-

/THEORY/IN/PRACTICE

REST in Bkl

Hypermedia and Systems Architecture

Jim Webber
Savas Parastatidis
lan Robinson

O REILLY*® Foreword by Martin Fowler

R N7 T ol Ll ANE T =2

http://www.allitebooks.org

Web Services/Web Development

REST in Practice

“REST in Practice unifies a grounded, pragmatic approach to building real-world
services with crystal-clear explanations of higher-level abstractions. The result is a
book that teaches you both how and why to develop services with flexible, negotiable,

: : W
discoverable interfaces. —Michael T. Nygard, author of Release /t!

Why don't typical enterprise projects go as smoothly as projects you develop for the Web?
Does the REST architectural style really present a viable alternative for building distributed
systems and enterprise-class applications?

In this insightful book, three SOA experts provide a down-to-earth explanation of REST and
demonstrate how you can develop simple and elegant distributed hypermedia systems by
applying the Web's guiding principles to common enterprise computing problems. You'll learn
techniques, using web technologies and patterns, for addressing the needs of a typical com-
pany as it grows from modest beginnings to become a global enterprise.

Learn basic web techniques for application integration

Use HTTP and the Web'’s infrastructure to build scalable, fault-tolerant enterprise
applications

Discover the Create, Read, Update, Delete (CRUD) pattern for manipulating
resources

Build RESTful services that use hypermedia to model state transitions and
describe business protocols

Learn how to make web-based solutions secure and interoperable

Extend integration patterns for event-driven computing with the Atom
Syndication Format and implement multi-party interactions in AtomPub

Understand how the Semantic Web will impact systems design

Jim Webber, a director with ThoughtWorks, works on dependable distributed systems.

Savas Parastatidis, an architect at Microsoft, works on a platform for large-scale data-
and compute-intensive applications.

lan Robinson, a principal consultant with ThoughtWorks, helps clients create sustainable,
service-oriented development capabilities from inception to operation.

US $44.99 CAN $51.99 S f **? Free online edition
ISBN: 978-0-596-80582-1 a ar . for 45 days with purchase of

Books Online this book. Details on last page.

54499
WA mwm O’REILLY® sritycon

http://www.allitebooks.org

Advance Praise for REST in Practice

“Jim, Savas, and Ian manage to make the notoriously abstract concepts behind RESTful in-
tegration useful and applicable in day-to-day work, as well as easy to understand. If you're
looking into how to do web-based integration simply and effectively, this is where you
should start.”

—Mark Nottingham
Principal Technical Yahoo!, Yahoo

“It is no coincidence that since Jim, Savas, and Ian started their frequent presentations and
writings on the importance and applicability of hypermedia in distributed systems, the land-
scape of REST’s practical usage started to change. Restfulie is an example how influential their
ideas have been.”

—Guilherme Silveira
Tech Lead at Caelum and Restfulie Project Leader

“While there are by now many books that describe basic REST and HTTP principles, this book
raises the bar by exploiting the web architecture’s benefits for more advanced use cases, such
as hypermedia-driven processes. A perfect mix of theory and practice.”

—Stefan Tilkov
CEO, InnoQ

“REST is different from traditional approaches to application design and development. It’s
important to clearly understand REST and build on successful examples. REST in Practice meets
this need head-on. Its authors are all excellent technologists and communicators, and have
done a great job tackling this challenging subject.”

—Eric Newcomer
Chief Architect, Investment Banking Division, Credit Suisse

“REST in Practice unifies a grounded, pragmatic approach to building real-world services with
crystal-clear explanations of higher-level abstractions. The result is a book that teaches you
both how and why to develop services with flexible, negotiable, discoverable interfaces.”

—Michael T. Nygard
Author of Release It!

“REST can appear confusing and inaccessible, filled with jargon and with precious few really
good examples. Luckily, this book does a superb job of taking the difficult and misunderstood
parts of REST and describing them so they appear both simple and obvious. Along the way, it
also shows how to build upon REST and the Web to solve real-world problems.”

—Colin Jack
Senior Software Developer

vww allitebooks.cond

http://www.allitebooks.org

vww allitebooks.cond

http://www.allitebooks.org

REST in Practice

Jim Webber, Savas Parastatidis, and Ian Robinson

O’REILLY"

Beijing * Cambridge * Farnham * Kéln * Sebastopol * Tokyo

vww allitebooks.cond

http://www.allitebooks.org

REST in Practice
by Jim Webber, Savas Parastatidis, and Ian Robinson

Copyright © 2010 Jim Webber, Savas Parastatidis, and Ian Robinson. All rights reserved.
Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (/ttp://my.safaribooksonline.com). For more information,
contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: simon St.Laurent Indexer: Lucie Haskins

Production Editor: Rachel Monaghan Cover Designer: Karen Montgomery
Copyeditor: Audrey Doyle Interior Designer: Ron Bilodeau
Proofreader: Rachel Monaghan lllustrator: Robert Romano

Production Services:
Newgen North America

Printing History:
September 2010: First Edition.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc., REST in Practice, the cover
image, and related trade dress are trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O’Reilly Media, Inc.,
was aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and au-
thors assume no responsibility for errors or omissions, or for damages resulting from the use of
the information contained herein.

ISBN: 978-0-596-80582-1
(M]

vww allitebooks.cond

http://my.safaribooksonline.com
mailto:corporate@oreilly.com
http://www.allitebooks.org

CONTENTS

Foreword i i i i e e e ix
Preface i i i i e e e e Xi

The Web As a Platform for Building Distributed Systems . . 1

Architecture of the Web 2
Thinking in Resources 4
From the Web Architecture to the REST Architectural Style 12
The Web As an Application Platform 15
Web Friendliness and the Richardson Maturity Model 18
GET on Board 20

Introducing Restbucks: How to GET a Coffee,

WebStyle. 21
Restbucks: A Little Coffee Shop with Global Ambitions 22
Toolbox 27
Here Comes the Web 30
Basic Web Integration 31
Lose Weight, Feel Great! 31
A Simple Coffee Ordering System 32
URI Templates 35
URI Tunneling 37
POX: Plain Old XML over HTTP 42
We Are Just Getting Started 54
CRUD Web Services 55
Modeling Orders As Resources 55
Building CRUD Services 57
Aligning Resource State 78
Consuming CRUD Services 83
Consuming Services Automatically with WADL 86
CRUD Is Good, but It’s Not Great 90

vww allitebooks.cond

http://www.allitebooks.org

5 Hypermedia Services. 93

The Hypermedia Tenet 93
Hypermedia Formats 97
Contracts 108
Hypermedia Protocols 112
Implementing a Hypermedia Service 128
Building the Ordering Service in Java 128
Building the Ordering Service in .NET 140
Ready, Set, Action 152
6 ScalingOut. 155
GET Back to Basics 155
Caching 157
Making Content Cacheable 161
Implementing Caching in .NET 167
Consistency 171
Extending Freshness 179
Stay Fresh 183
7 The Atom SyndicationFormat. 185
The Format 185
Common Uses for Atom 188
Using Atom for Event-Driven Systems 189
Building an Atom Service in Java 207
Building an Atom Service in .NET 219
Atom Everywhere? 234
After the Event 236
8 Atom Publishing Protocol 237
Atom Publishing Protocol 238
Implementing Order Fulfillment Using AtomPub 249
Implementing AtomPub in .NET 268
A Versatile Protocol 283
9 WebSecurity. 285
HTTP Security Essentials 286
Identity and the OpenID Protocol 295
The OAuth Protocol 315
Service Hacks and Defenses 339
Final Thoughts 349

vi CONTENTS

vww allitebooks.cond

http://www.allitebooks.org

10

11

12

Semantics

Syntax Versus Semantics

Structure and Representation of Information

The Semantic Web
Microformats

Linked Data and the Web
Guidance

The Weband WS-*.

Are Web Services Evil?

SOAP: The Whole Truth

WSDL: Just Another Object IDL
Two Wrongs Don’t Make a Right
Secure, Reliable, Transacted

A Requiem for Web Services?

Building the Case fortheWeb

No More Silver Bullets

Building and Running Web-Based Services
No Architecture Without Measurement
Selling the Web

Go Forth and Build

vww allitebooks.cond

351
352
357
372
373
374

...... 375

375
376
380
386
387
405

...... 407

407
407
409
412
414

CONTENTS

vii

http://www.allitebooks.org

vww allitebooks.cond

http://www.allitebooks.org

Foreword

FROM THE VERY START OF WHEN | GOT INVOLVED IN COMPUTING, there’s been
the desire to have software systems designed as components that can be freely com-
bined. The wide-scale connectivity of the Internet fueled this desire, and added the
desire to have components operate over networks that introduce issues of latency
and unknown reliability. In this world many systems have been tried, and many
have failed—usually with a whimper.

A great example of success is the World Wide Web. Its success has penetrated both
business operations and popular culture. It provides opportunities for people to pull
together information from many sources, with hardly any prearranged collaboration—
and at a global scale.

The Web, as we currently know it, isn’t the be-all and end-all of computing, but many
people believe it offers an important lesson on how to construct systems of networked
components. Many people take advantage of its protocol, HTTP, to connect systems.
But some people think we should go further, using HTTP not as a convenient tunnel,
but to embrace the way the Web works as a foundation for systems collaboration.

This thinking gathers together under the name of “REST.” It refers to Roy Fielding'’s
PhD thesis, which is far more often referred to than it is read. There is a growing
notion that following the principles of REST offers a fruitful path to making networked
components work, one that is built upon the success of the Web itself.

X

That vision is attractive, but there is much to be done to reach it. We have to take the
principles of REST and see how to apply them to the everyday problems of systems
integration. This is the task the authors of this book have taken on: to take REST from
an attractive vision to implemented systems. They’ve done much to teach me about
thinking in resources, how to use HTTP idioms, and the importance of hypermedia
controls. As a result, this book will give you a thorough grounding in applying the core
elements of RESTful thinking.

As we all should know, REST is not the answer to all questions. There are many situa-
tions where a REST approach is an appropriate approach, but many where it is not. As
it’s early days in using this style for integration problems, we are still feeling our way
around these boundaries. But in order to explore these boundaries properly, it’s vital
to have a proper understanding of what REST is about. Without that, you run the risk
of trying pseudo-REST and drawing the wrong conclusions. This book can help you
avoid that fate.

—Martin Fowler
August 2010

FOREWORD

Preface

THE WEB HAS REVOLUTIONIZED THE WAY WE ACCESS AND SHARE INFORMATION. In
just two decades, it has become t/e global platform for delivering and consuming services.

The pervasiveness and ubiquity of the Web stems from the way it combines architec-
tural simplicity with a small set of widely accepted technologies. The Web provides
scalability, security, and reliability for those systems that embrace its simple tenets, and
it does so using commodity tools and platforms.

Our goal in this book is twofold: to demystify the Web as an application platform and
to showcase how web architecture can be applied to common enterprise computing
problems. Throughout the chapters, we make it a point to demonstrate how services
can leverage the Web both inside and outside enterprise boundaries. Our vision is of
an information platform that is open and available to other systems, which eschews
integration in favor of composition, and yet implements valuable business behaviors: a
distributed, hypermedia-driven application platform.

You don’t have to know REST or HTTP in detail in order to understand this book. We’ll
take you from simple integration through to sophisticated business protocols, all with
detailed code examples that you can adapt for your own ends.

Should | Read This Book?

Like most of us, you're probably already building something that feeds into the Web, and
you’ve probably used tools and patterns for the Web that seem pretty useful. Then you've
tackled typical enterprise problems and wondered why it can’t be as nice as the web stuff.

xi

xii

You're seeing the benetfits of the Web all around and you start to question whether
your enterprise’s expensive middleware offers a good return on investment, or
whether it will ever scale to meet your users” demands.

You might be a developer who wants to understand the Web’s principles in more
detail, and likes to learn through code examples. You've heard terms such as URIs,
HTTP, and Atom, and you want to learn more about them, including the type of sup-
port you can get from popular programming platforms.

You may even be an enthusiast who has heard about REST and wants to know what
it is all about. You want to learn more about “hypermedia” and the REST architectural
style so that you can build resource-oriented systems and implement sophisticated
business protocols atop the Web.

This book will help.

Should | Skip This Book?

If you are looking to learn how to design websites or how to write JavaScript applica-
tions, this book will not offer you much, though there’s plenty for competent AJAX
developers to leverage from our approach to building backend services.

If you are looking to build mashups or systems for people to use directly, this book is
probably not for you. We’ve focused on machine-to-machine interactions. In fact, this
book is full of machines talking to one another through the Web.

We rather like it that way.

Resources

The book is accompanied by a website: http://restinpractice.com. There you’ll find work-
ing code samples from the book, links to other resources, errata, and community
information. We will make every effort to continuously update the site with more
information.

What Did You Think About the Book?

We are very interested in your thoughts on this book, positive or negative. You can
head to Amazon and share your thoughts by writing a review. Alternatively, O'Reilly
would be more than happy to hear your views at:

http:/fwww.oreilly.com/catalog/9780596805821/

PREFACE

http://restinpractice.com
http://www.oreilly.com/catalog/9780596805821/

Errata

While we have made every effort to keep the book error-free, we have probably
missed a few things. Errata give readers a way to let us know about typos, errors, and
other problems with the book. You can head to the book’s URI at O’Reilly in order to
let us know. We'd really appreciate it:

http:/fwww.oreilly.com/catalog/9780596805821/

Alternatively, you can reach us directly. Our contact details can be found on the book’s
website:

http://restinpractice.com

We will post corrections on both websites as soon as possible after confirming the iden-
tified issue. O'Reilly can also fix errata in future printings of the book and on Safari, so
you can help make the book even better. We’'ll credit your assistance on the website
and in any future editions too!

Conventions Used in This Book
The following font conventions are used in this book:

Italic
Indicates Internet addresses, such as domain names and URIs, and new items
where they are defined

Constant width
Indicates method, variable, and class names in programs; also, XML element and
attribute names, and HTTP idioms

Constant width bold
Indicates emphasis in program code lines

NOTE
This icon signifies a tip, suggestion, or general note.

—— WARNING
This icon indicates a warning or caution.

PREFACE

xiii

http://www.oreilly.com/catalog/9780596805821/
http://restinpractice.com

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you're reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O'Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
authors, publisher, copyright holder, and ISBN. For example: “REST in Practice by Jim
Webber, Savas Parastatidis, and Ian Robinson (O’Reilly). Copyright 2010 Jim Webber,
Savas Parastatidis, and Ian Robinson, 978-0-596-80582-1.”

If you feel your use of code examples falls outside fair use or the permission given
here, feel free to contact us at permissions@oreilly.com.

How to Contact Us

We have tested and verified the information in this book to the best of our ability,
but you may find that features have changed (or even that we have made a few mis-
takes!). Please let us know about any errors you find, as well as your suggestions for
future editions, by writing to:

O'Reilly Media, Inc.

1005 Gravenstein Highway North
Sebastopol, CA 95472

800-998-9938 (in the U.S. or Canada)
707-829-0515 (international/local)
707-829-0104 (fax)

O’Reilly has a web page for this book, where we list errata, examples, and any addi-
tional information. You can access this page at:

http://www.oreilly.com/catalog/9780596805821/

The book also has its own website at:
http://restinpractice.com

To comment or ask technical questions about this book, send email to:
questions@restinpractice.com

For more information about our books, conferences, Resource Centers, and the
O'Reilly Network, see our website at:

http://www.oreilly.com

xiv PREFACE

mailto:permissions@oreilly.com
http://www.oreilly.com/catalog/9780596805821/
http://restinpractice.com
mailto:questions@restinpractice.com
http://www.oreilly.com

Safari® Books Online

Safari Books Online is an on-demand digital library that lets you
Salafnéo!:n! easily search over 7,500 technology and creative reference books and
videos to find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library
online. Read books on your cell phone and mobile devices. Access new titles before
they are available for print, and get exclusive access to manuscripts in development
and post feedback for the authors. Copy and paste code samples, organize your
favorites, download chapters, bookmark key sections, create notes, print out pages,
and benefit from tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have
full digital access to this book and others on similar topics from O’Reilly and other
publishers, sign up for free at http://my.safaribooksonline.com.

Acknowledgments

We would like to thank all our community reviewers for their feedback and advice
over the course of this book project. They all volunteered their time to help us write
this book over several years: Solomon Duskis, Rafael de E. Ferreira, Glen Ford, Martin
Fowler, Colin Jack, Ken Kolchier, Sriram Narayan, Eric Newcomer, Barry Norton,
Chris Read, Ryan Riley, Guilherme Silveira, Halvard Skogsrud, Nigel Small, Monika
Solanki, Stefan Tilkov, Jon Tirsen, Spiros Tzavellas, Steve Vinoski, Lasse Westh-
Nielsen, and Herbjorn Wilhelmsen.

Our O’Reilly reviewers also deserve to be called out for their very useful and prompt
feedback: William Martinez Pomares and Zach Kessin.

Our great appreciation and warm thanks go to our editor, Simon St.Laurent.

Special thanks to Mark Baker, who inspired us to write this book, educated us along
the way, and never gave up on us.

This book wouldn’t have been possible without the constant love and support of our
families and friends. Special thanks go to Kath, Mary, Lottie, Tiger, and Elliot. It’s been
a long road.

Our deepest thanks to you all.

PREFACE

XV

http://my.safaribooksonline.com

CHAPTER ONE

The Web As a Platform for
Building Distributed Systems

THE WEB HAS RADICALLY TRANSFORMED THE WAY we produce and share informa-
tion. Its international ecosystem of applications and services allows us to search, aggre-
gate, combine, transform, replicate, cache, and archive the information that underpins
today’s digital society. Successful despite its chaotic growth, it is the largest, least formal
integration project ever attempted—all of this, despite having barely entered its teenage
years.

Today’s Web is in large part the human Web: human users are the direct consumers

of the services offered by the majority of today’s web applications. Given its success in
managing our digital needs at such phenomenal scale, we're now starting to ask how
we might apply the Web’s underlying architectural principles to building other kinds of
distributed systems, particularly the kinds of distributed systems typically implemented
by “enterprise application” developers.

Why is the Web such a successful application platform? What are its guiding principles,
and how should we apply them when building distributed systems? What technologies
can and should we use? Why does the Web model feel familiar, but still different from
previous platforms? Conversely, is the Web always the solution to the challenges we
face as enterprise application developers?

These are the questions we’ll answer in the rest of this book. Our goal throughout
is to describe how to build distributed systems based on the Web’s architecture. We
show how to implement systems that use the Web’s predominant application protocol,

HyperText Transfer Protocol (HTTP), and which leverage REST’s architectural tenets. We
explain the Web’s fundamental principles in simple terms and discuss their relevance in
developing robust distributed applications. And we illustrate all this with challenging
examples drawn from representative enterprise scenarios and solutions implemented
using Java and .NET.

The remainder of this chapter takes a first, high-level look at the Web’s architecture.
Here we discuss some key building blocks, touch briefly on the REpresentational State
Transfer (REST) architectural style, and explain why the Web can readily be used as a
platform for connecting services at global scale. Subsequent chapters dive deeper into
the Web’s principles and discuss the technologies available for connecting systems in a
web-friendly manner.

Architecture of the Web

Tim Berners-Lee designed and built the foundations of the World Wide Web while a
research fellow at CERN in the early 1990s. His motivation was to create an easy-to-
use, distributed, loosely coupled system for sharing documents. Rather than starting
from traditional distributed application middleware stacks, he opted for a small set
of technologies and architectural principles. His approach made it simple to imple-
ment applications and author content. At the same time, it enabled the nascent Web
to scale and evolve globally. Within a few years of the Web’s birth, academic and
research websites had emerged all over the Internet. Shortly thereafter, the busi-
ness world started establishing a web presence and extracting web-scale profits from
its use. Today the Web is a heady mix of business, research, government, social, and
individual interests.

This diverse constituency makes the Web a chaotic place—the only consistency being
the consistent variety of the interests represented there; the only unifying factor the
seemingly never-ending thread of connections that lead from gaming to commerce, to
dating to enterprise administration, as we see in Figure 1-1.

Despite the emergent chaos at global scale, the Web is remarkably simple to under-
stand and easy to use at local scale. As documented by the World Wide Web Consortium
(W3C) in its “Architecture of the World Wide Web,” the anarchic architecture of today’s
Web is the culmination of thousands of simple, small-scale interactions between agents
and resources that use the founding technologies of HTTP and the URL*

* “Architecture of the World Wide Web, Volume One,” http://www.w3.0rg/TR/webarch/.

2 CHAPTER 1: THE WEB AS A PLATFORM FOR BUILDING DISTRIBUTED SYSTEMS

vww allitebooks.cond

http://www.w3.org/TR/webarch/
http://www.allitebooks.org

physical
resources

©

o -

resources

=

gaming

pizza ordering

communicating

4

browsing

~@

local cache

[ll] URIs ‘
CL—
virtual %4_
resources
URIs
service
boundary
ey
> g’,ﬁ:) __)e—1
URIs
. URIs |
Web technologies ,
d patterns service
e ?nid izati boundary
boundary inside an organization [(:J

Figure 1-1. The Web

geo-taxi finding
using cell phane

The Web’s architecture, as portrayed in Figure 1-1, shows URIs and resources playing a
leading role, supported by web caches for scalability. Behind the scenes, service bound-
aries support isolation and independent evolution of functionality, thereby encourag-

ing loose coupling. In the enterprise, the same architectural principles and technology

can be applied.

ARCHITECTURE OF THE WEB

Traditionally we’ve used middleware to build distributed systems. Despite the amount
of research and development that has gone into such platforms, none of them has
managed to become as pervasive as the Web is today. Traditional middleware tech-
nologies have always focused on the computer science aspects of distributed systems:
components, type systems, objects, remote procedure calls, and so on.

The Web’s middleware is a set of widely deployed and commoditized servers. From the
obvious—web servers that host resources (and the data and computation that back
them)—to the hidden: proxies, caches, and content delivery networks, which manage
traffic flow. Together, these elements support the deployment of a planetary-scale network
of systems without resorting to intricate object models or complex middleware solutions.

This low-ceremony middleware environment has allowed the Web’s focus to shift to
information and document sharing using hypermedia. While hypermedia itself was
not a new idea, its application at Internet scale took a radical turn with the decision to
allow broken links. Although we’re now nonplussed (though sometimes annoyed) at
the classic “404 Page Not Found” error when we use the Web, this modest status code
set a new and radical direction for distributed computing: it explicitly acknowledged
that we can’t be in control of the whole system all the time.

Compared to classic distributed systems thinking, the Web’s seeming ambivalence to
dangling pointers is heresy. But it is precisely this shift toward a web-centric way of
building computer systems that is the focus of this book.

Thinking in Resources

Resources are the fundamental building blocks of web-based systems, to the extent
that the Web is often referred to as being “resource-oriented.” A resource is any-
thing we expose to the Web, from a document or video clip to a business process

or device. From a consumer’s point of view, a resource is anything with which that
consumer interacts while progressing toward some goal. Many real-world resources
might at first appear impossible to project onto the Web. However, their appear-
ance on the Web is a result of our abstracting out their useful information aspects and
presenting these aspects to the digital world. A flesh-and-blood or bricks-and-mortar
resource becomes a web resource by the simple act of making the information associ-
ated with it accessible on the Web. The generality of the resource concept makes for a
heterogeneous community. Almost anything can be modeled as a resource and then
made available for manipulation over the network: “Roy’s dissertation,
Star Wars,” “the invoice for the books Jane just bought,” “Paul’s poker bot,” and “the
HR process for dealing with new hires” all happily coexist as resources on the Web.

i

the movie

4 CHAPTER 1: THE WEB AS A PLATFORM FOR BUILDING DISTRIBUTED SYSTEMS

Download from Wow! eBook <www.wowebhook.com>

Resources and ldentifiers

To use a resource we need both to be able to identify it on the network and to have
some means of manipulating it. The Web provides the Uniform Resource Identifier, or
URI, for just these purposes. A URI uniquely identifies a web resource, and at the same
time makes it addressable, or capable of being manipulated using an application pro-
tocol such as HTTP (which is the predominant protocol on the Web). A resource’s URI
distinguishes it from any other resource, and it’s through its URI that interactions with
that resource take place.

The relationship between URIs and resources is many-to-one. A URI identifies only
one resource, but a resource can have more than one URL That is, a resource can be
identified in more than one way, much as humans can have multiple email addresses
or telephone numbers. This fits well with our frequent need to identify real-world
resources in more than one way.

There’s no limit on the number of URIs that can refer to a resource, and it is in fact quite
common for a resource to be identified by numerous URIs, as shown in Figure 1-2. A
resource’s URIs may provide different information about the location of the resource,

or the protocol that can be used to manipulate it. For example, the Google home page
(which is, of course, a resource) can be accessed via both http://www.google.com and http://

google.com URISs.

i | representation
http://restbucks.com/order/1234 <+ S ——
http://restbucks.com/order/1234.jsp representation

fesomcs RUIN: restbucks:order:1234 —_—
representation
. e 8
((ftp://restbucks.com/order/1234.txt)« |

service boundary

Figure 1-2. Multiple URIs for a resource

THINKING IN RESOURCES

http://www.google.com
http://google.com
http://google.com

NOTE

Although several URIs can identify the same resource, the Web doesn't provide any
way to compute whether two different URIs actually refer to the same resource.

As developers, we should never assume that two URIs refer to different resources
based merely on their syntactic differences. Where such comparisons are impor-
tant, we should draw on Semantic Web technologies, which offer vocabularies for
declaring resource identity sameness. We will discuss some useful techniques from
semantic computing later in the book.

A URI takes the form <scheme>:<scheme-specific-structure>. The scheme defines how the
rest of the identifier is to be interpreted. For example, the /ttp part of a URI such as
http:/lexample.org/reports/book.tar tells us that the rest of the URI must be interpreted
according to the HTTP scheme. Under this scheme, the URI identifies a resource at

a machine that is identified by the hostname example.org using DNS lookup. It’s the
responsibility of the machine “listening” at example.org to map the remainder of the
URYI, reports/book.tar, to the actual resource. Any authorized software agent that under-
stands the HTTP scheme can interact with this resource by following the rules set out
by the HTTP specification (RFC 2616).

NOTE

Although we're mostly familiar with HTTP URIs from browsing the Web, other
forms are supported too. For example, the well-known FTP scheme* suggests

that a URI such as ftp://example.org/reports/book.txt should be interpreted in

the following way: example.org is the Domain Name System (DNS) name of the
computer that knows File Transfer Protocol (FTP), reports is interpreted as the
argument to the CWD (Change Working Directory) command, and book.txt is a file-
name that can be manipulated through FTP commands, such as RETR for retrieving
the identified file from the FTP server. Similarly, the mailto URI scheme is used to
identify email addresses: mailto:enquiries@restbucks.com.

The mechanism we can use to interact with a resource cannot always be inferred
as easily as the HTTP case suggests; the URN scheme, for example, is not associ-
ated with a particular interaction protocol.

In addition to URI, several other terms are used to refer to web resource identifiers.
Table 1-1 presents a few of the more common terms, including URN and URL, which
are specific forms of URIs, and IRI, which supports international character sets.

* RFC 1738, Uniform Resource Locators (URLs): http://www.ietf.org/rfc/rfcl 738.txt.

6 CHAPTER 1: THE WEB AS A PLATFORM FOR BUILDING DISTRIBUTED SYSTEMS

mailto:enquiries@restbucks.com
http://example.org/reports/book.tar
ftp://example.org/reports/book.txt
http://www.ietf.org/rfc/rfc1738.txt

Table 1-1. Terms used on the Web to refer to identifiers

Term

Comments

URI (Uniform Resource Identifier)

This is often incorrectly referred to as a “Univer-
sal” or “Unique” Resource Identifier; “Uniform” is
the correct expansion.

IRI (International Resource Identifier)

This is an update to the definition of UR/ to allow
the use of international characters.

URN (Uniform Resource Name)

This is a URI with “urn” as the scheme,

used to convey unique names in a particular
“namespace.” The namespace is defined as part
of the URN's structure. For example, a book'’s
ISBN can be captured as a unique name:
urn:isbn:0131401602.

URL (Uniform Resource Locator)

This is a URI used to convey information about
the way in which one interacts with the identi-
fied resource. For example, http://google.com
identifies a resource on the Web with which
communication is possible through HTTP. This
term is now obsolete, since not all URIs need to
convey interaction-protocol-specific information.
However, the term is part of the Web's history
and is still widely in use.

Address

Many think of resources as having “addresses”
on the Web and, as a result, refer to their identi-
fiers as such.

URI Versus URL Versus URN

URLs and URNSs are special forms of URIs. A URI that identifies the mechanism by which a
resource may be accessed is usually referred to as a URL. HTTP URIs are examples of URLs.

If the URI has urn as its scheme and adheres to the requirements of RFC 2141 and RFC
2611, itis a URN. The goal of URNSs is to provide globally unique names for resources.

* http://www.ietf.org/rfc/rfc2141.txt and http://www.ietf.org/rfc/rfc2611.txt

Resource Representations

The Web is so pervasive that the HTTP URI scheme is today a common synonym for
both identity and address. In the web-based solutions presented in this book, we'll use
HTTP URIs exclusively to identify resources, and we’ll often refer to these URIs using

the shorthand term address.

Resources must have at least one identifier to be addressable on the Web, and
each identifier is associated with one or more representations. A representation is

THINKING IN RESOURCES

http://google.com
http://www.ietf.org/rfc/rfc2141.txt
http://www.ietf.org/rfc/rfc2611.txt

a transformation or a view of a resource’s state at an instant in time. This view is
encoded in one or more transferable formats, such as XHTML, Atom, XML, JSON,
plain text, comma-separated values, MP3, or JPEG.

For real-world resources, such as goods in a warehouse, we can distinguish between the
actual object and the logical “information” resource encapsulated by an application or
service. It’s the information resource that is made available to interested parties through
projecting its representations onto the Web. By distinguishing between the “real” and
the “information” resource, we recognize that objects in the real world can have proper-
ties that are not captured in any of their representations. In this book, we’re primarily
interested in representations of information resources, and where we talk of a resource
or “underlying resource,” it’s the information resource to which we’re referring.

Access to a resource is always mediated by way of its representations. That is, web com-
ponents exchange representations; they never access the underlying resource directly—
the Web does not support pointers! URIs relate, connect, and associate representations
with their resources on the Web. This separation between a resource and its representa-
tions promotes loose coupling between backend systems and consuming applications. It
also helps with scalability, since a representation can be cached and replicated.

NOTE

The terms resource representation and resource are often used interchangeably. It
is important to understand, though, that there is a difference, and that there exists a
one-to-many relationship between a resource and its representations.

There are other reasons we wouldn’t want to directly expose the state of a resource.
For example, we may want to serve different views of a resource’s state depending

on which user or application interacts with it, or we may want to consider different
quality-of-service characteristics for individual consumers. Perhaps a legacy application
written for a mainframe requires access to invoices in plain text, while a more modern
application can cope with an XML or JSON representation of the same information.
Each representation is a view onto the same underlying resource, with transfer for-
mats negotiated at runtime through the Web’s content negotiation mechanism.

The Web doesn’t prescribe any particular structure or format for resource representa-
tions; representations can just as well take the form of a photograph or a video as they
can a text file or an XML or JSON document. Given the range of options for resource
representations, it might seem that the Web is far too chaotic a choice for integrat-

ing computer systems, which traditionally prefer fewer, more structured formats.
However, by carefully choosing a set of appropriate representation formats, we can
constrain the Web’s chaos so that it supports computer-to-computer interactions.

Resource representation formats serve the needs of service consumers. This con-
sumer friendliness, however, does not extend to allowing consumers to control how

CHAPTER 1: THE WEB AS A PLATFORM FOR BUILDING DISTRIBUTED SYSTEMS

resources are identified, evolved, modified, and managed. Instead, services control
their resources and how their states are represented to the outside world. This encap-
sulation is one of the key aspects of the Web’s loose coupling.

The success of the Web is linked with the proliferation and wide acceptance of com-
mon representation formats. This ecosystem of formats (which includes HTML for
structured documents, PNG and JPEG for images, MPEG for videos, and XML and
JSON for data), combined with the large installed base of software capable of pro-
cessing them, has been a catalyst in the Web’s success. After all, if your web browser
couldn’t decode JPEG images or HTML documents, the human Web would have
been stunted from the start, despite the benetits of a widespread transfer protocol
such as HTTP.

To illustrate the importance of representation formats, in Figure 1-3 we’ve modeled
the menu of a new coffee store called Restbucks (which will provide the domain for
examples and explanations throughout this book). We have associated this menu with
an HTTP URL The publication of the URI surfaces the resource to the Web, allowing
software agents to access the resource’s representation(s).

g <xhtml>
= | <body>
<p>Menu</p>
http://restbucks.com/menu
“ Menu Latte: $5
{ Latte: $5 Espresso: $4
i Espresso: $4 ‘ Cookie:$1
: Cookie: §1
E i </body>
,0_’5 Menu

Latte: $5

Espresso: $4

Cookie: $1

Figure 1-8. Example of a resource and its representations

In this example, we have decided to make only XHTML and text-only representa-
tions of the resource available. Many more representations of the same announcement
could be served using formats such as PDF, JPEG, MPEG video, and so on, but we have
made a pragmatic decision to limit our formats to those that are both human- and
machine-friendly.

Typically, resource representations such as those in Figure 1-3 are meant for human
consumption via a web browser. Browsers are the most common computer agents
on the Web today. They understand protocols such as HTTP and FTP, and they know
how to render formats such as (X)HTML and JPEG for human consumption. Yet, as

THINKING IN RESOURCES

10

we move toward an era of computer systems that span the Web, there is no reason
to think of the web browser as the only important software agent, or to think that
humans will be the only active consumers of those resources. Take Figure 1-4 as an
example. An order resource is exposed on the Web through a URI. Another software
agent consumes the XML representation of the order as part of a business-to-business
process. Computers interact with one another over the Web, using HTTP, URIs, and
representation formats to drive the process forward just as readily as humans.

= | <orderid="10">
restbucks.com Scusomets customer
1 http://restbucks.com/customer/150
[http://restbucks. comfo:derho) </customer>
! Order <coffee>latte</order> ‘
L1010 <payment>5$3.50</payment>
| Customer ID:150 <date>10/02/2009</date>
| Coffee: Late </order>
i Payment: $3.50 i
i Date: 10 Feh 2009

Figure 1-4. Computer-to-computer communication using the Web

Representation Formats and URIs

There is a misconception that different resource representations should each have
their own URI—a notion that has been popularized by the Rails framework. With this
approach, consumers of a resource terminate URIs with .xm! or json to indicate a pre-
ferred format, requesting http://restbucks.com/order.xml or http://example.org/order.json as
they see fit. While such URIs convey intent explicitly, the Web has a means of negoti-
ating representation formats that is a little more sophisticated.

NOTE

URIs should be opaque to consumers. Only the issuer of the URI knows how to
interpret and map it to a resource. Using extensions such as .xml, .html, or json is
a historical convention that stems from the time when web servers simply mapped
URIs directly to files.

In the example in Figure 1-3, we hinted at the availability of two representation for-
mats: XHTML and plain text. But we didn’t specify two separate URIs for the repre-

sentations. This is because there is a one-to-many association between a URI and its
possible resource representations, as Figure 1-5 illustrates.

CHAPTER 1: THE WEB AS A PLATFORM FOR BUILDING DISTRIBUTED SYSTEMS

http://example.org/order.json
http://restbucks.com/order.xml

menu
resource

[http://restbucks.com/menu TEXT representation

PDF representation

il

service boundary

Figure 1-5. Multiple resource representations addressed by a single URI

Using content negotiation, consumers can negotiate for specific representation formats
from a service. They do so by populating the HTTP Accept request header with a list of
media types they’re prepared to process. However, it is ultimately up to the owner of a
resource to decide what constitutes a good representation of that resource in the con-
text of the current interaction, and hence which format should be returned.

The Art of Communication

It’s time to bring some threads together to see how resources, representation for-
mats, and URIs help us build systems. On the Web, resources provide the subjects and
objects with which we want to interact, but how do we act on them? The answer is
that we need verbs, and on the Web these verbs are provided by HTTP methods.*

The term uniform interface is used to describe how a (small) number of verbs with well-
defined and widely accepted semantics are sufficient to meet the requirements of most
distributed applications. A collection of verbs is used for communication between systems.

NOTE

In theory, HTTP is just one of the many interaction protocols that can be used to
support a web of resources and actions, but given its pervasiveness we will assume
that HTTP is the protocol of the Web.

In contemporary distributed systems thinking, it’s a popular idea that the set of verbs sup-
ported by HTTP—GET, POST, PUT, DELETE, OPTIONS, HEAD, TRACE, CONNECT, and PATCH—forms a
sufficiently general-purpose protocol to support a wide range of solutions.

NOTE

In reality, these verbs are used with differing frequencies on the Web, suggesting
that an even smaller subset is usually enough to satisfy the requirements of many
distributed applications.

* Commonly, the term verb is used to describe HTTP actions, but in the HTTP specification the term
method is used instead. We'll stick with verb in this book because method suggests object-oriented
thinking, whereas we tend to think in terms of resources.

THINKING IN RESOURCES

11

12

In addition to verbs, HTTP also defines a collection of response codes, such as 200 0K,
201 Created, and 404 Not Found, that coordinate the interactions instigated by the use
of the verbs. Taken together, verbs and status codes provide a general framework for
operating on resources over the network.

Resources, identifiers, and actions are all we need to interact with resources hosted on
the Web. For example, Figure 1-6 shows how the XML representation of an order might
be requested and then delivered using HTTP, with the overall orchestration of the pro-
cess governed by HTTP response codes. We'll see much more of all this in later chapters.

agent (example.org) agent

[http://example.org/Resourcel] l

' T

resource

-

Figure 1-6. Using HTTP to “GET" the representation of a resource

From the Web Architecture to the
REST Architectural Style

Intrigued by the Web, researchers studied its rapid growth and sought to understand
the reasons for its success. In that spirit, the Web’s architectural underpinnings were
investigated in a seminal work that supports much of our thinking around contempo-
rary web-based systems.

As part of his doctoral work, Roy Fielding generalized the Web’s architectural principles
and presented them as a framework of constraints, or an architectural style. Through this
framework, Fielding described how distributed information systems such as the Web

are built and operated. He described the interplay between resources, and the role of
unique identifiers in such systems. He also talked about using a limited set of operations
with uniform semantics to build a ubiquitous infrastructure that can support any type of
application.* Fielding referred to this architectural style as REpresentational State Transfer,
or REST. REST describes the Web as a distributed hypermedia application whose linked
resources communicate by exchanging representations of resource state.

* http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

CHAPTER 1: THE WEB AS A PLATFORM FOR BUILDING DISTRIBUTED SYSTEMS

vww allitebooks.cond

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.allitebooks.org

Hypermedia

The description of the Web, as captured in W3C’s “Architecture of the World Wide Web”*
and other IETF RFC' documents, was heavily influenced by Fielding’s work. The archi-
tectural abstractions and constraints he established led to the introduction of hypermedia
as the engine of application state. The latter has given us a new perspective on how the Web
can be used for tasks other than information storage and retrieval. His work on REST
demonstrated that the Web is an application platform, with the REST architectural style
providing guiding principles for building distributed applications that scale well, exhibit
loose coupling, and compose functionality across service boundaries.

The idea is simple, and yet very powerful. A distributed application makes forward prog-
ress by transitioning from one state to another, just like a state machine. The difference
from traditional state machines, however, is that the possible states and the transitions
between them are not known in advance. Instead, as the application reaches a new
state, the next possible transitions are discovered. It’s like a treasure hunt.

NOTE

We're used to this notion on the human Web. In a typical e-commerce solution such
as Amazon.com, the server generates web pages with links on them that corral the
user through the process of selecting goods, purchasing, and arranging delivery.

This is hypermedia at work, but it doesn't have to be restricted to humans; comput-
ers are just as good at following protocols defined by state machines.

In a hypermedia system, application states are communicated through representations
of uniquely identifiable resources. The identifiers of the states to which the application
can transition are embedded in the representation of the current state in the form of
links. Figure 1-7 illustrates such a hypermedia state machine.

* http://www.w3.0rg/TR/webarch/
1 IETF: Internet Engineering Task Force; RFC: Request for Comments. See http://www.ietf.org.

FROM THE WEB ARCHITECTURE TO THE REST ARCHITECTURAL STYLE

13

http://www.w3.org/TR/webarch/
http://www.ietf.org

14

services and resource URIs

application starts by application chooses to
transitioning to the transition to the state
state identified by identified by (1)

; active state does not
state representation contain any links for
contains links to states state representation making forward
(4), (3),and (5) application chooses to contains links to states progress

transition to the state (1) and (5)

identified by URI (3)

Figure 1-7. Example of hypermedia as the engine for application state in action

This, in simple terms, is what the famous hypermedia as the engine of application state or
HATEOAS constraint is all about. We see it in action every day on the Web, when we
follow the links to other pages within our browsers. In this book, we show how the
same principles can be used to enable computer-to-computer interactions.

REST and the Rest of This Book

While REST captures the fundamental principles that underlie the Web, there are still
occasions where practice sidesteps theoretical guidance. Even so, the term REST has
become so popular that it is almost impossible to disassociate it from any approach
that uses HTTP.* It’s no surprise that the term REST is treated as a buzzword these days
rather than as an accurate description of the Web’s blueprints.

The pervasiveness of HTTP sets it aside as being special among all the Internet protocols.
The Web has become a universal “on ramp,” providing near-ubiquitous connectivity

for billions of software agents across the planet. Correspondingly, the focus of this book
is on the Web as it is used in practice—as a distributed application platform rather than
as a single large hypermedia system. Although we are highly appreciative of Fielding’s
research, and of much subsequent work in understanding web-scale systems, we’ll use
the term web throughout this book to depict a warts-'n-all view, reserving the REST
terminology to describe solutions that embrace the REST architectural style. We do this

* REC 2616: http://www.w3.org/Protocols/rfc2616/rfc2616.html.

CHAPTER 1: THE WEB AS A PLATFORM FOR BUILDING DISTRIBUTED SYSTEMS

http://www.w3.org/Protocols/rfc2616/rfc2616.html

because many of today’s distributed applications on the Web do not follow the REST
architectural tenets, even though many still refer to these applications as “RESTful.”

The Web As an Application Platform

Though the Web began as a publishing platform, it is now emerging as a means of con-
necting distributed applications. The Web as a platform is the result of its architectural

simplicity, the use of a widely implemented and agreed-upon protocol (HTTP), and the
pervasiveness of common representation formats. The Web is no longer just a success-

ful large-scale information system, but a platform for an ecosystem of services.

But how can resources, identifiers, document formats, and a protocol make such an
impression? Why, even after the dot-com bubble, are we still interested in it? What do
enterprises—with their innate tendency toward safe middleware choices from estab-
lished vendors—see in it? What is new that changes the way we deliver functionality
and integrate systems inside and outside the enterprise?

As developers, we build solutions on top of platforms that solve or help with hard
distributed computing problems, leaving us free to work on delivering valuable busi-
ness functionality. Hopefully, this book will give you the information you need in
order to make an informed decision on whether the Web fits your problem domain,
and whether it will help or hinder delivering your solution. We happen to believe that
the Web is a sensible solution for the majority of the distributed computing problems
encountered in business computing, and we hope to convince you of this view in the
following chapters. But for starters, here are a number of reasons we're such web fans.

Technology Support

An application platform isn’t of much use unless it’s supported by software libraries and
development toolkits. Today, practically all operating systems and development platforms
provide some kind of support for web technologies (e.g., .NET, Java, Perl, PHP, Python,
and Ruby). Furthermore, the capabilities to process HTTP messages, deal with URIs, and
handle XML or JSON payloads are all widely implemented in web frameworks such

as Ruby on Rails, Java servlets, PHP Symfony, and ASPNET MVC. Web servers such as
Apache and Internet Information Server provide runtime hosting for services.

Scalability and Performance

Underpinned by HTTP, the web architecture supports a global deployment of net-
worked applications. But the massive volume of blogs, mashups, and news feeds
wouldn’t have been possible if it wasn’t for the way in which the Web and HTTP con-
strain solutions to a handful of scalable patterns and practices.

Scalability and performance are quite different concerns. Naively, it would seem that
if latency and bandwidth are critical success factors for an application, using HTTP
is not a good option. We know that there are messaging protocols with far better

THE WEB AS AN APPLICATION PLATFORM

15

16

performance characteristics than HTTP’s text-based, synchronous, request-response
behavior. Yet this is an inequitable comparison, since HTTP is not just another messag-
ing protocol; it’s a protocol that implements some very specific application semantics.
The HTTP verbs (and GET in particular) support caching, which translates into reduced
latency, enabling massive horizontal scaling for large aggregate throughput of work.

NOTE

As developers ourselves, we understand how we can believe that asynchronous
message-centric solutions are the most scalable and highest-performing options.
However, existing high-performance and highly available services on the Web are
proof that a synchronous, text-based request-response protocol can provide good
performance and massive scalability when used correctly.

The Web combines a widely shared vision for how to use HTTP efficiently and
how to federate load through a network. It may sound incredible, but through the
remainder of this book, we hope to demonstrate this paradox beyond doubt.

Loose Coupling

The Web is loosely coupled, and correspondingly scalable. The Web does not try to
incorporate in its architecture and technology stack any of the traditional quality-
of-service guarantees, such as data consistency, transactionality, referential integrity,
statefulness, and so on. This deliberate lack of guarantees means that browsers some-
times try to retrieve nonexistent pages, mashups can’t always access information, and
business applications can’t always make immediate progress. Such failures are part of
our everyday lives, and the Web is no different. Just like us, the Web needs to know
how to cope with unintended outcomes or outright failures.

A software agent may be given the URI of a resource on the Web, or it might retrieve
it from the list of hypermedia links inside an HTML document, or find it after a business-
to-business XML message interaction. But a request to retrieve the representation of
that resource is never guaranteed to be successful. Unlike other contemporary distrib-
uted systems architectures, the Web’s blueprints do not provide any explicit mecha-
nisms to support information integrity. For example, if a service on the Web decides
that a URI is no longer going to be associated with a particular resource, there is no
way to notify all those consumers that depend on the old URI-resource association.

This is an unusual stance, but it does not mean that the Web is neglectful—far from it.
HTTP defines response codes that can be used by service providers to indicate what has
happened. To communicate that “the resource is now associated with a new URL"” a
service can use the status code 301 Moved Permanently or 303 See Other. The Web always
tries to help move us toward a successful conclusion, but without introducing tight
coupling.

CHAPTER 1: THE WEB AS A PLATFORM FOR BUILDING DISTRIBUTED SYSTEMS

Business Processes

Although business processes can be modeled and exposed through web resources,
HTTP does not provide direct support for such processes. There is a plethora of work
on vocabularies to capture business processes (e.g., BPEL,* WS-Choreographyt), but
none of them has really embraced the Web’s architectural principles. Yet the Web—and
hypermedia specifically—provides a great platform for modeling business-to-business
interactions.

Instead of reaching for extensive XML dialects to construct choreographies, the Web
allows us to model state machines using HTTP and hypermedia-friendly formats such
as XHTML and Atom. Once we understand that the states of a process can be modeled
as resources, it’s simply a matter of describing the transitions between those resources
and allowing clients to choose among them at runtime.

This isn’t exactly new thinking, since HTML does precisely this for the human-readable
Web through the tag. Although implementing hypermedia-based solu-
tions for computer-to-computer systems is a new step for most developers, we’ll show
you how to embrace this model in your systems to support loosely coupled business
processes (i.e., behavior, not just data) over the Web.

Consistency and Uniformity

To the Web, one representation looks very much like another. The Web doesn’t care
if a document is encoded as HTML and carries weather information for on-screen
human consumption, or as an XML document conveying the same weather data to
another application for further processing. Irrespective of the format, they’re all just
resource representations.

The principle of uniformity and least surprise is a fundamental aspect of the Web. We see
this in the way the number of permissible operations is constrained to a small set, the
members of which have well-understood semantics. By embracing these constraints, the
web community has developed myriad creative ways to build applications and infra-
structure that support information exchange and application delivery over the Web.

Caches and proxy servers work precisely because of the widely understood caching
semantics of some of the HTTP verbs—in particular, GET. The Web’s underlying infra-
structure enables reuse of software tools and development libraries to provide an eco-
system of middleware services, such as caches, that support performance and scaling.
With plumbing that understands the application model baked right into the network,
the Web allows innovation to flourish at the edges, with the heavy lifting being carried
out in the cloud.

* http://docs.oasis-open.org/wsbpel/2.0/0S/wsbpel-v2.0-0S.html
+ http://www.w3.0rg/TR/2004/WD-ws-cdl-10-20041217/

THE WEB AS AN APPLICATION PLATFORM

17

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.w3.org/TR/2004/WD-ws-cdl-10-20041217/

18

Simplicity, Architectural Pervasiveness, and Reach

This focus on resources, identifiers, HTTP, and formats as the building blocks of the
world’s largest distributed information system might sound strange to those of us
who are used to building distributed applications around remote method invoca-
tions, message-oriented middleware platforms, interface description languages, and
shared type systems. We have been told that distributed application development is
difficult and requires specialist software and skills. And yet web proponents constantly
talk about simpler approaches.

Traditionally, distributed systems development has focused on exposing custom behav-
ior in the form of application-specific interfaces and interaction protocols. Conversely,
the Web focuses on a few well-known network actions (those now-familiar HTTP
verbs) and the application-specific interpretation of resource representations. URIs,
HTTP, and common representation formats give us reach—straightforward connectiv-
ity and ubiquitous support from mobile phones and embedded devices to entire server
farms, all sharing a common application infrastructure.

Web Friendliness and the Richardson Maturity Model

As with any other technology, the Web will not automatically solve a business’s appli-
cation and integration problems. But good design practices and adoption of good, well-
tested, and widely deployed patterns will take us a long way in our journey to build
great web services.

You'll often hear the term web friendliness used to characterize good application of web
technologies. For example, a service would be considered “web-friendly” if it correctly
implemented the semantics of HTTP GET when exposing resources through URIs. Since
GET doesn’t make any service-side state changes that a consumer can be held account-
able for, representations generated as responses to GET may be cached to increase per-
formance and decrease latency.

Leonard Richardson proposed a classification for services on the Web that we’ll use in
this book to quantify discussions on service maturity.* Leonard’s model promotes three
levels of service maturity based on a service’s support for URIs, HTTP, and hypermedia
(and a fourth level where no support is present). We believe this taxonomy is impor-
tant because it allows us to ascribe general architectural patterns to services in a man-
ner that is easily understood by service implementers.

The diagram in Figure 1-8 shows the three core technologies with which Richardson
evaluates service maturity. Each layer builds on the concepts and technologies of the

* Richardson presented this taxonomy during his talk “Justice Will Take Us Millions Of Intricate
Moves” at QCon San Francisco 2008; see http://www.crummy.com/writing/speaking/2008-QCon/.

CHAPTER 1: THE WEB AS A PLATFORM FOR BUILDING DISTRIBUTED SYSTEMS

http://www.crummy.com/writing/speaking/2008-QCon/

layers below. Generally speaking, the higher up the stack an application sits, and the
more it employs instances of the technology in each layer, the more mature it is.

Hypermedia

Figure 1-8. The levels of maturity according to Richardson’s model

Level Zero Services

The most basic level of service maturity is characterized by those services that have a sin-
gle URL, and which use a single HTTP method (typically POST). For example, most Web
Services (WS-*)-based services use a single URI to identify an endpoint, and HTTP POST
to transfer SOAP-based payloads, effectively ignoring the rest of the HTTP verbs.*

NOTE
We can do wonderful, sophisticated things with WS-*, and it is not our intention to
imply that its level zero status is a criticism. We merely observe that WS-* services
do not use many web features to help achieve their goals.

XML-RPC and Plain Old XML (POX) employ similar methods: HTTP POST requests with
XML payloads transmitted to a single URI endpoint, with replies delivered in XML as
part of the HTTP response. We will examine the details of these patterns, and show
where they can be effective, in Chapter 3.

Level One Services

The next level of service maturity employs many URIs but only a single HTTP verb. The
key dividing feature between these kinds of rudimentary services and level zero services
is that level one services expose numerous logical resources, while level zero services tun-
nel all interactions through a single (large, complex) resource. In level one services,

* The suite of SOAP-based specifications and technologies, such as WSDL, WS-Transfer, WS-
MetadataExchange, and so forth. Refer to http://www.w3.0rg/2002/ws/ as a starting point. We’ll
discuss Web Services and their relationship to the Web in Chapter 12.

1 The report of the “Web of Services” workshop is a great source of information on this topic: http://
www.w3.0rg/2006/10/wos-ec-cfp.html.

WEB FRIENDLINESS AND THE RICHARDSON MATURITY MODEL

19

http://www.w3.org/2002/ws/
http://www.w3.org/2006/10/wos-ec-cfp.html
http://www.w3.org/2006/10/wos-ec-cfp.html

20

however, operations are tunneled by inserting operation names and parameters into a
UR], and then transmitting that URI to a remote service, typically via HTTP GET.

NOTE

Richardson claims that most services that describe themselves as “RESTful” today
are in reality often level one services. Level one services can be useful, even
though they don't strictly adhere to RESTful constraints, and so it's possible to acci-
dentally destroy data by using a verb (GET) that should not have such side effects.

Level Two Services

Level two services host numerous URI-addressable resources. Such services support
several of the HTTP verbs on each exposed resource. Included in this level are Create
Read Update Delete (CRUD) services, which we cover in Chapter 4, where the state
of resources, typically representing business entities, can be manipulated over the net-
work. A prominent example of such a service is Amazon’s S3 storage system.

NOTE

Importantly, level two services use HTTP verbs and status codes to coordinate
interactions. This suggests that they make use of the Web for robustness.

Level Three Services

The most web-aware level of service supports the notion of hypermedia as the engine
of application state. That is, representations contain URI links to other resources that
might be of interest to consumers. The service leads consumers through a trail of
resources, causing application state transitions as a result.

NOTE

The phrase hypermedia as the engine of application state comes from Fielding’s
work on the REST architectural style. In this book, we'll tend to use the term hyper-
media constraint instead because it's shorter and it conveys that using hypermedia to
manage application state is a beneficial aspect of large-scale computing systems.

GET on Board

Can the same principles that drive the Web today be used to connect systems? Can we
follow the same principles driving the human Web for computer-to-computer sce-
narios? In the remainder of this book, we will try to show why it makes sense to do
exactly that, but first we’ll need to introduce our business domain: a simple coffee
shop called Restbucks.

CHAPTER 1: THE WEB AS A PLATFORM FOR BUILDING DISTRIBUTED SYSTEMS

CHAPTER TWO

Introducing Restbucks:
How to GET a Coffee,
Web Style

WHILE DEVELOPING THIS BOOK, we wondered how we would describe web-based
distributed systems in an accessible scenario. We weren't really keen on the idea of yet
another e-commerce or trading application. We thought it would have been too bor-
ing. We certainly wouldn’t want to read a book like that, so why write one?

Instead, we chose a modest scenario that doesn’t try to steal the focus from the technical
discussion or try to become the star of the book. We didn’t want to engage in long expla-
nations about complex problem domains. So, in that spirit, this is the only chapter where
we’'ll discuss our domain in depth. The other chapters will deal with technical concepts.

The inspiration for our problem domain came from Gregor Hohpe’s brilliant observation
on how a Starbucks coffee shop works. In his popular blog entry, Gregor talks about syn-
chronous and asynchronous messaging, transactions, and scaling the message-processing
pipeline in an everyday situation.*

We liked the approach very much, and as believers that “imitation is the sincerest form
of flattery,” we adopted Gregor’s scenario at the heart of this book. We freely admit
that our need for good coffee while writing also encouraged us to focus on our own
little coffee megastore: Restbucks.

* http://www.enterpriseintegrationpatterns.com/ramblings/18_starbucks.html

21

http://www.enterpriseintegrationpatterns.com/ramblings/18_starbucks.html

Restbucks: A Little Coffee Shop with Global Ambitions

Throughout this book, we’ll frame our problems and web-based solutions in terms of a
coffee shop called Restbucks, which grows from modest beginnings to become a global
enterprise. As Restbucks grows, so do its needs for better organization and more effi-
cient use of resources for operating at larger scale. We’ll show how Restbucks opera-
tions can be implemented with web technologies and patterns to support all stages of
the company’s growth.

While nothing can replace the actual experience of waiting in line, ordering, and then
tasting the coffee, our intention is to use our coffee shop to showcase common prob-
lems and demonstrate how web technologies and patterns can help solve them, within
both Restbucks and systems development in general. The Restbucks analogy does not
describe every aspect of the coffee shop business; we chose to highlight only those
problems that help support the technical discussion.

Actors and Conversations

The Restbucks service and the resources that it exposes form the core of our discus-
sion. Restbucks has actors such as customers, cashiers, baristas, managers, and suppli-
ers who must interact to keep the coffee flowing.

In all of the examples in this book, computers replace human-to-human interactions.
Each actor is a program that interacts through the Web to drive business processes hosted
by Restbucks services. Even so, our business goals remain: we want to serve good coffee,
take payments, keep the supply chain moving, and ultimately keep the business alive.

Interactions occur through HTTP using formats that are commonly found on the Web.
We chose to use XML since it’s widely supported and it’s relatively easy for humans to
parse, as we can see in Figure 2-1. Of course, XML isn’t our only option for integra-
tion; others exist, such as plain text, HTML forms, and JSON. As our problem domain
becomes more sophisticated in later chapters, we’ll evolve our formats to meet the
new requirements.

<order>
<coffee/>
</order)

<pay>2.00</pay>
</invoice)

Figure 2-1. XML-based exchange between a customer and a waiter

22 CHAPTER 2: INTRODUCING RESTBUCKS: HOW TO GET A COFFEE, WEB STYLE

vww allitebooks.cond

http://www.allitebooks.org

As in real life, things won't always go according to plan in Restbucks. Coffee machines
may break, demand may peak, or the shop may have supply chain difficulties. Given the
importance of scaling, fault reporting, and error handling in integration scenarios, we
will identify relevant web technologies and patterns that we can use to cope with such
problems.

Boundaries

In Restbucks, we draw boundaries around the actors involved in the system to encap-
sulate implementation details and emphasize the interactions between systems. When
we order a coffee, we don’t usually care about the mechanics of the supply chain or
the details of the shop’s internal coffee-making processes. Composition of functionality
and the introduction of fagades with which we can interact are common practices in
system design, and web-based systems are no different in that respect. For example, in
Figure 2-2 the customer doesn’t need to know about the waiter—cashier and cashier—
barista interactions when he orders a cup of coffee from the waiter.

cashier

barista

chef

Figure 2-2. Boundaries help decompose groups of interactions

The Web’s principles, technologies, and patterns can be used to model and implement
business processes whether they are exposed across the boundaries of the Restbucks ser-
vice or used for internal functionality. That is, the Web pervades Restbucks’ infrastructure,
providing connectivity to both external partners and customers and internal systems!

The Menu

Restbucks prides itself on the variety of products it serves and allows customers to
customize their coffee with several options. Table 2-1 shows some of the products and

RESTBUCKS: A LITTLE COFFEE SHOP WITH GLOBAL AMBITIONS

23

options offered. Throughout the book, we’ll see how these options manifest them-
selves in service interactions and the design decisions regarding their representation.

Table 2-1. Sample catalog of products offered by Restbucks

Product name

Customization option

Latte
Cappuccino
Espresso
Tea

Milk: skim, semi, whole
Size: small, medium, large

Shots: single, double, triple

Hot chocolate

Milk: skim, semi, whole
Size: small, medium, large
Whipped cream: yes, no

Cookie

Kind: Chocolate chip, ginger

All

Consume location: take away, in shop

Sample Interactions

Let’s set the scene for the remainder of the book by examining some of the typical

interactions between the main actors. Subsequent chapters build on these scenarios,

expand them further, and introduce new ones.

Customer-Barista

Restbucks takes its first steps as a small, neighborhood coffee shop. A barista is respon-

sible for everything: taking orders, preparing the coffee, receiving payment, and giving

receipts. Figure 2-3 shows the interaction between a customer and a barista.

coffee, latte, large,
t0-go, semi, double shot

G

barista

Figure 2-3. A simple interaction between a customer and a barista

24 CHAPTER 2: INTRODUCING RESTBUCKS: HOW TO GET A COFFEE, WEB STYLE

If we want to model the interactions of Figure 2-3 on the Web, we have to consider
the representation of the order (its format), the communication mechanism (HTTP),
and the resources themselves (addressed by URIs). However, we're not immune to
classic problems in distributed systems. For example, we still have to address the fol-
lowing issues:

Notification
We need mechanisms for sending notification. For example, we need to be able to
signal that a coffee is ready.

Handling communication failures
We need a solution for handling failures that occur during the flow of an interaction,
including timeouts.

Transactions
We have to consider the implementation of transactions. For example, we need to
consider whether we will optimistically accept orders even though we may not be
able to fulfill a small number of them in exception cases (such as running out of
coffee beans).

Scalability
We need to consider how to cope with large volumes of customers or repeated
requests.

At the outset, Restbucks employs only a single barista. As a result, every customer
has to wait in line, as shown in Figure 2-4. This approach doesn’t scale well for a busy
shop, nor does it scale for web-based systems where we often need to scale individual
services or components independently to manage load.

barista

Figure 2-4. Customers will have to wait

RESTBUCKS: A LITTLE COFFEE SHOP WITH GLOBAL AMBITIONS

25

26

Customer-Cashier—Barista

Although Restbucks stems from modest roots, its coffee quality and increasingly posi-
tive reputation help it to continue to grow. To help scale the business, Restbucks
decides to hire a cashier to speed things up. With a cashier busy handling the financial
aspects of the operation, the barista can concentrate on making coffee. The customer’s
interactions aren’t affected, but Restbucks now needs to coordinate the cashier’s and
barista’s tasks with a low-ceremony approach using sticky notes. The interactions (or
protocol) between the cashier and the barista remain hidden from customers. Now
that we’ve got two moving parts in our coffee shop, we need to think about how to
encapsulate them, which leads to the scenario shown in Figure 2-5.

/" coffee, latte, large,
to-qo, semi, double shot

waiting for
order 123

barista

Figure 2-5. A cashier helps the barista

By implementing this scheme, Restbucks decouples ordering and payment from the
coffee preparation. In turn, it is possible for Restbucks to abstract the inner workings of
the shop through a facade. While the customer gets the same good coffee, Restbucks is
free to innovate and evolve its implementation behind the scenes.

CHAPTER 2: INTRODUCING RESTBUCKS: HOW TO GET A COFFEE, WEB STYLE

Decoupling payments and drink preparation allows Restbucks to optimize available
resources. The barista can now look at the queue of orders and make decisions for
the optimal preparation sequence. Furthermore, decoupling tasks allows Restbucks
to scale operations by adding more cashiers and baristas independently as demand
increases. We will see that the Web makes adding capacity straightforward.

Toolbox

Although Restbucks is contrived to provide a simple problem domain, we will be using
real web technologies. We will choose the appropriate URIs for identifying resources,
identify the formats that meet business and technical requirements, and apply the
necessary patterns for modeling and implementing interactions. With that in mind,

it’s time to see some examples of how web technologies might be used to model
interactions.

Restbucks Formats

We discussed formats for resource representations in general terms in Chapter 1, but
here we’ll introduce formats that Restbucks uses in its business. All Restbucks resources
are represented by XML documents defined in the http://restbucks.com namespace
and identified on the Web as the media types application/xml and application/
vnd.restbucks+xml for standard XML processing and Restbucks-specific processing,
respectively.*

NOTE

We've chosen XML-based formats deliberately for this book since they're easily
understood and readable by humans. However, we shouldn't see XML as the only
option. As we discussed in Chapter 1, real web services use myriad other formats,
depending on the application.

