ad unit, traditionally called a “post-roll,” which appears over the player content

The Media Buyer
Securing any or all of the above-mentioned outlets is a job of its own. This is where a media buyer comes into the
mix. The media buyer plays a vital part in the overall campaign process: the media buyer, usually as part of a media
agency, specializes in securing appropriate media outlets. One of the media buyer’s jobs is ensuring that the inventory
purchase aligns with the advertiser’s overall vision. For example, if I’m the advertiser Titleist Golf Balls, I’d want my
media buyer to place my brand all over the golf sites and related networks. It wouldn’t make much sense to show golf
ads at, say, a dog show.

www.allitebooks.com

http://buysellads.com
http://www.nypost.com/
http://decknetwork.net/
http://www.allitebooks.org

CHAPTER 1 ■ THE CAMPAIGN PROCESS

5

Publisher Inventory
As you might guess, the above-described purchasing outlets are all based on available publisher inventory. This can
badly limit a media buyer and be subject to many variables, including but not limited to

day of the week or time of day•฀

popularity of content•฀

percentage of views needed•฀

Let’s quickly look at this situation as it relates to a traditional form of media buying for broadcast television. It’s
fair to assume you will pay much more for a 30-second ad spot in the second quarter of the Super Bowl than you
would for the same spot on some random channel on late-night television. Put otherwise, as the popularity of a site’s
content increases, more advertisers will want to run ads on it. So keep posting good content on that blog of yours!

Can you see why it’s often tough for media buyers to secure inventory on popular sites? Since the media buyer’s
job is to hunt down and gather all the media appropriate to communicating the advertiser’s message within the
allotted budget of the plan, it’s really nothing but old-school supply and demand in a new guise.

CPM and Roadblocks
You may be wondering by now, if media is sold based on the popularity, how does this relate to actual dollars? Well,
in the digital advertising industry, this amount is assessed by the number of views an ad gets. A view is called an
impression. A media buyer, looking at the media sheet, will tally all the different places the ad campaign will run to
generate an estimated impression volume. The cost, based on every thousand impressions, could be anywhere from
a fraction of a cent (for less-popular content) to several dollars or more, depending on the many variables already
mentioned.

Since cost per impression—also called cost per mille (from the Latin “mille,” meaning “one thousand”)—is higher
on sites that see a lot of traffic, getting prime inventory on CNN, the New York Times, the BBC, and similar sites can
be difficult. It’s especially difficult if you want to be the only advertiser in view that day. For example, an advertiser
such as Apple will typically buy what is called a “roadblock,” or “takeover,” on days it runs campaigns. No conflicting
advertiser’s messages will be shown in conjunction with the brand’s messages.

A roadblock is really the pinnacle buy, and it’s unsurprising that it usually comes at a very high cost. What
makes this buy special is that it normally allows you the freedom to do whatever you want with the publisher’s page
content. This may include full-screen video, manipulating page elements that interact with the ad unit, sometimes
even a longer duration of ad animation time. A roadblock, when tastefully done, can provide a brand experience like
no other.

Real-Time Bidding
At the beginning of this section, I mentioned that media buying is typically done after the campaign’s digital strategy is
developed and the advertiser’s message is finalized. While this is true in most cases, another form of media buying is
becoming ever more popular among advertisers. This new technique of media buying, real-time bidding, is done via
a demand-side platform, or DSP. A DSP is also known as a trading desk for media buying. This means that when an ad
creative is already developed and eagerly awaiting a place to run, the media can be bought or sold via this trading desk
so that it can secure ad inventory on the site and run the ad at the exact time of purchase. Obviously, this is true only
if the advertiser was the highest bidder. RocketFuel (http://rocketfuel.com) and similar companies are hired by
media agencies and advertisers to manage purchase of media inventory on publisher’s sites in real time to eliminate
wasted ad spend. I like to think of it as the eBay for ad buying, only it happens much quicker and often becomes more
cost effective for the advertiser.

www.allitebooks.com

http://rocketfuel.com
http://www.allitebooks.org

CHAPTER 1 ■ THE CAMPAIGN PROCESS

6

Publisher Specs
Depending on the media buy, ads need to be developed in different sizes to satisfy all the placements within the
publisher’s available inventory. This is why it’s very important up front to understand where the ad will be delivered
before any development is done. It’s even more important if the ad has specific functionality and rich features such as
expanding real estate or forced video playback. Since certain sites won’t allow these features, it’s in the best interest of
the advertiser to understand the requirements beforehand. Misunderstanding the publisher’s requirements may lead
to a reduced ad experience or a late campaign launch.

Now, I know what you’re saying. “Why would I want to reduce my creative? I want to make the biggest splash I
can and wow my target audience!” Well, that’s all well and good if you can, but at the end of the day, if the publisher
won’t run your ad because of a certain feature set, you won’t be making any splash at all. Publishers are a hard group
to budge; it’s their content and their user base, after all. Would you invite someone into your living room and give him
free rein to rearrange the place, add things, even remove them? Probably not—unless you got some sort of benefit
in return. I like the saying, “No matter how much you love Pizza, you’ll never give the delivery guy the keys to your
house”. So for your own sake, please examine your media plan carefully; note what is and isn’t accepted and where it’s
accepted before any development begins. You might consider having a one-on-one call with your publisher to iron
out any unresolved details prior to campaign launch.

Ad Sizes
As just mentioned, different publishers require differently sized ad units to satisfy their inventory. A typical ad size for
desktop display is 160 pixels in width by 600 pixels in height; this is what is called a 160 × 600 ad unit or skyscraper.
Other typical sizes are 300 × 250 and 728 × 90. For mobile it’s pretty standard to see 300 × 50 and 320 × 50. But note
that each publisher’s requirements are different; they can vary drastically from one site to the next. The spec sheet
associated with the media plan should provide technical details for creative development. Be sure to request this
sheet from publishers and ad networks before building out the creative; doing so will save you time in the long run.
I’ve seen more often than you might think, where a creative is built and an attempt is made to traffic it to the pub’s site,
only to find that they won’t accept its sizes and feature set.

Responsive Design
Understanding the media plan is really important, but so is understanding why publishers can’t or won’t take certain
formats or features within an ad unit. Their reasons could be related to technical limitations within their site’s
architecture; for instance, it might not accept specific HTML elements, CSS styling, or JavaScript commands. When this
occurs, the best thing to do is set up a kickoff call with the publisher to iron out any and all details before you begin.

One developing design pattern is responsive web design (RWD); it’s also known as adaptive web design. A
thing to consider about RWD is that the ad layout may need to cater to the site’s layout. Thus, a 728 × 90 ad unit may
need to be developed for a 300 × 250 size as well as a 160 × 600 size—and all within the same ad tag. The publisher’s
requirements are paramount here; they should be discussed before development and design begins. RWD is
becoming a huge area of interest in the web world due to the ability of so many phones, tablets, and televisions to
access websites. Publishers don’t want to increase their operational workload or worry about developing a different
version of their site for each and every device that can access it. So they rely heavily on cascading style sheets (CSS)
and JavaScript to manage site layout variations dynamically, regardless of the screen requesting the content.

Using CSS media queries (more on this topic in Chapter 3), a publisher can tailor content in such a way that it’s
formatted correctly for the device or screen accessing it. For example, if I were viewing www.bostonglobe.com full-
screen on my 27-inch Apple iMac desktop computer, my full-screen width would be 2,560 pixels, whereas if I were
viewing it on my iPad in portrait orientation, the screen width would be 768 pixels. This value, when used to check
against the CSS media query for screen width, allows a publisher to adapt its site layout dynamically and re–align
content. It’s still the same site and URL, but the layout changes, which can result in the images shown in Figure 1-2.

http://www.bostonglobe.com

CHAPTER 1 ■ THE CAMPAIGN PROCESS

7

Dynamic adaptation for web sites is a breath of fresh air for any publisher’s web site developers and designers.
It’s a bit of a nightmare, however, for digital advertising folks, the reason being that at any time the display changes,
whether I’m scaling the window on my desktop or switching orientations between landscape and portrait on my
tablet, the ad inventory on that particular page can change or request another ad, possibly firing off duplicate
impressions if the ad is request happens more than once. This could result in removal of the 300 × 250 ad shown in
Figure 1-2 (“4 story high tides”). This also begs the question whether impressions need to adapt to the new layout as
well, doesn’t? If the Boston Globe is in my media plan, how can I be sure that the smaller displays will reach my target
audience? This is an interesting question, one that the industry is having a tough time trying to standardize,
as it affects both visual ad layouts and reporting concerns.

My hope is that as mobile ad serving grows increasingly popular and becomes a prime focus in advertisers
media plans, ad-serving companies and publishers will develop a consistent way to adapt and tailor their ad views
for multiple screens and devices, regardless of the distribution channel. More than likely, this will take some time to
develop and even more time to be fully adopted, but a standard will eventually be born. Luckily, digital advertising
has an organization to help with these standards.

Note■ For more information on this topic, look at the section titled “Responsive-ize it” at

www.ravelrumba.com/blog/responsive-ads-real-world-ad-server-implementation/.

IAB
In the digital advertising space there is an established bureau to help the industry cure its headache and
fragmentation-related problems, whether they be mobile, display or even connected televisions. The Interactive
Advertising Bureau (IAB) provides standardization in ad sizes, specs, and metrics agreed on by many publishers,

Figure 1-2. How www.bostonglobe.com displays at 2,560 pixels on Apple iMac and at 1,024 pixels
on Apple iPad in landscape orientation

http://www.ravelrumba.com/blog/responsive-ads-real-world-ad-server-implementation/
http://www.bostonglobe.com

CHAPTER 1 ■ THE CAMPAIGN PROCESS

8

ad servers, creative agencies, and active members of the IAB’s working groups. It provides scale across media buys and
ad networks by leveling the playing field. Because it sets practices known throughout the industry so adoption is more
prevalent.

IAB Guidelines for Specs and Sizes

The IAB focuses on creating a comprehensive and evolving chart for developing ads and ad formats for all distribution
channels. Table 1-1 offers a sample of the IAB’s spec and size requirements for many desktop ads.

Table 1-1. Some of the IAB’s Size Guidelines for Desktop Displays

Size 300 × 250 180 × 150 160 × 600 728 × 90

Initial size load 40 KB 40 KB 40 KB 40 KB

Max. frames/sec. 24 fps 24 fps 24 fps 24 fps

Animation time 15 sec 15 sec 15 sec 15 sec

Note ■ For current information on IAB’s display guidelines, visit

www.iab.net/guidelines/508676/508767/displayguidelines

As you can see from the table, these guidelines outline initial size of the ad, the frame rate of the ads animation
and even duration time of the animation. The IAB continues to change, just as the industry it supports does. It
regularly holds discussions and meetings in order to advance the industry’s interests.

Another useful tool for assessing your ad’s suitability in relation to IAB guidelines is Adobe’s Adthenticate. This
online tool provides a comprehensive suite of analytics for your ad creative, whether it is a Flash SWF file or an actual ad
tag. An ad run through the process will generate a detailed report indicating whether the ad passes or fails with regard to
the IAB specifications. More information on using this tool can be found at https://adthenticate.adobe.com. The tool
is designed to eliminate guesswork between creative development and publisher specs so there is no confusion and no
repeat work is needed.

Creative
OK, back to the campaign process. You’ve seen where advertisers want to spend their media dollars; now an ad needs
to be designed and developed. At this point, in order to develop the ad effectively and convey the advertiser’s (client’s)
message clearly, you should have a clear understanding of all the publisher’s requirements and specs.

The creative is the actual element that gets rendered to the publisher page on day of launch. It’s the SWF file
or HTML that conveys the advertiser’s message—rather, it’s the file that visually conveys the advertiser’s message.
What is the advertiser’s main focus? Is it to provide a direct response creative or just to keep the user within the ad
experience with a brand-time initiative for the longest time possible? The goal is to create the advertiser’s vision in an
inventive and scalable ad unit, one that will run across every publisher site in the media plan. In industry terms, this
is the LCD (lowest common denominator) spec for creative development. Developing and designing to this spec will
allow for ultimate scale and fewer issues along the way.

http://www.iab.net/guidelines/508676/508767/displayguidelines
https://adthenticate.adobe.com

CHAPTER 1 ■ THE CAMPAIGN PROCESS

9

Creative Development and Design
In this phase, the advertiser’s creative agency will go back to the mock-ups and designs pitched during the digital
strategy section. The agency will bring in creative and technical team members (that’s you!) to design and build the
final ad experience for the advertiser. This involves leveraging design skills with technology and code. Designers
use Adobe Photoshop and similar tools, and technologists leverage code languages like JavaScript to pull off the
execution.

Because ad experiences vary and marketers always want the newest thing, the technology changes at such a
rapid pace that it’s sometimes hard to keep up with it all. I stay ahead of the curve by reading up on new techniques
and experimenting with different code languages. Find what works for you and keep at it. Depending on an ad’s
complexity and an advertiser’s requirements, design and development can take several weeks to finish, so this activity
can be done in conjunction with other campaign requirements, such as finalizing the media buy. To some, creative
development is the most important process in the campaign; it’s what tells the advertiser’s message. Others say that
it’s the media buying and optimizing the target audience. I myself feel nothing goes far without an amazing creative
message. With a compelling creative, you can make people want something they didn’t want before. If you can
achieve this with a mass audience, then it doesn’t really matter where the ad runs. But keep this in mind: when was
the last time you went online to look at the ads? At any rate, when a campaign is both effective and timely, it always
performs very well.

Brand Time vs. Direct Response

An advertiser has many options when it comes to communicating with an audience. It can provide an ad experience
that includes a game or video, which typically rolls into a brand-time initiative. Or it can allow the viewer or user
to click something or fill out a form and submit information in the hope of getting potentially useful personal
information (this form of advertising is called direct response). Certain options work better on certain screens and
with certain advertisers. Stats from an ad-serving company, PointRoll, show that brand time works better on tablets
and large screens and direct response works really well on mobile phones. PointRoll suggests that the big screen and
tablets are more of a lean-back approach to advertising, whereas mobile is more of a utility-based experience. It gets
users’ attention quickly and while they are on the move.

Another focus for the advertiser in creative development is having a clear call to action. If you want your audience
to do something, tell them! If you want them to watch a video or click a button, you’ll gain higher response rates by
instructing the audience to do it. In addition to keeping the CTA (call to action) clear, certain publishers won’t allow
you to develop a creative that doesn’t follow the message it’s attempting to communicate. For example, say I develop
an ad where the CTA states “Click here for a free coupon!” Yet when the viewer clicks, a video pops open with no link
to a coupon. A publisher will usually protect its audience by not running such a misleading ad campaign as this.

As this is all part of the user-experience aspect of the creative, you’ll want to do your absolute best to develop an
ad campaign that makes sense to your audience visually as well as functionally. The key is to remember the user; keep
his or her overall experience in mind at all times.

Storytelling

Another prime focus of advertisers is the ability to tell a story with one or multiple ad campaigns. Many advertisers
use cross-screen initiatives to communicate the message. This transmedia approach lets advertisers deliver a single
cohesive message to a user via multiple screens and devices. Perhaps it’s instructing a user to visit a web page in
a broadcast spot for more information, or it’s uploading a photo from your phone for a chance to see yourself on
television and win a prize. The possibilities are virtually endless with this form of engagement, and the ROI (return on
investment) for advertisers is enormous. With information about their user base they normally wouldn’t get, they can
more easily target individuals listening at given times and on given devices or screens.

CHAPTER 1 ■ THE CAMPAIGN PROCESS

10

Creative LCD

As already mentioned briefly, the goal in this development process is to create an LCD spec so the ad can run
flawlessly across every publisher and ad network on the buy. This is where a creative agency has many hard choices
to make. In order to raise the bar creatively, it—you—may need to ignore or break some publisher spec, but in order
to run the campaign everywhere, you’ll need to follow the lowest spec. It’s a tough call to make, especially if you are
trying to be innovative in the space.

Note ■ Innovative advertisers will work with ad servers to ask for special publisher allowance to run their creative.

This requires a one-off conversation with the publisher to hash out any concerns they may have about the ad’s
execution prior to running. Many different things could be settled, such as how much file size (or k-weight) the ad can
have and what features the publisher will allow. In most cases, demonstrating the creative will help the publisher sign
on or off on the execution. Worst thing that can happen is that they ask you to revise a few things.

These one-off conversations always occur, yet members in the space feel differently about them, depending on
which side of the fence they’re on. On the one hand, the conversations can allow an advertiser or creative agency to
be super innovative, to break rules that once applied to everyone. On the other, they set a poor precedent for other
advertisers looking to do similar things, and because it’s not a public standard, other agencies will have to ask for the
same special permission.

At the end of the day, the process is political and money driven. “Hey, welcome to advertising!” If you have a
close relationship with a publisher or pour lots of dollars into a campaign, chances are you’ll be given the OK to do
whatever the hell you please. Being a job on its own, the process typically involves getting an ad-serving vendor such
as PointRoll (http://pointroll.com), Media Mind (www.mediamind.com), or Crisp Media (www.crispmedia.com) to
get that grant of permission and run a large, innovative digital ad campaign. These companies focus on developing
strong publisher relationships so that advertisers and creative agencies can focus on being creative and continute
to invent.

Ad Serving
Once the creative is designed, developed, and advertiser-approved, it’s usually passed to an ad-server. The ad server’s
job is to do just what it’s name states: serve the ads the creative team designs and develops. Once the ad-serving
company gets the creative, it goes through an asset-intake process, where the creative assets are analyzed and
processed to ensure all files are present and within spec and follow general best practices that adhere to publisher
guidelines. If it is determined that the creative files are completely out of spec, they will usually be returned to the
agency that developed them for further optimization. If the assets require only minimal work—adjusting a size or
shaving some k-weight—the ad-serving company will typically do the work for the creative agency, whether to satisfy
the client or ensure continued work or float the costs based on other revenue streams.

Tracking
Once the assets are given the sign-off, they’re sent to the ad developers and engineers to install tracking and metrics
for reporting purposes. Tracking is the additional code implementation into the creative assets in order to fire off
an impression per view, a click for buttons and interaction beacons to track user interaction. For the ad server, the
tracking is typically installed by way of an API (Application Programming Interface). APIs come in many forms but in
this case it’s the communication layer between the ad creative and the ad-serving platform.

http://pointroll.com
http://www.mediamind.com
http://www.crispmedia.com

CHAPTER 1 ■ THE CAMPAIGN PROCESS

11

Here are some tracking metrics an ad server might capture:

impressions•฀

clicks•฀

interactions or activities•฀

interaction time•฀

video metrics•฀

play/pause/stop/restart/replay•฀

starts and completion rates•฀

Depending on the necessities of the creative, other tracking requirements could be data collects, such as e-mail
addresses, names, and phone numbers. This information is a user-controlled process: the viewer needs to enter
information into a form field within the ad.

Third-Party Tracking

Another tracking concept in digital advertising involves third-party redirects and third-party tracking validation.
A third-party tracking situation is one where another analytics company, in order to verify metrics, places tracking
pixels within the creative, along with the ad servers. Platforms used in third-party tracking include Dart, Atlas, and
ComScore 1x1’s, to name a few. Typically, DoubleClick’s Dart, Microsoft’s Atlas and ComScore provide tracking pixels
within a creative that they’re not hosting and serving. 1x1’s are invisible GIFs (image files) that fire when a user views
an ad or performs some type of interaction. This could be one or several pixels depending on the advertiser’s needs
for the campaign.

The other form of third-party tracking uses redirects. Redirects are engaged when a user performs a click through
action within the ad unit and the user is channeled through a redirect server location before it lands on the final
destination. Advertisers can include as many redirects as they wish to validate the click-tracking within an ad unit.

Note ■ Traditionally, the more redirects you add to a URL string, the more discrepancies in reporting you are likely to

see. Also, URLs could be cut off due to browser limitations; the user would end up on a bad landing page.

Figures 1-3 and 1-4 show how one-click action by a user can actually ping a few different locations before it
presents a landing page. Figure 1-3 illustrates what is called an in-band click redirect. In-band is the older of the two
methods requiring a “daisy chain” effect to ping servers.

Figure 1-3. How an in-band click redirects work

CHAPTER 1 ■ THE CAMPAIGN PROCESS

12

Note ■ For more information on how to set up appropriate click tracking, see the IAB’s click measurement PDF:

http://www.iab.net/media/file/click-measurement-guidelines2009.pdf.

Optimization
Upon completion of the tracking, one additional level of creative optimization is needed to ensure all creative meets
k-weight specs and doesn’t hog CPU power of a users machine. An optimization check ensures that the ad will run
flawlessly on multiple machines, platforms, publishers, and devices. The optimization process can include rewriting
code, compressing bitmap images, converting images to vector artwork, simplifying vector artwork, and staggering
the loading sequences based on user interactions. It can take quite a bit of time, depending on the number of ads and
which devices and screens are targeted (as ultimately dictated by the media plan). These tests are frequently rigorous,
since each ad has to run on multiple computers and operating systems in real time and is reliant on the length of the
ad animation or video duration. Thus, the number of optimization steps can grow pretty quickly.

Tags
After the creative runs a thorough round of prerelease quality assurance checks, the ad-serving company will
create ad tags out of the creative assets in order to ensure the creative performs accurately in its new ad-serving
environment. The creation of ad tags typically involves upload into a content management system (CMS) that the
ad-serving company operates. Whether it be static images, HTML, or Flash files, the creative assets get compiled and

Figure 1-4. How out-of-band click tracking works

The second method, out-of-band click redirects, pings all the servers at once (see Figure 1-4).

http://www.iab.net/media/file/click-measurement-guidelines2009.pdf

CHAPTER 1 ■ THE CAMPAIGN PROCESS

13

stored in the system. Depending on the publisher’s specifications, the ad server will generate any of several different
tag types and formats, including the following:

iframe tags•฀

JavaScript tags•฀

Flash SWF tags•฀

image and click tags•฀

Note ■ Iframes are used to embed one HTML document inside another one.

For richer executions some publishers may require a file that lives on their servers; it allows the ad server to
communicate with the domain that the publisher’s site is on. This is a requirement when “iframe busting” (an industry
term) is needed. Iframe busting allows an ad tag to render outside the publisher’s desired iframe for the ad; this in turn
allows the ad server to interact directly with the publisher’s content. This type of execution should be set up in advance
with the publisher to ensure that all parties are on the same page and that this file is in place at the time of ad serving.
Permission for this type of execution is usually granted only to trusted ad servers, as breaking the iframe creates the
ability to do damage if one wanted to. Figure 1-5 shows how an ad tag will treat iframes both “busted” and “non-busted”.

Figure 1-5. An ad tag can break free of an iframe when a publisher’s hosted file is in place

Quality Assurance
Once the ad tags are generated and analyzed by the ad server, a final round of tracking quality assurance (QA) is run to
ensure that all the impressions are firing off and metrics are being accounted for. Assuming the tracking calls are good
to go, the unique tags are sent off to each and every publisher on the media plan. Upon receiving the tags, a publisher
will perform its own QA to ensure they operate smoothly with other site content in a live environment. It may take

CHAPTER 1 ■ THE CAMPAIGN PROCESS

14

a publisher a few days to complete this process, depending on its ad operation’s size and the number of tags to be
scheduled.

At this phase, the publisher will usually offer a test page to the ad server so more QA can be done at the ad
server’s end. The test page typically mirrors what the page will look and function like on the day the ad goes live. The
page used is often the home page with the usual dummy copy—content of the “lorem ipsum” type—instead of actual
editorial content. This test is performed solely because anything can happen in the live environment. You could have
other ads competing for computer processing power or a hidden navigational menu that is knocking your ad
20 pixels down. Whatever the case may be, this test is performed to eliminate any remaining mystery that could derail
a campaign launch. This could result in a lot of back-and-forth involving the ad server, the publisher, and the creative
agency, depending on whose domain the issue is in. The back-and-forth can be time-consuming for sure, but its
important to hash out issues that may come up during the campaign before the launch. Think of it as test-driving a car
before it’s taken out on the track.

Campaign Launch
When the publisher and ad server give a final thumbs up to the supplied tags, they’re scheduled by the publisher for a
specific launch date and set live. Finally, one last round of checking goes into the tags while they are live in the
real-world environment by the ad server, publisher, creative agency, and most importantly, advertiser. All the checks
have been put in place to assure that the performance remains smooth throughout the course of launch.

Analytics and Reporting
At the campaign’s beginning and end, the advertiser and media agency will request the ad server and any third-party
measurement companies to run their analytic reports. This is done at the beginning to ensure that all analytics are
being tracked successfully and at the end to aggregate all the results and metrics. The ad server’s reports will tally the
totals to date; the tally includes but is not limited to impressions, clicks, activities, video metrics, click-through rate
(CTR), view-through rate, interaction time, and conversions. These results are offered to all requesting parties as the
final report, from which they can get a clear picture of the campaign’s overall performance.

The information in this report is invaluable for the advertiser; it outlines the key performance indicators (KPIs)
of the campaign, whether they relate to driving brand awareness or interaction rate. A report could be issued as a
Microsoft Excel document, a CSV, XML or JSON file or even centrally located on the ad server’s CMS application via a
user-controlled analytics dashboard.

Once the report is sent out and reviewed by all parties, the ad server bills either the publisher or the media
agency, based on a CPM model, on the basis of the total impressions served and possibly labor in development.
This is the stage in which media and creative can learn what worked and didn’t work for their advertiser and apply
the recently acquired knowledge toward making a better campaign in the future. This sort of number crunching and
statistical analysis can be fed back to the folks heading up digital strategy and, even more importantly, the advertiser.

Payment
Based on the overall budget dictated by the advertiser’s total digital spend, the media agency will have a specific
amount to devote to securing the appropriate media inventory. Another budget is assigned to creative and
technological design. The media budget will go to paying the publisher for the ad inventory and possibly the ad server
for the production and serving of ad tags. For the creative and technology development, those payments are sent to
the creative agency, possibly the ad server as well, for any tasks needed to optimize assets.

CHAPTER 1 ■ THE CAMPAIGN PROCESS

15

Note ■ Depending on the campaign, certain one-off vendors—technology partners, enablers, data providers—may be

needed. Their presence would result in additional fees.

Based on the agreed CPM, the advertiser, media agency, or publisher will float the cost. Sometimes deals are
made between the ad server and media agency on the basis of a certain number of impressions being met. Because
the ad server bills off a CPM model as well, if a given number of impressions, x, are guaranteed, the ad server may
cover all production-related costs. Having the client shoot for a tentative impression count—for example, 10,000,000
at $1.00 CPM or 50,000,000 at $.50 CPM—is a great way to go if you want to increase your overall volume. If the agreed
impressions are not met, the media agency pays additional fees to make up what was not accounted for to the ad
server.

Sometimes, things just don’t go as planned, and people have to eat the costs of missed impressions due to
technical or administrative limitations. These mishaps come at the cost of a make-good. Make-goods are often
payable when the ad-serving company does something to hinder the release of tags on time to the publishers. This is
also the case if a publisher double- or triple-books ad inventory at a specific time that the plan initially asked for. This
make-good typically comes by way of free ad serving or an agreed-upon amount of additional impressions covered by
the ad server. The publisher’s terms may be slightly different; it may offer another day of ad inventory or an ad slot on
another section within its site or network at a reduced rate or even free, depending on its relationship with the client.

As you can see, a lot of hands are reaching into the advertisers spending pot. Since every single campaign is
different, depending on the tools and people needed, awareness of budget constraints is a must in determining what
is needed to get a campaign out of the gate. It essential to ensure success, to reduce make-goods, and to schedule
accurate launch dates.

Targeting Audiences—a Smarter Future
As technology becomes more sophisticated and media buying ever more intelligent, advertisers are able to purchase
audience segments very easily and target their audience accordingly. Audience segments are typically sold as a group
of generalized individuals that will most likely view an ad and react positively to its branded messages. Companies
employ many different systems to gain information about users. Such information includes but is not limited to

location•฀

online behavior and browsing history•฀

demographic information•฀

publisher passed data•฀

This information is either served directly by the ad server’s ad tag or derived from browser cookies, which were
once dropped on users by sites they visited. The benefit and power in this is that viewers can get tailored messaging
with information personalized to their liking. Advertisers adore this tool: they gain vital information about their
customer base and its buying habits and location. They acquire the power to influence their viewers, especially when
they include social channels like Facebook and Twitter in the mix.

There is a famous saying: “With great power, comes great responsibility.” It’s certainly true in online advertising.
As user privacy is a huge concern when dealing with such data, the next sections will be geared toward showcasing
how information is accessed, collected, distributed, and used.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ THE CAMPAIGN PROCESS

16

Privacy
Online privacy is currently a huge topic, not just in the industry but even at government level in the United States
and Europe. Like it or not, Google, Yahoo, MSN, Microsoft, and many other companies have information about you.
Believe it or not, you yourself handed it over to them, more or less. A quick question: do you have a Gmail, Yahoo,
or MSN mail account? Do you use social networks—Facebook, Google+, and so on? I assume the answer to at least
one of those questions is a resounding, yes. The truth is, when you sign up and provide information to these social
networks and publishers, you are essentially trading the information for use of their tools and services. You effectively
make yourself Google’s and Facebook’s product to advertisers. These services sell audience information to advertisers
because they know what your likes and dislikes are, how old you are, and even where you live. This may be a bit
scary, even Big Brotherish, but really, you never get anything for free. So choose wisely before you hand over your
information.

For more information on how the U.S. government is helping web users understand their rights, visit
http://onguardonline.gov.

Cookies
So you may be asking yourself, if I don’t sign up for those services, how can they get my information? You don’t need
to surrender all your information to be tracked online. All by itself, online behavior is an extremely valuable metric for
advertisers. Have you ever shopped on Amazon or another shopping site and then later viewed a couple of web pages
and realized that the product you originally looked at on Amazon was now being advertised to you wherever you went
online? If you have, you’re not alone. This happens because you had a cookie dropped in your browser storage.

Every browser has some memory dedicated to storing files in its local cache. They can be stored to optimize
viewing web sites that you frequent. Depending on what domain the cookie was dropped from (in this case Amazon),
different sorts of information bits are stored about you as viewer. In Amazon’s case, this information could be what
product you saw, what color it was, what time of day you viewed it, or a plethora of other information.

Once the cookie information is in your cache, you take it everywhere you go on the Web. Sort of like a digital
shopping passport! This information can be shared with data providers (Blue Kai and similar companies) who use it to
pinpoint even more information about you as you browse. The more you browse, the more information is accumulated
about you and your browsing behavior: what your potential likes and dislikes are, what time you normally search the
Web—the list goes on. This information can even be paired with a unique ID number and loaded in databases for
lookup and retargeting. AdTruth (http://adtruth.com) and companies like it are worth checking out. This information
is not, strictly speaking, personal; it’s just information about you and your online behavior. But again, data providers
can sell the information to advertisers to help them target an audience by groups or segments—potentially down to
individuals.

If you are a Firefox browser user, there is a really nice browser add-on called Collusion. It helps visualize what is
going on when you are browsing the Internet (see Figure 1-6).

http://onguardonline.gov
http://adtruth.com

CHAPTER 1 ■ THE CAMPAIGN PROCESS

17

As you can see, Collusion shows what sites are sharing information about you as you browse the Web and, what is
more important, how they access each others information. The image in the figure was taken by going to five different
web addresses. It’s remarkable to see how much can be collected without a user doing much other than typing in
URL’s. An advertiser can see that some publishers are setting cookies on users to track certain information. Then that
information can be sold to make better media buys and/or tailor the creative messaging within the ad itself.

Note■ Learn more about Collusion at its web site: www.mozilla.org/en-US/collusion/.

Publisher-Passed Data
As you now know, when you use Gmail or Yahoo Mail or something similar, you essentially allow the use of
your information for advertising purposes. Publisher-passed data allows publishers to put an encrypted string
of information into the ad server’s ad tag and allows the ad server to determine what viewer it has and craft an
appropriate advertising message. This information could include age, geographic region, zip code, gender, and even
interests among many other inputs.

Say that, from my e-mail and browsing history, Yahoo knows I am 18 years old and interested in electronics. If
an advertiser is promoting new products to me, Yahoo can pass information to the ad server that my known interest
is electronics and that I am 18. The ad server has inputs to determine an accurate output message, perhaps a video

Figure 1-6. What the Firefox browser add-on Collusion looks like

http://www.mozilla.org/en-US/collusion/

CHAPTER 1 ■ THE CAMPAIGN PROCESS

18

game system and an iPod—who knows? You’ve gotten the idea by this point and are probably asking yourself, “Wait,
advertisers have all this information about me?” The answer to that varies, but at least they don’t have any personal
identifiable information (PII).

PII
Personal identifiable information (PII) is intelligence about a user or a user’s activity that would give away his or her
exact identity. This includes but isn’t limited to name, address, credit card number, and social security number. Media
agencies and publishers want to get as much information as they can about their audience in order to make smarter
business decisions and make advertiser’s dollars work harder by targeting people that will listen. When dealing
with an audience’s personal information, they must be in accord with federal law on online privacy and not use this
detailed information in malicious ways. The only way information of this sort can be transferred via an ad unit is
through use of an opt-in process. It could be a check box selection before submitting a form in an advertisement or
even signing up for a free service.

Luckily for viewers and users, the law also requires an opt-out process. Fundamentally, the opt-out process is
set up to allow users to disallow the sharing of their information on such sites and networks as Google and Facebook
after they’ve signed up for the free service, willingly or otherwise. The opt-out process is a tricky one in that it begs
the question whether what applies to one publisher applies to the next. Also, what happens to all the information that
they already have about you?

What’s Next for Privacy?
My instinct tells me that new rules, policies, and guidelines for Internet and online advertising privacy will appear
sooner or later; probably very soon. Congress has actively sought representatives from all the leading online
properties and advertising outlets with whom to discuss this topic and related matters and ultimately attempt to figure
out whether companies can police themselves or will need the U.S. government to step in. Another issue is that the
whole world is online, and privacy laws are not standard from one country to another.

Anyone with questions regarding privacy online should contact the ad server, the IAB, the IAB UK, or a local
political representative. There should be a clear benefit in how information about an audience is used to deliver
tailored and relevant advertising, and you should voice concern if you feel your rights are being jeopardized. As
advertising and technology continue to get smarter, it’s sensible for you to do the same.

Terminology Review
You’ve been exposed to a ton of industry buzzwords and lingo in this chapter. The purpose was, not to confuse, but to
educate, in the event you have to communicate with team members or prospective clients. Use Table 1-2 to review the
key words and acronyms covered thus far in this chapter.

Table 1-2. Campaign Process Terminology Review

Word Definition or Meaning

creative pitch Where a creative agency develops a marketing message and pitches it to the client, the
advertiser.

media buying Where a media agency secures ad inventory on various publisher sites and ad networks
to satisfy the launch of an ad campaign.

impressions The number of times an ad has been rendered to a screen through the life of a campaign.

(continued)

4

CHAPTER 1 ■ THE CAMPAIGN PROCESS

19

Word Definition or Meaning

CPM Cost per mille (thousand); referring to calculation of impressions served.

roadblock (or takeover) Typically, when an advertiser buys an exclusive spot on a publisher’s page, is the only
advertiser on a given day, and has complete control creatively.

DSP Demand-side platform (or trading desk); it allows the purchase of media in real time via
an auction.

placement A particular ad on a specific section within a publisher’s page or ad network.

CSS Cascading Style Sheets; they dictate the look and feel of a page or ad.

JavaScript A tool that handles the functionality and logic of the page or ad.

IAB Interactive Advertising Bureau; an organization dedicated to the growth of online
advertising and to development of standards for it.

LCD Lowest common denominator; referring to development of an ad that will run well
across an entire media buy.

CTA Call to action; having a clear call to action in your creative will ensure that your users
know how to interact.

k-weight The binary weight of the ad unit—40 KB, for example—that will be rendered on the
publisher page.

CPU processes The central processing unit, which often spikes when a taxing creative, often involving
heavy graphics, animation, and code, is rendered to the page. These factors can slow a
user’s machine down and hinder the overall user experience.

third-party 1x1 tracking pixels from third-party ad vendors to perform validation on metrics within
online advertisements.

CMS Content management systems, typically used by an ad-serving company to house
creative and create ad tags. Also used for inventory and aggregation of analytics.

iframe busting The term used when publishers allow ad creative to work outside the designated ad
iframe on the page.

CTR Click-through rate; it determines the rate at which clicks were measured for a particular
ad campaign divided by the number of impressions served.

interaction time Time spent interacting within the ad experience. This could be when a user has
expanded ad real estate, watched a video or plays a game.

conversions User that perform a desired action. For example, clicking for more or clicking a button to
a landing page.

cookies The file that is dropped in browser storage with information about a user’s online
behavior. This information can then be accessed by other vendors.

PII Personal identifiable information; any information that specifies the identity of a user
viewing or interacting with an ad. Examples are name, address, SSID.

opt-out A process in place that allow users to disallow information sharing to advertisers.

Table 1-2. (continued)

CHAPTER 1 ■ THE CAMPAIGN PROCESS

20

Summary
This chapter has reviewed in exhaustive detail what goes into a typical advertising campaign process. You’ve seen
how agencies develop strategies to achieve an advertiser’s goals, vision, and business objectives. Also discussed was
how media is found and purchased, whether by means of traditional buying or through a trading desk using the real-
time bidding approach. You saw, too, how creative design and development are handled and how digital storytelling
is a key element in a successful campaign. You took a look at how an ad server receives assets and adds tracking to
leverage information about a viewer and tailor messaging. You saw how analytics and reporting from the ad server
equate to payments as well as knowledge and insight into future campaigns. Many industry terms were introduced;
many key points about the industry, including privacy and publisher specs, were discussed. For you to go over this
information is extremely important; the rest of the book will touch on concepts and terminology outlined here.

It’s time now to take what you know about the campaign process into Chapter 2, where we take a deep dive
into understanding what brought us here today and look at the technology that started it all. It’s a bit of a history
lesson, but it sets the stage for how HTML5 became so prevalent in 2012 and how advertising needed to adjust and
follow suit.

If you’re ready, let’s continue . . .

21

Chapter 2

Evolution of Advertising Technology

Now that you have a strong understanding of the campaign process, it’s time to understand what the technologies and
businesses are that drive us to where we are today. The industry, as discussed in the previous chapter, is constantly
going through rapid changes, and as an HTML5 designer and developer, it’s important for you to understand all of
this. Advances in technology, improvements in processes, and gains in overall efficiency appear with predictable
regularity. With new browsers being developed, technical specifications being written, and new plug-ins being
deployed at a dashing pace, there’s never a shortage of important aspects to consider.

For starters, let’s discuss the foundation of the preceding and current Web, how content is rendered to the screen
by means of varying technologies, and improvements seen nowadays that would have been unthinkable years back.
Let’s also take a look at the beginnings and transitions from HTML to the Flash platform and at the business behind
the technologies used on the Web, as well as dive into where the new hotness that is HTML5—and look at it all from
an advertiser’s perspective.

This chapter will discuss how HTML5 was brought onto the scene, what it aimed to accomplish, and how one
influential pioneer rushed it onto the mainstream market. At this chapter’s close, there’ll be a terminology review
to go through some terms that may be unfamiliar. Finally, there’ll be a summary of what has been learned thus far
as we head into the core of this book and learn still more about how advertising is developed and designed with the
emerging web standards: HTML, CSS, and JavaScript.

Early Web and HTML
First, as clichéd as it sounds, let’s take a trip down memory lane and discuss the foundation of the World Wide Web.
It was the 1990s—the era of Pearl Jam, jean jackets, and, what’s more important, the early Web. It all began with an
MIT grad and computer scientist by the name of Tim Berners-Lee, who created the World Wide Web specification
and proposed hypertext markup language (HTML) as the structural language that all browsers would eventually
comprehend to render elements to the screen. The World Wide Web Consortium, or W3C, states that

HTML is the language for describing the structure of Web pages.

In addition to the HTML building blocks, style and function are also needed. Cascading Style Sheets (CSS)
maintains the style, and JavaScript is the language that controls the logic and functionality (also known as the
“behavior” within the page) of the web content the user sees. There is also the Document Object Model (DOM),
which is an object hierarchy for reading and editing objects in the browser stack. For those who are serious about web
development, DOM, a huge topic on its own, is well worth understanding.

Hindsight reveals that the early Web was patchy. Browsers were primitive by design, and trying to figure out the
market share of the installed user base was a big challenge. This made web development on browsers a total mess;
each had its own limitations and code base under the hood. Think of it in the context of television sets, with the TV
as your browser; depending on the set’s manufacturer—Sony, LG, Samsung, whatever—the program being watched
would need to take into consideration all of the different TVs and adapt accordingly. This sounds totally unrealistic

CHAPTER 2 ■ EVOLUTION OF ADVERTISING TECHNOLOGY

22

now, but that’s just what the early Web was like. This is why the HTML spec was pretty simple to start with. It needed
adoption first; then it could iterate and become more progressive.

Advertising with HTML
Everyone now recognizes that web pages are developed and designed with HTML, CSS, and JavaScript. As the
Internet became more mainstream, it was only a matter of time before advertisers got into the market. It reminds me
of the question, “Where can’t you see advertising?” with the answer being, “In your sleep.” As almost everyone had
an opportunity to be online at some point throughout the 1990s and into the 2000s, advertisers needed to get onto
publisher pages so that casual web surfers—a vast potential viewership—would see their ads.

Naturally, in the beginning ads were very basic; just static images at first. Think of the early AOL startup page on
a 56k dial-up modem; you know, the one that you had to unplug your phone to use (if you were tech savvy, you had a
phone line splitter). Depending how far back you think, the ad inventory was scarce if present at all.

Note ■ The Internet Wayback Machine allows you to enter a URL into its database—for example, AOL.com—and

review previous versions of the site throughout the years. The ad slots do not render, as these campaigns are long over,

but you can get an idea as to where and how ads were used then. Visit it here (note that all sites aren’t supported):

http://archive.org/web/web.php.

Pop-up Ads and Subsequent Evolution

We all know how deeply pop-up advertising messages were hated and how much they plagued the Internet early on,
so I’ll spare you more words of hate and offer something of an educational lesson instead. In short, an annoying pop-up
ad is only a snippet of JavaScript code executing. In JavaScript, the following code opens a new browser window and
takes the following parameters, or arguments or URL, name, specs and replace.

window.open(URL,name,specs,replace);

With the preceding code, a new window is spawned when a user views a page where this code is present. Since it
was notoriously annoying to have many new windows open as a user casually browsed the Web, browser developers
implemented what are known as pop-up blockers to keep any window.open(. . .); code from executing without
the user actually clicking on something first. This was a great improvement in the overall user experience online; it
forced advertising to be maintained within the specific real estate of the page it was intended for. Given that effect,
advertisers were very limited as far as different forms of advertising online. They knew that, due to the popularity of
the “new” screen, they wanted to be in the digital space, but they didn’t quite know how to measure their return on
investment. Typically, they ran simple ad campaigns; nothing extraordinary, because of the creative limitations and
the fact that they could never measure campaign performance. For media buying, this was a much different approach
and a new type of media inventory to secure for advertisers. For the longest time, they had only needed to worry about
TV as their main screen, and they had Nielsen (nielsen.com) and other companies to analyze the success of their
television campaigns.

Pioneers in the space, seeing the advertisers’ frustration as a huge opportunity to capitalize on, began to add
metrics and creative enhancements to their relatively simple campaigns. In the beginning, the creative of the ads
and metrics was extremely meek and primitive, being either static or having only slight, if any, movement, utilizing
animated GIFs, and measuring only on impressions and clicks. Also, since browsers were fragmented in the
adoption of the users, ad designers had to leverage browser-specific code to maintain how an ad would look in various
environments. This additional effort, just to get a simple campaign out the door, proved to be a time-consuming process.

http://AOL.com
http://nielsen.com

CHAPTER 2 ■ EVOLUTION OF ADVERTISING TECHNOLOGY

23

Rich Media

As advertisers increasingly asked for more creativity and measurement from their online ad campaigns, a new form
of online advertising was required—Rich Media Advertising. Since online ads were pretty much static in the early
Web, the arrival of interactivity, rollovers, and expanding ad experiences met with real popularity and rapid adoption
in the advertiser market, which saw them as bringing a new, much-needed window for creative reach and a way to
effectively measure online success.

On the other hand, the media vendors saw this as a shift in the way advertising was created, bought, and sold
in the space. As you may guess, early rich media ads were developed using traditional HTML, CSS, and JavaScript
techniques. Figure 2-1 shows the very first Rich Media ad—for the movie Erin Brockovich, created and served by the
company PointRoll (pointroll.com).

Figure 2-1. The first Rich Media ad

Things have changed a bit since then, of course, but in the online space at the time, this was truly
groundbreaking. For the first time a user could roll over the ad unit and have it expand to a much more robust
experience. The traditional Call to Action (CTA) for “click here” was revamped to display “mouse this ad”, inviting
users to interact by simply rolling over the ad unit to get more content. It’s also helpful to note that even in the
demonstration environment, there are messages to handle the browser differences and inconsistencies. In most
cases, if you could not see the rich ad experience, the ad server company served you a static or a default ad instead
(see Figure 2-2).

Figure 2-2. The first Rich Media ad’s backup static or default ad

The ad-serving platform would be smart enough to determine whether or not the user could render the ad in
its rich form by using what was called the “user has” rule. This technique analyzed the user’s system and browser

http://pointroll.com

CHAPTER 2 ■ EVOLUTION OF ADVERTISING TECHNOLOGY

24

and detected to what level the user’s machine was capable of rendering the unit. This sort of dynamic adjustment
was really unheard of prior to Rich Media. Additionally, in the event that the user saw a static ad instead of the rich
one, the ad platform would report impressions differently; in most cases the static impressions would be offered at a
reduced CPM to the advertiser.

Tracking and Measurement

Throughout early Rich Media ads, tracking and measurement were pretty minimal yet effective enough to tell a story
for the marketer. Advertisers, however, wanted to know more about their customers if they were going to sink more
media dollars into this space. As more money eventually flowed into the industry, rich media became the common
approach to online advertising.

Since advertisers were now able to measure how many people interacted, expanded, and closed an ad, they could
include photo galleries, e-mail forms, and other creative elements to engage the audience, all the while reporting on
everything and having it conveyed back to the advertiser for valuable brand insight. As time passed, this approach to
advertising became solid enough to sustain advertisers’ interest, but HTML, CSS and JavaScript had limitations when
it came to creativity and to what could be done within the native browser environment.

Luckily for advertisers, there was a nifty little browser plug-in gaining traction in the market. The famous
“skip intro” plug-in created by Macromedia allowed developers to easily create rich animation and add video and
interactivity. Simply put, this plug-in single-handedly changed the face of online advertising forever.

Flash
Throughout the 2000s, digital advertising was pushed as far as it could go with animated GIFs, HTML, CSS, and
JavaScript. Frequently, some simple interactivity and animated GIFs would be the creative extent of a campaign.
Marketers and advertisers pushed the envelope creatively, but the limitations of the browser were much too significant.
Advertisers just couldn’t do things directly inside the browser that they wanted to accomplish. The response to this
limitation was Macromedia’s Flash Player.

Flash allowed for gorgeous, highly interactive content within the browser by use of an installed plug-in. The Flash
Player swiftly moved to the forefront; its popularity and ubiquity made it the prime platform for moving online
advertising forward. It finally gave developers and designers a cross-browser way to easily develop online experiences
and deploy everywhere, consistently. Before it came along, such things were really unheard of.

Flash was the answer to many problems, creatively and from a business standpoint, due to its rapid development
environment. By use of the plug-in, web developers were confident that the same experience would be had regardless
of browser manufacturer, operating system, or version. A market once dominated by static ads and basic HTML-driven
experiences quickly transitioned to Flash, thanks to its ease of use and large installed user base.

Flash’s market penetration would grow to a percentile in the high nineties in major markets around the globe. No
other browser plug-in had so much reach. In addition to enhancing graphics and interactivity, in time it would come
to support bidirectional streaming of video and audio content, something that a browser alone couldn’t dream of
doing (at least back then).

While many developers and designers loved Flash for its ease of use, others disliked it for its easier programming
language, which allowed immature developers to build inefficient and poorly designed programs or experiences.
Flash’s JavaScript-like language, ActionScript, permitted code to execute on animation frames, and because of the poor
coding techniques tied to early Flash users, it slowed browser experiences and often even crashed browsers due to the
hogging of computer resources. Since ads could be developed in a fashion that would slow down users’ machines and
overuse system resources, Flash typically got a bad rap from the hard-core software developer community.

Adobe
As Macromedia’s Flash continued to grow in both web development and online advertising, Adobe, seeing the
enormous opportunity with Flash, ended up acquiring Macromedia and all of its products on December 3, 2005, for a

CHAPTER 2 ■ EVOLUTION OF ADVERTISING TECHNOLOGY

25

whopping US$3.4 billion. With Adobe’s acquisition of Flash and its first company release of version 9, Flash had many
years of developer interest, installed user base, and platform development already. So Adobe continued to invest
heavily in Flash as the pinnacle way to develop and deploy rich Internet applications and advertising on the Web.

Flash Player Ubiquity
By version 9, the market that had the Flash Player installed was astounding. By June 2008, 98.4 percent had a Flash
Player version of 7 or higher installed. With these numbers, advertisers looked solely to the Flash platform for executing
their rich experiences on the Web. Not only did they leverage it within online advertising campaigns, but they also
realized the power in the platform for creating their branded web sites, landing pages, and other web properties.

Other plug-ins in the space—including Java applets and the newer Unity player—have never seen such high
penetration rates, which is why advertisers don’t currently look to them as ideal platforms for far-reaching online
advertising.

Note ■ You can see the current Flash Player Penetration Rates here:

http://www.adobe.com/products/player_census/flashplayer/PC.html.

Flash Player Video
From this moment on, a lot changed on the Web; advertising, the days of thumbnail-sized videos, and video player
differences were now a thing of the past, thanks to Flash and faster machines. As of Flash Player version 6, released in
March 2002, video could be included from within the compiled Flash file (SWF) itself; as of version 8 it could support
streaming video content from servers. At a high level, this changed the way marketers and advertisers developed
online ads forever! Entertainment advertisers could now produce their movie trailers for the Web, and it could now be
watched even within an ad unit.

Video on the Web was and still is a huge topic. With more and more advertisers and people wanting web video
and with the technology finally up to speed, YouTube and other billion-dollar businesses were created. With dial-up
Internet access a distant memory and more and more people becoming users of broadband Internet and getting
download speeds of 10 to 30 megabytes per second and with enhancements to the Flash player as of version 10.2,
video could now be full-screen HD and offloaded to the GPU of the user’s machine, which allowed for smoother
playback; meanwhile, the CPU was freed up to do things like resource allocation and code execution.

From a publisher’s perspective, since video was being streamed into the ad unit, it came at no additional cost to
the overall k-weight size in the creative advertisements. Now advertisers could do more within the ad and not worry
about a poor user experience or even breaking specs. As HD video on the Web became the norm, companies like
Akamai created true streaming HD networks and delivery solutions for delivering and analyzing video performance.

Advertising with Flash
With the Flash Player reaching nearly 100 percent of all desktop machines in major markets, advertisers saw the
opportunity to create compelling and interactive rich media with full-motion graphics and dynamic data on a single
unified platform. Marketers were totally hooked; Flash was the answer to all the problems that had existed in previous
versions of HTML. With the evolution of the creative, tracking followed suit; growing much more sophisticated, it
proved a better return on investment (ROI) for advertisers and media buyers.

Ad-serving companies could track anything: a view, a rollover, even video milestones and completion rates.
Basically, if you could think of it, they’d track it. With Rich Media leveraging the Flash Player, metrics and creativity
soared to new levels. Flash allowed for deeper tracking and analytics integration with use of APIs. Flash’s ActionScript
APIs were developed to provide communication with ad-serving platforms, which allowed for more integrated
tracking across campaigns.

www.allitebooks.com

http://www.adobe.com/products/player_census/flashplayer/PC.html
http://www.allitebooks.org

CHAPTER 2 ■ EVOLUTION OF ADVERTISING TECHNOLOGY

26

As was discussed in the previous chapter regarding browser cookies, Flash also has its own way of storing data
on its internal cache. Local shared objects—known as Flash cookies—allowed developers to store up to 100 kilobytes
of data by default to provide richer experiences within ads. However, the legal issues around privacy still arise in
advertising, whether it’s browser- or Flash-based cookies. One thing is for certain, though: with Flash, rich media
advertising was really born; rich motion graphics, video, dynamic data, and much more could finally be done within
the browser by using a true ubiquitous plug-in.

HTML5
So now we know that Flash has made the biggest impact in online advertising thus far, and we’re not far off from
seeing how HTML5 will do it again. Sure, HTML has been through a couple of versions and even a few variations
to date (XHTML), but we’re now in the midst of the fifth release. As of 2012, the HTML5 draft isn’t set for public
finalization for many years yet, but advertisers are looking to leverage the new power of HTML5 to create their
next innovative advertising campaigns, taking what Flash did within the plug-in but doing it all within the browser,
natively. The HTML5 spec has had a lot to learn from Flash, so it’s pretty important to see its significance within the
overall picture.

Such HTML5 features as the canvas element, drag-and-drop, and the video element all evolved from experience
with the Flash Player and what the browser couldn’t handle on its own. Think about it: there was no cell phone before
the pay phone! You must understand that the Flash Player did what the browser couldn’t do for roughly ten years, so
it’s pretty exciting to see where we will end up, what with coming back to web standards and HTML5 after all this time
with Flash.

HTML5 may seem like the new kid on the block, but in reality the W3C and working-group members drafted the
first spec in January 2008. Since then it’s been through many revisions and public “last calls,” where members inside
and outside the W3C voted on the completeness of the current spec.

Why HTML5?
One may well ask, “What rushed HTML5 onto the scene so quickly?” or “How come Flash was fine for so long and all
of a sudden, HTML5 was the main focus for everyone online?” There is a simple answer. On June 29, 2007, Steve Jobs
of Apple changed the world with the release of the iPhone, complete with a browser that would not support the Flash
Player. Now, I say change the world for a variety of reasons—first, it would be the first smartphone to have the full
web browsing experience with a glass touch screen. Second, it would change the Web forever, since before its release
nearly all web sites were powered with at least a small bit of Flash content for graphics, video, or dynamic content.
Finally, along with the Web, digital advertising would follow suit because nearly all digital campaigns to date had been
created in Flash.

Many folks have mixed feelings about Apple’s decision not to support Flash on the iOS operating system. Some
say it was business related; others focus more on the overall performance and battery life on smartphones and tablets.
I myself don’t care too much if Flash, HTML5 or something else is the new standard. The same thing went on years
back when everyone transitioned over to Flash. At the end of the day, working with web standards and removing
any dependencies from external plug-ins will always bring you out on top in the long run. As with all respectable
technology of its time, it eventually comes to an end and eases the fragmentation for everyone. For more insight into
Steve Jobs’s perspective on the Flash platform, check out the now-infamous post “Thoughts on Flash”
(apple.com/hotnews/thoughts-on-flash).

HTML5 Adoption
Now you may be saying, “OK, so Apple pushed through HTML5 by removing Flash Player on the iPhone, but what
about the other browsers?” This is a great question but one that isn’t easily answered. First, as mentioned in the
previous section, HTML5 is in a working spec state, meaning it’s not complete. Even as I write, it’s still evolving.

http://apple.com/hotnews/thoughts-on-flash

CHAPTER 2 ■ EVOLUTION OF ADVERTISING TECHNOLOGY

27

So adoption is fragmented, and support is often limited but growing. Apple’s first release of the iPhone implemented
only some features of the new web standard; in reality, HTML5’s adoption is still, to this day, very fragmented. In the
desktop space, browsers are all at varied levels of HTML5 compliance, and compliance is always changing because
the spec is not finalized. You see how confusing this can get? If you visit beta.html5test.com, you’ll be able to see how
your browser ranks against the current HTML5 spec. Chances are it is subpar in the overall scope of HTML5, with
some features completely unsupported. You may ask, “Why still choose to use it?” Well, it’s OK! In fact at the time
of this writing, only the bleeding-edge beta browsers, like the Chrome Canary, Firefox, and Webkit Nightly builds,
support most of the latest and greatest features (but not all). Current HTML5 adoption is nominal; you can see how
much of a headache it is for developers and designers to create a unified experience in this fragmented area. It’s very
reminiscent of the early Web; still, we need to start taking advantage of HTML5’s features if we want penetration on
mobile and tablet devices. For advertisers, this is a must!

HTML5 Video
One small feature of HTML5’s overall feature set—it was dubbed in some blogs and news forums the “Flash Killer”—is
HTML5 video (it will be covered in more detail in Chapter 7). I’d like to take a minute to set the record straight, as
many educated developers have done before. First, because Flash is a platform, it requires a plug-in to play video
within your browser. Flash can support progressively downloaded video as well as streaming. It can also support video
from various protocols and adaptively change during playback. Second, as HTML5’s video element is a tag within the
HTML markup, dealing with this tag at the present time has limitations. For example, pretty much each browser takes
its own file wrapper and codec to render the video correctly. This proves to be a huge task for video transcode jobs,
and anyone attempting to have video within their creative. Also, as there is no standard for streaming video through
HTML5, more development is needed in that realm as well.

A very comprehensive article written by online video great Robert Reinhardt outlines the fragmentation around
HTML5’s video element, not to mention the overall support for HTML5 (see “The World of Pain That Is HTML5
Video”: transitioning.to/2012/01/the-world-of-pain-that-is-html5-video/). Things like streaming and
adaptive bitrate are all things outlined within the article.

HTML5 vs. Flash on Mobile
For advertisers in the modern world, mobile is a key platform to target, and it’s important to know what evolving tech
can achieve here. It’s pretty safe to say that mobile was indeed primitive in the beginning, when the only smartphones
were Nokias, Palms, and Blackberrys and their web browsers were . . . well, for lack of a better word, awful. Around the
late 2000s, since the arrival of the Apple iPhone, mobile has become a huge market. Many people saw this coming.
Thanks to the iPhone’s web browser, it offered something of an actual web experience with full functionality, unlike
earlier devices that offered the Web but in a different view. Web developers and designers, heavily invested in Flash,
needed to ensure that the decision makers on the business end understood that their online initiatives would need to
support the growing market share of HTML5 on mobile devices—and OH BOY, was it growing!

There is a lot of confusion within the industry as it relates to the HTML5/Flash debate. Many startups in the
field saw this; they raced into this market, using fear as fuel, to provide services that eased this transition, which in
turn moved HTML5 along even faster. Companies like Adobe and Google started making tools that would take Flash
timeline animation and repurpose it into HTML, CSS3, and JavaScript animations for emerging browsers to render
without use of the Flash Player plug-in.

With Apple’s iOS taking up a massive share of the mobile operating system market, Google’s Android and
Blackberry’s Playbook were being released with support for Flash. Adobe’s credo would be that users of these devices
would get the “complete web experience” and that Flash Player would be supported and installed on mobile devices
in their product road map. In fact, Adobe released this statistic outlining the future support of Flash Player on mobile
into 2015 (see Figure 2-3).

http://beta.html5test.com
http://dx.doi.org/10.1007/9781430246022_7
http://transitioning.to/2012/01/the-world-of-pain-that-is-html5-video/

CHAPTER 2 ■ EVOLUTION OF ADVERTISING TECHNOLOGY

28

Adobe, which had huge ambition for Flash support on mobile devices, felt that with the huge backing in the Android
and Blackberry market, Apple would eventually give in to supporting Flash on iOS; for some time, that wasn’t something
to giggle over. Apple, it was said, actually gave Adobe a chance to prove that the mobile Flash Player could be performant
on their phones and not overly tax the user’s device in such a way that it would eat up battery life and ultimately crash the
application. Whether this happened or not is unknown to me, but Adobe’s take is much different on this matter.

This is where the politics behind the age-old HTML5 vs. Flash business comes into play. Hopefully, with the
information outlined thus far, you can draw your own educated conclusion. That said, in late 2011 Adobe released
a public statement that they company would finally sunset the Flash Player on mobile and focus efforts on web
standards leveraging HTML5. This caused many repercussions. For starters, Adobe’s faithful developer community
felt betrayed and backstabbed; they thought their future on mobile was murdered. Also, many in the industry saw
this as Adobe’s white flag of surrender to Apple. If you look at the business decisions around it, however, Adobe took
an altogether different approach for the company. Adobe also stated that it would continue to support native mobile
applications built on Adobe’s Integrated Runtime (AIR).

Note ■ At a high level, Adobe AIR is essentially a framework that leverages a code base and structure very similar to

what is used in the Flash Player. With AIR, developers can build native applications on desktop and mobile devices using

the same practices they did building rich Internet applications with Flash Player. In fact, at the time of writing, Adobe AIR

is on its 3.2 release and continues to be supported in many distribution channels, including desktop, mobile, and TV.

With AIR’s approach to building native applications, when a developer’s application gets compiled, it is actually

rewriting the code from native ActionScript into native Objective-C or Java for the iOS and Android operating systems.

This means that the AIR compiler and packager will actually write everything to the assembly of the device, which is

extremely low-level code, lower than the APIs available to iOS or Android developers building for native applications.

It’s damn close to machine code! 1’s and 0’s, my friend; that’s all.

Figure 2-3. Showcasing the projected Flash Player penetration rate in smartphones (Credit: Adobe)

CHAPTER 2 ■ EVOLUTION OF ADVERTISING TECHNOLOGY

29

Evolving Advertising on Mobile
With the news outlined by Adobe, development on mobile had to move into the approach of using web standards
and completely separating from the Flash Player. This caused a huge shift in an already new market, and mobile
advertising needed to follow suit. The industry once dominated by Flash thought that it had a saving grace in the
Android operating system and Blackberry, and it really thought that iOS would come around eventually and accept it
as well.

Needless to say, that didn’t happen, so the mobile advertising ecosystem started relatively small. As advertisers
knew that they wanted to be in the space, they looked to their creative agencies and third-party ad servers for help
in navigating the even more fragmented space and enabling an expressive ability to solidify an actual mobile ROI.
However, the division between software, hardware, OS versions, and software development kits (SDKs) was fearful
to invest actual media dollars into. It just didn’t make any sense, operationally, for a developer to create a Flash and
HTML5 version of the same ad, not to mention all the different sizes to support, all the different screen real estates on
mobile, and the different SDKs to interface with. It’s exhausting just thinking about it!

This posed a huge problem in the advertising industry. Remember from the last chapter that we briefly
discussed responsive design and tracking requirements; currently this portion of the online advertising industry is
still very much fragmented. To place it into perspective, what happens on publisher A’s page may not be the same for
publisher B. So what happens when you try to buy media across an ad network? How are you supposed to add scale to
your workload when you have all of these different variables to worry about?

Transition to HTML5
As the market scrambled to figure out in which unified direction to head, many popular browsers and mobile devices
transitioned (or are in the process of transitioning) to an all-HTML5-centric platform, leaving advertisers and
marketers needing to follow suit in order to get their brand message across to their end users, regardless of screen or
device accessing the content. In addition, it’s becoming very clear that Flash was in fact a really well designed rapid
development environment—nothing like HTML5, CSS3, and JavaScript to date, but I feel that will change as the tools
become developed and fragmentation eases—so the current state advertisers are frustrated with the operational
timing and costs in order to achieve the same experiences the Flash Player did so well for so long.

IAB Enhancements and SDK Providers

Throughout all of the confusion, fragmentation, and operational woes, the IAB has aimed to assist and support in
the transformations involving HTML5 and mobile by developing a few enhancements. With the varied support in
mobile applications, media buyers could not secure inventory at scale because there was no assurance it would work
across everyone’s application. Throughout the mobile ecosystem there are many different ways of serving ads inside
those apps everyone knows and loves on iPhones and Android devices—Angry Birds, Words with Friends, and Draw
Something, for example. The ads seen in these places get into the free applications by way of an SDK. These SDKs
provide the communication channel between the ad creative (HTML5, CSS3, and JavaScript) and the application’s
code base, either Objective-C or Java. Think of it as the translator between two different languages.

Developed out of industry need, the open rich media mobile advertising (ORMMA) draft was created as an
initiative to standardize the way mobile rich media ads are displayed across various platforms. There are other SDK
providers in the space that have their own solutions. To name just a few, there are Apple’s iAds, Google’s AdMob,
Medialets, Millennial Media, Opera’s AdMarvel and RadiumOne. It’s easy to imagine how much more fragmentation
this adds. Without a standard there’s no way to provide scale in a media buy or development! Mobile rich media
ad interface definition (MRAID), the JavaScript API endorsed by the IAB, is based strongly off the learnings and
developments in the ORMMA initiative. MRAID is a pure JavaScript-based API that communicates with publishers’
applications in an approach similar to ORMMA’s, but it is much simpler in that it exists only to provide a few levels
of functionality in all mobile rich media ads. Last of all, the Mobile Rising Stars are formats developed by industry

CHAPTER 2 ■ EVOLUTION OF ADVERTISING TECHNOLOGY

30

members and adopted by the IAB as universal mobile rich media advertising formats. These formats are intended to
be scaled across publishers; that is, publishers should adopt their spec if they are certified with the IAB.

Note ■ We’ll cover SDKs and in-application advertising in more detail in Chapter 9.

Development Tools
We’ve talked a bit about the troubles within company operations and how the IAB is attempting to provide ease
through standardization, but we haven’t yet discussed, from a creative standpoint, the tools that have emerged on the
scene to ease developers’ and designers’ workloads when creating rich media ads. Development tools from Adobe, such
as Wallaby, Edge, Shadow, and even Flash, have definitely showcased how Adobe, as a company, is really focused on
the emerging web standards and is out to give developers the best tools possible for creative design across the HTML5
browser market (see more about these in the “Adobe” section).

A newcomer to the scene, Sencha, has also developed many advancements in this area, what with Sencha Animator
and even more with the HTML5 enterprise application market, with ExtJS, and with Sencha Touch. Sencha Animator is a
desktop application that eases development for HTML5, CSS3, and JavaScript creatives. The tools can be used for anything
from simple to complex animations to easily including interactivity, custom-executing JavaScript, and cross-platform
video, all within one clean user interface very familiar to users of Adobe’s Flash Professional. Both companies (and others
not mentioned here) have created these tools to help alleviate the operational costs of building ads and even rich web
applications on the new browsers. (To learn more, visit Sencha.com and Adobe.com to view current product downloads.)

Note ■ We’ll dig much deeper into the mobile toolsets and programs in Chapters 8 and 9.

HTML5 Business
Unsurprisingly, HTML5 is a business as much as it’s a progression in web technology. The following sections will
provide insight into different companies’ positions on HTML5 and how they fit into the environment and, ultimately,
support the growing specification. In addition, these sections will give an idea on where they fit within the advertising
sector. After reading this section, you should have a much clearer understanding of who the big players are in the
space, as well as who the newcomers are, and be a better-prepared HTML5 advertiser. Also, throughout this book,
we’ll take a look at all the companies looking to assist in HTML5 advertising creations.

Apple
Apple has long been associated with innovation, technology, and online enhancements. With the iPhone and iPad
partly responsible in shifting the Web towards HTML5, it seems only fitting to start with this company and outline
their objectives as they pertain to HTML5 and emerging web standards. As you remember from what’s gone before,
many thank Steve Jobs for pushing the impending web standard that is now called HTML5. Every book about Steve
Jobs tells how focused he was on perfection. Perhaps it was this perfectionism that skyrocketed Apple’s market share
and capital gains in the past couple of years. When, following a protracted battle with cancer, Jobs passed away in
2011, Tim Cook became CEO of the biggest and most profitable company in the world.

Tim Cook’s core vision is very much aligned with Steve’s. New versions of the iPad, the iPhone, and the Mac have
been released on schedule, and Apple’s market share continues to rise. The hardware Apple releases continues to
get faster, more powerful, and more mobile. Having these sophisticated devices enables developers and designers
to really raise the bar as it relates to HTML5. As for HTML5, Apple members are active in the W3C and continually
building their browser, Safari, into an HTML5, CSS3, and JavaScript powerhouse.

n

http://Sencha.com
http://Adobe.com

CHAPTER 2 ■ EVOLUTION OF ADVERTISING TECHNOLOGY

31

Safari is a fast browser built using Webkit, which is an open source project based in Apple’s hometown,
Cupertino, CA. Each new stable Safari release usually does not include all the latest and greatest offered through
HTML5, but users can always download Webkit Nightly, which is a bleeding-edge version of Apple’s Safari browser to
experiment with features that may (or may not) make it into the final HTML5 spec.

iAD

iAD is Apple’s ad network for developing and delivering rich media across applications throughout their app store; it
has some pros and cons. On the positive side, it’s one standard, developed by Apple to be created once and deployed
across their huge ad network. Second, iAD offers a suite of software to use to create really rich ads with extreme
ease. However, it is Apple, and Apple is known somewhat as a “walled garden”—you need to follow all of Apple’s
rules to access inside, and once inside there is only a specific set of features to play with. Also, being locked into a
suite of software tools developed by Apple, I’ve noticed that the k-weight of iADs are absolutely huge, especially for
a mobile device; this is something that seems like a huge oversight in my opinion. Aside from that, iAD once started
with a minimum campaign entry budget of a million dollars. However, due to the lack of participants, Apple recently
dropped its ticket price, yet again, to $100,000. We’ll look at how Apple plans to enhance its tools and the iAD platform
in and for the future, but we’ll focus more on iADs in Chapter 9.

Google
Much like Apple, Google has had a long history on the Web. Starting out as a search engine, it has moved into many
different web markets: social, mapping, analytics, browsers, and mobile. Much like Apple’s Safari browser, Google’s
browser, Chrome, is built on the Webkit engine, and Google’s emerging web browser, Chrome Canary, supports many
bleeding-edge HTML5 features that may or may not make it into the final HTML5 specification.

AdMob

Among Google’s mobile efforts is its ad network, AdMob. Acquired in November 2009 for $750 million dollars, AdMob
has its own list of mobile publishers that leverage the AdMob SDK and allows advertisers to run across the AdMob
network and maintain the same functionality across applications. Along with its ad network, Google also runs the
Android operating system for mobile devices. Android has a huge market share within the mobile ecosystem, but its
focus on openness creates its own microfragmentation in the market. Android devices can vary in screen size. the
browser, video players, and other feature sets, as well as the version of the operating system, can vary, too, since the
system is open. Apple, unlike Android, has a controlled development environment, which lets developers know what
they’re getting into by explicitly keeping the operating system closed.

The final thing to mention about Google is its Dart Programming Language. Dart is Google’s method of executing
and replacing JavaScript within its Chrome browser more rapidly, as well as solving some of JavaScript’s problems.
Dart is an object-oriented programming (OOP) language with a C-style syntax. Dart is either to be compiled into native
JavaScript or to work directly within the Dart Virtual Machine on the latest browsers that support it. As of March 2012,
Apple, Mozilla, Microsoft, and Opera have no plans of implementing Dart into their browsers. However, keep this
language in mind if or when you deploy to browsers that support DART. It could prove to be beneficial in future
development.

Adobe
There’s been a lot on Adobe and the Flash Platform in the preceding sections. Adobe has long had its roots in the
Web with the Flash Platform, and the Flash plug-in went through some changes (to say the least). However, Adobe,
an active member in the W3C and working groups, is still committed to the emerging web standards and is offering

CHAPTER 2 ■ EVOLUTION OF ADVERTISING TECHNOLOGY

32

up various additions to the HTML5 draft, such as CSS Regions and CSS Shaders, which aim to provide layout and rich
cinematic features via CSS styling.

Apps for Developers

In addition, Adobe has released some helpful applications to the developer community, apps focused on design
and development for HTML5, CSS3, and JavaScript, including Edge, Wallaby, Shadow, and even Flash Professional.
Edge, a tool very similar to Flash, creates timeline-based animations. The main difference between them is that
Edge exports for direct use inside the latest browsers without use of a plug-in. Wallaby is a tool that will allow Flash
designers and animators to take their .fla file and export it to native HTML5, CSS3, and JavaScript animations. Shadow
is a multidevice developing suite; it allows developers full control over how content will look on various displays. Finally,
Flash Professional has support for exporting to the HTML5 canvas object and creating Sprite Sheets.

In addition to the desktop applications, Adobe has also released Touch Apps for tablet and mobile devices. Touch
Apps include Photoshop, Proto, Ideas, and Debut; they allow designers and developers to create on the go and seamlessly
marry what’s been created back to their desktop using their Creative Cloud tool. Creative Cloud is essentially a global
sync for all of a developer’s creative assets. Adobe has also made huge acquisition deals in PhoneGap and Typekit.
PhoneGap allows web developers the flexibility to package their HTML5, CSS3, and JavaScript files for native use
on mobile devices as applications. Typekit, on the other hand, is a huge web font library geared toward allowing
designers using CSS Web Fonts to do so with the utmost of ease. Finally, Adobe’s Flex Platform was donated to Apache
as open source software completely driven by the developer community now.

Note ■ To view Adobe’s take on the emerging Web, visit beta.theexpressiveweb.com.

Mozilla
Mozilla is a company focused on open source development and involvement from the greater web community. Mozilla
is behind the very popular browser Firefox and the not-so-popular e-mail client Thunderbird. Mozilla, a nonprofit
company, is focused on building the Web through openness, security, and a mantra of being built by people who care
more about the Web and less about the business side of things.

Mozilla, much like other companies, has produced features for the HTML5 working draft and developed a
bleeding-edge browser, called Firefox Nightly, for testing the latest features. Like Chrome Canary and Webkit Nightly,
this browser may include features that never actually make it into the final HTML5 spec, but it also includes a package
of wonderful web inspector tools, called Firebug, for the browser. Using Firebug, developers can easily debug HTML,
CSS, and JavaScript on live pages. Lastly, Camino is Mozilla’s Mac OSX-focused browser; it aims to deliver an open
browser to Mac users.

Microsoft
Microsoft is pretty much a household name. It has created the Windows operating system, the Xbox 360, and the
web browser Internet Explorer (IE). For many years IE was the de facto standard browser, since it shipped natively
with Windows PCs. However, as browser companies emerged and as Microsoft dropped a bomb of a browser with
IE version 6, many users shifted gears to Firefox or Chrome or even became Apple users and adopted Safari as their
main web browser. As Microsoft heads into adopting the next generation of web standards, they still have a lingering
customer base on Windows XP, which supports only up to browser IE8. Thus, XP users will never have an emerging
browser unless they update to Windows 7 or the latest 8 or install Google’s Chrome Frame into their browser.

http://beta.theexpressiveweb.com

CHAPTER 2 ■ EVOLUTION OF ADVERTISING TECHNOLOGY

33

Note ■ For more on Chrome Frame, visit google.com/chromeframe.

Users running Windows 7 and above can use IE9, but it supports only some HTML5 features. In fact, many
suggest that IE9 is anything but an emerging browser supporting the latest web standards. See people.mozilla.com/
~prouget/ie9. Also, IE9 is soon to be outdated, what with the release of Windows 8 and IE10. IE10 will be Microsoft’s
first major contender in the emerging web browser market, as it will support many of HTML5’s feature sets. It is also
slated to support the latest HTML5 spec and offer what is called a plug-in free browser, to be called “Metro” or what
was formally known as Metro. Metro is essentially the new and quite famout “start” menu from Windows. The Metro-
style apps will support HTML5, CSS3, and JavaScript from a front end, as well as various Microsoft technologies from
a back end. There has also been talk that certain PCs will begin shipping with Kinect cameras inside the computer,
offering yet another way to interact with the content on screen. Really, what does a browser without plug-ins mean?
Simply, that no Flash, no Unity, and no other plug-ins will be supported. Time to learn web standards, don’t ya think?

Sencha
Sencha is the new kid in town as far as technology goes. Based in California, Sencha makes JavaScript-based
frameworks for desktop and mobile called Sencha Touch and ExtJS for HTML5 web-application building. Their
web-development apps can easily be combined with Adobe’s PhoneGap (or another packager’s device) that ports
HTML5, CSS, and JavaScript files over to native files, which the device can run externally of the browser environment.
Developers often use Sencha’s tools to rapidly build applications for the Web and deploy to app stores like Apple’s App
Store and the Android Marketplace.

In addition to this enterprise application focus, Sencha also runs a product called Sencha Animator, which is its
solution for timeline-based animations using web standards and CSS3 based graphic animations. Like Adobe Edge
and Flash, Sencha provides an interface for dealing with rich graphics, animation, and even video, all within the
browser environment. Animator is targeted heavily toward the mobile industry; in addition, it offers native support
for ORMMA and the MRAID API. On the business end of things, since the recent layoff of many of Adobe’s Flash
employees, several people, shifting gears from Adobe, have moved down the street to work on Sencha’s emerging
products. My bet is Sencha will become a bigger player in the space as time progresses.

RIM
Research In Motion (RIM), known for the Blackberry operating systems, has been in the security business and
enterprise world a long time, but Blackberry browsers, also for the longest time, have been primitive in mobile, to say
the least. Until recently RIM didn’t offer the true web experience, but lately it has started making consumer-friendly
Playbook, Torch, and Curve tablets and phones, with enhanced browsers, touch screen support, and even Flash
support. However, in 2011 RIM decided to pull out of the consumer market and head back into the enterprise market
due to its rapid decline in market share.

Blackberry, soon to release version 10 of its operating system, supports another marketplace application called
Blackberry App World, but it remains defeated in the mobile and tablet market among consumers. Its main competitor,
Apple, leaves it with minimal market share.

Opera
We can’t forget about the Opera browser. Even though it’s not huge in the U.S. market, it has enormous support in
European and African markets (especially with Opera Mini), since mobile Internet is more prevalent there due to the
lack of wired connections. Opera started out in 1994, first developing web products, then the Opera browser, and most

http://google.com/chromeframe
http://people.mozilla.com/%7eprouget/ie9
http://people.mozilla.com/%7eprouget/ie9

CHAPTER 2 ■ EVOLUTION OF ADVERTISING TECHNOLOGY

34

recently Opera for mobile devices. Opera provides robust tools for developers, including Dragonfly (Opera’s Firebug
equivalent), Mobile Emulators, TV Emulators, OperaDriver, and OperaWatir.

Note ■ To view more of Opera’s developer tools, visit opera.com/developer/tools.

In addition to mobile browsers, Opera also owns AdMarvel, a mobile ad serving company and SDK
provider. AdMarvel offers mobile publishers the ability to traffic ads through the AdMarvel platform.

Others
There are many other browsers, device manufacturers, and software manufacturers out there in the HTML5 and
mobile ecosystem. These sections were geared at just painting a bigger picture and attempting to understand all the
moving parts. There are devices from Kindle, Nook, HTC, Motorola, Samsung, and Asus in the market, mostly using
the open Android operating system and supporting at least some HTML5 features within their browsers. With the
open Android operating systems, as well as the varying screen sizes, mobile developers and designers have a really
hard time trying to standardize the deployment of their products. Luckily for you, you’ll have a book that outlines
everything for you! 

Note ■ To view the W3C’s monthly stats on browser, operating system, and screen resolution market share, visit

w3counter.com/globalstats.php.

What’s Next?
Obviously there is a lot here to digest, and you may need to review this chapter again as well as do some research on
your own to really understand how everything has evolved and how each company fits into the puzzle. This chapter’s
point wasn’t to make your head spin, but I can completely understand your frustration in trying to remember everything.
Between the technology, politics, and fragmentation across devices, this history lesson has, I hope, given you a deeper
awareness of the big picture. In reality, the landscape changes so frequently that, even since the time of writing, many
things will have undoubtedly changed or been updated. Companies change their strategy, get acquired, develop new
devices, or add more divisions into the mix. The HTML5 draft will soon get standardized; only then will it require full
adoption by all the browser manufactures. It’s just the nature of the beast that it will take some time to accomplish. I’ll
try to provide useful links throughout to material where you can find the latest, most up-to-date information regarding
important topics so you can reference things as they change in the future. You can see that the mobile market really
accelerated HTML5 in technology and advertising. As we talk more about HTML5 and its impact on advertising, we’ll
discuss the important facets of the faster JavaScript-executing browsers, how ad servers are handling the responsive
Web, the inevitable increase in k-weight and file size, file loading issues, overall adoption, user experience, industry
fragmentation, and how to navigate professionally in this ever-changing market. Remember that this chapter was
intended only to give you the background to where we have gotten today.

Terminology Review
Much as in the last chapter, we’ve seen a lot of new acronyms, concepts, and words. Let’s quickly review some of the
covered terminology as it relates to chapter two.

http://opera.com/developer/tools
http://w3counter.com/globalstats.php

CHAPTER 2 ■ EVOLUTION OF ADVERTISING TECHNOLOGY

35

Summary
In this chapter, we’ve reviewed in abundant detail what has brought us into HTML5’s presence. Now that we’ve
worked at developing an understanding of the technology and business rules that navigated HTML5 in this direction,
it’s time to dig into the working specs to understand how the advertising industry is handling these changes. We’ll be
taking a much different approach in the following chapters, digging more into the actual practice of using HTML, CSS,
and JavaScript as they relate to the emerging Web and advertisements.

Heading into the next chapter, I hope you now have a basic knowledge of code coming from a Flash or
Actionscript background and understand that HTML5 is not a formal standard just yet. It’s still being developed,
and the W3C and WHATWG is figuring out what is to remain and what should be removed or added later into their
respective specifications. There is much more to cover as we learn more about HTML5 as it relates to advertising,
so prepare to take notes, bookmark some pages, and follow along with some examples. Finally having gotten an
understanding of the campaign process, industry, and technology, you’re ready to really dig in now. I’m fired up, so
let’s begin!

Table 2-1. HTML, Flash and HTML5 Terminology Review

Word Definition or Meaning

API Application programming interface

CSS3 CSS level 3 additions to Cascading Style Sheets specification

CSS Pre-Processor A language that uses variables, constants, and mixins but complies with true
CSS so the browser will understand

DOM The Document Object Model

GPU Graphics processing unit

HTML Hypertext markup language; the language of the Web and browsers

HTML5 Hypertext markup language, version 5

Java The native programming language of Google’s Android

JavaScript The code base in all browsers to handle functionality and logic

Objective-C The native programming language of Apple’s iOS

Static (Default) The failover image that will serve when a user cannot view a rich ad

www.allitebooks.com

http://www.allitebooks.org

37

Chapter 3

Advertising with Web Standards

This chapter will discuss the new and useful features of HTML5 and open web standards that you can leverage in
your next advertising campaign. The thing to remember going forward is that HTML5 is not about advancements in
HTML markup alone; it also pioneers new JavaScript APIs and CSS features, among other technologies. Some HTML5,
CSS3, and JavaScript techniques will be examined, and you’ll see how they can be used together to enhance creative
development in the modern browser market.

As you know, advertising on the Web has gone through many stages: static imagery, animated GIFs, basic HTML
ads, rich features with Flash. Now HTML5 and the modern web stack are building a new stage in the progression. As
this book proceeds, I’ll cover some of the common pitfalls that designers and developers run into as the emerging web
standard comes to fruition, and you’ll see how you can use this new spec right now while providing graceful failbacks
for users with older browsers.

I’ve discussed how rich media advertising came about in the HTML5 advertising world; so let’s assume from
this point forward that all advertising on the Web will be considered “rich” and highly interactive. This chapter is
pointed at getting you completely up to speed with certain nuances when dealing with advertising using emerging
web technologies. I’ll cover some of the new features in HTML5, leveraging APIs, and optimizing your code to run
efficiently across publishers.

First things first, however. Make sure you’re working with the latest version of Safari, Internet Explorer, Chrome,
Opera, or Firefox. Since I’ll be taking a first look at some code in this chapter, it’s important that you have a modern
browser to follow along. Consider this chapter a primer, as it will give a full view into the landscape that is HTML5 and
its affect on web advertising as a whole. Every chapter going forward will focus on diving deeper into the technology
that is discussed here, but this is where you get your feet wet. So let’s dig in!

HTML5 Advertising
HTML5 has brought—at the time of writing, is still bringing—many enhancements to the creation of web content.
This book’s focus is on how HTML5 and its various technologies are impacting the online advertising market,
but I strongly suggest you learn more about HTML5 markup and how it’s impacting the Web as a whole. Tags like
<article>, <aside>, <details>, <header>, <footer>, and <section>—as well as <canvas>, <video>, <audio>, and
some others we’ll cover in detail later—are new to the HTML5 specification. With these new tags, developers and
designers can create semantic and logical markup natively in the browser. Be sure to check out the latest take on
HTML5 from W3C(w3.org/TR/2011/WD-html5-20110525) and WHATWG (whatwg.org/specs/web-apps/current-
work/multipage) with regard to how it impacts the Web as a whole. That said, emerging and competitive browser
vendors are now incorporating HTML5 features, allowing developers to define the structure of a document with these
soon-to-be standard HTML semantics.

http://w3.org/TR/2011/WD-html5-20110525
http://whatwg.org/specs/web-apps/current-work/multipage
http://whatwg.org/specs/web-apps/current-work/multipage

CHAPTER 3 ■ ADVERTISING WITH WEB STANDARDS

38

Using <div>
Since knowing what element to wrap your ad content in is really what’s focused on here, some HTML5 features—those
that relate to the advertising space—are more important to recognize than others. With the previous versions of the
HTML specification, the structure of the document was typically marked up with <div> tags, along with specific
IDs and classes, so publishers could inject ad code within a specific section in their page markup. Using <div> tags,
publishers and content developers can section their page out for headers, navigation, ads, and other specific content.
For example, having a <div> container called header, footer, or ad can provide a pretty standard structure when
developing web site properties. Take the example in Figure 3-1, from the publisher Yahoo.

Figure 3-1. Markup of Yahoo’s page using Chrome’s inspect element function

Figure 3-1 showcases that Yahoo in fact uses an ad container div with the ID called “ad”. This tells other developers
that this section of the page is designated for an ad (an ad slot). If you were to inspect any page, you’d find that other
divs in the markup specify other elements like “y-header” and “y-footer”, which are the specific naming conventions
given to Yahoo’s markup.

New Ad Container Options: <section> and <aside>
With the new HTML5 markup elements, developers can leverage two new ad container elements: <section> and
<aside>. The section element aids in portioning out the page for specific content. For example, you could section your
page for ad content, blog posts, or even pictures. For a publisher, it can be an especially good idea to have ad content
live inside wrapper divs with specific IDs. This is helpful since there are no other associated semantics with the ad on
the page in conjunction with the rest of the content.

CHAPTER 3 ■ ADVERTISING WITH WEB STANDARDS

39

The <aside> tag, which represents a section of a page content loosely connected to the content around the
<aside> element, means that if the ad server contextually served the advertising message, the <aside> tag would be
an accurate container for the ad to live inside of. This would most likely only work if the publisher had specific ad
inventory slotted out for contextual experiences. Take a look at the example in Figure 3-2 on a sample HTML5 page 3.

Figure 3-2. Markup of section and aside elements in the browser

Data Attribute
Another interesting feature in HTML5 is the new data attribute. This attribute addition may seem a bit crazy at first,
but it offers some really good use cases, especially in the advertising space. Using the data attribute in your ad’s
markup, you can customize specific values on a certain element. For example, in ad serving, what is called a macro
is often used to replace a variable with other values at ad serve time; how it is used depends on the publisher the
ad is being served toward and on other information we can learn before rendering the ad to the page. This macro
value, which is very similar to a variable in traditional coding languages, will typically look like $MACRO$, ??MACRO??,
or something pretty similar depending on the ad-serving company and its ability to parse on a specific character in
order to insert a value. The macro value can be added to the ad’s markup via the data attribute; when the ad is
served, that attribute will get replaced by the value that should be there, per the information the ad server gathers.
Listing 3-1 showcases how this would work by replacing a click URL for an ad to enable the same ad creative to serve
many publishers. The fact that the click URL can dynamically change based on the ad servers helps if you want to
traffic the same creative across multiple publishers but still want to have unique click URLs.

CHAPTER 3 ■ ADVERTISING WITH WEB STANDARDS

40

Listing 3-1. An Example of an Ad-Serving Macro

<!DOCTYPE HTML>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<style type="text/css" media="screen">
#clickBtn {background-color:#000; width:100px; height:20px; color:#FFF; cursor:pointer;}
</style>
</head>
<body>
<div align="center" id="clickBtn" data-link=$MACRO$ onClick=window.open(macroValue)>Open Macro</div>
</body>
<script type="text/javascript">
var macroValue = document.getElementById('clickBtn').getAttribute('data-link') //returns value to be
replaced by ad server
</script>
</html>

At ad serve time, the $MACRO$ value gets replaced by what the ad server defines. This case could have something
that states $MACRO$ = http://www.google.com or http://www.bing.com. In short, the rules for the data attribute state
that any attribute that starts with “data-” will be treated as a storing area that the end user won’t see. Again, this is
pretty valuable when you’re trying to specify explicit information about an element without changing its look or feel.

HTML5 Considerations
It should be noted that HTML5’s new markup additions are a huge step forward in assistive technologies in that they
allow machines to better interpret the structure of the document for parsing and interpretation. However, as ads tend
to live only for the life of their campaign, usually a couple months at most, it’s frequently better to deliver ads within
a good ol’ common div tag with specific IDs and classes applied. I’ve found that that’s the commonest approach of
publishers and ad networks anyway.

It should also be noted that each publisher will have its own implementations for constructing ad inventory
throughout its web content. That being said, the best advice I can give is to reach out to the publisher directly to learn
whether they’re using HTML5 elements, a div with overflow set to none, or even an iFrame as the ad’s wrapper
element. While this may not be a huge concern for every campaign, the more complex and interactive campaigns
may require manipulation of the site’s elements or busting out of an iFrame so this information can be vital. For more
information on what HTML5 building blocks to use, or if you are just a bit confused by all of this, take a peak at the
image in Figure 3-3 from html5doctor.com.

http://www.google.com
http://www.bing.com
http://html5doctor.com

CHAPTER 3 ■ ADVERTISING WITH WEB STANDARDS

41

Start

<aside>

<figure>

<div>

<section>
Appropriate

element

e.g. in a

feed reader

Sidebar, comments
section, pullquote,
glossary, advertising,
footnote etc that’s
tangentially related to

the page or content…

 html5doctor.com/aside

One or more images,

graphics, code samples

etc, plus optional

<figcaption>…

 html5doctor.com/figure

A section of the page,

or chapter of an

<article>, with a

heading…

 html5doctor.com/section

Probably <p>, but

possibly <address>,

<blockquote>, <pre>…

 html5doctor.com/semantics

News article, weblog or

forum post, comment

on an article, sidebar

widget etc, with a

heading…

 html5doctor.com/article

Flow content with no
additional semantics,

e.g. for CSS hooks…

 html5doctor.com/div

A block of flow content

(not inline phrasing content)

By @riddle & @boblet

www.html5doctor.com

Site or in-page

navigation (anything

you’d use a ‘‘skip to

nav’’ link for)

 html5doctor.com/nav

HTML5 Element Flowchart
Sectioning content elements and friends

2011-07-22 v1.5

For more information:

www.html5doctor.com/semantics

Does it make

sense on its own?

Is it required
 to understand the
current content?

Could you move

it to an appendix?

Is it logical

to add a heading?

Does it have

any semantics?

Is it a major

navigation block?

<article>*

*

*

<nav>*

*Sectioning content element
These four elements (and their headings) are used by

HTML5’s outlining algorithm to make the document’s outline

 html5doctor.com/outline

Yes

Yes Yes Yes

No

Yes

No

Figure 3-3. The HTML5 Doctor’s HTML5 Element Chooser Flowchart

HTML5 already has a plethora of new elements, and by the launch of the final spec, to be decided at a future time,
there could even be more. More of the new and updated elements will be covered throughout the book.

Note ■ For the latest, most up-to-date information on the HTML5 element index, visit

html5doctor.com/element-index.

For web creators, the new semantic markup in HTML5 is really invaluable when creating web content that is well
formed and structured and search engine friendly. It improves overall search engine optimization (SEO), as a search
giant like Google can parse the page’s content much more efficiently, separating the page’s content from its structure.
It also helps developers keep to a standard naming practice when developing across properties, as tag names will now
be the same moving forward. For instance there’ll now be header and footer tags, just like head and body tags.

Note ■ HTML5-compliant browsers do not need quotes around attributes. For example, <div id="ad"></div> can

now be written <div id=ad></div>.

http://html5doctor.com/element-index

CHAPTER 3 ■ ADVERTISING WITH WEB STANDARDS

42

Safe iFrames
As mentioned briefly above, busting out of an iFrame is something that may need to happen to ensure an ad
provides a rich experience across a network’s or publisher’s page. However, rendering the ad onto the publisher’s
document could produce namespace conflicts and reference variables. For example, if the ad has an element called
photo-gallery and so does the web page, any manipulations done to that element could pass to the ad experience
or even break the page contents. This wasn’t an issue back in the Flash (SWF) days of ad creatives as the SWF element
was inherently sandboxed from the publisher’s page. There has to be a better way to serve rich experiences with
HTML that can be sandboxed from the publisher’s content, right?

If you think that wrapping the ad content in an iFrame will solve all this mess, you’d be absolutely correct.
However, an iFrame limits the richness of the experience, as it confines the ad to a specific area on the page; also, it’s
a bit of a memory hog for pages, as it creates a new instance of the document, one that may not be wanted or needed.
(Think of what happens if multiple iFrames are on the page or even nested within each other.)

Traditionally, using a publisher side script, the ad can check to see whether this script is in place and bust out of
the publisher’s designated iFrame. This is absolutely necessary, as most rich ad experiences require expanding and
closing functionality. However, once the ad is busted out and written to the main document of the publisher’s page,
the same rules apply to CSS inheritance and JavaScript variable scoping. Thus confliction and styling issues could
arise—indeed, they most certainly will.

Building on the knowledge that iFrames can sandbox you from publisher content, how can a common API, one
that allows this iFrame to expand and contract as well as gather valuable metrics into the ad experience, be provided?
Well the IAB and various working group members are working on an initiative called Safe iFrames, which is intended
to be a protocol between the publisher and ad and be a common API that allows “rich” ads to be sandboxed inside of
iFrames and still access specific expanding and contracting commands, among others. The publisher will effectively
add some code to the iFrame to allow the ad to call pub-side functions for expand and collapse. While the approach
needs standardization and adoption to be a scalable method, it holds some promise for dealing with page content
and ad confliction. (I’ve mocked up a simple example to show that you can expand or collapse the actual iFrame at
jsbin.com/omodus/5.) Keep in mind that this would involve special code on the publisher’s end; it would control the
functionality and animation of the iFrame on the page, not the third-party ad server tag.

