The Problem with

Native JavaScript
APIs

http://www.allitebooks.org

JavaScript Starter Kit

The Tools You Need to Get Started with JavaScript

‘JavaScript is now a language

every developer should know.”
— Mike Loukides, Vice President of Content Strategy for O’Reilly Media

Lavireieg

JavaScript

Javascript:
The Good Parts

Buy any two titles Or, buy them all for
and get the 3rd Free. just $149 / 60% off.
Use discount code: OPC10 Use discount code: JSSKT

View the Full Starter Kit

http://www.allitebooks.org

The Problem with Native
JavaScript APIs

Nicholas C. Zakas

O’REILLY"

Beijing - Cambridge - Farnham - KéIn - Sebastopol - Tokyo
lsww.allitebooks.cond

http://www.allitebooks.org

The Problem with Native JavaScript APIs
by Nicholas C. Zakas

Copyright © 2012 O’Reilly Media. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol,
CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional
use. Online editions are also available for most titles (http://my.safaribookson
line.com). For more information, contact our corporate/institutional sales depart-
ment: 800-998-9938 or corporate@oreilly.com.

Editor: Mac Slocum Cover Designer: Karen Montgomery
Production Editor: Melanie Yarbrough Interior Designer: David Futato
lllustrator: Robert Romano

July 2012: First Edition.

Revision History for the First Edition:
2012-07-20 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449339951 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are regis-
tered trademarks of O’Reilly Media, Inc. The Problem with Native JavaScript APIs
and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and O’Reilly Media, Inc., was aware of a trademark claim, the designations have
been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher
and authors assume no responsibility for errors or omissions, or for damages re-
sulting from the use of the information contained herein.

ISBN: 978-1-449-33995-1
1344364955

vww allitebooks.conl

http://my.safaribooksonline.com/?portal=oreilly
http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449339951
http://www.allitebooks.org

Table of Contents

The Problem with Native JavaScript APIScccovviiiiiiiiiiininnenns 1
Issues with Native APIs
Case Study: matchMedia()
Facades and Polyfills
What to Do?

N L1 W N

[vww allitebooks.cond

http://www.allitebooks.org

vww allitebooks.conl

http://www.allitebooks.org

The Problem with Native
JavaScript APIs

The past couple of years have seen unprecedented changes in web browser
technology. For most of the history of the Web, change came at an agonizingly
slow pace, as minor features took years to stabilize and roll out across brows-
ers. Then came HTMLS. All of a sudden, browsers were being released faster.
New features were being implemented almost as soon as they had been spec’d.
Features inspired by popular JavaScript libraries became standardized as part
of the browser’s JavaScript APL

Shortly after that, there came a wave of proclamations. “You don’t even need
a JavaScript library anymore,” some said. “You can just use the native Java-
Script APIs to do the same thing.” Looking at the browser’s JavaScript land-
scape, it’s easy to see why people would say that. Retrieving document object
model (DOM) elements using CSS selectors is natively supported through
querySelector () and querySelectorAll(). This capability was heavily inspired
by jQuery, the library responsible for popularizing the use of CSS selectors to
retrieve and manipulate DOM elements. You can also retrieve elements simply
using a CSS class via the getElementsByClassName() method, which is based on
the method of the same name in the Prototype JavaScript library. Add to those
features native drag-and-drop, cross-domain Ajax, cross-iframe communica-
tion, client-side data storage, form validation, and a whole host of others, and
it seems like browsers now are doing natively what you previously always
needed a JavaScript library to do. Does that mean it’s time to give up our
libraries in favor of native APIs?

The answer to that question is not only “no,” but I would take it one step
further to say that you shouldn’t be using native JavaScript APIs directly at all.
To be clear, ’'m not talking about ECMAScript APIs, which represent the core
functionality of JavaScript. I'm talking about those APIs related to the browser
object model (BOM) and the DOM.