Example 2-1 shows an order represented in XML, with the different specialties and
options drawn from the Restbucks menu. We’ve chosen element names for the XML
representations that are easy for humans to understand, even though that is not
strictly necessary for machine-to-machine communication. However, we believe there’s
value in making representations—like source code—as self-descriptive as possible, so
we’ll pay the modest price of a few more bytes per interaction to keep the representa-
tions human-friendly.

* For now, it’s easiest to think of both of these as simply XML documents. However, in Chapter 5,
when we think about hypermedia and REST, we’ll need to differentiate more critically.

TOOLBOX

27

http://restbucks.com

28

Example 2-1. A Restbucks order resource represented in XML format

POST /order HTTP/1.1

Host: restbucks.com
Content-Type:application/vnd.restbucks+xml
Content-Length: 243

<order xmlns="http://schemas.restbucks.com/order">
<1ocation>takeAway</location>
<item>
<name>latte</name>
<quantity>1</quantity>
<milk>whole</milk>
<size>small</size>
</item>
</order>

A cashier service receiving the order in Example 2-1 will lodge the order and respond
with the XML in Example 2-2, which contains the representation of a newly created
order resource.

Example 2-2. Acknowledging the order with a custom XML format

HTTP/1.1 200 OK
Content-Length: 421
Content-Type: application/vnd.restbucks+xml
Date: Sun, 3 May 2009 18:22:11 GMT
<order xmlns="http://restbucks.com" xlmns:atom="http://www.w3.org/2005/Atom">
<location>takeAway</location>
<item>
<name>latte</name>
<quantity>1</quantity>
<milk>whole</milk>
<size>small</size>
</item>
<cost>3.00</cost>
<currency>GBP</currency>
<atom:1link rel="payment" type="application/xml"
href="http://restbucks.com/order/1234/payment" />
</order>

A customer receiving a response such as that in Example 2-2 can be assured that its
order has been received and accepted by the Restbucks service. The order details are
confirmed in the reply and some additional information is contained, such as the
payment amount and currency, a timestamp for when the order was received, and a
<link> element that identifies another resource with which the customer is expected
to interact to make a payment.

CHAPTER 2: INTRODUCING RESTBUCKS: HOW TO GET A COFFEE, WEB STYLE

http://schemas.restbucks.com/order
http://restbucks.com
http://www.w3.org/2005/Atom
http://restbucks.com/order/1234/payment"/

NOTE

We borrowed the <1ink> element in our order format from the Atom Syndication
Format specification® (which is covered in depth in Chapter 8) since it already has
well-defined semantics for links between resources. Such links constitute what we
think of as “hypermedia controls” that describe the protocol that the service sup-
ports, as we'll see in Chapter 5.

Modeling Protocols and State Transitions

Using <atom:1ink> elements to describe possible next steps through a service protocol
should feel familiar; after all, we’'re quite used to links and forms being used to guide us
through HTML pages on the Web. In particular, we're comfortable with e-commerce sites
guiding us through selecting products, confirming delivery addresses, and taking pay-
ment by stringing together a set of pages into a workflow. Unwittingly, we have all
been driving a business protocol via HTTP using a web browser!

It’s remarkable that the Web has managed to turn us humans into robots who follow
protocols, but we take it for granted nowadays. We even think the concept of comput-
ers driving protocols through the same mechanism is new, yet this is the very essence
of building distributed systems on the Web: using hypermedia to describe protocol
state machines that govern interactions between systemes.

NOTE

Protocols described in hypermedia are not binding contracts. If a Restbucks con-
sumer decides not to drive the protocol through to a successful end state where
coffee is paid for and served, the service has to deal with that. Fortunately, HTTP
helps by providing useful status codes to help deal with such situations, as we shall
see in the coming chapters.

Although hypermedia-based protocols are useful in their own right, they can be
strengthened using microformats, such as hCard.t If we embed semantic information
about the next permissible steps in a protocol inside the hypermedia links, we raise
the level of abstraction. This allows us to change the underlying URIs as the system
evolves without breaking any consumers, as well as to declare and even change a pro-
tocol dynamically without breaking existing consumers.

* See http://tools.ietf.org/html/rfc4287.

+ See http://microformats.org. Microformats and other semantics-related technologies will be discussed
in Chapter 10.

TOOLBOX

29

http://tools.ietf.org/html/rfc4287
http://microformats.org

30

NOTE

The <atom:1ink> element in Example 2-1 contains some useful and meaning-

ful text embedded in its rel attribute. We use a lot of microformats throughout
this book. It's simply Restbucks’ way of highlighting the possible routes through a
service protocol by marking up links with metadata that is meaningful (in this case,
to both humans and computers).

Of course, we can break existing consumers, but only if we remove or redefine some-
thing on which they rely. We're safe to add new, optional protocol steps or to change
the URIs contained within the links, provided we keep the microformat vocabulary
consistent.

Figure 2-6 shows an example of a protocol state machine as it evolves through the
interactions between the customer, cashier, and barista. The state machine will not
generally show the total set of permissible states, only those choices that are avail-
able during any given interaction to take the consumer down a particular path. If the
customer cancels its order, it will not be presented with the option to pay the bill or
add specialties to its coffee. The description of an application’s state machine might be
exposed in its entirety as part of metadata associated with a service, if the service pro-
vider chooses to do so. However, a state machine might change over time, even as a
customer interacts with the service.

customize check status
| addto |

latte order | | P3Y | payment | queve Iattebeing‘ order
submitted received prepared | qeliver | Completed
cancel
canceled

Figure 2-6. Modeling state machines dynamically

Here Comes the Web

Restbucks provides a domain that allows us to think of the Web as a platform for
building distributed systems. We’ll continue to expand Restbucks” domain through-
out the book as more ambitious scenarios are introduced. Expect to see the addition of
third-party services, security, more coordination of interactions, and scalability mea-
sures. Along the way, we’ll dip into topics as diverse as manageability, semantics, noti-
fications, queuing, caching, and load balancing, all neatly tied together by the Web.

But to start with, we're going to see how we can integrate systems using the bedrock
of web technologies: the humble URIL.

CHAPTER 2: INTRODUCING RESTBUCKS: HOW TO GET A COFFEE, WEB STYLE

CHAPTER THREE

Basic Web Integration

UNDERSTANDING EVERY ASPECT OF THE WEB’S ARCHITECTURE can be a challeng-
ing task. That task, coupled with the everyday pressure to deliver working software,
means we are often time-poor. Fortunately, we can start to use some web techniques
immediately, at least for simple integration problems.

—— WARNING

Although the techniques we cover in this chapter are simple, they come with an
enormous health warning. If you find yourself using them, it's probably an indication
that you should reconsider your design and use some of the techniques described
in later chapters instead.

We will learn more sophisticated patterns and techniques as requirements become more
challenging. The approaches we’re going to consider in this chapter are simple to pick up.
For now, we're going to focus on two simple web techniques for application integration:
URI tunneling and Plain Old XML (POX). These techniques allow us to quickly integrate
systems using nothing more than web servers, URIs, and, for POX, a little XML.

Lose Weight, Feel Great!

Many enterprise integration projects (wrongly) begin with middleware. Architects
invest significant efforts in making sure the middleware products they choose support
the latest features for reliable messaging, security, transactions, and so on. The chosen
platform is then dropped onto development teams, whose working life is subsequently
spent trying to figure out what to do with all the software they’ve been told to use.

31

32

Of course, there’s an element of caricature in these sentiments, yet sometimes, while
we're working on enterprise systems, there’s a nagging doubt about whether we really
need all these clever middleware capabilities. Sometimes, while reflecting over the
business drivers for the solution, we realize that the features, cost, and complexity
inherent in enterprise solutions are really overkill for our purposes.

Choosing to base your system on the Web may raise some pointed questions. After all,
any respectable software project includes a middleware product. However, it’s also cus-
tomary for projects to overrun cost and time; and although only anecdotal evidence
supports the claim, working with large, complex middleware is often a factor in project
underperformance. Conversely, the projects we’ve worked on using approaches based

on HTTP have rarely disappointed. We believe this is a function of low-ceremony, highly
commoditized tools that are highly amenable to contemporary iterative software delivery.

The fact is that not all integration problems need middleware-based solutions. Going
lightweight can significantly reduce the complexity of a system and reduce its cost,
risk, and time to deployment. Going lightweight also allows us to favor simpler
technology from commodity development platforms. And leveraging HTTP gives us
straightforward application-to-application connectivity with very little effort, not least
because HTTP libraries are so pervasive in modern computer systems.

NOTE

As web-based integration becomes more popular, it's inevitable that increasingly
ambitious middleware tools will come to market. However, we hold to the prin-
ciple that we should start with the simplest possible system architecture, and add
middleware to the mix only if it implements something that would be risky or costly
to implement for ourselves. Throughout this book, we hope to show that “risky” or
‘costly” software is really the opposite of what the Web offers.

A Simple Coffee Ordering System

One of the best ways to understand how to apply a new technique is to build a simple
system. For our purposes, that system is the Restbucks cotfee ordering service, which
allows remote customers to lodge their coffee orders with the Restbucks server. Our
goal here is to understand how application code and server infrastructure fit within
the overall solution.

Choosing Integration Points for a Service

Though services and service-oriented architecture often seem arcane, in reality a ser-
vice is nothing more than a technical mechanism for hosting some business logic. The
way we allow others to consume services—business logic—over a network is the core
topic of this book, and we think the Web is the right kind of system to support net-
works of collaborative business processes.

CHAPTER 3: BASIC WEB INTEGRATION

vww allitebooks.cond

http://www.allitebooks.org

While the Web gives us infrastructure and patterns to deal with connecting systems
together, we still need to invest effort in designing services properly so that they will
be robust when exposed to remote consumers and easy to maintain as those consum-
ers become more demanding.

Choosing integration points is not difficult; we look for appropriate modules in our
software through which we expose business-meaningful functionality. To illustrate,
let’s look at the example in Figure 3-1. Although the example is (deliberately) sim-
plistic, it shows a logical architecture, with customer software agents interacting
with Restbucks to place orders. To support this scenario, we have to expose existing
Restbucks functionality for external consumption by mapping the internal domain
model onto the network domain (and absolutely not exposing the internal details
directly, because that is the path that leads to tight, brittle coupling).

Microsoft Resthucks

savas cashier

Thoughtworks

waiter

ian

barista

Figure 3-1. Customers from other companies interact with Restbucks employees

NOTE

Integration-friendly interfaces tend to be at the edges of the system (or at least on
the periphery of major modules), rather than deep inside the domain model or data
access tiers. In that spirit, we should look for interfaces that encapsulate recogniz-
able concepts from the problem domain with reasonably coarse granularity.

We’ve learned from building service-oriented systems that good integration points
tend to encapsulate business-meaningful processes or workflows. Generally, we don’t
want to expose any technical or implementation details. It’s often worth writing
facades (adapting Fowler’s Remote Facade pattern*) to support this idiom if no existing

* http://martinfowler.com/eaaCatalog/remoteFacade.html

A SIMPLE COFFEE ORDERING SYSTEM

33

http://martinfowler.com/eaaCatalog/remoteFacade.html

34

interfaces or integration points are suitable. For Restbucks services, we will look for the
following kinds of integration points:

¢ Methods that encapsulate some (coarse-grained) business concept rather than
low-level technical detail

¢ Methods that support existing presentation logic, such as controllers in the Model-
View-Controller* pattern

e Scripts or workflows that orchestrate interactions with a domain model
Conversely, we avoid integration points such as:

e Data access methods, especially those that are transactional

e Properties/getters and setters

¢ Anything that binds to an existing presentation tier such as reusing view logic or
screen scraping

These aren’t hard-and-fast rules, and you may find solutions where this guidance
doesn’t apply. In those cases, be pragmatic and do the simplest thing that will work
without compromising the solution.

A Simple Service Architecture

We'll be using HTTP requests and responses to transfer information between the cus-
tomers and Restbucks. To keep things simple from a client programming point of view,
we’ll abstract the remote behavior of the cashier behind a local-looking facade that
we’ve termed the client-side cashier dispatcher.

NOTE

Hiding remote behavior from a consuming application is known to be a poor idea.t
Still, we've deliberately written examples in this chapter to highlight that HTTP is all
too often abused for remote procedure calls.

Hiding remote activity is usually a poor design choice that may have surprisingly
harsh consequences at runtime when an operation that appears local malfunctions
because of hidden remote activity over the network.

In Figure 3-2, network code that customer objects use is encapsulated behind the dis-
patcher’s interface (a waiter in real life), which gives a necessary clean separation of
concerns between plumbing code and our application-level objects. On the server side,

* http://en.wikipedia.org/wiki/Model-view-controller

1+ Waldo et al. argue in their seminal paper, “A Note on Distributed Computing,” that abstracting away
remote behavior is an anti-pattern, and we agree. The “remoteness” of a service is one of the impor-
tant nonfunctional characteristics that we have to cater to if we're going to build good systems.

CHAPTER 3: BASIC WEB INTEGRATION

http://en.wikipedia.org/wiki/Model-view-controller

we follow suit with a server-side cashier dispatcher, which isolates server-side objects
from the underlying network protocol.

client application domain restbucks application domain

| object (jim)
0
object (waiter server-side object
client-side » 5
dispatching code J dispatcher code [ubjT]

J

object (waiter)

\

Figure 3-2. HTTP remote procedure call architecture

Figure 3-2 shows a very simple architecture that uses a tiered approach to system inte-
gration. It can be built using common components from any decent development frame-
work, even using different platforms. Since both the customer client application and the
cashier service agree on HTTP as the wire protocol, they can very easily interoperate.

We still need to write some code to turn this design into a working solution, but it will
only be a little plumbing between the dispatchers and web client, and between the
server APIs and the business logic. However, before we get down to coding, we need
to understand one more technique used to design and share service contracts with
consumers: URI templates.

URI Templates

Often in distributed systems, service providers offer machine-readable metadata

that describes how clients should bind to and interact with services. For example,
you would normally use interface definition languages (IDLs) such as Web Services
Description Language (WSDL) for WS-* Web Services, or CORBA-IDL when imple-
menting CORBA systems. On the Web, various metadata technologies are used to
describe service contracts, including URI templates, which describe syntactic patterns
for the set of URIs that a service supports.

When used properly, URI templates can be an excellent tool for solution designers. As we
discuss in later chapters, they are particularly useful for internal service documentation.

—— WARNING

When used poorly, URI templates increase coupling between systems and lead
to brittle integration. In subsequent chapters, we'll see how hypermedia greatly
reduces the necessity to share URI templates outside services.

URITEMPLATES

35

Intuitive URIs

A service advertising URI templates encourages its consumers to construct URIs that
can be used to access the service’s functionality. As an example, let’s take Restbucks,
which exposes ordering information through URI-addressable resources, such as http://
restbucks.com/order/1234.

To a web developer, it should be intuitive that changing the number after the final /
character in the URI will probably result in another resource representation being
returned for a different order. It’s easy to determine how to vary the contents of a
simple URI programmatically to access a range of different resources from the service.
Intuitive URIs are great things—they convey intent and provide a level of documenta-
tion for services.

From Intuitive URIs to URI Templates

While intuitive URIs are encouraged, intuition alone isn’t enough. As implementers
of web services, we need to provide richer metadata for consumers. This is where URI
templates come into their own, since they provide a way to parameterize URIs with
variables that can be substituted at runtime. In turn, they can therefore be used to
describe a service contract.*

Since we want to help Restbucks’ customers use our services as easily as possible, we
would like to provide a description of how these services can be accessed through a
URI. A URI template fits the bill here. An example of a URI template that describes
valid URIs for the service is http://restbucks.com/order/{order id}.

The markup in curly braces, {order_id}, is an invitation to Restbucks customers to “fill
in the gaps” with sensible values. By substituting those parameters, customers address
different coffee orders hosted at Restbucks. In most cases, this is as far as we might go

with URI templates, and in fact, many web services are documented with just a hand-

ful of similar URI templates.t

NOTE

Calculating a URI from a URI template and a set of variables is known as expan-

sion, and the URI template draft specifies a set of rules governing it. Those rules

include how to substitute variables with values, including dealing with some of the
quirkier aspects of internationalized character sets.

* This is actually a little white lie for now. We will see in later chapters that service contracts aren’t
just constituted from URIs and URI templates, but from a conflation of URIs, the HTTP uniform
interface, and media types.

+ Plus a handful of verbs and status codes with some explanatory text.

36 CHAPTER 3: BASIC WEB INTEGRATION

http://restbucks.com/order/1234
http://restbucks.com/order/1234
http://restbucks.com/order/

Of course, we're not limited to single variables in our URI templates, and it’s common

to represent hierarchies in URIs. For example, the http://restbucks.com/order/{year}/
{month}/{day} template supports accessing all of the orders for a given date, allowing con-
sumers to vary the year, month, and day variables to access audit information.

In addition to variable substitution, URI templates support several more sophisticated
use cases that allow advanced URI template expansions. The URI Template specifica-
tion contains a set of worked examples for each operator, which is useful if you are
dealing with sophisticated URI structures. However, we only use simple variable sub-
stitution in this book, which covers the majority of everyday uses.

Using URI Templates

One of the major uses for URI templates is as human- and machine-readable docu-
mentation. For humans, a good URI template lays out a map of the service with which
we want to interact; for machines, URI templates allow easy and rapid validation of
URIs that should resolve to valid addresses for a given service and so can help auto-
mate the way clients bind to services.

NOTE

In practice, we prefer URI templates as a means of internal documentation for
services, rather than as contract metadata. We find that URI templates are fine as
a shorthand notation for communication within the context of a system, but as a
mechanism for describing contracts, we think they risk introducing tight coupling. In
the next chapter, we'll show why, but for now, we'll accept that they have drawbacks
and use them anyway.

We can put URI templates into practice immediately, staring with the most basic HTTP
integration option: URI tunneling.

URI Tunneling

When we order coffee from Restbucks, we first select the drinks we’d like, then we
customize those drinks in terms of size, type of milk (if any), and other specialties such
as flavorings. Once we’ve decided, we can convey our order to the cashier who han-
dles all incoming orders. Of course, we have numerous options for how to convey our
order to a cashier, and on the Web, URI tunneling is the simplest.

URI tunneling uses URIs as a means of transferring information across system bound-
aries by encoding the information within the URI itself.* This can be a useful tech-
nique, because URIs are well understood by web servers (of course!) and web client
software. Since web servers can host code, this allows us to trigger program execution

* In more robust integration schemes, URIs identify only resources, which can then be manipulated
using HTTP verbs and metadata.

URI TUNNELING

37

http://restbucks.com/order/

38

by sending a simple HTTP GET or POST request to a web server, and gives us the ability
to parameterize the execution of that code using the content of the URIL. Whether we
choose GET or POST depends on our intentions: retrieving information should be tun-
neled through GET, while changing state really ought to use POST.

On the Web, we use GET in situations where we want to retrieve a resource’s state rep-
resentation, rather than deliberately modify that state. When used properly, GET is both
safe and idempotent.

By safe, we mean a GET request generates no server-side side effects for which the cli-
ent can be held responsible. There may still be side effects, but any that do occur are the
sole responsibility of the service. For example, many services log GET requests, thereby
changing some part of their state. But GET is still safe. Server-side logging is a private
affair; clients don’t ask for something to be logged when they issue a GET request.

An idempotent operation is one that generates absolute side effects. Invoking an idem-
potent operation repeatedly has the same effect as invoking it once. Because GET exhibits
no side effects for which the consumer can be held responsible, it is naturally idempo-
tent. Multiple GETs of the same URI generate the same result: they retrieve the state of the
resource associated with that URI at the moment the request was received, even if they
return different data (which can occur if the resource’s state changes in between requests).

When developing services we must preserve the semantics of GET. Consumers of our
resources expect our service to behave according to the HTTP specification (RFC 2616).
Using a GET request to do something other than retrieve a resource representation—such
as delete a resource, for example—is simply an abuse of the Web and its conventions.

POST is much less strict than GET; in fact, it’s often used as a wildcard operation on
the Web. When we use POST to tunnel information through URIs, it is expected that
changes to resource state will occur. To illustrate, let’s look at Figure 3-3.

http://restbucks.com/PlaceOrder?coffee=latteldsize=largedmilk=
- ' ’ whole8location=takeAway

Y l
[servie | [method | maps to

Figure 3-8. Mapping method calls to URIs

Figure 3-3 shows an example of a URI used to convey order information to the ordering
service at http://restbucks.com in accordance with the URI template http://restbucks.com/
PlaceOrder?coffee={type}&size={size}&milk={milk}&location={location}. On the server

CHAPTER 3: BASIC WEB INTEGRATION

http://restbucks.comI
http://restbucks.com/

side, this URI is matched against the template and is deconstructed, and an instance

of the class Order is populated based on the values extracted from the URI path. The
Order instance is then dispatched into a method called PlaceOrder (), which in turn will
execute the business logic for that order. Once the PlaceOrder method has completed, it
will return an order ID that is serialized into the response, as shown in Figure 3-4.

Customers Restbucks

POST http://restbucks.com/PlaceQrder?
coffee=lattefsize=large&milk=whole
Rlocation=takeAway

HTTP/1.1 200 0K
Content-type: text/plain cashier

1

waiter

Orderld=1234
e

.

:

barista

Figure 3-4. HTTP request/response for URI tunneling

Knowing the URI structure, response format, and expected behavior allows us to write
code to support simple remote interactions. As it happens, using URI tunneling means
our code turns out to be very simple. First, let’s take a look at how we might build this
on the server side in .NET code in Example 3-1.

Example 3-1. Extracting business objects from a URI

public void ProcessPost(HttpListenerContext context)
{
// Parse the URI
Order order = ParseUriForOrderDetails(context.Request.QueryString);
string response = string.Empty;
if (order != null)
{
// Process the order by calling the mapped method
var orderConfirmation = RestbucksService.PlaceOrder(order);
response = "OrderId=" + orderConfirmation.OrderId.ToString();
}
else
{
response = "Failure: Could not place order.";

}

URI TUNNELING

39

40

// Write to the response stream
using (var sw = new StreamWriter(context.Response.OutputStream))

{

sw.Write(response);
}
}

The .NET server-side code in Example 3-1 uses a little plumbing code to bind to an
HttpListener before it is ready to use. When called, the ProcessPost method parses
out order information from the collection held in the context.Request.QueryString
property and uses it to create an order object. Once the order has been created, it’s dis-
patched to some backend order processing system (typically a barista!), and the order
confirmation is returned to the caller.

The client code shown in Example 3-2 is also straightforward to understand. It simply
extracts information out of a client-side Order object and uses that information to form
a URL It then performs an HTTP POST on that URI via the HttpWebRequest instance,
which causes the order information to be passed over the network to the server.

Example 3-2. URI-tunneling client

public OrderConfirmation PlaceOrder(Order order)

{
// Create the URI
var sb = new StringBuilder("http://restbucks.com/PlaceOrder?");
sb.AppendFormat("coffee={0}", order.Coffee.ToString());
sb.AppendFormat("8size={0}", order.Size.ToString());
sb.AppendFormat("8milk={0}", order.Milk.ToString());
sb.AppendFormat("8location={0}", order.ConsumelLocation.ToString());

// Set up the POST request

var request = HttpRequest.Create(sb.ToString()) as HttpWebRequest;
request.Method = "POST";

// Send the POST request

var response = request.GetResponse();

// Read the contents of the response
OrderConfirmation orderConfirmation = null;
using (var sr = new StreamReader(response.GetResponseStream()))
{
var str = sr.ReadToEnd();
// Create an OrderConfirmation object from the response
orderConfirmation = new OrderConfirmation(str);

}

return orderConfirmation;

CHAPTER 3: BASIC WEB INTEGRATION

http://restbucks.com/PlaceOrder
http://restbucks.com/PlaceOrder?%E2%80%B3%00

When the remote server responds, the client software simply parses the contents of the
HTTP response and creates an OrderConfirmation object before continuing processing.

NOTE

Although we use the same name for the OrderConfirmation class in both the cli-
ent and the service, there is no requirement for the client and the service to share
a type system. In fact, we generally advise against sharing types across service
boundaries since it introduces tight coupling, which prevents independent evolution
of the coupled systems.

Is URI Tunneling a Good Idea?

Services that use URI tunneling are categorized as level one services by Richardson’s
maturity model. Figure 3-5 highlights that URIs are a key concept in such services, but
no other web technologies are embraced. Even HTTP is only used as a transport proto-
col for moving URIs over the Web.

Figure 3-5. URI tunneling is only at level one in Richardson’s maturity model

Though tunneling remote method calls through URIs is not a sophisticated way of
integrating systems, sometimes it can be web-friendly. First, we have URIs, and nam-
ing resources through URIs is the first step toward any web-friendly solution. Second,
if an HTTP GET request doesn’t change any state on a service, we're within the guide-
lines of the Web Architecture, which suggests that GET should be “safe.” For example,
the URI http://restbucks.com/GetOrder?orderld=1234 could either represent a URI-encoded
operation called GetOrder or equally identify a resource (a coffee order) through an
ugly (verb-embedded-in-URI) convention. From the point of view of a consumer of
the service, this is indeed the observable behavior.

However, in the general case, URI tunneling isn’t web-friendly because URIs are used
to encode operations rather than identify resources that can be manipulated through
HTTP verbs. Ordering a coffee is a demonstration of how URI tunneling can be used
to violate the safe and idempotent nature of HTTP GET. For example, a client executing
GET (instead of POST) on http://restbucks.com/PlaceOrder?id=1234¢Ecoffee=Iatte expects that
a new coffee order (a resource) will be created as a result, whereas if we follow good

URI TUNNELING

41

http://restbucks.com/GetOrder?orderId=1234
http://restbucks.com/PlaceOrder?id=1234&coffee=latte

42

web practices, GET requests to a URI shouldn't result in new resources being created as
a side effect—the result is neither safe (it changes server state) nor idempotent (it can-
not be repeated without further side effects).*

—— WARNING

Where we use URIs as the conduit for transferring information to services, often
instead of building a level one service, we end up building many level zero
services. For instance, the set of URIs permitted by http://restbucks.com/
GetOrder?orderId={id} is really nothing more than a shorthand for many level
zero services, all of which support a single URI and a single verb.

Although it might be tempting to offer services based on URI tunneling, we must be
aware that consumers of those services will expect to be able to GET URIs without
going against the Web Architecture guidelines. Violating the widely shared under-
standing of GET will lead to trouble!

Using POST instead of GET goes some way toward alleviating the problem of unintended
side effects, though it doesn’t change the level zero mindset of a service. POST requests
are understood to have side effects by the Web so that any intermediaries (such as
caches) don’t get confused. Either way, the trade-offs in URI tunneling are not nice!

POX: Plain Old XML over HTTP

For all its ingenuity (and potential drawbacks too), URI tunneling is a little out of

the ordinary for enterprise integration—using addresses to convey business intent is,
after all, strange. Our second web-based approach to lightweight integration puts us
squarely back in familiar territory: messaging. The Plain Old XML (POX) web-style
approach to application integration uses HTTP requests and responses as the means to
transfer documents, encoded in regular XML, between a client and a server. It’s a lot
like SOAP, but without the SOAP envelope or any of the other baggage.

POX is appealing as an approach because XML gives us platform independence,

while the use of HTTP gives us practically ubiquitous connectivity between systems.
Furthermore, compared to the URI tunneling approach, dealing with XML allows us to
use more complex data structures than can be encoded in a URI, which supports more
sophisticated integration scenarios.

That’s not to say that POX is on a par with enterprise message-oriented middleware,
because clearly it isn’t. We have to remember that POX is a pattern, not a platform,
and POX can’t handle transacted or reliable message delivery in a standard way.

* This is a simplification. In reality, resources may be created, but the client issuing the GET request
is not accountable for them. If your service supports resource creation—and remember, in some
cases, these may be physical resources such as payments—on GET requests, you are responsible for
them, not your clients!

CHAPTER 3: BASIC WEB INTEGRATION

vww allitebooks.cond

http://restbucks.com/GetOrder?orderId=%7bid%7d
http://restbucks.com/GetOrder?orderId=%7bid%7d
http://www.allitebooks.org

However, for integration problems that don’'t need such advanced features, XML
over HTTP has the virtue of being a simple and highly commoditized solution.

In the remainder of this chapter, we’ll revisit our ordering system and show how it can

be developed using the POX approach. We'll see how to use web servers and request-
response XML message exchanges to enable remote procedure calls between systems, and
we'll also take the time to understand the strengths and weaknesses of the approach.

Using XML and HTTP for Remote Procedure Calls

POX uses HTTP POST to transfer XML documents between systems. On both sides of
the message exchange, the information contained in the XML payload is converted
into a format suitable for making local method calls.

It’s often said of POX that, like URI tunneling, it too tunnels through the Web. Since
POX uses HTTP as a transport protocol, all application semantics reside inside the XML
payload and much of the metadata contained in the HTTP envelope is ignored. In fact,
POX uses HTTP merely as a synchronous, firewall-friendly transport protocol for con-
venience. POX would work just as well over a TCP connection, message queues, or
even SOAP as it does over HTTP.

While POX isn’t rocket science, it can form the basic pattern for constructing distributed
systems that are relatively simple to build and easy to deploy, as shown in Figure 3-6.

client application domain restbucks application domain

. 10 @
Local method ocal method call
ocal method taIIJ 1 I return return

client-side XML doiment)(ML o t se.rver-snde

? into HTTP client into HTTP respunse dispatcher
AML docurnent
into HTTP client

dispatcher

XML document
into HTTP client

HTTP POST +
3 payload
[object) (Cclispatchercode) (Ccommunication)

Figure 3-6. Canonical POX interaction

Figure 3-6 shows the typical execution model of a POX-based solution:

1. A POX invocation begins with an object in the customer’s system calling into a dis-
patcher that presents a local interface to the remote Restbucks service.

POX: PLAIN OLD XML OVER HTTP

43

44

10.

. The dispatcher converts the values of parameters it receives from the application-

level object into an XML document. It then calls into an HTTP client library to pass
the information over the network.

. The HTTP client POSTs the XML payload from the dispatcher to the remote

service.

. The web server hosting the ordering service accepts the incoming POST and passes

the request’s context to the server-side dispatcher.

. The server-side dispatcher translates the XML document into a local method call

on an object in the Restbucks service.

. When the method call returns, any returned values are passed to the dispatcher.

The dispatcher creates an XML document from the returned values and pushes it
back into the web server.

The web server generates an HTTP response (habitually using a 200 status code)
with the XML document from the dispatcher as the entity body. It sends the
response over the same HTTP connection used for the original request.

The HTTP client on the customer’s system receives the response and makes the
XML payload available to the client-side dispatcher.

The client-side dispatcher extracts values from the XML response into a return
value, which is then returned to the original calling object, completing the
remote call.

POX isn’t a hard pattern. Indeed, all this should be familiar given that most RPC sys-
tems have a very similar design, so let’s press on with applying what we know.

POX Away!

Now that we’'re comfortable with the approach, the next stage is to determine the APIs
that we're going to expose as integration points on the server side.

Let’s consider this in terms of server-side methods such as public OrderConfirmation
PlaceOrder (Order order) { ... }. Given this method signature, our challenge is to fig-
ure out what information needs to flow between the client and server. Once we know

that, then we need to design XML messages for the remote call we want to support.

We’ll expose this method to remote clients in a similar way to URI tunneling: by
making it part of the URI to which clients will POST XML-encoded arguments. For
example, the method PlaceOrder() can be exposed through the URI http://restbucks.
com/PlaceOrder. Unlike URI tunneling, though, the order information will be sent as
an XML document in the HTTP request from the customer. The result of the method
call, the OrderConfirmation instance, is serialized as an XML document and sent back
as the payload of an HTTP response with 200 OK as its status, as we see in Figure 3-7.

CHAPTER 3: BASIC WEB INTEGRATION

http://restbucks.com/PlaceOrder
http://restbucks.com/PlaceOrder

client application domain

——

=)

POST /PlaceOrder HTTP/1.1
Content—TyBe: application/xml
Host: restbucks.com

Content-Length: 361

<Order xmlns="http://
restbucks.com">
<Location>takeAway</Location>
<Item>
<Name>latte</Name>
<Quantity>1</Quantity>
<Milk>whole</Milk>
<Size>small</Size>
</Item>
<Item>
<Name>cookie</Name>
<Kind>chocolate-chip</Kind>
<Quantity>2</Quantity>
</Ttem>
</Order>

HTTP/1.1 200 OK
Content-Length: 93
Content-Type: application/xml;
charset=utf-8

Server: Microsoft-HTTPAPI/2.0
Date: Mon, 04 Aug 2008
18:16:49 GMT

<OrderConfirmation xmlns="http://

restbucks.com">
<OrderId>1234</0rderId>

</0OrderConfirmation>

Figure 3-7. POX wire-level protocol

restbucks application domain

=

Figure 3-7 shows a typical interaction with the Restbucks ordering service. The request
message for our service is an HTTP POST with an XML document representing an order
as the payload. There’s nothing in this exchange that comes as a surprise to us here
since we're familiar with XML, and the headers are commonplace in our everyday
use of the World Wide Web. Still, it’s illustrative to take a closer look, starting with the

headers:

POST /PlaceOrder HTTP/1.1

This tells the web server hosting the Rest-
bucks service that the incoming request is a
POST and is directed at the /PlaceOrder re-
source (bound to a method call in the service
implementation) using HTTP 1.1.

Content-Type: application/xml

This indicates that the body content is XML
intended for machine consumption.

Host: restbucks.com

the service.

This is the hostname of the machine providing

Content-Length: 361

This is the size (in bytes) of the body content.

The XML document contained in the body is quite simple too. Let’s take a look at

that now:

POX: PLAIN OLD XML OVER HTTP

45

46

<Order xmlns=... > This is an Order serialized into XML. The service will use this
XML content to create and populate objects when it receives
the message.

<Location /> This is the place where the order will be consumed, either
inStore or takeAway.
<Item> Finally, we have the items we're ordering.
<Name>latte</Name>

<Quantity>1</Quantity>

</Item>

We can break down the response from the server along similar lines. First, there are
the HTTP headers:

HTTP/1.1 200 OK The request was processed happily by the service at least as
far as the HTTP part is concerned. Nothing related to the net-
work protocol failed and nothing threw a top-level exception.

Content-Length: 93 This indicates the length of the reply in bytes.
Content-Type: This indicates that we can expect our response to be XML-
application/xml; encoded as UTF-8.

charset=utf-8

Server: Microsoft-HTTPA- This indicates the type of web server that handled the

PI/2.0 request (in this case, Microsoft's development server).
Date: Mon, 28 Jul 2008 This is the timestamp when the response was generated.
19:18:03 CMT

Finally, we have the body of the response:

<OrderConfirmation xmlns= | This is the confirmation that the order was processed on the

"http://restbucks.com"> server side, with an ID that uniquely identifies the order.
<OrderId>1234</OrderId>

</OrderConfirmation>

Using this approach, creating a simple XML remote procedure call solution using POST
is well within our grasp. Implementing the solution is just a matter of writing the busi-
ness logic, and deploying any plumbing code needed onto a web server. As we’ll see in
the next section, that’s straightforward to do.

Server-side POX implementation in .NET

To show just how straightforward POX can be, let’s start off by looking at the server-side
implementation. Unlike the URI tunneling example, where most of the effort was spent
writing XML plumbing code between the web server and methods on business objects,
here we’ll delegate that work to a framework (see Example 3-3). For this example,
we’ve chosen Microsoft’s Windows Communication Foundation (WCF), which supports
exposing resources via HTTP and is widely used in enterprise environments.

CHAPTER 3: BASIC WEB INTEGRATION

http://restbucks.com

Example 3-3. Server-side POX implementation with WCF

[ServiceContract(Namespace = "http://restbucks.com")]
public interface IRestbucksService

{
[OperationContract]
[WebInvoke(Method = "POST", UriTemplate="/PlaceOrder")]
OrderConfirmation PlaceOrder(Order order);

}

The code in Example 3-3 follows the typical WCF idiom of separating the contract
from the implementation of the service (which we are not showing for the sake of
brevity*). WCF allows us to express a set of addressable resources using URI templates
and HTTP methods set at compile time.

In this case, we have a service contract expressed as in the IRestbucksService interface.
The PlaceOrder method of the interface is annotated with the OperationContract attri-
bute, which indicates to WCF that the method will become part of the service contract
and be exposed over the network. Since this is a POX solution, we use the WebInvoke
attribute on the PlaceOrder () method to indicate to WCF that this method is going to
handle HTTP POST messages to the /PlaceOrder URI. Under the covers, the WCF frame-
work will help us to handle message dispatching, serialization, and deserialization.

All that is left to do now is to implement the I0rderingService interface with our business
logic and put the necessary deployment configuration options in the app.config file to run
the service.

Server-side POX in Java

For the Java RestbucksService, we’ve chosen to go back to basics and use the Servlet
API rather than a higher-level framework. In doing so, we hope to show that, just like
URI tunneling, we don’t need much in the way of frameworks or libraries to get POX
services working (see Example 3-4).

Example 3-4. Java POX service using the HTTP servlet

public class RestbucksService extends HttpServlet {

protected void doPost(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {

// Initialization code omitted for brevity

try {
BufferedReader requestReader = request.getReader();
PrintWriter responseWriter = response.getWriter();

* Go to http://restinpractice.com to find full examples.

POX: PLAIN OLD XML OVER HTTP

47

http://restbucks.com
http://restbucks.com%E2%80%B3%00
http://restinpractice.com

48

String xmlRequest = extractPayload(requestReader);
Order order = createOrder(xmlRequest);
OrderConfirmation confirmation = restbucksService.place(order);
embedPayload(responselriter, confirmation);

} finally {
// Cleanup code omitted for brevity

}

¥
}

The Java implementation shown in Example 3-4 uses the RestbucksService (which
extends the base HttpServlet class) to listen for HTTP POST requests via the overridden
doPost method. The doPost method is invoked on receiving an HTTP POST at a URI reg-
istered with the servlet container.

Inside the doPost method, we call extractPayload(...) to handle the translation of
XML found in the HTTP requests to Java objects. Internally, that method merely uses
XPath expressions to extract values from the request, and using those values creates
domain objects for computation. On the return path, the embedPayload(...) method
does the reverse by serializing an OrderConfirmation object into the HTTP response.

All the interaction with the HTTP aspects of the system is done through the serv-

let framework classes. It is the requestReader and responseWriter objects that pro-
vide access to the underlying network messages. Using the requestReader, we're able
to extract information from request payloads. Using the requestWriter, we're able to
compute response messages for the consumer.

NOTE

Servlets aren't the only way to write POX (or any other kind of web) services. In
later chapters, we'll use more recent frameworks such as JAXB (for serialization)
and JAX-RS (for our HTTP API) to build Java-based services. It's interesting to see
how we trade off control for simplicity in those frameworks compared to our servlet
implementation.

Client-Side POX Implementation

Constructing a client API to consume POX services is well supported in modern devel-
opment platforms. We already know the simple protocol that the service supports
because we designed it (or where we're consumer third-party services we’ll have read
the service’s documentation, XML templates, WADL, or WSDL), and so the next task is
to implement that protocol atop an HTTP client library and encapsulate it behind a set
of friendly method calls.

CHAPTER 3: BASIC WEB INTEGRATION

NOTE

Service providers have several choices when conveying the protocol to client devel-
opers so that they can bind to the service. Providers can publish natural-language
descriptions, or make templated XML available on web pages. Other options
include sharing a WADL" or WSDL contract from our service to help consumers
auto-generate bindings.

Using the .NET WebClient to invoke the ordering service

Numerous options are available to us for developing clients for our ordering service.
For this example, we're going to make use of an object-to-XML (de)serializer and the
default HTTP client implementation from the .NET platform.

NOTE

We can use WCF's contracts and XML (de)serializer for even more automation,
but it's illustrative that we have to use large frameworks such as WCF for building
web-based systems.

For our .NET client, all we have to do is to create the appropriate XML payload and
then use a WebClient object to send our request message to the service via an HTTP
POST. Once the service responds, we pick out the XML from the response and use it
to set any return values. The PlaceOrder method shown in Example 3-5 is a typical
client-side implementation.

Example 3-5. NET client-side POX bindings

public OrderConfirmation PlaceOrder(Item[] items)
{
// Serialize our objects
XmlDocument requestXml = CreateXmlRequest(items);
var client = new WebClient();

var ms = new MemoryStream();
requestXml.Save(ms);

client.Headers.Add("Content-Type", "application/xml");

ms = new MemoryStream(client.UploadData("http://restbucks.com/PlaceOrder",
null, ms.ToArray()));

var responseXml = new XmlDocument();

responseXml.Load(ms);

return CreateOrderConfirmation(responseXml);

}

* WADL (Web Application Description Language) can be used to describe XML over HTTP interfaces.
We’ll show how WADL can be used in the next chapter. If you're too curious to wait until then, see
https://wadl.dev.java.net/wadl20060802.pdf.

POX: PLAIN OLD XML OVER HTTP

49

http://restbucks.com/PlaceOrder
http://restbucks.com/PlaceOrder%E2%80%B3
https://wadl.dev.java.net/wadl20060802.pdf

50

There are a few interesting aspects to the code in Example 3-5. First, we encapsulate
the creation of an XML request in the CreateXmlRequest() method. The generated
XML document is converted to a byte stream, which is then given to the UploadData()
method of our WebClient instance, resulting in an HTTP POST request. If you recall the
server implementations, both the verb and the URI are used to dispatch and deserialize
the message, so the client must provide both of these.

The next point of interest is that we add the header Content-Type: application/xml
to the HTTP envelope to help the receiving web server identify the content as XML,
rather than name-value pairs, JSON, or other formats. After sending the HTTP POST
via the UploadData(...) method, we finally load the payload of the response to an
XmlDocument instance and deserialize it to an OrderConfirmation object. Although this
isn’t a particularly sophisticated way to process the response, it highlights the fact
that we don’t need any fancy frameworks (though such frameworks exist, and may
be helpful) to make POX work—just commodity XML and HTTP processing.

NOTE

It goes without saying that in production code, we'll need to check for any reported
errors from the service. Also, we need to make sure the returned XML payload is
indeed deserializable to an OrderConfirmation object. It's all part of the fun of
writing robust software.

Using the Apache Commons HttpClient in Java

In the Java implementation, we follow the same pattern that we used for .NET using
the HttpClient from the Apache Commons library to handle the HTTP parts of the
solution. In Example 3-6, we see how the HttpClient is used to POST string-constructed
XML payloads to the service.

Example 3-6. Java client for the ordering service

public class OrderingClient {

private static final String XML HEADING = "<?xml version=\"1.0\"?>\n";

private static final String NO RESPONSE = "Error: No response. ";

public String placeOrder(String[] items) throws Exception {

String request = ... // XML request string creation omitted for brevity
String response = sendRequestPost(request, "http://restbucks.com/PlaceOrder");

Document xmlResponse =
DocumentBuilderFactory.newInstance().newDocumentBuilder ()
.parse(new InputSource(new StringReader(response)));
// XML response handling omitted for brevity

CHAPTER 3: BASIC WEB INTEGRATION

http://restbucks.com/PlaceOrder
http://restbucks.com/PlaceOrder%E2%80%B3%00%00

private String sendRequestPost(String request, String uri)
throws IOException, HttpException {
PostMethod method = new PostMethod(uri);
method. setRequestHeader ("Content-type", "application/xml");
method. setRequestBody (XML_HEADING + request);
try {
new HttpClient().executeMethod(method);
return new String(method.getResponseBody(),"UTF-8");
} finally {
method.releaseConnection();
}
}
}

In the placeOrder() method of Example 3-6, the order information is serialized to a
string representation of an XML document that is used as the payload of the HTTP
request. The implementation of the sendRequestPost method provides the actual con-
nectivity to the service. Each business method, such as placeOrder, uses sendRequest-
Post to interact with the remote service.

NOTE

In both the Java and .NET clients, any notion of timeliness is omitted for the sake
of clarity. In any production code, the client will have to deal with the latency of
interacting with the remote service, and be prepared to time out if the service
doesn't respond quickly enough. Otherwise, a crashed service will cause the client
to lock too!

The body of the sendRequestPost method acts as our client-side dispatcher. It sets the
content type header and fills the body of the HTTP request with the XML content. It
places the XML payload of a request into an HTTP POST message and extracts the response
message from the service before releasing the connection, leaving the placeOrder method
free to deal with business logic.

XML-RPC

At this point, it’s worth mentioning another HTTP and XML remoting technology,
called XML-RPC.* The premise of XML-RPC is to support simple remote procedure
calls across different kinds of systems using XML as a common intermediate format.

As such, XML-RPC falls under the POX umbrella because it uses HTTP POST and XML
to make remote calls. XML-RPC attempts to standardize the way in which such infor-
mation is represented in the HTTP request and response payloads so that different appli-
cations don’t have to invent their own formats and mappings to type systems. As a result,

* http://www.xmlrpc.com/

POX: PLAIN OLD XML OVER HTTP

51

http://www.xmlrpc.com/

reusable components/frameworks are available to hide the plumbing details and pro-
vide comfortable programming abstractions.

NOTE

XML-RPC defines an interoperable, lowest-common-denominator type system

in terms of XML structures. This type system can easily be mapped into those of
common enterprise platforms such as .NET and Java. However, the architectural
style is equivalent to POX and suffers from the same drawbacks. Equally, we do not
advise deploying XML-RPC, though in niche situations where some form of POX

is unavoidable, at least there is tool support and documentation for XML-RPC that
may swing the balance in its favor.

For comparison, Example 3-7 shows how a request to call the PlaceOrder () method
might look when conveyed as the payload of an XML-RPC request.

Example 3-7. PlaceOrder() method call represented in XML-RPC

<methodCall>
<methodName>PlaceOrder</methodName>
<params>
<param>
<value>
<string>1234</string>
</value>
</param>
<param>
<array»
<data>
<struct>
<member>
<name>Name</name>
<value>
<string>latte</string>
</value>
</member>
<member>
<name>Quantity</name>
<value>
<int>1</int>
</value>
</member>

<!-- The rest of the XML is omitted... It looks very similar -->

</methodCall>

52 CHAPTER 3: BASIC WEB INTEGRATION

vww allitebooks.cond

http://www.allitebooks.org

What About When Things Go Wrong?

The POX approach is popular because it’s lightweight and almost universally interoper-
able, but it is not an especially robust pattern.

NOTE

It's perhaps ironic that POX services are ranked more lowly on Richardson’s model
than URI tunneling, since they seem less harmful. Nonetheless, we believe arguing
over which is the poorest approach is uninteresting; it simply shows that neither
model is especially suited for web-scale computing.

POX services are given a level zero rating by Richardson’s maturity model. Figure 3-8
highlights that none of the fundamental web technologies is prevalent in such ser-
vices. Instead, level zero services use HTTP for a transport protocol and a single URI as
a well-known endpoint through which XML messages can be exchanged.

~Hypermedia-

Figure 3-8. POX services are level zero in Richardson’s maturity model

Although POX, like URI tunneling, lacks sophistication, it does have some useful char-
acteristics. For example, since POX uses HTTP as a transport protocol, it’s often very
firewall-friendly and, as we have seen, straightforward to implement.

However, the POX approach ignores the Web as a platform and merely uses it as a tun-
nel for tunneling remote calls. The scalability, reliability, and robustness characteristics,
which are inherent in the Web’s architecture, are not necessarily available to POX-
based solutions. As a result, POX solutions tend to be limited to simpler integration
problems. If POX is to be used for mission-critical scenarios, significant additional effort
is required to deal with failure cases where messages go missing and services fail (and
may potentially recover).

NOTE

Failures in distributed systems (including those based on POX) tend to be more
complicated than their centralized counterparts, because we can have situations
where some parts of the system continue while others crash. Correspondingly,
avoiding or dealing with failures consumes a great deal of effort.

POX: PLAIN OLD XML OVER HTTP

53

54

Although it’s a simple approach and one that is comfortingly familiar, POX, like URI
tunneling, has extremely limited applicability. Our advice in general is to avoid POX
like the plague!

We Are Just Getting Started

URI tunneling and POX over HTTP integration emphasize simplicity and accessibil-
ity over robustness. While proprietary systems such as Java RMI and .NET remoting
may be more robust than passing XML documents or URIs around, the web-based
approaches are often simpler and more widely supported.

Using URIs or XML for transferring messages over HTTP directly enables platform-
independent integration. This is important in the enterprise context, given that most
enterprises have a heterogeneous range of systems to support. Since URI and XML
processing components are commonplace, using these tools for simple integration
projects is an appealing, low-ceremony option—provided that we understand each
approach’s strengths and weaknesses, as we've discussed.

As you might expect, URI tunneling and POX are not the only strategies available to
developers when building distributed systems on the Web. You probably wouldn’t be
reading this book if that were the case! Embracing functionality provided by the Web
can alleviate many of the more difficult issues around reliability that we’ve covered in
this chapter. In the next chapter, we’ll start to look past using HTTP as a transport pro-
tocol and begin to think about how to use the Web as a platform for building distrib-
uted systems.

CHAPTER 3: BASIC WEB INTEGRATION

CHAPTER FOUR

CRUD Web Services

IN THE PRECEDING CHAPTER, we saw how GET and POST can be used to tunnel infor-
mation to remote services through URIs and how POST can be used to transfer XML
documents between services. However, as more interesting distributed system scenarios
emerge, we rapidly reach the limit of what we can accomplish with those verbs. We
need to expand our vocabulary in order to support more advanced interactions.

In this chapter, we’ll introduce two new HTTP verbs to our repertoire: PUT and DELETE.
Alongside GET and POST, they form the set of verbs required to fully support the Create,
Read, Update, Delete (CRUD) pattern for manipulating resources across the network.

NOTE

From here onward, we consider the network and HTTP as an integral part of our
distributed application, not just as a means of transporting bytes over the wire.

Through CRUD, we’ll take our first steps along the path to enlightenment using HTTP
as an application protocol instead of a transport protocol, and see how the Web is
really a big framework for building distributed systems.

Modeling Orders As Resources

In Restbucks, orders are core business entities, and as such, their life cycles are of real
interest to us from a CRUD perspective. For the ordering parts of the Restbucks busi-
ness process, we want to create, read, update, and delete order resources like so:

e Orders are created when a customer makes a purchase.

e Orders are frequently read, particularly when their preparation status is inquired.

55

56

e Under certain conditions, it may be possible for orders to be updated (e.g., in cases
where customers change their minds or add specialties to their drinks).

¢ Finally, if an order is still pending, a customer may be allowed to cancel it (or
delete it).

Within the ordering service, these actions (which collectively constitute a protocol)
move orders through specific life-cycle phases, as shown in Figure 4-1.

placed

pay) prepare) pickup h
.—» placed —»[paid —b[.served —»[collected —».

update
rejected accepted

—
updated

—_—

Figure 4-1. Possible states for an order

Each operation on an order can be mapped onto one of the HTTP verbs. For example,
we use POST for creating a new order, GET for retrieving its details, PUT for updating it,
and DELETE for, well, deleting it. When mixed with appropriate status codes and some
commonsense patterns, HTTP can provide a good platform for CRUD domains, result-
ing in really simple architectures, as shown in Figure 4-2.

Customer Restbucks

|

44— | http://restbucks.com/order/10

HTTP
Request

Responses
44— | http://restbucks.com/order/15

Customer

44— | http://restbucks.com/order/32

Figure 4-2. CRUD ordering service high-level architecture

While Figure 4-2 exemplifies a very simple architectural style, it actually marks a sig-
nificant rite of passage toward embracing the Web’s architecture. In particular, it high-
lights the use of URISs to identify and address orders at Restbucks, and in turn it supports
HTTP-based interactions between the customers and their orders.

CHAPTER 4: CRUD WEB SERVICES

Since CRUD services embrace both HTTP and URIs, they are considered to be at level
two in Richardson’s maturity model. Figure 4-3 shows how CRUD services embrace
URIs to identify resources such as coffee orders and HTTP to govern the interactions
with those resources.

Figure 4-38. CRUD services reach level two on Richardson’s maturity model

Level two is a significant milestone in our understanding. Many successful distributed
systems have been built using level two services. For example, Amazon’s S3 product
is a classic level two service that has enabled the delivery of many successful systems
built to consume its functionality over the Web. And like the consumers of Amazon S3,
we’d like to build systems around level two services too!

Building CRUD Services

When you're building a service, it helps to think in terms of the behaviors that the service
will implement. In turn, this leads us to think in terms of the contract that the service will
expose to its consumers. Unlike other distributed system approaches, the contract that
CRUD services such as Restbucks exposes to customers is straightforward, as it involves
only a single concrete URI, a single URI template, and four HTTP verbs. In fact, it’s so
compact that we can provide an overview in just a few lines, as shown in Table 4-1.

Table 4-1. The ordering service contract overview

Verb URI or template Use

POST /order Create a new order, and upon success, receive a
Location header specifying the new order’s URL

GET /order/{orderId} Request the current state of the order specified by the
URL.

PUT /order/{orderId} Update an order at the given URI with new information,
providing the full representation.

DELETE /order/{orderId} Logically remove the order identified by the given URI.

The contract in Table 4-1 provides an understanding of the overall life cycle of an order.
Using that contract, we can design a protocol to allow consumers to create, read, update,
and delete orders. Better still, we can implement it in code and host it as a service.

BUILDING CRUD SERVICES

57

58

NOTE

What constitutes a good format for your resource representations may vary
depending on your problem domain. For Restbucks, we've chosen XML, though the
Web is able to work with any reasonable format, such as JSON or YAML.

Creating a Resource with POST

We first saw HTTP POST in Chapter 3, when we used it as an all-purpose transfer
mechanism for moving Plain Old XML (POX) documents between clients and servers.
In that example, however, the semantics of POST were very loose, conveying only that
the client wished to “transfer a document” to the server with the hope that the server
would somehow process it and perhaps create a response document to complete the
interaction.

As the Restbucks coffee ordering service evolves into a CRUD service, we're going to
strengthen the semantics of POST and use it as a request to create an order resource
within the service. To achieve this, the payload of the POST request will contain a
representation of the new order to create, encoded as an XML document. Figure 4-4
illustrates how this works in practice.

Customer Restbucks

l

http://restbucks. cumfurder]
create error

POST /order
<order ... />

201 Created
Location http://restbucks.com/
order/1234

[http:Nrestbucks.cum/urder/1234]
Pr—

400 Bad Request

500 Internal Exrror

Figure 4-4. Creating an order via POST

In our solution, creating an order at Restbucks requires that we POST an order rep-
resentation in XML to the service.* The create request consists of the POST verb, the
ordering service path (relative to the Restbucks service’s URI), and the HTTP version.
In addition, requests usually include a Host header that identifies the receiving host of

* We’ve adopted the convention used in RESTful Web Services (http://oreilly.com/catalog/9780596529260/)
by Leonard Richardson and Sam Ruby (O’Reilly), where POST is used for creation and the server
determines the URI of the created resource.

CHAPTER 4: CRUD WEB SERVICES

http://oreilly.com/catalog/9780596529260/

the server being contacted and an optional port number. Finally, the media type (XML
in this case) and length (in bytes) of the payload is provided to help the service process
the request. Example 4-1 shows a network-level view of a POST request that should
result in a newly created order.

Example 4-1. Creating a coffee order via POST

POST /order HTTP/1.1
Host: restbucks.com
Content-Type: application/xml
Content-Length: 239

<order xmlns="http://schemas.restbucks.com/order">
<location>takeAway</location>
<items>
<item>
<name>latte</name>
<quantity>1</quantity>
<milk>whole</milk>
<size>small</size>
</item>
</items>
</order>

Once the service receives the request, its payload is examined and, if understood,
dispatched to create a new order resource.

NOTE

The receiving service may choose to be strict or lax with respect to the syntactic
structure of the order representation. If it is strict, it may force compliance with

an order schema. If the receiving service chooses to be lax (e.g, by extracting the
information it needs through XPath expressions), its processing logic needs to be
permissive with respect to the representation formats that might be used.

Robust services obey Postel's Law,” which states, “be conservative in what you do;
be liberal in what you accept from others!" That is, a good service implementation is
very strict about the resource representations it generates, but is permissive about
any representations it receives.

If the POST request succeeds, the server creates an order resource. It then generates
an HTTP response with a status code of 201 Created, a Location header containing the
newly created order’s URI, and confirmation of the new order’s state in the response
body, as we can see in Example 4-2.

* See http://en.wikipedia.org/wiki/Jon_Postel#Postel.27s_Law.

BUILDING CRUD SERVICES

59

http://schemas.restbucks.com/order%E2%80%B3
http://en.wikipedia.org/wiki/Jon_Postel#Postel.27s_Law

60

Example 4-2. Response to successful order creation

HTTP/1.1 201 Created

Content-Length: 267

Content-Type: application/xml

Date: Wed, 19 Nov 2008 21:45:03 GMT
Location: http://restbucks.com/order/1234

<order xmlns="http://schemas.restbucks.com/order">
<location>takeAway</location>
<items>
<item>
<name>latte</name>
<quantity>1</quantity>
<milk>whole</milk>
<size>small</size>
</item>
</items>
<status>pending</status>
</order>

The Location header that identifies the URI of the newly created order resource is
important. Once the client has the URI of its order resource, it can then interact with it
via HTTP using GET, PUT, and DELETE.

While a 201 Created response is the normal outcome when creating orders, things may
not always go according to plan. As with any computing system—especially distributed
systems—things can and do go wrong. As service providers, we have to be able to deal
with problems and convey helpful information back to the consumer in a structured
manner so that the consumer can make forward (or backward) progress. Similarly, as
consumers of the ordering service, we have to be ready to act on those problematic
responses.

Fortunately, HTTP offers a choice of response codes, allowing services to inform their
consumers about a range of different error conditions that may arise during process-
ing. The Restbucks ordering service has elected to support two error responses when a
request to create a coffee order fails:

e 400 Bad Request, when the client sends a malformed request to the service

e 500 Internal Server Error, for those rare cases where the server faults and cannot
recover internally

CHAPTER 4: CRUD WEB SERVICES

http://restbucks.com/order/1234
http://schemas.restbucks.com/order%E2%80%B3

With each of these responses, the server is giving the consumer information about
what has gone wrong so that a decision can be made on how (or whether) to make
further progress. It is the consumer’s job to figure out what to do next.

NOTE

500 Internal Server Error as a catchall error response from the ordering service
isn't very descriptive. In reality, busy baristas might respond with 503 Service
Unavailable and a Retry-After header indicating that the server is temporarily
too busy to process the request. We'll see event status codes and how they help in
building robust distributed applications in later chapters.

When the ordering service responds with a 400 status, it means the client has sent an
order that the server doesn’t understand. In this case, the client shouldn’t try to resub-
mit the same order because it will result in the same 400 response. For example, the
malformed request in Example 4-3 doesn’t contain the drink that the consumer wants,
and so cannot be a meaningful coffee order irrespective of how strict or lax the server
implementation is in its interpretation. Since the <name> element is missing, the ser-
vice can’t interpret what kind of drink the consumer wanted to order, and so an order
resource cannot be created. As a result, the service must respond with an error.

Example 4-3. A malformed order request

POST /order HTTP/1.1

Host: restbucks.com
Content-Type: application/xml
Content-Length: 216

<order xmlns="http://schemas.restbucks.com/order">
<location>takeAway</location>
<items>
<item>
<quantity>1</quantity>
<milk>whole</milk>
<size>small</size>
</item>
</items>
</order>

On receiving the malformed request, the server responds with a 400 status code, and
includes a description of why it rejected the request,* as we see in Example 4-4.

* This is demanded of us by the HTTP specification

BUILDING CRUD SERVICES

61

http://schemas.restbucks.com/order%E2%80%B3

62

Example 4-4. Response to a malformed order request

HTTP/1.1 400 Bad Request
Content-Length: 250

Content-Type: application/xml

Date: Wed, 19 Nov 2008 21:48:11 GMT

<order xmlns="http://schemas.restbucks.com/order">
<location>takeAway</location>
<items>
<item>
<!-- Missing drink type -->
<quantity>1</quantity>
<milk>whole</milk>
<size>small</size>
</item>
</items>
</order>

To address this problem, the consumer must reconsider the content of the request and
ensure that it meets the criteria expected by the ordering service before resubmitting
it. If the service implementers were being particularly helpful, they might provide a
textual or machine-processable description of why the interaction failed to help the
consumer correct its request, or even just a link to the service’s documentation. The
ordering service won't create an order in this case, and so retrying with a corrected
order is the right thing for the consumer to do.

In the case of a 500 response, the consumer may have no clear understanding about
what happened to the service or whether the request to create an order succeeded,
and so making forward progress can be tricky. In this case, the consumer’s only real
hope is to try again by repeating the POST request to lodge an order.

NOTE

In the general case, consumers can try to recompute application state by GETting
the current representations of any resources whose URIs they happen to know.
Since GET doesn’t have side effects (that consumers can be held accountable for),
it's safe to call repeatedly until a sufficiently coherent picture of the system state
emerges and forward or backward progress can be made. However, at this stage in
our ordering protocol, the consumer knows nothing other than the entry point URI
for the coffee ordering service, http://restbucks.com/order, and can only retry.

On the server side, if the ordering service is in a recoverable state, or may eventually
be, its implementation should be prepared to clean up any state created by the failed
interaction. That way, the server keeps its own internal order state consistent whether
the client retries or not.

CHAPTER 4: CRUD WEB SERVICES

http://schemas.restbucks.com/order%E2%80%B3
http://restbucks.com/order

Implementing create with POST

Now that we have a reasonable strategy for handling order creation, let’s see how to
put it into practice with a short code sample (see Example 4-5).

Example 4-5. A Java servlet implementation for creating a coffee order

protected void doPost(HttpServletRequest request, HttpServletResponse response) {
try {

Order order = extractOrderFromRequest(request);

if(order == null) {
response.setStatus(HttpServletResponse.SC_BAD_REQUEST);

} else {
String internalOrderId = saveOrder(order);
response.setHeader ("Location", computelocationHeader(request,

internalOrderId));

response.setStatus (HttpServletResponse.SC_CREATED);

} catch(Exception ex) {

response.setStatus(HttpServletResponse.SC_INTERNAL_SERVER_ERROR);

The Java code in Example 4-5 captures the pattern we're following for processing a POST
request on the service side. We extract an order from the POST request content and save it
into a database. If that operation fails, we’ll conclude that the request from the consumer
wasn'’t valid and we’ll respond with a 400 Bad Request response, using the value SC_BAD
REQUEST. If the order is successfully created, we’ll embed that order’s URI in a Location
header and respond with a 201 status (using the SC_CREATED value) to the consumer. If
anything goes wrong, and an Exception is thrown, the service returns a 500 response
using the SC_INTERNAL SERVER ERROR value.

Reading Resource State with GET

We’ve already seen how GET can be used to invoke remote methods via URI tunnel-
ing, and we’ve also seen it being used to recover from 500 response codes during order
creation. From here onward, we’ll be using GET explicitly for retrieving state informa-
tion—resource representations—from services. In our case, we are going to use GET to
retrieve coffee orders from Restbucks that we’ve previously created with POST.

Using GET to implement the “R” in CRUD is straightforward. We know that after a suc-
cessful POST, the service creates a coffee order at a URI of its choosing and sends that
URI back to the consumer in the HTTP response’s Location header. In turn, that URI
allows consumers to retrieve the current state of coffee order resources, as we see in
Figure 4-5.

BUILDING CRUD SERVICES

63

64

Customer Restbucks

| http://restbucks. cumr‘orderz’1234]
et error

Figure 4-5. Reading a coffee order with GET

Performing GET on an order’s URI is very simple. At the HTTP level, it looks like
Example 4-6.

Example 4-6. Requesting an order via GET

GET /order/1234 HTTP/1.1
Host: restbucks.com

If the GET request is successful, the service will respond with a 200 OK status code and a
representation of the state of the resource, as shown in Example 4-7.

Example 4-7. Reading an order with GET

HTTP/1.1 200 OK

Content-Length: 241

Content-Type: application/xml

Date: Wed, 19 Nov 2008 21:48:10 GMT

<order xmlns="http://schemas.restbucks.com/order">
<location>takeAway</location>
<items>
<item>
<name>latte</name>
<quantity>1</quantity>
<milk>whole</milk>
<size>small</size>
</item>
</items>
</order>

CHAPTER 4: CRUD WEB SERVICES

http://schemas.restbucks.com/order%E2%80%B3

The response from the server consists of a representation of the order created by the
original POST request, plus some additional information such as the status, and a collec-
tion of useful metadata in the headers. The first line includes a 200 OK status code and
a short textual description of the outcome of the response informing us that our GET
operation was successful. Two headers follow, which consumers use as hints to help
parse the representation in the payload. The Content-Type header informs us that the
payload is an XML document, while Content-Length declares the length of the rep-
resentation in bytes. Finally, the representation is found in the body of the response,
which is encoded in XML in accordance with the Content-Type header.

A client can GET a representation many times over without the requests causing the
resource to change. Of course, the resource may still change between requests for
other reasons. For example, the status of a coffee order could change from “pend-
ing” to “served” as the barista makes progress. However, the consumer’s GET requests
should not cause any of those state changes, lest they violate the widely shared under-
standing that GET is safe.

Since Restbucks is a good web citizen, it’s safe to GET a representation of an order at
any point. However, clients should be prepared to receive different representations
over time since resource state—that is, the order—changes on the server side as the
barista prepares the coffee. To illustrate the point, imagine issuing the GET request from
Example 4-6 again a few minutes later. This time around, the response is different
because the order’s status has changed from paid to served (in the <status> element),
since the barista has finished preparing the drink, as we can see in Example 4-8.

Example 4-8. Rereading an order with GET

HTTP/1.1 200 OK

Content-Length: 265

Content-Type: application/xml

Date: Wed, 19 Nov 2008 21:58:21 GMT

<order xmlns="http://schemas.restbucks.com/order">
<location>takeAway</location>
<items>
<item>
<name>latte</name>
<quantity>1</quantity>
<milk>whole</milk>
<size>small</size>
</item>
</items>
<status>served</status>
</order>

BUILDING CRUD SERVICES

65

http://schemas.restbucks.com/order%E2%80%B3

66

In our CRUD ordering service, we're only going to consider two failure cases for

GET. The first is where the client requests an order that doesn’t exist, and the second
is where the server fails in an unspecified manner. For these situations, we borrow
inspiration from the Web and use the 404 and 500 status codes to signify that an order
hasn’t been found or that the server failed, respectively. For example, the request in
Example 4-9 identifies an order that does not (yet) exist, so the service responds with
the 404 Not Found status code shown in Example 4-10.

Example 4-9. Requesting an order that doesn't exist via GET

GET /order/123456789012345667890 HTTP/1.1
Host: restbucks.com

Example 4-10. Ordering service does not recognize an order URI and responds with
404 Not Found

HTTP/1.1 404 Not Found
Date: Sat, 20 Dec 2008 19:01:33 GMT

The 404 Not Found status code in Example 4-10 informs the consumer that the specified
order is unknown to the service.* On receipt of a 404 response, the client can do very
little to recover. Effectively, its view of application state is in violent disagreement with
that of the ordering service. Under these circumstances, Restbucks consumers should
rely on out-of-band mechanisms (such as pleading with the barista!) to solve the prob-
lem, or try to rediscover the URI of their order.

If the consumer receives a 500 Internal Server Error status code as in Example 4-11,
there may be a way forward without having to immediately resort to out-of-band
tactics. For instance, if the server-side error is transient, the consumer can simply
retry the request later.

Example 4-11. Ordering service indicates unexpected failure with a 500 response

HTTP/1.1 500 Internal Server Error
Date: Sat, 20 Dec 2008 19:24:34 GMT

This is a very simple but powerful recovery scenario whose semantics are guaranteed
by the behavior of GET. Since GET requests don’t change service state, it’s safe for
consumers to GET representations as often as they need. In failure cases, consumers
simply back off for a while and retry the GET request until they give up (and accept
handing over control to some out-of-band mechanism) or wait until the service comes
back online and processing continues.

*If we wanted to be more helpful to the consumer, our service could provide a helpful error mes-
sage in the HTTP body.

CHAPTER 4: CRUD WEB SERVICES

Implementing read with GET

The code in Example 4-12 shows how retrieving an order via GET can be implemented
using JAX-RS* in Java.

Example 4-12. Server-side implementation of GET with JAX-RS

@Path("/order")
public class OrderingService {
@CGET
@Produces("application/xml")
@Path("/{orderId}")
public String getOrder(@PathParam("orderId") String orderId) {
try {
Order order = OrderDatabase.getOrder(orderId);
if (order != null) {
// Use an existing XStream instance to create the XML response
return xstream.toXML(order);
} else {
throw new WebApplicationException(Response.Status.NOT_FOUND);

}
} catch (Exception e) {
throw new WebApplicationException(Response.Status.INTERNAL_SERVER_ERROR);

}
}

// Remainder of implementation omitted for brevity

}

In Example 4-12, the root path where our service will be hosted is declared using the
@Path annotation, which in turn yields the /order part of the URIL The getOrder(...)
method is annotated with @GET, @Produces, and @Path annotations that provide the fol-
lowing behaviors:

e @GET declares that the getOrder(...) method responds to HTTP GET requests.

e @Produces declares the media type that the method generates as its return value. In
turn, this is mapped onto the HTTP Content-Type header in the response. Since the
ordering service uses XML for order resource representations, we use application/
xml here.

e @Path declares the final part of the URI where the method is registered, using the
URI template {/orderId}. By combining this with the root path declared at the
class level, the service is registered at the URI /order/{orderId}.

* QOracle Corp. website. “JAX-RS (JSR 311): The Java API for RESTful Web Services”; see http://jcp.org/
en/jsr/detail?id=311.

BUILDING CRUD SERVICES

67

http://jcp.org/

68

The orderId parameter to the getOrder(...) method is automatically bound by JAX-RS
using the @PathParam annotation on the method’s orderId parameter to match the @Path
annotation attached to the method. Once this is all configured, the JAX-RS implemen-
tation extracts the order identifier from URIs such as http://restbucks.com/order/1234 and
makes it available as the String parameter called orderId in the getOrder(...) method.

Inside the getOrder(...) method, we try to retrieve order information from the database
keyed by the orderId parameter. If we find a record matching the orderId, we encode

it as an XML document using XStream* and return the document. This relinquishes
control back to JAX-RS, which in turn packages the XML-encoded order into an HTTP
response and returns it to the consumer. If we can’t find the order in the database,

the implementation throws a WebApplicationException with the parameter NOT_FOUND,
which results in a 404 Not Found response code being returned to the consumer. If
something unpredicted goes wrong, such as the loss of database connectivity, we throw
a WebApplicationException but with a 500 Internal Server Error status code indicated by
the INTERNAL_SERVER _ERROR code. Either way, JAX-RS takes care of all the plumbing for
us, including the creation of a well-formed HTTP response.

NOTE

It's interesting that the JAX-RS implementation for GET in Example 4-10 deals with
a substantial amount of plumbing code on our behalf when compared to the bare
servlet implementation in Example 4-3. However, it's also important to note that
we don't have to use frameworks such as JAX-RS to build CRUD services, since
servlets (and other HTTP libraries) can work just as well.

Updating a Resource with PUT

For the uninitiated, HTTP can be a strange protocol, not least because it offers two
ways of transmitting information from client to server with the POST and PUT verbs. In
their landmark book,t Richardson and Ruby established a convention for determining
when to use PUT and when to use POST to resolve the ambiguity:

e Use POST to create a resource identified by a service-generated URIL.
e Use POST to append a resource to a collection identified by a service-generated URIL
e Use PUT to create or overwrite a resource identified by a URI computed by the client.

This convention has become widely accepted, and the Restbucks ordering service
embraces it by generating URIs for orders when they’re created by POSTing to the well-
known entry point: http://restbucks.com/order. Conversely, when updating orders via
PUT, consumers specify the URIs. Figure 4-6 shows how using different verbs disambig-
uates the two different cases and simplifies the protocol.

* http://xstream.codehaus.org/
+ RESTful Web Services (http://oreilly.com/catalog/9780596529260/), published by O'Reilly.

CHAPTER 4: CRUD WEB SERVICES

http://restbucks.com/order/1234
http://restbucks.com/order
http://xstream.codehaus.org/
http://oreilly.com/catalog/9780596529260/

Customer Restbucks

PUT /order/1234
<order ... />

200 OK
or
204 No Content

500 Internal Error

Figure 4-6. PUT request and responses

In Figure 4-6, consumers know the URI of the order they want to update from the
Location header received in the response to an earlier POST (create) request. Using that
URI, a consumer can PUT an updated order representation to the ordering service. In
accordance with the HTTP specification, a successful PUT request won't create a new
resource or produce a new URI. Instead, the state of the identified resource will be
updated to reflect the data in the request representation.

Example 4-13 shows how a request for an update looks on the wire. While the HTTP
headers should look familiar, in this case the HTTP body contains an XML representa-
tion of the original order with the contents of the <milk> element for the cappuccino

changed to be skim rather than whole.

Example 4-13. Updating an order

PUT /order/1234 HTTP/1.1
Host: restbucks.com
Content-Type: application/xml
Content-Length: 246

<order xmlns="http://schemas.restbucks.com/order">
<location>takeAway</location>
<items>
<item>
<milk>skim</milk>
<name>cappuccino</name>
<quantity>1</quantity>
<size>large</size>
</item>
</items>
</order>

BUILDING CRUD SERVICES

69

http://schemas.restbucks.com/order%E2%80%B3

70

NOTE

PUT expects the entire resource representation to be supplied to the server, rather
than just changes to the resource state. Another relatively unknown HTTP verb,
PATCH, has been suggested for use in situations—typically involving large resource
representations—where only changes are provided. We'll use PUT for now, but we'll
also cover the use of PATCH in the next chapter.

When the PUT request is accepted and processed by the service, the consumer will
receive either a 200 OK response as in Example 4-14, or a 204 No Content response as in
Example 4-15.

Whether 200 is used in preference to 204 is largely an aesthetic choice. However,

200 with a response body is more descriptive and actively confirms the server-side
state, while 204 is more efficient since it returns no representation and indicates that
the server has accepted the request representation verbatim.

Example 4-14. Successful update with a 200 response

HTTP/1.1 200 OK

Content-Length: 275

Content-Type: application/xml

Date: Sun, 30 Nov 2008 21:47:34 GMT

<order xmlns="http://schemas.restbucks.com/order">
<location>takeAway</location>
<items>
<item>
<milk>skim</milk>
<name>cappuccino</name>
<quantity>1</quantity>
<size>large</size>
</item>
</items>
<status>preparing</status>
</order>

Example 4-15. Successful update with a 204 response

HTTP/1.1 204 No Content
Date: Sun, 30 Nov 2008 21:47:34 GMT

On receiving a 200 or 204 response, the consumer can be satisfied that the order has
been updated. However, things can and do go wrong in distributed systems, so we
should be prepared to deal with those eventualities.

The most difficult of the three failure response codes from Figure 4-6 is where a
request has failed because of incompatible state. An example of this kind of failure is
where the consumer tries to change its order after drinks have already been served by

CHAPTER 4: CRUD WEB SERVICES

http://schemas.restbucks.com/order%E2%80%B3

the barista. To signal conflicting state back to the client, the service responds with a 409
Conflict status code, as shown in Example 4-16.

Example 4-16. Order has already been served as a take-away

HTTP/1.1 409 Conflict
Date: Sun, 21 Dec 2008 16:43:07 GMT
Content-Length:271

<order xmlns="http://schemas.restbucks.com/order">
<1ocation>takeAway</location>
<items>
<item>
<milk>whole</milk>
<name>cappuccino</name>
<quantity>1</quantity>
<size>large</size>
</item>
</items>
<status>served</status>
</order>

In keeping with the HTTP specification, the response body includes enough informa-
tion for the client to understand and potentially fix the problem, if at all possible. To
that end, Example 4-16 shows that the ordering service returns a representation of the
current state of the order resource from the service. In the payload, we can see that
the <status> element contains the value served, which indicates that the order cannot
be altered. To make progress, the consumer will have to interpret the status code and
payload to determine what might have gone wrong.

NOTE

We might reasonably expect that either 405 Method Not Allowed or 409 Conflict
would be a valid choice for a response code in situations where PUTting an update
to a resource isn't supported. In this instance, we chose 409 since PUT may be valid
for some updates that don't violate business rules. For example, it might still be per-
mitted to change the order from drink-in to take-away during the order’s life cycle
since it's just a matter of changing cups.

As with errors when processing POST and GET, a 500 response code is equally straight-
forward when using PUT—simply wait and retry. Since PUT is idempotent—because
service-side state is replaced wholesale by consumer-side state—the consumer can safely
repeat the operation as many times as necessary. However, PUT can only be safely used
for absolute updates; it cannot be used for relative updates such as “add an extra shot
to the cappuccino in order 1234.” That would violate its semantics.

BUILDING CRUD SERVICES

71

http://schemas.restbucks.com/order%E2%80%B3

72

NOTE

PUT is one of the HTTP verbs that has idempotent semantics (along with GET and
DELETE in this chapter). The ordering service must therefore guarantee that PUTting
the same order many times has the same side effects as PUTting it exactly once.
This greatly simplifies dealing with intermittent problems and crash recovery by
allowing the operation to be repeated in the event of failure.

If the service recovers, it simply applies any changes from any of the PUT requests to
its underlying data store. Once a PUT request is received and processed by the ordering
service, the consumer will receive a 200 OK response.

Implementing update with PUT

Now that we understand the update process, implementation is straightforward, espe-
cially with a little help from a framework. Example 4-17 shows an implementation of
the update operation using the HTTP-centric features of Microsoft’s WCFE. The service
contract—the set of operations that will be exposed—is captured by the I0OrderingService
interface. In turn, the I0rderingService is adorned by a [ServiceContract] attribute that
binds the interface to WCF so that the underlying framework can expose implement-

ing classes as services.* For our purposes, the most interesting aspect of this code is the
[WebInvoke] attribute, which, when used in tandem with an [OperationContract] attri-
bute, declares that the associated method is accessible via HTTP.

Example 4-17. WCF ServiceContract for updating an order with PUT

[ServiceContract]
public interface IOrderingService

{
[OperationContract]
[WebInvoke(Method = "PUT", UriTemplate = "/order/{orderId}")]
void UpdateOrder(string orderId, Order order);

// Remainder of service contract omitted for brevity

}

The [WebInvoke] attribute takes much of the drudgery out of plumbing together
URIs, entity body payloads, and the methods that process representations.
Compared to lower-level frameworks, the WCF approach removes much boilerplate
plumbing code.

* WCF implements the same model for all kinds of remote behavior, including queues and WS-*
Web Services. This lowest-common-denominator approach seeks to simplify programming distrib-
uted systems. Unfortunately, it often hides essential complexity, so use it with care!

CHAPTER 4: CRUD WEB SERVICES

In Example 4-17, the [WebInvoke] attribute is parameterized so that it responds only
to the PUT verb, at URIs that match the URI template /order/{orderId}. The value
supplied in {orderId} is bound at runtime by WCF to the string parameter orderId,
which is then used to process the update.

When invoked, the representation in the HTTP body is deserialized from XML and
dispatched to the implementing method as an instance of the Order type. To achieve
this, we declare the mapping between the on-the-wire XML and the local Order
object by decorating the Order type with [DataContract] and [DataMember] attributes, as
shown in Example 4-18. These declarations help the WCF serializer to marshal objects to
and from XML. Once the WCF serializer completes the deserialization work, all we need
to implement is the update business logic, as shown in Example 4-19.

Example 4-18. Marking up an order for use with WCF

[DataContract(Namespace = "http://schemas.restbucks.com/order", Name = "order")]
p p
public class Order
{
[DataMember (Name = "location")]
public Location Consumelocation
{
get { return location; }
set { location = value; }

}

[DataMember (Name = "items")]
public List<Item> Items
{

get { return items; }

set { items = value; }

}

[DataMember (Name = "status")]
public Status OrderStatus
{
get { return status; }
set { status = value; }
}
// Remainder of implementation omitted for brevity

}

BUILDING CRUD SERVICES 73

http://schemas.restbucks.com/order%E2%80%B3

74

Example 4-19. WCF implementation for updating an order

public void UpdateOrder(string orderId, Order order)
{
try
{
if (OrderDatabase.Database.Exists(orderId))
{
bool conflict = OrderDatabase.Database.Save(order);
if (lconflict)
{

WebOperationContext.Current.OutgoingResponse.StatusCode =
HttpStatusCode.NoContent;

}

else

{

WebOperationContext.Current.OutgoingResponse.StatusCode =
HttpStatusCode.Conflict;

}
}

else

{

WebOperationContext.Current.OutgoingResponse.StatusCode =
HttpStatusCode.NotFound;

}

}
catch (Exception)

{

WebOperationContext.Current.OutgoingResponse.StatusCode =
HttpStatusCode.InternalServerkrror;

}
}

The code in Example 4-19 first checks whether the order exists in the database. If the
order is found, it is simply updated and a 204 No Content status code is returned to the
consumer by setting the WebOperationContext.Current.OutgoingResponse.StatusCode
property.

If there’s a conflict while trying to update the order, a 409 Conflict response and a
representation highlighting the inconsistency will be returned to the consumer.

NOTE

It's worth noting that the only identifier we have for the order comes from the URI
itself, extracted by WCF via the {orderId} template. There's no order ID embed-
ded in the payload, since it would be superfluous. Following this DRY (Don’t Repeat
Yourself) pattern, we avoid potential inconsistencies between the domain model
and the resources the service exposes, and keep the URI as the authoritative
identifier, as it should be.

CHAPTER 4: CRUD WEB SERVICES

If we can't find the entry in the database, we’ll set a 404 Not Found response to indicate
the order resource isn’t hosted by the service. Finally, if something unexpected hap-
pens, we’'ll catch any Exception and set a 500 Internal Server Error status code on the
response to flag that the consumer should take some alternative (recovery) action.

Removing a Resource with DELETE

When a consumer decides that a resource is no longer useful, it can send an HTTP
DELETE request to the resource’s URIL The service hosting that resource will interpret
the request as an indication that the client has become disinterested in it and may
decide that the resource should be removed—the decision depends on the require-
ments of the service and the service implementation.

NOTE

Deleting a resource doesn't always mean the resource is physically deleted; there
are a range of outcomes. A service may leave the resource accessible to other
applications, make it inaccessible from the Web and maintain its state internally, or
even delete it outright.

Figure 4-7 highlights the use of DELETE in the Restbucks ordering service where DELETE
is used to cancel an order, if that order is in a state where it can still be canceled. For
example, sending DELETE to an order’s URI prior to preparation should be successtul and
the client should expect a 204 No Content response from the service as a confirmation.

Customer Restbucks
| http://restbucks .comforder/1234]

elete error

204 No Content

404 Not Found

405 Method Not Allowed

503 Service Unavailable

Figure 4-7. DELETE request and responses

Conversely, if the order has already been prepared, which means it can’t be deleted, a
405 Method Not Allowed response would be used. If the service is unavailable to respond
to our DELETE request for some other reason, the client can expect a 503 Service
Unavailable response and might try the request again later.

BUILDING CRUD SERVICES

75

76

On the wire, DELETE requests are simple, consisting only of the verb, resource URI, pro-
tocol version, and HOST (and optional PORT) header(s), as shown in Example 4-20.

Example 4-20. Removing an order with DELETE

DELETE /order/1234 HTTP/1.1
Host: restbucks.com

Assuming the ordering service is able to satisfy the DELETE request, it will respond affir-
matively with a 204 No Content response, as shown in Example 4-21.

Example 4-21. Order successfully removed

HTTP/1.1 204 No Content
Date: Tue, 16 Dec 2008 17:40:11 GMT

NOTE

Some services may elect to return the final state of the deleted resource on the
HTTP response. In those cases, 204 isn't appropriate, and a 200 OK response along
with Content-Type and Content-Length headers and a resource representation in
the body is used.

Failure cases tend to be intricate with DELETE requests, since they might have signifi-
cant side effects! One such failure case is shown in Example 4-22, where the client has
specified a URI that the server cannot map to an order, causing the ordering service to
generate a 404 Not Found response.

Example 4-22. The requested order doesn't exist

HTTP/1.1 404 Not Found
Content-Length: 0
Date: Tue, 16 Dec 2008 17:42:12 GMT

Although this is a simple response to understand—we see it all too often on the human
Web, after all—it’s troubling from a programmatic perspective because it means the
consumer has stale information about order resource state compared to the service.

We might take one of several different recovery strategies when we get a 404 Not Found
response. Ordinarily, we might prefer a human to resolve the problem through some out-
of-band mechanism. However, in some situations, it may be practical for the consumer to
recompute application state by retrieving representations of the resources it knows about
and attempt to make forward progress once it’s synchronized with the service.

Restbucks archives all orders after they have been served for audit purposes. Once
archived, the order becomes immutable, and any attempts to DELETE an archived order
will result in a 405 Method Not Allowed response from the ordering service, as shown in
Example 4-23.

CHAPTER 4: CRUD WEB SERVICES

Example 4-23. Order has been archived

HTTP/1.1 405 Method Not Allowed
Allow: GET
Date: Tue, 23 Dec 2008 16:23:49 GMT

The response in Example 4-23 informs the client that while the order resource still
exists, the client is not allowed to DELETE it. In fact, the Allow header is used to convey
that GET is the only acceptable verb at this point in time and that requests using any
other verb will be met with a 405 Method Not Allowed response.

NOTE

The Allow header can be used to convey a comma-separated list of verbs that can
be applied to a given resource at an instant.

An implementation for DELETE using the HttpListener from the .NET Framework is
shown in Example 4-24. Like the servlet implementation in Example 4-5, this exam-
ple shows that it’s possible to develop services with just an HTTP library, and that we
don’t always have to use sophisticated frameworks.

Example 4-24. Using HttpListener to delete an order

static void DeleteResource(HttplListenerContext context)

{
string orderId = ExtractOrderId(context.Request.Url.AbsolutePath);

var order = OrderDatabase.Retrieve(orderId);

if (order == null)

{
context.Response.StatusCode = HttpStatusCode.NotFound;

}

else if (order.CanDelete)

{
OrderDatabase.archive(orderId);
context.Response.StatusCode = HttpStatusCode.NoContent;

}

else

{
context.Response.StatusCode = HttpStatusCode.MethodNotAllowed;

}

context.Response.Close();

}

In Example 4-24, an HTTPListenerContext instance provides access to the underlying
HTTP request and response messages. Using the request URI, we extract an order
identifier and then determine whether it corresponds to a valid order. If no order is

BUILDING CRUD SERVICES

77

78

found, we immediately set the HTTP response to 404 and call Close() on the response
object to return control to the web server, which in turn returns a well-formed 404 Not
Found response message to the consumer.

If we can find the resource, we check whether we’re allowed to delete it. If we are, we
logically remove the associated order before returning a 204 No Content response to the
client. Otherwise, we set the response code to 405 and let the client know they can’t
delete that resource.

Safety and Idempotency

We saw in Chapter 3 that GET is special since it has the properties of being both safe
and idempotent. PUT and DELETE are both idempotent, but neither is safe, while POST is
neither safe nor idempotent. Only GET returns the same result with repeated invoca-
tions and has no side effects for which the consumer is responsible.

With GET, failed requests can be repeated without changing the overall behavior of an
application. For example, if any part of a distributed application crashes in the midst
of a GET operation, or the network goes down before a response to a GET is received,
the client can just reissue the same request without changing the semantics of its
interaction with the server.

In broad terms, the same applies to both PUT and DELETE requests. Making an absolute
update to a resource’s state or deleting it outright has the same outcome whether

the operation is attempted once or many times. Should PUT or DELETE fail because of
a transient network or server error (e.g., a 503 response), the operation can be safely
repeated.

However, since both PUT and DELETE introduce side effects (because they are not safe),
it may not always be possible to simply repeat an operation if the server refuses it at
first. For instance, we have already seen how a 409 response is generated when the
consumer and service’s view of resource state is inconsistent—merely replaying the
interaction is unlikely to help. However, HTTP offers other useful features to help us
when state changes abound.

Aligning Resource State

In a distributed application, it’s often the case that several consumers might interact
with a single resource, with each consumer oblivious to changes made by the others.
As well as these consumer-driven changes, internal service behaviors can also lead to
a resource’s state changing without consumers knowing. In both cases, a consumer’s
understanding of resource state can become misaligned with the service’s resource
state. Without some way of realigning expectations, changes requested by a consumer
based on an out-of-date understanding of resource state can have undesired effects,
from repeating computationally expensive requests to overwriting and losing another
consumer’s changes.

CHAPTER 4: CRUD WEB SERVICES

HTTP provides a simple but powerful mechanism for aligning resource state
expectations (and preventing race conditions) in the form of entity tags and conditional
request headers. An entity tag value, or ETag, is an opaque string token that a server
associates with a resource to uniquely identify the state of the resource over its
lifetime. When the resource changes—that is, when one or more of its headers, or

its entity body, changes—the entity tag changes accordingly, highlighting that state
has been modified.

ETags are used to compare entities from the same resource. By supplying an entity
tag value in a conditional request header—either an If-Match or an If-None-Match
request header—a consumer can require the server to test a precondition related to
the current resource state before applying the method supplied in the request.

NOTE
ETags are also used for cache control purposes, as we'll see in Chapter 6.

To illustrate how ETags can be used to align resource state in a multiconsumer scenario,
imagine a situation in which a party of two consumers places an order for a single cotfee.
Shortly after placing the order, the first consumer decides it wants whole milk instead of
skim milk. Around the same time, the second consumer decides it, too, would like a
coffee. Neither consumer consults the other before trying to amend the order.

To begin, both consumers GET the current state of the order independently of each
other. Example 4-25 shows one of the consumer’s requests.

Example 4-25. Consumer GETs the order

GET /order/1234 HTTP/1.1
Host: restbucks.com

The service’s response contains an ETag header whose value is a hash of the returned
representation (Example 4-26).

Example 4-26. Service generates a response with an ETag header

HTTP/1.1 200 OK

Content-Type: application/xml
Content-Length: 275

ETag: "72232bdodaafal2f7e2d1561c81cd082"

<order xmlns="http://schemas.restbucks.com/order">
<location>takeAway</location>
<items>
<item>
<milk>skim</milk>
<name>cappuccino</name>

ALIGNING RESOURCE STATE

79

http://schemas.restbucks.com/order%E2%80%B3

80

<quantity>1</quantity>
<size>large</size>
</item>
</items>
<status>pending</preparing>
</order>

NOTE

The service computes the entity tag and supplies it as a quoted string in the ETag
header prior to returning a response. Entity tag values can be based on anything
that uniquely identifies an entity: a version number associated with a resource in
persistent storage, one or more file attributes, or a checksum of the entity head-
ers and body, for example. Some methods of generating entity tag values are more
computationally expensive than others. ETags are often computed by applying a hash
function to the resource’s state, but if hashes are too computationally expensive, any
other scheme that produces unique values can be used. Whichever method is used,
we recommend attaching ETag headers to responses wherever possible.

When a consumer receives a response containing an ETag, it can (and should) use

the value in any subsequent requests it directs to the same resource. Such requests

are called conditional requests. By supplying the received entity tag as the value of an
If-Match or If-None-Match conditional header, the consumer can instruct the service to
process its request only if the precondition in the conditional header holds true.

Of course, consumers aren’t obliged to retransmit ETags they’ve received, and so ser-
vices can’t expect to receive them just because they’ve been generated. However,
consumers that don’t take advantage of ETags are disadvantaged in two ways. First,
consumers will encounter increased response times as services have to perform more
computation on their behalf. Second, consumers will discover their state has become
out of sync with service state through status codes such as 409 Conflict at inconve-
nient and (because they’re not using ETags) unexpected times. Both of these failings
are easily rectified by diligent use of ETags.

An If-Match request header instructs the service to apply the consumer’s request

only if the resource to which the request is directed hasn't changed since the consumer
last retrieved a representation of it. The service determines whether the resource has
changed by comparing the resource’s current entity tag value with the value supplied
in the If-Match header. If the values are equal, the resource hasn’t changed. The ser-
vice then applies the method supplied in the request and returns a 2xx response. If the
entity tag values don’'t match, the server concludes that the resource has changed since
the consumer last accessed it, and responds with 412 Precondition Failed.

CHAPTER 4: CRUD WEB SERVICES

NOTE

Services are strict about processing the If-Match header. A service can't (and
shouldn't) do clever merges of resource state where one coffee is removed and
another, independent coffee in the same order is changed to decaf. If two parts of
a resource are independently updatable, they should be separately addressable
resources. For example, if fine-grained control over an order is useful, each cup of
coffee could be modeled as a separate resource.

Continuing with our example, the first consumer does a conditional PUT to update the
order from skim to whole milk. As Example 4-27 shows, the conditional PUT includes
an If-Match header containing the ETag value from the previous GET.

Example 4-27. The first consumer conditionally PUTs an updated order

PUT /order/1234 HTTP/1.1
Host: restbucks.com
If-Match: "72232bdodaafa12f7e2d1561c81cd082"

<order xmlns="http://schemas.restbucks.com/order">
<location>takeAway</location>
<items>
<item>
<milk>whole</milk>
<name>cappuccino</name>
<quantity>1</quantity>
<size>large</size>
</item>
</items>
<status>pending</preparing>
</order>

Because the order hadn’t been modified since the first consumer last saw it, the PUT
succeeds, as shown in Example 4-28.

Example 4-28. The conditional PUT succeeds

HTTP/1.1 204 No Content
ETag: "6e87391fdb5ab218c9f445d61ee781c1"

Notice that while the response doesn’t include an entity body, it does include an
updated ETag header. This new entity tag value reflects the new state of the order
resource held on the server (the result of the successful PUT).

Oblivious to the change that has just taken place, the second consumer attempts to add its
order, as shown in Example 4-29. This request again uses a conditional PUT, but with an
entity tag value that is now out of date (as a result of the first consumer’s modification).

ALIGNING RESOURCE STATE

81

http://schemas.restbucks.com/order%E2%80%B3

82

Example 4-29. The second consumer conditionally PUTs an updated order

PUT /order/1234 HTTP/1.1
Host: restbucks.com
If-Match: "72232bdodaafa12f7e2d1561c81cd082"

<order xmlns="http://schemas.restbucks.com/order">
<location>takeAway</location>
<items>
<item>
<milk>skim</milk>
<name>cappuccino</name>
<quantity>2</quantity>
<size>large</size>
</item>
</items>
<status>pending</preparing>
</order>

The service determines that the second consumer is trying to modify the order based
on an out-of-date understanding of resource state, and so rejects the request, as shown
in Example 4-30.

Example 4-30. The response indicates a precondition has failed

HTTP/1.1 412 Precondition Failed

When a consumer receives a 412 Precondition Failed status code, the correct thing to
do is to GET a fresh representation of the current state of the resource, and then use the
ETag header value supplied in this response to retry the original request, which is what
the second consumer does in this case. Having done a fresh GET, the consumer sees that
the original order had been modified. The second consumer is now in a position to PUT
a revised order that reflects both its and the first consumer’s wishes.

Our example used the If-Match header to prevent the second consumer from over-
writing the first consumer’s changes. Besides If-Match, consumers can also use
If-None-Match. An If-None-Match header instructs the service to process the request
only if the associated resource has changed since the consumer last accessed it. The pri-
mary use of If-None-Match is to save valuable computing resources on the service side.
For example, it may be far cheaper for a service to compare ETag values than to per-
form computation to generate a representation.

NOTE

If-None-Match is mainly used with conditional GETs, whereas If-Match is typically
used with the other request methods, where race conditions between multiple con-
sumers can lead to unpredictable side effects unless properly coordinated.

CHAPTER 4: CRUD WEB SERVICES

http://schemas.restbucks.com/order%E2%80%B3

Both If-Match and If-None-Match allow the use of a wildcard character, *, instead of a
normal entity tag value. An If-None-Match conditional request that takes a wildcard
entity tag value instructs the service to apply the request method only if the resource
doesn’t currently exist. Wildcard If-None-Match requests help to prevent race conditions
in situations where multiple consumers compete to PUT a new resource to a well-known
URL In contrast, an If-Match conditional request containing a wildcard value instructs the
service to apply the request only if the resource does exist. Wildcard If-Match requests are
useful in situations where the consumer wishes to modify an existing resource using a
PUT, but only if the resource hasn’t already been deleted.

NOTE

As well as ETag and its associated If-Match and If-None-Match headers,

HTTP supports a timestamp-based Last-Modified header and its two associ-
ated conditional headers: If-Modified-Since and If-Unmodified-Since. These
timestamp-based conditional headers act in exactly the same way as the If-Match
and If-None-Match headers, but the conditional mechanism they implement is
accurate only to the nearest second—the limit of the timestamp format used by
HTTP. Because timestamps are often cheaper than hashes, If-Modified-Since
and If-Unmodified-Since may be preferable in solutions where resources don't
change more often than once per second.

In practice, we tend to use timestamps as cheap ETag header values, rather than as
Last-Modified values. By using ETags from the outset, we ensure that the upgrade
path to finer-grained ETags is entirely at the discretion of the service. The service can
switch from using timestamps to using hashes without upsetting clients.

Consuming CRUD Services

Services are one side of distributed systems, but to perform useful work they need
consumers to drive them through their protocols. Fortunately, many frameworks and
libraries support CRUD Web Services, and it’s worthwhile to understand a little about
what they offer.

A Java-Based Consumer

In the Java world, we might use the Apache Commons HTTP client* to implement the
Create part of the protocol by POSTing an order to the ordering service, as shown in
Example 4-31.

Example 4-31. Client-side order creation in Java

public String placeOrder(Order order, String restbucksOrderingServiceUri)
throws BadRequestException, ServerFailureException,
HttpException, IOException {

* http://hc.apache.org/httpcomponents-client/index.html

CONSUMING CRUD SERVICES

83

http://hc.apache.org/httpcomponents-client/index.html

84

PostMethod post = new PostMethod(restbucksOrderingServiceUri);
// Use an existing XStream instance to generate XML for the order to transmit
RequestEntity entity = new ByteArrayRequestEntity(

xstream.toXML (order).getBytes());
post.setRequestEntity(entity);

HttpClient client = new HttpClient();

try {
int response = client.executeMethod(post);

if(response == 201) {
return post.getResponseHeader("Location").getValue();
} else if(response == 400) {
// If we get a 400 response, the caller's gone wrong
throw new BadRequestException();
} else if(response == 500 || response == 503) {
// If we get a 5xx response, the caller may retry
throw new ServerFailureException(post.getResponseHeader("Retry-After"));

}

// Otherwise abandon the interaction
throw new HttpException("Failed to create order. Status code: "
} finally {

post.releaseConnection();

+ response);

}
}

The implementation in Example 4-31 shows the construction of a POST operation on the
ordering service, using a PostMethod object. All we need to do is to populate the HTTP
request with the necessary coffee order information by setting the request entity to con-
tain the bytes of an XML representation of the order. To keep things simple for ourselves,
we use the XStream library to encode the order resource representation in XML.

Having populated the HTTP request, we instantiate an HttpClient and execute the
PostMethod, which POSTs the order to the Restbucks ordering service. Once the method
returns, we examine the response code for a 201 Created status and return the contents
of the Location header, which will contain the URI of the newly created order. We can
use this URI in subsequent interactions with Restbucks. If we don’t get a 201 response,
we fail by throwing an HTTPException, and assume that order creation has failed.

A .NET Consumer

On the .NET platform, we can opt for the framework’s built-in XML and HTTP librar-
ies. The code in Example 4-32 represents how a client can send an order update to the
Restbucks ordering service via HTTP PUT.

CHAPTER 4: CRUD WEB SERVICES

Example 4-32. .NET client code for order update via PUT

public void UpdateOrder(Order order, string orderUri)

{
HttpWebRequest request = WebRequest.Create(orderUri) as HttpWebRequest;

request.Method = "PUT";
request.ContentType = "application/xml";

XmlSerializer xmlSerializer = new XmlSerializer(typeof(Order));
xmlSerializer.Serialize(request.GetRequestStream(), order);

request.GetRequestStream().Close();
HttpWebResponse response = (HttpWebResponse)request.GetResponse();

if (response.StatusCode != HttpStatusCode.OK)
{

// Compensation logic omitted for brevity
}
}

In Example 4-32, we use an HTTPWebRequest instance to handle the HTTP aspects of
the interaction. First we set the HTTP verb PUT via the Method property and subse-
quently set the Content-Type header to application/xml through the ContentType
property. We then write an XML-serialized representation of the order object that
was given as an argument to the UpdateOrder() method. The XmlSerializer trans-
forms the local object instance into an XML document, and the Serialize() method
writes the XML to the request’s stream. Once we're done populating the request
stream, we simply call Close(). Under the covers, the framework sets other headers
such as Content-Length and Host for us, so we don’t have to worry about them.

To send the request we call the GetResponse() method on the request object, which
has the effect of transmitting an HTTP PUT to the URI supplied as an argument to
the updateOrder () method. The response from the ordering service is returned as an
HttpWebResponse and its StatusCode property triggers any further processing.

One final job that we need to undertake is to mark up the Order type so that the
XmlSerializer knows how to transform Order instances to and from XML representa-
tions. The code snippet in Example 4-33 shows the .NET attributes that we need to
apply for our client-side plumbing to be complete.

Example 4-33. An XML-serializable order

[Xm1Root (Namespace = "http://schemas.restbucks.com/order")]
[Xm1Type(TypeName = "order")]
public class Order

{

CONSUMING CRUD SERVICES

85

http://schemas.restbucks.com/order%E2%80%B3%00%00

[XmlElement (ElementName = "location")]
public Location Consumelocation

{
get; set;

}

// Remainder of type omitted for brevity
}

Consuming Services Automatically with WADL

Although the patterns for writing clients in .NET and Java are easy to understand
and implement, we can save ourselves effort—and, in some cases, generate code
automatically—using service metadata. Up to this point, much of the work we’ve
done in building our ordering service and its consumers has been plumbing code.
But for some kinds of services,* a static description can be used to advertise the
addresses and representation formats of the resources the service hosts. This is the
premise of the Web Application Description Language, or WADL.

A WADL contract is an XML document that describes a set of resources with URI tem-
plates, permitted operations, and request-response representations. As you’d expect,
WADL also supports the HTTP fault model and supports the description of multiple
formats for resource representations. Example 4-34 shows a WADL description of the
Restbucks ordering service.

Example 4-34. Ordering service WADL example

<?xml version="1.0" encoding="utf-8"?>

<application
xmlns:xsd=http://www.w3.0rg/2001/XMLSchema
xmlns="http://research.sun.com/wadl/2006/10"
xmlns:ord="http://schemas.restbucks.com/order">

<grammars>
<include href="order.xsd"/>
</granmars>

<resources base="http://restbucks.com/">
<resource path="order">
<method name="POST">
<request>
<representation mediaType="application/xml" element="ord:order"/>
</request>

* CRUD services are great candidates for describing with WADL. Hypermedia services—as we will see
in the next chapter—use different mechanisms to describe the protocols they support.

86 CHAPTER 4: CRUD WEB SERVICES

http://www.w3.org/2001/XMLSchema
http://research.sun.com/wadl/2006/10%E2%80%B3
http://schemas.restbucks.com/order%E2%80%B3
http://restbucks.com/%E2%80%B3

<response>
<representation status="201"/>
<fault mediaType="application/xml" element="ord:error" status="400"/>
<fault mediaType="application/xml" element="ord:error" status="500"/>
</response>
</method>
</resource>
<resource path="order/{orderId}">
<method name="GET">
<response>
<representation mediaType="application/xml" element="ord:order"/>
<fault mediaType="application/xml" element="ord:error" status="404"/>
<fault mediaType="application/xml" element="ord:error" status="500"/>
</response>
</method>
<method name="PUT">
<request>
<representation mediaType="application/xml" element="ord:order"/>
</request>
<response>
<representation status="200"/>
<fault mediaType="application/xml" element="ord:error" status="404"/>
<fault mediaType="application/xml" element="ord:error" status="409"/>
<fault mediaType="application/xml" element="ord:error" status="500"/>
</response>
</method>
<method name="DELETE">
<response>
<representation status="200"/>
<fault mediaType="application/xml" element="ord:error" status="404"/>
<fault mediaType="application/xml" element="ord:error" status="405"/>
<fault mediaType="application/xml" element="ord:error" status="500"/>
</response>
</method>
</resource>
</resources>
</application>

The <application> element is the root for the WADL metadata. It acts as the container
for schemas that describe the service’s resource representations in the <grammars>
element and the resources that are contained within the <resources> element.

The <grammars> element typically refers to XML Schema schemas (which we have
defaulted to for Restbucks) that describe the structure of the resource representations
supported by the service, though other schema types (e.g., RELAX NG) are supported
too. Consumers of the service can use this information to create local representations
ot those resources such as orders and products.

CONSUMING SERVICES AUTOMATICALLY WITH WADL

87

88

In a WADL description, the <resources> element is where most of the action

happens. It provides a static view of the resources available for consumption. It uses a
templating scheme that allows consumers to infer the URIs of the resources supported
by a service. Calculating URIs can be a little tricky since WADL relies on a hierarchy
of resources, with each URI based on the parent URI’s template plus its own. In
Example 4-34, we have two logical resources: http://restbucks.com/order for POST
and http://restbucks.com/order/{orderId} for the other verbs. The resource URIs are
computed by appending the path of the <resource> element to the path defined in the
base attribute of the <resources> element.

NOTE

In addition to dealing with URI templates and query strings, WADL also has a com-
prehensive mechanism for building URIs. WADL can deal with form encoding and
handling a range of URI structures, including matrix URIs.

The <method> element allows WADL to bring together the request and response
resource representations and HTTP verbs to describe the set of permissible interactions
supported by the service. The Restbucks ordering service is described in terms of two
separate resource paths. We first define the order resource (<resource path="order">),
which only allows POST requests (<method name="POST">) and requires that the payload
of those requests be XML representations of an order. We also describe the possible
ways the Restbucks ordering service can reply to a POST request (in the <response> ele-
ment) depending on the outcome of processing the submitted order. In this case, the
possible response code is 201, 400, or 500.

Using a URI template, a second set of resources—the orders that Restbucks has
created—is advertised by the element <resource path="order/{orderId}">. Like the
POST method element, each subsequent <method> element describes the possible
responses and faults that the ordering service might return. Additionally, the PUT
<method> element declares that an XML order representation must be present as the
payload of any PUT requests.

While it’s helpful that we can read and write WADL by hand (at least in simple cases),
the point of WADL is to help tooling automate as much service plumbing as possible.
To illustrate how WADL can be consumed by an automation infrastructure, the
authors of WADL have created the WADL2Java' tool.f WADL2Java allows us to create
consumer-side Java that minimizes the code we have to write in order to interact with
a service described in WADL. The Java code in Examples 4-35 and 4-36 shows the
consumer-side API that Java programmers can use to interact with a WADL-decorated
ordering service.

* http://www.w3.o0rg/Designissues/MatrixURIs.html
+ https://wadl.dev.java.net/wadl2java.html
1 Other tools also exist; for example, REST Describe at Attp://tomayac.de/rest-describe/latest/RestDescribe.html.

CHAPTER 4: CRUD WEB SERVICES

http://restbucks.com/order
http://restbucks.com/order/
http://www.w3.org/DesignIssues/MatrixURIs.html
https://wadl.dev.java.net/wadl2java.html
http://tomayac.de/rest-describe/latest/RestDescribe.html

Example 4-35. WADL-generated endpoint

public class Endpoint {
public static class Orders {

public DataSource postAsIndex(DataSource input)
throws IOException, MalformedURLException {
// Implementation removed for brevity

}
}

public static class OrdersOrderId {

public OrdersOrderId(String orderid)
throws JAXBException {
// Implementation removed for brevity

}

// Cetters and setters omitted for brevity

public DataSource getAsApplicationXml()
throws IOException, MalformedURLException {
// Implementation removed for brevity

}

public Order getAsOrder()
throws ErrorException, IOException, MalformedURLException, JAXBException {
// Implementation removed for brevity

}

public DataSource putAsIndex(DataSource input)
throws IOException, MalformedURLException {
// Implementation removed for brevity

}

public DataSource deleteAsIndex()
throws IOException, MalformedURLException {
// Implementation removed for brevity

}
}
}

In Java, resources are locally represented by classes such as Order, shown in
Example 4-36, which allow us to inspect and set values in the XML representations
exchanged with the ordering service.

CONSUMING SERVICES AUTOMATICALLY WITH WADL

89

20

Example 4-36. Java representation of an order resource

@XmlAccessorType(XmlAccessType.FIELD)

@mlType(name = "", propOrder = {
"location",
"items",
"status"

H

@XmlRootElement(name = "order")
public class Order {

@XmlElement(required = true)
protected String location;
@XmlElement(required = true)
protected Order.Items items;
@XmlElement(required = true)
protected String status;

// CGetters and setters only, omitted for brevity

WADL can be useful as a description language for CRUD services such as the ordering
service. It can be used to automatically generate plumbing code with very little effort,
compared to manually building clients. Since the client and server collaborate over the
life cycle of a resource, its URIL, and its representation format, it does not matter whether
the plumbing is generated from a metadata description. Indeed, WADL descriptions may
help expedite consumer-side maintenance when changes happen on the server side.

NOTE

As we will see in the next chapter, the Web uses hypermedia to provide contracts in
a much more loosely coupled way than WADL. But for CRUD-only services, WADL
can be a useful tool.

CRUD Is Good, but It’'s Not Great

Now that we’ve completed our tour of CRUD services, it’s clear that using HTTP as

a CRUD protocol can be a viable, robust, and easily implemented solution for some
problem domains. In particular for systems that manipulate records, HTTP-based
CRUD services are a straightforward way to extend reach over the network and expose
those applications to a wider range of consumers.*

* Naively exposing systems that have not been built for network access is a bad idea. Systems have to
be designed to accommodate network loads.

CHAPTER 4: CRUD WEB SERVICES

Since we can implement CRUD services using a small subset of HTTP, our integration
needs may be completely satisfied with few CRUD-based services. Indeed, this is
typically where most so-called RESTful services stop.* However, it’s not the end of
our journey, because for all their strengths and virtue of simplicity, CRUD services are
only suited to CRUD scenarios. More advanced requirements need richer interaction
models and, importantly, will emphasize stronger decoupling than CRUD allows.

To decouple our services from clients and support general-purpose distributed systems,
we need to move away from a shared, tightly coupled understanding of resource life
cycles. On the human Web, this model has long been prevalent when using hyperlinks
to knit together sequences of interactions that extend past CRUD operations. In the
next chapter, we're going to replicate the same hypermedia concept from the Web to
create robust distributed systems.

* We're being generous here, since most so-called RESTful services tend to stop at tunneling through
HTTP!

CRUD IS GOOD, BUT IT'S NOT GREAT

91

CHAPTER FIVE

Hypermedia Services

EMBRACING HTTP AS AN APPLICATION PROTOCOL puts the Web at the heart of
distributed systems development. But that’s just a start. In this chapter, we will go
further, building RESTful services that use hypermedia to model state transitions and
describe business protocols.

The Hypermedia Tenet

When browsing the Web, we're used to navigating between pages by clicking links or
completing and submitting forms. Although we may not realize it, these interlinked
pages describe a protocol—a series of steps we take to achieve a goal, whether that’s
buying books, searching for information, creating a blog post, or even ordering a
coffee. This is the very essence of hypermedia: by transiting links between resources,
we change the state of an application.

Hypermedia is an everyday part of our online activities, but despite this familiarity, it’s
rarely used in computer-to-computer interactions. Although Fielding’s thesis on REST
highlighted its role in networked systems, hypermedia has yet to figure significantly in
contemporary enterprise solutions.

Hypermedia As the Engine of Application State

The phrase hypermedia as the engine of application state, sometimes abbreviated to
HATEOAS, was coined to describe a core tenet of the REST architectural style. In this
book, we tend to refer to the hypermedia tenet or just hypermedia. Put simply, the tenet
says that hypermedia systems transform application state.

93

94

NOTE

What is application state? If we think of an application as being computerized
behavior that achieves a goal, we can describe an application protocol as the set of
legal interactions necessary to realize that behavior. Application state is a snapshot
of an execution of such an application protocol. The protocol lays out the interac-
tion rules; application state is a snapshot of the entire system at a particular instant.

A hypermedia system is characterized by the transfer of links in the resource represen-
tations exchanged by the participants in an application protocol. Such links advertise
other resources participating in the application protocol. The links are often enhanced
with semantic markup to give domain meanings to the resources they identity.

For example, in a consumer-service interaction, the consumer submits an initial
request to the entry point of the service. The service handles the request and responds
with a resource representation populated with links. The consumer chooses one of
these links to transition to the next step in the interaction. Over the course of several
such interactions, the consumer progresses toward its goal. In other words, the distributed
application’s state changes. Transformation of application state is the result of the systemic
behavior of the whole: the service, the consumer, the exchange of hypermedia-enabled
resource representations, and the advertisement and selection of links.

On each interaction, the service and consumer exchange representations of resource state,
not application state. A transferred representation includes links that reflect the state of
the application. These links advertise legitimate application state transitions. But the
application state isn’t recorded explicitly in the representation received by the consumer;
it’s inferred by the consumer based on the state of all the resources—potentially distrib-
uted across many services—with which the consumer is currently interacting.

The current state of a resource is a combination of:
e The values of information items belonging to that resource
e Links to related resources
e Links that represent a transition to a possible future state of the current resource

e The results of evaluating any business rules that relate the resource to other local
resources

This last point emphasizes the fact that the state of a resource is partly dependent on
the state of other local resources. The state of a sales order, for example, is partly a
function of the state of a local copy of an associated purchase order; changes to the
purchase order will affect the state of the sales order the next time the business rules
governing the state of the sales order are evaluated (i.e., the next time a representa-
tion of the sales order is generated).

Importantly, the rules that control the state of a resource are internal to the service that
governs the resource: they’re not made available to consumers. In other words, resource

CHAPTER 5: HYPERMEDIA SERVICES

state is a function of a private ruleset that only the resource owner knows about: those
rules don’t leak into the external representation.

Business rules that relate a resource to other resources should refer only to locally owned
resources, however. This allows us to identify and prevent circular dependencies,
whereby the state of resource A is partly a function of the state of resource B, which in
turn is partly a function of the state of resource A, and so on. We can always arrange
locally owned resources so as to prevent circular dependencies; we can’t do the same if
the associated resources are governed by another service. If you need to relate the state of
a resource to a third-party resource, we recommend making a local copy of the third-
party resource using the Atom-based state alignment mechanisms described in Chapter 7.

A service enforces a protocol—a domain application protocol, or DAP—Dby advertising
legitimate interactions with relevant resources. When a consumer follows links
embedded in resource representations and subsequently interacts with the linked
resources, the application’s overall state changes, as illustrated in Figure 5-1.

NOTE

Domain application protocols (DAPs) specify the legal interactions between a con-
sumer and a set of resources involved in a business process. DAPs sit atop HTTP
and narrow HTTP's broad application protocol to support specific business goals.
As we shall see, services implement DAPs by adding hypermedia links to resource
representations. These links highlight other resources with which a consumer can
interact to make progress through a business transaction.

Service

----------- ¥ available link not followed

link followed as part of resource
the state transitions

Customer

resource

resource

Figure 5-1. Resources plus hypermedia describe protocols

Consumers in a hypermedia system cause state transitions by visiting and manipulating
resource state. Interestingly, the application state changes that result from a consumer

driving a hypermedia system resemble the execution of a business process. This suggests
that our services can advertise workflows using hypermedia. Hypermedia makes it easy

THE HYPERMEDIA TENET

95

to implement business protocols in ways that reduce coupling between services and
consumers. Rather than understand a specific URI structure, a consumer need only
understand the semantic or business context in which a link appears. This reduces an
application’s dependency on static metadata such as URI templates or Web Application
Description Language (WADL). As a consequence, services gain a great deal of freedom
to evolve without having to worry whether existing consumers will break.

NOTE

Services should ensure that any changes they introduce do not violate contracts with
existing consumers. While it's fine for a service to make structural changes to the rela-
tionships between its resources, semantic changes to the DAP or to the media types
and link relations used may change the contract and break existing consumers.

Loose Coupling

When developing a service we abstract away implementation details from consumers,
thereby decreasing coupling. But no matter the degree of loose coupling, consumers must
have enough information available in order to interact with our service. We need to
provide some way for them to bind to our service and drive the supported application
protocol. The beauty of hypermedia is that it allows us to convey protocol information in
a declarative and just-in-time fashion as part of an application’s resource representations.*

NOTE

Web contracts are expressed in media types and link relations. Accepting a media
type means you understand how to process that format when interacting with a ser-
vice. Using the media types and link relations supported by the service, we can extend
a contract over the Web at runtime by advertising new valid links and state transitions.

For computer-to-computer interactions, we advertise protocol information by embed-
ding links in representations, much as we do with the human Web. To describe a link’s
purpose, we annotate it. Annotations indicate what the linked resource means to the
current resource: “status of your coffee order,” “payment,” and so on. For annotations
we can use microformats or Semantic Web technologies, or we can design our own
application-specific formats. We call such annotated links hypermedia controls, reflecting
their enhanced capabilities over raw URIs.

NOTE
Forms are hypermedia controls too. Though we use links exclusively throughout the
remainder of this chapter, forms can also be used to guide a consumer’s interaction
with linked resources. At the HTTP level, POSTing a representation to a URI in a link
is equivalent to submitting a form.

* Most middleware solutions, such as WS-*, emphasize the opposite: imperative contracts presented
upfront.

96 CHAPTER 5: HYPERMEDIA SERVICES

To illustrate the key aspects of hypermedia-driven services, we’ll build the ordering
and payment parts of Restbucks’ service using a custom hypermedia format.

Hypermedia Formats

Hypermedia-driven distributed systems put similar demands on their consumers as the
Web does on humans: consumers need to discover and interact with resources so that
they can realize an application’s goal. To illustrate how representation formats allow
consumers to discover and interact with resources, let’s consider XHTML, one of the
most popular representation formats on the World Wide Web. XHTML is used to
represent information on a page (its business payload) and to link to other pages or
content (its protocol description). The inclusion of links to other resources makes
XHTML a hypermedia format. As humans, we take this property for granted. We use
web browsers to move from one page to another without thinking of the underlying
mechanics (which is a good thing, of course). Browsers apply the hypermedia tenet
and interpret links to show possible transitions from one resource (page) to another.

The Web is agnostic to the representation formats exchanged by consumers and
services, which is one of the primary reasons for its success in diverse domains. But
when it comes to hypermedia, not all formats are equal.

Hypermedia Dead Ends

Despite the success of hypermedia formats on the Web, today’s distributed applications
typically use nonhypermedia formats such as plain XML to integrate systems.
Although XML is easy to use as a data interchange format, and despite its near
ubiquity, it is utterly oblivious to the Web. This is neatly demonstrated by our humble
order XML representation from Chapter 4, which we show again in Example 5-1.

Example 5-1. XML lacks hypermedia controls

<order xmlns="http://schemas.restbucks.com">
<location>takeAway</location>
<item>
<name>latte</name>
<quantity>1</quantity>
<milk>whole</milk>
<size>small</size>
</item>
<status>pending</status>
</order>

There’s nothing intrinsically wrong with this order representation when considered in
isolation. After all, it conveys the current state of the order well enough. But it fails to
provide any context; that is, it doesn’t indicate the current state of the business process,

HYPERMEDIA FORMATS

97

http://schemas.restbucks.com%E2%80%B3

98

or how to advance it. Informally, we know we need to pay for a drink once ordered, but
the representation of Example 5-1 doesn’t indicate how to make that payment.

The use of plain XML leaves the consumer without a guide—a protocol—for
successfully completing the business transaction it has initiated. Because there are no
hypermedia controls in the order representation, the consumer must rely on out-of-
band information to determine what to do next. From a loose coupling point of view,
that’s a poor design decision. Aspects of the service’s implementation leak through
mechanisms such as URI templates into the consumer’s implementation, making
change difficult and risky.

We can, of course, communicate protocol information to the developers of a consumer
application using written documentation, or static contracts such as Web Services
Description Language (WSDL), WADL, or URI templates. But, as we’ll see, the Web
and hypermedia enable us to do better.

URI Templates and Coupling

Let’s consider first how Restbucks might communicate protocol information if it chose
the static, upfront approach. As we wrote in Chapter 3, Restbucks could share URI
templates with its consumers. For example, it could document and share the template
http://restbucks.com/payment/{order id}. The documentation would describe how
consumers are expected to PUT a payment representation to a URI generated by
replacing the order id part of the template with the ID of the original order. It’s hardly
rocket science, and with a little URI manipulation it can quickly be made to work.
Unfortunately, it can be made to fail just as rapidly.

If Restbucks chose to publish URI templates to consumers, it would then be bound to
honor those templates for the long term, or risk breaking existing consumer applica-
tions. Publishing URI template details outside a service’s boundary exposes too much
information about the service’s implementation. If the implementation of the ordering
and payment services were to change, perhaps as a result of outsourcing the payment
capability to a third party, there’d be an increased risk that consumers built to the
(now defunct) http://restbucks.com/payment/{order id} template would break. Since
that kind of business change happens frequently, Restbucks ought to encapsulate its
implementation details as far as possible.

Generally, it’s better to expose only stable URIs. These stable URIs act as entry points to
services, after which hypermedia takes over. For example, the entry point to the
Restbucks ordering service is http://restbucks.com/order. Interacting with the resource at
that URI generates further resource representations, each of which contains hyper-
media links to yet more resources involved in the ordering business process.

This doesn’t mean URI templates are a bad idea. In fact, they are an excellent metadata
format. But as with all good things, we must learn how to use them in moderation.
We believe URI templates are an excellent means for documenting service design.

CHAPTER 5: HYPERMEDIA SERVICES

http://restbucks.com/payment/
http://restbucks.com/payment/
http://restbucks.com/order

Restbucks” implementations all embrace URI templates for internal documentation and
implementation purposes. However, those same implementations only ever share
completed (opaque) URIs with consumers. The templates remain a private design and
development detail.

Selecting a Hypermedia Format

Formats provide the means for interacting with a service, and as such they’re part of
that service’s contract. Because a format is part of the service contract, it’s important to
choose an appropriate hypermedia format at design time.

REST’s hypermedia tenet doesn’t prescribe a specific representation format, but it does
require a format capable of conveying necessary hypermedia information. Different
hypermedia formats suit different services. The choice depends on a trade-off between
reach and utility—between the ability to leverage existing widely deployed software
agents and the degree to which a format matches our domain’s needs.

Standard hypermedia formats

Several of the hypermedia formats already in use on the Web today are capable of
supporting some of our requirements. Formats such as Atom* (and RSS) and XHTML
are widely used and understood. Correspondingly, many software tools and libraries
are available to produce, consume, and manage resource representations in these
formats. Web browsers, for example, know how to render XHTML representations

as pages, and Atom representations as lists of entries.

NOTE

Underlying the Web is a principle of generality, which prefers a few commonly
agreed-upon, general-purpose formats to many specialized formats. The principle of
generality allows huge numbers of different programs and systems to interoperate
using a few core technologies.

However, widespread tool support alone doesn’t make a format suitable for every
domain. For example, XHTML supports hypermedia (and is therefore capable of
describing business protocols) because it implements hypermedia controls such as

<a href>. Still, as Example 5-2 shows, it’s a verbose format for representing a Restbucks
order in a computer-to-computer interaction.

Example 5-2. Encoding an order in XHTML

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">

* A popular hypermedia format and the focus of Chapter 7.

HYPERMEDIA FORMATS

929

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd%E2%80%B3

100

<html xmlns="http://www.w3.0rg/1999/xhtml">
<body>
<div class="order">
<p class="location">takeAway</p>

<li class="item">
<p class="name">latte</p>
<p class="quantity">1</p>
<p class="milk">whole</p>
<p class="size">small</p>
</1i>

<a href="http://restbucks.com/payment/1234"
rel="http://relations.restbucks.com/payment">payment
</div>
</body>
</html>

By encoding our order as XHTML, we are able to render it in a web browser, which is
helpful for debugging. We leverage XHTML controls, such as the class attribute, to
convey semantics about the contents of an element. The approach of mixing business
data with web page presentation primitives has been popularized through microformats,
which we’ll discuss in Chapter 10. Example 5-2 illustrates, however, how the fusion of
business data and presentation primitives comes at the expense of some noisy XHTML
markup. In choosing XHTML, we make the conscious decision to trade expressiveness for
reach by shoehorning a specific application format into a more general format.

But sometimes, trading expressiveness for reach isn’t the right thing to do. Do our
consumers really need to understand XHTML and all its verbiage? Given that
Restbucks isn’t concerned with user-facing software (browsers), XHTML appears
more an overhead than a benetfit. In this case, it’s probably better to devise our own
hypermedia format.

Domain-specific hypermedia formats

Because the Web is agnostic to representation formats, we're free to create custom
formats tailored to our own problem domains. Whether we use a widely under-

stood format or create our own, hypermedia formats are more web-friendly than
nonhypermedia formats. A good hypermedia format conveys both domain-specific and
protocol information. Domain-specific information includes the values of information
elements belonging to a business resource, such as the drinks in an order. Protocol
information declares how to make forward progress in a business process—how to
move from ordering to payment, for example.

In a hypermedia format, hypermedia controls represent protocol information. A
hypermedia control includes the address of a linked resource, together with some

CHAPTER 5: HYPERMEDIA SERVICES

http://www.w3.org/1999/xhtml%E2%80%B3
http://restbucks.com/payment/1234%E2%80%B3
http://relations.restbucks.com/payment%E2%80%B3

semantic markup. In the context of the current resource representation, the semantic
markup indicates the meaning of the linked resource.

Creating a domain-specific hypermedia format isn’t as difficult as it might seem. In
Restbucks’ case, we can build on the XML schemas we’ve already created. All we have
to do is to introduce additional elements into the representations. We can add hyper-
media controls to these schemas by defining both a link and the necessary semantic
markup. Example 5-3 shows a first attempt at adding an application-specific hypermedia
control to an order.

Example 5-3. A coffee order with a custom hypermedia link

<order xmlns="http://schemas.restbucks.com">
<1ocation>takeAway</location>
<item>
<name>latte</name>
<quantity>1</quantity>
<milk>whole</milk>
<size>small</size>
</item>
<cost>2.0</cost>
<status>payment-expected</status>
<payment>https://restbucks.com/payment/1234</payment>
</order>

In this format, the order representation contains a proprietary <payment> element.
<payment> is a hypermedia control.

If we wanted to represent hypermedia controls in this manner, we would specify in
our format description that a <payment> element indicates “a linked resource respon-
sible for payments relating to the current order.” A consumer wanting to make a
payment now knows which resource it needs to interact with next.

But that’s not the only way to add hypermedia controls to our representation
format. In fact, we believe it’s a suboptimal method because it results in multiple
elements with almost identical link semantics, but different protocol semantics.
<payment> bears the joint responsibility of being both a link and a semantic annotation.
If we added a <cancel> element to our scheme, this new element would have exactly
the same link semantic as <payment>, but a wholly different protocol semantic.

Our preferred approach is to separate concerns by distinguishing between the act of
linking and the act of adding meaning to links. Linking is a repeatable process. The
meanings we attach to links, however, change from context to context. To achieve this
separation of concerns, we define a <1ink> element to convey the domain-agnostic
link function, and a rel attribute to represent the application semantics associated with
a particular link. Composing this <link> element into Restbucks’ representation format
is easy, as shown in Example 5-4.

HYPERMEDIA FORMATS

101

http://schemas.restbucks.com%E2%80%B3
https://restbucks.com/payment/1234</payment

102

Example 5-4. A coffee order with hypermedia

<order xmlns="http://schemas.restbucks.com">
<location>takeAway</location>
<item>
<name>latte</name>
<quantity>1</quantity>
<milk>whole</milk>
<size>small</size>
</item>
<cost»2.0</cost>
<status>payment-expected</status>
<link rel="http://relations.restbucks.com/payment"
href="https://restbucks.com/payment/1234" />
</order>

The Restbucks hypermedia format specification would have to document the meaning
of the rel attribute’s payment value so that consumers understand the role of the linked
resource in relation to the current resource.

NOTE

By incorporating reusable hypermedia controls in our format, we can minimize how
much of our representation we need to document and explain to consumers. If we
can construct our business documents solely from widely understood and reusable
building blocks, so much the better. Indeed, we'll have a closer look at a collection
of such building blocks when we discuss the Atom format in Chapter 7 and seman-
tics in Chapter 10.

By adding a <1ink> element to our order schema, we’ve successfully defined our own
custom hypermedia format. Designing our own format allows us to express our
specific application needs, yet retain the benefits of hypermedia. Of course, as with any
design trade-off, there are downsides. For example, the representations in Examples
5-3 and 5-4 don’t have the same reach—the ability to be processed by widely deployed
generic clients—as more established hypermedia formats such as XHTML. In essence,
we're creating a closed hypermedia ecosystem—one that’s specific to Restbucks. This
ecosystem is for consumers who are prepared to process our domain-specific payloads.
Though this limits an application’s reach, for Restbucks and enterprise systems in
general, it might be just what we need.

Processing Hypermedia Formats

Introducing a custom hypermedia format feels like a step in the right direction. Now
consumers of Restbucks services can receive both business data and the information
necessary to drive the ordering and payment protocol, all in a concise and expressive
format specific to the business domain.

CHAPTER 5: HYPERMEDIA SERVICES

http://schemas.restbucks.com%E2%80%B3
http://relations.restbucks.com/payment%E2%80%B3
https://restbucks.com/payment/1234%E2%80%B3

Still, we need to convey to consumers how to process and reason about these
representations. Fortunately, HTTP provides a way of identifying particular media
type representations using the Content-Type header (e.g., Content-Type: application/
xml, which we have used in previous chapters).

Media types

Grafting hypermedia controls onto XML documents is easy, but it’s only half the story.
What we really need to do is to create a media type. A media type specifies an interpreta-
tive scheme for resource representations. This scheme is described in terms of encodings,
schemas, and processing models, and is a key step in creating a contract for a service.

A media type name (such as application/xml) is a key into a media type’s interpreta-
tive scheme. Media types are declared in Content-Type HTTP headers. Because they're
situated outside the payload body to which they’re related, consumers can use them to
determine how to process a representation without first having to crack open the
payload and deeply inspect its content—something that might require relatively heavy
processing, such as a decrypt operation, for example.

NOTE

Media type names may also appear in some inline links and forms, where they
indicate the likely representation format of the linked resource.

A media type value indicates the service’s preferred scheme for interpreting a represen-
tation: consumers are free to ignore this recommendation and process a representation
as they see fit.

For example, we know that XHTML is valid XML and can be consumed by any
software that understands XML. However, XHTML carries richer semantics (it supports
hypermedia) than plain XML, and so processing it as XML rather than XHTML is
lossy—we lose information about linked resources.

If a consumer interprets a received representation ignoring the rules set out by the
media type in the accompanying Content-Type header, all bets are off.

—— WARNING

Willfully ignoring a media type declaration in a Content-Type header is not to be
taken lightly, and is a rare occurrence.

Media types are one of three key components of DAPs. The other two components are
link relation values, which describe the roles of linked resources, and HTTP idioms,
which manipulate resources participating in the protocol. Link relation values help
consumers understand why they might want to activate a hypermedia control. They do so
by indicating the role of the linked resource in the context of the current representation.

HYPERMEDIA FORMATS

103

104

A media type value helps a consumer understand what is at the end of a link. The Zow
of interacting with a resource is realized by HTTP constructs such as GET, PUT, and POST
(and their conditional counterparts) and the control alternatives suggested by the
HTTP status codes.

NOTE

Media types and DAPs are not the same. A media type specification describes
schemas, processing models, and link relation values for a representation format.
A DAP specification lays out the rules for achieving an application goal based on
interactions with resource representations belonging to one or more media types.
DAPs augment media type specifications with application-specific link relation
values where necessary.

A media type for Restbucks

The media type declaration used in the Content-Type header for interactions with
Restbucks is application/vnd.restbucks+xml. Breaking it down, the media type name
tells us that the payload of the HTTP request or response is to be treated as part of an
application-specific interaction. The vnd.restbucks part of the media type name
declares that the media type is vendor-specific (vnd), and that the owner is restbucks.
The +xml part declares XML is used for the document formatting.

More specifically, the vnd.restbucks part of the media type name marks the payload as
being part of Restbucks” DAP. Consumers who know how to interact with a Restbucks
service can identify the media type and interpret the payloads accordingly.*

Why application/xml doesn’t help

As we described earlier, we chose to stick with XML for the Restbucks representation
formats. This decision allows us to reuse existing schemas/formats in our media type
description.t However, this doesn’t mean we should use text/xml or application/xml
as the value of the Content-Type header, and for good reason. The Content-Type header
sets the context for how the payloads should be processed. Suggesting that the payload
is just XML gives the wrong indication to software agents about the content and
processing model for a representation. Treating Restbucks content and its hypermedia
control format as plain XML simply leads to a hypermedia dead end.

For example, in Example 5-5 we see a Restbucks order, which contains two <1ink>
elements advertising other resources of interest to the customer. Using this simple
protocol representation format, the service shows consumers how they can make

* As more coffee shops bring their business to the Web, it’s conceivable to create a common applica-
tion protocol and a vendor-agnostic media type (e.g., application/coffee+xml). Until such an
event, we will assume that Restbucks has the monopoly on coffee on the Web.

1 Media types can reference many schemas. When accepting the contract imposed by a media type,
you're indicating that you understand the associated schemas.

CHAPTER 5: HYPERMEDIA SERVICES

forward progress through the business process by interacting with the payment and
special offer resources.

Example 5-5. Content-Type dictates how entity bodies are processed

HTTP/1.1 200 OK

Content-Length: 342

Content-Type: application/xml

Date: Sun, 21 Mar 2010 17:04:10 GMT

<order xmlns="http://schemas.restbucks.com">
<1ocation>takeAway</location>
<item>
<name>latte</name>
<quantity>1</quantity>
<milk>whole</milk>
<size>small</size>
</item>
<cost>2.0</cost>
<status>payment-expected</status>
<link rel="http://relations.restbucks.com/payment"
href="https://restbucks.com/payment/1234"/>
<link rel="http://relations.restbucks.com/special-offer"
href="http://restbucks.com/offers/cookie/1234" />
</entry>

But all is not well with Example 5-5. While the root XML namespace of the payload
clearly indicates that this is a Restbucks order (and is therefore hypermedia-friendly, as
defined by the Restbucks specification), the Content-Type header declares it should be
processed as plain XML, not as the hypermedia-friendly application/vnd.
restbucks+xml. When we encounter an HTTP payload on the Web whose Content-Type
header is set to application/xml, we’'re meant to process that payload in accordance
with its media type specification, as set out in RFC 3023.

By treating XML hypermedia formats as plain XML, we skip many of their benefits.
The interpretative scheme for each format includes hypermedia control definitions
that enable programs to identify and process hypermedia controls embedded within

a document of that type. These processing imperatives do not exist in the application/
xml media type specification, which means that the payload of Example 5-5 should be
treated simply as structured data. The protocol information (the <link> elements) will
appear as odd-looking business information.

—— WARNING

HTTP is not a transport protocol, it is an application protocol. An HTTP message’s
body cannot be divorced from its headers, because those headers set the process-
ing context for the entity body payload.

HYPERMEDIA FORMATS

105

http://schemas.restbucks.com%E2%80%B3
http://relations.restbucks.com/payment%E2%80%B3
https://restbucks.com/payment/1234%E2%80%B3/
http://relations.restbucks.com/special-offer%E2%80%B3
http://restbucks.com/offers/cookie/1234%E2%80%B3/

106

XML thinking encourages us to separate protocol and data—usually to our detriment.
Too often, we end up designing containers for data, with no inline provision for
protocol information. This leads us to advertise the protocol using an out-of-band
mechanism such as URI templates. The burden then falls to consumer applications to
keep current with changes in the service implementation (particularly around URIs)—
changes that ordinarily the service would not be obliged to share.

Adding hypermedia controls to an XML representation doesn’t help much if we then
go on to recommend the representation be treated as plain XML. The controls can play
their part in a hypermedia system only if the Content-Type header suggests using a
hypermedia-aware interpretative scheme. This is the case even if the document’s root
XML namespace alludes to a useful processing model. Content-Type headers, not XML
namespaces, declare how a representation is to be processed: that’s the convention on
the Web.

NOTE

Services and consumers are bound by the application protocol semantics of HTTP.
When a service declares that a payload is in a particular format, consumers should
honor that directive rather than second-guess the processing model by deeply
examining the payload contents.

A diligent consumer might later examine the XML namespace or associated schema
and discover a more specialized type. Activities such as this take place outside the
well-understood, predictable mechanisms defined by HTTP. Wrongly inferring the
processing model may even harm the application if the originating service explicitly
meant for the payload to be interpreted in a specific way—not all representations with
angle brackets are well-formed XML, after all.

For example, as part of its monitoring processes, Restbucks may produce a feed of
malformed orders: corrupted documents submitted by inept or malicious customers. In
the Content-Type header, the service indicates that the representation should be treated
as text/plain. Consumers that decide to treat these representations as XML, because
they contain angle brackets, had better guard against exceptions arising from malformed
XML since the service has made no stronger commitment than to provide plain text.

Media type design and formats

Balancing the number of media types we use against the number of representation
formats that our DAP uses can be a tricky affair. On the one hand, it’s possible to create a
new media type for each representation format hosted by a service. On the other hand,
we might choose to create one media type for the entire application domain.

CHAPTER 5: HYPERMEDIA SERVICES

Creating a one-to-one mapping between media types and representation formats, with
specialized media type values such as application/vnd.restbucks.order+xml and
application/vnd.restbucks.payment.creditCard+xml, can lead to extremely tight cou-
pling between a service’s domain layer and its consumers. The interactions in the
application protocol might have to be fine-grained since the composition of representa-
tion formats will not be possible, given that there can be only one media type per HTTP
request or response. At the other extreme, a single monolithic media type can add
unnecessary overhead when we want to share a subset of schemas between application
domain contexts.

In our case, we've chosen to make application/vnd.restbucks+xml generally applicable
to the entire domain of orders and payments in Restbucks. As a result, our media type
defines the order, payment, and receipt schemas, and our chosen hypermedia control
format and processing model (the <link> element). It also defines a number of link
relation values, which our DAP uses to identify the relationship between resources.

NOTE

Although Restbucks defined the core functionality for its media type, there’s noth-
ing to stop other DAPs from composing our media type with other media types, or
adding to our set of link relation values. By composing other media types or layer-
ing on other link relations, the Restbucks media type can be easily extended and
put to other uses, just like any other good media type.

In the Restbucks application domain, we assume that consumers who understand the
application/vnd.restbucks+xml media type are capable of dealing with everything
defined by it. However, it occasionally happens that some consumers want to handle
only a subset of the representation formats defined in a media type. While there is no
standard solution to this issue on the Web, there is a popular convention defined by
the Atom community. The application/atom+xml media type defines both the feed and
the entry resource representation formats.* While the vast majority of consumers can
handle both, there is a small subset wishing only to deal with standalone entries. In
recognition of this need, Atom Publishing Protocol (AtomPub) added a type parameter
to the media type value (resulting in Content-Type headers such as application/
atom+xml;type=entry). With such a value for the ContentType header, it is now possible
to include “entry” resource representations as payloads in HTTP requests or responses
without requiring that the processing software agents have a complete understanding
of all the Atom-defined formats.

* We will discuss the Atom formats and Atom Publishing Protocol thoroughly in Chapters 7 and 8.

HYPERMEDIA FORMATS

107

NOTE

Though the Restbucks media type contains multiple schemas, we've chosen not
to implement a type parameter. Instead, we distinguish individual representations
based on their XML namespaces. It's worth keeping this convention in mind, how-
ever, for situations where we only want to provide support for a subset of a media
type's representation formats.

In many of the examples in the remainder of this chapter, we’ll omit the HTTP headers
and focus on the hypermedia payloads. These examples assume the Content-Type
header is set to application/vnd.restbucks+xml.

Contracts

Contracts are a critical part of any distributed system since they prescribe how
disparate parts of an application should interact. Contracts typically encompass data
encodings, interface definitions, policy assertions, and coordination protocols. Data
encoding requirements and interface definitions establish agreed-upon mechanisms for
composing and interpreting message contents to elicit specific behaviors. Policies
describe interoperability preferences, capabilities, and requirements—often around
security and other quality-of-service attributes. Coordination protocols describe how
message exchanges can be composed into meaningful conversations between the
disparate parts of an application in order to achieve a specific application goal.*

The Web breaks away from the traditional way of thinking about upfront agreement
on all aspects of interaction for a distributed application. Instead, the Web is a platform
of well-defined building blocks from which distributed applications can be composed.
Hypermedia can act as instant and strong composition glue.

Contracts for the Web are quite unlike static contracts for other distributed systems.
As Figure 5-2 shows, contracts are a composition of a number of aspects, with media
types at their core. Protocols extend the capabilities of a media type into a specific
domain. Currently, there is no declarative notation to capture all aspects of a contract
on the Web. While technologies such as XML Schema allow us to describe the struc-
ture of documents, there is no vocabulary that can describe everything. As developers,
we have to read protocol and media type specifications in order to implement applica-
tions based on contracts.

* In the WS-* stack, these contract elements are typically implemented using XML Schema, WSDL,
WS-Policy, and BPEL or WS-Choreography, respectively.

108 CHAPTER 5: HYPERMEDIA SERVICES

Media type

Formats Link relations

(oo)
(o)

Processing models

Protocol
HTTP idioms

Entry-point URIs

Contract

Protocols

Figure 5-2. Contracts are a composition of media types and protocols

Contracts Begin with Media Types

The core of any contract on the Web is the set of media types a service supports. A
media type specification sets out the formats (and any schemas), processing model,
and hypermedia controls that services will embed in representations.

There are numerous existing media type specifications that we can use to meet the
demands of our service. Occasionally, we may create new media types to fit a particu-
lar domain. The challenge for service designers is to select the most appropriate media
type(s) to form the core service contract.

On entering into the contract, consumers of a service need simply to agree to the
format, processing model, and link relations found in the media types the service uses.
If common media types are used (e.g., XHTML or Atom), widespread interoperability
is easily achievable since many systems and libraries support these types.

We believe an increase in the availability of media type processors will better enable us
to rapidly construct distributed applications on the Web. Instead of coding to static
contracts, we will be able to download (or build) standard processors for a given media
type and then compose them together.*

* Examples of such processors already abound; these include Apache Abdera and .NET’s syndication
types, both of which implement the Atom Syndication Format.

CONTRACTS

109

110

Often, that’s as far as we need to go in designing a contract. By selecting and option-
ally composing media types, we’'ve got enough collateral to expose a contract to other
systems. However, we need not stop there, and can refine the contract by adding
protocols.

Extending Contracts with Protocols

On the Web, protocols extend the base functionality of a media type by adding new
link relations and processing models.

NOTE

A classic example of protocols building on established media types is Atom
Publishing Protocol. AtomPub describes a number of new link relations, which
augment those declared in the Atom Syndication Format. It builds on these link
relations to create a new processing model that supports the specific application
goal of publishing and editing web content.

While media types help us interpret and process a format, link relations help us
understand why we might want to follow a link. A protocol can add new link relations
to the set provided by existing media types. It can also augment the set of HTTP idioms
used to manipulate resources in the context of specific link relations. Service designers
can also use independently defined link relations, such as those in the IANA Link
Relations registry, mixing them in with the link relations provided by media types and
protocols to advertise specific interactions.*

HTTP Idioms

Underpinning all media types and protocols is the HTTP uniform interface, which
provides the plumbing through which contracts are enacted at runtime. Even with
media types and protocols to describe a contract, consumers still need to know how
individual resources should be manipulated at runtime. In other words, contracts
define which HTTP idioms—methods, headers, and status codes—consumers should
use to interact with a linked resource in a specific context.

Such information can come from several sources. Many hypermedia controls have
attributes that describe transfer options. XHTML's <form> element, for example,
includes a method attribute that specifies the HTTP method to use to send form data.
Occasionally, the current application context can be used to determine which idiom to
use next. If the consumer receives a representation accompanied by an ETag header, it’s
reasonable to assume that subsequent requests for the same resource can be made using
a precondition: If-Match or If-None-Match, as appropriate. Similarly, a 303 See Other

* JANA defines numerous top-level link relations that are broadly applicable across numerous
domains. These relations aren’t bound to any particular media type or protocol, and can be freely
reused in any service implementation with matching requirements.

CHAPTER 5: HYPERMEDIA SERVICES

status code and accompanying Location header instruct the recipient to perform a GET on
the Location header’s URL. When neither the current payload nor the processing context
indicates which idioms to use, OPTIONS can be used on the linked resource’s URI.

NOTE

We should always remember that the OPTIONS method allows us to query for infor-
mation regarding the communication options currently supported by a resource.
However, if we find the need to use many OPTIONS requests or probe linked
resources with best-guess requests, we should be concerned about the predict-
ability and robustness of our distributed application.

Using Contracts at Runtime

At runtime, a contract is enacted over the Web as shown in Figure 5-3. The final
contract element put into place is a well-known entry point URI (or URIs), which is
advertised to consumers so that they can bind to the service.

Contract:

- One or more media types

« Protocol(s)

- Any additional link relation values
« HTTP communications idioms

- Entry point URI(s)

Customer Service

Figure 5-8. Enacting contracts at runtime

Although media types, protocols, and link relations are defined orthogonally to any
given service, they still constitute a strong contract. A consumer that understands a set
of media types, protocols, and link relations can interact with any service that supports
them (in any combination).

Since consumers know the service contract, its protocol can be driven entirely by
exchanging and processing representations whose content and hypermedia controls
are consistent with that contract. This scheme provides loose coupling, and it also
allows services to lead their consumers through business protocols.

CONTRACTS

112

Hypermedia Protocols

REST introduces a set of tenets that, when applied to distributed systems design, yield
the desirable characteristics of scalability, uniformity, performance, and encapsulation.
Using HTTP, URIs, and hypermedia, we can build systems that exhibit exactly the same
characteristics. These three building blocks also allow us to implement application
protocols tailored to the business needs of our solutions.

The Restbucks Domain Application Protocol

As a web-based system, Restbucks supports a DAP for ordering and payment.
Figure 5-4 summarizes the HTTP requests that the ordering service supports and the
associated workflow logic each request will trigger.

Transitions initiated Events causing
by consuming applications Business logic state transitions

—w—b http://restbucks.com/order

v T SE el 4] R update order (only ifstate s @
l I.[i f?ﬁ R at"payment expected”)

DELETE httn: Thlicks) Tor /s] N order cancelled (only f state .
—I_'*[_PIFiMIor izt is at “payment expected"”) o
_l PUT I—D[https //restbucks.com/payment/1234]—b payment accepted

‘ barista prepared order
_I DELETE I—b http://restbucks.com/receipt/1234 conclud:r;::scsrdering

—Iil—b http:/!restbucks.com/orderf1234]—b SRR A e idtion

of the resource
Figure 5-4. Possible HTTP requests for the Restbucks ordering service

new order
(create resource)

The permitted interactions shown in Figure 5-4 constitute a complete business
protocol for lodging, managing, and paying for an order. Each interaction invokes a
workflow activity that changes the underlying state of one or more resources managed

CHAPTER 5: HYPERMEDIA SERVICES

by the service.* Modeling Restbucks’ business processes as a DAP and then represent-
ing that protocol as a state machine in this manner is a useful way of capturing a
business process at design time.

Moving from design to implementation, we need to think about the protocol in a
slightly different way. In a resource-oriented distributed application, an application
protocol can be thought of as a function of one or more resource life cycles and the
business rules that connect these resources. Because of its resource-centric nature, the
Restbucks service does not host an application protocol state machine. In other words,
there’s no workflow or business logic for the application protocol as such. Rather, the
service governs the life cycles of the orders and payments participating in the applica-
tion protocol. Any workflows in the service implementation relate to resource life cycles,
not the application protocol life cycle. While we’ve been explicit in modeling the
business process as an application protocol state machine, we’ve been diligent in
implementing it wholly in terms of resource state machines.

Figure 5-5 shows the resource state machine for an order as implemented in the
service. From this diagram and Figure 5-4, we can derive the DAP:

e POST creates an order.
e Any number of POSTs updates the order.

e A single DELETE cancels the order, or a single PUT to a payment resource pays for
the order.

¢ And finally, a single DELETE confirms that the order has been received.

preparing o ready o completed .

Figure 5-5. State transitions for the order resource from Figure 5-4

payment
expected

The state machine diagram in Figure 5-5 is a useful design artifact, but it isn’t a good
representation format for sharing protocols over the Web. For that, we use hypermedia,
which starts with a single, well-known entry point URL

* GET requests are also associated with business logic, but don’t cause any state transitions for which
the consumer can be held accountable by the service. This is consistent with the use of GET on the
Web, and as we will see in later chapters, it is one of the key enablers for massive scalability.

HYPERMEDIA PROTOCOLS

113

Resources Updates: PUT Versus POST

In Chapter 4, our CRUD service used PUT to update the state of a resource, whereas in
our hypermedia service, we're using POST—a verb we'd normally associate with resource
creation.

We've made this change because of the strict semantics of PUT. With PUT, the state encap-
sulated by the incoming representation will, if legal, wholly replace the state of the resource
hosted by the service. This obliges a client to PUT all the resource state, including any links,
as part of the representation it sends. But since, in this example, clients have no business
sending links to a service, we can't expect them to use PUT.

At the time of this writing, a new verb called PATCH has become an Internet RFC under
the auspices of the IETE* Unlike PUT, PATCH is neither safe nor idempotent, but it can be
used to send patch documents (diffs) over the wire for partial resource modification. Us-
ing PATCH, a consumer could legally transmit the business information portion of the order
to the Restbucks service, which would then apply the information to an existing order
resource and update links as necessary.

PATCH has only recently become an Internet standard (as RFC5789) and is not yet widely
supported. Until that situation changes, we will continue to send partial updates to the
service using POST.

* http://tools.ietf.org/html/rfc5789

Advertising Protocols with Hypermedia

For our hypermedia service implementation, we’ll create an entry point to the order-
ing service at http://restbucks.com/order. To initiate the ordering protocol, a consumer
POSTs a request with an order representation to http://restbucks.com/order, which results
in a new order being created. The payload of the POST request must be a Restbucks
order XML representation, and the Content-Type header must contain the value
application/vnd.restbucks+xml.

Changing the media type to application/vnd.restbucks+xml from application/xml
might seem a modest step, but in doing so we’ve realized some fundamental goals: the
entry point to the Restbucks service gives consumers a way of triggering an instance of
our DAP. From this point onward, hypermedia takes over, with link relations from the
Restbucks media type leading consumers from one step in the business protocol to the
next. If all goes well, by the end of the process we will have the set of interactions
shown in Figure 5-6.

Figure 5-6 shows the trace of HTTP interactions that occur during a normal, successful
interaction with Restbucks. Each interaction is guided by hypermedia links, so it’s easy
to piece this puzzle together, starting from the beginning.

CHAPTER 5: HYPERMEDIA SERVICES

http://restbucks.com/order
http://tools.ietf.org/html/rfc5789
http://restbucks.com/order

Customer Restbucks

e) e

— =

— PUT payment B
———| DELETE receipt } P

{ 200 + completed order"f

Figure 5-6. Driving the Restbucks ordering protocol through the happy path

A

1

A

r Y

If Restbucks accepts the POSTed order, the ordering service generates a 201 Created
response, which contains a representation of the service’s version of the order. So far,
this matches the CRUD approach we saw in the preceding chapter. The marked
differences are in the use of the Content-Type header, and in the contents of the
returned resource representation, which now uses links to advertise the next set of
accessible resources.

At this point, the ordering protocol allows the consumer to check the status of the
order, cancel it, update it, or pay for it (see Figure 5-7). For example, if the consumer
checks the status of the order prior to paying, the service returns a representation with
a business payload part depicting the status of the order, and a protocol part indicating
payment is still required, as shown shortly in Example 5-6.

Custormer Restbucks

_%l http://restbucks.com/order]

order
(hypermedia)

Status
(GET)

Update

(PUT) https://restbucks.com/payment/1234]
Cancel
) —Dl http:ﬁrestbucks.com!arder,"1234]

Figure 5-7. Responses contain links to valid next steps in the interaction

Payment
(PUT)

HYPERMEDIA PROTOCOLS

116

NOTE

The protocol parts of the payload direct customers through the ordering process,
but the service can't assume that every customer will follow these directions.
Because we can't control the development of consumer applications, we need to
make sure the service can process any incoming request—even an out-of-order or
invalid request—and return the appropriate response codes.

The semantics of the links in the order representation must be communicated to, and
understood by, Restbucks’ customers. This is the purpose of the Restbucks media type.*
By accepting HTTP responses with the Content-Type header set to application/vnd.
restbucks+xml, consumers enter into a contract that requires them to understand
Restbucks’ representation format and link relation values if they wish to make forward
progress. As per the media type description, Restbucks leverages a reusable <link>
element to convey business protocol information. We separate the <link> element and
its attributes from the rest of the Restbucks representation format elements and we
define it in its own http://schemas.restbucks.com/dap namespace:

e <link> elements have a uri attribute whose value indicates a resource with which
the consumer can interact to progress the application protocol.

e <link> elements have a rel attribute containing semantic markup. The definitions
of the markup values imply which HTTP verb to use when following the link, as
well as required HTTP headers, and the structure of the payload.

e If a request requires an entity body, the <link> element will contain a mediaType
attribute that declares the format of the request payload. If a request does not
require an entity body, the mediaType attribute will be absent.

With the <dap:1ink> hypermedia control at our disposal, let’s see an example order
representation. Example 5-6 shows a response representation generated immediately
after an order has been accepted.

Example 5-6. Hypermedia order representation

<order xmlns="http://schemas.restbucks.com"
xmlns:dap="http://schemas.restbucks.com/dap">
<dap:1link mediaType="application/vnd.restbucks+xml"
uri="http://restbucks.com/order/1234"
rel="http://relations.restbucks.com/cancel"/>
<dap:1link mediaType="application/vnd.restbucks+xml"
uri="http://restbucks.com/payment/1234"
rel="http://relations.restbucks.com/payment"/>
<dap:1link mediaType="application/vnd.restbucks+xml"
uri="http://restbucks.com/order/1234"

* Since the media type maps entirely to the Restbucks business domain, all link relation values used
in the application protocol are defined in its specification.

CHAPTER 5: HYPERMEDIA SERVICES

http://schemas.restbucks.com/dap
http://schemas.restbucks.com%E2%80%B3
http://schemas.restbucks.com/dap%E2%80%B3
http://restbucks.com/order/1234%E2%80%B3
http://relations.restbucks.com/cancel%E2%80%B3/
http://restbucks.com/payment/1234%E2%80%B3
http://relations.restbucks.com/payment%E2%80%B3/
http://restbucks.com/order/1234%E2%80%B3

rel="http://relations.restbucks.com/update"/>
<dap:1link mediaType="application/vnd.restbucks+xml"
uri="http://restbucks.com/order/1234" rel="self"/>
<item>
<milk>semi</milk>
<size>large</size>
<drink>cappuccino</drink>
</item>
<location>takeAway</location>
<cost>2.0</cost>
<status>unpaid</status>
</order>

This order representation shows the different URIs and associated rel values
consumers can use to advance the DAP. The semantic markup definitions are shared
widely with consumers as part of the media type specification, and are as follows:

payment
The linked resource allows the consumer to begin paying for the order. Initiating
payment involves PUTting an appropriate resource representation to the specified
URI, as defined in the Restbucks media type.

self
The uri value can be used to GET the latest resource representation of the order.

update
Consumers can change the order using a POST to transfer a representation to the
linked resource.

cancel
This is the uri to be used to DELETE the order resource should the consumer wish
to cancel the order.

At this point in the workflow, if the customer GETs the status of the order via http://
restbucks.com/order/1234, the customer will be presented with the resource representa-
tion shown in Example 5-6. Once payment has been PUT to the payment URI, how-
ever, subsequent requests for the order will return a representation with different
links, reflecting a change in application state and the opening up of a new set of steps
in the DAP.

At any point in the execution of the ordering process, the service can inject hypermedia
controls into response bodies. For example, if the customer submits a payment via
POST, as shown in Example 5-7, the service updates the state of the order to reflect the
fact that payment is no longer required.

HYPERMEDIA PROTOCOLS

http://relations.restbucks.com/update%E2%80%B3/
http://restbucks.com/order/1234%E2%80%B3
http://restbucks.com/order/1234
http://restbucks.com/order/1234

Example 5-7. A payment resource representation

<payment xmlns="http://schemas.restbucks.com">
<amount>2.0</amount>
<cardholderName>Michael Faraday</cardholderName>
<cardNumber>11223344</cardNumber>
<expiryMonth>12</expiryMonth>
<expiryYear>12</expiryYear>

</payment>

The service then injects links to both the order and receipt resources into the response,
as shown in Example 5-8.

Example 5-8. Payment response contains links to order and receipt resources

<ns2:payment xmlns:dap="http://schemas.restbucks.com/dap"
xmlns="http://schemas.restbucks.com">
<dap:link mediaType="application/vnd.restbucks+xml"
uri="http://restbucks.com/order/1234"
rel="http://relations.restbucks.com/order"/>
<dap:link mediaType="application/vnd.restbucks+xml"
uri="http://restbucks.com/receipt/1234"
rel="http://relations.restbucks.com/receipt"/>
<amount>2.0</amount>
<cardholderName>Michael Faraday</cardholderName>
<cardNumber>11223344</cardNumber>
<expiryMonth>12</expiryMonth>
<expiryYear>12</expiryYear>
</payment>

In the newly minted representation in Example 5-8, we have two <link> elements to
consider. The order link takes the customer directly to the order resource (where the
customer can complete the ordering protocol) while the receipt link leads to a receipt
resource (should the customer need a receipt).

If the customer requires a receipt, a GET on the receipt link returns the representation
in Example 5-9. If the customer doesn’t want a receipt, it can follow the order link in
Example 5-8 directly back to the order. Whichever route is chosen, the customer ends
up at a point in the workflow where the order is paid for and we have a representation
similar to the one in Example 5-10.

Example 5-9. Receipt representation with a link to the order resource

<receipt xmlns:dap="http://schemas.restbucks.com/dap"
xmlns="http://schemas.restbucks.com">
<dap:link mediaType="application/vnd.restbucks+xml"
uri="http://restbucks.com/order/1234"
rel="http://relations.restbucks.com/order"/>

118 CHAPTER 5: HYPERMEDIA SERVICES

http://schemas.restbucks.com%E2%80%B3
http://schemas.restbucks.com/dap%E2%80%B3
http://schemas.restbucks.com%E2%80%B3
http://restbucks.com/order/1234%E2%80%B3
http://relations.restbucks.com/order%E2%80%B3/
http://restbucks.com/receipt/1234%E2%80%B3
http://relations.restbucks.com/receipt%E2%80%B3/
http://schemas.restbucks.com/dap%E2%80%B3
http://schemas.restbucks.com%E2%80%B3
http://restbucks.com/order/1234%E2%80%B3
http://relations.restbucks.com/order%E2%80%B3/

<amount>2.0</amount>
<paid>2010-03-03T21:58:03.834+01:00</paid>
</receipt>

Example 5-9 contains two elements that allow us to infer the state of the distributed
application. The <paid> element, which contains a timestamp, provides business-level
confirmation that the order has been paid for. This sense of application state is reinforced
at the protocol level by the presence of a single <1ink> element, which directs the
consumer toward the order resource and the end of the business process. And because
the payment link is now absent, the consumer has no way of activating that part of the
protocol.

NOTE

While all this is going on in full view of the consumer, behind the scenes an internal
process is initiated to add the order to a barista’s queue. Restbucks’ customers
aren't exposed to any of this detail. All they need to know is the next protocol step
after payment.

We know that having paid for the order, the customer might GET a receipt—and
following that, the latest order representation—or the customer might simply go
straight to the latest representation of the order. Either way, the customer eventually
ends up with the order information shown in Example 5-10.

There are two things to note here. First, the value of the <status> element has
changed to preparing. Second, there is only one possible transition the customer can
initiate, which is to request the status of the order through the self link.

Example 5-10. The updated order resource representation after payment has been accepted

<order xmlns="http://schemas.restbucks.com"
xmlns:dap="http://schemas.restbucks.com/dap">

<dap:link mediaType="application/vnd.restbucks+xml"
uri="http://restbucks.com/order/1234" rel="self"/>

<item>
<milk>semi</milk>
<size>large</size>
<drink>cappuccino</drink>
</item>
<location>takeAway</location>
<cost>2.0</cost>
<status>preparing</status>
</order>

While the order is in this state, every inquiry regarding the status of the order will
receive the same response. This is the equivalent of the service saying, “Your order is
being prepared; thank you for waiting.” Every time the customer GETs the order repre-
sentation, it will see the same preparing value, until the barista delivers the coffee.

HYPERMEDIA PROTOCOLS

119

http://schemas.restbucks.com
http://schemas.restbucks.com/dap
http://restbucks.com/order/1234

120

—— WARNING

Once a service has exposed information to the outside world, it no longer controls how
or when that information might be used. For example, when Restbucks exposes a URI
for canceling an order, it can't know when—or if—a customer will use it.

Similarly, customers can't be sure an order (including its hypermedia links) won't
change as a result of an internal business process. Even if they try immediately to initi-
ate a transition based on a link in a representation they've just received, they may find
the resource no longer supports the transition—the barista may have been even faster!
As with any consumer or service application on the Web, our service implementa-

tion must be prepared to deal with any out-of-order request, even if it is just to
return an error condition, or to flag conflicting state with a 409 Conflict response.

Once the order is complete, the barista changes the status of the underlying resource
to ready. This is an example of how an internal, backend business process can change
the state of a resource without consumer intervention. The next time the customer
GETs the order resource representation, the response will include the final possible
transition in the ordering process, as shown in Example 5-11.

Example 5-11. Order resource representation after the barista has prepared it

<order xmlns="http://schemas.restbucks.com"
xmlns:dap="http://schemas.restbucks.com/dap">
<dap:link mediaType="application/vnd.restbucks+xml"
uri="http://restbucks.com/receipt/1234"
rel="http://relations.restbucks.com/receipt"/>
<item>
<milk>semi</ milk>
<size>large</size>
<drink>cappuccino</drink>
</item>
<location>takeAway</location>
<cost>2.0¢</cost>
<status>ready</status>
</order>

NOTE

As it stands, there's no way for Restbucks to notify a customer that its order is
ready. Instead, the solution uses GET-based polling. We could ask that as part of
order submission, customers register a callback URI to which a notification could
be POSTed, but this presumes the customer has the means to deploy a service
somewhere and accept HTTP requests.

The lack of notification capabilities isn't a big problem. The Web is designed to deal
with “impatient” customers who repeatedly try to update their orders. Paradoxical as
it might seem, polling and caching enable the Web to scale. Because representations
can be cached close to consumers, no additional load needs to be generated on the
service. Caching and its implications for service design are discussed in Chapter 6.

CHAPTER 5: HYPERMEDIA SERVICES

http://schemas.restbucks.com%E2%80%B3
http://schemas.restbucks.com/dap%E2%80%B3
http://restbucks.com/receipt/1234%E2%80%B3
http://relations.restbucks.com/receipt%E2%80%B3/

The representation in Example 5-11 includes a single, final state transition in the
ordering process:

receipt
Customers can DELETE the linked resource, thereby completing the order.

This DELETE request takes the receipt from Restbucks, at least as far as the consumer is
concerned. It’s the logical equivalent of physically taking a receipt from the cashier’s
hand, and in doing so completing the order process.

Inside the service, we probably wouldn’t remove the resource, but instead maintain it
as part of Restbucks” audit trail. This final resource state transition has the effect of
completing the order, and transitions our DAP to its final state.

The response to DELETE transfers a final copy of the order. The representation, as
shown in Example 5-12, has no hypermedia constructs, indicating that the resource is
not part of an active business process.

Example 5-12. Representations of completed orders have no links

<order xmlns="http://schemas.restbucks.com"
xmlns:dap="http://schemas.restbucks.com/dap">
<item>
<milk>semi</milk>
<size>large</size>
<drink>cappuccino</drink>
</item>
<location>takeAway</location>
<cost>2.0</cost>
<status>taken</status>
</order>

And with that, our protocol instance is complete. But our exploration into hypermedia
isn't—at least not yet.

Dynamically Extending the Application Protocol

One advantage of using hypermedia to advertise protocols is that we can introduce new
features without necessarily breaking existing consumers. The media type application/
vnd.restbucks+xml contains numerous schemas and link relation values, not all of which
are required for the basic ordering workflow; some of them are for optional interactions,
such as special offers, which Restbucks occasionally runs.

—— WARNING

Remember that media types and link relations act as contracts between a service
and its consumers. Any additional link relation values that a service adds to its proto-
cols over time must either be supported by existing media types or made optional.

HYPERMEDIA PROTOCOLS

121

http://schemas.restbucks.com%E2%80%B3
http://schemas.restbucks.com/dap%E2%80%B3

122

For example, Restbucks might run a loyalty program based on coffee cards: after a
customer places nine coffee orders, the tenth drink is free. To allow consumers to create
or update a coffee card, Restbucks adds a link to the receipt representation returned
after payment has been taken and the drinks dispensed, as shown in Example 5-13.

Example 5-13. Advertising a coffee card loyalty program

<order xmlns="http://schemas.restbucks.com"
xmlns:dap="http://schemas.restbucks.com/dap">
<item>
<milk>semi</milk>
<size>large</size>
<drink>cappuccino</drink>
</item>
<location>takeAway</location>
<cost>2.0¢</cost>
<status>taken</status>
<dap:link rel="http://relations.restbucks.com/coffee-card"
uri="http://restbucks.com/order/1234/coffeecard"
mediaType="application/vnd.restbucks+xml"/>
</order>

Customers that don’t understand the semantics of the coffee-card link are free to
ignore it—they just won't get any free drinks. Customers who do understand the
semantics of the http://relations.restbucks.com/coffee-card relation but who don't
already have a coffee card can issue a simple GET request to the URI identified by the
coffee-card link. The response contains the representation of a new coffee card with
the coffee that was just purchased already recorded, as shown in Example 5-14.

Example 5-14. Coffee card GET response

HTTP/1.1 200 OK

Content-Length: 242

Content-Type: application/vnd.restbucks+xml
Date: Sun, 21 Mar 2010 19:04:49 GMT

<coffeeCard xmlns="http://schemas.restbucks.com">
<link rel="self"
href="http://restbucks.com/coffeecard/4456afd23" />
<tamperProof>37d8c227a9e6e255327bb583dd149274</tamperProof>
<numberOfCoffees>1</number0fCoffees>
</coffeeCard>

The coffee card’s resource representation in Example 5-14 contains a self link,
which identifies the card; a <numberOfCoffees> element, which records how many
coffees have been purchased using the card; and a tamper-proofing mechanism,

CHAPTER 5: HYPERMEDIA SERVICES

http://schemas.restbucks.com%E2%80%B3
http://schemas.restbucks.com/dap%E2%80%B3
http://relations.restbucks.com/coffee-card%E2%80%B3
http://restbucks.com/order/1234/coffeecard%E2%80%B3
http://relations.restbucks.com/coffee-card
http://schemas.restbucks.com%E2%80%B3
http://restbucks.com/coffeecard/4456afd23%E2%80%B3

which allows Restbucks to determine whether malicious customers have adjusted
the card’s data.*

NOTE
It's safe for us to add links to representations for optional parts of a business pro-
cess. Nonparticipating consumers will just ignore the optional hypermedia controls
and proceed as normal. What's noticeable is how easy it is to add and publish new
functionality.

If a customer has a coffee card from a previous purchase, the customer can update it by
POSTing it to the identified URIL Doing so updates both the number of coffees purchased
and the tamper proofing. In accordance with the business rules around the promotion, if
the presented card already carries enough endorsements to obtain a free coffee, a new
card will be generated; this new card will then be returned in the response.

NOTE

There is no correlation between the coffee card and a specific order, despite the
format of the URI in Example 5-13. Remember, URIs are opaque to consumers. In
this case, the link contains information that the Restbucks ordering service uses
when updating the count of endorsements in the coffee card.

Upon successfully accepting and updating the customer’s coffee card, the service
returns the latest representation of the coffee card resource using a 200 OK response, as
per Example 5-15.

Example 5-15. Coffee card POST response

HTTP/1.1 200 OK

Content-Length: 242

Content-Type: application/vnd.restbucks+xml
Date: Sun, 21 Mar 2010 19:07:33 GMT

<coffeeCard xmlns="http://schemas.restbucks.com">
<link rel=http://relations.restbucks.com/self
href="http://restbucks.com/coffeecard/4456afd23">
<tamperProof>fff405268fea556a351459e7368bc1d3</tamperProof>
<numberOfCoffees>2</numberOfCoffees>
</coffeeCard>

Spending fully endorsed coffee cards is simple: at the payment step, customers present
their card toward full or partial fulfillment of the bill. While Restbucks is running the
promotion, the order’s set of hypermedia controls is extended to encompass this
activity, as shown in Example 5-16.

* This could be something as simple as a hash of the number of coffees and a secret key.

HYPERMEDIA PROTOCOLS

123

http://schemas.restbucks.com%E2%80%B3
http://relations.restbucks.com/self
http://restbucks.com/coffeecard/4456afd23%E2%80%B3

Example 5-16. Payment by coffee card is available during the promotion

<order xmlns="http://schemas.restbucks.com"
xmlns:dap="http://schemas.restbucks.com/dap">
<dap:1link mediaType="application/vnd.restbucks+xml"
uri="http://restbucks.com/order/1234"
rel="http://relations.restbucks.com/cancel"/>
<dap:1link mediaType="application/vnd.restbucks+xml"
uri="http://restbucks.com/payment/1234"
rel="http://relations.restbucks.com/payment" />
<dap:link mediaType="application/vnd.restbucks+xml"
uri="http://restbucks.com/payment/coffee-card/1234"
rel="http://relations.restbucks.com/coffee-card-payment"/>
<dap:1link mediaType="application/vnd.restbucks+xml"
uri="http://restbucks.com/order/1234"
rel="http://relations.restbucks.com/update"/>
<dap:1link mediaType="application/vnd.restbucks+xml"
uri="http://restbucks.com/order/1234" rel="self"/>
<item>
<milk>semi</milk>
<size>large</size>
<drink>cappuccino</drink>
</item>
<location>takeAway</location>
<cost»2.0</cost>
<status>unpaid</status>
</order>

Customers that don’t want (or are unable) to participate in a promotion simply ignore
the coffee-card-payment hypermedia control. Customers that do want to participate
simply POST their endorsed card to the coffee-card-payment URI (see Example 5-17).

Example 5-17. Coffee card POST response

POST /order HTTP/1.1

Host: restbucks.com

Content-Length: 270

Content-Type: application/vnd.restbucks+xml

Date: Sun, 21 Mar 2010 19:08:22 GMT

<coffeeCard xmlns="http://schemas.restbucks.com">
<link rel=http://relations.restbucks.com/self

href="http://restbucks.com/coffeecard/4456afd23">

<tamperProof>19590f1ed86f3b2ecaf911267067e8a8</tamperProof>
<numberOfCoffees>9</numberOfCoffees>

</coffeeCard>

124 CHAPTER 5: HYPERMEDIA SERVICES

http://schemas.restbucks.com%E2%80%B3
http://schemas.restbucks.com/dap%E2%80%B3
http://restbucks.com/order/1234%E2%80%B3
http://relations.restbucks.com/cancel%E2%80%B3/
http://restbucks.com/payment/1234%E2%80%B3
http://relations.restbucks.com/payment%E2%80%B3/
http://restbucks.com/payment/coffee-card/1234%E2%80%B3
http://relations.restbucks.com/coffee-card-payment%E2%80%B3/
http://restbucks.com/order/1234%E2%80%B3
http://relations.restbucks.com/update%E2%80%B3/
http://restbucks.com/order/1234%E2%80%B3
http://schemas.restbucks.com%E2%80%B3
http://relations.restbucks.com/self
http://restbucks.com/coffeecard/4456afd23%E2%80%B3

If the coffee card payment covers the bill, the customer receives a payment confirma-
tion as per Example 5-8. If not, the customer receives another order representation
with the <cost> element adjusted to reflect the value of the submitted coffee card.

NOTE

The benefit of using a closed set of hypermedia control definitions with an open
set of link relation values is that consumers can recognize the presence of a hyper-
media control even if they don’t understand what it means. Consumers that can't
understand the coffee-card link relation value will nonetheless be able to report
the presence of a link. This can encourage the consumer development team to
discover the significance of the additional functionality associated with the link.

We recommend that proprietary link relation values take the form of fully quali-
fied URIs, which, if dereferenced, return a human-readable description of the

link semantic. That way, processors that report the presence of an unknown link
relation value can include the link relation description in any log output, thereby
documenting the evolution of the application. <1ink> elements and rel attributes
thus provide a high degree of discoverability.

Data Modeling Versus Protocol Hypermedia

Our discussion to this point has concentrated on using hypermedia to model and
implement business protocols. But hypermedia has other uses, including the provision
of network-friendly data models.

NOTE

Although we think hypermedia will be used primarily in distributed systems to drive
business protocols, we recognize that some systems will need to exchange data in a
way that respects and leverages the underlying network. Accessing linked information
items over the Web is just as RESTful as interacting with services through DAPs.

On the Web, pages and other media are composed together using links. A web browser
fetches a web page and then fetches other resources, such as images and JavaScript. The
browser renders the page and exposes links to the user to support page transitions.

This model respects the underlying network. Information is loaded as lazily as possible
(but no lazier), and the user is encouraged to browse pages—traverse a hypermedia
structure—to access information. Breaking information into hypermedia-linked
structures reduces the load on a service by reducing the amount of data that has to be
served. Instead of downloading the entire information model, the application transfers
only the parts pertinent to the user.

Not only does this laziness reduce the load on web servers, but the partitioning of data
across pages on the Web allows the network infrastructure itself to cache information.

HYPERMEDIA PROTOCOLS

125

126

An individual page, once accessed, may be cached for up to a year (the maximum
allowed by HTTP) depending on how the service developer configures the service. As
a result, subsequent requests for the same page along the same network path will be
satisfied using a cached representation, which in turn further reduces load on the
origin server.

Importantly, the same is true of computer-to-computer systems: hypermedia allows
sharing of information in a lazy and cacheable manner. For example, if Restbucks
wanted to share its complete menu with other systems, it could use hypermedia to
split the menu details across separate resources. This would allow different resource
representations to be cached for different lengths of time, depending on the business
use. Coffee descriptions, for example, might be long-lived, while pricing might change
daily. Examples 5-18 and 5-19 show some of these hypermedia-linked representations.

Example 5-18. Sharing Restbucks’ menu in a network-friendly manner

<menu xmlns="http://schemas.restbucks.com"
xmlns:dap="http://schemas.restbucks.com/dap">
<drink name="latte">
<dap:link rel="http://relations.restbucks.com/description”
uri="http://restbucks.com/description/latte"/>
<dap:link rel="http://relations.restbucks.com/pricing"
uri="http://restbucks.com/pricing/latte"/>
<dap:link rel="http://relations.restbucks.com/image"
uri="http://restbucks.com/images/latte.png"/>
</drink>
<!-- More coffees, removed for brevity -->
</menu>

Example 5-19. A resource linked from the Restbucks menu

<drink xmlns="http://schemas.restbucks.com"
xmlns:dap="http://schemas.restbucks.com/dap" name="latte">
<description>
Classic Italian-style coffee with 1/3 espresso, 1/3 steamed milk,
and 1/3 foamed milk
</description>
<dap:link rel="http://relations.restbucks.com/image"
uri="http://restbucks.com/images/latte.png"/>
</drink>

As Examples 5-18 and 5-19 show, a large information model such as the Restbucks
menu can easily be partitioned for network access using hyperlinks.

NOTE

Structural hypermedia is best suited for read-mostly systems, where the dual ben-
efits of lazy loading of information and caching are available.

CHAPTER 5: HYPERMEDIA SERVICES

http://schemas.restbucks.com%E2%80%B3
http://schemas.restbucks.com/dap%E2%80%B3
http://relations.restbucks.com/description%E2%80%B3
http://restbucks.com/description/latte%E2%80%B3/
http://relations.restbucks.com/pricing%E2%80%B3
http://restbucks.com/pricing/latte%E2%80%B3/
http://relations.restbucks.com/image%E2%80%B3
http://restbucks.com/images/latte.png%E2%80%B3/
http://schemas.restbucks.com%E2%80%B3
http://schemas.restbucks.com/dap%E2%80%B3
http://relations.restbucks.com/image%E2%80%B3
http://restbucks.com/images/latte.png%E2%80%B3/

It’s quite valid to mix structural and protocol hypermedia in a representation. But
there are other options: some systems may choose to split hypermedia controls from
business payload in their representations. In Restbucks, for example, we could choose
to separate the representation of an order from its DAP links. We’d then put the DAP
links into a separate resource, as shown in Example 5-20. rel="http://relations.
restbucks.com/dap" indicates that the consumer can dereference the link to establish
the next legal steps in the DAP.

Example 5-20. The DAP links for the order are a separate resource

<order xmlns="http://schemas.restbucks.com"
xmlns:dap="http://schemas.restbucks.com/dap">
<location>takeAway</location>
<item>
<name>latte</name>
<quantity>1</quantity>
<milk>whole</milk>
<size>small</size>
<dap:link rel="coffee-beans"
uri="http://restbucks-coffee-beans-supplier.com/beans-no10"
mediaType="application/xml"/>
<dap:link rel="coffee-image"
uri="http://restbucks.com/latte.jpg"
mediaType="image/jpeg"/>
</item>
<cost>2.0</cost>
<status>preparing</status>
<dap:link rel="http://relations.restbucks.com/dap"
uri="http://restbucks.com/order/1234/dap"
mediaType="application/vnd.restbucks.dap+xml"/>
</order>

The decision on what should be decomposed into separate, or even overlapping,
resources is part of the design process for a service. In making these decisions, we need
to consider numerous design factors:

Size of the representation
How large is the payload going to be? Is it worth decomposing into multiple
resources to optimize network access and caching?

Atomicity
Is there a chance that the application might enter an inconsistent state because a
resource is in a composite relationship with other resources? Does the entire
representation of a resource need to be packaged together in the same payload?

Importance of the information
Do we really need to send all the information as an atomic block? Can we allow
consumers to decide which of the linked resources they need to request?

HYPERMEDIA PROTOCOLS

127

http://relations
http://schemas.restbucks.com%E2%80%B3
http://schemas.restbucks.com/dap%E2%80%B3
http://restbucks-coffee-beans-supplier.com/beans-no10%E2%80%B3
http://restbucks.com/latte.jpg%E2%80%B3
http://relations.restbucks.com/dap%E2%80%B3
http://restbucks.com/order/1234/dap%E2%80%B3

Performance/scalability
Is the resource going to be accessed frequently? Is it computationally or transac-
tionally expensive to generate its representation?

Cacheability
Can resource representations be cached and replicated? Do different information
items associated with the resource change at different rates? Which information
items are dependent on the request context, and which are agnostic to that
context? Answering these questions helps partition the resource by freshness
criteria, allowing some of its representations to be cached for long periods of time,
others to be regenerated with every request.

Implementing a Hypermedia Service

Implementing a hypermedia service might seem at first to be an intimidating prospect,
but in practice, the overhead of building a hypermedia system is modest compared to
the effort of building a CRUD system. Moreover, the effort generally has a positive
return on investment in the longer term as a service grows and evolves. Although the
implementation details will differ from project to project, there are three activities that
every service delivery team will undertake throughout the lifetime of a service:
designing protocols, choosing formats, and writing software.

We’ve been describing Restbucks” DAP and formats throughout this chapter, so we're
already one step toward a working implementation.

Building the Ordering Service in Java

To build the ordering service in Java, we need only two framework components: a web
server and an HTTP library. On the client side, we need only an HTTP library. For these
tasks, we’ve chosen Jersey* (a JAX-RST implementation), which provides the HTTP
plumbing for both the service and its consumers, and the Grizzly web server, because it
works well with Jersey. Apart from framework support, all we need is a handful of
patterns for services and consumers, beginning with the server-side architecture.

Service Architecture

The Java server-side architecture is split across several layers, as shown in Figure 5-8.

* https://jersey.dev.java.net
1 Java API for RESTful Web Services; see http://jcp.org/en/jsr/detail?id=311.

128 CHAPTER 5: HYPERMEDIA SERVICES

https://jersey.dev.java.net
http://jcp.org/en/jsr/detail?id=311

Web Server (Grizzly)

HTTP Layer (JAX-RS)

Representations

Workflow Activities

T
T
. esources
*

e |a |@ |a

Domain Objects

Order and Payment Repository

Figure 5-8. Server-side Java architecture

Although crucial to the deployment of a working service, the web server implementa-
tion is less important architecturally. Fortunately, it is abstracted from the service
developer through the JAX-RS layer. The JAX-RS layer—although its name implies
much more—simply provides a friendly programmatic binding to the underlying web
server.

Using JAX-RS, we declare a set of methods, to which the framework routes HTTP
interactions. Inside the service, resources act as controllers for workflow activities,
passing through business information extracted from the representations and
marshalling results and exceptions into HTTP responses.

Workflow activities implement the individual stages of the Restbucks workflow in
terms of resource life cycles: creating orders, updating orders, canceling orders,
creating payments, and delivering completed orders to customers. They’re also
responsible for changing the state of the underlying domain objects, which in turn
are persisted in repositories.

Though their value in partitioning work into smaller, more manageable units is
obvious, workflow activities provide more than just a unit of work abstraction; they
also provide choreography between tasks.

BUILDING THE ORDERING SERVICE IN JAVA

129

130

Each activity knows which downstream activities are valid. For example, if payment
succeeds, the valid next steps are to ask for a receipt or to check the order status. No
other activities are valid, and any attempt to do anything else will result in an error
being propagated to the consumer via an HTTP status code. Knowing which activities
are valid given the current state of current resources, the service can advertise the next
steps in the protocol by embedding hypermedia controls in the representations sent to
the consumer.

The hypermedia controls that the service makes available to the consumer describe the
parts of the DAP the consumer can use to drive the service through the next stages of
its business workflow, as we see in Figure 5-9.

Hypermedia] | l
[Order] [Order —— | Payment

v v v
[forder][forderf{ordeﬂ[)}][fpayment/{paymentm}] [[Ieceipt/{orderm}]
¥ 3 F 3 ¥ 3

v

Hypermedia
Payment

Figure 5-9. Hypermedia resources describe the ordering and payment protocol to consumers

Hypermedia
Receipt

Each resource in Figure 5-9 is internally identified by its URI or URI template. The
well-known entry point URI /order is the only URI consumers are expected to know
before interacting with the service. The URIs of all other resources (whose templates
are used for internal documentation only) are discovered at runtime.

In accordance with Restbucks” DAP, when the service receives a valid order at the
entry point URI, it returns a confirmation. This response contains an order representa-
tion augmented with additional resource state, including cost and status. Importantly,
it also contains links the consumer can use to progress the workflow. In Figure 5-9, the
hypermedia-enhanced order representation returned to the consumer contains links to
both the order resource and a payment resource.

The pattern repeats for the payment resource. When the service receives a valid
payment representation, it generates an enhanced representation containing links to
other resources with which the consumer can interact: the order resource (to check
status) and a receipt resource (to request a receipt).

Underlying the DAP is code, of course. In the Java implementation, resource behavior
is implemented by one or more activity classes, as shown in Figure 5-10.

CHAPTER 5: HYPERMEDIA SERVICES

Hypermedia
L ‘ Order |

A
POST POST | GET | DELETE
[Jorder] [/receipt/{orderId}]
A4 :
[CreateOrderActivity] ReadOrderActivity ;
v |
UpadateOrderActivity
v _
RemoveOrderActivity i
Order Resource
Hypermedia Hypermedia
Payment Receipt
A
pUT GET | DELETE

e,
J

/receipt/{orderId}

[/payment!{paymentld}]

A4

[PaymentActivity] [ReadReceiptActivity
' v
2

[Completeﬁrdemctivity

-

Payment Resource] Receipt Resource

Figure 5-10. Resources are implemented with workflow activities

Each activity in Figure 5-10 is bound to a particular URI and verb. For example, the
UpdateOrderActivity is triggered by the consumer POSTing a valid order representation
to URIs matching /order/{orderId}. Similarly, PaymentActivity is triggered by a PUT
with a valid payment representation to /payment/{paymentId} and the protocol is
completed with a DELETE request to /receipt/{orderId}.

Here, we're concerned simply that valid representations are transferred via the correct
HTTP verb to a resource in the appropriate state. Consumers are corralled toward
making the right request at the right time by the semantically annotated hypermedia
controls in the representations they receive.

BUILDING THE ORDERING SERVICE IN JAVA

131

Java Implementation

Jersey helps provide a programmatic abstraction over a web server, but it doesn’t help
create hypermedia and DAPs. Because of this, most of the code in the service imple-
mentation is our own. In writing this code, we’ve devised some patterns to separate
out the concerns of protocols from the concerns of the business activities they coordi-
nate. With that in mind, let’s walk through the implementation.

Resources

The resource classes OrderResource, PaymentResource, and ReceiptResource expose the
service implementation to the Web through Jersey. In our implementation, all JAX-RS
code is localized to the resource classes. Framework code is not allowed to penetrate
deeper into the service implementation—we prefer most of our code to be (easily
testable) Plain Old Java Objects (POJOs).

The OrderResource class shown in Example 5-21 is typical of the resources in the
ordering service implementation.

Example 5-21. OrderResource class

@Path("/order")
public class OrderResource {

private @Context UriInfo uriInfo;

@CET
@Path("/{orderId}")
@Produces("application/vnd.restbucks+xml")
public Response getOrder() {
try {
OrderRepresentation responseRepresentation = new ReadOrderActivity()
.retrieveByUri(new RestbucksUri(uriInfo.getRequestUri()));
return Response.ok().entity(responseRepresentation).build();
} catch(NoSuchOrderException nsoe) {
return Response.status(Status.NOT_FOUND).build();
} catch (Exception ex) {
return Response.serverkrror().build();
}
}

@POST

@Consumes ("application/vnd.restbucks+xml")
@Produces("application/vnd.restbucks+xml")

public Response createOrder(String orderRepresentation) {

try {
OrderRepresentation responseRepresentation = new CreateOrderActivity()

132 CHAPTER 5: HYPERMEDIA SERVICES

mailto:@Produces(%E2%80%B3application/vnd.restbucks+xml%E2%80%B3
mailto:@Consumes(%E2%80%B3application/vnd.restbucks+xml%E2%80%B3
mailto:@Produces(%E2%80%B3application/vnd.restbucks+xml%E2%80%B3

.create(OrderRepresentation.fromXmlString(orderRepresentation).getOrder(),
new RestbucksUri(uriInfo.getRequestUri()));
return Response.created(
responseRepresentation.getUpdatelink().getUri())
.entity(responseRepresentation).build();
} catch (InvalidOrderException ioe) {
return Response.status(Status.BAD REQUEST).build();
} catch (Exception ex) {
return Response.serverError().build();

}
}

@DELETE
@Path("/{orderId}")
@Produces("application/vnd.restbucks+xml")
public Response removeOrder() {
try {
OrderRepresentation removedOrder = new RemoveOrderActivity()
.delete(new RestbucksUri(uriInfo.getRequestUri()));
return Response.ok().entity(removedOrder).build();
} catch (NoSuchOrderException nsoe) {
return Response.status(Status.NOT_FOUND).build();
} catch(OrderDeletionException ode) {
return Response.status(405).header("Allow", "GET").build();
} catch (Exception ex) {
return Response.serverError().build();

}
}

@POST

@Path("/{orderId}")

@Consumes ("application/vnd.restbucks+xml")
@Produces("application/vnd.restbucks+xml")

public Response updateOrder(String orderRepresentation) {

try {
OrderRepresentation responseRepresentation = new UpdateOrderActivity()
.update(
OrderRepresentation.fromXmlString(
orderRepresentation)

.getOrder(), new RestbucksUri(uriInfo.getRequestUri()));
return Response.ok().entity(responseRepresentation).build();
} catch (InvalidOrderException ioe) {
return Response.status(Status.BAD REQUEST).build();
} catch (NoSuchOrderException nsoe) {
return Response.status(Status.NOT_FOUND).build();
} catch(UpdateException ue) {
return Response.status(Status.CONFLICT).build();

BUILDING THE ORDERING SERVICE IN JAVA

133

mailto:@Produces(%E2%80%B3application/vnd.restbucks+xml%E2%80%B3
mailto:@Consumes(%E2%80%B3application/vnd.restbucks+xml%E2%80%B3
mailto:@Produces(%E2%80%B3application/vnd.restbucks+xml%E2%80%B3

134

} catch (Exception ex) {
return Response.serverError().build();

}
}
}

The JAX-RS annotations bridge the Web and the service implementation (activities in
our case). Methods are invoked in response to a combination of a specific verb and
URI or URI template, and each method consumes and produces a representation with
a particular media type.

To illustrate, in Example 5-21 the updateOrder method is invoked whenever a
representation with media type application/vnd.restbucks+xml is POSTed to the path*
/order/{orderId} concatenated with the service URI and web application context (e.g.,
http://restbucks.com/). The media type, verb, and path elements are associated with
the method using the annotations @Consumes, @POST, and @Path, respectively. If the
invocation is successtul, the service produces a response with media type application/
vnd.restbucks+xml, as declared by the @Produces annotation.

All the public methods in the resource classes follow a similar pattern. For operations
that require a received representation, the JAX-RS framework provides one. Domain
objects are instantiated from such received representations and passed into a workflow
activity for processing. We also pass the request URI into the workflow activity so that
the activity can generate response links with the same base path. Once the workflow
activity has completed, the representation it generates is packaged as an HTTP response
with the appropriate status code and sent back to the consumer.

If an exception occurs during the execution of a workflow activity, an HTTP response
is generated to reflect the failure. For instance, if the consumer sends an invalid order
representation to the /order or /order/{orderId} URI, an InvalidOrderException is
raised in the UpdateOrderActivity. This exception is translated into an HTTP 400 Bad
Request response by the OrderResource class. If there’s no specific catch block for an
exception, the service responds with an HTTP 500 Internal Server Error.

Representations

The representation classes in the service are much like the underlying domain objects,
except for two things: they’re marked up with JAXB annotations to support XML
serialization, and the serialized representations contain links. In our implementation,
each representation class inherits from a common parent that stores named links and
deals with XML and HTTP metadata such as namespaces and media types. This base
Representation class is shown in Example 5-22.

* The path for the updateOrder(...) method is a combination of the root path for the resource (/order)
and the local path for the method (/{orderId}).

CHAPTER 5: HYPERMEDIA SERVICES

http://restbucks.com/

Example 5-22. Base Representation class

public abstract class Representation {

public static final String RELATIONS URI = "http://relations.restbucks.com/";

public static final String RESTBUCKS_NAMESPACE =
"http://schemas.restbucks.com";

public static final String DAP_NAMESPACE = RESTBUCKS_NAMESPACE + "/dap";

public static final String RESTBUCKS_ MEDIA TYPE =
"application/vnd.restbucks+xml";

public static final String SELF_REL_VALUE = "self";

@XmlElement(name = "link", namespace = DAP_NAMESPACE)
protected List<Link> links;
protected Link getLinkByName(String uriName) {
if (links == null) {
return null;

}
for (Link 1 : 1links) {
if (1.getRelvalue().toLowerCase().equals(uriName.toLowerCase())) {
return 1;

}
}

return null;

}

There’s only one JAXB annotation in the Representation class, and only one @mlElement
annotation to help serialize the links in the DAP namespace. The solution’s other represen-
tation classes (OrderRepresentation, PaymentRepresentation, and ReceiptRepresentation)
extend the base Representation class, adding in links and business-specific information.
The OrderRepresentation in Example 5-23 shows a typical implementation.

Example 5-23. OrderRepresentation implementation

@XmlRootElement(name = "order", namespace = Representation.RESTBUCKS_NAMESPACE)
public class OrderRepresentation extends Representation {

@XmlElement(name = "item", namespace = Representation.RESTBUCKS_NAMESPACE)
private List<Item> items;

@XmlElement(name = "location", namespace = Representation.RESTBUCKS_NAMESPACE)
private Location location;

@XmlElement(name = "cost", namespace = Representation.RESTBUCKS_NAMESPACE)
private double cost;

@XmlElement(name = "status", namespace = Representation.RESTBUCKS_NAMESPACE)
private OrderStatus status;

BUILDING THE ORDERING SERVICE IN JAVA

135

http://relations.restbucks.com/%E2%80%B3
http://schemas.restbucks.com%E2%80%B3

136

public OrderRepresentation(Order order, Link... links) {
try {
this.location = order.getlocation();
this.items = order.getItems();
this.cost = order.calculateCost();
this.status = order.getStatus();
this.links = java.util.Arrays.asList(links);
} catch (Exception ex) {
throw new InvalidOrderException(ex);

}

} // Remainder of class ommitted for brevity

}

Much of the code in Example 5-23 is simply JAXB annotations. We use @XmlRootElement
and @XmlElement to declare how to serialize fields into root and child nodes in XML. Aside
from the framework code, though, OrderRepresentation instances are just value objects.

What’s more interesting about this code is the way it’s used by the workflow activities.
Recall that representations are created by activities, and that activities know about
subsequent valid activities. Using the constructor OrderRepresentation(Order order,
Link... 1links), activities inject links into the representation. Those links advertise
subsequent valid activities to consumers of the representation, informing them of the
next steps to take in the DAP.

Workflow activities

The workflow activity classes are units of work that execute some business interaction
against the domain model on behalf of a consumer. Each activity knows about the
valid activities that follow and is able to map those downstream activities to URIs,
thereby rendering hypermedia representations for consumers. To illustrate, consider
the create(...) method of the CreateOrderActivity in Example 5-24.

Example 5-24. CreateOrderActivity implementation

public class CreateOrderActivity {
public OrderRepresentation create(Order order, RestbucksUri requestUri) {
order.setStatus(OrderStatus.UNPAID);

Identifier identifier = OrderRepository.current().store(order);

RestbucksUri orderUri = new RestbucksUri(requestUri.getBaseUri() + "/order/"
+ identifier.toString());
RestbucksUri paymentUri = new RestbucksUri(requestUri.getBaseUri() +
"/payment/" + identifier.toString());
return new OrderRepresentation(order,
new Link(Representation.RELATIONS URI + "cancel", orderUri),
new Link(Representation.RELATIONS URI + "payment", paymentUri),

CHAPTER 5: HYPERMEDIA SERVICES

new Link(Representation.RELATIONS URI + "update", orderUri),
new Link(Representation.SELF_REL_VALUE, orderUri));

The create(...) method in Example 5-24 works as follows. On receipt of an Order
instance for a given URI, we set the order status to UNPAID and attempt to store it in
the order repository. If the order is successfully stored, we take the internal identi-
fier generated by the repository and use it to compute both a public URI for the
order resource and a corresponding URI for the payment resource.* We then create
a new OrderRepresentation that contains the updated order information and the valid
DAP links. This representation is then returned to the calling JAX-RS code and
dispatched to the consumer. For a newly created order, we return four links marked
up with appropriate rel and mediaType attributes in an OrderRepresentation instance:

rel="http://relations.restbucks.com/cancel"
The operation requires the order URI, but no media type declarations, because the
cancel operation uses DELETE.

rel="http://relations.restbucks.com/payment"
The operation requires a Restbucks payment representation in the entity body to
be transferred via POST to the payment URL

rel="http://relations.restbucks.com/update"
The operation needs a Restbucks order representation in the entity body to be
transferred by POST to the order URI.

rel="self"

The operation requires an order URI, with no entity body, and is invoked via GET.

In the other activities (ReadOrderActivity, UpdateOrderActivity, RemoveOrderActivity,
PaymentActivity, ReadReceiptActivity, and CompleteOrderActivity), the pattern is
repeated: domain objects are created from any input representations and the activity
orchestrates an interaction with the underlying domain model. On completion,
activities generate a response representation (if any is needed) and insert links adver-
tising next valid steps in the protocol, along with any media type declarations needed
to advance through those steps.

Consumer-Side Architecture

The consumer-side architecture for a hypermedia service is shown in Figure 5-11. In
this stack, the Jersey client library provides HTTP connectivity and is responsible for

mapping HTTP requests and responses into higher-level abstractions such as domain
objects and exceptions, and dispatching them to workflow activities. The workflow

* If Restbucks outsourced payment processing, instead of computing a URI for payment, we’d ask the
payment provider for a URL

BUILDING THE ORDERING SERVICE IN JAVA

137

http://relations.restbucks.com/cancel%E2%80%B3
http://relations.restbucks.com/payment%E2%80%B3
http://relations.restbucks.com/update%E2%80%B3

activities process business payloads while actions handle hypermedia controls. Overall
control of the consumer resides in the business logic, which uses the actions to
orchestrate interactions with the service through the workflow activities.

HTTP Binding (JAX-RS)

Workflow Activities

Actions

L] ¥

Consumer Business Logic

Figure 5-11. Consumer-side architecture

Figure 5-12 shows how activities are again at the core of our architecture. Activities
take business objects and use them to create representations to transfer to the service.
For responses with representations, activities provide access to the business payload in
the received data.

Importantly, activities also surface actions to the business logic—abstractions that
correspond to future legal interactions with the service. Actions encapsulate the
hypermedia controls and associated semantic context in the underlying representation,
allowing the consumer business logic to select the next activity in the workflow.

Consumer Restbucks Ordering Service

Business

Objects |
Representation f—+—»

Activity

Activities -
Representation F+———

Business
Objects

Figure 5-12. Activities are the key abstraction on the consumer side

138 CHAPTER 5: HYPERMEDIA SERVICES

Activities also encapsulate error responses from the service, providing a choice of actions
to the consumer business logic. For example, if the service responds with a 500 Internal
Server Error message when trying to place an order, the PlaceOrderActivity will yield a
retry action—the only valid thing to do at that point in the protocol.

Java Consumer Implementation

Implementing the consumer is nontrivial in the absence of frameworks that understand
hypermedia. Nonetheless, with a few simple patterns, we can confidently build consum-
ers for hypermedia services. To illustrate, we’ll walk through the code in Example 5-25.

Example 5-25. Actions and business objects in the consumer

public void orderAndPay(Order order, URI entryPointUri) {

PlaceOrderActivity placeOrderActivity = new PlaceOrderActivity();
placeOrderActivity.placeOrder(order, entryPointUri);

// Order processing omitted for brevity...

Actions actions = placeOrderActivity.getActions();
if(actions.has(PaymentActivity.class)) {
PaymentActivity paymentActivity = actions.get(PaymentActivity.class);
paymentActivity.payForOrder(
payment () .withAmount(readOrderActivity.getOrder().getCost()).build());
actions = paymentActivity.getActions();

}

// Remainder of workflow omitted for brevity

}

When building a consumer, we know the service’s contractual information is con-
tained in the media types and link relations the service supports, as well as in any
entry point URIs the service provider chooses to share with us. Because we already
know the processing model for the Restbucks media type, building a consumer for
services that support that media type is straightforward.

The orderAndPay(...) method in Example 5-25 shows an ordering and payment
implementation that we used in the functional testing of our Java service. The method
takes the well-known Restbucks ordering URI (http.//restbucks.com/order) and uses a
PlaceOrderActivity to create and send an order representation to the service via the
underlying Jersey client library.

BUILDING THE ORDERING SERVICE IN JAVA

139

http://restbucks.com/order

140

Assuming the order is successfully lodged, the placeOrderActivity instance will
contain a local Order object for the consumer to process and an Actions object that
encapsulates the legal next activities (if any). Under the covers, the creation of an
Actions object is parameterized from the link relations that the consumer plumbing
finds in response representations.

NOTE

As consumers, we know the link relations that Restbucks uses and can code against
that contract. Hence, in our implementation, specific consumer-side actions have been
written to correspond to service-side activities advertised through link relations.

From the set of actions returned, the consumer-side business logic can make choices
about what to do next. For example, if the consumer discovers an UpdateOrderActivity
in the Actions instance (using the actions.has(UpdateOrderActivity.class) call), it
retrieves it by calling the actions.get(UpdateOrderActivity.class) method and uses it
to update the corresponding order resource on the service.

From this point, the workflow proceeds through the remaining activities, updating
(or canceling) the order, paying for the order, obtaining a receipt, and acknowledg-
ing receipt of the drinks. At each stage, the consumer follows the same pattern:

look for the most desirable action to take at the current instant, execute it, and repeat.

Building the Ordering Service in .NET

Like Java, the .NET platform has frameworks, such as Windows Communication
Foundation (WCF), that make working with HTTP more pleasant and productive.
Again like Java, there’s no obvious framework for building hypermedia-aware
services, so Restbucks developed one.

The Restbucks .NET Hypermedia Framework

The Restbucks framework decouples hypermedia from business activities, and trans-
parently maps between the service implementation and the DAP advertised to con-
sumers. Figure 5-13 shows a logical view of how a service processes incoming and
outgoing resource representations. A similar approach can be used to build consumers
with the same framework.

CHAPTER 5: HYPERMEDIA SERVICES

Service or consumer

Business logic

Hypermedia | Hypermedia
O

Network Network
’_ H

Internet

Figure 5-13. Separating network, hypermedia, and business logic

s

o

=

EN

In our solution, the network layer deals with HTTP and is provided by the .NET
Framework. The hypermedia layer deals with resource state transitions. For incoming
representations, it determines whether the request is valid given the current resource
state. For outgoing representations, the hypermedia layer injects <dap:1link> elements,
which advertise the next legal protocol steps, into the response. The business layer,
meanwhile, focuses exclusively on application logic and its data.

The hypermedia framework manages resource state transitions by embedding appro-
priate hypermedia controls into a response based on both the state of the resource
targeted by the request and the state of any associated resources. To express this
protocol, we have devised a simple, declarative Domain-Specific Language (DSL).
Scripts written with the Restbucks DSL choreograph numerous business actions and
externalize application state to consumers.

The hypermedia framework and its scripts are hosted on a web server implemented
with the HttplListener class.* The server delegates incoming requests to the hyper-
media framework’s dispatcher. The dispatcher maintains a collection of the currently
active state machines, each of which runs an instance of our DSL program.

NOTE

Remember that each workflow in the service implementation represents resource
state machines, not a single, overarching application protocol state machine. By
implementing the service solely in terms of resource states, we avoid having to
save protocol instance state (application state) on the server, which allows us to
scale the service horizontally.

* Internet Information Server (IIS) on Windows or any other web server that can host the .NET
runtime and load SQL Server Modeling’s codename “M” language can be used.

BUILDING THE ORDERING SERVICE IN .NET

141

142

Each state machine analyzes incoming HTTP requests and, depending on the state of the
resource to which the request relates, dispatches the payload to an appropriate .NET
method in the business logic layer. The method deals with XML documents as the input
and output, and is unaware of the HTTP and hypermedia details of the interaction.

On the response path, the hypermedia framework receives XML documents from the
business layer and augments them with any hypermedia constructs declared in the
state machine DSL description. The resultant payload is then passed to the underlying
HTTP infrastructure for delivery to the consumer, as we see in Figure 5-14.

[.NET method]

(=

State machine
dispatcher

Hypermedia framework

HTTP Listener
(HttpContext.Request)

HTTP Listener
(HttpContext.Response)

Figure 5-14. The Restbucks .NET hypermedia framework

An External DSL for Hypermedia Interactions

The DSL used for the Restbucks hypermedia framework is a state machine description
markup language. This language includes constructs representing hypermedia controls,
which are injected into representations as XML <dap:1link> elements.

The DSL in Example 5-26 declares the possible states of a Restbucks order resource
and the supported transitions from each of those life-cycle states. It’s easy to see how
tooling could be used to produce such DSL documents, but we think it’s easy enough
to write by hand too. While the primary focus of the DSL is to describe a resource’s
state transitions, it also includes those DAP-specific transitions that relate to the
particular resource.

CHAPTER 5: HYPERMEDIA SERVICES

Example 5-26. Representing a resource state machine and the supported DAP transitions
using the Restbucks hypermedia DSL

StateMachine
UriTemplate http://restbucks.com/order/{id}
Namespace Restbucks.OrderingService
MediaType application/vnd.restbucks+xml
RelationsIn http://relations.restbucks.com

State OrderCreated
POST NewOrder 201 => Unpaid
When NotValidOrder 400
End

State Unpaid
GET GetOrderStatus 200
When NoSuchOrder 404
POST UpdateOrder 200
DELETE CancelOrder 200 => Cancelled

Links
latest # When the URI is missing, the active resource's one is assumed
update
payment http://restbucks.com/payment/{id}
cancel

End

State Preparing
GET GetOrderStatus 200
Links
latest
End

State Ready
GET GetOrderStatus 200
Links
latest
receipt http://restbucks.com/receipt/{id}
End

Final State Delivered End
Final State Cancelled End

The state machine description in Example 5-26 consists of a declaration of a set of
global properties and a series of states through which the order resource may transi-
tion. The first state lexically is considered to be the initial resource state.

BUILDING THE ORDERING SERVICE IN .NET

143

http://relations.restbucks.com
http://restbucks.com/order/
http://restbucks.com/payment/
http://restbucks.com/receipt/

144

e The UriTemplate property at the top of the DSL identifies the resource whose life
cycle is managed by state machine instances based on this program. To keep things
simple, we’ve assumed that the UriTemplate has a specific structure, with the
resource identifier at the end being the only variable part of the URIL The service
implementation does not expose the URI template to consumers. Outside the
boundaries of the ordering service, there is no way to determine which part of the
URI is actually used as the internal order identifier.

e The Namespace property defines the .NET namespace in which any unqualified
method and exception names will reside.

e The MediaType property defines the media type that will be used in all HTTP
requests and responses based on this DSL.

e The RelationsIn property defines the URI prefix for all the relations in the Links
sections of the DSL.

There are two different subconstructs in each state of Example 5-26:

e The HTTPVerb is used to identify valid incoming HTTP requests, given the current
state of a resource and what action should be performed upon receipt of such
requests. The MethodName specifies the .NET method to dispatch followed by the
HTTP status code of the response should that method complete normally. An
optional => StateName identifies the state to which the resource should automati-
cally transition after successful processing of the incoming request. The optional
When conjunction allows us to deal with exceptions that the business logic from the
invoked .NET method might generate, and the HTTP status code of the response in
such a case.

e The Links section declares the <dap:1link> elements that should be included in the
payload of the responses to consumers when the resource is at that particular
state. The links can point to other resources hosted by Restbucks, or any other
resources on the Web.

Using a declarative description of resource state transitions, such as the one shown in
Example 5-26, we can modify and evolve a DAP without having to radically change
our service’s implementation. Most importantly, however, we can rapidly develop and
deploy new DAPs.

Implementation Considerations for .NET

When the Restbucks service receives an HTTP request, it routes it to the hypermedia
framework dispatcher, which in turn delivers it to the appropriate state machine
instance. The dispatcher checks the request’s URI against each state machine’s URI
template to determine which state machine should deal with the request.

CHAPTER 5: HYPERMEDIA SERVICES

Resource creation

The order resource state machine expects the first request to be a POST, as per the
initial state of the DSL script in Example 5-26. By activating the initial state of a
resource, the framework also creates an instance of the state machine to track the
resource’s life cycle and its hypermedia interactions. The value of the UriTemplate
property, up to but not including the /{id} variable part, is considered the URI for the
initial request (http://restbucks.com/order). From that point on, requests matching the
resource’s URI template are checked against the same state machine instance.

NOTE

Our sample implementation maintains resource state in memory. This solution

is not easily scaled horizontally, nor is it resilient to machine failure. In a produc-
tion environment, we would retrieve resource state on a per-request basis from a
shared store or object cache.

If an incoming request doesn’t match any of the expected HTTP verbs in the active
state, the framework automatically responds with a 405 Method Not Allowed status code.
Example 5-27 shows an initial POST request* to the .NET ordering service.

Example 5-27. HTTP request for a new order

POST /order HTTP/1.1

Content-Type: application/vnd.restbucks+xml
Accept: application/vnd.restbucks+xml
Connection: keep-alive

Content-Length: 425

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<order xmlns="http://schemas.restbucks.com">
<item>
<milk>skim</milk>
<size>medium</size>
<drink>cappuccino</drink>
</item>
<item>
<milk>semi</milk>
<size>small</size>
<drink>cappuccino</drink>
</item>
<item>
<milk>semi</milk>
<size>large</size>
<drink>cappuccino</drink>

* The XML payload was formatted for readability. The raw XML is unpleasant.

BUILDING THE ORDERING SERVICE IN .NET

145

http://restbucks.com/order
http://schemas.restbucks.com%E2%80%B3

146

</item>
<location>takeAway</location>
</order>

The web server receives the request and hands it to the dispatcher, which determines
from the URI http://restbucks.com/order that the order state machine should process the
request. Since the URI template and the verb match the conditions for the initial state
and the media type is as expected, the state machine extracts the payload from the
request and gives it to the NewOrder () method, as per the POST NewOrder definition.

Example 5-28 shows the NewOrder () method. The signatures for methods such as this,
which handle requests for the initial state of a state machine, differ from those of the
methods for the remaining states in that they return a string that acts as the identifier
for the state about to be instantiated. The same string will also be used as the value of
the {id} part in the state machine’s URI template. The framework maintains an
internal dictionary of all the active states based on the unique key returned by the
NewOrder () method.

Example 5-28. Implementation of the NewOrder() method

namespace Restbucks

{

public class OrderingService

{

public static string NewOrder(XDocument request, XDocument response)

{

var order = Database.NewOrderFromXml(request.Root);
response.Add(order.ToXml());
return order.Id.ToString();

}

As Example 5-28 shows, the hypermedia framework abstracts the HTTP details from
the implementation. The application logic only needs to deal with XML payloads for
the incoming requests and outgoing responses.

In our service, we create a new business object to represent the order in the database,
serialize it back to XML, add it to the response, and return its identifier. The service
will embed more information about the order (e.g., its preparation status and cost) in
the payload. Remember that the hypermedia framework will add the necessary
<dap:link> elements.

The response for this interaction has a 201 Created status code, as shown in Example
5-29, in accordance with the state machine definition in Example 5-26. The payload is
the representation of the order resource. This representation includes <status> and

CHAPTER 5: HYPERMEDIA SERVICES

http://restbucks.com/order

<cost> elements, as well as hypermedia links representing the possible transitions the
customer application can initiate. Notice the => Unpaid part following POST NewOrder 201
in Example 5-26; this tells the hypermedia framework to transition the state machine
instance for the order to the Unpaid state once the response has been sent.

Example 5-29. Response sent to the consumer after the successful creation of an order

HTTP/1.1 201 Created

Content-Type: application/vnd.restbucks+xml
Date: Sun, 21 Mar 2010 22:44:11 GMT
Content-Length: 1067

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<order xmlns="http://schemas.restbucks.com">
<item>
<milk>skim</milk>
<size>medium</size>
<drink>cappuccino</drink>
</item>
<item>
<milk>semi</milk>
<size>small</size>
<drink>cappuccino</drink>
</item>
<item>
<milk>semi</milk>
<size>large</size>
<drink>cappuccino</drink>
</item>
<location>takeAway</location>
<cost>8.00</cost>
<status>payment-expected</status>
<dap:link rel="http://relations.restbucks.com/latest"
mediaType="application/vnd.restbucks+xml"
uri="http://restbucks.com/order/1" />
<dap:link rel="http://relations.restbucks.com/update"
mediaType="application/vnd.restbucks+xml"
uri="http://restbucks.com/order/1"/>
<dap:link rel="http://relations.restbucks.com/payment"
mediaType="application/vnd.restbucks+xml"
uri="http://restbucks.com/payment/1" />
<dap:link rel="http://relations.restbucks.com/cancel"
mediaType="application/vnd.restbucks+xml"
uri="http://restbucks.com/order/1" />
</order>

BUILDING THE ORDERING SERVICE IN .NET

147

http://schemas.restbucks.com%E2%80%B3
http://relations.restbucks.com/latest%E2%80%B3
http://restbucks.com/order/1%E2%80%B3
http://relations.restbucks.com/update%E2%80%B3
http://restbucks.com/order/1%E2%80%B3/
http://relations.restbucks.com/payment%E2%80%B3
http://restbucks.com/payment/1%E2%80%B3
http://relations.restbucks.com/cancel%E2%80%B3
http://restbucks.com/order/1%E2%80%B3

148

NOTE

In Example 5-29, the link for payment given to consumers is http.//restbucks.com/
payment/1. Remember: consumers should treat this as an opaque URI since they
have no way of knowing that the URI path ending in /1 represents an internal iden-
tifier for the resource.

In this initial state, the order representation contains links that indicate that the
customer can get the latest version of the order resource, or update it, or cancel the
order, or submit payment. The verbs and the format of the payloads to be used are
captured by the rel and mediaType attributes of each <link> element, as per our
description of the Restbucks DAP.

Main service logic

Subsequent interactions continue in a similar manner. For example, as long as the
order is in the Unpaid state, a GET request sent to http://restbucks.com/order/1 will result in
a call to the GetOrderStatus() method, as shown in Example 5-30.

Example 5-30. Ordering operations implemented in C#

namespace Restbucks

{

public class OrderingService

{
public static void GetOrderStatus(string id,

XDocument request, XDocument response)

{

var order = Database.GetOrder(id);
response.Add(order.ToXml());
}
}

// Other methods elided for brevity
}

The GetOrderStatus() method is given the order’s identifier and the request/response
payloads and interacts with an order repository on the caller’s behalf. Correspondingly,
the OrderingService class has methods (not shown in Example 5-30) to create, update,
and delete an order, each of which follows the same pattern.

Payment

Our next task is to add the payment logic. Without payment, the order won't transition
to the Preparing state or be given to the barista. From the moment an order is created,
payment is expected. We treat payment as a separate resource, with its own internal
state machine. The payment resource state machine is shown in Example 5-31.

CHAPTER 5: HYPERMEDIA SERVICES

http://restbucks.com/order/1
http://restbucks.com/

Example 5-31. Payment state machine

StateMachine
UriTemplate http://restbucks.com/payment/{id}
Namespace Restbucks.OrderingService
MediaType application/vnd.restbucks+xml
RelationsIn http://relations.restbucks.com

State PaymentCreated
=> PaymentExpected
End

State PaymentExpected
PUT PaymendReceived 201 => PaymentReceived
When NoValidPayment 400
Links
payment
End

Final State PaymentReceived
GET GetReceipt 200
When NoSuchPayment 404
Links
order http://restbucks.com/order/{id}
receipt
End

Notice that there’s no service logic associated with the initial state. The hypermedia
framework will not call a method to create a payment resource. Instead, it is expected
that the resource will be created out of band, in code. Therefore, once an instance of
the state machine is created, the framework will automatically transition it to the
PaymentExpected state.*

Because consumers have already been given a payment URI, we have to follow a
different pattern here. This requires a consumer to submit a PUT request containing the
payment representation, which results in the PaymentReceived() method being called.
The implementation of PaymentReceived() is shown in Example 5-32.

* It could be argued that PaymentExpected should be the initial state and that the PUT request would
create the payment resource. However, the semantics of the initial state in the DSL are such
that we expect an HTTP request to be sent to the URI template without the {id} part. Since the
payment resource was already created through code, rather than due to a request initiated by a
consumer, we need to instruct the hypermedia framework to perform this automatic transition
without expecting an initial request.

BUILDING THE ORDERING SERVICE IN .NET

149

http://restbucks.com/payment/
http://relations.restbucks.com
http://restbucks.com/order/

150

Example 5-32. Payment implementation

namespace Restbucks

{

public static class OrderingService

{
public static void PaymentReceived(string id,
XDocument request,
XDocument response)

var payment = Payment.FromXml(request.Root);
payment.Paid = DateTime.Now;

var order = Database.GetOrder(id);
order.Status = "Preparing";
Database.UpdateOrder (order);

Database.PutPayment(id, payment);
response.Add(payment.ToXml());

OrderingService.PrepareOrder(id);
}
}

// Other methods elided for brevity
}

When the service receives a payment request, it creates a business object from the
payload, and then retrieves the order from the database and sets its Status property to
Preparing. The service then adds the payment to the database and initiates the
preparation of the order. This last step starts an internal process involving the barista.
To do this, the service calls ThreadPool.QueueUserWorkItem() to add the work to a
queue. The barista receives the order information, prepares it, and then notifies the
rest of the ordering service that the order is ready by calling OrderPrepared(), which
moves the order into the Ready state.

Notice that the OrderPrepared() method is able to interact with the hypermedia
framework without involving a consumer. This allows Restbucks to transition the state
machine to the Ready state by binding directly to the state machine instance, rather
than through the external HTTP interface.

Delivery

Recall that when the service receives a payment from a consumer, it replies with a 201
Created response. The hypermedia framework adds an order link to that response. In
this context, the link indicates to the client that it is expected to GET the latest repre-
sentation of the order to find out whether it is ready for delivery.

CHAPTER 5: HYPERMEDIA SERVICES

When the barista calls the OrderPrepared() method, the order transitions to the Ready
state. This change in resource state causes different links to be added to the order’s
representation the next time it is requested. This is handled by the hypermedia DSL
snippet shown in Example 5-33.

Example 5-33. The Ready state of the order resource

State Ready
GET GetOrderStatus 200
Links
latest

receipt http://restbucks.com/receipt/{id}
End

The DSL here indicates that the receipt link will be included in the payload of any
response if the order is in the Ready state. To complete delivery of the order, the
consumer only needs to send a DELETE request, as defined by the semantics of http://
relations.restbucks.com/receipt of the application/vnd.restbucks+xml media type,
to the receipt URI http://restbucks.com/receipt/1. The DSL for the receipt resource is very
simple and similar to that of the payment resource, as shown in Example 5-34.

Example 5-34. Receipt state machine

StateMachine
UriTemplate http://restbucks.com/receipt/{id}
Namespace Restbucks.OrderingService
MediaType application/vnd.restbucks+xml
RelationsIn http://relations.restbucks.com

State ReceiptCreated
=> ReceiptReady
End

State ReceiptReady
DELETE ReceiveOrder 200
When NoSuchReceipt 404
Links
receipt
End

When the DELETE request is received by the receipt resource, the ReceiveOrder ()
method is called, as shown in Example 5-35.

Example 5-35. Completing an order

namespace Restbucks

{

public static class OrderingService

BUILDING THE ORDERING SERVICE IN .NET

151

http://restbucks.com/receipt/
http://relations.restbucks.com/receipt
http://relations.restbucks.com/receipt
http://restbucks.com/receipt/1
http://restbucks.com/receipt/
http://relations.restbucks.com

152

public static void ReceiveOrder(string id,
XDocument request,
XDocument response)

{

var order = Database.GetOrder(id);
order.Status = "received";
Database.UpdateOrder (order);

response.Add(order.ToXml());

}
}

Like the other methods, the implementation here is very simple. We retrieve the order
from the database, update its status, and add its representation to the response.
Because the protocol has ended, the representation passes through the hypermedia
framework untouched before being dispatched to the consumer.

Ready, Set, Action

With the addition of hypermedia, we’ve reached the pinnacle of Richardson'’s service
maturity model in Figure 5-15. While we still haven’t completed our journey—we
have plenty more to learn about using the Web as a platform for building distributed
systems—we now have all the elements at our disposal to build RESTful services.

Figure 5-15. Hypermedia services are level three on the Richardson maturity model

There’s more to the Web than REST, but this milestone is important because of the
significant benefits, in terms of loose coupling, self-description, scalability, and main-
tainability, conferred by the tenets of the REST architectural style.

CHAPTER 5: HYPERMEDIA SERVICES

All of this comes at a rather modest cost when compared to what we did to build
nonhypermedia services. This is encouraging, since it means the effort required to
build and support a robust hypermedia service over its lifetime is comparable to that
associated with building CRUD services. It’s certainly a better proposition than tunnel-
ing through the Web.

We’ve now seen how hypermedia services are straightforward to design, implement,
and test using familiar tools and libraries. And by augmenting representations with
hypermedia controls, we're able to project DAPs over the Web to consumers. We’ve
also seen that computer systems (not just browsers!) use hypermedia links to build
DAPs that model (dynamically evolving) business workflows.

From here onward, we’ll assume that hypermedia and RESTful services are the norm.
In the following chapters, we’ll see how scalability, security, and other higher-order
protocols such as publish-subscribe can work harmoniously with the Web. Read on!

READY, SET, ACTION

153

CHAPTER SIX

Scaling Out

THE WEB IS THE WORLD’S LARGEST ONLINE INFORMATION SYSTEM, scaling to
billions of devices and users. Hypermedia documents connect a near limitless number
of resources, most of which are designed to be read, not modified. At a grand scale,
structural hypermedia rules, helped by the safe, idempotent properties of the ubiqui-
tous GET method, and to a lesser extent some of the other cacheable verbs.

From a programmatic web perspective, the infrastructure that has evolved on the
Web—particularly around information retrieval—solves many integration challenges.
In this chapter, we look at how we can use that infrastructure and some associated
patterns to build scalable, fault-tolerant enterprise applications.

GET Back to Basics

According to the HTTP specification, GET is used to retrieve the representation of a
resource. Example 6-1 shows a consumer retrieving a representation of an order
resource from a Restbucks service by sending an HTTP GET request to the server where
the resource is located.

Example 6-1. A GET request using a relative URI

GET /order/1234 HTTP/1.1
Connection: keep-alive
Host: restbucks.com

155

The value of the Host header plus the relative path that follows GET together give the
complete URI of the resource being requested—in this case, http://restbucks.com/
order/1234. In HTTP 1.1, servers must also support absolute URIs, in which case the
Host header is not necessary, as shown in Example 6-2.

Example 6-2. A GET request using an absolute URI

GET http://restbucks.com/order/1234 HTTP/1.1

The response to either of these two requests is shown in Example 6-3.

Example 6-3. A response to a GET request

HTTP/1.1 200 OK

Content-Length: ...

Content-Type: application/vnd.restbucks+xml
Date: Fri, 26 Mar 2010 10:01:22 GMT
Last-Modified: Fri, 26 Mar 2010 09:55:15 GMT
Cache-Control: max-age=3600

ETag: "74f4be4b"

<order xmlns="http://schemas.restbucks.com">
<location>takeaway</location>
<item>
<drink>latte</drink>
<milk>whole</milk>
<size>large</size>
</item>
</order>

As well as the payload, the response includes some headers, which help consumers
and any intermediaries on the network process the response. Importantly, we can use
some of these headers to control the caching behavior of the order representation.

As we discussed in Chapter 3, GET is both safe and idempotent. We use GET simply to
retrieve a resource’s state representation, rather than deliberately modify that state.

NOTE

If we don't want the entire representation of a resource, but just want to inspect
the HTTP headers, we can use the HEAD verb. HEAD allows us to decide how to
make forward progress based on the processing context of the identified resource,
without having to pay the penalty of transferring its entire representation over the
network.

156 CHAPTER 6: SCALING OUT

http://restbucks.com/
http://restbucks.com/order/1234
http://schemas.restbucks.com%E2%80%B3

Because GET has no impact on resource state, it is possible to optimize the network to take
advantage of its safe and idempotent characteristics. If we see a GET request, we immedi-
ately understand that the requestor doesn’t want to modify anything. For these requests,
it makes sense to store responses closer to consumers, where they can be reused to satisty
subsequent requests. This optimization is baked into the Web through caching.

NOTE

GET isn't the only HTTP verb to yield cacheable responses, though it is by far the
most prevalent and useful. We'll focus on GET for now because it's so widespread,
but later in the chapter we'll look at caching in the context of other verbs too.

Caching

Caching is the ability to store copies of frequently accessed data in several places along
the request-response path. When a consumer requests a resource representation, the
request goes through a cache or a series of caches toward the service hosting the
resource. If any of the caches along the request path has a fresh copy of the requested
representation, it uses that copy to satisfy the request. If none of the caches can satisty
the request, the request travels all the way to the service (or origin server as it is
formally known).

Origin servers control the caching behavior of the representations they issue. Using
HTTP headers, an origin server indicates whether a response can be cached, and if so,
by whom, and for how long. Caches along the response path can take a copy of a
response, but only if the caching metadata allows them to do so. The caches can then
use these copies to satisty subsequent requests. Cached copies of a resource representa-
tion can be used to satisfy subsequent requests so long as they remain fresh. A cached
representation remains fresh for a specific period of time, which is called its freshness
lifetime. When the age of a cached object exceeds its freshness lifetime, the object is
said to be stale. Caches will often add an Age response header to a cached response. The
Age header indicates how many seconds have passed since the representation was
generated at the origin server.

A stale representation must be revalidated with the origin server before it can be used
to satisfy any further requests. If the revalidation reveals that the stale representation
is in fact still valid, the cached copy can be reused. If, however, the resource has
changed since the stale representation was first issued, the cached copy must be
invalidated and replaced. Representations can become invalid during their freshness
lifetime without the cache knowing. Unless the consumer specifically asks for a
revalidation or a new copy from the origin server, the cache will continue to use these
invalid (but fresh) representations until they become stale.

CACHING

157

158

Benefits of Caching

Optimizing the network using caching improves the overall quality-of-service charac-
teristics of a distributed application. Caching significantly benefits four areas of systems
operation, allowing us to:

Reduce bandwidth
By reducing the number of network hops required to retrieve a representation,
caching reduces network traffic and conserves bandwidth.

Reduce latency
Because caches store copies of frequently accessed information nearer to where
the information is used, caching reduces the time it takes to satisfy a request.

Reduce load on servers
Because they are able to serve a percentage of requests from their own stores,
caches reduce the number of requests that reach an origin server.

Hide network failures
Caches can continue to serve cached content even if the origin server that issued
the content is currently unavailable or committed to an expensive processing task
that prevents it from generating a response. In this way, caches provide fault
tolerance by masking intermittent failures and delays from consumers.

Ordinarily, we’d have to make a substantial investment in development effort and
middleware in order to achieve these benefits. However, the Web’s existing caching
infrastructure means we don’t have to; the capability is already globally deployed.

Caching and the Statelessness Constraint

One of the Web’s key architectural tenets is that servers and services should not
preserve application state. The statelessness constraint helps make distributed applica-
tions fault-tolerant and horizontally scalable. But it also has its downsides. First,
because application state is not persisted on the server, consumers and services must
exchange application state information with each request and response, which adds

to the size of the message and the bandwidth consumed by the interaction. Second,
because the constraint requires services to forget about clients between requests, it
prevents the use of the classical publish-subscribe pattern (which requires the service to
retain subscriber lists). To receive notifications, consumers must instead frequently poll
services to determine whether a resource has changed, adding to the load on the server.

Caching helps mitigate the consequences of applying the statelessness constraint.* It
reduces the amount of data sent over the network by storing representations closer to
where they are needed, and it reduces the load on origin servers by having caches
satisfy repeated requests for the same data.

* Benjamin Carlyle discusses this topic in more detail here: http://soundadvice.id.au/blog/2010/01/17/.

CHAPTER 6: SCALING OUT

http://soundadvice.id.au/blog/2010/01/17/

NOTE

In fact, polling is what allows the Web to scale. By repeatedly polling a cacheable
resource, a consumer “warms” all of the caches between it and the origin server,
pulling data from the origin server into the network where other consumers can
rapidly access it. Furthermore, once the caches are warm, any requests they can sat-
isfy mean less traffic to the origin server, no matter how hard a consumer polls. This
is the classic latency/scalability trade-off that the Web provides. By making represen-
tations cacheable, we get massive scale, but introduce latency between the resource
changing and those changes becoming visible to consumers. Of course, individual
caches can themselves become overloaded by requests; in such circumstances, we
may have to consider clustered or hierarchical caching topologies.

Reasons for Not Caching

We've discussed several of the benefits of caching. But there are at least four situations

in which we might not want to cache data:

When GET requests generate server-side side effects that have a business impact on
the service. Remember, GET is safe, but it can still generate side effects for which
the consumer cannot be held responsible. These effects may range from simply
logging traffic (which is then used to generate business metrics) to incrementing a
counter that determines whether a particular class of customer is within a certain
usage threshold for the service to which the request is being directed. If these kinds
of internal side effects are important, we may want to prevent or limit caching.

When consumers cannot tolerate any discrepancy between the state of a resource
as conveyed in a response and the actual state of that resource at the moment the
request was satisfied. As we discuss later in this chapter, caching exacerbates the
weak consistency of the Web; the longer a representation of a volatile resource is
cached, the more likely it is that a response returned from a cache no longer reflects
the state of the resource at the origin server. This is particularly problematic when
two or more overlapping resources manipulate the same underlying domain entity.
Consider, for example, a service that exposes order and completion resources, where
both an order and a completion are associated with the same underlying order
domain entity. POSTing a completion changes the state of an order entity. Because of
this change, cached order representations no longer reflect the state of the underly-
ing domain entity. Consumers that act on these cached order representations may
commit themselves to business transactions that are no longer valid.

When a response contains sensitive or personal data particular to a consumer.
Security and caching can coexist to a certain extent: first, local and proxy caches
can sometimes cache encrypted responses; second, as we show later, it is possible
to cache responses in a way that requires the cache to authorize them with the
origin server with every request. But in many circumstances, regulatory or
organizational requirements will dictate that responses must not be cached.

CACHING

159

160

e When the data changes so frequently that caching and revalidating a response
adds more overhead than the origin server simply generating a fresh response
with each request.

Types of Caches

A whole ecosystem of proxy servers has grown up around GET and its safe and idempo-
tent semantics. Proxy servers are common intermediaries between consumers and
origin servers, which we recognize from our human use of the Web. While they can
perform various operations on HTTP requests and responses, such as information
filtering and security checks, they are most commonly used for caching.

Many of us are familiar with application caches and database caches—two types of
caches that can reside behind service boundaries. Nowadays, many systems also
explicitly route requests through distributed in-memory caches. But the kinds of
caches we're talking about here are those that are already part of the installed infra-
structure of the Web:

Local cache
A local cache stores representations from many origin servers on behalf of a single
user agent, application, or machine. A consumer may have a local cache so that
frequently accessed resources are stored locally and served immediately. Local
caches can be held in memory or persisted to disk.

Proxy cache
A proxy cache stores representations from many origin servers on behalf of many
consumers. Proxies can be hosted both inside the corporate firewall and outside.
An organization may deploy caches of its own so that the applications running
within its boundaries don’t necessarily hit the Internet when accessing cacheable
resources. Network providers (e.g., ISPs), organizations with their own virtual
networks, and even entire countries may also introduce proxies in order to speed
up access to frequently accessed web resources.

Reverse proxy
A reverse proxy, or accelerator, stores representations from one origin server on
behalf of many consumers. Reverse proxies are located in front of an application
or web server. Clusters of reverse proxies improve redundancy and prevent
popular resources from becoming server hotspots. Reverse proxy implementations
include Squid,* Varnish,t and Apache Traffic Server.*

Figure 6-1 shows the many places in which these caches appear on the Web.

* http://www.squid-cache.org/
+ http://varnish-cache.org/
T http://trafficserver.apache.org/

CHAPTER 6: SCALING OUT

http://www.squid-cache.org/
http://varnish-cache.org/
http://trafficserver.apache.org/

L
—

[ade][e || cache | VErE

proxies
| cache |
Cade)

che

o proxies
o

o

| cache |
4 -
organization

[ade][ade)| ache]proxies
3

local
| cache . proxy

Consumer
application

logic

Figure 6-1. Web caches

Caches can be arranged in complex topologies. They can be clustered to improve
reliability or arranged in hierarchies. Caches in a cache hierarchy forward requests for
which they do not have a cached representation to other caches farther up the
hierarchy, until a cached representation is found or the request is finally passed to the
origin server.

—— WARNING

A request reaching an origin server is the most expensive operation on the Web.
Not only will the request have consumed network bandwidth, but also, once it
reaches the server, it may cause computation to occur and data to be retrieved.
These are not cheap options at web scale: contention for computational and data
resources will be fierce for a typical service. Caching acts as a buffer between
the finite resources of a service and the myriad consumers of those resources
on the Web.

Making Content Cacheable

Given that caches are designed around the retrieval of resource representations, it
shouldn’t come as a surprise to learn that they mostly (but not exclusively) work with

MAKING CONTENT CACHEABLE 161

162

GET requests. Responses to GET requests are cacheable by default.* Responses to POST
requests are not cacheable by default, but can be made cacheable if either an Expires
header, or a Cache-Control header with a directive that explicitly allows caching, is
added to the response. Responses to PUT and DELETE requests are not cacheable at all.

The more a service supports GET and the appropriate caching headers, the more the
Web’s infrastructure can help with scalability. Imagine a situation in which a very
inquisitive Restbucks customer repeatedly asks a barista for the status of his coffee.

If the barista spends a lot of her time answering questions, her overall output will
diminish. Given that the answer stays the same for relatively long periods (e.g., “I'm
preparing your medium skim-milk latte”), a lot of effort is wasted for very little
benetit. Deploying a cache between the consumer and the Restbucks barista frees the
barista from having to answer the same question over and over again. As a result, the
overall coffee output of the Restbucks service improves.

Response Headers Used for Caching
There are two main HTTP response headers that we can use to control caching behavior:

Expires
The Expires HTTP header specifies an absolute expiry time for a cached representa-
tion. Beyond that time, a cached representation is considered stale and must be
revalidated with the origin server. A service can indicate that a representation has
already expired by including an Expires value equal to the Date header value (the
representation expires now), or a value of 0. To indicate that a representation never
expires, a service can include a time up to one year in the future.

Cache-Control
The Cache-Control header can be used in both requests and responses to control
the caching behavior of the response. The header value comprises one or more
comma-separated directives. These directives determine whether a response is
cacheable, and if so, by whom, and for how long.

If we can determine an absolute expiry time for a cached response, we should use an
Expires header. If it’s more appropriate to indicate how long the response can be
considered fresh once it has left the origin server, we should use a Cache-Control
header, adding a max-age or s-maxage directive to specity a relative Time to Live (TTL).

Cacheable responses (whether to a GET or to a POST request) should also include a
validator—either an ETag or a Last-Modified header:

* The response should really have either an expiry time, or a validator, as we discuss shortly.

CHAPTER 6: SCALING OUT

ETag
In Chapter 4, we said that an ETag value is an opaque string token that a server
associates with a resource to uniquely identify the state of the resource over its
lifetime. When the resource changes, the entity tag changes accordingly. Though
we used ETag values for concurrency control in Chapter 4, they are just as useful
for validating the freshness of cached representations.

Last-Modified
Whereas a response’s Date header indicates when the response was generated, the
Last-Modified header indicates when the associated resource last changed. The
Last-Modified value cannot be later than the Date value.

Example 6-4 shows a response containing Expires, ETag, and Last-Modified headers.

Example 6-4. A response with an absolute expiry time

Request:
GET /product-catalog/9876
Host: restbucks.com

Response:

HTTP/1.1 200 OK

Content-Length: ...

Content-Type: application/vnd.restbucks+xml
Date: Fri, 26 Mar 2010 09:33:49 GMT

Expires: Sat, 27 Mar 2010 09:33:49 GMT
Last-Modified: Fri, 26 Mar 2010 09:33:49 GMT
ETag: "cde893c4"

<product xmlns="http://schemas.restbucks.com/product">
<name>Sumatra Organic Beans</name>
<size>1kg</size>
<price>12</price>

</product>

This response can be cached and will remain fresh until the date and time specified in
the Expires header. To revalidate a response, a cache uses the ETag header value or the
Last-Modified header value to do a conditional GET.* If a consumer wants to revalidate
a response, it should include a Cache-Control: no-cache directive in its request. This
ensures that the conditional request travels all the way to the origin server, rather than
being satisfied by an intermediary.

Example 6-5 shows a response containing a Last-Modified header, an ETag header, and
a Cache-Control header with a max-age directive.

* Choosing between ETag values and Last-Modified timestamps depends on the granularity of updates
to the resource. Last-Modified is only as accurate as a timestamp (to the nearest second), while ETags
can be generated at any frequency. Typically, however, timestamps are cheaper to generate.

MAKING CONTENT CACHEABLE

163

http://schemas.restbucks.com/product%E2%80%B3

164

Example 6-5. A response with a relative expiry time

Request:
GET /product-catalog/1234
Host: restbucks.com

Response:

HTTP/1.1 200 OK

Content-Length: ...

Content-Type: application/vnd.restbucks+xml
Date: Fri, 26 Mar 2010 12:07:22 GMT
Cache-Control: max-age=3600

Last-Modified: Fri, 26 Mar 2010 11:45:00 GMT
ETag: "59c6ddof"

<product xmlns="http://schemas.restbucks.com/product">
<name>Fairtrade Roma Coffee Beans</name>
<size>1kg</size>
<price>12</price>

</product>

This response is cacheable and will remain fresh for up to one hour. As with the
previous example, a cache can revalidate the representation using either the Last-
Modified value or the ETag value.

Using Caching Directives in Responses

Cache-Control directives serve three functions when used in a response. Some make
normally uncacheable responses cacheable. Others make normally cacheable
responses uncacheable. Finally, there are some Cache-Control directives that do not
affect the cacheability of a response at all; rather, they determine the freshness of an
already cacheable response. An individual directive can serve one or more of these
functions.

max-age=<delta-seconds>
This directive controls both cacheability and freshness. It makes a response capable
of being cached by local and shared caches (proxies and reverse proxies), as well
as specifying a freshness lifetime in seconds. A max-age value overrides any Expiry
value supplied in a response.

s-maxage=<delta-seconds>
Like max-age, this directive serves two functions: it makes responses cacheable, but
only by shared caches, and it specifies a freshness lifetime in seconds.

CHAPTER 6: SCALING OUT

http://schemas.restbucks.com/product%E2%80%B3

public
This directive makes a response capable of being cached by local and shared
caches, but doesn’t determine a freshness value. Importantly, public takes
precedence over authorization headers. Normally, if a request includes an
Authorization header, the response cannot be cached. If, however, the response
includes a public directive, it can be cached. You should exercise care, however,
when making responses that require authorization cacheable.

private
This directive makes a response capable of being cached by local caches only (i.e.,
within the consumer implementation). At the same time, it prevents normally
cacheable responses from being cached by shared caches. private doesn’t deter-
mine a freshness value.

must-revalidate
This directive makes normally uncacheable responses cacheable, but requires
caches to revalidate stale responses with the origin server. Only if the stale
response is successfully validated with the origin server can the cached content be
used to satisfy the request. must-revalidate is enormously useful in balancing
consistency with reduced bandwidth and computing resource consumption. While
it forces a revalidation request to travel all the way to the origin server, an
efficient validation mechanism on the server side will prevent the core service
logic from being invoked for a large percentage of requests—all for the cost of a
measly 304 Not Modified response.

proxy-revalidate
This directive is similar to must-revalidate, but it only applies to shared caches.

no-cache
This directive requires caches to revalidate a cached response with the origin server
with every request. If the request is successfully validated with the origin server, the
cached content can be used to satisty the request. The directive only works for
responses that have been made cacheable using another header or directive (i.e., it
doesn’t make uncacheable responses cacheable). Unfortunately, different caches
behave in different ways with regard to no-cache: some caches treat no-cache as an
instruction to not cache a response (as per an old draft of HTTP 1.1); some treat it
correctly, as a requirement to always revalidate a cached response.

no-store
This directive makes normally cacheable content uncacheable by all caches.

MAKING CONTENT CACHEABLE 165

The HTTP Stale Controls Informational RFC recently added two new directives to this
list, which together enable us to make trade-offs between latency, availability, and
consistency.* These directives are:

stale-while-revalidate=<delta-seconds>
In situations where a cache is able to release a stale response, this directive allows
the cache to release the response immediately, but instructs it to also revalidate it
in the background (i.e., in a nonblocking fashion). This directive favors reduced
latency (caches release stale responses immediately, even as they revalidate them)
over consistency. If a stale representation is not revalidated before delta-seconds
have passed, however, the cache should stop serving it.

stale-if-error=<delta-seconds>
This directive allows a cache to release a stale response if it encounters an error
while contacting the origin server. If a response is staler than the stale window
specified by delta-seconds, it should not be released. This directive favors avail-
ability over consistency.

Squid 2.7 currently supports these last two directives; support is forthcoming in later
versions of Squid and Apache Traffic Server.

The directives we’ve looked at so far can be mixed in interesting and useful ways, as
the following examples demonstrate. Example 6-6 shows how we can make a repre-
sentation cacheable by local caches for up to one hour.

Example 6-6. Making content cacheable by local caches only

Cache-Control: private, max-age=3600

Example 6-7 is more interesting, in that it allows caching of representations that
require authorization.

Example 6-7. Caching authorized responses

Cache-Control: public, max-age=0

public makes the response cacheable by both local and shared caches, while max-age=0
requires a cache to revalidate a cached representation with the origin server (using a
conditional GET request) before releasing it. (Ideally, we’d use no-cache, but because
some caches treat no-cache as an instruction to not cache at all, we’ve opted for
max-age=0 instead.) This combination is useful when we want to authorize each
request, but still take advantage of the bandwidth savings offered by the caching
infrastructure, as we see in Figure 6-2.

* http://fwww.rfc-editor.org/rfc/rfc586 1 .txt

166 CHAPTER 6: SCALING OUT

http://www.rfc-editor.org/rfc/rfc5861.txt

server

Conditional
GET

local
proxy

|cache'

Consumer
application

logic

Figure 6-2. Minimizing traffic for accessing local, consistent, cached representations

In revalidating each request with the server, the cache will pass on the contents of the
Authorization header supplied by the consumer. If the origin server replies 401
Unauthorized, the cache will refuse to release the cached representation. The combina-
tion public, max-age=0 differs from must-revalidate in that it allows caching of
responses to requests that contain Authorization headers.

Implementing Caching in .NET

Let’s see how Restbucks can take advantage of caching to improve the distribution of its
menu. The Restbucks menu is an XML document that is consumed by third-party
applications such as coffee shop price comparators and customers. The menu resource is
dynamically created from the Restbucks product database. Every time the menu service
receives a GET request for the menu, it must perform some logic and database access.

Restbucks would like to ensure that its menu service isn’t overwhelmed by thousands
of requests from external services. But instead of deploying more servers or paying for
more bandwidth, Restbucks decides to make use of the Web’s caching infrastructure.

This caching infrastructure includes reverse proxies and proxy caches, as well as local
caches. Some consumers of Restbucks” menu service may opt to use their local caches to
speed up their systems, knowing that consistency with Restbucks’ data isn’t always
guaranteed. Doing so is easy: Example 6-8 shows some simple .NET HTTP client code that
uses the WinINet cache provided by Microsoft Windows Internet Services. The WinINet
cache is the same local cache that Internet Explorer uses, and so has a large installed base.

To take advantage of local caching, we need only add a RequestCachePolicy instance to
our request. The policy is initialized with a RequestCachelLevel.Default enum value,
which ensures that the local cache is used to try to satisfy the request. If the local

IMPLEMENTING CACHING IN .NET

167

cache can't satisty the request, the request will be forwarded to the origin server (or to
any intervening shared caches).

Example 6-8. Using the WinINet local cache from consumer code

Uri uri = new Uri("http://restbucks.com/product-catalog/1234");
HttpWebRequest webRequest = (HttpWebRequest) WebRequest.Create(uri);
webRequest.Method = "GET";

webRequest.CachePolicy = new RequestCachePolicy(RequestCacheLevel.Default);
HttpWebResponse webResponse = (HttpWebResponse) webRequest.GetResponse();

On the server side, the menu service is implemented using an instance of the .NET
Framework’s HttpListener class.* Example 6-9 shows the code that creates and starts
the listener.

Example 6-9. A simple web server

private static void Main(string[] args)

{

Console.Writeline("Server started...");
Console.Writeline();

HttpListener listener = new HttpListener();
listener.Prefixes.Add("http://localhost./");

listener.Start();

listener.BeginGetContext(new AsyncCallback(GetMenu), listener);

Console.ReadKey();

When it receives a request, the listener calls its GetMenu(...) method, passing it an
HttplListenerContext object, which encapsulates the request and response context.
Each request is handled on a separate thread taken from the .NET thread pool. The
implementation of GetMenu(...) is shown in Example 6-10.

Example 6-10. GetMenu(...) satisfies an HTTP GET request

public void GetMenu(HttpListenerContext context)
{

context.Response.ContentType = "application/xml";
XDocument menu = menuRepository.Get();
using (Stream stream = context.Response.OutputStream)

{

using (XmlWriter writer = new XmlTextWriter(stream, Encoding.UTF8))

{

* For this example, we host the HttpListener instance in a console application. For production, we’'d
host it in IIS to take advantage of management and fault-tolerance features.

168 CHAPTER 6: SCALING OUT

http://restbucks.com/product-catalog/1234%E2%80%B3%00
http://localhost./%E2%80%B3%00/

menu.WriteTo(writer);
}
}
}

First, GetMenu(...) sets the ContentType of the response to application/xml. Then it
gets an XDocument representation of the menu from a repository and writes it to the
response stream.

This implementation produces the response shown in Example 6-11. Every time a
consumer attempts to GET the Restbucks menu, the request is handled by this code. In
other words, every request consumes processor time. This is because there are no
caching headers in the response that would allow any web proxies on the request path
to cache the response and directly serve it in the future.

Example 6-11. Response to a GET request for the Restbucks menu

HTTP/1.1 200 OK

Content-Type: application/xml

Date: Sun, 27 Dec 2009 01:30:51 GMT
Content-Length: ...

<!-- Content omitted -->

According to the HTTP specification, a web proxy can cache a 200 OK response even if
the response doesn’t include any specific caching metadata.* Still, it'd be helpful if the
service explicitly stated whether a response can be cached. Doing so helps to ensure
that the caching infrastructure is used to its full potential. Example 6-12 shows how we
can change the implementation of GetMenu(...) to include some caching metadata.

Example 6-12. Adding a Cache-Control header to the response

public void GetMenu(HttpListenerContext context)

{
context.Response.ContentType = "application/xml";
context.Response.AddHeader ("Cache-Control", "public, max-age=604800");
XDocument menu = Database.GetMenu();
using (Stream stream = context.Response.OutputStream)
{
using (XmlWriter writer = new XmlTextWriter(stream, Encoding.UTF8))
{
menu.WriteTo(writer);
}
}
}

* Additional responses that can be cached in this fashion include 203 Non-Authoritative Informa-
tion, 206 Partial Content, 300 Multiple Choices, 301 Moved Permanently, and 410 Gone.

IMPLEMENTING CACHING IN .NET

169

As Example 6-12 shows, we only need to add a single line in order to make the
response cacheable. Because we don’t expect the menu to change more than once per
week, we inform caches that they can consider the response fresh for up to 604,800
seconds. We also indicate that the representation is public, meaning both local and
shared caches can cache it. As a result of this change, the response now contains a
Cache-Control header, as shown in Example 6-13.

Example 6-13. The response now includes a Cache-Control header

HTTP/1.1 200 OK

Cache-Control: public, max-age=604800
Content-Type: application/xml

Date: Sun, 27 Dec 2009 01:30:51 GMT
Content-Length: ...

<!-- Content omitted -->

That one line of code has the potential to dramatically reduce Restbucks’ infrastructure
and operational costs. Our menu’s representation now gets distributed at various
caches around the Web, as Figure 6-3 illustrates.

Figure 6-3. The menu representation is cached throughout the Web

170 CHAPTER 6: SCALING OUT

Caching doesn’t just work for public-facing services. Using these same web caching
techniques, we can also improve the scalability and fault-tolerance characteristics of
services we deploy within the boundaries of an organization. If we write our applica-
tions with caching in mind, and expose most of our business logic through domain
application protocols using GET and caching headers, we can offload much of the
processing and bandwidth load to caches without any special coding or middleware.

Consistency

Because the Web is loosely coupled, weak consistency is a feature of all web-based
distributed applications. As a result of the statelessness constraint, a service has no way
of notifying consumers when a resource changes. In consequence, consumers some-
times act on stale data. In an attempt to keep up-to-date, many consumers will
repeatedly GET (poll) a resource representation to discover whether it has changed
recently. But this strategy is only as good as the polling frequency. In general, we must
assume that a consumer’s understanding of the state of a resource lags the service’s
view of the same resource.

Caching only exacerbates the situation. The moment we introduce caching, we should
assume that consumers will become inconsistent with services, and just deal with it.
While there are several techniques for increasing the degree of consistency among
consumers, caches, and services, the fact remains that different web actors will often
have different copies of a resource representation.

The three techniques for improving consistency are:

Invalidation
Invalidation involves notifying consumers and caches of changes to resources for
which they hold cached representations. With server-driven invalidation, the
server must maintain a list of recipients to be contacted whenever a resource
changes. This goes against the requirement that services not maintain application
state.

Validation
To ensure that they have an up-to-date resource representation, consumers and
caches can verify a local copy with the origin server. This approach requires the
consumer to make a validation request of the service, which uses bandwidth and
places some load on the server. Services must be able to respond to validation
requests. Unlike server-driven invalidation, however, servers do not have to
maintain a list of consumers to be contacted whenever a resource changes.
Despite the fact that requests have to travel all the way to the origin server,
validation is a relatively efficient, low-bandwidth way of keeping data up-to-date.
Validation helps improve scalability and performance, and reduce latency. In so
doing, it drives down per-request costs.

CONSISTENCY

171

172

Expiration
Expiration-based consistency involves specifying an explicit TTL for each cache-
able representation. Cached representations older than this TTL are considered
stale, and must usually be revalidated or replaced. HTTP implements expiration-
based consistency using Expires HTTP headers and Cache-Control directives.

Expiration raises a couple of issues. On the one hand, a long TTL increases the likeli-
hood that at some point a cached representation will no longer reflect the current state
of the resource on the origin server, even though it is still fresh in the cache. That is,
fresh representations can become invalid. Consumers of such cached representations
must be able to tolerate a degree of latency between a resource changing and its being
updated in a cache. On the other hand, representations that have become stale in the
cache, but whose resources haven’t changed since they were issued, will in fact prove
to be still valid; revalidating such representations, though necessary, is suboptimal in
terms of network and server resource usage.

Expiration and validation can be used separately or in combination. With a pure
validation-based approach (using, for example, a no-cache directive), consumers and
caches revalidate with every request, thereby ensuring that they always have an
up-to-date version of a representation. With this strategy, we must assess the trade-offs
between increased consistency and the resultant rise in bandwidth and load on the
server.

In contrast, an exclusively expiration-based approach reduces bandwidth usage and
the load on the origin server, but at the risk of there being newer versions of a
resource on the server while older (but still fresh) representations are being served
from caches. After a cached representation has expired, a subsequent GET will result in
a full representation being returned along the response path, even if the version hasn’t
in fact changed on the server.

By using expiration and validation together, we get the best of both worlds. Cached
representations are used while they remain fresh. When they become stale, the cache
or consumer revalidates the representation with the origin server. This approach helps
reduce bandwidth usage and server load. There’s still the possibility, however, that
representations that remain fresh in a cache become inconsistent with resource state
on the origin server.

Using Validation

A cache can determine whether a resource has changed by revalidating a cached
representation with the origin server. In Chapter 4, we used ETag values with If-Match
and If-None-Match headers (and Last-Modified values with If-Unmodified-Since and
If-Modified-Since headers) to do conditional updates and deletes. Validation is
accomplished using the same headers and values, but with conditional GETs.

CHAPTER 6: SCALING OUT

A conditional GET tries to conserve bandwidth by sending and receiving just HTTP
headers rather than headers and entity bodies. A conditional GET only exchanges entity
bodies when a cached resource representation is out of date. In simple terms, the
conditional GET pattern says to a server: “Give me a new resource representation only
if the resource has changed substantially since the last time I asked for it. Otherwise,
just give me the headers I need to keep my copy up-to-date.”

Conditional GETs are useful only when the client making the request has previously
fetched and held a copy of a resource representation (and the attached ETag or Last-
Modified value). To revalidate a representation, a consumer or cache uses a previously
received ETag value with an If-None-Match header, or a previously supplied Last-
Modified value with an If-Modified-Since header. If the resource hasn’t changed (its
ETag or Last-Modified value is the same as the one supplied by the consumer), the
service replies with 304 Not Modified (plus any ETag or Location headers that would
normally have been included in a 200 OK response). If the resource has changed, the
service sends back a full representation with a 200 OK status code.

When a service replies with 304 Not Modified, it can also include Expires, Cache-
Control, and Vary headers. Caches can update their cached representation with any
new values in these headers. A 304 Not Modified response should also include any ETag
or Location headers that would ordinarily have been sent in a 200 OK response;
including these headers ensures that as well as the cached resource state, the consum-
er’s cached metadata is also kept up-to-date.

NOTE

The Vary header is used to list the request headers a service uses to generate differ-
ent representations of a resource. Caches store and release responses based on the
values of these request headers. Vary: Accept-Encoding, for example, indicates that
requests with different Accept-Encoding header values will generate significantly
different representations. If the responses can be cached, each variation will be
stored separately so that it can be used to satisfy subsequent requests with the same
Accept-Encoding value. Be careful using Vary: careless use of the Vary header can
easily overload a cache with multiple representations of the same resource.

Example 6-14 shows two request-response interactions: a GET, which returns an entity
body, and then a revalidation, which uses the Last-Modified value from the first
response with an If-Modified-Since header. The revalidation says “execute this request
only if the entity has changed since the Last-Modified time supplied in this request.”

Example 6-14. Revalidation using If-Modified-Since with a previous Last-Modified value

Request:
GET /order/1234 HTTP/1.1
Host: restbucks.com

CONSISTENCY

173

174

Response:

HTTP/1.1 200 OK

Content-Length: ...

Content-Type: application/vnd.restbucks+xml
Date: Fri, 26 Mar 2010 10:01:22 GMT
Last-Modified: Fri, 26 Mar 2010 09:55:15 GMT
ETag: "74f4beqb”

<order xmlns="http://schemas.restbucks.com">
<location>takeaway</location>
<item>
<drink>latte</drink>
<milk>whole</milk>
<size>large</size>
</item>
</order>

Request:

GET /order/1234 HTTP/1.1

Host: restbucks.com

If-Modified-Since: Fri, 26 Mar 2010 09:55:15 GMT

Response:
HTTP/1.1 304 Not Modified

Example 6-15 shows a similar pair of interactions, but this time the revalidation uses
an If-None-Match header with an ETag value. This revalidation says “execute this
request only if the ETag belonging to the entity is different from the ETag value sup-
plied in the request.”

Example 6-15. Revalidation using If-None-Match with an entity tag value

Request:
GET /order/1234 HTTP/1.1
Host: restbucks.com

Response:

HTTP/1.1 200 OK

Content-Length: ...

Content-Type: application/vnd.restbucks+xml
Date: Fri, 26 Mar 2010 10:01:22 GMT
Last-Modified: Fri, 26 Mar 2010 09:55:15 GMT
ETag: "74f4be4b"

CHAPTER 6: SCALING OUT

http://schemas.restbucks.com%E2%80%B3

<order xmlns="http://schemas.restbucks.com">
<location>takeaway</location>
<item>
<drink>latte</drink>
<milk>whole</milk>
<size>large</size>
</item>
</order>

Request:

GET /order/1234 HTTP/1.1
Host: restbucks.com
If-None-Match: "74f4be4b"

Response:
HTTP/1.1 304 Not Modified

When developing services, we have to decide the best way of calculating entity tags on
a case-by-case basis. Consumers, however, should always treat ETags as opaque string
tokens—they don’t care how they’re generated, so long as the tag discriminates
between changed representations.

There are two things to consider when implementing ETags in a service: computation
and storage. If an entity tag value can be computed on the fly in a relatively cheap
manner, there’s very little point in storing the value with the resource—we can just
compute it with each request. If, however, generating an entity tag value is a relatively
expensive operation, it’s worth persisting the computed value with the resource.

Computationally cheap ETag values can be generated using quoted string versions of
timestamps, as we discussed in Chapter 4. This is generally a “good enough” solution
for entities that don’t change very often. When a consumer includes an entity tag
value generated using this method in a conditional request, evaluating the conditional
request is often as simple as comparing the supplied value against a file or database
row timestamp. For collections, we can use the timestamp of the most recently
updated member of the collection. Using a timestamp in an ETag header rather than—
as is more usual—a Last-Modified header allows us to evolve the service validation
strategy without requiring corresponding changes in consumers. For example, we
might choose to use a timestamp-based strategy in an early version of a service
because the business context ensures that resources change relatively infrequently. If
the business process later evolves such that resources change twice or more during a
single second, we can safely change the service-side entity tag generation and valida-
tion strategy without consumers having to evolve in lockstep. If we’d initially used a
Last-Modified header, consumers would have to switch to using ETags.

CONSISTENCY

175

http://schemas.restbucks.com%E2%80%B3

176

The most expensive ETag values tend to be those that are computed using a hash of a
representation. Hashes can be computed from just the entity body, or they can include
headers and header values as well. If hashing headers, avoid including header values
containing machine identity. This is to avoid problems when scaling out, where many
machines serve identical representations. If a representation’s ETag value encodes
something host-specific, caches will end up with multiple copies of a representation
differing only by origin server. Similarly, if we generate ETag values based on a hash of
the headers as well as the entity body, we should avoid using the Expires, Cache-
Control, and Vary headers, which can sometimes be used to update a cached represen-
tation after revalidating with the origin server.

NOTE

Of course, we should remember that before we can hash a resource, we must
assemble its representation. When used in response to a conditional GET, this
strategy requires the server to do everything it would do to satisfy a normal request,
except send the full-blown representation back across the wire. We'll still save
bandwidth, but we'll continue to pay a high computational cost—because hashes
tend to be expensive algorithms. If assembling a representation is expensive, it may
be better to use version numbers, even if it involves fetching them from a backing
store. Alternatively, we might simply indicate that an entity has changed by generat-
ing a universally unique identifier value (a UUID), which we then store with the
entity. If in doubt as to the best strategy, implement some representative test cases,
measure the results, and then choose.

As an optimization, we might consider caching precomputed entity tag values in an
in-memory structure. Once again, load-balanced, multimachine scenarios introduce
additional complexity here, but if computing the value on the fly is especially expen-
sive, or accessing a persisted, precomputed value becomes a bottleneck in the system,
a distributed, in-memory cache of ETag values might just be the thing we need to help
save precious computing resources.

Most of the work of implementing conditional GET takes place in the service code,
which has to look for the If-Modified-Since and If-None-Match headers, evaluate their
conditions, and construct a 200 OK or 304 Not Modified response as appropriate. Services
that don’t set caching headers, or that incorrectly handle conditional GETs, can have a
detrimental effect on the behavior of the system.

The bandwidth, latency, and scalability benetfits of using conditional GET should be
clear by now, but at what expense? It might seem as though to realize these benefits
we have quite a bit of work to do on the client and the server—storing entity tags,
adding If-Modified-Since and If-None-Match headers to requests, and updating store
representations with response header values.

But guess what? Most caches handle this behavior for us for free. Consumer applica-
tions don’t need to take any notice of ETag and Last-Modified values: validations are
dealt with by the underlying caching infrastructure.

CHAPTER 6: SCALING OUT

Using Expiration

We've already seen how a service can control the expiration of a representation using
the Expires header and certain Cache-Control directives in a response. Consumers, too,
can influence cache behavior. By sending Cache-Control directives in requests, con-
sumers can express their preference for representations that fall within particular
freshness bounds, or their tolerance for stale representations.

max-age=<delta-seconds>
Indicates that the consumer will only accept cached representations that are
not older than the specified age, delta-seconds. If the consumer specifies max-
age=0, the request causes an end-to-end revalidation all the way to the origin server.

max-stale=<delta-seconds>
Indicates that the consumer is prepared to accept representations that have been
stale for up to the specified number of seconds. The delta-seconds value is
optional; by omitting this value, the consumer indicates it is prepared to accept a
stale response of any age.

min-fresh=<delta-seconds>
Indicates that the consumer wants only cached representations that will still
be fresh when the current age of the cached object is added to the supplied
delta-seconds value.

only-if-cached
Tells a cache to return only a cached representation. If the cache doesn’t have a
fresh representation of the requested resource, it returns 504 Gateway Timeout.

no-cache
Instructs a cache not to use a cached representation to satisty the request, thereby
generating an end-to-end reload. An end-to-end reload causes all intermediaries on
the response path to obtain fresh copies of the requested representation (whereas
an end-to-end revalidation—using max-age=0—allows intermediaries to update
cached representations with headers in the response).

no-store
Requires caches not to store the request or the response, and not to return a
cached representation.

These Cache-Control directives allow a consumer to make trade-off decisions around
consistency and latency. Consider, for example, an application that has been optimized
for latency (by making the majority of representations cacheable). Consumers that
require a higher degree of consistency can use max-age or min-stale to obtain represen-
tations with stricter freshness bounds, but at the expense of the cache revalidating with
the origin server more often than dictated by the server. In contrast, consumers that care
more about latency than consistency can choose to relax freshness constraints, and
accept stale representations from nearby caches, using max-stale or only-if-cached.

CONSISTENCY

177

178

Another situation where these request directives are useful is after a failed conditional
PUT or POST. If a conditional operation fails, it’s normal for the consumer to GET the
current state of the resource before retrying the operation. In these circumstances, it is
advisable to use a Cache-Control: no-cache directive with the request, to force an
end-to-end reload that returns the current state of the resource on the server, rather
than a still fresh but now invalid representation from a cache.

Using Invalidation

There are two types of invalidation: consumer-driven invalidation and server-driven
invalidation. Server-driven invalidation falls outside HTTP’s capabilities, whereas a
form of consumer-driven invalidation is intrinsic to HTTP.

Let’s look at consumer-driven invalidation first. According to the HTTP specification,
DELETE, PUT, and POST requests should invalidate any cached representations belonging to
the request URL In addition, if the response contains a Location or Content-Location
header, representations associated with either of these header values should also be
invalidated.

NOTE

Unfortunately, many caches do not invalidate cached content based on the
Location and Content-Location header values. Invalidations based on the unsafe
methods just listed are, however, common.

At first glance, it would appear that a consumer could invalidate a cached representa-
tion using a DELETE, PUT, or POST request, and thereafter be confident that this same
representation won’t be returned in subsequent GETs. But we must remember that this
technique can only guarantee to invalidate caches on the immediate request path.
Caches that are not on the request path will not necessarily be invalidated. Once
again, we are reminded of the need to deal with the weak consistency issues inherent
in the Web’s architecture.

In contrast to the necessarily weak consistency model of consumer-driven invalida-
tion, server-driven invalidation would appear to offer stronger consistency guarantees.
With server-driven invalidation, the service sends invalidation notices to the caches
and consumers it knows are likely to have a cached representation of a particular
resource. With this approach, all interested parties—both those on and those off the
request-response path—will be invalidated when a resource changes.

But this is not the way the Web usually works. For such an approach to be successful,
a service would have to maintain a list of consumers and caches to be contacted when
a resource changes. In other words, the service would have to maintain application
state. And holding application state on the server undermines scalability.

CHAPTER 6: SCALING OUT

Server-driven invalidation only works for caches the server knows about. Moreover,
its strong consistency guarantees only hold while the caches that need to be notified of
an invalidation event are connected to the service. If a network problem disconnects a
cache, causing it to miss one or more invalidation messages, the overall distributed
application will be in an inconsistent state—at least temporarily.

It should be clear by now that server-driven invalidation can only partly mitigate the
weak consistency issues that come with adopting the Web as an integration platform.
Because of the generally web-unfriendly nature of server-driven invalidation, expira-
tion and validation are by far the most common methods of ensuring eventual
consistency between services and consumers on the Web.

Extending Freshness

Once we have determined that a resource’s representations can be cached, we will
have to decide which caches to target, together with the freshness lifetimes of the
cacheable representations.

When deciding on the freshness lifetime of a representation, we must balance server
control with scalability concerns. With short expiration values, the service retains a
relatively high degree of control over the representations it releases, but this control
comes at the expense of frequent reloads and revalidations, both of which use network
resources and place load on the origin server. Longer expiration values, on the other
hand, conserve bandwidth and reduce the number of requests that reach the origin
server; at the same time, however, they increase the likelihood that a cached representa-
tion will become inconsistent with resource state on the server over the course of its
freshness lifetime.

Being able to invalidate cached representations would help here; we could specify a
long freshness lifetime for each representation, but then invalidate cached entries the
moment a resource changes. Unfortunately, the Web doesn’t support a general
invalidation mechanism.

There is, however, one way we can work with the Web to make representations as
cacheable as possible, but no more. Instead of seeking to invalidate entries, we can
extend their freshness lifetime.

Cache Channels

Cache channels implement a technique for extending the freshness lifetimes of cached
representations.* Caches that don’t understand the cache channel protocol will
continue to expire representations the moment they become stale. Caches that do
understand the protocol, however, are entitled to treat a normally stale representation
as still fresh, until they hear otherwise.

* Cache channels are the brainchild of Mark Nottingham; see http://www.mnot.net/blog/2008/01/04/
cache_channels.

EXTENDING FRESHNESS

179

http://www.mnot.net/blog/2008/01/04/

Cache channels use two new Cache-Control extensions. Caches that understand these
directives can use cache channels to extend the freshness lifetime of cached represen-
tations. These extensions are:

channel
The channel extension supplies the absolute URI of a channel that a cache can
subscribe to in order to fetch events associated with a cached representation.

group
The group extension supplies an absolute URI that can be used to group multiple
cached representations. Events that apply to a group ID can be applied to all the
cached representations belonging to that group.

Example 6-16 shows a request for a product from Restbucks’ product catalog. The
response includes a Cache-Control header containing both cache channel extensions.

Example 6-16. The channel and group extensions allow caches to subscribe to a cache channel

Request:
GET /product-catalog/1234
Host: restbucks.com

Response:

HTTP/1.1 200 OK

Cache-Control: max-age=3600, channel="http://internal.restbucks.com/product-
catalog/cache-channel/", group="urn:uuid:1f80b2a1-660a-4874-92c4-45732e03087b"
Content-Length: ...

Content-Type: application/vnd.restbucks+xml

Last-Modified: Fri, 26 Mar 2010 09:33:49 GMT

Date: Fri, 26 Mar 2010 09:33:49 GMT

ETag: "d53514dag9e54"

<product xmlns="http://schemas.restbucks.com/product">
<name>Fairtrade Roma Coffee Beans</name>
<size>1kg</size>
<price>10</price>

</product>

The max-age directive specifies that this representation will remain fresh for up to an
hour, after which it must be revalidated with the origin server. But any cache on the
response path that understands the channel and group extensions can continue to
extend the freshness lifetime of this representation as long as two conditions hold:

e The cache continues to poll the channel at least as often as a precision value
specified by the channel itself.

e The channel doesn’t issue a “stale” event for either the URI of the cached repre-
sentation or the group URI with which the representation is associated.

180 CHAPTER 6: SCALING OUT

http://internal.restbucks.com/product-catalog/cache-channel/%E2%80%B3
http://internal.restbucks.com/product-catalog/cache-channel/%E2%80%B3
http://internal.restbucks.com/product-catalog/cache-channel/%E2%80%B3
http://schemas.restbucks.com/product%E2%80%B3

If a cache performs a GET on the channel specified in the channel extension, it receives
the cache channel feed shown in Example 6-17.

Example 6-17. An empty cache channel feed

HTTP/1.1 200 OK

Cache-Control: max-age=300

Content-Length: ...

Content-Type: application/atom+xml
Last-Modified: Fri, 26 Mar 2010 09:00:00 GMT
Date: Fri, 26 Mar 2010 09:42:02 GMT

<feed xmlns="http://www.w3.0rg/2005/Atom"
xmlns:cc="http://purl.org/syndication/cache-channel">
<title>Invalidations for restbucks.com</title>
<id>urn:uuid:d2faab5a-2743-44b1-a979-8e60248dcc8e</id>
<link rel="self"
href="http://internal.restbucks.com/product-catalog/cache-channel/"/>
<updated>2010-03-26T09:00:00Z</updated>
<author>
<name>Product Catalog Service</name>
</author>
<cc:precision»900</cc:precision>
<cc:lifetime>86400</cc:lifetime>
</feed>

This is an Atom feed that has been generated by the origin server. In the next chapter,
we discuss Atom feeds in detail and use them to build event-driven systems. For now, all
we need to understand is that this is an empty feed—it doesn’t contain any channel
events. (Cache channels don’t have to be implemented as Atom feeds, but given that
there’s widespread support for Atom on almost all development platforms it’s easy to
build cache channels using the Atom format.) The feed’s <cc:precision> element specifies
a precision in seconds, meaning that caches that subscribe to this feed must poll it at least
as often as every 15 minutes if they want to extend the freshness lifetimes of any repre-
sentations associated with this channel. The <cc:1ifetime> element value indicates that
events in this feed will be available for at least a day after they have been issued.

NOTE

As you can see from Example 6-17, the Atom feed can itself be cached. As we'll
learn in the next chapter, event feeds can take advantage of the Web's caching
infrastructure as much as any other representation.

As long as the cache continues to poll the channel at least every 15 minutes, it can
continue to serve the cached product representation well beyond its original freshness
lifetime of an hour. If the resource does change on the origin server, the very next

EXTENDING FRESHNESS

181

http://www.w3.org/2005/Atom%E2%80%B3
http://purl.org/syndication/cache-channel%E2%80%B3
http://internal.restbucks.com/product-catalog/cache-channel/%E2%80%B3/

182

time the cache polls the channel it will receive a response similar to the one shown in
Example 6-18.

Example 6-18. A cache channel feed containing a stale event

HTTP/1.1 200 OK

Cache-Control: max-age=900

Content-Length: ...

Content-Type: application/atom+xml
Last-Modified: Fri, 26 Mar 2010 13:10:05 GMT
Date: Fri, 26 Mar 2010 13:15:42 GMT

<feed xmlns="http://www.w3.0rg/2005/Atom"

xmlns:cc="http://purl.org/syndication/cache-channel">
<title>Invalidations for restbucks.com</title>
<id>urn:uuid:d2faab5a-2743-44b1-a979-8e60248dcc8e</id>
<link rel="self"
href="http://internal.restbucks.com/product-catalog/cache-channel/"/>
<updated>2010-03-26T13:10:05Z</updated>
<author>
<name>Product Catalog Service</name>
</author>
<cc:precision>900</cc:precision>
<cc:lifetime>86400</cc:lifetime>
<entry>
<title>stale</title>
<id>urn:uuid:d8b4cdo4-d448-4c26-85a6-b08363de8e87</id>
<updated>2010-03-26T13:10:05Z</updated>
<link href="urn:uuid:1f80b2a1-660a-4874-92c4-45732e03087b" rel="alternate"/>
<cc:stale/>
</entry>

</feed>

The feed now contains a stale event entry whose alternate <link> element associates it
with the group ID to which the product representation belongs (urn:uuid:1f80b2a1-
660a-4874-92c4-45732e03087b). Each event has its own ID, which has nothing to do
with the identifiers of any cached representations; it’s the <1ink> element’s href value
that associates the event with a group or particular representation.

NOTE

In practice, we might expect to see additional entries—related to other groups and
individual resource IDs—in the feed, with the most recent entries appearing first.

CHAPTER 6: SCALING OUT

http://www.w3.org/2005/Atom%E2%80%B3
http://purl.org/syndication/cache-channel%E2%80%B3
http://internal.restbucks.com/product-catalog/cache-channel/%E2%80%B3/

Seeing this event, the cache stops extending the freshness lifetime of any representa-
tions belonging to this group. The next time a consumer issues a request for attp://
restbucks.com/product-catalog/1234, the cache will revalidate its stale representation with
the origin server.

Cache channels work with the Web because they don’t require origin servers to
maintain application state in the form of lists of connected caches. Each cache is
responsible for guaranteeing the delivery of stale events by polling the cache channel.
If a cache can’t connect to the channel, it can no longer continue to extend the
freshness lifetime of otherwise stale representations.

By associating cached representations with groups, cache channels provide a powerful
mechanism for canceling the extended freshness of several related representations at the
same time. This is particularly useful when we decompose an application protocol into
several overlapping resources that together manipulate the state of an underlying
domain entity. POSTing a completion to http://restbucks.com/orders/1234/completion, for
example, may render any fresh representations of http://restbucks.com/orders/1234 invalid.
This is the kind of consistency issue traditional invalidation mechanisms seek to address
and precisely the kind of challenge the loosely coupled nature of the Web makes difficult
to solve. Using small freshness lifetimes together with cache channels, we can reduce the
time it takes for the overall distributed application to reach a consistent state.

NOTE

Cache channels provide a clean separation of concerns. Cache management can
be dealt with separately from designing the caching characteristics of individual
resource representations. Cache channel servers can even be deployed on sepa-
rate hardware from business services.

Of course, cache channels only work for caches that know how to take advantage of
the channel and group extensions. Though the HTTP Cache Channels Internet-Draft
has now expired, several reverse proxies, including Squid and Varnish, include support
for its freshness extension mechanism.* But in an environment where not all cache
implementations can be controlled by service implementers, the same difficult truth
emerges once again: the Web is weakly consistent.

Stay Fresh

In this chapter, we saw how the safe and idempotent properties of the most popular
verb on the Web, GET, are key to building fault-tolerant and scalable systems. The
installed infrastructure of the Web includes a caching substrate that we can use to
bring frequently accessed representations closer to consumers, thereby reducing

* http://ietfreport.isoc.org/idref/draft-nottingham-http-cache-channels/

STAY FRESH

183

http://restbucks.com/product-catalog/1234
http://restbucks.com/product-catalog/1234
http://restbucks.com/orders/1234/completion
http://restbucks.com/orders/1234
http://ietfreport.isoc.org/idref/draft-nottingham-http-cache-channels/

184

latency, conserving bandwidth, masking transient faults, and decreasing the load on
services. Services dictate the caching behaviors of the representations they issue;
consumers tighten or relax the expectations they have of caches as they see fit.

We also considered the implications of the Web’s weak consistency model. No matter
the expiration or validation mechanisms we choose to employ, we must always
remember that we cannot guarantee that a representation of resource state as received
by a consumer reflects the current state of the resource as held by the service.

In the last section, we looked at how cache channels allow us to extend the freshness
lifetimes of cached representations. Our cache channels example used an Atom feed to
communicate “stale” events to caches that understand the cache channels protocol.

In the next chapter, we look in more detail at the Atom feed format. Knowing about
GET and the caching opportunities offered by the Web, we show how to put these
pieces together to create a scalable, fault-tolerant, event-driven system.

CHAPTER 6: SCALING OUT

CHAPTER SEVEN

The Atom Syndication
Format

HTML REMAINS THE MOST POPULAR HYPERMEDIA FORMAT IN USE TODAY, but

as the Web extends its reach beyond the browser, we're seeing other useful formats
emerge. Of these newer hypermedia types, one in particular deserves our attention:
the Atom Syndication Format, or Atom for short.* Atom is an XML-based hypermedia
format for representing timestamped lists of web content and metadata such as blog
postings and news articles.

NOTE

In Chapter 5, we used a custom hypermedia format to expose data and protocols
to consumers. By contrast, Atom is a general-purpose hypermedia format.

Atom interests us because it provides a flexible and extensible interoperability format
for transferring data between applications. Its success has led to wide cross-platform
support, and you can now find Atom libraries in all popular languages, including Java
and C#.

The Format

Atom represents data as lists, called feeds. Feeds are made up of one or more time-
stamped entries, which associate document metadata with web content.

* http://www.ietf.org/rfc/rfc4d287.txt

185

http://www.ietf.org/rfc/rfc4287.txt

186

The structure of an Atom document is defined in the Atom specification (RFC 4287),
but the content of a feed will vary depending on our domain’s requirements. On the
human Web, it might be blog posts or news items, whereas for computer-to-computer
interactions, it might be stock trades, system health notifications, payroll instructions,
or representations of coffee orders.

To illustrate the Atom format, let’s share a list of coffee orders between a cashier, who
takes orders, and a barista, who prepares them. Example 7-1 shows an Atom feed pro-
duced by the Restbucks ordering service. The feed is consumed by the order manage-
ment system (we’ll see more of the order management system in the next chapter).

Example 7-1. An Atom feed containing two entries

<?xml version="1.0"?>
<feed xmlns="http://www.w3.0rg/2005/Atom">
<id>urn:uuid:dob4f914-30e9-418c-8628-7d9b7815060</id>
<title type="text">Recent Orders</title>
<updated>2009-07-01T12:05:00Z</updated>
<generator uri="http://restbucks.com/order">0rder Service</generator>
<link rel="self" href="http://restbucks.com/order/recent"/>
<entry>
<id>urn:uuid:aa990d44-fce0-4823-a971-d23facc8d7c6</id>
<title type="text">order</title>
<updated>2009-07-01T11:58:00Z</updated>
<author>
<name>Jenny</name>
</author>
<link rel="self" href="http://restbucks.com/order/1"/>
<content type="application/vnd.restbucks+xml">
<order xmlns="http://schemas.restbucks.com/order">
<item>
<milk>whole</milk>
<size>small</size>
<drink>latte</drink>
</item>
<item>
<milk>whole</milk>
<size>small</size>
<drink>cappuccino</drink>
</item>
<location>takeAway</location>
</order>
</content>
</entry>
<entry>
<id>urn:uuid:6fa8eca3-48ee-44a9-a899-37d047a3c5f2</1id>
<title type="text">order</title>

CHAPTER 7: THE ATOM SYNDICATION FORMAT

http://www.w3.org/2005/Atom%E2%80%B3
http://restbucks.com/order%E2%80%B3
http://restbucks.com/order/recent%E2%80%B3/
http://restbucks.com/order/1%E2%80%B3/
http://schemas.restbucks.com/order%E2%80%B3

<updated>2009-07-01T11:25:00Z</updated>
<author>
<name>Patrick</name>
</author>
<link rel="self" href="http://restbucks.com/order/2"/>
<content type="application/vnd.restbucks+xml">
<order xmlns="http://schemas.restbucks.com/order">
<item>
<milk>semi</milk>
<size>large</size>
<drink>cappuccino</drink>
</item>
<location>takeAway</location>
</order>
</content>
</entry>
</feed>

Here, Atom entries represent coffee orders, with the Atom metadata capturing useful
business information, such as who took the order and when.

NOTE

While entries are typically contained inside feeds, they can also be treated as
standalone, individually addressable resources. Individually addressable entries
present numerous opportunities for caching. Caching, as we discussed in Chapter
6, helps tremendously when building scalable systems.

Feeds, like entries, have metadata associated with them. Feed metadata allows us to
provide friendly descriptions of content, links to other services or resources, and, most
importantly, a means of navigating to other feeds—all in a standard manner.

Atom doesn’t attach any significance to the order of entries in a feed. A feed will often
be sorted by the <atom:updated> or <atom:published> value of its constituent entries,
but it can as easily be sorted by other elements—by category, or author, or title, for
instance. In our example, we’'ve organized the feed based on when coffee orders were
placed, with the most recent order appearing at the top of the feed.

Our orders feed is typical of how Atom is used in a computer-to-computer scenario.
The feed’s metadata sets the context for the enclosed cotfee orders, allowing consum-
ers to reason about the list’s origin, its purpose, and its timeliness. This feed metadata
includes the following elements:

e <atom:id> is a permanent, universally unique identifier for the feed.
e <atom:title> provides a human-readable name for the feed.

e <atom:updated> indicates when the feed last changed.

THE FORMAT

187

http://restbucks.com/order/2%E2%80%B3/
http://schemas.restbucks.com/order%E2%80%B3

e <atom:generated> identifies the software agent that created the feed, which in this
case is the ordering service.

e <atom:link> contains the canonical URI for retrieving the feed.

The ordering service feed in Example 7-1 contains two <atom:entry> elements, each
representing an order (of course, there could have been more). Each entry is a mixture
of Atom metadata markup and application-specific XML content. The following ele-
ments are included in the <atom:entry> metadata:

e <atom:id> is a unique identifier for the entry.
e <atom:title> provides a human-readable title for the entry.

e <atom:updated> is a timestamp indicating when the entry last changed, which in
this instance is the time the order was accepted by the system.

e <atom:author> identifies who created the entry, which in our example is the
cashier who took the order.

e <atom:link> contains the URI for addressing this entry as a standalone document.

Each entry also contains an <atom:content> element. <atom:content> elements can con-
tain arbitrary foreign elements, including elements that share the default namespace.
Here, the content includes a piece of Restbucks XML representing an order’s details. The
<atom:content> element’s type attribute contains a media type value (application/vnd.
restbucks+xml) so that the consumers of an entry know how to process the payload.

Common Uses for Atom

In Restbucks, we use Atom feeds to move business information between providers and
consumers of coffee operations, exactly as we would using other enterprise integration
techniques. This is just one use of Atom in the enterprise; other uses include:

Syndicating content
Atom is an ideal representation format when the creation and consumption of
resources closely mirrors a syndication model, with a producer or publisher dis-
tributing content to many consumers.

Representing documents and document-like structures
Many domain resources are structured like documents; if this is the case, we
might consider mapping the resource’s attributes to Atom’s metadata elements.

Creating metadata-rich lists of resources
We can use Atom feeds to represent ordered lists, such as search results or events,
especially if the Atom metadata is useful in the context of our service. In this
scenario, Atom establishes a domain processing context for some other domain
content. The event example later in this chapter shows how we can use Atom
metadata to represent event metadata, thereby establishing an event-oriented pro-
cessing context for each Atom entry’s payload.

188 CHAPTER 7: THE ATOM SYNDICATION FORMAT

Adding metadata to existing resource representations
We can use feeds and entries to add metadata to existing resource representations.
In particular, we can use Atom metadata elements to surface information related
to a resource’s publishing life cycle: its author, the date it was created, when it was
last updated, and so on. Just as importantly, we can attach hypermedia links to
existing resource representations by embedding the representation inside an Atom
entry and adding one or more <atom:1link> elements to the entry.

Creating directories of nonhypermedia content
We can use Atom to create entries that link to resources that cannot otherwise be
represented in a hypermedia format, such as binary objects. Use the <atom:content>
element’s src attribute to link to the resource, and specify a media type using the
element’s type attribute.

Using Atom for Event-Driven Systems

Now that we’ve looked at the anatomy of an Atom feed, we’re ready to see how such
feeds can be used for simple computer-to-computer interactions. As an example, let’s see
how Atom can be used to implement a staple of enterprise computing: events. Normally
with event-driven systems, events are propagated through listeners. Here, however, we
plan to publish an ordered list of events that readers can poll to consume events.

NOTE

We believe Atom is an ideal format for highly scalable event-driven architec-

tures. But as with any web-based system, Atom-based solutions trade scalability
for latency, making Atom often inappropriate for very low-latency notifications.
However, if we're building solutions where seconds, or better still, minutes or hours,
can pass between events being produced and consumed, publishing Atom feeds
works very well.

The Problem

Restbucks” headquarters chooses which coffees and snacks will be served in its stores.
HQ is also responsible for organizing promotions across the regions. It maintains prod-
uct and promotion information in a centralized product catalog, but a number of other
business functions within Restbucks depend on this information, including distribu-
tion, local inventory management, point of sale, and order management.

This situation is typical of the integration challenges facing many organizations today:
systems that support key business processes need access to data located elsewhere. Such

* For extremely low-latency notifications, we might consider proprietary middleware designed for
that domain. The trade-oft is scalability for latency, but with the added complication of lock-in.

USING ATOM FOR EVENT-DRIVEN SYSTEMS

189

190

shared data may be required to enable end-to-end processing, or it may be needed in
order to provide the organization with a single, consistent view of a business resource.

The benetfits of data integration include increased consistency and availability of core data.
But to get to this state we often have to overcome the challenges of data redundancy,
poor data quality, lack of consistency among multiple sources, and poor availability.

Reference Data

As it has grown, Restbucks has evolved its data and application integration strategy to
mirror its business capabilities and processes. This strategy has led to independent ser-
vices, each of which authoritatively manages the business processes and data belong-
ing to a business unit.

Effectively, Restbucks has decomposed its information technology ecosystem into
islands of expertise. The product catalog service, for example, acts as an authoritative
source of data and behavior for Restbucks” product management capabilities.

Data such as product and promotions data is often called reference data. Reference data
is the kind of data other applications and services refer to in the course of completing
their own tasks.

Sourcing and using reference data are two quite separate concerns. Typically, an appli-
cation will source a piece of reference data at the point in time it needs to use it. To
preserve service autonomy and maintain high availability in a distributed system,
however, it is best to maintain separation of concerns by decoupling the activities that
own and provide access to reference data from those that consume it. If order manage-
ment has to query the product catalog for a price for every line item, we’d say the two
services were tightly coupled in time. This coupling occurs because the availability of
order management is dependent on the availability of the product catalog. By breaking
this dependency—separating the sourcing of data from its use—we reduce coupling
and increase the availability of the order management service.

—— WARNING

Temporal coupling weakens a solution because it requires numerous independent
systems to be running correctly at a specific instant in time. When multiple servers,
networks, and software all need to be functioning to support a single business
behavior, the chances for failure increase.

To reduce coupling between producers and consumers of reference data, we generally
recommend that reference data owners publish copies of their data, which consum-
ers can then cache. Consumers work with their local copy of reference data until it
becomes stale. By distributing information this way, services can continue to func-
tion even if the network partitions or services become temporarily unavailable. This is
exactly how the Web scales.

CHAPTER 7: THE ATOM SYNDICATION FORMAT

To solve the coupling problem between the product catalog and its several consumers,
Restbucks replicates its product catalog data. Each consumer maintains a local cache
of the reference data, which it then updates in response to notifications from the pro-
vider. Each consumer can continue to function, albeit with possibly stale data, even if
the product catalog becomes unavailable.

To ensure that updates to the product catalog are propagated in a timely manner,
Restbucks uses Atom feeds.

Event-Driven Updates

To communicate data changes from the product catalog service to the distribution,
inventory, and order management systems, Restbucks has chosen to implement an
event-driven architecture. Whenever a new product is introduced, an existing prod-
uct is changed, or a promotion is created or canceled, the product catalog publishes
an event. The systems responsible for distribution, inventory, and order manage-
ment consume these events and apply the relevant changes to their reference data
caches.

Figure 7-1 shows how Restbucks’ product catalog exposes an Atom feed of events.
Stores poll this feed at regular intervals to receive updates. When processing a feed, a
store first finds the last entry it successfully processed the last time it polled the feed,
and then works forward from there.

Hestsbutks Restbucks
i Product Catalog Service
‘_
[http:Hrestbucks.comfpruducts!notifications]
—
feed
<feed xmlns="http://www.w3.0rg/2005/Aton"> Product catalog
database
< <id>urn:uuid:be21b6b0-57b4-4029-
ada4-09585ee74adc</id>
<title type="text">Product Catalog
‘_

Figure 7-1. Event-driven architecture using Atom feeds

Restbucks” underlying business process in this instance isn’t latency-sensitive. Products
and promotions don’t change very often, and when an event occurs, it’s OK for stores
to find out several minutes later. But while low latency isn’t an issue, guaranteed
delivery is: price optimization and campaign management depend on HQ’s product

USING ATOM FOR EVENT-DRIVEN SYSTEMS

191

192

catalog changes definitely being propagated to stores. It’s important, therefore, that we
can guarantee that changes reach the stores, and that they are applied by the start of
the next business day.

Event-driven systems in general exhibit a high degree of loose coupling. Loose coupling
provides failure isolation and allows services and consumers to evolve independently of
each other. Restbucks uses polling and caching to loosely couple providers and consum-
ers. This polling solution respects the specific technical and quality-of-service require-
ments belonging to the challenge at hand (many consumers, guaranteed delivery, but
latency-tolerant).

Polling propagates product catalog events in a timely fashion, limited only by the
speed with which a store can sustainably poll a service’s feeds. But polling can intro-
duce its own challenges: as stores multiply and polling becomes more frequent, there’s
a danger that the product catalog service becomes a bottleneck. To mitigate this, we
can introduce caching. As we saw in Chapter 6, local or intermediary caches help by
reducing the workload on the server and masking intermittent failures.

The Anatomy of an Event

An event represents a significant change in the state of a resource at a particular point
in time (in the case of the product catalog, the resource is a product or a promotion).
An event carries important metadata, including the event type, the date and time it
occurred, and the name of the person or system that triggered it. Many events also
include a payload, which can contain a snapshot of the state of the associated resource
at the time the event was generated, or simply a link to some state located elsewhere,
thereby encouraging consumers to GET the latest representation of that resource.

NOTE

Interestingly, the polling approach inverts the roles and responsibilities normally
associated with guaranteed message delivery in a distributed system. Instead of
the service or middleware being responsible for guaranteeing delivery of mes-
sages, each consumer now becomes responsible for ensuring that it retrieves all
relevant information. Since messages are collocated in time-ordered feeds, there's
no chance of a message arriving out of order.

Solution Overview

Restbucks’ product catalog feed is treated as a continuous logical feed. In practice,
however, this logical feed consists of a number of physical feeds chained together,
much like a linked list. The chain begins with a “working” feed, followed by a series of

CHAPTER 7: THE ATOM SYNDICATION FORMAT

“archive” feeds. The working feed contains all the events that have occurred between
the present moment and a cutoff point in the past. This historical cutoff point is deter-
mined by the notification source (the product catalog service in our case). The archives
contain all the events that occurred before that cutoff point. The contents of the work-
ing feed continue to change until the feed is archived, whereupon the feed becomes
immutable and is associated with a single permanent URI.

The product catalog service is responsible for creating this series of feed resources. The
contents of each feed represent all the changes that occurred during a particular inter-
val. At any given point in time, only one of these feeds is the working feed. The service
creates an entry to represent each event and assigns it to the working feed. When the
service determines that the working feed is “complete,” either because a certain period
has elapsed since the feed was started or because the number of entries in the feed has
reached a predetermined threshold, the service archives the working feed and begins
another.

Each feed relates to a specific historical period. This includes the working feed, which
always relates to a specific period. The only thing that differentiates the working feed
from an archive feed is the open-ended (the “as yet” not determined) nature of the
working feed’s period.

In addition to these historical feeds there is one more resource, which we call “the feed
of recent events.” Unlike the other feeds, the feed of recent events is not a histori-

cal feed; it’s always current. At any given moment, the feed of recent events and the
working feed contain the same information, but when the service archives the current
working feed and starts a new one, the feed of recent events changes to contain the
same data as the new working feed.

As we'll see, consumers need never know about working or archive feeds. Working and
archive feeds are implementation details; as far as consumers are concerned, the notifi-

cations feed is the feed of recent events (the current feed). As service designers, however,
we’ve found it useful to distinguish between these three types of feeds because of some

subtle differences among them, particularly in terms of caching and links.

Using a linked list of feeds, we can maintain a history of everything that has taken place
in the product catalog. This allows Restbucks’ stores to navigate the entire history of
changes to the catalog if they so wish. Figure 7-2 shows how all these feeds link together,
including the feed of recent events, the working feed, and the archive feeds.

USING ATOM FOR EVENT-DRIVEN SYSTEMS

193

| working l

self: http://restbucks.com/products/
notifications/2009/7/5

prev-archive: http://restbucks.com/products/
notifications/2009/7/4

next-archive prev-archive

archive l

self: http://restbucks.com/products/
notifications/2009/7/4

prev-archive

next-archive: http://restbucks.com/products/
notifications/2009/7/5
prev-archive: http://restbucks.com/products/
| notifications/2009/7/3

next-archive prev-archive
recent l archive |
self: http://restbucks.com/ self: http://restbucks.com/products/
products/notifications notifications/2009/7/3
via : http://restbucks.com/
products/notifications/ next-archive: http://restbucks.com/products/
2009/7/5 notifications/2009/7/4

prev-archive: http://restbucks.com/products/
prev-archive: http:// | notifications/2009/7/2
restbucks.com/
products/notifications/ next-archive prev-archive
2009/7/4
b [archive)

self: http://restbucks.com/products/
notifications/2009/7/2

next-archive: http://restbucks.com/
Resthucks Store products/notifications/2009/7/3

Figure 7-2. The notifications feed is a chain of connected feeds

At the Atom level, each feed and entry has its own unique atom:id. A feed’s atom:id
remains the same for the lifetime of that feed, irrespective of whether it’s the work-
ing feed or it has become an archive feed. This guarantees that stores can identify feeds
even if the addressing (URI) scheme radically changes, further ensuring that the solu-
tion is loosely coupled and capable of being evolved.

194 CHAPTER 7: THE ATOM SYNDICATION FORMAT

NOTE

In Chapter 1, we described how a URI both identifies and addresses a resource.
But putting identification and addressability together in this way is not always pos-
sible in practice. The authors of the Atom format recognized that while feeds and
entries require stable identities, the URIs through which they can be addressed
often change (due to changes in website property ownership or infrastructure,

for example). To put it bluntly, cool URIs never change; URIs change—get over it.
Hence the division of responsibilities between atom: id, which provides identifi-
cation (and in combination with atom:updated identifies the latest version of a
document), and a feed or entry’s self link, which provides addressability.

The lessons learned by the Atom authors apply more generally, meaning that you
should consider providing identities for your domain resources as well as address-
able URIs. In the Restbucks example, however, for the sake of brevity we continue
to identify products and promotions using only their addressable URIs.

Link Relations

Because we've split the notifications feed into a series of linked feeds, we need to help
stores navigate them. In other words, we need to both link feeds together and describe
how they relate to each other. We do this using Atom’s <atom:1ink> element.

The <link> element is Atom’s primary hypermedia control. As we discussed in
Chapter 5, connecting resources is an important part of building web-friendly systems.
Hypermedia controls allow services to connect and clients to access and manipulate
resources by sending and receiving resource representations using a uniform set of
operations.

To use a hypermedia control successfully, a client must first understand the control’s
semantic context. The client must then be able to identify and address the resource
with which the control is associated. Finally, it must know which media type to send
or what representation formats it can expect to receive when it makes use of the con-
trol. These requirements are satistied by the <atom:1ink> element’s rel, href, and type
attributes, respectively:

e A rel attribute’s value describes the link relation or semantic context for the link.
e The href attribute value is the URI of the linked resource.

e The type attribute describes a linked resource’s likely media type.

NOTE

The <1link> element captures most of the connectedness characteristics we want
to include in our resource representations. This fact, coupled with the growing
popularity of Atom as a syndication format and the corresponding rise in Atom
clients, leads us to suggest making atom:1ink a common building block of web-
friendly distributed systems.

USING ATOM FOR EVENT-DRIVEN SYSTEMS

195

196

We say that the type attribute value represents the likely media type because this value
can always be overridden by the owner of the resource at the end of the link. The
Content-Type header in a response is always authoritative, irrespective of any prior indi-
cation of the linked resource’s media type. The type attribute remains useful, however,
insofar as it allows clients to distinguish between different media type representations of
the same resource. Consider a situation in which an entry is linked to JSON and XML
representations of a resource. A client interested in only JSON representation would
look for links with a type attribute value of application/json.

The Atom specification describes five link relations. Using two of these core link rela-
tions, we can now describe the relationships between some of the product catalog

feeds, as shown in Table 7-1.

Table 7-1. The core Atom link relations

Link relation Meaning

self Advertises a link whose href identifies a resource equivalent to the cur-
rent feed or entry.

via Identifies the source for the information in the current feed or entry. Rest-

bucks uses this link to indicate the current source for the feed of recent
events.

Table 7-2 describes the remaining three Atom link relations.

Table 7-2. The remaining core Atom link relations

Link relation Meaning

alternate Indicates that the link connects to an alternative representation of the cur-
rent feed or entry.

enclosure Indicates that the referenced resource is potentially large in size.

related Indicates that the resource at the href is related to the current feed or

entry in some way. Restbucks uses this link to correlate each entry (which
represents an event) with the domain resource to which the event relates
(the related link contains the URI of this domain resource).

TANA’s Registry of Link Relations contains a larger list of recognized link relation val-
ues.* This list has nearly quadrupled since 2008, and now includes values such as pay-
ment (for describing links to resources that accept payments), first, last, previous,
next, previous-archive, and next-archive (for navigating paged and archived feeds).
For the Restbucks product catalog service, we will use several of these values to help
navigate between the feeds that compose the overall set of product notifications.

* http://www.iana.org/assignments/link-relations.html

CHAPTER 7: THE ATOM SYNDICATION FORMAT

http://www.iana.org/assignments/link-relations.html

NOTE

Though the link relation values in the Registry are primarily for use in Atom docu-
ments, their semantics are in many cases more generally applicable to a wide
variety of application protocols. The Registry is a good place to find commonly used
shared semantics that we can reuse to build hypermedia consumers and providers.

Polling for Recent Events

Recall that the feed of recent events is the entry point for all consumers of the list of
product notifications. The feed is located at the well-known URI http://restbucks.com/
products/notifications. The entries in this feed represent the most “recent” events (rela-
tive to the point in time when the feed is accessed). But these entries also belong to a
specific historical period, which began when the previous working feed was archived.
The feed of recent events therefore includes a link (a via link) to the source of the
entries for this specific historical period.

Example 7-2 shows a store polling the feed of recent events.

Example 7-2. A store polls the feed of recent events

Request:
GET /product-catalog/notifications HTTP/1.1
Host: restbucks.com

Response:

HTTP/1.1 200 OK

Date: ...

Cache-Control: max-age=3600

Content-Length: ...

Content-Type: application/atom+xml;charset="utf-8"
ETag: "6a0806ca"

<feed xmlns="http://www.w3.0rg/2005/Atom">

<id>urn:uuid:be21b6b0-57b4-4029-ada4-09585ee74adc</id>

<title type="text">Product Catalog Notifications</title>

<updated>2009-07-05T10:25:00Z</updated>

<author>
<name>Product Catalog</name>

</author>

<generator uri="http://restbucks.com/products”>Product Catalog</generator>

<link rel="self" href="http://restbucks.com/products/notifications"/>

<link rel="via" type="application/atom+xml"
href="http://restbucks.com/products/notifications/2009/7/5"/>

<link rel="prev-archive"
href="http://restbucks.com/products/notifications/2009/7/4"/>

USING ATOM FOR EVENT-DRIVEN SYSTEMS 197

http://restbucks.com/products/notifications
http://restbucks.com/products/notifications
http://www.w3.org/2005/Atom%E2%80%B3
http://restbucks.com/products%E2%80%B3
http://restbucks.com/products/notifications%E2%80%B3/
http://restbucks.com/products/notifications/2009/7/5%E2%80%B3/
http://restbucks.com/products/notifications/2009/7/4%E2%80%B3/

<entry>
<id>urn:uuid:95506d98-aae9-4d34-a8f4-1ff30bece80c</id>
<title type="text">product created</title>
<updated>2009-07-05T10:25:00Z</updated>
<link rel="self"
href="http://restbucks.com/products/notifications/95506d98-aae9-4d34-a8f4-
1ff30bece80c" />
<link rel="related" href="http://restbucks.com/products/527"/>
<category scheme="http://restbucks.com/products/categories/type"
term="product"/>
<category scheme="http://restbucks.com/products/categories/status"
term="new"/>
<content type="application/vnd.restbucks+xml">
<product xmlns="http://schemas.restbucks.com/product"”
href="http://restbucks.com/products/527">
<name>Fairtrade Roma Coffee Beans</name>
<size>1kg</size>
<price>10</price>
</product>
</content>
</entry>

<entry>
<id>urn:uuid:4c6b6b57-81af-4501-8bbc-12fee2e3cd50</id>
<title type="text">promotion cancelled</title>
<updated>2009-07-05T10:15:00Z</updated>
<link rel="self"
href="http://restbucks.com/products/notifications/4c6b6b57-81af-4501-8bbc-
12fee2e3cd50"/>
<link rel="related" href="http://restbucks.com/promotions/391"/>
<category scheme="http://restbucks.com/products/categories/type"
term="promotion"/>
<category scheme="http://restbucks.com/products/categories/status"
term="deleted"/>
<content type="application/vnd.restbucks+xml">
<promotion xmlns="http://schemas.restbucks.com/promotion"
href="http://restbucks.com/promotions/391">
<effective>2009-08-01T00:00:00Z</effective>
<product type="application/vnd.restbucks+xml"
href="http://restbucks.com/products/156" />
<region type="application/vnd.restbucks+xml"
href="http://restbucks.com/regions/23" />
</promotion>
</content>
</entry>
</feed>

198 CHAPTER 7: THE ATOM SYNDICATION FORMAT

http://restbucks.com/products/notifications/95506d98-aae9-4d34-a8f4-1ff30bece80c%E2%80%B3/
http://restbucks.com/products/notifications/95506d98-aae9-4d34-a8f4-1ff30bece80c%E2%80%B3/
http://restbucks.com/products/527%E2%80%B3/
http://restbucks.com/products/categories/type%E2%80%B3
http://restbucks.com/products/categories/status%E2%80%B3
http://schemas.restbucks.com/product%E2%80%B3
http://restbucks.com/products/527%E2%80%B3
http://restbucks.com/products/notifications/4c6b6b57-81af-4501-8bbc-12fee2e3cd50%E2%80%B3/
http://restbucks.com/products/notifications/4c6b6b57-81af-4501-8bbc-12fee2e3cd50%E2%80%B3/
http://restbucks.com/promotions/391%E2%80%B3/
http://restbucks.com/products/categories/type%E2%80%B3
http://restbucks.com/products/categories/status%E2%80%B3
http://schemas.restbucks.com/promotion%E2%80%B3
http://restbucks.com/promotions/391%E2%80%B3
http://restbucks.com/products/156%E2%80%B3
http://restbucks.com/regions/23%E2%80%B3

The response here contains two useful HTTP headers: ETag and Cache-Control. The
ETag header allows Restbucks’ stores to perform a conditional GET the next time they
request the list of recent events from the product catalog service, thereby potentially
conserving network bandwidth (as described in Chapter 6). The Cache-Control header
declares that the response can be cached for up to 3,600 seconds, or one hour.

The decision as to whether to allow the feed of recent events to be cached depends on
the behavior of the underlying business resources and the quality-of-service expecta-
tions of consumers. In this particular instance, two facts helped Restbucks determine
an appropriate caching strategy: products and promotions change infrequently, and
consumers can tolerate some delay in finding out about a change. Based on these fac-
tors, Restbucks decided the feed of recent events can be cached for at least an hour
(and probably longer).

The feed itself contains three <atom:1link> elements. The self link contains the URI of
the feed requested by the store, which in this case is the feed of recent events. The via
link points to the source of entries for the feed of recent events; that is, to the work-
ing feed. (Remember, the working feed is a feed associated with a particular histori-

cal period. It differs from an archive feed in that it is still changing, and is therefore
cacheable for only a short period of time. It differs from the feed of recent events in
that at some point it will no longer be current.) The last link, prev-archive, refers to
the immediately preceding archive document.* This archive document contains all the
events that occurred in the period immediately prior to this one.

NOTE

In our example, the Restbucks product catalog service ticks over every day,
archiving the current working feed at midnight. Because we use “friendly” URIs
for feed links, it looks as if stores can infer the address of an archive feed from
the URI structure, but we must emphasize that's not really the case. Stores should
not infer resource semantics based on a URI's structure. Instead, they should treat
each URI as just another opaque address. Stores navigate the archive not by con-
structing URIs, but by following links based on rel attribute values.

Moving now to the content of the feed, we see that each entry has a self link, indicat-
ing that it’s an addressable resource in its own right. Besides being addressable, in our
solution every entry is cacheable. This is not always the case with Atom entries, since
many Atom feeds contain entries that change over time. But in this particular solution,
each entry represents an event that occurs once and never changes. If an underlying
product changes twice in quick succession, the product catalog service will create two
separate events, which in turn will cause two separate entries to be published into the
feed. The service never modifies an existing entry.

* The prev-archive link relation value is defined in the Feed Paging and Archiving specification:
http://tools.ietf.org/html/rfc5005.

USING ATOM FOR EVENT-DRIVEN SYSTEMS

199

http://tools.ietf.org/html/rfc5005

200

NOTE

The working feed is mutable, limiting its cache friendliness. Every entry, however, is
immutable, and therefore cacheable from the moment it is created.

Below the self link are two <atom:category> elements. Atom categories provide a simple
means of tagging feeds and entries. Consumers can easily search categorized feeds for
entries matching one or more categories. (And by adding feed filters on the server side,
we can produce category-specific feeds based on consumer-supplied filter criteria.)

An <atom:category> element must include a term attribute. The value of this term attri-
bute represents the category. Categories can also include two optional attributes: label,
which provides a human-readable representation of the category value, and scheme,
which identifies the scheme to which a category belongs. Schemes group categories
and disambiguate them, much as XML and package namespaces disambiguate ele-
ments and classes. This allows entries to be tagged with two categories that have the
same terms, but belong to two different schemes.

In Restbucks, we use categories to identify the event type (product or promotion), and its
status (new, updated, or cancelled). The last entry in the feed in Example 7-2, for exam-
ple, indicates that the promotion for the product http://restbucks.com/products/156
has been canceled. Using these categories, Restbucks’ stores can filter specific kinds of
events from a feed.

Navigating the Archive

Navigating an individual feed is straightforward. Feeds are ordered by each entry’s
<atom:updated> timestamp element, with the most recent entry first.* To process

a feed, a Restbucks store steps through the entries looking for the combination of
atom:id and atom:updated that belongs to the last entry it successfully processed. Once
it has found that entry, it works forward through the feed, applying each entry’s pay-
load to its own local copy of the product catalog data.

Atom doesn’t prescribe how a consumer should process the entries in a feed. In our
example, Atom entries represent event metadata. This metadata provides a process-
ing context for the event’s business payload. When an Atom processor encounters

an <atom:content> element, it delegates control to a media type processor capable of
handling the contained product or promotion representation. The client invokes the
specialized handler for the content in the knowledge that it is dealing with a repre-
sentation of state at a particular point in time. We call this ability to hand off from one
media type processor to another media type composition.

* The value of the feed’s <atom:updated> element matches that of the first entry.

CHAPTER 7: THE ATOM SYNDICATION FORMAT

http://restbucks.com/products/156

If the consumer can’t find in the current feed the last entry it successfully processed, it
navigates the prev-archive link and looks in the previous archive. It continues to trawl
through the archives until either it finds the entry it’s looking for or comes to the end
of the oldest archive feed (the oldest archive has no prev-archive link). Example 7-3
shows a consumer retrieving a previous archive.

Example 7-3. The consumer retrieves the previous archive

Request:
GET /product-catalog/notifications/2009/7/4 HTTP/1.1
Host: restbucks.com

Response:

HTTP/1.1 200 OK

Cache-Control: max-age=2592000

Date: ...

Content-Length: ...

Content-Type: application/atom+xml;charset="utf-8"
ETag: "a32dob30"

<feed xmlns="http://www.w3.o0rg/2005/Atom"
xmlns:fh="http://purl.org/syndication/history/1.0">

<id>urn:uuid:be21b6b0-57b4-4029-ada4-09585ee74adc</id>

<title type="text">Product Catalog Notifications</title>

<updated>2009-07-04T23:52:00Z</updated>

<author>
<name>Product Catalog</name>

</author>

<generator uri="http://restbucks.com/products">Product Catalog</generator>

<fh:archive/>

<link rel="self" href="http://restbucks.com/products/notifications/2009/7/4"/>

<link rel="prev-archive"
href="http://restbucks.com/products/notifications/2009/7/3"/>

<link rel="next-archive"
href="http://restbucks.com/products/notifications/2009/7/5"/>

<!-- Entries omitted for brevity --»>

</feed>

The first thing to note about this archive feed is that it contains an <fh:archive> ele-
ment, which is a simple extension element defined in the Feed Paging and Archiving

USING ATOM FOR EVENT-DRIVEN SYSTEMS

201

http://www.w3.org/2005/Atom%E2%80%B3
http://purl.org/syndication/history/1.0%E2%80%B3
http://restbucks.com/products%E2%80%B3
http://restbucks.com/products/notifications/2009/7/4%E2%80%B3/
http://restbucks.com/products/notifications/2009/7/3%E2%80%B3/
http://restbucks.com/products/notifications/2009/7/5%E2%80%B3/

202

specification.” The presence of <fh:archive> is a further indication that this archive
feed will never change and is therefore safe to cache.

Following the <fh:archive> element are three <atom:1ink> elements. As with the feed
of recent events, this archive feed contains self and prev-archive links, but it also
includes a next-archive link, which links to the feed of events that have occurred in
the period immediately following this one—that is, to a feed of more recent events. A
store can follow next-archive links all the way up to the current working feed.

Again, just like the feed of recent events, the response contains a Cache-Control
header. Whereas the recent feed can only be cached for up to an hour, archive feeds
are immutable, meaning they can be cached for up to 2,592,000 seconds, or 30 days.

Caching Feeds

Feeds can be cached locally by each store, as well as by gateway and reverse proxy
servers along the response path. Processing an archive is a “there and back again”
operation: a consumer follows prev-archive links until it finds an archive containing
the last entry it successtully processed, and then works its way back to the head feed—
this time following next-archive links. Whenever a consumer dereferences a prev-
archive link, its local cache stores a copy of the response. When the consumer next
accesses this same resource, most likely as a result of following a next-archive link on
the return journey, the cache uses its stored response. Navigating the full extent of

an archive is a potentially expensive operation from a network point of view: caching
locally helps save valuable network resources when returning to the head feed.

NOTE

This ability to create or reconstruct a local copy of the product catalog based on
the entire archive is a great pattern for bringing a new system online or for support-
ing crash recovery, and is one of the ways the Restbucks infrastructure scales to
thousands or even millions of stores if necessary.

To explore the implications of this strategy in more detail, let’s assume a store goes
offline for a period of time—perhaps because of a problem with its local infrastruc-
ture. When the store eventually comes back up, it begins to update its local copy of the
product catalog by polling the feed of recent events, and then working its way through
prev-archive links looking for an archive feed containing the last entry it processed.
Figure 7-3 shows the store following prev-archive links and working its way back in
time through the archives. At each step, it caches the response locally in accordance
with the metadata it receives in the HTTP cache control headers.

* http://tools.ietf.org/html/rfc5005

CHAPTER 7: THE ATOM SYNDICATION FORMAT

http://tools.ietf.org/html/rfc5005

notifications

notifications/2009/7/5

notifications/2009/7/4

\

self: http://restbucks.com/products/

via : http://restbucks.com/products/

prev-archive: http://restbucks.com/products/

prev-archive

notifications/2009/7/4

notifications/2009/7/5

self: http://restbucks.com/products/

next-archive: http://restbucks.com/products/

prev-archive: http://restbucks.com/products/

| notifications/2009/7/3
v
prev-archive
Local cache
self: http://restbucks.com/products/
notifications/2009/7/3
Resthucks Store next-archive: http://restbucks.com/products/

notifications/2009/7/4

prev-archive: http://restbucks.com/products/

notifications/2009/7/2

prev-archive

notifications/2009/7/2

[self: http://restbucks.com/products/

products/notifications/2009/7/3

l next-archive: http://restbucks.com/

Figure 7-3. The consumer works its way back through the archives

At some point, the store finds the last entry it successfully processed. The store can
now start working forward in time, applying the contents of each feed entry to its local
copy of the product catalog, and following next-archive links whenever it gets to the

top of a feed. This forward traversal is shown in Figure 7-4.

USING ATOM FOR EVENT-DRIVEN SYSTEMS

203

204

self: http://restbucks.com/products/
notifications/2009/7/5

prev-archive: http://restbucks.com/products/
notifications/2009/7/4

next-archive

s ‘

self: http://restbucks.com/products/
notifications/2009/7/4

| next-archive: http://restbucks.com/products/
notifications/2009/7/5
prev-archive: http://restbucks.com/products/
| notifications/2009/7/3

next-archive

Local cache

self: http://restbucks.com/products/
notifications/2009/7/3

Restbucks Store next-archive: http://restbucks.com/products/
notifications/2009/7/4
prev-archive: http://restbucks.com/products/
notifications/2009/7/2

next-archive

self: http://restbucks.com/products/
notifications/2009/7/2

next-archive: http://restbucks.com/
products/notifications/2009/7/3

Figure 7-4. Working forward through the archives

Every time the store traverses a next-archive link, the response is fetched from the
local cache (or an intermediary cache somewhere on the Restbucks network). This hap-
pens with every next-archive link—except the last one, when the request once again
goes across the network. This last network request happens because the head of the feed
is cached (if it is cached at all) against the well-known entry point URI, http.://restbucks.
com/products/notifications, rather than the working feed URI, which is http://restbucks.com/
products/notifications/2009/7/5. Because the store hadn’t accessed the working feed while
working back through the archives (it went from the feed of recent events to the first
archive feed), it now has to fetch the working feed from the origin server.

This linking and caching strategy trades efficiency for generalization. Generalization
comes from our being able to build hypermedia clients that can navigate feeds using

CHAPTER 7: THE ATOM SYNDICATION FORMAT

http://restbucks.com/products/notifications/2009/7/5
http://restbucks.com/products/notifications/2009/7/5
http://restbucks

standardized prev-archive and next-archive link relations. In other words, there’s no
need to build any special logic to prevent unnecessary end-to-end requests: it’s the
local caching infrastructure’s job to store and return archive feeds at appropriate points
in the feed traversal process. To a consumer, a request that returns a cached response
looks the same as a request that goes all the way to the product catalog service.

The overall efficiency of this solution, however, breaks down with the final GET, when
the consumer has to make one last network request. Assuming we started with empty
caches all the way along the response path, navigating forward and backward through
N feeds will cause the product catalog service to handle N+1 requests.

In designing this solution, we’ve assumed Restbucks’ stores won't navigate the archive
quite as often as they access the head feed by itself. If in practice the stores navigated
the archives almost every time they polled the feed, we’d change the solution so that
every request for the feed of recent events is redirected immediately to the current
working feed, as shown in Example 7-4. Such a change would ensure that the head
feed is cached against the current working feed’s URI, rather than the entry point URL
An immediate redirect doesn’t cut down on the overall number of wire requests, since
the redirect response itself counts as an over-the-wire interaction, but it does reduce
the overall volume of data sent in comparison to the first solution.

Example 7-4. Redirecting requests for the feed of recent events to the current working feed

Request:
GET /product-catalog/notifications HTTP/1.1
Host: restbucks.com

Response:
HTTP/1.1 303 See Other
Location: http://restbucks.com/products/notifications/2009/7/5

Request:
GET /product-catalog/notifications/2009/7/5 HTTP/1.1
Host: restbucks.com

Response:

HTTP/1.1 200 OK

Date: ...

Cache-Control: max-age=3600

Content-Length: ...

Content-Type: application/atom+xml;charset="utf-8"
ETag: "6a0806ca"

<feed xmlns="http://www.w3.0rg/2005/Atom">

</feed>

USING ATOM FOR EVENT-DRIVEN SYSTEMS

205

http://restbucks.com/products/notifications/2009/7/5
http://www.w3.org/2005/Atom%E2%80%B3

206

Recall that at some point the current working feed will be archived. When this hap-
pens, an <fh:archive> element and an <atom:1link> element with a rel attribute value
of next-archive will be inserted into the feed. The link points to the new current work-
ing feed. Responses containing the newly archived feed will include a Cache-Control
header whose value allows the now immutable feed to be cached for up to 30 days.

Implementation Considerations

What distinguishes the working feed from an archive feed? As developers, we must
distinguish between these feeds because the combination of caching strategy and avail-
able links differs. The working feed is cacheable only for short periods of time, whereas
archive feeds are cacheable for long periods of time.

Using prev-archive and next-archive links saves us from having to add to each store
some specialized knowledge of the product catalog’s URI structure and the periodiza-
tion rules used to generate archives. Because they depend instead on hypermedia,
stores need never go off the rails; they just follow opaque links based on the seman-
tics encoded in link relations. This allows the catalog to vary its URI structure without
forcing changes in the consumers. More importantly, it allows the server to vary its
feed creation rules based on the flow of events.

During particularly busy periods, for example, the product catalog service may want
to archive feeds far more frequently than it does during quiet periods. Instead of
archiving at predefined intervals, the service could archive after a certain number
of events have occurred. This strategy allows the service to get feeds into a cache-
able state very quickly. As far as Restbucks’ stores are concerned, however, nothing
changes. Each store still accesses the system through the feed of most recent events,
and navigates the archives using prev-archive and next-archive links.

NOTE

In low-throughput situations, it's often acceptable to generate feeds on demand,

as and when consumers ask for them. But as usage grows, this approach puts
increasing strain on both the application and data access layers of the feed service.
In high-throughput scenarios, where lots of consumers make frequent requests for
current and archive feeds, we might consider separating the production of feeds
from their consumption by clients. Such an approach can use a background pro-
cess to generate feeds and store them on the filesystem (or in memory), ready to
be served rapidly with minimal compute cost when requested by a consumer.

At a feed level, links with link relation values of self, alternate, next-archive, and
prev-archive encapsulate the product catalog service’s implementation details—in par-
ticular, the service’s archiving strategy and the location of its current and archive feeds.
This interlinking helps us both size feeds and tune performance. It also establishes a
protocol that allows consumers to navigate the set of feeds and consume the event
data held within.

CHAPTER 7: THE ATOM SYNDICATION FORMAT

The Restbucks product catalog uses many other Atom elements besides links to cre-
ate an entire processing context for a list of domain-specific representations. In other
words, Restbucks uses Atom to implement hypermedia-driven event handlers. To
build this processing context, stores use:

e <atom:id> and <atom:updated> to identity the oldest entry requiring processing
e Categories to further refine a list of entries to be processed
e related links to correlate entries with domain-specific resources

e An entry’s <atom:content> element’s type attribute value to determine the process-
ing model to be applied to the enclosed domain-specific representation

Atom helps us separate protocol and processing context from business payload using
media type composition. Because the processing context for an event is conveyed
solely at the Atom document level, the event-handling protocol itself can be imple-
mented by domain-agnostic client code—that is, by generic Atom clients. The split
between event context and business resource state snapshot allows stores to use Atom
processors to determine which events to process, and allows domain- or application-
specific media type processors to act on an entry’s business payload.

Building an Atom Service in Java

For Java solutions, on the server side our basic tools are a web server, an HTTP library,
and a feed generator. On the client side, we need only an HTTP library and a feed
parser. For our Java implementation, we’ve chosen Jersey* (a JAX-RST implementa-
tion) to provide the HTTP plumbing for the service and its consumers, and ROME? for
generating and consuming Atom feeds. For development purposes, we’ve chosen to
use the Grizzly web server because it works nicely with Jersey.

Server-Side Architecture

The server-side architecture follows a classic layered pattern, as shown in Figure 7-5.
At the lowest layer is a repository, which holds a history of changes to products and
promotions, much like a source repository holds the records of changes to code. The
domain objects in the middle layer encapsulate the information in the repository and
make it available to the upper layers.

* https://jersey.dev.java.net
+ http://jcp.orglen/jsr/detail?id=311
T https://rome.dev.java.net

BUILDING AN ATOM SERVICE IN JAVA

207

https://jersey.dev.java.net
http://jcp.org/en/jsr/detail?id=311
https://rome.dev.java.net

Web Server (Grizzly)

HTTP Layer (JAX-RS)

Atom Layer (ROME)

Domain Objects

1T ¥

Event Repository

Figure 7-5. Server-side Java architecture

The uppermost layers compose the interface to the network. Here we must address

two separate concerns: creating Atom feeds and providing access to feeds via HTTP.
Generating feeds is a matter of querying and pushing appropriate events from the domain
model into feed objects through the ROME library. Exposing feeds to the Web is done
through the JAX-RS layer, which provides connectivity to the underlying web server.

NOTE

With our Java solution, we regenerate a feed with each request. As we'll see in the
NET example later in this chapter, it's possible to store feeds in their final form so
that instead of being regenerated with each request, they can be served without
any transformation.

Managing Feeds

Recall that our strategy for managing the many events the service produces is to par-
tition events across separate feeds, and then to link feeds so that clients can navigate
between them. For the Java implementation, rather than archiving on an hourly or
daily basis, we split the feeds based on a maximum number of entries per feed. By
optimizing the size of feeds, we trade granularity for the number of network interac-
tions needed to read the feed history.

The strategy we use for archiving feeds is application-specitic, and has no bearing on
the way in which consumers access and navigate the feed.

Service consumers navigate feeds by following next-archive and prev-archive links.
While our service has a predictable algorithm for creating these links, to consumers the
links are just opaque URIs. Example 7-5 shows a couple of links.

208 CHAPTER 7: THE ATOM SYNDICATION FORMAT

Example 7-5. Providing links between feeds

<link rel="next-archive" type="application/atom+xml"
href="http://restbucks.com/product-catalog/notifications/40,59" />

<link rel="prev-archive" type="application/atom+xml"
href="http://restbucks.com/product-catalog/notifications/0,19" />

Internally, the Java service generates links according to a simple URI template: http://
restbucks.com/product-catalog/notifications/{start},{end}. Using this template, the
service extracts from the request URI a pair of numerical identifiers, which it then uses
to retrieve the appropriate events from the underlying event repository.

—— WARNING

The Java service uses a URI template internally for design and documentation
purposes, but it doesn't share this template with consumers. Doing so would tightly
couple the service and its consumers; a change to the service's URI structure
would break clients.

Consumers who choose to infer URIs based on this structure are treading a dan-
gerous path, because the service isn't obliged to honor them.

The URIs we're using in Example 7-5 look different from the others we’ve seen so far.
This is a result of the different (but equivalent) feed generation strategy we’ve used
for our Java implementation. The changes serve to emphasize that URIs are opaque to
consumers, and that it is the link relations that drive the protocol.

Java Implementation

On the Java platform, we have a ready set of components to build out each layer of
our service. Some of these (such as Jersey, our JAX-RS implementation) we’ve seen in
prior chapters; others (such as ROME, our Atom library) are new.

Using Jersey for HTTP connectivity

JAX-RS provides a comfortable abstraction over HTTP, especially when compared to
lower-level APIs such as the Servlet interface.* Using Jersey as our friendly interface
to the HTTP stack allows us to delegate the plumbing details to the framework, and to
concentrate instead on the overall design of the service.

Our first task is to expose the feed of recent events at a well-known UR], thereby
providing an entry point into the service for consumers. The implementation for this
is shown in Example 7-6. To expose the feed, we simply declare the verb (GET), the
path where the feed will be hosted (/recent), and the representation format for the
resource, which of course is Atom (application/atom+xml).

* http://java.sun.com/products/serviet/

BUILDING AN ATOM SERVICE IN JAVA

209

http://restbucks.com/product-catalog/notifications/%7bstart%7d,%7bend
http://restbucks.com/product-catalog/notifications/%7bstart%7d,%7bend
http://restbucks.com/product-catalog/notifications/40,59%E2%80%B3
http://restbucks.com/product-catalog/notifications/0,19%E2%80%B3
http://java.sun.com/products/servlet/

Once we’ve got the framework code out of the way, all that’s left for us to do is to
generate a feed. We do this using our own EventFeedGenerator, which wraps an
underlying Feed object from the ROME framework. We then turn the generated feed
into a string representation. Finally, using a JAX-RS builder, we build and return

a 200 OK response, adding the appropriate caching directive (Cache-Control: max-
age=3600, to cache the feed for one hour) and the Atom media type. Any exceptions
are handled by Jersey, which generates an HTTP 500 Internal Server Error response.

Example 7-6. Exposing feeds for recent events and the working feed through JAX-RS

@GET
@Path("/recent")
@Produces("application/atom+xml")
public Response getRecentFeed() {
EventFeedGenerator generator = new
EventFeedGenerator (uriInfo.getRequestUri(),
ENTRIES PER FEED);
Feed feed = generator.getRecentFeed();

return Response.ok().entity(stringify(feed))
.header (CACHE_CONTROL_HEADER,
cacheDirective(CachePolicy.getRecentFeedLifetime()))
.type(ATOM MEDIA TYPE).build();

}

We follow a similar pattern for archive feeds, though the framework code here is a
little more intricate than the code for the feed of recent events. The framework decla-
rations in Example 7-7 include an @Path annotation, which defines the URI template
the service implementation uses to extract parameters ("/{startPos},{endPos}"), and
which Jersey uses to dispatch requests to the method. Only request URIs matching the
template will be routed to this method.

Example 7-7. Exposing older feeds through JAX-RS

@CET

@Path("/{startPos},{endPos}")

@Produces("application/atom+xml")

public Response getSpecificFeed(@PathParam("startPos") int startPos,
@PathParam("endPos") int endPos) {

if (validStartAndEndEntries(startPos, endPos)) {
// Bad URI - the paramters don't align with our feeds
return Response.status(Status.NOT_FOUND).build();

}

if(workingFeedRequested(startPos)) {
return getWorkingFeed();

210 CHAPTER 7: THE ATOM SYNDICATION FORMAT

EventFeedGenerator generator = new
EventFeedGenerator (uriInfo.getRequestUri(), ENTRIES_PER_FEED);
Feed feed = generator.feedFor(startPos);
return Response.ok().entity(stringify(feed)).header (CACHE_CONTROL HEADER,
cacheDirective(CachePolicy.getArchiveFeedLifetime()))
.type (ATOM_MEDTA_TYPE).build();
}

private Response getWorkingFeed() {
EventFeedGenerator generator = new
EventFeedGenerator (uriInfo.getRequestUri(),
ENTRIES PER FEED);
Feed feed = generator.getWorkingFeed();

return Response.ok().entity(stringify(feed))

. headeI(CACHE_CONTROL_HEADER,
cacheDirective(CachePolicy.getWorkingFeedLifetime()))
.type(ATOM_MEDTA TYPE).build();

}

Jersey extracts the URI parameters from the URI at runtime and passes them into the
method via the two @PathParam annotations in the method signature. From there, we
validate whether the parameters fit with our feed-splitting scheme by testing whether
the values are divisible by our feed size. If the values from the URI template don't fit
our feed scheme, the service returns a 404 Not Found response.

If the URI parameters are valid, we check whether the requested feed refers to the
current working feed. If it does, we generate a representation of the working feed
and send that back to the consumer. Otherwise, we call into the archive feed genera-
tion logic to create a feed using generator.feedFor(startPos). Once the feed has been
created, we turn it into a string representation and build a 200 OK response containing
the feed plus the Content-Type header, as shown in the final line of the method.

Generating feeds with ROME

The HTTP-centric code is only half the implementation of the service. Under the covers
is a great deal of code that generates Atom feeds on demand.

—— WARNING

ROME can be an awkward library to work with. Many of the AP calls in the 1.0
release are weakly typed using String and nongeneric collections. It's helpful to
have the Javadoc comments on hand when working with it.*

* https://rome.dev.java.net/apidocs/1_0/overview-summary.html

BUILDING AN ATOM SERVICE IN JAVA

211

https://rome.dev.java.net/apidocs/1_0/overview-summary.html

Example 7-8 shows the EventFeedGenerator. feedFor(...) method, which creates a
feed by orchestrating several calls into the underlying ROME library.

Example 7-8. Generating an Atom feed with ROME

public Feed feedFor(int startEntry) {
Feed feed = new Feed();

feed.setFeedType("atom_1.0");
feed.setId("urn:uuid:" + UUID.randomUUID().toString()); // We don't need stable
// ID because we're not
// aggregating feeds
feed.setTitle(FEED TITLE);
final Generator generator = new Generator();
generator.setUrl(getServiceUri());
generator. setValue(PRODUCING SERVICE);
feed.setGenerator(generator);
feed.setAuthors(generateAuthorsList());
feed.setAlternatelinks(generateAlternatelinks(startEntry));
feed.setOtherLinks(generatePaginglinks(startEntry));
feed.setEntries(createEntries(EventStore.current()
.getEvents(startEntry, entriesPerfFeed)));
feed.setUpdated(newestEventDate(events));
return feed;

}

The first few lines in Example 7-8 set the feed metadata: feed type, title, creation date,
generator, and authors. These elements are created by the setters setFeedType(...)
through to setAuthors(...).

NOTE

We're using a randomly generated feed identifier here. This means that consum-
ers receive a different identifier each time they request the feed. If we had multiple
feed providers (as Atom supports), the identifier would need to be stable over time,
and crash-recoverable, so that consumers could safely merge separate physical
feeds into a single logical feed.

The setter methods in Example 7-8 give us the beginnings of the Atom feed shown in
Example 7-9. This feed contains all the necessary feed metadata.

Example 7-9. Generated feed metadata

HTTP/1.1 200 OK

server: grizzly/1.8.1
Cache-Control: max-age=3600
Content-Type: application/atom+xml

212 CHAPTER 7: THE ATOM SYNDICATION FORMAT

<feed xmlns="http://www.w3.0rg/2005/Atom">
<title>Restbucks products and promotions</title>
<author>
<name>A Product Manager</name>
</author>
<id>urn:uuid:4679956d-b084-487-a20f-6e7b3891d951</id>
<generator uri="http://restbucks.com/product-catalog/notifications">
Product Catalog
</generator>
<updated>2009-08-13T16:42:04Z</updated>
<!-- Remainder of feed omitted for brevity -->
</feed>

Things get more interesting when we have to generate some of the dynamic feed con-
tent, particularly links. For the feed, this means identifying the URI through which
the feed was accessed (rel="self") and the source of entries for that feed (rel="via").
Both of these are serialized as <atom:1ink> elements as the feed is constructed. The
code in Example 7-10 shows how the dynamic content for the /recent feed is created.

Example 7-10. Generating self and via links

public Feed getRecentFeed() {
int startEntry = findStartingEntryForHeadFeeds();
Feed recent = feedFor(startEntry);
Link self = new Link();
self.setHref(requestUri.toString());
self.setRel("self");
self.setType(ATOM MEDIA TYPE);
recent.getAlternatelinks().add(self);
recent.getAlternatelinks().addAll(generatePaginglinks(startEntry));
Link via = new Link();
via.setHref(this.generateCanonicalUri(startEntry));
via.setRel("via");
via.setType(ATOM_MEDIA TYPE);
recent.getAlternatelLinks().add(via);
return recent;

}

To generate the self link we take the (previously validated) request URI and add it
to the list of Link objects with a rel value of self. If the requested feed is the feed of
recent events, as accessed via the well-known URI /recent, we also need to gener-
ate the source URI so that a consumer can still access the entries associated with this
particular time period when the current feed is archived. That’s easily done by adding
another Link object with a rel value of via to the list of links for the feed.

BUILDING AN ATOM SERVICE IN JAVA

213

http://www.w3.org/2005/Atom%E2%80%B3
http://restbucks.com/product-catalog/notifications%E2%80%B3

With the links added to the feed, we now get the XML shown in Example 7-11 for the
feed of recent events, and that in Example 7-12 for an archive feed.

Example 7-11. Generated self and via links in the feed of recent events

<link rel="self" type="application/atom+xml"
href="http://restbucks.com/product-catalog/notifications/recent" />

<link rel="via" type="application/atom+xml"
href="http://restbucks.com/product-catalog/notifications/160,179" />

Example 7-12. Generated self link in archive feed

<link rel="self" type="application/atom+xml"
href="http://restbucks.com/product-catalog/notifications/80,99" />

The final feed metadata comprises the links we need to navigate back (prev-archive)
and forth (next-archive) through older feeds. In Example 7-13, we generate these links
by determining whether there are newer and older feeds relative to the current feed; if
there are, we calculate the link values using our algorithm for splitting feeds. Once cal-
culated, we add the paging links to the list of links returned to the feed generator.

Example 7-13. Generating navigation links between feeds

private List<Link> generatePaginglLinks(int currentFeedStart) {
Arraylist<Link> links = new ArraylList<Link>();

if(hasNewerFeed(currentFeedStart)) {
Link next = new Link();
next.setRel("next-archive");
next.setType(ATOM MEDIA TYPE);
next.setHref(generatePageUri(getServicelri(),
currentFeedStart + entriesPerFeed));
links.add(next);

if(hasOlderFeed(currentFeedStart)) {
Link prev = new Link();
prev.setRel("prev-archive");
prev.setType(ATOM_MEDIA TYPE);
prev.setHref(generatePageUri(getServicelri(),

currentFeedStart - entriesPerFeed));

links.add(prev);

}

return links;

}

The code in Example 7-13 gives us the feed-level links shown in Example 7-14.

214 CHAPTER 7: THE ATOM SYNDICATION FORMAT

http://restbucks.com/product-catalog/notifications/recent%E2%80%B3
http://restbucks.com/product-catalog/notifications/160,179%E2%80%B3
http://restbucks.com/product-catalog/notifications/80,99%E2%80%B3

Example 7-14. Navigation links in an Atom feed

<link rel="prev-archive" type="application/atom+xml"
href="http://restbucks.com/product-catalog/notifications/140,159" />

<link rel="next-archive" type="application/atom+xml"
href="http://restbucks.com/product-catalog/notifications/180,199" />

Once the feed-level metadata has been created, it’s time to populate the feed with
entries. Each entry in a feed represents a business event pertaining to a product or
promotion. The createEntries(...) method shown in Example 7-15 is responsible for
creating the entries for a given set of events.

Example 7-15. Populating a feed with entries containing events

private List<Entry> createEntries(List<Event> events) {
Arraylist<Entry> entries = new ArraylList<Entry>();

for(Event e : events) {
final Entry entry = new Entry();
entry.setId(e.getTagUri());
entry.setTitle(e.getEventType());
entry.setUpdated(e.getTimestamp());
entry.setAlternatelinks(generatelinks(e));
entry.setCategories(generateCategories(e));
entry.setContents(generateContents(e));
entries.add(entry);

return entries;

}

The events provided to the createEntries(...) method are supplied from the under-
lying event store. For each event, the following metadata is extracted and pushed
directly into the entry:

¢ An identifier from the event’s stable, long-lived tag URI*
e The event type, being a product or promotion event
e The timestamp for when the event was generated

Following on from the metadata, we add two links, self and related, to the entry.
The self link contains the entry’s URL the related link correlates the entry with the
underlying product or promotion’s URI in the product catalog service.

* Tag URIs are a way of creating a nonaddressable identifier from an addressable URI scheme such as
HTTP. We use them here because events only have to be identifiable, whereas entries have to be ad-
dressable. See http://diveintomark.org/archives/2004/05/28/howto-atom-id for more information.

BUILDING AN ATOM SERVICE IN JAVA

215

http://diveintomark.org/archives/2004/05/28/howto-atom-id
http://restbucks.com/product-catalog/notifications/140,159%E2%80%B3
http://restbucks.com/product-catalog/notifications/180,199%E2%80%B3

216

Finally, we serialize the event payload into XML, and add it to the entry’s <content> ele-
ment. We then add the new entry to the feed. The snapshot of the state of a product or
promotion appears as a child of an <atom:content> element, as shown in Example 7-16.

Example 7-16. Event payloads exposed as entry content in an Atom feed

HTTP/1.1 200 OK

server: grizzly/1.8.1
Cache-Control: max-age=2592000
Content-Type: application/atom+xml

<entry>
<title>product</title>
<link rel="self"
href="http://restbucks.com/product-catalog/notifications/notifications/120" />
<link rel="related" href="http://restbucks.com/products/2012703733" />
<category term="product"
scheme="http://restbucks.com/product-catalog/notifications/categories/type" />
<category term="new"
scheme="http://restbucks.com/product-catalog/notifications/categories/status" />
<id>tag:restbucks.com,2009-08-15:120</id>
<updated>2008-04-04T16:24:02Z</updated>
<content type="application/vnd.restbucks+xml">
<product xmlns="http://schemas.restbucks.com/product"
href="http://restbucks.com/products/2012703733">
<name>product name 543809053</name>
<price>2.34</price>
</product>
</content>
</entry>
<entry>
<title>promotion</title>
<link rel="self"
href="http://restbucks.com/product-catalog/notifications/notifications/148" />
<link rel="related" href="http://restbucks.com/promotions/16694838880" />
<category term="promotion"
scheme="http://restbucks.com/product-catalog/notifications/categories/type" />
<category term="new"
scheme="http://restbucks.com/product-catalog/notifications/categories/status" />
<id>tag:restbucks.com,2009-08-15:148</id>
<updated>2008-04-04T16:24:02Z</updated>
<content type="application/vnd.restbucks+xml">
<promotion xmlns="http://schemas.restbucks.com/promotion"”
xmlns:ns2="http://www.w3.0rg/2005/Atom"

CHAPTER 7: THE ATOM SYNDICATION FORMAT

http://restbucks.com/product-catalog/notifications/notifications/120%E2%80%B3
http://restbucks.com/products/2012703733%E2%80%B3
http://restbucks.com/product-catalog/notifications/categories/type%E2%80%B3
http://restbucks.com/product-catalog/notifications/categories/status%E2%80%B3
http://schemas.restbucks.com/product%E2%80%B3
http://restbucks.com/products/2012703733%E2%80%B3
http://restbucks.com/product-catalog/notifications/notifications/148%E2%80%B3
http://restbucks.com/promotions/1669488880%E2%80%B3
http://restbucks.com/product-catalog/notifications/categories/type%E2%80%B3
http://restbucks.com/product-catalog/notifications/categories/status%E2%80%B3
http://schemas.restbucks.com/promotion%E2%80%B3
http://www.w3.org/2005/Atom%E2%80%B3

href="http://restbucks.com/promotions/1669483880" >
<effective>2009-08-15¢/effective>
<ns2:product type="application/vnd.restbucks+xml"
href="http://restbucks.com/products/1995649500" />
<ns2:region type="application/vnd.restbucks+xml"
href="http://restbucks.com/regions/2140798621" />
</promotion>
</content>
</entry>

Now that we have exposed interlinked feeds with entries representing business events,
clients can traverse and consume those feeds, and use the information in the events to
trigger local processing. This leads us to the consumer-side infrastructure.

Java Consumer Implementation

Like the product catalog service, the consumer implementation has been developed
using Jersey for HTTP plumbing code, and ROME for parsing Atom feeds. Unlike the
service implementation, however, the consumer code—excluding any business logic
and error handling—is quite small, with Jersey and ROME providing most of the nec-
essary functionality.

The code to request an Atom feed is shown in Example 7-17.

Example 7-17. Consuming an event feed with Jersey and ROME

private Feed getFeed(URI uri) {
// Jersey
Client client = Client.create();
ClientResponse response = client.resource(uri)
.accept (ATOM MEDIA TYPE)
.get(ClientResponse.class);

String responseString = response.getEntity(String.class);

// Rome code
WireFeedInput wfi = new WireFeedInput();
WireFeed wireFeed;
try {
wireFeed = wfi.build(new StringReader(responseString));
} catch (Exception e) {
throw new RuntimeException(e);

}

return (Feed) wireFeed;

BUILDING AN ATOM SERVICE IN JAVA

217

http://restbucks.com/promotions/1669488880%E2%80%B3
http://restbucks.com/products/1995649500%E2%80%B3
http://restbucks.com/regions/2140798621%E2%80%B3

The responsibilities in Example 7-17 are split between Jersey and ROME. The Jersey
code creates an HTTP client, and then sends an HTTP GET request with an Accept
header of application/atom+xml to the product catalog service.

The get(...) call populates the HTTP response object with the results of the interac-
tion, including an Atom feed if the request was successfully processed. This Atom feed is
extracted as a String instance and passed into the ROME library where it is converted to
an object representation that can be processed by the consumer’s business logic.

Of course, this isn’t the end of the story for our consumer. If the consumer can’t find
the entry it last successfully processed in the current feed, it will have to look through
the archives. Fortunately, because feeds are navigable via their next-archive and prev-
archive links, the consumer need only follow these links to discover and consume the
archive feeds. Programmatically, this is straightforward, since we already have a means
to access feeds by URI (Example 7-17), and ROME provides us the means to extract
URIs from feeds, as we see in Example 7-18.

Example 7-18. Navigating feeds from a consumer perspective

private URI getUriFromNamedLink(String relValue, Feed feed)
throws URISyntaxException {

for (Object obj : feed.getOtherLinks()) {

Link 1 = (Link) obj;

if (1l.getRel().equals(relvalue)) {

return new URI(1.getHref());

}

}

return null;

}
private URI getPrevArchive(Feed feed) throws URISyntaxException {

return getUriFromNamedLink("prev-archive", feed);

}
private URI getNextArchive(Feed feed) throws URISyntaxException {

return getUriFromNamedLink("next-archive", feed);
}

Example 7-18 shows how a consumer extracts links from a feed. Moving forward
through a set of feeds is a matter of looking for next-archive links, while moving
backward is a matter of acting on the corresponding prev-archive links in each feed.
As each feed is discovered, the consumer filters and applies the feed’s entries to the
objects in its local domain model.

218 CHAPTER 7: THE ATOM SYNDICATION FORMAT

Building an Atom Service in .NET

Our .NET solution serves pregenerated Atom feeds from the filesystem rather than con-
structing them on the fly. This way, we separate the construction of feeds from the han-
dling of requests. The benefit of this approach is that it conserves computing resources.
The downside is that it introduces additional latency between an event occurring and

its appearing in a feed. We can tolerate this trade-off because transferring products and
offers to Restbucks stores isn’t very latency-sensitive, and so any additional delay doesn’t
prevent the solution from working effectively.

NOTE

Using pregenerated static files for archive feeds is particularly effective at web scale.
Most web servers are very good at serving static files; furthermore, public-facing
services can use content delivery networks (CDNs) to store copies of archive feeds
closer to their globally distributed consumers. Static files allow us to implement addi-
tional optimizations, such as storing and serving feeds in a gzipped state.

This separation of concerns between constructing feeds and handling requests is
reflected in two core components: ProductCatalog.Writer, which generates feeds, and
ProductCatalog.Notifications, which handles requests.

Writing Feeds to Files

Writing feeds to files is triggered by a timer, which fires periodically. When the timer
fires, the feed writer reads new events from a buffer and writes them to the recent
events feed file. If during this process the recent events feed becomes full, the service
archives it and starts a new one.

Importantly, with this approach, once a file has been written to the filesystem,

it’s never updated. This is to prevent contention between file readers and writers.
Consider, for example, the situation where a client request is being served from a file
at the same time as the recent events feed is being updated. If we were to allow file
updates, we’d run the risk of blocking consumers while the service obtains a lock on
the underlying file and modifies its contents, complicating the solution for little gain.

Making a file unchangeable once it has been published works fine in the case of
archive feeds: archives by their very nature are immutable. But things are trickier with
the feed of recent events, which continues to grow as more events occur.

BUILDING AN ATOM SERVICE IN.NET

219

220

One solution to this problem is to publish the feed of recent events as a series of tem-
porary files. Each time the feed writing process is triggered, the service creates a copy of
the recent events feed, and then it adds new events to this copy. The service maintains
an in-memory mapping between the resource identifier for the recent events feed and
the newest temporary file containing this feed. When the feed updating process com-
pletes, the service updates the mapping.

Updating the in-memory mapping is an atomic operation. Until the mapping is
updated, requests continue to be served from the older temporary file. Once the map-
ping has been updated, however, new requests are satisfied from the new temporary
file. A reaper process cleans up older temporary files after a short interval.

The feed writing process is controlled by an instance of the FeedWriter class, which
hosts a timer. Timer events are handled by the FeedWriter.WriteFeed() method
shown in Example 7-19. WriteFeed() stops the timer, loops through and executes the
tasks responsible for updating the recent events feed, and then restarts the timer.

Example 7-19. WriteFeed() handles the feed writing timer event

private void WriteFeed()

{
timer.Stop();

ITask task = new QueryingEvents();
while (!task.IslastTask)

{
task = task.Execute(fileSystem, buffer, feedBuilder, NotifyMappingsChanged);
}
timer.Start();
}
Tasks

We’ve broken down the feed writing process down into a series of discrete tasks. Each
task is responsible for a single activity. Once it has completed its activity, the currently
executing task creates and returns the next task to be executed. By breaking the pro-
cess of updating the recent events feed into a number of discrete tasks, we make the
solution easier to develop and test.

Each task executed by WriteFeed() implements the ITask interface shown in
Example 7-20.

CHAPTER 7: THE ATOM SYNDICATION FORMAT

Example 7-20. The ITask interface

public interface ITask

{
bool IslLastTask { get; }
ITask Execute(IFileSystem fileSystem,
IEventBuffer buffer,
FeedBuilder feedBuilder,
Action<FeedMappingsChangedEventArgs> notifyMappingsChanged);

}

ITask’s Execute(...) method takes four parameters:

fileSystem
An object that implements the IFileSystem interface, which provides access to the
filesystem directories containing the recent events feed, archive feeds, and feed
entries.

buffer
Provides access to new events waiting to be written to a feed. Example 7-21 shows
the IEventBuffer interface. In a production system, we might use a persistent
queue or database table to back this buffer. In our sample application, the event
buffer is implemented as an in-memory queue.

feedBuilder
Formats feeds and entries. We’ll look at the FeedBuilder class in more detail later.

notifyMappingsChanged
A delegate, which is used to raise an event indicating the feed mappings have
changed. Tasks can invoke this delegate when the process of writing a feed has
been completed. Doing so notifies other parts of the system that the recent events
feed has changed.

Example 7-21. The IEventBuffer interface

public interface IEventBuffer

{
void Add(Event evnt);
IEnumerable<Event> Take(int batchSize);

}

Figure 7-6 shows how the tasks responsible for updating the recent events feed are
organized into a processing pipeline for events.

BUILDING AN ATOM SERVICE IN.NET

221

No events

Querying
Events

Identifying
Recent
Events Feed

(reating No feed
New Recent
Events Feed

Feed full
Updating Archiving

Recent Recent
Events Feed Events Feed

More events

Requerying
Events

No more events

Saving
Recent
Events Feed

Notifying
Listeners

Terminate

O+

Figure 7-6. Tasks involved in writing a feed

These task classes are:

QueryingEvents
Takes a batch of events from the buffer. If there are no new events in the

buffer, QueryingEvents returns a Terminate task; otherwise, it returns an

IdentifyingRecentEventsFeed task.

222 CHAPTER 7: THE ATOM SYNDICATION FORMAT

IdentifyingRecentEventsFeed
Identifies the latest recent events feed file. If the file exists, this task uses the feed
builder to load the feed into memory. It then returns an UpdatingRecentEventsFeed
task, passing the in-memory feed and the new events waiting to be added to the
feed to the new task’s constructor. If IdentifyingRecentEventsFeed can’t find a
recent events feed file on the filesystem, it returns a CreatingNewRecentEventsFeed
task.

UpdatingRecentEventsFeed
Iterates over new events retrieved from the buffer and updates the recent events
feed. If during this process the feed’s entry quota is reached, the task returns an
ArchivingRecentEventsFeed task. If, on the other hand, the task gets through all
the new events without having to archive the recent events feed, it returns a
RequeryingEvents task.

RequeryingEvents
Gets another batch of new events from the buffer. If there are no new events,
this task returns a SavingRecentEventsFeed task; otherwise, it returns a new
UpdatingRecentEventsFeed task.

SavingRecentEventsFeed
Tells the in-memory recent events feed to save itself to the filesystem and then
returns a Notifyinglisteners task.

Notifyinglisteners
Invokes the notifyMappingsChanged delegate with the latest recent events feed’s
details and then returns a Terminate task.

CreatingNewRecentEventsFeed
Is executed when the service can’t find a recent events file on the filesystem.
This will be the case, for example, when the service starts for the very first time.
CreatingNewRecentEventsFeed creates an empty recent events feed and returns a new
UpdatingRecentEventsFeed task, passing the newly created feed to this new task. (This
new feed is not saved to the filesystem until SavingRecentEventsFeed is executed.)

ArchivingRecentEventsFeed
Uses the current feed to create a new recent events feed, which is empty. It then
archives the old feed and creates and returns an UpdatingRecentEventsFeed task,
passing the new recent events feed to the new task’s constructor.

Terminate
Completes the process of updating the recent events feed.

Together, these tasks retrieve batches of new events from the event buffer and update
the recent events feed. When the current feed’s entry quota has been reached, the ser-
vice archives the feed and begins a new one. The service then repeats the process of
retrieving events, adding them to the recent events feed and archiving where neces-
sary, until there are no more new events in the buffer.

BUILDING AN ATOM SERVICE IN.NET

223

Building Feeds

FeedBuilder creates in-memory representations of feeds and entries. Feeds are of two
types: RecentEventsFeed and ArchiveFeed. The feed builder is responsible for creating
new recent events feeds and restoring recent events feeds from the filesystem. It can
also create a subsequent feed and an archive feed from the current feed.

A feed builder uses a helper class, Links, to generate links. When the service starts, it
configures a Links object with some service-specific URI templates. The feed builder
parameterizes these templates at runtime with resource Ids to generate URIs for feeds
and entries.

RecentEventsFeed and ArchiveFeed objects are initialized with a FeedMapping object.
Feed mappings encapsulate the mapping between a resource ID and its filename. An
Id is the service’s own internal representation of the distinguishing part of a feed or
entry’s address. Links uses an Id object to generate a feed or entry URI by filling in a
URI template. Our sample service is configured at startup with a base address of http://
restbucks.com/product-catalog/notifications/, and a URI template for feeds of /?page={id}.
An Id object with an integer value of 4, therefore, will result in the following feed URL:
http://restbucks.com/product-catalog/notifications/?page=4.

By making the creation of temporary filenames private to a feed mapping, we ensure
that we generate a different temporary filename every time we create a mapping,
thereby guaranteeing that feed files will never be updated once they’ve been saved. A
feed mapping can generate new feed mappings in three different ways. It can create

a copy of itself with the same ID but a different temporary filename. It can generate a
new feed mapping with an incremented ID (and different filename). Finally, it can cre-
ate a copy with the same ID and a permanent, archive filename—as opposed to a tem-
porary filename—based on that same ID.

A feed builder’s primary responsibility is to create a recent events feed. Its
CreateRecentEventsFeed(...) method is shown in Example 7-22.

Example 7-22. Creating an in-memory representation of a new feed

public RecentEventsFeed CreateRecentEventsFeed(FeedMapping mapping,
IPrevArchivelinkGenerator prevArchivelinkGenerator)

{

SyndicationFeed feed = new SyndicationFeed
{
Id = new UniqueId(Guid.NewGuid()).ToString(),
Title = SyndicationContent.CreatePlaintextContent(Title),
Generator = ServiceName,
LastUpdatedTime = DateTime.Now,
Items = new List<SyndicationItem>()

s

feed.Authors.Add(new SyndicationPerson {Name = ServiceName});

224 CHAPTER 7: THE ATOM SYNDICATION FORMAT

http://restbucks.com/product-catalog/notifications/
http://restbucks.com/product-catalog/notifications/
http://restbucks.com/product-catalog/notifications/?page=4

feed.Links.Add(links.CreateRecentFeedSelfLink());
feed.Links.Add(1links.CreateVialink(mapping.Id));

prevArchivelinkGenerator.AddTo(feed, links);

return new RecentEventsFeed(feed, mapping, this);

}

CreateRecentEventsFeed(...) accepts a feed mapping and an object that implements
IPrevArchivelinkGenerator. Depending on its underlying implementation, this latter
parameter will either add a prev-archive link to the generated feed or do nothing. The
very first feed to be generated doesn’t require a prev-archive link, but all the others do.

CreateRecentEventsFeed(...) uses the .NET Framework’s SyndicationFeed to build the
feed. SyndicationFeed is one of many classes in the System.ServiceModel.Syndication
that together make up a media type library for constructing and parsing Atom feeds.
CreateRecentEventsFeed(...) initializes a new syndication feed with some feed-level
metadata. It then adds a self link and a via link, and uses the prevArchivelinkGenerator
parameter to add a prev-archive link.

Feed builders are also responsible for creating individual Atom entries. FeedBuilder.
CreateEntry(...), which is shown in Example 7-23, initializes a SyndicationItem

and sets its Id, Title, and LastUpdatedTime properties. Note that the entry’s ID value

is computed using the same Tag scheme we used in our Java solution. After creating
and adding self and related links (the self link is a standalone URI for the entry, the
related link the URI of the domain entity to which the event refers), CreateEntry(...)
serializes the supplied event to the entry’s Content property.

Example 7-23. FeedBuilder.CreateEntry(...) method

public Entry CreateEntry(Event evnt)
{

SyndicationItem item = new SyndicationItem

{
Id = string.Format("tag:restbucks.com,{0}:{1}",

evnt.Timestamp.ToString("yyyy-MM-dd"), evnt.Id),
Title = SyndicationContent.CreatePlaintextContent(evnt.Subject),
LastUpdatedTime = evnt.Timestamp

s

item.Links.Add(links.CreateEntrySelfLink(new Id(evnt.Id)));
item.Links.Add(links.CreateEntryRelatedLink(evnt.Body.Href));

item.Content = new XmlSyndicationContent(evnt.Body.ContentType,
evnt.Body.Payload, null as DataContractSerializer);

return new Entry(item, new Id(evnt.Id).CreateFileName());

}

BUILDING AN ATOM SERVICE IN.NET

225

226

FeedBuilder exposes three more public methods:
e LoadRecentEventsFeed(...)
e C(reateNextRecentEventsFeed(...)
e C(reateArchiveFeed(...)

The first of these, LoadRecentEventsFeed(...), uses an IFileSystem implementation to
load a feed from the current directory, as shown in Example 7-24. With the file con-
tents loaded into a syndication feed, the method parses out the resource ID from the
feed’s via link and uses this to create a new feed mapping. It then uses the new map-
ping to initialize a new RecentEventsFeed. This ensures that the returned feed retains
the loaded feed’s resource ID, but is given a new temporary filename.

Example 7-24. Loading a feed from the filesystem

public RecentEventsFeed LoadRecentEventsFeed(IFileSystem fileSystem,
FileName fileName)

{

using (XmlReader reader = fileSystem.CurrentDirectory.GetXmlReader(fileName))

{

SyndicationFeed feed = SyndicationFeed.Lload(reader);
Id id = links.GetIdFromFeedUri(feed.GetVialink().GetAbsoluteUri());
return new RecentEventsFeed(feed, new FeedMapping(id), this);

}
}

CreateNextRecentEventsFeed(...), which is shown in Example 7-25, takes a feed
mapping belonging to the current recent events feed and uses it to initialize a
PrevArchivelinkGenerator. This generator can then be used to generate prev-archive
links that point to the feed associated with the mapping. It can also be used to generate
a new mapping containing the next resource ID. The new feed mapping and the link
generator instance are used to call CreateRecentEventsFeed(...), which creates a new
RecentEventsFeed.

Example 7-25. Creating the next recent events feed

public RecentEventsFeed CreateNextRecentEventsFeed(FeedMapping mapping)
{

return CreateRecentEventsFeed(
mapping.WithNextId(), new PrevArchivelinkGenerator(mapping.Id));

}

Example 7-26 shows the implementation of CreateArchiveFeed(...). This method
takes a syndication feed and feed mapping belonging to the feed to be archived,
together with a mapping belonging to the next recent events feed, and uses them to
create an ArchiveFeed based on a clone of the supplied feed.

CHAPTER 7: THE ATOM SYNDICATION FORMAT

Example 7-26. Creating an archive feed

public ArchiveFeed CreateArchiveFeed(SyndicationFeed feed,
FeedMapping currentMapping, FeedMapping nextMapping)
{

SyndicationFeed archive = feed.Clone(true);

archive.GetSelflLink().Uri = archive.GetVialink().Uri;
archive.Links.Remove (archive.GetVialink());
archive.Llinks.Add(1links.CreateNextArchivelink(nextMapping.Id));
archive.ElementExtensions.Add(new SyndicationElementExtension(
"archive", "http://purl.org/syndication/history/1.0", string.Empty));

return new ArchiveFeed(archive, currentMapping.WithArchiveFileName());

}

To create an archive feed from a recent events feed, CreateArchiveFeed(...) first clones
the supplied syndication feed. It then copies the cloned feed’s via link value into a new
self link and removes the via link from the feed. Next, it adds a next-archive link that
points to the next recent events feed. Finally, it adds an <archive> extension element.

Handling Requests

Requests are handled by a NotificationsService object, which is hosted by an instance
of ServiceHost. The service host encapsulates all the HTTP plumbing. In our imple-
mentation, this means using a System.Net.HttplListener object to listen for requests
and send responses.

Example 7-27 shows the service host’s HandleRequest (. ..) method. This method is

dispatched to a thread from the .NET thread pool with each request.

Example 7-27. ServiceHostHandleRequest(...) wraps requests and applies responses to the
output

private void HandleRequest(HttpListenerContext context)

{
Log.DebugFormat("{0} {1}", context.Request.HttpMethod, context.Request.RawUrl);

IResponse response = service.GetResponse(
new HttpListenerRequestWrapper(context.Request));
using (IResponselrapper wrapper =
new HttpListenerResponselWrapper(context.Response))
{
response.ApplyTo(wrapper);
}
}

BUILDING AN ATOM SERVICE IN.NET

227

http://purl.org/syndication/history/1.0%E2%80%B3

228

HandleRequest(...) translates between the requests and responses used by the service
logic and the request and response objects belonging to the HTTP plumbing. The method
wraps the request and response objects provided by the HttpListenerContext with sim-
ple wrapper objects so as to prevent HttpListener specifics from leaking into the rest of
the service code. Doing so supports rapid test-driven development because it allows the
service implementation to be tested without depending on any HTTP plumbing or connectivity.

The service host itself simply translates between the HTTP infrastructure and
the service implementation. The real request handling logic is implemented in
NotificationsService.GetResponse(...), as shown in Example 7-28.

Example 7-28. The notifications service handles requests

public IResponse GetResponse(IRequestWrapper request)
{

Log.DebugFormat("Received request. Uri: [{0}].", request.Uri.AbsoluteUri);

try
{

IRepositoryCommand command = routes.CreateCommand(request.Uri);
IRepresentation representation = command.Invoke(repository);
return request.Condition.CreateResponse(representation);

}

catch (ServerException ex)

{

Log.ErrorFormat("Server exception. {0}", ex.Message);
return Response.InternalServerError();

}

catch (InvalidUriException ex)

{

Log.WarnFormat("Invalid request. {0}", ex.Message);
return Response.NotFound();

}

catch (NotFoundException ex)

{

Log.WarnFormat("Invalid request. {0}", ex.Message);
return Response.NotFound();

}
}

GetResponse(...) implements the conditional GET HTTP idiom. To implement a con-
ditional GET, GetResponse(...) first fetches a representation from a repository. It then
supplies this representation to the condition specified in the request. This condition
creates and returns a response, which is handed back to the host for applying to the
response stream. We'll look at how this condition is generated, and how it determines
whether to return 200 OK or 304 Not Modified, in more detail shortly. Before we do that,
let’s look at how the repository command is created.

CHAPTER 7: THE ATOM SYNDICATION FORMAT

Every feed has a unique URI The notifications service uses this URI to create a com-
mand that can retrieve a feed representation from a repository. The logic for creating

a command from a URI is encapsulated in a Routes object, which matches the request

URI with some service-specific URI templates. Example 7-29 shows the implementa-

tion of Routes in its entirety.

Example 7-29. Routes creates repository functions based on request URIs

public class Routes

{

private readonly Uri baseAddress;
private readonly UriTemplateTable uriTemplates;

private static readonly Func<NameValueCollection, IRepositoryCommand>
GetFeedOfRecentEvents =
parameters => GetFeedOfRecentEventsCommand.Instance;

private static readonly Func<NameValueCollection, IRepositoryCommand>
GetFeed =
parameters => new GetFeedCommand(
new Resourceld(parameters.CetValues("id")[0]));

public Routes(UriConfiguration uriConfiguration)

{

Check.IsNotNull(uriConfiguration, "uriConfiguration");
baseAddress = uriConfiguration.BaseAddress;

uriTemplates = new UriTemplateTable(baseAddress);

uriTemplates.KeyValuePairs.Add(new KeyValuePair<UriTemplate, object>(
uriConfiguration.RecentFeedTemplate, GetFeedOfRecentEvents));

uriTemplates.KeyValuePairs.Add(new KeyValuePair<UriTemplate, object>(
uriConfiguration.FeedTemplate, GetFeed));

}
public Uri BaseAddress
{
get { return baseAddress; }
}

public IRepositoryCommand CreateCommand(Uri uri)

{
UriTemplateMatch match = uriTemplates.MatchSingle(uri);

if (match == null)
{

throw new InvalidUriException(string.Format("Invalid uri: [{0}]",
uri.Absolutelri));

BUILDING AN ATOM SERVICE IN.NET

229

230

var commandFactoryMethod = (Func<NameValueCollection, IRepositoryCommand>)
match.Data;
return commandFactoryMethod.Invoke(match.Boundvariables);

}
}

GetFeedOfRecentEvents and GetFeed are static functions, both of which accept a
NameValueCollection parameter and return a command. In the case of GetFeedCommand,
this command is initialized with a ResourceId based on an id value in the parameters
collection.

The constructor for Routes associates these functions with UriTemplates by adding
them to a UriTemplateTable object. When it receives a request, CreateCommand(. . .)
matches the request URI with a template in this table. If it finds a match, it invokes the
associated function, passing in any variables parsed out of the request URI. The com-
mand returned from this invocation becomes the return value for CreateCommand(...).

At startup, the notifications service is initialized with a repository, which is then passed
to this command. With each request, the repository queries the underlying store and
returns a representation object, which the notifications service then hands to the con-
dition (If-None-Match) supplied in the request. This condition is responsible for creat-
ing a Response object.

Writing the response

In Example 7-27, we saw that the response returned by NotificationsService.
GetResponse(...) is applied to a wrapped instance of the HttpListener’s outgoing
response. This Response wrapper object applies a representation to a ResponseContext
object and then flushes this context to the response stream. Example 7-30 shows how
this is implemented.

Example 7-30. Response.ApplyTo(...) applies a response context to an outgoing response

public void ApplyTo(IResponseWrapper responseWrapper)

{
ResponseContext context = new ResponseContext();
context.AddHeader (statusCode);
representation.UpdateContext(context);
context.ApplyTo(responseWrapper);

}

In our .NET service, representation data is built up using a decorator pattern.* The
representation returned from a repository comprises one of three feed instances—
WorkingFeed, FeedOfRecentEvents, or ArchiveFeed—plus, in each case, an inner
FileBasedAtomDocument instance.

* http://en.wikipedia.org/wiki/Decorator_pattern

CHAPTER 7: THE ATOM SYNDICATION FORMAT

http://en.wikipedia.org/wiki/Decorator_pattern

As a result of using the decorator pattern, several representation objects contribute
HTTP headers and entity body strategies to the response context:

WorkingFeed
Adds a short caching policy to the context, plus a response body rewriting strategy
that transforms a recent events feed into a working feed

FeedOfRecentEvents
Simply adds a short caching policy to the response context

ArchiveFeed
Adds a long caching policy

FileBasedAtomDocument
Adds Content-Type, Last-Modified, and ETag HTTP headers to the response con-
text, and a strategy that opens the feed file for reading

Entity body strategies are simply functions that open files and apply transformations
to file contents. By implementing a strategy as a function, we allow its execution to be
deferred until the service is certain it is needed. While a FileBasedAtomDocument object
may add a function that opens a feed file to the response context, and a WorkingFeed

a function that transforms feed file contents into a working feed, neither function will
be invoked until the service determines it is necessary to open a file and write the con-
tents to the response stream. If the service receives a conditional GET and determines
that the requested feed has not changed since it was last requested, it skips these func-
tions and writes only the necessary headers to the output.

Implementing Conditional GETs

As we mentioned, our .NET service supports conditional GET operations as a perfor-
mance and scalability optimization. The FileBasedAtomDocument class generates several
representation values, including an entity tag value based on a feed’s filename and
write time, as illustrated in Example 7-31.

Example 7-31. Generating HTTP headers based on file properties

public FileBasedAtomDocument(string fileName,
IChunkingStrategy chunkingStrategy)

{
fileInfo = new FileInfo(fileName);

if (!fileInfo.Exists)
{

throw new NotFoundException(
string.Format("File does not exist. File: [{0}].", fileInfo.FullName));

BUILDING AN ATOM SERVICE IN.NET

231

232

eTag = new ETag(
string.Format(@"""{o}#{1}""", fileInfo.Name, fileInfo.LastWriteTimeUtc.Ticks));
chunking = chunkingStrategy.CreateHeader(fileInfo.Length);
lastModified = new LastModified(fileInfo.LastWriteTimeUtc);
}

Because they’re based on file properties rather than the contents of a file, these entity
tag values are relatively cheap to generate. The service can compare an entity tag value
supplied in a request’s If-None-Match header with a feed’s current value, and return
304 Not Modified if the feed hasn’t changed since it was last requested—all without
once having to open and read a file.

To see how this is implemented, we’ll look at the IfNoneMatch class. As we saw when
we looked at ServiceHost.HandleRequest(...), every request is wrapped with an
object that implements IRequestWrapper. The IRequestWrapper interface exposes an
ICondition property. Example 7-32 shows HttpListenerRequestWrapper’s implementa-
tion of this Condition property.

Example 7-32. Retrieving an entity tag value from a request

public ICondition Condition

{
get

{
string eTag = request.Headers["If-None-Match"];

if (string.IsNullOrEmpty(eTag))
{

return NullCondition.Instance;

}
Log.DebugFormat("If-None-Match header present. ETag: [{0}].", eTag);

return new IfNoneMatch(new ETag(eTag));
}
}

The request member variable here is an instance of HttpListenerRequest, which is the
request as it comes off the wire. The Condition property parses out the If-None-Match
header from this request. If the header value exists, it returns a new IfNoneMatch object;
otherwise, it returns a NullCondition instance.

Condition objects are responsible for creating responses. As Example 7-33 shows, an
IfNoneMatch condition object will return 304 Not Modified if the supplied representa-
tion contains an ETag header and matching entity tag value, or 200 0K if it doesn’t.

CHAPTER 7: THE ATOM SYNDICATION FORMAT

Example 7-33. [fNoneMatch creates a response based on evaluating a condition

public IResponse CreateResponse(IRepresentation representation)

{

HeaderQuery query = new HeaderQuery(eTag);

if (query.Matches(representation))

{
Log.DebugFormat("If-None-Match precondition failed.");
return Response.NotModified();

}

Log.DebugFormat("If-None-Match precondition 0K.");
return Response.OK(representation);

}

The IfNoneMatch object uses a HeaderQuery to determine whether the representation the
service is about to write contains a specific header and header value. Its Matches(...)
method is shown in Example 7-34.

Example 7-34. HeaderQuery uses a local response context to determine whether a representation
includes a header

public bool Matches(IRepresentation representation)

{
IResponseContext context = new ResponseContext();
representation.UpdateContext(context);
return context.ContainsHeader (header);

}

IfNoneMatch is an example of using a response context for a purpose other than writing
to the output stream. The response context gathers all the headers from the supplied
representation parameter. Matches(...) then uses this context to determine whether
the header exists. Because it doesn’t involve opening a file or transforming a file’s con-
tents, the context is cheap to initialize.

Wiring It Up

In our .NET implementation, the feed writer and the notifications service run on sepa-
rate threads inside the same process. The only time they need to synchronize is when
the feed writer has updated the recent events feed. When that happens, the notifica-
tions service needs to know the name of the new temporary file associated with the
recent events feed.

To achieve this, the feed writer exposes a FeedMappingsChanged event. This event is raised
when the NotifyinglListeners task calls the notifyMappingsChanged parameter delegate.

BUILDING AN ATOM SERVICE IN.NET

233

234

When the service starts, it initializes a repository instance and then subscribes the reposi-
tory’s OnFeedMappingsChanged(. . .) event handler to the feed writer’s FeedMappingsChanged
event. The repository’s implementation of OnFeedMappingsChanged(...) is shown in
Example 7-35.

Example 7-35. A repository’s OnFeedMappingsChanged(...) event handler

public void OnFeedMappingsChanged(object sender,
FeedMappingsChangedEventArgs args)

{
Log.DebugFormat (

"FeedMappingsChanged event. ResourceId: [{0}]. StoreId: [{1}].",
args.RecentEventsFeedResourceld, args.RecentEventsFeedStoreld);

Interlocked.Exchange(ref feedMappings, new FeedMappings(
converter, new Resourceld(args.RecentEventsFeedResourceld),
new Storeld<string>(args.RecentEventsFeedStoreld)));

}

A FeedMappings object is responsible for creating functions that can retrieve a spe-
cific feed file from a backing store based on an understanding of the current work-
ing feed’s Resourceld and the name of the temporary file containing the recent events
feed. The feedMappings reference changes atomically each time the repository handles
a FeedMappingsChanged event.

Atom Everywhere?

Atom, as we've seen, can be a powerful tool in our developer toolbox, but it’s not an
integration panacea. Originally designed for syndicating news articles and blog entries,
Atom has since proven to be applicable in many other areas—integration included.
Broadly speaking, it can be used to enrich resource representations with general-purpose
metadata, allowing consumers to search, sort, and filter representations without need-
ing to understand their details.

NOTE

This separation of concerns between Atom and the resources it encapsulates is
helpful. It means we can use Atom-specific software for managing and consum-
ing Atom-formatted lists of resources, and more specialized software for handling
embedded content only where necessary. In turn, this allows us to implement
protocols based entirely on Atom.

Most development platforms today include an Atom library for creating and parsing
feeds and entries. But cross-platform support alone isn’t a sufficient reason to choose
Atom as a representation format. While it’s tempting to use Atom everywhere, to

CHAPTER 7: THE ATOM SYNDICATION FORMAT

make every list and collection a feed and every item an entry, there are many situa-
tions where Atom is not the most appropriate representation format. If all we need is a
list, not the feed metadata, we shouldn’t burden our application with Atom’s informa-
tion overhead. If we’ve no real need for an entry’s document metadata, we shouldn’t
use Atom entries. If we find ourselves populating Atom’s metadata elements with data
that’s of no use to clients, or with default or “stub” data, we should consider employ-
ing an alternative representation format.

Assuming Atom is appropriate for our integration needs, we may still find we need to
extend the format to support some domain- or application-specific requirements. Atom’s
metadata elements implement the majority of feed syndication and document description
use cases, but it’s still quite common to discover a requirement to extend the format.

There are a couple of options to choose from when extending Atom. All Atom elements
can be extended with new attributes. Many can also be extended with additional ele-
ments. Extending Atom with additional elements and attributes is called metadata exten-
sibility. In contrast, content extensibility involves putting proprietary information inside an
entry’s <atom:content> element. Content extensibility supports media type composition,
which tends to enforce a stricter separation of concerns.

Our guidelines for choosing between these options are pretty straightforward: use
metadata extensions for adding generally applicable, application-agnostic metadata to
a feed, and use content extensibility for domain- or application-specific information. In
the majority of cases, you're better off going with content extensibility. The more the
Atom format itself is customized for a specific domain, the less the resultant feed and
entry documents can be consumed and usefully manipulated by a generic Atom client.

Proprietary extensions to the Atom format can severely limit an application’s reach and
longevity. A test of a good extension is to ask whether a client must understand it before it
can process a feed or entry successfully. The best extensions accelerate specialized clients,
but do not hinder nonspecialized ones. Clients should be able to ignore proprietary ele-
ments when processing a feed or entry and still achieve meaningful and useful results.

Add proprietary metadata to the Atom format only when you’re certain it has broad
reach and applicability. Evaluate candidate elements in terms of their application
agnosticism and their conformance with any existing standards or community initia-
tives. There’s an obvious parallel here with microformats, which draw on prior art and
adapt commonly accepted formats.

NOTE

The Feed Paging and Archiving specification is a proprietary metadata extension
with precisely this mix of application agnosticism and broad reach and applicability.
The specification is set out in RFC 5005.

ATOM EVERYWHERE?

235

236

Content extensibility, on the other hand, forces a cleaner separation of responsibilities:
Atom clients handle feed and entry metadata, and specialized processors handle the
application-specific content, with content dispatched to specialized processors based on
its type.

After the Event

In this chapter, we explored the Atom Syndication Format and used it to develop an
event-driven system for propagating product information around Restbucks. In particular,
we saw how Atom as a hypermedia format can be used to create a simple protocol that
allows consumers to consume both current and historical notifications. We also saw how
load can be federated across the network with caches to increase availability and decrease
load and response times for the product catalog service and downstream systems.

Atom-based services score highly on Richardson’s service maturity model. Atom feeds
and entries advertise service-generated URIs that link to other resources; this is a sim-
ple but powerful example of the hypermedia constraint, and is considered level three
(the highest level) on the Richardson maturity model.

CHAPTER 7: THE ATOM SYNDICATION FORMAT

CHAPTER EIGHT

Atom Publishing Protocol

IN THE PRECEDING CHAPTER WE LEARNED ABOUT ATOM, a hypermedia format for
publishing timestamped lists of web content. We then successfully applied that format
to creating an event-driven system, typical of both enterprise and Internet computing,
where events published by one system as an Atom feed were consumed and processed
by downstream systems.

In this chapter, we're going to look at Atom Publishing Protocol (AtomPub), a protocol
that is built on top of Atom, and which is used for publishing and editing web resources.*
As a publishing protocol, AtomPub provides a standard mechanism for creating and
editing resources, and resolving any arising conflicts. AtomPub extends the Atom for-
mat with a number of new publishing-related elements; at the same time, it specifies
the HTTP idioms that can be used to manipulate published content.

Once we’ve understood AtomPub, we’ll look at how it can serve as a foundation for
our own domain application protocols. In the second half of the chapter, we show how
Restbucks built an order fulfillment protocol and service atop AtomPub.

NOTE

In Chapter 5, we used custom domain application protocols. AtomPub is a general-
purpose domain application protocol, which is widely understood and supported by
many software tools.

* http://www.ietf.org/rfc/rfc5023.txt

237

http://www.ietf.org/rfc/rfc5023.txt

Atom Publishing Protocol

Resources can be created on or off the Web. Resources that are generated by a back-
end process inserting a row in a database table are created off-Web. Atom Publishing
Protocol, in contrast, uses HTTP to create resources on the Web.

AtomPub is a domain application protocol for publishing and editing web content
(including binary content) with associated Atom metadata. The protocol is composed
of a number of protocol-specific resources, plus the rules governing how a client can
manipulate these resources using HTTP verbs, headers, and status codes.

AtomPub addresses issues common to many publishing scenarios: the concurrent edit-
ing of resources and the visibility of published resources. It implements an optimistic
concurrency control mechanism based on HTTP entity tags and validators. Using an
extension to the Atom format, it provides clients with the ability to control the public
visibility of published resources.

Overview

AtomPub describes itself as “an application-level protocol for publishing and editing
web resources...based on HTTP transfer of Atom-formatted representations.” Despite
its brevity, this description captures several key points about AtomPub:

It'’s an application-level protocol
AtomPub is an application-level protocol, meaning it’s implemented in software at
the application layer, not the transport or network layer. Being a protocol, it gov-
erns the interactions between two applications, a client and a server, in the con-
text of a specific goal. That goal is to publish web resources. AtomPub lays out the
rules a client and server use to create and edit web resources.

It's designed for publishing and editing web content
A web resource is anything that can be put on the Web and given an address.
AtomPub is concerned with web resources in general, not just Atom feeds and
entries. This may seem a little odd at first, but it makes more sense when we
understand that the “Atom” in “Atom Publishing Protocol” refers not to the thing
being published, but to the carrier format used to transfer a representation of the
thing being published.

It’s based on the HTTP transfer of Atom-formatted representations
AtomPub reuses a more general-purpose application transfer protocol, HTTP,
to implement a domain-specific application protocol. To create and edit web
resources, clients and servers exchange Atom-formatted representations of these
resources using HTTP idioms.

238 CHAPTER 8: ATOM PUBLISHING PROTOCOL

When to Use AtomPub

We can, of course, create and manipulate resources directly using the HTTP idioms
discussed in previous chapters, effectively creating our own custom publishing pro-
tocols. After all, the CRUD systems we looked at in Chapter 4 also implement simple
publishing protocols. So, why would we want to use Atom and AtomPub to do the same
thing? As with Atom, reach and interoperability weigh heavily in AtomPub’s favor.
AtomPub is applicable in many publishing scenarios precisely because it addresses a

core set of well-understood activities; it covers the bulk of common publishing use cases
much as Atom covers the core elements common to an envelope format.

We recommend using AtomPub for the following:

Creating and manipulating Atom entries
A web resource published by AtomPub doesn’t have to be an Atom entry; it simply
needs to be added to the content of an Atom entry while participating in the proto-
col. But given the prominent role AtomPub attaches to Atom, it makes perfect sense
to use the protocol to publish Atom entries. In other words, AtomPub is the ideal
means for manipulating the contents of Atom feeds in a standardized manner.

Associating Atom metadata with published web resources
If we need to record events in a resource’s life cycle—when it was published,
when it last changed, and so on—or index it by some document attributes (such
as author and title), or categorize it, Atom and AtomPub provide a means for asso-
ciating this information with the resource as part of the publishing process.

Promoting an interoperable publishing protocol
We can use AtomPub wherever we require an unambiguous, interoperable
mechanism for creating and editing resources. Though programming support for
AtomPub is not as widespread as it is for Atom, it is still relatively easy to imple-
ment the protocol on popular platforms.

Underpinning a domain application protocol
Besides its intrinsic utility, AtomPub acts as a useful foundation for creating higher-
level domain-specific application protocols. In the example at the end of this chapter,
we show how Restbucks implements an order fulfillment protocol using AtomPub.

Anatomy of AtomPub

AtomPub servers host collections of published web content. When a client submits a
piece of content to a collection, the server creates an Atom-formatted member to con-
tain that content and represent its associated Atom metadata. Clients can then use this
new member’s URI to further manipulate the web resource and its metadata.

AtomPub services also host service and category documents, which together help cli-
ents discover collections and understand how the contents of those collections can be
manipulated.

ATOM PUBLISHING PROTOCOL

239

Taken together with the Atom format specification, AtomPub is an excellent example
of a hypermedia-driven application protocol. AtomPub’s processing model defines four
things that are key to building hypermedia applications:

e Resource representation formats

e Hypermedia control markup

e The HTTP idioms clients can use to manipulate resources

¢ The link relations servers use to advertise legitimate state transitions

A good RESTful protocol can be described in terms of resources, representation for-
mats, methods, and status codes.* Atom Publishing Protocol is described in exactly
these terms. Its moving parts include four resources—members, collections, service
documents, and category documents—and their representation formats. Members and
collections are abstract names for the things targeted by publishing activities. A mem-
ber encapsulates a representation of a published web resource, or a representation of a
resource that is in a draft state, waiting to be published. A collection is a set of mem-
bers. In AtomPub, a member is represented as an Atom entry, a collection as an Atom
feed. The activities used to manipulate these resources are described in terms of HTTP
methods, headers, and status codes.

Example 8-1 shows an AtomPub collection with three members.

Example 8-1. An AtomPub collection with three members

<feed xmlns="http://www.w3.0rg/2005/Atom" xmlns:app="http://www.w3.0rg/2007/app">

<title>Product Catalog</title>
<link rel="self" href="http://restbucks.com/product-catalog"/>
<updated>2010-02-01T13:04:30Z</updated>
<generator uri="http://restbucks.com/product-catalog">

Product Catalog Service
</generator>
<id>urn:uuid:1dofias2-31d7-11df-b8ee-f47856d89593</id>

<entry>
<title>Fairtrade Roma Coffee Beans</title>
<id>urn:uuid:7b512808-31d7-11df-aede-127c56d89593</id>
<updated>2010-01-29T08:22:00Z</updated>
<app:edited>2010-02-01T13:04:30Z</app:edited>
<author>
<name>Product Manager A</name>
</author>
<content type="application/vnd.restbucks+xml">

* See “How to Create a REST Protocol,” http://www.xml.com/pub/a/2004/12/01/restful-web.html.

240 CHAPTER 8: ATOM PUBLISHING PROTOCOL

http://www.w3.org/2005/Atom%E2%80%B3
http://www.w3.org/2007/app%E2%80%B3
http://restbucks.com/product-catalog%E2%80%B3/
http://restbucks.com/product-catalog%E2%80%B3
http://www.xml.com/pub/a/2004/12/01/restful-web.html

<product xmlns="http://schemas.restbucks.com/product">
<name>Fairtrade Roma Coffee Beans</name>
<size>1kg</size>
<price>10</price>
</product>
</content>
<link rel="edit" href="http://restbucks.com/product-catalog/1234"/>
</entry>

<entry>
<title>Fairtrade Roma Coffee Beans</title>
<id>urn:uuid:o08acdbfe-31db-11df-9fa6-839856d89593</id>
<updated>2010-01-29T08:22:00Z</updated>
<app:edited>2010-01-29T08:22:00Z</app:edited>
<author>
<name>Product Manager A</name>
</author>
<summary type="text">Fairtrade Roma Coffee Beans image</summary>
<content type="image/png"
src="http://restbucks.com/product-catalog/fairtrade roma.png"/>
<link rel="edit-media"
href="http://restbucks.com/product-catalog/fairtrade roma.png" />
<link rel="edit"
href="http://restbucks.com/product-catalog/5555" />
</entry>

<entry>
<title>Early Riser Promotion</title>
<id>urn:uuid:3bb346e8-31d9-11df-8999-€78956d89593</id>
<updated>2010-01-28T10:02:00Z</updated>
<app:edited>2010-01-28T10:02:00Z</app:edited>
<author>
<name>Product Manager B</name>
</author>
<content type="application/vnd.restbucks+xml">
<promotion xmlns="http://schemas.restbucks.com/promotion">
<effective>2010-03-01T00:00:00Z</effective>
<product type="application/vnd.restbucks+xml"
href="http://restbucks.com/products/156" />
<region type="application/vnd.restbucks+xml"
href="http://restbucks.com/regions/23" />
</promotion>
</content>
<app:control>
<app:draft>yes</app:draft>
</app:control>

ATOM PUBLISHING PROTOCOL

241

http://schemas.restbucks.com/product%E2%80%B3
http://restbucks.com/product-catalog/1234%E2%80%B3/
http://restbucks.com/product-catalog/fairtrade_roma.png%E2%80%B3/
http://restbucks.com/product-catalog/fairtrade_roma.png%E2%80%B3
http://restbucks.com/product-catalog/5555%E2%80%B3
http://schemas.restbucks.com/promotion%E2%80%B3
http://restbucks.com/products/156%E2%80%B3
http://restbucks.com/regions/23%E2%80%B3

242

<link rel="edit" href="http://restbucks.com/product-catalog/9876"/>
</entry>

</feed>

The collection comprises an Atom feed whose default namespace, http://www.
w3.0rg/2005/Atom, belongs to the Atom Syndication Format. The collection also
includes some AtomPub elements belonging to the AtomPub namespace, http://
www.w3.0rg/2007/app. These elements are considered foreign markup, and will be
safely ignored by an Atom processor that doesn’t understand AtomPub.

The first member in the collection in Example 8-1 has been edited more recently than
the other two. The second member is a media link entry whose <atom:content> ele-
ment’s href value points to an image of some coffee beans. Its edit-media link allows the
client to delete or replace this image; its edit link allows the client to edit the entry (i.e.,
the image metadata).* The last member in the collection contains an <app:draft> ele-
ment with a status of yes, indicating that this member is not to be made publicly visible.

Now that we have an overall understanding of AtomPub, we’ll examine in more
detail AtomPub’s resources, their representation formats, and the HTTP idioms used to
manipulate them.

Collections

Collections are defined in service documents. The protocol doesn’t specify how they
are created or deleted. Collections support the following operations:

e To list a collection’s members, a client sends a GET to the collection’s URI.

e To create a new member, a client POSTs a representation of the prospective mem-
ber to a collection’s URL. Different collections support different media types. The
set of acceptable media types supported by a collection is typically specified in a
service document (described later in this section).

Upon successful creation of a member resource, a service responds with a 201 Created
status code and a Location header containing the URI of the newly created member.
This URI is called the member URI. The body of the response contains an Atom entry
representing the new member resource. The new resource’s member URI also appears
as the value of an edit link in this member’s entry in a collection.

Although AtomPub establishes the conventions for creating and modifying web
resources, the server always determines whether an interaction is permitted. The
server mints URIs and controls the URI space and the members identified by these
URIs. Clients can create their own ID for a new member, but the server is entitled to
modify the member and its representation, and even assign a new ID, as it sees fit.

* We describe media link entries in more detail later on.

CHAPTER 8: ATOM PUBLISHING PROTOCOL

http://restbucks.com/product-catalog/9876%E2%80%B3/
http://www
http://www.w3.org/2007/app
http://www.w3.org/2007/app

Servers will not, however, modify any IDs the client assigns to the underlying web
resources—that is, the server won’t touch the contents of member representations.
The entity body in the response to a POST reflects whatever actions the server has
applied to a member in the course of handling a request.

Members

Members in a collection are time-ordered based on the value of their <app:edited> ele-
ments (we provide details of this new element shortly), with the most recently edited
member appearing first. Members support the following operations:

e To get a representation of a member resource, a client sends a GET to the resource’s
member URL

e To update a member resource, a client sends a PUT request to its member URI.
e To delete a resource, a client sends a DELETE request to its member URI.

Text-based resource representations can be included directly in a member’s
<atom:content> element. Images, videos, and executables, on the other hand, can’t
be included directly. To cover these different situations, AtomPub breaks mem-
bers down into a couple of subtypes. Members that can be represented using Atom
entries are called entry resources. Members whose representations can’t be included
directly in an Atom entry are called media resources. Entry resources can be included
directly in a collection feed; media resources can’t. In place of a media resource,

a proxy resource, known as a media link entry, is inserted in a collection feed. This
media link entry contains the media resource’s metadata, plus a link to the media
resource itself.

Category and service documents

Whereas collections and members transport representations of web resources, category
and service documents describe the overall protocol. In particular, they group collec-
tions into workspaces, describe each collection’s capabilities, describe which categories
and media types belong to each collection, and provide discovery mechanisms based
on well-known entry points to collections. AtomPub provides simple XML vocabular-
ies for service and category documents, borrowing elements from the Atom format
wherever possible.

Category documents. Category documents contain lists of categories for categorizing
collections and members. A category list can be fixed, meaning it’s a closed set, or left
open, allowing for subsequent extension.

Category documents have their own processing model, with a media type of application/
atomcat+xml.

ATOM PUBLISHING PROTOCOL

243

Restbucks’ product catalog, which we looked at in the preceding chapter, is updated
using AtomPub. Because products can be categorized in a number of different ways,
Restbucks’ product catalog service exposes several category documents, one of which
is shown in Example 8-2.

Example 8-2. A category document containing a fixed set of categories

<categories xmlns="http://www.w3.0rg/2007/app"
xmlns:atom="http://www.w3.0rg/2005/Atom"
scheme="http://restbucks.com/product-catalog/categories/status" fixed="yes">
<atom:category term="new"/>
<atom:category term="updated"/>
<atom:category term="deleted"/>

</categories>

Example 8-2 shows a closed set of categories. These categories can be used to indicate
the status of a product entry in a product catalog feed. The category document’s root
element belongs to the AtomPub namespace, but the categories themselves are defined
using <atom:category> elements.

Service documents. A service document acts as a well-known entry point into the col-
lections hosted by a service. From a service document, a client can navigate to the col-
lections provided by the service. As shown in Figure 8-1, a service groups collections
into workspaces. A service document can contain more than one workspace, and a
collection can appear in more than one workspace.

Service
Document
Workspace Workspace
Collection Collection Collection

Figure 8-1. Service documents group collections into workspaces

244 CHAPTER 8: ATOM PUBLISHING PROTOCOL

http://www.w3.org/2007/app%E2%80%B3
http://www.w3.org/2005/Atom%E2%80%B3
http://restbucks.com/product-catalog/categories/status%E2%80%B3

Service documents have their own processing model, with a media type of application/
atomsvc+xml.

Restbucks’ product catalog service has a service document, which acts as a well-known
entry point into the catalog, as shown in Example 8-3.

Example 8-3. Service document for Restbucks’ product catalog

<service
xmlns="http://www.w3.0rg/2007/app"
xmlns:atom="http://www.w3.0rg/2005/Atom">
<workspace>
<atom:title>Product Catalog</atom:title>
<collection href="http://restbucks.com/product-catalog/products">
<atom:title>Products</atom:title>
<accept>application/atom+xml;type=entry</accept>
<categories href="http://restbucks.com/product-catalog/categories/status"/>
</collection>
<collection href="http://restbucks.com/product-catalog/promotions">
<atom:title>Promotions</atom:title>
<accept>application/atom+xml;type=entry</accept>
<accept>image/png</accept>
<accept>image/gif</accept>
<categories href="http://restbucks.com/product-catalog/categories/status"/>
<categories href="http://restbucks.com/product-catalog/categories/scope"/>
<categories scheme="http://restbucks.com/product-catalog/categories/origin"
fixed="yes">
<atom:category term="in-house"/>
<atom:category term="partner"/>
</categories>
</collection>
</workspace>
</service>

The product catalog service document contains a single workspace, which represents
the editable face of the catalog. This workspace contains two collections: one for prod-
ucts, the other for promotions. Clients interact with these collections by dereferencing
the href attribute values associated with each collection.

Collections indicate which media types they support using <app:accept> elements. While
the product collection only accepts Atom entries in POSTs to the collection, the promo-
tions collection accepts both Atom entries and two types of images. Each collection also
advertises a number of categories. The product collection’s <app:categories> element ref-
erences an external category document (in fact, the category document described earlier).
The promotions collection includes an inline set of categories.

ATOM PUBLISHING PROTOCOL

245

http://www.w3.org/2007/app%E2%80%B3
http://www.w3.org/2005/Atom%E2%80%B3
http://restbucks.com/product-catalog/products%E2%80%B3
http://restbucks.com/product-catalog/categories/status%E2%80%B3/
http://restbucks.com/product-catalog/promotions%E2%80%B3
http://restbucks.com/product-catalog/categories/status%E2%80%B3/
http://restbucks.com/product-catalog/categories/scope%E2%80%B3/
http://restbucks.com/product-catalog/categories/origin%E2%80%B3

246

AtomPub Extensions to Atom
AtomPub extends Atom in a number of ways:

e Tt uses Atom extensibility to add three new entry elements: <app:edited>,
<app:control>, and <app:draft>. These elements belong to the AtomPub namespace.

e It adds two new link-relation values, edit and edit-media, to the IANA Link
Relations registry.

e It adds a type parameter to the Atom media type.

AtomPub also introduces a new HTTP header, Slug. Clients can include a Slug header
when creating a new member. The Slug header represents a request that the server
include the header value (or a modified version of the header value) in the URI, ID, or
title of a new member. A client might use a Slug header to encourage the server to cre-
ate pretty or human-readable URIs for a particular member.

app:edited

The <app:edited> element indicates when a member was created or last edited. Every
member in a collection must contain exactly one <app:edited> element. Members in
an AtomPub collection are ordered by <app:edited>, with the most recently created

or updated members appearing first in the collection. The server changes the value of
<app:edited> every time the member’s metadata or content changes. <atom:updated>,
on the other hand, only needs to be updated when a “significant” change occurs, typi-
cally in the member content. As we suggested in Chapter 7, in some circumstances we
might give clients control of the <atom:updated> value. Clients, after all, are best placed
to determine which changes are significant. <app:edited>, on the other hand, is always
under the server’s control.

app:control and app:draft

<app:control> is an Atom extension used to host publishing controls. Publishing con-
trols are Atom extension elements dedicated to controlling parts of the publishing life
cycle. <app:draft> is one such publishing control. Both collections and members can
incorporate an <app:control> element. The <app:draft> value represents a client’s
preference regarding the visibility of a member; the server can always ignore the cli-
ent’s request and publish the submitted feed or entry as normal.

edit and edit-media link relation values

AtomPub adds the edit and edit-media link relation values to the IANA Link Relations
registry. Links with these relation values point to editable member entries and editable
media resources, respectively. Clients can use edit and edit-media links to GET, PUT,
and DELETE the resources with which they are associated.

CHAPTER 8: ATOM PUBLISHING PROTOCOL

type parameters

AtomPub extends the Atom media type of application/atom+xml with a type param-
eter. Using this parameter, feeds can be identified as application/atom+xml;type=feed
and entries as application/atom+xml;type=entry. The introduction of the type param-
eter caters to different client processing capabilities. Clients designed to handle feeds
will usually handle entries as well; applications designed to handle just entries, how-
ever, won't necessarily cater to feeds. Clients that understand the type parameter can
eagerly invoke the appropriate processing model. Clients that don’t understand the
parameter still have to examine the root element of an Atom-formatted representation
to determine which processing model to apply.

Concurrency Control

One of the most important issues AtomPub addresses is how a service coordinates

and resolves multiple updates from different clients. Once it has been made available
through an edit link, a web resource is potentially subject to concurrent manipulation
by several different clients. In these situations, it is possible that instructions from one
client can countermand or overwrite the instructions issued by another, often without
either party being aware of the conflict until some time later. This can give rise to the
“lost update” problem.

The lost update problem is best illustrated with an anecdote. When Restbucks first opened
its doors, communications between customers and staff members were uncoordinated. It
wasn’t unusual for orders to change, sometimes several times. When this happened, all
bets were off: no one could be sure what the prepared drinks would look like.

Imagine a situation in which a couple orders two lattes. The pair wanders off—one
person to browse a magazine, the other to make a phone call. Moments later, the first
customer returns to the counter and asks for a second shot in one of the lattes. Shortly
after that, the second customer, her call completed, comes back to the counter and
asks to change the order to a latte and a cappuccino. When preparing the drinks, the
barista makes a cappuccino and a latte, both with just a single shot.

This example illustrates how, in the absence of an explicit coordination protocol,

a sequence of instructions issued by different parties can lead to an incorrect out-
come.* Our barista followed the last instruction he received, but from the first cus-
tomer’s point of view, this resulted in the initial correction to the order being lost or
overwritten.

* The lost update problem is described in more detail in a W3C note from 1999, “Detecting the Lost
Update Problem Using Unreserved Checkout,” at http:.//www.w3.0rg/1999/04/Editing/.

ATOM PUBLISHING PROTOCOL

247

http://www.w3.org/1999/04/Editing/

248

NOTE

What should be considered a correct outcome, and the rules for achieving that
outcome, vary according to the business process. Here we would expect a cashier
or barista to notify the second customer that the order has already been modified.
This would give the customer a chance to change the instruction so as to take
account of the previous modification. That's the right thing to do here, but in other
circumstances, it might be more correct to refuse the second instruction until the
first has been completed.

To stop this problem from being repeated, Restbucks could require customers to
hang on to their order until they see it being prepared by a barista, effectively
implementing a pessimistic locking approach. But this solution consumes space at
the counter. Moreover, it’s extremely inconvenient for customers. Exclusive locking
of resources becomes prohibitively expensive when we scale things out on the Web.

Instead of using pessimistic locking to prevent conflicts and lost updates, AtomPub
implements an unreserved checkout strategy. Unreserved checkout means that a
resource isn’t locked while a client is working with it. AtomPub’s lightweight alterna-
tive to pessimistic locks uses entity tags and validators to identify potential conflicts,
thereby implementing an optimistic locking scheme. When a client POSTs an order

to the service, the server responds with 201 Created and an ETag header containing a
unique identifier for that particular version of the resource:

HTTP/1.1 201 Created

ETag: "44bd59eeb984c”
When a client PUTs a subsequent modification to the server, it adds an If-Match header
and the last known ETag entity value to the request:

PUT /orders/123 HTTP/1.1

If-Match: "44bd59eeb984c"

If the resource has changed on the server since the supplied entity tag value was gen-
erated, the server responds with 412 Precondition Failed.

NOTE

This strategy is not exclusive to AtomPub. As we saw in Chapter 4, ETags and
If-Match validators provide a useful optimistic locking strategy irrespective of the
protocol. AtomPub showcases the utility and value of this approach.

Of course, the client could use a conditional GET to determine whether the resource

has changed. But even if this conditional GET returns 304 Not Modified, there’s noth-

ing to stop a second client from changing the resource before the first finally PUTs its
changes—a race condition still exists. Conditional GETs are optional when updating a
resource; conditional PUTs aren't.

CHAPTER 8: ATOM PUBLISHING PROTOCOL

Based on a 412 Precondition Failed, the client must decide what to do next. The simplest
thing is to GET the latest version of the resource (and its new entity tag value), apply the
changes all over again, and then conditionally PUT the modified representation back to
the server using the new entity tag value. Some clients, however, will want to examine
the latest representation of a resource to determine what has changed in the interven-
ing period. The decision as to whether to proceed with another PUT may require man-
ual (human) intervention. It’s analogous to a cashier detecting that an order has been
changed since he last saw it and questioning the customer to confirm her intentions.

As we will see shortly, Restbucks can exc/usively use AtomPub to coordinate order ful-
fillment, avoiding the lost update problem without resorting to out-of-band coordina-
tion or fancy middleware.

Implementing Order Fulfillment Using AtomPub

Following its shambolic first few days in business, when fickle customers exposed the
flaws in its order fulfillment process (as described in the “lost update” anecdote in

the preceding section), Restbucks took a long, hard look at the ad hoc coordination
mechanisms behind the counter and decided to implement a more robust process—
one designed to guarantee that customers got what they wanted, no matter how many
times they changed their minds. In the following sections, we’'re going to show how
Restbucks now implements order fulfillment using AtomPub.

Overview
Before we dive into the details, let’s review the steps in the fulfillment sequence:
e A cashier takes an order from a customer.

e The cashier adds the order to a list of orders awaiting fulfillment and takes pay-
ment from the customer.

e The store’s baristas work their way through the list of unfulfilled orders, usually
but not always picking up the oldest first.

e When a barista finishes making all the drinks in an order, he hands them over to
the customer.

e Prior to the drinks being prepared, the order can be modified or canceled.

What we're facing here, from an application integration point of view, is a case of com-
peting consumers. In the competing consumer pattern, multiple receivers—baristas in this
case—process messages (orders) from a single point-to-point channel.* The success of the
pattern relies on there being no temporal dependencies between messages. That is, mes-
sage B can be successfully processed before message A, even though it arrived after A.

* Enterprise Integration Patterns by Gregor Hohpe and Bobby Woolf (Addison-Wesley, 2003).

IMPLEMENTING ORDER FULFILLMENT USING ATOMPUB

249

Restbucks’ fulfillment protocol structures and coordinates the activities that go into ful-
filling an order. The protocol is agnostic to the implementation of the fulfillment activi-
ties themselves. This means we won't look in any detail at how any of the individual
fulfillment activities (paying, making a coffee, notifying the customer) are implemented.
Instead, we'll look at how the protocol guides cashiers and baristas to communicate their
intended actions; how it prevents two baristas from tending simultaneously to the same
order; and how it allows cashiers to intervene and correct an order when a customer
changes her mind. What emerges is a coordination mechanism that’s completely agnos-
tic to orders—a mechanism that uses AtomPub alone, rather than the structure or con-
tent of an order, to advance the application state to a successful conclusion.

NOTE

The rules that the cashiers and baristas use to coordinate their activities, and the
sequence of steps that abide by these rules, are an internal implementation detail
of Restbucks’ order fulfillment process. Customers are not exposed directly to this
process. All customers care about is being able to order, pay, and receive drinks in
return, perhaps changing their minds in the process. The systems that implement the
order fulfillment protocol are therefore backend systems, which use the internal.
restbucks.com hostname.

Figure 8-2 shows the interactions that comprise the fulfillment protocol. Use this dia-
gram to follow along as we describe the protocol in more detail.

Cashier Barista fulfillment [fulfillment/1234
@ POST '
I S > -
GET
 Smm—
" GET
Z <
. o ~
s 2 PUT
£ <
=
=
g P DELETE
= T
g
:
- e - :
AtomPub

Figure 8-2. Driving the fulfillment protocol using AtomPub

250 CHAPTER 8: ATOM PUBLISHING PROTOCOL

Adding an Order to the Fulfillment Pipeline

We'll start by assuming a cashier has just taken an order from a customer. Having
taken the order, the cashier adds it to a list of unfulfilled orders. This list functions as
a backlog of tasks that supplies the baristas with new work items. Example 8-4 shows
what this list looks like just before the cashier adds the new order.

Example 8-4. An AtomPub collection representing the order fulfillment pipeline

<feed xmlns="http://www.w3.0rg/2005/Atom" xmlns:app="http://www.w3.0rg/2007/app">

<title>Order Fulfillment</title>
<link rel="self" href="http://internal.restbucks.com/fulfillment"/>
<updated>2010-03-29T13:00:30Z</updated>
<generator uri="http://internal.restbucks.com/fulfillment">
Order Fulfillment Service
</generator>
<id>urn:uuid:6d2992ae-ec8a-4dac-91b3-d452186e€a409</id>

<app:collection href="http://internal.restbucks.com/fulfillment">
<title>Order Fulfillment Service</title>
<app:accept>application/atom+xml;type=entry</app:accept>
</app:collection>

<entry>
<title>order</title>
<id>urn:uuid:fc2d3d42-7198-4c59-a936-b9b870ef8469</1id>
<updated>2010-03-29T13:00:30Z</updated>
<app:edited>2010-03-29T13:00:30Z</app:edited>
<author>
<name>Cashier</name>
</author>
<content type="application/vnd.restbucks+xml">

</content>
<app:control>
<app:draft>yes</app:draft>
</app:control>
<link rel="edit" href="http://internal.restbucks.com/fulfillment/1234"/>
</entry>

</feed>

As you can see, the order fulfillment pipeline is implemented as an AtomPub collec-
tion. To advertise its capabilities, the collection includes an <app:collection> element
whose child <app:accept> element indicates that the collection accepts representations
of type application/atom+xml;type=entry.

IMPLEMENTING ORDER FULFILLMENT USING ATOMPUB 251

http://www.w3.org/2005/Atom%E2%80%B3
http://www.w3.org/2007/app%E2%80%B3
http://internal.restbucks.com/fulfillment%E2%80%B3/
http://internal.restbucks.com/fulfillment%E2%80%B3
http://internal.restbucks.com/fulfillment%E2%80%B3
http://internal.restbucks.com/fulfillment/1234%E2%80%B3/

NOTE

<app:collection> elements are normally found in AtomPub service documents,
but they can also be added to feeds.

The collection currently has one member. This member is in a draft state, as signaled
by the presence of an <app:draft> element with a value of yes. In the context of the
tulfillment protocol, a draft member is simply one that is not visibly in progress. It rep-
resents an order that has not yet been picked up by a barista.

To begin the fulfillment process for a new order, the cashier must POST an Atom-
formatted representation of a new order to the collection. Example 8-5 shows this POST
request.

Example 8-5. A cashier POSTs an order to the order fulfillment collection

POST /fulfillment HTTP/1.1

Host: internal.restbucks.com
Content-Type: application/atom+xml
Content-Length: ...

<entry xmlns="http://www.w3.0rg/2005/Atom">
<title>order</title>
<id>urn:uuid:b8e77ffa-31b4-11df-a2b3-1a8155d89593</id>
<updated>2010-03-29T13:01:30Z</updated>
<author>
<name>Cashier</name>
</author>
<content type="application/vnd.restbucks+xml">
<order xmlns="http://schemas.restbucks.com/order">
<consume-at>takeAway</consume-at>
<items>
<item>
<name>latte</name>
<quantity>1</quantity>
<milk>whole</milk>
<size>small</size>
</item>
</items>
</order>
</content>
</entry>

On receiving the new order, the fulfillment server creates a new member and then
responds with 201 Created. Example 8-6 shows the response.

252 CHAPTER 8: ATOM PUBLISHING PROTOCOL

http://www.w3.org/2005/Atom%E2%80%B3
http://schemas.restbucks.com/order%E2%80%B3

Example 8-6. The server responds with a representation of the new order

HTTP/1.1 201 Created

Date: ...

Content-Length: ...

Content-Type: application/atom+xml;type=entry;charset="utf-8"
Location: http://internal.restbucks.com/fulfillment/9876
Content-Location: http://internal.restbucks.com/fulfillment/9876
ETag: "3f2bo6f7"

<entry xmlns="http://www.w3.0rg/2005/Atom" xmlns:app="http://www.w3.org/2007/app">
<title>order</title>
<id>urn:uuid:e557e51b-c994-44ef-b06d-5331246ccchbe</id>
<updated>2010-03-29T13:01:30Z</updated>
<app:edited>2010-03-29T13:01:30Z</app:edited>
<author>
<name>Cashier</name>
</author>
<content type="application/vnd.restbucks+xml">

</content>
<app:control>
<app:draft>yes</app:draft>
</app:control>
<link rel="edit" href="http://internal.restbucks.com/fulfillment/9876"/>
</entry>

The response includes a Location header containing the member URI of the newly
created entry. Because the response contains a Content-Location header as well as a
Location header, the cashier can treat the entity body as an authoritative representa-
tion of the new entry, as per the AtomPub specification.

Below the headers, the entity body contains the AtomPub member representation. In
the fulfillment protocol, this member represents an instance of fulfilling an order. The
order itself has been encapsulated as a child of the member’s <atom:content> element.
When engaged in coordinating fulfillment activities as part of the fulfillment protocol,
cashiers and baristas deal with AtomPub collections and members. When they come
to undertake a specific fulfillment activity, such as making a drink, they deal with the
order details inside a member’s <atom:content>.

The server has created a new ID for the new member (replacing the ID supplied by the
cashier). This ID serves as an ID for this instance of fulfillment. The cashier can asso-
ciate this fulfillment ID with the original order ID, thereby reconciling records in dif-
ferent systems and providing full end-to-end auditing of the progress of an order. The
server has also added an <app:edited> timestamp, an <app:draft> element indicating
that the order is not yet being actively fulfilled, and an edit link to the new member.

IMPLEMENTING ORDER FULFILLMENT USING ATOMPUB

253

http://internal.restbucks.com/fulfillment/9876
http://internal.restbucks.com/fulfillment/9876
http://www.w3.org/2005/Atom%E2%80%B3
http://www.w3.org/2007/app%E2%80%B3
http://internal.restbucks.com/fulfillment/9876%E2%80%B3/

In a happy-path scenario, this is the last a cashier has to do with the order fulfillment
process. We’ll look later at what happens if the cashier wants to amend or cancel the
order.

Beginning Fulfillment

Let’s turn now to the baristas. Each Restbucks store employs several baristas, all of
whom take work from the same list of unfulfilled orders. That list is the same one
we’ve just been looking at: the AtomPub collection at http://internal.restbucks.com/
fulfillment.

When a barista needs more work to do, it retrieves the current list of outstanding
orders. Example 8-7 shows a typical request and response.

Example 8-7. A barista GETs the list of outstanding orders

Request:
GET /fulfillment HTTP/1.1
Host: internal.restbucks.com

Response:

HTTP/1.1 200 OK

Date: ...

Content-Length: ...

Content-Type: application/atom+xml;type=feed;charset="utf-8"

<feed xmlns="http://www.w3.0rg/2005/Atom" xmlns:app="http://www.w3.0rg/2007/app">

<title>Order Fulfillment</title>
<link rel="self" href="http://internal.restbucks.com/fulfillment"/>
<updated>2010-03-29T13:01:30Z</updated>
<generator uri="http://internal.restbucks.com/fulfillment">
Order Fulfillment Service
</generator>
<id>urn:uuid:6d2992ae-ec8a-4dac-91b3-d452186ea409</id>

<app:collection href="http://internal.restbucks.com/fulfillment">
<title>Order Fulfillment Service</title>
<app:accept>application/atom+xml;type=entry</app:accept>
</app:collection>

<entry>
<titlevorder</title>
<id>urn:uuid:e557e51b-c994-44ef-b06d-5331246ccche</id>
<updated>2010-03-29T13:01:30Z</updated>
<app:edited>2010-03-29T13:01:30Z</app:edited>

254 CHAPTER 8: ATOM PUBLISHING PROTOCOL

http://internal.restbucks.com/
http://www.w3.org/2005/Atom%E2%80%B3
http://www.w3.org/2007/app%E2%80%B3
http://internal.restbucks.com/fulfillment%E2%80%B3/
http://internal.restbucks.com/fulfillment%E2%80%B3
http://internal.restbucks.com/fulfillment%E2%80%B3

<author>
<name>Cashier</name>
</author>
<content type="application/vnd.restbucks+xml">

</content>
<app:control>
<app:draft>yes</app:draft>
</app:control>
<link rel="edit" href="http://internal.restbucks.com/fulfillment/9876"/>
</entry>

<entry>
<titlev>order</title>
<id>urn:uuid:fc2d3d42-7198-4c59-a936-b9b870ef8469</id>
<updated>2010-03-29T13:00:30Z</updated>
<app:edited>2010-03-29T13:00:30Z</app:edited>
<author>
<name>Cashier</name>
</author>
<content type="application/vnd.restbucks+xml">

</content>
<app:control>
<app:draft>yes</app:draft>
</app:control>
<link rel="edit" href="http://internal.restbucks.com/fulfillment/1234"/>
</entry>

</feed>

The response comprises an AtomPub collection. The collection is ordered by app:edited,
with the most recent unfulfilled order at its head. This collection of unfulfilled orders
currently contains two members, the topmost one being the order we’ve just seen the
cashier submit.

Though not an intrinsic part of the protocol, it’s customary for baristas to take the old-
est outstanding order, which in this instance is the last member in the collection. As
shown in Example 8-8, the barista GETs a full representation of the order using the
member’s edit link.

Example 8-8. The barista GETs an unfulfilled order

Request:
GET /fulfillment/1234 HTTP/1.1
Host: internal.restbucks.com

IMPLEMENTING ORDER FULFILLMENT USING ATOMPUB

255

http://internal.restbucks.com/fulfillment/9876%E2%80%B3/
http://internal.restbucks.com/fulfillment/1234%E2%80%B3/

Response:

HTTP/1.1 200 OK

Date: ...

Content-Length: ...

Content-Type: application/atom+xml;type=entry
ETag: "3877069e"

<entry xmlns="http://www.w3.0rg/2005/Atom" xmlns:app="http://www.w3.0rg/2007/app">
<title>order</title>
<id>urn:uuid:fc2d3d42-7198-4c59-a936-b9b870ef8469</id>
<updated>2010-03-29T13:00:30Z</updated>
<app:edited>2010-03-29T13:00:30Z</app:edited>
<author>
<name>Cashier</name>
</author>
<content type="application/vnd.restbucks+xml">

</content>
<app:control>
<app:draft>yes</app:draft>
</app:control>
<link rel="edit" href="http://internal.restbucks.com/fulfillment/1234"/>
</entry>

The server replies with a member representation whose <atom:content> element con-
tains the order details (omitted here to emphasize the parts of the member that are
used in the fulfillment protocol). The response also includes an ETag header.

The barista can now use this ETag header to do a conditional PUT back to the mem-
ber’s edit URI (its member URI). Before sending the member representation back to
the member URI, the barista removes its <app:control> and <app:draft> elements. The
overall intention of the PUT is to reserve or check out the order, thereby preventing
other baristas from working on it at the same time.

NOTE

An AtomPub member without an <app:draft> element is treated as though it had
an <app:draft> element with a value of no. By removing these two elements, the
barista announces (or publishes) its intention to fulfill the order. Draft members
represent orders waiting to be fulfilled; “published” members represent orders that
are currently being fulfilled.

256 CHAPTER 8: ATOM PUBLISHING PROTOCOL

http://www.w3.org/2005/Atom%E2%80%B3
http://www.w3.org/2007/app%E2%80%B3
http://internal.restbucks.com/fulfillment/1234%E2%80%B3/

Failed reservation

The barista’s PUT takes the form of a conditional PUT to the member’s edit URI. By
using an If-Match header, the barista effectively says, “Please accept this representa-
tion of my intent, but only if the order is in the same state as when I last looked at it.”
Example 8-9 shows the PUT.

Example 8-9. The barista does a conditional PUT to reserve an outstanding order

PUT /fulfillment/1234 HTTP/1.1

Host: internal.restbucks.com

Content-Type: application/atom+xml;type=entry
Content-Length: ...

If-Match: "3877069e"

<entry xmlns="http://www.w3.org/2005/Atom" xmlns:app="http://www.w3.org/2007/app">

<title>order</title>
<id>urn:uuid:fc2d3d42-7198-4c59-a936-b9b870ef8469</id>
<updated>2010-03-29T13:03:00Z</updated>
<app:edited>2010-03-29T13:00:30Z</app:edited>
<author>

<name>Cashier</name>
</author>
<contributor>

<name>Barista A</name>
</contributor>
<content type="application/vnd.restbucks+xml">

</content>
<link rel="edit" href="http://internal.restbucks.com/fulfillment/1234"/>
</entry>

Unfortunately, another barista has already started work on this particular order. The
state of the underlying resource, therefore, #as changed since our barista last looked
at it (i.e., between the barista GETting and conditionally PUTting the order). As a result,
the conditional PUT fails, as shown in Example 8-10.

Example 8-10. Response to the conditional PUT

HTTP/1.1 412 Precondition Failed
Date: ...

IMPLEMENTING ORDER FULFILLMENT USING ATOMPUB

257

http://www.w3.org/2005/Atom%E2%80%B3
http://www.w3.org/2007/app%E2%80%B3
http://internal.restbucks.com/fulfillment/1234%E2%80%B3/

Try again

Not to worry. Our barista simply has to find more work to do. It does so by navigating
to the top of the orders list, attempting to reserve unfulfilled orders along the way. As
it happens, the list contains only one more outstanding order: the one recently placed
by the cashier at the beginning of this example. So, the barista tries that one.

NOTE

Newer orders may, in fact, be present in the system, but the barista is working from
a copy of the orders collection that is slowly becoming stale. This isn't really an
issue. Once a barista has exhausted the copy of the list it currently holds, it GETs a
fresh copy from http://internal.restbucks.com/fulfillment. This new copy
will contain any orders generated in the intervening period (in fact, it will contain
both new orders and all orders currently being fulfilled). As far as is practically pos-
sible, baristas try to take a first-in, first-out approach to serving coffees. The oldest
orders are dealt with first. Newer orders don’t become visible to a barista until the
backlog has been cleared.

Example 8-11 shows the barista GETting the topmost member in the collection.

Example 8-11. The barista looks at another recent order

Request:
GET /fulfillment/9876
Host: internal.restbucks.com

Response:

HTTP/1.1 200 OK

Date: ...

Content-Length: ...

Content-Type: application/atom+xml;type=entry
ETag: "83fd0an3"

<entry xmlns="http://www.w3.org/2005/Atom" xmlns:app="http://www.w3.org/2007/app">
<title>order</title>
<id>urn:uuid:e557e51b-c994-44ef-b06d-5331246cccbe</id>
<updated>2010-03-29T13:01:30Z</updated>
<app:edited>2010-03-29T13:01:30Z</app:edited>
<author>
<name>Cashier</name>
</author>
<content type="application/vnd.restbucks+xml">

</content>

<app:control>
<app:draft>yes</app:draft>

258 CHAPTER 8: ATOM PUBLISHING PROTOCOL

http://internal.restbucks.com/fulfillment
http://www.w3.org/2005/Atom%E2%80%B3
http://www.w3.org/2007/app%E2%80%B3

Download from Wow! eBook <www.wowebook.com>

</app:control>
<link rel="edit" href="http://internal.restbucks.com/fulfillment/9876"/>
</entry>

Once again, the barista attempts to reserve the order using a conditional PUT.
Example 8-12 shows the resultant request and response. Note that before PUTting
the member back to the server, the barista updates the member’s <atom:updated>
element and adds its name to the list of contributors.

Example 8-12. Successfully reserving an outstanding order

Request:

PUT /fulfillment/9876 HTTP/1.1

Host: internal.restbucks.com

Content-Type: application/atom+xml;type=entry
Content-Length: ...

If-Match: "83fdoao3"

<entry xmlns="http://www.w3.org/2005/Atom" xmlns:app="http://www.w3.org/2007/app">

<title>order</title>
<id>urn:uuid:e557e51b-c994-44ef-b0o6d-5331246cccbe</id>
<updated>2010-03-29T13:04:00Z</updated>
<app:edited>2010-03-29T13:01:30Z</app:edited>
<author>

<name>Cashier</name>
</author>
<contributor>

<name>Barista A</name>
</contributor>
<content type="application/vnd.restbucks+xml">

</content>
<link rel="edit" href="http://internal.restbucks.com/fulfillment/9876"/>
</entry>

Response:
HTTP/1.1 200 OK
Date: ...

This time, the PUT succeeds.

Where are we?

What would the fulfillment backlog look like if a cashier or barista were to do a GET
now? Let’s assume neither of the orders we’ve looked at so far has been completed.
To make matters more interesting, we’ll say that the cashier has recently submitted a
third order. Given this state of affairs, Example 8-13 shows the current collection.

IMPLEMENTING ORDER FULFILLMENT USING ATOMPUB

259

http://internal.restbucks.com/fulfillment/9876%E2%80%B3/
http://www.w3.org/2005/Atom%E2%80%B3
http://www.w3.org/2007/app%E2%80%B3
http://internal.restbucks.com/fulfillment/9876%E2%80%B3/

Example 8-13. The orders collection with one new and two in-process orders

<feed xmlns="http://www.w3.0rg/2005/Atom" xmlns:app="http://www.w3.0rg/2007/app">

<title>Order Fulfillment</title>
<link rel="self" href="http://internal.restbucks.com/fulfillment"/>
<updated>2010-03-29T13:04:30Z</updated>
<generator uri="http://internal.restbucks.com/fulfillment">
Order Fulfillment Service
</generator>
<id>urn:uuid:6d2992ae-ec8a-4dac-91b3-d452186ea409</id>

<app:collection href="http://internal.restbucks.com/fulfillment">
<title>Order Fulfillment Service</title>
<app:accept>application/atom+xml;type=entry</app:accept>
</app:collection>

<entry>

<title>order</title>
<id>urn:uuid:e557e51b-c994-44ef-b06d-5331246ccche</id>
<updated>2010-03-29T13:04:00Z</updated>
<app:edited>2010-03-29T13:04:30Z</app:edited>
<author>

<name>Cashier</name>
</author>
<contributor>

<name>Barista A</name>
</contributor>
<content type="application/vnd.restbucks+xml">

</content>
<link rel="edit" href="http://internal.restbucks.com/fulfillment/9876"/>
</entry>

<entry>
<titledorder</title>
<id>urn:uuid:1b305ebe-9077-42e5-bd95-00792c33ffbf</id>
<updated>2010-03-29T13:03:30Z</updated>
<app:edited>2010-03-29T13:03:30Z</app:edited>
<author>
<name>Cashier</name>
</author>
<content type="application/vnd.restbucks+xml">

</content>
<app:control>

260 CHAPTER 8: ATOM PUBLISHING PROTOCOL

http://www.w3.org/2005/Atom%E2%80%B3
http://www.w3.org/2007/app%E2%80%B3
http://internal.restbucks.com/fulfillment%E2%80%B3/
http://internal.restbucks.com/fulfillment%E2%80%B3
http://internal.restbucks.com/fulfillment%E2%80%B3
http://internal.restbucks.com/fulfillment/9876%E2%80%B3/

<app:draft>yes</app:draft>
</app:control>
<link rel="edit" href="http://internal.restbucks.com/fulfillment/9999"/>
</entry>

<entry>

<title>order</title>
<id>urn:uuid:fc2d3d42-7198-4c59-a936-bob870ef8469</id>
<updated>2010-03-29T13:02:00Z</updated>
<app:edited>2010-03-29T13:02:30Z</app:edited>
<author>

<name>Cashier</name>
</author>
<contributor>

<name>Barista B</name>
</contributor>
<content type="application/vnd.restbucks+xml">

</content>
<link rel="edit" href="http://internal.restbucks.com/fulfillment/1234"/>
</entry>

</feed>

The first and third members represent orders currently being fulfilled (neither contains
an <app:control> or <app:draft> element). The middle member represents the latest
order submitted by the cashier. The members are ordered by <app:edited>, with the
most recently edited member first. The server changes a member’s <app:edited> value
every time the resource changes. Because our barista reserved an order some moments
after the cashier POSTed a newer order, it’s the in-process order, not the new order, that
appears at the top of the collection.

Completing the Protocol

Remember, the process outlined here is responsible solely for coordinating fulfillment
activities. It doesn’t have anything to do with how each fulfillment activity is actually
implemented. This means that once a barista has reserved an order, the barista must
step outside AtomPub to make the drinks.

When making the drinks, the barista will peer into the <atom:content> element and
inspect the order details. In other words, it drops down to a media type processor capa-
ble of handling application/vnd.restbucks+xml to process the representation trans-
ported in the <atom:content> element.

After making the customer’s drinks, the barista completes the fulfillment protocol by
deleting the member, as shown in Example 8-14.

IMPLEMENTING ORDER FULFILLMENT USING ATOMPUB

261

http://internal.restbucks.com/fulfillment/9999%E2%80%B3/
http://internal.restbucks.com/fulfillment/1234%E2%80%B3/

262

Example 8-14. Completing the fulfillment protocol

Request:
DELETE /fulfillment/9876 HTTP/1.1
Host: internal.restbucks.com

Response:
HTTP/1.1 200 OK
Date: ...

And that’s it: coffee’s served.

Exceptions

That’s the happy path. Now let’s look at some exceptional circumstances. First, what
happens if a customer changes her mind?

If a customer asks to change her order, the cashier must attempt to modify the rel-
evant member in the fulfillment backlog. Using the member’s edit link, the cashier
can GET an up-to-date representation of the member, together with a fresh entity tag.
The cashier modifies the order details inside atom:content, and then conditionally PUTs
the member back to its edit URI If the member is still in a state that allows it to be
updated (it hasn’t been reserved by a barista), the PUT will succeed. If the server deter-
mines it’s too late to modify this instance of fulfillment—perhaps because preparation
is already underway—it returns 412 Precondition Failed.

NOTE

Completed orders, of course, can't be changed: they must be thrown away. Whether
this is a permitted outcome for an order depends on a business-level trade-off
among order throughput, cost, and customer satisfaction.

If the cashier PUTs a changed order back to the server after a barista has retrieved a
member representation, but before the barista has reserved the enclosed order using

its own conditional PUT, the cashier’s PUT will succeed (thereby moditying the order),
and the barista’s will fail (because the resource state will have changed in between

the barista GETting and PUTting). A barista interprets a failed PUT as meaning another
member of the staff has the member and its contained order. This results in the barista
discarding the member in favor of a more recent one. Figure 8-3 shows the sequence
of requests: you can clearly see that about two-thirds of the way down, the barista
skips /fulfillment/1234 and moves on to /fulfillment/9876.

CHAPTER 8: ATOM PUBLISHING PROTOCOL

Barista Cashier [fulfillment ffulfillment/1234 [fulfillment/9876

1 1
P GET . ,
B 1 1
GET !
< GET d :
1
< > Update !
< o .
1
PUT |
< Fail
412 Precondition > :l a :
Failed GET e
&
<
P pUT
.
DELETE
< »
T L T T L

Figure 8-3. Changing an order while a barista attempts to reserve it

This isn’t really a problem. At some point, one of the baristas will GET an updated ver-
sion of the orders collection. The modified (but discarded) order will appear some-
where toward the bottom of the collection, waiting to be picked off. It’s a somewhat
suboptimal solution, but so long as baristas continue polling the orders collection
whenever they’re ready to take on new jobs, it succeeds in clearing any backlog.

Canceling an order is achieved by sending a DELETE request to the current edit URI.
Occasionally, a barista will experience a 410 Gone in response to its attempt to complete
the fulfillment protocol; this occurs as a result of the order being successfully canceled
(the fulfillment resource deleted) while the drinks were being prepared.

Summary

Let’s review the solution and see what we’ve achieved. We've successfully progressed
through a domain-specific protocol—order fulfillment—using a more general, standardized
application protocol: AtomPub. At no point have any of the clients—cashiers and baristas
alike—had to inspect the domain-specific order XML to determine what to do next.

NOTE

Don't confuse the fulfillment protocol with the steps necessary to implement fulfill-
ment activities. As we saw when it came to the barista making drinks, it is perfectly
legitimate and usually necessary to peer into these domain-specific representa-
tions when implementing an activity coordinated by the protocol.

IMPLEMENTING ORDER FULFILLMENT USING ATOMPUB

263

264

To ensure the correctness of the fulfillment protocol, we’ve had to insist that baris-
tas, whenever they GET a fresh representation of the orders collection, always start at
the bottom and work their way up the list until they find the first draft member. This
ensures that new orders sitting below recently edited in-process orders are picked up
and processed.

Implementing More Complex Protocols

Restbucks’ order fulfillment protocol is implemented entirely in AtomPub. To partici-
pate in the protocol, cashiers and baristas have simply to behave like good AtomPub
clients: POSTing an order to the fulfillment collection to create a “draft” member await-
ing fulfillment; GETting a member representation, removing its <app:draft> element,
and conditionally PUTting it back to “publish” it into an in-process state; and finally,
requesting that the server DELETE it to complete the protocol.

But order fulfillment, at least as we’ve described it here, is a relatively linear three-step
process. Few processes are as simple or as straightforward. How would we cope if there
were more steps in the protocol, or decisions that an agent—cashier or barista—had to
make somewhere along the way? Can AtomPub deal with more complex protocols?

The answer is to compose AtomPub into higher-level protocols. Such protocol imple-
mentations still use Atom as a representation format, and AtomPub to coordinate
interactions, but they add new link relation values. To progress the protocol, clients
need to understand these new values in addition to understanding AtomPub.

We’'re now going to modify the implementation of Restbucks” order fulfillment proto-
col to show how AtomPub can be composed into a more complex protocol. While the
overall business outcome is the same, the revised implementation shows how such an
approach can be used to implement more complex processes.

In this revised solution, the fulfillment service exposes several AtomPub collections,
each of which represents one or more states in the application protocol. A member
moves from one collection to another as a result of clients activating hypermedia con-
trols provided by the server.

The first thing we’'re going to do is to create a service document for the new order ful-
fillment service. This document advertises the collections supported by the service, as
shown in Example 8-15.

Example 8-15. A service document advertising the order fulfillment application state space

<service
xmlns="http://www.w3.0rg/2007/app"
xmlns:atom="http://www.w3.0rg/2005/Atom">

CHAPTER 8: ATOM PUBLISHING PROTOCOL

http://www.w3.org/2007/app%E2%80%B3
http://www.w3.org/2005/Atom%E2%80%B3

<workspace>
<atom:title>Order Fulfillment</atom:title>
<collection href="http://internal.restbucks.com/fulfillment">
<atom:title>Order Fulfillment Service</atom:title>
<accept>application/atom+xml;type=entry</accept>
</collection>
<collection href="http://internal.restbucks.com/fulfillment/fulfilled">
<atom:title>Fulfilled Orders Service</atom:title>
<accept>application/atom+xml;type=entry</accept>
</collection>
</workspace>
</service>

This service document has one workspace, which contains two collections. The first
collection in the workspace is the entry point into the fulfillment process. The second
collection contains members that represent instances of the fulfillment process cur-
rently in the fulfilled state. Both collections accept Atom entries.

The first part of the implementation works much as before. Cashiers POST orders to
http://internal.restbucks.com/fulfillment, whereupon the server creates a draft
member that baristas can then reserve using a conditional PUT. Things change, how-
ever, once a barista has successfully reserved a member. A fresh GET on a member’s
member URI returns the representation show in Example 8-16.

Example 8-16. A member representing an instance of fulfillment in the in-process state

Request:
GET /fulfillment/9876 HTTP/1.1
Host: internal.restbucks.com

Response:

HTTP/1.1 200 OK

Date: ...

Content-Length: ...

Content-Type: application/atom+xml;type=entry
ETag: "495bof8f"

<entry xmlns="http://www.w3.org/2005/Atom" xmlns:app="http://www.w3.o0rg/2007/app">
<title>order</title>
<id>urn:uuid:e557e51b-c994-44ef-b06d-5331246ccche</id>
<updated>2010-03-29T13:04:00Z</updated>
<app:edited>2010-03-29T13:04:30Z</app:edited>
<author>

<name>Cashier</name>

</author>

IMPLEMENTING ORDER FULFILLMENT USING ATOMPUB

265

http://internal.restbucks.com/fulfillment%E2%80%B3
http://internal.restbucks.com/fulfillment/fulfilled%E2%80%B3
http://internal.restbucks.com/fulfillment
http://www.w3.org/2005/Atom%E2%80%B3
http://www.w3.org/2007/app%E2%80%B3

<contributor>
<name>Barista A</name>
</contributor>
<content type="application/vnd.restbucks+xml">

</content>
<link rel="http://relations.restbucks.com/fulfilled"
href="http://internal.restbucks.com/fulfillment/fullfilled"/>
<link rel="edit" href="http://internal.restbucks.com/fulfillment/9876"/>
</entry>

Notice that besides an edit link, this representation includes a second <atom:1ink>
element, with a link relation of http://relations.restbucks.com/fulfilled.* A link

relation of http://relations.restbucks.com/fulfilled describes a URI that returns a
collection whose members represent fulfilled instances of the fulfillment protocol.

When a barista finishes making an order, it POSTs the member to the fulfilled collec-

tion, as shown in Example 8-17.

Example 8-17. A barista completes the order fulfillment protocol by POSTing a member to the
fulfilled collection

POST /fulfillment/fullfilled HTTP/1.1

Host: internal.restbucks.com

Content-Type: application/atom+xml;type=entry
Content-Length: ...

<entry xmlns="http://www.w3.o0rg/2005/Atom" xmlns:app="http://www.w3.o0rg/2007/app">

<title>order</title>
<id>urn:uuid:e557e51b-c994-44ef-b06d-5331246ccchbe</id>
<updated>2010-03-29T13:05:00Z</updated>
<app:edited>2010-03-29T13:04:30Z</app:edited>
<author>

<name>Cashier</name>
</author>
<contributor>

<name>Barista A</name>
</contributor>
<content type="application/vnd.restbucks+xml">

</content>
<link rel="http://internal.restbucks.com/link-relations/fulfilled"
href="http://internal.restbucks.com/fulfillment/fullfilled"/>
<link rel="edit" href="http://internal.restbucks.com/fulfillment/9876"/>
</entry>

*In accordance with the Atom Syndication Format, this proprietary link relation value is an absolute
URL

266 CHAPTER 8: ATOM PUBLISHING PROTOCOL

http://relations.restbucks.com/fulfilled%E2%80%B3
http://internal.restbucks.com/fulfillment/fullfilled%E2%80%B3/
http://internal.restbucks.com/fulfillment/9876%E2%80%B3/
http://relations.restbucks.com/fulfilled.*
http://relations.restbucks.com/fulfilled
http://www.w3.org/2005/Atom%E2%80%B3
http://www.w3.org/2007/app%E2%80%B3
http://internal.restbucks.com/link-relations/fulfilled%E2%80%B3
http://internal.restbucks.com/fulfillment/fullfilled%E2%80%B3/
http://internal.restbucks.com/fulfillment/9876%E2%80%B3/

Behind the scenes, the server applies some business logic over the internal order
resource, modifying the order’s state in line with the intentions expressed through the
client transfer of a member representation to a particular URI. At the same time, the
server determines an appropriate response to the client request based on the current
state of the internal order resource. If the order is already in a fulfilled state, POSTing a
member containing that order to the fulfilled collection results in the server returning
409 Conflict.

Assuming all goes well, the server adds the member to the fulfilled collection, as
shown in Example 8-18.

Example 8-18. The server adds the member to the fulfilled collection

HTTP/1.1 201 Created

Date: ...

Content-Length: ...

Content-Type: application/atom+xml;type=entry;charset="utf-8"

Location: http://internal.restbucks.com/fulfillment/fulfilled/9876
Content-Location: http://internal.restbucks.com/fulfillment/fulfilled/9876
ETag: "c7be9039"

<entry xmlns="http://www.w3.org/2005/Atom" xmlns:app="http://www.w3.org/2007/app">

<title>order</title>
<id>urn:uuid:e557e51b-c994-44ef-b0o6d-5331246cccbe</id>
<updated>2010-03-29T13:05:00Z</updated>
<app:edited>2010-03-29T13:05:30Z</app:edited>
<author>

<name>Cashier</name>
</author>
<contributor>

<name>Barista A</name>
</contributor>
<content type="application/vnd.restbucks+xml">

</content>
<link rel="edit"
href="http://internal.restbucks.com/fulfillment/fulfilled/9876"/>
</entry>

Figure 8-4 shows the relations among cashiers and baristas, collections, members, and
the underlying resources.

IMPLEMENTING ORDER FULFILLMENT USING ATOMPUB

267

http://internal.restbucks.com/fulfillment/fulfilled/9876
http://internal.restbucks.com/fulfillment/fulfilled/9876
http://www.w3.org/2005/Atom%E2%80%B3
http://www.w3.org/2007/app%E2%80%B3
http://internal.restbucks.com/fulfillment/fulfilled/9876%E2%80%B3/

268

ﬁge "

" pos PUT." 7pOST

4 ‘ | 4
ffulfillment [fulfillment/fulfilled

R
9876 .- y 1234
[~
Link Collections and
members
9999

9999 Service and
underlying resources

Figure 8-4. Using multiple collections to implement the order fulfillment protocol

There’s nothing in AtomPub about moving members between collections in this fash-
ion. But that doesn’t mean we’ve departed from the protocol in any way. The solu-
tion still uses AtomPub to coordinate activities and constrain the mechanisms used to
transfer representations. We use link relations to identify the links a client can use to
forward the fulfillment protocol. The client then activates these links using AtomPub.
What’s important to the client is the relationship between the linked resource and the
current representation. That relationship is determined by a link relation value. By
matching its intention to its understanding of the link relation values on offer, a client
can determine which link to pursue next. This decision is based on the client’s current
understanding of its own particular roles, responsibilities, and goals, and the current
state of the fulfillment activity for which it’s responsible.

The server mints links with proprietary link relation values to guide clients down the
correct path. It interprets a client’s intentions by attaching different pieces of process-
ing logic to each URL It then activates this logic according to the URI chosen by the
client. The server knows which links to mint based on the current and possible next
states of an order resource. Taken together, these links form a set of legitimate transi-
tions through which clients can change the application state of the fulfillment process.

Implementing AtomPub in .NET

In this section, we show how Restbucks has implemented a simple version of the ful-
fillment service using Windows Communication Foundation (WCF). WCF provides a
service hosting runtime that takes care of some of the low-level plumbing, allowing us

CHAPTER 8: ATOM PUBLISHING PROTOCOL

to concentrate on the overall design of our service. Since we tend to work in a rapid,

test-driven manner, we’'ve decoupled our service implementation from the WCF run-
time. This enables us to deliver functionality quickly by specitying and testing specific
HTTP interactions without having to start and stop a service instance.

Because the fulfillment protocol is built on top of AtomPub, our solution needs to imple-
ment AtomPub collection and member protocol resources. We'll start by describing how
we’ve built these collections and members using some of the .NET Framework’s syndi-
cation classes. After that, we’ll look at how to add domain logic that instantiates these
classes in line with the fulfillment protocol. Next, we’ll look at the simple Test Driven
Development—centric framework we use to decouple our service implementation from
the WCF runtime. Last, we’ll examine the commands that we use to handle requests.

Implementing AtomPub Collections and Members

As we mentioned in Chapter 7, the .NET Framework’s System.ServiceModel.Syndication
namespace contains a number of classes that can be used to implement feeds and entries.
For example, by adding a list of SyndicationItem objects to a SyndicationFeed and then

outputting that feed using an Atom10FeedFormatter, we can easily generate an Atom feed.

AtomPub, as we’ve seen, adds several extension elements to Atom’s basic feed format.
Our fulfillment service uses a member’s <app:edited> element and its <app:control>
and <app:draft> extension elements to coordinate the fulfillment of coffee orders. In
addition, the fulfillment collection itself exposes an <app:collection> element that
advertises which media types a cashier can use to initiate the fulfillment process. To
use these elements in our solution, we must extend the framework classes.

The .NET Framework allows SyndicationFeed and SyndicationItem classes to be sub-
classed. To illustrate how we can implement AtomPub extensions by subclassing syndi-
cation classes, we’ll look in detail at how we extend the SyndicationItem class to provide
EditedDateTime and Draft properties corresponding to the <app:edited> and <app:draft>
extension elements. Example 8-19 shows the implementation of our Member class.

Example 8-19. Subclassing Syndicationltem to implement AtomPub extension elements

public class Member : SyndicationItem

{
private const string EditedElementName = "edited";
private const string ControlElementName = "control";
private const string DateTimeFormat = "yyyy-MM-ddTHH:mm:ssZ";

private static readonly DataContractSerializer ControlSerializer =
new DataContractSerializer(typeof (ControlExtension));

private ControlExtension control;
private DateTimeOffset? editedDateTime;

IMPLEMENTING ATOMPUB IN .NET

269

public Member()
{

control = new ControlExtension {Draft = DraftStatus.No};

}

public DraftStatus Draft

{
get { return control.Draft; }

set { control.Draft = value; }

}
public DateTimeOffset EditedDateTime
{
get
{
if (editedDateTime == null)
{
editedDateTime = LastUpdatedTime;
}
return editedDateTime.Value;
}
set { editedDateTime = value; }
}

protected override bool TryParseElement(XmlReader reader, string version)
{
if (reader.LocalName.Equals(ControlElementName) &&
reader.NamespaceURI.Equals(Namespaces.AtomPub))
{
control = (ControlExtension) ControlSerializer.ReadObject(reader);
return true;
}
if (reader.LocalName.Equals(EditedElementName) &&
reader.NamespaceURI.Equals(Namespaces.AtomPub))
{
editedDateTime = reader.ReadElementContentAsDateTime();
return true;
}

return base.TryParseElement(reader, version);

}

protected override void WriteElementExtensions(XmlWriter writer, string version)

{

writer.WriteStartElement(EditedElementName, Namespaces.AtomPub);
writer.WriteValue(FormatDateTime(EditedDateTime));
writer.WriteEndElement();

270 CHAPTER 8: ATOM PUBLISHING PROTOCOL

if (control != null)
{

ControlSerializer.WriteObject(writer, control);

}

base.WriteElementExtensions(writer, version);

}

private static string FormatDateTime(DateTimeOffset dateTime)

{

return dateTime.ToUniversalTime().ToString(DateTimeFormat);

}
}

Member has two properties, Draft and EditedDateTime, each of which is backed by a
member variable. The first of these, Draft, is of type ControlExtension, which is a sim-
ple serializable class, as shown in Example 8-20.

Example 8-20. ControlExtension represents the app:control and app:draft elements

[DataContract(Name = "control", Namespace = Namespaces.AtomPub)]
public class ControlExtension

{
[DataMember (Name = "draft")]
private string draft;

public DraftStatus Draft

{
get

{
if (string.IsNullOrEmpty(draft))

{
return DraftStatus.No;

}
return DraftStatus.Parse(draft);

}
set { draft = value.Value; }

}
}

To ensure that these elements are serialized and deserialized correctly, we override
SyndicationItem’s WriteElementExtensions(...) and TryParseElement(...) meth-
ods, respectively. When serializing a member, WriteElementExtensions(...) writes
the <app:edited> value to the supplied XML writer directly, and then uses a static
ControlSerializer to serialize a ControlExtension instance into <app:control> and
<app:draft> elements. When deserializing a member from an XML document,

IMPLEMENTING ATOMPUB IN .NET

271

TryParseElement(...) parses these same elements from the supplied XML reader and
instantiates the corresponding .NET classes.

NOTE

Member is initialized with a draft status of DraftStatus.No. This is to cater to
situations where the received XML representation of a member does not include
<app:control> and <app:draft> elements. As per the AtomPub specification,
a member without an <app:draft> element is assumed to be in a published (not
draft) state.

Our Collection class extends the SyndicationFeed class in a similar manner to Member.
Collection provides a CollectionExtension property that indicates which media types
a client can use to initiate the fulfillment process.

Using Collections and Members for Order Fulfillment

The fulfillment service uses AtomPub members to represent instances of fulfillment
(both outstanding and in-process), and AtomPub collections to represent lists of ful-
fillment instances. To ensure that collections and members are created with the cor-
rect property values according to our domain business rules, we create Fulfillment
and FulfillmentCollection classes. Fulfillment encapsulates a single member.

It controls access to this member according to our fulfillment business rules.
FulfillmentCollection does the same for an AtomPub collection.

When a cashier submits a new order to the service, the service creates a new Fulfillment
object. This fulfillment instance initializes a Member object with the Atom and AtomPub
metadata used throughout the fulfillment process, as shown in Example 8-21.

Example 8-21. The Fulfillment constructor initializes a Member object with the necessary
metadata

public Fulfillment(Guid id, DateTimeOffset createdDateTime,
SyndicationContent content, Uri baseUri, string author)
{
member = new Member
{
Title = SyndicationContent.CreatePlaintextContent("order"),
Id = new UniqueId(id).ToString(),
LastUpdatedTime = createdDateTime,
EditedDateTime = createdDateTime,
Draft = DraftStatus.Yes,
Content = content
s
member . Authors.Add(new SyndicationPerson {Name = author});
member. Links.Add(new EditLink(baseUri, id).ToSyndicationLink());
}

272 CHAPTER 8: ATOM PUBLISHING PROTOCOL

In a similar fashion, FulfillmentCollection initializes a Collection object with service-
specific metadata. After it has been constructed, a fulfillment collection can be popu-
lated with AtomPub members by calling its Add(...) method and supplying a list of
member objects. The implementation of Add(...) is shown in Example 8-22.

Example 8-22. FulfillmentCollection’s Add(...) method adds members to the underlying
collection

public void Add(IEnumerable<Fulfillment> newMembers)
{

foreach (Fulfillment member in newMembers)

{

member .DoAction(i => members.Add(i));

}

members.Sort((x, y) =>
((Member) y).EditedDateTime.CompareTo(
((Member) x).EditedDateTime));

if (members.Count > 0)

{
collection.LastUpdatedTime = ((Member) members.First()).EditedDateTime;

}
}

Add(...) can’t assume that the supplied members are in any particular order, so after it
has added the new members to the existing list, it sorts the entire list. This ensures that
the members are ordered correctly based on their app:edited values. Once the list has
been sorted, the collection’s LastUpdatedTime property is set to the EditedDateTime of
the first (i.e., the most recent) member.

To illustrate how Fulfillment implements some of our domain logic, let’s look at what
happens when a fulfillment instance is updated. When a cashier or barista PUTs a
revised member to the service, the corresponding fulfillment instance is retrieved from
a repository and updated via its Edit(...) method, as shown in Example 8-23.

Example 8-23. Updating a fulfilment instance

public Fulfillment Edit(Member editedMember, DateTimeOffset editedDateTime)

{
if (member.Draft.Equals(DraftStatus.No))

{

throw new InvalidOperationException("Fulfillment can no longer be edited.");

}

member.EditedDateTime = editedDateTime;
member.Draft = editedMember.Draft;
member.Content = editedMember.Content;

IMPLEMENTING ATOMPUB IN .NET

273

274

return this;

}

In the simplest version of our fulfillment protocol, a fulfillment instance can no longer
be modified once it has been claimed by a barista. At the AtomPub level, this means
that a member can no longer be edited once it has been published. If the member
belonging to an existing fulfillment instance has been published, Edit(...) throws an
exception; otherwise, it updates the fulfillment instance’s member properties with val-
ues from the member contained in the request.

Testing WCF REST Services

Before we look at how we’ve implemented the fulfillment service itself, we’ll exam-
ine the mechanism we’ve used to separate the service implementation from the WCF
runtime.

The WCF runtime acts as a service factory. This factory creates new service instances
based on a declarative (config-, code- or attribute-based) service specification. When a
WCEF service starts, the runtime assembles a channel stack based on this specification. The
channel stack takes care of a lot of common infrastructure tasks, including serializing,
encoding, and dispatching messages to .NET methods. Importantly, for web applications,
the channel stack also initializes an instance of WCF’s WebOperationContext helper class,
which provides access to the HTTP request and response context. This helper object is
available to service instances through the WebOperationContext.Current property.

With the HTTP context so tightly coupled to the WCF runtime, to test a service we must
first start a service instance and then send it requests using an HTTP client. This adds
unnecessary complexity to every test, as well as slowing down the execution of a large
suite of tests—both of which hamper development. Because access to the HTTP context is
critical to our service implementation, we decided to create our own wrapper around this
context so that we could isolate our code from any runtime dependencies.

With this approach, our service logic is written against a request interface that we
define, and populates a response object that we own. At runtime, we pass the service
an implementation of our request interface that delegates to the WCF request instance.
In our tests, however, we use a fake request. This allows us fine-grained control over
all parts of the request, including the URI, headers, and entity body. When the service
is finished handling a request, it creates a response object, which once again belongs to
our decoupling framework. At runtime, this response populates a WCF response con-
text; in our tests, it populates a fake context.

Example 8-24 shows our IRequest interface. Note that for requests containing an
entity body we’ve also created a generic interface that derives from this base interface.
This latter interface is parameterized with the deserialized type associated with the
entity body in the service implementation.

CHAPTER 8: ATOM PUBLISHING PROTOCOL

Example 8-24. |Request abstracts the runtime HTTP request context

public interface IRequest

{

}

Uri Uri { get; }
IRequestHeaders Headers { get; }

public interface IRequest<T> : IRequest

{

}

T EntityBody { get; }

At runtime, service instances are given an instance of WcfRequest, the implementation

of which is shown in Example 8-25.

Example 8-25. WcfRequest wraps the WCF request context at runtime

public class WcfRequest : IRequest

{

private readonly Uri uri;
private readonly IRequestHeaders headers;
private readonly string method;

public WcfRequest(OperationContext operationContext,
WebOperationContext webOperationContext)
{
uri = GetUri(operationContext);
headers = GetHeaders(webOperationContext);
method = GetMethod(webOperationContext);

}
public Uri Uri
{
get { return uri; }
}
public IRequestHeaders Headers
{
get { return headers; }
}
protected static Uri GetUri(OperationContext context)
{
return context.EndpointDispatcher.EndpointAddress.Uri;
}

IMPLEMENTING ATOMPUB IN .NET

275

protected static IRequestHeaders GetHeaders(WebOperationContext context)

{

return new WcfRequestHeaders(context.IncomingRequest.Headers);

}

protected static string GetMethod(WebOperationContext context)
{

return context.IncomingRequest.Method;

}

public class WcfRequest<T> : WcfRequest, IRequest<T>

{
private readonly T entityBody;

public WcfRequest(OperationContext operationContext,
WebOperationContext webOperationContext)
: base(operationContext, webOperationContext)

{
entityBody = GetEntityBody(operationContext);

}

public T EntityBody

{
get { return entityBody; }

}

private T GetEntityBody(OperationContext context)
{
var storedMessage = context.Extensions.Find<StoredMessage>();
return storedMessage.Message.GetBody<T>();
}
}

Most of the implementation of