Note ■ There is even the possibility of publishers’ using the MRAID API to serve ad tags through. Look for more

information on the MRAID spec in Chapter 9.

Many more features of HTML5 as it relates to advertising are discussed later in the book. HTML5 is about
updating and pushing the Web as a whole forward; advertising is a key part of that process. Anything that is updated
in the browser will have an impact on advertising.

Advertising with CSS3
As you’ve just learned with HTML5, many enhancements to the overall structure of the page have been added,
deleted, or modified. Along with the markup structure, of course, goes style. CSS has long been the backbone
for styling within the browser, and as modern browsers adopt CSS3 features, a lot of manufacturers, including
Google, Apple, and Mozilla, are leveraging the latest CSS3 additions to handle web animations and presentations
as never before. Because CSS3 is such a powerful design toolset, designers can now leverage it for creating rich,
print-worthy graphics directly within the browser. They no longer need to rely on Flash or use images to create the
design they’re after.

http://jsbin.com/omodus/5

CHAPTER 3 ■ ADVERTISING WITH WEB STANDARDS

43

A few things will always be necessary with CSS, since each manufacturer has its own interpretation and adoption
rate for the latest CSS3 spec. First, vendors often have variability within their environments. This inconsistency comes
at a cost for designers in the form of CSS resets, which are required to reset rendering elements across browsers. A
very useful tool for emerging browsers is Nicolas Gallagher’s Normalize.css (necolas.github.com/normalize.css),
which makes all browsers, both old and up to date, render elements consistently without applying unwanted styling.

A good tip is to reset from your ad’s top level element down. What this means is that if you have your entire ad
wrapped in a div element acting as the ad’s container, you can apply a class to that div called “adContainer”. Now in
the CSS document, you can add specific resets or styling simply by writing:

#adContainer .adBanner {

}

This way only the elements within the ad markup are targeted and this keeps a clear separation between
publisher page content and ad content.

In addition to resets, if browsers you’re deploying toward happen not to be HTML5-compatible, you’ll need
graceful failovers to style the page correctly. A really great example of this is on the site CSS-Tricks.com. The site
actually degrades very nicely in an older browser like IE6 but takes advantage of emerging CSS3 features when a user’s
browser supports and is capable of the enhanced experience. This technique, known as progressive enhancement,
can be applied in your advertising creatives as well. If you’re running a campaign that needs to target any and all users
and isn’t specified to a browser version, HTML5-compliant or not, always build the ad experience with the older user
in mind. Maintain the core functionality and messaging and build richer features that newer browsers can handle on
top of them.

At-Rules
The CSS spec also has what is known as an at-rule index. At-rules are used for handing CSS documents in various
ways and instructing the CSS parser. Here are a few popular at-rules.

•฀ @charset: This specifies the character set of an external style sheet.

•฀ @import: This imports an external style sheet file to the current style sheet.

•฀ @media: This specifies the media to which the style should be applied.

•฀ @page: This specifies margin values for the page box in style sheets for paged media.

•฀ @font-face: This defines custom font properties.

All the rules above allow designers to create specific visual experiences based on the machine or device
requesting the stylized content.

As you’ve seen in brief, CSS media profiles are used for the different displays that will request web content to be
rendered. Screen, Print, Handheld, and TV (to name a few modes) allow visually based content to dynamically update
on the device requesting the content. This characteristic can be tremendously useful if you’re deploying a cross-device
campaign as it allows a designer to take into consideration many different displays during the design phase. Also,
CSS can be used as an external link via the @import rule set (see above) or added to the HTML document as a linked
file. But it can also be used as inline styles on the HTML elements. There are debatable pros and cons for uses in both
techniques, too many to list here. You should weigh your options accordingly when starting development.

My personal way of development is to externalize style from form and function. Doing so allows for easy layout
updates without touching markup or JavaScript. On the other hand, some ad platforms require that your CSS remain
inline and bundled with the inline HTML markup. This situation, obviously much harder to scale, is sometimes a
requirement; so be sure to keep your styling formatted nicely, since you may need to go back to the code and perform
updates and revisions. However, if you are allowed to externalize your CSS files (and I really hope you can), one of

http://necolas.github.com/normalize.css
http://CSS-Tricks.com

CHAPTER 3 ■ ADVERTISING WITH WEB STANDARDS

44

my favorite CSS developing tools is bearcss.com, which allows uploading of your raw HTML markup and builds a
boilerplate CSS template for you to style on. It’s a huge time-saver, as you don’t need to rewrite a bunch of element
declarations after building the markup.

Vendor Prefixes
As the CSS level 3 spec gets adopted in union with HTML5, each browser manufacturer is using its own prefixes to
distinguish what is emerging from what is standard inside the browser’s rendering engine. Thus, using emerging CSS
features, you’ll need to include prefixes for Webkit, Mozilla, Microsoft, and Opera—assuming, that is, that you’ll be
targeting all browsers in your next HTML5 campaign (that’s usually the case). A few examples of vendor prefixes are,
respectively, -webkit, -moz, -ms, and -o; using these prefixes as you build with the emerging CSS spec will ensure
you’ve got the latest bleeding-edge CSS3 feature set within your respective browser environments.

Note ■ As the spec is adopted across browsers, the need for these prefixes will diminish, the result being that

developers will have to go back into the code base to remove them so that nothing breaks down the line once support

drops for the prefixed version of the code.

As we all know, ads usually have a much shorter life cycle than traditional web content, but it’s very important to
keep vendor prefixes in mind as you deploy content. Failing to do so will be a real pain if you want to build something
now that’s sustainable for the future. Think of anything with a vendor prefix as a sneak peak at what’s to come although
the feature you’re using could be removed in later versions of the browser. A really good tool to use as you develop
with this budding standard is prefixer.com. Prefixer allows you to develop with CSS. With one click of a button,
it translates all the necessary vendor prefixes for you automatically—another huge time-saver! For the latest CSS3 spec,
visit the W3C current drafts at w3.org/Style/CSS.

Media Queries
A very important function of CSS, one that’s been around since version 2 but gets lumped into CSS3, is the ability to
leverage media queries. A media query allows you to do just as what the term states: query the device or screen for
the media it supports. Useful media examples include device width, device height, pixel density, and orientation.
These features are tremendously important in mobile development and are the foundation of responsive web design.
By making use of them, developers can create a CSS document that dynamically adjusts web content to the device
accessing it. A few really great responsive web design frameworks are Foundation (foundation.zurb.com), 320 and
Up (stuffandnonsense.co.uk/projects/320andup), and the Golden Grid System (goldengridsystem.com). These
tools provide a blueprint for developing a single unified experience across screen.

This approach is great in the web development world, but note that when building ads with this format in mind,
it’s almost certain that k-weight will increase, as you’re taking into consideration more than one screen—and that
means more CSS declarations. Before development, I’d recommend reaching out to your publishers to determine
whether they want a responsive ad layout or new tags generated for all screen variations. In reality it comes down to
what the publisher wants. Often it’ll be more ad inventory to sell, so they’ll fire more than one impression if the user
reorients their device or scales their browser on a responsive layout. The ad inventory will change rather than adapt,
which will result in what seems like more ad inventory for the publisher and will require an ad server to generate
separate tags for each size; the publisher or first-party ad server will need to adjust accordingly. A good practice is to
strip out the CSS content into its necessary parts and load external style sheets specific to the device by using media
queries. This way you don’t bring in unwanted CSS code for a user viewing on a mobile device that doesn’t meet
the media query rules applied—or even worse, a device with very limited bandwidth. Using our earlier example,
Listing 3-2 leverages media queries for a tablet device and a television and takes its orientation into consideration.

http://bearcss.com
http://prefixer.com
http://w3.org/Style/CSS
http://foundation.zurb.com
http://stuffandnonsense.co.uk/projects/320andup
http://goldengridsystem.com

CHAPTER 3 ■ ADVERTISING WITH WEB STANDARDS

45

Listing 3-2. A Media Query Example

<!DOCTYPE HTML>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<link rel="stylesheet" media="all" href="base.css" />
<link rel="stylesheet " media="all and (orientation:portrait) " href="tablet_portrait.css">
<link rel="stylesheet " media="all and (orientation:landscape) " href="tablet_landscape.css">
<link rel="stylesheet" media="tv" href="tv.css" />
</head>
<body>
<div align=center id=clickBtn data-link=$MACRO$ onClick=window.open(macroValue)>Open Macro</div>
</body>
<script type="text/javascript">
var macroValue = document.getElementById('clickBtn').getAttribute('data-link') //returns $MACRO$
</script>
</html>

Since doing this obviously takes additional development and design time, make sure your team is aware; use this
method only when you know your ad will be running across publishers that require a responsive layout. (For more
information on the CSS3 media queries visit w3.org/TR/css3-mediaqueries.)

Note ■ In HTML5 doc parsers, it is no longer required to include type="text/javascript"; this is now assumed by

default. Thus, writing <script></script> will now work.

Responsive ads have time to grow before they become a reality. It comes down to how publishers and ad servers
gather metrics on an ad—and that can change. This is a bit of a paradigm shift in thinking; traditionally, ad servers
and publishers bill clients based on impressions and break down the ads that account for those impressions into
size categories to get a more granular look into the campaign’s performance. However, if you have one ad tag on the
page and allow the creative to resize and do a relayout accordingly, no other tags need to be accounted for. This is a
dream for ad ops guys or gals—they don’t have to worry about which tag goes to which property on which distribution
channel. No matter if it’s a smartphone, tablet, desktop, or television—its all the same tag, and so operational scale on
ad trafficking is a huge win! However, clients will surely want to learn what size ad was getting the most views, as this
will help determine the user base of screens accessing the ad. The following model (see Listing 3-3) helps break this
down a bit more; it allows the tag to track one major campaign impression and fire off supplementary impressions
based on the creative size rendering to the user’s screen.

Listing 3-3. A Responsive Ad Example

var publisherSize;//Get this value from the publisher's page.

window.addEventListener('load', function () {
//fire off uber impression
var img = new Image()
img.src = 'http://imptracker.adserver.com';
//Pass publisher's layout to the checkSize function
checkSize(publisherSize);
}, false);

http://w3.org/TR/css3-mediaqueries
http://imptracker.adserver.com

CHAPTER 3 ■ ADVERTISING WITH WEB STANDARDS

46

function checkSize (creativeSize) {
 //Check the size to fire off supplementary impression
 switch (creativeSize) {
 case "300x50" :
 http://sizetracker.adserver.com/300x50
 break;
 case "300x250" :
 http://sizetracker.adserver.com/300x250
 break;
 case "728x90" :
 http://sizetracker.adserver.com/728x90
 break;
 }
}

Since every creative is different, this example does not take into consideration the CSS styling rules to be applied
or all the ad sizes as they are dependent on the publisher’s page, but it does showcase how to gather the same rich
metrics for an ad that adapts to its viewer’s screen. If the ad were to get a string value from the publisherSize
variable, the ad server would be able to fire off the correct size impressions to report on.

Selectors
Another interesting part of the CSS specification is selectors. Selectors allow you to target specific elements in your
markup in various ways. You can target them by ID, class, tag name, type, even attributes, along with specific values.
Here are some common examples of CSS selectors.

•฀ *: targets every single element in the document.

•฀ #ad: targets elements by ID.

•฀ .center: targets elements by class.

•฀ header: targets elements by tag type.

•฀ div + p: targets elements only preceding div.

•฀ footer > a: targets direct children of footer.

•฀ a[title]: targets elements by the attribute title.

*Note that the elements above are examples only, be sure to update with your own elements.

The above examples are some common cases of how CSS selectors work in the real world. I’ll be using them
in examples later in the book—but note that there are many more than those covered in this chapter. So I’d strongly
suggest taking a look at the W3C’s current document on CSS selectors.

Note ■ For more information on the CSS3 selectors, see w3.org/TR/selectors.

Pseudo Classes
Another interesting feature of CSS is pseudo classes. Pseudo classes are much like selectors, but they have an
additional layer to react to layout or interaction. Here are some of the CSS pseudo classes.

www.allitebooks.com

http://sizetracker.adserver.com/300x50
http://sizetracker.adserver.com/300x250
http://sizetracker.adserver.com/728x90
http://w3.org/TR/selectors
http://www.allitebooks.org

CHAPTER 3 ■ ADVERTISING WITH WEB STANDARDS

47

•฀ :active: an active element

•฀ :focus: an element that has focus

•฀ :visited: a visited link

•฀ :hover: an element that is hovered over (keep in mind this does not work on touch devices)

•฀ :selection: an element that is currently selected by the user

•฀ :checked: a form element that is checked

•฀ :nth-child(n): an element that is the nth sibling (you can also use odd/even keywords in
place of n here)

•฀ :nth-last-child(n): an element that is the nth sibling, counting from the last sibling

These pseudo classes are very helpful in manipulating your ad layout. Use them for anything from hovering over
a CTA element and changing its scale to styling an unordered list with even and odd numbering. In the following
chapters, pseudo classes and selectors will be used to target our elements.

Note ■ For more information on the CSS3 pseudo classes, visit

coding.smashingmagazine.com/2009/07/13/css-3-cheat-sheet-pdf.

Pseudo Elements
Last, there are also pseudo elements in CSS; they allow designers to target elements relative to their own markup and
design. Here are a few of them.

•฀ ::first-letter: targets the first letter of text

•฀ ::first-line: targets the first line of text

•฀ ::before: targets before an element

•฀ ::after: targets after an element

Using pseudo elements, you can quickly get magazine and newspaper-like type layouts with extreme ease. If you
want to make the first letter in a paragraph bold or simply increase its font size, pseudo elements are where to look. As
with everything emerging, be sure to check browser compatibility before using these features in your campaign or if
older browsers are being targeted.

CSS Preprocessors
Lately, web advancements in code development have really taken off! It seems everyday another boutique meta
language is being created. One of these languages would be a code preprocessor and developer-created custom tools
to generate CSS and HTML markup code in new ways. Some of these advances are SASS, LESS, and HAML, which are
CSS and HTML preprocessors.

SASS

SASS, or syntactically awesome style sheets, is a metalanguage: it sits on top of normal CSS development. SASS,
initially designed by Hampton Catlin, aims to describe the CSS document with more structure and style than
traditional CSS development. Using SASS requires a compiler to translate SCSS files into normal CSS files so the

http://coding.smashingmagazine.com/2009/07/13/css-3-cheat-sheet-pdf

CHAPTER 3 ■ ADVERTISING WITH WEB STANDARDS

48

browser can understand them and do its job. A popular SASS compiler is Compass, found at compass-style.org.
SASS allows developers and designers to rapidly produce dynamic code and to update and change it easily; since it
accepts the inclusion of variables, mix-ins, and arguments, it’s a truly logical and dynamic approach to developing
CSS. For example, you can set a background color as a variable called $bg-color: #ffffff; and as your paying client
constantly wants to change the background from white to black, it would be very easy for the developer to go back
into the SASS code base and update that one line to #000000 and have it proliferate throughout all the content that is
referencing that variable. This is where the true power of SASS comes into play!

LESS

LESS, by Alexis Sellier, is another dynamic style sheet language; it allows designers to leverage features similar to
those of SASS—variables, mix-ins, nested rules, math, and functions with arguments. The main difference with LESS
is that it works in both client-side and server-side environments (“client-side” means in the user’s browser, whereas
“server-side” means the hosting server performs the actions). In fact, the W3C is even contemplating including
variables natively in the CSS spec in the coming future (see dev.w3.org/csswg/css-variables). That may or may not
pan out, but if you can’t wait, these hipster languages will get you started. There are other CSS preprocessors—Stylus
is one—but I hope you get the picture of what they aim to solve by now. If you’re building much larger and more
complex ads, ads that mirror rich application development, using a preprocessor may make your life easier in the
long run.

Note■ For more information on using LESS, visit lesscss.org.

HAML

Last of all, since we’re on the topic of preprocessors, I’ll mention the HTML Abstraction Markup Language (HAML).
HAML is a preprocessor specifically designed for HTML markup; it can help speed up your markup development.
I won’t go into more detail, but to see if HAML is right for you, visit haml-lang.com/try.html and give it a whirl! The
whole premise of these new coding languages is to do more by writing less. I mean, really, a CSS variable? That’s really
awesome!

Advertising with JavaScript
As I’ve already said, you’ll be seeing a lot on JavaScript in the rest of this book. You may remember that JavaScript not
only handles the behavior of the page; it can also control function and interactivity as well. It’s important to note that
with HTML5, we now have more JavaScript APIs than ever before to take advantage of. Also it’s important to note that
JavaScript is an interpreted language—not a compiled one like Flash’s Actionscript or Objective-C.

In this case, the browser is instructed to run commands as it understands them, written left to right and top to
bottom. This may be a whole different way of thinking if you’re coming from a Flash development world, as you will
almost always run into issues where JavaScript commands are being interpreted on elements that haven’t even been
created in the markup yet. Because of the common “null object reference”, this will generally result in errors and break
the code in your ad. Again, this is much different than ActionScript, since the compiler packages up to ensure that all
elements exist so properties can be manipulated on them.

Some very popular JavaScript syntax elements are getElementById(); and getElementsByTagName();—
these JavaScript commands allow for selecting elements in the DOM tree. In addition, there is now also
getElementsByClassName(); and the new querySelectorAll(); and querySelector(); which allow developers
to query the DOM for any element they wish to pass in as an argument as a CSS selector. This is super helpful for
targeting elements directly and can be used instead of a popular JavaScript library like jQuery. Whether you’re new to

http://compass-style.org
http://dev.w3.org/csswg/css-variables
http://lesscss.org
http://haml-lang.com/try.html

CHAPTER 3 ■ ADVERTISING WITH WEB STANDARDS

49

JavaScript or not, before digging into it, I’d recommend reading the quick post by Rebecca Murphey called “A Baseline
for Front-End Developers” (rmurphey.com/blog/2012/04/12/a-baseline-for-front-end-developers). She outlines
the importance of building, testing, and process automation; these are things that every developer can relate to.

Note ■ The DOM tree is the markup of elements in the document. For more information on the DOM tree, visit

w3schools.com/htmldom/dom_nodetree.asp.

Minify
When you’re dealing with JavaScript, HTML and CSS, it’s always nice to have a minified version and an archive
version. The minified version should be used in campaign production environments; it reduces the code to a single
code block with less k-weight than the archived version by removing line breaks and white space and by replacing
verbose names with single letter references. The archived version should always be your wordy, cleanly legible code
base—that is, something you can go back to in a couple years and quickly understand it to make updates.

Minifying code is especially useful when it’s being deployed to mobile devices and tablets that could be on 3G
speeds or less. Some developers even automate the process of compiling all their JavaScript files and minifying them.
Tools like Apache’s ANT, Maven, and Grunt can help you streamline this process when you’re getting JavaScript ready
for deployment. Conversely, if you ever want to unminify JavaScript code, an extremely useful tool is jsbeautifier.org;
it allows you to view code in a much more formatted and digestible way. An example would be jQuery’s library minified
(code.jquery.com/jquery-1.8.2.min.js) and unminified (code.jquery.com/jquery-1.8.2.js) versions.

Async
In HTML5 compliant and modern browsers, JavaScript has now offered an async attribute to loading script files;
async is used when script files are to be loaded in parallel and asynchronous to the other scripts loading on the
page. These are scripts that have no dependency on the rest of the page content. This is especially useful in helping
load a page more quickly or when an external script is not responding. Having the script load with async allows the
page to render yet not be held up trying to execute a script that has failed. The main takeaway with async is avoiding
parser block—the situation where the document stops rendering until script files are done. This usually results in
no elements being rendered to the screen because most script files are added to the head of the document and the
parser can’t get past it. For JavaScript ad tags, using async can ensure that your ad script doesn’t delay the rendering
of the publisher’s page until after all your ad content comes down. To get a better understanding on this feel free to
check out some of the examples from The Deck and BuySellAds.com (css-tricks.com/thinking-async). Listing 3-4
outlines the use of async in an ad call.

Listing 3-4. Using Async JavaScript in an Ad Call

<!DOCTYPE HTML>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<script async src='http://code.someAdTag.js'></script>
</head>
<body>
</body>
</html>

http://rmurphey.com/blog/2012/04/12/a-baseline-for-front-end-developers
http://w3schools.com/htmldom/dom_nodetree.asp
http://jsbeautifier.org
http://code.jquery.com/jquery-1.8.2.min.js
http://code.jquery.com/jquery-1.8.2.js
http://BuySellAds.com
http://css-tricks.com/thinking-async
http://code.someAdTag.js'></script

CHAPTER 3 ■ ADVERTISING WITH WEB STANDARDS

50

Defer
In addition to async, you’re very likely to see more scripts that are dependent on other scripts. You could be
referencing an external library or another dependency, like page content, that’s present before the ad executes. You
can use a new JavaScript attribute called defer, which instructs the DOM parser to load scripts in the order they’re
interpreted. For example, you may want to load a larger deferred script before loading another script that references
the previous one. Using the defer attribute more often, you’ll notice fewer errors when dealing with the sequencing of
script files. Listing 3-5 outlines how to use the defer attribute.

Listing 3-5. Using JavaScript’s defer Attribute

<!DOCTYPE HTML>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<script defer src='http://code.one.js'></script>
<script defer src='http://code.two.js'></script>
<script defer src='http://code.three.js'></script>
<script defer src='http://code.four.js'></script>
</head>
<body>
</body>
</html>

Keep in mind neither async nor defer blocks the DOM parser, resulting in a better experience for users viewing
the page content. It also goes to mention that defer occurs before the DOMContentLoaded event from the browser.

requestAnimationFrame
HTML5 welcomes users with a requestAnimationFrame for dealing with JavaScript animation, versus the old way of
using setTimeout or setInterval. Use of requestAnimationFrame explicitly tells the browser what your intentions
are for animation. Traditionally, developers used the code shown in Listing 3-6 for moving something on the page.

Listing 3-6. JavaScript setInterval

<script>
window.setInterval(function() {
 //move and repeat.
 console.log('animate');
}, 1000 / 60); // 60fps.
</script>

Now, we can use requestAnimationFrame, as shown in Listing 3-7.

Listing 3-7. Using requestAnimationFrame

<!DOCTYPE HTML>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
</head>
<body>

http://code.one.js'></script
http://code.two.js'></script
http://code.three.js'></script
http://code.four.js'></script

CHAPTER 3 ■ ADVERTISING WITH WEB STANDARDS

51

 <div id='box' style='position:absolute; background-color:black; width:50px; height:50px;'></div>
</body>
<script>
var globalRequestAnimationFrame = window.requestAnimationFrame || window.mozRequestAnimationFrame ||
window.webkitRequestAnimationFrame || window.msRequestAnimationFrame;
window.requestAnimationFrame = globalRequestAnimationFrame;

var theElement = document.getElementById('box');
var movement = 0;

function animate(timestamp) {
 //move something the new way
 movement += 5;
 globalRequestAnimationFrame(animate);
 theElement.style.left = movement + 'px';
 console.log(movement);
}

//kick animation off
globalRequestAnimationFrame(animate);
</script>
</html>

Using requestAnimationFrame allows the browser to intelligently offset the animation to the GPU (where doing
so is supported); this makes for smoother animation and also detects when a user is not viewing animated content on,
say, a hidden browser tab. The browser’s throttling down the animation’s frame rate saves resources; it automatically
picks back up should the user return to that tab. This is a world of difference from using setTimeout; as the browser
can really understand a designer’s intentions, it allocates resources appropriately. (Since requestAnimationFrame is
still an emerging feature and not a finalized spec, be sure to include vendor-prefixed versions.)

XML
XML (extensible markup language) has long been a language of the Web and many other software programming
languages. XML’s true beauty is in not being specific to any language. Completely agnostic, it describes rules that are
readable both by a human and by various coding languages. Using an XMLHttpRequest, XML is the response when
working with an HTTP web service call. XMLHttpRequest is subject to the same origin policy, which for security
reasons allows requests to be made only from within the domain of the page content. That is, you can’t access
information from twitter.com or google.com using XMLHttpRequest. That said, an XML response is typically not
the favorite when dealing with JavaScript developers. Typically, developers ask to have their web services respond in
JSON format.

JSON
JSON (JavaScript object notation) is a name/value pair object that is handled natively inside of via JavaScript. What
makes it so highly useful is that it’s extremely lightweight and legible. JSON is very helpful for responses when using
APIs for web services in mobile devices. Also, JavaScript with padding or JSON-P treats JSON as native JavaScript,
which means you won’t run into cross-domain policy issues when requesting services from external domains. JSON
is becoming a standard response for Twitter and other popular API services because of its fast response and clean
readability. Listing 3-8 demonstrates a basic and easily understood JSON structure.

http://twitter.com
http://google.com

CHAPTER 3 ■ ADVERTISING WITH WEB STANDARDS

52

Listing 3-8. A Basic JSON Structure

"people": [
 {"name": "John",
 "age":"28",
 "title":"Developer"
 },
 {"name": "Alison",
 "age":"26",
 "title":"Teacher"
 }]

In web advertising, developers are always working with external APIs to bring more relevance to ad units.
A typical request is to pull an advertiser’s recent news via an RSS feed into the ad unit. A good tool to use for this
purpose in JSON format is one from the founder of jQuery, John Resig: RSS2JSON (ejohn.org/projects/rss2json).

Note ■ We’ll cover JSON in more depth using API’s in chapter 11.

JavaScript Libraries
Because writing native JavaScript can be cumbersome at times, many talented developers have created libraries
and abstractions for working with and writing native JavaScript. Most of the time using a JavaScript library in the ad
environment means you’re adding additional code bloat to your ad. Keep in mind that you can do everything these
libraries do in native JavaScript, so always weigh the pros and cons of relying on a library to get the job done. That
said, probably the most popular library is jQuery.

jQuery
jQuery is huge among the developer community base, and it has a very clean and simple coding language. In fact, I’ve
seen firsthand many Actionscript developers head toward working with jQuery when moving from Flash to JavaScript
development. That approach has some pros and cons, though. On the one hand, jQuery has a very simple syntax, one
that AS3 developers find themselves at home in. On the other hand, jQuery has its downsides in the advertising world
because it will increase overall k-weight and may be unnecessary for simple ad creations. If you notice that you’re
using jQuery to simply animate a few items on-screen and to easily reference DOM nodes, you really should stop
using it. If you absolutely must lean on jQuery for cross-browser compatibility or something similar, the best thing ad
servers can do is provide an option to use it or not, depending upon whether the publisher’s page has incorporated it.
Since jQuery is so popular—I mean really, really popular—there is a good chance that you, as a developer, won’t have
to include it in a redundant fashion for your ad content. Simply leverage jQuery if the publisher already has it loaded.
Do a quick conditional check, something like the one in Listing 3-9.

Listing 3-9. A jQuery Conditional Check

<script>
(function(window){
 var latestVersion = "1.8.2";//update to jQuery's latest version
 var libraries = {
 pubjQuery: window.jQuery || window.$,

http://ejohn.org/projects/rss2json

CHAPTER 3 ■ ADVERTISING WITH WEB STANDARDS

53

 iFramePubjQuery: window.parent.jQuery,
 googjQuery: "https://ajax.googleapis.com/ajax/libs/jquery/" + latestVersion + "/jquery.min.js",
 }
 for (var libs in libraries) {
 var lib = libraries[libs];
 console.log("Possible Libs: " + lib);
 }
 if (libraries.pubjQuery || libraries.iFramePubjQuery) {
 console.log("Publisher Has jQuery - We're Good!");
 } else {
 loadScript(libraries.googjQuery);
 }
 function loadScript(_script) {
 var script = document.createElement("script")
 script.type = "text/javascript";
 script.defer = true;
 script.src = _script;
 document.getElementsByTagName("head")[0].appendChild(script);
 console.log("We choose " + _script);
 }
})(window);
</script>

This conditional can be used in the ad to detect whether the page has jQuery included. If it doesn’t, the ad server
can bring it in before the ad loads because it could be dependent on it. Another good recommendation in using jQuery
is pulling it from Google’s CDN. This will more than likely already be cached on the user’s machine (everybody uses
Google); so no additional downloading will be required. This is a huge optimization technique—and why do more
than you have to, right?

Since there is a good chance some if not all of your publishers will be leveraging jQuery, be sure to ask if they
have modified versions of the library loaded before using them within the ad experience. There is a really good chance
that a publisher could be loading jQuery version 1.8.2 but in fact it’s a variation of that library. This fact alone could
steer many ad developers away from using the library from the publisher.

In web development and content creation, jQuery is great. It’s relatively lightweight when compressed and
minified for its feature set. It has a huge developer following that constantly supports the code base, and it’s even
backed by major companies like Adobe and Google. That said, in advertising it can produce unnecessary code
bloat and heavy load times if it’s not fully needed. Rapidly developed JavaScript libraries can be a huge advantage,
especially if you’re just trying to prototype something to test functionality. However, bear in mind that keeping code
minimal and lean makes for faster code execution and better performance, especially on mobile devices.

Some very popular JavaScript libraries, listed in Table 3-1, provide useful features for handling variances across
browsers and dealing with such specific features as touch events, video, canvas, and offline storage. There’ll be more
on some of these libraries in later chapters.

https://ajax.googleapis.com/ajax/libs/jquery/

CHAPTER 3 ■ ADVERTISING WITH WEB STANDARDS

54

Note ■ There are many more JavaScript libraries—in advertising some are more useful than others—but there

are way too many to name here. Check out javascriptlibraries.com for a good list or see Smashing Magazine’s

breakdown of the 40 most useful JavaScript libraries: coding.smashingmagazine.com/2009/03/02/40-stand-alone-

javascript-libraries-for-specific-purposes.

JavaScript Compilers
Remember reading about SASS and HAML for CSS and HTML development? Well don’t forget about JavaScript and
its little JavaScript compiler language, CoffeeScript. CoffeeScript is aimed at exposing the good parts of JavaScript in a
much simpler way. CoffeeScript compiles down to JavaScript as speedily as a developer could code by hand—or more
so. It’s also guaranteed to pass JavaScript Lint or any other JavaScript tester; that’s really helpful when you’re passing
script files among team members. You wouldn’t believe how many tools and compilers are out there that will compile
to native JavaScript. Many say that in order to build complex web applications, such as Google’s Gmail and Maps,
you need another layer of construct on top of native JavaScript. In fact, for most advertising campaigns, doing so may
be a bit of overkill but if you’re dealing with a very deep and complex campaign with many moving parts, it may be
worth giving CoffeeScript a look. Also, take a look at Google’s Dart and Closure Compiler to get an idea on the level of
abstraction I’m talking about.

Note ■ For a comprehensive list of JavaScript compilers, see

github.com/jashkenas/coffee-script/wiki/List-of-languages-that-compile-to-JS.

Table 3-1. Some Useful JavaScript Libraries for Various Use Cases

JavaScript Library Description

CraftJS http://craftjs.org/

HandlebarJS handlebarsjs.com

HammerJS eightmedia.github.com/hammer.js

PhantomJS phantomjs.org

Lawnchair westcoastlogic.com/lawnchair

EaselJS createjs.com

ProcessingJS processingjs.org

LocacheJS locachejs.org

RequireJS requirejs.org

HeadJS headjs.com

VideoJS videojs.com

RevealJS lab.hakim.se/reveal-js

UnderscoreJS http://underscorejs.org/

http://javascriptlibraries.com
http://coding.smashingmagazine.com/2009/03/02/40-stand-alone-javascript-libraries-for-specific-purposes
http://coding.smashingmagazine.com/2009/03/02/40-stand-alone-javascript-libraries-for-specific-purposes
http://github.com/jashkenas/coffee-script/wiki/List-of-languages-that-compile-to-JS
http://craftjs.org/
http://handlebarsjs.com
http://eightmedia.github.com/hammer.js
http://phantomjs.org
http://westcoastlogic.com/lawnchair
http://createjs.com
http://processingjs.org
http://locachejs.org
http://requirejs.org
http://headjs.com
http://videojs.com
http://lab.hakim.se/reveal-js
http://underscorejs.org/

CHAPTER 3 ■ ADVERTISING WITH WEB STANDARDS

55

Polyfills
A polyfill, or polyfill, is a piece of code (or plugin) that provides the technology that you, the
developer, expect the browser to provide natively. Flattening the API landscape if you will.

—Remy Sharp

Polyfills handle browser differences where support for a bit of technology isn’t present. When you run an
advertising campaign, your user base will be on several different browsers and devices. A polyfill is code to handle
these discrepancies. Some typical polyfills deal with emerging features supported in the latest HTML5-compliant
browsers, such as the <canvas> element and video and offline storage. Polyfills are extremely important to use if your
campaign needs to run across browsers and devices. (This information should be outlined in your initial media plan.)
If you are just running an ad targeting a single device or browser, you will generally not need to add a polyfill, as you
can set client expectations to what is currently available on that browser.

Note that there is a very useful online tool called caniuse.com (I’ll be mentioning it frequently in the book).
It breaks down current feature support across all major modern browsers and even gives insight as to what features
will come in future releases. My advice? Bookmark it!

One thing to note is that adding a polyfill will almost always add additional k-weight. Publishers may not find
this an ideal situation, so be sure to flag it as you become aware of it. However, in time, as the HTML5 spec finalizes
and browsers adopt the updates and changes, the need for polyfills will diminish, much like the need for vendor
prefixes, and so the need to add polyfill k-weight bloat will be eliminated. For now, polyfills are integral to the creative
development process and should be used as campaign objectives dictate.

Some really helpful polyfill tools are yepnopejs.com and afarkas.github.com/webshim/demos. However, keep
in mind that most of these are built on top of jQuery or Modernizer, which add additional k-weight. The best solution
is to show your clients what can be done currently. If a campaign needs to run across devices and browsers, you will
almost always need to leverage a polyfill or else significantly scale back the creative design and functionality. Again,
I suggest using caniuse.com, which keeps tabs on what features are available and when.

Browser Extensions
Browser extensions for web development can help you tremendously when you’re building a campaign. They allow
you to get inside the browser and figure out how and why certain things happen to your ad creative. This section
reviews use and installation of some very useful extensions for the Webkit, Mozilla, Opera and IE browsers.

When developing for emerging browsers, every developer needs the bare essentials of browser extensions. They
can help debug and breakdown your creative development much more effectively, as they render in the browser what
you’ll eventually deploy.

Some extensions are so useful that I’d go so far as to describe them as mandatory. One such is Firebug
(getfirebug.com). Firebug provides a suite of tools similar to what Google’s Chrome browser provides when you
right-click and inspect elements on a page (also known as the browser’s web inspector tool). Another useful plug-in
for Mozilla browsers is HttpFox (addons.mozilla.org/en-US/firefox/addon/httpfox), which analyzes the HTTP
traffic in your browser. This is very useful when debugging certain API calls to and from a server. These tools are
all vital in the debugging of code, whether it be HTML markup, CSS style and animation, or JavaScript. Other
popular browser extensions are Adblock Plus (adblockplus.org) and similar ad blockers, which kill the rendering
of advertisements in the browser. I don’t encourage you to install this extension, as it blocks any and all ads and
even some crucial web content not related to advertising. However, its good to understand that these exist, and it
will be interesting to see how future ad blockers will behave (they’ve traditionally been used to kill domains of Flash
content). If a blocked domain is providing useful content to a user, that content will also be blocked, creating a failed
experience for the end user. My guess is that these extensions need to get much smarter if they want only to effectively
block advertising for their install base. Otherwise, publisher content and other vital web content will be hidden from
the user.

http://caniuse.com
http://yepnopejs.com
http://afarkas.github.com/webshim/demos
http://caniuse.com
http://getfirebug.com
http://addons.mozilla.org/en-US/firefox/addon/httpfox
http://adblockplus.org

CHAPTER 3 ■ ADVERTISING WITH WEB STANDARDS

56

Debugging
As any developer will tell you, debugging code takes up easily half, often most, of the time spent working. Debugging is
the process of validating code and checking for errors and bugs. Depending on the complexity of the ad unit, it could be
a pretty lengthy process. Unit testing every function requires extreme patience as well as refactoring, which can be a very
time-consuming process. Luckily, developers today have many enhancements and tools that to prior developers were
just a dream. Using these tools you can debug anything in your markup, style, and script. You can manipulate elements
directly on the DOM and get your feedback in real time. Tools like Charles (for the Mac; charlesproxy.com) and Fiddler
(for Windows; fiddler2.com/fiddler2), monitor web traffic much as HttpFox does. These proxy tools are vital for
debugging desktop and mobile devices as well as testing web service calls. They can provide valuable insight into what
your browser’s network traffic is performing from requests to responses—very helpful if you’re making external HTTP
calls and need to validate the responses. It can help you understand if your errors are client-side or server-side. Yet for me,
probably the most important tool in modern browsers is the web inspector. As I mentioned in the previous section, Web
Inspectors provide a lot of testing and debugging tools for developers and they come with all modern browsers by default.

Among the common problems I’ve seen when developers are debugging code especially when coming from
the Flash/Actionscript world of using trace statements—are popping alerts for JavaScript testing. Popping an alert
box is performed by writing a command—alert('hello world');—in your script; this will cause the code to stop
executing. As you saw when reviewing async and defer attributes, the DOM parser will be blocked, which will keep
your code from executing until the user clears the alert window. So it’s best not to throw alerts and pause the parser.
Rather, use the JavaScript console in modern browsers if you’re looking for a similar experience to Actionscript’s trace
statement. From there, you’ll be able to print output logs to the console and view what’s happening under the hood
of the browser, how its executing your ad code. Instead of alerts, use a throw() statement or even a log statement by
calling console.log(); for normal trace output statements, console.warn(); if you are looking to handle warning
signs, use console.error() when testing code for potential errors. With all of these debugging commands, you’ll be
able to easily navigate your JavaScript code and determine where errors are occurring or optimization can happen.

When you use console.log, console.warn, and console.error, each command writes different colored code
in the browser’s console viewer to differentiate them. This is very helpful because you could have many commands,
depending on your ad code’s complexity. There are also many other developer tools out there, and every developer
has a special “go-to” tool. Some I’ve found helpful are Dom Monster (mir.aculo.us/dom-monster) and JsPerf (jsperf.
com). Dom Monster is great because it’s a nice little bookmark for your browser, and JsPerf is great for writing test cases
against code snippets. My advice is to get your feet wet building with these tools till you find one that works for you.

Note ■ For information on accessing developer tools in Chrome, visit

developers.google.com/chrome-developer-tools/docs/profiles.

Advertising Best Practices
Since “best practices” is a pretty clichéd term in every industry, forgive my using it if you have a gripe with it. Moreover,
at the moment no one can handle applying “best practices” to something that’s not final. However, there are some
useful tips that will, I hope, keep you from getting into a bind. The IAB even states on its creative guidelines page:

Prior to the wide adoption of devices like the iPhone™ and iPad™, Flash™ formatted creative was
widely accepted and easily displayed across the industry. In today’s market, adjustments have to be
made to accommodate ads across multiple display devices. HTML5 has provided one solution, but
is not yet widely adopted and requires different creative specifications than Flash formatted creative.
Requests were made to call out a separate category of creative specs to accommodate HTML5 ads,
but for this release of creative guidelines, it was decided to keep the specs “technology neutral.” An
addendum for HTML5 for display advertising best practices is currently being pursued.

www.allitebooks.com

http://charlesproxy.com
http://fiddler2.com/fiddler2
http://mir.aculo.us/dom-monster
http://jsperf.com
http://jsperf.com
http://developers.google.com/chrome-developer-tools/docs/profiles
http://developers.google.com/chrome-developer-tools/docs/profiles
http://www.allitebooks.org

CHAPTER 3 ■ ADVERTISING WITH WEB STANDARDS

57

As you can see, it’s really hard to speak of “best practices” about something that’s still emerging. Myself and
various other working group members are working hard to develop a formal overview on HTML5 and advertising.
When the spec becomes final, the IAB will surely update this guideline. (Visit iab.net/guidelines/508676/508767/
displayguidelines for more information on this topic.)

Borders
The first ad best practice to cover is that a publisher will normally request that all creatives include a 1-pixel black
border if the ad color is not noticeably different from the page background color. If a 1-pixel boarder around the unit
is needed, all you’d have to do is add CSS on the ads div container so its clearly separated from the publisher’s page
content.

Tracking
HTML5 ads have the ability to track users, just like publishers have been able to do using Flash. Now agencies can utilize
Google analytics and URL shortening links, such as Bit.ly, which allow for tracking clicks. Ad designers can embed
these free analytics platforms into their creative code and get valuable insight into a user’s location, behavior, and
technology. With HTML5 ads, there is much discussion about ad-serving companies using the HTML5 ping attribute
for tracking URLs. That this attribute can store a value and “ping” it to a redirect server is useful for tracking purposes.
(There is more about this at lists.whatwg.org/htdig.cgi/whatwg-whatwg.org/2005-October/004926.html.)

Click Tags
One specific form of tracking in ads involves what are known as click tags. They allow the ad server to inject specific
values at serve time into the URL destination of a click. (This is very similar to the macro approach outlined in
Listing 3-1.) A click tag can be assigned in multiple ways depending on the ad server, but it’s almost always added in
campaign creatives. They can be written in any variation required by the ad server—clickTAG, ClickTag, clickTag, or
something else. Check with your ad-serving provider during creative development so the correct variable is used. Let’s
take a look at working with click tags (see Listing 3-10).

Listing 3-10. A Click Tag Example

<!DOCTYPE HTML>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
</head>
<body>
<div id='clickBtn1' onClick=window.open(clickTag1)>CLICK HERE!</div>
<div id='clickBtn2' onClick=window.open(clickTag2)>CLICK HERE!</div>
</body>
</html>

As you can see, working with click tags is pretty simple. Depending on the ad server, the URL’s location during
development will be clickTag and the number you want to use. In this case, there are two, so I simply call them
clickTag1 and clickTag2. At ad serve time, the click tag value will be replaced by whatever value is defined at the
ad server. This will keep specific tracking and redirects intact when the creative is sent to various publishers and ad
networks on the media buy.

http://iab.net/guidelines/508676/508767/displayguidelines
http://iab.net/guidelines/508676/508767/displayguidelines
http://Bit.ly
http://lists.whatwg.org/htdig.cgi/whatwg-whatwg.org/2005-October/004926.html

CHAPTER 3 ■ ADVERTISING WITH WEB STANDARDS

58

File Size
File size considerations are possibly the biggest shift when working with HTML based ad creative as opposed to Flash
SWF’s. Flash was very good at packaging the creative assets all within a small SWF file container using a proprietary
compression format. This compression really squeezed the file size down significantly for ads with animation, fonts,
images—you name it. Because of this, the IAB and various publishers have adopted smaller k-weight footprints for
rich media ads, usually anywhere from 40kb up to 100kb if you’re lucky. Because we’re no longer contained in the
SWF wrapper, two things need to occur. One, we as developers and designers need to optimize much more out of
the programs we’re using for our creative. This could be optimizing image compression out of Adobe’s Photoshop or
even minifying the code base before uploading to our hosting. Second, the IAB and it’s various publishers will need to
update the guidelines for file size. We as an industry can’t progress our creative innovation when there is an unrealistic
expectation of what can be done within a certain file size limit. In the interim as this gets updated, designers and
developers can use appropriate optimization techniques such as the usage of sprite sheets, code minification and
compression, measuring file size via GZIP (wire weight), and leveraging CDN hosted JS libraries (All of which you’ll
learn in more detail throughout the rest of this book).

Asset Delivery
Ad development, much like web development, requires many different components to produce the final piece you see
in a browser. Be sure that when you are requesting creative files from an agency or client, you always ask for these:

images—PNG, JPG, GIF (animated and static)•฀

layered source files (Photoshop documents)•฀

HTML, CSS, and JavaScript files•฀

audio and video files (if required)•฀

fonts and/or (CSS web fonts)•฀

storyboards (PDFs)•฀

Whether you’re on the publisher, agency, or ad-serving end, this will help you keep your sanity in trying to
wrangle all the different formats and files and attempting to make updates and revisions later in the process. Ensuring
that all of these files are accounted for during an initial asset intake process ensures that turnaround times and client
expectations won’t get compromised due to missing files and/or unnecessary back-and-forth communication.

Element Names
Keeping naming conventions specific and fully worded helps reduce the risk that ad code will conflict with a
publisher’s page code. Using elements without specific names could result in code execution conflict or possibly even
incorporating scripts and styles from the publisher’s page in your ad content. For example, if the publisher’s page has
a div called container and so does the ad code and you have JavaScript code executing on that DOM element, there
is a good chance that the ad code could conflict with the publisher’s. The same thing could happen when styling is
applied. It’s best to keep div tags and others very descriptive of the ad platform. Personally, I like to apply my own
prefix to the elements. For example, if I have an ad container, I’ll look to see what ad server is serving the creative
and add the name to the respective elements. If DFP is serving the ad, it would be something like this: <div id=dfp_
adContainer></div>; or if it’s PointRoll, it would be <div id=pointroll_adContainer></div>. This way, there is a
good possibility that no other elements are on the page with that prefix. If you need to get even more granular, include
the size of the ad as well as the ad server’s prefix name.

CHAPTER 3 ■ ADVERTISING WITH WEB STANDARDS

59

Same In–Same Out Rule
Advertising usually also follows a “same in–same out” rule. This is the functionality of the ad unit and how it expands
and contracts based on user interaction. For example, if a user clicks or taps to expand the ad creative, the user should
click or tap to close out. The same rule applies to using mouse-over interactions in desktop. Note that all publishers
that support rich media advertising campaigns typically follow this rule.

Mobile
If your ad agency is ready to start constructing HTML5 ads, it’s a good chance that you and your clients also focus on
penetration and reach in the mobile market, since Flash isn’t supported on iDevices. Mobile is still a small market in
the grand scheme of things, but it’s growing very quickly. In 2011, mobile advertising was up 149 percent over 2010’s
numbers; overall, advertising will very soon shift away Flash entirely and leverage HTML5, CSS3, and JavaScript for
creating experiences. For an A/B comparison, take a look at this ad sample from the folks at Sencha: dev.sencha.com/
deploy/css3-ads. Can you tell the difference between Flash and CSS3? Chances are you can, but as more HTML5
browsers become the norm, expect to see more Flash-like experiences being developed with web standards. Also, use
html5readiness.com to keep up to date on overall browser acceptance.

Images vs. Icons
For mobile devices, especially with varying pixel densities, it makes more sense to leverage the browser to create
graphics and use fewer bitmap images where possible. Why? Because one way or another, images are absolutely
horrific when they’re scaled. Scaling up results in loss of image fidelity and overall quality; scaling down results in
unwanted aliasing, which will reduce the overall sharpness of the image. With this in mind, Drew Wilson created a
font icon library, Pictos (pictos.cc), for various screen layouts and overall design. Many web publishers use these
icons today. If you’re being pressed to use images because there is absolutely no way your client will rest for font icons,
I’d encourage you to use a service, such as Sencha’s Image Service, a proxy service that allows designers to optimize
images requested by multiple devices and screens. (Go to sencha.com/learn/how-to-use-src-sencha-io for more
on this technology.) Conversely, you can use a service like Resize.ly (resize.ly), which is a cloud-based image-
resizing tool. In short, if you can get the browser to do the hard work while you take full advantage of CSS3, you’ll be
better off than by making multiple HTTP requests to get images from the server. Be sure to use images intelligently
and target users on desktop only. If you are running a campaign on mobile, ask yourself whether images are needed,
and if they are, how many? In most cases users on mobile or low-bandwidth devices will benefit more from one-image
or no-image loads. Again, be sure to use CSS, SVG, canvas, or other alternative means on mobile. You’ll learn more
about each of them in later chapters.

Site Events
In advertising, site events allow tracking from an ad unit to a publisher’s page; this process is otherwise known as a
conversion. For an advertiser adding site events represents real ROI (return on investment); it shows where users click
from and how they arrive at the advertiser’s site. However, since cookies are used to track site events, there are limits
on how conversions on iOS devices are handled, since the iOS default setting doesn’t allow third-party cookies to be
dropped unless a user has visited the domain. This is a huge challenge in the industry; many ad-serving companies
want to tell this story to the advertiser but have to find other means. Many think HTML5 local storage can provide
this mechanism for tracking conversions (you’ll get a closer look at working with it later in this book). Others argue
how this will change things in the future. Will publishers act as ad-serving first-party cookie drops on behalf of the ad
server? Will third-party ad servers go away? One thing is for certain: limitations and future issues with privacy are in
the forefront of everyone’s mind as HTML5 becomes bigger in the advertising market.

http://dev.sencha.com/deploy/css3-ads
http://dev.sencha.com/deploy/css3-ads
http://html5readiness.com
http://sencha.com/learn/how-to-use-src-sencha-io

CHAPTER 3 ■ ADVERTISING WITH WEB STANDARDS

60

Define Your Reach
HTML5 ads will take time to become the standard, but I’m positive you’ll see more and more in coming years—especially
as we head into 2013. We are slowly seeing the shift from Flash content to HTML5 on the mobile and desktop Web as
more marketers realize that it’s not cost effective to build two versions of the same ad experience to reach every screen.
Until the full switch is made, you can do many things to get moving in the right direction in HTML5 advertising. First,
you’ve done the best thing so far by reading this book but also start developing for the emerging web; learn what
features you can use now by going to caniuse.com frequently. Then encourage the use of Google’s Chrome Frame,
which allows IE6 and other older browsers to work with new HTML5 features (it works by injecting an invisible
rendering frame into a user’s IE browser). Next, educate others to begin leveraging the open web. We all can’t push
the industry forward if there are agencies and ad servers still supporting the dated plugin model. Last, always include
graceful failovers especially while in this transitional period. Hitting 100 percent of your user base will be damn near
impossible given a campaign’s turnaround time, so be sure to do everything you can to address discrepancies before
they become issues. Remember, after you define your target reach, build with the oldest browser’s user base in mind;
iterate on top of that initial foundation with more elaborate features as newer browsers support them. This way all
users, old and new, get an experience they’re capable of handling. Not every browser is created the same, so neither
should every ad experience. Once the browser landscape flattens and HTML5’s features become widely adopted—we’ll
be able to ignore the development woes for older browser versions our users may be on.

Summary
This chapter has reviewed web standards with HTML5, CSS, and JavaScript and their effect on advertising as a
whole. You should now be fully briefed in core ad development practices as we prepare to dive into the nuts and
bolts of HTML5 advertisements. In the following chapters, the canvas element, use of web fonts, SVG, animations,
presentations, forms, drag-n-drop, web workers, media, offline storage, and much more will be covered in detail. You
now know both the base language of the industry and some really helpful best practices for getting started. Finally,
if you are curious as to how to help with the specs discussed in this chapter or if you have questions on transitioning
into HTML5, visit whatwg.org/mailing-list#specs and lend a hand in development. There’s still time to shape what
the new Web will become! Let’s get started.

http://caniuse.com
http://whatwg.org/mailing-list%23specs

61

Chapter 4

Using Canvas, SVG, and Web Fonts

We’ve already covered basic web standards, emerging browsers, and how advertising fits into the big conversation
called HTML5. Now it’s time to dig a bit deeper into the technologies that drive HTML5, including the new canvas
element, SVG and Web Font support. We’ll kick things off by talking about one of the biggest advancements in
HTML5 specification first, canvas.

The canvas element is the new display API for dealing with graphics directly within the browser. If you’re coming
from a Flash background working with the display list API, canvas will be a welcomed adjustment in making the
transition. This element can provide full animation, image manipulations, and obviously a drawing tool and do it
all from within the native browser environment, without the need of a plug-in like Flash. We’ll dig a bit deeper into
providing use cases and examples for dealing with the canvas element as it relates to advertising as well as taking a
dive into the tools and API’s, which can help Flash developers make the transition into using this for their creative
development. For the CSS side of things, we’ll discuss how web fonts can provide rich font rendering directly within
the browser via normal CSS syntax. We’ll also discuss Font Squirrel and how this and other tools can help convert
many font formats to browser-friendly formats. Finally, we’ll review how scalable vector graphics (SVG) can be
interpreted by HTML5 markup within the browser and how for icons and symbols SVG provides many benefits over
traditional imagery. As a follow-up to the last chapter’s discussion of images vs. icons, you’ll get great insight into
optimizing graphics for any screen. In short, this chapter is chock full of useful tidbits, so be sure to pay attention and
follow along.

Canvas
The canvas element, used to render graphics in modern browsers, is arguably one of the biggest additions to HTML5’s
specification. It’s a particularly large inclusion to the spec with regard to advertising, since with it one can finally paint
graphics as rich as Flash did—but natively, directly inside the browser! Originally developed by Apple in 2004, the tag
“canvas” was used in the Mac OSX operating system’s dashboard widgets and in its browser, Safari. Soon after, the
Web Hypertext Application Technology Working Group (WHATWG) added it to the HTML5 standard, and it was later
adopted by Firefox, Opera, Google and eventually Microsoft.

The canvas element brings many great things to a browser by rendering graphics, animation, and even
interactivity. There are many different ways of working with the canvas element; the following sections will dive a bit
deeper into working with it. Setting up the canvas element in your markup is really quite simple. It’s a tag, just like any
other you’d use: <div>, , <body>. Listing 4-1 outlines how to create the element.

Listing 4-1. How to Create the Canvas Element

<!DOCTYPE HTML>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
</head>

CHAPTER 4 ■ USING CANVAS, SVG, AND WEB FONTS

62

<body>
<canvas id="adCanvas" width="100" height="100"></canvas>
</body>
</html>

As you can see, it’s fairly simple to create the tag in HTML5. If you open your favorite text editor, input the
Listing 4-1 code, save it as canvas.html, and open it in your favorite modern browser, you’ll notice that nothing is
rendered to the screen. Don’t be alarmed; think of it as an artist placing his canvas on the easel—and this time you’re
the artist, though you haven’t actually started to draw anything yet. To draw on canvas, you’ll need to leverage the
real power of this new HTML5 element; that’s in its API, which is all JavaScript. JavaScript controls the painting of
graphics, animation, and interactivity. (It’s best to think of the element as a container or shell for graphics that you will
create by leveraging JavaScript.)

Before heading into JavaScript implementation of canvas, note that the element has a few DOM attributes,
including width and height, within the HTML markup.

Note ■ DOM refers to a page’s document markup, which is made up of elements, attributes and tags. The canvas

element is part of the DOM structure, which can have various attributes, including ID, Class, Height, and Width.

More importantly, canvas has several methods for drawing paths, shapes, gradients, and characters, as well as
adding images and compositing. And that’s only for starters! The element can be instructed to do many things besides
detecting user input and rendering complex animations—interactive games, for instance. It can even be used multiple
times either in the browser, by creating a stack of canvas elements, one on top of another, to represent a complex
image composite, or even on different areas of the page. It’s really up to you, as developer and designer, to leverage
this powerful new addition to the Web.

Let’s build on the code in Listing 4-1 to render a green square to the screen by adding some simple JavaScript
code. Try to follow along in your text editor in Listing 4-2.

Listing 4-2. Using Canvas to Render a Green Square to the Screen

<!DOCTYPE HTML>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
</head>
<body>
<canvas id="adCanvas" width="300" height="250"></canvas>
</body>
<script type="text/javascript">
//get a reference to the canvas
var canvas = document.getElementById('adCanvas');
var context = canvas.getContext('2d');
//draw a green square
context.fillStyle = 'green';
context.fillRect(0, 0, 250, 250);
</script>
</html>

Once you refresh your page, you should get an image of a small green square, as shown in Figure 4-1.

CHAPTER 4 ■ USING CANVAS, SVG, AND WEB FONTS

63

If you see the square, you’re ready to review what’s going on. If you don’t, be sure you’re using a modern browser,
one that supports canvas, and double-check your code.

Note ■ Check for canvas support at caniuse.com/#feat=canvas.

First, let’s create a variable that gets a reference to the canvas element in the DOM. In this case, give it the ID
“adCanvas” by writing <canvas id="adCanvas" width="300" height="250"></canvas> in the markup. Once that
reference is there, add a 2D context to the canvas so canvas knows how to paint graphics. In short, the 2D context
represents a flat Cartesian coordinate system where the origin (0,0) is at the top left corner of the canvas, with x values
increasing when going right and y values increasing when going down—similar to what you may have learned in algebra.

Having gotten this element and context, let’s start “painting” on the canvas. To do so, tell the fillStyle property
to render in green (it can also take a hex and RGB value), and then call the method fillRect to render a rectangle
by passing in specific parameters or arguments by writing context.fillRect(0, 0, 250, 250);. In Figure 4-1, a
square was created by passing in 0 for its x-coordinate, 0 for its y-coordinate, and 250 for both its width and height.
This value takes a floating-point number; that is, not having it paint on a whole integer, like 10, will result in subpixel
aliasing. This could be problematic if you’re trying to maintain sharpness with your art. (If you want to dive into the
other properties and methods for working with canvas, check out the comprehensive cheat sheet at
roblaplaca.com/examples/canvasHelloWorld.

Note ■ The only context support available when this book was printed was 2D. There’s more about 3D and WebGL

in Chapter 12.

This may look pretty simple, but it’s powerful. Keep in mind, too, that you’ve seen just the beginning of what this
element can do. There are many use cases to cover; going forward, I’ll showcase examples of leveraging canvas in
practical approaches, especially as it relates to building online advertisements, including graphical animation, and
handling user inputs.

Figure 4-1. A 250 × 250 square made with the canvas element

http://caniuse.com/%23feat=canvas
http://roblaplaca.com/examples/canvasHelloWorld

CHAPTER 4 ■ USING CANVAS, SVG, AND WEB FONTS

64

Illustrator to Canvas
You may already be asking yourself, “Wait, why do I need to draw on the canvas programmatically using JavaScript?
I’m a designer; can’t I use my normal design tools?” You’re not alone in asking this question; there is a very nice
tool, one developed specifically for designers’ use, called Ai ➤ Canvas (visitmix.com/labs/ai2canvas); it allows
designers to design in the vector-based programs they know and love, especially Adobe Illustrator.

The Ai ➤฀Canvas plug-in enables Adobe Illustrator to export vector and bitmap artwork directly to
an HTML5 canvas element that can be rendered in a canvas-enabled browser. The plug-in provides
drawing, animation and coding options such as events so that you can build interactive, well-
designed canvas-based web apps.

visitmix.com/labs/ai2canvas

In a creative department, this tool is exceptionally helpful when you’re working on a team where designers need
to provide concepts and mocks to developers. You can have your designers work in Illustrator and your developers
work in JavaScript. The tool offers a clear separation between design and function and helps when, down the road,
clients need to make changes (they always do). In addition to drawing in this fashion, using Illustrator, this plug-
in allows for animation, event handling, and even debugging. (Pretty sweet, if you ask me, plus it’s all offered for
free.) These features make this plug-in a valuable addition to any designer’s tool belt. Since it’s appropriate for
certain applications, I’d suggest you check it out if you are serious about using canvas to work with highly visual and
complex art. Keep in mind, though, that as the graphics get more complex, the k-weight is sure to increase, as will
the unoptimized JavaScript that the plug-in will generate. So plan your execution correctly, and keep your client and
publisher are aware of what you’re doing, particularly if k-weight constraints are tight.

Flash to Canvas
If you work in Flash or know people who do or did, they will tell you that it was a groundbreaking platform as far
as making innovative rich graphics for the Web is concerned. As you now know, the canvas element is a warmly
welcomed addition, since it lets designers and developers make advantageous use of graphics in HTML5 ads. Now, in
the latest Adobe Flash Professional CS6, designers can work with the canvas element more easily, thanks to a library
and toolkit called CreateJS.

CreateJS

CreateJS has a bunch of great things in its suite of offerings.

EaselJS (covered in detail shortly)•฀

TweenJS (for animations)•฀

SoundJS (for HTML5 audio)•฀

PreloadJS (for preloading assets)•฀

Zoe (a sprite-sheet generator)•฀

Note ■ TweenJS, SoundJS, PreloadJS, and Zoe won’t be covered in this chapter. You can learn more about these

libraries at http://createjs.com.

http://visitmix.com/labs/ai2canvas
http://visitmix.com/labs/ai2canvas
http://createjs.com

CHAPTER 4 ■ USING CANVAS, SVG, AND WEB FONTS

65

For designers and developers, the CreateJS framework, developed by Grant Skinner, provides a complete set of
JavaScript libraries for graphics, animation, sound, and preloading to assist in constructing HTML5 content.

EaselJS

EaselJS is a JavaScript library, part of CreateJS, that allows Flash designers and developers to create graphics in the
Flash authoring environment. Using EaselJS, you gain access to a bunch of similar syntax from Actionscript 3.0
while leveraging JavaScript for creating native browser graphics and animation. According to Grant Skinner, EaselJS
exercises the developments of ten-plus years of Flash’s display list API; he wanted to port it over to a comprehensive
JavaScript library to be used for working with the canvas element in HTML5. In its syntax, EaselJS is very similar to
working with the display list API in ActionScript 3 (AS3), as Listing 4-3 demonstrates.

Listing 4-3. An Example of EaselJS

<!DOCTYPE HTML>
<html>
<head>
<meta charset="UTF-8">
<title>EaselJS</title>
<script src="easeljs-0.4.2.min.js"></script>
<script src="BoxBlurFilter.js"></script>
<style>
* {background-color: #000;}
</style>
</head>
<body onLoad="init()">
<canvas id="canvas" width="1024" height="768"></canvas>
</body>
<script>
var stage,
 canvas = document.getElementById("canvas"),
 context = canvas.getContext("2D"),
 logoImage = new Image(),
 logo,
 fps = 30,
 speed = 0.2;

function init() {
 stage = new Stage(canvas);
 //Keep a local image or you'll get the following error:
 //Unable to get image data from canvas because the canvas has been tainted by
cross-origin data.
 logoImage.src = 'logo.jpg';
 logoImage.onload = function () {
 logo = new Bitmap(logoImage);
 logo.cache(0, 0, logoImage.width, logoImage.height);
 logo.regX = logo.image.width * 0.5;
 logo.regY = logo.image.height * 0.5;
 stage.addChild(logo);

CHAPTER 4 ■ USING CANVAS, SVG, AND WEB FONTS

66

 Ticker.setFPS(fps);
 Ticker.addListener(window);
 }
}
function tick() {
 var splitX = (stage.mouseX - logo.x) * speed;
 var splitY = (stage.mouseY - logo.y) * speed;
 logo.x += splitX;
 logo.y += splitY;
 logo.updateCache();
 logo.filters = [new BoxBlurFilter(5000, 5000, 2)];
 stage.update();
}
</script>
</html>

OK, that’s quite a bit of code to work through, but anyone coming from a Flash or ActionScript background will
attest that, as far as syntax is concerned, it’s pretty much as close as it gets in JavaScript. In the init function, the
similarities to Flash are very great. So if you’re working with graphics in HTML5, I’d strongly suggest taking a look
at EaselJS—not just for its ease of use but also for its light footprint. It comes in only around 45 kilobytes—usually
enough to bring in a bit of overhead to pull off some really amazing graphics, assuming that the publisher doesn’t
have this library included in its site by default.

Let’s break down the code sample in Listing 4-3. First, set up the canvas element and create some variables by
writing var stage, canvas = document.getElementById("canvas"), context = canvas.getContext("2D"),
logoImage = new Image(), logo, fps = 30, speed = 0.2;. For the occasional JavaScript user, nothing so far is
new. Second, create the init method by writing init();, which will kick things off. Then pass the canvas element to
the stage object, as specified in EaselJS—again, very similar to ActionScript. Third, create the image and assign it to
a Bitmap object by writing logo = new Bitmap(logoImage); and add to the stage by calling the addChild method
(another ActionScript code snippet). The last portion is what drives the animation. The Ticker object is essentially
the application’s heartbeat; it gets called at a certain number of frames per second. In this case, 30, as defined in the
variable above by writing Ticker.setFPS(fps);. The tick method gets called in every frame of animation. Apply the
logo movement based on users’ mouse coordinates, and apply a nice motion blur filter by calling the BoxBlurFilter
in the EaselJS framework, which is found in the tick method and Wahlaa!. You’ve just created your first canvas
based animation using EaselJS. Obviously there is much more to this library and I encourage you to try out more
on your own time by digging into the docs [http://www.createjs.com/Docs/EaselJS]. Perhaps, start by taking a
previous Flash based ad unit and convert it over. If you’re serious about working with the canvas element, I strongly
recommend you get very familiar with EaselJS. It will make development when working with the canvas element a lot
cleaner, especially if you’re from a Flash/ActionScript background.

Other JavaScript Libraries
You may or may not be aware that many other JavaScript libraries can work with the canvas element, not just EaselJS.
It’s important to understand the others in the marketplace, because there’s a good chance you’ll come across them
working in future campaigns or when assets get handed off between agency and ad servers. Let’s look at two popular
ones: KinectJS and ProcessingJS.

KinectJS

KinectJS (kineticjs.com) is a canvas JavaScript library that extends the two-dimensional context of canvas by
enabling path and pixel detection for desktop and mobile. You can add things on canvas and then add event listeners
to them—move them, scale them, and rotate them, independently of other elements, to support animations,

www.allitebooks.com

http://www.createjs.com/Docs/EaselJS
http://kineticjs.com
http://www.allitebooks.org

CHAPTER 4 ■ USING CANVAS, SVG, AND WEB FONTS

67

interactivity, and transitions. KinectJS can handle many types of interactivity events, including mouse clicks, touches,
taps, and drags. With its rich feature set and small file size (66 kilobytes), you’re sure to see this library in many
advertising campaigns that utilize the canvas element.

ProcessingJS

I’d like to touch on another library, but it’s certainly not the last in the long and growing list of canvas JavaScript
libraries on the market. ProcessingJS (processingjs.org) is formulated from the Processing language, which is a
Java-based visualization language that has been used in many feature films to create node-based, “networky,” and
abstract elements. ProcessingJS’s library is powerful; it can create some pretty compelling creative experiences
(processingjs.org/exhibition). I’m including this library because it’s both amazing and heavy—so very heavy that
I’d advise against using ProcessingJS in advertising environments as the code base. It’s a staggering 400-plus kilobytes
in size just to include the library, not to mention your own codebase to work with the canvas element. Keep this in
mind as you and your client build experiences using canvas. Just because it looks great to you doesn’t mean all your
users will get the same experience, especially when file size is this large.

These libraries are out there, most of them free to use. I mention them just to showcase that there are many
options, but not every single one is suitable for the advertising space. So keep in mind the overall user experience,
load time, and publisher k-weight restrictions. Working backwards from the defined pub spec will allow you to choose
the correct library, should you need to go down that path.

Canvas Examples
So far I’ve covered working on the canvas element a bit, as well as external JavaScript libraries that can speed up
development time when working with this new element. You’ve seen what it can do and how it can help your creative
process and even some limitations when working with it in advertising. In the next few sections, we’ll cover working
with the canvas element without the need for third-party plugins. This will allow you to get your hands dirty quickly
without needing to rely on external libraries. That said, if you do use a library, the syntax will undoubtedly change
when you use them, so be sure to check out the API documentation before digging in.

Lines

Lines are used all the time in advertising campaigns. They’re great for presenting a path—map directions, vector
drawings, even charting a graph. The use cases for lines within the ad’s creative are extensive. Listing 4-4 shows how to
render a simple line using HTML5’s canvas element.

Listing 4-4. Rendering a Line with Canvas

<!DOCTYPE HTML>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
</head>
<body>
<canvas id="adCanvas"></canvas>
</body>
<script>
//get a reference to the canvas
var canvas = document.getElementById('adCanvas');
var context = canvas.getContext('2d');

http://processingjs.org
http://processingjs.org/exhibition

CHAPTER 4 ■ USING CANVAS, SVG, AND WEB FONTS

68

var adWidth = 300;
var adHeight = 250;

canvas.width = adWidth;
canvas.height = adHeight;
context.moveTo(0,0);
context.lineTo(adWidth,0);
context.moveTo(adWidth,0);
context.lineTo(adWidth,adHeight);
context.moveTo(adWidth,adHeight);
context.lineTo(0,adHeight);
context.moveTo(0,adHeight);
context.lineTo(0,0);
context.stroke();
</script>
</html>

This code outlines a dynamic way to add a border to advertisements. Start off by getting a reference to the
canvas element and call it canvas. Next, set a 2D drawing context and declare two variables, adWidth and adHeight.
These values will dynamically update the canvas element to the desired dimensions. This example makes use of the
common ad size 300 × 250. Finally, use the drawing API of canvas to move and add a line around the whole element
by using the sequence of methods lineTo and moveTo, which render the image in Figure 4-2.

1px

Figure 4-2. Creating a 300 × 250 border using the canvas element

As you see, drawing a dynamic ad border using the canvas element is fairly simple. (This can be really helpful,
as publisher and IAB specs require you to add a 1-pixel border around advertisements.) It doesn’t end there, though.
Play around a bit with lines to see what else you can come up with. Keep in mind that anything you can do with your
design tools, you can pretty much do using canvas, even adding Bézier curves and arcs. If you need a jumping-off
point, start at the W3C schools “try it” editor (w3schools.com/html5/tryit.asp?filename=tryhtml5_canvas_line).

Shapes

If you can create lines, you can create shapes (no shocker here!). Let’s take a look at creating complex shapes using
canvas. Having successfully rendered a green square to the screen, let’s make a star shape (see Listing 4-5). To save on
space from here on, I will omit the full HTML markup and focus on the JavaScript portions.

http://w3schools.com/html5/tryit.asp?filename=tryhtml5_canvas_line

CHAPTER 4 ■ USING CANVAS, SVG, AND WEB FONTS

69

Listing 4-5. Using Canvas to Make a Star Shape

<script>
//get a reference to the canvas
var canvas = document.getElementById('adCanvas');
var context = canvas.getContext('2d');
//draw a star
context.save();
context.beginPath();
context.moveTo(92.0, 1.1);
context.lineTo(120.1, 58.1);
context.lineTo(183.0, 67.2);
context.lineTo(137.5, 111.5);
context.lineTo(148.2, 174.1);
context.lineTo(92.0, 144.6);
context.lineTo(35.8, 174.1);
context.lineTo(46.5, 111.5);
context.lineTo(1.1, 67.2);
context.lineTo(63.9, 58.1);
context.lineTo(92.0, 1.1);
context.closePath();
context.fillStyle = 'rgb(255, 255, 0)';
context.fill();
context.stroke();
context.restore();
</script>

You may have noticed that the dimensions of the canvas element needed to be increased to 200 × 200 to view the
full star. Keep this in mind if you try to paint something larger than the canvas dimension supports, as your painting
will render off the element and produce clipping.

Looking at Listing 4-5, you can see that the same methods are being used to draw lines, but this time there’s a bit
more complexity in where the starting and ending points are placed. You can also see that a fillStyle method has
been added and given a value of yellow in the RGB (red-green-blue) space. If you’re following along, you should get
the image in Figure 4-3 in your browser.

Figure 4-3. A star produced using the canvas element

CHAPTER 4 ■ USING CANVAS, SVG, AND WEB FONTS

70

This may all seem pretty simple, but its actually quite powerful. You can now let the browser do all the hard work,
instead of bringing in large bitmap graphics that will incur longer load times for your end user. Keep in mind that if it’s
a vector shape, you can more or less re-create it using the canvas element

Gradients

Another feature of the canvas element is its ability to use gradients. Gradients are useful for filling in shapes from
one color to another or building on multiple color values in a stack. Gradients are widely used in many things online.
For the longest time developers and designers created and repeated a 1-pixel-wide strip of the gradient using CSS.
Now, with native gradient support on the canvas element, the browser can again handle the heavy lifting. This is
exceptionally important to note when a client hands you Photoshop documents and you need to re-create an exact
representation in the browser while minimizing the k-weight. Instead of bringing in bitmaps from the PSD, tell the
canvas to handle it. It can be somewhat time-consuming, but the end result is worth the wait. Gradients can be Linear
or Radial or have multiple color stops between 0 and 1.

The main difference between a linear and a radial gradient is where the gradient begins. Figure 4-4 displays the
visual difference between them.

Figure 4-4. The difference between a linear and a radial gradient

Listing 4-6 makes a linear gradient fill for the star shape in Figure 4-3.

Listing 4-6. A Linear Gradient Fill Using Canvas

<script>
//greenish gradient
var gradient=context.createLinearGradient(0,0,200,50);
gradient.addColorStop(0,"#FFFF00");
gradient.addColorStop(1,"#00FFFF");
context.save();
context.beginPath();
context.moveTo(92.0, 1.1);
context.lineTo(120.1, 58.1);
context.lineTo(183.0, 67.2);
context.lineTo(137.5, 111.5);
context.lineTo(148.2, 174.1);
context.lineTo(92.0, 144.6);

CHAPTER 4 ■ USING CANVAS, SVG, AND WEB FONTS

71

context.lineTo(35.8, 174.1);
context.lineTo(46.5, 111.5);
context.lineTo(1.1, 67.2);
context.lineTo(63.9, 58.1);
context.lineTo(92.0, 1.1);
context.closePath();
context.fillStyle = gradient;
context.fill();
context.stroke();
context.restore();
</script>

Even a quick look at the bolded code shows that making a gradient is as simple as calling the
createLinearGradient method on the 2D context object and passing in the correct parameters. Once the gradient
is created, add color stops by calling the method addColorStop and specifying a float offset (0–1) and a color value in
hex format. Thus, you can specify a stop at 0.2, 0.4, 0.8, and so on, to get complete granularity and flexibility. Finally,
adding that new gradient value to the fillStyle of the stars shape produces the output shown in Figure 4-5.

Figure 4-5. Creating a linear gradient

Images

While it’s better to let the canvas element handle graphic compositing in your advertisement, you sometimes can’t
get away from using bitmap images, as when you’re working with a retail client that wants to show off new products
or with an automotive company that wants to feature the latest model vehicles. With this in mind, let’s move into the
realm of working with images on the canvas in HTML5. Working thus, developers can easily paint an image bitmap
onto the canvas (see Listing 4-7).

Listing 4-7. Canvas Bitmap Images

<script type="text/javascript">
//get a reference to the canvas
var canvas = document.getElementById('adCanvas');
var context = canvas.getContext('2d');

CHAPTER 4 ■ USING CANVAS, SVG, AND WEB FONTS

72

//draw image
var img=new Image();
img.src="test.jpg";
img.onload = function(){
 context.drawImage (img,0,0);
};
</script>

As you can see from the listing script, I created a new image object, img, and assigned its source to test.jpg (note
that this will change with whatever image path you use). Once the image is loaded, it will fire the event onload, which
will execute the function to call drawImage and paint the image onto the canvas element.

Events

As you’ve become aware, the canvas element is a great feature in HTML5 for rendering both vector and bitmap
graphics to the screen. But it’s not finished there. The canvas can also react; it can handle events from the browser or
from user inputs, including mouse, touch, and DOM events. Listing 4-8 showcases how the canvas can react to many
events by logging output into the JavaScript console in your browser.

Listing 4-8. Using Canvas to Log Output into the JavaScript Console

<script type="text/javascript">
//get a reference to the canvas
var canvas = document.getElementById('adCanvas');
var context = canvas.getContext('2d');
//Mouse Events
canvas.addEventListener('click', function(evt){
 console.log('Click: ' + evt);
});
canvas.addEventListener("mouseover", function(evt) {
 console.log('MouseOver: ' + evt);
});
canvas.addEventListener("mouseout", function(evt) {
 console.log('MouseOut: ' + evt);
});
canvas.addEventListener("mousemove", function(evt) {
 console.log('MouseMove: ' + evt);
});
//Touch Events
canvas.addEventListener("touchstart", function(evt) {
 console.log('TouchStart: ' + evt.touches.length);
});
canvas.addEventListener("touchmove", function(evt) {
 evt.preventDefault();
 var touch = evt.touches[0];
 console.log("Touch x:" + touch.pageX + ", y:" + touch.pageY);
});
canvas.addEventListener("touchend", function(evt) {
 console.log('TouchEnd: ' + evt);
});

CHAPTER 4 ■ USING CANVAS, SVG, AND WEB FONTS

73

canvas.addEventListener("touchcancel", function(evt) {
 console.log('TouchCancel: ' + evt);
});
</script>

User input is being handled on mouse clicks and touch events, and the output is logged to the JavaScript console.
Keep in mind that you can extend this to a user painting with their mouse or even finger, should the device support it.
Having user inputs with the canvas element provides interactivity, a great feature to incorporate into your creative. It
could involve starting or stopping animation in the canvas or even interacting with a game inside your ad unit. Keep
this in mind when building ads that require interactivity and user input.

Saving

Now that you know how to provide interactivity by controlling user input, let’s attempt to save the image on our
canvas to our local drive. To save the canvas as an image, set the image source to the image todataURL. From there, a
user can save it to a local machine. Pretty cool! Especially when you want the user to customize something within the
experience and take the art away or share it via email or on a social networking site.

Note ■ The toDataURL() method will throw a SECURITY_ERR exception if the canvas has paint from other domains.

Listing 4-9 showcases how to use canvas to save an image format via the toDataURL method.

Listing 4-9. Using Canvas to Save Images

<script type="text/javascript">
//get a reference to the canvas
var canvas = document.getElementById('adCanvas');
var context = canvas.getContext('2d');
var img=new Image();
img.src="test.jpg";
img.onload = function(){
 context.drawImage (img,0,0);
};
//Mouse Events
canvas.addEventListener('click', function(evt){
 console.log('Click: ' + evt);
 // no argument defaults to image/png; image/jpeg, etc. also work on some. image/png is the only
one that must be supported per spec.
 try {
 window.location = canvas.toDataURL("image/png");
 } catch (error) {
 console.log(error);
 }
});
</script>

You can now save images in your canvas container! This is really helpful if you are creating an interactive ad unit
that you want the user to draw or to create something with, if you want the user to have the ability to save it to their
machine or share it with another web service. As in Listing 4-9, paint the image to the canvas, and on mouse click

CHAPTER 4 ■ USING CANVAS, SVG, AND WEB FONTS

74

call the method toDataURL, which saves the canvas as an image with a default mime type of png. You can also save in
other formats, such as jpeg and gif, as well by setting the correct mime type.

Animations

Having the canvas element handle animations is another huge plus for designers—particularly animators.
Animations can be handled in several different ways in the browser. Listing 4-10 shows the most logical approach in
HTML5-compliant browsers, the requestAnimationFrame method.

Listing 4-10. Using Canvas for Animations

<script>
var canvas = document.getElementById('adCanvas');
var context = canvas.getContext('2d');
var gradient = context.createLinearGradient(0, 0, 200, 200);
gradient.addColorStop(0, '#000000');
gradient.addColorStop(1, '#999999');
context.fillStyle = gradient;
var x = 0, y = 0;
var shapeWidth = 50, shapeHeight = 50;
var speed = 12;
function animate() {
reqAnimFrame = window.mozRequestAnimationFrame || window.webkitRequestAnimationFrame ||
window.msRequestAnimationFrame || window.oRequestAnimationFrame;
 reqAnimFrame(animate);
 x += Math.round(speed);
 if (x <= 0 || x >= canvas.width - shapeWidth) {
 speed = Math.round(−speed);
 }
 draw();
}
function draw() {
 context.clearRect(0, 0, 500, 170);
 context.fillRect(x, y, shapeWidth, shapeHeight);
}
animate();
</script>

As can be seen in the listing, the canvas element handles animations by utilizing requestAnimationFrame pretty
easily; it tells the browser you are intentionally trying to animate something. First, grab the canvas element and add
its 2D context (nothing new there). Then add some setup vars (variables) to control x, y, width, height, and speed of
the animation. Next, set up a function called animate, which calls itself every time the frame is requested and calls the
draw method.

Note ■ Functions are called methods when they are attached to an object.

Finally, inside the draw method are two methods, clearRect and fillRect, that are responsible for
clearing and drawing the square to the screen. Just remember to include the entire list of vendor prefixes for the
requestAnimationFrame (for the time being) if you’re targeting requirements include all the modern HTML5 browsers.

CHAPTER 4 ■ USING CANVAS, SVG, AND WEB FONTS

75

Advanced Canvas

From the brief examples above, you should now have a pretty good understanding of what the canvas element can
do and the many enhancements it brings to the HTML5 spec. The following are some of the more advanced canvas
examples to check out on your own time.

•฀ impactjs.com

•฀ craftymind.com/factory/html5video/CanvasVideo.html

•฀ gyu.que.jp/jscloth

•฀ fir.sh/projects/jsnes

•฀ spielzeugz.de/html5/liquid-particles.html

•฀ nihilogic.dk/labs/canvas3dtexture_0.2

•฀ williammalone.com/articles/create-html5-canvas-javascript-drawing-app

When exploring new libraries and tutorials, keep in mind the file weight and overall performance, especially
when viewing demos and attempting to reference them for your ad creatives. Keep in mind, too, that no one is
going online to view your ad, so try to avoid overkill. It’s often best to just give viewers a taste, one that will drive
them to a fuller experience on a landing page. An ad that’s too elaborate can tax a user’s machine or even crash it,
depending upon the device, the machine’s limitations, even the publisher the ad is running on. Last, take a look at
html5rocks.com/en/tutorials/canvas/performance for tips on maximizing your canvas performance on the Web,
including layering canvas elements for complex graphics and avoiding unnecessary stage changes.

Canvas Browser Support
Since the canvas element is an emerging feature of the HTML5 spec, many older browsers do not support it. Thus,
you’ll need to use polyfills and shivs for browsers that can’t support the new element, should you need to design for
them. For example, Flash can be a graceful failover for targeting desktops and display. To detect modern browser
support in desktop and mobile, use a library called Modernizr (modernizr.com). Modernizr is more or less geared
towards web content development where k-weight isn’t a major issue. In online advertising, having your ad creative
include Modernizr can increase k-weight significantly. Find out if your publisher includes Modernizr and if it can
provide the proper “hooks” for the ad to tie into. If you can leverage it, Modernizr is sort of a Chinese restaurant
menu for feature detection; you only include what you absolutely need to check for—and that can save on the overall
k-weight. In an ideal world, publishers and ad networks would include this library by default so ads can hook into
useful features that site content is already checking for. Be sure to reach out to your publisher to find out whether its
page is using Modernizr and whether the ad creative can detect supported features. Listing 4-11 shows an example of
using Modernizr for canvas, without including the library.

Listing 4-11. Using Modernizr for Canvas Detection

if (Modernizr.canvas) {
 // canvas is supported—do canvas stuff
}else{
 //canvas is not supported use Flash or something similar as a failback
}

As you see, an ad designer could use this very easily by simply including a conditional (if/else) statement, if a
publisher already includes it into their site.

http://impactjs.com
http://craftymind.com/factory/html5video/CanvasVideo.html
http://gyu.que.jp/jscloth
http://fir.sh/projects/jsnes
http://spielzeugz.de/html5/liquid-particles.html
http://nihilogic.dk/labs/canvas3dtexture_0.2
http://williammalone.com/articles/create-html5-canvas-javascript-drawing-app
http://html5rocks.com/en/tutorials/canvas/performance
http://modernizr.com

CHAPTER 4 ■ USING CANVAS, SVG, AND WEB FONTS

76

You may be asking, what about older browsers, like Microsoft’s IE6 through IE8? Well, they can benefit from
leveraging ExplorerCanvas (excanvas.sourceforge.net), which is a polyfill for working with browsers that do not
support the new element. The canvas element can also be used in a bunch of different ways. Stacking multiple
elements on top of each other to form a final composite is one way, and it avoids canvas state changes. Painting on
the canvas is an expensive operation, since some browser’s handle all of its processing power on the machine’s CPU.
However, as versions of modern browsers, like Chrome version 18+, provide hardware-accelerated GPU support for
the canvas element, performance and rendering will speed up enormously. As more browsers adopt these features,
they will be exceptionally helpful in deploying to mobile devices, where taxing the CPU can eat up a battery’s life and
ultimately crash browsers. (A very good write-up on canvas performance is found at html5rocks.com/en/tutorials/
canvas/performance.)

Animated Gifs
Have you ever heard the saying, “Just because you can do something one way doesn’t necessarily mean it’s the best
way to do it”? One often-overlooked component in browser animation is the good old animated gif format. Yes, I
know, it’s a slightly mature and primitive method for creating animation on the Web, but it still holds some appeal
today. As you may remember, animated gifs were pretty big back in the days before Flash advertising. Remember from
Chapter 1 the static HTML or HTML ads that animated by means of a simple gif image? Animated gifs can be useful
in a pinch for animating a sequence of images quickly or if you just don’t know much about working on the canvas
(though, that shouldn’t be an issue any longer!). It’s also a great workaround for translating frames of a video into an
image sequence so developers can simulate autoplay on iPhones and iPads and similar devices (Apple prohibits the
autoplaying of video as it eats up a customer’s data plans). Also, animated gifs are accepted everywhere, on pretty
much every browser. Software like Adobe’s Photoshop and Adobe Fireworks can create animated gifs very easily with
only a little work. Some online web services are even easier:

Gifninja: •฀ gifninja.com

Mothereffing animated gif: •฀ mothereffinganimatedgif.com

You’ll find that not everything needs the canvas element for every type of animation, especially since it’s an
emerging feature. Animated gifs are still a useful and viable feature to leverage; so take advantage of them for their
ease of use in creating and their overall file size when rendered. However, if you’re looking to wow your client with
richer animations, you’d best explore with the canvas element. I suggest getting an understanding of the campaign’s
goals and requirements from the publisher or ad network before you commit to one feature or another. Who knows,
you may be able to easily leverage both by developing with canvas in mind first and gracefully degrading to an
animated gif experience on users’ browsers that can’t support the HTML5 experience. Work with your first- and
third-party ad server to provide user agent detection and serve the creative and tags appropriately. To take advantage
of an animated gif failover for the canvas element, wrap the animated gif image in the canvas tag; for example,
<canvas></canvas>. For browsers that support canvas, the inside element (in this case
the img tag) will be omitted; otherwise, for browsers that do not support canvas, the tag is recognized, and the image
will render to the screen.

Canvas in Advertising
So great, you’ve learned all the amazing features and enhancements available to designers and developers who
operate with the new canvas element, but how does everything play out in the advertising space? Well, the canvas
element brings many new enhancements for advertising. For starters, for the first time one can create Flash-like

c

http://excanvas.sourceforge.net
http://html5rocks.com/en/tutorials/canvas/performance
http://html5rocks.com/en/tutorials/canvas/performance
http://gifninja.com
http://mothereffinganimatedgif.com

CHAPTER 4 ■ USING CANVAS, SVG, AND WEB FONTS

77

graphics directly inside the browser without use of a third-party plug-in. As modern browsers become ubiquitous,
there’ll be one set of standards for creating graphics on the web. In addition, canvas is great on mobile and tablet
devices; support is very strong across manufacturers, operating systems, and browsers. Browsers on mobile devices
will soon all take advantage of hardware support via the Graphics Processing Unit (GPU) to speed up rendering and
tax the CPU much less. Canvas is a huge game changer for online advertising and for the Web as a whole. Examples of
campaigns using the canvas element can be found at the following URLs:

•฀ http://bit.ly/QIpVJa

•฀ http://bit.ly/OAf8BX

I expect to see more ad designers and developers leveraging canvas in the near future for their HTML5 campaigns. In
short, canvas will be here for the long haul. It will be a customary element for working with graphics on the Web—but
yet again, bear in mind that it is still emerging. Thus, leveraging it for any and all animations and graphics within a
campaign may not be the smartest thing to do unless you have a failover in place.

SVG
As you’ve seen, the canvas element is great for creating rich graphics and animations in HTML5, but there’s another
graphical language that’s been around for quite some time (since 2003): SVG. SVG (scalable vector graphics) and its
now supported inline via HTML5. (“Inline” means SVG content can be included simply by adding <svg> tags within
the HTML markup.)

Let’s first break down what SVG does. Scalable vector graphics are essentially XML markup defining a set of
strokes, fills, and graphic instructions in a way that the browser can understand. At any size or zoom level, SVG
will render the art to the screen sharply. Within an advertising campaign, it is exceptionally important to maintain
legibility for brand names, logos, typefaces, and overall copy. In the mobile device ecosystem with varying pixel
densities, SVG will still also render crisp to the screen, so use SVG when and where you can.

SVG is powerful yet simple in that its vector-based—which means that strokes and fills are rendered
mathematically onscreen by coordinates. Contrast this with bitmaps, which are rendered in pixels, whose presence
can lead to subpixel aliasing and the creation of feathered or blurred images if they don’t reside on a whole pixel.
Native SVG support is an important enhancement to the HTML5 spec; it allows designers to create in Adobe’s
Illustrator (or whatever their vector tool of choice is) and export for the screen by saving their work as an SVG
file. This file format is a W3C specification and is widely supported across browsers. SVG is really good at saving
on art’s k-weight as well as its legibility and overall fidelity. See Figure 4-6, which shows the Pepsi logo (from
brandsoftheworld.com).

http://bit.ly/QIpVJa
http://bit.ly/OAf8BX
http://brandsoftheworld.com

CHAPTER 4 ■ USING CANVAS, SVG, AND WEB FONTS

78

Figure 4-6 places a vector (SVG) version above a bitmap (IMG) version. You can see that the SVG version is
as crisp as the bitmap image, and it will remain crisp regardless of scale on the image or zoom level on screen,
whereas the bitmap will degrade in quality with scaling up. In addition, the SVG version is 8 kilobytes, as opposed to
12 kilobytes for the IMG image. This may not seem like a big deal, but as you add more images with more color values
and graphics get more complex, you’ll quickly notice that this approach can save an abundance of file size in your
ads. (You’ll find more examples of SVG uses at bogotobogo.com/svg.html. Remember to always check for browser
support, using caniuse.com/svg-html5, before launching a campaign in HTML5 that leverages SVG.)

RaphaëlJS

I’d like to draw your attention to a powerful JavaScript library called RaphaëlJS (raphaeljs.com), which can streamline
your workflow with vector graphics on the Web. RaphaëlJS uses the SVG W3C Recommendation, where objects you

Figure 4-6. The SVG and IMG versions of the Pepsi logo

http://bogotobogo.com/svg.html
http://caniuse.com/svg-html5
http://raphaeljs.com

CHAPTER 4 ■ USING CANVAS, SVG, AND WEB FONTS

79

create in its library are also DOM objects; thus, you can attach the usual JavaScript event handlers to them for user
input or other events. RaphaëlJS is also pretty much cross-browser-friendly as Firefox 3.0, Safari 3.0, Chrome 5.0,
Opera 9.5, IE6.0, and all newer versions of these browsers support it. However, within the advertising realm, RaphaëlJS
is a bit large unless you have room to play with k-weight. Since it sits at approximately 89 kilobytes minified and over
200 kilobytes unminified, it could break the bank with some publishers. So be mindful before going down this path, as
it may be tough to retool the creative or get the publisher to budge on the specs.

SMIL
SMIL (Synchronized Multimedia Integration Language) allows for animation in the SVG element. According to the
Mozilla Developer Network (developer.mozilla.org/en/SVG/SVG_animation_with_SMIL) SMIL provides the ability
to animate an element’s numeric attributes, transform attributes, and color attributes and motion path. Listing 4-12
demonstrates how to leverage SMIL within SVG.

Listing 4-12. Leverage SMIL Within SVG

<svg width="300px" height="100px">
 <rect x="0" y="0" width="300" height="100" fill="white" stroke="white" stroke-width="1" />
 <circle cx="0" cy="50" r="50" fill="green" stroke="white" stroke-width="1">
 <animate attributeName="cx" from="0" to="300" dur="1s" repeatCount="indefinite" />
 </circle>
</svg>

In this listing, a green circle is being moved across 300 pixels within 1 second, and the process is repeated forever.
This is pretty simple to accomplish if you take a look at the bolded line of code. Test the listing in your browser;
you’ll notice that SVG animation is surprisingly fast. There are many more features to take advantage of—this simple
code shows animating on the x value only—so be sure to check out the URL [http://srufaculty.sru.edu/david.
dailey/svg] and learn more as well as start experimenting. Try adjusting color, animating along a set path, and even
manipulating the shapes while animating. Last of all, always use caniuse.com/svg-smil to check for overall support
before leveraging the SMIL manifest.

Canvas and SVG
You may be thinking, “I have the canvas element and SVG support, but which one do I use?” Well, from an end
user’s visual standpoint, they are similar in what they can handle, but they differ greatly in technology. Both support
layout, gradients, animation, user input, and masks, but one is driven by a JavaScript API, and the other is formed
from XML markup. A benefit of SVG is that it can be styled via CSS because there are actual DOM elements within the
document’s markup, whereas with canvas being just one object (container) in the DOM, CSS styling is prohibited,
unless you’re targeting just the canvas element itself. In short, you should really leverage both, depending on the
requirements of the creative and the campaign’s reach. For an extremely detailed and thorough write-up, go to the
Opera browser’s developer site (dev.opera.com/articles/view/svg-or-canvas-choosing-between-the-two).

SVG in Advertising
Having SVG in web standards advertising is a pretty big deal. I’ve used vector art in Flash for many years to save on file
size, and the same applies for development in the browser now. Not only does SVG render simple and complicated
vector drawings by describing a bunch of mathematical coordinates directly within the browser markup; it’s also very
important in brand identity, maintaining image fidelity, and font rendering (as the following section explains). In
addition, SVG can be saved via programs designers are already using. This makes the learning curve much easier to
cope with. SVG renders quickly and, as you’ve seen, combines well with its SMIL animation counterpart. So I strongly

http://developer.mozilla.org/en/SVG/SVG_animation_with_SMIL
http://srufaculty.sru.edu/david.dailey/svg
http://srufaculty.sru.edu/david.dailey/svg
http://caniuse.com/svg-smil
http://dev.opera.com/articles/view/svg-or-canvas-choosing-between-the-two

CHAPTER 4 ■ USING CANVAS, SVG, AND WEB FONTS

80

suggest you explore SVG for your advertising campaigns, especially when graphics are mandatory, target screens are
varied and file size limitations come into play during development and testing on publisher pages.