[vww allitebooks.cond

http://www.jquery.com
http://www.prototypejs.org/
http://en.wikipedia.org/wiki/ECMAScript
http://msdn.microsoft.com/en-us/library/ms952643.aspx
http://www.allitebooks.org

Issues with Native APls

Don’t get me wrong, I'm very glad to have all of these new capabilities in
browsers. Web browsers are becoming more powerful by the day, allowing for
better user experiences, including those that can match or exceed desktop
experiences. With all of this advancement, the amount of JavaScript that the
average developer writes is growing all the time. In the past year and a hallf,
the average number of JavaScript requests per page has increased from 11 to
15, and the average amount of JavaScript (compressed) has increased from
104kb to 171kb (source: HTTP Archive).

JS Transfer Size & JS Requests

200 30

180 171kB,
- 16168 | 20
158Kk 20
160 153K J_f-f"};ﬁ—
5 5 i5
» 12 13 . 13 13 1'__<_.__1_4_3_!5_85,,__:___.-—--..
140 - 11 133kB_~"
128k —
116k T19KE

110kB 110kB___——
104K ———

100 +— - -

L 1217 1731 31 E 4/30 &5 81 an1s 111 1215 21 415

B JS Transfer Size (kB
B .S Requests

JavaScript Transfer Size & JavaScript Requests - Alexa Top 1000.

Given this drastic increase in the amount of JavaScript per page, coupled with
the still growing number of browsers to support, web developers have a
tougher job than ever before. We are all writing far more JavaScript code now
than we were even five years ago. The more code you write, the harder main-
taining it becomes. Relying on native JavaScript APIs to get the job done puts
you at a severe disadvantage.

Browsers are written by humans just like web pages are written by humans.
All humans have one thing in common: They make mistakes. Browsers have
bugs just like web pages have bugs just like any other software has bugs. The
native APIs you’re relying on likely have bugs. And these bugs don’t necessarily
even mean the browser developer did something wrong; it could have been
due to a misunderstanding or misinterpretation of the specification. These
sorts of things happen all the time. Internet Explorer was famous for all manner
of JavaScript API bugs — for example, getElementById() also returning ele-
ments whose name attribute matched a given ID. These subtle browser differ-
ences lead to bugs.

2 | The Problem with Native JavaScript APIs

vww allitebooks.conl

http://httparchive.org/trends.php?s=Top1000&minlabel=Nov+15+2010&maxlabel=May+1+2012#bytesJS&reqJS
http://www.allitebooks.org

When you use native JavaScript APIs directly, you are placing a bet. That bet
is that all browsers implement the API exactly the same. You’re banking your
future development time on it. And if a browser implements that API incor-
rectly, what is your course of action? How quickly can you roll out a fix to your
users? You’ll start writing workarounds and browser detection, and all of a
sudden your code isn’t as straightforward to maintain. And sometimes the
differences in the browsers are so great that a simple workaround won’t do.

Case Study: matchMedia()

The matchMedia() method is defined in the CSS Object Model (CSSOM)
Views specification as a way to manage CSS media queries in JavaScript. The
method takes a single argument, CSS media query, and returns an object that
represents that query. That object can be used to determine if the query cur-
rently matches and to assign a listener that is fired when the query begins to
match and stops matching. Here’s some example code:

var result = window.matchMedia(" (orientation:portrait)");
result.addListener(function(match){
if (match.media == "(orientation:portrait)") {
if (match.matches) {
console.log("It matches now!");
} else {

console.log("It doesn't match anymore!");

s

This code monitors the browser to see when it’s being used in portrait mode.
The listener will fire both when the browser is put into portrait mode and when
it comes out of portrait mode. This is very handy to alter your JavaScript be-
havior based on what the browser window is doing.

You can use this method in Internet Explorer 10+ (as msMatchMedia()),
Chrome, Safari 5.1+, Firefox 9+, and Safari for iOS 5+. However, until very
recently, there were some bugs that caused this functionality to work very
differently across browsers.