Web Fonts
Heading into creative development with HTML5 with CSS3, let’s shift gears a bit and learn more about rendering
fonts to the screen using CSS3 web fonts. For a long time fonts on the Web were horrible; there were only a select few
“Web safe” fonts available: Arial, Courier, Times, Verdana, etc. . . While this was good in that it provided a consistent
experience for the end user, it severely limited designers’ creativity. Designers wanted to duplicate their level of print
creativity on the Web, but they couldn’t unless they saved typography designs as images or leveraged Flash when it
became the advertising standard. Saving as images was a pain—updates weren’t easy to make since they were often
made into images, and with more image files coming down to the end user, longer load times resulted. Moreover, you
could certainly throwaway the possibility of dynamic text content with designed typography. When Flash became the
standard, brands and marketers fell in love with its rich font rendering and ability to offer dynamic text with a brand’s
exact font.

Strictly speaking, web fonts aren’t really new; they’ve been in CSS level 2, but limited browser adoption and
fragmented vendor support sabotaged their ability to shine with designers. In the latest CSS level 3 spec (CSS3), the
inclusion of web fonts brings the ability to render any of the designer’s fonts via CSS by including an at-rule set for font
face. Listing 4-13 shows a rock-solid way to include web fonts—specifically, Oxygen, a font in Google’s free web font
library—in your CSS styling.

Listing 4-13. Using CSS3 Web Fonts (HTML)

<!DOCTYPE HTML>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<link href='http://fonts.googleapis.com/css?family=Oxygen' rel='stylesheet' type='text/css'>
<style rel='stylesheet' type='text/css'>
html, body {
 font-family: 'Oxygen', sans-serif;
}
</style>
</head>
<body>
</body>
</html>

Note ■ Google’s list of open source and free web fonts can be found at google.com/webfonts.

Notice that I’ve linked to the external CSS file hosted on Google’s domain. Once loaded, the new font family
Oxygen can be added to the style sheet or as an inline style within our HTML markup. Simple enough? Listing 4-14
looks at what’s going on in the Google-provided style sheet we’re linking to.

http://fonts.googleapis.com/css?family=Oxygen

CHAPTER 4 ■ USING CANVAS, SVG, AND WEB FONTS

81

Listing 4-14. Using CSS3 Web Fonts (CSS)

@font-face {
 font-family: 'Oxygen';
 font-style: normal;
 font-weight: 400;
 src: local('Oxygen'),url('http://themes.googleusercontent.com/static/fonts/oxygen/v1/
 eAWT4YudG0otf3rlsJD6zOvvDin1pK8aKteLpeZ5c0A.woff') format('woff');
}

When we link to the Google provided CSS file, notice that the CSS syntax is essentially declaring a new font face
rule for Oxygen so that the rest of the document can understand what Oxygen is when the font family property gets
assigned to it. In the listing, font family, font style, font weight, and a source to the font file are set for the browser
to use. This portion may seem confusing, but it’s really just targeting a WOFF font file. The arbitrary characters are
simply generated at serve time by Google, most likely to mask the file name on their server and count requests to the
file. The WOFF font file is one of many formats in the fragmented web font space (which we’ll cover in more detail in
the following sections). What’s nice about Google’s service is that it detects what browser is requesting the font and
serves up the appropriate format for that particular browser.

WOFF
Starting off with the one we’ve just discussed, the WOFF (web open font format) font file is a developing standard for
serving web fonts to browsers. WOFF files are essentially TrueType files compressed for delivery over the Web and
with additional metadata information. The overall goal of the WOFF format is to have one standard that’s accepted
across all browsers and light enough to serve to browsers and devices with minimal bandwidth (like mobile). At the
time of writing the WOFF format has been supported by Mozilla’s Firefox version 3.6 and up, Google’s Chrome version
5 and up, and Opera; it is also supported by Microsoft’s IE9. For Apple and Safari, starting at release 5.1, support is
available only on Mac OS X Lion. Many assume that WOFF files will be the de facto standard for delivery of web fonts
in the very near future. My hope is that it does so fragmentation in this space goes away.

TrueType Fonts
TrueType fonts (TTF) are the oldest font formats I’ll be discussing. Developed back in the 1980s by Apple, TrueType
fonts are used in Apple’s Safari browser before OS X Lion (version 10.7) and Safari version 5.1. If you try validating this
by viewing our Oxygen style sheet URL in a Safari browser, you get the following response from Google:

@font-face {
 font-family: 'Oxygen';
 font-style: normal;
 font-weight: 400;
 src: local('Oxygen'), url('http://themes.googleusercontent.com/static/fonts/oxygen/v1/
WNVARKadHCfwbQ2n3MQeIOvvDin1pK8aKteLpeZ5c0A.ttf') format('truetype');
}

Thankfully Google is doing the browser detection for you as you can see, the font space is already becoming
pretty fragmented.

http://themes.googleusercontent.com/static/fonts/oxygen/v1/
http://eAWT4YudG0otf3rlsJD6zOvvDin1pK8aKteLpeZ5c0A.woff
http://themes.googleusercontent.com/static/fonts/oxygen/v1/
http://themes.googleusercontent.com/static/fonts/oxygen/v1/

CHAPTER 4 ■ USING CANVAS, SVG, AND WEB FONTS

82

Embedded OpenType
Apropos web font fragmentation and our Google web font example for Oxygen (Listing 4-14), Embedded OpenType
(EOT) font files are used in the Microsoft browser, Internet Explorer. Making the request to our stylesheet from an IE
browser will yield the following response from Google:

@font-face {
 font-family: 'Oxygen';
 font-style: normal;
 font-weight: 400;
 src: url('http://themes.googleusercontent.com/static/fonts/oxygen/v1/
RuRdwqUdkfYP0fpTfyGHiA.eot');
 src: local('Oxygen'), url('http://themes.googleusercontent.com/static/fonts/oxygen/v1/
RuRdwqUdkfYP0fpTfyGHiA.eot') format('embedded-opentype'),
url('http://themes.googleusercontent.com/static/fonts/oxygen/v1/
RzoNiRR1p2Mqyyz2RwqSMw.woff') format('woff');
}

Google is handling Internet Explorer browsers by supplying them with EOT files, as well as through the newly
adopted WOFF format for later browsers. This is a great way to show you that you’ll need to often supply multiple
fonts depending on your target audience.

Using SVG with Fonts
Let’s have a last look at SVG; specifically, at serving an SVG file as a font character sheet. We still rely on SVG fonts
because older versions of mobile Safari (on the iPhone and iPad) accept only this file format. But SVG fonts aren’t
really a font format as you’ve just learned; they’re just instructions for font glyph outlines represented as standard
SVG elements and attributes. You may think that including all the glyphs is fine, but what if you need just 10 of them
and not all 200? This is one of the biggest difficulties related to using SVG as a font for the Web. EOT and WOFF have
compression built into the font format; it allows for quick transfer and download times. By the spec’s very nature,
however, SVG fonts are uncompressed and pretty large, especially for mobile use. Another issue with SVG is that
certain font files contain information on how certain characters will be used together. This information gets lost when
the font gets converted to SVG. Lost, too, are important metadata information about how to layout certain ligatures,
special characters, leading, and kerning. Mobile Safari has adopted the soon-to-be standard WOFF format starting at
mobile Safari version 5, however for Android user’s you’ll need to supply TTF or SVG formats.

Font Squirrel
You may be thinking, “It’s pretty ridiculous that I have to remember the syntax for web fonts, not to mention how to
generate the different file formats, as well as which browsers support which formats.” We’ll I’m here to tell you that
a very good tool to bookmark is Font Squirrel for web font creation (fontsquirrel.com/fontface/generator) Font
Squirrel allows developers to upload a font file to their user interface; the free service handles the conversion process
to the other formats, as well as providing you with rock-solid CSS syntax for use within your creative. To get a detailed
understanding of how Font Squirrel generates its code, look at Paul Irish’s blog on the font face implementation syntax
(paulirish.com/2009/bulletproof-font-face-implementation-syntax).

When using this free service, you’ll find that some fonts you try to upload will be blacklisted to prohibit
conversions. You need to have the licensing terms in place to perform this action; so consider exploring alternative
avenues. This brings us to the topic of web font licensing.

http://themes.googleusercontent.com/static/fonts/oxygen/v1/
http://rRuRdwqUdkfYP0fpTfyGHiA.eot
http://themes.googleusercontent.com/static/fonts/oxygen/v1/
http://RuRdwqUdkfYP0fpTfyGHiA.eot
http://themes.googleusercontent.com/static/fonts/oxygen/v1/
http://RzoNiRR1p2Mqyyz2RwqSMw.woff
http://fontsquirrel.com/fontface/generator
http://paulirish.com/2009/bulletproof-font-face-implementation-syntax

CHAPTER 4 ■ USING CANVAS, SVG, AND WEB FONTS

83

Web Font Licensing
Though there are many free, open-source web font services on the Web, including Google’s and Adobe’s Typekit,
you may be wondering how you can access licensed fonts from well-established font foundries—Helvetica Neue,
Futura, and Myriad, to name a few. There are paid services on the Web for licensing fonts, such as some from Typekit’s
Monotype and WebType. These services, which provide many of the popular fonts most of your brands are or could be
using, use a rental license business model. They either allow the developer to host or provide hosting, as well as easing
a common problem by handling browser fragmentation. You shouldn’t be shocked to learn that purchasing a font
license to use a specific font in certain creatives doesn’t mean you can also use it in web embedding, or @font-face.
There are specific licenses for @font-face; they are typically sold separately from the specific foundry. Before starting
a campaign you’re your advertiser, find out if they’ve already purchased the font licensing for their site. If they have,
you can more than likely use it for their ad campaigns. More information about web font EULAs (end-user license
agreements) can be found at blog.themeforest.net/general/font-licensing-for-the-web.

Web Fonts in Advertising
It’s pretty obvious that an advertiser’s marketing team expects you to use the brand’s identity and specific font
family in any campaign you design. As Flash and the font-rendering engine it used recede into the past, you’ll need
to leverage web fonts using newer web standards. This definitely raises some concern for publishers, as k-weight
limitations for additional font families will need to be revised. As you’ve seen, the Oxygen font family could add 100
kilobytes or so to the overall size of all file formats and supply the whole gamut of fonts for cross-browser ad serving.
So take a tip from Google: detecting a user agent on request and serving the appropriate file makes the most sense,
especially if users are on devices with cellular connections and limited bandwidth.

Since you’ll want to support all the various formats to allow for a seamless cross-browser experience, another
thing to mention is making sure your ad server’s mime type can handle updated file formats before going live in a
production environment. Also please don’t use solutions like the JavaScript library called Cufon [http://cufon.
shoqolate.com]. They can render web fonts, but they can cause accessibility and performance problems and take a
long while to load due to the increased file size. Many discussions concern supplying web fonts for mobile visitors,
as their download costs are higher and the wait to get to their content is much longer. Even so, I think advertisers
and brands want a consistent experience, no matter what device or screen a user is on. So whether or not to provide
special web fonts for mobile users is really an advertiser’s call. However, you should outline the concerns of speed vs.
visual continuity to your clients, then allow them to make the decision. In some cases publishers and content owners
may not want to budge, may just say no to any web fonts in their mobile advertising inventory. Be sure to keep this in
mind when you plan use of web fonts across publishers and ad networks.

Another common issue in non-Webkit browsers like Firefox and Opera is dealing with FOUT (flash of unstyled
text). Chances are it will come up sooner rather than later. FOUT refers to content being rendered to the screen
before the style on the type is set. A nice trick to get around this problem, found in Google’s free web service, involves
leveraging a JavaScript technique to detect when the style has loaded. If you’re not using Google’s service, you can
hide all onscreen copy for 2 to 5 seconds and then toggle its visibility on. Hacky, for sure, but as Listing 4-15 shows,
it works.

Listing 4-15. Paul Irish’s FOUT Script

<script>
 (function(){
 // if firefox 3.5+, hide content till load (or 3 seconds) to prevent FOUT,
from paulirish.com
 var d = document, e = d.documentElement, s = d.createElement('style');
 if (e.style.MozTransform === '' || e.style.OTransform === ''){
 s.textContent = 'body{visibility:hidden}';
 var r = document.getElementsByTagName('script')[0];

http://blog.themeforest.net/general/font-licensing-for-the-web
http://cufon.shoqolate.com
http://cufon.shoqolate.com

CHAPTER 4 ■ USING CANVAS, SVG, AND WEB FONTS

84

 r.parentNode.insertBefore(s, r);
 function f(){ s.parentNode && s.parentNode.removeChild(s); }
 addEventListener('load',f,false);
 setTimeout(f,3000);
 }
 })();

 </script>

Keep in mind that there are also vendor-specific CSS properties to include, like Webkit font smoothing and
legibility optimizing, that will render anti-alias your font and smooth any rough spots.

For more information on CSS3 web fonts, see www.w3.org/TR/css3-webfonts. At the risk of beating a
dead horse, note yet again that it’s still emerging, but adoption is growing quickly; so be sure to check
caniuse.com/#feat=fontface to locate browsers currently supported.

Summary
This chapter, on working with the HTML5 canvas element, the SVG spec, and using web fonts, has covered a lot! I’ve
set the stage for the power that HTML5 is bringing to the browser and for features that developers and designers can
take advantage of right now. You’ve seen code samples that show you how to use the canvas element with graphics,
images and animation, as well as how SVG and SMIL provide a similar experience. The differences between these
approaches and how each can help in the advertising space have been discussed. You’ve also seen how to create
native graphics within a browser without leveraging a third-party plug-in—a huge advance in web standards that
HTML5 provides.

In the next chapter there’ll be more discussion about graphics using JavaScript and CSS3 and about how to
bring animations and presentations to your creatives using nothing but web standards. So take a break if you need to,
because we’re just getting started!

http://www.w3.org/TR/css3-webfonts
http://caniuse.com/%23feat=fontface

85

Chapter 5

Animations and Presentations

As you’ve seen, animation can be handled in many forms within the browser: via the new canvas element, animated
GIFs, and even animation within SVG using SMIL. This section will cover building animations in the browser and
creating them using CSS level 3 (or CSS3). In addition to CSS animations, transforms, and transitions, all the new
presentations and styling that CSS3 brings will be covered in detail. Features, browser support, and important
“gotchas” to remember will all be reviewed as the chapter digs deep into the world of CSS3. Once you’ve got your fill,
we’ll cover the important topics of sprite sheets (the huge impact they’re making in web optimization for designers
and developers) and, even more importantly, mobile devices that access the Web, a technology where optimizing file
size is vital.

Please note that, from here on in this chapter and for the remainder of the book, I’ll be referring to the CSS spec,
level 3, as CSS3. Also, you should understand that HTML5 isn’t CSS3 and vice versa, but you may know that HTML5 is
becoming a blanket term for everything new and emerging in browser leveraging, new HTML markup, updated CSS
specs, and new JavaScript and DOM APIs. So while it’s not accurate, the terms are often used interchangeably, and
typically, any HTML5-compliant browser will render most CSS level 3 features. Even though CSS3 isn’t technically
part of the HTML5 specification, it will still be beneficial to learn about all the new web technologies and how they
complement each other. With all that said, get ready to learn what CSS3 is, how it will impact your web development,
and most specifically, how CSS3 will help you construct advertising for the modern browsers that support it.

Note, too, that what follows assumes you are familiar with basic CSS and the styling of DOM elements and that
you have an understanding of vendor prefixes, as they’ll be used frequently in this chapter. If you need a refresher,
head to http://developer.mozilla.org/en-US/learn/cssCSS3.

As I write, CSS3 is the latest working draft of the W3C’s standard for cascading style sheets. The same spec that
has always handled the style and layout of web pages has been updated with many new additions, which caused some
developers to scratch their heads in the early days of release. Not only does CSS3 handle style and layout, but it now
allows handling of animations, rich effects and content, and even 3D, all within the CSS arrangement. You can see
CSS3’s fresh, new (albeit still unofficial) logo in Figure 5-1.

http://developer.mozilla.org/en-US/learn/cssCSS3

CHAPTER 5 ■ ANIMATIONS AND PRESENTATIONS

86

CSS3 is bringing a world of new efficiencies to modern browsers, and you’ll hear about them all in this chapter.
However, since, as of late 2012, the final specification hadn’t been yet decided upon, I can cover only what has been
released to date. So be sure to check on the spec by visiting a very useful site, http://css3clickchart.com. In
addition, you’ll learn about the features being submitted to and included within the spec by companies like Adobe,
Apple, and Google, which are doing some remarkable things.

First up, though, let’s look at CSS3 animations where, for the first time ever, you can leverage keyframe data
within the CSS of your page or, more importantly, your web advertisements. With this update the latest browsers
can handle the animations natively, thus providing yet another way to animate within the browser. But don’t get too
overwhelmed—you’ll discover its benefits and downsides and learn the ideal way to handle animations in many
different scenarios.

 Browser Support
First, though, let’s cover the omnipresent issue of browser support when working with CSS3 animations. Currently,
since CSS3 animations are still in a working-draft state, browsers are adopting features at different rates. For example,
Microsoft just adopted them in the latest Internet Explorer browser, version 10, available on Windows 8. The chart in
Figure 5-2, from http://caniuse.com, shows support for CSS3 animations as of November 2012.

Figure 5-1. CSS3’s official new logo

http://css3clickchart.com
http://caniuse.com

CHAPTER 5 ■ ANIMATIONS AND PRESENTATIONS

87

So when you run a campaign that uses animations via CSS3, keep in mind that your audiences on older IE or
Opera Mini will need a graceful failover to another form of animation or perhaps even a static experience. Work with
your ad server partner to target specific creative to specific browsers, browser versions, and devices so your user base
still gets somewhat of an experience even if its not the most compelling one. Typically a first- or third-party ad server
can do this.

When dealing with advertising and overall browser support, keep in mind that on the type of target audience that
will be viewing your ads. This may include various browsers, browser versions, operating systems, and devices. With
this in mind, a very good CSS3 generator called CSS3 Maker (http://css3maker.com) offers the ability to generate
new CSS3 features for your ad content and check the current browser support for that given feature. Figure 5-3 shows
some of what’s supported in CSS3 as of November 2012.

Figure 5-2. Browser support for CSS3 animations (November 2012; http://caniuse.com)

http://css3maker.com
http://caniuse.com

CHAPTER 5 ■ ANIMATIONS AND PRESENTATIONS

88

For the most up-to-date information, you can always go to http://w3.org/Style/CSS/current-work to view
the W3C’s latest work and working group discussions on CSS level 3’s specification and as always, for quick reference
bookmark http://caniuse.com before employing features that your users’ browsers may not support.

Note■ If you absolutely need to target users on IE6 through IE9 browsers and a client is insisting on using CSS3

features, visit http://css3pie.com, or have the client download Google’s Chrome Frame www.google.com/chromeframe.

It will help you out in either scenario.

CSS3 Animations
As already stated, CSS3 animations are a completely new addition to the draft. With the most recent updates to the
spec, browser vendors are supporting animations via CSS, and the W3C is even compliant to the updates (for the most
part), making it a very soon-to-be standard amongst browsers.

This CSS module describes a way for authors to animate the values of CSS properties over time,
using key frames. The behavior of these keyframe animations can be controlled by specifying their
duration, number of repeats, and repeating behavior.

w3.org/TR/css3-animations

This is a pretty big deal. Prior to CSS3 animation, you needed to use animated GIFs, third-party plug-ins like
Flash, or expensive JavaScript commands to pull off animation. This is obviously before what we’ve just covered in
Canvas and SVG animations. In most cases, the more complex and robust the animation, the more taxing it was for
the user to handle and render the animation. Now with CSS3, animations can be offloaded to the GPU of the user’s
machine or device, an approach that offers a much more fluid and seamless approach to animating in the browser.
This is exciting!

Let’s take a look at the new animation properties within CSS3 that you can take advantage of today (see Table 5-1).

Figure 5-3. Browser support for CSS3 features (November 2012;
http://html5rocks.com/en/features/presentation)

http://w3.org/Style/CSS/current-work
http://caniuse.com
http://css3pie.com
http://www.google.com/chromeframe
http://w3.org/TR/css3-animations
http://html5rocks.com/en/features/presentation

CHAPTER 5 ■ ANIMATIONS AND PRESENTATIONS

89

All of these properties when used in CSS3 compliant browsers make up the definitions of animation for the
browser to handle. Let’s take a look at an example that you may want to use in your next campaign or at some other
time in the future. Let’s call this animation “glow” and pay close attention to the vendor prefixes (see Listing 5-1).

Listing 5-1. CSS3 Glow Animation

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<style>
#square {
 -webkit-animation-name: glow;
 -moz-animation-name: glow;
 -ms-animation-name: glow;
 -o-animation-name: glow;
 animation-name: glow;
 -webkit-animation-duration: 1s;

 -webkit-animation-iteration-count: 15;
 -moz-animation-iteration-count: 15;
 -ms-animation-iteration-count: 15;
 -o-animation-iteration-count: 15;
 animation-iteration-count: 15;
 -webkit-animation-direction: alternate;

 -webkit-animation-timing-function: ease-in-out;
 -moz-animation-timing-function: ease-in-out;
 -ms-animation-timing-function: ease-in-out;
 -o-animation-timing-function: ease-in-out;
 animation-timing-function: ease-in-out;

Table 5-1. CSS3 Animation Properties

Property Use

Animation-delay defines when the animation will start.

Animation-direction defines whether or not the animation should play in reverse on alternate cycles.

Animation-duration defines how many seconds or milliseconds an animation takes to complete one cycle.

Animation-fill-mode specifies how a CSS animation should apply styles to its target before and after it is
executing.

Animation-iteration-count defines how many times an animation should be played.

Animation-name specifies a name for the @keyframes animation.

Animation-play-state specifies whether the animation is running or paused.

Animation-timing-function specifies the speed curve of the animation.

CHAPTER 5 ■ ANIMATIONS AND PRESENTATIONS

90

 -webkit-animation-fill-mode: forwards;
 -moz-animation-fill-mode: forwards;
 -ms-animation-fill-mode: forwards;
 -o-animation-fill-mode: forwards;
 animation-fill-mode: forwards;

 -webkit-animation-delay: 2s;
 -moz-animation-delay: 2s;
 -ms-animation-delay: 2s;
 -o-animation-delay: 2s;
 animation-delay: 2s;
}

@keyframes "glow" {
 0% {
 -webkit-box-shadow: 0px 0px 0px #999999;
 box-shadow: 0px 0px 0px #999999;
 }
 50% {
 -webkit-box-shadow: 5px 5px 15px #ffffff;
 box-shadow: 5px 5px 15px #ffffff;
 }
 100% {
 -webkit-box-shadow: 0px 0px 0px #999999;
 box-shadow: 0px 0px 0px #999999;
 }

}

@-moz-keyframes glow {
 0% {
 box-shadow: 0px 0px 0px #999999;
 }
 50% {
 box-shadow: 5px 5px 15px #ffffff;
 }
 100% {
 box-shadow: 0px 0px 0px #999999;
 }

}

@-webkit-keyframes "glow" {
 0% {
 -webkit-box-shadow: 0px 0px 0px #999999;
 box-shadow: 0px 0px 0px #999999;
 }
 50% {
 -webkit-box-shadow: 5px 5px 15px #ffffff;
 box-shadow: 5px 5px 15px #ffffff;
 }

CHAPTER 5 ■ ANIMATIONS AND PRESENTATIONS

91

 100% {
 -webkit-box-shadow: 0px 0px 0px #999999;
 box-shadow: 0px 0px 0px #999999;
 }

}

@-ms-keyframes "glow" {
 0% {
 box-shadow: 0px 0px 0px #999999;
 }
 50% {
 box-shadow: 5px 5px 15px #ffffff;
 }
 100% {
 box-shadow: 0px 0px 0px #999999;
 }

}

@-o-keyframes "glow" {
 0% {
 box-shadow: 0px 0px 0px #999999;
 }
 50% {
 box-shadow: 5px 5px 15px #ffffff;
 }
 100% {
 box-shadow: 0px 0px 0px #999999;
 }
}
</style>
</head>
<body>
 <div id=square></div>
</body>
</html>

If you’re following along, don’t get scared of the new keyframe block within CSS3. All this example does is apply a
glow animation using the box-shadow property in CSS to the square element in the DOM by using the percent method
of keyframing. The animation is even within publisher animation specs, since it’s only 15 seconds long—you can see
this by viewing the animation-iteration-count. As you can see this is pretty long winded just to accomplish something
pretty simple so keep in mind that CSS also has a shorthand way of writing the properties for animation. Here’s how
you’d write that glow example using the shorthand technique.

#square {
 -webkit-animation: glow 1s 15s alternate forwards ease-in-out;
 -moz-animation: glow 1s 15s alternate forwards ease-in-out;
 -ms-animation: glow 1s 15s alternate forwards ease-in-out;
 -o-animation: glow 1s 15s alternate forwards ease-in-out;
 animation: glow 1s 15s alternate forwards ease-in-out;
}

CHAPTER 5 ■ ANIMATIONS AND PRESENTATIONS

92

I think you’ll agree that this technique is much easier on the fingers. Obviously, you’ll still need to define what
“glow” is, using keyframes to animate the square element. Also, keep in mind that we are using all the necessary
vendor prefixes to allow this effect to run across browsers. This may reduce depending on the needs of your campaign
and what your target audience’s browsers are.

Note ■ Including all of your animation keyframe definitions on a separate style sheet would be a good idea. That way,

it won’t clutter up your main style sheet and keeps style separated from core layout.

As for the animation properties, the direction takes two different values, normal and alternate. The timing
function takes several different values of, ease, ease-out, ease-in, ease-in-out, linear, and cubic Bézier (x1, y1, x2, y2),
which allows for custom timing functions (a very good web tool to use when using cubic Bézier is http://
cubic-bezier.com). The fill mode’s values are forwards, backwards, both, or none. Delay is the offset of time before
the animation begins and in the example above it would begin 2 seconds after the DOM loads. Finally, the play state
property determines whether the animation is either running or paused, which is useful for detecting if an animation
is running or not via JavaScript. Using all of these properties to your advantage, you’ll be able to create a very
believable and realistic animation that you may remember from using Flash in your advertisements.

Note ■ The shorthand order of properties doesn’t matter except when using both duration and delay, they need to be

in the order, first duration than delay.

Now that the basics of CSS-based animations are covered, let’s take a look at working with the @keyframes rule
within CSS and putting these new properties to use. As shown above, our first example involved percent. Listing 5-2
uses the words from and to declare our keyframing events.

Listing 5-2. CSS3 Keyframe Example

<!DOCTYPE HTML>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<style>
#square {
 width:100px;
 height:100px;
 background:black;

 -webkit-animation:spin 5s; /* Safari and Chrome */
 -moz-animation:spin 5s; /* Firefox */
 -ms-animation:spin 5s; /* IE */
 -o-animation:spin 5s; /* Opera */
 animation:spin 5s;

 -webkit-animation-iteration-count: infinite;
 -moz-animation-iteration-count: infinite;
 -ms-animation-iteration-count: infinite;
 -o-animation-iteration-count: infinite;
 animation-iteration-count: infinite;

http://cubic-bezier.com
http://cubic-bezier.com

CHAPTER 5 ■ ANIMATIONS AND PRESENTATIONS

93

 -webkit-animation-timing-function: ease-in-out;
 -moz-animation-timing-function: ease-in-out;
 -ms-animation-timing-function: ease-in-out;
 -o-animation-timing-function: ease-in-out;
 animation-timing-function: ease-in-out;
}

@keyframes spin {
from {
 background:black;
 -webkit-transform: rotate(0deg);
 -moz-transform: rotate(0deg);
 -o-transform: rotate(0deg);
 -ms-transform: rotate(0deg);
 transform: rotate(0deg);
} to {
 background:yellow;
 -webkit-transform: rotate(360deg);
 -moz-transform: rotate(360deg);
 -o-transform: rotate(360deg);
 -ms-transform: rotate(360deg);
 transform: rotate(360deg);
 }
}

@-moz-keyframes spin {/* Firefox */
from {
 background:black;
 -webkit-transform: rotate(0deg);
 -moz-transform: rotate(0deg);
 -o-transform: rotate(0deg);
 -ms-transform: rotate(0deg);
 transform: rotate(0deg);
} to {
 background:yellow;
 -webkit-transform: rotate(360deg);
 -moz-transform: rotate(360deg);
 -o-transform: rotate(360deg);
 -ms-transform: rotate(360deg);
 transform: rotate(360deg);
 }
}

@-webkit-keyframes spin {/* Safari and Chrome */
from {
 background:black;
 -webkit-transform: rotate(0deg);
 -moz-transform: rotate(0deg);
 -o-transform: rotate(0deg);
 -ms-transform: rotate(0deg);
 transform: rotate(0deg);
} to {

CHAPTER 5 ■ ANIMATIONS AND PRESENTATIONS

94

 background:yellow;
 -webkit-transform: rotate(360deg);
 -moz-transform: rotate(360deg);
 -o-transform: rotate(360deg);
 -ms-transform: rotate(360deg);
 transform: rotate(360deg);
 }
}

@-o-keyframes spin {/* Opera */
from {
 background:black;
 -webkit-transform: rotate(0deg);
 -moz-transform: rotate(0deg);
 -o-transform: rotate(0deg);
 -ms-transform: rotate(0deg);
 transform: rotate(0deg);
} to {
 background:yellow;
 -webkit-transform: rotate(360deg);
 -moz-transform: rotate(360deg);
 -o-transform: rotate(360deg);
 -ms-transform: rotate(360deg);
 transform: rotate(360deg);
 }
}

</style>
</head>
<body>
 <div id='square'></div>
</body>
</html>

OK, let’s break down this example. First, let’s set up the HTML document, then include some CSS to target the
div by the ID “square” by writing #square {. . .}; nothing new there. Now give the square a background color of black
and a width and height of 50 pixels. Finally and most importantly, make an animation called “spin” with a duration
of 15 seconds and a repetition of “infinite”. Now, using CSS3, declare the spin animation by using the @keyframes
rule. Inside the rule, define its start (“from”) and end (“to”) by animating the square and rotating it 360 degrees. (I am
including the necessary prefixes since I am working across all browsers, but keep in mind that the final specification
will not include the prefix. However, browsers may still support it for backwards compatibility so no code breaks in the
future.) Finally, open this in your browser—that’s it! This is pretty amazing stuff from just using straight CSS.

There are a few things to note when using CSS animations. For starters, they cannot stack—that is, you cannot
have an animation called “wiggle” and apply an animation called “spin” and have them animate at the same time.
Only the last-applied animation, in this case “spin“, will get applied to the DOM object you’re targeting (note that this
could very well change as the spec finalizes, but at the time of writing, this was how it was in the browsers I’ve tested).
Also, when using CSS3 animations, you may notice a slight flicker to your screen when the animation is applied and
when it finishes. This is the browser leveraging on the machine’s GPU for handling the animation. It’s a bug, if you
ask me, and it requires a hacky workaround. The hack that seems to work best is applying a z index to your transform,
even if you don’t intend to animate in the (3D) z space. Including the z-axis property enables hardware acceleration
(GPU) initially and eliminates the screen flicker when animation occurs. (If you’re into the seizure effect, this won’t
matter much to you, although your clients may ask for it to be removed.)

CHAPTER 5 ■ ANIMATIONS AND PRESENTATIONS

95

Finally, keep in mind that the W3C’s spec will more than likely be much more limited than what the browser
actually supports. Apple, Mozilla, Google, and other vendors support a variety of features that may not make it into
the W3C’s decision, but they’re still fun to play with, especially in creating 3D and interesting parallax effects.
However, I remind you to understand your user base—whom are you developing for and deploying toward with your
campaigns? This ought to dictate what feature set you should and shouldn’t use for your next campaign.

Vendor Prefixes
As was discussed in Chapter 3, in order to use the latest and greatest CSS3 features of the browser, vendor prefixes
are your passport. Animation prefixes are no different: there still need to be clear ways to call a browser’s rendering
engine. Think of them as their own API to instruct the browser to animate—because that’s what they are. Predictably,
developers and designers have a love-hate connection with vendor prefixes. On the one hand, they allow use of
up-to-date and emerging technologies; on the other hand, they come with the expense of long statements that will
ultimately break if browser manufacturers drop their own prefixes for the final CSS specification. The Web could
get really ugly if that happens! It can be challenging to understand if a vendor-prefixed property is part of the CSS
specification or will eventually become part of it, since some vendors don’t even submit all their (browser-specific)
properties for W3C standardization. In some cases you’ll find that sites use the -webkit prefixes alone, especially in
mobile, even though Opera, IE, and Firefox have mobile builds of their browser. With all that said, let’s review some of
the vendor prefixes in Listing 5-3 and take a look at the prefixes for a radial gradient class in CSS.

Listing 5-3. CSS3 Vendor-Prefix Example

<!DOCTYPE HTML>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<style>
#square {
 width:500px;
 height:500px;
}

.radial-gradient {
 background: -webkit-radial-gradient(10% 10%, yellow, black);
 background: -moz-radial-gradient(10% 10%, yellow, black);
 background: -o-radial-gradient(10% 10%, yellow, black);
 background: -ms-radial-gradient(10% 10%, yellow, black);
 background: radial-gradient(10% 10%, yellow, black);
}

</style>
</head>
<body>
 <div id='square' class='radial-gradient'></div>
</body>
</html>

Holy repetition! If you’re a developer or programmer, having to do anything over and over again is a clear sign
that you can do it better. This example gives an idea of the operational load that designers and developers face
when creating cross-browser experiences using emerging features—and in this case emerging is a requirement for
penetration on devices like the iPhone and iPad. I usually laugh whenever I hear “operational scale” and “emerging”
used in the same sentence. Now you can too!

CHAPTER 5 ■ ANIMATIONS AND PRESENTATIONS

96

A common predicament in the advertising industry involves the fact that many clients want to use the latest
and greatest features available, but they don’t understand what goes into developing them nor why it takes so long
to accomplish something that seems to them rather simple. In the simple gradient example, it takes four times the
amount of code it would if standardization were in place. More bytes are also eaten up to download from the server,
as our code is now four times as large. Plus when an updates needs to be made, we now have to make it in five
different places for the same effect. It gets exhausting quickly as your code grows.

This topic is raising some big concerns throughout the industry; there was even a discussion in April 2012, where
the W3C and Opera questioned whether to add webkit prefixes as a standard. Essentially, Opera would adopt Webkit
commands into its browser engine to adapt to the laziness of most programmers omitting their specific prefix. This,
in my opinion, goes against everything that the W3C stands for—and in the CSS realm, that should be creating a
vendor-agnostic standard to eliminate the need for any and all prefixes, thus creating true browser interoperability.
Going with Webkit as a standard and having other browser manufacturers adopt it is not creating a standard at all; it’s
creating conformity to what’s popular and is used most commonly due to developer laziness. A good article on this
topic can be found at http://www.sitepoint.com/opera-css3-webkit-prefix.

Going Prefixless

The general consensus among developers seems to be that the way to head is having no prefixes at all. The ability
to use these new features by calling upon them without any vendor specificity is something that needs and should
happen across browsers as they become standardized in the open web. Some of the new features in the CSS3 spec
are currently pretty much finalized and at a “candidate recommendation” level within the adoption process. This
means some of these require no prefixes at all, since browsers are starting to support them prefix-less. Some of these
properties are outlined in Table 5-2.

Table 5-2. CSS Prefixless Properties

Property Use

Border-radius Used for rounding borders of DOM objects.

Box-shadow Used for adding shadow effect to DOM objects.

Colors (RGBA) Allows colors to be defined via RGB along with an alpha (transparency) setting.

Colors (HSLA) Allows colors to be defined in HSL (hue, saturation, and lightness) or HSLA format
(hue, saturation, lightness, and alpha).

Media queries Serve styles to a browser depending on media type (print, screen, etc.) and media
condition (screen size, portrait, landscape, etc.).

Multiple backgrounds Allows multiple background images to be placed on a single element.

Opacity Allows application of a transparency setting to an element and all of its children.

It truly comes down to the very emerging features that need prefixes. However, the Web, as you know, moves
very quickly; so keep checking up on the features that can be put to use today. There are also some pretty nice tools
on web sites that any developer or designer can use to take the guesswork out of writing CSS3. One such tool is Prefix
Free (http://leaverou.github.com/prefixfree). Prefix Free is a JavaScript file to be included in your document
that adds the current browser’s prefix to any CSS code but applies it only when it’s required. Minimal code bloat! Its
small file size (it comes in at only 8 kilobytes minified) makes it especially great for advertising. However, it has some
limitations, so be sure to read up on at the site before implementing it in a production campaign. Another useful tool
is Prefixr (http://prefixr.com). You paste in your CSS syntax, and with the press of a button, WHALAA! It allows you
to update your CSS to include all the vendor prefixes you may require for cross browser deployment.

http://www.sitepoint.com/opera-css3-webkit-prefix
http://leaverou.github.com/prefixfree
http://prefixr.com

CHAPTER 5 ■ ANIMATIONS AND PRESENTATIONS

97

JavaScript Animation vs. CSS3 Animation
After learning a bit about JavaScript and animating on the canvas element in the previous chapter, you’re most likely
wondering what the difference is between JavaScript and CSS3 animations? Both have pros and cons, in truth; look at
your campaign’s end goals and requirements to determine which method to use. However, I can provide a few tidbits
of information to start you off with. First, JavaScript is an interpreted language. JS animations rely on the JavaScript
engine of the browser to interpret, parse, and execute instructions during runtime. On the other hand, browsers can
implement CSS3 animations natively in the underlining code base of the browser (the engine). Usually written in C,
C++, or something similar, this code gets compiled to machine language, so it’s always present, shipped, and installed
with a browser. This allows CSS3 to often be hardware-accelerated and offloaded to a machine’s GPU for intensive
operations like animation, which makes for better-performing experiences a user can notice on a mobile browser like
iOS Safari or Android’s native browser.

Between the two, many developers will argue that it comes down to some combination of ease of use,
extensibility, support, and overall performance. If you need to target older browsers, JavaScript is the clear winner.
If you care only about subjective ease of use, the modern Web, and hardware support, CSS3 is a viable solution. Also,
remember that JavaScript is blazingly fast on newer browser engines! As a developer in the advertising world, where
optimization and performance are everything, you should ultimately utilize both to your advantage while taking the
requirements of the campaign and the target audience into consideration. At the end of the day, there are many ways
to pull something off. Knowing one way of doing something doesn’t mean it’s always the best way at any moment
and for any scenario. Understand who your target audience is and what primary browser they’re running. This could
involve some browser statistics investigation on the publisher’s part to figure out what their users primary user base is.

I strongly recommend you get familiar with http://stackoverflow.com if you aren’t using it yet. If you have
questions regarding this or other topics, chances are you won’t be the first one asking.

Finally, I can’t perform every test known to man to figure out which animation technique is better in your specific
scenario. I want to empower you to test on your own; in return, do a service to the developer community by recording
your tests with a really great tool: http://jsperf.com. Get familiar with using this if you need to re-create bugs or test
differences between multiple ways of doing something in your script.

requestAnimationFrame, setInterval, and setTimeout?

Let’s talk a bit about the code that drives animation via JavaScript. Traditionally, before requestAnimationFrame was
available in support of IE10, Firefox 4, Chrome 10, Safari 6, and other modern browsers, animation was achieved by
calling either setInterval or setTimeout. By calling one of these JavaScript methods in repetition, the browser would
execute the command over and over again, usually until a certain condition was met and stopped the animation. If
for some reason it never stopped, the browser would execute the script forever and eventually crash or freeze (this still
sometimes happens with poorly written scripts). However, since requestAnimationFrame was introduced by Mozilla
and repeated by Webkit, the objective was simple: provide a native API for controlling animations in the browser
entirely. Whether it’s a DOM element, CSS, canvas-based, or even WebGL (there’ll be more on WebGL in Chapter 12),
the browser will handle and optimize any animations into a single animation phase, leading to higher animation
quality overall. If you have animation looping in a tab that’s not visible—say, your advertisement’s animation and the
user isn’t viewing the ad—the browser won’t keep it running and hogging system resources. Publishers should love
this—it means fewer resources to allocate and much less memory usage, leading ultimately to much longer battery life,
especially for mobile devices that support the new approach. I feel Microsoft’s Developer Center explains it perfectly:

The msRequestAnimationFrame method provides smooth animations and optimal power
efficiency by taking the visibility of the web application and the display’s refresh rate into account to
determine how many frames per second to allocate to the animation. msRequestAnimationFrame
is a very efficient way to schedule non-declarative script animations and should be used instead of
setTimeout and setInterval.

msdn.microsoft.com/en-us/library/windows/apps/hh453391.aspx

http://stackoverflow.com
http://jsperf.com
http://msdn.microsoft.com/en-us/library/windows/apps/hh453391.aspx

CHAPTER 5 ■ ANIMATIONS AND PRESENTATIONS

98

So if you’re animating for modern browsers, stop using setInterval or setTimeout in JavaScript and learn
to take advantage of requestAnimationFrame. Otherwise, use CSS3 based animations when you can and where
it’s supported. Learning and using both will save time and headaches down the road, especially when you have to
optimize or debug due to publisher kickback or get assets handed off from creative agencies.

CSS3 vs. Flash
All you have to do is read through web articles stating Flash is dead and it shouldn’t be long until you get a sense of the
complete madness on the Web. The mob screams, “Long live HTML5!” Coming back to reality for a moment, I’m not
here to pick sides or even discuss in depth on that trivial topic. It’s not what this book is about, nor do I want to waste
your time on it. Simply put, both technologies have their pros and cons, but one thing is for certain: HTML5, CSS3,
and JavaScript are here to stay, so whether you choose to use them or not, you should damn well learn them. Flash is
still an amazing platform in my book and has many years on the latest web standard.

However, CSS3 particularly for its animation features to emerging browsers natively, demonstrate how web
standards will soon be the standard going forward. A really good side-by-side comparison on Sencha’s blog showcases
how two identical ads, one created with CSS3 and one with Flash, pair up (http://dev.sencha.com/deploy/css3-ads).
Improvements are necessary, but for an initial look, they are pretty darn close and it shows the plugin-free but rich
web is right around the corner. What’s not apparent is that this example also demonstrates something much
broader: that CSS3 ads live in the same domain as Flash ads and my thought is that this is where web advertising
will be for some time: a combination of Flash and web standards (HTML5/CSS3/JS) living side by side in harmony.
(Cue inspirational music . . .)

One thing that comes to mind is file size. Having created web advertisements for quite some time and knowing
that publishers keep tight control on the file size spec, I have a couple questions I’d like answered.

How much k-weight should HTML/CSS/JavaScript ads have?•฀

Can loading of assets and external files be controlled in sequence?•฀

How are analytics and measurement affected?•฀

What happens to performance and user experience if multiple units are loaded onto the page •฀
at once?

These questions come up more and more often as clients want to use HTML5 for reach, and really, there is no
silver bullet until the specifications are set, tested and adopted. Ads using the Flash Player weren’t adopted overnight
so what makes this any different? One thing is for certain, though: publishers, agencies, and ad-serving platforms, as
well as the IAB, need to work out and agree on a set of standards to remedy these pressing issues before they become
a very apparent and widespread problem throughout the industry. Luckily, there is an active working group dedicated
to this initiative and many others that fuel our industry. You can learn more about these functions by heading over to.
http://iab.net/member_center/committees.

CSS3 Presentations and Style
Now that I’ve covered a lot on CSS3 animations and how they play out in the space, this section reviews the new CSS3
presentation enhancements in the modern Web. Traditionally, CSS stood for layout and style, but with the latest
features coming in to play—shadow, transforms, and gradients—more can be done with CSS than ever before. Having
already covered some of the new selectors, pseudo classes, web fonts, and animation, let’s dig in and take a look at
some of the other enhancements to CSS’s conventional approach to presentation and style.

http://dev.sencha.com/deploy/css3-ads
http://iab.net/member_center/committees

CHAPTER 5 ■ ANIMATIONS AND PRESENTATIONS

99

Box Shadows
CSS3 box shadows are a new feature, one almost set for W3C finalization and supporting browser vendors. Box
shadowing allows application of a slick drop shadow-type effect to such DOM objects as images and canvas or div
elements. Listing 5-4 shows a box shadow working in advertising.

Listing 5-4. Box Shadow Ad Example

<style>
#ad {
 position: absolute;
 width: 300px;
 height: 250px;
 background-color: white;
 -webkit-box-shadow: 0px 0px 20px 0px rgba(0, 0, 0, 1);
 box-shadow: 0px 0px 20px 0px rgba(0, 0, 0, 1);
}</style>

As you can see, it’s just the regular CSS syntax you’re used to, with some updates to give access to new browser
effects. Assuming our ad element has the ID of ad, this CSS block will apply a nice drop shadow to our ad on the
publisher’s page. This listing would produce the effect shown in Figure 5-4.

Figure 5-4. An ad container with box-shadow using CSS3

As you see, some pretty straightforward CSS can apply a nice drop shadow to where our ad inventory will live on
the publisher’s page. The box shadow property uses two required parameters, horizontal shadow position and vertical
shadow position, followed by four optional parameters, blur (which we’re setting to 20 pixels), spread, color, and inset.

Note ■ Color can use HEX, RGBA, or HSLA color values for the box-shadow property.

CHAPTER 5 ■ ANIMATIONS AND PRESENTATIONS

100

Multiple Backgrounds
Building on what you saw in Listing 5-4, multiple backgrounds are a new feature that allows designers to apply multiple
background images to an element. This could be helpful if you want to create a complex ad background image from two
independent image sources. In fact, let’s attempt to do just that in building our ad’s background (see Listing 5-5).

Listing 5-5. Multiple Background Example

<!DOCTYPE HTML>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<style>
#ad {
 position: absolute;
 width: 300px;
 height: 250px;
 background-color: white;
 -webkit-box-shadow: 0px 0px 20px 0px rgba(0, 0, 0, 1);
 box-shadow: 0px 0px 20px 0px rgba(0, 0, 0, 1);

 /*
 top level icon (x,y,repeat)
 bottom level background (x,y,repeat)
 */
 background:
 url(logo.png) 20px 10px no-repeat,
 url(300x250Bg.jpg) 0px 0px no-repeat;
}
</style>

</head>
<body>
 <div id='ad'></div>
</body>
</html>

If you add the previous code and refresh the browser, you’ll see that this example loads in two separate images to
the background property of the div element ad (see Figure 5-5). Notice that the parameters are URL, X, Y and repeat.

CHAPTER 5 ■ ANIMATIONS AND PRESENTATIONS

101

Calling the background property via CSS provides a comma-delimited list of image assets by URL location. The
order of images matters, so add the top-level asset first and the bottom level last.

Text Shadows
Lets add some copy to our ad unit by adding a call to action (CTA). But let’s also add a drop shadow to the CTA as well.
Text shadowing is very similar to box shadowing, with the exception that text shadows can be applied only to fonts.
Let’s look at working with text shadows (see Listing 5-6).

Listing 5-6. Text Shadow Example

<!DOCTYPE HTML>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<style>
#ad {
 position: absolute;
 width: 300px;
 height: 250px;
 background-color: white;
 -webkit-box-shadow: 0px 0px 20px 0px rgba(0, 0, 0, 1);
 box-shadow: 0px 0px 20px 0px rgba(0, 0, 0, 1);

 background:
 url(logo.png) 20px 10px no-repeat,
 url(300x250Bg.jpg) 0px 0px no-repeat;
}

Figure 5-5. An ad background with multiple backgrounds using CSS3

CHAPTER 5 ■ ANIMATIONS AND PRESENTATIONS

102

#cta {
 position: absolute;
 top: 210px;
 left: 190px;
 color: white;
 font-family: Verdana;
 font-size: 16px;
 cursor: pointer;
 text-shadow: 0px 0px 5px #000000;
}
</style>
</head>

<body>
<div id=ad>
 <section>
 <div id=cta>Click Here</div>
 </section>
</div>
</body>
</html>

Add the updated code and refresh your browser, and you’ll see an example of text shadow in action within our ad
(see Figure 5-6).

Figure 5-6. An ad with a CTA using the text-shadow property in CSS3

While a drop shadow may be hard to see, adding it on the copy allows a user to view the important information
much more clearly by separating it from the background. This is especially the case when using drop shadows on such
an important copy feature of an ad as a CTA. The text shadow property’s syntax is identical to that of the box-shadow
property, but it applies only to fonts. It also allows the addition of this effect natively in the browser, without having to
use images with the drop shadow effect applied.

CHAPTER 5 ■ ANIMATIONS AND PRESENTATIONS

103

Note ■ A text shadow can also be applied to web fonts (see Chapter 4).

Border Radius
Another almost finalized feature of the specification is border radius, probably one of the early CSS3 features that had
all designers jumping for joy. They called for this effect for a long time, the reason being that before border radius,
designers needed to export rounded images via Photoshop and load them into the page. This was time-consuming
to develop, as well as costly to download to a user’s machine. Now without the need of Photoshop, we can let the
browser handle the heavy lifting. Let’s add some rounded borders to our ad example (see Listing 5-7).

Listing 5-7. Border Radius Example

<!DOCTYPE HTML>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<style>
#ad {
 position: absolute;
 width: 300px;
 height: 250px;
 background-color: white;
 -webkit-box-shadow: 0px 0px 20px 0px rgba(0, 0, 0, 1);
 box-shadow: 0px 0px 20px 0px rgba(0, 0, 0, 1);

 background:
 url(logo.png) 20px 10px no-repeat,
 url(300x250Bg.jpg) 0px 0px no-repeat;

 -webkit-border-radius: 10px;
 -moz-border-radius: 10px;
 border-radius: 10px;
}
#cta {
 position: absolute;
 top: 210px;
 left: 190px;
 color: white;
 font-family: Verdana;
 font-size: 16px;
 cursor: pointer;
 text-shadow: 0px 0px 5px #000000;
}
</style>
</head>

<body>
<div id=ad>

CHAPTER 5 ■ ANIMATIONS AND PRESENTATIONS

104

 <section>
 <div id=cta>Click Here</div>
 </section>
</div>
</body>
</html>

Adding the CSS properties for border radius (in boldface type in Listing 5-7) and refreshing your browser will add
a 10-pixel rounded corner to our ad element. The border radius syntax is fairly simple: all you need do is pass it a value
(in pixels) you want to round. You can see the effect in Figure 5-7.

Figure 5-7. Our ad with rounded borders using CSS3

Note ■ Border radius can be adjusted independently instead of all four corners at the same time. This could be helpful

if your client is, say, CVS Pharmacy (www.cvs.com).

Gradients
CSS3 now offers gradients, which are another feature of the spec that allows designers to lay off the images and take
advantage of the browser’s graphics natively. As you learned using gradients with the canvas element, it allows the
definition of a linear or radial color gradient via JavaScript. Now with our CSS syntax, we can do similar things without
touching our script files. Let’s add a gradient to our ad example by making our CTA more of a button with style (see
Listing 5-8).

Listing 5-8. Gradient CSS3 Example

<!DOCTYPE HTML>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

http://www.cvs.com

CHAPTER 5 ■ ANIMATIONS AND PRESENTATIONS

105

<style>
* {
 font-family: Verdana;
}
#ad {
 position: absolute;
 left: 30px;
 top: 30px;
 width: 300px;
 height: 250px;
 background-color: white;
 -webkit-box-shadow: 0px 0px 20px 0px rgba(0, 0, 0, 1);
 box-shadow: 0px 0px 20px 0px rgba(0, 0, 0, 1);

 background:
 url(logo.png) 20px 10px no-repeat,
 url(300x250Bg.jpg) 0px 0px no-repeat;

 -webkit-border-radius: 10px;
 -moz-border-radius: 10px;
 border-radius: 10px;
}
#cta {
 position: absolute;
 top: 190px;
 left: 160px;
 color: white;
 font-size: 16px;
 cursor: pointer;
 text-shadow: 0px 0px 5px #000000;
}

.button {
 font-size: 16px;
 color: white;
 padding: 10px 20px;
 background: -moz-linear-gradient(
 top,
 #e3e3e3 0%,
 #545454);
 background: -webkit-gradient(
 linear, left top, left bottom,
 from(#e3e3e3),
 to(#545454));
 -moz-border-radius: 0px;
 -webkit-border-radius: 0px;
 border-radius: 10px;
 border: 1px solid #000000;
 -moz-box-shadow:
 0px 1px 3px rgba(0,0,0,0.5),
 inset 0px 0px 2px rgba(255,255,255,0.7);

CHAPTER 5 ■ ANIMATIONS AND PRESENTATIONS

106

 -webkit-box-shadow:
 0px 1px 3px rgba(0,0,0,0.5),
 inset 0px 0px 2px rgba(255,255,255,0.7);
 box-shadow:
 0px 1px 3px rgba(0,0,0,0.5),
 inset 0px 0px 2px rgba(255,255,255,0.7);
 text-shadow:
 0px -1px 0px rgba(000,000,000,0.4),
 0px 1px 0px rgba(255,255,255,0.3);
}
</style>
</head>

<body>
<div id=ad>
 <section>
 <div id=cta class=button>Click Here</div>
 </section>
</div>
</body>
</html>

If you’ve followed along, refresh your browser, and you’ll notice the outcome (see Figure 5-8).

Figure 5-8. Our ad with a sexy CTA button using CSS gradients and rounded borders

Adding gradients with CSS is a great way to leverage the browser to build a slick button or complex backgrounds
instead of using the traditional image approach. It’s also easier on the end user, since it won’t eat up k-weight and tax
a user for another download, both of which are huge gains in the advertising world. A tool I myself use quite often is
at http://colorzilla.com/gradient-editor, specifically because it is easy to use, adds all the vendor prefixes, and
offers older Microsoft browser support via the filter property.

http://colorzilla.com/gradient-editor

CHAPTER 5 ■ ANIMATIONS AND PRESENTATIONS

107

Transitions
The CSS3 Transitions module offers a great way to add transitional properties to certain elements. Transitions can be
applied to background, color, height, width, and other specific properties, or the special “all” keyword can be used
to apply transitions to all properties on the element. Transitions allow the ad experience to expand and contract,
creating an iconic rich media expansion effect. Listing 5-9 shows how to transition the ad container to expand 500
pixels when a user clicks the CTA (let’s also add a bit of JavaScript).

Listing 5-9. CSS Transitions Example

<!DOCTYPE HTML>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<style>
* {
 font-family: Verdana;
}
#ad {
 position: absolute;
 left: 30px;
 top: 30px;
 width: 300px;
 height: 250px;
 background-color: white;
 -webkit-box-shadow: 0px 0px 20px 0px rgba(0, 0, 0, 1);
 box-shadow: 0px 0px 20px 0px rgba(0, 0, 0, 1);

 background:
 url(logo.png) 20px 10px no-repeat,
 url(300x250Bg.jpg) 0px 0px repeat;

 -webkit-border-radius: 10px;
 -moz-border-radius: 10px;
 border-radius: 10px;

 -webkit-transition: all 1s ease-in-out;
 -moz-transition: all 1s ease-in-out;
 -ms-transition: all 1s ease-in-out;
 -o-transition: all 1s ease-in-out;
 transition: all 1s ease-in-out;
}
#cta {
 position: absolute;
 top: 190px;
 left: 160px;
 color: white;
 font-size: 16px;
 cursor: pointer;
 text-shadow: 0px 0px 5px #000000;

CHAPTER 5 ■ ANIMATIONS AND PRESENTATIONS

108

 -webkit-transition: all 1s ease-in-out;
 -moz-transition: all 1s ease-in-out;
 -ms-transition: all 1s ease-in-out;
 -o-transition: all 1s ease-in-out;
 transition: all 1s ease-in-out;
}

.button {
 font-size: 16px;
 color: white;
 padding: 10px 20px;
 background: -moz-linear-gradient(
 top,
 #e3e3e3 0%,
 #545454);
 background: -webkit-gradient(
 linear, left top, left bottom,
 from(#e3e3e3),
 to(#545454));
 -moz-border-radius: 0px;
 -webkit-border-radius: 0px;
 border-radius: 10px;
 border: 1px solid #000000;
 -moz-box-shadow:
 0px 1px 3px rgba(0,0,0,0.5),
 inset 0px 0px 2px rgba(255,255,255,0.7);
 -webkit-box-shadow:
 0px 1px 3px rgba(0,0,0,0.5),
 inset 0px 0px 2px rgba(255,255,255,0.7);
 box-shadow:
 0px 1px 3px rgba(0,0,0,0.5),
 inset 0px 0px 2px rgba(255,255,255,0.7);
 text-shadow:
 0px -1px 0px rgba(000,000,000,0.4),
 0px 1px 0px rgba(255,255,255,0.3);
}

#close {
 position: absolute;
 top: 10px;
 left: 480px;
 opacity: 0;
 cursor: pointer;
 color: white;

 -webkit-transition: all 1s ease-in-out;
 -moz-transition: all 1s ease-in-out;
 -ms-transition: all 1s ease-in-out;
 -o-transition: all 1s ease-in-out;
 transition: all 1s ease-in-out;
}

CHAPTER 5 ■ ANIMATIONS AND PRESENTATIONS

109

</style>
</head>

<body>
<div id=ad>
 <section>
 <div id=close>X</div>
 <div id=cta class=button>Click Here</div>
 </section>
</div>
</body>
</html>

<script>
var ad = document.querySelector('#ad’);
var cta = document.querySelector('#cta’);
var close = document.querySelector('#close’);
cta.addEventListener('click’, expandAd, false);
close.addEventListener('click’, collapseAd, false);

function expandAd () {
 ad.style.width = '500px’;
 cta.style.left = '360px’;
 close.style.opacity = 1;
}

function collapseAd () {
 ad.style.width = '300px’;
 cta.style.left = '160px’;
 close.style.opacity = 0;
}
</script>

If you’ve followed along, keep a close eye on the boldface sections of the Listing 5-9 code. In its CSS, transition:
all 1s ease-in-out; has been added to all the elements to be moved—in this case, our ad, our CTA, and our
new Close icon. In the HTML markup, a new div element is added inside our section container by writing <div
id=close>X</div>. This is what will close the expanded ad experience. Finally, take a look at the JavaScript toward
the end of the listing’s code. The minimal JavaScript code first declares variables to reference the objects in our DOM.
In this case, it’s our ad, the CTA button, and the new Close icon. Next, event listeners are added for the user’s mouse
click by writing cta.addEventListener('click', expandAd, false); and close.addEventListener('click',
collapseAd, false);. Doing this allows handling the user’s action appropriately and calls expandAd and collapseAd,
respectively. Inside the expand method the ad’s width is expanded to 500 pixels, the button is moved on its left
property, and the Close icon’s opacity is toggled by setting it to a value of 1. (The opacity property is another almost
finalized feature in the CSS3 specification; it gives the ability to adjust the fill of an element or image between 0 and 1.)
Conversely, the ad is reset to its original setting by calling the collapseAd function. Figure 5-9 shows what you’ll get in
the browser if you click on the CTA button.

CHAPTER 5 ■ ANIMATIONS AND PRESENTATIONS

110

Hopefully you can see from Listing 5-9 that you can re-create an expanding ad unit fairly easily using CSS, with
a little JavaScript for control. Also, keep in mind that you can use a transition for multiple CSS properties, including
color, height, margins, and much more. Super helpful if you need ads to expand in a variety of directions and
dimensions.

Note ■ You can add a JavaScript event listener to the DOM’s transitionend event by writing

element.addEventListener('transitionend', transitionEndHandler);. This can be useful to control your ad

content in a certain way when the transition is complete.

CSS3 Transforms
Let’s wrap up the examples by discussing CSS3 Transforms, which allow elements to be manipulated and transformed
in a relational space. The transform property applies a 2D or 3D transformation to an element, which allows you to
rotate, scale, move, and skew to create some really interesting transformations. By default transform applies to the
top left of an element, or (0,0), but you can adjust the transform-origin property on an element as well to re-orient
the center point. There is also a property, currently supported in Webkit browsers, that allows nested items to preserve
the space that the elements reside in (2D or 3D). The transform-style property identifies how nested elements are
rendered in the desired space. Listing 5-10 adds a quick 3D flip to our expanding ad unit.

Listing 5-10. CSS3 Transforms Example

<!DOCTYPE HTML>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<style>
* {
 font-family: Verdana;
}
#ad {
 position: absolute;

Figure 5-9. Our ad expanding using CSS3 Transitions

CHAPTER 5 ■ ANIMATIONS AND PRESENTATIONS

111

 left: 30px;
 top: 30px;
 width: 300px;
 height: 250px;
 background-color: white;
 -webkit-box-shadow: 0px 0px 20px 0px rgba(0, 0, 0, 1);
 box-shadow: 0px 0px 20px 0px rgba(0, 0, 0, 1);

 background:
 url(logo.png) 20px 10px no-repeat,
 url(300x250Bg.jpg) 0px 0px repeat;

 -webkit-border-radius: 10px;
 -moz-border-radius: 10px;
 border-radius: 10px;

 -webkit-transition: all 1s ease-in-out;
 -moz-transition: all 1s ease-in-out;
 -ms-transition: all 1s ease-in-out;
 -o-transition: all 1s ease-in-out;
 transition: all 1s ease-in-out;
}
#cta {
 position: absolute;
 top: 190px;
 left: 160px;
 color: white;
 font-size: 16px;
 cursor: pointer;
 text-shadow: 0px 0px 5px #000000;

 -webkit-transition: all 1s ease-in-out;
 -moz-transition: all 1s ease-in-out;
 -ms-transition: all 1s ease-in-out;
 -o-transition: all 1s ease-in-out;
 transition: all 1s ease-in-out;
}

.button {
 font-size: 16px;
 color: white;
 padding: 10px 20px;
 background: -moz-linear-gradient(
 top,
 #e3e3e3 0%,
 #545454);
 background: -webkit-gradient(
 linear, left top, left bottom,
 from(#e3e3e3),
 to(#545454));
 -moz-border-radius: 0px;
 -webkit-border-radius: 0px;

CHAPTER 5 ■ ANIMATIONS AND PRESENTATIONS

112

 border-radius: 10px;
 border: 1px solid #000000;
 -moz-box-shadow:
 0px 1px 3px rgba(0,0,0,0.5),
 inset 0px 0px 2px rgba(255,255,255,0.7);
 -webkit-box-shadow:
 0px 1px 3px rgba(0,0,0,0.5),
 inset 0px 0px 2px rgba(255,255,255,0.7);
 box-shadow:
 0px 1px 3px rgba(0,0,0,0.5),
 inset 0px 0px 2px rgba(255,255,255,0.7);
 text-shadow:
 0px -1px 0px rgba(000,000,000,0.4),
 0px 1px 0px rgba(255,255,255,0.3);
}

#close {
 position: absolute;
 top: 10px;
 left: 480px;
 opacity: 0;
 cursor: pointer;
 color: white;

 -webkit-transition: all 1s ease-in-out;
 -moz-transition: all 1s ease-in-out;
 -ms-transition: all 1s ease-in-out;
 -o-transition: all 1s ease-in-out;
 transition: all 1s ease-in-out;
}

.flip3D {
 -webkit-transform: rotateY(360deg);
 -moz-transform: rotateY(360deg);
 -o-transform: rotateY(360deg);
 -ms-transform: rotateY(360deg);
 transform: rotateY(360deg);
 -webkit-transform-style: preserve3d;
 -moz-transform-style: preserve3d;
 -ms-transform-style: preserve3d;
 transform-style: preserve3d;
}
</style>
</head>

<body>
<div id=ad>
 <section>
 <div id=close>X</div>
 <div id=cta class=button>Click Here</div>
 </section>

CHAPTER 5 ■ ANIMATIONS AND PRESENTATIONS

113

</div>
</body>
</html>

<script>
var ad = document.querySelector('#ad');
var cta = document.querySelector('#cta');
var close = document.querySelector('#close');
cta.addEventListener('click', expandAd, false);
close.addEventListener('click', collapseAd, false);

function expandAd () {
 ad.style.width = '500px';
 cta.style.left = '360px';
 close.style.opacity = 1;
 cta.style.opacity = 0;
 ad.classList.toggle("flip3D");
}

function collapseAd () {
 ad.style.width = '300px';
 cta.style.left = '160px';
 close.style.opacity = 0;
 cta.style.opacity = 1;
 ad.classList.toggle("flip3D”);
}
</script>

Again, jopefully you’ve followed along and noticed the boldface sections of updated code. The first thing to do
in our CSS is add a class of .flip3D and define its transform properties by writing rotateY(360deg) for all browser
vendors. Second, add another transform property of style, which tells the browser to preserve-3D space when
applying the transformation. Next, utilize a new feature in HTML5 browsers called the classList API; in our JavaScript,
toggle the flip3D class by calling ad.classList.toggle('flip3D');. This instructs the browser to add or remove
the class on expand and collapse (http://developer.mozilla.org/en-US/docs/DOM/element.classList has more
information on the classList API).

Adding the code in Listing 5-10 and refreshing your browser should give an experience similar to the one shown
in the snapshot in Figure 5-10.

http://developer.mozilla.org/en-US/docs/DOM/element.classList

CHAPTER 5 ■ ANIMATIONS AND PRESENTATIONS

114

When using this new CSS3 feature, keep in mind that this spec is in the working-draft state and requires vendor
prefixes. There is more on Transforms at http://w3.org/TR/css3-2d-transforms. Check for browser support at
http://caniuse.com.

Note ■ CSS3 Transitions and Transforms are complicated to demonstrate on paper. There is more detailed information

at http://w3.org/TR/css3-transitions and http://w3.org/TR/2012/WD-css3-transforms-20120911.

Some other features can be briefly discussed in wrapping up our examples of CSS3. One addition is text
wrapping via the text-overflow property, a great new feature that lets you manipulate how a line of text will break
as it gets close to the edge of the object’s container element or browser window. This is very helpful in responsive
ad techniques; as the ad manipulates size, you can specify how you want the lines of ad copy to break. This is also
exceptionally helpful when working with dynamic data and web services, where character counts can vary widely
depending on the amount of information the server returns. (There will be more on this topic in Chapter 11.)
Let’s take our ad example and add a CSS property of text-overflow: ellipsis and have the browser handle add “. . .”
to copy that’s larger than our desired ad area of 300 × 250. Listing 5-11 showcases this technique.

Listing 5-11. Text-overflow Example

<!DOCTYPE HTML>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<style>
* {
 font-family: Verdana;
}
.adContainer{
 position: absolute;
 width: 300px;
 height: 250px;
}

Figure 5-10. Our ad expanding with a 3D spin using CSS3 Transforms

http://w3.org/TR/css3-2d-transforms
http://caniuse.com
http://w3.org/TR/css3-transitions
http://w3.org/TR/2012/WD-css3-transforms-20120911

CHAPTER 5 ■ ANIMATIONS AND PRESENTATIONS

115

#ad {
 position: relative;
 width: 100%;
 height: 100%;
 background-color: white;
 -webkit-box-shadow: 0px 0px 20px 0px rgba(0, 0, 0, 1);
 box-shadow: 0px 0px 20px 0px rgba(0, 0, 0, 1);

 -webkit-border-radius: 10px;
 -moz-border-radius: 10px;
 border-radius: 10px;

 -webkit-transition: all 1s ease-in-out;
 -moz-transition: all 1s ease-in-out;
 -ms-transition: all 1s ease-in-out;
 -o-transition: all 1s ease-in-out;
 transition: all 1s ease-in-out;

 white-space:nowrap;
 overflow:hidden;
 text-overflow: ellipsis;
}
</style>
</head>

<body>
 <div class='adContainer'>
 <div id='ad'>

Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsum has been
the industry’s standard dummy text ever since the 1500s, when an unknown printer took a galley of
type and scrambled it to make a type specimen book. It has survived not only five centuries, but
also the leap into electronic typesetting, remaining essentially unchanged. It was popularised in
the 1960s with the release of Letraset sheets containing Lorem Ipsum passages, and more recently
with desktop publishing software like Aldus PageMaker including versions of Lorem Ipsum.

 </div>
 </div>
</body>
</html>

There are quite a few CSS3 features. I’ll review many more emerging CSS3 submissions from vendors like Adobe
and Google, including shaders, filters, regions, and exclusions, in Chapter 12. But start playing with them today—if
for no other reason than just to test their performance and add some pizzazz to your ads. A good place to start digging
deeper is http://css3clickchart.com, which outlines both common and emerging CSS features. If you’re interested
in learning more about CSS3 animations, Dan Eden’s Animate.css (http://daneden.me/animate) is a great tool for
getting started quickly—but as always have a graceful failback because it may not work everywhere.

If you’ve followed along, you’ll see it’s fairly simple to create a straightforward advertisement that looks pretty
good by just adding some simple CSS. You saw everything from adding multiple background images, rounding
corners, adding gradients, and even transitions and transforms leveraging a bit of JavaScript for control. Use all of
these tools to your advantage, and you’ll be able to come up with some really amazing ads to wow your clients.

http://css3clickchart.com
http://daneden.me/animate

CHAPTER 5 ■ ANIMATIONS AND PRESENTATIONS

116

CSS3 in Advertising
So CSS3 animations and how they’re affecting the advertising space is HUGE! Seriously, when was the last time you
didn’t see an ad animate or utilize some presentation features just covered? Usually it’s “Make my logo bigger” and
“Can we add a little animation here?” Advertisers are all fighting for users’ attention, so keeping the ad moving is
very important to them. A couple of examples that can be extremely helpful for CSS3 animations, especially if they’re
leveraging the GPU, are particle generators (or systems) and loader icons. A prime example of when they’re used is the
holiday season, when ads need that falling snow effect.

Handling the snow animation via CSS3 and utilizing the z space will have the animation running super smooth
on top of the GPU (even for mobile). Obviously, this could also be done in JavaScript, but depending on the number of
other animations occurring, CSS3 will most likely come out on top.

Loader icons are huge in advertisements where a user opts for more content and the ad pulls in more than it
could on its initial load. Spinners, loaders, and other icons of the sort can all be offloaded to the browser instead of
making an additional HTTP request to grab an animated GIF. Again, this is helpful for additional subsequent loads
based on user interaction. Often, ads will load an initial k-weight limit of 70-100 kilobytes; after a user interaction,
they’ll load additional weight up to 100 or even 200 kilobytes more (depending on pub spec).

In short, I have three simple rules to follow if you use (or plan on using) any emerging CSS3 features in your next
advertising campaign.

1. Understand your target audience, and learn from what the publisher is currently taking
advantage of with regard to features. Chances are it sells the media inventory that aligns
with its content. If its content is aimed at a more tech-savvy audience and the publisher
isn’t too concerned with users on IE6 through IE8, you should be able to use more cutting-
edge features.

2. If you need to appease the masses, work with your publisher to include a polyfill. More
than likely, you’ll need that extra k-weight allowance if it’s not already baked into the site.

3. Use a CSS Reset for your ad. Eric Meyer’s Reset for HTML5 is one of the better ones out
there (http://html5doctor.com/html-5-reset-stylesheet). Keep in mind that you
should only be resetting ad contents and not the page the ad is living on. So be sure to
namespace your CSS rules appropriately. There is no sense working to make a creative
experience consistent across multiple browsers if the underlying browser technology is
rendering creative differently. It will be a mess to debug if you don’t reset and start from
ground zero.

Since the CSS3 spec is evolving and many submissions from vendors are already in working order, some browsers
can’t wait for the W3C to adopt, and so we get division. It’s really important to understand what you can and can’t
do with CSS3 in modern browsers. Defining your campaign’s reach will dictate what features you can take advantage
of, both today and in future campaigns. Don’t rely just yet solely on core CSS3 features. Start with features that are
standard in all browsers by referencing http://caniuse.com, and add progressive enhancements to your ads in
browsers that can support the richer feature set.

Sprite Sheets
Last but not least in this huge discussion of CSS3 is file size and keeping image use under control, especially on
devices with limited bandwidth. Sometimes you can’t get away from using images, and sometimes you’ll have a
campaign with a lot of them, so now’s a great time to discuss sprite sheets. A perfect use case is a character animation
in a game. You can’t usually get around working with images when you need specific frames of bitmap data redrawn
to the screen in a sequence. To optimize this use case, we can use a sprite sheet, which includes every frame of
animation in a large image sheet. Sprite sheets are ideal due to the fact that there is only one request made to the
server hosting the image asset. Once the file is stored in browser cache, the developer can move the sprite sheet, via

http://html5doctor.com/html-5-reset-stylesheet
http://caniuse.com

CHAPTER 5 ■ ANIMATIONS AND PRESENTATIONS

117

CSS and/or JavaScript, to the specific region to show a specific frame of animation at any given point in time. This is
extremely powerful in animation but should also be best practice when delivering ads with imagery to a publisher’s
page. A sprite sheet provides huge image optimization benefits, as all images in it can share pixel data. That is, the
JPEG, GIF, or PNG image codec doesn’t need to write that information multiple times for different images; once
written, its shared by all other images on the sheet that share the same values. If you notice you’re often compressing
images to get under k-weight limitations, try bundling all your images in one file, as closely as possible (with enough
whole pixel padding), and compress it. Chances are you’ll save much more k-weight than by compressing individual
files, plus you’ll eliminate multiple HTTP request overhead.

So how do you work with sprite sheets? CSS can offset the top and left properties of a background element
or elements at given points in time to create seamless transitions from one region to another. Figure 5-11 shows
a mashup of six popular web icons that, individually tallied, amount to 84 kilobytes. However, using the sprite sheet
method gets it down to 66 kilobytes. (It can even be squashed, using a great free tool called ImageOptim
(http://imageoptim.com), all the way down to 55 kilobytes.)

Figure 5-11. An example of a sprite sheet saved as a PNG file at 55 kilobytes

Now that you have the final image asset, just adjust the CSS of this sprite sheet by using the CSS code shown in
Listing 5-12.

Listing 5-12. Sprite Sheet CSS

.linkedin, .twitter, .yahoo, .yelp, .youtube, .rss{
 background: url(sprites.png) no-repeat;
}
.linkedin{
 background-position: -7px 0;
 width: 256px;
 height: 256px;
}

http://imageoptim.com

CHAPTER 5 ■ ANIMATIONS AND PRESENTATIONS

118

.twitter{
 background-position: -269px 0;
 width: 256px;
 height: 256px;
}
.yahoo{
 background-position: -8px -252px ;
 width: 256px;
 height: 256px;
}
.yelp{
 background-position: -269px -252px ;
 width: 256px;
 height: 256px;
}
.youtube{
 background-position: -531px 0;
 width: 256px;
 height: 256px;
}
.rss{
 background-position: -531px -253px ;
 width: 256px;
 height: 256px;
}

As you can see from our example, we initially set a background image to our social icon classes by writing
background: url(sprites.png) no-repeat; Then based on the class assigned, we simply offset the background image
at a specific X,Y location in order to just show the portion of the image were looking for. Sprite sheets are all over the
Web. In fact, even the popular Apple.com navigation bar consists of a sprite sheet. (If you view the source, you’ll find
that one single request goes to http://images.apple.com/global/nav/images/globalnavbg.png.) So get creative,
experiment with them, and keep optimization in mind, along with fewer requests to the server. Animated GIF sprite
sheets anyone?

Last, a very good tool for creating sprite sheets is straight-up Adobe Flash CS6, but it comes at a steep price
point. So if you don’t have Flash available, I recommend you download the AIR application Zoe, by Grant Skinner and
his team (http://easeljs.com/zoe.html) or use a few free online-based tools called SpritePad (http://spritepad.
wearekiss.com a personal favorite) and SpriteCow (http://spritecow.com). Go to http://css-tricks.com/
css-sprites for more detailed information on sprite sheet uses.

Sprite Sheets on Mobile
In mobile development, where we all often try to save on HTTP requests to a server due to the possibility of
inconsistent network connections, sprite sheets are a huge advance in ad optimization. Ideally, the goal is to use as
little imagery as possible in mobile and go the route of SVG, canvas, or font-based icons rather than bitmaps due to
higher pixel density screens and increased file size, but sometimes there’s no way around it. Understandably, there are
many different views on this situation, whether it be animated GIFs or sprite sheets using CSS and JavaScript. Either
way, just make sure you understand the needs and goals of the campaign as well as your users experience. It’s far less
work to make updates to one sprite sheet as a Photoshop (PSD) file rather than thirty independent images needing
to be reedited and reexported. If you’re interested in learning more about this topic and enjoy listening to people talk
about these topics, I suggest you check out the 5by5 talk show Hypercritical, specifically episode 61,
http://5by5.tv/hypercritical/61.

http://Apple.com
http://images.apple.com/global/nav/images/globalnavbg.png
http://easeljs.com/zoe.html
http://spritepad.wearekiss.com
http://spritepad.wearekiss.com
http://spritecow.com
http://css-tricks.com/css-sprites
http://css-tricks.com/css-sprites
http://5by5.tv/hypercritical/61

CHAPTER 5 ■ ANIMATIONS AND PRESENTATIONS

119

Summary
In closing out this chapter, let’s review what’s been discussed so far. CSS3 is not final, but it provides developers
and designers many astounding features to play around with. It also can be used in production campaigns where
browsers support it. You’ve seen some key factors in determining when to use JavaScript or CSS3 for animations;
performance and ease of use have been discussed, as well as tools that make designing and developing easier. All
of the presentation updates in the submitted spec and working drafts have been reviewed in great detail, and I’ve
provided code samples you can take advantage of in your next advertising campaign. Last of all, I’ve covered sprite
sheets, a very important topic—how they’re used, what they’re used for, and the performance gains that come from
using them, specifically on mobile devices.

Being that optimization is crucial for advertising and for the Web as a whole, I encourage you to take the time to
build these practices into your workflow so that the Web operates faster for everyone. Get excited about using some
of these new features, and be prepared to learn new techniques as they are finalized. CSS3 is no longer solely about
layout and style. It’s much more than that. Combined with GPU support, rich graphics, and JavaScript, CSS level 3 is a
great addition to a designer’s tool belt.

In Chapter 6, the focus shifts back to HTML5 land, especially on new JavaScript APIs to take advantage of. We’ll
discuss in more detail some of the updated markup and elements available, including HTML5 inputs, as well as the
Drag-and-Drop API and web workers.

121

Chapter 6

HTML5 APIs

Many people use a translator or tour guide when visiting a new country. They lean on someone who knows the land
and the people inside and out, someone who can also show you what to do and what not to do when you arrive. In
this case, think of the new country as all the modern browser technologies and that translator as the Application
Programming Interfaces (APIs) used to communicate with those technologies. To get things done in this or any new
country, you need to “talk the talk”—and that’s basically what APIs do. They are a communication layer that gives
access to a specific form of technology by communicating through code.

In this chapter, we’ll cover a lot on HTML5 APIs. Since you’ve already learned a bit about them so far, consider
yourself having a nice head start. The canvas, CSS3, even SVG—all are APIs in their own way, and this chapter will
review some of the new APIs that emerging HTML5 browsers have brought to us. However, we will not be covering
all of them as there are way too many to do that within the scope of this book. However, you can see most of them at
http://platform.html5.org. Also, keep in mind that most of the APIs aren’t part of the actual HTML5 specification.
Several did start in the HTML5 spec and later were moved into their own standard and thus adopted the blanket term
of HTML5 by default. While most of these APIs require some level of JavaScript to operate with, they all do different
things and behave in different ways. Moreover, studying them will entirely change how you work inside the browser
using standards. Trust me! So let’s start digging into the real muscle of HTML5. Be sure to get your coding hat on
because HTML5 APIs rely heavily on JavaScript.

Drag-and-Drop
Up first, let’s chat about the drag-and-drop (DnD) API, a relatively new addition to the HTML5 spec. This API provides
a very simple approach to dragging and dropping elements on a page or piece of content, like an ad unit. Moreover, it
requires a minimal amount of code to implement. Originally created by Microsoft in version 5 of the Internet Explorer
browser, it has experienced some developer backlash (to say the least) due to bugs in the API spec, implementations in
browsers, and uses around drag events. See http://quirksmode.org/blog/archives/2009/09/the_html5_drag.html
for more information.

After some improvements and since IE, Opera, Firefox, Safari, and Chrome support it in some way or another,
this API now brings native drag-and-drop support to the modern browser environment without a third-party plug-in
or JavaScript library. Simply by adding a “draggable=true” attribute on any DOM element you wish the user to drag
(while including some basic event listeners/handlers via JavaScript on a “drop zone”), you can instruct the browser
where elements can be dropped.

Note ■ The elements img and a (with an href) are draggable by default, but keep in mind that not all elements

(e.g., images) can be drop areas.

http://platform.html5.org
http://quirksmode.org/blog/archives/2009/09/the_html5_drag.html

CHAPTER 6 ■ HTML5 APIS

122

The drag-and-drop API has come a long way. Before using the native features of the browser, developers and
designers would need to use an external library like jQuery or a plugin like Flash. Thanks to the HTML5 spec, it’s now
a major component in modern browsers by default. Just about anything can be dragged: images, links, text—any
DOM node, really. Note, too, that native browser support makes for a faster and much more responsive Web or, in our
case, ad creatives. Anytime you can leverage a browser’s native APIs, do it! After all, standardizing and constructing
user-friendly APIs that are hardwired into the browser environment are what HTML5 and this book are all about.
Listing 6-1 outlines how DnD can be used in a very simple ad, one where the publisher is a product manufacturer and
the ad is a drop zone for products to be saved with drag-and-drop.

Listing 6-1. Drag-and-Drop Example

<!DOCTYPE HTML>
<html>
<head>
<style type="text/css">
* {
 margin:0px;
 padding:0px;
}
#ad {
 width:300px;
 height:250px;
 border:1px solid #000;
 overflow: hidden;
}
#logo {
 position: absolute;
 top: 5px;
 left: 1px;
 width: 300px;
 height: 250px;
 font-family: Arial, "MS Trebuchet", sans-serif;
 font-size: 40px;
 text-align: center;
 color: #fff;
 z-index: 3;
}
#cta {
 position: absolute;
 top: 220px;
 left: 1px;
 width: 300px;
 height: 250px;
 font-family: Arial, "MS Trebuchet", sans-serif;
 font-size: larger;
 text-align: center;
 color: #fff;
 z-index: 2;
}
#dropper {
 position: relative;
 top: 25px;

CHAPTER 6 ■ HTML5 APIS

123

 left: 80px;
 z-index: 101;
}
#dropArea {
 position: absolute;
 top: 60px;
 left: 10px;
 width: 280px;
 height: 150px;
 background: #f2f5f6; /* Old browsers */
 background: -moz-linear-gradient(top, #f2f5f6 0%, #e3eaed 37%, #c8d7dc 100%); /* FF3.6+ */
 background: -webkit-gradient(linear, left top, left bottom, color-stop(0%,#f2f5f6), color-
stop(37%,#e3eaed), color-stop(100%,#c8d7dc)); /* Chrome,Safari4+ */
 background: -webkit-linear-gradient(top, #f2f5f6 0%,#e3eaed 37%,#c8d7dc 100%); /*
Chrome10+,Safari5.1+ */
 background: -o-linear-gradient(top, #f2f5f6 0%,#e3eaed 37%,#c8d7dc 100%); /* Opera 11.10+ */
 background: -ms-linear-gradient(top, #f2f5f6 0%,#e3eaed 37%,#c8d7dc 100%); /* IE10+ */
 background: linear-gradient(to bottom, #f2f5f6 0%,#e3eaed 37%,#c8d7dc 100%); /* W3C */
 filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#f2f5f6', endColorstr='#c8d7dc',
GradientType=0); /* IE6-9 */

 border: 1px dashed;
 border-radius:10px;

 z-index: 81;
}
#background {
 position: absolute;
 top: 1px;
 left: 1px;
 width: 300px;
 height: 250px;
 background: #c0c5d6; /* Old browsers */
 background: -moz-linear-gradient(top, #c0c5d6 0%, #3f4c6b 100%); /* FF3.6+ */
 background: -webkit-gradient(linear, left top, left bottom, color-stop(0%,#c0c5d6), color-
stop(100%,#3f4c6b)); /* Chrome,Safari4+ */
 background: -webkit-linear-gradient(top, #c0c5d6 0%,#3f4c6b 100%); /* Chrome10+,Safari5.1+ */
 background: -o-linear-gradient(top, #c0c5d6 0%,#3f4c6b 100%); /* Opera 11.10+ */
 background: -ms-linear-gradient(top, #c0c5d6 0%,#3f4c6b 100%); /* IE10+ */
 background: linear-gradient(to bottom, #c0c5d6 0%,#3f4c6b 100%); /* W3C */
 filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#c0c5d6', endColorstr='#3f4c6b',
GradientType=0); /* IE6-9 */

 z-index: 0;
}

/******Mock Publisher Content********/
#publisherContent {
 position: absolute;
 top: 300px;
 left: 100px;
}

CHAPTER 6 ■ HTML5 APIS

124

 #pubProduct {
 position: absolute;
 top: 0px;
 left: 0px;
 width:100px;
 height:100px;
 background: url(hammer.png) no-repeat;

 z-index: 90;
}

</style>
<script type="text/javascript">
//fires when product is over the drop area
function allowDrop(event) {
 //cancel default for drop event to fire
 event.preventDefault();
 console.log("YOU'RE OVER THE DROP AREA!!!")
}

function dropArea(event){
 var data = event.dataTransfer.getData("Text");
 var dropArea = document.getElementById('dropper');
 var element = document.getElementById(data);
 dropArea.appendChild(element);

 console.log(element)
}

//initial drag when product is selected
function drag(event) {
 var dropImg = document.createElement("img");
 dropImg.src = "add.png";
 dropImg.width = "48px";
 dropImg.height = "48px";
 dropImg.style.opacity = "0.5";

 event.dataTransfer.effectAllowed='all';
 event.dataTransfer.setData("Text", event.target.getAttribute('id'));
 event.dataTransfer.setDragImage(dropImg, 25, 25);
}

function adInit(event) {
 console.log(event.type)
}

window.addEventListener('DOMContentLoaded', adInit, false);
</script>
</head>

CHAPTER 6 ■ HTML5 APIS

125

<body>
<div id="publisherContent">
 <div id="pubProduct" draggable="true" ondragstart="drag(event)"></div>
</div>

<div id="ad">
 <div id="logo">Shopping Cart</div>
 <div id="cta"> Drag Products To Drop Area! </div>
 <div id="dropArea" ondrop=dropArea(event) ondragover=allowDrop(event)>
 <div id="dropper"></div>
 </div>
 <div id="background"></div>
</div>
</body>
</html>

Hopefully you’re following along in your favorite text editor. Now let’s take a look at the code. First, we do some
basic ad set up and design using the CSS in the listing. Second, in the HTML we mimic having publisher content
(publisherContent) and dropping the mock products in our publisher page onto the ad area (ad). Next in our
publisherContent div, there is a sample product, pubProduct, which has its attribute of draggable set to true and has
an event, ondragstart, to be handled with the function called drag(event).

Note ■ You must pass in the “event” argument; otherwise the code will not function correctly.

Next, we put some more event handlers in the ad by leveraging the ondrop and ondragover events. These events
attach dropArea(event) and allowDrop(event), respectively. Next, our functions get written using JavaScript. For
drag we use a drag image with the method from the dataTransfer object by calling the method setDragImage() and
pass it three arguments. The first argument is the image asset, the second and third are the image’s x and y coordinate
location—the place where the mouse will start the drag. This could be helpful if you want to create a custom image for
the element when the user is dragging.

Next, we tackle the allowDrop method, which signifies when the product can be dropped onto a content area. In
this case, we’re using the entire ad as a drop zone.

Note ■ By default, the dragOver and dragEnter events are not able to drop the element. You must explicitly cancel

these default browser actions by calling event.preventDefault(); to drop an element.

Last, once you know you’re allowed to drop the product and once the user lets go of the mouse, that action
can be handled with the dropArea handler. Inside the dropArea method we grab the product’s data by calling
the dataTransfer object again—but this time we retrieve the data by writing var data = event.dataTransfer.
getData(“Text”). Having the data object, we can then inject the data into the ad’s real estate. The user now sees the
element inside the ad area, as Figure 6-1 demonstrates.

CHAPTER 6 ■ HTML5 APIS

126

I hope you got all that; I know it’s a lot. If you didn’t, you can read through the previous code again and for follow
up learning’s visit http://html5laboratory.com/drag-and-drop.php. DnD is a bit of a hidden gem to some users,
especially in the ad environment, so if it’s a specific function in the ad experience, be sure to include a relevant and
clear call to action to ensure that your users take the appropriate action.

Drag-and-Drop in Advertising
With some basic DnD primer under your belt, let’s think about how the drag-and-drop (DnD) API can apply to us
folks in the advertising space. At first thought, I believe the DnD API can bring new ways to play interactive games.
For example, it allows a user to play the game of chess more accurately as it resembles the users’ native behavior. It
can re-create an interactive shopping cart experience, where users drag products to a checkout cart which could fill
depending on the amount of products getting dropped into it. I think once you start playing around with this API, the
possibilities when using this standard are limitless.

It can drag elements into a to-do list so a user can print at a later time or even be used for functionality on a mix
up puzzle game, where the user needs to assemble the puzzle for a hidden offer. I also see DnD bringing the ability
to handle a complex publisher integration—for instance, where a user drops select content from the publisher’s page
onto the ad’s drop space (as was just covered). This could be sort of an Easter egg hunt, where the end user finds
relevant content within the site and gets special deals with the discovery of these “eggs.”

Granted, DnD still has its fair share of quirky issues, but if you’re interested in an in-depth look at the DnD API,
go to http://html5rocks.com/en/tutorials/dnd/basics. You can view the current spec at http://dev.w3.org/
html5/spec/dnd.html#dnd and http://whatwg.org/specs/web-apps/current-work/multipage/dnd.html#dnd.

File
The updated File API in HTML5 allows web content to prompt users to select local files on their machine and then
read the contents of those files within the browser itself, with no need of server-side help or a plugin. This selection
can be done either by using an HTML input element or with the just-learned DnD API. If you use Gmail (Google’s
mail service) and a modern browser, chances are you’re using the File API without knowing it when you attach files
to mail. You may think, “Well sure, I’ve added attachments to e-mail before,” but did you know you can drag those

Figure 6-1. Shows the ad’s drag-and-drop example

http://html5laboratory.com/drag-and-drop.php
http://html5rocks.com/en/tutorials/dnd/basics
http://dev.w3.org/html5/spec/dnd.html#dnd
http://dev.w3.org/html5/spec/dnd.html#dnd
http://whatwg.org/specs/web-apps/current-work/multipage/dnd.html#dnd

CHAPTER 6 ■ HTML5 APIS

127

attachments into Gmail from the operating system of your computer? DnD lets you do data transfer of files to Gmail’s
application, but the reading of the file in your browser takes full advantage of the File API.

The DnD and File API, when used together, provide an experience identical to working with native applications
on your operating system or desktop. This new addition to HTML5 essentially allows users to treat the web application
as if it’s an extension of their native operating system (OS). This can be a tremendous help if you’re asking users to
upload an image of themselves into your ad unit. All they’ll need do is drag it from the desktop into their browser’s
defined drop zone – in our case it could be the ad.

Traditionally, the File API gave users a basic input using <input type='file'> that allowed for a native OS file
picker window and also allowed an HTML document to refer to a file located on the users file system—but that was
pretty much it.

Nowadays, the File API allows users to read the file in various file formats directly inside the browser, without
server-side technologies. A file can be read as a string, an array buffer, or even a BLOB (binary large object) input
using the new FileReader API. With this information native to the browser, binary information on a file can be read,
interpreted, displayed, even manipulated, and then saved in an updated and modified version. Through JavaScript,
the File API provides a native mechanism to read the data of a file and write it as you wish. As the Web becomes more
application-focused (as HTML5 intends to), the native file system of the user’s computer and the application on the
web will become more interwoven. The lines between Web and native OS will be blurred for many normal everyday
users. For instance, instead of having users retrieve an asset called someimage.jpg saved on their machine, the File
API and FileReader API can be bolted onto the DnD API to seamlessly integrate operating system and web application
or even allow access to a user’s built-in camera and capture bitmap image information and save it to the web page or
advertisement—again, all within the browser’s native architecture.

This approach is much more advanced than just asking a user for a previously saved image asset, wouldn’t you
say? Moreover, you can even use an XMLHttpRequest (AJAX) method to retrieve information from another data source
and import it as a BLOB, Array, or String object for the FileReader API to interpret and perhaps later ask the user to
manipulate. Using the AJAX method, this process can occur by not triggering a page refresh, which again, makes the
integration seamless to the end user.

With this in mind, lets take a look at working with the File API within JavaScript. Listing 6-2 asks the user to drag
an image of themself into the ad experience.

Listing 6-2. File API Example

<!DOCTYPE html>
<style type="text/css">
* {
 margin: 0px;
 padding: 0px;
}
#drop_zone {
 width:300px;
 height: 250px;
 background-color:#999;
 border: 1px dashed #000;
}
p {
 width: 300px;
}
</style>
<head>
 <meta charset=utf-8>
 <body>
 <div class="percent">0%</div>
 <input type=file>

CHAPTER 6 ■ HTML5 APIS

128

 <div id="drop_zone">Drop Zone</div>
 <p>Select an image from your machine or drop onto the drop zone to read the contents of the
file without using a server</p>
 <script>
 function adInit(event) {
 event.preventDefault();
 var upload = document.getElementsByTagName('input')[0];
 var progress = document.querySelector('.percent');
 var dropZone = document.getElementById('drop_zone');
 dropZone.addEventListener('drop', handleFileSelect, false);

 // Check for the various File API support.
 if (window.File && window.FileReader && window.FileList && window.Blob) {
 var reader = new FileReader();
 console.log('Sweet! All File APIs supported');

 upload.onchange = function (event) {
 var file = upload.files[0];
 var img = new Image();
 reader.onload = function (event) {
 console.log(event.type);
 };
 reader.onprogress = function (event) {
 console.log(event.type);
 var percentLoaded = Math.round((event.loaded / event.total) * 100);
 progress.textContent = percentLoaded + '%';
 console.log(percentLoaded)
 };
 reader.onloadend = function (event) {
 if (!file.type.match('image.*')) {
 alert("Not an image!!");
 } else {
 img.src = event.target.result;
 if (img.width >= 300) {
 img.width = 300;
 }
 }
 console.log(event.type);
 dropZone.innerHTML = '';
 dropZone.appendChild(img);
 };
 reader.onerror = function (event) {
 console.log(event.type);
 };

 reader.readAsDataURL(file);
 console.log(reader);
 return false;
 };
 function handleFileSelect(event) {
 event.stopPropagation();
 event.preventDefault();

CHAPTER 6 ■ HTML5 APIS

129

 //event.dataTransfer.dropEffect = 'copy'; // Explicitly show this is a copy.
 var files = event.dataTransfer.files; // FileList object.
 var file = files[0];

 reader.onloadend = function (event) {
 console.log(event.target);
 dropZone.style.width = "300px";
 dropZone.style.height = "300px";
 dropZone.style.background = 'url(' + event.target.result + ')
no-repeat center';
 };

 reader.readAsDataURL(file);
 return false;

 console.log(file)
 }
 } else {
 alert('The File APIs are not fully supported in this browser.');
 }
 }

 window.addEventListener('DOMContentLoaded', adInit, false);
 </script>
 </body>
</html>

As this code shows, users are first allowed to select image files on their local machine or drag images onto an
ad’s drop zone by defining an area in the markup as drop_zone. Once the ad initiates after the DOM is loaded, the
adInit function is fired; it kicks things off by grabbing a variable reference to the DOM objects. (You can see I’m using
various ways of getting a reference by calling getElementsByTagName, getElementById, and the new querySelector.)
Once the user drags-and-drops an image onto the drop area, we run through a few methods after creating a file
reader reference, first called upload.onchange, which handles grabbing the user’s image file once the input element
changes state. Second, we use the file reader—let’s call it reader—and attach specific methods to the object—onload,
onprogress, onloadend, onerror and readAsDataURL—all of which handle specific commands when the user drops
the image on the drop area. Last, let’s focus on the onloadend method, which writes the user’s image into the drop_
zone element via CSS by writing dropZone.style.background = 'url(' + event.target.result + ') no-repeat
center';. Once this occurs, the image is presented in the browser without a round trip to a server. This is shown in
Figure 6-2 using an example image from my desktop.

CHAPTER 6 ■ HTML5 APIS

130

Note ■ With the multiple attribute, the user can select several files at once.

File Access in Advertising
Now that we’ve enabled users to upload an image, they can do the same with a text file, PDF, PSD—you name it—and
have the browser parse, manipulate, and render the information to the screen. With this information in mind, let’s
allow users to drag-and-drop an image onto the ad’s real estate from the desktop and have them use the HTML5
canvas element to paint on the image. From that, let’s also allow the user to save that manipulated file locally.
Listing 6-3 gives an example.

Listing 6-3. File API Example with Canvas

<!DOCTYPE html>
<style type="text/css">
 * {
 margin: 0px;
 padding: 0px;
 position: relative;
 }
 canvas {

Figure 6-2. An example of an image file upload

CHAPTER 6 ■ HTML5 APIS

131

 position: absolute;
 top: 20px;
 left: 0px;
 width: 300px;
 height: 250px;
 border: 1px solid #000;
 }
 .percent {
 position: absolute;
 top: 0px;
 left: 0px;
 width: 100%;
 }
 button {
 position: absolute;
 top: 300px;
 width: 200px;
 height: 50px;
 visibility: hidden;
 }
</style>
<head>
 <meta charset=utf-8>

 <body>
 <div class="percent">Loader: 0%</div>
 <canvas width=300 height=250>
 <p>No Canvas Support</p>
 </canvas>
 <button></button>
 <script>
 function adInit(event) {
 event.preventDefault();

 var canvas = document.getElementsByTagName('canvas')[0],
 context = canvas.getContext('2d'),
 progress = document.querySelector('.percent'),
 img = document.createElement("img"),
 saveBtn = document.querySelector("button"),
 mouseIsDown = false,
 hasText = true,
 clearCanvas = function () {
 if (hasText) {
 context.clearRect(0, 0, canvas.width, canvas.height);
 hasText = false;
 }
 };

 // GENERIC CTA
 context.fillText("Drop an image onto the ad!", 50, 50);

CHAPTER 6 ■ HTML5 APIS

132

 // Image for loading
 img.addEventListener("load", function () {
 clearCanvas();
 context.drawImage(img, 0, 0, 300, 250);
 }, false);

 // To enable drag and drop
 canvas.addEventListener("dragover", function (evt) {
 evt.preventDefault();
 }, false);

 canvas.addEventListener("drop", function (event) {
 var files = event.dataTransfer.files;

 if (files.length > 0) {
 var file = files[0];

 if (typeof FileReader !== "undefined") {
 var reader = new FileReader();

 reader.onload = function (event) {
 console.log(event.type);
 };
 reader.onprogress = function (event) {
 console.log(event.type);
 var percentLoaded = Math.round((event.loaded / event.total) * 100);
 progress.textContent = "Loader: " + percentLoaded + '%';
 console.log(percentLoaded)
 };
 reader.onloadend = function (event) {
 console.log(event.type);
 if (!file.type.match('image.*')) {
 alert("Not an image!!");
 } else {
 img.src = event.target.result;
 }

 beginCanvasDrawing();
 };
 reader.onerror = function (event) {
 console.log(event.type);
 };

 reader.readAsDataURL(file);
 }
 }
 event.stopPropagation();
 event.preventDefault();
 }, false);

CHAPTER 6 ■ HTML5 APIS

133

 function beginCanvasDrawing() {
 var brush = "rgba(200, 34, 2, .5)";

 canvas.addEventListener("mousedown", function (event) {
 mouseIsDown = true;
 clearCanvas();
 context.beginPath();//starts the drawing once users mouse is down
 }, false);

 canvas.addEventListener("mousemove", function (event) {
 if (mouseIsDown) {
 canvas.style.cursor = "pointer";
 context.strokeStyle = brush;

 context.shadowOffsetX = 0;
 context.shadowOffsetY = 0;
 context.shadowBlur = 15;
 context.shadowColor = brush;

 context.lineWidth = 5;
 context.lineJoin = "round";
 context.lineTo(event.layerX, event.layerY);
 context.stroke();
 } else {
 console.log("hold mouse button down")
 }
 }, false);

 canvas.addEventListener("mouseup", function (event) {
 mouseIsDown = false;
 var colors = context.getImageData(event.layerX, event.layerY, 10, 10).data;
 console.log(colors);
 brush = "rgba(" + colors[0] + ", " + colors[1] + ", " + colors[2] + ",
" + colors[3] + ")";
 console.log(brush);
 }, false);

 saveBtn.style.visibility = "visible";
 saveBtn.innerHTML = "Save Your Creation";
 saveBtn.addEventListener("click", function (event) {
 var newImg = new Image();
 newImg.src = canvas.toDataURL();
 window.location.href = newImg.src.replace('image/png',
'image/octet-stream');
 }, false);
 }
 }

 window.addEventListener('DOMContentLoaded', adInit, false);
 </script>
 </body>
</html>

CHAPTER 6 ■ HTML5 APIS

134

As you can see from the code, the user is asked to drag-and-drop an image onto the ad’s canvas element, where
the DND API and the File API render the image to the screen. From there, we’ll call a method, beginCanvasDrawing,
that will call up our specific canvas drawing functions allowing the user to “draw” once the user has inserted an image
into the browser.

Inside beginCanvasDrawing, we’ll detect whether a user is drawing with the mouse and present a button for the
user to save the new image composition. Once the user selects the button, a new image is created, and the canvas’s
new bitmap information is applied to the image’s source. From there the image is saved to their file system by using
a replace on the image’s file type to image/octet-stream, which allows the user to save the image information as a
binary file. Figure 6-3 shows what the browser should render.

Figure 6-3. The image file upload example with File and canvas

Note ■ You can detect whether the browser supports the File Writer API and save information locally that way.

Otherwise you can use server-side code to take the binary information and save the asset by its proper file name.

In addition, HTML5 is set to support a download attribute to <a> elements. This approach signifies that
the browser should locally download the URL it points to rather than navigate to the URL. (See http://html5-
demos.appspot.com/static/a.download.html for an example of this. Also, look at http://nihilogic.dk/labs/
canvas2image; it’s a useful and lightweight library that can save different image types from the canvas element.)

I myself still remember how excited I got when Flash Player 10 let ad developers gain file access to create user-
generated content (with user permission). Now, within the browser natively, we can do the same thing—grab local
files, access video or audio from the user’s machine. It’s all pretty amazing stuff if you ask me!

Note ■ Keep in mind that this API, which is not actually a part of the HTML5 specification, is in a working-draft state.

Thus, features may be altered or changed as work on the specification continues. See www.w3.org/TR/FileAPI for more

information on the File API.

http://html5-demos.appspot.com/static/a.download.html
http://html5-demos.appspot.com/static/a.download.html
http://nihilogic.dk/labs/canvas2image
http://nihilogic.dk/labs/canvas2image
http://www.w3.org/TR/FileAPI

CHAPTER 6 ■ HTML5 APIS

135

Page Visibility
The Page Visibility API is something I’ve waited a long time for! I’m really eager to start taking advantage of this
feature, as it provides huge performance benefits to end users and developers. The Page Visibility API allows the
browser to handle or “toggle” content and system resources based on the visibility of the page. Simply put, if you
aren’t looking at something—say, if its on another tab—the browser will stop allocating resources to that content,
freeing up more system resources for the content that the user is currently viewing. Let’s take a look at working with
the Page Visibility API in an ad example (see Listing 6-4).

Listing 6-4. Page Visibility API Example

<!DOCTYPE html>
<head>
 <meta charset=utf-8>
 <body>
 </body>
 <script>
 var isHidden,
 state,
 visibilityChangeEvent;

 function adInit(event) {
 console.log(event.type)

 if (typeof document.hidden !== "undefined") {
 isHidden = "hidden";
 visibilityChangeEvent = "visibilitychange";
 state = "visibilityState";
 } else if (typeof document.mozHidden !== "undefined") {
 isHidden = "mozHidden";
 visibilityChangeEvent = "mozvisibilitychange";
 state = "mozVisibilityState";
 } else if (typeof document.msHidden !== "undefined") {
 isHidden = "msHidden";
 visibilityChangeEvent = "msvisibilitychange";
 state = "msVisibilityState";
 } else if (typeof document.webkitHidden !== "undefined") {
 isHidden = "webkitHidden";
 visibilityChangeEvent = "webkitvisibilitychange";
 state = "webkitVisibilityState";
 }

 document.addEventListener(visibilityChangeEvent, function (event) {
 if (document[state] == "hidden") {
 pauseAd();
 } else {
 startAd();
 }

 }, false);
 }

CHAPTER 6 ■ HTML5 APIS

136

 function pauseAd () {
 console.log("pauseAd");
 //code to pause ad animation or video
 }

 function startAd () {
 console.log("startAd");
 //code to resume ad animation or video
 }

 window.addEventListener('DOMContentLoaded', adInit, false);
 </script>
 </html>

As the code shows, you can listen for a state change on the document’s visibility and fire the method pauseAd
or startAd, which will, respectively, pause or start an ad’s animation or video playback should the creative leverage
these features.

Page Visibility in Advertising
I think you’ll agree that in the advertising space, that this could be a huge benefit for providing the best experience to
the user. We can halt animation, video playback, even external requests that are on hidden browser tabs. I’d go as far
as to say that this should be an absolute standard in the future of digital advertising (as browsers adopt this feature).

For even more granularity there’s also a plug-in for JQuery to detect elements’ visibility on the page. This plug-in
could be even more beneficial when counting true visible ad impressions vs. served impressions or even when
eliminating resources to an ad unit on the page that the user is not currently viewing. Think about it—why initialize
creative content when no one is viewing? “If an ad is served to the page but no one is there to view it, does it still count
as an impression?” Traditionally yes, but with measures like this in place, not for long—and that will give advertisers a
better return for their ad dollars.

Note ■ To detect element visibility, take a look at the

http://inview plug-in https://github.com/protonet/jquery.inview.

At the time of writing, this spec is still in a working-draft state, and so support for the Page Visibility API is pretty
minimal. As I write, it’s supported only in Chrome 13+, Firefox 10+, and Internet Explorer 10+. As adoption in the
vendor market and user base grows, I’d like to see wider implementation and possibly even an IAB standard around
this. See http://dvcs.w3.org/hg/webperf/raw-file/tip/specs/PageVisibility/Overview.html for the current
working draft.

History
Now let’s discuss the history API. Every Internet browser has it, and pretty much every Internet user hits the browser’s
Back button frequently in order to go back in the browser’s time. It’s undoubtedly the most popular button in the
browser’s overall interface. What the history API brings is a way to add and remove records in the user’s browser
history where the data to restore a page’s state can be retained and the URL updated without refreshing the page’s
content. This approach is much different from selecting the Back button because in doing so, the page will always

http://inview
https://github.com/protonet/jquery.inview
http://dvcs.w3.org/hg/webperf/raw-file/tip/specs/PageVisibility/Overview.html

CHAPTER 6 ■ HTML5 APIS

137

fire a reload, effectively causing the browser to rerender the content, make a request to the servers, and fire any ad
impressions again.

The history API has a bunch of useful features, and it can also be fun to use in your next advertising campaign.
For example, you could build a creative that pretends to know where the user visited last. Yes, kind of creepy; it may
frighten a few users and even get some backlash, but it’s really harmless, since you’re not gathering any personally
identifiable information. You’d simply be calling upon the history records in the browser’s stored memory.

The API can get a bit tricky for ad developers. Let’s say users are browsing around the ad content, perhaps
searching for different products in a dynamic product feed and the developer has each user interaction logged to the
history of the browser. Now, if the user uses the back button of the browser, it would just return to the state previously
viewed in the ad content instead of going back to the previous page content. While this is all very new and emerging,
we’ll have to see where digital advertising fits within its use of the history API; it could conflict with many things and
may even be off-limits to digital advertising all together. However things play out, the history API is worth familiarizing
yourself with; I’ve even seen interesting examples that replicate the old marquee of scrolling text but, in this case, in
the URL bar.

It’s interesting how publishers and content makers will implement the history API in their pages. For example,
when working with the API and adjusting the user’s browser state, if no page reload happens, the ad content on the
screen doesn’t reload; thus no impression will fire. However, someone has seen the content again and it could even be
someone entirely new, which should account for a new impression, right?

For more information on the History API, check out Opera’s dev channel by visiting http://dev.opera.com/
articles/view/introducing-the-html5-history-api/

Web Storage
Saving data is a pretty common task in any application, and with HTML5 it’s becoming even more important on the
Web. Sometimes you’ll want to store data to reference at a later time; other times you can use the data saved with
the HTML5 history API about users’ browsing history. You can even save data for offline viewing, as you’ll learn in
Chapter 10. No matter which way you look at it, storage is a huge feature in software development so let’s take a look at
working with the web storage API in HTML5.

There are two types of web storage you need to remember.

•฀ localStorage: saves data without an expiration date

•฀ sessionStorage: saves data for one browsing session

Data in localStorage persists past browser restarts, whereas sessionStorage sticks around only when the page
is refreshed. This specification is an API for data storage of a name/value pair of data in the browser. This is pretty
revolutionary because you do not have to request the saved information via a server request; everything is saved
client-side. Modern browsers typically allow up to 5 megabytes of client-side storage, whereas in HTML4, a cookie was
used to store small amounts of information about a user’s session, up to 4 kilobytes of storage, and it traveled
with every HTTP request. Now you can save images into a string of text via Base64 encoding and save that within
the browser’s 5 megabytes of storage per domain (approximately). Another nice feature is that if you attempt to
exceed the default storage amounts set by the browser, the browser will ask the user to allow or deny the storage of
more information.

sessionStorage
Now sessionStorage is a method of storing client-side data (name/value pairs) locally—much like cookies but it has
many more advantages. Through sessionStorage, you can now save data from a user’s browsing session in memory
for retrieval at a later time in the ad experience, all without multiple round trips to a server. The real power in using
sessionStorage is that it’s supported across all major browsers, even down to IE8! Again, it’s action is similar to that
of cookies, but unlike cookies, web storage data are not sent with every server request and do not have the same data

http://dev.opera.com/articles/view/introducing-the-html5-history-api/
http://dev.opera.com/articles/view/introducing-the-html5-history-api/

CHAPTER 6 ■ HTML5 APIS

138

storage size limitations of cookies at 4 kilobytes. The data stored is domain-restricted; which means the browser’s
sessionStorage object information is only readable to the domain that initially placed that data.

Note ■ If the user has multiple windows opened at the same site, each one will have its own sessionStorage object.

localStorage
Since I am a Mac user, I use Command+Tab like crazy; for Windows users, it would be Ctrl+Tab. It provides an easy
way to switch between multiple windows/applications on my machine, and if you’re like me, you’ll more than likely
hit Command+Q or Ctrl+Q, which quits the application, by mistake a few times. (There’s almost nothing more
frustrating than having your finger slip and selecting Q instead of Tab as you’re filling out a large form on the Web!

Now with localStorage, developers can help out users by saving the entries they made to text fields on the
form. In this case, if I quit, which I inadvertently do pretty often, I can go back to the site after I restart my browser
and pick up where I left off. This is hugely beneficial to a user’s experience. The driving technology behind this is
localStorage, which allows developers to save data that are persistent to the browser, enough so that if the user
closes and reopens the browser, that data will remain, and a developer can retrieve the data at a later time.

As noted, localStorage is saved with no browser expiration date applied. That is, it’s there forever, unless the
developer clears or modifies it or the user deletes the browser application entirely or clears all the browser memory.

Whether you’re using sessionStorage or localStorage, the syntax is identical for storing and retrieving
values—as is shown in the following example, where the user’s name is stored.

localStorage.setItem("userName", "John");

or

sessionStorage.setItem("userName", "John");

Let’s look at working with localStorage in an ad unit. In Listing 6-5, the user is prompted to enter his or her
name; then the name value goes into the localStorage object, which allows the ad to use the name in the ad’s text
even if the user sees the ad at a later time and on another publisher site.

Listing 6-5. LocalStorage API Example

<!DOCTYPE HTML>
<html>
<head>
</head>
<style>
 * {
 margin: 0px;
 padding: 0px;
 position: relative;
 font-family: Verdana;
 }
 #ad {
 position: relative;
 top: 0px;
 left: 0px;
 width: 300px;
 height: 250px;

CHAPTER 6 ■ HTML5 APIS

139

 border: 1px solid black;
 text-align: center;
 }
 #name {
 font-size: 60px;
 z-index: 20;
 color: white;
 }
 #usersName {
 font-size: 50px;
 z-index: 20;
 font-weight: bold;
 }
 #cta {
 z-index: 10;
 -moz-box-shadow: 0px 0px 0px 0px #caefab;
 -webkit-box-shadow: 0px 0px 0px 0px #caefab;
 box-shadow: 0px 0px 0px 0px #caefab;
 background:-webkit-gradient(linear, left top, left bottom, color-stop(0.05, #77d42a),
color-stop(1, #5cb811));
 background:-moz-linear-gradient(center top, #77d42a 5%, #5cb811 100%);
 filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#77d42a',
endColorstr='#5cb811');
 background-color:#77d42a;
 -moz-border-radius:42px;
 -webkit-border-radius:42px;
 border-radius:42px;
 border:3px solid #268a16;
 display:inline-block;
 color:#306108;
 font-family:arial;
 font-size:28px;
 font-weight:bold;
 padding:20px;
 text-decoration:none;
 text-shadow:1px 1px 0px #aade7c;
 }
 #cta:hover {
 background:-webkit-gradient(linear, left top, left bottom, color-stop(0.05, #5cb811),
color-stop(1, #77d42a));
 background:-moz-linear-gradient(center top, #5cb811 5%, #77d42a 100%);
 filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#5cb811',
endColorstr='#77d42a');
 background-color:#5cb811;
 }
 #cta:active {
 position:relative;
 top:1px;
 }
 #background {
 z-index: 0;

CHAPTER 6 ■ HTML5 APIS

140

 width: 300px;
 height: 250px;
 position: absolute;
 top: 0px;
 left: 0px;
 background: rgb(201,222,150); /* Old browsers */
 background: -moz-linear-gradient(top, rgba(201,222,150,1) 0%, rgba(138,182,107,1) 44%,
rgba(57,130,53,1) 100%); /* FF3.6+ */
 background: -webkit-gradient(linear, left top, left bottom, color-
stop(0%,rgba(201,222,150,1)), color-stop(44%,rgba(138,182,107,1)), color-
stop(100%,rgba(57,130,53,1))); /* Chrome,Safari4+ */
 background: -webkit-linear-gradient(top, rgba(201,222,150,1) 0%,rgba(138,182,107,1)
44%,rgba(57,130,53,1) 100%); /* Chrome10+,Safari5.1+ */
 background: -o-linear-gradient(top, rgba(201,222,150,1) 0%,rgba(138,182,107,1)
44%,rgba(57,130,53,1) 100%); /* Opera 11.10+ */
 background: -ms-linear-gradient(top, rgba(201,222,150,1) 0%,rgba(138,182,107,1)
44%,rgba(57,130,53,1) 100%); /* IE10+ */
 background: linear-gradient(to bottom, rgba(201,222,150,1) 0%,rgba(138,182,107,1)
44%,rgba(57,130,53,1) 100%); /* W3C */
 }
</style>
<body>
<div id='ad'>
 <div id='name'>Hello!</div>
 Click Here
 <div id='background'></div>
</div>
</body>
</html>
<script>

function adInit () {
 if(localStorage) {
 if (localStorage.getItem('userName') === '' || localStorage.getItem('userName') === null) {
 var uname = prompt('Enter Your Name');
 localStorage.setItem('userName', uname);
 document.getElementById('usersName').innerHTML = uname;
 } else {
 document.getElementById('usersName').innerHTML = '
' + localStorage.getItem('userName');
 }
 } else {
 alert('Browser not supported!');
 }
}
window.addEventListener('load', adInit, false);
</script>

Let’s review the code and feel free to follow along in your favorite text editor. By adding an event listener for the
document to load and attaching a handler function called adInit, which kicks things off. That function detects first
if the browser supports localStorage. If it does, the function proceeds to detect if a value’s been entered for the item
called username. If not, a prompt appears for the user to enter his or her name and render it into the ad unit. Now if

CHAPTER 6 ■ HTML5 APIS

141

the user refreshes the page, views the ad on another site, or even closes the browser, the name will show in the ad unit
again until the data is cleared or modified.

By refreshing the browser, you should see something similar to the image in Figure 6-4.

Figure 6-4. A localStorage ad example with a user’s name

Figure 6-5. The localStorage web inspector view on Google’s Chrome browser

If you see something similar to what’s in the figure, great work! If not, rereview the code and give it another shot.
Modern web browsers even have tools to help you. By using the web inspector and heading to the Resources tab, you
can take a look at all the storage items being held by the browser. Figure 6-5 shows what this looks like using Google’s
Chrome browser. (There will be more on data storage and measurement in Chapter 10.)

CHAPTER 6 ■ HTML5 APIS

142

Note ■ Using the web inspector, you can also view local databases, web storage items, cookies, and HTML5 application

cache entries.

Figure 6-6. The “browser is unresponsive” screen

User Privacy
Privacy concerns connected with data storage always constitutes a huge topic for discussion among all
parties involved in digital advertising. Currently, many startup companies attempt to utilize a device and user
“fingerprinting” approach; it stores unique, trackable IDs on a user’s machine through various forms of web storage
for measurement across sites, ad networks, or both. Lawsuits have also involved such companies as Bluecava and
Ringleader for their tricky user-detection techniques, which leverage HTML5 storage and databases to target and
track unknowing users. Developers have even developed techniques known as a “Zombie Cookie”, which persists
through pretty much everything as it stores values in various areas including web storage, cookies and databases.

In the end, HTML5 storage is promising, but privacy is a bit concerning. If you need to support earlier browsers,
you can leverage some great polyfills on the Web; try these at storejs: http://github.com/marcuswestin/store.js
and http://github.com/jensarps/IDBWrapper. You can learn more about web storage APIs at http://dev.w3.org/
html5/webstorage and discover more about user privacy within third-party ad networks at http://dev.w3.org/
html5/webstorage#privacy.

Web Workers
Chances are you’ve seen browser notifications (see Figure 6-6) when browsing web pages.

I use Chrome, but other browsers have similar messages showing you (as a user) that the page content has
become unresponsive and asking you to stop and clear the code execution. Whatever the message, you get the idea
that the browser has failed you. Don’t fret; here comes an amazing new feature in new browsers from the team at
Google called web workers.

When executing intense scripts, a browser can become unresponsive until the code on the page (or ad) finally
finishes executing. In some cases this could take a while and worst cases, it would never stop executing. This could lock
a user out of the user interface (UI) elements, pause animations, halt video playback, or worst of all, crash the browser.

http://github.com/marcuswestin/store.js
http://github.com/jensarps/IDBWrapper
http://dev.w3.org/html5/webstorage
http://dev.w3.org/html5/webstorage
http://dev.w3.org/html5/webstorage#privacy
http://dev.w3.org/html5/webstorage#privacy

CHAPTER 6 ■ HTML5 APIS

143

What’s going on here is that the browser is attempting to finish interpreting and running the scripts in question,
and it will draw upon all available system resources to do so. To remedy this issue in the new modern browser market,
a web worker can be used.

Essentially, a web worker is JavaScript that is interpreted in the background by the browser, independently of the
other scripts and the DOM, without ultimately affecting overall performance. This is really awesome; you can continue to
do whatever you want within the UI of the ad creative: clicking, tapping, hovering, scrolling—you get the idea—all while
the worker script runs in parallel “helping” the other scripts and the functionality within your content. Web workers
provide a much needed multithreaded approach to creative development using JavaScript, as Figure 6-7 illustrates.

Figure 6-7. Demonstration of a typical web worker workflow

Hopefully, after looking at Figure 6-7, you’ll agree that delegating another worker to do your work is much more
efficient than taking on all the work yourself. This is what web workers strive to accomplish. They split up tasks for
heavy JavaScript executions by separating them into multiple worker threads.

Before web workers, developers needed to be crafty and break apart their code so that the browser could
interpret smaller “chunks” of code at a time. This amounted to a shoddy approach to multithreading in a single-
threaded browser universe. Obviously, this never really worked too well, since it required the script to be heavily
reliant on timers and intervals, all of which slowed the experience significantly, depending on the user’s machine
resources. It often created an undesirable “chugging,” or staggered loading, effect for the user as well.

Initially a concept by Google with the Gears project, web workers have finally gained enough acceptance from
other browser vendors and the W3C to produce its own specification. It can really speed up text filtering on search
inputs, math computation, and even complex animations by offloading the physics or math onto a separate thread.
Did someone say particle generators?

CHAPTER 6 ■ HTML5 APIS

144

Web workers are a great way to modularize the code in your project or creative as well. If you have UI code,
allow it to be a part of the markup, and load it independently of the worker script, which could be handling a random
number generator or something else not directly tied to the UI.

Note ■ Web workers need to be hosted on a local or remote server in order to operate.

Web Workers in Advertising
In advertising, web workers can enhance user experience immensely. We finally have an API for running JavaScript
in the background independent of anything else on the page, which will allow long-running tasks to be completed
without making the page unresponsive. If you’re doing any sort of calculation or complex algorithms with JavaScript,
you should absolutely opt to use a web worker if they’re available in the browsers you’re targeting. The result is both
a better and faster experience for end users. Let’s take a look at working with a simple worker that returns the user’s
information from the Navigator object in their browser (see Listing 6-6).

Listing 6-6. Web Workers Ad Example (Main Script)

<!DOCTYPE HTML>
<head>
<script>
if (!!window.Worker) {
 var worker = new Worker('worker.js');

 // Receive the message from the worker thread
 worker.onmessage = function (event) {
 var workerMsg = event.data;
 document.write(workerMsg);
 };
} else {
 console.log('No Worker Support')
}
</script>
</head>
<body>
</body>
</html>

//Code in worker.js file
for (property in navigator) {
 postMessage("" + property+": "+navigator[property]+"
");
}

From our example, you can see that, instead of setting up the worker.js script file by writing <script
src=worker.js></script>, we create a new worker object and pass it the location of the script file by writing var
worker = new Worker('worker.js');.

Next, the worker script will run through its for loop, which will return all the properties of the user’s Navigator
object through the postMessage call. Back at the main script, we handle the postMessage call by writing worker.
onmessage; and through the event, we call a new variable, workerMsg, which we set to event.data.

CHAPTER 6 ■ HTML5 APIS

145

Last, we simply output the results to the DOM for you to see, but in reality, this information could be used for
other purposes more specifically tied to an ad server, such as for detecting a user’s user agent, platform, app name,
and version number.

There are many ways to leverage a worker. Perhaps you want do some complicated math or a repeating
animation function; either way keep in mind that performance is ultimately everything, and providing a snappy
experience goes a long way in ads, as well as on the Web in general.

Note ■ Web workers do not have access to the following JavaScript objects: DOM, Window, Document,

and Parent Objects.

CORS
Have you ever introduced people from two different crowds to each other? Rather than have them chat for the first
time without you, you’d typically facilitate the introduction and conversation to ensure that the parties get to feel
comfortable with each other. The same principal applies with resource sharing on the Web. Cross-origin resource
sharing (CORS) defines how browsers (clients) and servers (hosts) can and should communicate with each other
when accessing resources from different origins using normal HTTP requests.

CORS allows both the browser and the server to comprehend enough information about each other to determine
if the request or response should happen or not. This means some configuration is needed at the server or host level
as well as at that of the client. CORS is a specification that permits open-access resource sharing across domain
requests without limitations of the “same-domain” policy, which authorizes scripts running on pages originating from
the same site to access each other’s methods and properties.

Let’s face it, we often need to request data from a resource that doesn’t have the same domain as the one we are
requesting from. For this, there are workarounds, such as using JSON-P or a custom proxy service, but this takes more
operational time to develop—plus wouldn’t it be nice to just request what you need, when you need it, and know that
the source can be trusted by the client and you’re allowed to do so? To go back to the example above, since our two
friends met, they should feel comfortable enough to call upon each other in the future.

Note ■ There is more information on JSON-P at http://json-p.org.

CORS in Advertising
Let’s say an ad hosted from DoubleClick wants to access some information on the site www.nytimes.com. This type of
integrated publisher operation is typically a roadblock ad experience, one that would take a lot of time for both the
creative agency, publisher and ad server to develop and pull off. Since the publisher and ad server reside on different
domains, any scripts or access to scripts between the two traditionally wouldn’t be allowed under the browser’s same-
origin policy, covered earlier.

However, by supporting CORS on the server and client, the www.nytimes.com domain can add a few special
response headers that allow DoubleClick to access the site’s data respectfully. This could mean the ad served by
DoubleClick, a third party ad server, could rely on scripts hosted by the New York Times or even parse data from its
site—essentially, becoming “whitelisted” for all future data transfers or just for the life of the campaign. Think back
to our canvas examples in Chapter 4, where we couldn’t reference images from an external domain. Now with CORS,
we can! We can pull images from an external domain cleanly, without any errors thrown into the browser with CORS
enabled. This gets really interesting when ad servers become “whitelisted,” with certain data providers and publishers
allowing them to pull information from various trusted sources. Let’s look at Listing 6-7, where we use CORS to
request data from one domain in order to display the response information.

http://json-p.org
http://www.nytimes.com
http://www.nytimes.com

CHAPTER 6 ■ HTML5 APIS

146

Listing 6-7. CORS API Example

<!DOCTYPE HTML>
<head>
<script>
var call = new XMLHttpRequest();
var url = 'http://free.worldweatheronline.com/feed/weather.ashx?q=19043&format=json&num_of_
days=3&key=XXXXXXXXXXXXXX';

function callOtherDomain() {
 if(call) {
 call.open('GET', url, true);
 call.withCredentials = true;
 call.onreadystatechange = gotThatData;
 call.send();
 }
}

function gotThatData (data) {
 console.log(data)
}

callOtherDomain()
</script>
</head>
<body>
</body>
</html>

From the listing, you can see we’re using the XMLHttpRequest objectXMLHttpRequest object by writing
var call = new XMLHttpRequest();. From there, we set up another variable, url, which will point to the free
weather service, where we’re trying to access the information. Next, we set up a function, callOtherDomain(), which
will handle making the request to the domain and providing a callback to the function gotThatData(), where we
simply log out the response (if there is one).

If you’re following along in your browser and make that request, first, you’ll need your free API key for the
requestrequest to www.worldweatheronline.com, but after that, you should see something pretty interesting in the
browser’s console—something like what you see in Figure 6-8.

Figure 6-8. Demonstration of a failed CORS request

This message is pretty much telling you that the domain of the weather service is not set up, with CORS using the
origin of my localhost domain. If this weren’t the case, you’d be able to see the response data in our browser.

For leveraging APIs where ads will need to pull in information from other domains, this means the server’s
response headers will need to include some basic access by having Access-Control-Allow-Origin: * (for public)
or Access-Control-Allow-Origin: http://example.com (for protected). In the first example, it’s a wildcard, thus
allowing any domain to access the information. In the latter, the URL will match whichever domain you’re making

http://free.worldweatheronline.com/feed/weather.ashx?q=19043&format=json&num_of_days=3&key=XXXXXXXXXXXXXX
http://free.worldweatheronline.com/feed/weather.ashx?q=19043&format=json&num_of_days=3&key=XXXXXXXXXXXXXX
http://www.worldweatheronline.com
http://example.com

CHAPTER 6 ■ HTML5 APIS

147

requests from with the ad content. If that domain doesn’t match the access-control header, the response to the ad
will fail.

Another interesting concern involves users’ personal and private data. This is an important topic in any form of
advertising, especially when sharing data between domains, so be sure to check with the publisher and data provider
to ensure their terms of services (TOS) comply with the features you intend to use in your advertisements. There are
plenty of web services out there that you can “technically” use, but the last thing you want to worry about is a lawsuit!

Also, be sure, when you are working with the publisher for these kinds of rich integrations, to obtain a test page,
but ensure that the test page is hosted on the same domain as the live page and represents the experience as closely
as possible on the day of launch. If you’re going to be posting and requesting data between the ad server and the
publisher’s and data provider’s domains, they’ll all need CORS access privileges to do so. I’ve seen many campaigns
get “whitelisted” to a sandbox or test account just to have the thing go belly up once it went live because the content
was hosted on a different domain.

Finally, keep in mind that CORS is in a working draft spec, but it’s quickly showing adoption in all of the
major browsers, as outlined by Caniuse (http://caniuse.com/#feat=cors). There’s more information on the CORS
spec at www.w3.org/TR/cors. While you’re at it, take a deep dive into enabling CORS on your server by visiting
http://enable-cors.org.

Microdata
Just in case you wanted to extend HTML5 a bit more, the microdata API adds a supplementary layer of semantics to
your HTML markup. With this added information, search engines, browsers, and machine readers can mine through
all the metadata in your markup and ultimately provide a richer and more adaptable experience for different devices,
including those that can assist special-needs individuals, if this information is made available by the developer.
Microdata uses simple name/value pairs in markup attributes to define items. It can be really helpful in dynamic
advertising or asset tagging to learn semantically when a value was last updated—or even to simply keep track of
changes to a creative. In the following example, using the itemprop=date, you can timestamp directly into the ad’s
markup and have specific information to parse or filter at a later time. Let’s take a look at some sample markup (see
Listing 6-8) that may be included in a dynamic retail ad selling drink products.

Listing 6-8. Microdata Example

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset=utf-8>
<body>

Soda
<time itemprop=date datetime="2012-06-04">Last Updated</time><a itemprop=url
href="http://www.retailer.com/juice">Juice
<time itemprop=date datetime="2012-06-14">Last Updated</time><a itemprop=url
href="http://www.retailer.com/milk">Milk
<time itemprop=date datetime="2012-06-05">Last Updated</time><a itemprop=url
href="http://www.retailer.com/beer">Beer
<time itemprop=date datetime="2012-06-10">Last Updated</time>

</body>
</html>

Now you can parse through all the itemprop=products nodes in the markup while referencing the itemprop=date
and datetime attributes. Anywhere you see a dated product different from the current date, you know that the product

http://caniuse.com/#feat=cors
http://www.w3.org/TR/cors
http://enable-cors.org
http://www.retailer.com/soda
http://www.retailer.com/juice
http://www.retailer.com/milk
http://www.retailer.com/beer

CHAPTER 6 ■ HTML5 APIS

148

hasn’t been updated. This is also good practice for accessible rich Internet application (ARIA); though it’s not (at least
not yet, as of late 2012) a standard for web advertising, it’s still great practice for content development on the web. For
more information on the microdata API or ARIA, see www.w3.org/TR/microdata/#using-the-microdata-dom-api
and www.w3.org/TR/wai-aria.

Summary
In this chapter, we only scratched the large surface of each of these useful and powerful APIs. In order to find out
more and get under the hood of each, go dig into the code and experiment with what’s possible. All of these APIs and
similar technologies still to come can be classified as the modern Web and they will affect how advertising is created
in the future.

There were a lot of APIs covered in this chapter, and honestly, if I were to list all the other APIs that are closely
related to HTML5, this chapter alone could be a very big book. Just know that browsers are developing very quickly,
and the competition in the market is enormous. It will take a while before these emerging features acquire a standard
from groups in the W3C and WHATWG, and it’s often hard for these committees to keep up! That being said,
bookmark as much useful information as you can, and use online tools like http://html5please.com to ease your
development woes.

As this chapter closes, you should know that there is one other API we haven’t yet discussed, an API so large
and groundbreaking that it is justified in having its own chapter. The media API is that API, and it’s a large part of the
true HTML5 specification. This API alone has caused many arguments, so-called Flash vs. HTML5 wars, and overall
confusion on the Web over the past couple of years. The next chapter will focus on arguably the most prevalent feature
in HTML5: native audio and video support inside the browser.

http://www.w3.org/TR/microdata/#using-the-microdata-dom-api
http://www.w3.org/TR/wai-aria
http://html5please.com

149

Chapter 7

HTML5 Media

In this chapter, you will learn how to deploy video within your ads across browsers using the new HTML5 video
element. I’ll also cover failover support to a plug-in when browsers do not recognize the new video element. There
are a lot of things to take notice of when working with video, including browser support, transcoding, compression,
delivery, and much more. This chapter will not make you an expert, but it will give you the platform to educate
yourself so you can make smarter decisions when dealing with video alongside web standards.

Back in the day, Flash was used for beautiful cross-browser video experiences, independent of operating system.
Regardless if you were deploying video to Mac users who supported QuickTime or Windows users who supported
Windows Media Player, Flash was a ubiquitous option for deploying the video once and reaching everyone with one
universally accepted format, FLV. Because the Flash Player was ubiquitous across all desktop screens, this created a
video solution that would run flawlessly across the ecosystem. However, with the emerging phone and tablet markets,
marketers and creative developers are now faced with building a “browser-only” solution using HTML5’s new video
element. With HTML5, video is now a first-class member of the browser’s architecture. That means video is now part
of the HTML specification, just like paragraphs and divs are.

Prior to my development endeavors, I was heavily involved with video production and postproduction, so I know
the great lengths that content creators go to in order to achieve great quality within their productions. The knowledge
of formats, codecs, and math needed when dealing with video online can get exhausting, so I’ll cover the formats that
browsers can decode as well as offer useful tips along the way. If you’re confused about which video formats work
in which browsers, what codecs are and how they’re used to obtain the best quality, or how to follow publisher and
device specifications accurately, this chapter will quickly make sense of it all with a focus on industry terminology.
This chapter will explain in detail how to develop, design, and optimize digital media content for HTML5 browsers
and devices. Let’s begin!

HTML5 Video
In this section, I’ll discuss the new APIs for controlling and handling video playback in HTML5, which undoubtedly
is one of the biggest enhancements of the new specification. The HTML5 Video API has spawned a large “Flash is
dead” debate, causing much turmoil and confusion in the Web and advertising industries. As you’ve learned, Flash
(specifically video, with its rich feature set and player ubiquity, such as GPU acceleration video playback, adaptive
bitrate streaming, and digital rights management protection for content creators) has long been the king of web
advertising. However, with HTML5 now allowing for native video support, do you need to rely on Flash anymore?

When HTML5 video burst on the scene in 2007/2008 with the introduction of the Apple iPhone and later the
iPad, publishers and content owners panicked to figure out how to make their video content available and accessible
on the new devices; currently, if you want to reach people with your video content, you need to be thinking about
HTML5 video as well as Flash. This is especially true when you’re targeting people with older operating systems and
browsers (such as IE8) as well as those on mobile and tablet devices.

CHAPTER 7 ■ HTML5 MEDIA

150

You most likely know that having a video presence in your next digital marketing campaign is very important.
The current digital video market is huge, about $4+ billion in 2012, and showing no signs of slowing up anytime soon.
But how can you provide video content across screens, devices, and browsers in this new modern Web? HTML5
video is big news for any content producer, publisher, and designer because by implementing a simple video tag in
your HTML markup, you can now create a video playback controller with the upmost of ease. Before I showcase the
simplicity, I’ll review with you how it was achieved using Flash. Listing 7-1 shows a sample video using this method.

Listing 7-1. Flash Video Playback Example

<div id="flashContent">
<object classid="clsid:d27cdb6e-ae6d-11cf-96b8-444553540000" width="640" height="360" id="VideoTest"
align="middle">
<param name="movie" value=" VideoTest.swf" />
<param name="quality" value="high" />
<param name="bgcolor" value="#ffffff" />
<param name="play" value="true" />
<param name="loop" value="true" />
<param name="wmode" value="window" />
<param name="scale" value="showall" />
<param name="menu" value="true" />
<param name="devicefont" value="false" />
<param name="salign" value="" />
<param name="allowScriptAccess" value="sameDomain" />
<!--[if !IE]>−−>
<object type="application/x-shockwave-flash" data="VideoTest.swf" width="640" height="360">
 <param name="movie" value="VideoTest.swf" />
 <param name="quality" value="high" />
 <param name="bgcolor" value="#ffffff" />
 <param name="play" value="true" />
 <param name="loop" value="true" />
 <param name="wmode" value="window" />
 <param name="scale" value="showall" />
 <param name="menu" value="true" />
 <param name="devicefont" value="false" />
 <param name="salign" value="" />
 <param name="allowScriptAccess" value="sameDomain" />
 <!--<![endif]-->

 <img src="http://www.adobe.com/images/shared/download_buttons/get_flash_player.gif"
 alt="Get Adobe Flash player" />
 <!--[if !IE]>−−>
</object>
<!--<![endif]-->
</object>
</div>

I think you’d agree that’s a lot of code to just show a video on the screen! Now, to implement an HTML5 video
element within your ad creative, you simply create the video element within the DOM by writing the following:

<video></video>

http://www.adobe.com/go/getflash
http://www.adobe.com/images/shared/download_buttons/get_flash_player.gif

CHAPTER 7 ■ HTML5 MEDIA

151

Next, you’ll need to include some attributes to customize the video experience for your particular use case. In the
following example, I’ve included a source, a height attribute, and a width attribute:

<video src='yourVideoFile.mp4' height='640' width='360'></video>

By writing this, I’ve instructed the browser to render an HTML5 video element to play back the file
yourVideoFile.mp4 at the dimensions 640x360. If you want to include video controls, you simply add another
attribute by writing the following:

<video controls src='yourVideoFile.mp4' height='640' width='360'></video>

The browser will now render the player’s controls. Otherwise, you can keep the controls hidden and create your
own. You can do this by using CSS to style the control elements and by using JavaScript to handle the video’s behavior.
Obviously, this method is much more streamlined than the Flash-based example.

Let’s first take a look at the markup that drives HTML5 video and deconstruct its syntax, and then I’ll get into the
nitty-gritty of development. Consider the code in Listing 7-2.

Listing 7-2. HTML5 Video Playback Example

<html>
<head></head>
<body>
<video>
 <source src="sample.mp4" type='video/mp4; codecs="avc1.42E01E, mp4a.40.2"' />
 <source src=" sample.webm" type='video/webm; codecs="vp8, vorbis"' />
</video>
</body>
</html>

The preceding code uses the new HTML5 video tag along with the necessary source tags, which allows the browser
to call on the supported video file. Ideally, there would be one supported file format that every browser can handle. If this
were the case, having the video’s source inline would work as well, as demonstrated in the following example:

<video src="sample.mp4"></video>

It’s important to make sure that the server hosting and delivering your files has the correct MIME type set to
deliver the file format for each video file. Also, be sure to specify the type attribute so the user’s browser doesn’t
download files it cannot play. Essentially, dictating a type with a MIME type and codec allows the browser to
effectively choose which file it needs.

So, you may be asking, “What happens if my advertising campaign needs to reach the widest audience possible?
Including support for older IE versions?” Simply, you really have two options: either use Google’s Chrome frame or
have a Flash failback.

Google’s Chrome frame injects a Webkit rendering engine inside IE browsers, which gives you the ability to
render HTML5 content inside the older IE environments. Alternatively, having a Flash failback will allow your users
to have HTML5 video first, and in the event the video tag isn’t supported, the previous method will be used via the
object tag for a SWF file.

HTML5 video is a great advancement to the browser. The video element supports an array of features and
attributes, and support within the current browser market is almost stable. However, as with all emerging things, it
can have a few inconsistencies, and it doesn’t stop at the video element itself for its fragmentation. Support across
browsers, screens, and devices requires a multitude of source video files to actually play back the video asset from
within the HTML5 video tag. As you may have guessed, it takes some time and money to create, size, transcode, and

CHAPTER 7 ■ HTML5 MEDIA

152

host all of the different asset versions, and if you’re talking about multibitrate streaming, you have even more to create
(more on these topics later). A great link to visit is http://caniuse.com/video, which can better help you develop
video across browsers.

Content Creation
Creative agencies are shooting video exclusively for the various screens. No longer do you see repurposed broadcast
television spots in online ad units. They’ll typically do a roadblock that takes over a good portion of the user’s screen
with full interactive video and sound. Others specifically produce the spot for the desktop and shoot their actors in an
environment that would seamlessly work on the various screens. In any event, digital advertising is all about making
an impact creatively, and most impactful ads have video in their arsenal. Now that you have an idea of what goes into
building an HTML5 video element, the really awesome part comes when you integrate the video element alongside
other emerging web technologies like the canvas, SVG, and CSS3. Keeping this thought in mind, you can create some
amazingly rich features and graphics in your next online campaign. However, before you head down that path, there
are a few things you’ll want to use with the video element as well as a few you’ll want to avoid. Let’s take a look at
each, starting with the things you should use.

What You Should Use
A poster image is the static image (or an animated GIF) that is initially viewable before video playback begins. I like
to think of this as your CTA message to entice the user to click and play your video content. The poster image isn’t a
required attribute, but in terms of advertising, you should use it so that if your user never clicks your video, they’ll still
get a static (or animated) image or message.

Next are controls; controls are the play/pause controls, mute/unmute, the scrubber bar, the current time
indicator (CTI), and full-screen icons that your browser natively uses with the video tag. Adding controls to your video
is simple, as follows:

<video src="sample.mp4" controls></video>

If you are using video for anything other than animation purposes, you should make sure your controls are
turned on. Don’t worry if you dislike the native controls the browser uses; you can always skin them via CSS and add
their functionality via JavaScript to control the video. However, in the event you choose to use CSS and JavaScript for
your controls, be sure to remove the controls attribute in the video tag. Because video is now a first-class citizen and
part of the DOM, you can also style it with the latest CSS3 properties such as reflections, masks, gradients, transforms,
transitions, and animations (assuming your browser supports them). You can even use SVG and SMIL for animations
on top of the video element. Perhaps you want to blur the video using SVG filters while it’s animating across the
screen or have the video element swing open like a gate door on a fence. There are so many tips and tricks you can
implement to have your video perform better and more uniquely in your next campaign.

What You Shouldn’t Use
When using video in your next campaign, you should almost never use the loop attribute, which plays your video over
and over again. This would create a poor user experience and have the publisher or ad-serving company red flag it
before the campaign ever going live.

Second is the use and reliance on autoplay. Autoplay is a great feature for in-banner forced video that acts like
animation, but some mobile devices that leverage a cell network or data plan, such as the Apple iPad and iPhone,
restrict the autoplay attribute from working in order to protect customers’ data plans from exceeding the limits for
content they didn’t even choose to view. If you do in fact use autoplay video within your desktop advertisements,

http://caniuse.com/video

CHAPTER 7 ■ HTML5 MEDIA

153

be sure to have the audio off by default. No one wants to go to a site to read or watch content and have advertising
blasting with full sound. That’s a poor experience for every user!

Another thing to be mindful of is removing small type in video. If you don’t do this, your video’s copy (depending
on browser zoom level) can look pretty poor and create unwanted text aliasing.

Also, if you’re animating the video element, make every attempt to keep the video player on a whole pixel. This
will again eliminate any unwanted aliasing to the video player.

Finally, keep a close eye on CPU and GPU loads for larger data rate videos. In fact, if you’re noticing the browser
slugging during playback, chances are the system resources are being taxed too much for the video you’re playing
back. My suggestion with this is to optimize your video further (more on that later).

In the end, it’s really up to the tools you use when creating your online video content. Keep in mind that HTML5
video is just a way of playing the video content inside the browser without a plug-in. How you create that creative
content is entirely up to you and the requirements of the campaign. I suggest using some of the following tools. For
high-end motion graphics and keying out footage shot on a green/blue-screen, I like Adobe’s After Effects
(http://adobe.com/products/aftereffects.html). For 3D needs, I use Maxon’s Cinema 4D (http://maxon.net/
products/cinema-4d-studio). Using both together can create amazing videos that can be deployed to any screen.
Using tools like Adobe’s Media Encoder (http://adobe.com/products/mediaencoder.html), Apple’s QuickTime
Pro (http://apple.com/us/product/D3380Z/A/quicktime-7-pro-for-mac-os-x), and others gives designers and
developers robust features, including setting compression, size, frame rate, and others, for tweaking their video
content to their liking as well as publisher requirements.

Encoding and Transcoding
Now that you understand the content creation part of the video asset as well as the basic building blocks for the
HTML5 video tag, you can move into the complex world of video encoding and transcoding. In short, encoding is
the initial compression technique used for video, usually from a postproduction video house, and transcoding is
transferring a video from one format to another.

Encoding
In the Flash days of online advertising, it was pretty common to take a raw MOV or AVI file and transcode it to an
FLV video, suitable for playback within a SWF. For initial encoding tasks, this will often be a lossless compression,
which means the core fidelity of the file is preserved within the output file. This lossless technique is more or less for
transferring the file when bandwidth limitations are not a concern, and the output is ideal for archiving or playback
truest to the source video.

Transcoding
Transcoding, on the other hand, is commonly a lossy compression technique. Lossy is typically used when you are
generating a video file for playback over the Web, usually for transferring over the HTTP or RTMP protocol. Lossy
does not maintain the quality that the original source video file had; it sacrifices some of the overall video quality for a
much smaller file size. Really good compression techniques can be used to maintain a really great-quality picture at a
very small footprint as well, and I’ll discuss some of them in the following sections.

Encoding and transcoding video are where most of the time is spent with video on the Web, and you’ll learn
quickly that video on the Web is only as good as the source file you use for the transcode. We call this the “garbage in,
garbage out” rule. Basically, you cannot enhance the quality and playback of video that has been severely compressed
or altered poorly. Video compression is much like image compression; once the data is lost in the file, it’s gone for
good! Encoding/transcoding video for web delivery is a science as much as it is an art. Seriously, a full book could be
written just on the techniques, theory, and practice behind them (and many have been). This section is not geared
to make you a compression expert but to give you a high-level strategy when working with video in your next HTML5
campaign. Let’s take a look at some of the settings you can tweak to your advantage when working with your videos.

http://adobe.com/products/aftereffects.html
http://maxon.net/products/cinema-4d-studio
http://maxon.net/products/cinema-4d-studio
http://adobe.com/products/mediaencoder.html
http://apple.com/us/product/D3380Z/A/quicktime-7-pro-for-mac-os-x

CHAPTER 7 ■ HTML5 MEDIA

154

Multipass
Multipass encoding, also known as two-pass or even three-pass, is a technique for encoding and transcoding video into
another format using multiple passes to maintain the best quality. Basically, the video encoder/transcoder initially
examines the video before it applies any compression: that’s one-pass. Next, the subsequent video passes happen two
or three times from start to finish, and every frame in between, to apply the compression after the first pass has given
some guidance to the encoder on how to do so. While examining the file, the encoder creates information about the
source video and writes that information to a log file; once that information is written, the encoder can then look up
the information and determine the optimal way to adjust the video quality within the predetermined limits the user
has set for the process.

Multipass encoding is used only in variable bitrate encoding (VBRs) jobs, since constant bitrate (CBR) encoding
doesn’t offer any “bend or give” for the encoder to regulate the available bitrate for each frame. I like to think of this
process as the difference between a “talking head” video and an “action sequence.” The talking head video typically
has little movement, so bitrate can be consistent across the frames, and typically a one-pass job will suffice. An action
sequence needs to adjust its available bitrate as the frames in the scene become more complex with different color
values, blends, and/or heavy motion blurs. This sequence will typically need a two- or even three-pass to get the
desired quality and size within the specified video bitrate. This multipass technique creates better overall quality for
variable scene differences that some videos may have.

Bitrate
Bitrate is typically one of those predetermined user settings developers adjust when transcoding video for the
Web. Bitrate is really the amount of information stored in the video, and in most cases, the higher the bitrate, the
sharper the video quality is. This is of course not true if you take a heavily compressed video asset like an FLV and
transcode it to an uncompressed codec. The compression algorithm will write more data to the overall video without
increasing the picture fidelity, but it’s essentially overkill because the picture information was already lost prior
to the compression job. This practice will give you a significantly higher bitrate in a video that has already been
compromised. Bitrate plays a huge factor in the delivery of HTML5 video, as I’ll discuss later with adaptive bitrate
streaming.

Deinterlace
In traditional broadcast television, the moving picture was transported from a station head-end in an interlaced
picture format. This means the picture would actually be made up of multiple individual scan lines where every two or
three frames of video would be a blend of the previous and next frame, thus creating an interlaced image. With newer
televisions and computer monitor technologies, the video picture on the Web is transported in a progressive matter,
which means every frame is an individual picture delivered to the screen at one time. Confusing? Figure 7-1 explains.
By looking at the image on the left, you can see that there is a blurring or ghosting effect. This effect is the interlaced
picture. On the right, you see the image deinterlaced, or progressive, which creates no blurring effect, because the
image is full-frame for one second. For delivery on the Web, it’s best to use the progressive approach.

CHAPTER 7 ■ HTML5 MEDIA

155

FPS
Frames per second (FPS) are the individual frames of video that make up the entire video sequence. Think of this as a
group of images that make up one second of video. Did you ever make a flipbook when you were a kid, where you draw
the same picture on every sheet of paper with slight adjustments so that when you flip through, it creates a seamless
animation? This is essentially what video is doing. If you remember the discussion on CSS sprite sheets in Chapter 5,
the same principal applies here. For the deinterlaced video, the typical FPS is 23.976 or 29.97 because of the blended
frame occurrence, whereas the typical FPS of progressive video is 24 or 30 because of full individual images being
rendered without the blend. Video with lots of fast-moving action will generally need a higher frame rate to combat
the unwanted shuddering effect, and the same rule applies if you are looking for super-crisp slow-motion video.
Some high-end cameras shoot frames of video upwards to a few thousand frames per second, which can create really
amazing slow-motion footage to be used in a creative. Again, for web playback, you’ll typically want to use 24 or 30 FPS.

Aspect Ratio
Much like images, videos have a width property and a height property. In video, much like images, it’s important
to maintain the proportion of the original dimensions. In videos, aspect ratios are the proportional relationship
between its width and its height. Most common aspect ratios in web video are 16:9 for wide-screen format and 4:3
for standard format. This proportional relationship is directly tied to the size of the pixels within the video, because
they can be square or rectangle. You will often hear this being referenced as “sixteen by nine” or “four by three.” It’s
important to preserve the aspect ratio of the video you are transcoding because this keeps a one-to-one relationship
between the source video asset and the transcoded file. However, in some cases, your creative will require you to
serve your video asset into size not designed in 16:9 or 4:3. In this case, you will use a technique called letterboxing or
pillarboxing, which adds black bars where there is empty space within the allotted video space. Figure 7-2 showcases
a proportionally correct video with letterboxing and pillarboxing applied for 16:9 and 4:3 aspect ratios.

Figure 7-1. The visual differences between interlaced video footage (left) and progressive (right)

CHAPTER 7 ■ HTML5 MEDIA

156

The most common scenario for this is when you serve video into an ad unit of varying sizes or a publisher’s video
player. If the advertiser’s video asset is 16:9 and the player environment is 4:3, you’ll notice black bars or letterboxing
on the top and bottom of the video to preserve the proportion of the video.

Tools
Before I dig into the big topic of video codecs, you may be wondering why you should learn all of this video-related
information when working with HTML5. Well, video is by far the most prevalent medium in online advertising, and
ensuring optimal video playback will win your clients over. So, I’ll cover the different video properties to be aware of as
well as the different codec/formats to be on the lookout for in the space. It all boils down to developing and delivering
optimal HTML5 video for the fragmented browser space. Let’s look at some of the tools for creating HTML5 video
before getting into the implementation.

Why are there all of these different video settings, variations, and fragmented browser and device support? Well,
the patents, royalties (i.e., money), and compression quality are what keeps something from being open source and
free to use. I like to think of it like this: whenever you have a really great product, you’d typically charge for the use of
it even though there are free alternatives. For instance, you pay for cable television because it’s a better quality and
provides more channels, as opposed to standard over-the-air antenna broadcast where you get limited channels and
the broadcast is of poor quality. Currently, these fragmented codecs and video formats are something you need to
tolerate in the HTML5 space if you want to deploy your video content to the widest user base. There are many tools to
help you do this for serving online video. Many of them are used to convert videos into their appropriate formats
using free or purchased programs on your computer. This includes but is not limited to open source FFMPEG
(http://ffmpeg.org), FireOgg (http://firefogg.org), QuickTime Pro (http://apple.com/quicktime), and Adobe
Media Encoder (http://adobe.com/products/mediaencoder.html), and even more robust video applications such
as Adobe After Effects (http://adobe.com/products/aftereffects.html), Avid (http://avid.com), and Apple Final
Cut Pro (http://apple.com/finalcutpro).

Figure 7-2. The differences between letterbox video and pillarbox

http://ffmpeg.org
http://firefogg.org
http://apple.com/quicktime
http://adobe.com/products/mediaencoder.html
http://adobe.com/products/aftereffects.html
http://avid.com
http://apple.com/finalcutpro

CHAPTER 7 ■ HTML5 MEDIA

157

FFMpeg is by far the most robust, and it’s open source, which means you can universally transcode/encode
into various different formats easily and freely. This tool can pretty much convert any video and audio format into
anything suitable for various screens. If you’re comfortable with the command line, I strongly suggest using FFMpeg.
It’s quite possibly the most robust video conversion tool available. Plus, there are many plug-ins and libraries for
converting to different formats. Always check with your publishers because they’ll require certain-sized video assets
for their players, and be sure to check out their specs frequently and adapt correctly.

Video Codecs
Now that you understand what goes into video encoding and transcoding, I’ll talk about the video codecs you have
at your disposable and what you will be using when leveraging HTML5 video. Codecs can be a bit confusing because
there are so many to choose from and all come with certain variations and browser support. A video codec is software
that compresses the video for your desired needs, and as you’ve just learned with all of the previous video properties,
all of them are configurable using video certain codecs.

This section is not intended to make you an expert in video codecs, but it will give you an idea of what to look
out for the next time you want to include HTML5 video in your campaigns and when you come across video assets
from various creative agencies. Codecs have specific browser and device support and require a time-consuming
process to deliver video correctly to multiple users. Figure 7-3 demonstrates the proliferation of video codecs
throughout the last 12 years.

Figure 7-3. The various video codecs supported by browser and manufacturer (source: http://appleinsider.com)

http://appleinsider.com

CHAPTER 7 ■ HTML5 MEDIA

158

This may look confusing, but as you can see, most codecs have come and gone, much like many other
technologies, and for the remainder of this section, I’ll discuss only the codec technologies that remain apparent in
today’s market of HTML5 video, which are MP4 (H.264), WebM (VP8), and OGV (Theora). I’ll exclude VC-1 because at
the time of this writing, no browser supports this codec/wrapper variation.

H.264
I’ll now discuss probably the most popular video codec on the modern Web, MPEG’s H.264. The H.264 codec is a highly
optimized codec that offers supreme compression with little quality loss to the overall video. H.264 can provide great
lossy quality at relatively low bitrates. H.264 comes with many adjustable parameters and features—so many in fact that
if you look up H.264, you will be amazed at what this codec is capable of doing. However, you need to be specifically
aware of its profiles, which are baseline, main, and high. Certain devices such as older iPhones and iPod touches can
support only a baseline profile, where other high-end devices, such as your desktop computer and Blu-ray players,
support main to high profiles. The profile’s level is measured in a scale between 1 and currently 5.2, and as the profile
level increases, the bitrate and usually the quality do as well.

Note ■ To learn more about H.264 video, I suggest reading the works of Fabio Sonnati at

http://sonnati.wordpress.com.

H.264 is pushed hard by Apple, Microsoft, and various other large companies, and it’s currently supported by
Apple, Microsoft, and Google in their respective browsers, although Google has mentioned that it will stop the support
for the codec in support for its VP8 alternative (more on this in the following section). However, as of this writing,
Google still supports it in releases of Chrome. In addition, Mozilla has even discussed supporting H.264 because of the
lack of support for its supported open source codec, Ogg Theora (more on this in the following section). H.264 also
has royalty-free open source variations on its sophisticated encoding algorithms called X264 (http://x264.nl).

Apple, which is a major supporter of the H.264 codec because, it’s the only codec supported in its Safari browser,
recommends the encoding settings shown in Figure 7-4 for serving to iDevices via Safari.

http://sonnati.wordpress.com
http://x264.nl

CHAPTER 7 ■ HTML5 MEDIA

159

This chart is incredibly important to keep an eye on when you deploy your video to mobile iOS devices. Because
just as the overall video landscape is fragmented among codecs, Apple’s own devices require specific adjustments to
compensate for its older devices such as iPhone 3G, not to mention WiFi versus cell network connection. This only
bloats the time to develop video that deploys across screens and devices.

Keep in mind also that H.264 is not free software; it’s owned and patented by many different companies,
including Microsoft, and it’s managed by a consortium called MPEG-LA. Apple pays a license for every computer,
device, camera, and accessory that it produces that can encode and decode H.264 video. Think about this the next
time you purchase an Apple product, because a bit of what you’re paying for is the ability to use the H.264 technology.

Figure 7-4. Apple’s encoding recommendations for iOS devices

CHAPTER 7 ■ HTML5 MEDIA

160

VP8
Another popular codec in the HTML5 video space is VP8. Once a technology from On2 and later acquired by Google,
it was renamed to the WebM codec. Google has been pushing this as the de facto codec to use when delivering
video using HTML5 in modern browsers. However, for it to take full shape, browser vendors need to adopt this as
the standard for their video requirements. As you’ve just learned, Apple and Microsoft haven’t taken much to WebM
because of their longtime support for H.264. VP8/WebM is comparable to H.264 in its encoding algorithms and
quality, but more importantly it comes with no license costs, which is a huge win for open web standards and the
browsers such as Firefox, Chrome, and Opera that support it.

Theora
Although H.264 is an open standard, it is not free. It is based upon a pool of video compression and related technology
patents contributed by various companies in exchange for “fair, reasonable, and nondiscriminatory” licensing fees.
Mozilla, Opera, and other free and open source advocates opposed the use of any technology that might require
licensing fees to produce or distribute web content because doing otherwise would go against their support for the
open Web. Because of this, they’ve relied on an open source video compression technology in addition to VP8, called
Theora from the Xiph foundation. The Ogg Theora war on H.264 ended when HTML5 working group members agreed
that rather than defining Ogg Theora or H.264 or anything else as the “baseline” codec for video served via the HTML5
video tag, the decision should be left to the market and to the votes of web users and Internet broadcasters (this
obviously created fragmentation). Theora is the old VP3 codec that was used in early versions of Flash Video (FLV).
They’ve taken the older version of that and improved on it; it’s not as efficient as H.264, but it’s open source.

Historically, HTML has always worked with every other type of media file for images; there is no baseline graphic
format. For example, developers decided for themselves whether to use the GIF, JPEG, or PNG format. Modern
browsers support them all, and in my eyes video should follow suit.

GOP and Keyframes
In compression techniques, you have what is known as a group of pictures (GOP). This group is dictated by keyframe
intervals. If you’ve ever done any Flash animation or any timeline-based animation work, you know that keyframes
are significant or key points in time where something important happens. In video compression, these are the points
in video playback in which the encoding/transcoding engine gets a chance to rest and reanalyze the video content to
make sure it’s on track with the rest of its encoding process. Some codecs support different compression algorithms
such as I, P, and B frames.

•฀ I-frames: This is the least compressible frame but does not require other frames to decode.

•฀ P-frames: This uses information from previous frames to decompress.

•฀ B-frames: This uses previous and forward frames of video to obtain a reference and get the
highest amount of intelligent compression.

Figure 7-5 shows the video keyframes for different frame types. Keep this information in the back of your mind
if your client asks you to optimize their video content for various screens using the HTML5 video element. However,
note that certain codecs allow only for specific keyframe settings.

CHAPTER 7 ■ HTML5 MEDIA

161

It’s interesting that compression technology dictates the overall quality and size of the encoded file; people often
get concerned about the size of the video, but really it’s the size plus the duration. For example, if you have a 6MB file
and the duration of the video is 1 minute, that means you have 1MB of data per every 10 seconds of video. If you have
a 60MB file for 1 minute of video, you’d have 10MB of data per every 10 seconds, or 1MB per second. So, you need
to find a good trade-off between size and duration of your video. Some machines and decoders are simply not fast
enough to decode the videos frames at such a quick rate. Often you will see a machine choke on playback if the data
rate is too high to process; others with enough power will handle it no problem and provide amazing playback quality.
This is also why higher-end graphics cards are used for professional video-editing bays in order to handle the heavy
data rate. However, for the Web and HTML5 video, keep a good relationship between size and duration, especially
when delivering to devices such as phones and tablets with slower system resources than desktop machines.

The Rule of 16
One last note to touch on in regard to video transcoding is what is known at the “rule of 16.” If you haven’t already, you’ll
find a lot of your time when creating video for the Web dealing with different-sized video assets and needing to transcode
to different sizes. I mentioned before that there is a certain science to the world of video encoding, and no one is better
at that science than video expert Robert Reinhardt. Reinhardt was first to my knowledge to coin the name of this rule.
Basically, at a high level, it breaks down the optimal sizes that videos should be converted to when a transcoding job is
performed and when a video is decoded by a machine for playback. If you take a look at Figure 7-6, you’ll notice that
video encoding is best done in multiples of 16 with a decrease in quality going to 8 (better) and 4 (good).

Figure 7-5. I, P, and B frames of compression

CHAPTER 7 ■ HTML5 MEDIA

162

Reinhardt’s findings reveal that video performs best when the frame width and height use multiples of 16. Keep
this in mind when you transcode your next video, and while you can use any width, nonoptimal dimensions can result
in reduced quality and dropped frames and can tax the decoding playback more than necessary. To maintain the best
output, you should always use a width and height in a multiple of 16, 8, or at the very least 4. The lower your multiple
gets, the more that the quality and performance get impacted. A very good tool to bookmark is Reinhardt’s video sizer
at http://videorx.com/video-sizer. This tool allows you to plug in your numbers and get instant feedback on how
good or poor your conversion job will end up when using the desired settings. If you’re interested in learning more about
encoding, transcoding, and compression techniques, I strongly recommend visiting his site (http://videorx.com/).

Wrappers
You just learned what you need to know about the codecs for video, so now I will cover the file formats that support
each of these flavors. Container formats, or wrappers, are the file format that video information gets stored into. This
would be your typical MOV, AVI, and FLV file formats. These containers all house encoded video information along
with essential metadata information about the file. Wrappers for video are much like PNG, JPEG, and GIF files for
images. In fact, they’re so identical in HTML markup that it’s pretty simple to include video in your browser if you
know how to use an img tag.

MP4
MP4 is a common web video format for most HTML5 browsers like Apple’s Safari, Microsoft’s Internet Explorer, and,
currently, Google’s Chrome. It is essentially the container format that houses the AVC/H.264 codec, as discussed
in the previous sections. The file extensions can vary for this container type and can include M4P, M4V, and even
Adobe’s F4V. Figure 7-7 shows the current browser support at the time of this writing.

Figure 7-6. Robert Reinhardt’s chart for optimally sizing video

http://videorx.com/video-sizer
http://videorx.com/

CHAPTER 7 ■ HTML5 MEDIA

163

MP4 is a common format when working with HTML5 video. In fact, and from my experience, it’s the most
common format you’ll end up dealing with, especially within advertising campaigns running across mobile devices.
Advertisers will want to target the growing number of Apple iPhones and iPads in the market, and using MP4 with
H.264 is the only way to make that happen.

Note ■ Mobile video typically plays within the device’s native video player, not the browser.

WebM
Another video container format is WebM, which, as you learned, houses the open source VP8 codec from Google.
Simply put, WebM can provide the same quality as MP4 videos without the penetration on Microsoft and Apple
browsers. Moreover, if you are concerned with paying royalties or licensing fees, the WebM format is your best choice
since it isn’t patent encumbered. WebM is intended for the Web and geared toward easing the video problems on the
open Web. Google attempts to provide a high-quality and efficient encoding tool that is free for anyone to use for their
web content, and Google is actively working on making WebM the open source standard for delivering audio and
video online via the HTML5 video tag. At the time of this writing, http://caniuse.com outlines support for the WebM
format, as represented in Figure 7-8.

Figure 7-7. The current browser support for H.264/MP4 videos (source: http://caniuse.com)

http://caniuse.com
http://caniuse.com

CHAPTER 7 ■ HTML5 MEDIA

164

If you’re interested in learning more about the WebM video container format, I suggest visiting Google’s WebM
site at http://webmproject.org/docs/container. Keep in mind that any video advertisements being served to users
of Chrome, Firefox, and Opera can rely on this format safely.

Note ■ Users with the VP8/WebM codec installed will be able to view the video on Safari and IE.

OGG
Lastly, there is the OGG video format. OGG is an open container format managed by the open source foundation
Xiph. OGG’s container formats include OGG, OGV, and OGA, to name a few. Based on the video compression
algorithms of Theora and audio compression of Vorbis, OGG aims to create a truly open source video codec/wrapper
for anyone to use regardless of royalties or licensing rights. Much like the previous examples, Figure 7-9 outlines the
browser support for the OGG video format.

Figure 7-9. The current browser support for Theora/OGG videos (source: http://caniuse.com)

Figure 7-8. The current browser support for VP8/WebM videos (source: http://caniuse.com)

http://webmproject.org/docs/container
http://caniuse.com
http://caniuse.com

CHAPTER 7 ■ HTML5 MEDIA

165

From these graphs, I think you can clearly see that Google Chrome is the most robust feature-rich browser when
it comes to HTML5 video codec support. However, most of your clients will want to reach across all browsers when
using HTML5 video, and while the support for the HTML5 video element is almost 100 percent, the video
codec/format that fills that element is still quite fragmented, which requires you to develop to all of those formats for
cross-browser penetration. Yes, it’s a very time-consuming process indeed.

To support both HTML5-compliant browsers and older ones, it’s recommended that you use browser and device
detection and degrade gracefully to an alternative video experience, such as a Flash failover by including either an
embed or object tag within your video element, as outlined here:

<video controls height='640' width='360'>
<source src='yourVideo.mp4' type='video/mp4' />
 <source src='yourVideo.webm' type='video/webm' />
 <! -- Flash Code Here -->
 <embed src='yourVideo.flv' width='640' height='360' quality='high' type='application/x-
shockwave-flash'></embed>
</video>

By including the Flash failover code in the video tag, the browser will omit the video tag if it does not recognize
it and use the Flash code. Conversely, browsers that support the video element will not render the portion within the
video tag, in this case the Flash embed code.

Alpha Support
Alpha video is the transparent portion of the video. Typically a video will be shot on top of a green or blue screen
and later keyed in postproduction, which is the removal of the green or blue background elements. After the key is
done, the video is then exported to a video codec and format that supports the alpha transparency information. This
is common in video that overlays page content or provides a seamless integration between ad video content and
publisher page content. Figure 7-10 shows the codec “animation” in Apple’s QuickTime (QT) 7 Pro and the setting of
millions+, which stands for millions of colors; plus, the alpha information is preserved in the video. If you’re getting
a video file from your client or agency, it’s best to test your video by opening it using Apple’s QuickTime and press
Command+I for Mac or Control+I for Windows, which will open the QT inspector panel.

CHAPTER 7 ■ HTML5 MEDIA

166

This keying technique knocks out all of the pixels with the color value in question, which is something you see
every day and may not even notice. In fact, did you happen to catch last night’s weather report on the news? Well,
chances are that the meteorologist was standing in front of a green-screen and not an actual map. The big thing to
understand here is that this is a huge functional part of video in any medium and, of course, online media. Having
video, interactive or not, overtop a publisher page is a necessity in cutting-edge advertising campaigns. Some of the
most innovative home-screen takeovers have achieved great results by using alpha video.

However, in HTML5 video support, there are currently no cross-browser codecs/wrappers that support the alpha
channel—not H.264, VP8, or even Vorbis. Only VP8 shows promise that it can handle the support in its future, but it’s
limited to work in certain browsers, and on top of that, Apple’s Safari shows no signs of supporting it, which is a huge
miss in the whole market share on mobile. It’s pretty obvious that this is a huge problem and one that will soon be fixed,
but in the interim, designers and developers will need to leverage HTML5’s canvas element and write the bitmap data
from the video onto the canvas element during playback and key the pixels there. You can find a really great example
of this at http://jakearchibald.com/scratch/alphavid or http://github.com/m90/jquery-seeThru. While no true
HTML5 video codec supports the alpha information, the effect to the end user is essentially the same; however, keep
performance in mind because you’re essentially doubling the load for the browser by combining two elements for
writing the video information to the canvas element. In the interim and until HTML5 video natively supports a codec
that handles the alpha information; you can always fail back to use Flash Player because it has supported this feature
since 2005 with the VP6 codec.

Figure 7-10. The millions+ information in Apple’s QuickTime Player

http://jakearchibald.com/scratch/alphavid
http://github.com/m90/jquery-seeThru

CHAPTER 7 ■ HTML5 MEDIA

167

Video Delivery
So, you now know how much work it takes to encode and transcode videos on the Web; I’ll now talk about actual
delivering video on the Web. One of the biggest concerns with HTML5 video is around its delivery. Traditionally, Flash
ads would pull video off a streaming server to avoid incurring any of the video’s file size in the ad’s overall k-weight.
However, for HTML5, we are currently limited with a standard streaming solution, and because of this, most HTML5
video delivered over desktop and mobile still use progressive download over HTTP as the primary delivery method.
While this method is widely supported across all browsers, it does not avoid that this will undoubtedly increase the
ad’s weight and impact a user’s experience with longer “wait” times. This also gets increasingly worse when video
bitrates increase for larger dimension and higher-quality video assets (HD).

In the massive world of video creation and delivery, it’s ultimately about defining the target user base that
you want to reach (and in advertising it’s typically everyone), the resources you have at your disposable, and client
turnaround times. Operationally, converting all the different flavors of video can be a very time-consuming task since
browsers and devices require different codecs and formats. The following sections will help you understand the
current problems in the space, how to work around them, and how to effectively deliver your content in
HTML5-compliant video players.

Delivery specifications through video ad networks and publishers can be tricky. Every publisher and network
will have their own specifications as far as what they expect, which adds to the confusion in the space. These
specifications are typically in place to ensure a light footprint to their end users and to ensure video content has the
furthest reach while also matching the publisher’s video content as closely as possible. The following sections cover
the two ways video is delivered on the Web today.

Progressive
Progressive video delivery is when a file comes down from one server and is stored on the client for playback.
Progressive delivery is a pretty common form of video transfer because it’s accepted across all browsers and devices,
and even major sites like YouTube use this method daily. Progressive can allow a user to begin watching a video
before it fully downloads, so the wait time is significantly reduced, but it also comes at a significant cost since the
actual file is cached on the client. Progressive is typically served over the HTTP protocol, and since the actual asset is
stored on the client machine, the user could in theory save that asset for viewing at a later time. For advertising, this is
not a concern, but for premium long-form content, there is little to no protection in this matter, which makes this form
of delivery less than ideal for content owners. Listing 7-3 shows an example HTML5 video tag; pointing to a video
asset such as MP4, WebM, or OGG, you see that the video will be progressively downloaded.

Listing 7-3. HTML5 Progressive Video Example

<video autoplay src='http://cdn.someSite.com/someVideo.mp4'></video>

As you can see, I’m pulling an MP4 video asset off the server at someSite.com through the HTML5 video’s source.
If you were to insert this line of code into your text editor, save it as an .html file, and open it in a browser, you’d be
able to see the video autoplay. (Keep in mind that you’ll need to update your video src attribute to point to where an
actual video is present.). While this approach is less than ideal in advertising situations for keeping a light footprint,
the specification set by the IAB is 2.2MB for video file size. For more information on the rich media guidelines, visit
www.iab.net/displayguidelines.

Streaming
Next I’ll talk about the second form of video delivery over the Web. Streaming delivery is when the video asset is
served off a streaming server and the video is presented to the user in real time upon user request. Since there is
no storing of the asset on the client’s machine, streaming is ideal for premium content protection as well as getting
around publisher file size limitations. Publishers and ad servers may require the use of streaming video since it will

http://cdn.someSite.com/someVideo.mp4
someSite.com
http://www.iab.net/displayguidelines

CHAPTER 7 ■ HTML5 MEDIA

168

not impact the overall file size of the ad unit like it would for progressive downloads. A common streaming server
protocol is the Real-Time Messaging Protocol (RTMP). Originally developed by Macromedia and later acquired by
Adobe, this server protocol supports encryption for content protection and HTTP tunneling to pass through firewall
limitations. Many other streaming servers exist as well, such as the Apple QuickTime streaming server, but they’re
all pretty expensive to run and operate unless you’re a large company with a strong focus on video delivery. If you’re
a major content provider like Hulu or Netflix, a streaming server is more or less a requirement for protecting your
content from download and piracy as well as providing a good user experience.

Clients may ask you to do a live streaming broadcast in real time, for instance taking the video and compressing the
video while transporting over the Web at the same time. This is popular for major events that are publically broadcasted
such as sports, politics, and news. Companies such as Influxis (http://influxis.com) make this pretty simple using
technologies that sit on top of Adobe Media Server (formally called Flash Media Server), which supports streaming video
to Flash Player as well as HTML5- video players. However, keep in mind that there are also free alternatives like UStream,
JustinTV, and others, but they do not offer the same support, quality, and service as paid services.

Streaming is also pretty tough on a user experience level because users cannot scrub through the timeline
accurately like a progressive file can. This is because the player needs to ping the streaming server with the update
that the user wants, and because the information is not present on the client side (like progressive), the request needs
to be made at the time the user drops the video playhead, which creates some unwanted video buffering.

There is also what is called adaptive streaming over HTTP that basically transfers small chunks of video
information over standard HTTP protocols, but I’ll touch on that in more detail in the following sections.

Adaptive Streaming
Bandwidth is a crucial issue on the Web, and you need to be cognizant about how much of it you use for your video
delivery with HTML5. More and more devices than ever before are accessing information, and we as developers and
designers need to spare the bandwidth whenever possible, especially when serving larger files over various network
connections. As an advertiser, you need to respect that a user may be viewing content on a wireless device on a poor
cellular network connection or, worse, offline. Luckily, using sophisticated programming techniques; developers
can take advantage of bandwidth detection and serve appropriate video files to an end user at request time while
throttling the playback if there are hiccups in the user’s connection.

I’ll now introduce adaptive bitrate streaming. This technology is hardly new, but it’s more important than ever
to provide quality video experiences under various conditions by detecting and, well, adapting to them. In adaptive
bitrate streaming, the server pings the user requesting the content and understands to what level the user can handle
the playback and bitrate quality of the video. Earlier I discussed the bitrate of a video file and how the bitrate is
holding all of the information of the video asset. Once the information is gathered about the user’s ability to handle
the video content, the appropriate bitrate video is delivered as described by a description or manifest file. This process
happens throughout the video’s playback and adapts or changes as bandwidth increases or decreases. This provides
a seamless playback to the end user regardless of connection quality, and it’s a feature that is incredibly important
for long-form content, especially on mobile devices. Typical use cases start with a lower bitrate video and ramp up
as bandwidth becomes detected and is found to be more plentiful. This ramp-up time could take a few seconds to
happen, so short-form content may not see the effect take place.

Now that you understand the basics of adaptive bitrate, let’s dig into the various technologies that support it and
how to leverage each of the technologies in HTML5 video workflows. Keep in mind that there may not be a standard
in video streaming just yet, but these are the technologies you are encouraged to use when you know your ads will
target specific browsers and devices.

HLS
HTTP Live Streaming (HLS) is Apple’s specification for delivering segments of a video file (transport streams) over
HTTP by way of an M3U8 file. Apple’s Developers Tools include a media segmenter, which is a command-line tool
for Mac users to segment and create a manifest file of the video asset they want to use. Listing 7-4 instructs the media

http://influxis.com

CHAPTER 7 ■ HTML5 MEDIA

169

file segmenter (http://developer.apple.com/library/ios/#documentation/networkinginternet/conceptual/
streamingmediaguide/UsingHTTPLiveStreaming/UsingHTTPLiveStreaming.html) to take an H.264 file at your
location and segment the output to an M3U8. The M3U8 file is simply a description file instructing the HTML5 video
player on how to play back the video segments along with specific video metadata. In the example, save the segments
and M3U8 file in your desired destination, with a target duration of each chunk at roughly 17 seconds.

Listing 7-4. Media Segmenter Example

mediafilesegmenter Your/File/Location.mov -t 17 -f Your/File/Destination.m3u8

Since the media file is segmented into smaller “chunks,” or segments, the delivery of the video asset comes in
spurts rather than one large progressive download, which improves the overall playback experience. What this means
to you in HTML5 advertising is that instead of locating a source asset, you now target the M3U8 file in your video
source attribute. Based on the previous command, Listing 7-5 demonstrates the output from a manifest file, which is
known as an M3U8 file.

Listing 7-5. M3U8 Example

M3U8 File:
#EXTM3U
#EXT-X-TARGETDURATION:18
#EXT-X-VERSION:3
#EXT-X-MEDIA-SEQUENCE:0
#EXT-X-PLAYLIST-TYPE:VOD
#EXTINF:16.984,
fileSequence0.ts
#EXTINF:17.017,
fileSequence1.ts
#EXTINF:16.95,
fileSequence2.ts
#EXTINF:17.017,
fileSequence3.ts
#EXTINF:16.95,
fileSequence4.ts
#EXTINF:17.017,
fileSequence5.ts
#EXTINF:16.95,
fileSequence6.ts
#EXTINF:17.017,
fileSequence7.ts
#EXTINF:16.984,
fileSequence8.ts
#EXTINF:16.316,
fileSequence9.ts
#EXT-X-ENDLIST

HTML5:
<video src=index.m3u8></video>

As you can see, the M3U8 file describes all of the video transport streams in sequential order and the relative
path to the transport stream (TS) asset. Note that these could be absolute paths to another location, even remotely on
another server altogether. This is important to take notice of because you can do some dynamic insertion of video ads
within the M3U8 manifest.

http://developer.apple.com/library/ios/#documentation/networkinginternet/conceptual/streamingmediaguide/UsingHTTPLiveStreaming/UsingHTTPLiveStreaming.html
http://developer.apple.com/library/ios/#documentation/networkinginternet/conceptual/streamingmediaguide/UsingHTTPLiveStreaming/UsingHTTPLiveStreaming.html

CHAPTER 7 ■ HTML5 MEDIA

170

Being that it’s a definition by Apple and not an open web standard, adoption is limited to certain devices and
browsers; however, in relatively recent news, Adobe showcased support for HLS within Flash Player 10.1, so if you’re
targeting HTML5 with a Flash Player failback, you could use the same delivery mechanism. To see a good example of
HLS, visit Wowza’s example at http://wowza.com/html/iphone.html.

Note ■ At the time of writing, HTML5 HLS support is only in iOS, Safari, and Android 3.0+.

HDS
Speaking of Adobe supporting HLS, Adobe also supports a specification of its own for delivering video over HTTP.
Adobe’s solution is called HTTP Dynamic Streaming (HDS). Adobe has its own manifest specification for serving
packets of video over HTTP to its Open Source Media Framework (OSMF). Much like HLS, HDS requires a video asset
(MP4) and a manifest file, which is known as an F4M file.

Here’s an example of the F4M manifest file; take notice that the file is just straight XML schema where there is a
base file node with a single piece of media and different media URLs for the various videos with different bit rate.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns="http://ns.adobe.com/f4m/1.0">
 <id>videoRx.com :: Adaptive Bitrate Video Player</id>
 <mimeType>video/mp4</mimeType>
 <baseURL>rtmp://hosted.videorx.com/vods3</baseURL>
 <media url="vid1.mp4" bitrate="385" width="364" height="156" />
 <media url="vid2.mp4" bitrate="508" width="436" height="184" />
 <media url="vid3.mp4" bitrate="651" width="506" height="214" />
 <media url="vid4.mp4" bitrate="1030" width="646" height="274" />
 <media url="vid5.mp4" bitrate="1487" width="858" height="364" />
</manifest>

Note ■ Only the Windows and Linux operating systems support the Adobe file packager for HDS at the time of this

writing.

Smooth Streaming
Now that you’ve seen both Apple’s and Adobe’s specifications for delivering video content over HTTP, let’s take a look
at Microsoft’s smooth streaming spec. Listing 7-6 demonstrates the manifest file for producing adaptive streaming to
Silverlight, Windows Media Player and other devices capable of smooth streaming delivery.

Listing 7-6. Microsoft’s Smooth Streaming Example (Source: Silverlight.net)

<SmoothStreamingMedia
 MajorVersion="2"
 MinorVersion="0"
 Duration="5964800000">
 <StreamIndex
 Type="video"
 Chunks="299"

http://wowza.com/html/iphone.html
http://ns.adobe.com/f4m/1.0
Silverlight.net

CHAPTER 7 ■ HTML5 MEDIA

171

 QualityLevels="3"
 MaxWidth="368"
 MaxHeight="208"
 DisplayWidth="368"
 DisplayHeight="208"
 Url="QualityLevels({bitrate})/Fragments(video={start time})">
 <QualityLevel
 Index="0"
 Bitrate="477000"
 FourCC="WVC1"
 MaxWidth="368"
 MaxHeight="208"
 CodecPrivateData="250000010FC38E0B70678A0B7819E80450808E8E7474400000010E5A67F840" />
 <QualityLevel
 Index="1"
 Bitrate="331000"
 FourCC="WVC1"
 MaxWidth="284"
 MaxHeight="160"
 CodecPrivateData="250000010FC38A08D04F8A08D813E80450808A1950CF400000010E5A67F840" />
 <QualityLevel
 Index="2"
 Bitrate="230000"
 FourCC="WVC1"
 MaxWidth="224"
 MaxHeight="128"
 CodecPrivateData="250000010FC38606F03F8A06F80FE80450800704704DC00000010E5A67F840" />
 <c n="0" d="19999968" />
 <c n="298" d="4166661" />
 </StreamIndex>
 <StreamIndex
 Type="audio"
 Index="0"
 FourCC="WMAP"
 Chunks="299"
 QualityLevels="1"
 Url="QualityLevels({bitrate})/Fragments(audio={start time})">
 <QualityLevel
 Bitrate="64000"
 SamplingRate="44100"
 Channels="2"
 BitsPerSample="16"
 PacketSize="2973"
 AudioTag="354"
 CodecPrivateData="1000030000000000000000000000E00042C0" />
 <c n="0" d="22755555" />
 <c n="298" d="4992290" />
 </StreamIndex>
</SmoothStreamingMedia>

CHAPTER 7 ■ HTML5 MEDIA

172

To save space, I removed the segments between 0 and 298, but you can see in this example that this format
separates the media into stream indices where the type is either video or audio. Again, you should be seeing a trend
here between the different delivery specifications because all of them rely on some form of instruction or manifest file.

Note ■ Some campaigns may require smooth streaming to be used. It’s normally a requirement for Microsoft video

advertising to Silverlight players, Windows Phone 7, and Xbox gaming consoles.

MPEG-DASH
As you can see from the previous examples, the fragmentation for delivering video over HTTP is growing pretty diverse
and competition is strong. As the open web world searches for a one-stop HTTP delivery solution that will appease all
platforms and browsers from Adobe, Microsoft, and Apple, the DASH promoters group (http://dashpg.com) is out to
do just that. Currently, the group is working on a standard in hopes of gaining adoption in the market and become a
ubiquitous solution across browsers and devices while using HTML5 video.

Meet MPEG-DASH. DASH stands for Dynamic Adaptive Streaming over HTTP. The group’s work on this spec
started in 2010 in order to provide an agnostic delivery mechanism for audio and video that requires a standard
manifest file to deploy across firewalls and over straight HTTP. Adoption in the industry is growing strong from
companies such as Adobe, Akamai, Microsoft, and even device manufacturers such as Cisco and Samsung.

In 2012, Adobe and Akamai released an example of DASH working in the latest Flash Player at the NAB
conference, which gained a lot of interest from the industry, especially with intentions for HTML5 support. DASH uses
what is called a media presentation description, or an MPD manifest, to define its transport streams, much
like the earlier example manifest in HLS. The promise is that the DASH presentation file (MPD) will become the all-
encompassing solution for delivering all video in HTML5 browsers and devices, not just Flash Player.
Listing 7-7 shows an example of the DASH manifest file.

Listing 7-7. MPEG-DASH Example

<MPD type="static" xmlns="urn:mpeg:DASH:schema:MPD:2011" profiles="urn:mpeg:dash:profile:full:2011"
minBufferTime="PT1.2S" mediaPresentationDuration="PT0H2M59.23S">
 <Title>MPEG-DASH Example</Title>
 </ProgramInformation>
 <Period start="PT0S" duration="PT0H2M59.23S">
 <AdaptationSet>
 <ContentComponent id="1" contentType="video"/>
 <SegmentTemplate initialization="vid.mp4"/>
 <Representation id="1" mimeType="video/mp4" codecs="avc1.64001f" width="1280" height="720"
startWithSAP="1" bandwidth="534520">
 <SegmentTemplate timescale="1000" duration="9750" media="vid.mp4." startNumber="1"/>
 </Representation>
 <Representation id="2" mimeType="video/mp4" codecs="avc1.64001f" width="1280" height="720"
startWithSAP="1" bandwidth="812797">
 <SegmentTemplate timescale="1000" duration="9750" media="vid.mp4" startNumber="1"/>
 </Representation>
 <Representation id="3" mimeType="video/mp4" codecs="avc1.64001f" width="1280" height="720"
startWithSAP="1" bandwidth="1607936">
 <SegmentTemplate timescale="1000" duration="9750" media="vid.mp4" startNumber="1"/>
 </Representation>
 <Representation id="4" mimeType="video/mp4" codecs="avc1.64001f" width="1280" height="720"
startWithSAP="1" bandwidth="3088816">

http://dashpg.com

CHAPTER 7 ■ HTML5 MEDIA

173

 <SegmentTemplate timescale="1000" duration="9750" media="vid.mp4" startNumber="1"/>
 </Representation>
 <Representation id="5" mimeType="video/mp4" codecs="avc1.64001f" width="1280" height="720"
startWithSAP="1" bandwidth="3861547">
 <SegmentTemplate timescale="1000" duration="9750" media="vid.mp4" startNumber="1"/>
 </Representation>
 </AdaptationSet>
 <AdaptationSet>
 <ContentComponent id="1" contentType="audio" lang="en"/>
 <SegmentTemplate initialization="vid.mp4"/>
 <Representation id="1" mimeType="audio/mp4" codecs="mp4a.40.02" sampleRate="44100"
numChannels="2" lang="en" startWithSAP="1" bandwidth="257141">
 <SegmentTemplate timescale="1000" duration="9980" media="audio.m4s" startNumber="1"/>
 </Representation>
 </AdaptationSet>
 </Period>
</MPD>

In the previous example, you can see that the MPD file is really just straight XML outlining the instructions for
the video player to ingest. You’ll notice in the XML that certain nodes outline the representation of instructions for
the DASH player to interpret. DASH is video codec agnostic, and ideally through browser and device adoption,
MPEG-DASH will become the de facto standard for delivering HTML5 video over HTTP. If this adoption takes, as
I believe it will, you will see very good uses of dynamic video advertising handled completely on the client side.
Basically, the manifest files are really just a playlist or description file; as a viewer begins to view the first few segments,
the later segments in the description could be reserved for targeted advertising. This will eliminate the need for
rendering hundreds upon thousands of custom video permutations on a server in order to target them to the correct
audience. With DASH, truly addressable video content can be achieved rather simply.

Note ■ You’ll learn more about dynamic advertising in Chapter 11.

Cloud Services
You may be asking, “With all the talk about encoding, transcoding, and delivery issues with video, how can an
organization make sense of it all operationally and turn a profit?”

Fear not, there are a lot of cloud encoding services such as Encoding.com (Vid.ly), Wowza, Zencoder, Akamai,
and others that are aiming to ease this video fragmentation for businesses and content owners. These services allow
you to upload your source media asset to their cloud-based services; then you select what devices and browsers you
want to target, and they handle the transcoding and delivery process. You can even open up the “hood,” so to speak,
and really customize the video encoding parameters that you’ve learned in this chapter, that is, if you feel comfortable
enough to do so. These cloud services typically sit on top of an Amazon cloud server where, as more requests come
in, they spin up more servers to process the transcoding jobs. This greatly reduces the overhead of running and
maintaining several servers that could or could not be working at that given moment. If you’re building a content site
for a major media network or are a content owner looking to deploy across all screens, you’ll want to take a look at one
of these white-label solutions. Having an external service handle your video conversions into all the correct formats is
a blessing; it allows you to “pass the buck” to your clients and spares you from the operational nightmare of managing,
converting, and hosting all of your video assets. This process works with YouTube, Vimeo, Ooyala, Brightcove, and
others. I believe as more solutions like open source WebM encoding and player-agnostic MPEG-DASH delivery
become available, we as an industry will work our way out of the fragmentation woes. I hope we all reflect on this a
few years from now and shake our heads at the crazy hoops we had to jump through to deploy video across.

Encoding.com

CHAPTER 7 ■ HTML5 MEDIA

174

Content Delivery Networks
If you’re looking to host your assets instead of having a third party do so, most of these cloud services will
automatically transfer the transcoded video files onto your hosting server and allow for caching to a content delivery
network (CDN). Storing assets (video, JavaScript files, CSS files, images, and so on) on a CDN allows the asset to be
stored on multiple server locations on a shared network. Caching these assets on multiple servers is known as edge
caching. Essentially, you are placing the asset on the very edge of the network so the user requesting it does not have
to make an HTTP request to a location too far from them. I like the definition given by Wikipedia for CDNs:

A CDN is a system of computers containing copies of data, placed at various points in a network
so as to maximize bandwidth for access to the data from clients throughout the network. A client
accesses a copy of the data near to the client, as opposed to all clients accessing the same central
server, so as to avoid bottleneck near that server.
Source: Wikipedia

You can see the visual of this process in Figure 7-11.

Figure 7-11. The process of a single server and multiple servers on a network (CDN)

Figure 7-11 demonstrates on the left how one server contains the data, whereas the image on the right (CDN)
has multiple copies of the data to support multiple users requesting the content. In fact, if you’re building any large
enterprise video network like a YouTube, Netflix, or Vimeo, a CDN will be a requirement for your users, because it will
speed up the response times of video playback to your users’ machines.

HTML5 Video Developments
HTML5 video is still a relatively new feature for many browsers, and there are certain things that technologies have
done for a long time really well, such as Flash, that the browsers will need to take time to implement into the spec and
gain adoption among users. It’s obvious that it’s a fragmented space when it comes to video codecs and delivery, but
it’s even more so for full-screen support and subtitles.

CHAPTER 7 ■ HTML5 MEDIA

175

Fullscreen API
The Fullscreen API is a feature that plug-ins such as Flash and Silverlight have had for some time, and it’s becoming
a feature of the browser as well. Currently, most of the full-screen options in the browser just scale the video object
to the height and width of the browser window, unlike the intended method of taking over the full screen of the
display. This is another feature that advertisers offering games in ads and especially entertainment clients love
because it allows users to get fully immersed in the content whether it be interactive games or high-definition video
trailers. The Fullscreen API is pretty divided among browser vendors, to say the least, so be sure to check out
http://caniuse.com/#search=fullsc for the latest information.

What’s interesting with the Fullscreen API is that when it becomes supported, it should have an included pseudo
class in CSS. Here’s an example:

<style>
 video:-webkit-full-screen {...}
 video:-moz-full-screen {...}
 video:fullscreen {...}
</style>

The previous code allows developers and designers to customize the layout for their video and ad content in its
full-screen mode. Currently, if you want to use the Fullscreen API for your video or canvas element, you will need to
use the vendor prefixes for Webkit and Mozilla to call the JavaScript methods, as follows:

<script>
someElement.requestFullscreen(); //go fullscreen
someElement.exitFullscreen(); //exit fullscreen
</script>

Note that you don’t have to do this in newer versions of Opera where support is native!

Subtitles and Captions
Another developing feature of HTML5 video is what’s known as the text track API, which would allow video content to
be accessible to a global audience. For example, advertising and advertisers may want to include their content’s
voice-over as subtitles and use creative elements universally, meaning have a single video asset run in multiple
locations so long as the subtitles are in a correct language. Figure 7-12 from a Google I/O presentation shows that this
could be a very beneficial feature.

http://caniuse.com/#search=fullsc

CHAPTER 7 ■ HTML5 MEDIA

176

While it’s a small portion of the overall market, we shouldn’t leave these users out from online experiences.
The Web should be for everyone! Another possible way you can leverage the subtitles is to include relevant data as the
video is playing. Think about gearing offers based on location and adding localized directions via the subtitle text.
A benefit of using subtitles and captions is that they’re searchable, so content providers and publishers will benefit from
the SEO increases as well. The WebVTT file outlines a description file for a video to parse and gathers the information
that it should preset on-screen as playback is happening. Listing 7-8 demonstrates the WebVTT file format.

Listing 7-8. WebVTT Example

WEBVTT FILE
0:00:00.000 --> 0:00:02.000
Hello, World!
0:00:03.040 --> 0:00:06.920 T:60% A:middle
Just <i>dropping</i> by to say <i>HELLO!</i>

In this code, a sample WebVTT file shows on-screen text while video playback is occurring. As you can see,
between the times of 0 seconds and 2 seconds, the words “Hello, World” will appear in bold text. Using some basic
HTML tags for bolding, italicizing, and underlining as well as using a positioning of middle, you can really add some
flavor to the subtitle content. The current specification allows for horizontal text position, alignment, and vertical
line position. You can even use CSS to style the captions to your liking using a new pseudo element called cue.
See Listing 7-9 to learn more about how to implement the cue element in CSS.

Figure 7-12. Internet usage compared with U.S. access needs

CHAPTER 7 ■ HTML5 MEDIA

177

Listing 7-9. WebVTT Cue Example

WEBVTT

1
0:00:00.000 --> 0:00:05.000
Hello, World

2
0:00:05.000 --> 0:00:10.000
How <i>are</i> you <i>,<c.green>Today?!</c></i>

CSS

 <style>
 .green {
 color: green;
 text-transform: uppercase;
 }
</style>

HTML
<video width="640" height="360">
 <source src="someVideo.mp4" type="video/mp4" />
 <source src=" someVideo.webm" type="video/webm" />
 <source src=" someVideo.ogg" type="video/ogg" />
 <track src="helloWorld.vtt" kind="subtitles" srclang="en" label="English" />
</video>

Note ■ Be sure your server’s .htaccess or http.conf file is configured to support the MIME type VTT.

Use AddType text/vtt .vtt.

Using the track tag in an HTML5 video, you can show captions, subtitles, and/or metadata about the video
content, and using the previous example, you can see that you can even target specific CSS rules to the subtitle
information. The file format for the track element uses a WebVTT file, and browser support is currently limited, but
it’s coming! Using the previous code, you should be seeing an example similar to Figure 7-13.

http.conf

CHAPTER 7 ■ HTML5 MEDIA

178

If you’re not seeing this, make sure your browser supports WebVTT and the HTML5 video track element; if your
browser does not support either, I suggest using a great JavaScript polyfill called captionatorjs.com.

This could potentially be a huge advancement in dynamic video advertising going forward using web standards.
What’s really exciting is if the WebVTT formats start to support some more CSS features, and even features of CSS3
including transforms and animations, you’ll have the ability to do some very real dynamic insertions of content over
video. Until then, we’ll have to wait and find out. For more information on the WebVTT specification, I encourage you
to visit http://dev.w3.org/html5/webvtt, and if you’re interested in understanding whether your WebVTT is valid,
you can bookmark the useful link http://quuz.org/webvtt.

Note ■ I’ll discuss other emerging HTML5 video capabilities like Web Cam and Mic access in Chapter 12.

Video Measurement
As you are aware, a big portion of video is measurement for advertisers so they can see how their campaign worked
for them. They’ll often want to know how well a video performed at the time a viewer watched it. Measurement also
includes such things as video starts, completions, quartiles, plays, pauses, replays, sounds on/off, and so on. Pretty
much any toggle, button, or switch a user operates, the ad server will report on it. The HTML5 Video API exposes all of
these video properties via JavaScript, so attaching events and tracking calls is straightforward. For more information
on all the video properties, visit www.w3.org/2010/05/video/mediaevents.html.

QOS
In addition to the normal ad server reports, advertisers can also bake analytics engines into their video content and
video players to report on the quality of service (QOS) a video has in real time. Companies such as Akamai make use
of its Media Analytics tool, which is an API that can get bundled into video players so real-time technical analysis can
be performed on the video. This analysis can include highest bitrate served, bandwidth and network connections,
frames per second, and even playback frame rate. From these measurements, companies can dial into the media

Figure 7-13. WebVTT video subtitles

captionatorjs.com
http://dev.w3.org/html5/webvtt
http://quuz.org/webvtt
http://www.w3.org/2010/05/video/mediaevents.html

CHAPTER 7 ■ HTML5 MEDIA

179

files that could possibly be inefficient and re-optimize for a better user experience. A lot of this QOS is tied directly to
the “garbage in, garbage out” rule of video where you can only preserve quality of transcoded video files; you cannot
add to them after they’ve been manipulated for the worse. These analytics allow advertisers, content owners, and ad
servers to test real-world examples of how their content is performing.

Video Players
Various video players are becoming more and more HTML5 compliant as more of the browser market and their
respective user base supports the HTML5 video tag. Companies such as YouTube, Vimeo, Brightcove, and others
do this by offering the HTML5 video while failing gracefully to a Flash or Silverlight experience as needed. Also,
companies such as Netflix and Hulu needing DRM protection rely on these plug-in technologies since there is no
streaming protection standard in the HTML5 video specification, but one is in the works. Some delivery formats I’ve
discussed such as HLS can use a token/key exchange from server to client to offer some sort of protection, but this
feature is supported only in Safari browsers as of yet.

As advertisers need to deploy ads to various video players, the IAB along with industry working groups have
developed a standard specification for delivering ad tags to publisher and network video players that is universal.
The specification is called VAST.

VAST
Video Ad Serving Template (VAST) is the universal tag delivery format for a video players. Currently in release 2.0 and
moving quickly into 3.0, VAST aims to ease the ad delivery requirements to all the various video players by creating a
universal definition for which all players can and should adhere. VAST allows for easy ad insertion in between video
content, also known as video preroll or in-stream video. The video player will reach out to the ad server via a URL
request, and the ad server will respond with valid XML markup. Listing 7-10 shows an example VAST response from a
dummy ad server.

Listing 7-10. VAST Example

<VAST version="2.0">
<Ad id="12345">
<InLine>
<AdSystem>Acudeo Compatible</AdSystem>
<AdTitle>VAST 2.0 Instream Test</AdTitle>
<Description>VAST 2.0 Instream Test</Description>
<Error>http://url/error</Error>
<Impression>http://tracking/impression</Impression>
<Creatives>
<Creative AdID="12345">
<Linear>
<Duration>00:00:30</Duration>
<TrackingEvents>
<Tracking event="creativeView">http://tracking/creativeView</Tracking>
<Tracking event="start">http://tracking/start</Tracking>
<Tracking event="midpoint">http://tracking/midpoint</Tracking>
<Tracking event="firstQuartile">http://tracking/firstQuartile</Tracking>
<Tracking event="thirdQuartile">http://tracking/thirdQuartile</Tracking>
<Tracking event="complete">http://tracking/complete</Tracking>
</TrackingEvents>
<VideoClicks>

http://url/error
http://tracking/impression
http://tracking/creativeView
http://tracking/start
http://tracking/midpoint
http://tracking/firstQuartile
http://tracking/thirdQuartile
http://tracking/complete

CHAPTER 7 ■ HTML5 MEDIA

180

<ClickThrough>http://www.somedomain.com</ClickThrough>
<ClickTracking>http://tracking/click</ClickTracking>
</VideoClicks>
<MediaFiles>
<MediaFile delivery="progressive" type="video/x-flv" bitrate="800" width="640" height="360"
scalable="true" maintainAspectRatio="true">
http://cdn.somedomain.com/video</MediaFile>
</MediaFiles>
</Linear>
</Creative>
<Creative AdID="12345Companion">
<CompanionAds>
<Companion width="300" height="250">
<StaticResource creativeType="image/jpeg">http://cdn.somedomain.com/some.jpg</StaticResource>
<TrackingEvents>
<Tracking event="creativeView">http://tracking </Tracking>
</TrackingEvents>
<CompanionClickThrough>http://www.somedomain.com</CompanionClickThrough>
</Companion>
</CompanionAds>
</Creative>
</Creatives>
</InLine>
</Ad>
</VAST>

As you can see from the example, the XML outlines many useful values for the video player to handle including
various ad server IDs, creative and media URLs, tracking nodes, and sizes of the creative. From this information, the
video player will have everything it needs to deploy the ad.

Note ■ There are different versions of the ad that can be served: linear and nonlinear. Linear means it happens before

the video content, whereas nonlinear happens in the middle of the content, usually as an overlay.

If you were to test the previous VAST ad tag, it would fail because it’s just a mock; however, you can
see how some of these sample tags work by heading over to the IAB’s site and downloading some samples at
http://iab.net/guidelines/508676/digitalvideo/vsuite/vast/vast_copy/vast_xml_samples. Once you
get a sample, swing on over to Google’s VAST Inspector located at http://developers.google.com/interactive-
media-ads/docs/vastinspector_dual and paste in the ad tag. You should see some example content, as shown
in Figure 7-14.

http://www.somedomain.com
http://tracking/click
http://cdn.somedomain.com/video
http://cdn.somedomain.com/some.jpg
http://tracking
http://www.somedomain.com
http://iab.net/guidelines/508676/digitalvideo/vsuite/vast/vast_copy/vast_xml_samples
http://developers.google.com/interactive-media-ads/docs/vastinspector_dual
http://developers.google.com/interactive-media-ads/docs/vastinspector_dual

CHAPTER 7 ■ HTML5 MEDIA

181

Keep in mind many publishers and ad networks rely on publisher-side platforms like Adobe’s Auditude
(http://adobe.com/products/auditude.html) or the Platform (http://theplatform.com) to handle their media
content and to traffic their ads. These tools can encode video assets to a desired specification so they can run across
platforms and devices. Using this platform is equally beneficial to advertisers and ad servers because they can tap into
the publisher’s delivery specifications and serve up video ads at just as good quality as the content they’re producing.
This gives a broadcast-like experience when content cuts to ads, and vice versa.

Figure 7-14. A typical in-stream VAST ad

http://adobe.com/products/auditude.html
http://theplatform.com

CHAPTER 7 ■ HTML5 MEDIA

182

VPAID
Now that you have an idea of how to serve the video ad to a video player via VAST, you may be wondering, “How do I
make it interactive? Won’t that conflict with the video playback?” This is where VPAID comes into play. Video
Player-Ad Interface Definition (VPAID) is fundamentally an API to communicate to the video player from within the
ad unit through various exposed API calls.

The VPAID API is baked into the JavaScript of the creative to give certain commands to the publisher video player
such as “Pause your video; the user wants to expand the ad” or “You can resume playback; the user has closed the
ad.” These instructions allow for a seamless integration between the player content and ad experience. Moreover, it’s
an adopted standard in the industry backed by the IAB and others. Ads that leverage VPAID work in conjunction with
VAST; VPAID handles the interactivity, and VAST handles the delivery. Using both to your advantage will allow your
ad tag to run across multiple video players with ease, but make sure you reach out to the certain publishers to ensure
that their player is VAST compliant and can handle the VPAID API before developing your creative execution.

Using VPAID, it could get very interesting if advertisers wanted to do out-of-player video ads that interact with the
surrounding elements of the page. Obviously, this would be pretty complex to pull off across a media plan because
publishers would more than likely all need a specific creative version, but one-off solutions can be done much more
easily. For more information on VPAID and the JavaScript API documentation, visit http://iab.net/media/file/
VPAID_2.0_Final_04-10-2012.pdf; note that version 3.0 will be out soon.

VMAP
Video Multiple Ad Playlist (VMAP) is a new protocol that allows content owners to describe where ad slots or breaks
should be placed within their video content when they do not control the video player or the content distribution
outlet. Video ad enhancements include support for a “skippable” video ad, which allows publishers and content
owners to price differently, based on ads that can play to completion or offer the skippable functionality. In addition,
there is also support for “pods” or multiple ads to be displayed in a single ad break. This allows for the creation of
similar experiences to broadcast television where you’ll often see two 15-second ads back-to-back in a 30-second
ad slot. For more information on the IAB’s VMAP specification, visit http://iab.net/guidelines/508676/
digitalvideo/vsuite/vmap.

Mobile Video
Mobile video content is increasing at a rapid pace, and as more and more people place their eyeballs on the smaller
screen, advertisers are soon to follow. Currently, the fragmentation in the technology proves hard to deploy a mobile
ad campaign, but using VAST and VPAID, advertisers can get into the mobile video realm much easier. To get an idea
of the current mobile video landscape, take a look at the graph from eMarketer in Figure 7-15.

http://iab.net/media/file/VPAID_2.0_Final_04-10-2012.pdf
http://iab.net/media/file/VPAID_2.0_Final_04-10-2012.pdf
http://iab.net/guidelines/508676/digitalvideo/vsuite/vmap
http://iab.net/guidelines/508676/digitalvideo/vsuite/vmap

CHAPTER 7 ■ HTML5 MEDIA

183

This shows pretty amazing growth, and using the IAB’s standard delivery formats like VAST, advertisers can
deliver cross-screen video to every video player that supports the VAST tag format. This currently includes YouTube,
VEVO, Tremor, and Adap.tv, among others, and adoption is quickly growing. This works in both desktop and mobile,
and since iOS doesn’t support Flash, you absolutely need to start using HTML5 video if you’re deploying to mobile.

It should also be noted that all video is played in the native player of the phone device. The use of CSS and
JavaScript to style and control player controls cannot happen in mobile, unless it’s played inline on tablet devices.
The following should give you a good idea for video specifications when deploying for mobile devices:

Format: H.264/MP4•฀

Resolution: 480x360 or 640x360•฀

Video duration: 15 to 30 seconds•฀

Video bit rate: 600k to 1024 kbps or faster•฀

Audio: 64k to128k @ 44.1kHz or faster•฀

Frame rate: 24 or 30 FPS•฀

File size: 2.2MB or smaller unless streaming is used•฀

HTML5 Audio
I just reviewed the HTML5 video landscape in exhaustive detail, outlining many of the features to take advantage of
but also reviewing some of the issues. As you know, video is nothing without audio, and finally with HTML5, audio is
now a native feature of the browser. For a long time, you needed to rely on plug-ins or applications to play back audio
within the browser environment, much like video. In the following sections, I’ll review how to load and interact with
audio using HTML5 and JavaScript; I’ll also discuss failovers in case browsers aren’t HTML5 capable and the current
support in the market. I’ll focus on the different audio formats needed to appease all browsers. After reading the
previous sections, understanding the audio in HTML5 will be a lot easier. Aren’t you glad I covered the hard part first?

Figure 7-15. Projected mobile video viewers worldwide from 2011 to 2016 (source: eMarketer.com)

eMarketer.com

CHAPTER 7 ■ HTML5 MEDIA

184

The audio Tag
New to HTML5 is the audio tag, much like video, audio becomes a first-class citizen in HTML5-compliant browsers
with many great features to take advantage of. Let’s dig right into the new audio element in HTML5 by looking at some
of the code to get it to work (see Listing 7-11). Be sure to take notice of the source tags to satisfy the various browser
environments.

Listing 7-11. HTML5 Audio Example

<!doctype html>
<html>
 <head>
 <meta charset="UTF-8"/>
 </head>
 <body>
 <audio controls>
<source src="sampleAudioFile.mp3" type="audio/mpeg" />
<source src=" sampleAudioFile.ogg" type="audio/ogg" /> <!—Support Old FireFox -->
<object type="application/x-shockwave-flash" width="250" height="50">
<param name="movie" value="sampleAudioPlayer.swf" />
<param name="FlashVars" value="mp3=sampleAudioFile.mp3" />
<embed href="sampleAudioPlayer.swf" width="200" height="20" name="movie" type="application/x-
shockwave-flash" flashvars="sampleAudioFile.mp3"></embed>
</object>
</audio>
</html>

Let’s take a look at the previous code. First you add the attribute controls, which as you’ve learned from the
video section allow the user to see the browser’s native controls for the element. For audio, it would look something
like Figure 7-16.

Figure 7-16. The audio element with controls in HTML5

Keep in mind you have the same ability to skin the controls as you have for the video tags. In the example, I’m
sure you can agree it looks very similar to the video implementation, providing a Flash failback for older browsers as
well as including multiple audio files to support all browsers that need varying audio codecs and formats.

Audio Formats and Codecs
Let’s talk a little bit about the different codecs you’ll most likely come across when developing ads that leverage audio.
Audio is a bit less complicated than video in that there is much less to be concerned about as far as visual integrity
goes; however, audio still must be clear and compressed correctly for the Web. Most browsers that you’ll target in your
next campaign will be fine supporting one of the formats outlined in Table 7-1.

CHAPTER 7 ■ HTML5 MEDIA

185

As you can see from Table 7-1, audio support is pretty fragmented, so be sure to include multiple audio sources
if you intend to target multiple browsers for your campaign. You may also want to stream audio into your ad, and you
would need to lean on one of the adaptive streaming techniques discussed earlier. The only difference is instead of
using an MP4 or another video file, you would include your audio file and adjust the bitrate settings accordingly. The
last thing to note is that it’s important to provide a failback for browsers that don’t support the audio tag, so leverage
plug-ins like Flash or Silverlight to handle this.

Note ■ I’ll discuss more emerging features with HTML5 audio including the Web Audio API in Chapter 12.

Audio Tools
There are many free services on the Web if you need to convert your audio files into the previous formats for
multibrowser support. For example, if you intend to convert to all the previous audio flavors (OGG, WAV, AAC, and MP3),
I suggest visiting http://audio.online-convert.com where you can convert to those formats and many others.

Audio JavaScript API
As you may have guessed, you can use JavaScript much like in video to control the audio playback. This is
exceptionally helpful if you’re customizing your own controls for the browser’s internal player. Since you’ll likely be
re-creating custom buttons for play/pause and audio on/off, you’ll need to leverage the JavaScript API to add events
and check formats. Listing 7-12 shows the previous example, where instead of using the default controls by the
browser, I’ll show how to build them using JavaScript.

Listing 7-12. HTML5 Audio JavaScript Example

<!doctype html>
<html>
<head>
<meta charset="UTF-8"/>
</head>
<body>
<button onClick="handleEvent(this);">Play Audio</button>

Table 7-1. HTML5 Audio Formats and Browser Support

Browser Version Codec

Internet Explorer 9+ MP3, AAC

Chrome 9+ OGG, MP3, WAV

Firefox 4+ OGG, WAV

Safari 5+ MP3, AAC, WAV

Opera 10+ OGG, WAV

Android 2.3+ Device dependent

Mobile Safari 3+ MP3, AAC

BlackBerry 6+ MP3, AAC

http://audio.online-convert.com

CHAPTER 7 ■ HTML5 MEDIA

186

<button onClick="handleEvent(this);">Pause Audio</button>
<button onClick="handleEvent(this);">Audio On</button>
<button onClick="handleEvent(this);">Audio Off</button>
</body>

<script>
var player = new Audio ();
if (document.createElement('audio').canPlayType('audio/ogg')) {
 //play ogg file
 player.src = 'someAudioFile.ogg';
} else if (document.createElement('audio').canPlayType('audio/mpeg')) {
 //play mp3 file
 player.src = 'someAudioFile.mp3';
} else if (document.createElement('audio').canPlayType('audio/mp4')) {
 //play aac file
 player.src = 'someAudioFile.aac';
} else {
 //Flash or Silverlight failover
}

function handleEvent (event) {
 var t = event.textContent;
 switch (t) {
 case 'Play Audio' :
 player.play();
 break;
 case 'Pause Audio' :
 player.pause();
 break;
 case 'Audio On' :
 player.volume=1;
 break;
 case 'Audio Off' :
 player.volume=0;
 break;
 }
 console.log(t);
}
</script>
</html>

As you can see from the example, you remove the audio element from the HTML markup and instead add it to
the JavaScript. The first thing you do is create the buttons to toggle your audio play/pause and sound on/off. Next
you head into the JavaScript where you create a new audio object by writing the lines var player = new Audio ();.
From there, you check to see which audio format the browser can play back. In this conditional check, you use the
canPlayType method to determine whether it’s OGG, MP3, or AAC. Once you determine what the browser can play,
you assign the specific audio format that you converted to the player’s source attribute by writing player.src =
'someAudioFile'. From there you can kick things off by clicking the Play Audio button, which runs through the case
statement called handleEvent. Lastly, you handle all the specific events by attaching the play() or pause() method
to the player object, as well as adjusting the volume to 1 or 0. Give it a shot for yourself! Also, keep on top of the
emerging browsers and their support for the audio tag by visiting http://caniuse.com/#feat=audio.

http://caniuse.com/#feat=audio

CHAPTER 7 ■ HTML5 MEDIA

187

Table 7-2. HTML5 Media Terminology Review

Word Definition or Meaning

Encoding This is the preparation of a video project for output according to different playback specifications.

Transcoding This is the conversion process from one format into another according to different playback
specifications.

CBR This is the rate at which a codec’s output bitrate data should be set, and it’s a constant value.

VBR This varies the amount of output data to be consumed per time segment. VBR allows for higher
bitrate in complex scenes and lower in less complex.

Bitrate This is the number of bits used per unit of playback time to represent audio or video.

FPS This is the number of frames of video rendered to the screen within one second.

Aspect ratio This is the proportional relationship between a video or image’s width and its height; typically this
is 16:9 or 4:3, but other ratios exist.

Codec This is a device or software capable of encoding or decoding digital data.

GOP This is a group of successive pictures within an encoded video file.

Alpha channel This is a pixel’s data that is reserved for transparency information. This is typically used for
overlaying or compositing graphics on top of each other.

Terminology Review
I’ve covered a lot of new terminology and acronyms this chapter. To better provide you with a quick reference,
I’ll outline some of the ones I’ve touched on in detail; see Table 7-2.

Summary
We’re at a huge turning point in the industry in that online audio and video delivery is more confusing and important
than ever. Clients expect to have their produced video spots delivered to every screen with optimal quality and clear
audio, and users expect quick-starting video with great quality and no hiccups in playback. However, with only certain
video formats playing nicely in certain browsers, operating systems, and devices, creating a ubiquitous and high-
quality cross-screen experience is challenging and often very time-consuming.

This chapter covered a lot, but it’s important to understand the large landscape and digest all the moving parts
that go into creating, delivering, and optimizing video and audio for the Web, especially for online advertising using
HTML5. Your potential customers won’t give you the time of day if you’re using poor-quality video assets and delivery
mechanisms that the user can’t even play. I suggest reviewing this chapter if your next campaign requires some
form of media so you can make sure you understand the overall process that goes into video creation, compression,
and delivery. But even more so, make sure your clients understand. Video, like a lot of things on the Web currently,
is super-fragmented, but the process is getting easier to work with, and you’ll have a firm grasp on the competition
because you were working through it now. Don’t be afraid to start using HTML5 video with your next advertising
campaign and look for integration points with VAST and VPAID to help speed up your campaign needs. This will
ensure that your video will work across media buys, while the technology I covered will ensure that it will work across
browsers and devices. Play around with different compression techniques and start getting familiar with working
with the JavaScript APIs. Also, be sure to test your creatives and video on different devices including mobile devices,
tablets, and operating systems under varying network conditions. And if it’s too hard to take it all into consideration
under compressed timelines, remember the online services I’ve covered to help you get started quickly.

The next few chapters in this book are geared toward working with mobile, and I’ll talk more about video in those
chapters. Take what you’ve learned here and apply it going forward.

189

Chapter 8

Mobile Web Advertising

I think it’s safe to state that the mobile and tablet market rushed the emergence of HTML5 onto the scene. With
Apple’s release of the iPhone and iPad paired with the sole reason that both of them would never support a Flash
player, made HTML5 something of a household name and the required technology that would fuel the mobile
landscape. This chapter will focus on HTML5 advertising as it relates to the constantly growing, ever changing, and
slightly fragmented mobile landscape. As I write, the mobile market is chock full of various browsers, devices, and
operating systems, let alone several versions of each browser and operating system with varying HTML5 support.
The market’s actually pretty fragmented, to say the least but fear not, I’ll be sure to navigate you through it all.

So far the focus has been on HTML5 features as they pertain more or less to desktops, but the features of mobile
devices allow HTML5’s strengths to stand out more fully. Through use of APIs, you can leverage native device features
like touch, orientation, compass, accelerometer, and battery status, not to mention all of the new features HTML5
brought to desktop browsers that filter down into the mobile realm as well. Let’s face it, we live in a mobile world now.
Because of smart devices with web access, people can use a phone for boarding passes on flights, to make payments
electronically, even, with a service like Uber, to hail a cab. So let’s talk about how mobile development takes HTML5
a step further and talk specifically about device features, how they’re used, what is supported currently, and what will
be available very soon. Since mobile devices and desktop browsers use HTML5 much differently, this chapter will
outline current device features that HTML5 can access, as well as focus on how to use those features to create really
amazing advertisements for our clients. If advertisers are looking to reach their audience on phones and tablets,
they’ll most certainly need to rely on HTML5 going forward. The mobile market gives entry to many innovative things;
so let’s dig in and find out exactly what.

The Mobile World
Let’s get one thing straight: mobile is here and, trust me, it’s here to stay! More and more people are equipped with
smart phones and tablets with network connections. The hardware is cheaper than ever to make, and with Apple,
Samsung, LG, and other OEMs (original equipment manufacturers) creating very sophisticated and connected
devices with a relatively small price tag, the barrier of entry has been lowered for everyday consumers, which makes
it a highly profitable channel for advertising. These devices are sophisticated in many ways, but one to focus on is
modern browsers’ support for HTML5. Because it’s easier than ever to socialize, work, e-mail, or just play a game
on the go and with so many eyeballs shifting from the traditional desktop and television to the smaller screen,
advertisers, having taken notice of the trend and are hungry to be in this emerging market. Many analysts predict that
the mobile market will pass the standard desktop market in the next two or three years. Look, for instance, at Figure 8-1
from Morgan Stanley Research.

CHAPTER 8 ■ MOBILE WEB ADVERTISING

190

As you can see, for anyone in the mobile space, this is an exciting trend with an opportunity for a long and
prosperous future. One thing is for certain: HTML5 will be very prominent in this market, as it’s currently the only
ubiquitous technology that can span all the mobile platforms. No other technology can deploy to all the browsers and
devices natively—not Flash or Silverlight. You certainly can’t build applications for major mobile operating systems
unless you know Objective-C or Java or use Adobe AIR for iOS or a similar packager. Not only does HTML5 allow
you to build amazing web apps; it even enables the creation of native mobile apps with the help of a framework like
PhoneGap (http://phonegap.com) built on Apache Cordova (http://incubator.apache.org/cordova). Using the
same tools and syntax that work in the modern web browser, can now be used across devices, browsers, and various
operating systems to ensure compatibility when compiling to a native app. This is the main reason that HTML5 is
becoming so attractive on mobile devices. You build have the ability to build once and deploy everywhere-(well
everywhere its currently supported for now). Now that you know why HTML5 is so important, let’s look at the various
devices on the market before digging into the code and practice of each.

Mobile Devices, Browsers, and OSs
Desktop browsers are fragmented in their HTML5 support, and mobile devices are no different. There are many
different device manufacturers, each with its own variation and adoption of the HTML5 specification in its browser.
There are so many different devices in the space currently that it’s nearly impossible to keep track of what is supported
where and what the latest features of the device are that we have access to.

Note■ For very good information around the fragmented mobile ecosystem, I strongly suggest checking out

http://www.quirksmode.org/mobile/.

Figure 8-1. Projections for mobile Internet users and desktop users, 2013–2015 (source: Morgan Stanley Research)

http://phonegap.com
http://incubator.apache.org/cordova
http://www.quirksmode.org/mobile/

CHAPTER 8 ■ MOBILE WEB ADVERTISING

191

The following few sections will deal with the top devices in the market at the time of writing and we’ll review
some of the emerging competition that could be here at any time. There are various screen sizes and operating
systems, tons of browser versions, and hundreds of device models that ad units will all have to be displayed on.
The next sections are geared to help you navigate the landscape and make sense of it all.

Apple iOS
Once Apple launched the iPhone back in 2007, the smart phone market really took off. Phones have never looked the
same since, and users have become accustomed to rich, touch-enabled features on their handheld devices. Through
the years Apple’s had multiple hardware and software iterations; developers and users have benefited greatly from
faster hardware, more device APIs, and overall performance gains. For example, with the recent release of iOS 6,
users can access the camera and photo library from web browsers and utilize a new feature called the Web Audio
API (More on that in Chapter 12). For developers, iOS provides a great developing environment, with rich tools
and simulators for testing native application and web content. Apple pretty much reigns as king in the smart phone
market, as far as developers and advertising spending goes, even though its main competitor, Google, has a larger
overall user base worldwide. JiWire (www.jiwire.com/insights) outlines the number of ad requests per device in the
United Kingdom and the United States. The 2012 results show that iOS has the largest market share in advertising.

This information demonstrates a few things, one of them being that advertisers seem to have taken a liking to the
iOS market for developing content since it’s such a structured environment, whereas Android, for one, is much more
fragmented because of its openness. A second thing is that it could mean that many more people are viewing online
content and applications with advertising-supported models on iOS devices. Whichever way you view it, the numbers
don’t lie.

Google Android
Google firmly believes in open source, and it holds fast to that belief with its mobile operating system, Android.
Android is by far the largest OS within the mobile landscape, with installs on a wide variety of devices. Openness in
this case is both a good and bad thing though. It creates a lot of innovation and competition but also, conversely, a
lot of frustration for developers who need to build in this landscape. Being that there are upward of 2,000 different
Android products in the wild (and growing), developers are faced with various levels of HTML5 compliance in their
browsers, different screen resolutions, varying pixel densities, and even legacy Flash Player support. But the Flash
Player support will offically be gone with full Android 4.1 adoption. Visit http://opensignalmaps.com/reports/
fragmentation.php, and you’ll get an idea how fragmented and confusing developing for Android is. You might
find the results of this study shocking! As the study states, it makes the most sense to test and develop content with
Samsung or HTC devices, as they’re the most prominent in the market today. Yet if you’re a developer, you cannot
escape developing for Android devices. Since most of the phone and tablet market uses versions of this OS, advertisers
have all the more reason to want to be on their screens.

Others
Some of the other devices in the market are Galaxy Tablets, Blackberry Playbooks, Nooks, and Kindles, all of which
support various blends of the Android operating system—with the exception of the Playbook, which uses Blackberry’s
own Tablet OS. Amazon’s Kindle Fire is said to have 54.4 percent of US Android tablets as of April 2012, a fact that
justifies creating content that displays and works correctly for the device. Most of these devices offer very HTML5-
compliant browsers, with most OSs getting frequent updates. (You can view these results at http://html5test.com.)
Other open source browsers and platforms are being developed, among them Tizen (http://tizen.org), said
to have one of the best HTML5-compliant browsers at the time of this research (http://itworld.com/mobile-
wireless/262120/tizen-pops-html5-winner). In the end, the world of mobile may really be fragmented, but it’s still
necessary to support advertising on these devices so be sure to discuss with your client which OS platforms they wish
to target within the allotted time and budget for the campaign. This could save you hours if not days of development
and debugging if you know out of the gate that your client wishes to target.

http://www.jiwire.com/insights
http://opensignalmaps.com/reports/fragmentation.php
http://opensignalmaps.com/reports/fragmentation.php
http://html5test.com
http://tizen.org
http://itworld.com/mobile-wireless/262120/tizen-pops-html5-winner
http://itworld.com/mobile-wireless/262120/tizen-pops-html5-winner

CHAPTER 8 ■ MOBILE WEB ADVERTISING

192

Mobile Advertising
You’ve seen that HTML5 is a standard for structuring and delivering advertising in desktop-compliant browsers; now
let’s dig in deeper to understand how this affects the mobile landscape. Advertising with HTML5 provides a seamless
integration between ad content and page content especially where support for iFrames in mobile are non-existent.
With ads truly a part of the page, web and ad developers have the ability to do some amazing things. But it also can
get pretty disruptive for them, and so they’ll need to work together closely to pull off complex rich media executions.
Because of HTML5’s current state of acceptance, there’s no guarantee that an HTML5-built ad will render equally
on all browsers and operating systems in the mobile ecosystem. The same issues and testing that web designers and
developers go through to ensure that every pixel and function is correct across browsers applies here as well. In the
next sections, let’s review how mobile advertising is bought, sold, created, served, and analyzed.

It’s no secret that the mobile advertising industry is booming and shows no time of slowing down anytime soon.
If you’re new to mobile advertising you’ll soon see that mobile is a beast of its own kind; developers and designers
transitioning from desktop have their work cut out for them. Mobile is an emerging and lucrative industry, but there is
still much to learn and work out before we are as comfortable in it as we are in desktop creation. In fact, an entire book
could be focused specifically on this topic. All the ways that ads are bought, sold, created, served, and analyzed are
still in a developing state, but with so many phones and tablets within the market, advertisers want their campaigns to
have the broadest reach. Often the big sacrifice comes with operational scale and turnaround times, as development
entails writing many conditionals and feature detections so ads can deploy across screens effectively and properly
while also failing gracefully. Mobile advertising is a market still in its infancy but it’s growing rapidly. For proof, take a
look at Figure 8-2, with data from eMarketer regarding online ad spending worldwide by format.

Figure 8-2. Total online ad spending worldwide by format (source: eMarketer.com)

If you’re looking for a career change or even just a new hobby, this is a great industry to be in! Mobile is projected
to have the largest percentage growth in ad spending worldwide going into 2016. However, there are many things to
cover before you can think of it as all fun and profit. Let’s start off with mobile advertising pricing.

http://eMarketer.com

CHAPTER 8 ■ MOBILE WEB ADVERTISING

193

Mobile Pricing
Mobile ad pricing is very similar to desktop in that ads are typically billed off impressions; that is, the number of
times an ad is rendered to the page or requested. Traditionally, mobile rich media are billed on a CPM basis (that is,
on the basis of every thousand impressions). This can also be joined with viewable impressions—that’s when an ad is
actually within view on a user’s machine. Typically, this metric aids ads that render “below the fold,” the area
not in initial view when a user visits a page. Taps, or clicks, are the number of times a user touches a banner to expand
it, and CTR (click-through rate)—it should be known in mobile as TTR (tap-through rate)—is the total number of
times an ad is tapped divided by the number of served ad impressions. For example, if an ad shown 1,000 times
receives 10 taps, it has a CTR of 1.0 percent. Finally, the cost is factored by the total amount paid for the reported time
period and possibly a bill based on the total number of impressions served. There is a nice, really detailed breakdown
of mobile ad pricing at http://mymobileagency.co.uk/blog/mobile-advertising-pricing-explained.html.

Ad Creation
Now that you understand mobile ad pricing, let’s dig into the bigger topic at hand, which is the creative design
and development of the ad. For mobile, it’s best to include all the ad’s style sheets in the head of the publisher’s
page or in iFrame’s head, if it’s being served that way (your publisher will inform you of the way your ad will be
rendered to the page).

Note ■ iFrame ads in older device browsers can cause system memory issues, especially when nested

inside one another. It’s becoming less of a concern with newer devices but keep this in mind when you define your

campaign’s reach.

Styles shouldn’t be included anywhere else, as applying them after an element is created causes reflow, repaints,
and unwanted (and unnecessary) flashes of unstyled content. When including the CSS specific to your ad, be sure
to bundle all the CSS files into one file while minifying and compressing it. In mobile, the fewer requests the better,
because network conditions can vary tremendously. I recommend using CSSCompressor, http://csscompressor.com
and JSCompress (http://jscompress.com), as minifying or compressing the code will reduce the overall file
size—which is SUPER important for mobile devices. For scripts dependent on elements, have them execute after the
DOM is “ready” or “loaded”—this is done by using the DOMContentLoaded or “load” event.

Also, if you need to rely on image assets, you should be preloading whenever possible; preloading provides the
complete ad experience before rendering any ad content to the screen. While images are pretty heavy in the mobile
universe, you can’t always get away from using them so definitely employ the learning’s of sprite sheets as we’ve
learned in Chapter 5. This way, you’re positive that the content will be operational and visible when the user finally
sees it. Listing 8-1 presents a common technique to preload image assets.

Listing 8-1. JavaScript Image Preloader

<!DOCTYPE html>
<html lang="en">
<head>
<script>
 var images = new Array();
 var numImages = '3';
 var count;
 function preloading () {
 for (i = 0; i < preloading.arguments.length; i++){
 images[i] = new Image();

http://mymobileagency.co.uk/blog/mobile-advertising-pricing-explained.html
http://csscompressor.com
http://jscompress.com

CHAPTER 8 ■ MOBILE WEB ADVERTISING

194

 images[i].src = preloading.arguments[i];
 count = i+1;

 if(count.toString() === numImages) {
 //initialize ad
 console.log('adInit');
 }
 }
}
preloading(
 "image1.gif",
 "image2.gif",
 "image3.gif"
);
</script>
</head>
<body>
</body>
</html>

As you can see, an array object called images is being set up. Next, let’s create a function called preloading that
will get passed a bunch of image assets and will loop through and create new image objects out of them and assign
their source attribute to the file path that’s provided in the function. Last, anything else needed, such as an init
function to kick things off in the ad, can be called when the images are loaded.

In addition to preloading external content, you should also prioritize specific assets to load before others.
Sequencing is mandatory if you’re leveraging external JavaScript libraries that your script will rely on. Luckily, you can
leverage two new script tag properties, Async and Defer, to better assist publishers with this code sequencing. Defer
scripts are scripts that are dependent on other scripts, such as external libraries. Thus, you should defer on jQuery and
other dependent scripts if you absolutely must need to use them in your mobile campaigns.

Note ■ Defer scripts execute just before the DOMContentLoaded event.

The ad server’s JavaScript ad tag should use the async property so that the publisher page loads much more quickly.
Async is for scripts that execute as soon as they’re loaded and require no dependencies on other scripts—they’re perfect
for ads tags, social networking widgets, and other third-party content on sites not tied specifically to the site’s content. The
real benefits in both of these new attributes are that they don’t block the HTML parser, which could block vital UI (user-
interface) elements to a user otherwise. Let’s look at Listing 8-2, which outlines the use of the defer and async attributes.

Listing 8-2. JavaScript Defer Example

<html>
<head>
<script defer src='jquery.js'></script>
<script defer src='mainSiteScript.js'></script>
<script async src='adTag.js'></script>
</head>
</html>

CHAPTER 8 ■ MOBILE WEB ADVERTISING

195

You can see that the jquery.js script is being loaded first, using a defer setting, then the mainSiteScript.js,
which has dependencies on the JQuery library. Last, call in the third-party JavaScript tag for our ad content, which has
no dependencies on the publisher content. Since parsing JavaScript on mobile can take many milliseconds longer,
depending on the network connection, it’s important to maintain the site’s functionality to the user and load the ads
after the main content has loaded.

Before starting an HTML5 campaign and before starting creative development, always ask your ad ops or
campaign manager where the tag will run. What device, browser, and so on. Define your reach; this will dictate the
overall functionality, as support is limited for certain features. The functionality of the creative required will dictate
the amount of time to develop for cross-browser/device builds. There is a very comprehensive outline on mobile ad
development in HTML5 at http://media.admob.com.

With this in mind, let’s first discuss the viewport in mobile. The viewport is really the virtual window for the
browser to render the content on mobile devices. By using meta tags in the head of your document page, you can
specify width, scale, and user scalability and even set minimum and maximum values for the browser window to
interpret. Since this is very important for formatting content correctly for mobile devices, let’s look at Listing 8-3,
which shows the browser window being set to the size of the screen on the device that’s accessing its content.

Listing 8-3. Viewport Meta Tags for Mobile

<!DOCTYPE HTML>
<html>
<head>
<meta name = "viewport" content = "width=device-width">
</head>

When you open this document in your mobile browser, you’ll notice that any content in your browser has been
set to the device’s width. For an Apple iPhone, this would be 320 CSS pixels wide; it would be 600 CSS pixels for a
Kindle Fire. This variable width is a great feature. Since it makes the browser seem like a native application for the
device, it’s something ads should take into consideration, as most publisher pages will include these meta tags. Listing
8-4 shows a more elaborate viewport example by setting scale values as well as user input.

Listing 8-4. Setting Scale with Viewport Meta Tags

<!DOCTYPE HTML>
<html>
<head>
<meta name = "viewport" content = "initial-scale = 1.0, minimum-scale=1.0, maximum-scale=1.0,
user-scalable=no, width=device-width">
</head>

This can also be achieved using the JavaScript method included in your JavaScript file (see Listing 8-5).

Listing 8-5. Setting Viewport Width and Scale with JavaScript

var viewMeta=document.createElement('meta');
viewMeta.name='viewport';appleMeta.content='width=device-width, initial-scale=1, maximum-scale=1,
minimum-scale=1, user-scalable=0';
document.getElementsByTagName('head')[0].appendChild(viewMeta);

Either of these code examples when viewed in a browser will set the page content’s width to the device’s screen
width, set the initial, min, and max scale level to 100 percent, and not allow the user to zoom in on the page content
using a pinch gesture. This information is vital to content owners looking to achieve the best possible presentation
for mobile visitors, especially those wanting to mimic native applications built for the Web. Regarding advertisers,

http://media.admob.com

CHAPTER 8 ■ MOBILE WEB ADVERTISING

196

agencies, and ad servers—again, this is something to be aware of when delivering ads to pages that have this viewport
set specifically, as your creative could be affected. The creative elements could scale up or down depending on the
scale set, which could create copy or images that are illegible or worse or make an unwanted change to the ad’s width
if the publisher makes the content narrower than the ad intends to be.

Media Query and Pixel Density

When adjusting the viewport, you’ll more than likely want to make use of CSS media queries for your mobile ad
creative. Chances are you won’t know every device that will be accessing your ad content on a media sheet, so you’ll
have to build an ad that is responsive and that adapts to the device viewing it. Responsive ad design takes a lot of
work and a lot of planning for clear execution, but if done correctly, a lot of time can be saved down the road. Since
many devices come at different screen sizes and pixel densities, it’s increasingly hard for ad designers to handle all the
variances in the creative builds. Because this is such an issue for designers developing for mobile devices of various
sizes and densities, the folks at Teehan+Lax developed a nifty graphic and chart (http://teehanlax.com/blog/
density-converter) to help you design content for screens of various pixel density (see Figure 8-3).

Figure 8-3. Scaling content for screens of various pixel density

At the time of writing, Apple devices had a pixel density of 1.0 and 2.0; Android had various others, including
1.4, 1.75, and 2.3. For example, iPhone 4 and above supports a higher pixel density—what Apple calls Retina Display.
On these devices, the width is still 320 in CSS pixels, but the device’s pixels double every pixel to create higher image
fidelity. For example, an image at 300 × 250 would need a 600 × 500 image to look sharp on these higher pixel density
displays (see http://quirksmode.org/blog/archives/2010/04/a_pixel_is_not.html for more on this topic). By
reading over the post, you’ll understand that the moral of the story is that CSS pixels have little or nothing to do with
actual physical device pixels. Thus, they should be used whenever possible, as they are interpreted consistently across
browsers regardless of device’s underlying resolution. Listing 8-6 takes a look at working with higher pixel density
images using CSS. (Don’t feel uncomfortable writing something like this.)

http://teehanlax.com/blog/density-converter
http://teehanlax.com/blog/density-converter
http://quirksmode.org/blog/archives/2010/04/a_pixel_is_not.html

CHAPTER 8 ■ MOBILE WEB ADVERTISING

197

Listing 8-6. Double Pixel Density in CSS Example

<style>
.adContainer {
 background-image: url(bg_600x500.jpg);
 width: 300px;
 height: 250px;
}
</style>

As you can see, the code example doubled the background image’s size to make up for the extra device
pixels. This can get very confusing, I know! However, there are specifications being developed and even specific
vendor-prefixed features you can use today. For more information, read up on the Image-Set property in CSS
(http://blog.cloudfour.com/safari-6-and-chrome-21-add-image-set-to-support-retina-images) and the highly
anticipated and emerging Picture element spec (http://github.com/scottjehl/picturefill).

Mobile Tips

Now that you’re all set with viewport and CSS, let’s discuss some important “gotchas” around working with various
mobile devices. The following sections will be geared to help you deal with some common pit falls of mobile ad
development. Oftentimes clients will request that the devices’ gray outline be removed. This outline looks like a gray click
region on mobile Safari and an amber or green region on Android devices. See Figure 8-4 for an illustration of the issue.

If you’re looking to get rid of this outline, here’s some code that demonstrates how to do just that using CSS.

Figure 8-4. The touch outline on certain mobile devices

http://blog.cloudfour.com/safari-6-and-chrome-21-add-image-set-to-support-retina-images
http://github.com/scottjehl/picturefill

CHAPTER 8 ■ MOBILE WEB ADVERTISING

198

Figure 8-5. Copy-and-paste technique on mobile devices

button {
 -webkit-tap-highlight-color: rgba(0,0,0,0);
 -webkit-tap-highlight-color: transparent;
 outline: none;
}

Notice how we’re setting the prefixed webkit-tap-highlight-color to 0 on its RGBA scale as well as calling it
transparent. Finally, for safe measure, we’re disabling the outline by setting it to none.

Another useful feature with CSS and mobile is the disabling of selections. If you or your client wants to disable
the cutting, copying, and pasting actions from within the ad unit, you can use CSS to make that happen. Figure 8-5
outlines how the copy-and-paste process looks on mobile.

Disabling this feature could be useful if you want to prohibit users from taking information from the ad unit with
them. Maybe it’s timely and dynamic data or a one-time coupon deal. Either way, just be sure you really want to
disable this setting for your user base. Here’s a CSS snippet that can achieve this result.

p {
 -webkit-user-select: none;
}

Sometimes you may get a request to disable the callout window on iOS devices when a user taps on an image and
holds it or holds a link within your content. Figure 8-6 better illustrates what I’m talking about.

CHAPTER 8 ■ MOBILE WEB ADVERTISING

199

This feature happens by default when a user taps an image or URL and presses it for some length of time—the OS
will provide a list of menu items for the user to choose from. If this isn’t a desired part of your ad experience, CSS can
remove that native callout window.

img, a {
 -webkit-touch-callout: none;
}

In the preceding code, simply setting a Webkit property called touch-callout to none disables this OS callout feature.
Often, you want the user to be presented with a specific entry input instead of a traditional keyboard for text

entry. This could be useful for inputting numerical data—a phone number, a ZIP code—into your form. In order to
change these keyboard displays on your form inputs, specify the input-type attribute on your input tags. For example,
in Figure 8-7 I have the input field set to tel with a pattern of [0–9]* because I want the user to input a ZIP code. A bit
confusing, but it works, because there is no input type for a ZIP (at least, not yet), and all I’m concerned about are the
number entries for this specific input.

Figure 8-6. The callout balloon on iOS

CHAPTER 8 ■ MOBILE WEB ADVERTISING

200

As you can see, when a user gives focus to the input field, the device’s numerical keyboard is presetnted. Here is
some code that can be used to switch the keyboard for a better user experience.

Note■ If the input types aren’t supported, the browser will default to a generic input of type “text.”

<!-- display a standard keyboard -->
<input type="text" />

<!-- display a telephone keypad -->
<input type="tel" />

<!-- display a URL keyboard -->
<input type="url" />

Figure 8-7. The “tel” keyboard input on mobile devices

CHAPTER 8 ■ MOBILE WEB ADVERTISING

201

<!-- display an email keyboard -->
<input type="email" />

<!-- display a numeric keyboard on iOS -->
<input type="tel" pattern="[0–9]*" />

With these code snippets, you can display all types of input fields for your users depending on your creative goals.
What makes this really easy and helpful is that the browser takes care of it all for you. You don’t need to build and
customize specific input fields.

Another interesting thing to note is the font-smooth property. You’ll often have some sort of animation in your
creative, and sometimes it will involve animation of copy elements. Figure 8-8 showcases what font smoothing looks
like on the “o” character.

Figure 8-8. The effect of the CSS font-smooth property

Some of that animation may involve copy or text elements, and there is a great CSS snippet to prevent jaggedness
or ridged animations on fonts. Here’s some code to provide anti-aliasing on copy elements.

.smoothCopy {
 font-smooth:always;
}

Note ■ At the time of writing, font-smoothing was available only in Webkit browsers. It was not a part of any web

standard spec.

Further to this topic, mobile advertising and CSS-based web fonts pose a potentially large problem. On the
one hand, advertisers and brands will want to use their actual fonts, as they are usually at the core of their branding
identity—think of Coca-Cola or Budweiser—and the only way to do that is to increase the k-weight for either CSS fonts or
transparent PNG images. On the other hand, the load experienced with CSS3 fonts leads to much longer download times
for end users, and more HTTP requests are needed for the various formats. There is no silver bullet for this scenario;
some clients will absolutely request that you use their branded fonts. The best thing to do is to show the client that doing
what it wants will come at a cost to users. Their experience may suffer, especially on lower bandwidth connections. If the
client insists, there are some very good optimized font libraries to use: Google’s Web Font Library (http://www.google.
com/webfonts), Adobe’s Typekit (https://typekit.com/), and WebType (http://www.webtype.com/), which as you’ve
learned in Chapter 5, only bring in the format required for the device. Weigh the pros and cons of using or not using, and
consider transparent PNG files, too. However, when copy needs to change or be dynamic, PNGs are not an option. For
default font support on iOS devices, check out http://iosfonts.com. Android users have much more limited options
for default fonts—Droid Sans, Droid Sans Mono, Droid Serif, and Roboto—but hopefully more will come with future
updates of the OS.

http://www.google.com/webfonts
http://www.google.com/webfonts
https://typekit.com/
http://www.webtype.com/
http://iosfonts.com

CHAPTER 8 ■ MOBILE WEB ADVERTISING

202

Note ■ These are just a few gotchas and workarounds. Many more are out there, but given all the devices and browsers

in use, listing them all would be beyond this book’s scope. See http://css-infos.net for more mobile CSS adjustments.

As you might have guessed, a lot of mobile advertising comes from what’s been learned from desktop advertising.
Such ad features as surveys, “send to a friend,” coupon downloads, customer data collections, animations, direct links
to app stores, mapping, video, polling, interactivity, in-ad purchasing, and location-based deals are all possible, but
they may take a bit more understanding to implement flawlessly and across device. These features can really benefit
advertisers; they can use what they’ve learned from their desktop campaigns and apply it to what works in mobile or
reposition their campaign for features that work better on mobile devices altogether. It’s by far not the same medium, but
featurewise, a lot of the same things and more can be accomplished. A large question in the industry is how to handle
assets now that they’re not just SWF files. This applies to mobile as much as to HTML5 advertisements in general. Here’s
what to look for when handling or handing-off creative assets between team members both internal and external.

HTML•฀

CSS•฀

JavaScript•฀

layered PSDs and/or images with sprite sheets•฀

Illustrator files•฀

storyboards•฀

fonts•฀

media files (video/audio) if needed•฀

A README text file, which outlines instructions of the assets.•฀

All of these assets may come your way in a ZIP file, which ensures that all the assets remain together throughout
the transfer. Confirming that all of these files are present when assets need to be handed off avoids confusion down
the line. This confusion often eats up valuable time and could potentially derail a campaign’s launch.

A campaign often requires you to ping data to a third-party server, especially when other vendors give you 1 × 1’s
in order to validate tracking metrics. This can be done by creating a new Image object in JavaScript and applying the
image’s source attribute to point to the third-party destination you wish (see Listing 8-7).

Listing 8-7. Pixel Tracking Example

<!DOCTYPE HTML>
<html>
<head>
</head>
<body>
 <div id='icon' style='background-color:black; width:50px; height:50px;'></div>
</body>
<script>
var someElement = document.querySelector('#icon');
someElement.addEventListener('touchstart', activityHandler, false);

http://css-infos.net

CHAPTER 8 ■ MOBILE WEB ADVERTISING

203

function activityHandler () {
 var img = new Image ();
 img.src = 'http://www.tracker.com/ping';
}
</script>

</html>

You can see that an event listener has been added to the element of your choice and when tapped, we call
the activityHandler function. From within that function a new image object, img, is created and sourced to the
destination to be called. Now the browser will make a request to that source, and the receiving end will log an
interaction metric. (Just be sure to do this on the user’s activity you wish to track; otherwise your reporting metrics will
be skewed.) Also, keep in mind that using this for mobile means another HTTP call, which could be skewed, based
on bandwidth constraints. If there isn’t enough bandwidth, the request could fail to the third party, but the action will
still have taken place from within the creative.

Last, with mobile as in display advertising, the same “in/out” rule applies. If users are clicking or tapping to
engage with the ad in order to expand it, they’ll more than likely need to click or tap to close the experience. This is
more or less set by publisher requirements, but keep this in mind in considering the overall user experience.

Optimization
Optimization is a crucial part of mobile development. Keeping a lightweight ad in the mobile ecosystem should be a
primary focus for any developer or designer, as it is extremely important for the varying network connections an end
user may face. As images and scripts are heavy over 3G connections, detect these constraints and offer users alternative
experiences. On Android devices 2.2 and higher, check the navigator.connection.type property; it allows detection of
WiFi from Ethernet, 2G, or 3G connections and adapts your ad accordingly. For Blackberry devices, check blackberry.
network to get similar information; on iOS ,unless the first-party ad server can provide it, wait until the API on network
information comes to that browser. See http://w3.org/TR/netinfo-api for more information on the network API.

In an ideal world, the best scenario would be to detect the current bandwidth of a user and provide alternative
information or graceful failovers. For example, if the user is not on WiFi or has a poor connection, offer a reduced
creative version with little to no imagery and dynamic content that relies on various HTTP requests. Connection
information will let ads really adapt to the user’s device and viewing condition. Pair this with a responsive creative
design for the ad content, and you’ll have an ad that can run on any screen in any condition—no problem! It’s
essentially the holy grail of ad serving.

In addition, with mobile it’s best to remove all heavy, unneeded external libraries ; use straight native JavaScript
whenever possible. Libraries provide great ease of use, but for this reason too many developers rely on them. Their
inclusion may not be warranted if the content is being targeted only to one operating system or device. A library
like jQuery gives amazingly consistent cross-browser experiences, but if you’re using it just for its animation and
syntactical ease of use, you’re killing end users with that extra weight. In fact, in one of its 2012 versions, jQuery sits
around 93 kilobytes minified and 34 kilobytes minified and gzipped. That’s pretty large for a mobile user, especially
just for ad content. Always try to use naked JavaScript, minimize k-weight, reduce network downloads, and never
forget the normal methods you should be taking advantage of, such as minification of scripts and CSS files, as well as
gzipping your assets for the smallest transfer size.

Finally, try to keep your browser repaints very low. Repainting the layout of the DOM is a pretty expensive task for
mobile devices. As more animations and DOM manipulations occur, repaints could drastically decrease your user’s
battery life.

http://www.tracker.com/ping
http://w3.org/TR/netinfo-api

CHAPTER 8 ■ MOBILE WEB ADVERTISING

204

Code Execution
On the heels of optimization, another important practice is code execution. For mobile ads, code execution can be
a nightmare to work with, especially when waiting for page content to load, first, various network conditions and
non-mobile-optimized web content on mobile devices. It’s really a game of sequence,checks, and playing traffic cop.
A coworker and friend of mine always calls this “the Dance.” Whether you’re checking if DOM elements exist before
calling actions on them or waiting for JavaScript platforms and libraries to download, it’s always a debugging process
when your ad tag goes into the live environment. Indeed, this statement really sums up the frustration one can
have when dealing with interpreted code execution in the browser, especially code you have no control over on the
publisher’s side. Much as with a new dancing partner, you don’t know whether they’ll step on your toes.

In the advertising realm, the publisher’s page content first has to load, usually as an onload event; then the page
makes a request to the ad server to request the ad content. At this point the ad populates the publisher’s page or
designated iFrame. The ad code still has to load all of its ad-dependent files—in this case it could be CSS, JavaScript,
any images, web fonts, and whatever else. Finally, having gotten the go-ahead, our ad experience can than start up.
I’ve seen this done a number of ways, but no matter how it gets done, there are a lot of steps, especially for ad content
that has to execute quickly! Remember, no one goes online to look at ads, so you have to render quickly and grab a
user’s attention while you can. You’ll learn that the best sites provide callbacks for ads to begin loading or even load
their ad scripts asynchronously. Listing 8-8 shows my own method of ensuring that all elements have been written to
the page.

Listing 8-8. DOM Element Checker Example

<script>
function adChecker () {
 if (document.querySelector("#yourLastDOMElement")) {
 initAd();
 } else {
 setTimeout(adChecker,100);
 }
}

function initAd () {
 //Ad content starts here
}

adChecker();
</script>

You can see from the code that a function called adChecker is being used. It runs through a conditional to
check whether the ad code’s last element is rendered to the page. Once it returns true, the function called initAd
is executed. It will kick things off in our creative. Otherwise, set a timeout function of 100 milliseconds and call the
adChecker function again. This will occur over and over until the ad’s markup is fully rendered to the document. This
looping over and over again can be a costly operation, which is why I say the best sites provide callbacks for ads to
hook onto. They are a lot more efficient than this repeating function, especially on mobile.

Mobile Site Events

A common request from clients will be to have the ability to track site events on mobile devices. Site events are
tracking tags placed on an advertiser’s web site. When a user views or interacts with an ad and later visits the
advertiser’s site, a site event metric is fired, thus showing the ROI that the ad could potentially have made the user go
to the advertiser’s URL after taking notice of the ad. Site events traditionally operate on the cookie model for tracking;

CHAPTER 8 ■ MOBILE WEB ADVERTISING

205

in some mobile browsers this is perfectly fine. However, on iOS and mobile Safari, where third-party cookies are
disabled by default, these devices and browsers are prohibited from tracking site events using the cookie approach.
To better illustrate this setting, look at Figure 8-9, which exhibits the default settings on iOS.

Figure 8-9. Default cookie settings on iOS Safari

This state of affairs can be a big limitation if you’re relying on the cookie model in mobile ads. Instead, leverage
HTML5’s localStorage property to place that information, rather than a cookie, on the client’s browser. Listing 8-9
shows how this can be achieved in ad code using JavaScript.

Listing 8-9. A localStorage Site Event Example (Ad)

<script>
//iOS Site Events - local storage technique - platform.
function setiOSiteEvent (ad, placement, campaign, publisher) {
 var m = new Date().getMonth()
 var d = new Date().getDate();
 var y = new Date().getFullYear();
 var dom = window.location.href;

CHAPTER 8 ■ MOBILE WEB ADVERTISING

206

 var timeLoc = m + '/' + d + '/' + y + '&' + dom;
 var se = ad + '-' + placement + '-' + campaign + '-' + publisher + timeLoc;
 localStorage.setItem('SiteEvent', se);
}
setiOSiteEvent('advertiser', 'placement', 'campaign' , 'publisher');
</script>

As Listing 8-9 shows, you can make a function called setiOSiteEvent, which gets a few parameters that will
eventually be passed in by the ad server at ad-serve time. These could be the advertiser’s name, placement identifier,
campaign identifier, and the publisher where the ad is running. Next, inside our function, declare a few variables—m,
d, y—they accurately timestamp when the site event occurs. Next, grab a reference to the URL location by writing var
dom = window.location.href;—this will give the exact page location where the viewer saw the ad. Next, call another
var, timeLoc, which stands for time/location and gets a concatenated value of the time values and the location, or the
URL address. Next, create our final var, called se, which gets all of the ad server values, as well as our timestamp and
location values. Finally, call up our localStorage object and assign se to it by storing the value through a setItem call.
This localStorage.setItem call will store all of the site event (se) information to the user’s browser so the advertiser’s
page can later reference it. Listing 8-10 showcases how this could be performed on the advertiser’s page.

Listing 8-10. A localStorage Site Event Example (Advertiser’s page)

function getiOSiteEvent () {
 if(localStorage == '' || localStorage == null) {
 return;
 } else {
 //Grab iOS Site Event
 console.log(localStorage.getItem('SiteEvent'));
 var seCall = new Image();
 seCall.src = 'http://tracking.adserver.com?siteevent=' +
localStorage.getItem('SiteEvent');
 setTimeout(localStorage.clear(), 500);//Clear the information
once the metric is reported
 }
}

getiOSiteEvent ();

When a user visits the advertiser’s page, the function getiOSiteEvent will fire. In the function, check whether the
user has any location storage information. If the user doesn’t, just back out of the function; if the user does, create a
new Image (much like our third-party tracking example) and set its source attribute to the tracking location. Finally,
once the ad server gets the metric, set a time-out and clear the localStorage in the user’s browser so we never track
this value again. There are many ways, other than the dated cookie approach, to do this; generally, the choice will
depend on the ad server you’re using and the browser adoption of client-side storage techniques.

Mobile Video Advertising
At the time of writing, the biggest mobile advertising market is video—traditional in-stream or pre-roll video with VAST.
As the last chapter demonstrated, VAST is the IAB’s industry-wide specification for delivery of video ads to video players—
and mobile is no different. Mobile video being one of the fastest-growing markets in our industry, advertisers started
looking to use pre-roll ads to get the attention of all the eyeballs in the small screen space. Figure 8-10 (from eMarketer)
estimates worldwide mobile video use going into 2016.

http://tracking.adserver.com?siteevent

CHAPTER 8 ■ MOBILE WEB ADVERTISING

207

Many networks and publishers implement HTML5 support with their video players, and as I write, they’ve made
different degrees of progress. But expect implementation to grow over time. One technical concern, loading external
assets from an ad server, brings with it certain same domain security restrictions in native JavaScript. This is why using
a CORS method, as discussed in Chapter 6, is highly important for resource sharing. Let’s take a look at working with a
mobile VAST tag with reference to an HTML5-compliant video asset (see Listing 8-11).

Listing 8-11. Mobile VAST Example

<VAST version="2.0">
 <Ad id="12345">
 <InLine>
 <AdSystem>HTML5 Compatible</AdSystem>
 <AdTitle>VAST 2.0 Instream Test</AdTitle>
 <Description>VAST 2.0 Instream Test</Description>
 <Error>http://url/error</Error>
 <Impression>http://tracking/impression</Impression>
 <Creatives>
 <Creative AdID="12345">
 <Linear>
 <Duration>00:00:30</Duration>
 <TrackingEvents>
 <Tracking event="creativeView">http://tracking/creativeView</Tracking>
 <Tracking event="start">http://tracking/start</Tracking>

Figure 8-10. Estimated mobile video viewers worldwide, 2011–2016

http://url/error
http://tracking/impression
http://tracking/creativeView
http://tracking/start

CHAPTER 8 ■ MOBILE WEB ADVERTISING

208

 <Tracking event="midpoint">http://tracking/midpoint</Tracking>
 <Tracking event="firstQuartile">http://tracking/firstQuartile</Tracking>
 <Tracking event="thirdQuartile">http://tracking/thirdQuartile</Tracking>
 <Tracking event="complete">http://tracking/complete</Tracking>
 </TrackingEvents>
 <VideoClicks>
 <ClickThrough>http://www.somedomain.com</ClickThrough>
 <ClickTracking>http://tracking/click</ClickTracking>
 </VideoClicks>
 <MediaFiles>
 <MediaFile delivery="progressive" type="video/mp4" bitrate="1000"
width="640" height="360" scalable="true" maintainAspectRatio="true">
 http://cdn.somedomain.com/video.mp4
 </MediaFile>
 <MediaFile delivery="progressive" type="video/ogg" bitrate="1000"
width="640" height="360" scalable="true" maintainAspectRatio="true">
 http://cdn.somedomain.com/video.ogg
 </MediaFile>
 <MediaFile delivery="progressive" type="video/webm" bitrate="1000"
width="640" height="360" scalable="true" maintainAspectRatio="true">
 http://cdn.somedomain.com/video.webm
 </MediaFile>
 </MediaFiles>
 </Linear>
 </Creative>
 <Creative AdID="12345Companion">
 <CompanionAds></CompanionAds>
 </Creative>
 </Creatives>
 </InLine>
 </Ad>
</VAST>

It’s just regular VAST markup—however, look for the mediafile nodes (bolded) and the specific video asset used.
Can you see it? Three different video types (MP4, OGG, WebM) are being used in order to appease all the HTML5
browsers and their different format requirements. Also, keep in mind that some HTML5 video players may require
JSON code as opposed to XML. Again, this information will come from the specific publisher and their video player
requirements.

Native Device Features
This section will review some of the native features that mobile can access and the various APIs that give mobile
developers permission. Mobile browsers and devices have many features: phone calling, GPS location, deep linking into
app stores, accelerometers, gyroscopes, and compasses, to name a few. All these device features can be used to better
enhance your creative, as you’ll learn in the following sections. Some emerging devices even have support for NFC (near
field communication), barometers for detecting climate, and magnetometers for inspecting magnetics, all of which can
help your ad get really relevant information—like how humid it is when a user is viewing your ad. Let’s review how you
can use these amazing APIs and JavaScript to access these features and provide highly rich advertising experiences for
mobile with graceful failovers where they’re not supported. Before digging in, see http://mobilehtml5.org to learn
which APIs and features can be used to target specific devices and browsers.

http://tracking/midpoint
http://tracking/firstQuartile
http://tracking/thirdQuartile
http://tracking/complete
http://www.somedomain.com
http://tracking/click
http://cdn.somedomain.com/video.mp4
http://cdn.somedomain.com/video.ogg
http://cdn.somedomain.com/video.webm
http://mobilehtml5.org

CHAPTER 8 ■ MOBILE WEB ADVERTISING

209

Touch
Let’s start with touch, probably the most popular mobile device feature. You’re surely aware that most phones
and tablets in today’s market offer a capacitive touch screen interface, allowing users to interact with their fingers
as opposed to the traditional point-and-click mouse interface. This is a huge shift in the way web content is
developed, as the industry so accustomed to working with mouse clicks and mouseovers as a form of interaction and
measurement. Now developers can take advantage of taps, swipes, pinches, and other gestures to add interactivity to
creatives and thus open up a whole new world of immersive creativity for advertisers and creative agencies to work
inside. Instead of using traditional “click to expand” CTA, you’ll notice “tap to expand,” “tap to call,” “tap to map,” and
so on. These CTAs are ever more widely used in this, the dawn of touch devices, and specifically mobile advertising.

Touch Events

The following events are used when working with touch API on mobile and tablet: touchstart, which is triggered
when a finger is placed on any DOM element; touchmove, triggered when a finger is dragged along any DOM element;
and touchend, triggered when a finger is removed or picked up from any DOM element. Remember our viewport
settings? Mobile browsers natively have default touch settings. If you think about it, this won’t work so well if your
browser has its own set of swipe and gesture behaviors and your ad creative does, too. To work around this, set the
viewport so the user cannot scale using user-scalable=no. By following in your code editor and using the JavaScript
touch API, you can use the code to touch and drag an element onscreen and instruct the browser to prevent its default
behavior, which would be to move the window as a whole (see Listing 8-12).

Listing 8-12. Preventing the Browser’s Default Touch Behavior

<!DOCTYPE HTML>
<html>
<head>
<meta name="viewport" content="initial-scale=1, user-scalable=no">
</head>
<body>
 <div id="element" style="position:absolute; background-color:black; width:50px;
height:50px;"></div>
</body>
<html>
<script>
var element = document.getElementById("element");

element.addEventListener('touchmove', function(event) {
 event.preventDefault();

 if (event.targetTouches.length === 1) {
 console.log(event)
 var touch = event.targetTouches[0];
 // Place element where the finger is
 element.style.left = touch.pageX + 'px';
 element.style.top = touch.pageY + 'px';
 }
}, false);
</script>
</html>

CHAPTER 8 ■ MOBILE WEB ADVERTISING

210

If you refresh your page on a touch-capable browser, you can touch and drag the element all around the browser
using your finger. Wherever your finger goes, the element follows. This could be a great method for achieving a drag-
and-drop type of effect on touch-enabled browsers.

If you use touch a lot—and I hope you do when developing for mobile—a really good JavaScript framework,
called HammerJS (http://eightmedia.github.com/hammer.js), can speed up your development. This framework
allows you to rapidly develop with touch in mind and only costs around 2 kilobytes when compressed, which is
enough to use freely within a mobile ad unit.

Note■ When applying CSS3 transforms on input fields in touch-enabled browsers, some Android devices have lost

focus on input. It’s best not to apply CSS transforms until such issues are fixed in future versions.

Orientation
Orientation is another interesting feature of mobile devices (most of them have these sensors). Orientation simply
refers to how the user physically holds the actual phone or tablet. In either portrait or landscape mode, you can use
the orientation API to detect the screens layout and react accordingly. This is important to note, as you’ll more than
likely need to develop two variations of your ads for both versions or use a “safe area” that can fit comfortably within
both. Sometimes publishers will request delivery of two separate ad tags, but that will hopefully phase out soon, as
another HTTP call shouldn’t be made for a device-level feature. Ideally, a responsive ad layout, which can adapt to
the device’s screen, should be the goal. The typical case uses JavaScript and CSS to rework the creative to the new
dimensions and adjust the creative layout accordingly. Listing 8-13 can be used to detect orientation within your
creative.

Listing 8-13. Orientation Example (HTML)

<html>
<head>
<link rel="stylesheet" media="screen and (orientation:portrait)" href="portrait.css"><link
rel="stylesheet" media="screen and (orientation:landscape)" href="landscape.css">
</head>
<body>
</body>
</html>

From this code you can see that in the head of the document there are two style sheet references—one to handle
portrait layout and the other, landscape (notice the media query). This way, the ad creative can adjust its layout
accordingly, depending on the user’s orientation. There is also a way to achieve this effect by using straight CSS
(see Listing 8-14).

Listing 8-14. Orientation Example (CSS)

@media only screen and (orientation: landscape) {
 /* rules for device in landscape orientation */
 #ad {...};
}

@media only screen and (orientation: portrait) {
 /* rules for device in portrait orientation */
 #ad {...};
}

http://eightmedia.github.com/hammer.js

CHAPTER 8 ■ MOBILE WEB ADVERTISING

211

As you can see, CSS rules can include media queries specifically inside the CSS style sheet. To learn more about
other media queries you can target in addition to orientation, see http://w3.org/TR/css3-mediaqueries.

Note ■ At the time of writing, the orientation property in media queries did not work on Apple’s iPhone and some other

phone devices.

Still the best technique ,in my opinion, is to know the screen dimensions of the devices you’re serving for and
cater to each using CSS media queries and the orientationchange event in JavaScript. Listing 8-15 shows how to
detect the change event.

Listing 8-15. Orientation Example (JavaScript)

<!DOCTYPE HTML>
<html>
<head>
</head>
<body>
</body>
<script>
window.addEventListener("orientationchange", function() {
 if (window.orientation === 0 || window.orientation === 180) {
 //portrait
 showPortrait();
 } else {
 //landscape
 showLandscape();
 }
}, false);

function showPortrait () {
 document.body.style.backgroundColor = 'yellow';
}
function showLandscape () {
 document.body.style.backgroundColor = 'black';
}
</script>

</html>

http://w3.org/TR/css3-mediaqueries

CHAPTER 8 ■ MOBILE WEB ADVERTISING

212

Notice that an event listener is being added to the window object for the orientationchange event. If a device
changes orientation, it will broadcast this event, which can be adjusted for. Inside our function, notice that window.
orientation, a native property of the window object, is being checked for. If you find that it returns a 0 or 180, you
know that the device is in portrait, as shown in Figure 8-11.

Otherwise, it’s either 90 or −90, which means the device is in landscape orientation, as in Figure 8-12.

Figure 8-11. A device in portrait orientation

CHAPTER 8 ■ MOBILE WEB ADVERTISING

213

Since in advertising you mostly have to get things out the door pretty quickly, developing two creative layouts
simply isn’t an option. For this scenario, I typically instruct clients to develop for whichever orientation makes the
most sense for the ad layout and toggle an instruction card for users when or if they switch orientation. Figure 8-13
shows a recent iPad campaign that does just that. On the left you’ll see the instruction card for portrait layout, and on
the right you’ll notice the full ad experience.

Figure 8-12. A device in landscape orientation

Figure 8-13. Here’s how a mobile ad can have two different designs per orientation

CHAPTER 8 ■ MOBILE WEB ADVERTISING

214

In some cases, this is a better technique altogether, especially if the creative is a video that looks better in
landscape or if it’s a game that works better in portrait. Again, most of this will be dealt with on a case-by-case basis,
so be sure to take your own creative in consideration and instruct your clients before development.

Gyroscope, Compass, and Accelerometer
Since you’ve just learned about the orientation of mobile devices, let’s take it a step further and discuss the gyroscope,
compass, and accelerometer. Each of these APIs can give your ad creative rich enhancements by tying directly into
device features. A good example of how this API can be used in an ad experience is found at http://bit.ly/OAf8BX,
where it takes advantage of the accelerometer API as well as the Canvas to provide the user a mazelike experience.

In order to take advantage of these cool features, you’ll need to learn a bit about the deviceorientation spec.
The device orientation API outlines how the DOM will listen for specific events—such as deviceorientation,
compassneedscalibration, and devicemotion—to tap into via our ad’s JavaScript. Look at the code in Listing 8-16 to
see how to work with this API.

Listing 8-16. Accelerometer/Gyroscope Example

<script>
var ad = document.querySelector('#ad');
window.addEventListener("deviceorientation", function(event) {
 // process
 var a = event.alpha;
 var b = event.beta;
 var g = event.gamma;

 console.log('Alpha : ' + a + ' Beta : ' + b + ' Gamma : ' + g);
 ad.style.webkitTransform = 'translate3d(' + Math.round(a) + 'px, ' + Math.round(b) + 'px,
' + Math.round(g) + 'px)';
}, true);
</script>

You can see that we’re adding an event listener for the device orientation event, which will return an alpha, beta,
and gamma on the window’s orientation state. So what are alpha, beta, and gamma? They’re actually the measurement
of the rotation the device has from top to bottom, left to right, and rotating in a circular fashion (there is a more
detailed explanation in the orientation spec). Finally, take our ad element and apply a CSS3 transform on the ad unit
by calling a translate3d function and applying the alpha, beta, and gamma values to the x, y, and z properties of the
ad. If you’re following along, you should be able to see your ad element move about the screen based on how you
change the orientation. A pretty subtle but slick effect if you ask me!

Using the accelerometer also gives access to a “shake” gesture, but since some coding is required, be sure to
check out http://github.com/alexgibson/shake.js for quick implementations. For more information on the device
orientation specification, see http://dev.w3.org/geo/api/spec-source-orientation.html. For more on iOS and
compass use, see developer.apple.com/library/safari/#documentation/SafariDOMAdditions/Reference/
DeviceOrientationEventClassRef/DeviceOrientationEvent/DeviceOrientationEvent.html.

Note ■ There is a great example using the Webkit compass at http://help.arcgis.com/EN/webapi/javascript/

arcgis/help/jssamples_start.htm#jssamples/mobile_compass.html.

http://bit.ly/OAf8BX
http://github.com/alexgibson/shake.js
http://dev.w3.org/geo/api/spec-source-orientation.html
http://developer.apple.com/library/safari/%23documentation/SafariDOMAdditions/Reference/DeviceOrientationEventClassRef/DeviceOrientationEvent/DeviceOrientationEvent.html
http://developer.apple.com/library/safari/%23documentation/SafariDOMAdditions/Reference/DeviceOrientationEventClassRef/DeviceOrientationEvent/DeviceOrientationEvent.html
http://help.arcgis.com/EN/webapi/javascript/arcgis/help/jssamples_start.htm#jssamples/mobile_compass.html
http://help.arcgis.com/EN/webapi/javascript/arcgis/help/jssamples_start.htm#jssamples/mobile_compass.html

CHAPTER 8 ■ MOBILE WEB ADVERTISING

215

Protocols
Another great feature to take advantage of in mobile advertising is calling and texting from directly within the ad
experience. Specific protocols can be used for TEL and SMS, among others in mobile devices. TEL and SMS can let a
user open the native phone or text-messaging client on the device. This example demonstrates how to do it.

Call!
Text!

This simple interaction provides a great user experience; users don’t have to copy and paste text and toggle
between applications. All they need to do is tap on the link CTA and get prompted with the notification to call or text.
This is really great if you want to have someone contact customer service or even schedule a test drive for a vehicle at a
local car dealership. In addition to these built-in protocols, native applications can assign their own protocols to open
up themselves from the browser when a user interacts on specific links. Here is a code snippet that shows how Apple’s
Facetime and Microsoft’s Skype use their own protocols.

Facetime me!
Skype!

Keep in mind that many applications have their own protocols, but in the mobile space, this could be very
advantageous for an advertiser. This isn’t specific to phone or communication applications either; content providers
and publishers—including the Wall Street Journal, which uses wsj://—use protocols to open specific user
interactions inside an application from a link. This is a very nice feature when seamless communication between a
web page or ad and the native application. You can give users a taste of information from within the ad unit and ask
them to read more by digging deeper within the application environment.

MMA and the IAB
You may be asking yourself a question about standards and mobile advertising guidelines while reviewing all of this
information. Luckily much as in desktop advertising; there is a set of emerging standards and guidelines to adhere to
in mobile as well. The Mobile Marketing Association (MMA) (http://mmaglobal.com) and the Interactive Advertising
Bureau (IAB; http://iab.net) are the standards organizations for mobile online advertising. The MMA traditionally
focuses on static advertising, whereas the IAB focuses more on rich advertising within the mobile landscape. Here are
some of the common mobile ad unit sizes for rich and static as set by the IAB and the MMA.

typical mobile rich media banner sizes: 300 × 50, 320 × 50•฀

typical mobile rich media panel sizes: 300 × 300, 320 × 320 or Full-Screen (320 × 480)•฀

requires a Close button on panel•฀

static MMA sizes•฀

XL (300 × 50)•฀

large (216 × 36)•฀

medium (168 × 28)•฀

small (120 × 20)•฀

The IAB also focuses on mobile rich media formats called “rising stars,” formats that are much more engaging f
or ad publishers and ad servers to adopt. Such formats include Full Screen units, Sliders, and the Filmstrip
creative ad units. Each offers a unique experience; they go well beyond the static banner real estate. See
http://iab.net/risingstarsmobile to learn more.

http://mmaglobal.com
http://iab.net
http://iab.net/risingstarsmobile

CHAPTER 8 ■ MOBILE WEB ADVERTISING

216

Device Testing
As this chapter closes out, I want to touch on the tools you can use when dealing with mobile development—it can
get overwhelming, I know! Testing on all of these mobile devices can be a pain. There are just too many devices out
there in the wild to control how your content will look and behave on every screen. There are many services out there
to do virtual device and browser testing: Device Anywhere, BrowserStack, Opera’s Mobile Emulator, and others. They
are very good, but nothing is as accurate as testing on real thing, so be sure to reach out to the online community to
initiate some testing on devices they may have readily available to them. There are also various free tools on the Web
to relieve your mobile development woes: http://jsconsole.com, http://remote-tilt.com, and mobile “view
source” tool, http://snoopy.allmarkedup.com, all have really great free feature sets. In addition, there are free remote
debugging tools: Adobe Edge Inspect (formally Adobe Shadow) [http://html.adobe.com/edge/inspect], Weinre
[http://people.apache.org/~pmuellr/weinre/docs/latest], and Safari’s new developer tool set for iOS 6 are worth
checking out. In the end, sometimes you’ll absolutely need to test on the actual device, so if you need to drive to your
local electronics store to check up on the latest devices, do so—especially if your client will be on the devices not
available to you. Chances are you’ll have at least one client who will view your creative on a “one in a million” device,
and it could potentially cost you the entire campaign if you’re not testing for it.

Summary
This chapter has covered a lot on mobile advertising and the mobile web. The landscape is wide, and the
fragmentation is pretty apparent. Certain technologies work only in some browsers, devices, and operating system
versions. Mobile advertising and HTML5 go hand in hand, and mobile has specific takes on how it works with the
evolving HTML5 spec and what its various API developers can gain access to. We had a review of the mobile world
we live in and how to build for it, and there was even discussion of various native device features you can tap into for
building rich ad creatives. Hopefully, after reading this chapter, you’ll feel confident in answering a client’s question
like “Can JavaScript be used along with HTML5 to develop an interactive ad for the iPad?” The next chapter focuses
on the vast world of mobile in-application advertising. This is where things get trickier and the fragmentation in the
space becomes noticeably thicker. But it’s also where mobile advertisements have much more complexity and more
engaging features available to them. If you’re ready, let’s dig into the world of in-application advertising.

http://jsconsole.com
http://remote-tilt.com
http://snoopy.allmarkedup.com
http://html.adobe.com/edge/inspect
http://people.apache.org/~pmuellr/weinre/docs/latest

217

Chapter 9

In-Application Advertising

After reviewing Chapter 8 about mobile web advertising, it’s time to jump in and understand how advertisers get their
advertisements into the budding world of applications. These applications can be anything from apps on a phone that
users download from an app store to apps on game consoles or smart TVs. I’ll discuss the different environments per
device and OS and discuss use cases for all. I’ll review software development kits (SDKs) and how they’re involved in
serving ads as well as how ads can have much more feature-rich capabilities when served into an app than a mobile
web environment. I’ll talk about SDK providers such as AdMarvel, Medialets, and Millennial Media, which provide
in-app advertising, and I’ll focus on the IAB’s solution and standard with the ORMMA and MRAID API.

Note ■ Keep in mind while reviewing this chapter that SDKs and applications change. This chapter covers what to do

currently, but the information may change as SDK vendors and content owners update their SDKs or use other vendors to

traffic their ads.

Mobile Applications
Mobile applications are native applications that run on your mobile device. Think of them as applications like
Microsoft Office or Adobe Photoshop that run natively on your desktop computer but are on your phone or tablet
instead. Mobile applications are used instead of forcing a user to visit a URL in a browser; in addition, by offering an
application, the content owner has full control over their application because it lives outside the walls of the device’s
browser. Application developers create these “apps” by using the low-level code that the operating system relies
on. In the case of Apple iOS, it is Objective-C, and for Android, it is Java. Developers with these skills can create a
very lucrative career for themselves developing applications for productivity, entertainment, or even gaming. The
market for applications is booming, to say the least, because in-application purchases accounted for $970 million in
sales in 2011. By 2015, that figure is anticipated to grow to $5.6 billion. Juniper Research reported in 2012 that in-app
advertising will hit $2.4 billion by the end of the year. By 2015, that figure will soar to $7.1 billion. These applications
get a lot of views because people can download them to their devices at any time for a very small fee, or even free.
This, of course, brings a lot of attention to the application market and how easy it is for users to grab them up.

There are close to a million different applications to choose from in the various app stores such as Apple’s App
Store, Google’s Play marketplace, and BlackBerry’s App World; each app varies in function and price, all the way down
to free with the possibility of making in-application purchases. In the following sections, I’ll cover some of the leading
application marketplaces.

CHAPTER 9 ■ IN-APPLICATION ADVERTISING

218

Apple
Apple is no stranger to the mobile application market. With iOS and the Apple App Store, users can browse for more
than half a million applications, and most of the apps are free with the inclusion of advertising. Developers used to be
able to grab a user’s unique device identifier (UDID) in their apps, but Apple removed this feature because it posed
threats to privacy concerns among users. Basically, having a UDID for a user allows app developers to better target an
advertiser’s message to the right customer through their application. Tying information such as location, time, and
interest all to a unique device ID or hash means an advertiser can better understand who is viewing their ad content
and when. Although UDIDs are now not accessible for applications to access for advertising in iOS, there is another
advertising identifier as of iOS 6 that allows for apps to better target by similar means. In addition, there is even an
initiative for an open UDID called OpenUDID, which would be accessible by all devices, but it has yet to really take off
(http://github.com/ylechelle/OpenUDID).

Apple pretty much reigns supreme in the app market with the number of quality apps offered in such a controlled
developer environment. This coupled with the explosive growth of Apple’s iDevices means that applications are a very
fruitful market to be in. Figure 9-1 shows what eMarketer projects for U.S. iPad users over the next three years.

Figure 9-1. U.S. iPad users 2010 to 2015 (Source: eMarketer.com)

Figure 9-1 says by 2015 about 90 million U.S. users will be touching and interacting with iPad tablets. With this
many people making the switch to tablet-based experiences as opposed to traditional desktop apps, expect to see
more applications and advertisers moving into this space.

Android
Google’s Android is the other main competing application operating system. Google, as of last year, has the most
OS installs per device worldwide, and many believe it’s because it provides a stable and open operating system
that can be installed across many manufacturer’s devices such as Samsung, LG, Motorola, and others
(http://canalys.com/newsroom/smart-phones-overtake-client-pcs-2011). Google provides a very similar
experience as the Apple App Store to download and install applications on Android devices; Google’s store is called
Google Play (http://play.google.com/store/apps). From an Android device, users can navigate through close to a
million apps, both free and paid. Much like its competitor, Apple, since many of these apps are offered for free, Google
apps generally are fueled by an advertising-based model.

One important thing to note about Android is that its operating system versions vary tremendously among
its user base, which is why for Android you often hear about fragmentation. This fragmentation arises because of
all the different OS versions and the users’ inability or lack of interest to adopt the latest versions. I state “inability”
because many devices are not capable of updating to the latest versions of Android, which makes its user base very

http://github.com/ylechelle/OpenUDID
http://eMarketer.com
http://canalys.com/newsroom/smart-phones-overtake-client-pcs-2011
http://play.google.com/store/apps

CHAPTER 9 ■ IN-APPLICATION ADVERTISING

219

diverse. This, in turn, creates a lot of extra work for developers and designers creating native apps and HTML5-based
advertisements. This is one of the main reasons that iOS remains very attractive to developers; its user base adopts
(and is capable) of installing the latest OS very quickly, which gives developers an even playing field to deploy content
toward. To better understand this fragmentation, visit http://allthingsd.com/20120920/usage-of-apples-ios-6-
hits-staggering-levels-on-first-day-of-availability, where you’ll find that Android’s OS adoption rates fails
in comparison to Apple’s iOS.

Android still remains a top competitor in the mobile OS landscape, and if you’re interested in building
applications for the world’s largest mobile operating system, visit http://developer.android.com/sdk/index.html.

Others
Many other mobile operating systems are in the market, including BlackBerry with its App World (http://appworld.
blackberry.com) and Windows Phone with its store (http://windowsphone.com/store), but all currently have a very
small slice of the global OS pie compared to iOS and Android. BlackBerry is expected to release its latest and greatest
OS called BlackBerry 10 by 2013, which could be the push that the company so desperately needs. Read more of the
features at http://blackberry.com/BlackBerry-10.

Windows Phone has also had a slow start with Windows Phone 7, according to research firm Nielsen (http://
blog.seattlepi.com/microsoft/2011/06/30/windows-phone-7-has-thin-sliver-of-u-s-share-nielsen-says),
but expect big changes because Windows should be taking off with its Windows 8 update, which released in conjunction
with Microsoft’s first tablet, called Surface. Windows first coined this new operating system’s UI as “Metro” but
has since removed that branding for Windows 8 UI. BlackBerry and Windows remain competitive in the mobile
landscape, and if you’re building advertisements that need to deploy across various applications on these OSs, you’ll
need to read on to understand how to take advantage of the vastly fragmented mobile market.

In-Application Advertising
You may have guessed that with all of these app stores, the number of users on these devices, and the number of free
applications, it’s only a matter of time until advertisers take notice and move some of their ad spend to this emerging
digital outlet. Well, you’re exactly correct. In-app advertising is becoming a huge market for developers’ revenue
stream when developing native applications for devices. Many content providers and developers are offering their
apps for free with an ad-supported model. Take the very popular game Word with Friends, which runs on any OS and
comes in free and paid versions for users to download. Both games offer very similar experiences to the end user, with
the exception of ads in the free version and no ads in the paid. With millions upon millions of downloads of these
popular games, advertisers are taking notice that the eyes aren’t all on desktop or TV any longer, so they’re shifting ad
dollars over to where the eyeballs are.

In-application advertising is not really new; in fact, ever since the tablet market was “invented” by the Apple iPad
in 2010, advertising was there, in applications, from day one. For example, the ad server PointRoll served the ad units
shown in Figure 9-2, the first day the iPad was released to users. Figure 9-2 showcases a rich media Lincoln ad that
was deployed through the TextPlus (http://textplus.com) application using the SDK provider AdMarvel on the iPad.

http://allthingsd.com/20120920/usage-of-apples-ios-6-hits-staggering-levels-on-first-day-of-availability
http://allthingsd.com/20120920/usage-of-apples-ios-6-hits-staggering-levels-on-first-day-of-availability
http://developer.android.com/sdk/index.html
http://appworld.blackberry.com
http://appworld.blackberry.com
http://windowsphone.com/store
http://blackberry.com/BlackBerry-10
http://blog.seattlepi.com/microsoft/2011/06/30/windows-phone-7-has-thin-sliver-of-u-s-share-nielsen-says
http://blog.seattlepi.com/microsoft/2011/06/30/windows-phone-7-has-thin-sliver-of-u-s-share-nielsen-says
http://textplus.com

CHAPTER 9 ■ IN-APPLICATION ADVERTISING

220

The Lincoln ad was pretty groundbreaking when it comes to first-to-market and innovative tablet advertising. A
user’s experience was to tap the static banner within the application, where they were taken to a full-screen immersive
environment with video, high-resolution images, and multiple layouts depending on the orientation of the device.
This experience paved the way for even more innovative ad experiences including gaming, interactivity, and live
polling. Soon advertisers learned that anything you can do on the desktop, you can pretty much bring to the mobile
and tablet environments as well.

With advertisers dipping into this medium more and more, it’s anticipated that additional dollars will pump into
this market for years to come. In fact, eMarketer and Juniper Research state that the in-application advertising spend
will reach more than 7 billion dollars in 2015 (see Figure 9-3).

Figure 9-2. One of the first rich iPad ads

CHAPTER 9 ■ IN-APPLICATION ADVERTISING

221

With in-app ad spending on the rise for the next few years to come, now is a perfect time to learn how to deploy
rich advertisements to these new distribution channels. But it’s not all fun and profit just yet; there are some key
technological points you’ll need to grasp before you can develop across OSs. You may think that all the bugs are
ironed out by now and that this landscape is much less fragmented than what you learned initially with HTML5
and other mobile devices in general. Sadly, this is far from the case, and in the next section, you’ll learn about the
additional fragmentation that needs to be considered when working with in-application ads.

SDKs
Fragmentation in HTML5 is pretty apparent, as you’ve learned in previous chapters. It’s even more so in the mobile
web space, with all the different operating systems, version numbers, and various levels of HTML5 compliance.
For the in-application world of mobile, it gets even trickier because now developers have to understand which
applications support which ad platform SDKs and versions of the SDK. Software development kits (SDKs) are used
by many publisher and application ad servers to handle the trafficking and scheduling of various ad tags in many
different application environments. Think of SDKs as the mediatory level between the ad management system and
the application living on a user’s device. Since SDKs are really just a bit of code to include in the native application,
the developer needs the foresight to see that their application should or will include advertising at some point. For
example, currently some applications such as Facebook, Instagram, and even Twitter do not have ads, so no third-
party ad SDKs would be needed in the development of their applications. However, applications like the Wall Street
Journal, USA Today, and Pandora Radio offer advertising to a user in exchange for free content, whether it be music,
sports, or news. These ads are typically trafficked through a publisher-side ad server and application SDK. On one
side of things, you have the ad server’s campaign management tool, which allows users to schedule and target their
tags as well as set up basic delivery rules. On the other side of things, you have an SDK that communicates with that
campaign management tool in order to receive the specific ads scheduled. Figure 9-4 better illustrates the connection
between the two ends.

Figure 9-3. Mobile in-app ad spending worldwide 2012 to 2015 (Source: eMarketer.com)

http://eMarketer.com

CHAPTER 9 ■ IN-APPLICATION ADVERTISING

222

In Figure 9-4, you can see that the application content will make a request to the ad server through the SDK.
Once the ad server understands what application is making the ad request, it returns the appropriate ad content
through the SDK. So, you may be thinking that there has to be a standard way of doing this, right? Well, to answer your
question, the answer is both yes and no. Currently, there are many different publisher ad servers as well as SDKs in
the mobile in-app landscape, and in the following sections, you’ll take a closer look at some of the more popular ones
that you’ll deal with when developing for in-app campaigns.

Apple’s iAd
One of the more popular in-application ad networks is Apple’s own iAd platform (http://advertising.apple.com).
The Apple iAd platform allows developers to obtain revenue through banner and rich full-screen advertisements,
where Apple sells the advertising space within your application and delivers the ads via its network to fill the ad slots.
Application developers can then earn income when users view (impressions) or interact (activities) with the ads that
are displayed in the application.

Introduced to iOS developers and advertisers in version 4.0 of the OS, the Apple iAd platform used to come with
an extremely large price tag of $1 million per advertising campaign but has since come down significantly because of
the lack of initial participants. To use Apple’s iAd platform, you must become an Apple developer and iAd Network
member, and only then can the application publisher or developer control the ads that get served into the apps. With
iAd, developers can use free tools from Apple such as the iAd Producer, which allows for a clean interface for building
iOS ads quickly. In addition, since the ads are built for iOS and Apple devices such as the iPhone and iPad, developers
can take advantage of some really amazing in-app features such as the following:

Download an app or iTunes content in the background•฀

Add a reminder directly to the calendar app•฀

Compose and send branded e-mails from within an ad, using their contact list•฀

Experience immersive 3D graphics with WebGL support (more on WebGL in Chapter •฀ 12)

View in-line audio and video in a custom frame•฀

Save coupons, barcodes, recipes, or branded wallpaper•฀

Find nearby stores using geolocation•฀

Figure 9-4. The communication between application and ad server through an SDK

http://advertising.apple.com

CHAPTER 9 ■ IN-APPLICATION ADVERTISING

223

In addition to the rich features available to iAd users, valuable metrics and analytics are also available via the
platform such as the following:

Impressions•฀

Taps and tap-through rate•฀

Unique visits•฀

Average time spent•฀

Views and views per visit•฀

Interactions (videos viewed, games played, and so on)•฀

Conversions and downloads•฀

Finally, iAd also provides some rich audience and device targeting features such as the following:

Demographics•฀

Application preferences•฀

Music, movie, TV, and audiobook genre interests•฀

Location•฀

Device (iPhone, iPad, iPod touch)•฀

Network (WiFi, 3G)•฀

If you’re a publisher or content owner and looking to utilize the iAd platform within your application, I strongly
recommend visiting http://developer.apple.com/library/ios/#DOCUMENTATION/UserExperience/Conceptual/
iAd_Guide/Introduction/Introduction.html.

Google’s AdMob*
As you’ve may have guessed, Google is in this space as well with its large mobile advertising platform called AdMob
(http://google.com/ads/admob). Google acquired the company in 2009 for a cool $750 million dollars, and currently
AdMob runs billions of banner and text-based ad impressions a year. Its SDK operates across Android, iOS, and
Window Phone 7 applications and manages multiple ad networks into a single interface. AdMob provides a huge
ad network mediation by working with networks like Adfonic, BrightRoll, HUNT, iAD, InMobi, Jumptap, Millennial
Media, MobFox, and many others to provide a single interface for ad management. Application developers install the
SDK code base into their app and can earn revenue by serving Rich Media advertising within the environment. In
addition to the SDK, AdMob interfaces directly with DoubleClick for publishers (DFP), which allows users to fill ad
inventory directly through the AdMob advertising network. AdMob allows for rich media, offers advanced creative
formats leveraging HTML5, and offers audience targeting to specific demographics and locations. To download the
latest AdMob SDK, visit http://developers.google.com/mobile-ads-sdk/download. For example, for applications
using the AdMob SDK, visit http://code.google.com/p/google-mobile-dev.

Opera’s AdMarvel*
Another mobile ad server and SDK provider is AdMarvel http://admarvel.com. Owned by the browser manufacturer
Opera, AdMarvel is a powerful publisher-side ad server, optimization/mediator (mobile ad exchange), and rich
media SDK provider. Much like AdMob, it provides an iOS and Android SDK as well as a BlackBerry SDK. As such, app

http://developer.apple.com/library/ios/#DOCUMENTATION/UserExperience/Conceptual/iAd_Guide/Introduction/Introduction.html
http://developer.apple.com/library/ios/#DOCUMENTATION/UserExperience/Conceptual/iAd_Guide/Introduction/Introduction.html
http://google.com/ads/admob
http://developers.google.com/mobile-ads-sdk/download
http://code.google.com/p/google-mobile-dev
http://admarvel.com

CHAPTER 9 ■ IN-APPLICATION ADVERTISING

224

developers/publishers can have the best of services and have access to other rich media providers while reducing the
SDK clutter within their applications. Through the AdMarvel interface, standard targeting includes the following:

Time•฀

Region•฀

Devices•฀

Operating system•฀

Network carrier•฀

Note that custom targeting is also available (to AdMarvel specifically). This means that campaign managers
and developers can set rules for certain ad tags to render to a user’s device based on the previous inputs. This is very
helpful when you want to offer customized messaging or creative to a specific device, time of day, or even cell
network status.

Medialets*
Another popular mobile rich media ad server and SDK provider is Medialets (http://medialets.com). Specializing
in mobile rich media specifically, Medialets has a large penetration in the market for both online publishers and
digital publications like e-magazines. Medialets offers its own SDK for integration into iOS, Android, and BlackBerry
applications and provides a suite of analytics to measure the effectiveness of your campaign. Because Medialets
is an SDK provider working within the application environment, it can offer great targeting including time of day,
geolocation, app content, device type, and connection status.

Millennial Media
Millennial Media (http://millennialmedia.com) is the self-proclaimed largest independent mobile ad network,
competing with the big players of Google’s AdMob and Apple’s iAd. Millennial Media also brings to the table a full
SDK (MMSDK) where it can serve rich media mobile ads into various applications on various devices. You can
download the MMSDK for a variety of device operating systems including iOS, Android, BlackBerry, Windows Phone,
PSP, and WebOS, to name a few. Through Millennial Media’s tools, developers can support interactive mobile video
ads, mobile rich media, and traditional banner ads all with real-time results and analytics. Millennial Media also
offers targeting, including demographic, behavioral, geolocation, and contextual, among others. You can learn more
about its tool set at http://tools.mmedia.com (be sure to register first).

Others
The list goes on for mobile ad networks and SDK providers offering HTML5-driven rich media. There are too many
to name for the scope of this book, and it’s an ecosystem that is constantly changing. But to outline a few others so
you’re aware of them, you may also need to traffic your ad tags into networks like Jumptap (http://jumptap.com),
Greystripe (http://greystripe.com), and InMobi (http://inmobi.com); note that they may rely on an SDK that
wasn’t mentioned here. In fact, certain applications have their own “homebrewed” SDKs for ad serving, like the
Pandora Music app, and when serving into applications like these, the app provider, the SDK vendor, and the creative
agency together need to determine what calls need to be made to the platform to recognize certain rich features of
the ad such as whether the ad is expanding or closing. Pandora is not amateur to the mobile space, but for some
reason it choose not to go with providers like iAd, Millennial Media, and AdMeld, perhaps because of security issues
(http://cnnmoneytech.tumblr.com/post/4588292154/pandora-boots-its-outside-ad-platforms).

http://medialets.com
http://millennialmedia.com
http://tools.mmedia.com
http://jumptap.com
http://greystripe.com
http://inmobi.com
http://cnnmoneytech.tumblr.com/post/4588292154/pandora-boots-its-outside-ad-platforms

CHAPTER 9 ■ IN-APPLICATION ADVERTISING

225

The point of all this SDK vendor information is that these SDKs need to be referenced by the HTML5 ad creative
you deliver. This communication between the ad and the SDK vendor happens by way of an API, and it typically
communicates through the ad’s JavaScript code. For mobile rich media ads that expand, close, and offer video and
gaming, the application housing the ad needs to understand what state the ad is in based on user interaction. This
may seem familiar because I discussed working with the VPAID API inside the publisher’s video player in Chapter 7.
Basically, same rules apply here, the ad needs to communicate to the publisher’s app so the experience isn’t jarring
to the end user. The problem is that with all of these different vendors in the space, it’s hard to understand what API
works across all of them, if one even exists. This is where the fragmentation occurs within the mobile in-application
space. This can vary tremendously across networks and devices, which makes it very tough for an advertiser to secure
a media buy that will run flawlessly everywhere.

For example of working with a “home brew” solution, when working with the Pandora application, you can use
the code snippet shown in Listing 9-1 to run a basic expand/collapse rich media ad within its mobile application.

Listing 9-1. Pandora App API Example

<!DOCTYPE HTML>
<html>
<head>
<meta name = "viewport" content = "width=device-width">
</head>
<body>
 <button onclick=expandPandora()>Open Panel</button>
 <button onclick=closePandora()>Close Panel</button>
</body>
<script>
document.addEventListener('DOMContentLoaded', function() {

}, false)

function expandPandora() {
 try {
 PandoraApp.setViewportHeight(300)
 } catch (e) {
 console.log (e + " No PandoraApp Reference")
 };

 initExpand();
}

function initExpand () {
 console.log('initExpand')
}

function closePandora () {
 try {
 PandoraApp.setViewportHeight(50);
 } catch (e) {
 console.log(e + " No PandoraApp Reference")
 };

CHAPTER 9 ■ IN-APPLICATION ADVERTISING

226

 closeExpand();
}

function closeExpand () {
 console.log('closeExpand')
}
</script>
</html>

As you can see from the previous example, working with Pandora’s SDK via JavaScript calls is fairly straightforward,
but it works only for Pandora. An advertiser running ads across other publishers will need to have a customized ad
for each one, and operationally this does not make sense for scale and quick turnaround times because you could be
tasked with creating a large conditional statement inside your script to interface with all the vendor’s APIs.

Note ■ The Pandora code in Listing 9-1 works at the time of this writing, but please note all of this is subject to change

at the discretion of the publisher and application provider.

For the purposes of thinking that this ad could be trafficked to publishers outside of Pandora, I like to wrap my
calls in a try/catch method. While not the best coding practice, it ensures that if the Pandora object does not exist,
the code would just log a message and continue running without any breaks. For now, this is a good practice when
you want one ad to run across multiple sites and networks. Again, this specific use case is just for Pandora, but you
can easily see how this can get out of hand quickly! Having a developer add numerous try/catch statements or
conditionals is a lot of added work and testing, and between what features you can use in what browser, on what
device, on what operating system version, adding this SDK fragmentation to the puzzle can really make your head
hurt! (Remember how advertisers want scale?) There has to be something better, right?!

ORMMA and MRAID
So, with all of these applications, you may be asking yourself, “What gives? Why do I need to worry about this
additional SDK fragmentation on top of everything else I need to worry about in this already diverse landscape with
HTML5 ad development?” Well, for some time (and even as I write this), this is the way it has been because vendors
thought they could tie their clients into using their own proprietary SDK code base, thus resulting in the clients being
“stuck” with them for ad serving. While a pretty clever business model because it makes it hard for developers to make
the switch, the reality is that it’s not a long-standing one, and with that, I introduce to you ORMMA (http://ormma.
org) and MRAID (http://iab.net/mraid).

Open Rich Media Mobile Advertising (ORMMA) was an industry-wide initiative for advertisers to have one
common set of rules for displaying rich media ads across various mobile application platforms. ORMMA was an
SDK and an API for allowing ad designers to use a common way to interface with ORMMA-compliant applications.
Application developers would have needed to follow the ORMMA specification to allow ad designers to add
compelling rich media ads into their apps. While ORMMA started the building blocks for executing mobile rich media
at scale, it is a thing of the past now with the release of the IAB’s MRAID.

Mobile Rich Media Ad Interface Definition (MRAID) is essentially what VPAID is to publisher video players
except for mobile applications. Founded on many of the principals that ORMMA addressed, its sole purpose is to ease
fragmentation across devices, applications, and ad servers so mobile rich media can be a profitable industry. MRAID
is backed firmly by the IAB and has a dedicated working group committed to its development. The IAB believes
that MRAID should be the de facto standard for having mobile rich media ad units communicate with application
environments. Currently on its second version, MRAID allows mobile ad developers to utilize a set of standard
functions to communicate between the ad and application’s SDK, for instance telling the application the ad will

http://ormma.org
http://ormma.org
http://iab.net/mraid

CHAPTER 9 ■ IN-APPLICATION ADVERTISING

227

expand, close, or even play a video. MRAID isn’t meant to trample HTML5 or the current APIs; instead, it’s there to aid
in the development for ad designers where certain HTML5 fragmentation may still exist.

MRAID is meant to be simplistic and implemented easily and has no dependency on various SDKs. In fact, the
only requirement for MRAID is that the SDK the application chooses should be MRAID compliant and recognize
the API calls from within the ad code. This information would come only from the publisher or possibly the IAB who
keeps tabs on who is MRAID certified and not. However, most SDK vendors I mentioned earlier are working toward
MRAID compliance, so working within their platforms should be fine going forward.

So, now that you know a little bit about why MRAID is important to ad designers, let’s review some basic MRAID
code in the following section and in Listing 9-2.

Note ■ At the time of writing, the SDK sections marked with * are said to be compliant supporting the IAB’s MRAID.

MRAID Code
Being that all SDKs going forward should be MRAID compliant, it’s worth reviewing the MRAID code for interfacing
with compliant SDKs in applications. Listing 9-2 outlines a rudimentary expandable ad using basic MRAID
API functions.

Listing 9-2. MRAID JavaScript API Example

<!DOCTYPE HTML>
<html>
<head>
<meta name = "viewport" content = "width=device-width">
</head>
<body>
 <div id='cta' hidden data='http://johnpercival.org'>Click Here</button></div>
 <section id='banner'><button onclick=expandMRAID()>Open Panel</button></section>
 <section id='panel'><button onclick=closeMRAID()>Close Panel</button></section>
</body>
<script>
function checkMRAID (){
 if (mraid.getState() != 'ready') {
 console.log("MRAID Ad: adding event listener for ready");
 /* mraid still loading, registering for ready event */
 mraid.addEventListener('ready', init);
 } else if (mraid.getState() === 'ready') {
 console.log("MRAID Ad: already ready, calling init");
 init();
 } else {
 console.log("MRAID Ad: I think its ready, calling init");
 init();
 }
}

function init () {
 mraid.removeEventListener('ready', init);

http://johnpercival.org

CHAPTER 9 ■ IN-APPLICATION ADVERTISING

228

 console.log("Mraid Version = " + mraid.getVersion());
 console.log("Mraid Placement Type = " + getPlacementType());

 mraid.setExpandProperties({
 width : 320,
 height : 480,
 useCustomClose : true
 });

 mraid.addEventListener('error', handleErrorEvent);
 mraid.addEventListener('stateChange', handleStateChangeEvent);

 document.getElementById('cta').removeAttribute('hidden');
 document.getElementById('cta').addEventListener('click', function() {
 var url = document.getElementById('cta').getAttribute('data');
 openBrowser(url);
 });
}

function expandMRAID () {
 try {
 mraid.expand();
 } catch (e) {
 console.log(e + " No MRAID Reference")
 };
}

function closeMRAID () {
 try {
 mraid.close();
 } catch (e) {
 console.log(e + " No MRAID Reference")
 };
}

function handleStateChangeEvent(state){
 switch (state) {
 case "default":
 document.getElementById('banner').style.display = 'block';
 document.getElementById('expandable').style.display = 'none';
 break;
 case "expanded":
 document.getElementById('banner').style.display = 'none';
 document.getElementById('expandable').style.display = 'block';
 break;
 }
 console.log("State - " + state + " at handleStateChangeEvent");
}

CHAPTER 9 ■ IN-APPLICATION ADVERTISING

229

function openBrowser(href) {
 try {
 mraid.open(href);
 } catch (e) {
 console.error(e);
 } finally {
 window.setTimeout('location.href="' + href + '"', 150);
 }
}

function handleErrorEvent (message, action){
 var msg = "MRAID ERROR ";
 if (action != null) {
 msg += "caused by action '" + action + "', ";
 }
 msg += "Message: " + message;
 console.error(msg);
}

window.addEventListener("DOMContentLoaded", function() {
 try {
 var head = document.getElementsByTagName('head')[0];
 var js = document.createElement('Script');
 js.setAttribute('type', 'text/javascript');
 js.setAttribute('src', 'mraid.js');
 head.appendChild(js);
 } catch (e) {
 console.log("Error injecting mraid.js");
 }
 console.log('DOM Loaded');

 checkMRAID();
});
</script>
</html>

The code outlines how to interface with the MRAID API in the most simplistic of senses. The first thing you need
to do as an ad developer is to signify that you are an MRAID ad by adding the mraid.js script to your ad tag. You do
this by listening for the DOMContentLoaded event because this will fire before your DOM load event. It’s crucial that
you present this information to the SDK as soon as you are able because this is the sole signifier that you are working
with an MRAID ad. If you don’t have the ability to listen and handle for the DOM events, your ad script tag should
include the mraid.js file as the first script tag within its markup by writing <script defer src='mraid.js'>.

Note ■ DomContentLoaded is supported in Chrome, Firefox, Opera, Safari, and IE9+. If you’re targeting IE8, be sure to

use onload or DOM ready if using jQuery.

Back to the code: next you listen for the MRAID ready event by adding an event listener in the method
checkMRAID();. Sometimes the event fires before you can call your listener to handle it, so in that case, you can just
assume MRAID is present and loaded and can safely call init();. Inside of init you remove the event listener,

CHAPTER 9 ■ IN-APPLICATION ADVERTISING

230

check what MRAID version the SDK is supporting, and check what placement type you are. This information can be
very important to an ad developer so they can adapt the ad experience if certain features aren’t supported in earlier
versions of the MRAID API. You also set your expand properties by setting a width of 320, setting a height of 480, and
telling the SDK that you are using your own custom close button so you do not need to have the SDK supply one for
you when you are expanded. Lastly, you add two more event listeners for errors on MRAID as well as state changes
on the ad. Finally, when the ad calls expandMRAID() and closeMRAID(),you can call the mraid.expand() and
mraid.close() methods to instruct the application that the ad is opening and closing, respectively, and this function
should pause any content in the application environment.

The example is fairly straightforward but may take some getting used to as far as the syntax goes. MRAID doesn’t
end there; there is much more to add if the creative or SDK requires it, including methods for saving pictures, playing
videos, and even saving reminders to the calendar app of the mobile device. In version 2.0 of the API, open these
feature sets, which offer great benefits to an ad developer where those standards aren’t quite finalized and adopted
in HTML5 or other specifications just yet. That said, MRAID isn’t intended to conflict with HTML5 and DOM APIs
or new features of browsers. It’s there to act as a layer of communication between the ad and the application, as well
as provide feature detection to the ad creative if it needs it and allow the ad to degrade gracefully. The IAB describes
MRAID 2.0 as follows:

MRAID v.2 provides a standard way to query a rich media SDK regarding certain device capabilities,
offers consistent handling of video creative, and addresses two native device capabilities not well
implemented by HTML5 at present: adding an entry to the device calendar and storing an image
in the device photo roll.

MRAID is a blessing for anyone developing ad creative to applications, and if you find an application not
supporting it but offering advertising, I strongly recommend contacting the developers and getting them to adopt
it. In fact, push very hard for it; you’ll be doing a service to them, yourself and everyone else that will need to run
campaigns in the future. For more information on the MRAID documentation, visit http://iab.net/mraid.

Testing
In the world of in-application advertising, nothing works better than testing creative on the device in the
application it’s intended to run in. However, in many cases this is far from the actual reality. Publishers and content
owners of the applications often do not have the ability to allow every ad developer access to a “test build” of their
application, either because they’re unaware of how to do so or because they’ve reached their limit of devices that
they can hand out.

Note■ A great app testing service called TestFlightApp (http://testflightapp.com) can aid with this problem.

Whatever maybe the case, just know that most times it’s a luxury to get a test build of the publisher’s application,
so debugging your ad code can be a hell of a challenge. The catch here is that testing on a device in the application
provides the most accurate results, much like testing in multiple browsers for desktop campaigns. Think back to
when publishers would offer up test pages so ad servers could traffic their ad tag to an environment that resembles
accurately what will be live the day the ads launch. It’s the same concept here, just much harder to get!

Always ask the publisher and/or app provider you’re working with at the very beginning if they can support
this and, if not, in what other ways they can support testing. Find out whether they can provision a build of their
application so you can run your ads without just testing in the browser or taking someone’s word for it. Personally,

http://iab.net/mraid
http://testflightapp.com

CHAPTER 9 ■ IN-APPLICATION ADVERTISING

231

I like to break my ad testing down into the following four tiers. I always try to shoot for the first one, but again
sometimes it’s out of reach for various reasons outlined earlier.

1. Use a test build of the application on the device it’s intended to run on.

2. Test using the native web browser on the device it’s intended to run on.

3. Test using a device simulator of the device it’s intended to run on.

4. Use the desktop browser with a similar rendering engine as the mobile web browser such
as Webkit for Mobile Safari.

In the case of MRAID, you can view compliant ads in the MRAID web tester located at http://webtester.mraid.
org, but you can also download the source code and run your own web tester on your own domain. There you’ll
be able to simulate an application environment using the MRAID API and validate whether your ad’s functions are
working correctly.

I think you’d agree that testing is a challenge for in-application advertising, but I predict this getting much easier
as time moves on and as more ad spend moves into this market. In fact, Apple’s iOS 6 and Mac OS X Safari allow for
testing and inspecting on devices such as iPhones and iPads through desktop Safari using the Safari’s Developer tools.
Designers and developers can now view their applications, web content, and advertisements as they render in real
time on the actual device.

At the end of the day, testing on a device within the application is ideal. But if you need to settle for what you
can get access to, use simulators for iOS, Android, and other mobile OSs, and if you need to, drive to your nearest
electronics store and test on the floor models (seriously, I’ve done this). Remember, it’s tablets and phones today, but
next it will be TVs and other appliances and vehicles. We can’t be expected to own and test on every refrigerator, can
we? Fight for getting that testing application from the publisher, especially if you plan on doing more than a one-
off campaign with them. Building, testing, and debugging will go much more smoothly when you do, and if you’re
an application maker or publisher, use tools like TestFlightApp (http://testflightapp.com), which allows you to
pass around your apps to various team members over the air (OTA). This is especially helpful if your production and
development team is stretched all over the globe!

MRAID Adoption
MRAID is still fairly new in some regard, but the promise is that this will be the standard going forward when working
with advertising inside applications. Publishers take a while to adopt new practices, but MRAID support is a huge
push in the industry and even a bigger one by the IAB. As I write this, the IAB is currently going through many tests
and discussions for future versions of MRAID and releasing certification tags to publishers and ad servers that state
they are MRAID compliant. While I personally wish they’d police this a bit better so publishers and ad servers had to
prove that they’re MRAID compliant, I guess it’ll do that they state that they are. Hell, we can always call them out if
they aren’t.

The truth is if you have a campaign coming up that requires you to serve into an application because it’s outlined
in the media buy, first make sure that the publisher’s SDK is MRAID compliant. Second, perform a test flight to
ensure everything is ironed out before running an actual campaign. This will allow you to comfortably scale across
many publishers and applications with ease and with the certainty that your ad will be functioning correctly in any
and all applications that support the API. There is no longer a need to handle the SDK fragmentation in this space.
We all know developers have much bigger things to worry about, especially with the fragmentation in other areas
in the industry. If you do in fact run into an issue with a publisher or application stating it’s MRAID compliant but
your tests prove otherwise, tell the IAB about so it can enforce compliance (http://iab.net/guidelines/508676/
compliance/2153679). Again, this is for the betterment of the industry as a whole, not to point fingers.

http://webtester.mraid.org
http://webtester.mraid.org
http://testflightapp.com
http://iab.net/guidelines/508676/compliance/2153679
http://iab.net/guidelines/508676/compliance/2153679

CHAPTER 9 ■ IN-APPLICATION ADVERTISING

232

Creative Features
Working inside application environments allows ads to have much more deeply integrated tie-ins with the device
and native device features. You can have much more rich functionality than typical mobile web ad delivery. The
creative can use features such as detecting network connections, device hardware, and special file access to add to
calendars or photo albums, as you’ve just learned. This should all be taken into account when you dream up your next
advertising campaign because the creative can take all of these amazing features into account and really wow a user.
Be sure to bring in the right developers and technologists for the creative brainstorming sessions. They’ll be able to
inform you if something is not possible before any development occurs.

Summary
This chapter covered a lot about mobile applications, including the landscape and profitability of being part of it.
Moreover, it covered the vast world of advertising in applications on various mobile devices. Specifically, I covered
the complex world of application SDKs and their integral role in delivering cutting-edge rich media inside the
application environment and how it differs from a mobile web environment. I reviewed the fragmented role of SDKs
and how technologies like MRAID are out to ease the fragmentation from an application developer and ad developer
standpoint. I went over some of the nuances between SDKs and even reviewed some code samples so you can start
working with them today in your campaigns. I stressed that it’s important to ensure that applications become MRAID
compliant, because it’s the standard that will make everyone’s lives much easier.

In the next chapter, I’ll discuss how ads can be taken offline and still reported on when a user regains a network
connection. Mobile is a tricky world to successfully navigate through, but knowing the basics will help you as you head
into the next chapters. See you in Chapter 10!

233

Chapter 10

Offline Storage, Tracking, Debugging,
and Optimization

This chapter is focused on the increasingly important offline support for ads on mobile and tablet devices,
on mandatory tracking, and on the tedious and often very time-consuming process of debugging in a browser and
on a device. Offline support is becoming a requirement for many web apps, and advertising is quickly following suit.
In this chapter, I’ll review how to handle offline events, detect when a user comes back online, and even discuss APIs
that will detect when a user has a poor network connection. I’ll cover how to cache assets to client browsers and
devices using HTML5’s AppCache API. I’ll also discuss tracking users’ interactions within advertising via tracking
pixels and JavaScript, and I’ll use the methods to handle tracking calls and store calls in a client-side database
using HTML5’s APIs. In addition, I’ll discuss the differences and browser support between the IndexDB API and
the WebSQL API. I’ll also discuss APIs such as Lawnchair JS and how to handle cross-browser storing and caching
as well as how to fire off tracking calls when a user is offline. Lastly, I’ll cover the detailed realm of debugging and
optimization on desktop browsers and mobile devices. It’s a lot, so let’s get started.

Offline Support
For as long as I can remember, I’ve always recognized the Web in terms of of network access. Starting in the old days,
we had dial-up modems, then DSL, then cable lines, and then the present-day fiber optics. However, in today’s world,
we also have to focus on wireless cell networks such as 2G, 3G, and even 4G LTE connections and how more and
more devices are mobile such as smartphones, e-readers, and tablets. With these devices able to go into areas typical
computers can’t, like planes, trains, and automobiles, network connections can come and go quickly and suddenly.
Luckily, developers can use a useful new feature of browsers that detects whether a user has network access or not.
Listing 10-1 outlines how to detect for this in compliant browsers.

Listing 10-1. Detecting Offline Example

<!DOCTYPE HTML>
<html>
<head>
<script>
function networkIndicator() {
document.getElementById('status').textContent = navigator.onLine ? 'online' : 'offline';
}
</script>
</head>
<body onload="networkIndicator()" ononline=" networkIndicator ()" onoffline=" networkIndicator ()">

CHAPTER 10 ■ OFFLINE STORAGE, TRACKING, DEBUGGING, AND OPTIMIZATION

234

<p>The network is: </p>
</body>
</html>

From the previous code, you can see I’m creating a function called networkIndicator, which will update
the text inside the status element to online or offline. Then on the onload method of the body element, I call the
networkIndicator function on the handlers ononline and onoffline. This simple detection can determine whether
there is a network connection. In addition, the previous code, when the user’s network access changes to connected
or disconnected, it will also dispatch the following events that you can handle via JavaScript:

<script>
window.addEventListener("offline", function(e) {
 alert("offline");
});

window.addEventListener("online", function(e) {
 alert("online");
});
</script>

Checking the browser’s navigator.onLine property and providing alternate experiences when a network
connection is not present is a must-have in any HTML5 web application, and as more advertising moves into the world
of web standards, you’ll need to take this into account for publisher’s that require it. Personally, it makes the most sense
to factor offline support into branding campaigns where gaming, video, or some form of heavy user interaction is at
the forefront of the campaign’s success. Having offline support for direct-response ads may not make the most sense
because if users can’t connect to any network, they won’t be able to click/tap to the destination and landing pages.
However, having elements of a game cached to a device or even a smaller teaser video for offline use allows a user to
interact and spend valuable time within an ad experience. All of this can be tracked when a connection is regained for
the brand or advertiser to analyze after the campaign. Basically, if a user has network access, you can serve them up the
full experience; for example, it could be a feature-rich game or a long-form video ad. In addition, you can cache vital or
even alternate assets to a user’s browser so they can still interact with the ad at some level when they’re offline.

Note ■ Publishers may request that nothing be cached for offline use or that certain k-weight limitations be in place

for offline content. Consult with your publisher or application developer before developing the ad.

Offline support within advertising is anything but a standard practice. In fact, the whole industry is working
toward a solid standard because there are holes in using navigator.onLine when checking for a reliable connection
status. For example, what’s to happen if your ISP is down but your wireless router is up and running? The browser
may say the user is online but they’re in fact not. A better way to test is to make small checks by requesting a small
asset from your server via an XMLHttpRequest (Ajax request) so it’s transparent to the end user and they won’t incur
any bandwidth bottlenecks nor refresh the page. Using the code shown in Listing 10-2, you can confidently recognize
whether the user is connected or not.

Listing 10-2. Detecting Offline Using Ajax Example

<script>
function testConnection (fileToPing) {
 var xhr;
 if (window.XMLHttpRequest) {
 xhr = new XMLHttpRequest();

CHAPTER 10 ■ OFFLINE STORAGE, TRACKING, DEBUGGING, AND OPTIMIZATION

235

 } else {
 //For IE6, IE5
 xhr = new ActiveXObject("Microsoft.XMLHTTP");
 }

 xhr.onreadystatechange=function() {
 if (xhr.readyState==4 && xhr.status==200) {
 console.log("Online")
 } else {
 console.log("Offline")
 }
 }

 xhr.open("GET",fileToPing,true);
 xhr.send();
}

testConnection("http://www.yourdomain.org/1x1.gif");
</script>

Listing 10-2 creates a method called testConnection, which takes an argument of fileToPing, which is a string
value of the URI you want to ping to check the connection. The function creates an XMLHttpRequest and checks whether
the status is 200 from the server’s headers. If so, you know your request to that asset has resolved correctly, and therefore
the user is connected. If you didn’t get your 200 response from the server, you’ll confidently know the user is offline.

Note ■ You must allow Access-Control-Allow-Origin on your server for the domain you want to request. For example,

use Access-Control-Allow-Origin: http://yourdomain.com or *, which will allow any origin to access the asset.

The best situation is to use both techniques to get the most information about the user’s connection. Also, be sure
to ask whether offline is a mandatory requirement from the publisher and/or advertiser. Whether you use HTML5
or specific “hooks” from API calls to the application’s SDK, just be sure to understand the full scope of work up front.
This is crucial information so designers and developers can factor in the added time (if any) that there will be to
develop and design the ad in this manner.

Sometimes files get cached to a browser/device, and you do not want them to be. This could be if you are firing
off third- or fourth-party tracking calls in order to validate metrics. In the event you don’t want to allow the caching
of your files, you can use the “cache-bust” method when making those specific HTTP requests to those file locations.
Listing 10-3 showcases how you would do that for firing off a third-party impression 1x1.

Listing 10-3. Cache Busting Example

<!DOCTYPE HTML>
<html>
<head>
<script>
function fireImpression () {
 var beacon = new Image ();
 beacon.src = "http://tracking.somedomain.com?r=" + cacheBust();
}

http://www.yourdomain.org/1x1.gif
http://yourdomain.com
http://tracking.somedomain.com?r=

CHAPTER 10 ■ OFFLINE STORAGE, TRACKING, DEBUGGING, AND OPTIMIZATION

236

function cacheBust () {
 var num = Math.random();
 return num;
}
</script>
</head>
<body onload=fireImpression()>
</body>
</html>

When using the previous code snippet, you create a new image and set the source of that image to the URI
you want to hit, but you concatenate a cache-busting method to the string. This cache-busting method, called
cacheBust, tells the browser to generate a random number and adds it to the r param in the query string. This will
yield something similar to http://tracking.somedomain.com?r=0.123456, and this practice can be used with any
HTTP request; just keep in mind that caching assets is a good thing in most cases such as heavier k-weight JavaScript
libraries, images, or CSS files that won’t change. However, for reporting and analytics, cache busting is pretty
mandatory for accurate results.

When working with in-app, some SDKs require that the ads be cached to the device for offline use. For example,
if you were to view the Wall Street Journal iPad application, the content and ads get cached to the device so a user
can view the content in offline mode. This is super-helpful if a user is about to board a plane where a connection is
nonexistent. In this case, the current SDK provider AdMarvel caches the application content and all ads to the device
by way of a cache file. Listing 10-4 shows how this is implemented using the AdMarvel SDK.

Listing 10-4. AdMarvel Cache File Example

ADMARVEL-CACHE
assets/style.css http://cdn.domain.com/assets/style.css
assets/script.js http://cdn.domain.com/assets/script.js
assets/logo.png http://cdn.domain.com/assets/logo.png

The cache file is saved as a tab-delimitated .txt (plain text) file that locates all the assets that make up the ad
experience by relative and absolute locations (local/remote) and is delivered to AdMarvel with the ad creative.

Note ■ Every SDK will have its own way of implementing cached ad assets. Be sure to check with them before

campaign launch.

Network Connection API
This section covers the Network Connection API, which allows developers to query the strength and type of the
network connection the user is currently using. The API, at the time of this writing, is currently not supported in any of
modern browsers, but its API documentation is being revised and will offer many useful features when this emerging
standard becomes available in modern browsers. The API as it stands now allows for a developer to detect whether a
user is on Ethernet, WiFi, 2G, 3G, 4G, none, or an unknown connection. With this sort of information combined with
Navigator.onLine and the Ajax test, developers can cater their ad experiences for sophisticated offline use. If you
can’t wait for the spec to finalize or browsers to implement this into their architecture, you can take advantage of this
from within in-application advertising by way of the SDKs. In fact, in MRAID, ad developers and designers are able
to query the MRAID-compliant SDK for information about users’ connectivity by calling the method getNetwork. In
addition, they can add an event listener for the networkChange event when network connections change. Currently,
the possible connection types in MRAID are offline, WiFi, cell, and unknown. Ideally, we’ll see these APIs take shape

http://tracking.somedomain.com?r=0.123456
http://cdn.domain.com/assets/style.css
http://cdn.domain.com/assets/script.js
http://cdn.domain.com/assets/logo.png

CHAPTER 10 ■ OFFLINE STORAGE, TRACKING, DEBUGGING, AND OPTIMIZATION

237

rather quickly and be implemented immediately so that adoption takes rapidly. Only then will you be able to offer
accurate network connection detection and provide rich offline experiences.

Note ■ If your ad requires offline availability, make sure to remove any CTAs around tap because there will be no

network when viewing ads offline, so users will not be able to view pages.

Application Cache
In this section, I’ll cover an offline web application specification and how to work with application caching.
This section is geared toward publishers and content owners looking to bring offline support to their web applications.
In HTML5, application caching is supported by creating a simple manifest file, which lists the assets to be used for
the application offline. These assets are the files needed to be stored to the users’ browser in order to render correctly
without any Internet access. Before we dig in deeper, keep in mind that caching all the assets to a user’s browser could
result in very long caching times as well as a bloated manifest document, so choose your storing wisely.

When a user views the document without network access, the browser switches to use the local cached assets in
its place. So, in theory, the user should be able to finish interacting with that game or watching that video spot while on
the subway or on a plane with no in-flight WiFi, assuming the application cache stored the files to the device correctly.
With strong browser support, especially in the mobile realm, this is something you can start taking advantage of
immediately. Figure 10-1 outlines the tremendous support for the application cache as of November 2012.

Figure 10-1. Demonstrates the browser support for HTML5 app cache (Source: caniuse.com)

http://caniuse.com

CHAPTER 10 ■ OFFLINE STORAGE, TRACKING, DEBUGGING, AND OPTIMIZATION

238

Using the HTML5 application cache, publishers can offer speedier and more responsive web apps,
which is a better user experience for the end user all around. Also, if you’re a Chrome user, I suggest using
chrome://appcache-internals, which can help in detecting what domains are storing assets in your browser.

App Cache Example
Since I just covered why you should take advantage of offline asset caching, I’ll show how to put the theory into
practice. While the HTML5 AppCache API is typically used for caching specific assets in web applications, you can
use similar caching mechanisms for caching your ad content offline. Sure, this will certainly mean that if you’re on
the publisher end, this will increase your workload since you’ll need to update the cache manifest every time news
ads are updated. This is increasingly important when your publisher’s content is meant to be viewed offline such as
magazines, newspapers, and other content that’s completely cached to the user’s device. Check out the following
code snippet to understand how to use AppCache. In the HTML markup, it’s very simple to add a reference to the
.appcache file by writing the following:

<!DOCTYPE HTML>
<html manifest="cache.appcache">
. . .
</html>

In the previous example, you add an attribute to the HTML node in the HTML file called manifest, and you set
that equal to cache.appcache, which is your manifest file located in the same directory as your HTML file.

Next, let’s take a look at building the manifest file. You can use the following sample manifest structure to build
your offline ad, but note that the assets will need to change for your own specific use case depending on publisher and
ad content. The first thing to do before building the manifest cache file is to set your server to accept the MIME type of
.appcache. I do this by simply writing AddType text/cache-manifest .appcache to my .htaccess file on my server’s
root directory. Keep in mind that some servers may not have this file, or it may be hidden at first, so be sure to view
hidden files to find it. Otherwise, just create one.

Note ■ For more information on .htaccess, I recommend visiting http://htaccesstools.com.

Once you have your server configured to accept the file type of appcache, you can build a manifest text file with
your caching assets and save it as yourfile.appcache. Let’s review the manifest now (see Listing 10-5).

Listing 10-5. Building an HTML5 AppCache File

CACHE MANIFEST
2012-12-13:v1 – Keep the version to purge the cache when updates are needed

Explicitly cached entries
CACHE:
index.html
css/style.css
ad/adstyle.css
js/script.js
ad/adscript.js
ad/bg.jpg
images/button.png
images/bg.jpg

http://htaccesstools.com

CHAPTER 10 ■ OFFLINE STORAGE, TRACKING, DEBUGGING, AND OPTIMIZATION

239

fonts/webfont.otf
fonts/webfont.ttf
fonts/webfont.woff
fonts/webfont.svg
media/audio.mp3
media/video.mp4
media/video.webm

offline.html will be served if the user is offline and request new "non-cached" assetsFALLBACK:
index.html offline.html

Resources that require the user to be online.
NETWORK:
submit.aspx
http://api.twitter.com
etc. . .

Note ■ You can add comments to the manifest file by beginning a line with #. Also, if one asset fails to download, the

entire cache fails.

Let’s review the manifest. The first thing you do is define the cache manifest and set a comment with the date of
the last update as well as a version number of 1. The second thing you do is list all the assets and files you need cached
to the user’s browser for offline use, including the ad’s assets, by writing ad/style.css, ad/adscript.js, and
ad/bg.jpg. Remember, this does not need to be all of your assets, just enough to provide an acceptable offline
experience. In this example, I’ve included the CSS, JS, images, fonts, media, and ad assets, but this could very well
be overkill depending on the creative requirements of your web app and advertisements. Also, be careful with what
you cache in the ad. Once an asset such as a JavaScript file is cached, the browser will continue to use the cached
version even if you change the file on the server. The only way to ensure that the browser updates the cached asset is
to change the .appcache file, which is why you add a date and version in the comments section by writing . # 2012-
12-13:v1. The next step in the manifest file is that you provide an alternate offline.html file for your index.html
file under the FALLBACK section of the manifest, which will get served when a user is offline and attempting to access
information that isn’t cached. The is great to have in the event the user accesses information that they can’t view; in
that case, they’ll get served a default cached asset instead of something that wasn’t cached while they were online.

Publishers may see the real benefit from HTML5’s AppCache API because they can effectively create a very rich
offline experience for their customers and visitors while still offering them the content their users are after. Ads will
more or less find their own way for caching assets to a user, but be sure to have conversations with your publisher, ad
server, and agency before heading down any specific path.

Now that you have your cache file set up and assigned in your HTML document, let’s use some of the JavaScript
to detect the loading and caching of your assets (see Listing 10-6).

Listing 10-6. HTML5 AppCache JavaScript Example

<script>
var cache = window.applicationCache;

cache.addEventListener('cached', handleCacheEvent, false);
cache.addEventListener('checking', handleCacheEvent, false);
cache.addEventListener('downloading', handleCacheEvent, false);
cache.addEventListener('error', handleCacheError, false);//Good to use if the manifest is moved or

http://api.twitter.com

CHAPTER 10 ■ OFFLINE STORAGE, TRACKING, DEBUGGING, AND OPTIMIZATION

240

if the user is offline
cache.addEventListener('noupdate', handleCacheEvent, false);
cache.addEventListener('obsolete', handleCacheEvent, false);
cache.addEventListener('progress', handleCacheEvent, false);

// When a new manifest is downloaded, swap the new cache assets and reload.
cache.addEventListener('updateready', reloadAssets, false);

function reloadAssets (){
 if (cache.status == cache.UPDATEREADY) {
 cache.swapCache();
 if (confirm('A new version is available')) {
 window.location.reload();
 }
 }
};

function handleCacheEvent () {
. . .
}
</script>

Using the previous JavaScript, you can add event listeners to applicationCache and handle when your assets are
in different stages of the caching process, when they’re downloading, and when they’re ready to be used, among other
events. This is super-helpful when determining whether the user has the latest and greatest assets for offline use and
when doing general debugging of your cache manifest files.

So, you may be wondering why to cache assets locally. Don’t browsers have native caching? Well, true, they do,
but it’s often unreliable because users and browsers often clear their cache after the cache pools fills too much or it
could be a default browser setting to clear the cache after each and every browser session.

Caching resources creates faster web content, which is an overall improvement regardless of network
connections. This could be hugely beneficial when you get into dynamic ads where a user will perhaps see a variety of
ad versions throughout the campaign’s life cycle. Since only certain portions of the ad will be dynamic (copy, images,
and so on), why not just pull down the dynamic assets on subsequent views and leave the other assets untouched?
This will allow for a faster load time and the ability to pull only the assets you need from the server, thus reducing
the number of requests that need to occur. These practices are being used in many web apps today, including
Google’s Gmail for iOS and Android. A very good article on caching and its impact on the web can be found at
http://www.stevesouders.com/blog/2012/10/11/cache-is-king

Note■ For more information and facts on AppCache, visit http://appcachefacts.info.

Tracking
Tracking for advertising is a crucial part of any campaign. Analytics teams crave the metrics gathered by ad-serving
companies so they can better adjust their media spend and better educate their clients on what’s working and not
working in their online advertising campaigns. To do this, tracking has to be included throughout the ad so that when a
user interacts with the ad content, the reporting companies can learn about the interactions taking place. One important
topic in tracking requirements is the ability to track users when network access is not present. This sort of offline tracking
is big in mobile devices where users are more prone to interact with phone and tablet applications in offline scenarios.

http://www.stevesouders.com/blog/2012/10/11/cache-is-king
http://appcachefacts.info

CHAPTER 10 ■ OFFLINE STORAGE, TRACKING, DEBUGGING, AND OPTIMIZATION

241

As you are aware from previous sections in the book, cookie dropping on mobile Apple devices is accepted
only if the user has visited the cookie-dropping domain or has toggled their browser setting to accept all. While this
eliminates a huge portion of the market advertisers are looking to target, other browsers are gaining popularity on iOS
like Google’s Chrome browser, which accepts cookies by default regardless of domain, and at the time of this writing,
Chrome for iOS has roughly 20,000 user ratings. While not a true measure of installs, it’s still a promising number, but
with no ability to make Chrome a user’s default mobile web browser (unless you “jailbreak” your iOS device), you’re
sure to see more mobile Safari traffic overall than Chrome. Other browsers in the mobile landscape such as Opera
Mini handle tracking differently. For a large portion of the market share in developing countries like Africa, wired
networks are few and far between and phones with Opera Mini are the majority. However, with Opera Mini, JavaScript
is not on by default, or is nonexistent, so in these scenarios, the only form of tracking is called pixel tracking, or using
1x1 images, where a user clicks a tags in the HTML markup and the request goes through a redirect URL. In most
cases, though, JavaScript is the most common, and many analytics platforms like Google’s Analytics use the tracking
approach shown in Listing 10-7.

Listing 10-7. Google Analytics Tracking Example

<script type="text/javascript">
 var _gaq = _gaq || [];
 _gaq.push(['_setAccount', 'UA-25177661-1']);
 _gaq.push(['_trackPageview']);

 (function() {
 var ga = document.createElement('script');
 ga.type = 'text/javascript'; ga.async = true;
 ga.src = ('https:' == document.location.protocol ? 'https://ssl' : 'http://www') + '.google-
analytics.com/ga.js';
 var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(ga, s);
 })();
</script>

Now within HTML-based ads, you can use web analytics platforms such as the one outlined from Google
to handle your metrics. However, if JavaScript is disabled in the browser, so is JavaScript-based tracking. A good
workaround is to use image beacons, which are a 1x1 GIF images that ping a server, usually with specific query
parameters indicating session IDs or creative IDs along with activity type and a random number to cache bust.
To work one way or another, it’s best to understand who your audience is. If you’re targeting a bunch of mobile
devices, keep in mind that some mobile browsers do not have JavaScript on by default in some phones, such as
BlackBerry’s OS5 and older and most Nokia feature phones.

Storing and Firing Offline Tracking
While there is no standard definition in offline ad tracking , there is a need for a standard, and ideally through practice
and adoption, we’ll have a clean way of implementing offline in future campaigns. The vice president of development
at Crisp Media and a cofounding member of the ORMMA initiative, Nathan Carver, states the following:

“This does depend a little bit on the ad. If it is a direct response, for example, then offline doesn’t
make sense. Really only brand ads benefit from offline. Ultimately, this is a space for the SDKs to
differentiate for now. A store-and-forward, or keeper/share technology could really help, but there
is no definition about the offline market right now.”

Nathan Carver

https://ssl
http://www

CHAPTER 10 ■ OFFLINE STORAGE, TRACKING, DEBUGGING, AND OPTIMIZATION

242

First users interact online with an ad; throughout the interaction, the network connection gets so poor that the
user is unavoidably offline for a few moments. Since the ad has been cached to the user’s device (using ad-serving
device detection), the user doesn’t notice that they’re actually offline because all the features of the ad are still intact.
The important change here is that every interaction in the ad is trackable; those tracking activities won’t find their
way back to the server if the user is offline. That said, you’d need to capture those interactions on the client side before
they’re lost forever and you lose out on valuable brand insight. You have a variety of new technologies to leverage
for achieving this using HTML5 and various other APIs, including local storage/session storage or even client-side
databases like WebSQL and IndexedDB, as you’ll learn a bit in the following sections. Let’s take a look at how you can
attempt to handle offline click tracking with Listing 10-8 using HTML5’s localStorage technique.

Listing 10-8. LocalStorage Offline Click Tracking Example

<script>
var NetworkAccess = navigator.onLine;
var trackingCalls = {
 "clicks" : [{
 "name": "clickButton1",
 "online": "1023-online",
 }, {
 "name": "clickButton2",
 "online": "1024-online",
 }]
}

function trackClick(name) {
 if (!NetworkAccess) {
 //No network - clicks won't fire
 return false;
 } else {
 var trackingID;
 var clickName;
 }

 for (var n = 0; n < trackingCalls.clicks.length; n++) {
 if (name == trackingCalls.clicks[n].name) {
 clickName = trackingCalls.clicks[n].name;
 trackingID = trackingCalls.clicks[n].online;
 }
 }

 if (trackingID){
 location.href = "http://clicks.someurl.com?clickName=" + clickName + "&trackingID=" +
trackingID + "&r=" + cacheBust();
 }
}

function cacheBust () {
 var num = Math.random();
 return num;
}

http://clicks.someurl.com?clickName=

CHAPTER 10 ■ OFFLINE STORAGE, TRACKING, DEBUGGING, AND OPTIMIZATION

243

function buttonClick (event) {
 var type = event.target.attributes.value.value;
 switch (type) {
 case "buttonOne" :
 trackClick("clickButton1");
 break;
 case "buttonTwo" :
 trackClick("clickButton2");
 break;
 }
 console.log(type)
}

function AdInit () {
 console.log("AdInit : NetworkAccess " + NetworkAccess)
 document.removeEventListener("DOMContentLoaded", AdInit);

 //set up Ad UI here

 document.getElementById('buttonOne').addEventListener('click', buttonClick, false);
 document.getElementById('buttonTwo').addEventListener('click', buttonClick, false);
}

document.addEventListener("DOMContentLoaded", AdInit, false);
</script>

Let’s review this code. The first thing you do is set up your tracking variables at the top of the script by checking
for NetworkAccess and the important trackingCalls JavaScript object, which stores all the clicks for online use. Next,
at the bottom of the script, you start listening for your DOMContentLoaded event and fire off the adInit function, which
will kick things off; there’s nothing new there. Next, if a user clicks buttonOne or buttonTwo within the ad environment,
it will channel through a function called buttonClick, which will take the event parameter and perform a switch/
case for determining which button was clicked. Depending on which event fired, you’ll call the function trackClick
and pass in the string value for your button; in this case, it would be either trackClick("clickButton1"); or
trackClick("clickButton2");. Now if you head up to the trackClick function, you’ll notice that the first thing
you do is detect whether the user has network access. If they don’t, you simply return the user out of the function.
However, if they do, you set up two new variables called trackingID and clickName, which will house the values
for tracking for which you want to save. When the for loop loops through all the tracking clicks as defined in your
JavaScript object, you can track and send the user to the appropriate URL (if connected) based on their actions.

Now that you understand how to handle offline clicks, let’s take a look at user activities from within the ad
experience. Again, this is something local to the ad that you want to report on that doesn’t navigate the user away
from the ad experience. It is important to understand interactions such as swipes, touches, video plays, gaming,
and whatever else is important to an advertiser’s branding awareness campaign. Take a look at the revised code in
Listing 10-9.

Listing 10-9. LocalStorage Offline Activity Tracking Example

<script>
var NetworkAccess = navigator.onLine;
var trackingCalls = {
 'pings': [{
 'name': 'touchstart',
 'online': '1011-online',

CHAPTER 10 ■ OFFLINE STORAGE, TRACKING, DEBUGGING, AND OPTIMIZATION

244

 'offline': '1011-offline'
 }, {
 'name': 'touchmove',
 'online': '1012-online',
 'offline': '1012-offline'
 }]
}

function trackPing (name) {
 var activityName;
 var onlineTrackingID;
 var offlineTrackingID;

 for (var n = 0; n < trackingCalls.pings.length; n++) {
 if (name == trackingCalls.pings[n].name) {
 activityName = trackingCalls.pings[n].name;
 onlineTrackingID = trackingCalls.pings[n].online;
 offlineTrackingID = trackingCalls.pings[n].offline;
 }
 }

 if (NetworkAccess) {
 fire('http://tracking.someurl.com?trackingName=' + activityName + '&trackingID=' +
onlineTrackingID + '&r=' + cacheBust(), false);
 } else {
 var t = new Date().getTime();
 var m = new Date().getMonth()
 var d = new Date().getDate();
 var y = new Date().getFullYear();
 var timeStampedName = activityName+t+m+d+y;
 //No network - storing offline tracking
 storeOffline(timeStampedName, offlineTrackingID);
 }
}

function storeOffline (name, id) {
 //store client side and add listeners for network events
 console.log('Storing Offline : ' + name + ' + ' + id)
 localStorage.setItem(name, id);
}

 //on reconnect fire off all the cached pings
function checkOfflineStorage () {
 if(NetworkAccess) {
 if (localStorage.length >= 1) {
 for (var i = 0; i < localStorage.length; i++) {
 var key = localStorage.key(i);
 var value = localStorage[key];
 var offlineCall = 'http://tracking.someurl.com?trackingID=' + value + '&r=' +
cacheBust();
 fire(offlineCall, true);
 }

http://tracking.someurl.com?trackingName=
http://tracking.someurl.com?trackingID=

CHAPTER 10 ■ OFFLINE STORAGE, TRACKING, DEBUGGING, AND OPTIMIZATION

245

 } else {
 console.log('No offline metrics stored')
 }
 }
 console.log('NetworkAccess ' + NetworkAccess)
}

//Tracking Utils
function fire(url, clear) {
 var trackingImg;
 if (clear === true) {
 trackingImg = new Image ().src = url;
 console.log(trackingImg);
 setTimeout(clearStorage, 3000);
 } else {
 trackingImg = new Image ().src = url;
 }
}

function clearStorage() {
 console.log('clearing storage');
 localStorage.clear();
}

function cacheBust () {
 var num = Math.random();
 return num;
}

function userAction (event) {
 var type = event.type;
 switch (type) {
 case 'touchstart' :
 trackPing('touchstart');
 break;
 case 'touchmove' :
 trackPing('touchmove');
 break;
 }
 console.log(type)
}

function AdInit () {
 console.log('AdInit')
 document.removeEventListener('DOMContentLoaded', AdInit);

 //set up Ad UI here
 window.addEventListener('touchstart', userAction, false);
 window.addEventListener('touchmove', userAction, false);

 checkOfflineStorage();
}

CHAPTER 10 ■ OFFLINE STORAGE, TRACKING, DEBUGGING, AND OPTIMIZATION

246

window.addEventListener('online', checkOfflineStorage);
window.addEventListener('offline', checkOfflineStorage);

document.addEventListener('DOMContentLoaded', AdInit, false);
</script>

Let’s review the code example. Again, it’s very similar in setup as the click tracking example, but now once you’re
inside the adInit function, you set up your touch event listeners for the ad environment and also an event listener
for the online/offline state by calling window.addEventListener("online", checkOfflineStorage, false);. Next
you call the checkOfflineStorage function to determine whether there has been any stored offline activities. Inside
checkOfflineStorage, you initially check whether the user has a network connection and whether there are items
stored in the localStorage object. If there’s network but no storage, you simply log to the console by writing console.
log('No offline metrics stored'). However, if there are items that are stored in localStorage, you loop through
them all by grabbing their key/value and passing them to a function called fire. Now, inside of the fire function,
you check to see whether you need to clear the storage after you fire off the tracking calls, by writing if (clear ===
true). Now, you’ll create image objects and add the URL request to the tracking server by setting that value to the
Image’s source attribute. Lastly, once you’ve fired off all the calls, you set a timeout to call the function clearStorage,
which will clear the user’s browser of all localStorage tracking calls. Now there is a lot going on in the code, so I
suggest following along in your favorite text editor and checking all the logs in your favorite browser’s web inspector.
Keep in mind that this technique is becoming increasingly important for digital magazines and publications where
everything gets cached to a user’s device. Using HTML5’s offline detection through JavaScript, you can handle metrics
accordingly; in addition to the previous XMLHTTPRequest method, you can ensure the user is truly connected or not.

For mobile folks working with SDK vendors such as AdMarvel or Medialets, there’s a good chance they can
provide the caching of offline metrics for you. As an ad designer, you’ll most likely just need to call specific SDK
methods, and the SDK will handle that for you. In addition to that, the MRAID working group has tossed around the
idea of including a standard way for implementing offline tracking, but the reality is that the space is too young to be
standardized just yet. Just take a look at the quote from the MRAID API documentation:

Rich Media Ads that can work while the device is without network connectivity need the ability
to store and later forward metrics about how and when users interact with the ad. MRAID has
the potential to provide common APIs to facilitate storing and forwarding of ad impression
delivery, view, and other metrics from the SDK back to the ad server. However, until measurement
methodologies and the metrics themselves are standardized (for example by the ongoing IAB/MMA/
MRC In-App Ad Measurement Guidelines project), adding measurement functionality to MRAID
would be premature. The MRAID working group expects that this capability will be evaluated and
potentially added to MRAID as part of a future version 3.0 release.

MRAID Working Group

MRAID’s working group has a good approach, and I think it’s often better to see all the proposed solutions before
setting a single solution in stone and calling it a standard. Will it be HTML5 and the various JavaScript APIs that allow
for standardized offline tracking? Or will it be something else with SDK involvement only? Perhaps a mixture of both?
In the meantime, clients will ask you for this, and it will eventually become a standard operating procedure in the
online advertising space. For now, you’ll have to come up with your own homebrewed solutions like the one outlined
previous, or you can even look to lightweight JavaScript libraries such as Lawnchair (http://brian.io/lawnchair) for
what you need.

Lawnchair is seemingly a possible answer to client database storage because it uses a simple name/value pair
assignment through JavaScript and retrieves values through JSON. It also can be equipped with many adapters
to fail gracefully to other client-side storage technologies if some browsers don’t accept others. This means it will
use blackberry-persistent-store, DOM storage, WebSQL, and IndexDB, to name a few. Lawnchair eases the
fragmentation between the storage technologies as well as gives developers an easy approach for saving values. Plus,

http://brian.io/lawnchair

CHAPTER 10 ■ OFFLINE STORAGE, TRACKING, DEBUGGING, AND OPTIMIZATION

247

it comes at a very small 6KB when minified and even smaller when gzipped. This could be very beneficial for creating
an offline archive of user interactions and eventually iterating over the interactions and firing off the user activities as
the user regains network connection.

Note ■ Tracking can get skewed for offline use if a majority of users interact with an ad and never regain network

access to push out the metrics to the reporting server. It should be communicated to all teams that this will never be

100 percent accurate.

IndexDB
When discussing the topic of offline caching and offline metrics, I have to touch on a new and emerging API in
HTML5 called IndexDB. IndexDB is an API for storing significant amounts of data on the client side in a very
structured matter. Using IndexDB generally means you have lots of data to work with and much more than your
typical DOM storage using sessionStorage or localStorage, which could be faced with browser limits on the
amount of data you’ll store to the client. While both of these APIs provide a great way of handling large amounts of
data to the client browser, when you are dealing with very large data pools and a need to handle data at scale in a
structured matter, IndexDB will be your go-to choice. Developed by the Mozilla group, using this type of elaborate
web storage, you could possibly allow the user to customize a detailed vehicle within the ad experience and pick up
where they left off the next time they visit the ad on another site.

IndexDB is now the current specification being worked on by the HTML5 working groups. Previously WebSQL
API was the main way of storing large amounts of data offline, but that specification has since ended in development,
according to the W3C. (However, it’s still in use in some browsers.) The industry is said to be transitioning to IndexDB
in the foreseeable future. Origin, or the domain of the site that creates the database, scopes each IndexDB database,
and this could be a good solution of handling offline data for your advertisement, but be warned that it may not work
in all browsers just yet. Be sure to keep tabs on http://caniuse.com/#feat=indexeddb to determine support.

Web Inspector
Arguably the most popular web development tool is Web Inspector, and it comes built into all of the modern
browsers. If you use Chrome, Opera, Firefox, or IE 10, you can simply right-click your browser window and choose
Inspect Element. This will open Web Inspector in your browser and give you an array of tools to use for actions such as
inspecting elements in your DOM, viewing loaded scripts, analyzing network traffic, finding out about offline storage,
and executing commands in real time. If you’re using Safari, you will need to go into the browser preferences first and
enable the Develop menu in your menu bar. Once this is enabled, you will be able to right-click and inspect elements
like the others. Figure 10-2 shows what to look for in Apple’s Safari browser.

http://caniuse.com/#feat=indexeddb

CHAPTER 10 ■ OFFLINE STORAGE, TRACKING, DEBUGGING, AND OPTIMIZATION

248

In addition to the popular Web Inspector, there is also a browser extension called Firebug that essentially does
similar things and provides developers with similar tools for debugging web content on various browsers. To learn
more about Firebug, visit http://getfirebug.com. Firefox also has recently updated its Web Inspector to view content
in 3D. This is incredible helpful if you need to understand the stacking order of elements and determine whether
certain elements lay on top of others

Development Tools
If you’ve been a developer for any amount of time in your life, you know how much time can be dedicated to the art
and process of debugging code. If you’re new to development, trust me when I say, “Get used to things not working
and start learning to figure them out.” Patience is a key trait in debugging, along with having the right tools, workflow,
and techniques. In this section, I’ll review some really great tools to use that are free and some amazing techniques
that will give you the edge over your competition when debugging for multiple platforms and devices.

Developer tools are plentiful on the Web. Just Google any web development tool, and you’ll see many results.
A few of my favorite online tools are JSConsole (http://jsconsole.com) for debugging JavaScript on mobile
devices, JSBin (http://jsbin.com) for quickly mocking up and sharing code with friends and collegues,
JSBeautifier (http://jsbeautifier.org) for cleanly unminifying libraries and code for readability, and RemoteTilt
(http://remote-tilt.com) for working with motion events outside of the native device. Remy Sharp, developer extra -
ordinaire, has created all of these tools except for JSBeautifer, and I’ve personally used them all on countless campaigns
while debugging my ad content. Other very useful tools include DomMonster (http://mir.aculo.us/dom-monster),
YSlow (http://yslow.org), and PageSpeed (http://developers.google.com/speed/pagespeed), all of which allow
for debugging and optimizing your web content.

One of my absolute favorites is an HTTP monitoring tool. These types of tools capture and log all the HTTP traffic
that happens in your browser. For example, if you have an ad that’s making many HTTP requests and calling external
services, this tool can be very valuable to give you a view into what’s really going on under the “hood.” Some of these
tools are Charles (for Mac) (http://charlesproxy.com) and Fiddler (for PC) (http://fiddler2.com/fiddler2), and

Figure 10-2. Safari’s Develop menu setting

http://getfirebug.com
http://jsconsole.com
http://jsbin.com
http://jsbeautifier.org
http://remote-tilt.com
http://mir.aculo.us/dom-monster
http://yslow.org
http://developers.google.com/speed/pagespeed
http://charlesproxy.com
http://fiddler2.com/fiddler2

CHAPTER 10 ■ OFFLINE STORAGE, TRACKING, DEBUGGING, AND OPTIMIZATION

249

they can even be proxied to your mobile devices for capturing web traffic on smartphones, tablets, and TVs. What’s
really great about these HTTP monitoring tools is the ability to validate tracking, reporting, and redirect calls made
from advertisements. It is crucial to do testing to ensure reporting is accurate after a campaign has launched. For
those of you who use Firefox, there is also a free browser plug-in called HTTPFox (http://addons.mozilla.org/
en-us/firefox/addon/httpfox), which essentially does the same thing as Charles and Fiddler but from directly
inside the browser. Another one is the Firefox add-on called Live HTTP Headers (http://addons.mozilla.org/
en-US/firefox/addon/live-http-headers), which allows a user to view the HTTP headers of a page while browsing.
HTTP monitoring can be extremely helpful for mobile debugging since mobile devices currently lack in their native
development tools. For tethering to your device using Charles, take a look at the following steps.

For iDevices, connect to a shared network between your computer and wireless device and go to the settings
on the iDevice. Under HTTP Proxy, select Manual, and enter your computer’s IP address into the server spot; then
enter any unused port like 8888. Next, begin to access mobile Safari or an application (anything with network traffic),
and you’ll eventually be prompted by Charles that another service is requesting to use this network as a proxy. Select
Allow, and start using your device while viewing the network traffic on your computer.

Debugging on mobile can be even more problematic when you need to debug advertisements inside of
applications where you don’t have native features of browsers such as console logs. When debugging in mobile
applications, you can leverage the power of HTTP requests to trick the calls into being tracing statements to
understand what’s happening inside your ad code. A good example of this is creating a dummy image file and
assigning its source to a faux tracking call with some URL parameters for your log statement. The following example
outlines what I’m discussing:

<script>
function adInit() {
 var traceImage = new Image();
 traceImage.src = "http://yourdomain.com?trace=statement";
}
</script>

Now when the function adInit is called, you’ll see a request to a dummy URL in your HTTP monitor with the
query param of trace equal to whatever statement you want to output. In this case, this may be the function that kicks
things off in the ad experience, so it could look like the following code snippet (and Figure 10-3):

<script>
function adInit() {
 var traceImage = new Image();
 traceImage.src = "http://yourdomain.com?trace=AD-STARTED";
}
</script>

http://addons.mozilla.org/en-us/firefox/addon/httpfox
http://addons.mozilla.org/en-us/firefox/addon/httpfox
http://addons.mozilla.org/en-US/firefox/addon/live-http-headers
http://addons.mozilla.org/en-US/firefox/addon/live-http-headers
http://yourdomain.com?trace=statement
http://yourdomain.com?trace=AD-STARTED

CHAPTER 10 ■ OFFLINE STORAGE, TRACKING, DEBUGGING, AND OPTIMIZATION

250

As you can see from the examples, this is very helpful when debugging the network traffic in browsers and on
mobile devices. Using these tricks, developers can get insight into how their code is executing even if they cannot test
on the physical device.

Mobile Development Tools
Mobile development tools are a growing business. It was once a complete headache to manage because the tools
weren’t available and advertising on mobile has skyrocketed as a business, so demand is plentiful. Tools like Adobe
Edge Inspect (http://html.adobe.com/edge/inspect) and Weinre (http://pmuellr.github.com/weinre) offer
remote debugging and development for mobile and tablets from directly on your desktop machine. Some other really
great development tools are the ability to test on mobile emulators and simulators right on your personal computer.
This would be using Apple’s Xcode and iOS simulator found on the Mac AppStore, Google’s Android developer
tools (http://developer.android.com/tools/index.html), Blackberry 10 (http://developer.blackberry.com/
platforms/bb10), Windows Phone (http://microsoft.com/en-us/download/details.aspx?id=27570), and Opera’s
Mobile Emulator (http://opera.com/developer/tools/mobile). Each of these tools offers a very similar experience
to what you’d expect when viewing your content on the device itself. However, testing on the device itself is by far the
best testing you can do as a developer. As I said, if you need to go to your local electronics store to test some ads, do it!

Figure 10-3. Network monitoring in Charles (Mac)

http://html.adobe.com/edge/inspect
http://pmuellr.github.com/weinre
http://developer.android.com/tools/index.html
http://developer.blackberry.com/platforms/bb10
http://developer.blackberry.com/platforms/bb10
http://microsoft.com/en-us/download/details.aspx?id=27570
http://opera.com/developer/tools/mobile

CHAPTER 10 ■ OFFLINE STORAGE, TRACKING, DEBUGGING, AND OPTIMIZATION

251

Now there are also many services you can use to test how your content will render and function on a variety of
devices. One such service is called DeviceAnywhere (http://keynotedeviceanywhere.com), which effectively allows
for a virtual view into your content on any specific device. You want to know how your ad looks on a first-generation
Apple iPad running iOS 3.1? It’s got you covered. How about an HTC running Android 2.3? Yep, that one too!
DeviceAnywhere is a great tool to leverage for the arsenal of devices it has access to, but it still lacks in the hands-on
debugging experience in my opinion. If you’re a publisher wanting to test your web content on mobile devices but
have limited at your disposal, check out MobiTest by Akamai (http://mobitest.akamai.com/m/index.cgi). This
tool allows users to test page content on various devices from different locations, and you can even video capture
the results to share with other colleagues. Again, most of these tools are virtual windows into the environment you’re
attempting to test for and for skeptics like myself; you may just need to test on the real thing.

Optimization
Optimization is an ongoing process when crafting web content or advertisements. Every single addition to the
DOM or any additional asset being loaded into your ad will eventually need to be optimized, if not for the sake of
performance for the sake of the publisher’s requirements. Also, bandwidth is a limited resource and user experience is
prime, so be sure to compress images using proper settings with programs such as Adobe’s Photoshop or Fireworks. If
you’re a Mac user, check out the great image optimization applications called ImageOptim (http://imageoptim.com)
and ImageAlpha (http://pngmini.com) for transparent PNG optimizations.

For the script side of things, make sure you clean up after yourself by doing your own garbage collection; if you
have event listeners, make sure you remove them when you’re done handling the event. Also, be sure to remove
animation loops or iteration processes when they’re not needed. Timers like setInterval and setTimeout can
become expensive and taxing quickly, so be sure to clear them when not in use.

Be sure to always minify text-based files like HTML, CSS, and JavaScript for production ads and keep a copy of
a more verbose version to go back and make edits so you don’t have to work off the minified version. In conjunction
with minification, be sure to use GZIP compression whenever you can. By gzipping your text-based files, you create
a .gz version of your file, which is significantly smaller than the minified version alone. Compressing via GZIP
allows for the smallest file transfer size, which will minimize bandwidth constraints and provide an overall faster
web experience. Just be sure your hosting server or CDN has the appropriate configurations for serving GZIP files.
If the users requesting browser cannot decompress or unzip the file before it renders it, the user will just be served
the minified version of the asset although most browser now days support compressed content. To test whether your
server is supplying gzipped files, visit http://gidnetwork.com/tools/gzip-test.php. Also, it may be best to use an
automated build system that takes your source file, minifies it, GZIP compresses it, and places it in a desired location
on your hosting server. Tools such as Ant [http://ant.apache.org/], Maven [http://maven.apache.org/], and
others can help you do this automatically.

Avoid reflows and repaints to the DOM by inspecting the “timeline” tab in your favorite web inspector. By using
this tool, you’ll be able to see what the browser is actually tasked with doing when a user is requesting your content.
By handling all of your DOM setup before it needs to reflow and/or repaint, this will eat up fewer processes and
provide a better overall user experience. Figure 10-4 illustrates how the timeline section in your web inspector may
look when requesting the page at CNN.com.

http://keynotedeviceanywhere.com
http://mobitest.akamai.com/m/index.cgi
http://imageoptim.com
http://pngmini.com
http://gidnetwork.com/tools/gzip-test.php
http://ant.apache.org/
http://maven.apache.org/
http://CNN.com

CHAPTER 10 ■ OFFLINE STORAGE, TRACKING, DEBUGGING, AND OPTIMIZATION

252

As you can see, a lot of things happen when you hit Enter after you type in the URL. In the example, you see
anything from HTTP requests and the time they take to respond, function calls within the script files, and even
repaints and rendering to the DOM. Also, more importantly, you can even see what ads are doing on the page you’re
inspecting. What’s really useful is that you can inspect when the DOM events “content loaded” and “load” fire and
get a better assessment of the page’s optimization before you need to dig into ad-specific optimizations. In this case,
it took just shy of 1.6 seconds to fire DOMContentLoaded and about 2.8 second to fire the Load event. This is important
to an ad server because the server would generally want to listen for one of these events and serve the ad after the
main content is rendered to the screen. This way you can determine if the page needs to be better optimized, your ad
content or both.

In addition to the “waterflow” view in your timeline, you can also inspect the memory being used to render the
page contents including DOM markup, styles, scripts, and even ads. Figure 10-5 shows what the memory section
would look like when you request the same page.

Figure 10-5. Browser’s memory usage

Figure 10-4. The browser’s timeline inspector

CHAPTER 10 ■ OFFLINE STORAGE, TRACKING, DEBUGGING, AND OPTIMIZATION

253

With this image, you see a large spikes in the beginning of the request because the browser needs to populate all
the DOM nodes and parse through the scripts and styles as quickly as possible. Also, at the beginning of the content
request, you can see that close to 70MB of memory is used just to render the page to a user.

Note ■ These measurements are dependent on system capabilities and network connection speeds. Please do your

own code optimization.

Another important tool to use in your optimization techniques is the use of the Audit tab in your browser’s
web inspector. The Audit feature allows developers to run a number of checks and balances against the page you’re
requesting. After evaluating the page contents, ads and all, the web inspector will offer tips on how to improve
performance and speed up page rendering. It might recommend that you to compress your text-based files or even
remove style declarations on elements that aren’t being rendered. Figure 10-6 showcases an audit on my domain,
http://johnpercival.org.

Figure 10-6. The browser’s Audits tool

Note ■ I’m fully aware that my domain needs optimization, which is why it’s a perfect test case.

Optimization analysis of your web content applies as much to mobile as it does to desktop and other formats
using network connections. Get used to inspecting and tearing apart pages and advertisements to attempt to get the
smallest digital footprint out of your content. Again, keep in mind that no one goes online to look at ads, unless you’re
the one building them. The same can be said about watching television for the commercials. Advertising is meant
to be impactful, attention grabbing, and engaging, not something that will tax your computer or device just because
some poorly written ad code is eating up system resources. Keep this in mind at all times and make the Web a better
experience for everyone. Debugging and optimization are time-consuming processes that you will master only by
doing them often and repeatedly. This chapter won’t make you an expert, but it will give you the edge and will allow

http://johnpercival.org

CHAPTER 10 ■ OFFLINE STORAGE, TRACKING, DEBUGGING, AND OPTIMIZATION

254

you to use a variety of great tools to help you along the way. Some of these tools will likely become your go-to favorites,
and others you won’t even give a second chance. I encourage you to find what works for you in your development
workflow while experimenting with the others.

Mobile Tips and Tricks
Now that you have a good idea on how to debug and optimize your content, let’s take a look at some of the common
“gotchas” or pitfalls you typically see when dealing with HTML5 advertising, both on the desktop and on mobile
devices. Let’s start with HTML and CSS namespacing; if any markup in your ad is named the same as an element on
the publisher’s page and not wrapped in an iframe, the element’s style and function could get inherited onto your ad.
To avoid this, it’s generally standard practice to come up with a prefix naming convention to use in all ad elements.
I like to do ad serving prefixing; for example, if AdMob was serving the content, it would be am-container; PointRoll
would be pr-container. Another good technique to use is to namespace from your CSS top-level element down. This
could be your ad container element so all your CSS styles would be specifically set to the ads elements and none of the
publisher’s page. By writing something like #adContainer .banner {…} you can clearly target the ad container by it’s ID
and target nested elements like the banner class from our example.

Next I’ll discuss asset caching. Caching can often be an issue on mobile applications, especially if a user is
noticing dated content in your ad but you know you’ve updated it. Ensure that your client has exited the app/web
browser, cleared their browser cache, and removed the app from any background processes. In the event of iOS, this
can be done by double-clicking the device’s home button, tapping, and holding down on the app until a close button
appears. For Android, you’ll need to go into the running applications and explicitly kill their processes.

Mobile Webkit
Webkit has a very sophisticated rendering engine, and it’s the default device browser engine for iOS and Android
devices. It also has plenty of useful but often hidden properties to take advantage of. If you notice that Webkit is
handling your content in a strange way or perhaps even an ideal way but are not quite sure why, I recommend visiting
Webkit.org to learn about the inner workings of this powerful browser. For a quick rundown, I’ve listed a few here
that you come across most frequently in the ad world. I hope these useful properties will help you when you notice a
few within your creative development, debugging, and testing. The first one is the font-rendering glitch when Webkit
performs any type of CSS animation on DOM elements. This glitch is often seen when fonts look sharp and clean
during the animation but on the completion they appear to get much bolder for no apparent reason and often result
in an unwanted flickering effect. If you or your client notices this, try to apply the following CSS rules on the container
div wrapping your text:

<style>
.smoothFont {
 -webkit-backface-visibility: hidden;
 -webkit-transform: translate3d(0, 0, 0);
}
</style>

This rule will set the GPU “on” for the duration of the ad experience, which will not result in any font glitches.
Keep in mind also that as more browsers leverage the GPU, this issue could remedy itself with future browser releases.
Another useful Webkit trick is to prevent Safari from adjusting text size on device orientation changes. When you

http://Webkit.org

CHAPTER 10 ■ OFFLINE STORAGE, TRACKING, DEBUGGING, AND OPTIMIZATION

255

rotate a device, the browser adjusts the text size. If for some reason you’d like to prevent this effect, use the following
CSS rule:

<style>
.maintainSize {
 -webkit-text-size-adjust: none;
}
</style>

Note ■ text-size-adjust is a Webkit-only CSS property that allows you to control text adjustment.

If you’re a publisher, you’ll often want to create a web app experience for your mobile visitors. If you’re in charge
of building the content that ads will run on and want to have a handy script in your arsenal for hiding the default
toolbar of a mobile web page, check out the following code snippet, which can attach to the DOM load event:

<script>
window.addEventListener('load', function() {
 setTimeout(scrollTo (0, 1));
}, false);
</script>

Also, since we’re talking about mobile, it’s pretty safe to say you live in a touch world. While this is amazingly
great for the UI, it does pose some challenges for creating traditional behaviors where users are accustomed to mouse
input. One of these challenges is creating a “hover” effect, and while it’s technically impossible to do, you can still
have buttons in your UI respond as if they were actually being clicked. The following JavaScript example can help you
mimic this effect, which can be very useful for certain design interactions:

<script>
var myLinks = document.getElementsByTagName('a');

for(var i = 0; i < myLinks.length; i++){
 myLinks[i].addEventListener('touchstart', function () {
 this.className = "hover";
 }, false);
 myLinks[i].addEventListener('touchend', function (){
 this.className = "";
 }, false);
}
</script>

As you can see, you grab all the a tags and add a class of hover on touchstart and touchend events. Now once
you’ve added the JavaScript to your document, you can style as you normally would in CSS using the hover class.

The last mobile code snippet relates to touch events again. Often you will notice that when you are interacting
with a touch-enabled object in your DOM, the entire browser window moves and not the object you’re targeting.

CHAPTER 10 ■ OFFLINE STORAGE, TRACKING, DEBUGGING, AND OPTIMIZATION

256

A developer not including the preventDefault method, which tells the browser to “back off” while you’re moving an
element with your finger, often causes this. It’s really simple to add this, so take a look at the following:

<script>
document.ontouchmove = function(event){
 event.preventDefault();
}
</script>

Keep in mind that most times publishers will include the specific HTML meta tags for locking the browser’s viewport,
but it’s still nice to know another option should you need to address it on the ad’s end.

Summary
This chapter was chock full of useful tips and tricks about storing assets offline, what goes into tracking for offline use,
and general debugging and optimization. You dove into what it takes to cache assets using HTML5’s AppCache and
what assets you shouldn’t cache because of file sizes. I discussed how this is ultimately up to publisher requirements
in the in-application world, since if an application isn’t supported offline, your advertisements won’t be either. In
addition to HTML5’s application cache, you learn about what it takes to detect when your web content is online and
offline using navigator.onLine as well as what it takes leveraging an SDK in the in-application world. I talked briefly
about emerging APIs like the Network Connection API and how once the specification finalizes and browser adoption
takes, you’ll have a very nice API for offering adaptive experiences to end users. Following up on offline, I discussed
how metrics could still be tallied in an offline state using offline-tracking techniques. Whether you’re tracking
metrics in-application using a cache file and an SDK or you’re on a mobile device using DOM storage or client-side
databases, rest assured you have the technology to pull this off. Lastly, I discussed the complex topic of debugging
and optimization. This topic is something I’m extremely passionate about and so should you be if you aim to serve
advertising content on the Web with HTML5. I covered all the tools and techniques you have at your fingertips to get
the smallest file size and analyze your ad content across multiple screens.

As you wrap up your thoughts around offline, tracking, and debugging, you’ll head into the enormous domain
of dynamic advertising with HTML5. Things get really exciting when you incorporate dynamic elements into your
advertisements, but they also get pretty complex to create and debug. However, rest assured you now have the
knowledge to tackle the topics in this next chapter head on.

257

Chapter 11

Dynamic Advertising with HTML5

Dynamic advertising is nothing new in today’s world. The concept of rich creative paired with relevant messaging
and data is something users and marketers have grown accustomed to seeing. However, this sort of dynamic behavior
was traditionally done using Flash and the ad would reference an external web service to update its creative contents,
which could be updated text, new images, or even a new ad experience altogether. In this chapter, I’ll focus on the
same concepts that helped shape the dynamic advertising market, but I’ll do it with a primary focus on HTML5 and
related open web technologies.

Let’s take a deeper dive into the topic of “dynamic” and figure out how you can leverage external data, publisher-
passed data, public and private web services, and various APIs to manipulate creative at ad-serve time. I’ll cover
locally targeting users based on geolocation as well as demonstrating that advertising doesn’t have to be “baked” in.
I’ll review how ad servers and ad-serving technology use custom macros to help speed up runtime dynamics, and
I’ll also showcase how ads can be timely, relevant, and efficient, creating “hot-swappable” content on the fly. Using
these techniques, I’ll cover the technologies in which your ads will leverage dynamic data including XML, JSON, and
straight-up JavaScript. Learning these tools will ultimately open up new worlds of online advertising.

Delivery Rules
Let’s kick things off with the most basic forms of dynamic advertising, which are the dynamic properties of the ad
server. Typically, ad servers can place delivery rules for the users requesting the ad content. This sort of relationship
goes like this: “Hey, ad server, I am a user on an iPad in landscape orientation. Deliver me a creative that isn’t Flash
based and is sized correctly.” The ad server will then double-check that the user is in fact on an iPad by doing a
browser string (user agent) lookup and then will deliver the appropriate creative type based on the request. Figure 11-1
explains the request-response relationship between the user and the ad server.

z

CHAPTER 11 ■ DYNAMIC ADVERTISING WITH HTML5

258

Delivery rules have a lot of power in that they are the first line of entry for the ad server; ad-serving companies
attempt to make this ad response super quick in order to serve an impression for every person viewing the content.
They typically judge this response time in a matter of milliseconds. Ad servers don’t just use browser-sniffing
techniques; they can sniff out user cookies or data stored on the client side in the browser cache, as well as IP
addresses, ISPs, and various other data I’ll cover later. Delivery rules or settings often apply to how the ad gets served
to the publisher page through the ad tag of the requesting user. Delivery rules can often have frequency, rotation, and
user-has rules and specific creative types associated with them. These rules can also be paired with other variables
such as time of day, location, and any other variables that the ad server can analyze. I’ll cover each one of these
techniques in the following sections.

Frequency is the number of times the user will see the ad. If the campaign lasts one day and the user frequents
the publisher page multiple times a day, that user could “frequency capped” after the initial view and served a
different creative thereafter. Rotation simply means how many different creatives a user can potentially see within

Figure 11-1. The typical ad server request-response with dynamic input/output values

CHAPTER 11 ■ DYNAMIC ADVERTISING WITH HTML5

259

one campaign execution. If the advertiser has multiple creative versions at the ready, the ad server can place them
on a rotation so the user views fresh content with multiple ad requests. The user-has rule detects what the client-side
browser or device is capable of rendering. This could be a static creative, Flash creative, or HTML5 creative. It is really
up to what features the client-side browser can handle, including specific features of the browser. If the user can’t
support HTML5, can the user support Flash? If not, how about an image?

Note ■ Each ad-serving vendor has different capabilities. Reach out to them to determine what works for you and

your campaign.

Taking advantage of these ad-serving settings allows for some really crafty and dynamic use cases. For instance,
you could serve a creative to an iPad user and another on a smart TV all through the same-trafficked ad tag. This
allows the publisher to sell media through all of their distribution channels and makes their AdOps team rest easy
because they’re only required to traffic one tag. Can you imagine how hard it must be to handle multiple tags for each
mobile device, tablet, computer, TV, and so on? That gets crazy quickly!

Delivery rules get more powerful as ad servers and technology vendors pump more data into them. The more
data the ad server can analyze, the more custom the ad experience can be. This technique is often driven by what
is known as a dynamic creative optimization (DCO). A DCO engine allows for serving dynamic creative on many
variables and even third-party variables or inputs. Really intelligent DCO engines can factor in location, gender, age,
sexual orientation, and interests, among many other input values. Using this valuable data, marketers can target their
audience more effectively knowing which audience segments they want to hit (and with which creative message).
Some ad servers can even detect WiFi hotspots and target advertisements accordingly based on the network service
they’re using. For example, Figure 11-2 was served to me while I was at a conference in San Francisco this past year.
The ad server knew I was using the free conference WiFi based on my IP address and targeted ads accordingly while
I visited the publisher site, Bloomberg.com. Take a look at the following sequence of images to better understand this
dynamic ability.

Bloomberg.com

CHAPTER 11 ■ DYNAMIC ADVERTISING WITH HTML5

260

This first image was my initial request to Bloomberg.com while using AT&T’s 3G network on my iPad. As you
can see, I’m getting a few ads on the right side of the screen. Now if I hop onto the conference’s WiFi, as you’ll see in
Figure 11-3, I’ll see an updated experience.

Figure 11-2. The initial screen on Bloomberg.com using AT&T’s 3G service

Bloomberg.com
Bloomberg.com

CHAPTER 11 ■ DYNAMIC ADVERTISING WITH HTML5

261

Figure 11-3 demonstrates when I went into my settings application on my iPad to switch on the free WiFi from the
conference. Figure 11-4 shows the updated ad experience.

Figure 11-3. The screen to use the free conference WiFi in San Francisco

CHAPTER 11 ■ DYNAMIC ADVERTISING WITH HTML5

262

As you can see from Figure 11-4, I was targeted a specific ad based on my known location by the ad server.
Because I was using the free WiFi service, the ad server knew where I was and could serve relevant ads based on that
IP address. Now if I tap and hold the ad, as shown in Figure 11-5, you’ll see the ad server’s domain.

Figure 11-4. The updated Bloomberg.com site after using the free WiFi service

Bloomberg.com

CHAPTER 11 ■ DYNAMIC ADVERTISING WITH HTML5

263

As shown in Figure 11-5, you can see that when I tapped and held on the ad, I was shown what the click-through
destination would be for this ad unit and that http://myturfads.com was the ad server responsible for identifying my
IP address on the free network and presenting these relevant and dynamic ads.

Figure 11-5. The ad server responsible for showing these dynamic ads

http://myturfads.com

CHAPTER 11 ■ DYNAMIC ADVERTISING WITH HTML5

264

Publisher-Passed Data
Ad servers are pretty powerful on their own, and when used in conjunction with DCO offerings and dynamic delivery
rules, they’re really powerful. But what’s interesting is that ad servers can even use publisher data to bring yet more
dynamics to the ad experience. Publisher-passed data can be used in serving dynamic ads by passing information
the publisher knows about their visitors into the ad server’s ad tag. This information typically comes through the ad
tag by way of a string value, usually comma or pipe-delimited, but it can often be encrypted on the tag pass-through
from the publisher and then decrypted by the ad server. This encryption is done so no malicious behavior can be
performed with the user’s data unknowingly. The publisher typically gathers this data by offering a free service for a
user/member to sign up for. This could be an e-mail account, free music streaming account, or even a social network.
The following example could represent many values on input to the ad tag, such as age, zip, gender, and interests:

var adInput = "29|19428|M|Business,Technology"

Or Base64 encoded:

var adInput = "Mjl8MTk0Mjh8TXxCdXNpbmVzcyxUZWNobm9sb2d5";

Note ■ For more information on Base64 encoding, visit http://base64encode.org.

As you can see, the adInput var could be the main input into the ad server’s ad tag. The publisher would then
populate the data when the ad renders on its page. Publishers that take advantage of this type of data passing are
Yahoo, MSN, AOL, and many, many others because it allows for more relevant advertising methods among their
user bases. If you remember from the first chapter, I covered that most free services such as Yahoo and Google offer
their advertisers their vast user base in exchange for media dollars. In other words, the publisher offers a free service
for collecting the user’s information. Hence, users are the product the publisher is selling, and advertisers are the
publisher’s customers. However, it’s not all supposed to be negative; it’s been found that using some of these rich
integrations will improve your campaigns tenfold because it correlates the right messaging at the right time to the
right user and users can benefit from being served ads they actually care about.

Macros and Variables
Macros are the last ad-serving feature I’ll cover. Macros in software traditionally are used as temporary stand-in values
that will get replaced at a later time. This may be familiar to you when you use variables where you have references to
other values in your JavaScript.

A quick example of this would be var man = john, where man is the variable and john is the value. Taking
this concept a step further, macros can be used for extensive server-side value replacement. For instance, say you
developed a creative where all your click-out URLs were dependent on the publisher page to which the ad was
served. If this were the case and you didn’t have macros, the creative would need to be developed in many different
ways to satisfy each placement. However, with macros, you can use these stand-in macro values, and at ad-serve
time, depending on the publisher placement, the values would get switched to the correct value. The following code
example demonstrates this concept more if you were to serve the same ad to both CNN.com and BBC.com:

Ad server assignment for CNN.com:
MACRO = "http://www.cnn.com"

Ad server assignment for BBC.com:
MACRO = "http://www.bbc.co.uk"

http://base64encode.org
CNN.com
BBC.com
CNN.com
http://www.cnn.com
BBC.com
http://www.bbc.co.uk

CHAPTER 11 ■ DYNAMIC ADVERTISING WITH HTML5

265

HTML for creative:

As you can see, it’s much more scalable to develop in this fashion rather than update numerous creatives when
changes need to be made down the road.

Working with XML and JSON
By now you have a fair understanding on how ads can be dynamically targeted to you as a user from an ad server point
of view, but let’s shift gears a bit and talk more about the technical aspects of dynamic ads as they relate to HTML5
and the open Web. This would be particularly on the creative end of things where you can manipulate the creative
elements of your ad using data. But before you head down this path, you need to be clear on a few ways about how
your creatives can work with external data from various services. Two of the most common communication layers
when working in HTML5 are Extensible Markup Language (XML) and JavaScript Object Notation (JSON). XML and
JSON are widely adopted among the industry in that they’re used in many RESTful APIs for various data endpoints.

Note ■ For good information on RESTful APIs, visit http://blog.apigee.com/detail/restful_api_design.

Using a common and universal language that all lower-level code languages can understand and parse allows
for easy adoption, communication, and ubiquity among web developers. Anything from bringing in a brand’s Twitter
feed to pulling in a stock ticker, or even using a weather feed or local retail products, can be pulled into the ad creative.
It’s all traditionally done using XML or JSON data, and the following sections are geared toward showing the best way
to work with external data providers with XML and JSON.

XML
XML is probably the most common language for web services. I’m not going to get into the nitty-gritty of XML, but
in the ad world, an advertisement will make a request to some web service by way of an HTTP request, usually with
some necessary URL query parameters. The response that the web service provides to that request will traditionally
be in XML format. Listing 11-1 showcases a request and XML response from Yahoo’s open weather service.

Listing 11-1. Yahoo’s Weather API XML Example

HTTP Request:
http://query.yahooapis.com/v1/public/yql/jonathan/weather?zip=19428

Server Response:
<query yahoo:count="1" yahoo:created="2012-08-01T23:15:47Z" yahoo:lang="en US" xmlns:yahoo=
"http://www.yahooapis.com/v1/base.rng">
<results>
<channel>
<title>Yahoo! Weather - Conshohocken, PA</title>
<link>http://us.rd.yahoo.com/dailynews/rss/weather/Conshohocken__PA/*http://weather.yahoo.com/
forecast/USPA0326_f.html</link>
<description>Yahoo! Weather for Conshohocken, PA</description>
<language>en-us</language>
<lastBuildDate>Wed, 01 Aug 2012 6:34 pm EDT</lastBuildDate>
<ttl>60</ttl>

http://blog.apigee.com/detail/restful_api_design
http://query.yahooapis.com/v1/public/yql/jonathan/weather?zip=19428
http://www.yahooapis.com/v1/base.rng
http://us.rd.yahoo.com/dailynews/rss/weather/Conshohocken__PA/*http://weather.yahoo.com/forecast/USPA0326_f.html
http://us.rd.yahoo.com/dailynews/rss/weather/Conshohocken__PA/*http://weather.yahoo.com/forecast/USPA0326_f.html

CHAPTER 11 ■ DYNAMIC ADVERTISING WITH HTML5

266

<yweather:location city="Conshohocken" country="US" region="PA" xmlns:yweather="http://xml.weather.
yahoo.com/ns/rss/1.0"/>
<yweather:units distance="mi" pressure="in" speed="mph" temperature="F" xmlns:yweather="http://xml.
weather.yahoo.com/ns/rss/1.0"/>
<yweather:wind chill="70" direction="0" speed="0" xmlns:yweather="http://xml.weather.yahoo.com/ns/
rss/1.0"/>
<yweather:atmosphere humidity="94" pressure="29.85" rising="2" visibility="4"
xmlns:yweather="http://xml.weather.yahoo.com/ns/rss/1.0"/>
<yweather:astronomy sunrise="5:57 am" sunset="8:12 pm" xmlns:yweather="http://xml.weather.yahoo.com/
ns/rss/1.0"/>

<item>
<title>Conditions for Conshohocken, PA at 6:34 pm EDT</title>
<geo:lat xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#">40.08</geo:lat>
<geo:long xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#">−75.3</geo:long>
<link>http://us.rd.yahoo.com/dailynews/rss/weather/Conshohocken__PA/*http://weather.yahoo.com/
forecast/USPA0326_f.html</link>
<pubDate>Wed, 01 Aug 2012 6:34 pm EDT</pubDate>
<yweather:condition code="30" date="Wed, 01 Aug 2012 6:34 pm EDT" temp="70" text="Partly Cloudy"
xmlns:yweather="http://xml.weather.yahoo.com/ns/rss/1.0"/>
<description>
<![CDATA[
 Current Conditions:

 Partly Cloudy, 70 F

Forecast:
 Wed - Scattered Thunderstorms. High: 82
Low: 66
 Thu - Partly Cloudy. High: 91 Low: 70

 <a href="http://us.rd.yahoo.com/
dailynews/rss/weather/Conshohocken__PA/*http://weather.yahoo.com/forecast/USPA0326_f.html">Full
Forecast at Yahoo! Weather

 (provided by The Weather
Channel)
]]>
</description>
<yweather:forecast code="47" date="1 Aug 2012" day="Wed" high="82" low="66" text="Scattered
Thunderstorms" xmlns:yweather="http://xml.weather.yahoo.com/ns/rss/1.0"/>
<yweather:forecast code="30" date="2 Aug 2012" day="Thu" high="91" low="70" text="Partly Cloudy"
xmlns:yweather="http://xml.weather.yahoo.com/ns/rss/1.0"/>
<guid isPermaLink="false">
USPA0326_2012_08_02_7_00_EDT
</guid>
</item>
</channel>
</results>
</query>

As you can see from Listing 11-1, the ad makes an HTTP request to the http://query.yahooapis.com domain
with the query parameter of zip=19428 and gets a valid XML in response with detailed weather conditions for the
user-defined ZIP code. This is really powerful! If you take what you’ve just learned from your ad server, you can have
the ad server detect your location on the initial ad request, convert the location data to a ZIP code, and pass the
weather service that ZIP code to provide a relevant and up-to-date ad experience that the user actually cares about all
at ad serve time.

http://xml.weather.yahoo.com/ns/rss/1.0
http://xml.weather.yahoo.com/ns/rss/1.0
http://xml.weather.yahoo.com/ns/rss/1.0
http://xml.weather.yahoo.com/ns/rss/1.0
http://xml.weather.yahoo.com/ns/rss/1.0
http://xml.weather.yahoo.com/ns/rss/1.0
http://xml.weather.yahoo.com/ns/rss/1.0
http://xml.weather.yahoo.com/ns/rss/1.0
http://xml.weather.yahoo.com/ns/rss/1.0
http://weather.yahoo.com
http://l.yimg.com/a/i/brand/purplelogo//uh/us/news-wea.gif
http://www.w3.org/2003/01/geo/wgs84_pos%23
http://www.w3.org/2003/01/geo/wgs84_pos%23
http://us.rd.yahoo.com/dailynews/rss/weather/Conshohocken__PA/*http://weather.yahoo.com/forecast/USPA0326_f.html
http://us.rd.yahoo.com/dailynews/rss/weather/Conshohocken__PA/*http://weather.yahoo.com/forecast/USPA0326_f.html
http://xml.weather.yahoo.com/ns/rss/1.0
http://l.yimg.com/a/i/us/we/52/30.gif
http://us.rd.yahoo.com/dailynews/rss/weather/Conshohocken__PA/*http://weather.yahoo.com/forecast/USPA0326_f.html
http://us.rd.yahoo.com/dailynews/rss/weather/Conshohocken__PA/*http://weather.yahoo.com/forecast/USPA0326_f.html
http://www.weather.com
http://xml.weather.yahoo.com/ns/rss/1.0
http://xml.weather.yahoo.com/ns/rss/1.0
http://query.yahooapis.com

CHAPTER 11 ■ DYNAMIC ADVERTISING WITH HTML5

267

JSON
JSON is very similar to XML in that it structures data in a hierarchy, but its main difference is that it’s really JavaScript
objects that are parsed by the browser natively regardless of an XML manifest. Another benefit with JSON and JSON-P,
is that it doesn’t care what domain it’s coming from. This means that XML can be crippled in its response if the
domain hosting the information (in this case, Yahoo) wasn’t the same as the domain making the request (in this case,
the ad). There are ways around this cross-origin policy, either by using CORS, which you learned about in Chapter 6, or
simply by using JSON-P. Sometimes JSON-P is not an option for a web service’s response data format, but if it is, you’ll
never need to worry about domain security issues when working with HTML5 ads. In the case of Yahoo’s weather
service, making a JSON request is very similar to XML. Listing 11-2 shows the same example using JSON.

Listing 11-2. Yahoo’s Weather API JSON Example

Request:
http://query.yahooapis.com/v1/public/yql/jonathan/weather?zip=19428&format=json

Response:
{
 "query": {
 "count": 1,
 "created": "2012-08-01T23:29:00Z",
 "lang": "en-US",
 "results": {
 "channel": {
 "title": "Yahoo! Weather - Conshohocken, PA",
 "link": "http://us.rd.yahoo.com/dailynews/rss/weather/Conshohocken__PA/*
http://weather.yahoo.com/forecast/USPA0326_f.html",
 "description": "Yahoo! Weather for Conshohocken, PA",
 "language": "en-us",
 "lastBuildDate": "Wed, 01 Aug 2012 6:53 pm EDT",
 "ttl": "60",
 "location": {
 "city": "Conshohocken",
 "country": "US",
 "region": "PA"
 },
 "units": {
 "distance": "mi",
 "pressure": "in",
 "speed": "mph",
 "temperature": "F"
 },
 "wind": {
 "chill": "72",
 "direction": "0",
 "speed": "0"
 },
 "atmosphere": {
 "humidity": "94",
 "pressure": "29.85",

http://query.yahooapis.com/v1/public/yql/jonathan/weather?zip=19428&format=json
http://us.rd.yahoo.com/dailynews/rss/weather/Conshohocken__PA/*http://weather.yahoo.com/forecast/USPA0326_f.html
http://us.rd.yahoo.com/dailynews/rss/weather/Conshohocken__PA/*http://weather.yahoo.com/forecast/USPA0326_f.html

CHAPTER 11 ■ DYNAMIC ADVERTISING WITH HTML5

268

 "rising": "0",
 "visibility": "5"
 },
 "astronomy": {
 "sunrise": "5:57 am",
 "sunset": "8:12 pm"
 },
 "image": {
 "title": "Yahoo! Weather",
 "width": "142",
 "height": "18",
 "link": "http://weather.yahoo.com",
 "url": "http://l.yimg.com/a/i/brand/purplelogo//uh/us/news-wea.gif"
 },
 "item": {
 "title": "Conditions for Conshohocken, PA at 6:53 pm EDT",
 "lat": "40.08",
 "long": "-75.3",
 "link": "http://us.rd.yahoo.com/dailynews/rss/weather/Conshohocken__PA/*
http://weather.yahoo.com/forecast/USPA0326_f.html",
 "pubDate": "Wed, 01 Aug 2012 6:53 pm EDT",
 "condition": {
 "code": "30",
 "date": "Wed, 01 Aug 2012 6:53 pm EDT",
 "temp": "72",
 "text": "Partly Cloudy"
 },
 "description": "\n
\
nCurrent Conditions:
\nPartly Cloudy, 72 F
\n
Forecast:
\nWed
- Scattered Thunderstorms. High: 82 Low: 66
\nThu - Partly Cloudy. High: 91 Low: 70
\
n
\n<a href=\"http://us.rd.yahoo.com/dailynews/rss/weather/Conshohocken__PA/*http://weather.
yahoo.com/forecast/USPA0326_f.html\">Full Forecast at Yahoo! Weather

\n(provided by The Weather Channel)
\n",
 "forecast": [{
 "code": "47",
 "date": "1 Aug 2012",
 "day": "Wed",
 "high": "82",
 "low": "66",
 "text": "Scattered Thunderstorms"
 }, {
 "code": "30",
 "date": "2 Aug 2012",
 "day": "Thu",
 "high": "91",
 "low": "70",
 "text": "Partly Cloudy"
 }],

http://weather.yahoo.com
http://l.yimg.com/a/i/brand/purplelogo//uh/us/news-wea.gif
http://us.rd.yahoo.com/dailynews/rss/weather/Conshohocken__PA/*http://weather.yahoo.com/forecast/USPA0326_f.html
http://us.rd.yahoo.com/dailynews/rss/weather/Conshohocken__PA/*http://weather.yahoo.com/forecast/USPA0326_f.html
http://l.yimg.com/a/i/us/we/52/30.gif
http://us.rd.yahoo.com/dailynews/rss/weather/Conshohocken__PA/*http://weather.yahoo.com/forecast/USPA0326_f.html
http://us.rd.yahoo.com/dailynews/rss/weather/Conshohocken__PA/*http://weather.yahoo.com/forecast/USPA0326_f.html
http://www.weather.com

CHAPTER 11 ■ DYNAMIC ADVERTISING WITH HTML5

269

 "guid": {
 "isPermaLink": "false",
 "content": "USPA0326_2012_08_02_7_00_EDT"
 }
 }
 }
 }
 }
}

As you can see in Listing 11-2, the request is pretty much the same. The only thing you change is the format in
which you want the data. In this case, you add an additional query param to the request called format=json. This is,
again, pretty powerful in that it will allow ads to pull in data from various domains without the need for “white listing.”
Think about the possibilities when you can have your ad dynamically change without “actually” changing it.

Note ■ There are client-side XML-to-JSON formatters (see http://thomasfrank.se/xml_to_json.html), but they

don’t solve the cross-domain-policy issues.

Content Formatting
So, you may be asking yourself, this dynamic data is all well and good, but don’t I need to handle and condition the
data that gets injected into the ad? This is a great question, and the obvious answer is yes! Things like using swear
filters, adding ellipses, sizing text, and inserting code for line breaks all need to be taken into consideration.

First off, swear filters can typically be done on the back-end or server-side layer. Before that data gets inputted
into a service, it’s generally best practice to condition for swears and negative comments against the brand. That being
said, it always good to reach out to the back-end developers to ensure this technique is in place. If it’s not, Listing 11-3
shows a good client-side swear filter using JavaScript.

Listing 11-3. JavaScript Swear Filter Example

<html>
<head>
<script type="text/javascript">
//Grow this list for as long as you wish...
var keyWords = [D'oh,'jeez','dagnabit','boo','agh','Golly'];

function replaceChars(chr,cnt) {
 var s = '';
 for (var i=0; i<cnt; i++) {
 s += chr;
 console.log(s);
 }
 return s;
}

http://thomasfrank.se/xml_to_json.html

CHAPTER 11 ■ DYNAMIC ADVERTISING WITH HTML5

270

function checkWords() {
 var inputText = document.getElementById('textArea').value;
 var outputText = document.getElementById('conditionedText');

 for (var i=0; i < keyWords.length; i++) {
 var rg = new RegExp(keyWords[i]+' ',"ig");
 inputText = inputText.replace(rg,replaceChars('*',keyWords[i].length)+' ');
 }

 outputText.textContent = inputText;
}
</script>
</head>
<body>
<textarea id="textArea" rows="5" cols="13">
This chapter is dagnabit amazing!
</textarea>
<button onclick="checkWords()">Submit!</button>
<div id="conditionedText"></div>
</body>
</html>

So sweet of you to say! As you can see, you can add as many words as you’d like to the keyWords array, and you
can feel free to use the words that make the most sense to you. It also may be a better idea externalizing the words in a
JSON file so updates can be made easily without digging into the core script files. This could also be used using what
we’ve learned in chapter 6 with Web Workers.

Another way to condition data is the “new to HTML5” ellipsis text property of CSS. If you’re unsure about the
number of words that are coming back in a web service, you can set the width and height values of the text area and
set the copy inside of it to overflow: ellipsis. Take a look at Listing 11-4.

Listing 11-4. Overflow Ellipsis Example

<html>
<head>
</head>
<body>
<div id="textArea">
Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsum has been the
industry's standard dummy text ever since the 1500s, when an unknown printer took a galley of type
and scrambled it to make a type specimen book. It has survived not only five centuries, but also the
leap into electronic typesetting, remaining essentially unchanged. It was popularised in the 1960s
with the release of Letraset sheets containing Lorem Ipsum passages, and more recently with desktop
publishing software like Aldus PageMaker including versions of Lorem Ipsum.
</div>
</body>
<style type="text/css">
#textArea {
 text-overflow: ellipsis;
 -o-text-overflow: ellipsis;

CHAPTER 11 ■ DYNAMIC ADVERTISING WITH HTML5

271

 -moz-text-overflow: ellipsis;
 -ms-text-overflow: ellipsis;
 -webkit-text-overflow: ellipsis;
 height: 100px;
 width: 200px;
 overflow: hidden;
 white-space: nowrap;
 padding: 5px;
}
</style>
</html>

Now any copy that fills the div called textArea will get an ellipsis attached to the tail end of the copy should the
words overflow the div container. There is also another useful CSS tip for mobile devices called overflow: scroll.
Using the following CSS on mobile devices (iOS 5+) will give you a native and elegant scrolling feature similar to the
experience on the native operating system:

#textArea {
 overflow: scroll;
-webkit-overflow-scrolling: touch;
}

Next, I’ll discuss the concept of text sizing as data and words grow. Again, when working with dynamic data, you
have no idea what amount of data is coming to you in the response. Unless you discuss this beforehand with the back-
end developers who could employ character limits, you’ll need to use some text sizing code that you can leverage via
JavaScript to detect the size of the div container and the number of words filling the container. Using the example
located at http://jsfiddle.net/qW5h2/1 from Nikolay Kuchumov, you can reduce the size of the font to fit within the
allotted space for which it’s designed. This is a bit tricky to pull off and can even come back to bite you if the copy is
getting reduced significantly, especially if your clients are Pharmaceutical companies (Pharma) and every word needs
to be clear for legal reasons. The best bet is to communicate with your web service provider, and if the time allows,
perhaps they could add a special node with a font size value. This way, the ad can check that node for its value and
size appropriately without doing any logic.

There is one other trick I wanted to mention, and it’s the concept of viewport size. This is increasingly important
for mobile devices. In short, viewport size/scale can dynamically update the size and scale of the fonts on-screen
based on the zoom level of the viewport. This is something to make note of if you’re using CSS font sizing in vw. Keep
in mind that this will alter the container-sizing method shown previously, but between each of these tricks, you
should have a good understanding of what technique bests serves you and your campaign. For more information on
viewport-sized type, visit http://css-tricks.com/viewport-sized-typography.

Note ■ There is also a very nice lightweight jQuery plug-in called FitText (http://fittextjs.com) for responsive

font sizing.

HTML5 Data Attribute
Now that you understand how effective it can be to leverage data from within your advertisements, let’s take a look
at some new features that HTML5 permits you to use in the new browser market. New in HTML5 is the optional and
arbitrary data attribute that can be used from within the HTML markup. Taking the example covered in the “Macros

http://jsfiddle.net/qW5h2/1
http://css-tricks.com/viewport-sized-typography
http://fittextjs.com

CHAPTER 11 ■ DYNAMIC ADVERTISING WITH HTML5

272

and Variables” section, you can plug these undefined macro values in your HTML without affecting your valid
markup. The data attribute is a great way to add dynamic values to your markup without hacking them to the DOM
through scripts. Listing 11-5 showcases how to use the custom data attribute in your ad if you were to have products
dynamically added from a retail store web service like one from ShopLocal (http://shoplocal.com).

Listing 11-5. HTML5 Data Attribute Example

<!DOCTYPE HTML>
<html>
<head>
</head>
<body>
<div data-name="product" data-url="http://www.productURL.com"></div>
</body>
<script>
var element = document.getElementsByTagName('div')[0];
var name = element.dataset.name = "product"
var url = element.dataset.url = "http://www.productURL.com"
console.log('name' + name, 'url' + url)
</script>
</head>
</html>

Note ■ For more information about ShopLocal.com’s retail API, visit http://aboutshoplocal.com/products/

paperboy.

The data attribute works simply by using data-*, where * stands for whatever value you want. In this case,
you use NAME and URL as they relate to product information that could be dynamically populated within your ad
based on the response from the Shoplocal API. Just to reiterate, this can be any name you want! Go nuts—it’s all
still valid HTML!

What’s really great about using the data attribute is that with all the attributes you add, you can display the
information instantaneously to the user without having to worry about making any additional external requests or
having to make any server-side queries. Since the data is baked into the markup, it is already present. This speeds
up performance tremendously because the data is already present in the DOM. You do not need to “request more
information” since the information is already there with the initial response. For more detailed information about the
custom data attribute in HTML5, visit http://html5doctor.com/html5-custom-data-attributes.

Another really useful attribute new in HTML5 is called hidden. When using the hidden attribute, the browser
should not render the element; however, the element is still visible in the markup and accessible from the
DOM. When you want to show the element, you can use JavaScript to remove the hidden attribute . It’s pretty
straightforward; Listing 11-6 has a hidden macro value defined. After the JavaScript executes and detects that you
have your value replaced by the ad server, you can render the element and its value to the screen for the user to
display. This is really helpful in scenarios where you need to request the data before presenting it to a user.

Listing 11-6. HTML5 hidden Attribute Example

<!DOCTYPE HTML>
<html lang=en>
<head>

http://shoplocal.com
http://www.productURL.com
http://www.productURL.com
ShopLocal.com
http://aboutshoplocal.com/products/paperboy
http://aboutshoplocal.com/products/paperboy
http://html5doctor.com/html5-custom-data-attributes

CHAPTER 11 ■ DYNAMIC ADVERTISING WITH HTML5

273

<script>
var output = document.getElementsByTagName('p')[0];

function onAdServerComplete (value) {
 // macro value
 var welcome = "Hello " + value;
 output.innerHTML = welcome;
 output.removeAttribute('hidden');
}

//Example Callback with value from AdServer
onAdServerComplete("John");
</script>
</head>
<body>
<p hidden>MACRO</p>
</body>
</html>

Content Editable
This next feature is more of an attribute than an API, but it’s still an important focus on user interaction, which is a
prime feature of the HTML5 specification and dynamic data. Believe it or not, content editable has been around since
version 5.5 of Microsoft’s Internet Explorer, and now it’s currently supported in all five major modern browsers. When
using the content editable feature, all you need to do is to set the contenteditable attribute to true on the element
you want to make editable. You can also combine this feature with the ability to make pushes to a server or client-side
storage and manage the changes for referencing later if the user comes back to the experience. Listing 11-7 shows the
contenteditable attribute in action.

Listing 11-7. Content Editable Example

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset=utf-8>
<body>
<header contenteditable=true>Enter Some Text Here</header>
</body>
</html>

Pretty, simple right? Now you can edit anything inside the header element. Really, you can add this attribute to
the body element and allow the whole page to be edited. Content editable in advertising has a lot of potential. Instead
of using an input field for all user entry, you can actually have the users edit the creative elements, allowing them to
creatively alter their own ad experience. For example, what if you had an ad campaign that asked the user for their
input, allowing them to customize, manipulate, and edit anything including the style of the ad itself? This may not be
the ideal situation at all times, but for specific campaigns, it could be a unique approach. Where other advertisers are
force-feeding their end users information, this could take the opposite approach and ask users for creative input. With

CHAPTER 11 ■ DYNAMIC ADVERTISING WITH HTML5

274

this, you could allow a user to edit the entire ad and save the changes to the browser or a server, and the next time they
view the ad in sequence, they’ll see the latest saved version that they once edited. This also will allow the brand to
take a good look at how their users are customizing their brand experience, which would give vital details into brand
relationships. Take a look at Listing 11-8, where the user can edit the CSS styling of the ad experience and save their
changes to browser storage.

Listing 11-8. Content Editable Ad Example

<!DOCTYPE html>
<head>
 <meta charset=utf-8>
<style type="text/css">
 * {
 -webkit-tap-highlight-color:rgba(0,0,0,0);
 outline: none;
 text-rendering: optimizeLegibility;
 }
 #cta {
 font: 175% sans-serif;
 text-align: center;
 margin-bottom: 20px;
 }
 #ad style{
 display: block;
 text-align: center;
 }
 #ad:hover{
 background-color: #999;
 width: 300px;
 height: 250px;
 }
 button {
 margin-top: 20px;
 margin-bottom: 20px;
 width: 300px;
 height: 30px;
 }
</style>
 <body align="center">
 <div id="cta">Edit Your Own CSS!</div>
 <div id="ad" contenteditable>
 <div id="style">
 <style contenteditable>
 #ad {
 background-color: #fff;
 width: 300px;
 height: 250px;
 border: 1px solid #000;
 }
 </style>
 </div>
 </div>

CHAPTER 11 ■ DYNAMIC ADVERTISING WITH HTML5

275

 <button id="clearValues">clear storage</button>
 <div id="output"></output>

 <script type="text/javascript">
 var adStyle = document.querySelector('#style'),
 clearIt = document.querySelector('#clearValues'),
 output = document.querySelector('#output');

 function adInit () {
 if (localStorage.getItem('adValue') === 'null' || localStorage.getItem('adValue') === null) {
 console.log('init')
 } else {
 adStyle.textContent = localStorage.getItem('adValue');
 console.log(localStorage.getItem('adValue'))
 output.textContent = "Values Loaded!!!";
 }

 adStyle.addEventListener('DOMCharacterDataModified', updateAdStyle, false);//Fires
everytime a character is changed
 clearIt.addEventListener('click', clear, false);

 adStyle.focus();
 }

 function updateAdStyle () {
 if(localStorage) {
 output.textContent = "Values Saved!!!";
 console.log(adStyle.textContent);
 //store the values
 var styleFix = "<style contenteditable>" + adStyle.textContent + "</style>";
 localStorage.setItem('adValue', styleFix);
 }
 }

 function clear () {
 if(localStorage.getItem('adValue') != 'null' || localStorage.getItem('adValue') != null) {
 localStorage.clear();
 }
 output.textContent = "";
 console.log('clear')
 }
 window.addEventListener('DOMContentLoaded', adInit, false);

 </script>
</body>
</html>

As you can see from the previous example, you’re allowing the user to edit the CSS directly on the page, or in
this case the 300 ́  250 ad unit. From the edits that the user makes, you store a long string value in localStorage by
the name of adValue. Now, the next time the user views the ad, the values will be stored and still available to be
manipulated. This really opens up the doors to truly customized ad experiences.

CHAPTER 11 ■ DYNAMIC ADVERTISING WITH HTML5

276

HTML5 Forms and Inputs
Forms were most likely the first time you realized that your web content could become interactive. You could not
only interact with your users but also tailor your site and content based on their input. This is essentially the whole
foundation of dynamic content. Allow for interaction, optimize the feedback, and represent the information specifically
to the user who interacted with the ad. With that said, I can’t get away with speaking about dynamic ads without
mentioning the updates to the forms and inputs in HTML5. Forms and input tags have long been associated with user
input on the Web. One of the most exciting new features with HTML5 forms is the ability to use client-side validation.

Here’s the previous approach with HTML4:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.
dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
</head>

<body>
<form>
 <input name="email" oninput=validate(this);>
</form>
</body>
</html>

function validate (input) {
...tons of validation code and regex magic
}

And here’s the new approach with HTML5:

<!DOCTYPE HTML>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
</head>
<body>
<form>
 <input type=email required>
</form>
</body>
</html>

That’s it! Did you notice it in bold? Just be sure to include the attribute required in your input element, and your
browser will handle the input validation. To newcomers, this may seem logical and nothing amazing, but in reality,
previous to this you would need to include some long JavaScript validation/regex function to check the string value to
ensure it’s well-formed for the server to handle. Now, the browser handles that all for you. Think about it! Every developer
wants to ensure they have proper validation on their inputs, so if every developer is doing this, let the browser handle it
natively. Why repeat yourself for every project that requires it? This, again, is what HTML5 strives to accomplish.

http://www.w3.org/TR/html4/loose.dtd
http://www.w3.org/TR/html4/loose.dtd

CHAPTER 11 ■ DYNAMIC ADVERTISING WITH HTML5

277

Along with form validation, HTML5-compliant browsers also include native data types such as date, color,
e-mail, URL, and phone number form tags all with the necessary client-side validation, as you just learned in the
previous example. Let’s take a look at working with each of them respectively. First up, date.

date is where the browser can include a calendar picker element for a user by default in the browser’s UI.
Figure 11-6 showcases how the browser Chrome handles <input type="date"></input>.

Figure 11-6. How the Chrome browser handles the date input

Next is the color input. Using <input type="color"></input>, you can tell the browser to show a color wheel
for a user to select a hex value, as shown in Figure 11-7. Please note that not all browsers handle each of these inputs.
Browsers will have their own visual differences for UI elements as well.

CHAPTER 11 ■ DYNAMIC ADVERTISING WITH HTML5

278

Figure 11-7. How the Chrome browser handles the color input

Note ■ Any input type not recognized by a browser will gracefully degrade to a default text input.

HTML5 also supports numerical increments and sliders as inputs. Simply by adding the following inputs, you can
have a user increment values and slide a simple (but CSS skinnable) UI element.

CHAPTER 11 ■ DYNAMIC ADVERTISING WITH HTML5

279

<input type="number"></input>
<input type="range" min="1" max="5">range</input>

Try the previous input tags, and you’ll notice that the number type will have arrows on the right side and the
range type will render a simple slider, as shown in Figure 11-8.

Figure 11-8. How the Chrome browser handles the number and range input

What’s really interesting with these new (and old) input formats are the new attributes associated with them such
as placeholder, required, and the really cool pattern. Each of these attributes has its own benefits; for example, the
placeholder attribute allows the input field to display some sample text to signify what text format that user should
enter. This is helpful for specific text formatting such as credit cards, phone numbers, or even Social Security numbers.

As you’ve learned, required is a great attribute for ensuring a user will fill out a section in the form before submitting.
The browser will now check to see whether any inputs are required and flag them when the user attempts to submit the form.

The pattern attribute essentially allows you to use your own regular expressions (regex) from directly within
the HTML markup. Traditionally, this was handled only via JavaScript, and if you want your user to explicitly enter
something like a five-digit ZIP code, you can use a regex pattern to ensure that client-side validation is in place before
the user submits their data. Listing 11-9 outlines what I am discussing.

Listing 11-9. Pattern Attribute Example

<!DOCTYPE html>
<html>
<body>
<form>
 Zip code: <input type="tel" pattern="^\d{5}$" title="Five digit ZIP code" />
 <input type="submit" />
</form>
</body>
</html>

Regular expressions are very powerful bits of code and can be conditioned to fit a wide variety of use cases. In
the previous example, you are using the regex pattern of ^\d{5}$, which is ensuring that the user enters five digits for
proper U.S. ZIP code entry.

Note ■ For a useful regex tester/validator, please visit http://regexpal.com.

What’s also really cool with the inputs is that you can customize your CSS based on the pseudo classes that get
applied from the user interaction (or noninteraction). The following CSS example shows how you can present an error
area for the form elements that weren’t validated:

input {
 border: 1px solid #000000;
}
input:focus {
 border: 2px dashed #666666;
}

http://regexpal.com

CHAPTER 11 ■ DYNAMIC ADVERTISING WITH HTML5

280

input:invalid {
 border: 5px solid #FF0000;
}

Looking at the previous CSS declarations, you can update the border weight and color on focus and when the
value is invalid to present the user with a more significant border weight and a bright red color for “error.”

Another really useful feature with these inputs is the datalist element. Have you ever started to search for
something on Google and noticed that the topic you were searching for was already prepopulated in the list below the
input field? Well, using an HTML5 datalist element, you can provide similar helpful hints while a user is entering
information into the input tag. datalist elements can be super helpful for a user if they’re trying to filter through
an ad with a bunch of categories. Taking the earlier ShopLocal retail example, your user could be presented an ad
with various categories and products. Wouldn’t it be helpful to filter them for a user? Let’s take a look at the following
example to do just that:

<body>
<input type="text" name="categories" list="categories" />

<datalist id="categories">
 <option value="Electronics">
 <option value="Furniture">
 <option value="Office Supplies">
 <option value="Kitchen">
 <option value="Bedding">
 <option value="Bath">
</datalist>
</body>

As you can see from the code, you have a datalist called categories, which includes option values for all of the
possible categories. Now when the user starts to type into the input field, using the list attribute called categories,
you can present the users with options while they type.

Forms don’t end there though, there are a lot of improvements to and even working groups are producing more
content for HTML5 and HTML. That said, a full-fledged JavaScript speech API for input is in the works and is currently
supported in newer versions of Google’s Chrome browser. Obviously spearheaded by the folks at Google, you can start
to take advantage of this in the browser by including the following in your input tag:

<input type="text" x-webkit-speech />

Using the previous x-webkit-speech attribute in your input tag will yield Figure 11-9 on your input text area.

Figure 11-9. How the Chrome browser supports speech input

You can also parse through the results of the input speech with the following code snippet by listening for the
event being passed in and grabbing the results object off that event. Next you’ll log out to the console with the result’s
utterance and confidence, which are two properties in the speech API that analyze the users input.

CHAPTER 11 ■ DYNAMIC ADVERTISING WITH HTML5

281

<script>
input.addEventListener('webkitspeechchange', function(event) {
 if (event.results) {
 for (var i = 0, result; result = event.results[i]; ++i) {
 console.log('Speech: ' + result.utterance + ' ' + result.confidence);
 }
 }
}, false);
</script>

Note ■ You can learn more about Chrome’s speech API by going to http://developer.chrome.com/extensions/

experimental.speechInput.html.

If you’re familiar with speech to text recognition services like Dragon diction or even Siri from Apple, this feature
will be very familiar and useful to you and your users. For more information on the working spec on the JavaScript
speech API, visit http://lists.w3.org/Archives/Public/public-webapps/2011OctDec/att-1696/speechapi.
html. So, you may be thinking, “What good are these awesome attributes if some browsers won’t recognize them?”
Well, good question. Be sure to check out http://caniuse.com or leverage tools like Modernizer (if available to you);
otherwise, you can always do some simple JavaScript checking like this:

<script>
if (!'x-webkit-speech' in document.createElement('input')) {
 // no speech input
} else {
 // speech!
}
</script>

In the end, keep in mind your user base and remember that not all users will be capable of rendering all features
of the modern Web.

Details and Summary Element
The details element is a great new feature in modern browsers. Have you ever wanted to show just a bit of
information initially and, upon user selection, reveal more information, sort of like an accordion open/close effect?
Well, the details element can help you really quickly do just that. Take a look at Listing 11-10, which incorporates the
details element into the example ad. For this example, you’ll assume you know where the user is and you want to
show the nearest stores based on their location.

Listing 11-10. Details/Summary Example

<!DOCTYPE HTML>
<html lang=en>
<head>
<style type="text/css">
 summary {
 -webkit-tap-highlight-color:rgba(0,0,0,0);
 outline: none;/*removes outline*/
 }

http://developer.chrome.com/extensions/experimental.speechInput.html
http://developer.chrome.com/extensions/experimental.speechInput.html
http://lists.w3.org/Archives/Public/public-webapps/2011OctDec/att-1696/speechapi.html
http://lists.w3.org/Archives/Public/public-webapps/2011OctDec/att-1696/speechapi.html
http://caniuse.com

CHAPTER 11 ■ DYNAMIC ADVERTISING WITH HTML5

282

 li:nth-child(odd) {
 background: #CCC;
 color: green;
 }
</style>
</head>
<body>
<details>
 <summary>Closest Store Locations</summary>

 <p>500 Ford Street, East Lanford IL 12345</p>
 <p>13 West Nectar Road, Brunswick FL 12345</p>
 <p>275 Bimba Drive, Clifton PA 12345</p>

</details>
</body>
</html>

If you preview this in your browser, you’ll see that you can open and collapse the information, which is a pretty
useful UI element that can also be styled via CSS. You can even add some attributes like open, which allows the
browser to open the details element by default when the document loads. You can even nest details and summary
elements inside one another to create a very complex stack of UI elements. As you can see from Figure 11-10, at the
time of this writing, the details element is supported only in Chrome, Safari 6, and Android 4.0. Keep an eye on this
element, though, because adoption should take off very soon.

Figure 11-10. The support for the details and summary element. Source: http://caniuse.com/#feat=details.

You may be asking yourself, “Wait! How do we know where the user is?” That’s a great question, and I’m happy to
introduce you to the next section.

Geolocation
Another huge addition to the modern web stack is the Geolocation API. Geolocation data is the latitude and longitude
coordinates of your user. Traditionally, you would need to leverage web services like http://maxmind.com and go
through a process of looking up a user’s IP address and tying it to an approximate location. This is not fault-proof
in that it’s up to the Internet service provider (ISP) to assign that IP to a user. (This would be Verizon, Comcast, and

http://caniuse.com/#feat=details
http://maxmind.com

CHAPTER 11 ■ DYNAMIC ADVERTISING WITH HTML5

283

others that you’re paying for Internet service.) In my current use case, using Comcast’s Internet service, my IP address
is assuming me to be around the Philadelphia area, and this is on WiFi, which is pretty good considering I’m just
outside the city; however, I’ve seen in some cases where IP lookup is not even accurate about the state. It progressively
gets worse when users are on cell carrier networks. So, IP location lookup is pretty unpredictable and unreliable for
truly accurate uses, especially for mobile.

Luckily, with the new Geolocation API, you can grab the actual latitude and longitude of a user, which proves
to be a much speedier and accurate tool than a costly (seldom reliable) lookup service. I mention the word costly
because some of these lookup tools aren’t free and because they take requests to remote servers and lookup
databases to gather a user’s approximate location which in turn end up being costly for timing. The Geolocation
API geographically locates a user (with opt-in permission) through the browser natively. I stress “with permission”
because once you attempt to detect a user, the browser’s initial default action will prompt an alert to the user stating
that the content’s domain is asking to access their location. This prompt is a security measure employed by all
browsers and devices. Figure 11-11 demonstrates how this appears in Google’s Chrome browser.

Figure 11-11. The Geolocation prompt in Google’s Chrome browser

Figure 11-12. The Geolocation prompt on mobile Safari

Figure 11-12 shows it on an iDevice’s mobile Safari browser.

If the user selects, allows, denies, or simply waits too long to reply, the developer can then handle how the
user responds, by detecting for PERMISSION_DENIED, POSITION_UNAVAILABLE, or TIMEOUT based on the course of
action performed. In any event taken, ensure that your ad creative is intelligent enough to adapt to the various
user inputs, because not everyone will allow location-based services. Listing 11-11 shows how to work with
Geolocation using JavaScript.

Listing 11-11. Geolocation API Example

<!DOCTYPE html>
<head>
<meta charset=utf-8>
<body>
<header>
 <h1>geolocation</h1>
 <div id="coords"></div>
</header>
<script>
function success(position) {
 var lat = position.coords.latitude;
 var long = position.coords.longitude;

CHAPTER 11 ■ DYNAMIC ADVERTISING WITH HTML5

284

 document.getElementById('coords').innerHTML = "<p>lat: " + lat + "

long: " + long + "";
}

function error(error) {
 switch (error.code) {
 case error.PERMISSION_DENIED:
 alert("user did not share geolocation data");
 break;
 case error.POSITION_UNAVAILABLE:
 alert("could not detect current position");
 break;
 case error.TIMEOUT:
 alert("retrieving position timed out");
 break;
 default:
 alert("unknown error");
 break;
 }
}

function adInit(event) {
 console.log(event.type)
 if (navigator.geolocation) {
 navigator.geolocation.getCurrentPosition(success, error);
 } else {
 error('not supported');
 }
}

window.addEventListener('DOMContentLoaded', adInit, false);
</script>
</body>
</html>

As you can see from the previous code sample, you check the navigator.geolocation object, and if it’s true, you
know that the Geolocation API is supported in your browser or device. After that, you call navigator.geolocation.
getCurrentPosition and pass in two arguments, which are a success callback function and an error callback function.
Once you run this command, the user will notice the previous prompt’s outline, and the user will need to take the
necessary action. Assuming they select allow, it will run through the success method; otherwise, it will run through the
error method, and you can handle why the error occurred by looking at the error code you receive in your callback.

Once the user allows the sharing of their location, you can grab the latitude and longitude values from the position
object that comes with the success callback. With this location information, you can tie it to location-based services
or geocode the latitude/longitude into a ZIP code to query against services like Yahoo’s weather service or Google’s
mapping services. The bottom line is that geolocation provides some rich experiences within the ad environment.

Geolocation in Advertising
Location is a big part of advertising on the Web. As you are aware, advertisers want to target users by as many ways
necessary to ensure a good ROI on their media investment. With this new API, developers can do just that! This location
information is hugely beneficial when pairing with mapping services such as Google, Apple, or Bing or when you want to
locate a user and navigate them to the nearest retail store by offering them detailed directions to get them into the store.

CHAPTER 11 ■ DYNAMIC ADVERTISING WITH HTML5

285

Timely and relevant ads go a long way; for example, if you’re from Chicago and notice an ad giving you
information about products and directions in London, England, that would be pretty wasteful and useless to both
the advertiser and, more importantly you, the end user. Advertisers spend millions and millions of dollars a year
targeting audiences by a various number of inputs. Using location as an input into the creative, advertisers are able to
deliver specific and dynamic information to a user, which effectively is intended to create a much more personalized
interaction with potential consumers. Brands and advertisers love this relationship because it creates repeat
customers and because users end up trusting the brand.

OK, enough about the strategy. Let’s take a look at an example of geolocation where you supply a specific
location based on the user’s location and leverage the WatchPosition API to navigate the user to the store with the
offer (see Listing 11-12).

Listing 11-12. Geolocation Ad Example

<!DOCTYPE html>
<html>
<head>
 <meta charset=utf-8>
</head>
 <body>
 <header>
 <h1>Find The Product!</h1>
 <div id="coords"></div>
 </header>
 <script>
 var MAGIC_LOCATION = "40.068134,-75.318797"//Don't be creepy
 var location = document.getElementById('coords');
 var watch;

 function success(position) {
 var lat = position.coords.latitude;
 var long = position.coords.longitude;
 location.innerHTML = "<p>lat: " + lat + "
long:
" + long + "";

 //start watching the users location
 watch = navigator.geolocation.watchPosition(updatePosition, error);
 }

 function error(error) {
 switch (error.code) {
 case error.PERMISSION_DENIED:
 alert("user did not share geolocation data");
 break;
 case error.POSITION_UNAVAILABLE:
 alert("could not detect current position");
 break;
 case error.TIMEOUT:
 alert("retrieving position timed out");
 break;
 default:

CHAPTER 11 ■ DYNAMIC ADVERTISING WITH HTML5

286

 alert("unknown error");
 break;
 }
 }

 function updatePosition(position) {
 var lat = position.coords.latitude;
 var long = position.coords.longitude;
 var newLocation = lat + ',' + long;
 //This fires everytime the users location changes
 if (newLocation === MAGIC_LOCATION) {
 //You win!
 productFound();
 location.innerHTML = "<p><strong style='color:red'>" + newLocation + "";
 } else {
 location.innerHTML = "<p><strong style='color:blue'>" + newLocation + "";
 }
 }

 function productFound() {
 navigator.geolocation.clearWatch(watch);
 window.alert("You Win!")
 //show coupon to the user to buy the product at the store
 }

 function adInit(event) {
 console.log(event.type)
 if (navigator.geolocation) {
 navigator.geolocation.getCurrentPosition(success, error);
 } else {
 console.error('geo not supported');
 //supply different ad experience
 }
 }

 window.addEventListener('DOMContentLoaded', adInit, false);
 </script>
 </body>
</html>

As you can see from this example, I’ve extended this to make a unique game out of it. Remember the “You’re Hot,
Warm, or Cold” game? You know, the one where the user tried to find something blindly with the help of another?
Well, this can be replicated in the digital world now! Try to take this example and update it to use a store location in
your area. Maybe even set a time limit. How about if a user can find it within the allotted time, they get a special offer?
The possibilities are endless with this technology.

Again, remember that geolocation is an opt-in process, and the user will have to explicitly “agree” or “allow” this
feature. Make sure you handle all the responses a user could make as well as paying attention to the polling of the
user’s location. With this API, developers can take advantage of the watchPosition method, which will continuously
check for the user’s updated position if they’re on the go. While great for providing accurate and real-time directions,
keep in mind that the more frequent you poll and request the user’s exact location, the more battery and resources
you will consume because of processing the requests. It’s good to keep it at a minimal threshold for mobile users or

CHAPTER 11 ■ DYNAMIC ADVERTISING WITH HTML5

287

even allow the user to update their location on their own terms. As the Battery API finalizes and grows in adoption,
you can use more sophisticated ways of detecting the state of the current battery percentage before going nuts
on location polling. Geolocation opens up new worlds of advertising to marketers, and in the increasing mobile
landscape, it’s never been more important to catch your users on the go with the right message. Don’t believe me?
Take a look at the graphic from eMarketer.com in Figure 11-13.

Figure 11-13. The use of location-based services by U.S. consumers

eMarketer.com

CHAPTER 11 ■ DYNAMIC ADVERTISING WITH HTML5

288

As you can see in Figure 11-13, location is pretty big, and it’s getting used often! If you’re not using it in your next
mobile campaign, I’m sure you will shortly after by client demand. Again, the Geolocation API is a specification that
often gets lumped into HTML5 even though it’s separate. See for yourself at http://isgeolocationpartofhtml5.
com. However, it does go hand in hand with many of HTML5’s new features. If you’d like to learn more about the
geolocation specification, visit http://dev.w3.org/geo/api/spec-source.html.

Web Services for Locations
I’d like to wrap this section by taking a look at some of the other web services for locations and other APIs. Keep
in mind that these APIs come in both paid and free versions, so choose wisely based on your campaign goals and
budget. Perhaps the most popular location API would be Google’s Maps API (http://developers.google.com/
maps); however, if you plan on using Google Maps in your production work and you expect a lot of traffic from your ad,
you’ll end up paying for it because Google limits the amount of requests of its free service. If you can’t afford Google,
another good alternative is the Open Street Maps API (http://openstreetmap.org), which is a great free service but
often lacks the features and geographical information of Google’s. A few other useful location services are IPinfoDB
(http://ipinfodb.com/ip_location_api.php), InfoChimps (http://infochimps.com), and Open B Map (http://
openbmap.org/api/openbmap_api.php5). Also, if U.S. law does not restrict you, you can take advantage of other useful
data found at http://bluevia.com/en/page/tech.APIs.UserContextAPI.

Note ■ Be careful with what you do with this information. As much as advertisers will beg you to track and store

data about their potential customers, be aware that it may not always be in the best interest of humankind and you could

face legal issues.

Social
The social market is fast growing in advertising. If you think about it, what’s more dynamic and relevant than what
your friends are saying? Social chatter is always happening no matter which platform it’s occurring on. Using social
platforms like Foursquare (http://developer.foursquare.com/docs), Facebook (http://developers.facebook.
com), Twitter (http://dev.twitter.com), Instagram (http://instagram.com/developer), LinkedIn (http://developer.
linkedin.com/apis), Google+ (http://developers.google.com/+/api), and SoundCloud (http://developers.
soundcloud.com), to name a few, developers and designers can take advantage of these rich social platforms for more
integrated experiences with a user’s social graph. If one of your friends likes a Nike campaign, that information can be
presented to you in real time. Or, if you wanted to see what the reviews were of that new movie trailer, why not bring
in the hashtags from the movie’s Twitter account? This is all possible with the various APIs that bring social data into
your advertisement.

Note ■ The Open Graph API (http://ogp.me) allows web content and ads to be tagged with metadata for social

networks to create rich objects from the web content within a user’s social graph.

Social APIs
Pretty much everyone and their mother is on Facebook, Twitter, or Linkedin. I mean, even the King is on it, and he’s
been dead for years (http://twitter.com/ElvisPresley)]! Social is pretty much a main vein of the Internet today;
we have more access and insight into what people are saying, how they’re feeling, and personal information
than we’ve ever had in history. Even more relevant are the conversations with our friends, family, and random
others we are following and who follow us. Social is pretty much a life source for many folks. Just take a look at the
graphic from eMarketer.com in Figure 11-14.

http://isgeolocationpartofhtml5.com
http://isgeolocationpartofhtml5.com
http://dev.w3.org/geo/api/spec-source.html
http://developers.google.com/maps
http://developers.google.com/maps
http://openstreetmap.org
http://ipinfodb.com/ip_location_api.php
http://infochimps.com
http://openbmap.org/api/openbmap_api.php5
http://openbmap.org/api/openbmap_api.php5
http://bluevia.com/en/page/tech.APIs.UserContextAPI
http://developer.foursquare.com/docs
http://developers.facebook.com
http://developers.facebook.com
http://dev.twitter.com
http://instagram.com/developer
http://developer.linkedin.com/apis
http://developer.linkedin.com/apis
http://developers.google.com/+/api
http://developers.soundcloud.com
http://developers.soundcloud.com
http://ogp.me
http://twitter.com/ElvisPresley
eMarketer.com

CHAPTER 11 ■ DYNAMIC ADVERTISING WITH HTML5

289

That’s proof! More than half of the United States will be tied to some sort of social network come 2014. With that
data and the potential ability to add it into your advertisements, include this with geolocation . . . and I think you
catch my drift; it’s pretty powerful! Adding social elements into your advertisements can be a great use of dynamic
content. Really, what’s more “live” than the social graph that’s living and breathing out there? There are numerous
social platforms to take advantage of, but be sure to keep the rights and usage rules in mind when exploiting these
social APIs. Companies such as Facebook, which now owns Instagram, allows developers to include their services and
platform into other web applications; however, at the time of writing, Facebook (and others) does not allow you to pull
users’ information into third-party advertising experiences.

Synced Units
Synced ad units are when two ads on the same page seemingly communicate with each other to create a “tied
together” effect to the end user. This could be an animation that starts from the leaderboard ad (728 ́  90) unit and
resolves into the box (300 ́  250) unit. Synced units typically come sold together by the publisher, usually as a roadblock
and traditionally with Flash you’d need to use external interface calls to JavaScript in order to communicate between
both units across the page. Now that you aren’t “black-boxed” inside the SWF container, your ads can make your own
specific JavaScript calls to produce the synced effect. Take a look at Listing 11-13, where the 728 ́  90 unit syncs up a
CSS transition effect with a 300 ́  250 companion unit.

Figure 11-14. The support for the details and summary elements

CHAPTER 11 ■ DYNAMIC ADVERTISING WITH HTML5

290

Listing 11-13. Synced Ad Example 728 Ad

<!DOCTYPE HTML>
<html lang=en>
<head>
</head>
<style type="text/css">
#ad728 {
 position: absolute;
 top: 0px;
 left: 0px;
 width: 728px;
 height: 90px;
 border: 1px solid #000;
 font-family: Arial;
 font-size: 80px;
 background-color: red;
 color: black;
 opacity: 1;
 -webkit-transition-property: color;
 -webkit-transition-duration: 1s;
 -webkit-transition-timing-function: cubic-bezier(0.5, 0.2, 0.9, 0.4);
}
#ad728:hover {
 color: white;
}
</style>
<body align=center>
 <div id="ad728">728x90</div>
</body>
<script type="text/javascript">
 var ad300 = "stop";
 var ad728 = document.getElementById('ad728');
 var ad728value = window.getComputedStyle(ad728,null).getPropertyValue("color");

 ad728.addEventListener('webkitTransitionEnd', function(event) {
 if(ad728value === "red") {
 ad300 = "play";
 } else {
 ad300 = "stop";
 }
 }, false);
</script>
</html>

In this example, you’ll see that the 728 ́  90 unit gets a transition effect on its CSS color property. Once the user
hovers over the 728 unit, you’ll listen for an event of webkitTransitionEnd, which fires when the transition event
ends. This is useful because now you can handle these events and fire off other functions. In this case, you set a value
for the 300 unit to listen for the play value on the variable called ad300. Listing 11-14 shows the 300 unit listening for
this change in value from stop to play.

CHAPTER 11 ■ DYNAMIC ADVERTISING WITH HTML5

291

Listing 11-14. Synced Ad Example 300 Ad

<!DOCTYPE HTML>
<html lang=en>
<head>
</head>
<style type="text/css">
#ad300 {
 position: absolute;
 top: 0px;
 left: 0px;
 width: 300px;
 height: 250px;
 border: 1px solid #000;
 font-family: Arial;
 font-size: 50px;
 background-color: red;
 color: black;
 opacity: 1;
 -webkit-transition-property: color;
 -webkit-transition-duration: 1s;
 -webkit-transition-timing-function: cubic-bezier(0.5, 0.2, 0.9, 0.4);
}
</style>
<body align=center>
 <div id="ad300">300x250</div>
</body>
<script type="text/javascript">
 var checker300 = window.setInterval(check, 100);

 function check () {
 if (ad300 === "play") {
 animate300();
 } else {
 console.log('300 is stopped');
 }
 }

 function animate300 () {
 clearInterval(checker300);
 document.getElementById('ad300').style.color = 'white';
 }
</script>
</html>

As you can see, you fire an interval to check the shared ad300 value to see whether you are to stop or play your
300 unit’s animation. There are a few things to keep in mind with this type of execution. First, you’ll need to know
how you are being served to the publisher’s page. Are you in an iframe, a safe frame, an MRAID container, or a div
with CSS overflow set to hidden? This all impacts how the communication via JavaScript will have to be handled.
For instance, if you’re served to the publisher’s page in a div with overflow : hidden, all you would need to do is
have both ads communicate on the same shared values within the script (like in the previous example). Again, setting
a 0 to a 1 can do this, and having a “checker” interval poll for when that value changes can be helpful. Also, you can

CHAPTER 11 ■ DYNAMIC ADVERTISING WITH HTML5

292

dispatch custom events from the 728 unit for the 300 unit to listen for and handle. If you are served through some
container (iframe or MRAID), you’ll need to communicate through that container in order for the ads to connect. This
is a bit tricky considering that both ads will be wrapped at this point, and if it’s run across an ad network, there’s no
telling what the container would be, unless you had an ad loader script file whose sole job is to detect the environment
the ad is served into. If it’s an iframe, you should be able to target the parent window, assuming you have access to
read-write values. If it’s MRAID, you’ll need to see whether there are certain MRAID or publisher calls to be made in
order to have the ads transfer data.

In addition, you may think that polling for a value isn’t really an optimized technique. Well, it’s not, and some
browsers will simply castrate the reoccurring interval calls after a certain amount of time. Luckily, there is another new
feature to HTML5, called the Communication API for Cross Document Messaging. It’s perfect for synced ad development!

Communication API
The Communication API for Cross Document Messaging allows for transfer through the window object regardless
of domain securities and if content is wrapped in an iframe on the publisher page. Basically, if you want to dispatch
a message to another ad, saying “Hey, 300 unit, it’s the 728 unit telling you to animate!” then you could have the
publisher’s page or other elements on the page (hosted from a different domain) listen for the message and react
accordingly. This is done by using a method called postMessage; Listing 11-15 shows the revised synced ad example.

Listing 11-15. Communication API 728 Example

<!DOCTYPE HTML>
<html lang=en>
<head>
 <style type='text/css'>
#ad728 {
 position: absolute;
 top: 0px;
 left: 0px;
 width: 728px;
 height: 90px;
 border: 1px solid #000;
 font-family: Arial;
 font-size: 80px;
 background-color: red;
 color: rgb(0, 0, 0);
 opacity: 1;
 -webkit-transition-property: color;
 -webkit-transition-duration: 1s;
 -webkit-transition-timing-function: cubic-bezier(0.5, 0.2, 0.9, 0.4);
}
#ad728:hover {
 color: rgb(255, 255, 255);
}
</style>
</head>
<body align=center>
 <div id='ad728'>728x90</div>

CHAPTER 11 ■ DYNAMIC ADVERTISING WITH HTML5

293

</body>
<script type='text/javascript'>
var ad728 = document.getElementById('ad728'),
 ad728value;

function adInit () {
 console.log('adInit');
 ad728.addEventListener('webkitTransitionEnd', nudge300, false);
}

function nudge300 (event) {
 console.log(event);
 ad728value = window.getComputedStyle(ad728,null).getPropertyValue('color');

 if (ad728value === 'rgb(255, 255, 255)') {
 if(typeof window.postMessage === 'undefined'){
 console.error('Your browser does not support the communication API');
 //fail over to our other method
 } else {
 //Same Domain
 console.log('Message: ' + window.postMessage)
 window.postMessage('play300', 'http://johnpercival.org');//Insert your
domain here

 //Cross Domain
 //document.getElementsByTagName('iframe')[0].contentWindow.
postMessage('play300', 'http://johnpercival.org');
 }
 } else {
 //some other color
 console.log(ad728value);
 }
};

window.addEventListener('load', adInit, false);
</script>
</html>

First, you set up the 728 unit much like you did prior, but the main difference is you use a postMessage call that
takes two parameters. The first is the string value you want to pass, and the second is the domain for the window
object (in this case, my domain, but be sure to use the domain hosting the files), which is usually the ad server.

Note ■ If you don’t care much about the domain origin, you can pass a literal string value of *, which is the wildcard

and allows all domain transfers.

Now, once the user hovers over the 728 unit, you post a message to anyone listening. In this case, it will be the
300 unit, as shown in Listing 11-16.

http://johnpercival.org
http://johnpercival.org

CHAPTER 11 ■ DYNAMIC ADVERTISING WITH HTML5

294

Listing 11-16. Communication API 300 Example

<!DOCTYPE HTML>
<html lang=en>
<head>
 <style type="text/css">
#ad300 {
 position: absolute;
 top: 0px;
 left: 0px;
 width: 300px;
 height: 250px;
 border: 1px solid #000;
 font-family: Arial;
 font-size: 50px;
 background-color: red;
 color: black;
 opacity: 1;
 -webkit-transition-property: color;
 -webkit-transition-duration: 1s;
 -webkit-transition-timing-function: cubic-bezier(0.5, 0.2, 0.9, 0.4);
}
</style>
</head>
<body align=center>
 <div id="ad300">300x250</div>
</body>
<script type="text/javascript">

function adInit () {
 window.addEventListener('message', messageHandler, true);
 console.log('adInit')
}

function messageHandler(event) {
 switch(event.origin) {
 case "http://johnpercival.org":
 //only listen for events from our domain
 if(event.data === 'play300') {
 animate300();
 } else {
 //not our 300's message to animate
 }
 break;
 }
}

function animate300 () {
 document.getElementById('ad300').style.color = 'white';
}

http://johnpercival.org

CHAPTER 11 ■ DYNAMIC ADVERTISING WITH HTML5

295

window.addEventListener('load', adInit, false);
</script>
</html>

In the receiver, the 300 unit, it’s quite simple. You set up an event listener to listen for the message event and
handle it accordingly using the messageHandler function. Inside that handler, you check the event’s origin, making
sure it came from johnpercival.org or the domain of your choice and finally checking whether the data attached to
that event has the value of play300. If it does, you simply call the animate300 method to create synced effect.

Although this is just one way to skin a cat, there are many other ways to achieve the results you want. Just keep in
mind that the style could get shared between the two units. Remember, I said keep name spacing prefixed by the ad-
server vendor, for example AdServer-AdContainer. In the event of delivering synced units to the page, I recommend
prefixing the namespace with the size of the unit as well. So, AdServer-AdContainer becomes AdServer-300x250-
Container. It’s a bit verbose, but keeping this prefixed appropriately will ensure your styles and other events don’t get
shared across ads and, even more so, page content.

Note ■ This method can be used for transferring data between the publisher’s page content and the ads hosted on

other domains.

Advanced Dynamics
Advanced dynamics is where it gets really exciting. When integrating multiple HTML5 features, web services, APIs, and
publisher buy-in, you can create a cutting-edge campaign. There really is nothing stopping you from using location
data, weather services, store lookup services, stock feeds, and even asking the user for some input to customize and
craft a personalized ad experience. Sure, this takes time, effort, and money to pull off, but the execution could be
amazing and really useful to the end user.

Oftentimes, you’ll be stuck looking for a web service to suit your needs. When that’s the case, check out the
developer community on GitHub and ask around. If you have the server-side coding skills, make your own or even
present the additional costs to the client for the creation of a web service. It may make the client not want the service,
or they may request it and use it for many other campaigns going forward.

Dynamic Video
I covered a lot about video in Chapter 7, but I didn’t mention too much about dynamic video. Before I was completely
immersed in HTML5 development, I was pretty big into ActionScript and combining data from After Effects. I made
some pretty cool examples where you could dynamically update and change the content superimposed over video.
The content would be tied specifically to the video’s movement, skew, rotation, and scale via metadata and read in by
the SWF in order to create a seamless video/animation effect. Although a lot has changed in technology, the theory
remains the same. Using features of HTML5 canvas and video, WebVTT, CSS3 transforms, and JavaScript, you can
do very similar things. There are even useful libraries created for tying data to video content in real time. Check out
PopcornJS (http://popcornjs.org), and you’ll get a look at what I’m talking about.

Summary
I covered a lot in this chapter, including dynamically serving ads from your ad server’s various inputs, using delivery
rules, using publisher-passed data, using XML and JSON, using the new features in HTML5 such as the data attribute,
using contenteditable, working with forms, using various useful attributes, and using the amazing new geolocation
data from browsers. I even wrapped up by discussing a bit about social APIs and integration into ads, advanced
dynamic executions, and the popular synced ad unit.

johnpercival.org
http://popcornjs.org

CHAPTER 11 ■ DYNAMIC ADVERTISING WITH HTML5

296

Feel free to take some time to visit the code samples and test on your own. There is a lot that can be done with
dynamic ads, and really there is no limit as long as you have the information and data to work with. Keep in mind
that not every ad should be dynamic. If you’re specifically targeting users on mobile devices, keep in mind their user
experience. The user could be on a significantly reduced connection where bandwidth isn’t so plentiful. If that’s the
case, I recommend detecting for that at ad-request time and serving up alternate versions of the ad experience.
Do not tax a user’s machine! In the end, you’ll really want to offer a tasteful and working ad experience as opposed
to one that’s hogging all the system resources and presenting a poor experience where the user would blame the
brand or even the publisher. Users are smarter than ever nowadays, and they have every social outlet known to man
accessible to them for making you aware that you messed up. In the end, provide a good experience for your users,
understand that network conditions are a variable, and adjust on the fly. Stay dynamic and adapt to changes.

I hope you enjoyed this chapter; it was a great primer for the next discussion, bleeding-edge HTML5. Now that
you know the basics of HTML5 advertising and how to include dynamics in your ads, I’ll talk about layering on some
really amazing features coming to you in the near future or possibly already here with the emerging web standard.

297

Chapter 12

Bleeding-Edge HTML5

This chapter is a bit different than the previous because its sole purpose is to get you excited about the new
features coming soon to the browsers you use every day. Some of these features are rolled into the current HTML5
specification; others remain outside the HTML5 domain, are in specific browsers only, or are set for HTML.next
(http://w3.org/wiki/HTML/next).

In this chapter, I’ll cover some really amazing APIs and features such as Web Intents, WebSockets, WebGL,
WebRTC, bleeding-edge CSS3, and others. I’ll also focus on the emerging browsers from the Google Chrome team,
Mozilla, Apple, and Opera, as well as to discuss how they, as well as Microsoft, Adobe, W3C, and WHATWG, are
making specific additions to the open web standard that will impact your campaigns moving forward.

As you’ve learned throughout the book, HTML5 is an evolving specification, but working group members
currently are determining what should stay in HTML5 and what should be pushed off until HTML.next. It may seem
odd that there are two different specifications of the HTML5 specification, one managed by the W3C, which aims to
make HTML5 a snapshot specification, and one managed by the WHATWG, which aims to make the HTML standard
an organic, ever-growing document that builds and iterates through the years of the open Web’s growth. However, it’s
not terribly important to get wrapped up in which specification is which; just be sure to know when the browsers have
implemented these new features and when user adoption will take place.

Finally, please take this chapter with a “grain of salt.” A lot of these features may not make it into the HTML5
specification and could be pushed off to the next iteration, or some could even be retired. However, be aware that
working groups are committed to creating and enabling amazing things inside your browsers, and being on top of
them allows you to better prepare for what your clients will eventually ask for. Whether it lands in HTML5, 6, 6.x, or
something else entirely, shouldn’t matter much. If you can use a feature and, more importantly, use it where your
target audience is, that’s the most important part to take away from this chapter. That said, let’s dig into the really
amazing and bleeding-edge features of the modern Web!

Emerging Browsers
In this chapter, I will showcase what’s to come, in other words, the emerging and most forward-thinking stuff that’s
being cooked up by some really smart people and coming to your browser. As I’ve stressed in previous chapters, you
should be working with the latest version of your favorite browser, and to be quite honest, if you’ve made it this far in
the book using IE 6 to IE 8, God bless you, and please send me your address so I can personally come to your house
and install an update for you.

For this chapter specifically, you should be working with one of the browsers shown in Figure 12-1.

http://w3.org/wiki/HTML/next

CHAPTER 12 ■ BLEEDING-EDGE HTML5

298

You can download these bleeding-edge browsers at one of the following locations: Firefox Aurora
(http://aurora.mozilla.org), Chrome Canary (http://tools.google.com/dlpage/chromesxs), Opera Next
(http://opera.com/browser/next), and Webkit Nightly (http://nightly.webkit.org). Keep in mind that these
browsers are not 100 percent stable and should be used with caution in production environments because there could
be bugs in the code base. It’s best to use these browsers only for testing experimental features.

Note ■ At the time of this writing, Internet Explorer does not have a beta version of its latest browser (though IE 10 is

set to be very bleeding edge).

Downloading one or all of these browsers gives you VIP access to all the beta features that these ultra-modern
browsers grant access to.

New CSS Features
Now that the setup is out of the way, let’s head into the important topics of this chapter, starting with emerging CSS
features. The following sections are geared to many of the new enhancements of the CSS specification.

CSS Regions
First up is the new CSS feature called regions. Adobe has submitted a draft to the W3C for this feature, which is
effectively a new specification for free-flowing text from one region of content to another. This allows you to have freely
moving text that is device and screen independent, which allows for a great addition for copy layout in responsive
web and creative designs. As you know from your knowledge of synced ad units, you could in theory have free-flowing
text from one ad into another on the same page. To use CSS regions, all you’ll need to do is include some empty div
containers and some CSS declarations, as shown in Listing 12-1.

Listing 12-1. CSS Regions Example

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<style type="text/css">

Figure 12-1. All bleeding-edge browsers

2

http://aurora.mozilla.org
http://tools.google.com/dlpage/chromesxs
http://opera.com/browser/next
http://nightly.webkit.org

CHAPTER 12 ■ BLEEDING-EDGE HTML5

299

/* ad */
#ad .adContent {
 -webkit-flow-into: adRegions;
}

.adRegions > div {
 content: -webkit-from-flow('adRegions');
 -webkit-flow-from: adRegions;
 width: 30%;
 height: 250px;
 float: left;
 margin: 10px;
 padding: 30px;
 border: 1px solid #000;
 overflow: scroll;
 -webkit-overflow-scrolling: touch;
}
</style>
</head>

<body>
<div id="ad">
 <div class="adContent">
 Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam nec ipsum non massa vehicula
feugiat. Etiam a tempor lectus. Etiam sollicitudin commodo risus, ac hendrerit felis auctor a.
Maecenas sed sem sed libero faucibus elementum eu non sapien. Ut tellus nisl, imperdiet ut eleifend
id, lacinia et enim. Suspendisse feugiat fringilla cursus. Phasellus nisl nisi, congue ac hendrerit
eget, facilisis a nunc. Suspendisse potenti. Ut suscipit, lacus ac imperdiet lacinia, metus ipsum
placerat libero, et dictum massa arcu vitae risus. Vestibulum varius hendrerit congue.
 </div>
 <div class="adRegions">
 <div></div>
 <div></div>
 </div>
</div>
</body>
</html>

As you can see from Listing 12-1, you have some “lorem ipsum” content in your div called adContent and two
other divs called adRegions (which could be another ad). As shown in the CSS, you instruct your adContent to flow its
text content into adRegions. That’s about it! Now you can have free-flowing copy independent of screen size, as shown
in Figure 12-2.

CHAPTER 12 ■ BLEEDING-EDGE HTML5

300

Keep in mind that this works only with percentage-set widths and not when you dictate a hard value like 300px.
For this to work in the ad environment, ensure that your ad container’s div has a width of 100 percent and wrap that
container inside another div element with its width set to 300px (or whatever your ad inventory calls for). This could
be really helpful should your client want to mimic a flipbook type of creative because elements including copy can
free flow into other regions at different screen sizes.

Note■ At the time of writing, each emerging feature discussed in this chapter will more than likely need a specific

vendor prefix to work correctly.

At the time of this writing, in order to utilize the CSS regions feature, you need to use Webkit Nightly, Chrome,
or Chrome Canary and have the CSS regions called flags enabled in the browser settings. For Chrome, you can do
this by typing chrome://flags in the address bar. Finally, restart your browser to ensure the setting took effect, and
you will be able to mess around with this cool new feature. For more information on a real-world example, I suggest
visiting http://css-tricks.com/content-folding, and to learn more about the specification for CSS regions, visit
http://w3.org/TR/css3-regions or http://adobe.github.com/web-platform/samples/css-regions.

Figure 12-2. Example from Adobe using CSS regions

http://css-tricks.com/content-folding
http://w3.org/TR/css3-regions
http://adobe.github.com/web-platform/samples/css-regions

CHAPTER 12 ■ BLEEDING-EDGE HTML5

301

CSS Exclusions
Speaking about CSS regions, Adobe also submitted a new specification for a feature called CSS exclusions. Exclusions
allow for text content to free flow around images, videos, canvases, and other elements in the DOM tree. With CSS
exclusions, it’s truly possible to create rich print-like magazine effects in your browser using pretty simple CSS.
What’s really interesting is that you can create shapes inside CSS and use them as exclusions, which can create really
interesting effects with negative space. Let’s take a look at an example from Adobe using CSS exclusions and adaptive
text layout based on the orientation of the tablet, as shown in Figure 12-3.

Figure 12-3. Example from Adobe using CSS exclusions (source: Adobe)

You can see by incorporating exclusions into your text layout, you can gain really amazing results that
form-fit around specific content, in this case, the mountain. So, let’s take a look at working with CSS exclusions in
an example layout where you wrap mock publisher content around a 300x250 rectangle exclusion, which could be
your ad real estate.

Listing 12-2. CSS Exclusions Example

<!DOCTYPE HTML>
<html>
<head>
<style type="text/css">
body, html{
 height:100%;
 width:100%;
 overflow:hidden;
}
#container{
 font-size:14px;
 text-align:justify;
 -webkit-hyphens:auto;

CHAPTER 12 ■ BLEEDING-EDGE HTML5

302

 /* flow the content inside this element */
 -webkit-wrap-shape-mode: content;
}
.exclusion {
 position:absolute;
 height:250px;
 width:300px;

 /* flow text around this element */
 -webkit-wrap-shape-mode: around;
}
.ad{
 top: 20px;
 left: 100px;
 border: 1px solid #000;
 -webkit-wrap-shape: rectangle(300px, 250px 300px,250px 250px,300px 250px,250px);
}

#workspace{
 position:relative;
 width:80%;
}

</style>
</head>
<body>
<div id="workspace">
 <div id="exclusion1" class="exclusion ad"> 300x250 </div>
<div id="container">
 <p>Lo­rem ip­sum do­lor sit amet, con­sec­te­tur ad­ipisc­ing
elit. Vi­va­mus ac nul­la ac nunc ves­ti­b­u­lum sod­ales sed eget
pu­rus. In­te­ger tris­tique neque at urna eleif­end por­ta. Mau­ris a
sa­pi­en augue, ve­hic­u­la rutrum augue. Sus­pend­isse pre­tium
pulvi­nar tris­tique. Nul­la el­e­men­tum blan­dit mas­sa,
pel­len­tesque el­e­men­tum orci tem­pus sed. Cur­a­bi­tur eget
est neque, nec pel­len­tesque enim. Sed blan­dit do­lor et neque tin­ci­dunt
rutrum. Lo­rem ip­sum do­lor sit amet, con­sec­te­tur ad­ipisc­ing
elit. Nul­lam tin­ci­dunt do­lor vel neque eleif­end frin­g­il­la.
Prae­sent et orci nec jus­to vulpu­tate ul­tri­c­ies ac in leo. In nec
ip­sum enim. Donec sus­cip­it plac­er­at ad­ipisc­ing. Nul­la a
nunc mi. Sed ve­hic­u­la sus­cip­it mag­na sed con­val­lis. Donec
ul­trices con­se­quat tor­tor, at fer­men­tum augue mal­esua­da in.
Ut cur­sus, odio non port­ti­tor var­i­us, dui neque luc­tus la­cus,
in rhon­cus dui odio eges­tas libe­ro. Mae­ce­nas po­s­u­ere
con­sec­te­tur lec­tus, vi­tae con­sec­te­tur lig­u­la
con­sec­te­tur eu.</p>
 <p>Lo­rem ip­sum do­lor sit amet, con­sec­te­tur
ad­ipisc­ing elit. Vi­va­mus ac nul­la ac nunc ves­ti­b­u­lum
sod­ales sed eget pu­rus. In­te­ger tris­tique neque at urna eleif­end
por­ta. Mau­ris a sa­pi­en augue, ve­hic­u­la rutrum augue.
Sus­pend­isse pre­tium pulvi­nar tris­tique. Nul­la el­e­men­tum

CHAPTER 12 ■ BLEEDING-EDGE HTML5

303

blan­dit mas­sa, pel­len­tesque el­e­men­tum orci tem­pus sed.
Cur­a­bi­tur eget est neque, nec pel­len­tesque enim. Sed blan­dit
do­lor et neque tin­ci­dunt rutrum. Lo­rem ip­sum do­lor sit amet,
con­sec­te­tur ad­ipisc­ing elit. Nul­lam tin­ci­dunt do­lor
vel neque eleif­end frin­g­il­la. Prae­sent et orci nec jus­to
vulpu­tate ul­tri­c­ies ac in leo. In nec ip­sum enim. Donec sus­cip­it
plac­er­at ad­ipisc­ing. Nul­la a nunc mi. Sed ve­hic­u­la
sus­cip­it mag­na sed con­val­lis. Donec ul­trices con­se­quat
tor­tor, at fer­men­tum augue mal­esua­da in. Ut cur­sus, odio non
port­ti­tor var­i­us, dui neque luc­tus la­cus, in rhon­cus dui odio
eges­tas libe­ro. Mae­ce­nas po­s­u­ere con­sec­te­tur
lec­tus, vi­tae con­sec­te­tur lig­u­la con­sec­te­tur eu.</p>
 <p>Lo­rem ip­sum do­lor sit amet, con­sec­te­tur
ad­ipisc­ing elit. Vi­va­mus ac nul­la ac nunc ves­ti­b­u­lum
sod­ales sed eget pu­rus. In­te­ger tris­tique neque at urna eleif­end
por­ta. Mau­ris a sa­pi­en augue, ve­hic­u­la rutrum augue.
Sus­pend­isse pre­tium pulvi­nar tris­tique. Nul­la el­e­men­tum
blan­dit mas­sa, pel­len­tesque el­e­men­tum orci tem­pus sed.
Cur­a­bi­tur eget est neque, nec pel­len­tesque enim. Sed blan­dit
do­lor et neque tin­ci­dunt rutrum. Lo­rem ip­sum do­lor sit amet,
con­sec­te­tur ad­ipisc­ing elit. Nul­lam tin­ci­dunt do­lor
vel neque eleif­end frin­g­il­la. Prae­sent et orci nec jus­to
vulpu­tate ul­tri­c­ies ac in leo. In nec ip­sum enim. Donec sus­cip­it
plac­er­at ad­ipisc­ing. Nul­la a nunc mi. Sed ve­hic­u­la
sus­cip­it mag­na sed con­val­lis. Donec ul­trices con­se­quat
tor­tor, at fer­men­tum augue mal­esua­da in. Ut cur­sus, odio non
port­ti­tor var­i­us, dui neque luc­tus la­cus, in rhon­cus dui odio
eges­tas libe­ro. Mae­ce­nas po­s­u­ere con­sec­te­tur
lec­tus, vi­tae con­sec­te­tur lig­u­la con­sec­te­tur eu.</p>
 </div>
</div>
</body>
</html>

In Listing 12-2, you can see that nothing is out of the ordinary, with the exception of a few new CSS properties
called -webkit-wrap-shape-mode and -webkit-wrap-shape. The first one’s job is to signal that the copy inside of div
container should be free flowing by using the value of content. The second is instructing the browser to wrap the
content around the exclusion (in this case, your ad), which is 300x250. By applying this exclusion, you get the result in
Figure 12-4.

CHAPTER 12 ■ BLEEDING-EDGE HTML5

304

For more information on the exclusions specification, visit http://dev.w3.org/csswg/css3-exclusions or
http://html.adobe.com/webstandards.

CSS Shaders
This is where it gets really amazing with CSS! With, CSS shaders, you can finally bring true motion graphics to the
browser natively that leverage the machine’s GPU. What does this mean? Well, for starters, you can now do rich
cinematic effects all while leveraging simple CSS declarations and vertex shaders. Vertex shaders are coordinates
given to the machine’s GPU for processing graphic manipulations and shades, which is similar to the technology used
in popular 3D programs.

The reason you use a vertex shader (VS) is to transform the object you are targeting and manipulate it in 3D
space. With CSS shaders, you can soon control properties such as position, color, and texture on an object with really
creative and amazing results that you’re used to seeing in true motion-graphics programs. Need to create a realistic
page-turning effect or a waving flag? Then you should be taking a look at what can be done with shaders! These new
features will create really amazing experiences in your web and advertising content, but keep in mind that these can
ask a lot of your machine, so be sure you’re working with a higher-end graphics card when this working spec becomes
a reality, and as always, feature detect for the support and offer graceful degradation to users whose machines may
not be up to speed. The following code is an example of CSS shaders:

<style>
#someElement {
 filter: custom(url(wave.vs), amount 0);
 transition-property: filter;
}

#someElement:hover {
 filter: custom(url(wave.vs), amount 1);
}
</style>

This example outlines the filter property and a custom URL to the wave.vs vertex shader. On hover, you simply
increase the wave amount to 1 from 0, so the effect transitions to that amount, thus creating an animation effect. CSS
shaders are getting rolled into the CSS filters specification for now and will even be implemented in IE 10.

Figure 12-4. An example of how a publisher can exclude page content around ad inventory

http://dev.w3.org/csswg/css3-exclusions
http://html.adobe.com/webstandards

CHAPTER 12 ■ BLEEDING-EDGE HTML5

305

CSS Filters
The CSS shaders specification operates in conjunction with the CSS filters specification, which gives you the
remarkable ability to add Photoshop-like filters via straight CSS and create some amazing image composites and
effects. You can use filters such as blur, gray scale, drop-shadow (different than box-shadow), and sepia as well as
adjusting the hue, saturation, and level (HSL) and inverting an image’s color space. In addition, you can adjust and
manipulate properties such as brightness, contrast, and saturation. Listing 12-3 outlines how this can be achieved in
CSS very easily.

Listing 12-3. CSS Filters Example

<style>
 #someElement {
 -webkit-filter: blur(10px);
 -webkit-filter: grayscale(1);
 -webkit-filter: drop-shadow(5px 5px 20px black);
 -webkit-filter: sepia(1);
 -webkit-filter: brightness(10);
 -webkit-filter: contrast(10);
 -webkit-filter: hue-rotate(360deg);
 -webkit-filter: invert(1);
 -webkit-filter: saturate(10);
 -webkit-filter: opacity(1);
 }
</style>

As you can see, you can combine filter effects to create a very unique arrangement for images and even add
animation on these effects. In this example, you’re just manipulating every filter property, which would create an
image that is completely washed out because of the contrast and brightness settings on the max value. I suggest
playing around with each of these properties individually to get comfortable with how you can perform nondestructive
editing to your images right inside the browser. This is also really helpful in mobile advertising on iDevices since iOS6
and BlackBerry 10 are both supporting the CSS filters spec with a Webkit prefix, and support will be coming to other
browsers as well. Good examples of the CSS filters are located at http://html5-demos.appspot.com/static/css/
filters/index.html; for more information on the CSS filters spec, visit http://dvcs.w3.org/hg/FXTF/raw-file/tip/
filters/index.html or get started working with filters using Adobe’s new CSS FilterLab at http://html.adobe.com/
webstandards/csscustomfilters/cssfilterlab.

Note ■ Filters are resource-intensive. Use them sparingly and only when necessary within your ad content, especially

when animating them. Always perform feature detection because it’s not fully adopted just yet as well.

Matrix3D
As you’re aware, CSS is getting a lot of new features in its level 3 and eventually level 4 specifications as formalized
by the W3C. One that I am most excited for is the Matrix3D property for elements. Using Matrix3D, it’s possible to
completely distort an image in 3D space. With this in mind, you can create image manipulations and transitions over
the HTML5 video element to create believable composites with DOM elements seemingly embedded within the
video itself.

http://html5-demos.appspot.com/static/css/filters/index.html
http://html5-demos.appspot.com/static/css/filters/index.html
http://dvcs.w3.org/hg/FXTF/raw-file/tip/filters/index.html
http://dvcs.w3.org/hg/FXTF/raw-file/tip/filters/index.html
http://html.adobe.com/webstandards/csscustomfilters/cssfilterlab
http://html.adobe.com/webstandards/csscustomfilters/cssfilterlab

CHAPTER 12 ■ BLEEDING-EDGE HTML5

306

Matrix3D works by specifying a 3D transformation on an element as a 4x4 matrix with independent quadrants
accessible to editing. Let’s take a look at working with the Matrix3D property in CSS:

#someElement {
 matrix3d(m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m31, m33)
}

This may seem a bit complicated with that many parameters, but Table 12-1 will help you understand what
portion of the matrix you can update. Pay close attention to the parameter number and the quadrant in the table.
Think of this table as an overlay for any DOM object, and you’ll understand which portion of the image you’ll be
adjusting based on the parameters you pass.

Table 12-1. Matrix3D Grid Example

0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

0,2 1,2 2,2 3,2

0,3 1,3 2,3 3,3

Using Matrix3D can get overwhelming if you’re new to it, so I suggest bookmarking a very useful online tool
when working with it. Specifically, check out http://cssglue.com/matrix, which allows you to edit and view updates
in real time.

Masks
Masks in CSS3 (the proposal is by Webkit and being considered for W3C standardization) are another great
advancement in CSS to take advantage of. Masks are a very popular tool for many designers coming from a
background of designing ads using Flash. Using CSS masks, you can do some very nifty image trickery by showing just
the portions of the image you want to make visible to a viewer and hiding other areas. Masks allow nondestructive
manipulation of an image and are really great for saving k-weight in a browser. They give you the ability to save images
in the JPEG format, which significantly saves on k-weight as opposed to PNGs. Saving as a JPEG preserves image
fidelity but does not retain the alpha transparency layer present in PNG files. For this, you can leverage the masks to
make a clean cut over the image, which will give the illusion that the image is transparent (like a PNG) but will save a
lot on the overall file size.

At the time of this writing, masks are supported only in Webkit. With browsers on iOS, Android, and BlackBerry
all supporting it (with a vendor prefix), make sure you have Webkit Nightly installed or a phone handy and follow
along in Listing 12-4.

Listing 12-4. CSS Masks Example

<html>
<head>
<style type="text/css">
#theImage {
 background-image: url(image.jpg);
 background-repeat: no-repeat;
 width: 504px;
 height: 288px;
}

http://cssglue.com/matrix

CHAPTER 12 ■ BLEEDING-EDGE HTML5

307

.mask {
 -webkit-mask-position: -60 -60;/*x and y for mask position*/
 -webkit-mask-size:600px 400px;
 -webkit-mask-image: url(star.png);
}
</style>
</head>
<body>
 <div id='theImage' class='mask'></div>
</body>
</html>

From Listing 12-4, you can see you have an image with an ID of theImage and a mask class called mask. On the
div with the image, you apply the class mask that uses CSS to apply a Webkit-only property called webkit-mask-image,
which uses a star.png asset to create the mask over the image asset. You can also tweak some of the mask properties
such as position and size by using –webkit-mask-position and –webkit-mask-size so you can get more accurate
position and center the image within the star.png mask (see Figure 12-5).

Figure 12-5. An example of Webkit masks

Note ■ You can use SVG shapes, CSS gradients, and images to mask DOM elements instead of PNG images.

As you can see from this example, adjusting your star.png file could drastically affect the quality of output.
It’s ideal to use SVG if you’re going to scale or adjust your masks. For a great write-up on masks in CSS3, visit
http://css-tricks.com/webkit-image-wipes. While browser support is minimal for cross-browser production
work, it still looks like a valid solution on iOS, Android, and BlackBerry where saving k-weight on mobile is a must!

http://css-tricks.com/webkit-image-wipes

CHAPTER 12 ■ BLEEDING-EDGE HTML5

308

Reflections
Similar with the browser support with masks, CSS reflections are a new way of adding a reflection to any DOM object
such as images, shapes, canvas elements, and even HTML5 video. Using the webkit-box-reflect property, you
can repeat an element in any direction, apply an offset, and even use a mask, as you’ve just learned. To use the CSS
reflections rule, you’ll need to take a look at the syntax:

-webkit-box-reflect: <direction> <offset> <mask-box-image>

The property gets a direction value, an offset value, and a mask. Using this syntax on your example image, you
can yield the code outlined in Listing 12-5.

Listing 12-5. CSS Reflections Example

<html>
<head>
</head>
<body>
<img src="image.jpg" style="-webkit-box-reflect:below 2px -webkit-gradient(linear, left top,
left bottom, from(transparent), color-stop(0.4, transparent), to(white));">
</body>
</html>

As you can see, you use this with an inline style attribute on your image element. For the first rule of direction,
you set it to below. For the second rule of offset, you specify 2px, and for the third, you apply a mask gradient so the
image looks like it tapers off into nothingness. If you test this example in your browser, you should get the result
shown in Figure 12-6.

Figure 12-6. The example for CSS reflections

CHAPTER 12 ■ BLEEDING-EDGE HTML5

309

Keep in mind you need to declare your own image source for your example and make sure you’re testing using a
supported browser, like Webkit.

Scoped Styles
As you’re well aware by now, separating ad content from publisher content can be a challenge. Oftentimes, if ads
aren’t wrapped in an iframe, they’ll share styles and functionality if not properly namespaced. With new support
for the sandbox attribute of the HTML iframe element, this will allow publishers to manage the security risk of
embedded content. For instance, you can grant full privileges to an iframe that contains content that the publisher
controls, but much fewer rights to an iframe that a third-party advertising service controls. What’s nice is that if the
ad server wraps its ad content within a block of code using the CSS scoped attribute, it can apply styles individually to
that block of code separately from the rest of the publisher’s page. These scoped styles are supposed to overwrite any
of the inherited styles from the publisher’s page, which should correctly render the ad content. With the CSS scoped
attribute, you can write styles specifically targeted to the elements in your ad, as outlined in Listing 12-6.

Listing 12-6. CSS Scoped Example

<html>
<head>
<body>
<section>
 <style scoped>
 iframe {
 position: absolute;
 border: 1px solid #000;
 top:100px;
 left: 200px;
 -webkit-box-shadow: 0px 15px 20px rgba(50, 50, 50, 0.5);
 -moz-box-shadow: 0px 15px 20px rgba(50, 50, 50, 0.5);
 box-shadow: 0px 15px 20px rgba(50, 50, 50, 0.5);
 }
 </style>
<iframe id='ad' width='300' height='250' seamless src='sampleAd.html'></iframe>
</section>
</body>
</html>

If you’re following along, you’ll notice that the CSS styles will be affected only on the iframe element, which is in
this case holding your ad unit, as shown in Figure 12-7.

CHAPTER 12 ■ BLEEDING-EDGE HTML5

310

Having these scoped styles within a publisher’s markup allows the publisher to specifically style certain portions
of markup that override default settings by style sheets. Keep in mind that CSS scoped styles are very limited in
browser support, but that’s expected to change as new browser versions are released. Be sure to keep tabs on this by
visiting http://w3schools.com/html5/att_style_scoped.asp.

CSS Summary
Many of the CSS3 specifications are being modified every day by multiple people on the various working groups, so
it’s extremely fluid, and covering all of them is pretty much like hitting a moving target. The browser manufacturers
are highly competitive nowadays (which is a great thing), and they’re developing at a much more rapid pace than
most working groups can keep up with. Some of these features are an advantage because they allow you to gain the
most bleeding-edge functions of the browser, and they allow you to experiment and be truly innovative. However, this
can be a disadvantage because oftentimes features are not submitted as standards, so many developers don’t know
they’re available to access and in which browsers the features operate correctly.

As you know, developing for one browser isn’t usually the best approach because many people use a variety of
OSs and browsers with multiple versions, which ultimately means you need to define your reach before starting any
development. This is even more so the case in advertising because clients want their messages everywhere; therefore,
targeting the broadest audience and covering more screens/browsers is an absolute must, which could limit the CSS
features you use. Keep in mind that when using feature detection like Modernizer, when a browser says, “Hey, sure,
I support this feature,” you should do some more testing first. Just because the browser claims it supports a feature
doesn’t mean it’s performant in an advertising campaign, especially when deployed in conjunction with other
elements on the publisher’s page. This is specifically the case for animation, which could burn out the browser quickly
and have everything come to a crashing halt, because repainting and reflowing the screen are costly for performance.

Note■ For a comprehensive list of new and emerging CSS features, visit http://css3clickchart.com.

Figure 12-7. The example for CSS scoped styles

http://w3schools.com/html5/att_style_scoped.asp
http://css3clickchart.com

CHAPTER 12 ■ BLEEDING-EDGE HTML5

311

Emerging APIs
The next sections will apply to the emerging JavaScript and DOM APIs that are coming to the new modern web stack.
Most of the following APIs can be used by downloading the latest beta browsers outlined previously; in the worst case,
they’re just not yet implemented in any browser version or device at the time of this writing, but a formal specification
is being developed. It’s best to keep an eye on http://caniuse.com and the various working groups for any progress
and adoption stats. Let’s kick things off with the much-needed picture element.

Picture Element
The first DOM feature I want to touch on is the new picture element. As you know, with the varying screen sizes and
pixel densities out there, it’s becoming increasingly hard to handle bitmap images that are optimized correctly for
every screen. While some people take the route of using straight CSS and/or SVG for their graphic elements paired
with a responsive approach to layout, bitmap images will still look very different on higher-density screens and with
fluctuating screen layouts.

Luckily, there is a working group dedicated to developing a technique known as responsive images using a new
picture element. Using the picture element, you can dictate specific images to load based on the device accessing
the content. For example, if you were viewing an image on an Apple iPhone 3GS, your device pixel density would
be a 1:1 relationship between the device pixels and the document’s CSS pixels. However, if you view the same piece
of content on an iPhone 4+, your device pixel density doubles for a 2:1 relationship (or as Apple coined it, a Retina
display). With this device, it means your device pixels are two times greater than the CSS pixels. Listing 12-6 uses the
picture element to load the appropriate image based on your source media query.

Listing 12-6. Picture Element Example

<html>
<head>
<body>
<picture alt="Sample Image">
 <source src="default.jpg">
 <!-- small size for viewport widths 400px wide and up -->
 <source src="small.jpg" media="(min-width: 400px)">
 <!-- medium size for viewport widths 800px wide and up -->
 <source src="medium.jpg" media="(min-width: 800px)">
 <!-- large size for viewport widths 1000px wide and up -->
 <source src="large.jpg" media="(min-width: 1000px)">
 <!-- extra large size for viewport widths 1200px wide and up -->
 <source src="xlarge.jpg" media="(min-width: 1200px)">
</picture>
</body>
</html>

As you’re aware, it is increasingly more important to take this design approach into consideration as more and
more devices gain higher pixel density. You don’t want images looking blurry or unsharp on devices that can support
higher-quality bitmaps. Using a traditional media query approach for CSS, you can support multiple image sources
and let the browser/device handle which one it can support. For more information on the responsive images working
group and the picture element, visit http://dvcs.w3.org/hg/html-proposals/raw-file/tip/responsive-images/
responsive-images.html.

http://caniuse.com
http://dvcs.w3.org/hg/html-proposals/raw-file/tip/responsive-images/responsive-images.html
http://dvcs.w3.org/hg/html-proposals/raw-file/tip/responsive-images/responsive-images.html

CHAPTER 12 ■ BLEEDING-EDGE HTML5

312

Apple in iOS 6 Safari and desktop Safari 6 take a similar but slightly different approach. You can now take
advantage of this new element by using the –webkit-image-set method for the property of background-image. Take a
look at the following example to get a better idea:

<style>
.hqImage {
 background-image:
 -webkit-image-set(
 url(standard.jpg) 1x,
 url(highdefinition.jpg) 2x
);
}
</style>

As you can see in the previous example, you use the class hqImage and set the background-image property to the
new –webkit-image-set method. Inside of that method, you need to use two arguments, which are the URL of the
image asset and the pixel density at which that image should be used. In this case, you have a standard.jpg file for a
1x device pixel density and a highdefinition.jpg file for a 2x density. This is a really great enhancement because you
don’t need to traverse the DOM and replace all of your images with high-DPI images should a device with a higher
resolution be accessing your content. Also, only the image that supports the device will get loaded, so there is no
additional overhead for a user downloading the image; they get only the one that their device supports.

Download
Up next is the new download attribute in HTML5. Have you ever wanted to allow a user to save a file from your web
content? Or how about have them save a coupon within an ad unit so they can later print it and use it at the point of
sale? Well, now you can take advantage of the new download attribute that will instruct the browser to handle the link
as a downloadable asset instead of redirecting the browser to that resource in a new window or tab. Listing 12-7 shows
how to work with the download attribute.

Listing 12-7. Download Attribute Example

<html>
<head>
</head>
<body>
Download This Image!
</body>
</html>

Now when the user clicks the Download This Image! link, the browser will download the resource called
SomeFile.jpg, as shown in Figure 12-8.

Figure 12-8. The download functionality in the Chrome browser

CHAPTER 12 ■ BLEEDING-EDGE HTML5

313

The real benefit of using the download attribute is when working with the canvas element or binary objects
(BLOB) and leveraging the File System API. This will allow users a way to download the content within your ad
that could be created by the user. A very good example of this can be found at http://html5-demos.appspot.com/
static/a.download.html.

WebRTC
Web Real-Time Communications (WebRTC) is the initiative for using communication means like camera and
microphone access without the need of third-party plug-ins like Flash. The mission is to use the browser natively and
leverage simple JavaScript APIs and HTML5 to create interactive and live experiences. WebRTC allows for video chats,
recorders, and much more. Its core features under the hood use echo-cancelation, noise reduction, automatic gain
control, and network management. This is really useful if you want a user to upload their own personalized video of
your brand or service or allow a user to control features of an ad unit using their microphone. Give users real-time
feedback on how they can interact with your ad content. Think about the possibilities of using real-time capture of
your audience and including them as part of the ad experience. Capture the video onto a canvas element or even
apply CSS transformations and animations. Anything is possible! Listing 12-8 shows how to work with WebRTC by
using the getUserMedia API.

Listing 12-8. WebRTC Example

<html>
<head>
</head>
<body>
<video autoplay></video>
</body>
<script type="text/javascript">
navigator.getUserMedia = navigator.getUserMedia || navigator.webkitGetUserMedia ||
navigator.mozGetUserMedia;

navigator.getUserMedia({audio: true, video: true}, function(stream) {
 document.querySelector('video').src = window.URL.createObjectURL(stream);
}, function(e) {
 console.log(e);
});
</script>
</htmls>

In Listing 12-8, you can see you create an HTML5 video element, and the rest of the magic happens in the
JavaScript API. The first thing you do in the JavaScript is request the getUserMedia API through the browser’s
navigator object. You do this by passing the audio and video into the first parameter and creating a method to handle
the stream in the second parameter. You handle the stream by grabbing a reference to your video object in your
document and setting the source of the video to the stream through the createObjectURL method. The first thing
you’ll notice from Figure 12-9 is that you prompt the user and ask to use their camera. Once they “allow,” you can
show the video stream. (I even pointed out what the video’s source is set to!)

http://html5-demos.appspot.com/static/a.download.html
http://html5-demos.appspot.com/static/a.download.html

CHAPTER 12 ■ BLEEDING-EDGE HTML5

314

The possibilities are really endless when you can get this form of user interaction. You can even use motion
trackers and detect where a user is within the video frame. A really amazing example of this is allowing the user to
play the virtual xylophone (http://soundstep.com/blog/experiments/jsdetection), but it doesn’t end there.
What about placing their head on a game character or even playing virtual drums and collaborating with other band
members around the world? For a really good demo of WebRTC, visit http://html5rocks.com/en/tutorials/
getusermedia/intro.

Note ■ You’ll need to test this WebRTC demo on a local or remote server in order to see the video stream.

Media Source API
One of the biggest limitations with HTML5 video is the universal spec for streaming video. Now with the Media
Source API, you can “chunk” or segment a WebM video file and use JavaScript to stitch the video chunks back
together for a seamless video playback experience to the end user. This method is great to use in web advertising
with video because the streaming video doesn’t incur the additional k-weight set by publishers. At the time of this
writing, the only example can be found at http://html5-demos.appspot.com/static/media-source.html. Be sure
to visit chrome://flags and enable the API before testing this feature because it’s not a native feature or adopted at
the moment; instead, this is a future solution to streaming WebM video formats to the Chrome browser. For more
information, visit http://ioncannon.net/utilities/1515/segmenting-webm-video-and-the-mediasource-api.

Note ■ At time of writing, only the WebM video container is supported for the media source API.

Web Audio API
The Web Audio API provides real-time processing and analysis of audio waves directly inside the browser.
It’s essentially a low-level audio manipulation API that allows you to produce and manipulate audio waves using
JavaScript without the need of a plug-in. It uses effects such as spatial panning, low/high-pass filters, convolution
filters, gain control, and sine-wave generation. With the Web Audio API, you could effectively build sophisticated
audio platforms that mimic Pro Tools–like features right within your web content. Say you have an ad experience

Figure 12-9. Displays WebRTC functionality in the Chrome browser

http://soundstep.com/blog/experiments/jsdetection
http://html5rocks.com/en/tutorials/getusermedia/intro
http://html5rocks.com/en/tutorials/getusermedia/intro
http://html5-demos.appspot.com/static/media-source.html
http://ioncannon.net/utilities/1515/segmenting-webm-video-and-the-mediasource-api

CHAPTER 12 ■ BLEEDING-EDGE HTML5

315

that asks the user to record their voice using getUserMedia, and then within the ad they can customize their voice
to sound like a chipmunk or like they’re underwater. You can do some amazing things with the Web Audio API,
including creating a variety of sounds for games (http://html5rocks.com/en/tutorials/webaudio/games) or
even creating something like a guitar effects board (http://dashersw.github.com/pedalboard.js). For some
other really great examples, visit http://html5audio.org, and be sure to check the support by going to
http://caniuse.com/#feat=audio-api.

Web Notifications API
Server-sent events allow for notifications to be sent from a server to a client (browser) in the form of DOM events. If
you are you familiar with Growl (http://growl.info), the Apple notification center, or push notifications on your
mobile device, you’ll quickly understand what these server-side events can do. Well, now directly from within the
browser, you can perform that similar behavior when a user visits your web content. This can be really beneficial if
you’re a content owner and a user is on your page; you can send them an alert to refresh the page when an update
is ready. Also, if you’re a news broadcaster, this would be really useful to use if you want to push up-to-date news
information to the user on your site. Take a look at working with the Web Notifications API in Listing 12-9.

Listing 12-9. Server Events API Example

Client Code:

<!DOCTYPE html>
<html>
<body>
<h1>Server:</h1>
<div id="output"></div>

<script>
if (typeof(EventSource)!=="undefined") {
 var source = new EventSource("sample.php");
 source.onmessage=function(event) {
 document.getElementById("output").innerHTML += "New " + event.type + " " + event.data + "
";
 };
} else {
 document.getElementById("output").innerHTML="No Support";
}
</script>
</body>
</html>

Here is the server code:

<?php
header('Content-Type: text/event-stream');
header('Cache-Control: no-cache');

$time = date('r');
echo "data: John Percival's time is: {$time}\n\n";
flush();
?>

http://html5rocks.com/en/tutorials/webaudio/games
http://dashersw.github.com/pedalboard.js
http://html5audio.org
http://caniuse.com/#feat=audio-api
http://growl.info

CHAPTER 12 ■ BLEEDING-EDGE HTML5

316

In the previous example, you can see I’m hooking up a new EventSource object to the sample.php file, which
is just returning the time and date of the server. From there, I’m just listening for the onmessage event and handling
it by concatenating the event’s data and type to a string and rendering it to the screen by setting innerHTML equal
to that value. For more information about the Web Notifications API, visit http://dev.w3.org/2006/webapi/
WebNotifications/publish/Notifications.html.

Note ■ You will need to host this example on a local or remote server for it to work.

WebSockets
WebSockets are finally here! With WebSockets (WS), you can make dynamic and collaborate experiences for the Web
using the new API and protocol. WebSockets can be used to make multiperson, interactive, and collaborative web content
all within the browser natively without the need of a plug-in like Flash to use a socket connection. The WebSockets
specification aims to provide a bidirectional conversation mechanism that moves well beyond the traditional HTTP
unidirectional protocol. It initially relies on a single HTTP request to create the connection, but the connection is then
upgraded, so either side can send and transfer data simultaneously. With WS, you can provide real-time updates to data
feeds and even provide multiuser collaboration without the need of Ajax or long polling over HTTP. Listing 12-10 shows
the API portion of the specification, but keep in mind that it’s both an API and a protocol.

Listing 12-10. WebSockets Example

<script>
window.URL = window.webkitURL || window.URL;
window.WebSocket = window.WebSocket || window.MozWebSocket;
var ws = new WebSocket('ws://johnpercival.org/socket', 80);
ws.binaryType = 'blob'; // or 'arraybuffer'
ws.onopen = function(e) {
 console.log('Connection OPEN');
};
ws.onmessage = function(e) {
 console.log('MESSAGE');
};

//Send data to the websocket server
var data = "Sample Data";
ws.send(data);
</script>

By reviewing the example, you’ll notice you set up a new WebSocket object and pass it a parameter of a WS:
protocol and domain and pass a second parameter of an open port, in this case 80. Once the connection is made
via HTTP and upgraded to WS, both the server and client can send data at any time, even at the same time. Only
the data itself is sent without the overhead of HTTP headers, which dramatically reduces the bandwidth needed to
transfer; in addition, because it’s a push scenario, there is no need for the client to keep polling the server for updated
information. There are even useful polyfills for using WebSockets in older, nonsupported browsers like Socket.io,
which fail over to a Flash socket, Ajax, or long polling in the event the browser doesn’t support it. I think you’ll see
many examples of WebSockets in advertising to create really interesting experiments where users can compete (in
real time) with each other directly inside the ad unit. You can find some really interesting WebSocket experiments at
http://labs.dinahmoe.com/plink, http://socketracing.com, and http://mrdoob.com/projects/multiuserpad.
For more information on the WebSockets API, visit http://w3.org/TR/2012/WD-websockets-20120809, and be sure
to check its support by visiting http://lcaniuse.com/#feat=websockets.

http://dev.w3.org/2006/webapi/WebNotifications/publish/Notifications.html
http://dev.w3.org/2006/webapi/WebNotifications/publish/Notifications.html
http://labs.dinahmoe.com/plink
http://socketracing.com
http://mrdoob.com/projects/multiuserpad
http://w3.org/TR/2012/WD-websockets-20120809
http://lcaniuse.com/#feat=websockets

CHAPTER 12 ■ BLEEDING-EDGE HTML5

317

WebGL
Remember in Chapter 4 when I discussed canvas? If so, you may remember the canvas’s drawing context and how it
currently and widely supports 2D. Well, now in some supporting browsers, the context can upgrade to 3D by way of
WebGL. WebGL is a complex API that is bringing true 3D into the browser without the need of a plug-in like Flash or
Unity. Keep in mind that it’s recommended you use only higher-end computer hardware, which is needed to view
WebGL content correctly.

Because devices and browsers are still growing to support WebGL, advertising adoption has been pretty slow to
start. However, when adoption happens, there are some very good and documented APIs aimed to simplify its use,
namely, ThreeJS (http://mrdoob.github.com/three.js) and A3 (http://aerotwist.com/a3).

Previous to WebGL, you needed to leverage Flash and 3D libraries like PaperVision to create immersive 3D
experiences. Now (with time), you can create these similar experiences with JavaScript and a modern browser. Take
a look at Figure 12-10 from http://webglstats.com outlining the total browser support for desktop and mobile that
supports WebGL content at the time of writing.

Figure 12-10. The total support of WebGL on mobile and desktop browsers (source: http://webglstats.com)

At the time of this writing, most users can accept WebGL, but it’s far from being a ubiquitous feature. In the
meantime, I suggest getting to know a little more about WebGL and understanding how it can be used in your future
ad campaigns. Some really amazing examples of WebGL content are http://hexgl.bkcore.com and http://demo.
kaazing.com/racer, but be sure to view them on a supporting browser by visiting http://caniuse.com/#feat=webgl.

Web Intents
Since the Web has an increasingly growing problem integrating with the crazy number of social networks, blogging
platforms, and peripherals, the Google Chrome team developed what is called Web Intents. It’s a framework for
client-side service discovery and inter-application communication. First, a service registers its intention to handle
an action for the user. Next, the content requests to start an action (share, edit, shoot, pick, view, and so on). Then,
the user can select which service to handle the action. For example, if you’re an Android user or an iOS 6 user, this
workflow will sound very familiar when you select to share an image. Take a look at Figure 12-11 to get a better idea of
how Web Intents works inside of the Chrome browser.

http://mrdoob.github.com/three.js
http://aerotwist.com/a3
http://webglstats.com
http://webglstats.com
http://hexgl.bkcore.com
http://demo.kaazing.com/racer
http://demo.kaazing.com/racer
http://caniuse.com/#feat=webgl

CHAPTER 12 ■ BLEEDING-EDGE HTML5

318

As you can see, this puts the user in control of what they’d like to do with the web content. Listing 12-11 shows
how to work with the Web Intents API to yield this image.

Listing 12-11. Web Intents Example

<script>
var intentParams = {
 "action": "http://webintents.org/share",
 "type": "image/*",
 "data": location.href
};

var intent = new Intent(intentParams);
window.navigator.startActivity(intent);
</script>

As you can see, you create a new intent with an image file, and at this point, any of the user’s applications
registered to support an image-based intent can handle this for the user. This could be Facebook, Mail, Instagram, any
installed application, or a web application. For more information about Web Intents, visit http://webintents.org
and http://w3.org/TR/web-intents.

MIME and Protocol API
Do you have a smartphone? Chances are, if you’re reading this book, you have an iPhone, Android, BlackBerry, or
Windows Phone. Have you ever noticed how phone numbers or e-mail addresses on web content are displayed as
clickable or tappable links? Well, this link uses a different protocol than your normal HTTP or HTTPS request using
<a href>. It uses the TEL: and MAILTO: protocols, which allows the native telephone or mail application to handle

Figure 12-11. The Web Intents view on Chrome

http://webintents.org/share
http://webintents.org
http://w3.org/TR/web-intents

CHAPTER 12 ■ BLEEDING-EDGE HTML5

319

the tapped content, thus making a call or sending an e-mail. In fact, many of the schemes are already whitelisted
(meaning not for duplicate use) such as irc:, mailto:, mms:, news:, nntp:, sms:, smsto:, tel:, urn:, webcal:, and
xmpp:. There are even specific protocols for applications such as dropbox:, hulu:, admarvel:, wsj:, and chrome:.

The registerProtocolHandler method allows sites to register themselves as possible handlers for particular
schemes (or intents). For example, an online telephone messaging service could register itself as a handler of the
sms: scheme, so that if the user clicks such a link, the user is given the opportunity to use that web site. Analogously,
the registerContentHandler method allows websites to register themselves as possible handlers for a content’s
MIME type. For example, the same online messaging service could register itself as a handler for text/vCard files so
that if the user has no OS application capable of handling vCards, their web browser can instead suggest a site to
view the contact information. What this all means is that once again, the Web is getting very tied to normal operating
system tasks that you take advantage of daily. Instead of opening Address Book on your Mac, you can have a site
register for the vCard MIME type and choose that site/application to handle the reading of that file instead. This is
pretty cool since it’s blurring the line between native OS and the Web. For more information on the Protocol API,
visit http://dev.w3.org/html5/spec/system-state-and-capabilities.html#custom-handlers.

WebP Format
WebP is a new image format pioneered by the folks at Google after its purchase of VP8 inventor’s On2 Technologies,
which provides lossless and lossy compression for images on the Web. In Chapter 7, when I discussed WebM
(a video format), you’ll understand why Google developed WebP. WebP lossless images are 26 percent smaller in size
compared to their PNG counterparts and 25 to 34 percent smaller in size compared to JPEG images at equivalent
quality. WebP supports lossless transparency (also known as alpha channel) with just 22 percent additional bytes. For
more information about the WebP project, visit http://developers.google.com/speed/webp.

Game Pad API
The Game Pad API is a standard in development that aims to provide universal support for game pads and joysticks
for web content. Now for the first time you can leverage the Game Pad API that reads the states of any controller
plugged into the machine via JavaScript. As you’ve probably guessed, this is a huge benefit for web gamers, but even
others are looking for another device to interface with web content as opposed to the traditional mouse. Because
the spec is still being worked on and adoption is only in Chrome and certain beta versions of Firefox, you can rely on
a useful JavaScript library that will handle the fragmentation between browsers, operating systems, and platforms.
The lib is called GamePad JS (http://gamepadjs.com). So, if you have an Xbox 360 controller lying around and a USB
port, give this API a whirl, but make sure you’re using one of the supported browsers.

Emerging Mobile APIs
In this section, I’ll focus on specific emerging mobile APIs that give you access to many device features, allowing
you to customize content more specifically for the ever-growing mobile landscape. Device support is always a
popular request by clients, who are wondering what the latest and greatest features will make their content and
advertisements really cutting-edge. The following APIs will outline some specs currently in draft or a beta use state.

Battery API
The Battery API allows for developers to query the status of the user’s battery level on their mobile and portable
devices. This is really important to gain access to so you do not tax a user’s device in the event they’re on limited
power resources. You could offer reduced or even no ad content if the battery is at a really low level, which allows the
user to prolong the time to handle more important tasks such as making calls or e-mails. Working with the Battery

http://dev.w3.org/html5/spec/system-state-and-capabilities.html#custom-handlers
http://developers.google.com/speed/webp
http://gamepadjs.com

CHAPTER 12 ■ BLEEDING-EDGE HTML5

320

API allows developers to detect whether the device is charging, detect at what level it’s at, and detect the device
discharging time. Listing 12-12 shows how to work with this API.

Listing 12-12. Battery API Example

<script>
var theBattery = navigator.battery || navigator.webkitBattery || navigator.mozBattery;
theBattery.addEventListener("chargingchange", function(event) {
 console.warn("Charging change: ", theBattery.charging);
}, false);
theBattery.addEventListener("chargingtimechange", function(event) {
 console.warn("Charge time change: ", theBattery.chargingTime);
}, false);
theBattery.addEventListener("dischargingtimechange", function(event) {
 console.warn("Discharging time change: ", theBattery.dischargingTime);
}, false);
theBattery.addEventListener("levelchange", function(event) {
 console.warn("Level change: ", theBattery.level);
}, false);
</script>

As you can see, you grab a reference to the user’s battery by using both prefixed and unprefixed versions of
the navigator.battery object. Next, based on the states of the user’s battery, you’ll attach event listeners and log
information regarding the states. Again, with this information, you can cater your ad content more specifically to your
end users. For more information, visit the working group’s specification at http://W3.org/TR/battery-status.

Network API
The Network API allows for developers to alter their content for varying network connections. Now you can optimize
on network connection status (which can be unknown, ethernet, wifi, 2g, 3g, 4g, and none) through the
navigator.connection.type. Take a look at working with the Network API in Listing 12-13.

Listing 12-13. Network API Example

<script type="text/javascript">

while (navigator.onLine) {
 var network = navigator.connection.type;
 if (network === "ethernet" || network === "wifi" || network === "4g") {
 //full ad experience
 } else if (network === "3g" || network === "2g") {
 //reduced ad experience
 } else {
 //no ad experince due to unkown network or none.
 }
}
</script>

As you can see, you can tailor your ad experience based on the user’s connection speed. Pair this with the Battery
API and you can really take your user’s experience to a new level. In this example, you detect a strong connection and
serve up the full ad experience; if it’s a weaker cell service, you reduce it slightly. If it’s unknown or none, you remove

http://W3.org/TR/battery-status

CHAPTER 12 ■ BLEEDING-EDGE HTML5

321

the ad experience altogether. I see this API being extremely useful in the very near future as browsers implement the
API. For more information on this API, visit http://w3.org/TR/netinfo-api.

Vibration API
Another useful mobile device API is the Vibration API, which allows for JavaScript to control the device’s vibration
hardware (if available). By calling on the vibrate method, you can trigger notifications to a user’s mobile device,
outlined in the following code snippet:

<script>
var duration = 2000;
var delay = 500;
navigator.vibrate([duration, delay, duration]);
</script>

In the previous example, you set the device to vibrate for two seconds and then wait half a second and then
vibrate again for two seconds. If the vibration is not allowed on the device, the calls to vibrate will simply be ignored.
For more information on the Vibration API, visit http://w3.org/TR/vibration.

Calendar API
The Calendar API allows for universal access to a user’s calendar. The API can be used to create, retrieve, update, and
remove calendar event information from a user’s calendar, which could be really beneficial if your client has a huge
sale and wants to send a calendar invite to their users from within an ad unit. Through the navigator object, you can
grab a reference to the user’s calendar, which you can create, retrieve, and manipulate events. For more information
on this API, visit http://w3.org/TR/calendar-api.

Contacts API
Taking what you’ve just learned from the Web Intents API, you can use this to pull in a user’s contact list on their
device directly within the advertisement (opt-in). Listing 12-14 shows how to use the Web Intents API to gain access to
your contact list.

Listing 12-14. Contacts API Example

var intent = new Intent({
 action:"http://webintents.org/pick",
 type:"http://w3.org/type/contact",
 extras:{fields: ["displayName", "emails"] }
});

navigator.startActivity(intent, contactsOK, contactsFail);

function contactsOK (contacts) {
 console.log(contacts);
}
function contactsFail (error) {
 console.error(error);
}

http://w3.org/TR/netinfo-api
http://w3.org/TR/vibration
http://w3.org/TR/calendar-api
http://webintents.org/pick
http://w3.org/type/contact

CHAPTER 12 ■ BLEEDING-EDGE HTML5

322

In the example, you can see you’re creating a new intent for a user’s application to handle the contacts in a user’s
address book. Using this API could be helpful if you want to share deals within the ad experience with other friends in
your contacts. For more information on this emerging API, visit http://w3.org/TR/contacts-api and always be sure
to check browser support before implementing it in a production campaign.

Proximity Events
Using proximity events, you can handle when specific objects are near your devices. This could be when a user is
near another computer, another device like a phone, or even other physical objects capable of transmitting data to
and from your device. With this API, a physical object’s proximity could dispatch an event and share information
with a user’s phone. The possibilities for this technology could be extremely helpful for marketers because, for
example, their print campaigns could transmit a deal to users’ mobile devices when they’re close to the store.
To learn more information on this very emerging API, visit http://w3.org/TR/2012/WD-proximity-20120712 and
http://developer.mozilla.org/en-US/docs/DOM/DeviceProximityEvent.

Humidity, Temperature, and Light Events
Lastly, some devices are even giving access to very rich feature sets such as humidity and temperature sensors as
well as an ambient light meter. The possibilities when working with these events could be adjusting the content’s
CSS for increased contrast when the device detects that it’s outdoors in sunlight. Or if the device can detect that
the temperature is 100 degrees, perhaps the ad’s creative tailors specific messaging based on that result. While the
possibilities are endless for these types of dynamic data, the browser support is pretty much nonexistent at the
time of this writing. For more information on these two specs, visit http://dvcs.w3.org/hg/dap/raw-file/tip/
temperature/Overview.html and http://dvcs.w3.org/hg/dap/raw-file/tip/humidity/Overview.html.

For more information on the Ambient Light API, visit http://w3.org/TR/2012/WD-ambient-light-20120802.

Browser Support
As I’ve mentioned throughout this chapter, browser support for all of these features is very limited, if available at
all. Pretty much everything in this chapter is the most latest information at the time of writing, so you’re being now
warned now: features and specifications change. It’s best to work from the latest alpha and beta browsers just to
see what’s coming and to frequently check http://caniuse.com to see whether these features will be supported in
production versions of the browser as they’re released. A really great enhancement in most browsers nowadays
is the process of auto-updating, which means as a user opens and closes their browser, the browser will check to see
whether an update is available and process this update transparently to the end user the next time they open the
browser. This is such a simple but immensely huge step forward for all browser manufactures and the web as a
whole because you never want to see older browsers lingering around, like with the legacy support that was needed
for IE 6. The quicker the masses adopt new versions of browsers, the less work web designers and developers need to
do when supporting outdated versions and ultimately the less money client’s have to spend to fund the relic browser
development.

http://w3.org/TR/contacts-api
http://w3.org/TR/2012/WD-proximity-20120712
http://developer.mozilla.org/en-US/docs/DOM/DeviceProximityEvent
http://dvcs.w3.org/hg/dap/raw-file/tip/temperature/Overview.html
http://dvcs.w3.org/hg/dap/raw-file/tip/temperature/Overview.html
http://dvcs.w3.org/hg/dap/raw-file/tip/humidity/Overview.html
http://w3.org/TR/2012/WD-ambient-light-20120802
http://caniuse.com

CHAPTER 12 ■ BLEEDING-EDGE HTML5

323

Get Involved
This may seem obvious at this point, but the working groups creating these specifications are always open to public
comment and feedback throughout their development cycles. Don’t feel that if you have a great idea or want to
see something added, changed, or removed from a specification that you won’t have a voice. In fact, everyone
does; that is the beauty of the open Web! Submit your comments to the W3C, WHATWG, IAB, MMA, or whoever
makes the most sense based on your input. Although you may not get a response right away, I promise people are
listening. I’m one of them!

Summary
It’s now time to end this discussion on where HTML5 is headed next and how the advertising industry is using it to
make your ad experiences more powerful and engaging than ever before. Some amazing things are coming to the
Web, and the truth is that this chapter is just scratching the surface. As more browsers, devices, working groups, and
technologies emerge and work together, you’ll see a whole new landscape of bleeding-edge features. Keep in mind
that the more newer HTML5/CSS3 features you use, the more potential for those features to break with browser
updates. This is particularly the case with using prefixed drafts and beta only features. This typically means more
differences between browser implementations and ones that are more likely to change between their actual releases.

Lastly, it’s pretty difficult to manage each and every API because there are just so many of them being developed
(http://dret.typepad.com/dretblog/html5-api-overview.html). If you want to keep up with the most bleeding-
edge features, I strongly suggest reading the browser manufacturers’ blogs, developer advocate articles, and the W3C’s
and WHATWG’s evolving specs. As you start to head into your final chapter, you’ll be taking a holistic look at the entire
web advertising landscape and how HTML5 is impacting it all on every screen going forward.

http://dret.typepad.com/dretblog/html5-api-overview.html

325

Chapter 13

HTML5 Advertising Going Forward

As you know, advertising on the Web has been through many changes, from static images to animated GIFs to rich
media with Flash to present day HTML5. It’s fair to say this was fueled by the dawn of affordable, web-centric mobile
devices and tablets—but what’s to come? What other platforms will take advantage of the new open web standard?
This chapter will demonstrate the possibilities. HTML5 will eventually be everywhere a browser is: televisions,
appliances, game consoles, vehicles, set-top boxes, outdoor displays, billboards, screens in elevators and even in the
back of taxicabs—basically, every screen both indoors and out! Have you ever seen that movie Minority Report? Yeah,
like that! Anywhere there’s a browser and network access you’ll see HTML5 and most certainly advertising.

HTML5 adoption is already omnipresent in our industry; soon every device and appliance will work on the same
technology as our desktop computers and mobile devices. This will be a huge paradigm shift in traditional media
buying because everything will become a “digital buy”. The walls between traditional and digital you currently see in
agencies will crumble, and you’ll be able to gain the reach of broadcast with the measurement of digital. This will be
a huge disruption in the advertising industry; many new companies will emerge, and there will be many casualties.
Through user adoption, HTML5 will quickly bring ubiquity and continuity across all screens, allowing marketers to
develop a unified marketing message and measure ad campaigns much more effectively across channels. With this
knowledge, ad servers and data providers will soon be able to have a viewer/user fingerprinted (or tied) to a few TVs,
a game console, a tablet, a phone, and a desktop computer. With this sort of information, it’s certain that privacy
concerns will arise because users’ data will need to become much more protected. With all that said, let’s look at
HTML5 advertising today and more importantly, going forward.

HTML5 Advertising Circa 2012
In 2012, HTML5 had a pretty big year. It has been through many changes, including a separation of specifications
from working groups (http://w3.org/QA/2012/07/html5_and_htmlnext.html), additional features added to the
specification, removed features, and new browsers supporting various levels of compliance. However, you and I both
know that this is just the beginning because HTML5 has been a long time in the making.

Specifically, the developments of 2012 have brought much confusion to the advertising industry regarding how
to efficiently bring scale with this new way of ad development. Between businesses small and large, we as an industry
have a lot of improvements to make; in fact, don’t think for a minute that just because a company is a Fortune 500
that it knows what it’s doing in this realm. HTML5 is a huge, game-changing shift, and everyone both big and small
needs to adapt! Advertisers and marketers either are clueless on how to target users on the growing mobile landscape
or are just unsure that HTML5 (which is now more than a buzzword) is going to drastically impact their businesses
now and in the years to come. To better illustrate this, I’ve been compiling a list of questions I’ve heard in the past
year regarding HTML5 and advertising. Here are a few (and note that most of these questions came from director and
chief-level executives of huge web properties):

“What is HTML5?”•฀

“How much does HTML5 cost?”•฀

http://w3.org/QA/2012/07/html5_and_htmlnext.html

CHAPTER 13 ■ HTML5 ADVERTISING GOING FORWARD

326

“Can Flash run on my iPad?”•฀

“Can you help me install HTML5?”•฀

“The client needs this to be in HTML5.” —Me: “None of the features in the ad requires it to be •฀
HTML5.” —Client: “It just needs to be HTML5.” —Me: “Oh, OK, that makes sense now.”

And my all-time favorite, “I can’t see my HTML5 ad!” —Me: “What browser are you •฀
using?” —Client: “Internet Explorer 8.” —Me: “Thank you.”

While some of these are comical, as you can see, we are still at the infancy of this technology, especially in the
digital advertising business. This presents great opportunity, but we as an industry still have much to learn, build,
adopt, and fix with HTML5 and, much more so, in the way advertising is bought, sold, developed, and measured using
the new open web standard.

Note ■ You can find a few very good articles on this topic at http://bit.ly/Nuc1tv and http://rww.to/SOxQr3.

HTML5 Platforms
HTML5 platforms are becoming more and more abundant, and it’s much more than the traditional Web that people
are used to interacting with every day. With the latest operating systems and devices doing away with the plug-in
model, more browser vendors and platform developers are relying solely on the open Web to power their application
and advertising experiences. Two examples of this are Microsoft’s new platform, Windows 8 and Microsoft’s new
tablet, the Surface. The new user interface within the Windows 8 OS, provides an HTML, CSS, and JavaScript front
end, which means so does its advertising model. Platforms like Windows 8 will become the norm as more and more
people understand that there are limitless possibilities with HTML5 (once adoption occurs). This can even be said
for web editor tools because they’re being built inside the browser now. In other words, you don’t need to install a
special application on your computer to write and design for the Web. Take the Adobe project Brackets, for example
(http://github.com/adobe/brackets). This showcases a great web-editing tool that is built right inside your browser.

Note ■ Plug-ins are supported in Windows 8; however, they need special privileges to run. For more information,

visit http://msdn.microsoft.com/en-us/library/ie/hh968248(v=vs.85).aspx.

Platforms like Windows 8 resemble a similar environment to in-application mobile apps, where you get your
applications from an online shop or storefront and view ads through an instance of the browser or web view within
the downloaded app. With that said, it’s safe to assume that these advertising models will need to rely on web
standards for creating interactive and emerging experiences within those environments.

Speaking of phone applications, some are even being built on HTML5 using frameworks like PhoneGap
(http://phonegap.com) to compile down to native code for the app stores to accept. This again demonstrates the
true power (as well as the flexibility) of HTML5 because it can be used in almost any digital environment.

Publishers are even taking advantage of the new open standard, by offering progressive enhancement
approaches to their web design, by using the power of HTML5 to provide richer experiences to users whose browsers
support them, and by maintaining basic support for legacy browsers. In fact, I am sure you’ll see many publishers in
the coming year implement HTML5-only solutions to both web content and advertising. This chapter focuses on new
implementations of HTML5 and where you’ll see browsers and advertising moving toward very soon.

Think of this as the new frontier of digital advertising powered by HTML5, and you are the pioneer!

http://bit.ly/Nuc1tv
http://rww.to/SOxQr3
http://github.com/adobe/brackets
http://msdn.microsoft.com/en-us/library/ie/hh968248(v=vs.85).aspx
http://phonegap.com

CHAPTER 13 ■ HTML5 ADVERTISING GOING FORWARD

327

Connected TVs
Up first are connected, or smart, TVs; they’ve been really blowing up on the scene this past year. These are television
sets that are connected to the Internet and can support applications and web browsers. Lately, if you’re in the market
for a new television, you’ll find your options will more than likely have some form of wired or wireless network access,
and you can expect to see many more televisons using this approach going forward. With much anticipation from
providers like Google and Apple to get into this space and disrupt the conventional television model of viewing, the
more traditional manufacturers such as Samsung, LG, and Sony have already begun implementing browsers and
their own apps into their television sets, but what’s most interesting is that the browsers on these screens are scoring a
pretty high rank on the HTML5 Test (http://html5test.com). In fact, just take a look at Figure 13-1 showcasing some
of the top HTML5 television browsers at the time of this writing.

Figure 13-1. Showcases the television browsers that support HTML5 features
(source: http://html5test.com/results/television.html)

After reviewing Figure 13-1, you can see that these televisions are getting pretty high numbers for HTML5
compliance. There’s also a lot of budding competition in this market, which is really untapped and pretty new to the
masses. It’s reminiscent of the early days of mobile, and I believe we’re not even at the beginning of what to expect
with television sets in the years to come, and that includes how web advertising is built, bought, sold, and deployed
to this screen in conjunction with the traditional advertising approaches. Connected TVs will eventually become the
norm among consumers, and with approximately 38 percent of users already working with these sort of TVs
(http://multichannel.com/article/482912-TV_Sets_Are_Connected_To_Internet_In_38_Of_Homes.php), it’s
only a matter of time before content providers start selling ad inventory to marketers for premium prices. What’s
really interesting is that most of these platforms are taking web standards and HTML5 into account out of the gate!

http://html5test.com
http://html5test.com/results/television.html
http://multichannel.com/article/482912-TV_Sets_Are_Connected_To_Internet_In_38_Of_Homes.php

CHAPTER 13 ■ HTML5 ADVERTISING GOING FORWARD

328

In fact, Samsung’s smart TV apps are heavily HTML5- and CSS-driven for platform-agnostic web apps that can gain
specific device access through various APIs (http://fiveminutes.eu/a-birds-eye-view-on-samsung-smart-tv-apps-
development). This is exciting news for developers because it provides another opportunity to get their content in
front of users, and companies such as Opera and Google are taking notice and offering tools to get you prepared for
this imminent shift. Check out Opera’s TV emulator (http://opera.com/business/tv/emulator), which can assist in
your development process for CE-HTML and HTML5 content for the big screen and Google’s guidelines for television
designing (https://developers.google.com/tv/web/docs/design_for_tv).

Note ■ You can find more information about HTML5 adoption for television at

http://w3.org/2011/07/w3c-webtv-nem.pdf.

Set-Top Boxes
What about the “nonsmart” televisions that can’t access the Web on their own? Great question. Those users won’t be
left behind—trust me, those eyes are too valuable to advertisers and content owners!

In addition to buying television sets with browsers that support HTML5, consumers are also looking to many set-
top boxes (STBs) such as Logitech’s Revue with Google TV to complement their existing television experiences. These
forms of TV/web capabilities are known in the industry as over-the-top (OTT), and many hardware manufacturers
are offering TV experiences through a network-connected set-top box with various applications that a user can install
to personalize the viewing experience. Some of the more popular devices at the time of this writing are Apple TV
(http://apple.com/appletv), which comes with a variety of Apple-related applications including YouTube, Netflix,
Hulu, and Vimeo; and Roku (http://roku.com), which offers similar experiences but a much wider variety of content.
There is even the Boxee (http://boxee.tv) and Slingbox (http://slingbox.com) that offer similar experiences, all
with their own contracts to provide users with featured content through partnerships with content providers such as
MLB.com, HBO, Amazon, Netflix, and WSJ Live.

What’s really interesting about these STBs is that most of them allow for traditional ad serving of in-stream video
ads, as you learned in Chapter 7, using VAST. This means you can serve dynamic and addressable advertising content
to these devices through the IAB’s standard video delivery specification. Equally interesting is that if the STBs allow
for a browser, there is no reason you can’t use and leverage web standards to create even more engaging or interactive
experiences using a JavaScript-based VPAID API within the HTML5 video environment.

Note ■ You can find more information on the JavaScript VPAID API at http://iab.net/vpaid.

Cable Platforms
Cable is another major piece of the television experience, and this is where it gets really interesting and just a bit
tricky. Cable has long been a protector of its content, forcing users to buy a package of channels when the user may
not necessarily watch all of them. This model has worked for years, and cable companies have been really comfortable
“managing” everyone’s content through a single distribution model. However, times are rapidly changing, and users
are going to other platforms and screens for their content and getting it when they want it instead of operating on the
linear broadcast model of delivery. As cable becomes disrupted by this change, the huge corporations are fighting to
maintain exclusive rights to their content while also trying to accept the impending reality of the Web and its impact
on their traditional business models.

I think in the future users will be able to create their own channel package through a cable provider and pay only
for the content they view. If viewers want a channel, they pay or get it for free through the advertising model. This
approach is similar to the free, ad-driven applications you find in app stores. Think about it—currently you’re paying

http://fiveminutes.eu/a-birds-eye-view-on-samsung-smart-tv-apps-development
http://fiveminutes.eu/a-birds-eye-view-on-samsung-smart-tv-apps-development
http://opera.com/business/tv/emulator
https://developers.google.com/tv/web/docs/design_for_tv
http://w3.org/2011/07/w3c-webtv-nem.pdf
http://apple.com/appletv
http://roku.com
http://boxee.tv
http://slingbox.com
http://MLB.com
http://iab.net/vpaid

CHAPTER 13 ■ HTML5 ADVERTISING GOING FORWARD

329

big cable companies top-dollar to view a bunch of content, most of it you’ll never watch and you’re being advertised
toward! I predict this will eventually shift in the years to come, especially as content gets pushed across all of the
different screens a user has.

For me and where I am located, I use Verizon for my cable and Internet services, and even though I’m a paying
customer, Verizon still requests my permission to sell targeted advertising to me. Refer to Figure 13-2, which is an
e-mail from Verizon that I received shortly after signing up for the service.

Figure 13-2. A Verizon e-mail asking for permission to serve targeted third-party ads

As you can see, this polite e-mail from the folks at Verizon stress that they’re sharing my information to provide
relevant online ads, but if you recall from the beginning of the book, Verizon is really selling that information to
advertisers for top-dollar in return for targeted advertising campaigns on their network. While I think this model needs
to change (especially because customers like myself pay an ungodly amount of money to cable companies), there is
room for both models in the market. Cable should sell premium and live content to users such as sporting events and the
Olympics, but there also should be free ad-supported models. Ultimately, users should be able to control their content
on demand while paying for what they actually consume. I predict the web having a huge impact on this change.

CHAPTER 13 ■ HTML5 ADVERTISING GOING FORWARD

330

With all that said, cable is rapidly moving toward a browser-based world. Let’s face it, it’s the most ubiquitous
platform in the household today, and big names in the U.S. arena like Comcast/Xfinity are taking advantage of this by
launching a platform called X1 (http://xfinity.comcast.net/x1). X1 is a revolutionary new platform for controlling
your cable set-top boxes connected through the Web. It features a variety of applications including Search, DVR, On
Demand Movies, Sports, Weather, and Social, including wireless controllers via your phone or tablet device. With
plans to integrate with applications like Microsoft’s Skype (http://bit.ly/OPxPNf), X1 could be an ideal candidate
to leverage web technologies such as WebRTC and other HTML5 APIs to develop a unified cross-screen experience
while preserving privacy for users; this would offer the ability to interact and target users like never before.

And if you’re a Skype user, be sure to check out your preferences—Skype is about advertising as well. Remember
that if you’re using services for free, you’ll likely see targeted third-party ads, as Figure 13-3 outlines.

Figure 13-3. Skype’s default settings for serving third-party ads

So, with this information about Comcast and Skype, you can see advertisers can learn quite a bit about you and
target their ad campaigns much more effectively. What’s also exciting is that big web players like Google are getting
into the cable and Internet provider market. Google started rolling out a huge initiative in Kansas City, Missouri,
offering gigabit-speed Internet access and offering fiber-optic network access with cable packages. Google is in a great
spot to offer a cohesive experience across channels if it can ramp up this offering across the nation—we’ll see in the

http://xfinity.comcast.net/x1
http://bit.ly/OPxPNf

CHAPTER 13 ■ HTML5 ADVERTISING GOING FORWARD

331

months and years to come. For Google users, this could mean cross-screen experiences via your single Google+ or
Gmail login, and being that Google is heavily fueled by advertising (remember, it’s a free service), expect to see a lot of
marketers and advertisers leveraging Google if this offering becomes a reality.

While all this is occurring in the United States, it’s not the only area bringing cable and Internet together as one
uber-platform. In fact, the Hybrid Broadcast Broadband TV (HbbTV; http://hbbtv.org) is a huge European initiative
bringing television, video on demand, interactive advertising, gaming, and social elements (among others) together in
a standardized way. HbbTV leverages open web standards with traditional broadcasting techniques that serve as an
alternative to proprietary technologies that don’t scale. Services using HbbTV can operate over different broadcasting
technologies, such as satellite, cable, or terrestrial networks.

Currently, you more than likely have a cable subscription, an OTT STB like Apple TV or Roku, and maybe
even Google TV along with a Blu-ray Player that connects to Netflix or Hulu. Wouldn’t it be nice to have one device
that does it all, including the broadcast of user-generated content? Well, that’s what HbbTV aims to accomplish! I
personally love it! I believe this is where the industry needs to go and, more importantly, where it’s headed. With
web technologies such as HTML5, WebRTC, and video delivery specifications like MPEG-DASH, you’ll be sure to see
revolutionary improvements in this arena.

Note■ For a great article on this topic, visit http://bit.ly/PEZfZ6.

Broadcast mediums entering the Internet age raises many questions. For instance, how will these platforms
track users? Will privacy remain the same as online, or because the experience is more personal and “in the living
room,” will it become much stricter? If if becomes stricter (which I believe it will), it will take a full agency shift, where
traditional creative and media agencies need to adopt the usual “asks” of digital and remove the barriers that were
once present. These “asks” would be any form of measurement that digital offers over traditional broadcast such as
impressions, interaction time and activites. This also begs the larger question of how the media will be bought and
sold in the new market. CPM models may work for some but may not work for all; especially when one campaign will
span across the interactive and linear broadcast channel. One thing is for certain: user experience will win overall, and
the ad servers that can measure across screens will come out on top.

With all of these amazing technologies coming to cable platforms, Enhanced TV Binary Interchange Format (EBIF),
a model for deploying interactive experiences over broadcast, shouldn’t go unnoticed. Leveraging EBIF, the future holds
some amazing things for the cable industry. Developed and maintained by Cable Labs (http://cablelabs.com), EBIF is
currently deployed in more than 40 million U.S. households by companies like Comcast/Xfinity and TimeWarner. EBIF
enables everything from interfacing with the Web to phone services such as caller ID to even household alarm systems.
The home is now hyper-connected! It’s pretty amazing that we live in a world where your television can notify you when
someone is at your door , and you can change the channel to view who’s at the front door. Utilizing EBIF to control cable
STBs from second screens and never having to interact with the TV guide again offers really interesting cross-screen
opportunities for users, developers, and marketers. Use your tablet or phone to do the searching and cue up your favorite
shows. Make your own video playlist for a rainy day, or even find out more information on your second screen while
watching a film on your TV.

Note■ Cable Labs is an open consortium for the cable industry, much like the W3C is for the Web.

Game Consoles
After learning about OTT devices and STBs, you may have wondered about the other devices attached to your
television. A game console such as Microsoft’s Xbox, Sony’s PlayStation, or the Nintendo Wii is no stranger to this
growing market either; these consoles are not just for the “gamers” anymore. With more of these consoles taking
an approach to entertainment as a whole, they’re offering more than just a game experience since you can install

http://hbbtv.org
http://bit.ly/PEZfZ6
http://cablelabs.com

CHAPTER 13 ■ HTML5 ADVERTISING GOING FORWARD

332

applications much like you would using other OTT STBs, watch movies, surf the Web, and be social with your
communities. With the anticipated release of IE 10 on Xbox and with Xbox’s new advertising initiative called NUads
(http://bit.ly/PtZUJu) leveraging the Kinect, you should see amazing experiences within ads on these new
platforms. Microsoft is in a very good position to offer amazing living room entertainment experiences through web
standards from the likes of WebRTC while using device hardware such as Xbox and the Kinect. We’re not too far off
from interacting with web-based content through body movements, gestures, and voice commands.

The Xbox, PlayStation, and the Wii consoles are all very sophisticated hardware and devices for gamers and
people who enjoy entertainment. Sony’s PlayStation 3 with firmware update 4.10 gives the device a “sort of” compliant
HTML5 browser. I state “sort of” for the sole fact that it scores pretty low (80) in the overall grand scheme of HTML5
browsers, according to the ACID3 test (http://acid3.acidtests.org), which is a measurement tool for testing a
browser’s accordance to web standards. However, a score of 80 is still a really nice achievement in the game console
market, and it ranks as one of the highest HTML5-compliant browsers in the gaming category on HTML5test.com at
the time of writing, as shown in Figure 13-4.

Figure 13-4. HTML5test.com’s ranking for gaming console browsers

http://bit.ly/PtZUJu
http://acid3.acidtests.org
http://HTML5test.com
http://HTML5test.com

CHAPTER 13 ■ HTML5 ADVERTISING GOING FORWARD

333

As you can see, the Nintendo devices are among the leaders in this category after the Xbox, with roughly
100-point scores across the board. As you look ahead to the newer consoles soon to be released, you’ll see
huge advancements in HTML5 with Nintendo’s WiiU (http://nintendo.com/wiiu) and Sony’s PlayStation Vita
(http://playstation.com/psvita), which offers a web browser, application, and another solution to the second
screen experience—much like Microsoft’s Smart Glass (http://xbox.com/smartglass).

Digital Signage and Billboards
So, I’ve been speaking a lot about the indoor living room experience, but let’s not forget outdoor. Every day we see
screens fighting for our attention, whether it be driving down the road, in the back of a taxicab, or strolling through
Times Square in New York City. Billboards and outdoor displays are becoming no stranger to the digital landscape,
and in an industry fueled by advertisements, more and more displays are powered by the digital screens. With more
displays becoming digital along with web access, it is becoming cheaper and much more effective to run campaigns to
these media properties.

Think about it—you no longer need to have a person install anything to the site of the billboard, so that cuts
down on operational costs, and because the screen is connected, you can run multiple ad campaigns throughout
the day and even display relevant information such as the recent lottery numbers, closest stores to a nearby exit
ramp, or even the most wanted criminals in the area. Using these media properties from companies such as Clear
Channel (http://clearchanneloutdoor.com), Adams (http://adamsoutdoor.com), CBS (http://cbsoutdoor.com),
Lamar (http://lamar.com), Captivate (http://captivate.com), and RGB (http://rgbnetworks.com), you can
tailor location-based and timely advertising to these large screens. Pair this with the idea that users can interact with
the display via a smartphone, and you have previously unavailable creative options. Imagine driving down the road
and noticing that the billboard is detecting how fast you’re moving through the beacons implanted in the road. From
there, the outdoor display can show messaging to slow down, to be safe, or that a cop is on the way! Again, these
are just thoughts, but we’re not too far off from this becoming a reality and having the ability to tap into this sort of
data from within advertising units. In fact, some emerging companies are taking a web approach to powering their
outdoor displays now. Iadea (http://iadea.com) develops hardware for digital displays that run on web standards
using SVG, SMIL, and HTML5. With this company and others in the market, you’ll be seeing really engaging creatives
around Times Square and other locations very soon.

Note ■ For an interesting article on the topic of outdoor advertising and web standards, visit http://bit.ly/Qc13WR.

Vehicles
So, you now know that outdoor screens are becoming more enhanced through digital technologies and the Web. What
would you say if I told you that your car or truck will eventually have a browser? You know, right where your fancy
navigation system is. Actually, some vehicles are already coming with applications such as Pandora Internet Radio
and Google Maps, and they can already make calls, read SMS messages and update your Facebook status for you while
you drive. Soon, you’ll see vehicles with browsers, and rest assured that the browsers will have some form of HTML5
compliance. For an advertising model, maybe it doesn’t make the most sense to have flashy on-screen ads while a person
is driving, but through the use of technology and various device APIs, you will be able to detect when a user is sitting idle
and perhaps have the ability to advertise. A company called Webinos and the W3C have started documentation on it
(http://bit.ly/Pu4DLn) and a standardization process. For more information, visit bit.ly/O5zVNw.

http://nintendo.com/wiiu
http://playstation.com/psvita
http://xbox.com/smartglass
http://clearchanneloutdoor.com
http://adamsoutdoor.com
http://cbsoutdoor.com
http://lamar.com
http://captivate.com
http://rgbnetworks.com
http://iadea.com
http://bit.ly/Qc13WR
http://bit.ly/Pu4DLn
http://bit.ly/O5zVNw

CHAPTER 13 ■ HTML5 ADVERTISING GOING FORWARD

334

Cross-Screen Initiatives
As you learned in previous chapters, advertisers and media agencies want metrics to measure how well a campaign
performed. While publishers and advertisers join in launching cross-screen campaigns across channels in a timely
matter through ad scheduling, in the growing landscape of connected screens, it’s proving more and more challenging
to roll up all of these analytics into a single unified campaign analysis for strategists and producers to digest. Companies
like Zeebox (http://zeebox.com) offer truly interactive second-screen experiences, and as more people maneuver
their digital lives across devices, the need for a cross-platform measurement tool is an absolute must. Whether it is by
use through a shared network or an amalgamated login screen, the need to measure across screen and device is real,
and solutions are emerging. I’ll review some of the technologies that are powering this shift in the next few sections.

ACR
One technology that’s doing cross-screen effectively is Automatic Content Recognition (ACR). ACR reads audio
information from one source and displays relevant information on the receiving end. Companies like Shazam
(http://shazam.com) and Soundhound (http://soundhound.com) do this in the mobile market where users can
listen to a song and figure out what song is playing. The technology samples the audio from the source and can detect
what file it is through its metadata, whether it be a music track, television show, or commercial. This technology can
be paired to the second screen for showing relevant messaging to a user, who could be passively watching television
while surfing the Web on their tablet device. ACR is a technology that is currently being rolled into the original
equipment manufacturers (OEMs) of set top boxes and phones so that a third-party install won’t be needed for a
user—if this were to happen, it would surely disrupt the business models of the companies mentioned. Users face a
similar barrier with QR codes when they need to install an app to read the QR code before participating. A few
of these companies working with ACR include Audiblemagic (http://audiblemagic.com), Gracenote
(http://gracenote.com), TvPlus (http://tvplus.com), and Ensequnce (http://ensequence.com).

Device Fingerprinting
Another cross-screen initiative to allow advertisers to track users across device is the concept of device fingerprinting.
Device fingerprinting is a technology that detects information about a user’s device or machine, and the information
can be saved for later analysis. Think about this in regard to online tracking—if you’re viewing an ad on your iPad, that
device identifier can be saved, and the next time you view another ad, the ad server would know who you are based on
the previous ads you’ve seen. From that information, more data can be collected about your location, behavior, and
interests, offering a really nice audience segment for marketers to target campaigns toward.

In the early days of mobile development, applications and ad creatives by way of an SDK could access what is
known as a unique device identifier (UDID), which is a device-specific string of characters identifying a particular device
in the world. It’s like a device’s Social Security number. This is important to know because with this intelligence, web
content can pair this information with the stored data in a database to clearly match a user and offer more targeted
messaging. This is a huge advantage in tracking users across screens and devices, but some mobile device manufacturers
such as Apple put an end to doing this because they didn’t want to breach users’ privacy. While the technique through
HTML5 is to use localStorage or some other client-side storage technique along with a remote database, there is an
initiative called OpenUDID (http://github.com/ylechelle/OpenUDID) that allows for an open way to track users via an
open device identifier that isn’t tied to a user’s personal information. The OpenUDID is currently backed by 17+ mobile
ad companies such as Appsfire and Greystripe (http://github.com/ylechelle/OpenUDID).

Note ■ As of iOS 6, Apple has launched an “Advertiser ID” aimed to replace the UDID approach. You can find more

information at http://businessinsider.com/everything-we-know-about-ifa-and-tracking-in-apples-

ios-6-2012-10.

http://zeebox.com
http://shazam.com
http://soundhound.com
http://audiblemagic.com
http://gracenote.com
http://tvplus.com
http://ensequence.com
http://github.com/ylechelle/OpenUDID
http://github.com/ylechelle/OpenUDID
http://businessinsider.com/everything-we-know-about-ifa-and-tracking-in-apples-ios-6-2012-10
http://businessinsider.com/everything-we-know-about-ifa-and-tracking-in-apples-ios-6-2012-10

CHAPTER 13 ■ HTML5 ADVERTISING GOING FORWARD

335

Now many other companies like AdTruth (http://adtruth.com) use a technology that generates unique
hashes based on users’ online behavior and available device information, among other values, using sophisticated
statistical analysis for targeting audiences with a small margin for error. With companies like this emerging and
with companies like Apple (which is a leading device manufacturer and operator of the mobile ad network iAds),
a market is emerging that many will look to take advantage of. We’ll see if it remains siloed in the walled garden of
Apple, though . . . my guess is it will.

Near-Field Communications
Near-Field Communications (NFC) is a technology used to detect proximity and specific sensors via a piece of
hardware like your mobile phone. Using NFC, people can share information between devices such as two phones,
a phone and a television, or even a tablet and a car, which can open up a whole new world for users interfacing with
screens and displays. The screen powered by HTML5 in the browser environment can detect and receive information
about users passing by with an equipped phone or device. This sort of transfer can bring a whole new world of
interaction to advertising.

The primary business model for this has been through the financial vertical; for instance, Google uses it for Wallet
and MasterCard uses it for Paypass, where the device can swipe over a “tag” for a secure wireless data transfer. But in
regards to advertising, the tag could hold specific information relating to the ad on-screen or based on contextual or
location data to display to the user.

So, with all of this information, you might be wondering what this has to do with HTML5 or HTML.next?
The truth is, it all relates, because the Web has many APIs (and will have more in the future) that can tap into this
information as more devices adopt NFC. In addition, with the release of new mobile devices supporting proximity
events, you should see interesting uses very shortly. It’s also been said by Doug Turner of Mozilla that he wants to
bring device proximity support to mobile Firefox. To get an early look at working with proximity within the DOM,
visit http://dvcs.w3.org/hg/dap/raw-file/tip/sensor-api/Overview.html.

Facial Recognition Software
Facial recognition is a technology that has been a long time coming. It’s a technology that allows video cameras and
webcams, along with software and hardware, to detect face structure, distance, gender, and even attention time of
a user. Companies like Immersive Labs in the digital signage space and Face.com, recently acquired by Facebook,
are already using this technology, and with more and more computers and devices already coming equipped with
cameras, you should see a huge growth in the market for years to come.

So again, what does this have to do with HTML5?
Well, if you remember back to Chapters 7 and 12, HTML5 has a new video tag, and along with the WebRTC

specification, using facial recognition can open up amazing new worlds for creative user interaction. Pair this with
the information you’ve just learned about from device manufacturers like Microsoft with the Kinect, and I think you
see where I’m going with this. In fact, some really smart developers have already begun working with facial detection
within HTML5 and WebRTC. Take a look at the example by Neave at http://github.com/neave/face-detection.

Another interesting feature of this is to pair with social data using Facebook, Twitter, LinkedIn, and others. Using
these social APIs and facial recognition technology, you can pretty accurately learn a whole lot about a user by just the
information they post online. An interesting product is Facedeals, which pushes offers to people via their Facebook
account when they walk into a store that has the Facedeals camera installed at the entryway. To read more on this,
visit http://bit.ly/RSUhKb.

Do Not Track (DNT)
As I talk about all of this amazing technology, I’d like to bring it home by discussing user privacy and security and
the industry-wide emerging theme of Do Not Track (DNT). In short, DNT is a bit of information attached to all HTTP

http://adtruth.com
http://dvcs.w3.org/hg/dap/raw-file/tip/sensor-api/Overview.html
http://Face.com
http://github.com/neave/face-detection
http://bit.ly/RSUhKb

CHAPTER 13 ■ HTML5 ADVERTISING GOING FORWARD

336

request headers, and without going into extreme detail about HTTP headers, just know that every time you visit Google,
Amazon, Facebook, and so on, your browser provides an HTTP request to retrieve information located at the server of
those domains. The new DNT information attached to the browser request currently has three values: 1 means “Don’t
allow websites to track me,” 0 means “Allow websites to track me, and Null is the default setting should the user not take
any action to set their browser preference to a 1 or 0. Now, because this information is attached to every single request
from a user’s browser, the server on the receiving end has to handle this information accordingly, and this is where it
gets even more interesting. Right now the industry is trying to adopt DNT into newer browser versions while also trying
to figure out what the receiving servers should do with that DNT data (http://read.bi/TXBz4N).

At the time of this writing, Internet Explorer 10 on the Windows 8 operating system is set to have DNT set to 1
by default, which means without the user taking any action, all websites, ads, and data providers will see the request
header of “don’t track me.” As you may have guessed, this is a huge concern in the advertising industry since IE 10 is
set to be a large chunk of the browser market in the coming months and years. To shed a little more light on this from
an advertising standpoint, the CEO of the IAB, Randall Rothenberg, issued a statement to all IAB colleagues when this
information was made available.

“Dear IAB Colleague, Today, Microsoft announced that the newest version of Internet Explorer,
packaged with the Windows 8 Release Preview, will have a so-called “Do Not Track” flag set to “on”
by default. This represents a step backwards in consumer choice, and we fear it will harm many of
the businesses, particularly publishers, that fuel so much of the rich content on the Internet.”

—Randall Rothenberg, IAB

In that abridged quote, you can see this is being taken very seriously because many ad networks, publishers, and
data providers fear that they will not be able to grab metrics from users on the IE 10 browser by default.

However, keep in mind that this is not a standard yet. The W3C is currently working on it, and most of the major
browsers to date include some sort of DNT toggle so each request has a DNT value included. Some of the DNT
settings from the major browsers are demonstrated in Apple’s Safari in Figure 13-5.

Figure 13-5. The DNT setting in Apple’s Safari browser

http://read.bi/TXBz4N

CHAPTER 13 ■ HTML5 ADVERTISING GOING FORWARD

337

Figure 13-6 shows the setting in Firefox.

Figure 13-6. The DNT setting in Mozilla’s Firefox browser with DNT set to 1 using the Firefox plug-in, HTTP LiveHeaders

I believe it’s not as black and white for a DNT value. Users, when they open their browsers for the first time,
should be presented with a few questions on how they’d like to have ads, sites, and networks track them. From this
initial screen, they will need to set the options before they’re allowed to move on and use the browser to its full
experience. And rather than doing this for every browser you use, there should be a centralized location for accessing
and updating the data so it’s known across all of your browsers and devices.

As of September 2012, Apache developer Roy Fielding has released a patch that will bypass the Do Not Track
setting in the upcoming Internet Explorer 10, which has it set to 1 by default. The basis of doing this is that Fielding
believes it is against everything open standards stand for, which is the foundation of Apache, a huge provider and
contributor of server-side architecture and the Web. For more information on this important industry topic, feel free
to visit http://donottrack.us and http://ftc.gov/opa/2012/05/donottrack.shtm.

Note ■ You can find more information on the Apache server patch at http://bit.ly/QBcwng.

Summary
Obviously, this chapter was intended to make you ask questions and to think about what’s possible rather than focus
on the current limitations within the space. With Internet advertising revenue setting 2012 records of $8.4 billion in a
single quarter (http://bit.ly/NupSQs), there will be no shortage of competition in this industry. This means, like it
or not, advertising is here to stay!

http://donottrack.us
http://ftc.gov/opa/2012/05/donottrack.shtm
http://bit.ly/QBcwng
http://bit.ly/NupSQs

CHAPTER 13 ■ HTML5 ADVERTISING GOING FORWARD

338

As I close out this book, I want you to be aware that there is a whole world out there eagerly waiting tasteful
online advertising, and it’s one that hasn’t even been dreamed up of yet. While I know most people frown upon
advertising as an evil, keep in mind that it offers a great revenue model for content providers offering premium free
content to a wide variety of audiences and so we’re at a very good transitioning point to make the digital advertising
industry effective again and redefine a lot of what has failed us and our users in the past. So, please be receptive to the
change and offer guidance in how you’d like to see this industry take shape in the coming years as it makes its move
into using web standards.

Lastly, know that the Web is becoming more open, and we’re all on the cusp of many great things ahead in web
development, web applications, and digital advertising. Now that the Web is on phones, desktops, laptops tablets, and
televisions, the market has exploded with more growth and opportunity than ever before. Today it’s on your television,
but tomorrow it will be on billboards, cars, elevators, appliances, and more places we haven’t even thought of yet,
which will mean much more competition and more needs from advertisers to measure the effectiveness of their
marketing goals. We’ve learned a lot from our digital past with HTML4 and Flash, but one thing is for certain: web
standards won’t go away, so learning the new features of HTML, CSS, and JavaScript is one of the best thing you can
do for yourself and your career.

I personally want to thank you for reading HTML5 Advertising. This is a fairly new topic, and the book was an
attempt to set a baseline for strategy and development throughout the transition in the industry. As we all push
forward, the information will undoubtedly need to adapt but I hope you found this informative and fun to read.
Please feel free to reach out to me with any questions or comments when you begin your next digital campaign. As we
continue to narrow in on a complete HTML5 specification and complete browser support, you’ll be in a great place
to take this entire industry head-on. It’s going to be an exciting few years to come, and I really hope you’re looking
forward to the developments as much as I am.

Keep experimenting!

339

Index

n a
ActionScript 3 (AS3), 65
Adaptive bitrate streaming, 168
Adobe’s Integrated Runtime (AIR), 28
Ad-server

campaign launch, 14
optimization, 12
quality assurance, 13
states, 10
tags

iframes, 13
types and formats, 13

tracking metrics
band click redirect, 11–12
digital advertising, 11
key points, 11
third-party tracking, 11

Advertisement, 22
Advertising. See also Cross-screen campaigns

adoption, 325
circa 2012, 325
Do Not Track

Apple’s Safari browser, 336
Firefox browser, 337
information, 335
statement, 336

Advertising technology. See also HTML5
Flash

Adobe, 25
advertisers, 25
digital advertising, 24
language, 24
ubiquity, 25
videos, 25

HTML
advertisement, 22–24
CSS and DOM, 21
W3C, 21

mobile advertisement
development tools, 30
HTML5, 29–30
SDKs, 29
web standards, 29

W3C, 21
Alpha video, 165–166
Apple iOS, 191
Application cache

AppCache, 238
FALLBACK section, 239
HTML5 app, 237
HTML5 AppCache File, 238
JavaScript, 239–240
manifest ile, 237

Application Programming Interfaces (APIs).
See also Cross-origin resource
sharing (CORS); Drag-and-drop
(DnD)

ile
adInit function, 129
advertisement, 130–133
beginCanvasDrawing, 134
BLOB, 127
browser, 126
and canvas, 134
image ile, 130
JavaScript, 127–129
operating system/desktop, 127
URL, 134
XMLHttpRequest method, 127

history
ad developers, 137
browser, 136
features, 137
privacy, 142
web storage, 137–138, 140–141

page visibility

 ■ INDEX

340

digital advertising, 136
example, 135
toggle content, 135

web workers
Ad example, 144
animation function, 145
Gears project, 143
machine resources, 143
navigator object, 144
notiication, 142
postMessage, 144
user interface, 142
worklow, 143

Automatic Content Recognition (ACR), 334

n B
Bleeding-edge

APIs
download, 312
Game Pad, 319
media source, 314
MIME and protocols, 319
notiications, 315–316
picture element, 311
Web Audio, 314
WebGL, 317
Web Intents, 317–318
WebP format, 319
WebRTC, 313–314
WebSockets, 316

browser support, 322
emerging browsers, 297–298
mobile API

battery API, 319
calendar, 321
contact list, 321–322
humidity and temperature, 322
network connections, 320
proximity events, 322
vibration, 321

submit-comment and feedback, 323
Bleeding-edge. See also Cascading Style

Sheets (CSS)
APIs, 316
mobile API, 320

Brand time vs. direct response, 9
Browser extensions, 55
Browser-sniing techniques, 258

n C
Call to action (CTA), 19
Campaign process

ad-server
launch, 14
optimization, 12
quality assurance, 13
states, 10
tags, 12–13
tracking metrics, 11–12

analytics and reporting, 14
creative

development and design, 9
goals, 8
SWF ile/HTML, 8

digital strategy, 1–3
dynamic campaigns, 3
media buying

ad networks, 4
digital advertising industry, 3
publisher web sites, 4
secure, 4
video player, 4
web portals, 4

payment, 14
publisher inventory

CPM and roadblocks, 5
impression, 5
outlets, 6
real-time bidding, 5

specs
ad sizes, 6
IAB, 7
requirements, 6
responsive web design, 6–7

targeting audiences
cookies, 16–17
information, 15
online advertising privacy, 18
personal identiiable information, 18
privacy, 16
publisher-passed data, 17

terminology review, 18
caniuse.com, 55
Canvas

Adobe Illustrator, 64
advanced examples, 75
advertising, 77
animated gifs, 76
animations, 74
browsers, 75
element

DOM structure, 62
green square, 62
image, 62
variables, 63
WHATWG, 61

events, 72–73

Application Programming Interfaces (APIs) (cont.)

■ INDEX

341

Flash
CreateJS, 64–65
EaselJS, 65–66

gradients, 70–71
graphics, 61
images, 71–72
JavaScript libraries

KinectJS, 66
ProcessingJS, 67

lines
save images, 73
shapes, 68, 70

Cascading Style Sheets (CSS)
exclusions

Adobe, 301
page content, 303–304
rectangle exclusion, 301, 303

features, 310
ilters, 305
masks

advantages, 306
browser, 306
Webkit masks, 307

Matrix3D property, 306
relections, 308
regions, 298–300
scoped styles, 309–310
shaders, 304

Click-through rate (CTR), 19
Codecs. See Video, codecs
collapseAd function, 109
Collusion, 16–17
Content delivery network

(CDN), 174
Content management systems

(CMS), 19
Cookies

cache, 16
collusion, 16–17
online information, 16

Creative development and design
brand time vs. direct response, 9
goals, 8
LCD, 10
storytelling, 9
SWF ile/HTML, 8
technology and code, 9

Cross-origin resource sharing (CORS)
advertisement, 145–146
basic access, 146
custom proxy service, 145
deinition, 145
DoubleClick, 145
draft spec, 147
integrations, 147
TOS, 147

Cross-screen campaigns
ACR, 334
device ingerprinting, 334
facial recognition software, 335
near-ield communications, 335

CSS3
animations

advertising space, 116
browser support, 86–88
vs. Flash, 98
glow animation, 89–92
hardware acceleration, 94
vs. JavaScript animation, 97–98
keyframe deinitions, 92
@keyframes rule, 92
play state property, 92
properties, 89
spin, 94
timing function, 92
W3C, 88, 95

at-rules, 43–44
features, 42
media queries, 44–46
oicial logo, 86
preprocessors

HAML, 48
LESS, 48
SASS, 47

presentations and style
border radius, 103–104
box shadows, 99
gradients, 104–106
multiple backgrounds, 100–101
text shadows, 101–102
transforms, 110–114
transitions, 107–110

pseudo classes, 46–47
selectors, 46
sprite sheets, 116–118
target elements, 47
vendor preixes

deinition and examples, 44
preixless, 96
radial gradient class, 95
webkit preixes, 96

n D
Debugging, 56. See also Development tools
Development tools

code, 249
HTTPFox, 249
iDevices, 249
JSConsole, 248
monitoring tool, 248
network monitoring, 250

 ■ INDEX

342

Device ingerprinting, 334
Do Not Track (DNT)

Apple’s Safari browser, 336
Firefox browser, 337
information, 335
statement, 336

Drag-and-drop (DnD)
advertisement, 126
allowDrop method, 125
browsers, 121
demonstration, 125–126
drag(event) function, 125
elements img, 121
example, 122–125
ondrop and ondragover events, 125
plugin, 122
setDragImage() method, 125

Dynamic Adaptive Streaming over HTTP
(DASH), 172

Dynamic advertising
contenteditable attribute, 273–275
content formatting

container-sizing method, 271
JavaScript swear ilter, 269
overlow ellipsis, 270

delivery rules
ad server, 257–258, 263
advantage of, 259
AT&T’s 3G service, 260
DCO engine, 259
free conference WiFi, 261
free WiFi service, 262
frequency capped, 258

geolocation (see Geolocation)
HTML5 data attribute, 271–272
HTML5 forms and inputs

Chrome browser handles, 277–278
client-side validation, 276
datalist element, 280
details and summary element,

281–282
features, 281
input tag, 280
list attribute, 280
pattern attribute, 279
pseudo classes, 279
UI element, 278
validation/regex function, 276

HTML5 hidden attribute, 272–273
JSON, 267–269
macros and variables, 264–265
publisher-passed data, 264
XML, 265–266

Dynamic creative optimization (DCO), 259

n e
Embedded OpenType (EOT), 82
Enhanced TV Binary Interchange Format

(EBIF), 331
Extensible Markup Language (XML), 51,

265–266

n F
Facial recognition software, 335
Flash

Adobe, 25
advertisers, 25
digital advertising, 24
language, 24
ubiquity, 25
videos, 25

Frames per second (FPS), 155
Fullscreen API, 175

n G
Game Pad API, 319
Geolocation

advanced dynamics, 295
advertising

advantage of, 286
location-based services, 287–288
WatchPosition API, 285
web services, 288

communication API, 292–295
dynamic video, 295
Google’s Chrome browser, 283
JavaScript, 283
latitude/longitude, 284
social APIs, 288–289
synced units, 289–290, 292

Glow animation, 89–90, 92
Google Android, 191
Group of pictures (GOP). See Keyframes

and GOP

n h
HTML5, 149, 297. See also Application Programming

Interfaces (APIs); Bleeding-edge; Media
adoption, 27
advertisement

circa 2012, 325
platforms, 326
pop-up ads and subsequent evolution, 22
rich media, 23–24
static images, 22

 ■ INDEX

343

AIR, 28
audio

formats and codecs, 184–185
JavaScript API, 185–186
tag, 183–184
tools, 185

business
AdMob, 31
Adobe, 31
Apple, 30
appsdevelopers, 32
Google, 31
iAD, 31
Microsoft, 32
mobile ecosystem, 34
Mozilla, 32
Opera browser, 33
Sencha, 33

considerations, 40, 41
CSS and DOM, 21
data attribute, 39–40
element lowchart, 40–41
features, 26, 60
vs. Flash, 27–28
graphics, video/dynamic content, 26
iFrame, 42
Internet Wayback machine, 22
<div> tags, 38
platforms

advantage, 326
cable, 328–331
connected/smart-TVs, 327
digital signage and billboards, 333
game console, 331–333
overview, 326
set-top boxes, 328
vehicles, 333
Windows 8, 326

<section> and <aside>, 38–39
semantics, 37
terminology, 34–35
tracking and measurement, 24
transition

development environment, 29
IAB enhancements and SDK providers, 29–30

video, 27
W3C, 21

HTTP Dynamic Streaming (HDS), 170
HTTP Live Streaming (HLS), 168–170
Hypertext markup language (HTML). See HTML5

n I
iAD, 31
iFrame, 42

In-application advertising. See also Mobile web
advertising; Software development
kits (SDKs)

ipad ads, 219
ORMMA and MRAID

adoption, 231
code, 227, 230
features, 232
overview, 226
testing creative, 230–231

worldwide 2012 to 2015, 220–221
IndexDB, 247
Interactive Advertising Bureau (IAB)

guidelines, 8
and Mobile Marketing Association, 215
specs and sizes, 7–8

Internet service provider (ISP), 282

n J
JavaScript

async attribute, 49
defer, 50
interpreted language, 48
JSON structure, 51–52
libraries

compiler, 54
jQuery, 52–54

miniied version and archive version, 49
requestAnimationFrame, 50–51
syntax elements, 48
XML, 51

JavaScript Object Notation (JSON), 265, 267–269
jQuery, 52–54

n K, L
Keyframes and GOP, 160–161
Key performance indicators (KPIs), 14

n M
Macromedia’s Flash Player. See Flash
Masks, CSS

advantages, 306
browser, 306
Webkit masks, 307

Matrix3D property, 306
Media. See also Video

alpha video, 165–166
aspect ratios, 155
Bitrate, 154
CDN, 174
cloud encoding services, 173
codecs, 149

 ■ INDEX

344

content creative
autoplay, 152
loop attribute, 152
static and poster image, 152
televisions, 152

deinterlace, 154
encoding tasks, 153
FPS, 155
Fullscreen API, 175
keyframes and GOP, 160–161
letterboxing/pillarboxing, 155
multipass encoding, 154
rule of 16, 161
subtitles and captions

text track API, 175
WebVTT ile, 176, 178

terminology review, 187
tools, 156
transcoding, 153
videos

deconstruct, 151
Flash playback, 150–151
MIME type and codec, 151
source inline, 151
Webkit, 151

wrappers
MP4, 162
OGG video format, 164–165
WebM, 163–164

Media presentation description (MPD), 172–173
messageHandler function, 295
Microdata API, 147–148
Microsoft, 32
MIME API, 319
Mobile API

battery API, 319
calendar, 321
contact list, 321–322
humidity and temperature, 322
network connections, 320
proximity events, 322
vibration, 321

Mobile development tools, 250
Mobile Marketing Association (MMA), 215
Mobile Rich Media Ad Interface Deinition

(MRAID)
adoption, 231
code, 227
IAB enhancements, 29–30
mraid.expand() and mraid.close()

methods, 230
features, 232
testing, 230–231
VPAID, 226

Mobile video advertising, 206–208

Mobile web advertising
Ad creation

async property, 194
CSSCompressor, 193
Defer scripts, 194
JavaScript defer, 194
JavaScript image preloader, 193
JQuery library, 195
JSCompress, 193
media query and pixel density,

196–197
style sheets, 193
Viewport Meta Tags, 195
Viewport Width and Scale, 195

Android, 218
Apple, 218
code execution, 204
fragmentation, 218
IAB, 215
media query and pixel density, 196
MMA, 215
mobile devices

accelerometer/gyroscope, 214
activityHandler function, 203
callout balloon, 199
copy-and-paste process, 198
creative assets, 202
font libraries, 201
font-smooth property, 201
orientation feature, 210–214
pixel tracking, 202
preixed webkit-tap-highlight-color, 198
pros and cons, 201
protocols, 215
“tel” keyboard input, 199–200
testing, 216
touch events, 209–210
touch feature, 209
touch outline, 197

mobile site events, 204–206
Morgan Stanley Research, 189–190
native application, 217
online ad spending worldwide, 192
operating systems, 219
optimization, 203
pricing, 193
SDKs, 217
video advertising, 206–208

Morgan Stanley Research, 189–190
Mozilla, 32
Multipass encoding, 154

n N
Near-Field Communications (NFC), 335
Network connection API, 236

Media (cont.)

 ■ INDEX

345

n O
Oline storage

AdMarvel SDK, 236
Ajax request, 234
cache busting, 235
handle via JavaScript, 234
IndexDB, 247
outlines, 233–234

Oline tracking
adInit function, 246
Lawnchair, 246
MRAID, 246
storing and iring

LocalStorage, 242
ORMMA initiative, 241
revised code, 243–244, 246
variables, 243

Open Rich Media Mobile Advertising (ORMMA).
 See Mobile Rich Media Ad Interface
Deinition (MRAID)

Opera browser, 33
Optimization

browser’s Audits tool, 253
ImageOptim, 251
inspector, 252
memory usage, 252
mobile Webkit, 254, 256
network connections, 253
text-based iles, 251

n p
Personal identiiable information (PII), 18–19
Picture elements, 311
Pixel tracking, 241
Poster image, 152
Protocol API, 319

n Q
Quality assurance (QA), 13
Quality of service (QOS), 178

n r
Real-Time Messaging Protocol (RTMP), 168
RequestAnimationFrame, 97
Research In Motion (RIM), 33
Responsive images, 311
Responsive web design (RWD)

CSS styling, or JavaScript commands, 6
landscape and portrait, 7
portrait orientation, 6–7

Return on investment (ROI), 25

Rich media advertising, 23
ad-serving platform, 23–24
static/default ad, 23
vendors, 23

RIM, 33
Robert Reinhardt’s chart, 162
Rule of 16, 161

n S
Scalable vector graphics (SVG)

canvas, 79
IMG versions, 77–78
RaphaëlJS, 78
SMIL, 79
web standards advertising, 79

Search engine optimization (SEO), 41
Sencha, 33
Set-top boxes (STBs), 328
Shaders, 304
Software development kits (SDKs),

29, 217
ad networks, 224
ad server, 222
Apple’s iAd, 222–223
application, 221
connection, 221
try/catch method, 226
Google’s AdMob*, 223
Medialets, 224
Millennial Media, 224
Opera’s AdMarvel, 223
Pandora application, 225

Sprite sheets, 116–118
Static image, 152
Synchronized Multimedia Integration

Language (SMIL), 79

n t
Tracking, 241

ad-serving companies, 240
cookie dropping, 241
Google’s Analytics, 241

TrueType fonts (TTF), 81

n U
Unique device identiier (UDID), 334

n V
Vertex shaders (VS). See Shaders
Video

codecs

 ■ INDEX

346

browser and manufacturer, 157
H.264, 158–159
iOS devices, 159
heora, 160
VP8, 160

delivery
adaptive streaming, 168
HD, 167
HDS, 170
HLS, 168–170
media presentation description, 172–173
MPEG-DASH, 172
progressive, 167
smooth streaming, 170, 172
streaming, 167–168

HTML development, 174
measurement

properties, 178
QOS, 178

mobile content
devices, 183
eMarketer, 182–183

preroll/stream video, 179
VAST, 179–181
VMAP, 182
VPAID, 182

Video Ad Serving Template (VAST), 179–181
Video Multiple Ad Playlist (VMAP), 182
Video Player-Ad Interface Deinition (VPAID), 182

n W
watchPosition method, 286
Web Audio API, 314
Web fonts

advertiser’s marketing, 83
CSS3, 80
Cufon, 83
Embedded OpenType, 82
Font Squirrel, 82
HTML markup, 80
non-Webkit browsers, 83
SVG-Fonts, 82
TrueType fonts, 81
Web Font Licensing, 83
WOFF, 81

WebGL, 317
Web Inspector, 247–248
Web Intents, 317–318
Web open font format (WOFF), 81
WebP format, 319
Web Real-Time Communications (WebRTC),

313–314
WebSocket (WS), 316
Web standards. See also JavaScript; HTML5

best practices
asset delivery, 58
borders, 57
click tags, 57
elements, 58
ile size, 58
guidelines page, 56
images vs. icons, 59
mobile market, 59
same in–same out, 59
site events, 59
tracking, 57

browser extensions, 55
CSS3

at-rules, 43–44
features, 42
media queries, 44–46
preprocessors, 47–48
pseudo classes, 46–47
selectors, 46
target elements, 47
vendor preixes, 44

debugging, 56
polyills, 55

Web storage
localStorage

adInit function, 140
browser, 138
example, 138–140
image, 141
syntax, 138
web inspector view, 141

sessionStorage, 137–138
types, 137

n X, Y, Z
XMLHttpRequest (AJAX) method, 127

Video (cont.)

HTML5 Advertising

John Percival

HTML5 Advertising

Copyright © 2013 by John Percival

his work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, speciically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied speciically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-4602-2

ISBN-13 (electronic): 978-1-4302-4603-9

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the beneit of the trademark owner, with no intention of infringement of the trademark.

he use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identiied
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. he publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: Louise Corrigan
Technical Reviewer: Richard Carter
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Louise Corrigan, Morgan Ertel, Jonathan Gennick,

Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham, Matthew Moodie, Jef Olson,
Jefrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing, Matt Wade,
Tom Welsh

Coordinating Editor: Kevin Shea
Copy Editors: homas McCarthy, Kim Wimpsett
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers
at www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code.

http://orders-ny@springer-sbm.com
http://www.springeronline.com
http://rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com
http://www.apress.com/source-code

“Do what you love and you’ll never work a day in your life.” hanks, Mom. Love you.

vii

Contents

Foreword ... xix

About the Author ... xxi

About the Technical Reviewer ... xxiii

Acknowledgments .. xxv

Introduction .. xxvii

Chapter 1: The Campaign Process ■ ...1

Digital Strategy ..1

Media Buying ..3

Publisher Web Sites ... 4

Web Portals ... 4

Ad Networks .. 4

Video Players ... 4

The Media Buyer .. 4

Publisher Inventory ...5

CPM and Roadblocks ... 5

Real-Time Bidding ... 5

Publisher Specs ...6

Ad Sizes ... 6

Responsive Design .. 6

IAB ... 7

Creative ...8

Creative Development and Design ... 9

■ CONTENTS

viii

Ad Serving ...10

Tracking ... 10

Optimization .. 12

Tags ... 12

Quality Assurance .. 13

Campaign Launch .. 14

Analytics and Reporting ..14

Payment ..14

Targeting Audiences—a Smarter Future ...15

Privacy ... 16

Cookies .. 16

Publisher-Passed Data... 17

PII ... 18

What’s Next for Privacy? .. 18

Terminology Review ..18

Summary ...20

Chapter 2: Evolution of Advertising Technology ■ ..21

Early Web and HTML ...21

Advertising with HTML... 22

Flash ..24

Adobe... 24

Flash Player Ubiquity ... 25

Flash Player Video ... 25

Advertising with Flash ... 25

HTML5 ...26

Why HTML5? .. 26

HTML5 Adoption .. 26

HTML5 Video .. 27

HTML5 vs. Flash on Mobile .. 27

■ CONTENTS

ix

Evolving Advertising on Mobile ...29

Transition to HTML5 ... 29

Development Tools... 30

HTML5 Business ..30

Apple.. 30

Google .. 31

Adobe... 31

Mozilla ... 32

Microsoft ... 32

Sencha ... 33

RIM .. 33

Opera ... 33

Others .. 34

What’s Next? ...34

Terminology Review ..34

Summary ...35

Chapter 3: Advertising with Web Standards ■ ..37

HTML5 Advertising ..37

Using <div> ... 38

New Ad Container Options: <section> and <aside> ... 38

Data Attribute ... 39

HTML5 Considerations ... 40

Safe iFrames.. 42

Advertising with CSS3 ...42

At-Rules ... 43

Vendor Prefixes .. 44

Media Queries .. 44

Selectors .. 46

Pseudo Classes .. 46

Pseudo Elements ... 47

CSS Preprocessors .. 47

■ CONTENTS

x

Advertising with JavaScript ..48

Minify ... 49

Async ... 49

Defer .. 50

requestAnimationFrame .. 50

XML .. 51

JSON .. 51

JavaScript Libraries ..52

jQuery .. 52

JavaScript Compilers ... 54

Polyfills ..55

Browser Extensions ...55

Debugging ...56

Advertising Best Practices ..56

Borders .. 57

Tracking ... 57

Click Tags ... 57

File Size ... 58

Asset Delivery .. 58

Element Names ... 58

Same In–Same Out Rule .. 59

Mobile .. 59

Images vs. Icons .. 59

Site Events ... 59

Define Your Reach ...60

Summary ...60

Chapter 4: Using Canvas, SVG, and Web Fonts ■ ..61

Canvas ...61

Illustrator to Canvas ... 64

Flash to Canvas ... 64

Other JavaScript Libraries ... 66

■ CONTENTS

xi

Canvas Examples ... 67

Canvas Browser Support ... 75

Animated Gifs .. 76

Canvas in Advertising .. 76

SVG ..77

 RaphaëlJS ... 78

SMIL ... 79

Canvas and SVG ... 79

SVG in Advertising ... 79

Web Fonts ...80

WOFF ... 81

TrueType Fonts ... 81

Embedded OpenType ... 82

Using SVG with Fonts .. 82

Font Squirrel .. 82

Web Font Licensing ... 83

Web Fonts in Advertising ... 83

Summary ...84

Chapter 5: Animations and Presentations ■ ...85

 Browser Support ...86

CSS3 Animations ... 88

Vendor Prefixes .. 95

JavaScript Animation vs. CSS3 Animation ... 97

CSS3 vs. Flash ... 98

CSS3 Presentations and Style ...98

Box Shadows ... 99

Multiple Backgrounds .. 100

Text Shadows .. 101

Border Radius .. 103

Gradients ... 104

Transitions ... 107

CSS3 Transforms ... 110

■ CONTENTS

xii

CSS3 in Advertising ...116

Sprite Sheets ...116

Sprite Sheets on Mobile .. 118

Summary ...119

Chapter 6: HTML5 APIs ■ ..121

Drag-and-Drop ..121

Drag-and-Drop in Advertising .. 126

File...126

File Access in Advertising .. 130

Page Visibility ..135

Page Visibility in Advertising ...136

History ...136

Web Storage .. 137

sessionStorage .. 137

localStorage ... 138

User Privacy ... 142

Web Workers ...142

Web Workers in Advertising ... 144

CORS ...145

CORS in Advertising ... 145

Microdata ..147

Summary ...148

Chapter 7: HTML5 Media ■ ...149

HTML5 Video ...149

Content Creation ..152

What You Should Use ... 152

What You Shouldn’t Use ... 152

Encoding and Transcoding ..153

Encoding .. 153

Transcoding ... 153

■ CONTENTS

xiii

Multipass ... 154

Bitrate .. 154

Deinterlace .. 154

FPS .. 155

Aspect Ratio .. 155

Tools ..156

Video Codecs ...157

H.264 ... 158

VP8 .. 160

Theora.. 160

GOP and Keyframes ...160

The Rule of 16 ...161

Wrappers ...162

MP4 ... 162

WebM ... 163

OGG .. 164

Alpha Support ..165

Video Delivery ...167

Progressive .. 167

Streaming .. 167

Adaptive Streaming ... 168

HLS .. 168

HDS .. 170

Smooth Streaming ... 170

MPEG-DASH ... 172

Cloud Services ..173

Content Delivery Networks .. 174

HTML5 Video Developments ..174

Fullscreen API ..175

■ CONTENTS

xiv

Subtitles and Captions ..175

Video Measurement ..178

QOS .. 178

Video Players ...179

VAST .. 179

VPAID ... 182

VMAP ... 182

Mobile Video ..182

HTML5 Audio ...183

The audio Tag .. 184

Audio Formats and Codecs .. 184

Audio Tools .. 185

Audio JavaScript API .. 185

Terminology Review ..187

Summary ...187

Chapter 8: Mobile Web Advertising ■ ...189

The Mobile World ...189

Mobile Devices, Browsers, and OSs ..190

Apple iOS ... 191

Google Android .. 191

Others .. 191

Mobile Advertising ...192

Mobile Pricing .. 193

Ad Creation .. 193

Optimization .. 203

Code Execution .. 204

Mobile Video Advertising ...206

Native Device Features ...208

Touch ... 209

Orientation ... 210

■ CONTENTS

xv

Gyroscope, Compass, and Accelerometer.. 214

Protocols .. 215

MMA and the IAB ...215

Device Testing ...216

Summary ...216

Chapter 9: In-Application Advertising ■ ...217

Mobile Applications ...217

Apple.. 218

Android .. 218

Others .. 219

In-Application Advertising ...219

SDKs ..221

Apple’s iAd ... 222

Google’s AdMob* ... 223

Opera’s AdMarvel* ... 223

Medialets* ... 224

Millennial Media .. 224

Others .. 224

ORMMA and MRAID ...226

MRAID Code ... 227

Testing ... 230

MRAID Adoption ... 231

Creative Features... 232

Summary ...232

Chapter 10: Offline Storage, Tracking, Debugging, and Optimization ■ 233

Offline Support ..233

Network Connection API ..236

Application Cache ..237

App Cache Example ...238

Tracking ...240

■ CONTENTS

xvi

Storing and Firing Offline Tracking ..241

IndexDB ...247

Web Inspector ...247

Development Tools ..248

Mobile Development Tools...250

Optimization ..251

Mobile Tips and Tricks ...254

Mobile Webkit .. 254

Summary ...256

Chapter 11: Dynamic Advertising with HTML5 ■ ..257

Delivery Rules ...257

Publisher-Passed Data ..264

Macros and Variables ..264

Working with XML and JSON ...265

XML .. 265

JSON .. 267

Content Formatting ...269

HTML5 Data Attribute ..271

Content Editable ..273

HTML5 Forms and Inputs ..276

Details and Summary Element .. 281

Geolocation ...282

Geolocation in Advertising ... 284

Web Services for Locations ... 288

Social...288

Social APIs ... 288

Synced Units ...289

Communication API ...292

Advanced Dynamics ..295

■ CONTENTS

xvii

Dynamic Video ...295

Summary ...295

Chapter 12: Bleeding-Edge HTML5 ■ ..297

Emerging Browsers ...297

New CSS Features ...298

CSS Regions .. 298

CSS Exclusions .. 301

CSS Shaders .. 304

CSS Filters ... 305

Matrix3D .. 305

Masks .. 306

Reflections ... 308

Scoped Styles .. 309

CSS Summary ...310

Emerging APIs ...311

Picture Element ... 311

Download ... 312

WebRTC ... 313

Media Source API ... 314

Web Audio API .. 314

Web Notifications API... 315

WebSockets ... 316

WebGL.. 317

Web Intents .. 317

MIME and Protocol API... 318

WebP Format ... 319

Game Pad API .. 319

Emerging Mobile APIs ...319

Battery API ... 319

Network API ... 320

Vibration API .. 321

■ CONTENTS

xviii

Calendar API .. 321

Contacts API ... 321

Proximity Events .. 322

Humidity, Temperature, and Light Events ... 322

Browser Support ...322

Get Involved ...323

Summary ...323

Chapter 13: HTML5 Advertising Going Forward ■ ..325

HTML5 Advertising Circa 2012 ..325

HTML5 Platforms ...326

Connected TVs ... 327

Set-Top Boxes .. 328

Cable Platforms ... 328

Game Consoles .. 331

Digital Signage and Billboards... 333

Vehicles ... 333

Cross-Screen Initiatives ..334

ACR .. 334

Device Fingerprinting .. 334

Near-Field Communications .. 335

Facial Recognition Software .. 335

Do Not Track (DNT) ..335

Summary ...337

Index ...339

xix

We are currently experiencing the initial stages of an unavoidable shift within the digital advertising industry.
Speciically, there is a push toward widely adopting open web standards such as HTML5 and moving away from
closed, third-party options such as Adobe Flash. With Flash long being the main delivery mechanism of all nonstatic
digital advertising, this is a monumental change of direction that at least in these early, beginning stages poses far
more questions and challenges rather than easy answers and quick solutions. An entire industry is currently faced
with having to completely change direction and redeine its core creative technology. For those of us who are involved
with the creation and deployment of digital advertising, it has become quickly apparent that there is a strong and
urgent need for guidance in this area as well as for the formalized establishment of industry standards, speciications,
and best practices that will facilitate the industry to efectively transition toward this next-generation advertising
format and designate HTML5 as the new de facto standard.

Installing HTML5 as a replacement for Flash within digital advertising may eventually become everything
that we believe it will be; however, right now the subject seems to pose far more questions than answers. here are
several industry-speciic issues and obstacles that need to be adequately addressed before HTML5 can truly be
considered a scalable and standardized solution. hese issues include concerns relating to overall ile size, bandwidth
consumption, inconsistent and fragmented feature support within browsers, and acceptable optimization and
performance across browsers, as well as the lack of suitable content creation tools for designers. From the content
creation perspective, designers are now forced to contemplate starting over completely and developing an entirely
new skill set. his can be a very daunting and intimidating task, and without any relevant direction or suitable
industry resources, the average designer who creates digital advertising is most likely left feeling very confused and
overwhelmed. his book comes to the rescue and efectively ills the void by providing relevant guidance, insight, and
advice. John does a magniicent job of identifying the key challenges and then presenting suitable solutions that are
easy to understand and digest even for novices.

I truly understand just how useful and valuable of a resource this book will be for designers who are
transitioning to HTML5 and away from Flash, because that is the exact path I have already traveled. I have been
working within the digital advertising industry for the past seven years now, and during that time, I have been
fortunate enough to have accumulated a great deal of relevant industry knowledge and technical experience. When I
began my career at AOL, I was hired as a Flash developer, tasked with creating highly immersive, interactive, and rich
advertising experiences. Over the years I was able to successfully push the boundaries of what was possible within
digital advertising by leveraging my strong design skills as well as my vast knowledge of Flash and ActionScript. By all
accounts I was very good at what I did, and I thought I had it all igured out. Boy, was I wrong! When Apple decided
that Flash would not be supported on the iOS operating system, it changed everything, not just within the digital
advertising industry but within the web development world as a whole. Suddenly, I was no longer the conident and
experienced interactive development expert I thought I was. I wasn’t even sure whether I was going to have a job in
another couple of years. Suddenly, everyone was talking about moving toward HTML5, and I had never even heard
of it. I was deinitely feeling confused, lost, and even a little scared. hat said, rather than give up and begin looking
into a new career, I decided to investigate this new HTML5 technology and see what all of the fuss was about. What
came next was months and months of extensive research, trial and error, and testing, followed by more testing. here
was plenty of frustration, sleepless nights, and more cursing than I’d like to admit. I learned a great deal through this
process and was able to eventually become as proicient with HTML5, JavaScript, and CSS3 as I had previously been
with Flash; however, it was deinitely not easy. In the end, my career was saved, my friends and family still loved me,

Foreword

■ FOREWORD

xx

and all was right with the universe once again. hat being the case, the journey was long and hard, and I could have
deinitely beneited from some help and guidance along the way. Do you know what I could have really used the
most? his book!

Plenty of HTML5 resources are available these days, but none is completely devoted to the perspective of a
designer who creates digital advertising for a living. his may seem like a small niche to some; however, this is a very
signiicant group of folks because they are the ones who are supporting the multibillion-dollar digital advertising
industry. It is extremely important that these designers are able to efectively and eiciently transition to HTML5 so
that they can continue to deliver standards-compliant advertising units that adhere to established specs and best
practices and that do not negatively afect the user or the publisher. It’s truly in the best interest of the industry as a
whole to ensure that this happens, and that’s why this book is so valuable and necessary during this crucial time. his
book will undoubtedly prove to be an invaluable resource for Flash designers interested in learning about the usage
of HTML5, CSS3, and JavaScript for digital advertising purposes. John clearly and articulately covers a great deal of
ground within these pages. he reader will receive a thorough education on the campaign process, ad requirements,
all of the relevant HTML5 APIs and related functionality, working with JavaScript and CSS3, handling media assets,
web standards, optimization techniques, several advanced topics such as communication between domains, mobile
and in-app advertising, and a lot more! John does an excellent job of providing a holistic view of HTML5 advertising,
and this book is really the only resource that the reader will need in order to get started. As someone who now leads a
large team of interactive designers and developers who are entirely focused on all forms of digital advertising for both
desktop and mobile, I can ensure you that John’s book will be required reading for all of my employees.

Most recently I have found myself working very closely with the IAB and was recently named cochair of the
HTML5 Digital Advertising Working Group. his group of industry experts is currently working to establish the
irst-ever HTML5 digital advertising speciication and best practices for the digital advertising industry. During my
time spent working with this group of experts, I have found John to be one of the most knowledgeable, friendly,
and collaborative individuals I have ever had the pleasure of working with. His great knowledge and enthusiasm
for HTML5 advertising really comes through in these pages, and the amount of information that he has packed into
this book will make your head spin! his book is extensive in its breadth and efectively covers all aspects of HTML5
advertising, from deining industry terminology all the way to speciic technical tips and tricks that designers can
utilize in order to take full advantage of HTML5 and all of its vast capabilities. Even better, John does not simply
provide a generic overview of the new HTML5 APIs and other related technologies; he ties everything directly into
advertising and explains why it is relevant and how it should be used within the context of our industry. John has
done an amazing job of documenting and capturing everything that a transitioning designer would need in order
to efectively begin working with the emerging technology of HTML5 within the context of digital advertising. He
efectively breaks down the barriers and provides the reader with the required information and skills they need in
order to build up their knowledge so that they can comfortably and conidently approach this exciting new phase
of their career. John has done all of the legwork for all who are just now approaching the subject, and his hard work
will make their lives drastically easier. No longer will designers ind themselves in a position where they are forced to
learn everything on their own without any guidance, direction, or validation. No longer will designers ind themselves
contemplating career changes or crying into their keyboards late at night out of frustration. With this book sitting on
their desks, designers will inally have the resource they’ve been missing and that will allow them to make the leap
into HTML5 advertising. Trust me, I know what I’m talking about. I’ve been there and done that.

Cory Hudson
Creative Director, AOL

xxi

About the Author

John Percival is an established creative director and web technologist who resides
in the Philadelphia area. He specializes in digital media production, multiscreen
development, interactive design, and video creation/delivery. He currently keeps
busy in the digital advertising space, working for many Fortune 500 clients and
leading agencies solving complex problems with emerging technology. John has
been in the digital space for nearly a decade, has led teams big and small, and has
a strong background in audio and video production as well as motion graphics.
John is an industry speaker, technical author, and member of the IAB’s various
working groups and committees. When he’s not online or wiring up his house,
he can be found playing the drums or starting projects that consume most of his
free time.

xxiii

About the Technical Reviewer

Richard Carter is a web designer and front-end developer and creative director at
Peacock Carter Ltd., a web design agency based in Newcastle upon Tyne, England.

Richard is the author of four books to date on theme integration with open
source content management and e-commerce systems, and he previously
reviewed Apress’ he Deinitive Guide to Drupal 7. He blogs at
www.earlgreyandbattenburg.co.uk and is on Twitter as the imaginatively
named @RichardCarter.

http://www.earlgreyandbattenburg.co.uk

xxv

Acknowledgments

I’d like to thank a variety of people who have either directly or indirectly helped in writing this book: Alison Mazurek,
Louise Corrigan, Kevin Shea, Richard Carter, Todd Pasternack, Craig Furlong, Rob Avery, Chris Deely, Daniel (Tree)
Sandler, Nick Fox, Joe Brust, Rodrigo Brinski, Ben Fiore, Wade Neumeister, Ray Matos, Ian McLean, Brendan Reiley,
Nathan Carver, Joe Lazlo, Chris Menaj, Jessica Anderson, Sabrina Alimi, Yolanda Brown, the IAB’s HTML5 working
group, and a very special thanks to Cory Hudson for writing the foreword.

	HTML5 Advertising
	Contents at a Glance
	Contents
	Foreword
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	RaphaëlJS
	Browser Support
	CSS3 Animations
	Vendor Prefixes
	Going Prefixless

	JavaScript Animation vs. CSS3 Animation
	requestAnimationFrame, setInterval, and setTimeout?

	CSS3 vs. Flash