Case Study: matchMedia() | 3

[vww allitebooks.cond

http://www.w3.org/TR/cssom-view/
http://www.w3.org/TR/cssom-view/
http://www.allitebooks.org

In Firefox, there was a bug when using matchMedia() in this way:

window.matchMedia("screen and (max-width:600px)").addListener
(function(media){

console.log("HERE: " + window.innerWidth);

})s

This pattern doesn’t keep the results of matchMedia() in a variable, instead
immediately attaching a listener. Firefox would effectively lose the listener
when this pattern was used. Sometimes the listener would fire, but most of the
time it would never fire, regardless of window resizing. The only workaround
was to ensure that the result of matchMedia() was being stored in a variable so
the reference was never destroyed. This bug has since been fixed in Firefox.

Around the same time, WebKit also had a bug in its implementation. This bug
was a little more tricky. Basically, the first call to matchMedia() would return
the correct value for matches, but that value would never be updated, and
listeners would never be fired unless there was CSS on the page that made use
of the same media query. So, in order for the code in the previous example to
work, you would need to have something like this in your CSS:

@media screen and (max-width:600px) {
.foo {}

}

The media query block in your CSS needed to have at least one rule, although
the rule could be empty. This was a huge amount of overhead to web devel-
opers in order to get this feature to work. This bug has also since been fixed.

The matchMedia() method is a perfect example of how native APIs in different
browsers can be developed according to one specification and still end up with
different issues. Most such issues are subtle and difficult to track down. In this
particular case, if you are using the native matchMedia() method, you would
likely have needed to pull it out and replace it with a facade that could add the
extra code in for you.

This case study also underscores an important point: If you do find yourself
using native APIs, help out the entire web development community by filing
bugs when you find incompatibilities and issues. Browser vendors are now
working faster than ever to fix compatibility issues. Both of the issues I found
with matchMedia() caused me to file bugs with Firefox and WebKit. Not sure
how to file bugs for a browser? Read John Resig’s excellent post on the subject.

4 | The Problem with Native JavaScript APIs

vww allitebooks.conl

https://bugzilla.mozilla.org/show_bug.cgi?id=716751
https://bugs.webkit.org/show_bug.cgi?id=75903
http://ejohn.org/blog/a-web-developers-responsibility/
http://www.allitebooks.org

Facades and Polyfills

A facade is a design pattern that creates a different interface for a feature. The
goal of a facade is to abstract away some underlying interface so that you don’t
need to access it directly. All of your interaction goes through the facade, which
allows you to manipulate the operation of the underlying functionality as nec-
essary. There’s nothing magical about a facade. If you’ve ever used jQuery or
YUI, then you’ve used facades.

Polyfills (aka shims) are a bit different. A polyfill tries to implement a native
API directly. Paul Irish attempted to create a polyfill for matchMedia(), defining
his own function with that name if one didn’t already exist. There are other
polyfills that you’re probably familiar with, such as Modernizr, that seek to fill
in other pieces of missing functionality in the browser.

When there’s a choice between facades and polyfills, T always choose the fa-
cade. The reason is that polyfills suffer from the same downsides as native
APIs. They represent yet another implementation of the same functionality.
The big problem for polyfills is determining which implementation to follow.
Taking the matchMedia() method as an example: which of the two strange bugs
will the polyfill mimic? Again, the goal is to have your application logic com-
pletely free of browser-specific code. Accessing matchMedia() directly from
your application logic assumes that it works the same everywhere, but in fact,
it would behave in at least three different ways: the Firefox way, the WebKit
way, and the polyfill way. Polyfills just don’t give you enough protection from
underlying browser differences.

On the other hand, using a facade allows you to completely abstract away the
browser differences from your application code. The facade doesn’t even need
the same method signature or objects; it just needs to provide the same func-
tionality. I wrote a matchMedia() facade as a YUI module so that I could use it
in my application. It’s quite different from the native version, which allowed
me to work around the various browser bugs to get a consistent experience.
Here’s how it would look in your application code:

YUI({
//Last Gallery Build of this module
gallery: 'gallery-2012.01.18-21-09"

}).use('gallery-media', function(Y) {

//detect current media state

console.log(Y.Media.matches("screen and (max-width:600px)"));

Facades and Polyfills | 5

http://en.wikipedia.org/wiki/Facade_pattern
http://yuilibrary.com
http://remysharp.com/2010/10/08/what-is-a-polyfill/
https://github.com/paulirish/matchMedia.js
http://modernizr.com/
http://yuilibrary.com/gallery/show/media

//subscribe to change in media state

Y.Media.on("screen and (max-width:600px)", function(result) {

console.log(result.media + " now " +
(result.matches ? "matches" : "doesn't match"));

1

1)

In some cases, a facade may end up implementing a feature that doesn’t exist
(as T did in this example), which makes it seem more like a polyfill. The dif-
ference is thata polyfill implements an already-existing interface while a facade
is implementing the functionality without the interface. The latter is much
easier to deal with in the long term since there aren’t synchronization issues.

Facades give you a big advantage in keeping your code maintainable and en-
suring your application logic doesn’t need to know which browser is being
used.

What to Do?

In my talk, “Scalable JavaScript Application Architecture” (video, slides), I
made the point that your application should never need to know which
browser it’s running in. Application logic should be written one way for all
browsers in order to keep the code maintainable. If you’re using native APIs
in your application logic, you can’t help but know what browser is being used
because you need to account for browser differences. That means your appli-
cation logic will always need to be updated as new browsers and new browser
versions are released. That’s a recipe for disaster.

You should absolutely be using a JavaScript library to abstract away browser
differences for you. That is the appropriate location in your JavaScript archi-
tecture for browser-specific code to exist. Libraries like jQuery, YUI, and Dojo
abstract away browser differences behind facades, which allow you to focus
on building your application logic in a browser-agnostic way. This gives you
a great advantage over using native APIs directly: Browser incompatibilities
can be changed within the library and the rest of your application logic doesn’t
have to change at all. What’s more, these popular JavaScript libraries are ac-
tively maintained and tested against new browsers, so upgrading is all you have
to do to get the latest fixes. In a world where JavaScript’s applications are

6 | The Problem with Native JavaScript APIs

http://www.youtube.com/watch?v=vXjVFPosQHw
http://www.slideshare.net/nzakas/scalable-javascript-application-architecture

getting more and more complex, using a JavaScript library gives you a big
advantage as your application continues to grow and evolve.

So, keep using your favorite JavaScript library. Don’t be tempted by the draw
of native APIs simply because you can avoid downloading an external library.
Using native APIs comes with a high cost of maintainability down the road.

Thanks to Paul Irish, Axel Rauschmayer, and Marco Rogers for reviewing an
early draft of this article.

WhattoDo? | 7

About the Author

Nicholas C. Zakas is a front-end consultant, author, and speaker. He worked
at Yahoo! for almost five years, where he was front-end tech lead for the Yahoo!
homepage and a contributor to the YUl library. He is the author of Professional
JavaScript for Web Developers (Wrox, 2012), Professional Ajax (Wrox, 2007),
and High Performance JavaScript (O’Reilly, 2010). Nicholas is a strong advo-
cate for development best practices including progressive enhancement, ac-
cessibility, performance, scalability, and maintainability. He blogs regularly at
www.nczonline.net and can be found on Twitter via @slicknet.

vww allitebooks.conl

http://www.allitebooks.org

	Table of Contents
	The Problem with Native JavaScript APIs
	Issues with Native APIs
	Case Study: matchMedia()
	Facades and Polyfills
	What to Do?

	Button 6:

