Pro
JavaScript for
Web Apps

BUILD POWERFUL AND PROFESSIONAL
JAVASCRIPT APPLICATIONS FOR ALL
DEVICES

Adam Freeman

Apress-

http://www.allitebooks.org

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks
and Contents at a Glance links to access them.

N

Apress®

[vww allitebooks.cond

http://www.allitebooks.org

iv

Contents at a Glance

About the AUhOrcccuimmmsmmmnmiensssssssas s an s sannans Xii
About the Technical ReVIEWETccuvssmissmsmmssmssmmsmis s ssssssssssssssnsns Xiil
Acknowledgmentsccucsmimmmsssmmsmmmssmss s —————— Xiv
Chapter 1: Getting Readyccccrurmmmsssmsmssssmmssssssmsssssssssnsssssssessassesssssssssnsesssnnssssnnss 1
Chapter 2: Getting Startedccccnismmimmmmmnmmmnme s —————————— 15
Chapter 3: Adding a View Model..........cccucmsmmsmmmsmmmsmmsmmsmmsmmsmssmssms s ssssssans 47
Chapter 4: Using URL ROULiNG ...ccosssnemmemnmmsnmssssssssnsnnnsssssssssssssnsnnnnnssssssssssnnnnnnsnsssssns 77
Chapter 5: Creating Offline Web ApPS....cccucmrmsemmmsssnsmsssssssssnsssssssssssssssssssssssnnsss 109
Chapter 6: Storing Data in the BrowSercccucsmsesmssesmssnssssssssasssssssssnsssassssnsnsns 137
Chapter 7: Creating Responsive Web APPS.....cccciumunssmmmmmssssnnnmmssssssssssssssssssssssnnns 169
Chapter 8: Creating Mobile Web APPSccccvussemmmmsssssnnmssssssssssssssssnssssssssssssssannnss 195
Chapter 9: Writing Better JavaScript.......cccccunnemmmmmmsssnsnmmssssssnmssssssssnssssssssssssssnnn 229
INA@X 1eeeriisssnnnnnssssnnnnnssssnnnnsssssnnsnssssnnnnnssssnnnnsssssnnnssssssnnnssssssnnnssssssnnnnsssssnnnnnsssnnnnnss 261

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 1

Getting Ready

Client-side web app development has always been the poor cousin to server-side coding. This started
because browsers and the devices they run on have been less capable than enterprise-class servers. To
provide any kind of serious web app functionality, the server had to do all of the heavy lifting for the
browsers, which was pretty dumb and simple by comparison.

Over the last few years, browsers have got smarter, more capable, and more consistent in how they
implement web technology and standards. What used to be a fight to create unique features has become
a battle to create the fastest and most compliant browser. The proliferation of smartphones and tablets
has created a huge market for high-quality web apps, and the gradual adoption of HTML5 provides web
application developers with a solid foundation for building rich and fluid client-side experiences.

Sadly, while the client-side technology has caught up with the server side, the techniques that
client-side programmers use still lag behind. The complexity of client-side web apps has reached a
tipping point where scale, elegance, and maintainability are essential and the days of hacking out a
quick solution have passed. In this book, I level the playing field, showing you how to step up your
client-side development to embrace the best techniques from the server-side world and combine them
with the latest HTML5 features.

About This Book

This is my 15th book about technology, and to mark this, Apress asked me to do something different:
share the tools, tricks, and techniques that I use to create complex client-side web apps. The result is
something that is more personal, informal, and eclectic than my regular work. I show you how to take
industrial-strength development concepts from server-side development and apply them to the
browser. By using these techniques, you can build web apps that are easier to write, are easier to
maintain, and offer better and richer functionality to your users.

Who Are You?

You are an experienced web developer whose projects have started to get out of control. The number of
bugs in your JavaScript code is increasing, and it takes longer to find and fix each one. You are targeting
an ever-wider range of device, including desktops, tablets, and smartphones, and keeping it all working
is getting tougher. Your working days are longer, but you have less time to spend on new features
because maintaining the code you already have sucks up a big chuck of your time.

The excitement that comes from your work has faded, and you have forgotten what it feels like to
have a really productive day of coding. You know something is wrong, you know that you are losing your
grip, and you know you need to find a different approach. If this sounds familiar, then you are my target
reader.

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 1 = GETTING READY

What Do You Need to Know Before You Read This Book?

This is an advanced book, and you need to be an experienced web programmer to understand the
content. You need a working knowledge of HTML, you need to know how to write JavaScript, and you
have used both to create client-side web apps. You will need to understand how a browser works, how
HTTP fits into the picture, and what Ajax requests are and why you should care about them.

What If You Don’t Have That Experience?

You may still get some benefit from this book, but you will have to figure out some of the basics on your
own. I have written a couple of other books you might find useful as primers for this one. If you are new
to HTML, then read The Definitive Guide to HTML5. This explains everything you need to create regular
web content and basic web apps. I explain how to use HTML markup and CSS3 (including the new
HTMLS5 elements) and how to use the DOM API and the HTMLS5 APIs (including a JavaScript primer if
you are new to the language). I make a lot of use of jQuery in this book. I provide all of the information
you need for each topic, but if you want a better grounding in how jQuery works and how it relates to the
DOM AP], then read Pro jQuery. Both of these books are published by Apress.

Books aside, you can learn a lot about HTML and the browser APIs by reading the specifications
published by the W3C at www.w3.o0rg. The specifications are authoritative but can be hard-going and are
not always that clear. A more readily accessible resource is the Mozilla Developer Network at
http://developer.mozilla.org. This is an excellent source of information about everything from HTML
to JavaScript. There is a general bias toward Firefox, but this isn’t usually a problem since the
mainstream browsers are generally compliant and consistent in the way they implement web standards.

Is This a Book About HTML5?

No, although I do talk about some of the new HTMLS5 JavaScript APIs. Most of this book is about
technique, most of which will work with HTML4 just as it does with HTML5. Some chapters are built
purely on HTMLS5 APIs (such as Chapters 5 and 6, which show you how to create web apps that work
offline and how to store data in the browser), but the other chapters are not tied to any particular version
of HTML. I don’t get into any detail about the new elements described in HTML5. This is a book about
programming, and the new elements don’t have much impact on JavaScript programming.

What Is the Structure of This Book?

In Chapter 2, I build a simple web app for a fictitious cheese retailer called CheeseLux, building on the
basic example I introduce later in this chapter. I follow some pretty standard approaches for creating
this web app and spend the rest of the book showing you how to apply industrial-strength techniques to
improve different aspects. I have tried to keep each chapter reasonably separate, but this is a reasonably
informal book, and I do introduce some concepts gradually over a number of chapters. Each chapter
builds on the techniques introduced in the chapters that go before it. You should read the book in
chapter order if you can. The following sections summarize the chapters in this book.

Chapter 1: Getting Ready

Aside from describing this book, I introduce the static HTML version of the CheeseLux example, which I
use throughout this book. I also list the software you will need if you want to re-create the examples on
your own or experiment with the listings that are included in the source code download that
accompanies this book (and which is available free from Apress.com).

[vww allitebooks.cond

http://www.w3.org
http://developer.mozilla.org
http://www.allitebooks.org

CHAPTER 1 = GETTING READY

Chapter 2: Getting Started

In this chapter, I use some basic techniques to create a more dynamic version of the CheeseLux
example, moving from a web site to a web app. I use this as an opportunity to introduce some of the
tools and concepts that you will need for the rest of the book and to provide a context so that I can show
better techniques in later chapters.

Chapter 3: Adding a View Model

The first advanced technique I describe is introducing a client-side view model into a web app. View
models are a key component in design patterns such as Model View Controller (MVC) and Model-View-
View Model. If you adopt only one technique from this book, then make it this one; it will have the
biggest impact on your development practices.

Chapter 4: Using URL Routing

URL routing allows you to scale up the navigation mechanisms in your web apps. You may not have
realized that you have a navigation problem, but when you see how URL routing can work on the client
side, you will see just how powerful and flexible a technique it can be.

Chapter 5: Creating Offline Web Apps

In this chapter, I show you how to use some of the new HTMLS5 JavaScript APIs to create web apps that
work even when the user is offline. This is a powerful technique that is increasingly important as
smartphones and tablets gain market penetration. The idea of an always-on network connection is
changing, and being able to accommodate offline working is essential for many web apps.

Chapter 6: Storing Data

Being able to run the web app offline isn’t much use unless you can also access stored data. In this
chapter, I show you the different HTML5 APIs that are available for storing different kinds of data,
ranging from simple name/value pairs to searchable hierarchies of persisted JavaScript objects.

Chapter 7: Creating Responsive Web Apps

There are entire categories of web-enabled devices that fall outside of the traditional desktop and mobile
taxonomy. One approach to dealing with the proliferation of different device types is to create web apps
that adapt dynamically to the capabilities of the device they are being used on, tailoring their
appearance, functionality, and interaction models as required. In this chapter, I show you how to detect
the capabilities you care about and respond to them.

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 1 = GETTING READY

Chapter 8: Creating Mobile Web Apps

An alternative to creating responsive web apps is to create a separate version that targets a specific range
of devices. In this chapter, I show you how to use jQuery Mobile to create such a web app and how to
incorporate advanced features such as URL routing into a mobile web app.

Chapter 9: Writing Better JavaScript

The last chapter in this book is about improving your code—not in terms of using JavaScript better but
in terms of creating easily maintained code modules that are easier to use in your own projects and
easier to share with others. I show you some convention-based approaches and introduce the
Asynchronous Module Definition, which solves some complex problems when external libraries have
dependencies on other functionality. I also show you how you can easily apply unit testing to your
client-side code, including how to unit test complex HTML transformations.

Do You Describe Design Patterns?

I don’t. This isn’t that kind of book. This is a book about getting results, and I don’t spend a lot of time
discussing the design patterns that underpin each technique I describe. If you are reading this book,
then you want to see those results and get the benefits they provide now. My advice is to solve your
immediate problems and then start researching the theory. A lot of good information is available about
design patterns and the associated theory. Wikipedia is a good place to start. Some readers may be
surprised at the idea of Wikipedia as a source of programming information, but it offers a wealth of well-
balanced and well-written content.

I love design patterns. I think they are important and useful and a valuable mechanism for
communicating general solutions to complex problems. Sadly, they are all too often used as a kind of
religion, where every aspect of a pattern must be applied exactly as specified and long and nasty
conflicts break out about the merits and applicability of competing patterns.

My advice is to consider design patterns as the foundation for developing techniques. Mix and
match different design patterns to suit your projects and cherry-pick the bits that solve the problems you
face. Don’tlet anyone dictate the way that you use patterns, and always remain focused on fixing real
problems in real projects for real users. The day you start arguing about solutions to theoretical
problems is the day you go over to the dark side. Be strong. Stay focused. Resist the pattern zealots.

Do You Talk About Graphic Design and Layouts?

No. This isn’t that kind of book, either. The layout of the example web apps is pretty simple. There are a
couple of reasons for this. The first is that this is a book about programming, and while I spend a lot of
time showing you techniques for managing markup dynamically, the actual visual effect is very much a
side effect.

The second reason is that I have the artistic abilities of a lemon. I don’t draw, I don’t paint, and I
don’t have a sideline business selling my oil-on-canvas work at a local gallery. In fact, as a child I was
excused from art lessons because of a total and absolute lack of talent. I am a pretty good programmer,
but my design skills suck. In this book, I stick to what I know, which is heavy-duty programming.

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 1 = GETTING READY

What If You Don’t Like the Techniques or Tools I Describe?

Then you adapt the techniques until you do like them and find alternative tools that work the way you
prefer. The critical information in this book is that you can apply heavy-duty server-side techniques to
create better web apps. The fine implementation detail isn’t important. My preferred tools and
techniques work well for me, and if you think about code in the way I do, they will work well for you too.
But if your mind works in a different way, change the bits of my approach that don’t fit, discard the bits
that don’t work, and use what’s left as a foundation for your own approaches. We’ll both come out ahead
as long as you end up with web apps that scale better, make your coding more enjoyable, and reduce the
burden of maintenance

Is There a Lot of Code in This Book?

Yes. In fact, there is so much code that I couldn’t fit it all in. Books have a page budget, which is set right
at the start of the project. The page budget affects the schedule for the book, the production cost, and
the final price that the book sells for. Sticking to the page budget is a big deal, and my editor gets
uncomfortable whenever he thinks I am going to run long (hi, Ben!). I had to do some editing to fit in all
of the code I wanted to include. So, when I introduce a new topic or make a lot of changes in one go, I'll
show you a complete HTML document or JavaScript code file, just like the one shown in Listing 1-1.

Listing 1-1. A Complete HTML Document

<!DOCTYPE html>
<html>
<head>
<title>Cheeselux</title>
<script src="jquery-1.7.1.js" type="text/javascript"></script>
<script src="jquery.mobile-1.0.1.js" type="text/javascript"></script>
<link rel="stylesheet" type="text/css" href="jquery.mobile-1.0.1.css"/>
<link rel="stylesheet" type="text/css" href="styles.mobile.css"/>
<script>
function setCookie(name, value, days) {
var date = new Date();
date.setTime(date.getTime()+(days * 24 * 60 * 60 *1000));
document.cookie = name + "="+ value
+ "; expires=" + date.toGMTString() +"; path=/";
}

$(document).bind("pageinit", function() {
$('button').click(function(e) {
var useMobile = e.target.id == "yes";
var useMobileValue = useMobile ? "mobile" : "desktop";
if (localStorage) {
localStorage["cheeseLuxMode"] = useMobileValue;
} else {
setCookie("cheeseLuxMode", useMobileValue, 30);

location.href = useMobile ? "mobile.html" : "example.html";
1;
1);

</script>

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 1 = GETTING READY

</head>
<body>
<div id="page1l" data-role="page" data-theme="a">

Would you like to use our mobile web app?

<div class="middle">
<button data-inline="true" data-theme="b" id="yes">Yes</button>
<button data-inline="true" id="no">No</button>
</div>
</div>
</body>
</html>

This listing is based on one from Chapter 8. The full listing gives you a wider context about how the
technique at hand fits into the web app world. When I am showing a small change or emphasizing a
particular region of code, then I'll show you a code fragment like the one in Listing 1-2.

Listing 1-2. A Code Fragment

<title>Cheeselux</title>

<script src="jquery-1.7.1.js" type="text/javascript"></script>

<script src="jquery.mobile-1.0.1.js" type="text/javascript"></script>
<link rel="stylesheet" type="text/css" href="jquery.mobile-1.0.1.css"/>
<link rel="stylesheet" type="text/css" href="styles.mobile.css"/>

<meta name="viewport" content="width=device-width, initial-scale=1"»
<script>

These fragments are cumulatively applied to the last full listing so that the fragment in Listing 1-2
shows a meta element being added to the head section of Listing 1-1. You don’t have to apply these
changes yourself if you want to experiment with the examples. Instead, you can download a complete
set of every code listing in this book from Apress.com. This free download also includes the server-side
code that I refer to later in this chapter and use throughout this book to create different aspects of the
web app.

What Software Do You Need for This Book?

You will need a few pieces of software if you want to re-create the examples in this book. There are lots of
choices for each type, and the ones that I use are all available without charge. I describe each in the
sections that follow along with my preferred tool in each category.

Getting the Source Code

You will need to download the source code that accompanies this book, which is available without
charge from Apress.com. The source code download contains all of the listings organized by chapter and
all of the supporting resources, such as images and style sheets. You will need the contents of this
download if you want to completely re-create any of the examples.

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 1 = GETTING READY

Getting an HTML Editor

Almost any editor can be used to work with HTML. I don’t rely on any special features in this book, so
use whatever editor suits you. I use Komodo Edit from Active State. It is free and simple and has pretty
good support for HTML, JavaScript, jQuery, and Node.js. I have no affiliation with Active State other than
as a happy user. You can get Komodo Edit from http://activestate.com, and there are versions for
Windows, Mac, and Linux.

Getting a Desktop Web Browser

Any modern mainstream desktop browser will run the examples in this book. I like Google Chrome; I
find it quick, I like the simple UI, and the developer tools are pretty good. Most of the screenshots in this
book are of Google Chrome, although there are times when I use Firefox because Chrome doesn’t
implement an HTMLS5 feature fully. (The support for HTML5 APIs is a bit mixed as I write this, but every
browser release improves the situation.)

Getting a Mobile Browser Emulator

In Chapters 7 and 8, I talk about targeting different kinds of devices. It can be slow and frustrating work
dealing with real devices during the early stages of development, so I use a mobile browser emulator to
get started and put the major functionality together. It isn’t until I have something functional and solid
that I start testing on real mobile devices.

I like the Opera Mobile emulator, which you can get for free from
www . opera.com/developer/tools/mobile; there are versions available for Windows, Mac, and Linux. The
emulator uses the same code base as the real and, widely used, Opera Mobile, and while there are some
quirks, the experience is pretty faithful to the original. I like this package because it lets me create
emulators for different screen sizes from small-screened smartphones right through to HD tablets. There
is support for emulating touch events and changing the orientation of the device. You can run the
examples in Chapters 7 and 8 in any browser, but part of the point of these chapters is to elegantly detect
mobile devices, and you'll get the best results by using an emulator, even if it isn’t the one for Opera.

Getting the JavaScript Libraries

I don’t believe in re-creating functionality that is available in a well-written, publically available
JavaScript library. To that end, there are a number of libraries that I use in each chapter. Some, such as
jQuery, jQuery UI, and jQuery Mobile, are well-known, but there are also some that provide some niche
features or cover a gap in browsers that don’t implement certain HTML5 APIs. I tell you how to obtain
each library as I introduce it, and they can all be found in the source code download that is available
from Apress.com. You don’t need to use the libraries that I like in order to use the techniques I discuss,
but you will need them to re-create the examples.

Getting a Web Server

The examples in this book are focused on the client-side web apps, but some techniques require certain
behaviors from the server. Most of the examples will work with content served up by any web server, but
you will need to use Node.js if you want to re-create every example in this book.

The reason that I chose Node.js is that it is written in JavaScript and is supported on a wide range of
platforms. This means that any reader of this book will be able to set up the server and read and
understand the code that drives the server.

[vww allitebooks.cond

http://activestate.com
http://www.opera.com/developer/tools/mobile
http://www.allitebooks.org

CHAPTER 1 = GETTING READY

The server-side code is included in the source code download from Apress.com, in a file called
server.js.] am not going to go into any detail about this code, and I am not even going to list it. It
doesn’t do anything special; it just serves up content and has a few special URLs that allow me to post
data from the example web app and get a tailored response. There are some other URLs that create
particular effects, such as adding a delay to some requests. Take a look at server. js if you want to see
what'’s there, but you don’t need to understand (or even look at) the server-side code to get the best from
this book.

You will, however, need to install and set up Node.js so that it is running on your network. I provide
instructions for getting up and running in the sections that follow.

Getting and Preparing Node.js

You can download Node.js from http://nodejs.org. Installation packages are available for Windows,
Mac, and Linux, and the source code is available if you want to compile for a different platform. The
instructions for setting up Node change often, and the best way to get started is by reading Felix
Geisendorfer’s beginner’s guide to Node, which you can find at http://nodeguide.com/beginner.html.

I rely on some third-party modules, so run the following command after you have installed the
Node.js package:

npm install node-static jqtpl

This command downloads and installs the node-static and jqtpl packages that I use to deliver
static and templated content in the examples. The command will generate output similar to this (but
you may see some additional warnings, which can be ignored):

npm http GET https://registry.npmjs.org/node-static
npm http GET https://registry.npmjs.org/jqtpl

npm http 200 https://registry.npmjs.org/jqtpl

npm http 200 https://registry.npmjs.org/node-static
node-static@®0.5.9 ./node_modules/node-static
jqtpl@1.0.9 ./node_modules/jqtpl

The source code download is organized by chapter. You will need to create a directory called
content in your Node.js directory and copy the chapter content into it. There isn’t much structure to the
content directory; to keep things simple, almost all of the resources and listings are in the same
directory.

Caution There are changes in the resource files between chapters, so make sure you clear your browser’s
history when you move between chapter content.

You will also need to copy the server. js file from the source code download into your Node.js
directory. This Node script is only for serving the examples in the book; don’t rely on it for any other
purpose, and certainly don’t use it to host real projects. Once you have everything in place, simply run
the following command:

http://nodejs.org
http://nodeguide.com/beginner.html
https://registry.npmjs.org/node-static
https://registry.npmjs.org/jqtpl
https://registry.npmjs.org/jqtpl
https://registry.npmjs.org/node-static
mailto:node-static@0.5.9
mailto:jqtpl@1.0.9

CHAPTER 1 = GETTING READY

node server.js

You will see the following output (or something very close to it):

The "sys" module is now called "util". It should have a similar interface.
Ready on port 80

If you are using Windows, you may be prompted to allow Node to communicate through the
Windows Firewall, which you should do. And with that, your server is up and running. The script listens
for requests on port 80. If you need to change this, then look for the following line in the server. js file:

http.createServer(handleRequest).listen(80);

Caution Node.js is very volatile, and new versions are released often. The version that | have used in this book
is 0.6.6, but it will have been superseded by the time you read this. | have stuck to the more stable Node APIs, but
you might need to make some minor tweaks to get everything working.

Introducing the CheeseLux Example

Most of the examples in this book are based on a web app for a fictional cheese retailer called
CheeseLux. I wanted to focus on the individual techniques in this book, so I have kept the web app as
simple as possible. To begin with, I have created a static web site that offers limited products to the user.
The entry point to the site is the example.html file. I use example.html for almost all of the listings in this
book. Listing 1-3 shows the initial static version of example.html.

CHAPTER 1 = GETTING READY

Listing 1-3. The Static example.html

<!DOCTYPE html>
<html>
<head>
<title>Cheeselux</title>
<link rel="stylesheet" type="text/css" href="styles.css"/>
</head>
<body>

<div id="logobar">

Gourmet European Cheese
</div>

<form action="/basket" method="post">

<div class="cheesegroup">
<div class="grouptitle">French Cheese</div>

<div class="groupcontent">
<label for="camembert" class="cheesename">Camembert ($18)</label>
<input name="camembert" value="0"/>

</div>

<div class="groupcontent">
<label for="tomme" class="cheesename">Tomme de Savoie ($19)</label>
<input name="tomme" value="0"/>

</div>

<div class="groupcontent">
<label for="morbier" class="cheesename">Morbier ($9)</label>
<input name="morbier" value="0"/>
</div>
</div>

<div id="buttonDiv">
<input type="submit" />
</div>
</form>
</body>
</html>

I have started with something basic. There are four pages in the static version of the web app,
although I tend to focus on the functionality of only the first two in later chapters. These are the product
listing and a basket showing a user’s selections (which is handled in the static version by basket.html).
You can see how example.html and basket.html are displayed in the browser in Figure 1-1.

10

O Cheeselux

€& 2 C O cheeselux.com/example.htm i §

CHAPTER 1 = GETTING READY

----- ! O Cheeselux

) cheeselux.com/basket

Camembert ($18)
Tomme de Savoie ($19) NN

Morbier ($9) Quantity

.
1

Subtotal
$36

59

$45

Figure 1-1. The example.html and basket.html files displayed in the browser

You don’t need to do anything with the static files, but if you look at the contents of basket.html, for
example, you will see that I use templates to generate the content based on the data submitted via the

HTML forms, as shown in Listing 1-4.
Listing 1-4. Using a Template to Generate Content

<html>
<head>
<title>Cheeselux</title>
<link rel="stylesheet" type="text/css" href="styles.css"/>
</head>
<body>
<div id="logobar">

Gourmet European Cheese
</div>
<form action="/shipping" method="post">
<div class="cheesegroup">
<div class="grouptitle">Your Basket</div>
<table class="basketTable" border=0>
<thead>
<tr><th>Cheese</th><th>Quantity</th><th>Subtotal</th></tr>

11

CHAPTER 1 = GETTING READY

12

<tr><td class="sumline" colspan=3></td></tr>
</thead>
<tbody>
{{each properties}}
{{if $value.propVal > 0}}
<tr>
<td>${$data.getProp($value.propName, "name")}</td>
<tdy${$value.propVal}</td>
<td>
$${$data.getSubtotal($value.propName, $value.propVal)}
</td>
</try
{{7if}}
{{/each}}
</tbody>
<tfoot>
<tr><td class="sumline" colspan=3></td></tr>
<tr><th colspan=2>Total:</th><td>$${$data.total}</td>
</tfoot>
</table>
<div class="cornerplaceholder"></div>
</div>
<div id="buttonDiv">
<input type="submit" />
</div>
{{each properties}}
<input type="hidden" name="${$value.propName}" value="${$value.propVal}"/>
{{/each}}
</form>
</body>
</html>

These templates are processed by the jqtpl module that you downloaded for Node.js. This module
is a Node-compliant version of a simple template library that is widely used with the jQuery library. I
don’t use this style of template in the client-side examples, but I wanted to explain the meaning of those
tags in case you were tempted to peek at the static content.

In the next chapter, I'll use some basic JavaScript techniques to create a more dynamic version of
this simple app and then spend the rest of the book showing you more advanced techniques you can use
to create better, more scalable, and more responsive web apps for your own projects.

Font Attribution

I use some custom web fonts throughout this book. The font files are included in the source code
download available from Apress.com. The fonts I use come from The League of Movable Type
(www . theleagueofmoveabletype.com) and from the Google Web Fonts service (www.google.com/webfonts).

http://www.theleagueofmoveabletype.com
http://www.google.com/webfonts

CHAPTER 1 = GETTING READY

Summary

In this chapter, I outlined the content and structure of this book and set out the software required if you
want to experiment with the examples in this books. I also introduced the CheeseLux example, which is
used throughout this book. In the next chapter, I'll use some basic techniques to enhance the static web
pages and introduce some of the core tools that I use throughout this book. From then on, I'll show you a
series of better, industrial-strength techniques that are the heart of this book.

13

CHAPTER 2

Getting Started

In this chapter, I am going to enhance the example web app I introduced in Chapter 1. These are the
entry-level techniques, and most of the rest of the book is dedicated to showing you different ways to
improve upon the result. That’s not to say that the examples in this chapter are not useful; they are
absolutely fine for simple web apps. But they are not sufficient for large and complex web apps, which is
why the chapters that follow explain how you can take key concepts from the world of server-side
development and apply them to your web apps.

This chapter also lets me set the foundation for some web app development principles that I will be
using throughout this book. First, I will be relying on JavaScript libraries whenever possible so as to
avoid creating code that someone else has produced and maintained. The library I will be making most
use of is jQuery in order to make working with the DOM API simpler and easier (I explain some jQuery
basics in the examples in this chapters). Second, I will be focusing on a single HTML document.

Upgrading the Submit Button

To get started, I am going to use JavaScript to replace the submit button from the baseline example in
Chapter 1. The browser creates this button from an input element whose type is submit, and I am going
to switch it out for something that is visually consistent with the rest of the document. More specifically,
I am going to use jQuery to replace the input element.

Preparing to Use jQuery

The DOM API is comprehensive but awkward to use—so awkward that there are a number of JavaScript
convenience libraries that wrap around the DOM API and make it easier to use. In my experience, the
best of these libraries is jQuery, which is easy to use and actively developed and supported. jQuery is also
the foundation for many other JavaScript libraries, some of which I'll be using later. jQuery is just a
wrapper around the DOM AP], and this allows the use of the underlying DOM objects and methods if it
is required.

You can download the jQuery library from jQuery.com. jQuery, like most JavaScript libraries, is
available in two versions. The uncompressed version contains the full source code and is useful for
development and debugging. The compressed version (also known as the minimized or minified
version) is much smaller but isn’t human-readable. The smaller size makes the minimized version ideal
for saving bandwidth when a web app is deployed into production. Bandwidth can be expensive for
popular web apps, and any savings is worth making.

Download the version you want and put it in your content directory, alongside example.html. I'll be
using the uncompressed version in this book, so I have downloaded a file called jquery-1.7.1.7s.

15

CHAPTER 2 = GETTING STARTED

Tip I'am using the uncompressed versions because they make debugging easier, which you may find useful as
you explore the examples in this book. For real web applications, you should switch to the minimized version prior
to deployment.

The file name includes the jQuery version, which is 1.7.1 as I write this. You import the jQuery
library into the example document using a script element, as shown in Listing 2-1. I have added the
script element in the head section of the document.

Listing 2-1. Importing jQuery into the Example Document

<head>
<title>Cheeselux</title>
<link rel="stylesheet" type="text/css" href="styles.css"/>
<script src="jquery-1.7.1.js" type="text/javascript"s</scripts
</head>

USING A CDN FOR JQUERY

An alternative to hosting the jQuery library on your own web servers is to use a public content distribution
network (CDN) that hosts jQuery. A CDN is a distributed network of servers that deliver files to the user
using the server that is closest to them. There are a couple of benefits to using a CDN. The first is a faster
experience to the user, because the jQuery library file is downloaded from the server closest to them,
rather than from your servers. Often the file won’t be required at all. jQuery is so popular that the user’s
browser may have already cached the library from another application that also uses jQuery. The second
benefit is that none of your precious and expensive bandwidth is spent delivering jQuery to the user.

When using a CDN, you must have confidence in the CDN operator. You want to be sure that the user
receives the file they are supposed to and that the service will always be available. Google and Microsoft
both provide CDN services for jQuery (and other popular JavaScript libraries) free of charge. Both
companies have solid experience of running highly available services and are unlikely to deliberately
tamper with the jQuery library. You can learn about the Microsoft service at
www.asp.net/ajaxlibrary/cdn.ashx and about the Google service at
http://code.google.com/apis/libraries/devguide.html.

The CDN approach isn't suitable for applications that are delivered to users within an intranet because it
causes all the browsers to go to the Internet to get the jQuery library, rather than access the local server,
which is generally closer and faster and has lower bandwidth costs.

So, let’s jump right in and use jQuery to hide the existing input element and add something else in
its place. Listing 2-2 shows how this is done.

16

http://www.asp.net/ajaxlibrary/cdn.ashx
http://code.google.com/apis/libraries/devguide.html

CHAPTER 2

Listing 2-2. Hiding the input Element and Adding Another Element

<!DOCTYPE html>
<html>
<head>
<title>Cheeselux</title>
<link rel="stylesheet" type="text/css" href="styles.css"/>
<script src="jquery-1.7.1.js" type="text/javascript"></script>
<scripty
$(document) .xeady(function() {
$('#buttonDiv input:submit’).hide();
$('Submit Ordexr</as').appendTo("#buttonDiv");
}
</script>
</head>
<body>
<div id="logobar">

Gourmet European Cheese
</div>

<form action="/basket" method="post">

<div class="cheesegroup">
<div class="grouptitle">French Cheese</div>

<div class="groupcontent">
<label for="camembert" class="cheesename">Camembert ($18)</label>
<input name="camembert" value="0"/>

</div>

<div class="groupcontent">
<label for="tomme" class="cheesename">Tomme de Savoie ($19)</label>
<input name="tomme" value="0"/>

</div>

<div class="groupcontent">
<label for="morbier" class="cheesename">Morbier ($9)</label>
<input name="morbier" value="0"/>
</div>
</div>

<div id="buttonDiv">
<input type="submit" />
</div>
</form>
</body>
</html>

GETTING STARTED

I'have added another script element to the document. This element contains inline code, rather
than loading an external JavaScript file. have done this because it makes it easier to show you the
changes I am making. Using inline code is not a jQuery requirement, and you can put your jQuery code

17

CHAPTER 2 = GETTING STARTED

18

in external files if you prefer. There is a lot going on in the four JavaScript statements in the script
element, so I'll break things down step-by-step in the following sections.

Understanding the Ready Event

At the heart of jQuery is the $ function, which is a convenient shorthand to begin using jQuery features.
The most common way to use jQuery is to treat the $ as a JavaScript function and pass a CSS selector or
one or more DOM objects as arguments. Using the $ function is very common with jQuery. I have used it
three times in four lines of code, for example.

The $ function returns a jQuery object on which you can call jQuery methods. The jQuery objectis a
wrapper around the elements you selected, and if you pass a CSS selector as the argument, the jQuery
object will contain all of the elements in the document that match the selector you specify.

Tip This is one of the main advantages of jQuery over the built-in DOM API: you can select and modify multiple
elements more easily. The most recent versions of the DOM API (including the one that is part of HTMLS5) provide
support for finding elements using selectors, but jQuery does it more concisely and elegantly.

The first time I use the $ function in the listing, I pass in the document object as the argument. The
document object is the root node of the element hierarchy in the DOM, and I have selected it with the $
function so that I can call the ready method, as highlighted in Listing 2-3.

Listing 2-3. Selecting the Document and Calling the ready Method

;;éript>
$(document) .ready(function() {
...other JavaScript statements...
)

</script>

Browsers execute JavaScript code as soon as they find the script elements in the document. This
gives us a problem when you want to manipulate the elements in the DOM, because your code is
executed before the browser has parsed the rest of the HTML document, discovered the elements that
you want to work with, and added objects to the DOM to represent them. At best your JavaScript code
doesn’t work, and at worst you cause an error when this happens. There are a number of ways to work
around this. The simplest solution is to place the script element at the end of the document so that the
browser doesn’t discover and execute your JavaScript code until the rest of the HTML has been
processed. A more elegant approach is to use the jQuery ready method, which is highlighted in the
listing just shown.

You pass a JavaScript function as the argument to the ready method, and jQuery will execute this
function once the browser has processed all of the elements in the document. Using the ready method
allows you to place your script elements anywhere in the document, safe in the knowledge that your
code won't be executed until the right moment.

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 2 = GETTING STARTED

Caution A common mistake is to forget to wrap the JavaScript statements to be executed in a function, which
causes an odd effect. If you pass a single statement to the ready method, then it will be executed as soon as the
browser processes the script element. If you pass multiple statements, then the browser will usually report a
JavaScript error.

The ready method creates a handler for the ready event. I'll show you more of the way that jQuery
supports events later in this chapter. The ready event is available only for the document object, which is
why you will see the statements highlighted in the listing in almost every web app that uses jQuery.

Selecting and Hiding the Input Element

Now that I have delayed the execution of the JavaScript code until the DOM is ready, I can turn to the
next step in my task, which is to hide the input element that submits the form. Listing 2-4 highlights the
statement from the example that does just this.

Listing 2-4. Selecting and Hiding the input Element

<script>
$(document) .ready(function() {
$('#buttonDiv input:submit').hide();
$('Submit Order').appendTo("#buttonDiv");
H

</script>

This is a classic two-part jQuery statement: first I select the elements I want to work with, and then I
apply a jQuery method to modify the selected elements. You may not recognize the selector I have used
because the :submit part is one of the selectors that jQuery defines in addition to those in the CSS
specification. Table 2-1 contains the most useful jQuery custom selectors.

19

CHAPTER 2 = GETTING STARTED

Caution The jQuery custom selectors can be extremely useful, but they have a performance impact. Wherever
possible, jQuery uses the native browser support for finding elements in the document, and this is usually pretty
quick. However, jQuery has to process the custom selectors differently, since the browser doesn’t know anything
about them, and this takes longer than the native approach. This performance difference doesn’t matter for most
web apps, but if performance is critical, you may want to stick with the standard CSS selectors.

Table 2-1. jQuery Custom Selectors

Selector Description

:button Selects all buttons

:checkbox Selects all check boxes

:contains(text) Selects elements that contain the specified text
teq(n) Selects the element at the nth index (zero-based)
reven Selects all the event-numbered elements (one-based)
:first Selects the first matched element

:has(selector) Selects elements that contain at least one element that matches the selector
:hidden Selects all hidden elements

:input Selects all input elements

:last Selects the last matched element

:odd Selects all the odd-numbered elements (one-based)
:password Selects all password elements

:radio Selects all radio element

:submit Selects all form submission elements

:visible Selects all visible elements

20

CHAPTER 2 = GETTING STARTED

In Listing 2-4, my selector matches any input element whose type is submit and that is a descendant
of the element whose id attribute is buttonDiv. I didn’t need to be quite so precise with the selector,
given that it is the only submit element in the document, but I wanted to demonstrate the jQuery
support for selectors. The $ function returns a jQuery object that contains the selected elements,
although there is only one element that matches the selector in this case.

Having selected the element, I then call the hide method, which changes the visibility of the selected
elements by setting the CSS display property to none. The input element is like this before the method
call:

<input type="submit">
and is transformed like this after the method call:

<input type="submit" style="display: none; ">

The browser won’t show elements whose display property is none and so the input element
becomes invisible.

Tip The counterpart to the hide method is show, which removes the display setting and returns the element
to its visible state. | demonstrate the show method later in this chapter.

Inserting the New Element

Next, I want to insert a new element into the document. Listing 2-5 highlights the statement in the
example that does this.

Listing 2-5. Adding a New element to the Document

<script>
$(document).ready(function() {
$('#buttonDiv input:submit').hide();
$('<a href=#ySubmit Order').appendTo("#buttonDiv");
H

</script>

In this statement, I have passed an HTML fragment string to the jQuery $ function. This causes
jQuery to parse the fragment and create a set of objects to represent the elements it contains. These
element objects are then returned to me in a jQuery object, just as if I had selected elements from the
document itself, except that the browser doesn’t yet know about these elements and they are not yet part
of the DOM.

There is only one element in the HTML fragment in this listing, so the jQuery object contains an a
element. To add this element to the DOM, I call the appendTo method on the jQuery object, passing in a
CSS selector, which tells jQuery where in the document I want the element to be inserted.

The appendTo method inserts my new element as the last child of the elements matched by the
selector. In this case, I specified the buttonDiv element, which means that the elements in my HTML
fragment are inserted alongside the hidden input element, like this:

21

CHAPTER 2 = GETTING STARTED

22

<div id="buttonDiv">
<input type="submit" style="display: none; ">
Submit Order</a»

</div>

Tip If the selector that | passed to the appendTo method had matched multiple elements, then jQuery would
duplicate the elements from the HTML fragment and insert a copy as the last child of every matched element.

jQuery defines a number of methods that you can use to insert child elements into the document,
and the most useful of these are described in Table 2-2. When you append elements, they become the
last children of their parent element. When you prepend elements, they become the first children of their
parents. (I'll explain why there are two append and two prepend methods later in this chapter.)

Table 2-2. jQuery Methods for Inserting Elements in the Document

Method Description

append (HTML) Inserts the specified elements as the last children of all the elements
append(jQuery) in the DOM

prepend (HTML) Inserts the specified elements as the first children of all the elements
prepend(jQuery) in the DOM

appendTo(HTML) Inserts the elements in the jQuery object as the last children of the
appendTo(jQuery) elements specified by the argument

prependTo(HTML) Inserts the elements in the jQuery object as the first children of the
prependTo(jQuery) elements specified by the argument

Applying a CSS Class

In the previous example, I inserted an a element, but I did not assign it to a CSS class. Listing 2-6 shows
how I can correct this omission by making a call to the addClass method.

CHAPTER 2 = GETTING STARTED

Listing 2-6. Chaining jQuery Method Calls

<script>
$(document).ready(function() {
$('#buttonDiv input:submit').hide();
$('Submit Order").appendTo("#buttonDiv").addClass("button");
H

</script>

Notice how I have simply added the call to the addClass method to the end of the statement. This is
known as method chaining, and a library that supports method chaining is said to have a fluent APIL

Most jQuery methods return the same jQuery object on which the method was called. In the
example, I create the jQuery object by passing an HTML fragment to the $ function. This produces a
jQuery object that contains an a element. The appendTo method inserts the element into the document
and returns a jQuery object that contains the same a element as its result. This allows me to make further
method calls, such as the one to addClass. Fluent APIs can take a while to get used to, but they enable
concise and expressive code and reduce duplication.

The addClass method adds the class specified by the argument to the selected elements, like this:

<div id="buttonDiv">
<input type="submit" style="display: none;
Submit Order
</div>

>

The a.button class is defined in styles.css and brings the appearance of the a element into line
with the rest of the document.

UNDERSTANDING METHOD PAIRS AND METHOD CHAINING

If you look at the methods described in Table 2-2, you will see that you can append or prepend elements in
two ways. The elements you are inserting either can be contained in the jQuery object on which you call a
method or can be in the method argument. jQuery provides different methods so you can select which
elements are contained in the jQuery object for method chaining. In my example, | used the appendTo
method, which means | can arrange things so that the jQuery object contains the element parsed from the
HTML fragment, allowing me to chain the call to the addClass method and have the class applied to the a
element.

The append method reverses the relationship between the parent and child elements, like this:
$('#buttonDiv').append('Submit Order').addClass("button");

In this statement, | select the parent element and provide the HTML fragment as the method argument.
The append method returns a jQuery object that contains the buttonDiv element, so the addClass takes
effect on the parent div element rather than the new a element.

23

CHAPTER 2 = GETTING STARTED

24

To recap, I have hidden the original input element, added an a element, and, finally, assigned the a
element to the button class. You can see the result in Figure 2-1.

- =
=2]

OChee:eLm + [e iy

O Cheeselux

=) cheeselux.com/example.htr
) cheeselux.com/exarn

(amembert ($18)

Camembert ($18)

Tomme de Savoie ($19)

Tomme de Savoie (519)
Morbier ($9)

Morbier (39)

Figure 2-1. Replacing the standard form submit button

With four lines of code (only two of which manipulate the DOM), I have upgraded the standard
submit button to something consistent with the rest of the web app. As I said at the start of this chapter,
a little code can lead to significant enhancements.

Responding to Events

I am not quite done with the new a element. The browser knows that an input element whose type
attribute is submit should submit the HTML form to the server, and it performs this action automatically
when the button is clicked.

The a element that I added to the DOM looks like a button, but the browser doesn’t know what the
element is for and so doesn’t apply the same automatic action. I have to add some JavaScript code that
will complete the effect and make the a element behave like a button and not just look like one.

You do this by responding to events. An event is a message that is sent by the browser when the state
of an element changes, for example, when the user clicks the element or moves the mouse over it. You
tell the browser which events you are interesting in and provide JavaScript callback functions that are
executed when event occurs. An event is said to have been triggered when it is sent by the browser, and
the callback functions are responsible for handling the event. In the following sections, I'll show you
how to handle events to complete the functionality of the substitute button.

CHAPTER 2 = GETTING STARTED

Handling the Click Event

The most important for this example is click, which is triggered when the user presses and releases the
mouse button (in other words, when the user clicks) an element. For this example, I want to handle the
click event by submitting the HTML form to the server. The DOM API provides support for dealing with
events, but jQuery provides a more elegant alternative, which you can see in Listing 2-7.

Listing 2-7. Handling the click Event

<!DOCTYPE html>
<html>
<head>
<title>Cheeselux</title>
<link rel="stylesheet" type="text/css" href="styles.css"/>
<script src="jquery-1.7.1.js" type="text/javascript"></script>
<script>
$(document).ready(function() {
$("#buttonDiv input:submit').hide();
$('Submit Order').appendTo("#buttonDiv")
.addClass("button").click(function() {
$('form").submit();
)

1)

</script>
</head>
<body>
<div id="logobar">

Gourmet European Cheese
</div>

<form action="/basket" method="post">

<div class="cheesegroup">
<div class="grouptitle">French Cheese</div>

<div class="groupcontent">
<label for="camembert" class="cheesename">Camembert ($18)</label>
<input name="camembert" value="0"/>

</div>

<div class="groupcontent">
<label for="tomme" class="cheesename">Tomme de Savoie ($19)</label>
<input name="tomme" value="0"/>

</div>

<div class="groupcontent">
<label for="morbier" class="cheesename">Morbier ($9)</label>
<input name="morbier" value="0"/>
</div>
</div>

25

CHAPTER 2 = GETTING STARTED

26

<div id="buttonDiv">
<input type="submit" />
</div>
</form>
</body>
</html>

jQuery provides some helpful methods that make handling common events simple. These events
are named after the event; so, the click method registers the callback function passed as the method
argument as a handler for the click event. I have chained the call to the click event to the other
methods that create and format the a element. To submit the form, I select the form element by type and
call the submit method. That’s all there is to it. | now have the basic functionality of the button in place.
Not only does it have the same visual style as the rest of the web app, but clicking the button will submit
the form to the server, just as the original button did.

Handling Mouse Hover Events

There are two other events that I want to handle to complete the button functionality; they are
mouseenter and mouseleave. The mouseenter event is triggered when the mouse pointer is moved over the
element, and the mouseleave event is triggered the mouse leaves the element.

I want to handle these events to give the user a visual cue that the button can be clicked, and I do
this by changing the style of the button when the mouse is over the element. The easiest way to handle
these events is to use the jQuery hover method, as shown in Listing 2-8.

Listing 2-8. Using the jQuery hover Method

<script>
$(document).ready(function() {
$('#buttonDiv input:submit').hide();
$('Submit Order').appendTo("#buttonDiv")
.addClass("button").click(function() {
$('form').submit();

H
<hover(
function(){
$('#buttonDiv a').addClass("buttonHover");
}» function() {
$('#buttonDiv a').removeClass("buttonHover");
b
H
</script>

The hover method takes two functions as arguments. The first function is executed when the
mouseenter event is triggered, and the second function is triggered in response to the mouseleave event.
In this example, I have used these functions to add and remove the buttonHover class from the a
element. This class changes the value of the CSS background-color property to highlight the button when
the mouse is positioned above the element. You can see the effect in Figure 2-2.

CHAPTER 2 = GETTING STARTED

Tomme de Savoie ($19)

Morbier ($9)

S

Figure 2-2. Using events to apply a class to an element

Using the Event Object

The two functions that I passed as arguments to the hover method in the previous example are largely
the same. I can collapse these two functions into a single handler that can process both events, as shown
in Listing 2-9.

Listing 2-9. Handling Multiple Events in a Single Handler Function

<script>
$(document).ready(function() {
$('#buttonDiv input:submit').hide();
$('Submit Order').appendTo("#buttonDiv")
.addClass("button").click(function() {
$("form").submit();
}) -hover (function(e){
var elem = $('#buttonDiv a')

if (e.type == "mouseenter") {
elem.addClass("buttonHover");
} else {
elem.removeClass("buttonHover");
h
1)
</script>

The callback function in this example takes an argument, e. This argument is an Event object
provided by the browser to give you information about the event you are handling. I have used the
Event.type property to differentiate between the types of events that my function expects. The type
property returns a string that contains the event name. If the event name is mouseenter, then I call the
addClass method. If not, I call the removeClass method that has the effect of removing the specified class
from the class attribute of the elements in the jQuery object, the opposite effect of the addClass method.

27

CHAPTER 2 = GETTING STARTED

Dealing with Default Actions

To make life easier for the programmer, the browser performs some actions automatically when certain
events are triggered for specific element types. These are known as default actions, and they mean you
don’t have to create event handlers for every single event and element in an HTML document. For
example, the browser will navigate to the URL specified by the href attribute of an a element in response
to the click event. This is the basis for navigation in a web page.

I cheated a little by setting the href attribute to #. This is a common technique when defining
elements whose actions are going to be managed by JavaScript because the browser won’t navigate away
from the current document when the default action is performed. In other words, I don’t have to worry
about the default action because it doesn’t really do anything that the user will notice.

Default actions can be more important when you need to change the behavior of the element and
you can’t do little tricks like using # as a URL. Listing 2-10 provides a demonstration, where I have
changed the href attribute for the a element to a real web page. I have used the attr method to set the
href attribute of the a element to http://apress.com. With this modification, clicking the element
doesn’t submit the form anymore; it navigates to the Apress website.

Listing 2-10. Managing Default Actions

<script>
$(document) .ready(function() {
$('#buttonDiv input:submit').hide();
$('Submit Order")
.appendTo("#buttonDiv")
.attr("href", "http://apress.com™)
.addClass("button").click(function() {
$('form").submit();
}).hover(function(e){
var elem = $('#buttonDiv a')

if (e.type == "mouseenter") {
elem.addClass("buttonHover");
} else {
elem.removeClass("buttonHover");
b
1))
</script>

To fix this, a call to the preventDefault method on the Event object passed to the event handler
function is required. This disables the default action for the event, meaning that only the code in the
event handler function will be used. You can see the use of this method in Listing 2-11.

[vww allitebooks.cond

http://apress.com
http://apress.com
http://www.allitebooks.org

CHAPTER 2 = GETTING STARTED

Listing 2-11. Preventing the Default Action

<script>
$(document).ready(function() {
$('#buttonDiv input:submit').hide();
$('Submit Order")
.appendTo("#buttonDiv")
.attr("href", "http://apress.com")
.addClass("button").click(function(e) {
$('form').submit();
e.preventDefault();
}) .hover(function(e){
var elem = $('#buttonDiv a')

if (e.type == "mouseenter") {
elem.addClass("buttonHover");
} else {
elem.removeClass("buttonHover");
b
H
</script>

There is no default action for the mouseenter and mouseleave events on an a element, so in this
listing, I need only to call the preventDefault method when handling the click event. When I click the
element now, the form is submitted, and the href attribute value doesn’t have any effect.

Adding Dynamic Basket Data

You have seen how you can improve a web application simply by adding and modifying elements and
handling events. In this section, I go one step further to demonstrate how you can use these simple
techniques to create a more responsive version of the cheese shop by incorporating the information
displayed in the basket phase alongside the product selection. I have called this a dynamicbasket
because I will be updating the information shown to users when they change the quantities of individual
cheese products, rather than the static basket, which is shown when users submit their selections using
the unenhanced version of this web app.

Adding the Basket Elements

The first step is to add the additional elements I need to the document. I could add the elements using
HTML fragments and the appendTo method, but for variety I am going to use another technique, known
as latent content. Latent content refers to HTML elements that are in the document but are hidden using
CSS and are revealed and managed using JavaScript. Those users who don’t have JavaScript enabled
won't see the elements and will get the basic functionality, but once I reveal the elements and set up my
event handling, those users with JavaScript will get a richer and more polished experience. Listing 2-12
shows the addition of the latent content to the HTML document.

29

http://apress.com

CHAPTER 2 = GETTING STARTED

Listing 2-12. Adding Hidden Elements to the HTML Document

<!DOCTYPE html>
<html>
<head>
<title>Cheeselux</title>
<link rel="stylesheet" type="text/css" href="styles.css"/>
<script src="jquery-1.7.1.js" type="text/javascript"></script>
<script>
$(document).ready(function() {
$('#buttonDiv input:submit').hide();
$('Submit Order")
.appendTo("#buttonDiv").addClass("button").click(function(e) {
$('form').submit();
e.preventDefault();
}) .hover(function(e){
var elem = $('#buttonDiv a')

if (e.type == "mouseenter") {
elem.addClass("buttonHover");
} else {
elem.removeClass("buttonHover");
}
b
1))
</script>
</head>
<body>

<div id="logobar">

Gourmet European Cheese
</div>

<form action="/basket" method="post">

<div class="cheesegroup">
<div class="grouptitle">French Cheese</div>

<div class="groupcontent">
<label for="camembert" class="cheesename">Camembert ($18)</label>
<input name="camembert" value="0"/>
($<span»0)

</div>

<div class="groupcontent">
<label for="tomme" class="cheesename">Tomme de Savoie ($19)</label>
<input name="tomme" value="0"/>
<span class="subtotal latent"»($<span»0</spans)

</div>

<div class="groupcontent">
<label for="morbier" class="cheesename">Morbier ($9)</label>

30

CHAPTER 2 = GETTING STARTED

<input name="morbier" value="0"/>
<span class="subtotal latent"»($0</spany)</spany
</div>

<div class="sumline latent"></div»
<div class="groupcontent latent"s
<label class="cheesename"»Total:</label>
<input class="placeholder" name="spacer" value="0"/>
<span class="subtotal latent" id="total"»$0
</div»
</div>

<div id="buttonDiv">
<input type="submit" />
</div>
</formy>
</body>
</html>

I have highlighted the additional elements in the listing. They are all assigned to the latent class,
which has the following definition in the styles.css file:

.latent {
display: none;

I showed you earlier in the chapter that the jQuery hide method sets the CSS display property to
none to hide elements from the user, and I have followed the same approach when setting up this class.
The elements are in the document but not visible to the user.

Showing the Latent Content

Now that the latent elements are in place, I can work with them using jQuery. The first step is to reveal
them to the user. Since I am manipulating the elements using JavaScript, they will be revealed only to
users who have JavaScript enabled. Listing 2-13 shows the addition to the script element.

Listing 2-13. Revealing the Latent Content

<script>
$(document).ready(function() {
$('#buttonDiv input:submit').hide();
$('Submit Order")
.appendTo("#buttonDiv").addClass("button").click(function(e) {
$('form').submit();
e.preventDefault();
}) .hover (function(e){
var elem = $('#buttonDiv a')
if (e.type == "mouseenter") {
elem.addClass("buttonHover");

31

CHAPTER 2 = GETTING STARTED

32

} else {
elem.removeClass("buttonHover");
}
D;
$('.latent').shou();
b
</script>

The highlighted statement selects all of the elements that are members of the latent class and then
calls the show method. The show method adds a style attribute to each selected element that sets the
display property to inline, which has the effect of revealing the elements. The elements are still
members of the latent class, but values defined in a style attribute override those that are defined in a
style element, and so the elements become visible.

Responding to User Input

To create a dynamic basket, I want to be able to display subtotals for each item and an overall total
whenever the user changes a quantity for a product. I am going to handle two events to get the effect I
want. The first event is change, which is triggered when the user enters a new value and then moves the
focus to another element. The second event is keyup, which is triggered when the user releases a key,
having previously pressed it. The combination of these two events means I can be confident that I will be
able to respond smoothly to new values. jQuery defines change and keyup methods that I could use in the
same way [used the click method earlier, but since I want to handle both events in the same way, [am
going to use the bind method instead, as shown in Listing 2-14.

Listing 2-14. Binding to the change and keyup Events
<script>
var priceData = {
camembert: 18,
tomme: 19,

morbier: 9

}

$(document).ready(function() {
$('#buttonDiv input:submit').hide();
$('Submit Order")
.appendTo("#buttonDiv").addClass("button").click(function(e) {
$('form').submit();
e.preventDefault();
}).hover(function(e){
var elem = $('#buttonDiv a')

if (e.type == "mouseenter") {
elem.addClass("buttonHover");
} else {

elem.removeClass("buttonHover");

CHAPTER 2 = GETTING STARTED

}
1)

$("'.latent").show();

$('input’).bind("change keyup", function() {
var subtotal = $(this).val() * priceData[this.name];
$(this).siblings("span").children("span").text(subtotal)
h)
b

</script>

The advantage of the bind method is that it lets me handle multiple events using the same
anonymous JavaScript function. To do this, I have selected the input elements in the document to get a
jQuery object and called the bind method on it. The first argument to the bind method is a string
containing the names of the events to handle, where event names are separated by the space character.
The second argument is the function that will handle the events when they are triggered. There are only
two statements in the event handler function, but they are worth unpacking because they contain an
interesting mix of jQuery, the DOM API, and pure JavaScript.

Tip Handling two events like this means that my callback function may end up being invoked when it doesn’t
really need to be. For example, if the user presses the Tab key, the focus will change to the next element, and both
the change and keyup events will be triggered, even though the value in the input element hasn’t changed. | tend
toward accepting this duplication as the cost of ensuring a fluid user experience. I'd rather my function was
executed more often than really needed and not miss any user interaction.

Calculating the Subtotal

The first statement in the function is responsible for calculating the subtotal for the cheese product
whose input value has changed. Here is the statement:

var subtotal = $(this).val() * priceData[this.name];

When handling an event with jQuery, you can use the variable called this to refer to the element
that triggered the event. The this variable is an HTMLElement object, which is what the DOM API uses to
represent elements in the document. There are a core set of properties defined by the HTMLELement, the
most important of which are described in Table 2-3.

33

CHAPTER 2 = GETTING STARTED

34

Table 2-3. Basic HTMLElement Properties

Property Description

className Gets or sets the list of classes that the element belongs to
id Gets or sets the value of the id attribute

tagName Returns the tag name (indicating the element type)

The core properties are supplemented to accommodate the unique characteristics of different
element types. An example of this is the name property, which returns the value of the name attribute on
those elements that support it, including the input element. I have used this property on the this
variable to get the name of the input element so that I can, in turn, use it to get a value from the
priceData object that I added to the script:

var subtotal = $(this).val() * priceData[this.name];

The priceData object is a simple JavaScript object that has one property corresponding to each kind
of cheese and where the value of each property is the price for the cheese.
The this variable can also be used to create jQuery objects, like this:

var subtotal = $(this).val() * priceData[this.name];

By passing an HTMLE1ement object as the argument to the jQuery $ function, I have created a jQuery
object that acts just as though I had selected the element using a CSS selector. This allows me to easily
apply jQuery methods to objects from the DOM API. In this statement, I call the val method, which
returns the value of the value attribute of the first element in the jQuery object.

Tip There is only one element in my jQuery object, but jQuery methods are designed to work with multiple
elements. When you use a method like val to read some value from the element, you get the value from the first
element in the selection, but when you use the same method to set the value (by passing the value as an
argument), all of the selected elements are modified.

Using the this variable, I have been able to get the value of the input element that triggered the
event and the price for the product associated with it. I then multiply the price and the quantity together
to determine the subtotal, which I assign to a local variable called, simply enough, subtotal.

Displaying the Subtotal

The second statement in the handler function is responsible for displaying the subtotal to the user. This
statement also operates in two parts. The first part selects the element that will be used to display the
value:

$(this).siblings("span").children("span").text(subtotal)

CHAPTER 2 = GETTING STARTED

Once again, I create a jQuery object using the this variable. I make a call to the siblings method,
which returns a jQuery object that contains any sibling to the elements in the original jQuery object that
matches the specified CSS selector. This method returns a jQuery object that contains the latent span
element next to the input element that triggered the event.

I chain a call to the children method, which returns a jQuery object that contains any children of the
element in the previous jQuery object that match the specified selector. I end up with a jQuery object
that contains the nested span element. I could have simplified the selectors in this example, but I wanted
to demonstrate how jQuery supports navigation through the elements in a document and how the
contents of the jQuery object in a chain of method calls changes. These changes are described in
Table 2-4.

Table 2-4. Basic HTMLElement Properties

Method Call Contents of jQuery Object

$(this) The input element that triggered the event

.siblings("span") The span element that is a sibling to the input element that triggered the
event

.children("span") The span element that is a child of the span element that is a sibling to the

input element that triggered the event

By combining method calls like this, I am able to navigate through the element hierarchy to create a
jQuery object that contains precisely the element or elements I want to work with, in this case, the child
of a sibling to whichever element triggered an event.

The second part of the statement is a call to the text method, which sets the text content of the
elements in a jOuery object. In this case, the text is the value of the subtotal variable:

$(this).siblings("span").children("span").text(subtotal)

The net result is that the subtotal for a cheese is updated as soon as a user changes the quantity
required.

Calculating the Overall Total
To complete the basket, I need to generate an overall total each time a subtotal changes. I have defined a

new function in the script element and added a call to it in the event handler function for the input
elements. Listing 2-15 shows the additions.

35

CHAPTER 2 = GETTING STARTED

Listing 2-15. Calculating the Overall Total

<script>
var priceData = {
camembert: 18,
tomme: 19,
morbier: 9

}

$(document).ready(function() {
$('#buttonDiv input:submit').hide();
$('Submit Order")
.appendTo("#buttonDiv").addClass("button").click(function(e) {
$('form').submit();
e.preventDefault();
}) .hover(function(e){
var elem = $('#buttonDiv a')
if (e.type == "mouseenter") {
elem.addClass("buttonHover");
} else {
elem.removeClass("buttonHover");

H
$('.latent").show();

$("input').bind("change keyup", function() {
var subtotal = $(this).val() * priceData[this.name];
$(this).siblings("span").children("span").text(subtotal)
calculateTotal();
b
b

function calculateTotal() {
var total = 0;
$('span.subtotal span').not('#total’).each(function(index, elem) {
total += Number($(elem).text());

%2'#tota1').text("$" + total);
}

</script>

The first statement in the calculateTotal function defines a local variable and initializes to zero. I
use this variable to sum the individual subtotals. The next statement is the most interesting one in this
function. The first part of the statement selects a set of elements:

36

CHAPTER 2 = GETTING STARTED

$('span.subtotal span').not('#total’).each(function(index, elem) {

I start by selecting all span elements that are descendants of span elements that are part of the
subtotal class. This is another way of selecting the subtotal elements. I then use the not method to
remove elements from the selection. In this case, I remove the element whose id is total. I do this
because I defined the subtotal and total elements using the same classes and styles, and I don’t want the
current total to be included when calculating a new total.

Having selected the items, I then use the each method. This method calls a function once for each
element in a jQuery object. The arguments to the function are the index of the current element in the
selection and the HTMLELement object that represents the element in the DOM.

I get the content of each subtotal element using the text method. I create a jQuery object by passing
the HTMLElement object as an argument to the $ function, just as I did with the this variable earlier in this
chapter.

The text method returns a string, so I use the JavaScript Number function to create a numeric value
thatI can add to the running total:

total += Number($(elem).text());
Finally, I select the total element and use the text method to display the overall total:
$('#total').text("$" + total);

The effect of adding this function is that a change in the quantity for a cheese is immediately
reflected in the total, as well as in the individual subtotals.

Changing the Form Target

By adding a dynamic basket, I have pulled the functionality of the basket web page into the main page of
the application. It doesn’t make sense to send JavaScript-enabled users to the basket web page when
they submit the form, because it just duplicated information they have already seen. I am going to
change the target of the form element so that submitting the form goes straight to the shipping page,
skipping over the basket page entirely. Listing 2-16 shows the statement that changes the target.

Listing 2-16. Changing the Target for the form Element
<script>
var priceData = {
camembert: 18,
tomme: 19,

morbier: 9

}

$(document).ready(function() {
$('#buttonDiv input:submit').hide();
$('Submit Order")
.appendTo("#buttonDiv").addClass("button").click(function(e) {
$('form').submit();
e.preventDefault();

37

CHAPTER 2 = GETTING STARTED

}) .hover (function(e){
var elem = $('#buttonDiv a')

if (e.type == "mouseenter") {
elem.addClass("buttonHover");
} else {

elem.removeClass("buttonHover");

}
1))

$(".latent").show();

$("input').bind("change keyup", function() {
var subtotal = $(this).val() * priceData[this.name];
$(this).siblings("span").children("span").text(subtotal)
calculateTotal();

H

$('foxrm").attr("action", "/shipping");
1}

function calculateTotal() {
var total = 0;
$('span.subtotal span').not('#total').each(function(index, elem) {
total += Number($(elem).text());

1)
$('#total').text("$" + total);

</script>

By this point, it should be obvious how the new statement works. I select the form element by type
(since there is only one such element in the document) and call the attr method to set a new value for
the action attribute. The user is taken to the shipping details page when the form is submitted, skipping
the basket page entirely. You can see the effect in Figure 2-3.

38

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 2 = GETTING STARTED

(o 0]| [ESEEEE

O Cheeselux o O Cheeselux

@ cheeselux.com/shipping Y

CHEESFLUX**

Camembert ($18) (50) Neme: |
Tomme deSavaie (519) I o) street Address: | GG

& = C O cheeselux.com 7 A

(59 O 0 | ct. I
Total: 50 sate: | 2>

Figure 2-3. Changing the flow of the application

As this example demonstrates, you can change the flow of a web application as well as the
appearance and interactivity of individual pages. Of course, the back-end services need to understand
the various paths that different kinds of user can follow through a web app, but this is easy to achieve
with a little forethought and planning.

Understanding Progressive Enhancement

The techniques I have demonstrated in this chapter are basic but very effective. By using JavaScript to
manage the elements in the DOM and respond to events, I have been able to make the example web app
more responsive for the user, provide useful and timely information about the cost of the user’s product
selections, and streamline the flow of the app itself.

But—and this is important—because these changes are done through JavaScript, the basic nature
and structure of the web app remain unchanged for non-JavaScript users. Figure 2-4 shows the main
web app page when JavaScript is enabled and disabled.

39

CHAPTER 2 = GETTING STARTED

40

O CheeseL‘ux \LsF O Cheeselux

) cheeselux.com G A 2 cheeselux.com T oA

CHEESEI.UX = = CHEESEI.UX -

Camembert ($18) N Camembert (518) CHEEN 0

TommedeSavoie (519) [N TommedeSavoie ($19) [G0

Morbier (59) I Morbier (59) [N (s0)
Total: $0

L

Figure 2-4. The web app as shown when JavaScript is disabled and enabled

The version that non-JavaScript users experience remains fully functional but is clunkier to use and
requires more steps to place an order.

Creating a base level of functionality and then selectively enriching it is an example of progressive
enhancement. Progressive enhancement isn’t just about the availability of JavaScript; it encompasses
selective enrichment based on any factor, such as the amount of bandwidth, the type of browser, or even
the level of experience of the user. However, when creating web apps, the most common form of
progressive enhancement is driven by whether the user has JavaScript enabled.

Tip A similar term to progressive enhancementis graceful degradation. For my purposes in this book,
progressive enhancement and graceful degradation are the same—the notion that the core content and features
of a web application are available to all users, irrespective of the capabilities of a user’s browser.

If you don’t want to support non-JavaScript browsers, then you should make it obvious to non-
JavaScript visitors that there is a problem. The easiest way to do this is by using the noscript and meta
elements to redirect the browser to a page that explains the situation, as shown in Listing 2-17.

Listing 2-17. Dealing with Non-JavaScript Users

<head>
<title>Cheeselux</title>
<link rel="stylesheet" type="text/css" href="styles.css"/>
<script src="jquery-1.7.1.js" type="text/javascript"></script>
<script>
. JavaScript code goes here...

CHAPTER 2 = GETTING STARTED

</script>
<noscripts
<meta http-equiv="refresh" content="0; noscript.html"/»
</noscripty
</head>

This combination of elements redirects the user to a page called noscript.html, which is an HTML
document that tells the user that I require JavaScript (and, obviously, doesn’t rely on JavaScript itself).
You can find this page in the source code download that accompanies this book and see the result in
Figure 2-5.

-

L 50 e
(:,'I Cheeselux

&« C (D cheeselux.com A

Please return to CheeseLux.com once you have enabled Javascript. Our gourmet
products are worth the effort!

e

Figure 2-5. Enforcing a JavaScript-only policy in a web app

It is tempting to require JavaScript, but I recommend caution; you might be surprised by how many
users don’t enable JavaScript or simply can’t. This is especially true for users in large corporations,
where computers are usually locked down and where features that are common in the general
population are disabled in the name of security, including, sadly, JavaScript in browsers. Some web apps
just don’t make sense without JavaScript, but give careful thought to the potential users/customers you
will be excluding before deciding that you are building one of them.

Note This is a book about building web apps with JavaScript, so | am not going to maintain progressive
enhancement in the chapters that follow. Don’t take that as an endorsement of a JavaScript-only policy. In my own
projects, | try to support non-JavaScript users whenever possible, even when it requires a lot of additional effort.

41

CHAPTER 2 = GETTING STARTED

42

Revisiting the Button: Using a Ul Toolkit

I want to finish this chapter by showing you a different approach to obtaining one of the results in this
chapter: creating a visually consistent button. The techniques I used previously demonstrated how you
can manipulate the DOM and respond to events to tailor the appearance and behavior of elements,
which is the main premise in this chapter.

That said, for professional development, it a good principle to never write what you can obtain from
a good JavaScript library, and when I want to create visually rich elements, I use a Ul toolkit. In this
section, I'll show you how easy it is to create a custom button with jQuery U, which is produced by the
jQuery team and is one of the most widely used JavaScript UI toolkits available.

Setting Up jQuery Ul

Setting up jQuery Ul is a multistage process. The first stage is to create a theme, which defines the CSS
styles that are used by the jQuery UI widgets (which is the name given to the styled elements that a UI
toolkit creates). To create a theme, go to http://jqueryui. com, click the Themes button, expand each
section on the left side of the screen, and specify the styles you want. As you make changes, the sample
widgets on the right side of the screen will update to reflect the new settings. It took me about five
minutes (and a bit of trial and error) to create a theme that matches the appearance of the example web
app. [have included the theme I created in the source code download for this book if you don’t want to
create your own.

Tip If you don’t want to create a custom theme, you can select a predefined style from the gallery. This can be
useful if you are not trying to match an existing app design, although the colors used in some of gallery styles are
quite alarming.

When you are done, click the Download Theme button. You will see a screen that allows you to
select which components of jQuery UI are included in the download. You can create a smaller download
if you get into the detail of jQuery UI, but for this book ensure that all of the components are selected
and click the Download button. Your browser will download a . zip file that contains the jQuery Ul
library, the CSS theme you created, and some supporting images.

The second part of the setup is to copy the following files from the .zip file into the content
directory of the Node.js server:

e The development-bundle\ui\jquery-ui-1.8.16.custom. js file
e The development-bundle\themes\custom-theme\jquery-ui-1.8.16.custom.css file
e The development-bundle\themes\custom-theme\images folder

The names of the files include the jQuery Ul version numbers. As I write this, the current version is
1.8.16, but you will probably have a later version by the time this book goes into print.

http://jqueryui.com

CHAPTER 2 = GETTING STARTED

Tip Once again, | am using the uncompressed versions of the JavaScript file to make debugging easier. You
will find the minimized version in the js folder of the . zip file.

Creating a jQuery UI Button

Now that jQuery Ul is set up, I can use it in my HTML document to create a button widget and simplify
my code. Listing 2-18 shows the additions required to import jQuery Ul into the document and to create
a button.

Importing jQuery Ul is simply a matter of adding a script element to import the JavaScript file and
a link element to import the CSS file. You don’t need to explicitly reference the images directory.

Tip Notice that the script element that imports the jQuery Ul JavaScript file comes after the one that imports
jQuery. This ordering is important since jQuery Ul depends on jQuery.

Listing 2-18. Using jQuery UI to Create a Button

<!DOCTYPE html>
<html>
<head>
<title>Cheeselux</title>
<link rel="stylesheet" type="text/css" href="styles.css"/>
<script src="jquery-1.7.1.js" type="text/javascript"></script>
<script src="jquery-ui-1.8.16.custom.js" type="text/javascript"s</scripts
<link rel="stylesheet" type="text/css" href="jquery-ui-1.8.16.custom.css"/>
<script>

var priceData = {
camembert: 18,
tomme: 19,
morbier: 9

}
$(document).ready(function() {
$('#buttonDiv input:submit'’).button().css("font-family", "Yanone, sans-serif");
$(".latent").show();
$('input').bind("change keyup", function() {
var subtotal = $(this).val() * priceData[this.name];
$(this).siblings("span").children("span").text(subtotal)

calculateTotal();
3]

43

CHAPTER 2 = GETTING STARTED

44

$('form").attr("action", "/shipping");
H

function calculateTotal() {
var total = 0;
$('span.subtotal span').not('#total').each(function(index, elem) {
total += Number($(elem).text());

1)
$('#total').text("$" + total);

</script>
<noscript>
<meta http-equiv="refresh" content="0; noscript.html"/>
</noscript>
</head>

When using jQuery UI, I don’t have to hide the input element and insert a substitute. Instead, I use
jQuery to select the element I want to modify and call the button method, as follows:

$("#buttonDiv input:submit').button()

With a single method call, jQuery Ul changes the appearance of the labels and handles the
highlighting when the mouse hovers over the button. I don’t need to worry about handling the click
event in this case, because the default action for a submit input element is to submit the form, which is
exactly what I want to happen.

IT'have made one additional method call, using the css method. This method applies a CSS property
directly to the selected elements using the style attribute, and I have used it to set the font-family
property on the input element. The jQuery UI theme system doesn’t have much support for dealing with
fonts and generates its widgets using a single font family. I have set up web fonts from the Google Fonts
(www.google.com/webfonts and the excellent League of Movable Type
(www.theleagueofmoveabletype.com), so I must override the jQuery UI CSS styles to apply my preferred
font to the button element. You can see the result of using jQuery UI to create a button in Figure 2-6. The
result is, as you can see, consistent with the rest of the web app but much simpler to create in JavaScript.

Figure 2-6. Creating a button with jQuery Ul

Toolkits like jQuery Ul are just a convenient wrapper around the same DOM, CSS, and event
techniques I described earlier. It is important to understand what’s happening under the covers, but I
recommend using jQuery UI or another good Ul library. These libraries are comprehensively tested, and
they save you from having to write and debug custom code, allowing you to spend more time on the
features that set your web app apart from the competition.

http://www.google.com/webfontsandtheexcellentLeagueofMovableType
http://www.google.com/webfontsandtheexcellentLeagueofMovableType
http://www.theleagueofmoveabletype.com

CHAPTER 2 = GETTING STARTED

Summary

As I mentioned at the start of this chapter, the techniques I used in these examples are simple, reliable,
and entirely suited to small web apps. There is nothing intrinsically wrong with using these approaches
if the app is so small that there can never be any issue about maintaining it because every aspect of its
behavior is immediately obvious to a programmer.

However, if you are reading this book, you want to go further and create web apps that are large, are
complex, and have many moving parts. And when applied to such web apps, these techniques create
some fundamental problems. The underlying issue is that the different aspects of the web app are all
mixed together. The application data (the products and the basket), the presentation of that data (the
HTML elements), and the interactions between them (the JavaScript events and handler functions) are
distributed throughout the document. This makes it hard to add additional data, extend the
functionality, or fix bugs without introducing errors.

In the chapters that follow, I show you how to apply heavy-duty techniques from the world of
server-side development to the web app. Client-side development has been the poor cousin of server-
side work for many years, but as browsers become more capable (and as web app programmers become
more ambitious), we can no longer pretend that the client side is anything other than a full-fledged
platform in its own right. It is time to take web app development seriously, and in the chapters that
follow, I show you how to create a solid, robust, and scalable foundation for your web app.

45

CHAPTER 3

Adding a View Model

If you have done any serious desktop or server-side development, you will have encountered either the
Model-View-Controller (MVC) design pattern or its derivative Model-View-View-Model (MVVM). I am
not going to describe either pattern in any detail, other than to say that the core concept in both is
separating the data, operations, and presentation of an application into separate components.

There is a lot of benefit in applying the same basic principles to a web application. I am not going to
get bogged down in the design patterns and terminology. Instead, I am going to focus on demonstrating
the process for structuring a web app and explaining the benefits that are gained from doing so.

Resetting the Example

The best way to understand how to apply a view model and the benefits that doing so confers is to
simply do it. The first thing to do is cut everything but the basics out of the application so that I have a
clean slate to start from. As you can see in Listing 3-1, have removed everything but the basic structure
of the document.

Listing 3-1. Wiping the Slate

<!DOCTYPE html>
<html>
<head>
<title>Cheeselux</title>
<link rel="stylesheet" type="text/css" href="styles.css"/>
<script src="jquery-1.7.1.js" type="text/javascript"></script>
<script src="jquery-ui-1.8.16.custom.js" type="text/javascript"></script>
<link rel="stylesheet" type="text/css" href="jquery-ui-1.8.16.custom.css"/>
<noscript>
<meta http-equiv="refresh" content="0; noscript.html"/>
</noscript>
<script>
$(document) .ready(function() {
$('#buttonDiv input:submit').button().css("font-family", "Yanone");
1)

</script>
</head>
<body>
<div id="logobar">

Gourmet European Cheese

47

CHAPTER 3 = ADDING A VIEW MODEL

48

</div>
<form action="/shipping" method="post">

<div id="buttonDiv">
<input type="submit" />
</div>
</form>
</body>
</html>

Creating a View Model

The next step is to define some data, which will be the foundation of the view model. To get started, I
have added an object that describes the products in the cheese shop, as shown in Listing 3-2.

Listing 3-2. Adding Data to the Document
<script>

var cheeseModel = {
category: "French Cheese",
items: [{id: "camembert", name: "Camembert", price: 18},
{id: "tomme", name: "Tomme de Savoie", price: 19},
{id: "morbier", name: "Morbier", price: 9}]

)

$(document).ready(function() {
$('#buttonDiv input:submit').button().css("font-family", "Yanone");

};

</script>

I have created an object that contains details of the cheese products and assigned it to a variable
called cheeseModel. The object describes the same products that I used Chapter 2 and is the foundation
of my view model, which I will build throughout the chapter; it is a simple data object now, but I'll be
doing a lot more with it soon.

Tip If you find yourself staring at the blinking cursor with no real idea how to define your application data, then
my advice is simple: just start typing. One of the biggest benefits of embracing a view model is that it makes
changes easier, and that includes changes to the structure of the underlying data. Don’t worry if you don’t get it
right, because you can always correct it later.

CHAPTER 3 * ADDING A VIEW MODEL

Adopting a View Model Library

Following the principle of not writing what is available in a good JavaScript library, I will introduce a
view model into the web app using a view model library. The one I'll be using is called Knockout (KO). I
like the KO approach to application structure, and the main programmer for KO is Steve Sanderson, who
is my coauthor for the Pro ASP.NET MVCbook from Apress and an all-around nice guy. To get KO, go to
http://knockoutjs.comand click the Download link. Select the most recent version (which is 2.0.0 as
write this) from the list of files and copy it to the Node.js content directory.

Tip Don’t worry if you don’t get on with KO. Other structure libraries are available. The main competition comes
from Backbone (http://documentcloud.github.com/backbone) and AngularJS (http://angularjs.org). The
implementation details in these alternative libraries may differ, but the underlying principles remain the same.

In the sections that follow, I will bring my view model and the view model library together to
decouple parts of the example application.

Generating Content from the View Model

To begin, I am going to use the data to generate elements in the document so that I can display the

products to the user. This is a simple use of the view model, but it reproduces the basic functionality of
the implementation in Chapter 2 and gives me a good foundation for the rest of the chapter. Listing 3-3
shows the addition of the KO library to the document and the generation of the elements from the data.

Listing 3-3. Generating Elements from the View Model

<!DOCTYPE html>
<html>
<head>
<title>Cheeselux</title>
<link rel="stylesheet" type="text/css" href="styles.css"/>
<script src="jquery-1.7.1.js" type="text/javascript"></script>
<script src="jquery-ui-1.8.16.custom.js" type="text/javascript"></script>
<script src="knockout-2.0.0.js' type='text/javascript's</scripts
<link rel="stylesheet" type="text/css" href="jquery-ui-1.8.16.custom.css"/>
<noscript>
<meta http-equiv="refresh" content="0; noscript.html"/>
</noscript>
<script>
var cheeseModel = {
category: "French Cheese",
items: [{id: "camembert", name: "Camembert", price: 18},
{id: "tomme", name: "Tomme de Savoie", price: 19},
{id: "morbier", name: "Morbier", price: 9}]

};
$(document).ready(function() {

49

[vww allitebooks.cond

http://knockoutjs.com
http://documentcloud.github.com/backbone
http://angularjs.org
http://www.allitebooks.org

CHAPTER 3 = ADDING A VIEW MODEL

$('#buttonDiv input:submit').button().css("font-family", "Yanone");

ko.applyBindings(cheeseModel);
)
</script>
</head>
<body>
<div id="logobar">

Gourmet European Cheese
</div>
<form action="/shipping" method="post">
<div class="cheesegroup">
<div class="grouptitle" data-bind="text: category"»></div>

<div data-bind="foreach: items"»
<div class="groupcontent"»
<label data-bind="attr: {for: id}" class="cheesename"»

</spany $(<span data-bind="text:price"»</spans)</label>
<input data-bind="attr: {name: id}" value="0"/>
</divy
</div>
</div>
<div id="buttonDiv">
<input type="submit" />
</div>
</form>
</body>
</html>

There are three sets of additions in this listing. The first is importing the KO JavaScript library into
the document with a script element. The second addition tells KO to use my view model object:

ko.applyBindings(cheeseModel);

The ko object is the gateway to the KO library functionality, and the applyBindings method takes the
view model object as an argument and uses it, as the name suggests, to fulfill the bindings defined in the
document; these are the third set of additions. You can see the result of these bindings in Figure 3-1, and
I explain how they work in the sections that follow.

50

CHAPTER 3 * ADDING A VIEW MODEL

= | B |t
() CheeseLux
& =2 C O cheeseluxcom v N

Cemembert $(18) [

Tomme de Savoie $(19) [
Morbier $(9) I

"

Figure 3-1. Creating content from the view model

Understanding Value Bindings

A value bindingis a relationship between a property in the view model and an HTML element. This is
the simplest kind of binding available. Here is an example of an HTML element that has a value binding:

<div class="grouptitle" data-bind="text: category"></div>

All KO bindings are defined using the data-bind attribute. This is an example of a text binding,
which has the effect of setting the text content of the HTML element to the value of the specified view
model property, in this case, the category property.

When the applyBindings method is called, KO searches for bindings and inserts the appropriate
data value into the document, transforming the element like this:

<div class="grouptitle" data-bind="text: category">French Cheese</div>

Tip | like having the KO data bindings defined in the elements where they will be applied, but some people
don’t like this approach. There is a simple library available that supports unobtrusive KO data bindings, meaning
that the bindings are set up using jQuery in the script element. You can get the code and see an example at
https://gist.github.com/1006808.

51

https://gist.github.com/1006808

CHAPTER 3 = ADDING A VIEW MODEL

52

The other binding I used in this example was attr, which sets the value of an element attribute to a
property from the model. Here is an example of an attr binding from the listing:

<input data-bind="attr: {name: id}" value="0"/>

This binding specifies that KO should insert the value of the id property for the name attribute, which
produces the following result when the bindings are applied:

<input data-bind="attr: {name: id}" value="0" name="camembert">

KO value bindings don’t support any formatting or combining of values. In fact, value bindings just
insert a single value into the document, and that means that extra elements are often needed as targets
for value bindings. You can see this in the label element in the listing, where I added a couple of span
elements:

<label data-bind="attr: {for: id}" class="cheesename">
 $()
</label>

I'wanted to insert two data values as the content for the label element with some surrounding
characters to indicate currency. The way to get the desired effect is simple enough, albeit it adds some
complexity to the HTML structure. An alternative is to create custom bindings, which I explain in
Chapter 4.

Tip The text and attr bindings are the most useful, but KO supports other kinds of value bindings as well:
visible, html, css, and style. | use the visible binding later in the chapter and the css binding in Chapter 4,
but you should consult the KO documentation at knockoutjs. com for details of the others.

Understanding Flow Control Bindings

Flow control bindings provide the means to use the view model to control which elements are included
in the document. In the listing, I used the foreach binding to enumerate the items view model property.
The foreach binding is used on view model properties that are arrays and duplicates the set of child
elements for each item in the array:

<div data-bind="foreach: items">
</div>
Value bindings on the child elements can refer to the properties of the individual array items, which

is how I am able to specify the id property for the attr binding on the input element: KO knows which
array item is being processed and inserts the appropriate value from that item.

CHAPTER 3 * ADDING A VIEW MODEL

Tip In addition to the foreach binding, KO also supports the if, ifnot, and with bindings, which allow content
to be selectively included in or excluded from a document. | describe the if and ifnot bindings later in this
chapter, but you should consult the KO documentation at knockoutjs . com for full details.

Taking Advantage of the View Model

Now that I have the basic structure of the application in place, I can use the view model and KO to do
more. [will start with some basic feature and then step things up to show you some more advanced
techniques.

Adding More Products to the View Model

The first benefit that a view model brings is the ability to make changes more quickly and with fewer
errors than would otherwise be possible. The simplest demonstration of this is to add more products to
the cheese shop catalog. Listing 3-4 shows the changes required to add cheeses from other countries.

Listing 3-4. Adding to the View Model

<!DOCTYPE html>
<html>
<head>
<title>Cheeselux</title>
<link rel="stylesheet" type="text/css" href="styles.css"/>
<script src="jquery-1.7.1.js" type="text/javascript"></script>
<script src="jquery-ui-1.8.16.custom.js" type="text/javascript"></script>
<script src="knockout-2.0.0.js' type="text/javascript'></script>
<link rel="stylesheet" type="text/css" href="jquery-ui-1.8.16.custom.css"/>
<noscript>
<meta http-equiv="refresh" content="0; noscript.html"/>
</noscript>
<script>
var cheeseModel = {
products: [
{category: "British Cheese", items : [
{id: "stilton", name: "Stilton", price: 9},
{id: "stinkingbishop", name: "Stinking Bishop", price: 17},
{id: "cheddar", name: "Cheddar", price: 17}1},

{category: "French Cheese", items: [
{id: "camembert", name: "Camembert", price: 18},
{id: "tomme", name: "Tomme de Savoie", price: 19},
{id: "morbier", name: "Morbier", price: 9}]},

{category: "Italian Cheese", items: [

{id: "gorgonzola", name: "Gorgonzola", price: 8},
{id: "fontina", name: "Fontina", price: 11},

53

CHAPTER 3 = ADDING A VIEW MODEL

{id: "parmesan", name: "Parmesan", price: 16}]}]

|5

$(document) .ready(function() {
$('#buttonDiv input:submit').button().css("font-family", "Yanone");

ko.applyBindings(cheeseModel);
)
</script>
</head>
<body>
<div id="logobar">

Gourmet European Cheese
</div>
<form action="/shipping" method="post">

<div data-bind="foreach: products"»
<div class="cheesegroup">
<div class="grouptitle" data-bind="text: category"></div>

<div data-bind="foreach: items">
<div class="groupcontent">
<label data-bind="attr: {for: id}" class="cheesename">

 $()</label>
<input data-bind="attr: {name: id}" value="0"/>
</div>
</div>
</div>
</div>

<div id="buttonDiv">
<input type="submit" />
</div>
</form>
</body>
</html>

The biggest change was to the view model itself. I changed the structure of the data object so that
each category of products is an element in an array assigned to the products property (and, of course, I
added two new categories). In terms of the HTML content, I just had to add a foreach flow control
binding so that the elements contained within are duplicated for each category.

54

CHAPTER 3 * ADDING A VIEW MODEL

Tip The result of these additions is a long, thin HTML document. This is not an ideal way of displaying data, but
as | said in Chapter 1, this is a book about advanced programming and not a book about design. There are lots of
ways to present this data more usefully, and | suggest starting by looking at the tabs widgets offered by Ul toolkits
such as jQuery Ul or jQuery Tools.

Creating Observable Data Items

In the previous example, I used KO like a simple template engine; I took the values from the view model
and used them to generate a set of elements. I like using template engines because they simplify markup
and reduce errors. But a bigger benefit of view models comes when you create observable data items. Put
simply, an observable data item is a property in the view model that, when updated, causes all of the
HTML elements that have value bindings to that property to update as well. Listing 3-5 shows how to
create and use an observable data item.

Listing 3-5. Creating Observable Data Items

<!DOCTYPE html>
<html>
<head>
<title>Cheeselux</title>
<link rel="stylesheet" type="text/css" href="styles.css"/>
<script src="jquery-1.7.1.js" type="text/javascript"></script>
<script src="jquery-ui-1.8.16.custom.js" type="text/javascript"></script>
<script src="knockout-2.0.0.js' type="text/javascript'></script>
<link rel="stylesheet" type="text/css" href="jquery-ui-1.8.16.custom.css"/>

<noscript>
<meta http-equiv="refresh" content="0; noscript.html"/>
</noscript>
<script>
var cheeseModel = {
products: [

{category: "British Cheese", items : [
{id: "stilton", name: "Stilton", price: 9},
{id: "stinkingbishop", name: "Stinking Bishop", price: 17},
{id: "cheddar", name: "Cheddar", price: 17}]},
{category: "French Cheese", items: [
{id: "camembert", name: "Camembert", price: 18},
{id: "tomme", name: "Tomme de Savoie", price: 19},
{id: "morbier", name: "Morbier", price: 9}]},
{category: "Italian Cheese", items: [
{id: "gorgonzola", name: "Gorgonzola", price: 8},
{id: "fontina", name: "Fontina", price: 11},
{id: "parmesan", name: "Parmesan", price: 16}]}]

};

55

CHAPTER 3 = ADDING A VIEW MODEL

function mapProducts(func) {
$.each(cheeseModel.products, function(catIndex, outerItem) {
$.each(outerItem.items, function(itemIndex, innerItem) {

func(innerItem);

$(document).ready(function() {
$('#buttonDiv input').button().css("font-family", "Yanone");

mapProducts(function(item) {
item.price = ko.observable(item.price);

H
ko.applyBindings(cheeseModel);

$('#discount").click(function() {
mapProducts(function(item) {
item.price(item.price() - 2);

1

</script>
</head>
<body>
<div id="logobar">

Gourmet European Cheese
</div>
<form action="/shipping" method="post">
<div id="buttonDiv"»
<input id="discount" type="button" value="Apply Discount" />
</div»

<div data-bind="foreach: products">
<div class="cheesegroup">
<div class="grouptitle" data-bind="text: category"></div>

<div data-bind="foreach: items">
<div class="groupcontent">
<label data-bind="attr: {for: id}" class="cheesename">

 $()</label>
<input data-bind="attr: {name: id}" value="0"/>
</div>
</div>
</div>
</div>

56

CHAPTER 3 * ADDING A VIEW MODEL

<div id="buttonDiv">
<input type="submit" />
</div>
</form>
</body>
</html>

The mapProducts function is a simple utility that allows me to apply a function to each individual
cheese product. This function uses the jQuery each method, which executes a function for every item in
an array. By using the each function twice, I can reach the inner array of cheese products in each
category.

In this example, I have transformed the price property for each cheese product into an observable
data item, as follows:

mapProducts(function(item) {
item.price = ko.observable(item.price);

1

The ko.observable method takes the initial value for the data item as its argument and sets up the
plumbing that is required to disseminate updates to the bindings in the document. I don’t have to make
any changes to the bindings themselves; KO takes care of all the details for me.

All that remains is to set up a situation that will cause a change to occur. I have done this by adding a
new button to the document and defining a handler for the click event as follows:

$('#discount").click(function() {
mapProducts(function(item) {
item.price(item.price() - 2);
D;
D;

When the button is clicked, I use the mapProducts function to change the value of the price property
for each cheese object in the view model. Since this is an observable data item, the new value will be
pushed out to the value bindings and cause the document to be updated.

Notice the slightly odd syntax I use when altering the value. The original price property was a
JavaScript Number, which meant I could change the value like this:

item.price -= 2;

But the ko.observable method transforms the property into a JavaScript function in order to work
with some older versions of Internet Explorer. This means you read the value of an observable data item
by calling the function (in other words, by calling item.price()) and update the value by passing an
argument to the function (in other words, by calling item.price(newValue)). This can take a little while to
get used to, and I still forget to do this.

Figure 3-2 shows the effect of the observable data item. When the Apply Discount button is clicked,
all of the prices displayed to the user are updated, as Figure 3-2 shows.

57

CHAPTER 3 = ADDING A VIEW MODEL

58

([B e
() Cheeselux =+ () Cheeselux
& = C O cheeselux.com & = C (O chesselux.com LRl N

stiton $(0) [N . stitn$(7) G
stinkingBishop $(17) [| StinkingBishop $(15) VPl
theddar$(17) [N ' Chedda $(15) [N

Figure 3-2. Using an observable data item

The power and flexibility of an observable data item is significant; it creates an application where
changes from the view mode, irrespective of how they arise, cause the data bindings in the document to
be updated immediately. As you'll see in the rest of the chapter, I make a lot of use of observable data
items as I add more complex features to the example web app.

Creating Bidirectional Bindings

A bidirectional bindingis a two-way relationship between a form element and an observable data item.
When the view model is updated, so is the value shown in the element, just as for a regular observable. In
addition, changing the element value causes an update to go in the other direction: the property in the
view model is updated. So, for example, if I use a bidirectional binding for an input element, KO ensures
that the model is updated when the user enters a new value. By using bidirectional relationships
between multiple elements and the same model property, you can easily keep a complex web app
synchronized and consistent.

To demonstrate a bidirectional binding, I will add a Special Offers section to the cheese shop. This
allows me to pick some products from the full section, apply a discount, and, ideally, draw the
customer’s attention to a product that they might not otherwise consider.

Listing 3-6 contains the changes to the web app to support the special offers. To set up a
bidirectional binding, I am going to do two other interesting things: extend the view model and use KO
templates to generate elements. I'll explain all three changes in the sections that follow the listing.

CHAPTER 3

Listing 3-6. Using Live Bindings to Create Special Offers

<!DOCTYPE html>
<html>
<head>
<title>Cheeselux</title>
<link rel="stylesheet" type="text/css" href="styles.css"/>
<script src="jquery-1.7.1.js" type="text/javascript"></script>
<script src="jquery-ui-1.8.16.custom.js" type="text/javascript"></script>
<script src="knockout-2.0.0.js' type='text/javascript'></script>
<link rel="stylesheet" type="text/css" href="jquery-ui-1.8.16.custom.css"/>

<noscript>
<meta http-equiv="refresh" content="0; noscript.html"/>
</noscript>
<script>
var cheeseModel = {
products: [
{category: "British Cheese", items : [
{id: "stilton", name: "Stilton", price: 9},
{id: "stinkingbishop", name: "Stinking Bishop", price: 17},
{id: "cheddar", name: "Cheddar", price: 17}]},
{category: "French Cheese", items: [
{id: "camembert", name: "Camembert", price: 18},
{id: "tomme", name: "Tomme de Savoie", price: 19},
{id: "morbier", name: "Morbier", price: 9}]},
{category: "Italian Cheese", items: [
{id: "gorgonzola", name: "Gorgonzola", price: 8},
{id: "fontina", name: "Fontina", price: 11},
{id: "parmesan", name: "Parmesan", price: 16}]}]
};

function mapProducts(func) {
$.each(cheeseModel.products, function(catIndex, outerItem) {
$.each(outerItem.items, function(itemIndex, innerItem) {
func(innerItem);
D;
D;
}

$(document).ready(function() {
$('#buttonDiv input:submit').button().css("font-family", "Yanone");

cheeseModel.specials = {
category: "Special Offers”,
discount: 3,
ids: ["stilton", "tomme"],
items: []

s

mapProducts(function(item) {
if ($.inArray(item.id, cheeseModel.specials.ids) » -1) {

[vww allitebooks.cond

ADDING A VIEW MODEL

59

http://www.allitebooks.org

CHAPTER 3 = ADDING A VIEW MODEL

item.price -= cheeselModel.specials.discount;
cheeselModel.specials.items.push(item);

item.quantity = ko.observable(0);

hH
ko.applyBindings(cheeseModel);

</script>
<script id="categoryTmpl" type="text/html">
<div class="cheesegroup">
<div class="grouptitle" data-bind="text: category"s</divy

<div data-bind="foreach: items">
<div class="groupcontent"»
<label data-bind="attr: {for: id}" class="cheesename"»
<span data-bind="text: name"»
</spany $(<span data-bind="text:price"»</spans)</labels
<input data-bind="attr: {name: id}, value: quantity"/>
</div>
</div»
</div>
</scripty
</head>
<body>
<div id="logobar">

Gourmet European Cheese
</div>

<div data-bind="template: {name: 'categoryTmpl', data: specials}"s</div>
<form action="/shipping" method="post">
<div data-bind="template: {name: 'categoryTmpl', foreach: products}"»</divy
<div id="buttonDiv">
<input type="submit" />
</div>
</form>
</body>
</html>

Extending the View Model

JavaScript’s loose typing and dynamic nature makes it ideal for creating flexible and adaptable view
models. I like being able to take the initial data and reshape it to create something that is more closely
tailored to the needs of the web app, in this case, to add support for special offers. To start with, I add a
property called specials to the view model, defining it as an object that has category and items
properties like the rest of the model but with some useful additions:

60

CHAPTER 3 * ADDING A VIEW MODEL

cheeseModel.specials = {
category: "Special Offers",
discount: 3,
ids: ["stilton", "tomme"],
items: []

};

The discount property specifies the dollar discount I want to apply to the special offers, and the ids
property contains an array of the IDs of products that will be special offers.

The specials.items array is empty when I first define it. To populate the array, I enumerate the
products array to find those products that are in the specials.ids array, like this:

mapProducts(function(item) {
if ($.inArray(item.id, cheeseModel.specials.ids) » -1) {
item.price -= cheeseModel.specials.discount;
cheeselModel.specials.items.push(item);

item.quantity = ko.observable(0);

B;

T use the inArray method to determine whether the current item in the iteration is one of those that
will be included as a special offer. The inArray method is another jQuery utility, and it returns the index
of an item if it is contained within an array and -1 if it is not. This is a quick and easy way for me to check
to see whether the current item is one that I am interested in as a special offer.

If an item is on the specials list, then I reduce the value of the price property by the discount
amount and use the push method to insert the item into the specials.items array.

item.price -= cheeseModel.specials.discount;
cheeseModel.specials.items.push(item);

After I have iterated through the items in the view model, the specials.item array contains a
complete set of the products that are to be discounted, and, along the way, I have reduced each of their
prices.

In this example, [have made the quantity property into an observable data item:

item.quantity = ko.observable(0);

This is important because I am going to display multiple input elements for the special offers: one
element in the original cheese category and another in a new Special Offers category that I explain in
the next section. By using an observable data item and bidirectional bindings on the input elements, I
can easily make sure that the quantities entered for a cheese are consistently displayed, irrespective of
which input element is used.

Generating the Content

All that remains now is to generate the content from the view model. I want to generate the same set of
elements for the special offers as for the regular categories, so I have used the KO template feature, which
allows me to generate the same set of elements at multiple points in the document. Here is the template
from the listing:

<script id="categoryTmpl" type="text/html">
<div class="cheesegroup">
<div class="grouptitle" data-bind="text: category"></div>

61

CHAPTER 3 = ADDING A VIEW MODEL

62

<div data-bind="foreach: items">
<div class="groupcontent">
<label data-bind="attr: {for: id}" class="cheesename">

 $()</label>
<input data-bind="attr: {name: id}, value: quantity"/»>

</div>
</div>
</div>
</script>

The template is contained in a script element. The type attribute is set to text/html, which
prevents the browser from executing the content as JavaScript. Most of the bindings in the template are
the same text and attr bindings I used in the previous example. The important addition is to the input
element, as follows:

<input data-bind="attr: {name: id}, value: quantity"/>

The data-bind attribute for this element defines two bindings, separated by a comma. The firstis a
regular attr binding, but the second is a value binding, which is one of the bidirectional bindings that
KO defines. I don’t have to take any action to make the value binding bidirectional; KO takes care of it
automatically. In this listing, I create a two-way binding to the quantity observable data item.

I generate content from the template using the template binding. When using a template, KO
duplicates the elements that it contains and inserts them as children of the element that has the
template binding. There are two points in the document where I use the template, and they are slightly
different:

<div data-bind="template: {name: 'categoryTmpl', data: specials}"»</divy
<form action="/shipping" method="post">
<div data-bind="template: {name: 'categoryTmpl', foreach: products}"s</divy

<div id="buttonDiv">
<input type="submit" />
</div>
</form>

When using the template binding, the name property specifies the id attribute value of the template
element. If you want to generate only one set of elements, then you can use the data property to specify
which view model property will be used. I used data to specify the specials property in the listing, which
creates a section of content for my special-offer products.

Tip You must remember to enclose the id of the template element in quotes. If you don’t, KO will fail quietly
without generating elements from the template.

You can use the foreach property if you want to generate a set of elements for each item in an array.
I'have done this for the regular product categories by specifying the products array. In this way, I can
apply the template to each element in an array to generate content consistently.

CHAPTER 3 * ADDING A VIEW MODEL

Tip Notice that the special-offer elements are inserted outside the form element. The input elements for the
special-offer products will have the same name attribute value as the corresponding input element in the regular
product category. By inserting the special-offer elements outside the form, | prevent duplicate entries from being
sent to the server when the form is submitted.

Reviewing the Result

Now that I have explained each of the changes I made to set up the bidirectional bindings, it is time to
look at the results, which you can see in Figure 3-3.

() CheeseLux N
& =2 C O cheeselux.com o

CHEESELUX

Stilton $(6)
Tomme de Savoie $(16) _

 BRITISH CHEESE
Stilton $(6)

Figure 3-3. The result of extending the view model, creating a live binding, and using templates

This is good demonstration of how using a view model can save time and reduce errors. I have
applied a $3 discount to the Special Offer products, which I did by altering the value of the price
property in the view model. Even though the price property is not observable, the combination of the
view model and the template ensures that the correct prices are displayed throughout the document
when the elements are initially generated. (You can see that both Stilton listings are priced at $6, rather
than the $9 originally specified by the view model.)

The bidirectional binding is the most interesting and useful feature in this example. All of the input
elements have bidirectional bindings with their corresponding quantity property, and since there are
two input elements in the document for each of the Special Offer cheeses, entering a value into one will

63

CHAPTER 3 = ADDING A VIEW MODEL

64

immediately cause that value to be displayed in the other; you can see this has happened for the Stilton
product in the figure (but it is an effect that is best experienced by loading the example in the browser).

So, with very little effort, I have been able to enhance the view model and use those enhancements
to keep a form consistent and responsive, while adding new features to the application. In the next
section, I'll build on these enhancements to create a dynamic basket, showing you some of the other
benefits that can arise from a view model.

Tip If you submit this form to the server, the order summary will show the original, undiscounted price. This is,
of course, because | applied the discount only in the browser. In a real application, the server would also need to
know about the special offers, but | am going to skip over this, since this book focuses on client-side development.

Adding a Dynamic Basket

Now that I have explained and demonstrated how changes are detected and propagated with value and
bidirectional bindings, I can complete the example so that all of the functionality present in Chapter 2 is
available to the user. This means I need to implement a dynamic shopping basket, which I do in the
sections that follow.

Adding Subtotals

With a view model, new features can be added quickly. The changes to add per-item subtotals are
surprisingly simple, although I need to use some additional KO features. First, I need to enhance the
view model. Listing 3-7 highlights the changes in the script element within the call to the mapProduct
function.

Listing 3-7. Extending the View Model to Support Subtotals

mapProducts(function(item) {
if ($.inArray(item.id, cheeseModel.specials.ids) > -1) {
item.price -= cheeseModel.specials.discount;
cheeseModel.specials.items.push(item);

item.quantity = ko.observable(0);
item.subtotal = ko.computed(function() {

return this.quantity() * this.price;
}, item);

1

I have created what is known as a computed observable data item for the subtotal property. This is
like a regular observable item, except that the value is produced by a function, which is passed as the
first argument to the ko.computed method. The second method is used as the value of the this variable
when the function is executed; I have set this to the item loop variable.

CHAPTER 3 * ADDING A VIEW MODEL

The nice thing about this feature is that KO manages all of the dependencies, such that when my
computed observable function relies on a regular observable data item, a change to the regular item
automatically triggers an update in the computed value. I'll use this behavior to manage the overall total
later in this chapter.

Next, I need to add some elements with bindings to the template, as shown in Listing 3-8.

Listing 3-8. Adding Elements to the Template to Support Subtotals

<script id="categoryTmpl" type="text/html">
<div class="cheesegroup">
<div class="grouptitle" data-bind="text: category"></div>

<div data-bind="foreach: items">
<div class="groupcontent">

<label data-bind="attr: {for: id}" class="cheesename">

 $()</label>

<input data-bind="attr: {name: id}, value: quantity"/»>

<span data-bind="visible: subtotal" class="subtotal"s
($<span data-bind="text: subtotal"s</span»)

</span»
</div>
</div>
</div>
</script>

The inner span element uses a text data binding to display the value of the subtotal property I
created a moment ago. To make things more interesting, the outer span element uses another KO
binding; this one is visible. For this binding, the child elements are hidden when the specified property
is false-like (zero, null, undefined, or false). For truth-like values (1, true, or a non-null object or array),
the child elements are displayed. I have specified the subtotal value for the visible binding, and this
little trick means that I will display a subtotal only when the user enters a nonzero value into the input
element. You can see the result in Figure 3-4.

OCheeseLux
€& 2 C | O cheeselux.com w A

Stitton $(6) (512)

Tomme de Savoie $(16) [

Figure 3-4. Selectively displaying subtotals

65

CHAPTER 3 = ADDING A VIEW MODEL

66

You can see how easy and quick it is to create new features once the basic structure has been added
to the application. Some new markup and a little script go a long way. And, as a bonus, the subtotal
feature works seamlessly with the special offers; since both operate on the view model, the discounts
applied for the special offers are seamlessly (and effortlessly) incorporated into the subtotals.

Adding the Basket Line Items and Total

I don’t want to use the inline basket approach that I took in Chapter 2 because some of the products are
shown twice and the document is too long to make the user scroll down to see the total cost of their
selection. Instead, I am going to create a separate set of basket elements that will be displayed alongside
the products. You can what I have done in Figure 3-5.

([E=IE=5)

{:} Cheeselux

@) cheeselux.com/# 9 X

CHEESEI.UX

| SPECIAL OFFERS

stiton $(6) [(56) Cheese Subtotal
Stilton 56 €

Tomme de Savoie $(16) [Stinking Bishap $3¢ D
Morbier 518

_Parmes-an 515. T
stiton 3(6) NI 9
stinking Bishop $(17) XN (539

o= — = — — — A

Figure 3-5. Adding a separate basket

Listing 3-9 shows the changes required to support the basket.
Listing 3-9. Adding the Basket Elements and Line Items

<!DOCTYPE html>
<html>
<head>
<title>Cheeselux</title>
<link rel="stylesheet" type="text/css" href="styles.css"/>
<script src="jquery-1.7.1.js" type="text/javascript"></script>
<script src="jquery-ui-1.8.16.custom.js" type="text/javascript"></script>
<script src="knockout-2.0.0.js' type="text/javascript'></script>

CHAPTER 3

<link rel="stylesheet" type="text/css" href="jquery-ui-1.8.16.custom.css"/>
<noscript>
<meta http-equiv="refresh" content="0; noscript.html"/>

</noscript>
<script>
var cheeseModel = {
products: [

{category: "British Cheese", items : [
{id: "stilton", name: "Stilton", price: 9},
{id: "stinkingbishop", name: "Stinking Bishop", price: 17},
{id: "cheddar", name: "Cheddar", price: 17}1},
{category: "French Cheese", items: [
{id: "camembert", name: "Camembert", price: 18},
{id: "tomme", name: "Tomme de Savoie", price: 19},
{id: "morbier", name: "Morbier", price: 9}]},
{category: "Italian Cheese", items: [
{id: "gorgonzola", name: "Gorgonzola", price: 8},
{id: "fontina", name: "Fontina", price: 11},
{id: "parmesan", name: "Parmesan", price: 16}]}]

};

function mapProducts(func) {
$.each(cheeseModel.products, function(catIndex, outerItem) {
$.each(outerItem.items, function(itemIndex, innerItem) {
func(innerItem);
D;
D;
}

$(document).ready(function() {
$('#buttonDiv input:submit').button().css("font-family", "Yanone");

cheeseModel.specials = {
category: "Special Offers",
discount: 3,
ids: ["stilton", "tomme"],
items: []

};

mapProducts(function(item) {
if ($.inArray(item.id, cheeseModel.specials.ids) > -1) {
item.price -= cheeseModel.specials.discount;
cheeseModel.specials.items.push(item);

item.quantity = ko.observable(0);
item.subtotal = ko.computed(function() {
return this.quantity() * this.price;
}, item);
1;

cheeselModel.total = ko.computed(function() {
var total = 0;

ADDING A VIEW MODEL

67

CHAPTER 3 = ADDING A VIEW MODEL

mapProducts(function(elem) {
total += elem.subtotal();
D;

return total;

hH
ko.applyBindings(cheeseModel);

$('div.cheesegroup').not("#basket").css("width", "50%");

$('#basketTable a')
.button({icons: {primary: "ui-icon-closethick"}, text: false})
«click(function() {
var targetId = $(this).closest('tr').attr("data-prodId");
mapProducts(function(item) {
if (item.id == targetId) {
item.quantity(0);
}

H
)
1);
</script>
<script id="categoryTmpl" type="text/html">
<div class="cheesegroup">
<div class="grouptitle" data-bind="text: category"></div>

<div data-bind="foreach: items">
<div class="groupcontent">
<label data-bind="attr: {for: id}" class="cheesename">

 $()</label>
<input data-bind="attr: {name: id}, value: quantity"/»>

($)

</div>
</div>
</div>
</script>
<script id="basketRowTmpl" type="text/html">
<tr data-bind="visible: quantity, attr: {'data-prodId': id}"»>
<td data-bind="text: name"></td>
<tdy$<span data-bind="text: subtotal"s</spany</td>
<td></td>
</tr>
</script>
</head>
<body>
<div id="logobar">

Gourmet European Cheese

68

CHAPTER 3 * ADDING A VIEW MODEL

</div>

<div id="basket" class="cheesegroup basket"»
<div class="grouptitle"sBasket</div>
<div class="groupcontent"»
<table id="basketTable"»
<theads<tr><th>Cheese</thy<th>Subtotal</thy<th></th></tr></thead>
<tbody data-bind="foreach: products”s
<!-- ko template: {name: 'basketRowTmpl', foreach: items} --»
<1-- /ko -->
</tbody>
<tfoot>
<trs<td class="sumline" colspan=2></td></tr>
<tr>
<thyTotal:</thy<td>$</td>
</try
</tfoot>
</table>
</div>
<div class="cornerplaceholder"»</divy

<div id="buttonDiv"»
<input type="submit" value="Submit Order"/»>
</divy
</div>

<div data-bind="template: {name: 'categoryTmpl', data: specials}"></div>
<form action="/shipping" method="post">
<div data-bind="template: {name: 'categoryTmpl', foreach: products}"></div>
</form>
</body>
</html>

I'll step through each category of change that I made and explain the effect it has. As I do this, please
reflect on how little has to change to add this feature. Once again, a view model and some basic
application structure create a foundation to which new features can be quickly and easily added.

Extending the View Model

The change to the view model in this listing is the addition of the total property, which is a computed
observable that sums the individual subtotal values:

cheeseModel.total = ko.computed(function() {
var total = 0;
mapProducts(function(elem) {
total += elem.subtotal();

)
return total;

};

69

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 3 = ADDING A VIEW MODEL

70

As I mentioned previously, KO tracks dependencies between observable data items automatically.
Any change to a subtotal value will cause total to be recalculated and the new value to be displayed in
elements that are bound to it.

Adding the Basket Structure and Template

The outer structure of the HTML elements I added to the document is just a duplicate of a cheese
category to maintain visual consistency. The heart of the basket is the table element, which contains
several data bindings:

<table id="basketTable">
<thead><tr><th>Cheese</th><th>Subtotal</th><th></th></tr></thead>
<tbody data-bind="foreach: products”s
<!-- ko template: {name: 'basketRowTmpl', foreach: items} --»
¢!-- /ko -->
</tbody>
<tfoot>
<tr><td class="sumline" colspan=2></td></tr>
<tr>
<th>Total:</th><td>$</td>
</tr>
</tfoot>
</table>

The most important addition here is the oddly formatted HTML comments. This is known as a
containerless binding, and it allows me to apply the template binding without needing a container
element for the content that will be duplicated. Adding rows to a table from a nested array is a perfect
situation for this technique because adding an element just so I can apply the binding would cause
layout problems. The containerless binding is contained within a regular foreach binding, but you can
nest the binding comments much as you would regular elements.

The other binding is a simple text value binding, which displays the overall total for the basket,
using the calculated total observable I created a moment ago. I don’t have to take any action to make
sure that the total is up-to-date; KO manages the chain of dependencies between the total, subtotal,
and quantity properties in the view model.

The template that I added to produce the table rows has four data bindings:

<script id="basketRowTmpl" type="text/html">
<tr data-bind="visible: quantity, attr: {'data-prodld': id}">
<td data-bind="text: name"></td>
<td>$</td>
<td></td>
</tr>
</script>

You have seen these types of binding previously. The visible binding on the tr element ensures
that table rows are visible only for those cheeses for which the quantity isn’t zero; this prevents the
basket from being filled up with rows for products that the user isn’t interested in.

Note the attr binding on the tr element. I have defined a custom attribute using the HTML5 data
attribute feature that embeds the id value of the product that the row represents into the tr element. I'll
explain why I did this shortly.

CHAPTER 3 * ADDING A VIEW MODEL

I also moved the submit button so that it is under the basket, making it easier for the user to submit
their order. The style that I assigned to the basket elements uses the fixed value for the CSS position
property, meaning that the basket will always be visible, even as the user scrolls down the page. To
accommodate the basket, I used jQuery to apply a new value for the CSS width property directly to the
cheese category elements (but not the basket itself):

$('div.cheesegroup').not("#basket").css("width", "50%");

Removing Items from the Basket

The last set of changes builds on the a elements that are added to each table row in the basketRowTmpl
template:

$('#tbasketTable a')
.button({icons: {primary: "ui-icon-closethick"}, text: false})
.click(function() {
var targetId = $(this).closest('tr').attr("data-prodId");
mapProducts(function(item) {
if (item.id == targetId) {
item.quantity(0);
}

1
3]

I use jQuery to select all the a elements and use jQuery Ul to create buttons from them. jQuery UI
themes include a set of icons, and the object that I pass to the jQuery UI button method creates a button
that uses one of these images and displays no text. This gives me a nice small button with a cross.

In the click function, I use jQuery to navigate from the a element that triggered the click event to
the first ancestor tr element using the closest method. This selects the tr element that contains the
custom data attribute I inserted in the template earlier and that I read using the attr method:

var targetId = $(this).closest('tr').attr("data-prodId");

This statement lets me determine the id of the product the user wants to remove from the basket. I
then use the mapProducts function to find the matching cheese object and set the quantity to zero. Since
quantity is an observable data item, KO disseminates the new value, which causes the subtotal value to
be recalculated and the visible binding on the corresponding tr element to be reevaluated. Since the
quantity is zero, the table row will be hidden automatically. And, since subtotal is observable, the total
will also be recalculated, and the new value is displayed to the user. As you can see, it is useful to have a
view model where the dependencies between data values are managed seamlessly. The net result is a
dynamic basket that is always consistent with the values in the view model and so always presents the
correct information to the user.

Finishing the Example
Before I finish this topic, I just want to tweak a couple of things. First, the basket looks pretty poor when

no items have been selected by the user, as shown in Figure 3-6. To address this, I will display some
placeholder text when the basket is empty.

71

CHAPTER 3 = ADDING A VIEW MODEL

| SPECIAL OFFERS | BASKET

stitton $(6) I Cheese Subtotal

Total: $0 |
Tomme de Savoie $(16) S :

Figure 3-6. The empty basket

Second, the user has no way to clear the basket with a single action, so I will add a button that will
reset the quantities of all of the products to zero. Finally, by moving the submit button outside the form
element, I have lost the ability to rely on the default action. I must add an event handler so that the user
can submit the form. Listing 3-10 shows the HTML elements that I have added to support these features.

Listing 3-10. Adding Elements to Finish the Example

<body>
<div id="logobar">

Gourmet European Cheese
</div>

<div id="basket" class="cheesegroup basket">
<div class="grouptitle">Basket</div>
<div class="groupcontent">

<div class="description" data-bind="ifnot: total"s
No products selected
</divy

<table id="basketTable" data-bind="visible: total">
<thead>
<tr><th>Cheese</th><th>Subtotal</th><th></th></tr>
</thead>
<tbody data-bind="template: {name:'basketRowTmpl', foreach: items}">

</tbody>

<tfoot>
<tr><td class="sumline" colspan=2></td></tr>
<tr>

<th>Total:</th><td>$</td>

</tr>

</tfoot>

</table>

72

CHAPTER 3 * ADDING A VIEW MODEL

</div>
<div class="cornerplaceholder"></div>

<div id="buttonDiv"»
<input type="submit" value="Submit Order"/»>
<input type="reset" value="Reset"/»>
</divy
</div>

<div data-bind="template: {name: 'categoryTmpl', data: specials}"></div>
<form action="/shipping" method="post">
<div data-bind="template: {name: 'categoryTmpl', foreach: products}"></div>
</form>
</body>

I have used the ifnot binding on the div element that contains the placeholder text. KO defines a
pair of bindings, if and ifnot, that are similar to the visible binding but that add and remove elements
to the DOM, rather than simply hiding them from view. The if binding shows its elements when the
specified view model property is true-like and hides them if it is false-like. The ifnot binding is inverted;
it shows its elements when the property is true-like.

By specifying the ifnot binding with the total property, I ensure that my placeholder element is
shown only when total is zero, which happens when all of the subtotal values are zero, which happens
when all of the quantity values are zero. Once again, I am relying on KO’s ability to manage the
dependencies between observable data items to get the effect I require.

I'want the table element to be invisible when the placeholder is showing, so I have used the visible
binding.

I could have used the if binding, but doing so would have caused a problem. The binding to the
total property means that the table will not be shown initially, and with the if binding, the element
would have been removed from the DOM. This means that the a elements would also not be present
when I try to select them to set up the remove buttons. The visible binding leaves the elements in the
document for jQuery to find but hides them from the user.

You might wonder why I don’t move the jQuery selection so that it is performed before the call to
ko.applyBindings. The reason is that the a elements I want to select with jQuery are contained in the KO
template, which isn’t used to create elements until the applyBindings method is called. There is no good
way around this, and so the visible binding is required.

The only other change to the HTML elements is the addition of an input element whose type is
reset. This element is outside of the form element, so I will have to handle the click event to remove
items from the basket. Listing 3-11 shows the corresponding changes to the script element.

Listing 3-11. Enhancing the Script to Finish the Example
<script>
// ...code removed for brevity... //

$(document).ready(function() {

$('#buttonDiv input').button().css("font-family", "Yanone")
.click(function() {

73

CHAPTER 3 = ADDING A VIEW MODEL

74

if (this.type == "submit") {
$('foxrm").submit();
} else if (this.type == "reset") {
mapProducts(function(item) {
item.quantity(0);
b))

}
D;
// ...code removed for brevity... //
1);

</script>

I have shown only part of the script in the listing because the changes are quite minor. Notice how I
am able to use jQuery and plain JavaScript to manipulate the view model. I don’t need to add any code
for the basket placeholder, since it will be managed by KO. In fact, all I need do is widen the jQuery
selection so that I create jQuery UI button widgets for both the submit and reset input elements and add
a click handler function. In the function I submit the form or change the quantity values to zero
depending on which button the user clicks. You can see the placeholder for the basket in Figure 3-7.

stiton $(6) [N No products selecied

Tomme de Savoie $(16) N

Figure 3-7. Using a placeholder when the basket is empty

You will have to load the examples in a browser if you want to see how the buttons work. The easiest
way to do this is to use the source code download that accompanies this book and that is available
without charge at Apress.com.

Summary

In this chapter, I showed you how to embrace the kind of design philosophy that you may have
previously used in desktop or server-side development, or at least as much of that philosophy as makes
sense for your project.

By adding a view model to my web app, I was able to create a much more dynamic version of the
example application; it’s one that is more scalable, easier to test and maintain, and makes changes and
enhancement a breeze.

You may have noticed that the shape of a structured web application changes so that there is a lot
more code relative to the amount of HTML markup. This is a good thing, because it puts the complexity

CHAPTER 3 * ADDING A VIEW MODEL

of the application where you can better understand, test, and modify it. The HTML becomes a series of
views or templates for your data, driven from the view model via the structure library. I cannot
emphasize the benefits of embracing this approach enough; it really does set the foundation for
professional-level web apps and will make creating, enhancing, and maintaining your projects simpler,
easier, and more enjoyable.

75

CHAPTER 4

Using URL Routing

In this chapter, I will show you how to add another server-side concept to your web app: URL routing.
The idea behind URL routing is very simple: we associate JavaScript functions with internal URLs. An
internal URL is one that is relative to the current document and contains a hash fragment. In fact, they
are usually expressed as just the hash fragment on its own, such as #summary.

Under normal circumstances, when the user clicks a link that points to an internal URL, the browser
will see whether there is an element in the document that has an id attribute value that matches the
fragment and, if there is, scroll to make that element visible.

When we use URL routing, we respond to these navigation changes by executing JavaScript
functions. These functions can show and hide elements, change the view model, or perform other tasks
you might need in your application. Using this approach, we can provide the user with a mechanism to
navigate through our application.

We could, of course, use events. The problem is, once again, scale. Handling events triggered by
elements is a perfectly workable and acceptable approach for small and simple web applications. For
larger and more complex apps, we need something better, and URL routing provides a nice approach
that is simple, is elegant, and scales well. Adding new functional areas to the web app, and providing
users with the means to use them, becomes incredibly simple and robust when we use URLs as the
navigation mechanism.

Building a Simple Routed Web Application

The best way to explain URL routing is with a simple example. Listing 4-1 shows a basic web application
that relies on routing.

Listing 4-1. A Simple Routed Web Application

<!DOCTYPE html>
<html>
<head>
<title>Routing Example</title>
<link rel="stylesheet" type="text/css" href="jquery-ui-1.8.16.custom.css"/>
<link rel="stylesheet" type="text/css" href="styles.css"/>
<script src="jquery-1.7.1.js" type="text/javascript"></script>
<script src="jquery-ui-1.8.16.custom.js" type="text/javascript"></script>
<script src="knockout-2.0.0.js' type='text/javascript'></script>
<script src='utils.js' type="text/javascript'></script>
<script src="signals.js' type='text/javascript'></script>
<script src="crossroads.js' type='text/javascript'></script>
<script src="hasher.js' type='text/javascript'></script>

77

CHAPTER 4 = USING URL ROUTING

<script>
var viewModel = {
items: ["Apple", "Orange", "Banana"],
selectedItem: ko.observable("Apple")

};

$(document).ready(function() {
ko.applyBindings(viewModel);

$('div.catSelectors").buttonset();

hasher.initialized.add(crossroads.parse, crossroads);
hasher.changed.add(crossroads.parse, crossroads);
hasher.init();

crossroads.addRoute("select/Apple", function() {
viewModel.selectedItem("Apple");

5
crossroads.addRoute("select/Orange", function() {
viewModel.selectedItem("Orange");

5
crossroads.addRoute("select/Banana"”, function() {
viewModel.selectedItem("Banana");

1;
h;

</script>
</head>
<body>
<div class="catSelectors" data-bind="foreach: items">
<a data-bind="formatAttr: {attr: 'href', prefix: '#select/', value: $data},
css: {selectedItem: ($data == viewModel.selectedItem())}">

</div>
<div data-bind="foreach: items">
<div class="item" data-bind="fadeVisible: $data == viewModel.selectedItem()">
The selected item is:
</div>
</div>
</body>
</html>

This is a relatively short listing, but there is a lot going on, so I'll break things down and explain the
moving parts in the sections that follow.

Adding the Routing Library

Once again, I am going to use a publically available library to get the effect I require. There are a few URL
routing libraries around, but the one that I like is called Crossroads. It is simple, reliable, and easy to use.
It has one drawback, which is that it depends on two other libraries by the same author. I like to see
dependencies rolled into a single library, but this is not a universally held preference, and it just means
that we have to download a couple of extra files. Table 4-1 lists the projects and the JavaScript files that

78

CHAPTER 4 = USING URL ROUTING

we require from the download archives, which should be copied into the Node.js server content
directory. (All three files are part of the source code download for this book if you don’t want to
download these files individually. The download is freely available at Apress.com.)

Table 4-1. Crossroads JavaScript Libraries

Library Name URL Required File
Crossroads http://millermedeiros.github.com/crossroads.js/ crossroads.js
Signals http://millermedeiros.github.com/js-signals/ signals.js

Hasher https://github.com/millermedeiros/hasher/ hasher.js

I added Crossroads, its supporting libraries, and my new cheeseutils. js file into the HTML
document using script elements:

<script src="jquery-1.7.1.js" type="text/javascript"></script>

<script src="jquery-ui-1.8.16.custom.js" type="text/javascript"></script>
<script src="knockout-2.0.0.js' type="text/javascript'></script>

<script src="utils.js' type='text/javascript'></script>

<script src='signals.js' type='text/javascript's</scripts

<script src='crossroads.js' type='text/javascript's</script>

<script src="hasher.js' type='text/javascript's</scripts

<script>

Adding the View Model and Content Markup

URL routing works extremely well when combined with a view model in a web application. For this
initial application, I have created a very simple view model, as follows:

var viewModel = {
items: ["Apple", "Orange", "Banana"],
selectedItem: ko.observable("Apple")
};

There are two properties in the view model. The items property refers to an array of three strings.
The selectedItem property is an observable data item that keeps track of which item is presently
selected. I use these values with data bindings to generate the content in the document, like this:

<div data-bind="foreach: items">
<div class="item" data-bind="fadeVisible: $data == viewModel.selectedItem()">
The selected item is:
</div>
</div>

The bindings that KO supports by default are pretty basic, but it is easy to create custom ones, which
is exactly what I have done for the fadeVisible binding referred to in the listing. Listing 4-2 shows the

79

http://millermedeiros.github.com/crossroads.js/
http://millermedeiros.github.com/js-signals/
https://github.com/millermedeiros/hasher/

CHAPTER 4 = USING URL ROUTING

80

definition of this binding, which I have placed in a file called utils. js (which you can see imported in a
script element in Listing 4-1). There is no requirement to use an external file; I have used one because I
intend to employ this binding again when I add routing to the CheeseLux example later in the chapter.

Listing 4-2. Defining a Custom Binding
ko.bindingHandlers.fadeVisible = {

init: function(element, accessor) {
$(element)[accessor() ? "show" : "hide"]();

1

update: function(element, accessor) {
if (accessor() & $(element).is(":hidden")) {
var siblings = $(element).siblings(":visible");
if (siblings.length) {
siblings.fadeOut("fast", function() {
$(element).fadeIn("fast");
b

} else {
$(element).fadeIn("fast");

Creating a custom binding is as simple as adding a new property to the ko.bindinghandlers object;
the name of the property will be the name of the new binding. The value of the property is an object with
two methods: init and update. The init method is called when ko.applyBindings is called, and the
update method is called when observable data items that the binding depends on change.

The arguments to both methods are the element to which the binding has been applied to and an
accessor object that provides access to the binding argument. The binding argument is whatever follows
the binding name:

data-bind="fadeVisible: $data == viewModel.selectedItem()"

I have used $data in my binding argument. When using a foreach binding, $data refers to the
current item in the array. I check this value against the selectedItem observable data item in the view
model. I have to refer to the observable through the global variable because it is not within the context of
the foreach binding, and this means I need to treat the observable like a function to get the value. When
KO calls the init or update method of my custom binding, the expression in the binding argument is
resolved, and the result of calling accessor () is true.

In my custom binding, the init method uses jQuery to show or hide the element to which the
binding has been applied based on the accessor value. This means that only the elements that
correspond to the selectedItem observable are displayed.

The update method works differently. I use jQuery effects to animate the transition from one set of
elements to another. If the update method is being called for the elements that should be displayed, I
select the elements that are presently visible and call the fadeOut method. This causes the elements to
gradually become transparent and then invisible; once this has happened, I then use fadeIn to make the
required elements visible. The result is a smooth transition from one set of elements to another.

CHAPTER 4 = USING URL ROUTING

Adding the Navigation Markup

I generate a set of a elements to provide the user with the means to select different items; in my simple
application, these form the navigation markup. Here is the markup:

<div class="catSelectors" data-bind="foreach: items">
<a data-bind="formatAttr: {attr: 'href', prefix: '#iselect/', value: $data},
css: {selectedItem: ($data == viewModel.selectedItem())}">
<span data-bind="text: $data"»
</a
</div>

As I mentioned in Chapter 3, the built-in KO bindings simply insert values into the markup. Most of
the time, this can be worked around by adding span or div elements to provide structure to which
bindings can be attached. This approach doesn’t work when it comes to attribute values, which is a
problem when using URL routing. What I want is a series of a elements whose href attribute contains a
value from the view model, like this:

Apple

I can’t get the result I want from the standard attr binding, so I have created another custom one.
Listing 4-3 shows the definition of the formatAttr binding. I'll be using this binding later, so I have
defined it in the util. js file, alongside the fadeVisible binding.

Listing 4-3. Defining the formatAttr Custom Binding

function composeString(bindingConfig) {
var result = bindingConfig.value;
if (bindingConfig.prefix) { result = bindingConfig.prefix + result; }
if (bindingConfig.suffix) { result += bindingConfig.suffix;}
return result;

}

ko.bindingHandlers.formatAttr = {
init: function(element, accessor) {
$(element).attr(accessor().attr, composeString(accessor()));

)
update: function(element, accessor) {
$(element).attr(accessor().attr, composeString(accessox()));

The functionality of this binding comes through the accessor. The binding argument I have used on
the element is a JavaScript object, which becomes obvious with some judicious reformatting:

formatAttr:
{attr: 'href',
prefix: '#select/’,
value: $data

)
css: {selectedItem: ($data == viewModel.selectedItem())}

KO resolves the data values before passing this object to my init or update methods, giving me
something like this:

81

CHAPTER 4 = USING URL ROUTING

82

{attr: "href',
prefix: '#select/',
value: Apple}

I use the properties of this object to create the formatted string (using the composeString function I
defined alongside the custom binding) to combine the content of value property with the value of the
prefix and suffix properties if they are defined.

There are two other bindings. The css binding applies and removes a CSS class; I use this binding to
apply the selectedItem class. This creates a simple toggle button, showing the user which button is
clicked. The text binding is applied to a child span element. This is to work around a problem where
jQuery UI and KO both assume control over the contents of the a element; applying the text attribute to
a nested element avoids this conflict. I need this workaround because I use jQuery UI to create button
widgets from the navigation elements, like this:

<script>
var viewModel = {
items: ["Apple", "Orange", "Banana"],
selectedItem: ko.observable("Apple")

};

$(document).ready(function() {
ko.applyBindings(viewModel);

$('div.catSelectors').buttonset();

... other statements removed for brevity...

};

</script>

By applying the buttonset method to a container element, I am able to create a set of buttons from
the child a elements. I have used buttonset, rather than button, so that jQuery UI will style the elements
in a contiguous block. You can see the effect that this creates in Figure 4-1.

[= | B |

() Routing Example

€ & cheeselux.com o A

> o

Figure 4-1. The basic application to which routing is applied

There is no space between buttons created by the buttonset method, and the outer edges of the set
are nicely rounded. You can also see one of the content elements in the figure. The idea is that clicking
one of the buttons will allow the user to display the corresponding content item.

CHAPTER 4 = USING URL ROUTING

Applying URL Routing

I have almost everything in place: a set of navigational controls and a set of content elements. I now
need to tie them together, which I do by applying the URL routing:

<script>
var viewModel = {
items: ["Apple", "Orange", "Banana"],
selectedItem: ko.observable("Apple")
};

$(document).ready(function() {
ko.applyBindings(viewModel);

$('div.catSelectors').buttonset();

hasher.initialized.add(crossroads.parse, crossroads);
hasher.changed.add(crossroads.parse, crossroads);
hasher.init();

crossroads.addRoute("select/Apple”, function() {
viewModel.selectedItem("Apple");
H
crossroads.addRoute("select/Orange"”, function() {
viewModel.selectedItem("Orange");
s
crossroads.addRoute("select/Banana”, function() {
viewModel.selectedItem("Banana");
H
1

</script>

The first three of the highlighted statements set up the Hasher library so that it works with
Crossroads. Hasher responds to the internal URL change through the location.hash browser object and
notifies Crossroads when there is a change.

Crossroads examines the new URL and compares it to each of the routes it has been given. Routes
are defined using the addRoute method. The first argument to this method is the URL we are interested
in, and the second argument is a function to execute if the user has navigated to that URL. So, for
example, if the user navigates to #select/Apple, then the function that sets the selectedItem observable
in the view model to Apple will be executed.

Tip We don’t have to specify the # character when using the addRoute method because Hasher removes it
before notifying Crossroads of a change.

In the example, I have defined three routes, each of which corresponds to one of the URLs that I
created using the formatAttr binding on the a elements.

83

CHAPTER 4 = USING URL ROUTING

84

This is at the heart of URL routing. You create a set of URL routes that drive the behavior of the web
app and then create elements in the document that navigate to those URLs. Figure 4-2 shows the effect
of such navigation in the example.

(|

(7)) Routing Example : [..: = |:§§...|
:j Routing Example

& G" cheeselux.com

& cheeselux.com : . kAN

Figure 4-2. Navigating through the example web app

When the user clicks a button, the browser navigates to the URL specified by the href attribute of
the underlying a element. This navigation change is detected by the routing system, which triggers the
function that corresponds to the URL. The function changes the value of an observable item in the view
model, and that causes the elements that represent the selected item to be displayed by the user.

The important point to understand is that we are working with the browser’s navigation
mechanism. When the user clicks one of the navigation elements, the browser moves to the target URL;
although the URL is within the same document, the browser’s history and URL bar are updated, as you
can see in the figure.

This confers two benefits on a web application. The first is that the Back button works the way that
most users expect it to work. The second is that the user can enter a URL manually and navigate to a
specific part of the application. To see both of these behaviors in action, follow these steps:

1. Load the listing in the browser.

2. Click the Orange button.

3. Enter cheeselux.com/#select/Banana into the browser’s URL bar.
4. Click the browser’s Back button.

When you clicked the Orange button, the Orange item was selected, and the button was highlighted.
Something similar happens for the Banana item when you entered the URL. This is because the
navigation mechanism for the application is now mediated by the browser, and this is how we are able
to use URL routing to decouple another aspect of the application.

The first benefit is, to my mind, the most useful. When the user clicks the Back button, the browser
navigates back to the last visited URL. This is a navigation change, and if the previous URL is within our
document, the new URL is matched against the set of routes defined by the application. This is an
opportunity to unwind the application state to the previous step, which in the case of the sample
application displays the Orange button. This is a much more natural way of working for a user, especially
compared to using regular events, where clicking the Back button tends to navigate to the site the user
visited before our application.

CHAPTER 4 = USING URL ROUTING

Consolidating Routes

In the previous example, I defined each route and the function it executed separately. If this were the
only way to define routes, a complex web app would end up with a morass of routes and functions, and
there would be no advantage over regular event handling. Fortunately, URLs routing is very flexible, and
we can consolidate our routes with ease. I describe the techniques available for this in the sections that
follow.

Using Variable Segments

Listing 4-4 shows how easy it is to consolidate the three routes from the earlier demonstration into a
single route.

Listing 4-4. Consolidating Routes

<script>
var viewModel = {
items: ["Apple", "Orange", "Banana"],
selectedItem: ko.observable("Apple")

};

$(document).ready(function() {
ko.applyBindings(viewModel);

$('div.catSelectors').buttonset();

hasher.initialized.add(crossroads.parse, crossroads);
hasher.changed.add(crossroads.parse, crossroads);
hasher.init();

crossroads.addRoute("select/{item}", function(item) {
viewModel.selectedItem(item);

N;
1)
</script>

The path section of a URL is made up of segments. For example, the URL path select/Apple has two
segments, which are select and Apple. When I specify a route, like this:

/select/Apple

the route will match a URL only if both segments match exactly. In the listing, I have been able to
consolidate my routes by adding a variable segment. A variable segment allows a route to match a URL
that has any value for the corresponding segment. So, to be clear, all of the navigation URLs in the
simple web app will match my new route:

select/Apple
select/Orange
select/Banana

The first segment is still static, meaning that only URLs whose first segment is select will match, but
I'have essentially added a wildcard for the second segment.

85

CHAPTER 4 = USING URL ROUTING

86

So that I can respond appropriately to the URL, the content of the variable segment is passed to my
function as an argument. I use this argument to change the value of the selectedItem observable in the
view model, meaning that a URL of /select/Apple results in a call like this:

viewModel.selectedItem('Apple');
and a URL of select/Cherry will result in a call like this:
viewModel.selectedItem('Cherry');

Dealing with Unexpected Segment Values

That last URL is a problem. There isn’t an item called Cherry in my web app, and setting the view model
observable to this value will create an odd effect for the user, as shown in Figure 4-3.

-

O Routing Example
& C' (D cheeselux.com/? - o\

w o

Figure 4-3. The result of an unexpected variable segment value

The flexibility that comes with URL routing can also be a problem. Being able to navigate to a
specific part of the application is a useful tool for the user, but, as with all opportunities for the user to
provide input, we have to guard against unexpected values. For my example application, the simplest
way to validate variable segment values is to check the contents of the array in the view model, as shown
in Listing 4-5.

Listing 4-5. Ignoring Unexpected Segment Values

crossroads.addRoute("select/{item}", function(item) {
if (viewModel.items.indexOf(item) » -1) {
viewModel.selectedItem(item);
}

1;
In this listing, I have taken the path of least resistance, which is to simply ignore unexpected values.

There are lots of alternative approaches. I could have displayed an error message or, as Listing 4-6
shows, embraced the unexpected value and added it to the view model.

CHAPTER 4 = USING URL ROUTING

Listing 4-6. Dealing with Unexpected Values by Adding Them to the View Model

<script>
var viewModel = {
items: ko.observableArray(["Apple", "Orange", "Banana"]),
selectedItem: ko.observable("Apple")

};

$(document).ready(function() {
ko.applyBindings(viewModel);

$('div.catSelectors').buttonset();

hasher.initialized.add(crossroads.parse, crossroads);
hasher.changed.add(crossroads.parse, crossroads);
hasher.init();

crossroads.addRoute("select/{item}", function(item) {
if (viewModel.items.index0Of(item)== -1) {
viewModel.items.push(item);
$('div.catSelectors').buttonset();

viewModel.selectedItem(item);

};
};

</script>

If the value of the variable segment isn’t one of the values in the items array in the view model, then
I use the push method to add the new value. I changed the view model so that the items array is an
observable item using the ko.observableArray method. An observable array is like a regular observable
data item, except that bindings such as foreach are updated when the content of the array changes.
Using an observable array means that adding an item causes Knockout to generate content and
navigation elements in the document.

The last step in this process is to call the jQuery UI buttonset method again. KO has no knowledge
of the jQuery Ul styles that are applied to an a element to create a button, and this method has to be
reapplied to get the right effect. You can see the result of navigating to #select/Cherry in Figure 4-4.

-
O Routing Example

-~ c cheeselux.com/#sele ¢ w oA

" A

Figure 4-4. Incorporating unexpected segment values into the application state

87

CHAPTER 4 = USING URL ROUTING

88

Using Optional Segments

The limitation of variable segments is that the URL must contain a segment value to match a route. For
example, the route select/{item} will match any two-segment URL where the first segment is select,
but it won’t match select/Apple/Red (because there are too many segments) or select (because there
are too few segments).

We can use optional segments to increase the flexibility of our routes. Listing 4-7 shows the
application on an optional segment to the example.

Listing 4-7. Using an Optional Segment in a Route

crossroads.addRoute("select/:item:", function(item) {
if (litem) {
item = "Apple";
} else if (viewModel.items.indexOf(item)== -1) {
viewModel.items.push(item);
$('div.catSelectors').buttonset();

viewModel.selectedItem(item);

1

To create an optional segment, I simply replace the brace characters with colons so that {item}
becomes :item:. With this change, the route will match URLs that have one or two segments and where
the first segment is select. If there is no second segment, then the argument passed to the function will
be null. In my listing, I default to the Apple value if this is the case. A route can contain as many static,
variable, and optional segments as you require. I will keep my routes simple in this example, but you can
create pretty much any combination you require.

Adding a Default Route

With the introduction of the optional segment, my route will match one- and two-segment URLs. The
final route I want to add is a default route, which is one that will be invoked when there are no segments
in the URL at all. This is required to complete the support for the Back button. To see the problem I am
solving, load the listing into the browser, click one of the navigation elements, and then hit the Back
button. You can see the effect—or, rather, the lack of an effect—in Figure 4-5.

- : Iy

o

(| | __i

() Routing Example

— () Routing Example

<« > cheeselux.com Rdis. ¢

Figure 4-5. Navigating back to the application starting point

CHAPTER 4 = USING URL ROUTING

The application doesn’t reset to its original state when the Back button is clicked. This happens only
when clicking the Back button takes the browser back to the base URL for the web app (which is
http://cheeselux.comin my case). Nothing happens because the base URL doesn’t match the routes
that the application defines. Listing 4-8 shows the addition of a new route to fix this problem.

Listing 4-8. Adding a Route for the Base URL

<script>
var viewModel = {
items: ko.observableArray(["Apple", "Orange", "Banana"]),
selectedItem: ko.observable("Apple")

};

$(document).ready(function() {
ko.applyBindings(viewModel);

$('div.catSelectors').buttonset();
hasher.initialized.add(crossroads.parse, crossroads);
hasher.changed.add(crossroads.parse, crossroads);

hasher.init();

crossroads.addRoute("select/:item:", function(item) {

if (litem) {
item = "Apple";
} else if (viewModel.items.indexOf(item)== -1) {

viewModel.items.push(item);
$('div.catSelectors').buttonset();

viewModel.selectedItem(item);

1

crossroads.addRoute("", function() {
viewModel.selectedItem("Apple");
h

};

</script>

This route contains no segments of any kind and will match only the base URL. Clicking the Back
button until the base URL is reached now causes the application to return to its initial state. (Well, it
returns sort of back to its original state; later in this chapter I'll explain a wrinkle in this approach and
show you how to improve upon it.)

Adapting Event-Driven Controls to Navigation

It is not always possible to limit the elements in a document so that all navigation can be handled
through a elements. When adding JavaScript events to a routed application, I follow a simple pattern
that bridges between URL routing and conventional events and that gives me a lot of the benefits of

89

http://cheeselux.com

CHAPTER 4 = USING URL ROUTING

routing and lets me use other kinds of elements as well. Listing 4-9 shows this pattern applied to some
other element types.

Listing 4-9. Bridging Between URL Routing and JavaScript Events

<script>
var viewModel = {
items: ko.observableArray(["Apple", "Orange", "Banana"]),
selectedItem: ko.observable("Apple")

};

$(document).ready(function() {
ko.applyBindings(viewModel);

$('div.catSelectors').buttonset();

hasher.initialized.add(crossroads.parse, crossroads);
hasher.changed.add(crossroads.parse, crossroads);
hasher.init();

crossroads.addRoute("select/:item:", function(item) {
if (litem) {
item = "Apple";
} else if (viewModel.items.indexOf(item)== -1) {
viewModel.items.push(item);
$('div.catSelectors").buttonset();

}
if (viewModel.selectedItem() != item) {
viewModel.selectedItem(item);

}
};

crossroads.addRoute("", function() {
viewModel.selectedItem("Apple");
1)

$('[data-url]').live("change click", function(e) {
var target = $(e.target).attr("data-url");
if (e.target.tagName == 'SELECT') {
target += $(e.target).children("[selected]").val();

if (location.hash != target) {
location.replace(target);

1))
1

</script>

The technique here is to add a data-url attribute to the elements whose events should result in a
navigation change. I use jQuery to handle the change and click events for elements that have the data-

90

CHAPTER 4 = USING URL ROUTING

url attribute. Handling both events allows me to cater for the different kinds of input elements. I use the
live method, which is a neat jQuery feature that relies on event propagation to ensure that events are
handled for elements that are added to the document after the script has executed; this is essential when
the set of elements in the document can be altered in response to view model changes. This approach
allows me to use elements like this:

<div class="eventElemContainer" data-bind="foreach: items">
<label data-bind="attr: {for: $data}">

<input type="radio" name="item" data-bind="attr: {id: $data},
formatAttr: {attr: 'data-url', prefix: '#iselect/', value: $data}">
</label>
</div>

This markup generates a set of radio buttons for each element in the view model items array. I
create the value for the data-url attribute with my custom formatAttr data binding, which I described
earlier. The select element requires some special handling because while the select element triggers
the change event, the information about which value has been selected is derived from the child option
elements. Here is some markup that creates a select element that works with this pattern:

<div class="eventElemContainer">
<select name="eventItemSelect" data-bind="foreach: items,
attr: {'data-url': '#select/'}">
<option data-bind="value: $data, text: $data,
selected: $data == viewModel.selectedItem()">
</option>
</select>
</div>

Part of the target URL is in the data-url attribute of the select element, and the rest is taken from
the value attribute of the option elements. Some elements, including select, trigger both the click and
change events, so I check to see that the target URL differs from the current URL before using
location.replace to trigger a navigation change. Listing 4-10 shows how this technique can be applied
to select elements, buttons, radio buttons, and check boxes.

Listing 4-10. Bridging Between Events and Routing for Different Kinds of Elements

<!DOCTYPE html>
<html>
<head>
<title>Routing Example</title>
<link rel="stylesheet" type="text/css" href="jquery-ui-1.8.16.custom.css"/>
<link rel="stylesheet" type="text/css" href="styles.css"/>
<script src="jquery-1.7.1.js" type="text/javascript"></script>
<script src="jquery-ui-1.8.16.custom.js" type="text/javascript"></script>
<script src="knockout-2.0.0.js' type="text/javascript'></script>
<script src="utils.js' type='text/javascript'></script>
<script src="signals.js' type='text/javascript'></script>
<script src='crossroads.js' type='text/javascript'></script>

91

CHAPTER 4 = USING URL ROUTING

<script src="hasher.js' type='text/javascript'></script>
<script>
var viewModel = {
items: ko.observableArray(["Apple", "Orange", "Banana"]),
selectedItem: ko.observable("Apple")
};

$(document).ready(function() {
ko.applyBindings(viewModel);

$('div.catSelectors').buttonset();

hasher.initialized.add(crossroads.parse, crossroads);
hasher.changed.add(crossroads.parse, crossroads);
hasher.init();

crossroads.addRoute("select/:item:", function(item) {
if (litem) {
item = "Apple";
} else if (viewModel.items.indexOf(item)== -1) {
viewModel.items.push(item);
$('div.catSelectors").buttonset();

}

if (viewModel.selectedItem() != item) {
viewModel.selectedItem(item);

}

B;

crossroads.addRoute("", function() {
viewModel.selectedItem("Apple");
b

$('[data-url]').live("change click", function(e) {
var target = $(e.target).attr("data-url");
if (e.target.tagName == 'SELECT') {
target += $(e.target).children("[selected]").val();

if (location.hash != target) {
location.replace(target);
}

1))
};

</script>
</head>
<body>
<div class="catSelectors" data-bind="foreach: items">
<a data-bind="formatAttr: {attr: 'href', prefix: '#select/', value
css: {selectedItem: ($data == viewModel.selectedItem())}">

</div>
<div data-bind="foreach: items">

92

: $data},

CHAPTER 4

<div class="item" data-bind="fadeVisible: $data == viewModel.selectedItem()">
The selected item is:
</div>
</div>

<div class="eventElemContainer"s
<select name="eventItemSelect" data-bind="foreach: items,
attr: {'data-url’: '#iselect/'}"s
<option data-bind="value: $data, text: $data,
selected: $data == viewModel.selectedItem()">
</optiony
</select>
</div>

<div class="eventElemContainer" data-bind="foreach: items"»
<input type="button" data-bind="value: $data,
formatAttr: {attr: 'data-url', prefix: '#select/', value: $data}" />
</divy

<div class="eventElemContainer" data-bind="foreach: items"»
<label data-bind="attr: {for: $data}">
<span data-bind="text: $data"s
<input type="checkbox" data-bind="attr: {id: $data},
formatAttr: {attr: 'data-url', prefix: '#select/', value: $data}"»
</1abels»
</divy

<div class="eventElemContainer" data-bind="foreach: items"»
<label data-bind="attr: {for: $data}"»
<span data-bind="text: $data"»</spany
<input type="radio" name="item" data-bind="attr: {id: $data},
formatAttr: {attr: 'data-url', prefix: '#select/', value: $data}"»
</labely
</divy

</body>
</html>

USING URL ROUTING

I have defined another custom binding to correctly set the selected attribute on the appropriate

Listing 4-11. The Selected Data Binding

ko.bindingHandlers.selected = {

init: function(element, accessor) {
if (accessor()) {
$(element).siblings("[selected]").removeAttr("selected");
$(element).attr("selected", "selected");
}

)
update: function(element, accessor) {

option element. I called this binding selected (obviously enough), and it is defined, as shown in Listing
4-11, in the utils.js file.

93

CHAPTER 4 = USING URL ROUTING

94

if (accessor()) {
$(element).siblings("[selected]").removeAttr("selected");
$(element).attr("selected", "selected");

You might be tempted to simply handle events and trigger the application changes directly. This
works, but you will have just added to the complexity of your application by taking on the overhead or
creating and managing routes and keeping track of which events from which elements trigger difference
state changes. My recommendation is to focus on URL routing and use bridging, as described here, to
funnel events from elements into the routing system.

Using the HTML5 History API

The Crossroads library I have been using so far in this chapter depends on the Hasher library from the
same author to receive notifications when the URL changes. The Hasher library monitors the URL and
tells Crossroads when it changes, triggering the routing behavior.

There is a weakness in this approach, which is that the state of the application isn’t preserved as part
of the browser history. Here are some steps to demonstrate the issue:

1. Load the listing into the browser.

2. Click the Orange button.

3. Navigate directly to #select/Cherry.
4. Click the Banana button.

5. Click the Back button twice.

Everything starts off well enough. When you navigated to the #select/Cherry URL, the new item was
added to the view model and selected properly. When you clicked the Back button the first time, the
Cherry item was correctly selected again. The problem arises when you clicked the Back button for the
second time. The selected item was correctly wound back to Orange, but the Cherry item remained on
the list. The application is able to use the URL to select the correct item, but when the Orange item was
selected originally, there was no Cherry item in the view model, and yet it is still displayed to the user.

For some web applications, this won’t be a big deal, and it isn’t for this simple example, either. After
all, it doesn’t really matter if the user can select an item that they explicitly added in the first place. But
for other web apps, this is a critical issue, and making sure that the view model is correctly preserved in
the browser history is essential. We can address this using the HTML5 History API, which gives us more
access to the browser history than web programmers have previously enjoyed. We access the History API
through the windows.history or global history object. There are two aspects of the History API that I am
interested in for this situation.

CHAPTER 4 = USING URL ROUTING

Note | am not going to cover the HTML5 API beyond what is needed to maintain application state. | provide full
details in The Definitive Guide to HTML5, also published by Apress. You can read the W3C specification at
http://dev.w3.org/html5/spec (the information on the History API is in section 5.4, but this may change since
the HTML5 specification is still in draft).

The history.replaceState method lets you associate a state object with the entry in the browser’s
history for the current document. There are three arguments to this method; the first is the state object,
the second argument is the title to use in the history, and the third is the URL for the document. The
second argument isn’t used by the current generation of browsers, but the URL argument allows you to
effectively replace the URL in the history that is associated with the current document. The part I am
interested in for this chapter is the first argument, which I will use to store the contents of the
viewModel.items array in the history so thatI can properly maintain the state when the user clicks the
Back and Forward buttons.

Tip You can also insert new items into the history using the history.pushState method. This method takes
the same arguments as replaceState and can be useful for inserting additional state information.

The window browser object triggers a popstate event whenever the active history entry changes. If
the entry has state information associated with it (because the replaceState or pushState method was
used), then you can retrieve the state object through the history.state property.

Adding History State to the Example Application

Things aren’t quite as simple as you might like when it comes to using the History API; it suffers from
two problems that are common to most of the HTML5 APIs. The first problem is that not all browsers
support the History API. Obviously, pre-HTML5 browsers don’t know about the History API, but even
some browser versions that support other HTMLS5 features do not implement the History API.

The second problem is that those browsers that do implement the HTML5 API introduce
inconsistencies, which requires some careful testing. So, even as the History API helps us solve one
problem, we are faced with others. Even so, the History API is worth using, as long as you accept that it
isn’t universally supported and that a fallback is required. Listing 4-12 shows the addition of the History
API to the simple example web app.

Listing 4-12. Using the HTMLS5 History API to Preserve View Model State

<IDOCTYPE html>
<html>
<head>
<title>Routing Example</title>
<link rel="stylesheet" type="text/css" href="jquery-ui-1.8.16.custom.css"/>

95

http://dev.w3.org/html5/spec

CHAPTER 4 = USING URL ROUTING

<link rel="stylesheet" type="text/css" href="styles.css"/>
<script src="jquery-1.7.1.js" type="text/javascript"></script>
<script src="jquery-ui-1.8.16.custom.js" type="text/javascript"></script>
¢script src="modernizr-2.0.6.js" type="text/javascript"s</scripts
<script src="knockout-2.0.0.js' type='text/javascript'></script>
<script src="utils.js' type='text/javascript'></script>
<script src="signals.js' type='text/javascript'></script>
<script src="crossroads.js' type='text/javascript'></script>
<script src='hasher.js' type='text/javascript'></script>
<script>
var viewModel = {
items: ko.observableArray(["Apple", "Orange", "Banana"]),
selectedItem: ko.observable("Apple")

};

$(document).ready(function() {
ko.applyBindings(viewModel);

$('div.catSelectors').buttonset();

crossroads.addRoute("select/:item:", function(item) {

if (litem) {
item = "Apple";
} else if (viewModel.items.indexOf(item)== -1) {

viewModel.items.push(item);

}

if (viewModel.selectedItem() != item) {
viewModel.selectedItem(item);
}

$('div.catSelectors').buttonset();
if (Modernizr.history) {

history.replaceState(viewModel.items(), document.title, location);
}

};

crossroads.addRoute("", function() {
viewModel.selectedItem("Apple");
)

if (Modernizr.history) {
$(window) .bind("popstate”, function(event) {

var state = history.state ? history.state
¢ event.originalEvent.state;

if (state) {
viewModel.items.removeAll();
$.each(state, function(index, item) {

viewModel.items.push(item);

H

96

CHAPTER 4 = USING URL ROUTING

crossroads.parse(location.hash.slice(1));
D;
} else {
hasher.initialized.add(crossroads.parse, crossroads);
hasher.changed.add(crossroads.parse, crossroads);
hasher.init();

D;
</script>
</head>
<body>
<div class="catSelectors" data-bind="foreach: items">
<a data-bind="formatAttr: {attr: 'href', prefix: '#select/', value: $data},
css: {selectedItem: ($data == viewModel.selectedItem())}">

</div>
<div data-bind="foreach: items">
<div class="item" data-bind="fadeVisible: $data == viewModel.selectedItem()">
The selected item is:
</div>
</div>
</body>
</html>

Storing the Application State

The first set of changes in the listing stores the application state when the main application route
matches a URL. By responding to the URL change, I am able to preserve the state whenever the user
clicks one of the navigation elements or enters a URL directly. Here is the code that stores the state:

<script src="modernizr-2.0.6.js" type="text/javascript"></script>

crossroads.addRoute("select/:item:", function(item) {

if (litem) {
item = "Apple";
} else if (viewModel.items.indexOf(item)== -1) {

viewModel.items.push(item);

}

if (viewModel.selectedItem() != item) {
viewModel.selectedItem(item);
}

$('div.catSelectors').buttonset();
if (Modernizr.history) {

history.replaceState(viewModel.items(), document.title, location);
}

1

97

CHAPTER 4 = USING URL ROUTING

98

The new script element in the listing adds the Modernizr library to the web app. Modernizr is a
feature-detection library that contains checks to determine whether numerous HTML5 and CSS3
features are supported by the browser. You can download Modernizr and get full details of the features it
can detect at http://modernizr.com.

I don’t want to call the methods of the History API unless I am sure that the browser implements it,
so I check the value of the Modernizr.history property. A value of true means that the History API has
been detected, and a value of false means the API isn’t present.

You could write your own feature-detection tests if you prefer. As an example, here is the code
behind the Modernizr.history test:

tests['history'] = function() {
return !l (window.history && history.pushState);
};

Modernizr simply checks to see whether history.pushState is defined by the browser. I prefer to use
a library like Modernizr because the tests it performs are well-validated and updated as needed and,
further, because not all of the tests are quite so simple.

Tip Feature-detection libraries such as Modernizr don’t make any assessment of how well a feature has been
implemented. The presence of the history.pushState method indicates that the History API is present, but it
doesn’t provide any insights into quirks or oddities that may have to be reckoned with. In short, a feature-detection
library is no substitute for thoroughly testing your code on a range of browsers.

If the History API is present, then I call the replaceState method to associate the value of the view
model items array with the current URL. I can perform no action if the History API isn’t available
because there isn’t an alternative mechanism for storing state in the browser (although I could have
used a polyfill, see the sidebar for details).

USING A HISTORY POLYFILL

A polyfill is a JavaScript library that provides support for an API for older browsers. Pollyfilla, from which
the name originates, is the U.K. equivalent of the Spackle home-repair product, and the idea is that a
polyfill library smoothes out the development landscape. Polyfill libraries can also work around differences
between browser implementation features. The History API may seem like an ideal candidate for a polyfill,
but the problem is that the browser doesn’t provide any alternative means of storing state objects. The
most common workaround is to express the state as part of the URL so that we might end up with
something like this:

http://cheeselux.com/#select/Banana?items=Apple,Orange,Banana,Cherry

| don’t like this approach because | don’t like to see complex data types expressed in this way, and | think
it produces confusing URLs. But you might feel differently, or a stateful history feature may be critical to
your project. If that’s the case, then the best History API polyfill that | have found is called History.js and is
at http://github.com/balupton/history. js.

http://modernizr.com
http://cheeselux.com/#select/Banana?items=Apple
http://github.com/balupton/history.js

CHAPTER 4 = USING URL ROUTING

Restoring the Application State

Of course, storing the application state isn’t enough. I also have to be able to restore it, and that means
responding to the popstate event when it is triggered by a URL change. Here is the code:

crossroads.addRoute("select/:item:", function(item) {
...other statements removed for brevity...

if (Modernizr.history) {
$(window) .bind("popstate”, function(event) {

var state = history.state ? history.state
¢ event.originalEvent.state;

if (state) {
viewModel.items.removeAll();
$.each(state, function(index, item) {

viewModel.items.push(item);

s

crossroads.parse(location.hash.slice(1));

D;

} else {
hasher.initialized.add(crossroads.parse, crossroads);
hasher.changed.add(crossroads.parse, crossroads);
hasher.init();

}
1

IT'have used Modernizr.history to check for the API before I use the bind method to register a
handler function for the popstate event. This isn’t strictly necessary since the event simply won’t be
triggered if the API isn’t present, but I like to make it obvious that this block of code is related to the
History API.

You can see an example of catering to a browser oddity in the function that handles the popstate
event. The history.state property should return the state object associated with the current URL, but
Google Chrome doesn’t support this, and the value must be obtained from the state property of the
Event object instead. jQuery normalizes Event objects, which means that I have to use the originalEvent
property to get to the underlying event object that the browser generated, like this:

var state = history.state ? history.state: event.originalEvent.state;

With this approach I can get the state data from history.state if it is available and the event if it is
not. Sadly, using the HTML5 APIs often requires this kind of workaround, although I expect the
consistency of the various implementations will improve over time.

I can’t rely on there being a state object every time the popstate event is triggered because not all
entries in the browser history will have state associated with them.

When there is state data, I use the removeAll method to clear the items array in the view model and
then populate it with the items obtained from the state data using the jQuery each function:

99

CHAPTER 4 = USING URL ROUTING

100

if (state) {
viewModel.items.removeAll();
$.each(state, function(index, item) {
viewModel.items.push(item);

H

Once the content of the view model has been set, I notify Crossroads that there has been a change in
URL by calling the parse method. This was the function previously handled by the Hasher library, which
removed the leading # character from URLSs before passing them to Crossroads. I do the same to
maintain compatibility with the routes I defined earlier:

crossroads.parse(location.hash.slice(1));

I want to preserve compatibility because I don’t want to assume that the user has an HTML5
browser that supports the History API. To that end, if the Modernizr.history property is false, I fall back
to using Hasher so that the basic functionality of the web app still works, even if I can’t provide the state
management feature:

if (Modernizr.history) {
...History API code...

} else {
hasher.initialized.add(crossroads.parse, crossroads);
hasher.changed.add(crossroads.parse, crossroads);
hasher.init();

With these changes, I am able to use the History API when it is available to manage the state of the
application and unwind it when the user uses the Back button. Figure 4-6 shows the key step from the
sequence of tasks I had you perform at the start of this section. As the user moves back through the
history, the Cherry item disappears.

-

(%) Routing Example ir |_:l =l ""é-e"'"l|
& 9 C O cheeselux.com/#se : oA

% A

|)

Figure 4-6. Using the History API to manage changes in application state

As an aside, I chose to store the application state every time the URL changed because it allows me
to support the Forward button as well as the Back button. From the state shown in the figure, clicking
the Forward button restores the Cherry item to the view model, demonstrating that the application state
is properly preserved and restored in both directions.

CHAPTER 4 = USING URL ROUTING

Adding URL Routing to the CheeseLux Web App

I switched to a simple example in this chapter because I didn’t want to overwhelm the routing code
(which is pretty sparse) with the markup and data bindings (which can be verbose). But now that I have
explained how URL routing works, it is time to introduce it to the CheeseLux demo, as shown in

Listing 4-13.

Listing 4-13. Adding Routing to the CheeseLux Example

<!DOCTYPE html>
<html>
<head>
<title>Cheeselux</title>
<link rel="stylesheet" type="text/css" href="styles.css"/>
<script src="jquery-1.7.1.js" type="text/javascript"></script>
<script src="jquery-ui-1.8.16.custom.js" type="text/javascript"></script>
<script src="knockout-2.0.0.js' type='text/javascript'></script>
<script src="utils.js' type='text/javascript'></script>
<script src="signals.js' type='text/javascript'></script>
<script src="crossroads.js' type='text/javascript'></script>
<link rel="stylesheet" type="text/css" href="jquery-ui-1.8.16.custom.css"/>

<noscript>
<meta http-equiv="refresh" content="0; noscript.html"/>
</noscript>
<script>
var cheeseModel = {
products: [
{category: "British Cheese", items : [
{id: "stilton", name: "Stilton", price: 9},
{id: "stinkingbishop", name: "Stinking Bishop", price: 17},
{id: "cheddar", name: "Cheddar", price: 17}]},
{category: "French Cheese", items: [
{id: "camembert", name: "Camembert", price: 18},
{id: "tomme", name: "Tomme de Savoie", price: 19},
{id: "morbier", name: "Morbier", price: 9}]},
{category: "Italian Cheese", items: [
{id: "gorgonzola", name: "Gorgonzola", price: 8},
{id: "fontina", name: "Fontina", price: 11},
{id: "parmesan", name: "Parmesan", price: 16}]}]
};

$(document).ready(function() {
$('#buttonDiv input:submit').button().css("font-family", "Yanone");

cheeseModel.selectedCategory =
ko.observable(cheeseModel.products[0].category);

mapProducts(function(item) {
item.quantity = ko.observable(0);
item.subtotal = ko.computed(function() {
return this.quantity() * this.price;

101

CHAPTER 4 = USING URL ROUTING

}, item);
item.quantity.subscribe(function() {
updateState();

)
}, cheeseModel.products, "items");

cheeseModel.total = ko.computed(function() {
var total = 0;
mapProducts(function(elem) {
total += elem.subtotal();
}, cheeseModel.products, "items");
return total;

1

$('div.cheesegroup').not("#basket").css("width", "50%");
$('div.navSelectors').buttonset();

ko.applyBindings(cheeseModel);

$(window).bind("popstate", function(event) {
var state = history.state ? history.state : event.originalEvent.state;
restoreState(state);
crossroads.parse(location.hash.slice(1));

};

crossroads.addRoute("category/:newCat:", function(newCat) {
cheeseModel.selectedCategory(newCat ?
newCat : cheeseModel.products[0].category);
updateState();

1

crossroads.addRoute("remove/{id}", function(id) {
mapProducts(function(item) {
if (item.id == id) {
item.quantity(0);

}, cheeseModel.products, "items");

1

$('#basketTable a')
.button({icons: {primary: "ui-icon-closethick"},text: false});

function updateState() {
var state = {
category: cheeseModel.selectedCategory()

mépProducts(function(item) {
if (item.quantity() » 0) {
state[item.id] = item.quantity();

}, cheeseModel.products, "items");

history.replaceState(state, "",

102

CHAPTER 4

"#select/" + cheeseModel.selectedCategory());
}

function restoreState(state) {
if (state) {
mapProducts(function(item) {
item.quantity(state[item.id] ? state[item.id] : 0);
}, cheeseModel.products, "items");
cheeseModel.selectedCategory(state.category);

}
}
};

</script>
</head>
<body>
<div id="logobar">

Gourmet European Cheese
</div>

<div class="cheesegroup">
<div class="navSelectors" data-bind="foreach: products">
<a data-bind="formatAttr: {attr: 'href', prefix: '#category/",
value: category},
css: {selectedItem: (category == cheeseModel.selectedCategory())}">

</div>
</div>

<div id="basket" class="cheesegroup basket">
<div class="grouptitle">Basket</div>
<div class="groupcontent">

<div class="description" data-bind="ifnot: total">
No products selected
</div>

<table id="basketTable" data-bind="visible: total">
<thead><tr><th>Cheese</th><th>Subtotal</th><th></th></tr></thead>
<tbody data-bind="foreach: products">
<!-- ko foreach: items -->
<tr data-bind="visible: quantity, attr: {'data-prodId': id}">
<td data-bind="text: name"></td>
<td>$</td>
<td>
<a data-bind="formatAttr: {attr: 'href',
prefix: '#iremove/', value: id}">
</td>
</tr>
<l-- /ko -->
</tbody>

USING URL ROUTING

103

CHAPTER 4 = USING URL ROUTING

<tfoot>
<tr><td class="sumline" colspan=2></td></tr>
<tr>
<th>Total:</th><td>$</td>
</tr>
</tfoot>
</table>

</div>
<div class="cornerplaceholder"></div>

<div id="buttonDiv">
<input type="submit" value="Submit Order"/>
</div>
</div>

<form action="/shipping" method="post">
<!-- ko foreach: products -->
<div class="cheesegroup"
data-bind="fadeVisible: category == cheeseModel.selectedCategory()">
<div class="grouptitle" data-bind="text: category"></div>
<div data-bind="foreach: items">
<div class="groupcontent">
<label data-bind="attr: {for: id}" class="cheesename">

 $()</label>
<input data-bind="attr: {name: id}, value: quantity"/»>

($)

</div>
</div>
</div>
<!-- /ko -->
</form>
</body>
</html>

I am not going to break this listing down line by line because much of functionality is similar to
previous examples. There are, however, a couple of techniques that are worth learning and some
changes that I need to explain, all of which I'll cover in the sections that follow. Figure 4-7 shows how the
web app appears in the browser.

104

CHAPTER 4 = USING URL ROUTING

O Cheeselux

& = C (O cheeselux.com/#select/British Cheess i N

Stilton $(9) (s9) Cheese

S Stilt
Stinking Bishop $(17) ($34) St;n:?ngliishnp

theddar $(17) N Total:

Figure 4-7. Adding routing to the CheeseLux example

Moving the mapProducts Function

The first change, and the most basic, is that I have moved the mapProducts function into the util. js file.
In Chapter 9, I am going to show you how to package up this kind of function more usefully, and I don’t
want to keep recycling the same code in the listings. As I moved the function, I rewrote it so that it can
work on any set of nested arrays. Listing 4-14 shows the new version of this function.

Listing 4-14. The Revised mapProducts Function

function mapProducts(func, data, indexer) {
$.each(data, function(outerIndex, outerItem) {
$.each(outerItem[indexer], function(itemIndex, innerItem) {
func(innerItem, outerItem);
D;
D;

The two new arguments to the function are the outer nested array and the property name of the
inner array. You can see how I have used this in the main listing so that the arguments are
cheeseModel.products and items, respectively.

Enhancing the View Model

I'made two changes to the view model. The first was to define an observable data item to capture the
selected cheese category:

cheeseModel.selectedCategory = ko.observable(cheeseModel.products[0].category);

105

CHAPTER 4 = USING URL ROUTING

106

The second is much more interesting. Data bindings are not the means by which view model
changes are propagated into the web app. You can also subscribe to an observable data item and specify
a function that will be executed when the value changes. Here is the subscription I created:

mapProducts(function(item) {
item.quantity = ko.observable(0);
item.subtotal = ko.computed(function() {
return this.quantity() * this.price;
}, item);
item.quantity.subscribe(function() {
updateState();

>
}, cheeseModel.products, "items");

I subscribed to the quantity observable on each cheese product. When the value changes, the
updateState function will be executed. I'll describe this function shortly. Subscriptions are rather like
events for the view model; they can be useful in any number of situations, and I often find myself using
them when I want some task performed automatically.

Managing Application State

I want to preserve two kinds of state in this web app. The first is the selected product category, and the
second is the contents of the basket. I store state information in the browser’s history in the updateState
function, which is executed whenever my quantity subscription is triggered or the selected category
changes.

Tip The technique that | demonstrate here is a little odd when applied to a shopping basket, because web sites
will usually go to great lengths to preserve your product selections. Ignore this, if you will, and focus on the state
management technique, which is the real purpose of this section.

function updateState() {
var state = {
category: cheeseModel.selectedCategory()

m;pProducts('Function(item) {
if (item.quantity() > 0) {
state[item.id] = item.quantity();

}, cheeseModel.products, "items");
history.replaceState(state, "", "#select/" + cheeseModel.selectedCategory());

CHAPTER 4 = USING URL ROUTING

Tip This listing requires the HTMLS5 History AP, and unlike the earlier examples in this chapter, there is no
fallback to the HTML4-compatible approach taken by the Hasher library.

I create an object that has a category property that contains the name of the selected category and
one property for each individual cheese that has a nonzero quantity value. I write this to the browser
history using the replaceState method, which I have highlighted in the listing.

Something clever is happening here. To explain what I am doing—and why—we have to start with
the markup for the navigation elements that remove products from the basket. Here is the relevant
HTML:

<a data-bind="formatAttr: {attr: 'href', prefix: '#remove/', value: id}">
When the data bindings are applied, I end up with an element like this:

In Chapter 3, I removed items from the basket by handling the click event from these elements.
Now that I am using URL routing, I have to define a route, which I do like this:

crossroads.addRoute("remove/{id}", function(id) {
mapProducts(function(item) {
if (item.id == id) {
item.quantity(0);

}, cheeseModel.products, "items");

1

My route matches any two-segment URL where the first segment is remove. I use the second
segment to find the right item in the view model and change the value of the quantity property to zero.

At this point, I have a problem. I have navigated to a URL that I don’t want the user to be able to
navigate back to because it will match the route that just removes items from the basket, and that
doesn’t help me.

The solution is in the call to the history.replaceState method. When the quantity value is changed,
my subscription causes the updateState function to be called, which in turn calls history.replaceState.
The third argument is the important one:

history.replaceState(state, "", "#select/" + cheeseModel.selectedCategory());

The URL specified by this argument is used to replace the URL that the user navigated to. The
browser doesn’t navigate to the URL when it is changed, but when the user moves back through the
browser history, it is the replacement URL that will be used by the browser. Irrespective of which route
matches the URL, the history will always contain one that starts with #select/. In this way, I can use URL
routing without exposing the inner workings of my web app to the user.

107

CHAPTER 4 = USING URL ROUTING

Summary

In this chapter, I have shown you how to add URL routing to your web applications. This is a powerful
and flexible technique that separates application navigation from HTML elements, allowing for a more
concise and expressive way of handling navigation and a more testable and maintainable code base. It
can take a while to get used to using routing at the client, but it is well worth the investment of time and
energy, especially for large and complex projects.

108

CHAPTERS

Creating Offline Web Apps

The HTMLS specification includes support for the Application Cache, which is used to create web
applications that are available to users even when no network connection is available. This is ideal if
your users need to work offline or in environments where connectivity is constrained (such as on an
airplane, for example).

As with all of the more complex HTMLS5 features, using the application cache isn’t entirely smooth
sailing. There are some differences in implementations between browsers and some oddities that you
need to be aware of. In this chapter, I'll show you how to create an effective offline web application and
how to avoid various pitfalls.

Caution The browser support for offline storage is at an early stage, and there are a lot of inconsistencies. |
have tried to point out potential problems, but because each browser release tends to refine the implementation of
HTMLS5 features, you should expect to see some variations when you run the examples in this chapter.

Resetting the Example

Once again, I am going to simplify the CheeseLux example so that I am not listing reams of code that
relate to other chapters. Listing 5-1 shows the revised document.

Listing 5-1. The Reset CheeseLux Example

<!DOCTYPE html>
<html>
<head>
<title>Cheeselux</title>
<link rel="stylesheet" type="text/css" href="styles.css"/>
<script src="jquery-1.7.1.js" type="text/javascript"></script>
<script src="jquery-ui-1.8.16.custom.js" type="text/javascript"></script>
<script src="knockout-2.0.0.js' type='text/javascript'></script>
<script src="utils.js' type='text/javascript'></script>
<script src="signals.js' type='text/javascript'></script>
<script src='hasher.js' type="text/javascript'></script>
<script src='crossroads.js' type='text/javascript'></script>
<link rel="stylesheet" type="text/css" href="jquery-ui-1.8.16.custom.css"/>

109

CHAPTER 5

110

CREATING OFFLINE WEB APPS

<noscript>

<meta http-equiv="refresh" content="0; noscript.html"/>

</noscript>
<script>

var cheeseModel = {
products: [

{category: "British Cheese", items : [
{id: "stilton", name: "Stilton", price: 9},
{id: "stinkingbishop", name: "Stinking Bishop", price: 17},
{id: "cheddar", name: "Cheddar", price: 17}]},

{category: "French Cheese", items: [
{id: "camembert", name: "Camembert", price: 18},
{id: "tomme", name: "Tomme de Savoie", price: 19},
{id: "morbier", name: "Morbier", price: 9}]},

{category: "Italian Cheese", items: [
{id: "gorgonzola", name: "Gorgonzola", price: 8},
{id: "fontina", name: "Fontina", price: 11},
{id: "parmesan", name: "Parmesan", price: 16}]}]

};

$(document).ready(function() {
$('#buttonDiv input:submit').button();
$('div.navSelectors').buttonset();

enhanceViewModel();
ko.applyBindings(cheeseModel);

hasher.initialized.add(crossroads.parse, crossroads);
hasher.changed.add(crossroads.parse, crossroads);
hasher.init();

crossroads.addRoute("category/:cat:", function(cat) {
cheeseModel.selectedCategory(cat || cheeseModel.products[0].category);

}s
};

</script>

<div id="logobar">

Gourmet European Cheese

</div>

<div class="cheesegroup">

<div class="navSelectors" data-bind="foreach: products">
<a data-bind="formatAttr: {attr: 'href', prefix: '#category/',
value: category},
css: {selectedItem: (category == cheeseModel.selectedCategory())}">

</div>

CHAPTER 5 = CREATING OFFLINE WEB APPS

</div>

<form action="/shipping" method="post">
<div data-bind="foreach: products">
<div class="cheesegroup"
data-bind="fadeVisible: category == cheeseModel.selectedCategory()">
<div class="grouptitle" data-bind="text: category"></div>
<!-- ko foreach: items -->
<div class="groupcontent">
<label data-bind="attr: {for: id}" class="cheesename">

 $()</label>
<input data-bind="attr: {name: id}, value: quantity"/>

($)

</div>
<!-- /ko -->
<div class="groupcontent"s
<label class="cheesename"yTotal:</labels
<span class="subtotal" id="total"»
$</spany
</spany
</div>
</div>
</div>
<div id="buttonDiv">
<input type="submit" value="Submit Order"/>
</div>
</form>
</body>
</html>

This example builds on the view model and routing concepts from previous chapters, but I have
simplified some of the functionality. Instead of a basket, I have added a total display to the bottom of
each category of cheese. I have moved the code that creates the observable view model items into a
function called enhanceViewModel in the utils. js file. Everything else in this listing should be self-
evident.

Using the HTML5 Application Cache

The starting point for using the application cache is to create a manifest. This tells the browser which
files are required to run the application offline so that the browser can ensure that they are all present in
the cache. Manifest files have the appcache file suffix, so I have called my manifest file
cheeselux.appcache. You can see the contents of this file in Listing 5-2.

111

CHAPTER 5 = CREATING OFFLINE WEB APPS

112

Listing 5-2. A Simple Manifest File
CACHE MANIFEST

HTML document
example.html
offline.html

script files
jquery-1.7.1.]js
jquery-ui-1.8.16.custom.js
knockout-2.0.0.7s
signals.js

crossroads.js

hasher. js

utils.js

CSS files
styles.css
jquery-ui-1.8.16.custom.css

images

#blackwave.png

cheeselux.png

images/ui-bg_flat_75 eb8f00_40x100.png
images/ui-bg flat_ 75 fbbe03 40x100.png
images/ui-icons_ffffff 256x240.png
images/ui-bg flat_75_595959 40x100.png
images/ui-bg flat 65 fbbe03 40x100.png

fonts
fonts/YanoneKaffeesatz-Regular.ttf
fonts/fanwood_italic-webfont.ttf
fonts/ostrich-rounded-webfont.woff

A basic manifest file starts with the CACHE MANIFEST header and then lists all the files that the
application requires, including the HTML file whose html element contains the manifest attribute
(discussed in a moment). In the listing, I have broken the files down by type and used comments (which
are lines starting with the # character) to make it easier to figure out what’s happening.

Tip You will notice that | have commented out the entry for the blackwave.png file. | use this file to
demonstrate the behavior of a cached application in a moment.

The manifest is added to the HTML document through the manifest attribute of the html element,
as Listing 5-3 shows.

CHAPTER 5 = CREATING OFFLINE WEB APPS

Listing 5-3. Adding the Manifest to the HTML Document

<!DOCTYPE html>
<html manifest="cheeselux.appcache">
<head>
</head>
<body>
</body>
</html>
When the HTML document is loaded, the browser detects the manifest attribute, requests the
specified appcache file from the web server, and begins loading and caching each file listed in the

manifest file. The files that are downloaded when the browser processes the manifest are called the
offline content. Some browsers will prompt the user for permission to store offline content.

Caution Be careful when you create the manifest. If any of the items listed cannot be obtained from the server,
then the browser will not cache the application at all.

Understanding When Cached Content Is Used

The offline content isn’t used when it is first loaded by the browser. It is cached for the next time that the
user loads or reloads the page. The name offline content is misleading. Once the browser has offline
content for a web app, it will be used whenever the user visits the web app’s URL, even when there is a
network connection available. The browser takes responsibility for ensuring that the latest version of the
offline content is being used, but as you'll learn, this is a complicated process and requires some
programmer intervention.

I commented out the blackwave.png file in the manifest to demonstrate how the browser handles
offline content. I use blackwave.png as the background image for the CheeseLux web app, and this gives
me a nice way to demonstrate the basic behavior of a cached web application.

To start with, add the manifest attribute to the example as shown in Listing 5-3, and load the
document into your browser. Different browsers deal with cached applications in different ways. For
example, Google Chrome will quietly process the manifest and start downloading the content it
specified. Mozilla Firefox will usually prompt the user to allow offline content, as shown in Figure 5-1. If
you are using Firefox, click the Allow button to start the browser processing the manifest.

113

CHAPTER 5 = CREATING OFFLINE WEB APPS

114

= | (B [

 Cheeselux -+
&= : cheeselux.com L

g This website (cheeselux.com) is asking to store data on your computer for offline use. Allow Mever for This Site Mot Mow *

GOURMET EUROPEAN CHEESE

Figure 5-1. Firefox prompting the user to allow the web app to store data locally

Tip All of the mainstream browsers allow the user to disable cached applications, which means you cannot rely
on being able to store data even if the browser implements the feature. In such cases, the application manifest will
simply be ignored. You may need to change the configuration of your browser to cache the example content.

You should see the CheeseLux web app with the black background. At this point, the browser has
two copies of the web app. The first copy is in the regular browser cache, and this is the version that is
currently running. The second copy is in the application cache and contains the items specified in the
manifest. Simply reload the page to switch to the application cache version. When you do reload, the
background will be white, as shown in Figure 5-2.

R | [.) | (i) N

Cheeselux + 7 Cheeselux |+

cheeselux.com =i p cheeselux.com

CH E E SE I_“X GOURMET EUROPEAN CHEESE

L N e T —p— —v“ E — A---A_HT,.-.-'—-W' -~ - v'.

Figure 5-2. Switching to the application cache

The difference is caused by the fact that the blackwave.png file is commented out in the manifest.
The browser keeps the application cache and the regular cache separate, which means that even though
it has a blackwave.png file in the regular cache, it won’t use it for a cached application.

Tip Notice that you have not done anything to the network connection. The browser is still online, but the
application has been loaded using solely offline content. This is something that I'll return to soon.

CHAPTER 5 = CREATING OFFLINE WEB APPS

Accepting Changes to the Manifest

The most significant change in behavior for a cached application is that refreshing the web page doesn’t
cause the application content to be cached. The idea is that updates to a cached application need to be
managed to avoid inconsistent changes. Uncommenting the blackwave.png line in the manifest and
reloading, for example, wouldn’t change the background to black.

Listing 5-4 shows the minimum amount of code that is needed in a web app to support updates. I'll
show you how to use more of the Application Cache API later in the chapter, but we need these changes
before we can go any further.

Listing 5-4. Accepting Changes in the Manifest

<script>
var cheeseModel = {
products: [
{category: "British Cheese", items : [
{id: "stilton", name: "Stilton", price: 9},
{id: "stinkingbishop", name: "Stinking Bishop", price: 17},
{id: "cheddar", name: "Cheddar", price: 17}]},
{category: "French Cheese", items: [
{id: "camembert", name: "Camembert", price: 18},
{id: "tomme", name: "Tomme de Savoie", price: 19},
{id: "morbier", name: "Morbier", price: 9}]},
{category: "Italian Cheese", items: [
{id: "gorgonzola", name: "Gorgonzola", price: 8},
{id: "fontina", name: "Fontina", price: 11},
{id: "parmesan", name: "Parmesan", price: 16}]}]
};

$(document).ready(function() {
$("#buttonDiv input:submit').button();
$('div.navSelectors').buttonset();

enhanceViewModel();
ko.applyBindings(cheeseModel);

hasher.initialized.add(crossroads.parse, crossroads);
hasher.changed.add(crossroads.parse, crossroads);
hasher.init();

crossroads.addRoute("category/:cat:", function(cat) {
cheeseModel.selectedCategory(cat || cheeseModel.products[0].category);

1

$(window.applicationCache).bind("updateready”, function() {
window.applicationCache.swapCache();

H
1)

</script>

115

CHAPTER 5 = CREATING OFFLINE WEB APPS

116

The HTMLS5 Application Cache API is expressed through the window.applicationCache browser
object. This object triggers events to inform the web app of changes in the cache status. The most
important for us at the moment is the updateready event, which means that there is updated cache data
available. In addition to the events, the applicationCache object defines some useful methods and
properties. Once again, I'll return to these later in the chapter, but the method I care about now is
swapCache, which applies the updated manifest and its contents to the application cache.

I am now ready to demonstrate updating a cached web application. But before I do, I must remove
the existing cached data. I have created a zombie web app by applying a manifest without adding the call
to the swapCache method, and there is no way I can get updates to take effect. I need to clear the cache
and start again. There is no way to clear the cache using JavaScript, and the browser has a different
mechanism for manually clearing application cache data. For Google Chrome, you delete the regular
browsing history. For Mozilla Firefox, you must select the Advanced » Network options tab, select the
web site from the list, and click the Remove button.

Once you have cleared the application cache, reload the listing to load the manifest and cache the
data. Reload the page again to switch to the cached version of the application (which will have the white
background).

Finally, you can uncomment the blackwave.png entry in the cheeselux.appcache file. At this point,
you will need to reload the web page twice. The first time causes the browser to check for an updated
manifest, find that there is a new version, and download the updated resources into the cache. At this
point, the updateready event is triggered, and my script calls the swapCache method, applying the updates
to the cache. Those changes don’t take effect until the next time that the web app is loaded, which is why
the second reload is required. This is an awkward approach, but I'll show you how to improve upon it
shortly. At this point, the cache will have been updated with a manifest that does include the
blackwave.png file, and the web app background will have turned black.

Tip The browser checks to see only if the manifest file has changed. Changes to individual resources, including
HTML and script files, are ignored unless the manifest also changes. If the manifest has changed, then the
browser will check to see whether the individual resources have been updated since they were last downloaded
(and, of course, will download any resources that have been added to the manifest).

Taking Control of the Cache Update Process

I took you the long way around the updates because I wanted to emphasize the way in which the
browser tries to isolate us from having to deal with an inconsistent cache. There is no standard way for a
JavaScript web app to respond to a cache change while it is running, so the HTML5 Application Cache
standard errs on the side of caution, and cache updates are applied only when the application is loaded.

CHAPTER 5 = CREATING OFFLINE WEB APPS

Caution The current implementations of the application cache are fine for use by normal users, but they tend
to struggle during the development phase when there are lots of changes to the manifest and lots of updates
applied to the cache. There will come a point where you start getting odd behavior, and no changes you make to
your manifest or your application will sort matters out. When this happens, the simplest thing to do is to clear the
browser history and application cache contents and see whether the problems persist. Most of the time, | find that
sudden changes in behavior are caused by the browser and that starting over fixes things (although this
sometimes requires clearing the files directly from the disk using the file explorer, because the browser’s ability to
manage the application cache also goes awry).

We can use the applicationCache browser object to manage a cached application in a more elegant
way. The first thing we can do is to monitor the status of the cache and present the user with some
options. Listing 5-5 shows how this can be done.

Listing 5-5. Taking Active Control of the Application Cache

<!DOCTYPE html>
<html manifest="cheeselux.appcache">
<head>
<title>Cheeselux</title>
<link rel="stylesheet" type="text/css" href="styles.css"/>
<script src="jquery-1.7.1.js" type="text/javascript"></script>
<script src="jquery-ui-1.8.16.custom.js" type="text/javascript"></script>
<script src="knockout-2.0.0.js' type="text/javascript'></script>
<script src="utils.js' type='text/javascript'></script>
<script src='signals.js' type='text/javascript'></script>
<script src="hasher.js' type='text/javascript'></script>
<script src='crossroads.js' type='text/javascript'></script>
<link rel="stylesheet" type="text/css" href="jquery-ui-1.8.16.custom.css"/>

<noscript>
<meta http-equiv="refresh" content="0; noscript.html"/>
</noscript>
<script>
var cheeseModel = {
products: [

{category: "British Cheese", items : [
{id: "stilton", name: "Stilton", price: 9},
{id: "stinkingbishop", name: "Stinking Bishop", price: 17},
{id: "cheddar", name: "Cheddar", price: 17}]},
{category: "French Cheese", items: [
{id: "camembert", name: "Camembert", price: 18},
{id: "tomme", name: "Tomme de Savoie", price: 19},
{id: "morbier", name: "Morbier", price: 9}]},
{category: "Italian Cheese", items: [
{id: "gorgonzola", name: "Gorgonzola", price: 8},

117

CHAPTER 5 = CREATING OFFLINE WEB APPS

{id: "fontina", name: "Fontina", price: 11},
{id: "parmesan", name: "Parmesan", price: 16}]}],
cache: {
status: ko.observable(window.applicationCache.status)
}

};

$(document) .ready(function() {
$('#buttonDiv input:submit').button();
$('div.navSelectors").buttonset();

enhanceViewModel();
ko.applyBindings(cheeseModel);

hasher.initialized.add(crossroads.parse, crossroads);
hasher.changed.add(crossroads.parse, crossroads);
hasher.init();

crossroads.addRoute("category/:cat:", function(cat) {

cheeseModel.selectedCategory(cat || cheeseModel.products[0].category);

};

$(window.applicationCache).bind("checking noupdate downloading " +
"progress cached updateready”, function(e) {
cheeseModel . cache.status(window.applicationCache.status);

D;
$('div.tagcontainer a').button().click(function(e) {
e.preventDefault();
if ($(this).attr("data-action") == "update") {
window.applicationCache.update();
} else {
window.applicationCache.swapCache();
window.location.reload(false);
}
D;
1;
</script>
</head>
<body>

<div id="logobar"s

<div class="tagcontainer"»
<span id="tagline"»Gourmet European Cheese</span»
<div>
<a data-bind="visible: cheeseModel.cache.status() != 4
data-action="update" class="cachelink">Check for Updates»
<a data-bind="visible: cheeseModel.cache.status() == 4"
data-action="swapCache" class="cachelink"»Apply Update</a»
</div>
</div>

118

CHAPTER 5 = CREATING OFFLINE WEB APPS

</divy

<div class="cheesegroup">
<div class="navSelectors" data-bind="foreach: products">
<a data-bind="formatAttr: {attr: 'href', prefix: '#category/',
value: category},
css: {selectedItem: (category == cheeseModel.selectedCategory())}">

</div>
</div>

<form action="/shipping" method="post">
<div data-bind="foreach: products">
<div class="cheesegroup"
data-bind="fadeVisible: category == cheeseModel.selectedCategory()">
<div class="grouptitle" data-bind="text: category"></div>
<!-- ko foreach: items -->
<div class="groupcontent">
<label data-bind="attr: {for: id}" class="cheesename">

 $()</label>
<input data-bind="attr: {name: id}, value: quantity"/>

($)

</div>
<!-- /ko -->
<div class="groupcontent">
<label class="cheesename">Total:</label>

$

</div>
</div>
</div>
<div id="buttonDiv">
<input type="submit" value="Submit Order"/>
</div>
</form>
</body>
</html>

To start with, I have added a new observable data item to the view model, which represents the state

of the application cache:

cache: {
status: ko.observable(window.applicationCache.status)
}

I am using the view model because I want to disseminate the status into the HTML markup using

data bindings. To keep the value up-to-date, I subscribe to a set of events triggered by the
window.applicationCache object, like this:

CHAPTER 5 = CREATING OFFLINE WEB APPS

$(window.applicationCache).bind("checking noupdate downloading " +
"progress cached updateready", function(e) {
cheeseModel.cache. status (window.applicationCache.status);
D;

Seven cache events are available. I have listed them in Table 5-1. I have used the bind method to
handle six of them, because the seventh, obsolete, arises only when the manifest file isn’t available from
the web server.

Table 5-1. HTML5 Application Cache Events

Event Name Description

cached The initial manifest and content for the application have been downloaded.
checking The browser is checking for an update to the manifest file.

noupdate The browser has finished checking the manifest, and there were no updates.
downloading The browser is downloading updated offline content.

progress Used by the browser to indicate download progress.

updateready The content download is complete, and there is a cache update ready.
obsolete The manifest is invalid.

T update the cache.status data item in the view model when I received an application cache event.
The current status is available from the window.applicationCache.status property, and I have described
the range of values that are returned in Table 5-2.

Table 5-2. Values Returned by the applicationCache.status Property

Value Name Description

0 UNCACHED Returned for web apps that do not specify a manifest or when there is a
manifest but the offline content has not been downloaded.

1 IDLE The cache is not performing any action. This is the default value once the
offline content has been downloaded and cached.

2 CHECKING The browser is checking for an updated manifest.

3 DOWNLOADING The browser is downloading updated offline content.

4 UPDATEREADY There is updated offline content waiting to be applied to the cache.
5 OBSOLETE The cached data is obsolete.

120

CHAPTER 5 = CREATING OFFLINE WEB APPS

As you can see, the status values correspond with some of the application cache events. For this
example, I care only about the UPDATEREADY status value, which I use to control the visibility of some a
elements I added to the logo area of the page:

<div>
<a data-bind="visible: cheeseModel.cache.status() != 4"
data-action="update" class="cachelink">Check for Updates
<a data-bind="visible: cheeseModel.cache.status() == 4"
data-action="swapCache" class="cachelink">Apply Update
</div>

When the cache is idle, I display the element that prompts the user to check for an update, and
when there is an update available, I prompt the user to install it. Figure 5-3 shows both of these buttons
in situ.

-

() Cheeselux
€« C (O cheeselux.com

CHEESELUX ST empegess

OPEAN-CHEESE

———
Figure 5-3. Adding buttons to control the cache

As you can see in the figure, I have used jQuery Ul to create buttons from the a elements. I have also
used the jQuery click method to register a handler for the click event, as follows:

$('div.tagcontainer a').button().click(function(e) {
e.preventDefault();
if ($(this).attr("data-action") == "update") {
window.applicationCache.update();
} else {
window.applicationCache.swapCache();
window.location.reload(false);
}
D;

I have used regular JavaScript events to control the cache because I want the user to be able to check
for updates repeatedly. Browsers ignore requests to navigate to the same internal URL that is being
displayed. You can see this happening if you click one of the cheese category buttons. Clicking the same
button repeatedly doesn’t do anything, and the button is effectively disabled until another category is
selected. If I had used URL routing to deal with the cache buttons, then the user would be able to check
for an update once and then not be able to do so again until they navigated to another internal URL
(which for this example would require selecting a cheese category). So, instead, I used JavaScript events
that are triggered every time the button is clicked, irrespective of the rest of the application state.

121

CHAPTER 5 = CREATING OFFLINE WEB APPS

When either cache button is clicked, I read the value of the data-action attribute. If the attribute
value is update, then I call the cache update method. This causes the browser to check with the server to
see whether the manifest has changed. If it has, then the status of the cache will change to UPDATEREADY,
and the Apply Update button will be shown to the user.

When the Apply Update button is clicked, I call the swapCache method to push the updates into the
application cache. These updates won'’t take effect until the application is reloaded, which I force by
calling the window.location.reload method. This means the updates are applied to the cache and
immediately used in response to a single action by the user. The simplest way to test these additions is to
toggle the status of the blackwave.png image in the manifest and apply the resulting update. See the
information on the cache control header if you want to test more substantial changes.

APPLICATION CACHE ENTRIES AND THE CACHE-CONTROL HEADER

Calling the applicationCache method doesn’t always cause the browser to contact the server to see
whether the manifest has changed. All of the mainstream browsers honor the HTTP Cache-Control
header and will check for updates only when the life of the manifest has expired.

Further, even if the manifest has changed, the browser honors the Cache-Control value for individual
manifest items. This can lead to a situation where an update to an HTML or script file is ignored if the
manifest changes within the Cache-Control lifetime of the affected resource.

In production, this behavior is perfectly reasonable. But during development and testing, it’s a huge pain
since changes made to the contents of HTML and script files won’t be immediately reflected in an update.
To get around this, | have set a very short cache life on the content served by the Node.js server. You'll
need to do something similar to your development servers to get the same effect.

Adding Network and Fallback Entries to the Manifest

Regular manifest entries tell the browser to proactively obtain and cache resources that the web app
requires. In addition, the application cache supports two other manifest entry types: network and
fallback entries. Network entries, also known as whitelist entries, specify a resource that the browser
should not cache. Requests for these resources will always result in a request to the server while the
browser is online. This is useful to ensure that the user always receives the latest version of a file, even
though the rest of the application is cached.

The fallback entries tell the browser what to do when the browser is offline and the user requests a
network entry. Fallback entries allow you to substitute an alternative file rather than displaying an error
to the user. Listing 5-6 shows the use of both kinds of entry in the cheeselux.appcache file.

Listing 5-6. Using a Network Entry in the Application Manifest
CACHE MANIFEST

HTML document
example.html

script files

jquery-1.7.1.]js
jquery-ui-1.8.16.custom.js

122

CHAPTER 5 = CREATING OFFLINE WEB APPS

knockout-2.0.0.]s
signals.js
crossroads.js
hasher. js
utils.js

CSS files
styles.css
jquery-ui-1.8.16.custom.css

images

blackwave.png

cheeselux.png
images/ui-bg_flat_75_eb8f00_40x100.png
images/ui-bg flat_75_fbbe03_40x100.png
images/ui-icons_ffffff 256x240.png
images/ui-bg_flat_75_595959_40x100.png
images/ui-bg_flat 65 fbbe03 40x100.png

fonts
fonts/YanoneKaffeesatz-Regular.ttf
fonts/fanwood_italic-webfont.ttf
fonts/ostrich-rounded-webfont.woff

NETWORK:
news.html

The network entries are prefixed with the word NETWORK and a colon (:). As with the regular entries,
each resource occupies a single line. In this listing, I have created a network entry for the file news .html. I
have created a button that links to this file in the example.html file, like this:

<div id="logobar">

<div class="tagcontainer">
Gourmet European Cheese

<div>
<a data-bind="visible: cheeseModel.cache.status() != 4"
data-action="update" class="cachelink">Check for Updates
<a data-bind="visible: cheeseModel.cache.status() == 4"

data-action="swapCache" class="cachelink">Apply Update
News
</div>
</div>
</div>

When the browser is online, clicking this link displays the news.html file. You can see the effect in
Figure 5-4.

123

CHAPTER 5 = CREATING OFFLINE WEB APPS

124

(D) Cheeselux
€ C

7 cheeselux.com

C) Cheeselux

e« - C
stitton $(9) I CHE
stinkingBishop $(17) G

) cheeselux.com

Cheddar $(17) m pleased Lo annouy

Holland has a rich history of cheese makin,

Total: $o

Figure 5-4. Linking to the news.html page

Because it is in the NETWORK section, the news.html file is never added to the application cache. When
I click the News button, the browser acts as it would for regular content. It contacts the server, gets the
resources, and adds them to the regular (nonapplication) cache, before showing them to the user. I can
make changes to the news.html file, and they will be displayed to the user even when the application
cache hasn’t been updated.

When the browser goes offline, there is no way to get hold of the content that is not in the
application cache. This is where the FALLBACK entries come in. The format of these entries is different
from the others.

Caution Browsers take different views about what being offline means. | explain more about this in the
“Monitoring Offline Status” section later in this chapter.

The first part specifies a prefix for resources, and the second part specifies a file to use when a
resource that matches the prefix is requested while the browser is offline. So, in Listing 5-7, I have set the
manifest so that any request to any URL (represented by /) should be given the file offline.html instead.

CHAPTER 5 = CREATING OFFLINE WEB APPS

Listing 5-7. Using a Fallback Entry in the Application Manifest

fonts
fonts/YanoneKaffeesatz-Regular.ttf
fonts/fanwood_italic-webfont.ttf
fonts/ostrich-rounded-webfont.woff

FALLBACK:
/ offline.html

Tip Browsers handle fallback for resources in the network inconsistently. You should not rely on the fallback
section to provide substitute content for URLs that are listed in the network section, only those that are in the main
part of the manifest. Support for providing fallbacks for individual files is also inconsistent, which is why | have
used the broadest possible fallback in the examples for this chapter. | expect the reliability and consistency of
these features to improve as the HTML5 implementations stabilize.

When the browser is offline, clicking the News button triggers a request for a URL that the browser
cannot service from the application cache, and the fallback entry is used instead. You can see the result
in Figure 5-5. The URL in the browser address bar shows the URL that was requested, but the content
that is shown is from the fallback resource.

=15 [

() Cheesela

«>C

=) cheeselux.com

CHEESELUN o

() Cheeselux

Stﬂt {9] - CH EE

stinking Bishop $(17) [

cheeselwecom

theddar$(27) (NI

Total: S0

Figure 5-5. Using the fallback entry

125

CHAPTER 5 = CREATING OFFLINE WEB APPS

126

The HTMLS5 Application Cache specification provides support for more complex fallback entries,
including per-URL fallbacks and the use of wildcards. However, as I write this, Google Chrome doesn’t
support these entries, and a general fallback, such as I have shown in the listing, is all that can be reliably
used.

The specification for the HTML5 Application Cache feature is ambiguous about whether the
browser should use the regular content cache to satisfy requests for network entry resources. And, of
course, different approaches have been adopted. Google Chrome takes the most literal interpretation of
the standard. When the browser is offline, network entry resources are not available to the web app.
Mozilla Firefox and Opera take a more forgiving approach: if the resource is in the main browser cache
when the browser goes offline, it will be available to the web app. Of course, the browsers are updated
frequently, so there might be a different set of behaviors by the time you read this.

Caution The implementation of the network and fallback features can be inconsistent. There are some oddities
in the implementations of the mainstream browsers, and as a consequence, | tend to avoid using these kinds of
entries for cached applications. The regular cache entries work well, however, and can be relied upon in those
browsers that support the application cache feature.

Monitoring Offline Status

HTMLS5 defines the ability to determine whether the browser is online. What being offline means
depends on the platform and the browser. For mobile devices, being offline usually requires the user to
switch to airplane mode or to explicitly switch off networking in some other way. Simply being out of
coverage doesn’t usually change the browser status.

Explicit user action is required for most desktop browsers as well. For example, Firefox and Opera
both have menu items that toggle the browser between online and offline modes. The exception is
Google Chrome, which monitors the underlying network connections and switches to offline if no
network devices are enabled.

Note Chrome will go into offline mode only when there is no enabled network connection. To create the
screenshot in this section, | had to disable my main (wireless) connection, manually disable an Ethernet port that
was enabled but not plugged in to anything, and disable a connection created by a virtual machine package. Only
then did Chrome decide it was time to go offline. Most users won’t have this problem, but it is something to bear
in mind, especially if you are not getting the offline behavior you expect.

Recent versions of the mainstream browsers implement an HTML5 feature that reports on whether
the browser is online or offline. This is useful both in terms of presenting the user with a useful and
contextual interface and in terms of managing the internal operations of the web app. To demonstrate
this feature, I am going to change the example web app so that the cache control and News buttons are
displayed only when the browser is online. Listing 5-8 shows the changes to the script element.

CHAPTER 5 = CREATING OFFLINE WEB APPS

Listing 5-8. Detecting the State of the Network

<script>
var cheeseModel = {
products: [
{category: "British Cheese", items : [
{id: "stilton", name: "Stilton", price: 9},
{id: "stinkingbishop", name: "Stinking Bishop", price: 17},
{id: "cheddar", name: "Cheddar", price: 17}]},
{category: "French Cheese", items: [
{id: "camembert", name: "Camembert", price: 18},
{id: "tomme", name: "Tomme de Savoie", price: 19},
{id: "morbier", name: "Morbier", price: 9}]},
{category: "Italian Cheese", items: [
{id: "gorgonzola", name: "Gorgonzola", price: 8},
{id: "fontina", name: "Fontina", price: 11},
{id: "parmesan", name: "Parmesan", price: 16}]}],
cache: {
status: ko.observable(window.applicationCache.status),
online: ko.observable(window.navigator.onLine)
}
};

$(document).ready(function() {
$('#buttonDiv input:submit').button();
$('div.navSelectors').buttonset();

enhanceViewModel();
ko.applyBindings(cheeseModel);

hasher.initialized.add(crossroads.parse, crossroads);
hasher.changed.add(crossroads.parse, crossroads);
hasher.init();

crossroads.addRoute("category/:cat:", function(cat) {
cheeseModel.selectedCategory(cat || cheeseModel.products[0].category);

1

$(window.applicationCache).bind("checking noupdate downloading " +
"progress cached updateready", function(e) {
cheeseModel.cache. status(window.applicationCache.status);

};

$(window) .bind("online offline", function() {
cheeselModel . cache.online(window.navigator.onLine);

s

$('div.tagcontainer a').button().filter(':not([href])").click(function(e) {
e.preventDefault();
if ($(this).attr("data-action") == "update") {

CHAPTER 5 = CREATING OFFLINE WEB APPS

window.applicationCache.update();

} else {
window.applicationCache.swapCache();
window.location.reload(false);

}

D;
1);

</script>

The window browser object supports the online and offline events that are triggered when the
browser status changes. You can get the current status through the window.navigator.onlLine property,
which returns true if the browser is online and false if it is of f1line. Note that the L in onLine is
uppercase. I have added an online observable data item to the view model, which I update in response
to the online and offline events. This is the same technique that I used for the application cache status,
and it allows me to use the view model to propagate changes through to my markup. Listing 5-9 shows
the changes to the HTML elements that display the News and application cache control buttons.

Listing 5-9. Adding Elements and Bindings to Respond to the Browser Online Status

<div id="logobar">

<div class="tagcontainer">
Gourmet European Cheese

<div>
<span data-bind="visible: cheeseModel.cache.online()"»
<a data-bind="visible: cheeseModel.cache.status() != 4"
data-action="update" class="cachelink">Check for Updates
<a data-bind="visible: cheeseModel.cache.status() == 4"
data-action="swapCache" class="cachelink">Apply Update
News
</span»

(0ffline)

</div>
</div>

</div>

When the browser is online, the cache control and the News buttons are displayed. When the
browser is offline, I replace the buttons with a simple placeholder. You can see the effect in Figure 5-6.

Tip You need to ensure that you have the right version of the offline content before taking the browser offline.
Before running this example, you should either change the manifest or clear the browser’s history.

128

CHAPTER 5 = CREATING OFFLINE WEB APPS

() Cheeselux

&« => C cheeselu.com

CHEESELUX

Figure 5-6. Responding to the browser online status

USING RECURRING AJAX REQUESTS POLYFILLS

There are JavaScript polyfill libraries available that use periodic Ajax requests as a substitute for the
navigator.onLine property. A request for a small file is made to the server every few minutes, and if the
request fails, the browser is assumed to be offline.

| strongly recommend avoiding this approach. First, it isn’t responsive enough to be useful. If you are trying
to work out when the browser is offline, finding out several minutes after it happens isn’t much use. During
the periods between tests, the status of the browser is unknown and cannot be relied on.

Second, repeatedly requesting a file consumes bandwidth that you and the user have to pay for. If you
have a popular web app, the bandwidth costs of periodic checks can be significant. More importantly, as
unlimited data plans for mobile devices become less common, assuming that you can make free use of
your users’ bandwidth is extremely presumptuous. My advice is to not rely on this sort of polyfill. Just do
without the notifications if the browser doesn’t support them.

Understanding with Ajax and POST Requests

The application cache makes it difficult to work with Ajax and, more broadly, posting forms in general.
And things get worse when the browser is offline, although perhaps not in the way you might expect. In
this section, I'll show you the problems and the limited options that are available to deal with them.
First, however, I need to update the CheeseLux web app so that it depends on an Ajax GET request to
operate. Listing 5-10 shows the required changed to the script element (no changes are needed to the
markup for this example).

129

CHAPTER 5 = CREATING OFFLINE WEB APPS

Listing 5-10. Adding an Ajax GET RequestRequest

<script>
var cheeseModel = {
cache: {
status: ko.observable(window.applicationCache.status),
online: ko.observable(window.navigator.onLine)
}
};

$.getISON("products.json", function(data) {
cheeseModel.products = data;
}) .success(function() {
$(document).ready(function() {
$('#buttonDiv input:submit').button();
$('div.navSelectors').buttonset();

enhanceViewModel();
ko.applyBindings(cheeseModel);

hasher.initialized.add(crossroads.parse, crossroads);
hasher.changed.add(crossroads.parse, crossroads);
hasher.init();

crossroads.addRoute("category/:cat:", function(cat) {
cheeseModel.selectedCategory(cat || cheeseModel.products[0].category);
D;

$(window.applicationCache).bind("checking noupdate downloading " +
"progress cached updateready", function(e) {
cheeseModel.cache.status(window.applicationCache.status);

};

$(window).bind("online offline", function() {
cheeseModel.cache.online(window.navigator.onlLine);

1

$('div.tagcontainer a').button().filter(':not([href])").click(function(e) {
e.preventDefault();
if ($(this).attr("data-action") == "update") {
window.applicationCache.update();
} else {
window.applicationCache.swapCache();
window.location.reload(false);
}
D;
D;
1;

</script>

130

CHAPTER 5 = CREATING OFFLINE WEB APPS

In this listing, I have used the jQuery getJSON method. This is a convenience method that makes an
Ajax GET request for the JSON file specified by the first method argument, which is products. json in this
case. When the Ajax requests has completed, jQuery parses the JSON data to create a JavaScript object,
which is passed to the function specified by the second method argument. In my listing, the function
simply takes the JavaScript object and assigns it to the products property of the view model. The
products. json file contains a superset of the data I have been defining inline. The same categories,
products, and prices are defined, along with an additional description of each cheese. Listing 5-11 shows
an extract from products. json.

Listing 5-11. An Extract from the products.json File

"id": "stilton", "name": "Stilton", "price": 9,
"description”: "A semi-soft blue cow's milk cheese produced in the Nottinghamshire region. A
strong cheese with a distinctive smell and taste and crumbly texture."},

In the listing I chain the getJSON method with a call to success. The success method is part of the
jQuery support for JavaScript Promises, which make it easy to use and manage asynchronous operations
like Ajax requests. The function passed to the success method won'’t be executed until the getJSON
method has completed, ensuring that my view model is complete before the rest of my script is run.

This approach to getting core data from JSON is a common one, especially where the data is sourced
from a different set of systems to the rest of the web app. And, if used carefully, it can ensure that the
user has the most recent data but still has the benefit of a cached application.

Understanding the Default Ajax GET Behavior

The browser treats an Ajax GET request in a very simple way. The request will fail if the Ajax request is for
aresource that is not in the manifest, even when the browser is online.

For my example application, this means that data is returned from the request and it dies a horrible
death. The function I passed as an argument to the getJSON method is executed only if the Ajax request
succeeds, and the same is true for the function passed to the success method. Because neither function
is executed, the main part of my script code isn’t performed, and I leave the user stranded. Worse, since
the application cache control buttons are never set up, I don’t give the user a means to update the
application to fix the problem.

I have shown this scenario because it is very commonly encountered when programmers first start
using the application cache. I'll show you how to make the Ajax connection work shortly, but first, there
are a couple of important changes to be made.

Restructuring the Application

The first change is to structure the application so that the core behavior that will get the user back out of
trouble will always be executed. My initial listing is just too optimistic, and I need to separate those parts
of the code that should always be run. There are lots of different techniques for doing this, but I find the
simplest is just to create another function that is contingent on the jQuery ready event. Listing 5-12
shows the changes I require to the script element.

131

CHAPTER 5 = CREATING OFFLINE WEB APPS

Listing 5-12. Restructuring the script Element

<script>
var cheeseModel = {
cache: {
status: ko.observable(window.applicationCache.status),
online: ko.observable(window.navigator.onLine)
}
};

$.getISON("products.json", function(data) {
cheeseModel.products = data;
}).success(function() {
$(document).ready(function() {
enhanceViewModel();
ko.applyBindings(cheeseModel);

hasher.initialized.add(crossroads.parse, crossroads);
hasher.changed.add(crossroads.parse, crossroads);
hasher.init();

crossroads.addRoute("category/:cat:", function(cat) {
cheeseModel.selectedCategory(cat || cheeseModel.products[0].category);

1

D;
}).complete(function() {
$(document) .xeady(function() {
$('#buttonDiv input:submit').button();
$('div.navSelectors').buttonset();
$(window) .bind("online offline", function() {
cheeseModel . cache.online(window.navigator.onLine);

H

$(window.applicationCache).bind("checking noupdate downloading " +
"progress cached updateready”, function(e) {
cheeseModel . cache.status(window.applicationCache.status);

D;
$('div.tagcontainer a').button().filter(':not([href])').click(function(e) {
e.preventDefault();
if ($(this).attr("data-action") == "update") {
window.applicationCache.update();
} else {
window.applicationCache.swapCache();
window.location.reload(false);
}
D;

132

CHAPTER 5 = CREATING OFFLINE WEB APPS

</script>

I have pulled all of the code that isn’t contingent on a successful Ajax request together and placed it
in a function passed to the complete method, which I add to the chain of method calls. This function will
be executed when the Ajax request finishes, irrespective of whether it succeeded or failed.

Now, even when the Ajax request fails, the controls for updating the cache and applying changes are
always available. Given that Ajax problems are the most likely reason for errors at the client, giving the
user a way to apply an update is essential. Otherwise, you are going to have to provide per-browser
instructions for clearing the cache. It is not a perfect solution, because I am unable to apply my data
bindings, so elements that I would rather were hidden are visible. I could use the CSS display property
to hide some of these items, but I think just giving the user the ability to download and apply an update
is what is essential. You can see the effect before and after the restructuring in Figure 5-7.

(&) Chessel Lo L =

€ 2} cheeselux.com A

CHEESELUX

Figure 5-7. The effect of restructuring the application

Handling the Ajax Error

The other change I need to make is to add some kind of error handler for when the Ajax request fails.
This may seem like a basic technique, but many web applications are coded only for success, and when
the connection fails, everything falls apart. There are lots of ways of handling Ajax errors, but the one
shown in Listing 5-13 uses some jQuery features.

Listing 5-13. Adding Support for Handling Ajax Errors

<script>
var cheeseModel = {
cache: {
status: ko.observable(window.applicationCache.status),
online: ko.observable(window.navigator.onlLine)
}
b

$.getISON("products.json", function(data) {
cheeseModel.products = data;
}).success(function() {
$(document).ready(function() {
enhanceViewModel();
ko.applyBindings(cheeseModel);

133

CHAPTER 5 = CREATING OFFLINE WEB APPS

hasher.initialized.add(crossroads.parse, crossroads);
hasher.changed.add(crossroads.parse, crossroads);
hasher.init();

crossroads.addRoute("category/:cat:", function(cat) {
cheeseModel.selectedCategory(cat || cheeseModel.products[0].category);

B;

}).errox(function() {
var dialogHTML = '<div>Try again later</div>';
$(dialogHTML).dialog({
modal: true,
title: "Ajax Error",
buttons: [{text: "OK", click: function() {$(this).dialog("close")}}]

D;
}).complete(function() {
$(document).ready(function() {
$('#buttonDiv input:submit').button();
$('div.navSelectors").buttonset();
$(window).bind("online offline", function() {
cheeseModel.cache.online(window.navigator.onlLine);

B;

$(window.applicationCache).bind("checking noupdate downloading " +
"progress cached updateready", function(e) {
cheeseModel.cache.status(window.applicationCache.status);
D;

$('div.tagcontainer a').button().filter(':not([href])"').click(function(e) {
e.preventDefault();
if ($(this).attr("data-action") == "update") {
window.applicationCache.update();
} else {
window.applicationCache.swapCache();
window.location.reload(false);
}
D;
D;
1;

</script>

jQuery makes it easy to handle errors with the error method. This is another part of the Promises
feature, and the function passed to the error method will be executed if there is a problem with the
request. In this example, I created a simple jQuery UI dialog box that tells the user that there is a
problem.

134

CHAPTER 5 = CREATING OFFLINE WEB APPS

Adding the Ajax URL to the Main Manifest or FALLBACK Sections

The worst thing you can do at this point is add the Ajax URL to the main section of the manifest. The
browser will treat the URL like any other resource, downloading and caching the content when the
manifest is processed. When the client makes the Ajax request, the browser will return the content from
the application cache, and the data won’t be updated until a manifest change triggers a cache update.
The result of this is that your users will be working with stale data, which is generally contrary to the
reasoning behind making the Ajax request in the first place.

You get pretty much the same result if you add the URL to the FALLBACK section. Every request, even
when the browser is online, will be satisfied by whatever you set as the fallback, and no request will ever
be made to the server.

Adding the Ajax URL to the Manifest NETWORK Section

The best approach (albeit far from ideal) is to add the Ajax URL to the NETWORK section of the manifest.
When the browser is online, the Ajax requests will be passed to the server, and the latest data will be
presented to the user.

The problems start when the browser is offline. There are two different approaches to handling Ajax
requests in an offline browser. The first approach, which you can see in Google Chrome, is that the Ajax
request will fail. Your Ajax error handler will be invoked, and there is a clean failure.

The other approach can be seen in Firefox. When the browser is offline, Ajax requests will be
serviced using the main browser cache if possible. This creates the odd situation where the user will get
stale data if a request for the same URL was made before the browser went offline and will get an error if
this is the first time that the URL has been asked for.

Understanding the POST Request Behavior

The way that POST requests are handled is a lot more consistent than for GET requests. If the browser is
online, then the POST request will be made to the server. If the browser is offline, then the request will
fail. This is true for POST requests that are made using regular HTML and for POST requests made using
Ajax.

This leads to annoyed users because POSTing a form usually comes after some period of activity on
their part. In the case of the CheeseLux example, the user will have paged through the categories and
entered the amounts of each product they require. When they come to submit their order, the browser
will show an error page. You can’t even use the FALLBACK section of the manifest to nominate a page to be
shown instead of the error.

The only sensible thing to do is to intercept the form submission and use the navigator.onLine
property and events to monitor the browser status and prevent the user from trying to post content
when the browser is offline. In Chapter 6, I'll show you some techniques for preserving the result of the
user’s effort, ready for when the browser comes back online.

135

CHAPTER 5 = CREATING OFFLINE WEB APPS

136

Summary

In this chapter, I showed you how to use the HTML5 Application Cache to create offline applications. By
using the application cache, you can create applications that are available even when the user doesn'’t
have a network connection. Although the core of the application cache is well-supported, there are some
anomalies, and careful design and testing are required to get a result that is reliable and robust. In the
next chapter, I'll show you how to use some related functionality that helps smooth out some of the
rough edges of offline apps and that can be used to create a better experience for the user.

CHAPTERG6

Storing Data in the Browser

A natural complement to offline applications is client-side data storage. HTML5 defines some useful
JavaScript APIs for storing data in the browser, ranging from simple name/value pairs to using a
JavaScript object database. In this chapter, I show you how to build applications that rely on persistently
stored data, including details of how to use such data in an offline web application.

Caution The browser support for data storage is mixed. You should run the examples in this chapter using
Google Chrome, with the exception of those in the IndexedDB section, which will run only in Mozilla Firefox.

Using Local Storage

The simplest way to store data in the browser is to use the HTMLS5 local storage feature. This allows you
to store simple name/value pairs and retrieve or modify them later. The data is stored persistently but is
not guaranteed to be stored forever. The browser is free to delete your data if it needs the space (or if the
data hasn’t been accessed for a long time), and, of course, the user can clear the data store at any time,
even when your web app is running. The result is data that is broadly, but not indefinitely, persistent.
Using local storage is very similar to using a regular JavaScript array, as Listing 6-1 demonstrates.

Listing 6-1. Using Local Storage

<!DOCTYPE html>
<html>
<head>
<title>Local Storage Example</title>
<link rel="stylesheet" type="text/css" href="jquery-ui-1.8.16.custom.css"/>
<link rel="stylesheet" type="text/css" href="styles.css"/>
<script src="jquery-1.7.1.js" type="text/javascript"></script>
<script src="jquery-ui-1.8.16.custom.js" type="text/javascript"></script>
<script src="knockout-2.0.0.js' type='text/javascript'></script>
<script src='utils.js' type='text/javascript'></script>
<script src="signals.js' type='text/javascript'></script>
<script src="crossroads.js' type='text/javascript'></script>
<script src="hasher.js' type='text/javascript'></script>
<script>
var viewModel = {

137

CHAPTER 6 = STORING DATA IN THE BROWSER

items: ["Apple", "Orange", "Banana"],
selectedItem: ko.observable("Apple")

};

$(document).ready(function() {
ko.applyBindings(viewModel);

$('div.catSelectors').buttonset();

hasher.initialized.add(crossroads.parse, crossroads);
hasher.changed.add(crossroads.parse, crossroads);
hasher.init();

crossroads.addRoute("select/{item}", function(item) {
viewModel.selectedItem(item);
localStorage["selection"] = item;

1;

viewModel.selectedItem(localStorage["selection"] || viewModel.items[0]);
D;
</script>
</head>
<body>
<div class="catSelectors" data-bind="foreach: items">
<a data-bind="formatAttr: {attr: 'href', prefix: '#select/', value: $data},
css: {selectedItem: ($data == viewModel.selectedItem())}">

</div>
<div data-bind="foreach: items">
<div class="item" data-bind="fadeVisible: $data == viewModel.selectedItem()">
The selected item is:
</div>
</div>
</body>
</html>

To demonstrate local storage, I have used the simple example from Chapter 4, which allows me to
focus on the storage techniques without the features from other chapters getting in the way. As the
listing shows, getting started with local storage is pretty simple. The global localStorage object acts like
an array. When the user makes a selection in this simple web app, I store the selected item using array-
style notation, like this:

localStorage["selection"] = item;

Tip Keys are case-sensitive (so that selection and Selection would represent different data items), and
assigning a value to a key that already exists overwrites the previously defined value.

138

CHAPTER 6 * STORING DATA IN THE BROWSER

This statement creates a new local storage item, which I can read back using the same array-style
notation, like this:

viewModel.selectedItem(localStorage["selection"] || viewModel.items[0]);

The effect of adding these two statements to the example is to create simple persistence for the
user’s selection. When the web app is loaded, I check to see whether there is data stored under the
selection key and, if there is, set the corresponding data item in the view model, which restores the
user’s selection from an earlier session.

Tip Itis important not to use local storage for sensitive information or to trust the integrity of data retrieved
from local storage for critical functions in your web app. Users can see and edit the contents of local storage,
which means that nothing you store is secret and everything can be changed. Don’t store anything you don’t want
publically disseminated, and don’t rely on local storage to give privileged access to your web app.

From that point on, I update the value associated with the selection key each time my route is
matched by a URL change. I included a fallback to a default selection to cope with the possibility that the
local storage data has been deleted (or this is the first time that the user has loaded the web app). To test
this feature, load the example web app, select one of the options, and then reload the web page. The
browser will reload the document, execute the JavaScript code afresh, and restore your selection.

Storing JSON Data

The specification for local storage requires that keys and values are strings, just like in the previous
example. Being able to store a list of name/value pairs isn’t always that useful, but we can build on the
support for strings to use local storage for JSON data, as shown in Listing 6-2.

Listing 6-2. Using Local Storage for JSON Data

<script>
var viewModel = {
selectedItem: ko.observable()
};

function loadViewModelData() {

var storedData = localStorage["viewModelData"];

if (storedData) {
var storedDataObject = JSON.parse(storedData);
viewModel.items = storedDataObject.items;
viewModel.selectedItem(storedDataObject.selectedItem);

} else {
viewModel.items = ["Apple", "Orange", "Banana"];
viewModel.selectedItem("Apple");

}

139

CHAPTER 6 = STORING DATA IN THE BROWSER

function storeViewModelData() {
var viewModelData = {
items: viewModel.items,
selectedItem: viewModel.selectedItem()
};
localStorage["viewModelData"] = JSON.stringify(viewModelData);

}

$(document).ready(function() {
loadViewModelData();

ko.applyBindings(viewModel);
$('div.catSelectors').buttonset();

hasher.initialized.add(crossroads.parse, crossroads);
hasher.changed.add(crossroads.parse, crossroads);
hasher.init();

crossroads.addRoute("select/{item}", function(item) {
viewModel.selectedItem(item);
storeViewModelData();
D;
1;

</script>

I'have defined two new functions in the script element to support storing JSON. The
storeViewModelData function is called whenever the user makes a selection. JSON is only able to store
data values and not JavaScript functions, so I extract the data values from the view model and use them
to create a new object. I pass this object to the JSON. stringify method, which returns a JSON string, like
this:

{"items":["Apple","Orange",
"selectedItem":"Banana"}

Banana"],

I store this string by associating it with the viewModelData key in local storage. The corresponding
function is loadViewModelData. I call this function when the jQuery ready event is fired and use it to
complete the view model.

Tip The persistent nature of local storage means that if you reuse a key to store a different kind of data, you
run the risk of encountering the old format that was stored in a previous session. The simplest way to handle this
in development is to clear the browser’s cache. In production, you must be able to detect the old data and either
process it or, at the very least, be able to discard it without generating any errors.

140

CHAPTER 6 * STORING DATA IN THE BROWSER

I'load the JSON string and use the JSON.parse method to create a JavaScript object if there is local
storage data associated with the viewModelData key. I can then read the properties of the object to
populate the view model. Of course, I cannot rely on there being data available, so I fall back to some
sensible default values if needed.

STORING OBJECT DATA

It wasn't hard to separate the data from the object that contained it in my simple example, but it can be
significantly more difficult in a complex web application. You might be tempted to shortcut this process by
storing objects directly, rather than mapping data to strings. Don’t do this; it will only cause you problems.
Here is a code snippet that shows local storage being used with objects:

<script>
var viewModel = {};

function loadViewModelData() {
var storedData = localStorage["viewModelData"];
if (storedData) {
viewModel = storedData;
} else {
viewModel.items = ["Apple", "Orange", "Banana"];
viewModel.selectedItem = ko.observable("Apple");
}
}

function storeViewModelData() {
localStorage["viewModelData"] = viewModel;
}

$(document).ready(function() {
loadViewModelData();

ko.applyBindings(viewModel);
$('div.catSelectors').buttonset();

hasher.initialized.add(crossroads.parse, crossroads);
hasher.changed.add(crossroads.parse, crossroads);
hasher.init();

crossroads.addRoute("select/{item}", function(item) {
viewModel.selectedItem(item);
storeViewModelData();

}s
h;

</script>

141

CHAPTER 6 = STORING DATA IN THE BROWSER

142

This technique doesn’t work. The browser won’t complain when you store objects, and if you read the
value back within the same session, everything looks fine. But the browser serializes the object in order to
store it for future sessions. For most JavaScript objects, the stored value will be [object Object], which
is the result you get if you call the toString method. When the user revisits the web app, the value in local
storage isn’t a valid JavaScript object and can’t be parsed. This is the kind of problem that should be
detected during testing, but | see this issue a lot, not least because even projects that take testing
seriously don’t generally revisit the application for multiple sessions.

Storing Form Data

Local storage is ideally suited for making form data persistent. The key/value mapping suits the nature
of form elements very well, and with very little effort, you can create forms that are persistent between
sessions, as Listing 6-3 shows.

Listing 6-3. Using Local Storage to Create Persistent Forms

<!DOCTYPE html>
<html>
<head>
<title>Local Storage Example</title>
<link rel="stylesheet" type="text/css" href="jquery-ui-1.8.16.custom.css"/>
<link rel="stylesheet" type="text/css" href="styles.css"/>
<script src="jquery-1.7.1.js" type="text/javascript"></script>
<script src="jquery-ui-1.8.16.custom.js" type="text/javascript"></script>
<script src="knockout-2.0.0.js' type="text/javascript'></script>
<script>
var viewModel = {
personalDetails: [
{name: "name", label: "Name", value: ko.observable()},
{name: "city", label: "City", value: ko.observable()},
{name: "country", label: "Country", value: ko.observable()}
]
b

$(document).ready(function() {
$.each(viewModel.personalDetails, function(index, item) {
item.value(localStorage[item.name] || "");
item.value.subscribe(function(newValue) {
localStorage[item.name] = newValue;

H
s

ko.applyBindings(viewModel);

$('#buttonDiv input').button().click(function(e) {
localStorage.clear();
1
1
</script>
</head>

CHAPTER 6 * STORING DATA IN THE BROWSER

<body>
<form action="/formecho" method="POST">
<div class="cheesegroup">
<div class="grouptitle">Your Details</div>
<div class="groupcontent centered">
<div data-bind="foreach: personalDetails">
:
<input class="stwin" data-bind="attr: {name: name}, value: value">
</div>
</div>
</div>
<div id="buttonDiv">
<input type="submit" value="Submit">
<input type="reset" value="Reset">
</div>
</form>
</body>
</html>

I'have defined a simple three-field form element in this example, which you can see in Figure 6-1.
The form captures the user’s name, city, and country and is posted to the /formecho URL at the server,
which simply responds with details of the data that was submitted.

=

() Local Sterage Example
¢ C' O cheeselux.com WA

o N [o

" 4

Figure 6-1. Using local storage with form elements

I have used a view model as an intermediary between the input elements and local storage. When
the user enters a value into one of the input elements, the value data binding updates the corresponding
observable data item in the view model. I use the subscribe function to receive notifications of these
changes and write the update to local storage, like this:

$.each(viewModel.personalDetails, function(index, item) {
item.value(localStorage[item.name] || "");
item.value.subscribe(function(newValue) {
localStorage[item.name] = newValue;
D;
D;

143

CHAPTER 6 = STORING DATA IN THE BROWSER

144

Iset up the subscription by enumerating through the items in the view model. I use this opportunity
to set the initial values in the view model from local storage if there is data available, like this:

item.value(localStorage[item.name] || "");

When I set the initial value, the values from local storage are propagated through the view model to
the input elements, keeping everything up-to-date.

It doesn’t make sense to continue to store the form data once the form has been submitted or when
the user clicks the Reset button. When either the Submit or Reset button is clicked, I remove the data
from local storage, like this:

$("#buttonDiv input').button().click(function(e) {
localStorage.clear();

B;

The clear method removes all of the data in local storage for the web app (but not for other web
apps; only the user or the browser itself can affect storage across web apps). I did not prevent the default
action for either button, which means that the form will be submitted by the submit button, and the
form will be reset by the reset button.

Tip Strictly speaking, | need not have handled the click event for the reset button since the view model would
have led to empty values being written to local storage. In situations like these, | tend to prefer cleansing the data
twice in order to get simpler JavaScript code.

The effect of this little web app is that the form data is persistent until the user submits the form. If
the user navigates away from the form before submitting it, the data they entered before navigating away
will be restored the next time the web app is loaded.

Synchronizing View Model Data Between Documents

The data in local storage is stored on a per-origin basis, meaning that each origin has its own separate
local storage area. This means you don’t have to worry about key collision with other people’s web
applications. It also means that we can use web storage to synchronize view models between different
documents within the same domain.

When using local storage in this way, I want to be notified when another document modifies a
stored data value. I can receive such notifications by handling the storage event, which is emitted by the
window browser object. To make this event easier to use, I have created a new kind of observable data
item that automatically persists itself to local storage and that loads changed values in response to the
storage event. I added this new functionality to the utils. js file, as shown in Listing 6-4.

Listing 6-4. Creating a Persistent Observable Data Item
ko.persistentObservable = function(keyName, initialvalue) {
var obItem = ko.observable(localStorage[keyName] || initialvalue);

$(window).bind("storage", function(e) {

CHAPTER 6 * STORING DATA IN THE BROWSER

if (e.originalEvent.key == keyName) {
obItem(e.originalEvent.newValue);

obitem.subscribe(function(newValue) {
localStorage[keyName] = newValue;

};

return obItem;

This code is a wrapper around the standard observable data item, the local storage data array, and
the storage event. The function is called with a key name that refers to a data item in local storage. When
the function is called, I use the key to check whether there is already data in local storage for the
specified key and, if there is, set the initial value of the observable. If there isn’t a default value, I use the
initialValue function argument:

var obItem = ko.observable(localStorage[keyName] || initialvalue);

Tuse jQuery to bind to the storage event on the window object. jQuery normalizes events, wrapping
the event objects emitted by elements with a jQuery-specific substitute. I need to get to the underlying
event object because it contains information about the change in local storage; I do this through the
originalEvent property. When handling the storage event, the originalEvent property returns a
StorageEvent object, the most useful properties of which are described in Table 6-1.

Table 6-1. Properties of the StorageEvent Object

Property Description

key Returns the key for the item that has been modified
oldValue Returns the old value for the item that has been modified
newValue Returns the new value for the item that has been modified
url Returns the URL of the document that made the change

In the example, I use the key property to determine whether this is an event for the data item that I
am monitoring and, if it is, the newValue property to update the regular observable data item:

$(window).bind("storage", function(e) {
if (e.originalEvent.key == keyName) {
obItem(e.originalEvent.newValue);
}

};

Finally, I use the KO subscribe method so that I can update the local storage value in response to
changes in the view model:

obItem.subscribe(function(newvValue) {
localStorage[keyName] = newValue;

D;

145

CHAPTER 6 = STORING DATA IN THE BROWSER

With just a few lines of code, I have been able to create a persistent observable data item for my view
model.

I have not had to take any special precautions to prevent an infinite loop of event-update-
subscription-event occurring. There are two reasons for this. First, the KO observable data item that my
code wraps around is smart enough to issue updates only when an updated value is different from the
existing value.

Second, the browser triggers the storage event only in other documents in the same origin and not
the document in which the change was made. I have always thought this was slightly odd, but it does
mean that my code is simpler than it would otherwise have been.

To demonstrate my newly persistent data items, I have defined a new document called
embedded. html, the content of which is shown in Listing 6-5.

Listing 6-5. A New Document That Uses Persistent Observable Data Items

<!DOCTYPE html>
<html>
<head>
<title>Embedded Storage Example</title>
<link rel="stylesheet" type="text/css" href="jquery-ui-1.8.16.custom.css"/>
<link rel="stylesheet" type="text/css" href="styles.css"/>
<script src="jquery-1.7.1.js" type="text/javascript"></script>
<script src="jquery-ui-1.8.16.custom.js" type="text/javascript"></script>
<script src="knockout-2.0.0.js' type='text/javascript'></script>
<script src='utils.js' type='text/javascript'></script>
<script>
var viewModel = {
personalDetails: [
{name: "name", label: "Name", value: ko.persistentObservable("name")},
{name: "city", label: "City", value: ko.persistentObservable("city")},
{name: "country", label: "Country",
value: ko.persistentObservable("country")}

)

$(document).ready(function() {
ko.applyBindings(viewModel);

)
</script>
</head>
<body>
<div class="cheesegroup">
<div class="grouptitle">Embedded Document</div>
<div class="groupcontent centered">
<div data-bind="foreach: personalDetails">
:
<input class="stwin" data-bind="attr: {name: name}, value: value">

</div>
</div>
</div>
</body>
</html>

146

CHAPTER 6 * STORING DATA IN THE BROWSER

This document duplicates the input elements from the main example, but without the form and
button elements. It does, however, have a view model that uses the persistentObservable data item,
meaning that changes to the input element values in this document will be reflected in local storage and,
equally, that changes in local storage will be reflected in the input elements. I have not supplied default
values for the persistent observable items; if there is no local storage value, then I want the initial value
to default to null, which I achieve by not supplying a second argument to the persistentObservable
function.

All that remains is to modify the main document. For simplicity, I am embedding one document
inside another, but local storage is shared across any documents from the same origin, meaning that this
technique will work when those documents are within different browser tabs or windows. Listing 6-6
shows the modifications to example.html, including embedding the embedded. html document.

Listing 6-6. Modifying the Main Example Document

<!DOCTYPE html>
<html>
<head>
<title>Local Storage Example</title>
<link rel="stylesheet" type="text/css" href="jquery-ui-1.8.16.custom.css"/>
<link rel="stylesheet" type="text/css" href="styles.css"/>
<script src="jquery-1.7.1.js" type="text/javascript"></script>
<script src="jquery-ui-1.8.16.custom.js" type="text/javascript"></script>
<script src="knockout-2.0.0.js' type="text/javascript'></script>
<script src="utils.js' type='text/javascript'></script>
<script>
var viewModel = {
personalDetails: [
{name: "name", label: "Name", value: ko.persistentObservable("name")},
{name: "city", label: "City", value: ko.persistentObservable("city")},
{name: "country", label: "Country",
value: ko.persistentObservable("country")}

};
$(document).ready(function() {
ko.applyBindings(viewModel);

$('#buttonDiv input').button().click(function(e) {
localStorage.clear();

};
};

</script>
</head>
<body>
<form action="/formecho" method="POST">
<div class="cheesegroup">
<div class="grouptitle">Your Details</div>
<div class="groupcontent centered">
<div data-bind="foreach: personalDetails">
:

147

CHAPTER 6 = STORING DATA IN THE BROWSER

148

<input class="stwin" data-bind="attr: {name: name}, value: value">
</div>
</div>
</div>

<iframe src="embedded.html"»</iframe»

<div id="buttonDiv">
<input type="submit" value="Submit">
<input type="reset" value="Reset">
</div>
</form>
</body>
</html>

I have used the same keys for the persistentObservable function when defining the view model and
added an iframe element that embeds the other HTML document. Since both are loaded from the same
origin, the browser shares the same local storage between them. Changing the value of an input element
in one document will trigger a corresponding change in the other document, via local storage and the
two view models.

Caution The browsers don’t provide any guarantees about the integrity of a data item if updates are written to
local storage from two documents simultaneously. It is hard to cater for this eventuality (and | have never seen it
happen), but it is prudent to assume that data corruption can occur if you are sharing local storage.

Using Session Storage

The complement to local storage is session storage, which is accessed through the sessionStorage object.
The sessionStorage and localStorage objects are used in the same way and emit the same storage
event. The difference is that the data is deleted when the document is closed in the browser (more
specifically, the data is deleted when the top-level browsing context is destroyed, but that’s usually the
same thing).

The most common use for session storage is to preserve data when a document is reloaded. This is a
useful technique, although I have to admit that I tend to use local storage to achieve the same effect
instead. The main benefit of session storage is performance, since the data is usually held in memory
and doesn’t need to be written to disk. That said, if you care about the marginal performance gains that
this offers, then you may need to consider whether the browser is the best environment for your app.
Listing 6-7 shows how I have added support for session persistence to my observable data item in
utils.js.

Listing 6-7. Defining a Semi-persistent Observable Data Item Using Session Storage
ko.persistentObservable = function(keyName, initialValue, useSession) {

var storageObject = useSession ? sessionStorage : localStorage
var obItem = ko.observable(storageObject[keyName] || initialValue);

CHAPTER 6 * STORING DATA IN THE BROWSER

$(window).bind("storage", function(e) {
if (e.originalEvent.key == keyName) {
obItem(e.originalEvent.newValue);

}
D;
obItem.subscribe(function(newValue) {
storageObject[keyName] = newValue;
D;

return obItem;

Since the sessionStorage and localStorage objects expose the same features and use the same
event, I am able to easily modify my local storage observable item to add support for session storage. I
have added an argument to the function that, if true, switches to session storage. I use local storage if the
argument is not provided or is false. Listing 6-8 shows how I have applied session storage to two of the
observable data items in the example view model.

Listing 6-8. Using Session Storage

var viewModel = {
personalDetails: [
{name: "name", label: "Name", value: ko.persistentObservable("name")},
{name: "city", label: "City",
value: ko.persistentObservable("city", null, true)},
{name: "country", label: "Country",
value: ko.persistentObservable("country"”, null, true)}

};

The values of the City and Country elements are handled using session storage while the Name
element remains with local storage. If you load the example into the browser, you will find that reloading
the document doesn’t clear any of the values you have entered. However, only the Name value remains if
you close and reopen the document.

Using Local Storage with Offline Web Applications

Part of the benefit that comes from using local storage is that it is available offline. This means that we
can use local data to address the problems arising from Ajax GET requests when the browser is offline.
Listing 6-9 shows the cached CheeseLux web app from the previous chapter, updated to take advantage
of local storage.

Listing 6-9. Using Local Storage for Offline Web Apps That Use Ajax

<!DOCTYPE html>

<html manifest="cheeselux.appcache">

<head>
<title>Cheeselux</title>
<link rel="stylesheet" type="text/css" href="styles.css"/>
<script src="jquery-1.7.1.js" type="text/javascript"></script>

149

CHAPTER 6

150

STORING DATA IN THE BROWSER

<script
<script
<script
<script

src="jquery-ui-1.8.16.custom.js" type="text/javascript"></script>
src="knockout-2.0.0.js"' type="text/javascript'></script>
src="utils.js' type='text/javascript'></script>

src="signals.js' type='text/javascript'></script>

<script src="hasher.js' type='text/javascript'></script>
<script src="crossroads.js' type='text/javascript'></script>
<link rel="stylesheet" type="text/css" href="jquery-ui-1.8.16.custom.css"/>
<noscript>
<meta http-equiv="refresh" content="0; noscript.html"/>
</noscript>
<script>

var cheeseModel = {

};

cache: {

status: ko.observable(window.applicationCache.status),
online: ko.observable(window.navigator.onLine)

}

$.getISON("products.json", function(data) {

cheeseModel.products = data;
localStorage["jsondata"] = JSON.stringify(data);

}).error(function() {

if (localStorage["jsondata"]) {

cheeseModel.products = JSON.parse(localStorage["jsondata"]);

}).cgmplete(function() {

$(document).ready(function() {

if (cheeseModel.products) {
enhanceViewModel();
ko.applyBindings(cheeseModel);

hasher.initialized.add(crossroads.parse, crossroads);
hasher.changed.add(crossroads.parse, crossroads);
hasher.init();

crossroads.addRoute("category/:cat:", function(cat) {
cheeseModel.selectedCategory(cat ||
cheeseModel.products[0].category);
D;

$('#buttonDiv input:submit').button();

$('div.navSelectors').buttonset();

$(window).bind("online offline", function() {
cheeseModel.cache.online(window.navigator.onlLine);

1

$(window.applicationCache).bind("checking noupdate downloading " +
"progress cached updateready", function(e) {
cheeseModel.cache.status(window.applicationCache.status);
1;

$('div.tagcontainer a').button().filter("':not([href])")

CHAPTER 6 * STORING DATA IN THE BROWSER

.click(function(e) {
e.preventDefault();
if ($(this).attr("data-action") == "update") {
window.applicationCache.update();
} else {
window.applicationCache.swapCache();
window.location.reload(false);

}

D;
} else {

var dialogHTML = '<div>Try again later</div>';
$(dialogHTML).dialog({
modal: true,
title: "Ajax Error",
buttons: [{text: "OK",
click: function() {$(this).dialog("close")}}]
D;

}
h;
};

</script>
</head>
<body>
<div id="logobar">

<div class="tagcontainer">
Gourmet European Cheese
<div>

<a data-bind="visible: cheeseModel.cache.status() != 4
data-action="update" class="cachelink">Check for Updates
<a data-bind="visible: cheeseModel.cache.status() == 4"
data-action="swapCache" class="cachelink">Apply Update
News

(0ffline)

</div>
</div>
</div>

<div class="cheesegroup">
<div class="navSelectors" data-bind="foreach: products">
<a data-bind="formatAttr: {attr: 'href', prefix: '#category/',
value: category},
css: {selectedItem: (category == cheeseModel.selectedCategory())}">

</div>
</div>

151

CHAPTER 6 = STORING DATA IN THE BROWSER

152

<form action="/shipping" method="post">
<div data-bind="foreach: products">
<div class="cheesegroup"
data-bind="fadeVisible: category == cheeseModel.selectedCategory()">
<div class="grouptitle" data-bind="text: category"></div>
<!-- ko foreach: items -->
<div class="groupcontent">
<label data-bind="attr: {for: id}" class="cheesename">

 $()</label>
<input data-bind="attr: {name: id}, value: quantity"/»>

($)

</div>
<!-- /ko -->
<div class="groupcontent">
<label class="cheesename">Total:</label>

$

</div>
</div>
</div>
<div id="buttonDiv">
<input type="submit" value="Submit Order"/>
</div>
</form>
</body>
</html>

In this listing, I use the JSON.stringify method to store a copy of the view model data when the Ajax
request is successful:

$.getISON("products.json", function(data) {
cheeseModel.products = data;
localStorage["jsondata"] = JSON.stringify(data);
H

I added the products.json URL to the NETWORK section of the manifest for this web app, so I have a
reasonable expectation that the data will be available and that the Ajax request will succeed.

If, however, the request fails, which will definitely happen if the browser is offline, then I try to
locate and restore the serialized data from local storage, like this:

}).error(function() {
if (localStorage["jsondata"]) {
cheeselModel.products = JSON.parse(localStorage["jsondata"]);
}

1)

Assuming the initial request works, I will have a good fallback position if subsequent requests fail.
The effect that this technique creates is similar to the way that Firefox handles Ajax requests when the
browser is offline because I end up using the last version of the data I was able to obtain from the server.

CHAPTER 6 * STORING DATA IN THE BROWSER

Notice that I have restructured the code so that the rest of the web app setup occurs in the complete
handler function, which is triggered irrespective of the outcome of the Ajax request. The success or
failure of Ajax no longer determines how I processed it; now it is all about whether or not I have data,
either fresh from the server or restored from local storage.

Using Local Storage with Offline Forms

I mentioned in Chapter 5 that the only way of dealing with POST requests in a cached application is to
prevent the user from initiating the request when the browser is offline. This remains true, but you can
improve the experience that you deliver to the user by using local storage to create persistent values. To
demonstrate this approach, I first need to update the enhanceViewModel function in the utils. js file to
use local storage to persist the form values, as shown in Listing 6-10.

Listing 6-10. Updating the enhanceViewModel Function to Use Local Storage

"FL‘Jr.1ct ion enhanceViewModel() {

cheeseModel.selectedCategory
= ko.persistentObsexvable("selectedCategory”, cheeseModel.products[0].category);

mapProducts(function(item) {
item.quantity = ko.persistentObservable(item.id +
item.subtotal = ko.computed(function() {
return this.quantity() * this.price;
}, item);
}, cheeseModel.products, "items");

'_quantity”, 0);

cheeseModel.total = ko.computed(function() {
var total = 0;
mapProducts(function(elem) {

total += elem.subtotal();

}, cheeseModel.products, "items");
return total;

D;

};

This is a pretty simple change, but there are a couple of points to note. I want to make the view
model quantity property persistent for each cheese product, so I use the value of the item id property to
avoid key collision in local storage:

item.quantity = ko.persistentObservable(item.id + "_quantity", 0);

The second point to note is that when I load values from local storage, I will be putting strings, and
not numbers, in the view model. However, JavaScript is clever enough to convert strings when
performing multiplication operations, like this:

return this.quantity() * this.price;

Everything works as I would like it to work. However, JavaScript uses the same symbol to denote
string concatenation and numeric addition, so if I had been trying to sum values in the view model, I
would have had to take the extra step of parsing the value, like this:

153

CHAPTER 6 = STORING DATA IN THE BROWSER

return Number(this.quantity()) + someOtherValue;

Using Persistence in the Offline Application

Now that I have modified the view model, I can change the main document to improve the way that I
handle the form element when the browser is offline. Listing 6-11 shows the changes to the HTML
markup.

Listing 6-11. Adding Buttons That Handle the Form When the Browser Is Offline

<form action="/shipping" method="post">
<div data-bind="foreach: products">
<div class="cheesegroup"
data-bind="fadeVisible: category == cheeseModel.selectedCategory()">
<div class="grouptitle" data-bind="text: category"></div>
<!-- ko foreach: items -->
<div class="groupcontent">
<label data-bind="attr: {for: id}" class="cheesename">

 $()</label>
<input data-bind="attr: {name: id}, value: quantity"/»>

($)

</div>
<!-- /ko -->
<div class="groupcontent">
<label class="cheesename">Total:</label>

$

</div>
</div>
</div>
<div id="buttonDiv">
<input type="submit" value="Submit Order"
data-bind="visible: cheeseModel.cache.online()"/>
<input type="button" value="Save for Later"
data-bind="visible: !cheeseModel.cache.online()"/>
</div>
</form>

I have added a Save for Later button to the document, which is visible when the browser is offline. I
have also changed the submit button so that it is visible only when the browser is online. Listing 6-12
shows the corresponding changes to the script element.

Listing 6-12. Changes to the script Element to Support Offline Forms

<script>
var cheeseModel = {

154

CHAPTER 6 * STORING DATA IN THE BROWSER

cache: {
status: ko.observable(window.applicationCache.status),
online: ko.observable(window.navigator.onLine)
}
};

$.getISON("products.json", function(data) {
cheeseModel.products = data;
localStorage["jsondata"] = JSON.stringify(data);
}).error(function() {
if (localStorage["jsondata"]) {
cheeseModel.products = JSON.parse(localStorage["jsondata"]);

}
}).complete(function() {
$(document).ready(function() {
if (cheeseModel.products) {
enhanceViewModel();
ko.applyBindings(cheeseModel);

hasher.initialized.add(crossroads.parse, crossroads);
hasher.changed.add(crossroads.parse, crossroads);
hasher.init();

crossroads.addRoute("category/:cat:", function(cat) {
cheeseModel.selectedCategory(cat ||
cheeseModel.products[0].category);
D;

$('#buttonDiv input').button().click(function(e) {
if (e.target.type == "button") {
createDialog("Basket Saved for Later");
} else {
localStorage.clear();

}
H

$('div.navSelectors').buttonset();
$(window).bind("online offline", function() {
cheeseModel.cache.online(window.navigator.onlLine);

b

$(window.applicationCache).bind("checking noupdate downloading " +
"progress cached updateready", function(e) {
cheeseModel.cache.status(window.applicationCache.status);
1;

$('div.tagcontainer a').button().filter("':not([href])")
.click(function(e) {
e.preventDefault();
if ($(this).attr("data-action") == "update") {
window.applicationCache.update();
} else {

CHAPTER 6 = STORING DATA IN THE BROWSER

156

window.applicationCache.swapCache();
window.location.reload(false);

}
1;
} else {
createDialog("Try again later");

};
};

</script>

This is a simple change, and you’ll quickly realize that I am doing some mild misdirection. When the
browser is online, the user can submit the form as normal, and any data in local storage is cleared. The
misdirection comes when the browser is offline and the user clicks the Save for Later button. All I do is
call the createDialog function, telling the user that the form data has been saved. However, I don’t
actually need to save the data because I am using persistent observable data items in the view model.
The user doesn’t need to know about this; they just get the benefit of the persistence and a clear signal
from the web application that the form data has not been submitted. When the browser is online again,
the user can submit the data. Using local storage all of the time means that the user won’t lose their data
if they close and later reload the application before being able to submit the form to the server. For
completeness, Listing 6-13 shows the createDialog function, which I defined in the utils. js file. This is
the same approach I used to create an error dialog in the original example, and I moved the code into a
function because I needed to create the same kind of dialog box at multiple points in the application.

Listing 6-13. The createDialog Function

function createDialog(message) {
$('<div>' + message + '</div>').dialog({
modal: true,
title: "Message",
buttons: [{text: "OK",
click: function() {$(this).dialog("close")}}]
D;

};

I have taken a very simple and direct approach to dealing with form data when the browser is
offline, but you can easily see how a more sophisticated approach could be created. You might, for
example, respond to the online event by prompting the user to submit the data or even submit it
automatically using Ajax. Whatever approach you take, you must ensure that the user understands and
approves of what your web app is doing.

Storing Complex Data

Storing name/value pairs is perfectly suited to storing form data, but for anything more sophisticated,
such a simple approach starts to break down. There is another browser feature, called IndexedDB, which
you can use to store and work with more complex data.

CHAPTER 6 * STORING DATA IN THE BROWSER

Note IndexedDB is only one of two competing standards for storing complex data in the browser. The other is
WebSQL. As | write this, the W3C is supporting IndexedDB, but it is entirely possible that WebSQL will make a
comeback or, at least, become a de facto standard. | have not included WebSQL in this chapter because support
for it is limited at present, but this is an area of functionality that is far from settled, and you should review the
support for both standards before adopting one of them for your projects.

It is still early days for IndexedDB, and as I write this, the functionality is available only through
vendor-specified prefixes, signifying that the browser implementations are still experimental and may
deviate from the W3C specification. Currently, the browser that adheres most closely to the W3C
specification is Mozilla Firefox, so this is the browser I have used to demonstrate IndexedDB.

Caution The examples in this chapter may not work with browsers other than Firefox. In fact, they may not
work even with versions of Firefox other than the one | used in this chapter (version 10). That said, you should still
be able to get a solid understanding of how IndexedDB works, even if the specification or implementations change.

The IndexedDB feature is organized around databases that, like local and session storage, are
isolated on a per-origin basis so that they can be shared between applications from the same origin.
IndexedDB doesn’t follow the SQL-based table structure that is common in relational databases. An
IndexedDB database is made up of object stores, which can contain JavaScript objects. You can add
JavaScript objects to object stores, and you can query those stores in different ways, some of which I
demonstrate shortly.

The result of this approach is a storage mechanism that is more in keeping with the style of the
JavaScript language but that ends up being slightly awkward to use. Almost all operations in IndexedDB
are performed as asynchronous requests to which functions can be attached so that they are executed
when the operation completes. To demonstrate how IndexedDB works, I am going to create a Cheese
Finder application. I will put the cheese product data into an IndexedDB database and provide the user
with some different ways of searching the data for cheeses they might like. Figure 6-2 shows the finished
web app to help provide some context for the code that follows.

157

CHAPTER 6 = STORING DATA IN THE BROWSER

158

' — " .. I | - E E E; ™y
i:'"’ Cheeselux Cheese Finder l + | <
(" ,,3 cheeselux.com,/= Jaseription || e i

CHEESELUX,

Search Text: sam
SEARCH RESULTS
Name Price Description

A soft and creamy cows milk cheese, made from unpasteurized milk in

(amembert 18 the Normandy region.

A hard cows milk cheese with a sharp, crisp flavor. Produced in the
Somerset region using techniques dating back to 1170.

A rich and creamy cow's mtlh theese witha m:ld and nutty flavor. Idealin

Cheddar 17

w A

Figure 6-2. Using IndexedDB to query product data

The figure shows the option to search the description of each product in use. I have searched for the
term cow, and those products whose descriptions contain this term are listed at the bottom of the page.

(There are several matches because many of the descriptions explain that the cheese is made from cows’
milk.)

Creating the IndexedDB Database and Object Store

The code for this example is split between the utils. js file and the main example.html document. I'll be
jumping between these files to demonstrate the core features that IndexedDB offers. To begin, I have
defined a DBO object and the setupDatabase function in utils. js, as shown in Listing 6-14.

CHAPTER 6

Listing 6-14. Setting Up the IndexedDB Database

var DBO = {
dbVersion: 31

}

function setupDatabase(data, callback) {

};

var
var

req.

};

req.

};

indexDB = window.indexedDB || window.mozIndexedDB;
req = indexDB.open("CheeseDB", DBO.dbVersion);

onupgradeneeded = function(e) {
var db = req.result;

var existingStores = db.objectStoreNames;

for (var i = 0; i < existingStores.length; i++) {
db.deleteObjectStore(existingStores[i]);

}

var objectStore = db.createObjectStore("products”, {keyPath: "id"});
objectStore.createIndex("category”, "category", {unique: false});

$.each(data, function(index, item) {
var currentCategory = item.category;
$.each(item.items, function(index, item) {
item.category = currentCategory;
objectStore.add(item);

h;
};

onsuccess = function(e) {
DBO.db = this.result;
callback();

STORING DATA IN THE BROWSER

I have defined an object called DBO that performs two important tasks. First, it defines the version of
the database that I am expecting to work with. Each time I make a change to the database schema, I
increment the value of the dbVersion property, and as you can see, it took me 31 changes until I got the
result I wanted for this example. This was largely because of the differences between the current draft of
the specification and the implementation in Firefox.

Tip The version number is an important mechanism in ensuring | am working with the right version of the

schema for my app. I'll show you how to check the schema version and, if needed, upgrade the schema, shortly.

159

CHAPTER 6 = STORING DATA IN THE BROWSER

160

In the setupDatabase function, I begin by locating the object that acts as the gateway to the
IndexedDB databases, like this:

var indexDB = window.indexedDB || window.mozIndexedDB;

The IndexedDB feature is available in Firefox only through the window.mozIndexedDB object at the
moment, but that will change to window.indexedDB once the implementation converges on the final
specification. To give you the greatest chance of making the examples in this part of the chapter work, I
try to use the “official” IndexedDB object first and fall back to the vendor-prefixed alternative if it isn’t
available. The next step is to open the database:

var req = indexDB.open("CheeseDB", DBO.dbVersion);

The two arguments are the name of the database and the expected schema version. IndexedDB will
open the specified database if it already exists and create it if it doesn’t. The result from the open method
is an object that represents the request to open the database. To get anything done in IndexedDB, you
must supply handler functions for one or more of the possible outcomes from a request.

Responding to the Upgrade-Needed Outcome

I care about two possible outcomes when I open the database. First, I want to be notified if the database
already exists and the schema version doesn’t match the version I am expecting. When this happens, I
want to delete the object stores in the database and start over. I receive notification of a schema
mismatch by registering a function through the onupgradeneeded property:

req.onupgradeneeded = function(e) {
var db = req.result;

var existingStores = db.objectStoreNames;

for (var i = 0; i < existingStores.length; i++) {
db.deleteObjectStore(existingStores[i]);

}

var objectStore = db.createObjectStore("products"”, {keyPath: "id"});
objectStore.createIndex("category", "category", {unique: false});

$.each(data, function(index, item) {
var currentCategory = item.category;
$.each(item.items, function(index, item) {
item.category = currentCategory;
objectStore.add(item);
D;
D;
};

The database object is available through the result property of the request returned by the open
method. I get a list of the existing object stores through the objectStoreNames property and delete each
in turn using the deleteObjectStore method. In deleting the object stores, I also delete the data they
contain. This is fine for such a simple web app where all of the data is coming from the server and is
easily replaced, but you may need to take a more sophisticated approach if your databases contain data
that has been generated as a result of user actions.

CHAPTER 6 * STORING DATA IN THE BROWSER

Caution The function assigned to the onupgradeneeded property is the only opportunity you have to modify the
schema of the database. If you try to add or delete an object store elsewhere, the browser will generate an error.

Once the existing object stores are out of the way, I can create some new ones using the
createObject store method. The arguments to this method are the name of the new store and an
optional object containing configuration settings to be applied to the new store. I have used the keyPath
configuration option, which lets me set a default key for objects that are added to the store. I have
specified the id property as the key. I have also created an index using the createIndex method on the
newly created object store. An index allows me to perform searches in the object store using a property
other than the key, in this case, the category property. I'll show you how to use an index shortly.

Finally, I add objects to the data store. When I use this function in the main document, I'll be using
the data I get from an Ajax request for the products. json file. This is in the same format as the data I have
been using throughout this book. I use the jQuery each function to enumerate each category and the
items it contains. I have added a category property to each item so that I can find all of the products that
belong to the same category more easily.

Tip The objects you add to an object store are cloned using the HTML5 structured clone technique. This is a
more comprehensive serialization technique than JSON, and the browser will generally manage to deal with
complex objects, just as long as none of the properties is a function or DOM API object.

Responding to the Success Outcome

The second outcome I care about is success, which I handle by assigning a function to the onsuccess
property of the request to open the database, as follows:

req.onsuccess = function(e) {

DBO.db = this.result;

callback();
5

The first statement in this function assigns the opened database to the db property of the DBO object.
This is just a convenient way to keep a handle on the database so that I can use it in other functions,
something that I'll demonstrate shortly.

The second statement invokes the callback function that was passed as the second argument to the
setupDatabase function. It isn’t safe to assume that the database is open until the onsuccess function is
executed, which means I need to have some mechanism for signaling the function caller that the
database has been successfully opened and data-related operations can be started.

161

CHAPTER 6 = STORING DATA IN THE BROWSER

162

Tip IndexedDB requests have a counterpart outcome property called onerror. | won’t be doing any error
handling in these examples because, as | write this, trying to deal with IndexedDB errors causes more problems
than it solves. Ideally, this will have improved by the time you read this chapter, and you will be able to write more
robust code.

Incorporating the Database into the Web Application

Listing 6-15 shows the markup and inline JavaScript for the example application. With the exception of
the database-specific functions, everything in this example relies on topics covered in earlier chapters.

Listing 6-15. The Database-Consuming Web Application

<!DOCTYPE html>
<html>
<head>
<title>Cheeselux Cheese Finder</title>
<link rel="stylesheet" type="text/css" href="styles.css"/>
<script src="jquery-1.7.1.js" type="text/javascript"></script>
<script src="jquery-ui-1.8.16.custom.js" type="text/javascript"></script>
<script src="knockout-2.0.0.js' type="text/javascript'></script>
<script src="utils.js' type='text/javascript'></script>
<script src="signals.js' type='text/javascript'></script>
<script src="hasher.js' type='text/javascript'></script>
<script src='crossroads.js' type='text/javascript'></script>
<link rel="stylesheet" type="text/css" href="jquery-ui-1.8.16.custom.css"/>
<noscript>
<meta http-equiv="refresh" content="0; noscript.html"/>
</noscript>
<script>

var viewModel = {
searchModes: ["ID", "Description", "Category"],
selectedMode: ko.observable("ID"),
selectedItems: ko.observableArray()

};

function handleSearchResults(resultData) {
if (resultData) {
viewModel.selectedItems.removeAll();
if ($.isArray(resultData)) {
for (var i = 0; i < resultData.length; i++) {
viewModel.selectedItems.push(resultData[i]);

}
} else {
viewModel.selectedItems.push(resultData);
}

CHAPTER 6 * STORING DATA IN THE BROWSER

}

$.getISON("products.json", function(data) {
setupDatabase(data, function() {
$(document).ready(function() {

hasher.initialized.add(crossroads.parse, crossroads);
hasher.changed.add(crossroads.parse, crossroads);
hasher.init();

crossroads.addRoute("mode/ :mode:", function(mode) {
viewModel.selectedMode(mode || viewModel.searchModes[0]);
viewModel.selectedItems.removeAll();
$('#textsearch').val("");

D;

crossroads.parse(location.hash.slice(1));

ko.applyBindings(viewModel);
$('div.navSelectors').buttonset();
$('div.groupcontent a').button().click(function() {
var sText = $('#textsearch').val();
switch (viewModel.selectedMode()) {
case "ID":
getProductByID(sText, handleSearchResults)
break;
case "Description":
getProductsByDescription(sText, handleSearchResults);
break;
case "Category":
getProductsByCategory(sText, handleSearchResults);
break;
};
D;
1;
D;
1)

</script>
</head>
<body>
<div id="logobar">

<div class="tagcontainer">
Cheese Finder
</div>
</div>

<div class="cheesegroup">
<div class="navSelectors" data-bind="foreach: searchModes">
<a data-bind="formatAttr: {attr: 'href', prefix: '#mode/', value: $data},
css: {selectedItem: $data == $root.selectedMode()}">

163

CHAPTER 6 = STORING DATA IN THE BROWSER

</div>
</div>

<div class="cheesegroup">
<div class="grouptitle">Search Criteria</div>
<div class="groupcontent centered">
<label class="cheesename">Search Text:</label>
<input id="textsearch" class="stwin"/>
Search
</div>
</div>

<div class="cheesegroup">
<div class="grouptitle">Search Results</div>
<div class="groupcontent centered">
<table id="resultTable" data-bind="visible: selectedItems().length > 0">
<thead>
<tr><th>Name</th><th>Price</th><th>Description</th></tr>
<tr><td colspan=3 class="sumline"></td></tr>
</thead>
<tbody>
<!-- ko foreach: viewModel.selectedItems() -->
<tr>
<td data-bind="text: name"></td>
<td data-bind="text: price"></td>
<td data-bind="text: description"></td>
</tr>
<tr><td colspan=3 class="sumline"></td></tr>
<!-- /ko -->
</tbody>
</table>
<div data-bind="visible: selectedItems().length == 0">
No matches
</div>
</div>
</div>
</body>
</html>

As you might expect by now, I have used a view model to bind the state of the application to the
HTML markup. Most of the document is taken up defining and controlling the view given to the user and
supporting user interactions.

When the user clicks the search button, one of three functions in the utils. js file is called,
depending on the selected search mode. If the user has elected to search by product ID, then the
getProductByID function is called. The getProductsByDescription function is used when the user wants
to search the product descriptions, and the getProductsByCategory function is used to find all the
products in a specific category. Each of these functions takes two arguments: the text to search for and a
callback function to which the results should be dispatched (even searching an object store is an
asynchronous operation with IndexedDB). The callback function is the same for all three search modes:
handleSearchResults. The result from the search functions will be a single product object or an array of
objects. The job of the handleSearchResults function is to clear the contents of the selectedItems

164

CHAPTER 6 * STORING DATA IN THE BROWSER

observable array in the view model and replace them with the new results; this causes the elements to be
updated and the results to be displayed to the user.

Notice that I place most of the code statements in my inline script element inside the callback for
the setupDatabase function. This is the function that is called when the database has successfully been
opened.

Locating an Object by Key

The first of the search functions is getProductByID, which locates an object based on the value of the id
property. You will recall that I specified this property as the key for the object store when I created the
database:

var objectStore = db.createObjectStore("products”, {keyPath: "id"});

Getting an object using its key is pretty simple. Listing 6-16 shows the getProductByID function,
which I defined in the utils. js file.

Listing 6-16. Locating an Object Using Its Key

function getProductByID(id, callback) {
var transaction = DBO.db.transaction(["products"]);
var objectStore = transaction.objectStore("products");
var req = objectStore.get(id);
req.onsuccess = function(e) {
callback(this.result);
};

This function shows the basic pattern for querying an object store in a database. First, you must
create a transaction, using the transaction method, declaring the objects stores that you want to work
with. Only then can you open an object store, using the objectStore method on the transaction you just
created.

Tip You don’t need to explicitly close your object store or your transactions; the browser closes them for you
when they are out of scope. There is no benefit in trying to explicitly force the store or transactions to close.

I obtain the object with the specified key using the get method, which matches at most one object
(if there are multiple objects with the same key, then the first matching object is matched). The method
returns a request, and I must supply a function for the onsuccess property to be notified when the search
has completed. The matched object is available in the result property of the request, which I pass back
to the main part of the web app by invoking the callback function passed to the getProductByID function
(which, as you will recall, is the handleSearchResults function).

The (eventual) result from the get method is a JavaScript object or, if there is no match, null.I don’t
have to worry about re-creating an object from the serialized data stored by the database or use any kind
of object-relational mapping layer. The IndexedDB database works on JavaScript objects throughout,
which is a nice feature.

165

CHAPTER 6 = STORING DATA IN THE BROWSER

166

It is a little frustrating to have to use callbacks every time you want to perform a simple operation,
but it quickly becomes second nature. The result is a storage mechanism that fits nicely into the
JavaScript world and that doesn’t tie up the main thread of execution when long operations are being
performed but that requires careful thought and application design to be properly used.

Locating Objects Using a Cursor

I have to take a different approach when the user wants to search for products by their description.
Descriptions are not a key in my object store, and I want to be able to look for partial matches (otherwise
the user would have to exactly type in all of the description to make a match). Listing 6-17 shows the
getProductsByDescription function, which is defined in utils. js.

Listing 6-17. Locating Objects Using a Cursor

function getProductsByDescription(text, callback) {

var searchTerm = text.tolLowerCase();
var results = [];
var transaction = DBO.db.transaction(["products"]);
var objectStore = transaction.objectStore("products");
objectStore.openCursox().onsuccess = function(e) {

var cursor = this.result;

if (cursor) {

if (cursor.value.description.tolowerCase().index0Of(searchTerm) » -1) {
results.push(cursor.value);

cursor.continue();
} else {

callback(results);
}

IH
};

My technique here is to use a cursor to enumerate all of the objects in the object store and look for
those whose products property contains the search term provided by the user. A cursor simply keeps
track of my progress as I enumerate through a sequence of database objects.

IndexedDB doesn’t have a text search facility, so I have to handle this myself. Calling the openCursor
method on an object store creates a request whose onsuccess callback is executed when the cursor is
opened. The cursor itself is available through the result property of the this context object. (It should
also be available through the result property of the event passed to the function, but the current
implementation doesn’t always set this reliably.)

If the cursor isn’t null, then there is an object available in the value property. I check to see whether
the description property of the object contains the term I am looking for, and if it does, I push the object
into a local array. To move the cursor to the next object, I call the continue method, which executes the
onsuccess function again.

The cursor is null when I have read all of the objects in the object store. At this point, my local array
contains all of the objects that match my search, and I pass them back to the main part of the web
application using the callback supplied as the second argument to the getProductsByDescription
function.

CHAPTER 6 * STORING DATA IN THE BROWSER

Locating Objects Using an Index

Enumerating all of the objects in an object store isn’t an efficient way of finding objects, which is why I
created an index for the category property when I set up the object store:

objectStore.createIndex("category”, "category", {unique: false});

The arguments to the createIndex method are the name of the index, the property in the objects
that will be indexed, and a configuration object, which I have used to tell IndexedDB that the values for
the category property are not unique.

The getProductsByCategory function, which is shown in Listing 6-18, uses the index to narrow the
objects that are enumerated by the cursor.

Listing 6-18. Using an IndexedDB Index

function getProductsByCategory(searchCat, callback) {
var results = [];
var transaction = DBO.db.transaction(["products"]);
var objectStore = transaction.objectStore("products");
var keyRange = IDBKeyRange.only(searchCat);
var index = objectStore.index("category");
index.openCursor(keyRange).onsuccess = function(e) {
var cursor = this.result;
if (cursor) {
results.push(cursor.value);
cursor.continue();
} else {
callback(results);
}

};
};

The IDBKeyRange object has a number of methods for constraining the key values that will match
objects in the object store. I have used the only method to specify that I want exact matches only.

I open the index by calling the index method on the object store and pass in the IDBKeyRange object
as an argument when I open the cursor. This has the effect of narrowing the set of objects that are
available through the cursor, meaning that the results I pass via the callback contain only the cheese
products in the specified category. There is no partial matching in this example; the user must enter the
entire category name, such as French Cheese.

Summary

In this chapter, I showed you how to use local storage to persistently store name/value pairs in the
browser and how this feature can be used in an offline web app to deal with HTML forms. I also showed
you the IndexedDB features, which is far less mature but shows promise as a foundation for storing and
querying more complex data using natural JavaScript objects and language idioms.

IndexedDB isn’t yet ready for production use, but I find that local storage is very robust and helpful
in a wide range of situations. I find it especially useful in making forms more useful and less annoying,
much as I demonstrated in this chapter. The local storage feature is very easy to use, especially when it is
embedded within your application view model.

167

CHAPTER 6 = STORING DATA IN THE BROWSER

In the next chapter, I show you how to create responsive web apps that adapt and respond to the
capabilities of the devices on which they run.

168

CHAPTER 7

Creating Responsive Web Apps /

There are two approaches to targeting multiple platforms with a web app. The first is to create a different
version of the app for each kind of device you want to target: desktop, smartphone, tablet, and so on. I'll
give you some examples of how to do this in Chapter 8.

The other approach, and the topic of this chapter, is to create a responsive web app, which simply
means that the web app adapts to the capabilities of the device it is running on. I like this approach
because it doesn’t draw a hard distinction between mobile and “normal” devices.

This is important because the capabilities of smartphones, tablets, and desktops blur together.
Many mobile browsers already have good HTML5 support, and desktop machines with touchscreens are
becoming more common. In this chapter, I'll show you techniques that you can use to create web
applications that are flexible and fluid.

Setting the Viewport

I need to address one issue that is specific to the browsers running on smartphones and tablets (which
I'll start referring to as mobile browsers). Mobile browsers typically start from the assumption that a
website will have been designed for a large-screened desktop device and that, as a consequence, the user
will need some help to be able to view it. This is done through the viewport, which scales down the web
page so that the user gets a sense of the overall page structure. The user then zooms in to a particular
region of the page in order to read or use it. You can see the effect in Figure 7-1.

3 Opera Mobile (480x320) L= | B S| @ opera Mobile (430x320)

Web Development

www.apress.com/web-development _

APIESS

Hot Topics: .NET | iPhone | Android | Web Development

» O W

Figure 7-1. The effect of the default viewport in a mobile browser

169

CHAPTER 7

170

CREATING RESPONSIVE WEB APPS

Note The screenshots in Figure 7-1 are of the Opera Mobile emulator, which you can get from

www . opera.com/developer/tools/mobile. Although it has some quirks, this emulator is reasonably faithful to
the real Opera Mobile, which is widely used in mobile devices. | like it because it allows me to create emulators
with screen sizes ranging from small smartphones to large tablets and to select whether touch events are
supported. As a bonus, you can debug and inspect your web app using the standard Opera development tools. An
emulator is no substitute for testing on a range of real hardware devices but can be very convenient during the

early stages of development.

This is a sensible feature, but you need to disable it for web apps; otherwise, content and controls
are displayed at a size that is too small to use. Listing 7-1 shows how to disable this feature using the
HTML meta tag, which I have applied to a simplified version of the CheeseLux web app, which will be the

foundation example for this chapter.

Listing 7-1. Using the meta Tag to Control the Viewport in the CheeseLux Web App

<!DOCTYPE html>

<html>
<head>

<title>Cheeselux</title>
<link rel="stylesheet" type="text/css" href="styles.css"/>

<script
<script
<script
<script
<script
<script
<script
<script

src="jquery-1.7.1.js" type="text/javascript"></script>
src="jquery-ui-1.8.16.custom.js" type="text/javascript"></script>
src="knockout-2.0.0.js"' type="text/javascript'></script>
src="utils.js' type="text/javascript'></script>

src="signals.js' type='text/javascript'></script>
src="crossroads.js' type='text/javascript'></script>
src="hasher.js' type='text/javascript'></script>
src="'modernizr-2.0.6.js' type='text/javascript'></script>

<link rel="stylesheet" type="text/css" href="jquery-ui-1.8.16.custom.css"/>
<meta name="viewport" content="width=device-width, initial-scale=1"»

<script>

var

cheeseModel = {};

$.getISON("products.json", function(data) {

cheeseModel.products = data;

}).success(function() {

$(document) .ready(function() {
$('#buttonDiv input:submit').button().css("font-family", "Yanone");
$('div.cheesegroup').not("#basket").css("width", "50%");
$('div.navSelectors').buttonset();

enhanceViewModel();
ko.applyBindings(cheeseModel);

hasher.initialized.add(crossroads.parse, crossroads);
hasher.changed.add(crossroads.parse, crossroads);

http://www.opera.com/developer/tools/mobile

CHAPTER 7 = CREATING RESPONSIVE WEB APPS

hasher.init();

crossroads.addRoute("category/:newCat:", function(newCat) {
cheeseModel.selectedCategory(newCat ?
newCat : cheeseModel.products[0].category);
1;

crossroads.parse(location.hash.slice(1));

};
};

</script>
</head>
<body>
<div id="logobar">

Gourmet European Cheese
</div>

<div class="cheesegroup">
<div class="navSelectors" data-bind="foreach: products">
<a data-bind="formatAttr: {attr: 'href', prefix: '#category/',
value: category},
css: {selectedItem: (category == cheeseModel.selectedCategory())}">

</div>
</div>

<div id="basket" class="cheesegroup basket">
<div class="grouptitle">Basket</div>
<div class="groupcontent">

<div class="description" data-bind="ifnot: total">
No products selected
</div>

<table id="basketTable" data-bind="visible: total">
<thead><tr><th>Cheese</th><th>Subtotal</th><th></th></tr></thead>
<tbody data-bind="foreach: products">
<!-- ko foreach: items -->
<tr data-bind="visible: quantity, attr: {'data-prodId': id}">
<td data-bind="text: name"></td>
<td>$</td>
</tr>
<!-- /ko -->
</tbody>
<tfoot>
<tr><td class="sumline" colspan=2></td></tr>
<tr>
<th>Total:</th><td>$</td>
</tr>
</tfoot>
</table>

171

CHAPTER 7 = CREATING RESPONSIVE WEB APPS

</div>
<div class="cornerplaceholder"></div>

<div id="buttonDiv">
<input type="submit" value="Submit Order"/>
</div>
</div>

<form action="/shipping" method="post">
<!-- ko foreach: products -->
<div class="cheesegroup"

data-bind="fadeVisible: category == cheeseModel.selectedCategory()"

<div class="grouptitle" data-bind="text: category"></div>
<div data-bind="foreach: items">
<div class="groupcontent">
<label data-bind="attr: {for: id}" class="cheesename">

 $()</label>
<input data-bind="attr: {name: id}, value: quantity"/»>

($)

</div>
</div>
</div>
<!-- /ko -->
</form>
</body>
</html>

Adding the highlighted meta element to the document disables the scaling feature. You can see the

>

effect in Figure 7-2. This particular meta tag tells the browser to display the HTML document using the

actual width of the display and without any magnification. Of course, the web app is still a mess, but it is

amess that is being displayed at the correct size, which is the first step toward a responsive app. In the
rest of this chapter, I'll show you how to respond to different device characteristics and capabilities.

T = o
€3 Opera Mobile (480x320) == n-i&-n-l (> Opera Mobile (480x320)

Cheeselux

(Google
CHEESELADS A6 Pee 058

No prohecs sl

i__::; 5] [o]

Figure 7-2. The effect of disabling the viewport for a web app

172

CHAPTER 7 = CREATING RESPONSIVE WEB APPS

Responding to Screen Size

Media queries are a useful way of tailoring CSS styles to the capabilities of the device. Perhaps the most
important characteristic of a device from the perspective of a responsive web app is screen size, which
CSS media queries address very well. As Figure 7-2 shows, the CheeseLux logo takes up a lot of space on
asmall screen, and I can use a CSS media query to ensure that it is shown only on larger displays. Listing
7-2 shows a simple media query that I added to the styles.css file.

Listing 7-2. A Simple Media Query
@media screen AND (max-width:500px) {

*.largeScreenOnly {
display: none;

Tip Opera Mobile aggressively caches CSS and JavaScript files. When experimenting with media queries, the
best technique is to define the CSS and script code in the main HTML document and move it to external files when
you are happy with the result. Otherwise, you will need to clear the cache (or restart the emulator) to ensure your
changes are applied.

The @media tag tells the browser that this is a media query. I have specified that the largeScreenOnly
style contained in this query should be applied only if the device is a screen (as opposed to a projector or
printed material) and the width is no greater than 500 pixels.

Tip In this chapter, | am going to divide the world into two categories of displays. Small displays will be those
whose width is no greater than 500 pixels, and /arge displays will be everything else. This is simple and arbitrary,
and you may need to devise more categories to get the effect you require for your web app. | am going to ignore
the height of the display entirely. My simple categories will keep the examples in this chapter manageable, albeit
at the cost of granularity.

If these conditions are met, then a style is defined that sets the CSS display property for any element
assigned to the largeScreenOnly class to none, which hides the element from view. With the addition to
the style sheet, I can ensure that the CheeseLux logo is shown only on large displays by applying the
largeScreenOnly class to my markup, as shown in Listing 7-3.

173

CHAPTER 7 = CREATING RESPONSIVE WEB APPS

174

Listing 7-3. Using CSS Media Queries to Respond to Screen Sizes

<div id="logobar" class="largeScreenOnly">

Gourmet European Cheese
</div>

CSS media queries are live, which means the category of screen size can change if the browser
window is resized. This isn’t much use on mobile devices, but it means that a responsive web app will
adapt to the display size even on a desktop platform. You can see how the layouts alter in Figure 7-3.

(> Opera Mobile (480x320) = | E) |

Stilton 5{9} No products selected

s

Figure 7-3. Using media queries to manage the visibility of elements

Using Media Queries with JavaScript

To properly integrate media queries into a web app, we need to use the View module of the W3C CSS
Object Model specification, which brings JavaScript media queries support into the browser. Media
queries are evaluated in JavaScript using the window.matchMedia method, as shown in Listing 7-4. I have
defined the detectDeviceFeatures function in the utils. js file; at the moment, it detects only the screen
size, but I'll detect some additional features later. There is a lot going on in the listing, so I'll break it
down and explain the various parts in the sections that follow.

Listing 7-4. Using a Media Query in JavaScript

function detectDeviceFeatures(callback) {
var deviceConfig = {};
Modernizr.load({
test: window.matchMedia,
nope: ‘matchMedia.js’,
complete: function() {

CHAPTER 7 = CREATING RESPONSIVE WEB APPS

var screenQuery = window.matchMedia('screen AND (max-width:500px)');
deviceConfig.smallScreen = ko.observable(screenQuery.matches);
if (screenQuery.addListener) {
screenQuery.addListener(function(mq) {
deviceConfig.smallScreen(mq.matches);
D;
}

deviceConfig.largeScreen = ko.computed(function() {
return !deviceConfig.smallScreen();

1

setInterval(function() {
deviceConfig.smallScreen(window.innerWidth <= 500);

}, 500);
callback(deviceConfig);
}
b
};
Loading the Polyfill

I need to use a polyfill to make sure I can use the matchMedia method. Support for this feature is good in
desktop browsers but spotty in the mobile world. The polyfill I use is called matchMedia. js and is
available from http://github.com/paulirish/matchMedia. js.

I want to load the polyfill only if the browser doesn’t support the matchMedia feature natively. To
arrange this, I have used the Modernizr.load method, which is a flexible resource loader. I pass the load
method an object whose properties tell Modernizr what to do.

Tip The Modernizr.load feature is available only when you create a custom Modernizr build; it is notincluded
in the uncompressed development version of the Modernizr library. The Modernizr load method is a wrapper
around a library called YepNope, which is available at http://yepnopejs.com. You can use YepNope directly if
you don’t want to use a compressed Modernizr build for any reason. The http://yepnopejs.com site also
contains details of all of the loader features; the syntax doesn’t change when the library is included with
Modernizr. Be careful when using a resource loader in external JavaScript files. There are serious issues that can
arise, which | describe in Chapter 9. You will see a link to create a custom download on the Modernizr web page.
For the custom build that | used in this chapter, | simply checked all of the options to include as much Modernizr
functionality as possible in the download.

The test property, as the name suggests, specifies the expression that I want Modernizr to evaluate.
In this case, I want to see whether the window.matchMedia method is defined by the browser. You can use
any JavaScript expression with the test property, including Modernizr feature detection checks.

175

http://github.com/paulirish/matchMedia.js
http://yepnopejs.com
http://yepnopejs.com

CHAPTER 7 = CREATING RESPONSIVE WEB APPS

The nope property tells Modernizr what resources I want to load if test evaluates false. In this
example, I have specified the matchMedia. js file, which contains the polyfill code. There is a
corresponding property, yep, which tells Modernizr what resources are required if test is true, butI
don’t need to use that in this example because I will be relying on the built-in support for matchMedia if
test is true. The complete property specifies a function that will be executed when the resources
specified by the yep or nope property have all been loaded and executed.

Modernizr.load gets and executes JavaScript scripts asynchronously, which is why the
detectDeviceFeatures function takes a callback function as an argument. I invoke this callback at the
end of the complete function, passing in an object that contains details of the features that have been
detected.

Detecting the Screen Size

I can now turn to working out whether the device’s screen falls into my large or small category. To do
this, I pass a media query, just the like the one I used in CSS, to the matchMedia method, like this:

var screenQuery = window.matchMedia('screen AND (max-width:500px)');

I determine whether my media query has been matched by reading the matches property of the
object I get back from matchMedia. If matches is true, then I am dealing with a screen that is in my small
category (500 pixels and smaller). If it is false, then I have a large screen. I assign the result to an
observable data item in the object that I pass to the callback function:

var deviceConfig = {
smallScreen: ko.observable(screenQuery.matches)
};

If the browser implements the matchMedia feature, then I can use the addListener method to be
notified when the status of the media query changes, like this:

if (screenQuery.addListener) {
screenQuery.addListener(function(mq) {
deviceConfig.smallScreen(mq.matches);

B;

The status of a media query changes when one of the conditions it contains changes. The two
conditions in my query are that we are working on a screen and that it has a maximum width of 500
pixels. A change notification, therefore, indicates that the width of the display has changed. This means
that the browser window has been resized or that the screen orientation has changed (see the
“Responding to Screen Orientation” section later in this chapter for more details).

The matchMedia. js polyfill doesn’t support change notifications, so I have to test for the existence of
the addListener method before I use it. My function is executed when the status of the media query
changes and I update the value of the observable data item. The last thing I do is create a computed
observable data item, like this:

deviceConfig.largeScreen = ko.computed(function() {
return !deviceConfig.smallScreen();

1

This is just to help tidy up my syntax when I want to refer to the screen size in the rest of my web
app so that I can refer to smalllScreen and largeScreen to figure out what I am working with, as opposed
to smallScreen and !smallScreen. It is a small thing, but I create fewer typos this way.

176

CHAPTER 7 = CREATING RESPONSIVE WEB APPS

Some browsers are inconsistent in the way that status changes in media queries are handled. For
example, the version of Google Chrome that is current as [write this doesn’t always update media
queries when the screen size changes. As a belt-and-braces measure, I have added a simple check on the
screen size, which is set up using the setInterval function:

setInterval(function() {
deviceConfig.smallScreen(window.innerWidth <= 500);
}, 500);

The function is executed every 500 milliseconds and updates the screen size item in the view model.
This isn’t ideal, but it is important that a responsive web app is able to adapt to device changes, and this
can mean taking some undesirable precautions, including polling for status changes.

Tip Notice that I use the window. innerWidth property to try to figure out the size of the screen. The problem |
am working around is that the media queries don’t work properly in all browsers, so | need to find a substitute
mechanism for assessing screen size.

Integrating Capability Detection into the Web App

I want to detect the capabilities of the device before I do anything else in the web app, which I why I
added a callback to the detectDeviceFeatures function. You can see how I have integrated the use of this
function to the web app script element in Listing 7-5.

Listing 7-5. Calling the detectDeviceFeatures Function from the Inline script Element

<script>
var cheeseModel = {};

detectDeviceFeatures(function(deviceConfig) {
cheeseModel.device = deviceConfig;
$.getISON("products.json", function(data) {
cheeseModel.products = data;
}).success(function() {
$(document) .ready(function() {
$('#buttonDiv input:submit').button().css("font-family", "Yanone");
$("'div.cheesegroup').not("#basket").css("width", "50%");
$('div.navSelectors').buttonset();

enhanceViewModel();
ko.applyBindings(cheeseModel);

hasher.initialized.add(crossroads.parse, crossroads);
hasher.changed.add(crossroads.parse, crossroads);
hasher.init();

crossroads.addRoute("category/:newCat:", function(newCat) {
cheeseModel.selectedCategory(newCat ?

177

CHAPTER 7 = CREATING RESPONSIVE WEB APPS

178

newCat : cheeseModel.products[0].category);

};

</script>

I assign the object that the detectDeviceFeatures function passes to the callback to the device
property in the view model. By using an observable data item, I disseminate changes into the application
from the view model when the media query changes.

The last step is to take advantage of the enhancements to the view model in the web app markup.
Listing 7-6 shows how I can control the visibility of the CheeseLux logo through a data binding.

Listing 7-6. Controlling Element Visibility Based on Screen Capability Expressed Through the View Model

<div id="logobar" data-bind="visible: device.largeScreen()">

Gourmet European Cheese

</div>

The result is to re-create the effect of using the CSS media query in JavaScript. The CheeseLux logo
is visible only on large screens. You might be wondering why I have gone to all the effort of re-creating a
simple and elegant CSS technique in JavaScript. The reason is simple: pushing information about the
capabilities of the device through my web app view model gives me a foundation for creating responsive
web apps that are far more capable and flexible than would be possible with CSS alone. The following
section gives an example.

Deferring Image Loading

The problem with simply hiding an img element is that the browser still loads it; it just never shows it to
the user. This is a ridiculous situation because it is costing me and the user bandwidth to download a
resource that won'’t ever be shown on a device with a small screen. To fix this, I have defined a new data
binding called ifAttr in the utils. js file, as shown in Listing 7-7. This binding adds and removes an
attribute based on evaluating a condition.

Listing 7-7. A Data Binding for Conditionally Setting an element Attribute

ko.bindingHandlers.ifAttr = {
update: function(element, accessor) {
if (accessor().test) {
$(element).attr(accessor().attr, accessor().value);
} else {
$(element).removeAttr(accessor().attr);

This binding expects a data object that contains three properties: the attr property specifies which
attribute I want to apply, the test property determines whether the attribute is added to the element,

CHAPTER 7 = CREATING RESPONSIVE WEB APPS

and the value attribute specifies the value that will be assigned to the attribute if test is true. Listing 7-8
shows how I can apply this binding to my CheeseLux logo markup to defer loading the image until it is
required.

Listing 7-8. Using the ifAttr Binding to Prevent Image Loading

<div id="logobar" data-bind="visible: device.largeScreen()">
<img data-bind="ifAttr: {attr: 'src', value: 'cheeselux.png',
test: device.largeScreen()}">
Gourmet European Cheese
</div>

The browser can’t load an image when the img element doesn’t have a src attribute. To take
advantage of this, I use the ifAttr attribute with the largeScreen view model item so that the src
attribute is set only when the image will be displayed. In this way, I am able to prevent the image from
loading unless it will be shown. This is a pretty simple trick but demonstrates the kind of flexibility that
you should look for when creating a responsive web app.

Tip It is important to distinguish between resources that you don’t want to use immediately from resources that
you are unlikely to want at all. If you have a reasonable expectation that the user will require an image in the
normal use of your application, then you should let the browser download it so that it is immediately available
when required. Use the ifAttr technique to avoid a wasted download if it is unlikely that the user will require a
resource.

Adapting the Web App Layout

From this point on, I simply have to adapt each part of the web app to the two categories of screen that I
am interested in. Listing 7-9 shows the changes that are required.

Tip Don’t try to load this listing in the browser until you have also applied the changes in Listing 7-10. If you do,
you’ll get an error because the view model data and the data bindings are out of sync.

Listing 7-9. Adapting the Web App to Large and Small Screens

<IDOCTYPE html>
<html>
<head>
<title>Cheeselux</title>
<link rel="stylesheet" type="text/css" href="styles.css"/>
<script src="jquery-1.7.1.js" type="text/javascript"></script>
<script src="jquery-ui-1.8.16.custom.js" type="text/javascript"></script>

179

CHAPTER 7 = CREATING RESPONSIVE WEB APPS

<script
<script
<script
<script
<script
<script

<script>

src="knockout-2.0.0.js" type='text/javascript'></script>
src="utils.js' type="text/javascript'></script>

src="'signals.js' type="text/javascript'></script>
src="crossroads.js' type='text/javascript'></script>
src="hasher.js' type='text/javascript'></script>
src="modernizr-2.0.6.js' type='text/javascript'></script>

<link rel="stylesheet" type="text/css" href="jquery-ui-1.8.16.custom.css"/>
<meta name="viewport" content="width=device-width, initial-scale=1">

var cheeseModel = {};

detectDeviceFeatures(function(deviceConfig) {
cheeseModel.device = deviceConfig;
$.getISON("products.json", function(data) {
cheeseModel.products = data;
}).success(function() {
$(document).ready(function() {

};

1

</script>

</head>
<body>

B;

function performScreenSetup(smallScreen) {
$('div.cheesegroup').not("#basket")
.css("width", smallScreen ? "" : "50%");

3
cheeselModel .device.smallScreen.subscribe(performScreenSetup);
performScreenSetup(cheeseModel.device.smallScreen());

$('div.buttonDiv input:submit').button();
$('div.navSelectors').buttonset();

enhanceViewModel();
ko.applyBindings(cheeseModel);

hasher.initialized.add(crossroads.parse, crossroads);
hasher.changed.add(crossroads.parse, crossroads);
hasher.init();

crossroads.addRoute("category/:newCat:", function(newCat) {
cheeseModel.selectedCategory(newCat ?
newCat : cheeseModel.products[0].category);
1;

crossroads.parse(location.hash.slice(1));

<div id="logobar" data-bind="visible: device.largeScreen()">
<img data-bind="ifAttr: {attr: 'src', value: 'cheeselux.png',

test: device.largeScreen()}">

Gourmet European Cheese

</div>

180

CHAPTER 7 = CREATING RESPONSIVE WEB APPS

<div class="cheesegroup">
<div class="navSelectors" data-bind="foreach: products">
<a data-bind="formatAttr: {attr: 'href', prefix: '#category/',
value: category},
css: {selectedItem: (category == cheeseModel.selectedCategory())}">
<span data-bind="text: cheeseModel.device.smallScreen() ?
shortName : category"»</span»

</div>
</div>

<div id="basket" class="cheesegroup basket"
data-bind="visible: cheeseModel.device.largeScreen()">
<div class="grouptitle">Basket</div>
<div class="groupcontent">

<div class="description" data-bind="ifnot: total">
No products selected
</div>

<table id="basketTable" data-bind="visible: total">
<thead><tr><th>Cheese</th><th>Subtotal</th><th></th></tr></thead>
<tbody data-bind="foreach: products">
<!-- ko foreach: items -->
<tr data-bind="visible: quantity, attr: {'data-prodId': id}">
<td data-bind="text: name"></td>
<td>$</td>
</tr>
<!-- /ko -->
</tbody>
<tfoot>
<tr><td class="sumline" colspan=2></td></tr>
<tr>
<th>Total:</th><td>$</td>
</tr>
</tfoot>
</table>
</div>
<div class="cornerplaceholder"></div>

<div class="buttonDiv">
<input type="submit" value="Submit Order"/>
</div>
</div>

<form action="/shipping" method="post">
<div data-bind="foreach: products">
<div class="cheesegroup"
data-bind="fadeVisible: category == $root.selectedCategory()">
<div class="grouptitle" data-bind="text: category"></div>
<!-- ko foreach: items -->
<div class="groupcontent">

181

CHAPTER 7 = CREATING RESPONSIVE WEB APPS

<label data-bind="attr: {for: id}" class="cheesename">

 $()</label>
<input data-bind="attr: {name: id}, value: quantity"/»>

($)

</div>
<!-- /ko -->
<div class="groupcontent" data-bind="if: $root.device.smallScreen()">
<label class="cheesename">Total:</label>
<span class="subtotal" id="total"s
$<span data-bind="text: cheeseModel.total()"»</spans
</span»
</div»
</div>
</div>
<div class="buttonDiv" data-bind="visible: $root.device.smallScreen()">
<input type="submit" value="Submit Order"/»>
</div»
</form>
</body>
</html>

The joy of this approach is how few changes are required to make a web app responsive to screen
size (and how simple those changes are). That said, there are a small number of changes that require
explanation, which I provide in the following sections. You can see how my responsive web app appears
on large and small screens in Figure 7-4.

5 | () Cpern Mioksile [320hu480) [E=RE=0 =]
() Cheeselux

Cheaselux

cheeselux.com/ ¥ -

) cheeselux.com oA

CHEESELUX

stiton$(9) I

Stinking Bishop $(17) I

Cheddar $(17) CHEN
Totak 30

= Onm -7

Stilton $(9) _ No products selected

StinkingBishop$(17) [|IIIIIIIIII
theddar$(17) [

Figure 7-4. The same web app displayed on a large and small screen

182

CHAPTER 7 = CREATING RESPONSIVE WEB APPS

These small changes have a big impact, and for the most part, the changes are cosmetic. The
underlying features and structure of my web app remain the same. I don’t have to forgo my view model
or routing just to support a device with a smaller screen.

Adapting the Source Data

The category buttons are a problem on a small screen, so I want to display something to the user that is
meaningful but requires less screen space. To do this, I made some additions to the products. json file so
that each category contains a name to be used when space is limited. Listing 7-10 shows the addition for
one of the categories.

Listing 7-10. Adding Screen-Specific Information to the Product Data

[{"category": "British Cheese",
"shortName": "British",
"items" : [
{"id": "stilton", "name": "Stilton", "price": 9,
"description”: "A semi-soft blue cow's milk cheese produced in the
Nottinghamshire region. A strong cheese with a distinctive smell
and taste and crumbly texture."},

I have applied a similar change to all of the other categories in the products. json file. I could have
arrived at the short name by splitting the category value string on the space character, but I want to
make the point that it is not just the script and markup in a web app that can be responsive; you can also
support this concept in the data that drives your application.

In Listing 7-9, I modified the data binding for the navigation buttons to take advantage of the
shorter categories names, like this:

<div class="cheesegroup">
<div class="navSelectors" data-bind="foreach: products">
<a data-bind="formatAttr: {attr: 'href', prefix: '#category/",
value: category},
css: {selectedItem: (category == cheeseModel.selectedCategory())}">
<span data-bind="text: cheeseModel.device.smallScreen() ?
shortName : category">

</div>
</div>

I still use the full category name for the formatAttr binding. This allows me to use the same set of
navigation routes irrespective of the screen size (see Chapter 4 for details of using routing in a web app).

Applying Conditional jQuery Ul Styling

In the large screen layout, I resize the product list elements to make room for the basket. In the small
screen layout, I replace the dedicated basket with a one-line total at the end of each section. I like to take
advantage of the matchMedia.addListener feature if it is available, which means I must be able to toggle
between the small and large screen layouts as needed. To accommodate this, I treat those script

183

CHAPTER 7 = CREATING RESPONSIVE WEB APPS

184

statements that drive the individual layouts in their own function and register that function as a
subscriber to changes in the view model:

function performScreenSetup(smallScreen) {
$('div.cheesegroup’).not("#tbasket").css("width", smallScreen ? "" : "50%");

5
cheeseModel.device.smallScreen.subscribe(performScreenSetup);

The function will be called only when the value changes, so I call the function explicitly to get the
right behavior when the document is first loaded, like this:

performScreenSetup(cheeseModel.device.smallScreen());

In effect, I toggle the CSS width property of the div elements in the cheesegroup class based on the
size of the screen. You could ignore this approach and just leave the layout in its initial state, but I think
that is a lost opportunity to provide a nice experience for desktop users.

Removing Elements from the Document

For the most part, I simply hide and show elements in the document based on the size of the screen.
However, there are occasions when the if and ifnot bindings are required to ensure that elements are
completely removed from the document. A simple example of this can be seen in the listing where I use
the if binding for the one-line total summary:

<div class="groupcontent” data-bind="if: $root.device.smallScreen()">
<label class="cheesename">Total:</label>

$

</div>

I have used the if binding here because tucked away in the styles.css file is a CSS style that applies
rounded corners:

div.groupcontent:last-child {
border-bottom-left-radius: 8px;
border-bottom-right-radius: 8px;

}

The browser doesn’t take into account the visibility of elements when working out which is the last
child of its parent. If I had used the visible binding, then I don’t get the rounded corners I want in the
large screen layout. The if binding forces the behavior I want by removing the elements entirely,
ensuring that the rounded corners are applied correctly.

Responding to Screen Orientation

Many mobile devices respond to the way that the user is holding the device by changing the screen
orientation between landscape and portrait modes. Keeping informed of the display mode turns out to
be quite tricky, but it is worth doing to make sure that your web app responds appropriately when the
orientation changes. There are several ways to approach this issue.

Some devices support awindow.orientation property and an orientationchange event to make it
easier to keep track of the screen orientation, but this feature isn’t universal, and even when it is
implemented, the event tends to be fired when it shouldn’t be (and isn’t fired when it should be).

CHAPTER 7 = CREATING RESPONSIVE WEB APPS

Other devices support orientation as part of a media query. This is useful if the addListener feature
is supported as part of matchMedia, but most mobile browsers don’t support this feature, and these are
the devices whose orientation is most likely to change.

Almost all browsers support a resize event, which is triggered when the window is resized or the
orientation is changed. However, some implementations introduce delays between orientation changes
and the event being triggered, which makes for a web app that is slow to respond and that may change
its layout or behavior after the user has started interacting in the new orientation.

The final approach is to periodically check screen dimensions and work out the orientation
manually. This is crude but effective and works only if the frequency of the check is high enough to make
for a rapid response but low enough not to overwhelm the device.

The only reliable way to make sure you detect orientation changes is to apply all four techniques.
Listing 7-11 shows the required additions to the detectDeviceFeatures function.

Listing 7-11. Detecting Screen Orientation Changes

function detectDeviceFeatures(callback) {
var deviceConfig = {};

deviceConfig.landscape = ko.observable();
deviceConfig.portrait = ko.computed(function() {
return !deviceConfig.landscape();

H

var setOrientation = function() {
deviceConfig.landscape(window.innexllidth » window.innerHeight);

setOrientation();

$(window) .bind("orientationchange resize", function() {
setOrientation();

H

setInterval(setOrientation, 500);

if (window.matchMedia) {
var orientQuery = window.matchMedia('screen AND (orientation:landscape)')
if (orientQuery.addListener) {
orientQuery.addListener(setOrientation);
}

}

Modernizr.load({

test: window.matchMedia,

nope: 'matchMedia.js’,

complete: function() {
var screenQuery = window.matchMedia('screen AND (max-width:500px)");
deviceConfig.smallScreen = ko.observable(screenQuery.matches);
if (screenQuery.addListener) {

screenQuery.addListener(function(mq) {
deviceConfig.smallScreen(mq.matches);

};

185

CHAPTER 7 = CREATING RESPONSIVE WEB APPS

186

deviceConfig.largeScreen = ko.computed(function() {
return !deviceConfig.smallScreen();

};

setInterval(function() {
deviceConfig.smallScreen(window.innerWidth <= 500);
}, 500);

callback(deviceConfig);

}
};
};

I have set up two view model data items, landscape and portrait, following the same pattern that I
used for smallScreen and largeScreen. I don’t want to duplicate my code for testing the orientation of
the device, so I have created a simple inline function called setOrientation that sets the value of the
landscape data item:

var setOrientation = function() {
deviceConfig.landscape(window.innexWidth » window.innerHeight);
}

I'have found comparing the innerWidth and innerHeight values of the window object to be the most
reliable way of figuring out the screen orientation. The screen.width and screen.height values should
work, but some browsers don’t change these values when the device is reoriented. The
window.orientation property provides good information, but it isn’t universally implemented. This is an
undoubted compromise, and I recommend you test the efficacy of this approach on your target devices.

The rest of the additions implement the various means by which the setOrientation will be called:
via the orientationchange and resize events, via a media query, and via polling. Judging the right
frequency to poll the orientation is difficult, but I usually use 500 milliseconds. It isn’t always as
responsive as I would like, but it strikes a reasonable balance.

Tip I could have used a single setInterval call to poll for both the screen size and the orientation, but | prefer
to keep the regions of code functionality as separate as possible.

Integrating Screen Orientation into the Web App

I can make the web app respond to the screen orientation now that the view model has the portrait and
landscape items. To demonstrate this, I am going to fix a problem: the web app currently requires the
user to scroll down to see all of the elements in landscape mode on a device that has a small screen.
Figure 7-5 shows the problem and the result after I have modified the web app layout.

CHAPTER 7 = CREATING RESPONSIVE WEB APPS

3 Opera Mobile (480:320) (= E S | @ Opera Mobite (480:x320) o] B]
| _ | BRITISH CHEESE |
* BRITISH CHEESE) Stiton $(9) (519
Stifton $(9) | stinking Bishop $(17) ENE (s68)

Stinking Bishop $(17) (heddor $(17) I

Cheddar $(17)

Total:

o

Figure 7-5. Responding to the landscape orientation on small screens

To respond to this orientation for small screens, I have removed the category navigation elements
and replaced them with left and right buttons that page through the categories. This isn’t the most
elegant approach, but it makes good use of limited screen space while preserving the basic nature of the
web app. Listing 7-12 shows the addition of the data binding to control visibility for the navigation items.

Listing 7-12. Binding Element Visibility to the Screen Size and Orientation

<div class="cheesegroup"
data-bind="ifnot: cheeseModel.device.smallScreen() &&
cheeselModel .device.landscape()">
<div class="navSelectors" data-bind="foreach: products">
<a data-bind="formatAttr: {attr: 'href', prefix: '#category/',
value: category},
css: {selectedItem: (category == cheeseModel.selectedCategory())}">
<span data-bind="text: cheeseModel.device.smallScreen()?
shortName : category">

</div>
</div>

I remove the elements from the DOM if the device has a small screen and is in the landscape
orientation. The buttons I add are as follows:

<div class="buttonDiv" data-bind="visible: $root.device.smallScreen()">
<button id="left"s>Prev</button>
<input type="submit" value="Submit Order"/>
<button id="right">Next</button>

</div>

The elements themselves are not interesting, but the code that handles the navigation that arises
when clicked is worth looking at:

187

CHAPTER 7 = CREATING RESPONSIVE WEB APPS

function performScreenSetup(smallScreen) {
$('div.cheesegroup').not("#basket")
.css("width", smallScreen ? "" : "50%");
$('button#left').button({icons:
{primary: "ui-icon-circle-triangle-w"},text: false});
$('button#iright').button({icons:
{primary: "ui-icon-circle-triangle-e"},text: false});
$('button#left, button#iright').click(function(e) {
e.preventDefault();
advanceCategory(e, this.id);
D;
};

This is an example of when using routing for navigation doesn’t work. I want the user to be able to
repeatedly click these buttons, and as I mentioned already, the browser won’t respond to an attempt to
navigate to the same URL that is already being displayed. With this in mind, I have used the jQuery click
method to handle the regular JavaScript event by calling the advanceCategory function. I defined this
function in utils. js, and it is shown in Listing 7-13.

Listing 7-13. The advanceCategory Function

function advanceCategory(e, dir) {
var cIndex = -1;
for (var i = 0; i < cheeseModel.products.length; i++) {
if (cheeseModel.products[i].category == cheeseModel.selectedCategory()) {

cIndex = i;
break;
}
cIndex = (dir == "left" ? cIndex - 1 : cIndex + 1) % (cheeseModel.products.length);

if (cIndex < 0) {
cIndex = cheeseModel.products.length -1;

}
cheeseModel.selectedCategory(cheeseModel.products[cIndex].category)

There is no neat ordering of categories in the view model, so I enumerate through the data to find
the index of the currently selected category and increment or decrement the value based on which
button has been clicked. The result is a more compact layout that better suits the small-screen
landscape orientation. The way I have categorized devices is pretty crude, and I recommend you take a
more granular approach in real projects, but it serves to demonstrate the techniques you need in order
to respond to screen orientation.

Responding to Touch

The final feature that a responsive web app needs to deal with is touch support. The idea of touch-based
interaction is firmly established in the smartphone and tablet markets, but it is also making its way to the
desktop, mostly through Microsoft Windows 8.

188

CHAPTER 7 = CREATING RESPONSIVE WEB APPS

To support touch interaction, we need two things: a touch screen and a browser that emits touch
events. These two don’t always come together; plugging a touch-enabled monitor into a desktop
machine doesn’t automatically enable touch in the browser, for example. Equally, you should not
assume that if a device supports touch that this will be the only model for interactions. Many devices will
support mouse and keyboard interactions alongside touch, and the user should be able to pick
whichever model suits them when using your web app and switch freely between them.

Devices that don’t have a regular mouse and keyboard synthesize events such as click in response
to touch events. This means you don’t need to make changes to your web app to support basic touch
interactions. However, to create a truly response web app, you should consider supporting the
navigation gestures that are common on touch devices, such as swiping. I demonstrate how to do this
shortly.

Detecting Touch Support

There is a W3C specification for touch events, but it is low-level, and a lot of work is required to figure
out what gestures the user is making. As I have said before, part of the joy of web app development is the
availability of high-quality JavaScript libraries that make development simpler. One such example is
touchSwipe, which builds on jQuery and transforms the low-level touch events into events that represent
gestures. I included the touchSwipe library in the source code download that accompanies this book and
that is available from Apress.com. The website for the library is http://labs.skinkers.com/touchSwipe.

The simplest and most reliable approach to detecting touch support is to rely on the Modernizr test.
Listing 7-14 shows the additions to the detectDeviceFeatures function in the utils. js file to detect and
report on touch support and shows the use of touchSwipe to respond to touch events.

Listing 7-14. Detecting Support for Touch Events

function detectDeviceFeatures(callback) {
var deviceConfig = {};

deviceConfig.landscape = ko.observable();
deviceConfig.portrait = ko.computed(function() {
return !deviceConfig.landscape();

1

var setOrientation = function() {
deviceConfig.landscape(window.innerWidth > window.innerHeight);

setOrientation();

$(window).bind("orientationchange resize", function() {
setOrientation();

};

setInterval(setOrientation, 500);

if (window.matchMedia) {
var orientQuery = window.matchMedia('screen AND (orientation:landscape)')
if (orientQuery.addListener) {
orientQuery.addListener(setOrientation);
}

189

http://labs.skinkers.com/touchSwipe

CHAPTER 7 = CREATING RESPONSIVE WEB APPS

Modernizr.load([{

test: window.matchMedia,

nope: 'matchMedia.js’,

complete: function() {
var screenQuery = window.matchMedia('screen AND (max-width:500px)");
deviceConfig.smallScreen = ko.observable(screenQuery.matches);
if (screenQuery.addListener) {

screenQuery.addListener(function(mq) {
deviceConfig.smallScreen(mq.matches);

1

deviceConfig.largeScreen = ko.computed(function() {
return !deviceConfig.smallScreen();
1;

}
b A

test: Modernizr.touch,
yep: 'jquery.touchSwipe-1.2.5.js’,
callback: function() {
$('html").swipe({
swipeleft: advanceCategory,
swipeRight: advanceCategory
hH
}

b
complete: function() {

callback(deviceConfig);
}
s

5
When you pass an array of objects to the Modernizr.load method, each test is performed in turn. I

have added a test that uses the Modernizr.touch check and that loads the touchSwipe library if touch
support is present.

Tip Make sure you included the touch tests if you downloaded your own version of Modernizr. The version |
included in the source code for this chapter contains all of the available tests.

Notice that I used the callback property to set up support for handling swipes. Functions set using
the callback property are executed when the specified resources are loaded, whereas functions specified
using complete are executed at the end of the test, irrespective of the test result. I want to handle swipe
events only if touchSwipe has been loaded (which itself indicates that touch support is present), so I
have used callback to give Modernizr my function.

The touchSwipe library is applied using the swipe method. In this example, I have selected the html
element as the target for detecting swipe gestures. Some browsers limit the body element size so that it
doesn’t fill the entire window when the content is smaller than the available space. This isn’t usually a

190

CHAPTER 7 = CREATING RESPONSIVE WEB APPS

problem, but it creates dead spots on the screen when dealing with gestures, which may not be targeted
at individual elements. The simplest way to get around this is to work on the html element.

The touchSwipe library is able to differentiate between different kinds of touch events and swipes in
arange of directions. I care about swipes only to the left and the right in this example, which is why I
have defined a function for the swipelLeft and swipeRight properties in the object I passed to the swipe
method. In both cases I have specified the advanceCategory function, which is the same function I used
to change selected categories earlier. The result is that swiping left moves to the previous category and
swiping right goes to the next category. The last point to note about this listing is the last item in the
array passed to the Modernizr.load method:

complete: function() {
callback(deviceConfig);
}

I don’t want to invoke the callback function until I have set up all of the device details in the result
object that will be added to the view model. The easiest way to ensure this happens is to create an
additional test that contains just a complete function. Modernizr won’t execute this function until all of
the other tests have been performed, the required resources have been loaded, and the callback and
complete functions for all of the previous tests have been performed.

Using Touch to Navigate the Web App History

In the previous example, I respond to swipe gestures by looping through the available product
categories. In this section, I show you how to respond to these gestures in a more useful way.

The temptation is to use the browser’s history to respond to swipes. The problem is that there is no
way to peek at the previous or next entry in the history and see whether it is one that belongs to the web
app. Ifitisn’t, then you end up making the user navigate away from your web app, potentially to a URL
that they had no intention of visiting. Listing 7-15 shows the changes required to the enhanceViewModel
function in the utils. js file to set up the basic support for tracking the user’s category selections.

Tip You could elect to use local storage and make the swipe-related history persistent. | prefer not to do this,
since | think it makes more sense for the history to be limited to the current life of the web app.

Listing 7-15. Adding Application-Specific History Using Session Storage
function enhanceViewModel() {
cheeseModel.selectedCategory = ko.observable(cheeseModel.products[0].category);

mapProducts(function(item) {
item.quantity = ko.observable(0);
item.subtotal = ko.computed(function() {
return this.quantity() * this.price;
}, item);
}, cheeseModel.products, "items");

191

CHAPTER 7 = CREATING RESPONSIVE WEB APPS

192

cheeseModel.total = ko.computed(function() {
var total = 0;
mapProducts(function(elem) {
total += elem.subtotal();
}, cheeseModel.products, "items");
return total;

1

var history = cheeseModel.history = {};
history.index = 0;
history.categories = [cheeseModel.selectedCategory()];
cheeselModel .selectedCategory.subscribe(function(newValue) {
if (newValue != history.categories[history.index]) {
history.index++;
history.categories.push(newValue);

)
1

The additions are simple. I have added an index and an array to the view model and subscribed to
the selectedCategory observable data item so that I can build up the user’s history as they change
categories. I have not worried about managing the size of the array since I think it is unlikely that enough
category changes will be made to cause a capacity problem. Listing 7-16 shows the changes to the ad.

Listing 7-16. Taking Advantage of the App-Specific History

function advanceCategory(e, dir) {
if (cheeseModel.device.smallScreen() && cheeseModel.device.landscape()) {
var cIndex = -1;
for (var i = 0; i < cheeseModel.products.length; i++) {
if (cheeseModel.products[i].category == cheeseModel.selectedCategory()) {
cIndex = i;
break;

}

}
cIndex = (dir == "left" ? cIndex-1 : cIndex + 1) % (cheeseModel.products.length);
if (cIndex < 0) {

cIndex = cheeseModel.products.length -1;

cheeseModel.selectedCategory(cheeseModel.products[cIndex].category)

} else {
var history = cheeseModel.history;
if (dir == "left" && history.index » 0) {
cheeselModel.selectedCategory(history.categories|--history.index]);
} else if (dir == "right" &% history.index < history.categories.length -1) {
cheeselModel.selectedCategory(history.categories[++history.index]);
}

CHAPTER 7 = CREATING RESPONSIVE WEB APPS

I have to be careful not to apply the swipe history when the web app is displayed on a small screen
in the landscape orientation. I removed the category buttons in this device configuration, meaning that
there is no way for the user to generate a history for me to navigate through. In all other device
configurations, I am able to respond to the swipe by changing the value of the index and selecting the
corresponding historic category. The result is that the user can navigate between categories using the
navigation buttons and swiping moves backward or forward through the recent selections.

Integrating with the Application Routes

The last tweak I want to make is to respond to the swipe events through the web app’s URL routes. In the
last listing, I took the shortcut of changing the observable data item directly, but this means I will bypass

any code that is generated as a result of a URL change, including integration with the HTML5 History API
(which I describe in Chapter 4). The changes are shown in Listing 7-17.

Listing 7-17. Responding to Swipe Events Through the Application Routes

function advanceCategory(e, dir) {
if (cheeseModel.device.smallScreen() && cheeseModel.device.landscape()) {
var cIndex = -1;
for (var i = 0; i < cheeseModel.products.length; i++) {
if (cheeseModel.products[i].category == cheeseModel.selectedCategory()) {

cIndex = i;
break;
}
cIndex = (dir == "left" ? cIndex-1 : cIndex + 1) % (cheeseModel.products.length);

if (cIndex < 0) {
cIndex = cheeseModel.products.length -1;

}
cheeseModel.selectedCategory(cheeseModel.products[cIndex].category)

} else {
var history = cheeseModel.history;
if (dir == "left" 8& history.index > 0) {
location.href = "#category/" + history.categories[--history.index];
} else if (dir == "right" && history.index < history.categories.length -1) {
location.href = "#category/" + history.categories[++history.index];
}

I have used the browser location object to change the URL that the browser displays. Since I have
specified relative URLs, the browser will not navigate away from the web app, and my routes will be able
to match the URLs. By doing this, I ensure that my response to swipe events is consistent with other
forms of navigation.

193

CHAPTER 7 = CREATING RESPONSIVE WEB APPS

194

Summary

In this chapter, I have shown you the three characteristics that you must adapt to in order to create a
responsive web app: screen size, screen orientation, and touch interaction. By detecting and adapting to
different device configurations, you can create one web app that can seamlessly and elegantly adapt its
layout and interaction model to suit the user’s device. The advantages of such an approach are obvious
when you consider the proliferation of smartphones and tablets and the blurring of the distinctions
between these devices and desktops. In the next chapter, I show you a different approach to supporting
different types of devices: creating a platform-specific web app.

CHAPTER 8

Creating Mobile Web Apps

An alternative to creating a web app that adapts to the capabilities of different devices is to create a
version that is specifically targeted to mobile devices. Choosing between a responsive web app and a
mobile-specific implementation can be difficult, but my rule of thumb is that a mobile version makes
sense when I want to offer a radically different experience to mobile and desktop users or when dealing
with device constraints in a responsive implementation becomes unwieldy and overly complex. Your
decision will, of course, depend on the specifics of your project, but this chapter is for when you decide
that one version of your web app, however responsive, won't cater to your mobile users’ needs.

Detecting Mobile Devices

The first step is to decide how you are going to direct users of mobile devices to the mobile version of
your web app. The decision you make at this stage will shape a lot of the assumptions you will have
when you come to build the mobile web app. There are a couple of broad approaches, which I describe
in the following sections.

Detecting the User Agent

The traditional approach is to look at the user agent string that the browser uses to describe itself. This is
available through the navigator.userAgent property, and the value that it returns can be used to identify
the browser and, usually, the platform the browser is running on. As an example, here is the value of
navigator.userAgent that Chrome returns on my Windows system:

"Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.7 (KHTML, like Gecko) Chrome/16.0.912.77
Safari/s35.7"

And, for contrast, here is what I get from the Opera Mobile emulator:
Opera/9.80 (Windows NT 6.1; Opera Mobi/23731; U; en) Presto/2.9.201 Version/11.50"

You can identify mobile devices by building a list of user agent values and keeping track of which
ones represent mobile browsers. You don’t have to create and manage these lists yourself, however —
there are some good sources of information available online. (A very comprehensive database called
WURFL can be found at http://wurfl.sourceforge.net, but this requires integration into your server-
side code, which is not ideal for this book.)

A less-comprehensive client-side solution can be found at http://detectmobilebrowsers.com, where
you can download a small jQuery library that matches the user agent against a known list of mobile
browsers. This approach isn’t as complete as WURFL, but it is simpler to use, and it detects the most
widely used mobile browsers. To demonstrate this kind of mobile device detection, I downloaded the
jQuery code to my Node.js content directory in a file called detectmobilebrowser. js (you can find this

195

http://wurfl.sourceforge.net
http://detectmobilebrowsers.com

CHAPTER 8 = CREATING MOBILE WEB APPS

196

file in the source code download for this book, available from Apress.com). Listing 8-1 shows how to use
this plugin to detect mobile devices.

Listing 8-1. Detecting Mobile Devices at the Client

<!DOCTYPE html>
<html>
<head>
<title>Cheeselux</title>
<link rel="stylesheet" type="text/css" href="styles.css"/>
<script src="jquery-1.7.1.js" type="text/javascript"></script>
<script src="jquery-ui-1.8.16.custom.js" type="text/javascript"></script>
<script src="knockout-2.0.0.js' type="text/javascript'></script>
<script src="utils.js' type='text/javascript'></script>
<script src="signals.js' type='text/javascript'></script>
<script src="crossroads.js' type='text/javascript'></script>
<script src="hasher.js' type="text/javascript'></script>
<script src="modernizr-2.0.6.js' type='text/javascript'></script>
¢script src='detectmobilebrowser.js' type='text/javascript's</scripts
<link rel="stylesheet" type="text/css" href="jquery-ui-1.8.16.custom.css"/>
<meta name="viewport" content="width=device-width, initial-scale=1">
<script>

if ($.browser.mobile) {
location.href = "mobile.html";
}

var cheeseModel = {};

Once I have added the library to my document with a script element, I can check to see whether my
web app is running on a mobile browser by reading the $.browser.mobile property, which returns true if
the user agent is recognized as belonging to a mobile browser. In this case, I redirect mobile users to the
mobile.html document, which I will use to build my mobile web app later in this chapter.

The main problem with using the user agent is that it isn’t always accurate, and as I mentioned in
the previous chapter, the distinctions between mobile and desktop devices are becoming blurred. In
essence, you rely on someone else’s decision about what defines mobile, and that won’t always line up
with the way you want to segment your user base. And, although the lists of browser are generally
accurate, it can take a while for new models to be properly identified and categorized, especially from
niche hardware providers.

A related problem is that many browsers allow the user to change the user agent so that another
browser is identified. Not many users make this change, but it does mean you cannot entirely rely on the
user agent reported through the navigator.userAgent property.

Detecting Device Capabilities

I prefer to classify a device as mobile by detecting its capabilities, much as I did in Chapter 7. This allows
me to decide what defines mobile in the context of the way my web app works. For the CheeseLux web
app, I have decided that devices that are touch enabled and that have screens that are narrower than 500
pixels will be given the mobile version of my web app. You can see how I have implemented this policy
in Listing 8-2, which shows the changes to the detectDeviceFeatures function from the utils. js file.

CHAPTER 8 * CREATING MOBILE WEB APPS

Listing 8-2. Detecting Mobile Devices Based on Their Capabilities

function detectDeviceFeatures(callback) {
var deviceConfig = {};

...code removed for brevity...

Modernizr.load([{

test: window.matchMedia,

nope: 'matchMedia.js’,

complete: function() {
var screenQuery = window.matchMedia('screen AND (max-width: 500px)');
deviceConfig.smallScreen = ko.observable(screenQuery.matches);
if (screenQuery.addListener) {

screenQuery.addListener(function(mq) {
deviceConfig.smallScreen(mq.matches);

B;
}

deviceConfig.largeScreen = ko.computed(function() {
return !deviceConfig.smallScreen();
D;
}
b A

test: Modernizr.touch,
yep: 'jquery.touchSwipe-1.2.5.js',
callback: function() {
$("html").swipe({
swipeleft: advanceCategory,
swipeRight: advanceCategory
1)
}

1
complete: function() {

deviceConfig.mobile = Modernizr.touch && deviceConfig.smallScreen();
callback(deviceConfig);

}
;s
5
I have added a mobile property to the view model; it returns true if the device meets my criteria for

getting the mobile version of my web app. Listing 8-3 shows how I have used this new property in
example.html

Listing 8-3. Using Mobile Device Detection in the Main Web App Document
var cheeseModel = {};
detectDeviceFeatures(function(deviceConfig) {

cheeseModel.device = deviceConfig;

if (cheeseModel.device.mobile) {
location.href = "mobile.html";
}

197

CHAPTER 8 = CREATING MOBILE WEB APPS

198

$.getISON("products.json", function(data) {
cheeseModel.products = data;

}).success(function() {
$(document) .ready(function() {

I add the capabilities check before the JSON data is loaded so that I can direct the user to
mobile.html before I start making network requests and processing the elements in the DOM.

Tip In this example and the previous one, | placed the mobile detection code outside of the jQuery ready event
so that the browser will execute the code as soon as it reaches it in the document. A more thorough approach
would be to place the detection code right at the top of the document so that it is executed before any of the
JavaScript libraries are loaded. However, since | rely on some of these libraries to actually perform the detection,
careful ordering of the script elements is required.

Creating a Simple Mobile Web App

Both of the approaches I showed you assume that the user will want to view the mobile version of my
web app—but this won’t always be the case. I prefer to identify a mobile device and then ask the user
what they want to do. This approach puts control into users’ hands (which is where it should be), but it
does mean that I have to provide a mechanism for letting them choose and remembering the choice
they make. So, rather than simply directing mobile devices to the mobile version of the web app, I use an
interim document called askmobile.html. I placed this file in the Node.js content directory, and you can
see the file content in Listing 8-4. This is a very simple web app that uses jQuery and jQuery Mobile.

Listing 8-4. Asking the User If They Want to Use the Mobile Version of the Web App

<!DOCTYPE html>
<html>
<head>
<title>Cheeselux</title>
<script src="jquery-1.7.1.js" type="text/javascript"></script>
<script src="jquery.mobile-1.0.1.js" type="text/javascript"></script>
<link rel="stylesheet" type="text/css" href="jquery.mobile-1.0.1.css"/>
<link rel="stylesheet" type="text/css" href="styles.mobile.css"/>
<meta name="viewport" content="width=device-width, initial-scale=1">
<script>
function setCookie(name, value, days) {
var date = new Date();
date.setTime(date.getTime()+(days * 24 * 60 * 60 *1000));
document.cookie = name + "="+ value

+ "; expires=" + date.toGMTString() +"; path=/";

CHAPTER 8

$(document).bind("pageinit", function() {
$('button').click(function(e) {
var useMobile = e.target.id == "yes";
var useMobileValue = useMobile ? "mobile" : "desktop";
if (localStorage) {
localStorage["cheeseLuxMode"] = useMobileValue;
} else {
setCookie("cheeseLuxMode", useMobileValue, 30);

location.href = useMobile ? "mobile.html" : "example.html";
1;
1);

</script>
</head>
<body>
<div id="page1" data-role="page" data-theme="a">

Would you like to use our mobile web app?

<div class="middle">
<button data-inline="true" data-theme="b" id="yes">Yes</button>
<button data-inline="true" id="no">No</button>
</div>
</div>
</body>
</html>

CREATING MOBILE WEB APPS

Tip | explain how to get the CSS and JavaScript files referred to in this listing shortly.

This document presents the user with two buttons that they can use to choose the version of the
web app they want to use. You can see how the document is displayed in the browser in Figure 8-1.

199

CHAPTER 8 = CREATING MOBILE WEB APPS

{® Opera Mobile (430x320) (=B i

CHEESELUX

Would you like to use our mobile web app?

Yes No

O

Figure 8-1. Asking the user which version of the web app they require

o

This tiny web app gives me a good example with which to introduce jQuery Mobile, which is what
I'll be using in this chapter. jQuery Mobile is a toolkit optimized for mobile devices, and it includes
widgets that are easy to interact with using touch and built-in support for handling touch events and
gestures.

jQuery Mobile is the “official” mobile toolkit from the main jQuery project, and it’s pretty good,
although there are some rough edges with some layouts that need tweaking with minor CSS. There are
other jQuery-based mobile widget toolkits available—and some of them are very good as well. I have
chosen jQuery Mobile because it shares a broadly common approach with jQuery UTI and it has some
design characteristics that are typical of most mobile toolkits and that require special attention when
writing complex web apps.

AVOIDING PSEUDONATIVE MOBILE APPS

Another reason that | use jQuery Mobile is that it doesn’t try to re-create the appearance of a native
smartphone application, which is an approach that some of the other toolkits adopt. | don’t like that
approach because it doesn’t quite work. If you give the user something that looks like a native iOS or
Android app, then you need to make sure it behaves exactly the way a native application should—and, at
least at the moment, that isn’t possible.

The worst possible approach is to try to re-create a native app for just one platform. You often see this,
and it is usually i0S that web app developers aim for. This might not be so bad if the re-creation was
faithful and all mobile devices ran i0S, but users of Android and other operating systems get something
that is totally alien, and i0S users get something that initially appears to be familiar but that turns out to be
confusing and inconsistent.

To my mind, it is far better to design a web app that is genuinely obvious and easy to use. The results are
better, you users will be happier, and you don’t have to contort your web app to fit inside the constraints of
platform that you can’t properly adhere to anyway.

200

CHAPTER 8 * CREATING MOBILE WEB APPS

I am not going to provide a lengthy tutorial on jQuery Mobile, but there are some important
characteristics that I need to explain in order to demonstrate how to create a solid mobile web
application. I explain the core concepts in the sections that follow. If you want more information about
jQuery Mobile, then see the project web site or my Pro jQuery book, which is published by Apress and
contains a complete reference for using jQuery Mobile.

Installing jQuery Mobile

You can download jQuery Mobile from http://jquerymobile.com. jQuery Mobile depends on jQuery,
and the script element that imports jQuery into the document must come before the one that imports
the jQuery Mobile library, like this:

<head>
<title>Cheeselux</title>
<script src="jquery-1.7.1.js" type="text/javascript"s</scripts
<script src="jquery.mobile-1.0.1.js" type="text/javascript"></scripts
<link rel="stylesheet" type="text/css" href="jquery.mobile-1.0.1.css"/>

jQuery Mobile relies on its own CSS and images that are different from those used by jQuery UL
When you download jQuery Mobile, copy the CSS file into the Node.js content directory along with the
JavaScript file, and put the images into the images directory along with those from jQuery Ul

Understanding the jQuery Mobile Data Attributes

jQuery Mobile relies on data attributes to configure the layout of the web app. Data attributes allow
custom attributes to be applied to elements, just like the data-bind attribute that I have been using for
data bindings. There is no data-bind attribute defined in the HTML specification, but any attribute that
is prefixed by data- is ignored by the browser and allows you to embed useful information in your
markup that you can then access via JavaScript. Data attributes have been used unofficially for a few
years and are an official part of HTML5.

jQuery Mobile uses data attributes rather than the code-centric approach that jQuery Ul requires.
You use the data-role attribute to tell jQuery Mobile how it should treat an element—the markup is
processed automatically when the document is loaded and the widgets are created.

You don’t always need to use the data-role attribute. For some elements, jQuery Mobile will
assume that it needs to create a widget based on the element type. This has happened for the buttons in
the document: jQuery Mobile will create a button widget when it finds a button element in the markup.
So, this element:

<button data-inline="true" id="no">No</button>
doesn’t need a data-role attribute but could have been written like this if you prefer:

<button data-role="button" data-inline="true" id="no">No</button>

Defining Pages

The most important value for the data-role attribute is page. When building mobile web apps, it is good
practice to minimize the number of requests made to the server. jQuery Mobile helps in this regard by
supporting single-page apps, where the markup and script for multiple logical pages is contained within
a single document and shown to the user as required. A page is denoted by a div element whose data-
role attribute is page. The content of the div element is the content of that page:

201

http://jquerymobile.com

CHAPTER 8 = CREATING MOBILE WEB APPS

202

<body>
<div id="page1" data-role="page" data-theme="a">

...page content goes here...

</div>
</body>

There is just one page in my askmobile.html document, but I'll return to the topic of pages when we
build the full mobile CheeseLux app later in the chapter.

Configuring Widgets

jQuery Mobile also uses data attributes to configure widgets. By default, jQuery Mobile buttons span the
entire page. This gives a large target to hit on a small portrait screen but looks pretty odd in other
layouts. To disable this behavior, I have told jQuery Mobile that I want inline buttons, where the button
is just large enough to contain its content. I did this by setting the data-inline attribute to true for the
button elements, like this:

<button data-inline="true" id="no">No</button>

A number of element-specific data attributes are available, and you should consult the jQuery
Mobile web site for details. One important configuration attribute that I will mention, however, is data-
theme, which applies a style to the page or widget to which it is applied. A jQuery Mobile theme contains
a number of swatches, named A, B, C, and so on. I have set the data-theme attribute to a for the page
element so as to set the theme for the single page in the document and all of its content:

<div id="page1" data-role="page" data-theme="a">

You can create your own custom themes using the jQuery Mobile ThemeRoller, which is available at
jquerymobile.com. I am using the default themes, and swatch A provides the dark style for the web app.
For contrast, I have set the swatch on the Yes button to b, like this:

<button data-inline="true" data-theme="b" id="yes">Yes</button>

Buttons in swatch B are blue, which gives the user a strong suggestion as to the recommended
decision.

Tip | have defined a new CSS style sheet for use with jQuery Mobile. It is called http://styles.mobile.css,
and it lives in the Node.js content directory along with the other example files. The styles in this file just tweak the
layout slightly, allowing me to center elements in the page and make other minor adjustments to the default jQuery
Maobile layout. You can find the style sheet in the source code download for this book, which is available from
Apress.com.

http://styles.mobile.css

CHAPTER 8 * CREATING MOBILE WEB APPS

Dealing with jQuery Mobile Events

Using a widget library that is based on jQuery means we can handle events using familiar techniques. If
you look at the script element in the askmobile.html document, you will see that handling the events
triggered when the buttons are clicked requires the same basic jQuery code that I have been using
throughout this book:

<script>
...code removed for brevity...

$(document).bind("pageinit”, function() {
$('button').click(function(e) {
var useMobile = e.target.id == "yes";
var useMobileValue = useMobile ? "mobile" : "desktop";
if (localStorage) {
localStorage["cheeseLuxMode"] = useMobileValue;
} else {
setCookie("cheeseLuxMode", useMobileValue, 30);

location.href = useMobile ? "mobile.html" : "example.html";

H
};

</script>

T use jQuery to select the button elements and the standard click method to handle the click event.
However, there is one very important difference in the way that jQuery Mobile deals with events . Here it
is:

$(document) .bind("pageinit”, function() {
...code to handle button click events...
}

jQuery Mobile processes the markup for data attributes when the standard jQuery ready event fires.
This means I have to bind to the pageinit event if I want to execute code after jQuery Mobile has finished
setting up its widgets. There is no convenient method for specifying a function for this event and so I
have used the bind method instead. The code in this example would have run in response to the jQuery
ready event quite happily, since I am not interacting directly with the widgets that jQuery Mobile creates.
This will change when I come to the full jQuery Mobile CheeseLux web app, and it is good practice to use
the pageinit event in all jQuery Mobile apps.

Storing the User’s Decision

Now that I have described the jQuery Mobile parts of askmobile.html, we can return to the application’s
function, which is to record and store the user’s preference for the version of the web app the user wants
to use. I use local storage if it is available and fall back to a regular cookie if it is not. There is no
convenient jQuery support for working with cookies, so I have written my own function called
setCookie:

203

CHAPTER 8 = CREATING MOBILE WEB APPS

204

function setCookie(name, value, days) {
var date = new Date();
date.setTime(date.getTime()+(days * 24 * 60 * 60 *1000));
document.cookie = name + "="+ value

+ "; expires=" + date.toGMTString() +"; path=/";

If T have to use the cookie, then I set the life to be 30 days, after which the browser will delete the
cookie and the user will have to express their preference again. For brevity, I have not set any lifetime
when using local storage, but doing so would be good practice.

Tip Itis also good practice to ask the user if they want you to store their choice at all. | haven’t taken this step
in my simple example, but some users are sensitive to these issues, especially when it comes to cookies.

Detecting the User’s Decision in the Web App

The last step is to detect the user’s decision in the desktop version of the CheeseLux web app. Listing 8-5
shows a pair of functions I have added to utils. js to support this process.

Listing 8-5. Checking for a Prior Decision Before Performing a Redirect

function checkForVersionPreference() {
var previousDecision;
if (localStorage 88 localStorage["cheeseLuxMode"]) {
previousDecision = localStorage["cheeselLuxMode"];
} else {
previousDecision = getCookie("cheeseLuxMode");

if (!previousDecision && cheeseModel.device.mobile) {
location.href = "/askmobile.html";

} else if (location.pathname == "/mobile.html" && previousDecision == "desktop") {
location.href = "/example.html";
} else if (location.pathname != "/mobile.html" &3 previousDecision == "mobile") {
location.href = "/mobile.html";
}
}
function getCookie(name) {
var val;
$.each(document.cookie.split(';"), function(index, elem) {
var cookie = $.trim(elem);
if (cookie.indexOf(name) == 0) {
val = cookie.slice(name.length + 1);
b
return val;
}

CHAPTER 8 * CREATING MOBILE WEB APPS

The checkForVersionPreference function uses the view model values to see whether the user has a
mobile device and, if so, tries to recover the result of a previous decision from local storage or a cookie.
Cookies are awkward to process, so I have added a getCookie function that finds a cookie by name and
returns its value. If there is no stored value, then I direct the user to the askmobile.html document to get
their preference. If there is a stored value, then I use it to switch to the mobile version if that was the
user’s preference. All that remains is to incorporate a call to the checkForVersionPreference function
into example.html, which contains the desktop version of the web app, like this:

detectDeviceFeatures(function(deviceConfig) {
cheeseModel.device = deviceConfig;
checkForVersionPreference();

$.getISON("products.json", function(data) {
cheeseModel.products = data;

}).success(function() {
$(document).ready(function() {
... code removed for brevity...
D;

b
)}

I'have shown the changes as code snippets because I don’t want to use pages in a chapter on mobile
devices to list the desktop web app code. You can get the complete listing as part of the source code
download available free of charge from Apress.com.

Tip It makes sense to offer the user the chance to change their minds when the effect of the decision is stored
and applied automatically. | skipped this step because | want to focus on the mobile app in this chapter, but you
should always include some kind of Ul cue that allows the user to switch to the other version of the web app,
especially if the decision is stored and used persistently.

Building the Mobile Web App

I am going to start with a basic mobile version of the CheeseLux web app and then build on it to show
you how to create a better experience for the user. When I create a mobile version of a web app that has
a desktop counterpart, I have two goals in mind:

e Reuse as much desktop code as is possible
e Ensure that the mobile responds elegantly to different device capabilities

The first goal is all about long-term maintainability. The more common code I have, the fewer
occasions there will be where I have to find and fix a bug in two different places. I like to decide in
advance which version of the web app has primacy and which will have to flex to be able to use the code.

205

CHAPTER 8 = CREATING MOBILE WEB APPS

In general, I tend to create the desktop version first and make the mobile web app adapt. The exception
to this is when the majority of users will be using mobile devices.

WHAT ABOUT MOBILE FIRST?

206

There is a view (often referred to as mobile firsf) that focuses on the design and development of the mobile
platform first, largely because it forces you to work within the most constrained environment you will be
targeting and because mobile devices have capabilities, like geolocation, that are not on desktops.

In my projects, | don’t want initial constraints—I want to build the richest, deepest, and most immersive
experience | can, and, for the moment at least, that is the desktop. Once | have a handle on what is
possible with large screens and rich interaction, | begin the process of dealing with device constraints,
paring down and tailoring my app until | get something that works well on a mobile device. | am not a
believer in the unique capabilities of mobile devices, either. As | mentioned in Chapter 7, the hard and fast
distinctions between categories of devices are fading fast. One of my moments of wonder recently was
when Google was able to use the Wi-Fi data it collects along with its Street View product to pinpoint my
location within a few feet. This was on a machine that would require a forklift truck to be mobile.

But, as | mentioned previously, | am not a pattern zealot, and you should follow whatever approach makes
the most sense for you and your projects. Don’t let anyone dictate your development style, including me.

The second goal is about ensuring that my mobile web app is responsive and adapts to the wide
range of device types that users may have. You cannot afford to make assumptions about screen size and
input mechanisms even when targeting just mobile devices.

Caution You may be tempted to try to create a web app that switches between jQuery Ul and jQuery Mobile (or
equivalent libraries) based on the kind of device that is being used. Such a trick is possible but incredibly hard to
pull off without creating a lot of very contorted code and markup. The most sensible approach is to create separate
versions if you want to take advantage of features that are specific to one library or another.

To get things going, Listing 8-6 shows a first pass at creating the core functionality using jQuery
Mobile. This listing depends on some changes in the view model that I'll explain shortly.

Listing 8-6. The Initial Version of the CheeseLux Mobile Web App

<!DOCTYPE html>
<html>
<head>
<title>Cheeselux</title>
<script src="jquery-1.7.1.js" type="text/javascript"></script>
<script type="text/javascript">
$(document).bind("mobileinit", function() {
$.mobile.autoInitializePage = false;

1

CHAPTER 8

</script>

<script

src="jquery.mobile-1.0.1.js" type="text/javascript"></script>

<link rel="stylesheet" type="text/css" href="jquery.mobile-1.0.1.css"/>
<link rel="stylesheet" type="text/css" href="styles.mobile.css"/>

<script
<script
<script
<script
<script
<script

src="knockout-2.0.0.js" type='text/javascript'></script>
src="utils.js' type="text/javascript'></script>
src="'signals.js' type='text/javascript'></script>
src="crossroads.js' type='text/javascript'></script>
src="hasher.js' type='text/javascript'></script>
src="'modernizr-2.0.6.js' type='text/javascript'></script>

<meta name="viewport" content="width=device-width, initial-scale=1">

<script>

var

cheeseModel = {};

detectDeviceFeatures(function(deviceConfig) {

cheeseModel.device = deviceConfig;
checkForVersionPreference();

$.getISON("products.json", function(data) {
cheeseModel.products = data;
enhanceViewModel();

$(document).ready(function() {
ko.applyBindings(cheeseModel);
$('buttonttleft, buttonttright').live("click", function(e) {
e.preventDefault();
advanceCategory(e, e.target.id);
1
$.mobile.initializePage();
1;
1;

$(document).bind("pageinit”, function() {
function positionCategoryButtons() {
setTimeout(function() {
$('fieldset:visible').each(function(index, elem) {
var fsWidth = 0;
$(elem).children().each(function(index, child) {
fsWidth+= $(child).width();

1

if (fsWidth > 0) {
$(elem).width(fsWidth);

} else {
positionCategoryButtons();

}
};
}, 10);

5
positionCategoryButtons();

CREATING MOBILE WEB APPS

cheeseModel.device.smallAndPortrait.subscribe(positionCategoryButtons);

1

207

CHAPTER 8 = CREATING MOBILE WEB APPS

1

</script>
</head>
<body>
<div id="page1l" data-role="page" data-theme="a">
<div id="logobar" data-bind="visible: device.largeScreen()">
<img data-bind="ifAttr: {attr: 'src', value: 'cheeselux.png',
test: device.largeScreen()}">
Gourmet European Cheese
</div>

<fieldset class="middle" data-role="controlgroup" data-type="horizontal"
data-bind="foreach:products, visible: device.largeScreen() ||
device.smallAndPortrait()">
<input type="radio" name="category" data-bind="attr: {id: category,
value: category}, checked: $root.selectedCategory” />
<label data-bind="attr: {for: category}">
<span data-bind="text: $root.device.smallAndPortrait()?
shortName : category">
</label>
</fieldset>

<form action="/basket" method="post">
<div data-bind="foreach: products">
<div data-bind="fadeVisible: category == $root.selectedCategory()">
<div data-role="header" >
<h1 data-bind="text: category"></h1>
</div>
<!-- ko foreach: items -->
<div class="itemContainer ui-grid-a">
<div class="ui-block-a">

<label data-bind="attr: {for: id}, formatText: {value: name,

suffix:':"'}"></label>
</div>
<div class="ui-block-b">
<input data-bind="attr: {name: id}, value: quantity">
</div>
</div>
<l-- /ko -->
<div data-role="footer">
<h1>
<label>Total:</label>
<span data-bind="formatText: {prefix: '$',
value: cheeseModel.total()}"
</h1>
</div>
</div>
</div>

<div class="middle" data-role="controlgroup" data-type="horizontal"

data-bind="visible: device.smallAndLandscape()">
<button id="left" data-icon="arrow-1"> </button>

208

CHAPTER 8 * CREATING MOBILE WEB APPS

<input type="submit" value="Submit Order"/>
<button id="right" data-icon="arrow-r"
data-iconpos="right"> </button>
</div>

<div class="middle" data-role="controlgroup" data-type="horizontal"
data-bind="visible: !device.smallAndLandscape()">
<input type="submit" value="Submit Order"/>

</div>
</form>
</div>
</body>
</html>

For the most part, this is a straightforward web app that relies on the core functionality of jQuery
Mobile, but you need to be aware of some wrinkles and additions that I describe in the following
sections. You can see the landscape and portrait layouts for a small-screen device in Figure 8-2. The web
app also supports layouts for mobile devices with larger screens. [have not shown these layouts, but
they are similar to those shown in the figure, but with the CheeseLux logo and the full category names
displayed in the navigation buttons.

' I | F T " 1 —
{5 Opera Mobile (480x320) L= | B eS| | @ Opera Mobile (320:450) =] (B

British Cheese W
‘British | French Italian

British Cheese

Stilton: | 0
Stinking Bishop: 0
Cheddar: 0 Stilton: 0

Total: $0

Stinking Bishop: 0

Cheddar: 0
Submit Order
Total: $0

Submit Order

O

v

Figure 8-2. The basic implementation of the mobile CheeseLux web app

You will notice new data bindings and view model items in this listing. The formatText data binding
lets me apply a prefix and suffix to the text content of an element, which simplifies working with

209

CHAPTER 8 = CREATING MOBILE WEB APPS

210

composed strings, especially currency amounts. This is one of the set of custom bindings that I generally
add to projects and the code, which is included in the utils. js file, as shown in Listing 8-7. The
composeString function used by this binding is the same one I showed you in Chapter 4 when I
introduced the custom formatAttr binding.

Listing 8-7. The formatText Custom Data Binding

ko.bindingHandlers.formatText = {
update: function(element, accessor) {
$(element).text(composeString(accessor()));

The other additions are some helpful shortcuts added to the device capabilities information in the
view model. Although KO can deal with expressions in data bindings, I don’t like defining code in this
way, and I generally create computed data items that allow me to determine the state of the device
through a single view model item. For this chapter, I defined a pair of computed values that let me easily
read the combinations of screen size and orientation that I am interested in for the mobile web app.
These shortcuts are defined in the detectDeviceFeatures function in the utils. js file, as shown in
Listing 8-8.

Listing 8-8. Creating Shortcuts in the View Model to Avoid Expressions in Bindings

function detectDeviceFeatures(callback) {
var deviceConfig = {};

deviceConfig.landscape = ko.observable();
deviceConfig.portrait = ko.computed(function() {
return !deviceConfig.landscape();

};

var setOrientation = function() {
deviceConfig.landscape(window.innerWidth > window.innerHeight);

setOrientation();

$(window) .bind("orientationchange resize", function() {
setOrientation();

};

setInterval(setOrientation, 500);

if (window.matchMedia) {
var orientQuery = window.matchMedia('screen AND (orientation:landscape)')
if (orientQuery.addlListener) {
orientQuery.addListener(setOrientation);
}

}

Modernizr.load([{
test: window.matchMedia,

CHAPTER 8 * CREATING MOBILE WEB APPS

nope: 'matchMedia.js’,
complete: function() {
var screenQuery = window.matchMedia('screen AND (max-width: 500px)');
deviceConfig.smallScreen = ko.observable(screenQuery.matches);
if (screenQuery.addListener) {
screenQuery.addListener(function(mq) {
deviceConfig.smallScreen(mq.matches);

1

deviceConfig.largeScreen = ko.computed(function() {
return !deviceConfig.smallScreen();
D;

setInterval(function() {
deviceConfig.smallScreen(window.innerWidth <= 500);
}, 500);
}
b A

test: Modernizr.touch,
yep: 'jquery.touchSwipe-1.2.5.js',
callback: function() {
$('html").swipe({
swipeleft: advanceCategory,
swipeRight: advanceCategory
b
}
b
complete: function() {
deviceConfig.mobile = Modernizr.touch 8& deviceConfig.smallScreen();

deviceConfig.smallAndLandscape = ko.computed(function() {

return deviceConfig.smallScreen() && deviceConfig.landscape();
D3
deviceConfig.smallAndPortrait = ko.computed(function() {

return deviceConfig.smallScreen() && deviceConfig.portrait();

N;
callback(deviceConfig);

s
};

Managing the Event Sequence

AsIdemonstrated in the askmobile.html document, jQuery Mobile will process a document
automatically and create widgets based on element types and the value of the data-role attribute. This is
a nice feature, and it significantly reduces the amount of code required for simple web apps.
Unfortunately, it gets in the way when you are using the view model to generate or format elements,
especially if the data in the view model is obtained via Ajax. jQuery Mobile will process the document

211

CHAPTER 8 = CREATING MOBILE WEB APPS

212

before the view model is populated with the data bindings, which means that widgets are not created
properly.

This is the same problem I encountered previously with jQuery UI, but the issue is worse with
jQuery Mobile because it assumes that it has sole control of elements in a page and makes it very
difficult to create bindings that can negotiate the extra elements that jQuery Mobile uses when it sets up
a widget. (This is a problem I'll return to for different reasons later in this chapter.)

Disabling Automatic Processing

The best approach is to prevent jQuery Mobile from automatically processing the document. To do this,
I need to handle the mobileinit event, which is emitted by jQuery Mobile when the library is first loaded.
I need to register my handler function before jQuery Mobile is loaded, which means I have to insert a
new script element after the one that imports jQuery and before the one that imports jQuery Mobile,
like this:

<sript src="jquery-1.7.1.js" type="text/javascript"></script>
<script type="text/javascript"s
$(document) .bind("mobileinit", function() {
$.mobile.autoInitializePage = false;
13
</script>
<script src="jquery.mobile-1.0.1.js" type="text/javascript"></script>

By setting the $.mobile.autoInitializePage property to false, I disable the jQuery Mobile feature
that processes the markup in the document automatically.

Tip To be fair, | need to insert my script element after jQuery only if | want to use the bind method, but |
prefer to do this rather than use the clunky DOM API for handling events.

Disabling the automatic processing stops the race between the view model and jQuery Mobile and
allows me to make my Ajax request, populate the view model, and do any other tasks I need without
worrying about premature widget creation. When I am done setting up, I explicitly tell jQuery Mobile
that it should process the page, like this:

$.getISON("products.json", function(data) {
cheeseModel.products = data;
enhanceViewModel();

$(document) .ready(function() {
ko.applyBindings(cheeseModel);
$('button#tleft, button#right').live("click", function(e) {
e.preventDefault();
advanceCategory(e, e.target.id);

1)

$.mobile.initializePage();

CHAPTER 8 * CREATING MOBILE WEB APPS

};
};

The mobile object provides access to the jQuery Mobile AP, and the initializePage method starts
page processing.

Responding to the pageinit Event

Now that I have the main events under control, I can use the pageinit to perform tasks after jQuery
Mobile has processed the pages in the document. jQuery Mobile is generally very solid, but it has some
layout quirks. One in particular is that groups of buttons are not centered in the page. For the buttons at
the bottom of the page, I have been able to fix this issue with CSS (which is what the centered style is for
in the styles.mobile.css file). But the size of the navigation buttons changes, and that requires a
JavaScript solution, which is as follows:

$(document).bind("pageinit"”, function() {
function positionCategoryButtons() {
setTimeout(function() {
$('fieldset:visible').each(function(index, elem) {
var fsWidth = 0;
$(elem).children().each(function(index, child) {
fsWidth+= $(child).width();

1;

if (fsWidth > 0) {
$(elem).width(fsWidth);

} else {
positionCategoryButtons();

};
}, 10);

5
positionCategoryButtons();
cheeseModel.device.smallAndPortrait.subscribe(positionCategoryButtons);

1

I want to center the buttons after jQuery Mobile has finished creating them, which is an ideal use for
the pageinit event. In the function, I add up the width of the children of each fieldset element and then
use the total value to set the width of the fieldset. jQuery Mobile leaves the fieldset to be the width of
the window, and the sequence of elements required to create a set of buttons makes it hard to center the
buttons by other means.

Tip | use the jQuery each method so that | can be sure that the children method returns only the children of
one fieldset element. This means my code won't break if | add another fieldset element later. Element
selectors are greedy, and if I just call $('fieldset').children(), | will get the children of all fieldset elements
in the document, which will throw out the width calculations.

213

CHAPTER 8 = CREATING MOBILE WEB APPS

214

I wrapped the code that sets the width inside a call to the setTimeout function because I want to
correctly resize the fieldset element when the content of the navigation buttons change, which
happens when the size and orientation are altered.

The content of the elements is changed by data bindings, which are executed when observable data
items in the view model are updated. Since I am using the subscribe method to receive the same kind of
notifications, I need to make sure that my code to resize the fieldset isn’t executed before the button
content is changed, which I achieve by introducing a small delay using the setTimeout function.

Preparing for Content Changes

jQuery Mobile assumes that it has control of the elements that are used as the foundation for widgets. In
the case of buttons, jQuery Mobile wraps the button contents (or label contents when using radio
buttons) in a span element so that styling can be applied.

This is the same problem that jQuery UI creates, and the solution is the same for jQuery Mobile:
wrap the content in a span element yourself so that you have a target for data bindings. Once you have
an element that you can attach data bindings to, you don’t need to worry about how jQuery Mobile
transforms the element into a widget. You can see how I have done this for the navigation buttons:

<fieldset class="middle" data-role="controlgroup" data-type="horizontal"
data-bind="foreach:products, visible: device.largeScreen() ||
device.smallAndPortrait()">
<input type="radio" name="category" data-bind="attr: {id: category,
value: category}, checked: $root.selectedCategory” />
<label data-bind="attr: {for: category}">
<span data-bind="text: $root.device.smallAndPortrait()?
shortName : category"»
</label>
</fieldset>

This may seem like a simple trick, but a lot of mobile web app programmers get caught by this issue
and end up trying to resolve it through some tortured and unreliable alternative. This simple approach
resolves the problem rather neatly. All of the mobile widget toolkits that I have used clash with data
bindings in a similar way. In the case of jQuery Mobile, you know that the problem has occurred when
the formatting of buttons is lost when a data binding changes the button content, as shown in
Figure 8-3.

Brifish Cheese French Cheeseltalian Cheese

Figure 8-3. Problems caused by jQuery Mobile adding elements for styling

CHAPTER 8 * CREATING MOBILE WEB APPS

Duplicating Elements and Using Templates

Not all conflicts between widget libraries and data bindings can be resolved so easily. In Listing 8-6, I
created duplicate sets of the buttons that are displayed at the bottom of the page, like this:

<div class="middle" data-role="controlgroup" data-type="horizontal"
data-bind="visible: device.smallAndLandscape()">
<button id="left" data-icon="arrow-1"> </button>
<input type="submit" value="Submit Order"/>
<button id="right" data-icon="arrow-r"
data-iconpos="right"> </button>
</div>

<div class="middle" data-role="controlgroup" data-type="horizontal"
data-bind="visible: !device.smallAndLandscape()">
<input type="submit" value="Submit Order"/>
</div>

One set has additional buttons that the user can click to navigate through the product categories.
The problem that I am working around is that jQuery Mobile creates a set of buttons without taking into
account the visibility of the elements it is working with. That means the outer buttons are given rounded
corners even if they are invisible, which means that using the visible binding doesn’t create well-
formatted groups of buttons.

The if binding has its own issues because jQuery Mobile won’t automatically update the styling of
buttons when new elements are added to the container, and asking jQuery Mobile to refresh the content
doesn’t address this issue. So, the simplest approach is to create duplicate sets of elements.

Using Two-Pass Data Bindings

Duplicating elements is OK for simple situations, but it becomes problematic when you are working with
complex sets of elements that have a lot of bindings and formatting. At some point, a change will be
applied to one set of elements and not the other. Tracking down this kind of issue when it happens can
be time-consuming. An alternative approach is to generate duplicate sets of elements from a single
template. This is an elegant, but fiddly, technique—you can see the changes required in Listing 8-9.

Listing 8-9. Using a Template to Create Duplicate Sets of Elements

<!DOCTYPE html>
<html>
<head>
<title>Cheeselux</title>
<script src="jquery-1.7.1.js" type="text/javascript"></script>
<script type="text/javascript">
$(document).bind("mobileinit", function() {
$.mobile.autoInitializePage = false;
1);

</script>

<script src="jquery.mobile-1.0.1.js" type="text/javascript"></script>
<link rel="stylesheet" type="text/css" href="jquery.mobile-1.0.1.css"/>
<link rel="stylesheet" type="text/css" href="styles.mobile.css"/>
<script src="knockout-2.0.0.js' type='text/javascript'></script>

215

CHAPTER 8 = CREATING MOBILE WEB APPS

<script src="utils.js' type='text/javascript'></script>
<script src="signals.js' type='text/javascript'></script>
<script src="crossroads.js' type='text/javascript'></script>
<script src='hasher.js' type='text/javascript'></script>
<script src="modernizr-2.0.6.js' type='text/javascript'></script>
<meta name="viewport" content="width=device-width, initial-scale=1"»
<script>
var cheeseModel = {};

detectDeviceFeatures(function(deviceConfig) {
cheeseModel.device = deviceConfig;
checkForVersionPreference();

$.getISON("products.json", function(data) {
cheeseModel.products = data;
enhanceViewModel();

$(document).ready(function() {
ko.applyBindings(cheeseModel);
$('*.deferred').each(function(index, elem) {
ko.applyBindings(cheeseModel, elem);

b

$('buttonttleft, buttonttright').live("click", function(e) {
e.preventDefault();
advanceCategory(e, e.target.id);

1

$.mobile.initializePage();

1;
1;

$(document).bind("pageinit”, function() {
function positionCategoryButtons() {
setTimeout(function() {
$('fieldset:visible').each(function(index, elem) {
var fsWidth = 0;
$(elem).children().each(function(index, child) {
fsWidth+= $(child).width();

1

if (fsWidth > 0) {
$(elem).width(fsWidth);

} else {
positionCategoryButtons();

};

}, 10);

)
positionCategoryButtons();
cheeseModel.device.smallAndPortrait.subscribe(positionCategoryButtons);
1;
1);

</script>
<script id="buttonsTemplate" type="text/html">

216

CHAPTER 8 * CREATING MOBILE WEB APPS

<div class="deferred middle" data-role="controlgroup" data-type="horizontal"

data-bind="attr: {'data-bind': 'visible: ' + ($data ? '' : '!')
+ 'device.smallAndLandscape()' }"»

¢!-- ko if: $data --»

<button id="left" data-icon="arrow-1"> </button>

¢!-- /ko -->

<input type="submit" value="Submit Order"/»>

¢!-- ko if: $data -->

<button id="right" data-icon="arrow-r" data-iconpos="right"> </buttons

¢!-- /ko --»
</div>
</script>
</head>
<body>
<div id="pagel" data-role="page" data-theme="a">

<div id="logobar" data-bind="visible: device.largeScreen()">
<img data-bind="ifAttr: {attr: 'src', value: 'cheeselux.png’,
test: device.largeScreen()}">
Gourmet European Cheese
</div>

<fieldset class="middle" data-role="controlgroup" data-type="horizontal"
data-bind="foreach:products, visible: device.largeScreen() ||
device.smallAndPortrait()">
<input type="radio" name="category" data-bind="attr: {id: category,
value: category}, checked: $root.selectedCategory” />
<label data-bind="attr: {for: category}">
<span data-bind="text: $root.device.smallAndPortrait()?
shortName : category">
</label>
</fieldset>

<form action="/basket" method="post">
<div data-bind="foreach: products">
<div data-bind="fadeVisible: category == $root.selectedCategory()">
<div data-role="header" >
<h1 data-bind="text: category"></h1>
</div>
<!-- ko foreach: items -->
<div class="itemContainer ui-grid-a">
<div class="ui-block-a">
<label data-bind="attr: {for: id}, formatText: {value: name,
suffix:':"'}"></label>
</div>
<div class="ui-block-b">
<input data-bind="attr: {name: id}, value: quantity">
</div>
</div>
<l-- /ko -->
<div data-role="footer">
<h1>
<label>Total:</label>

217

CHAPTER 8 = CREATING MOBILE WEB APPS

218

<span data-bind="formatText: {prefix: '$",
value: cheeseModel.total()}"
</h1>
</div>
</div>
</div>

<!-- ko template: {name: 'buttonsTemplate', foreach: [true, false] } -->

<!-- /ko --»
</form>
</divy>
</body>
</html>

This technique has three parts, and to show how the parts fit together, I need to explain them in
reverse order from how they appear in the document.

Invoking a Template with Custom Data

I have used the template binding to generate elements from a Knockout.js template, a technique that I
described in Chapter 3:

<!-- ko template: {name: 'buttonsTemplate', foreach: [true, false] } -->
<!-- /ko -->

The twist is that I am not using the view model to drive the template. Instead, I have created an array
that contains true or false values. I am applying this technique in a very simple situation, and I need to
know only if I am creating the set of buttons that allow for category navigation (represented by the true
value) or the set that doesn’t (represented by the false value). The point is that you can use the foreach
binding with data that is not part of the view model. You can use more complex data structures for more
complex sets of elements.

Using a Template to Generate Bindings

The second step is a little odd. I use the attr data bindings to set the value of the data-bind attribute on
the elements that are generated by the template, like this:

<script id="buttonsTemplate" type="text/html">
<div class="deferred middle" data-role="controlgroup" data-type="horizontal"
data-bind="attr: {'data-bind': 'visible: ' + ($data ? '' : '!')
+ 'device.smallAndLandscape()' }"»>
¢!-- ko if: $data -->
<button id="left" data-icon="arrow-1"> </button>
¢!-- /ko -->
<input type="submit" value="Submit Order"/>
<!-- ko if: $data -->
<button id="right" data-icon="arrow-r" data-iconpos="right"> </button>
¢!-- /ko -->
</div>
</script>

CHAPTER 8 * CREATING MOBILE WEB APPS

The simplest part of the template is the use of the if binding to figure out when the category
navigation buttons should be generated. My template will be used twice: once each for the true and
false values that I passed to the foreach binding. When the value is true, the button elements are
included in the DOM, and they are omitted when the value is false.

The more complex part is where I have used the attr binding to specify a value that I want for the
data-bind attribute in the elements that are generated by the template. Here is the value of the data-bind
attribute in the template:

data-bind="attr: {'data-bind': 'visible: ' + ($data ? '' : '!') +
"device.smallAndLandscape()'}"

There is a lot going on in this binding. The most important thing to understand is thatI am
specifying the data-bind value I want the generated elements to have as a string, and this string won’t be
processed at the moment. I'll return to the processing shortly.

Tuse $data to refer to the values I passed to the foreach binding when I called the template. The
value of $data will be either true or false. First, Knockout will resolve this part of the binding, so when I
am dealing with the true value, the generated div element will have a binding like this:

data-bind="attr: {'data-bind': 'visible: device.smallAndLandscape()"'}"
and the false value will cause a binding like this:
data-bind="attr: {'data-bind': 'visible: !device.smallAndLandscape()'}"

Then, once the data values have been resolved, Knockout will process the entire attr binding, which
has the rather neat effect of replacing itself in the generated element, like this:

data-bind="visible: device.smallAndLandscape()"

Reapplying the Data Bindings

Knockout processes the data-bind attribute only once, which means that my template generates
elements with the data bindings that I want, but these bindings are not live. Changes in the view model
won'’t affect them because the data-bind attributes were not defined when I called the ko.applyBindings
method.

To fix this, I simply call applyBindings again, but this time I use the optional argument that allows
me to specify which elements are processed:

$(document).ready(function() {
ko.applyBindings(cheeseModel);
$('*.deferred').each(function(index, elem) {
ko.applyBindings(cheeseModel, elem);

H
$('buttonttleft, buttontfright').live("click", function(e) {
e.preventDefault();
advanceCategory(e, e.target.id);

1)

$.mobile.initializePage();

};

I added my button container element to the deferred class. I now select all members of this class
and use the each method to call the applyBindings method on each element in turn. This makes

219

CHAPTER 8 = CREATING MOBILE WEB APPS

220

Knockout.js process the bindings that I generated from the template and make them live. This final step
means that my bindings will respond to changes in the view model.

There are a couple of points to note about this technique. First, I am not trying to prevent
duplication of elements in the DOM. There is no easy way to deal with the jQuery Mobile formatting
issues without duplicate element sets. My goal is to generate the duplicates from a single set of source
elements so that I make changes in one place and have them take effect in all of the duplicates when
they are generated.

Second, when using this technique, you must ensure that you don’t refer to view model items except
within a pair of quote characters (i.e., within a string). If you refer to a variable outside of a string, then
Kockout.js will try to find a value to resolve the reference, and you will get an error. View model values
are resolved in the second call to the applyBindings method and not when the template is used to create
elements.

Caution It can be difficult to get the string properly set up, but the effort is worthwhile for complex sets of
elements. For simpler situations, | suggest you simply duplicate what you need inside the document and skip the
templates altogether. The source code download for this book contains the full listings for this example.

Adopting the Multipage Model

My mobile web app is shaping up, but I am still missing URL routing, which means there is a significant
difference between the mobile and desktop versions. The first step in adding support for routing is to
embrace the multipage model. As I explained earlier, jQuery Mobile supports the idea of having multiple
pages in a single HTML document. I will use this feature to provide the user with the means to navigate
between categories. Listing 8-10 shows the changes that are required.

Listing 8-10. Adding Support for the Multipage Model

<!DOCTYPE html>
<html>
<head>
<title>Cheeselux</title>
<script src="jquery-1.7.1.js" type="text/javascript"></script>
<script type="text/javascript">
$(document).bind("mobileinit", function() {
$.mobile.autoInitializePage = false;
1);

</script>

<script src="jquery.mobile-1.0.1.js" type="text/javascript"></script>
<link rel="stylesheet" type="text/css" href="jquery.mobile-1.0.1.css"/>
<link rel="stylesheet" type="text/css" href="styles.mobile.css"/>
<script src="knockout-2.0.0.js' type='text/javascript'></script>
<script src="utils.js' type='text/javascript'></script>

<script src='signals.js' type='text/javascript'></script>

<script src="crossroads.js' type='text/javascript'></script>

<script src="hasher.js' type="text/javascript'></script>

<script src="modernizr-2.0.6.js' type='text/javascript'></script>

CHAPTER 8 * CREATING MOBILE WEB APPS

<meta name="viewport" content="width=device-width, initial-scale=1">

<script>

var cheeseModel = {};

detectDeviceFeatures(function(deviceConfig) {
cheeseModel.device = deviceConfig;
checkForVersionPreference();

$.getISON("products.json", function(data) {
cheeseModel.products = data;
enhanceViewModel();

$(document).ready(function() {

})s
};
};

</script>

ko.applyBindings(cheeseModel);
$('*.deferred").each(function(index, elem) {
ko.applyBindings(cheeseModel, elem);

$('button.left, button.right').live("click", function(e) {
e.preventDefault();
advanceCategory(e, $(e.target).hasClass("left")
? "left" : "right");
$.mobile.changePage($(' div[data-category=
+ cheeseModel.selectedCategory() + '"]'));

1)

$.mobile.initializePage();

hasher.initialized.add(crossroads.parse, crossroads);
hasher.changed.add(crossroads.parse, crossroads);
hasher.init();

crossroads.addRoute("category/:newCat:", function(newCat) {
cheeseModel.selectedCategory(newCat ||
cheeseModel.products[0].category);
D;

crossroads.addRoute("{shortCat}", function(shortCat) {
$.each(cheeseModel .products, function(index, item) {
if (item.shortName == shortCat) {
crossroads.parse("category/" + item.category);

}
H
H

crossroads.parse(location.hash.slice(1));

<script id="buttonsTemplate" type="text/html">
<div class="deferred middle" data-role="controlgroup" data-type="horizontal"
data-bind="attr: {'data-bind': 'visible: ' + ($data ? '' : 'I")

221

CHAPTER 8 = CREATING MOBILE WEB APPS

+ 'device.smallAndLandscape()'}">

<!-- ko if: $data -->

<button class="left" data-icon="arrow-1"> </button>

<!-- /ko -->

<input type="submit" value="Submit Order"/>

<!-- ko if: $data -->

<button class="right" data-icon="arrow-r"
data-iconpos="right"> </button>

<!-- /ko -->

</div>
</script>
</head>
<body>
<!-- ko foreach: products -->
<div data-role="page" data-theme="a

data-bind="attr: {'id': shortName, 'data-category’': category}"»

<div id="logobar" data-bind="visible: $root.device.largeScreen()">
<img data-bind="ifAttr: {attr: 'src', value: 'cheeselux.png’,

test: $root.device.largeScreen()}">

Gourmet European Cheese

</div>

<fieldset class="middle" data-role="controlgroup" data-type="horizontal"
data-bind="foreach: $root.products,
visible: $root.device.largeScreen() ||
$root.device.smallAndPortrait()"»
<a data-role="button" data-bind="formatAttr: {attr: 'href’,
prefix: '#', value: shortName},
css: {'ui-btn-active': (category == $root.selectedCategory())}"»
<span data-bind="text: $root.device.smallAndPortrait()? shortName :
category”»>

</fieldset>

<form action="/basket" method="post">
<div>
<div>
<div data-role="header" >
<h1 data-bind="text: category"></h1>
</div>
<!-- ko foreach: items -->
<div class="itemContainer ui-grid-a">
<div class="ui-block-a">
<label data-bind="attr: {for: id},
formatText: {value: name, suffix:':'}">
</label>
</div>
<div class="ui-block-b">
<input data-bind="attr: {name: id}, value: quantity">
</div>
</div>

222

CHAPTER 8 * CREATING MOBILE WEB APPS

<!-- /ko -->
<div data-role="footer">
<h1>
<label>Total:</label>
<span data-bind="formatText: {prefix: '$"',
value: cheeseModel.total()}"
</h1>
</div>
</div>
</div>
<!-- ko template: {name: 'buttonsTemplate', foreach: [true, false] } -->
<l-- /ko -->

</form>
</divy>
<!-- /ko -->
</body>
</html>

I have highlighted the most important changes (and I'll describe them in a moment), but the basic
approach is to create one page per category. Each page contains a duplicate set of navigation items, and
only the details of individual products differ. For the most part, the changes are to the data bindings to
create this effect. Some changes, however, require more explanation.

Reworking Category Navigation

jQuery Mobile uses the same URL-fragment-based approach I employed in the desktop version to
navigate between pages. For example, if there is a div element whose data-role attribute is set to page
and whose id attribute is set to mypage, I can get jQuery Mobile to display that page by navigating to the
#mypage fragment.

The difference from the desktop web app is that jQuery Mobile places some constraints on the
names that can be used for pages. I used the full category name before (such as British Cheese), but
spaces are a problem for jQuery Mobile, so I have used the short category name instead (British, for
example). Here is the binding that sets the page ID:

<div data-role="page" data-theme="a
data-bind="attr: {'id': shortName, 'data-category': category}">

Notice thatI have added a data-category attribute that contains the full category name. I'll return to
this attribute shortly.

Replacing Radio Buttons with Anchors

The page navigation model means that I can replace my radio buttons with a elements. jQuery Mobile
will create button widgets from an a element if the data-role attribute is set to button, and the value of
the href attribute can be used for navigation within the document:

<a data-role="button" data-bind="formatAttr: {attr: 'href',
prefix: '#', value: shortName},
css: {'ui-btn-active': (category == $root.selectedCategory())}">
<span data-bind="text: $root.device.smallAndPortrait()? shortName :
category">

223

CHAPTER 8 = CREATING MOBILE WEB APPS

224

When the data bindings are resolved, I get a navigation element whose purpose is a lot easier to
divine:

<a data-role="button" href="#British"
British

Clicking one of the buttons that jQuery Mobile creates from this kind of element will navigate to the
appropriate category page. As an added bonus, jQuery Mobile properly centers groups of buttons
created from a elements, so I don’t have to worry about explicitly setting the width of the containing
fieldset element.

Tip Notice that | have used the css binding to apply the ui-btn-active class to the button when the selected
category matches the category that button represents. This is the jQuery Mobile CSS class that is used when a
button is active, and applying this class creates the blue highlighting that | had in the previous version of the
mobile web app. Digging around in the toolkit CSS isn’t ideal, but sometimes there is no alternative.

Mapping Page Names to Routes

So that I can reuse my JavaScript code for handling routes, I want to use the same route names as in the
desktop version. This is a problem because of the restrictions on page names that jQuery Mobile
enforces. To get around this, I have added a route that maps between the routes that jQuery Mobile
requires and the routes I really want:

hasher.initialized.add(crossroads.parse, crossroads);
hasher.changed.add(crossroads.parse, crossroads);
hasher.init();

crossroads.addRoute("category/:newCat:", function(newCat) {
cheeseModel.selectedCategory(newCat | |
cheeseModel.products[0].category);

B;

crossroads.addRoute("{shortCat}", function(shortCat) {
$.each(cheeseModel.products, function(index, item) {
if (item.shortName == shortCat) {
crossroads.parse("category/" + item.category);
}

s
}s;

crossroads.parse(location.hash.slice(1));

The URL fragment changes when the user clicks one of the a elements to navigate to a new category.
The hasher library detects this change and passes on the new hash to the crossroads routing engine. The

CHAPTER 8 * CREATING MOBILE WEB APPS

jQuery Mobile URL matches the highlighted route, and I enumerate the products in the view model to
find the one that has a matching shortName value. I use the category property of the product to create the
kind of URL that the desktop version uses and call the crossroads.parse method to have it matched
against the application routes. This technique allows me to bridge between the jQuery Mobile URLs and
routes I want, allowing me to preserve route consistency across all versions of my web app. This isn’t a
big deal with my simple example routes, but this becomes a useful trick if you have an external
JavaScript file full of JavaScript code that is executed when URLs are matched.

Explicitly Changing Pages

The last change relates to the data-category attribute that I added to the page div elements. When the
user swipes the screen or uses one of the landscape navigation buttons, the advanceCategory function is
called, and the value of the selectedCategory item in the view model is updated. However, updating the
view model doesn’t automatically cause jQuery Mobile to navigate to the page for the selected category.
To address this, I have added a call to the mobile.changePage method. This method will accept a URL to
navigate to or a jQuery object as the element to display:

$('button.left, button.right').live("click", function(e) {
e.preventDefault();
advanceCategory(e, $(e.target).hasClass("left") ? "left" : "right");
$.mobile.changePage($('div[data-category=""
+ cheeseModel.selectedCategory() + '"]'));
H

T'use the data-category item to select the page element for the new selectedCategory value without
having to iterate through the products. With this small addition, I can rely on the same advanceCategory
code that I use in the desktop version of the web app but get the benefits of the jQuery Mobile page
model.

Adding the Final Chrome

There is just one final change that I want to make to the CheeseLux mobile app. At one level, it is an
entirely trivial change, but it does also allow me to demonstrate an important behavioral quirk that
jQuery Mobile displays.

jQuery Mobile plays a sliding animation when a new page is displayed. By default, the page slides in
from the right. The change that I want to make is to have the new page slide in from the left when the
user presses the left landscape navigation button or presses one of the portrait/large screen buttons for a
category that appears in the view model before the current category.

The jQuery Mobile changePage method accepts an optional configuration object. One of the object
properties that jQuery Mobile recognizes is reverse. When the value of this property is true, the page
appears from the left. The default value, false, causes the new page to appear from the right.

For the portrait navigation buttons, I have added a function to utils.js called getIndexOfCategory.
This function, which is shown in Listing 8-11, enumerates through the view model data to find the index
of a specified full or short category name.

225

CHAPTER 8 = CREATING MOBILE WEB APPS

226

Listing 8-11. The getindexOfCategory Function

function getIndexOfCategory(category) {
var result = -1;
for (var i = 0; i < cheeseModel.products.length; i++) {
if (cheeseModel.products[i]. category == category [
cheeseModel.products[i]. shortName == category) {
result = i
break;

}

return result;

Listing 8-12 shows the changes in mobile.html to make use of this function.
Listing 8-12. Managing Page Transition Animation Direction

<script>
var cheeseModel = {};

detectDeviceFeatures(function(deviceConfig) {
cheeseModel.device = deviceConfig;
checkForVersionPreference();

$.getISON("products.json", function(data) {
cheeseModel.products = data;
enhanceViewModel();

$(document) .ready(function() {
ko.applyBindings(cheeseModel);
$('*.deferred').each(function(index, elem) {
ko.applyBindings(cheeseModel, elem);

$('button.left, button.right').live("click", function(e) {
e.preventDefault();
advanceCategory(e, $(e.target).hasClass("left") ? "left" : "right");
$.mobile.changePage($('div[data-category=""
+ cheeseModel.selectedCategory() + '"]'
{reverse: $(e.target). hasclass(“left“)}),
b

$('a[data-role=button]').click(function(e) {
e.preventDefault();
var cIndex = getIndexOfCategory(cheeseModel.selectedCategory());
var newIndex = getIndexOfCategory(this.hash.slice(1));
$.mobile.changePage(this.hash, {reverse: cIndex » newIndex});

H

$.mobile.initializePage();

CHAPTER 8 * CREATING MOBILE WEB APPS

hasher.initialized.add(crossroads.parse, crossroads);
hasher.changed.add(crossroads.parse, crossroads);
hasher.init();

crossroads.addRoute("category/:newCat:", function(newCat) {
cheeseModel.selectedCategory(newCat | |
cheeseModel.products[0].category);
D;

crossroads.addRoute(" :shortCat:", function(shortCat) {
$.each(cheeseModel.products, function(index, item) {
if (item.shortName == (shortCat ||
cheeseModel .products[0] .shortName)) {
crossroads.parse(“category/" + item.category);

s
H

crossroads.parse(location.hash.slice(1));
D;
D;
D;

</script>

Ijust needed to provide the optional argument to the changePage method to make the horizontal
buttons work. For the a elements, I decided to handle the click event, figure out the transition direction,
and call the changePage method directly. There are other ways of doing this in jQuery Mobile, but this is
the simplest and most direct.

The important jQuery Mobile characteristic I wanted to demonstrate relates to the way that internal
URLs are managed. jQuery Mobile will navigate to the URL for the entire document rather than the
specific page if you use the changePage method to navigate to the URL that represents the first page in
the document. For example, if you call changePage('#British'), jQuery Mobile will navigate to
cheeselux.com/mobile.html and not cheeselux.com/mobile.html#British.

To cater for this, I need to change the route that maps between the jQuery Mobile—friendly fragment
URLSs and the routes shared with the desktop version of the web app, like this:

crossroads.addRoute(" sshortCat:", function(shortCat) {
$.each(cheeseModel.products, function(index, item) {
if (item.shortName == (shortCat || cheeseModel.products[0].shoxrtName)) {
crossroads.parse("category/" + item.category);
}

};
h;

I made the segment optional, rather than variable (I explain the difference in Chapter 4), and if there
is no category name provided as part of the URL, I assume that the first category in the view model
should be used. This is a simple change for my web app, but if you are mapping complex sets of routes,
you must ensure that you set defaults for all of the route segments that are expected and would usually
be provided by the desktop version.

227

CHAPTER 8 = CREATING MOBILE WEB APPS

228

Summary

In this chapter, I created a solid mobile implementation of my CheeseLux web app. I showed you the
importance of adopting the navigation model provided by the mobile toolkit you are using and various
approaches for integrating the core features of a professional-level web app, such as routing, view
models, and data bindings. Mobile widget toolkits usually require some tweaks and tricks to get them to
play nicely with pro web apps, but the result is worth figuring out solutions to the wrinkles that arise. In
the next chapter, I show you different techniques for improving the way you write and package your
JavaScript code.

CHAPTER 9

Writing Better JavaScript

In this chapter, I explain some of the techniques I use to create better JavaScript. This is not a language
guide, and I won’t be demonstrating any code hacks or tweaks. My coding preferences are your
maintenance nightmares, and vice versa. I have seen otherwise mild-mannered people end up in a
screaming match over the “right” way to code, and I don’t see the point in lecturing you when I have a
fair few bad habits myself.

Instead, I am going to show you some of the techniques I use to make my code easier for other
programmers and projects to use. Most large-scale web apps have a team of programmers, and sharing
code becomes important.

I have been dumping useful functions into the utils. js file throughout this book. This is how I tend
to work, with a general kitchen-sink file where I put functions that I expect to repeatedly use. For this
book, using utils. js let me spend more time in each chapter on the topics at hand without having to
spend pages listing code that I defined in a previous chapter. It also let me demonstrate the idea of using
a core set of common functions when creating desktop and mobile versions of the same web app.

The problem with just dumping functions into a file in this way is that they become hard to manage
and maintain and, as I'll explain shortly, difficult for others to integrate into their projects. For this
reason, I revisit my kitchen-sink file when I have reached a point in a project where the basic
functionality is stable and I have a good feel for the way that different features fit together. At this point,
and not before, I start to rework the code into modules so that it plays nicely with other libraries. In this
chapter, I show you the techniques I use for this.

Once I have tidied up and modularized the code, I begin unit testing. Testing is a very personal
thing, and many testing proselytizers will insist that testing must begin as soon as you start coding, if not
sooner. I understand that point of view, but I also know that I don’t even think about testing until I have
made a certain amount of progress with a project. There naturally comes a point where I have enough
progress and my mind starts to turn toward consolidating and improving what I have.

Testing is another topic on which I am not going to lecture. My only advice is that you should be
honest with yourself. Test when it feels right, test until you are happy with your code, and use the
techniques and tools that work for you. Do what is right for your project, and accept that testing later will
require more coding changes and that not testing at all means your users will have to find your bugs for
you.

Managing the Global Namespace

One of the biggest problems with large JavaScript projects is the likelihood of a naming collision, where
two regions of code use the same global variable names for different purposes. A global variable is one
that exists outside a function or object. JavaScript makes these available throughout your web
application so that a global function defined in an inline script element or external JavaScript file is

229

CHAPTER 9 = WRITING BETTER JAVASCRIPT

available to every other script element and JavaScript file you use. When a global function or variable is
created, it is said to reside in the global namespace.

For small applications, this is a useful feature; it means that you can just partition your code and rely
on the browser to merge it together when the application is loaded. This is what allows my utils. js file
to work: the browser loads all of the functions in my file and makes them available via global variables. I
don’t need to know where the mapProducts function is defined to use it; it is automatically available.

The problem comes when you use code that has functions and variables with the same names that
you have used. All sorts of problems will arise if I use a JavaScript library that defines a mapProducts
function. The mapProducts contained in the file that is loaded last is the one that will win, and any code
that was expecting the other version is going to be surprised.

What can be a useful trick in a small web app becomes a maintenance nightmare as a web
application grows in size and complexity. It soon becomes hard to think up meaningful names that are
not already in use, and the likelihood of collision increases sharply. In the sections that follow, I describe
some useful techniques that will help you avoid naming collisions by structuring your code and reducing
the number of global variables that are created as a consequence.

AVOIDING IMPLIED GLOBAL VARIABLES

230

A common cause of global variables is to assign values to variables that have not been defined using the
var keyword. JavaScript interprets this as a request to create a global variable:

i'.ﬂ.mction() {
var varl = "my local variable";
var2 = "my global variable";

HO;

In this listing, the variable var1 exists only within the scope of the function that defines it, but var2 is
defined in the global namespace. This can be a useful feature when used carefully and deliberately,
allowing you control over which variables are exported globally, but usually this situation arises through
error rather than intention. | have shown this in a self-executing function, but it can happen in any function
that defines variables without the var keyword.

Defining a JavaScript Namespace

The first technique is to employ namespaces, which limit the scope of variables and functions. You will
be familiar with namespaces if you have used a language like Java or C#. JavaScript doesn’t have a
namespace language construct like those languages, but you can create something that solves the
problem by relying on the way that JavaScript scopes objects. Listing 9-1 shows how this is done.

Listing 9-1. Defining a JavaScript Namespace
var cheeseUtils = {};
cheeseUtils.mapProducts = function(func, data, indexer) {

$.each(data, function(outerIndex, outerItem) {
$.each(outerItem[indexer], function(itemIndex, innerItem) {

CHAPTER 9 = WRITING BETTER JAVASCRIPT

func(innerItem, outerItem);
D;
D;
}

cheeseUtils.composeString = function(bindingConfig) {
var result = bindingConfig.value;
if (bindingConfig.prefix) { result = bindingConfig.prefix + result; }
if (bindingConfig.suffix) { result += bindingConfig.suffix;}
return result;

To create the namespace effect, I create an object and then assign my functions and variables as
properties within it. This means that to access these functions elsewhere, I have to use the name of the
object as a prefix, like this:

cheeseUtils.mapProducts(function(item) {
if (item.id == id) { item.quantity(0); }
}, cheeseModel.products, "items");

To be clear, this isn’t a real namespace because JavaScript doesn’t support them; it just looks and
acts a little bit like one. But it is enough to reduce pollution of the global namespace, in that I have taken
two functions out of the shared context and replaced them with a single object name, cheeseUtils.

There is still a risk of name collision, so it is important to select a name for the object that is specific
to your project or area of functionality. You can nest namespaces by nesting objects, creating a hierarchy
that must be navigated in order to use your code. Listing 9-2 shows an example.

Tip To save space, | won't list all of the functions that are in the utils. js file. I'll just pick some representative
samples to demonstrate the different techniques.

Listing 9-2. Creating Nested Namespaces

if ('com) {
var com = {};

com.cheeselux = {};
com.cheeselux.utils = {};

com.cheeselux.utils.mapProducts = function(func, data, indexer) {
$.each(data, function(outerIndex, outerItem) {
$.each(outerItem[indexer], function(itemIndex, innerItem) {
func(innerItem, outerItem);
D;
D;
}

com.cheeselux.utils.composeString = function(bindingConfig) {
var result = bindingConfig.value;

231

CHAPTER 9 = WRITING BETTER JAVASCRIPT

232

if (bindingConfig.prefix) { result = bindingConfig.prefix + result; }
if (bindingConfig.suffix) { result += bindingConfig.suffix;}
return result;

In this listing I have used a pretty standard approach to namespaces, which is to use the structure of
my domain name but in reverse. However, since com is likely to be used by other libraries following the
same approach, then I check to see whether it has been defined already before doing so myself. I don’t
have to do this for the cheeselux part because I am the owner of the cheeselux.com domain and there is
little chance of collision.

Referring directly to functions in a nested namespace can lead to verbose code. When I use the code
in a nested namespaces, I tend to alias the innermost object to a local variable, like this:

var utils = com.cheeselux.utils;

This creates a loose equivalent to the import or using statements defined by Java and C# (albeit
without the isolation features that those other languages support).

I like using nested namespaces, probably because I tend to write my server-side code in C#, which
encourages the same approach. To make creating the namespaces simpler, I rely on the fact that global
variables are actually defined as properties on the window browser object. This makes it easy to create
variables by name without relying in the dreaded eval function, as Listing 9-3 shows.

Listing 9-3. Creating Nested Namespaces Using a Function
createNamespace("com.cheeselux.utils");

function createNamespace(namespace) {
var names = namespace.split('.');
var obj = window;
for (var i = 0; i < names.length; i++) {
if (Yobj[names[i]]) {
obj = obj[names[i]] = {};
} else {
obj = obj[names[i]];

}s

com.cheeselux.utils.mapProducts = function(func, data, indexer) {
$.each(data, function(outerIndex, outerItem) {
$.each(outerItem[indexer], function(itemIndex, innerItem) {
func(innerItem, outerItem);
D;

B;

com. cheeselux.utils.composeString = function(bindingConfig) {
var result = bindingConfig.value;
if (bindingConfig.prefix) { result = bindingConfig.prefix + result; }
if (bindingConfig.suffix) { result += bindingConfig.suffix;}
return result;

CHAPTER 9 = WRITING BETTER JAVASCRIPT

The createNamespace function takes a namespace as an argument and breaks it into segments. The
object that represents each segment is created only if it doesn’t already exist, which means that I don’t
collide with anyone else’s use of com or with other com.cheeselux.* namespaces that I create in separate
JavaScript files for my project.

Tip Creating separate files is entirely optional. You can define multiple namespaces in a single file if you prefer.
The advantage of a single file is that the browser has to make only one request to get all of your code. If you do
like using multiple files, then you can simply concatenate them into one when you release your web app.

I can go one step further and make the namespace itself more easily configurable, as Listing 9-4
demonstrates. This makes it much easier to rename my namespace if there is a conflict and means that I
can select a shorter name to save myself some typing.

Listing 9-4. Making Namespaces Easily Configurable

function createNamespace(namespace) {
var names = namespace.split('.');
var obj = window;
for (var i = 0; i < names.length; i++) {
if (lobj[names[i]]) {
obj = obj[names[i]] = {};
} else {
obj = obj[names[i]];
}

return obj;

};
var utilsNS = createNamespace("cheeselux.utils");

utilsNS.mapProducts = function(func, data, indexer) {
$.each(data, function(outerIndex, outerItem) {
$.each(outerItem[indexer], function(itemIndex, innerItem) {
func(innerItem, outerItem);
D;

B;
}

utilsNS.composeString = function(bindingConfig) {
var result = bindingConfig.value;
if (bindingConfig.prefix) { result = bindingConfig.prefix + result; }
if (bindingConfig.suffix) { result += bindingConfig.suffix;}
return result;

I'have updated the createNamespace function so that it returns the namespace object it creates. This
allows me to create a namespace and assign the result as a variable, which I can then use to add

233

CHAPTER 9 = WRITING BETTER JAVASCRIPT

234

functions to the namespace. If I need to change the name of the namespace, then I have to do it only in
the call to the createNamespace method (and, of course, in any code that relies on my functions). In this
example, I have shortened my namespace by dropping the com prefix. The odds of there being a conflict
are still pretty slim, but if it does arise, it is a simple enough matter to adapt.

Using Self-executing Functions

One drawback of the previous technique is that I end up creating another global variable, utilsNS. This
is still a better approach than defining all of my variables globally, but it is somewhat self-defeating.

I can address this by using a self-executing function. This technique relies on the fact that a
JavaScript variable defined within a function exists only within the scope of that function. The self-
executing aspect means that the function runs without being explicitly invoked from another part of the
code. The trick is to define a function and have it execute immediately. It is easier to see the structure of
a self-executing function when there isn’t any other code:

(function() {
...statements go here...

HO;

To make a function self-execute, you wrap it in parentheses and then apply another pair of
parentheses at the end. This defines and calls the function in a single step. Any variables defined within
the function are tidied up after the function has finished executing and don’t end up in the global
namespace. Listing 9-5 shows how I can apply this to my utility functions.

Listing 9-5. Using a Self-executing Function to Define Namespaces

(function() {
function createNamespace(namespace) {
var names = namespace.split('.');
var obj = window;
for (var i = 0; i < names.length; i++) {
if (lobj[names[i]]) {
obj = obj[names[i]] = {};
} else {
obj = obj[names[i]];

return obj;

};
var utilsNS = createNamespace("cheeselux.utils");

utilsNS.mapProducts = function(func, data, indexer) {
$.each(data, function(outerIndex, outerItem) {
$.each(outerItem[indexer], function(itemIndex, innerItem) {
func(innerItem, outerItem);
D;
D;
}

utilsNS.composeString = function(bindingConfig) {
var result = bindingConfig.value;

CHAPTER 9 = WRITING BETTER JAVASCRIPT

if (bindingConfig.prefix) { result = bindingConfig.prefix + result; }
if (bindingConfig.suffix) { result += bindingConfig.suffix;}
return result;

}
NO;

The only global variable that is left is the cheeselux namespace object. My functions are defined
within the cheeselux.utils namespace, and my utilsNS variable is tidied up by the browser when the
self-executing function has finished.

Consuming a function defined in this way is still just a matter of referring to the function via the
namespace, like this:

cheeselux.utils.mapProducts(function(item) {
if (item.id == id) { item.quantity(0); }
}, cheeseModel.products, "items");

Creating Private Properties, Methods, and Functions

In JavaScript, every property, method, and function is available for use from any other part of the code
that creates or can access them. This makes it difficult to indicate which members are intended for use
by others and which are the internal implementations of features.

The difference is important; you want to be able to change the internal implementation to fix bugs
or add new features without having to worry if someone has created a dependency that you weren'’t
expecting. Anyone using your code needs to know what properties and methods they can rely on not to
change without due notice. JavaScript doesn’t have any keywords that control access (such as public
and private, which are found in other languages) and so we need to find alternative approaches to
address this shortfall.

The simplest solution to this problem is to adopt a naming convention that makes it clear that some
properties and methods are not intended for public use. The most widely adopted convention is to
prefix private names with an underscore character ().

My composeString function is an ideal candidate to be private. I use this function only in my custom
data bindings, and [want to be free to change every aspect of this function (including its very existence)
as my bindings evolve. There is no reason for any other programmer to depend on this function, even if
they use my bindings. Listing 9-6 shows the underscore naming style applied to this function and the
data bindings that rely on it.

Listing 9-6. Applying a Naming Convention to Denote a Private Function
(function() {

function createNamespace(namespace) {
var names = namespace.split('.");
var obj = window;
for (var i = 0; i < names.length; i++) {
if (lobj[names[i]]) {
obj = obj[names[i]] = {};
} else {
obj = obj[names[i]];

return obj;

235

CHAPTER 9 = WRITING BETTER JAVASCRIPT

};
var utilsNS = createNamespace("cheeselux.utils");

utilsNS.mapProducts = function(func, data, indexer) {
$.each(data, function(outerIndex, outerItem) {
$.each(outerItem[indexer], function(itemIndex, innerItem) {
func(innerItem, outerItem);
D;
D;
}

utilsNS._composeString = function(bindingConfig) {
var result = bindingConfig.value;
if (bindingConfig.prefix) { result = bindingConfig.prefix + result; }
if (bindingConfig.suffix) { result += bindingConfig.suffix;}
return result;

}
HO;

ko.bindingHandlers.formatAttr = {
init: function(element, accessor) {
$(element).attr(accessor().attr, cheeselux.utils._composeString(accessor()));

)
update: function(element, accessor) {
$(element).attr(accessor().attr, cheeselux.utils._composeString(accessor()));

}

ko.bindingHandlers.formatText = {
update: function(element, accessor) {
$(element).text(cheeselux.utils._composeString(accessor()));

Adopting a naming convention doesn’t prevent others from using private members, but it does
signal that doing so is against the wishes of the developer and that the property, method, or function is
subject to change without notice. It is important to use a naming convention that is widely adopted
(such as the underscore) or that is immediately obvious (such as prefixing names with the word
private).

An alternative approach is to limit the scope of private functions so that they are not defined as part
of the namespace. This prevents the function from being accessed elsewhere in the web app, but it
means that all of the dependencies on that function must appear within the same self-executing
function, which isn’t always practical. Listing 9-7 shows how this approach works.

236

CHAPTER 9

Listing 9-7. Using a Self-executing Function to Keep a Function Private
(function() {

function createNamespace(namespace) {
var names = namespace.split('.');
var obj = window;
for (var i = 0; i < names.length; i++) {
if (lobj[names[i]]) {
obj = obj[names[i]] = {};
} else {
obj = obj[names[i]];

return obj;

};
var utilsNS = createNamespace("cheeselux.utils");

utilsNS.mapProducts = function(func, data, indexer) {
$.each(data, function(outerIndex, outerItem) {
$.each(outerItem[indexer], function(itemIndex, innerItem) {
func(innerItem, outerItem);
D;
D;
}

function _composeString(bindingConfig) {
var result = bindingConfig.value;
if (bindingConfig.prefix) { result = bindingConfig.prefix + result; }
if (bindingConfig.suffix) { result += bindingConfig.suffix;}
return result;

}

ko.bindingHandlers.formatAttr = {
init: function(element, accessor) {
$(element).attr(accessor().attr, _composeString(accessor()));

)
update: function(element, accessor) {
$(element).attr(accessor().attr, _composeString(accessor()));

}

ko.bindingHandlers.formatText = {
update: function(element, accessor) {
$(element).text(_composeString(accessor()));

HO;

WRITING BETTER JAVASCRIPT

237

CHAPTER 9 = WRITING BETTER JAVASCRIPT

238

The _composeString function is never defined as part of the local or global namespaces and is
available only for use in the same enclosing self-executing function. This technique works because
JavaScript supports closures, which brings variables and functions in scope even when they are defined
in this manner.

Managing Dependencies

Packaging up my functions into namespaces makes them more manageable and helps clean up the
global namespace, but there is still one major issue: dependencies on other libraries. In the sections that
follow, I show you a technique for managing dependencies in libraries that is starting to gain in
popularity and that you can use to make your code easier to share and easier to work with.

Understanding Assumed Dependency Problems

There are two kinds of dependency in an external JavaScript file such as utils. js. The first kind is an
assumed dependency, where I just use the functionality of a library and assume it will be available. I have
done this alotin utils. js, especially with jQuery. An assumed dependency places responsibility on the
HTML document that uses a JavaScript file to load the required libraries and to do so before my code is
executed. The mapProducts function is a good example of an assumed dependency:

utilsNS.mapProducts = function(func, data, indexer) {
$.each(data, function(outerIndex, outerItem) {
$.each(outerItem[indexer], function(itemIndex, innerItem) {
func(innerItem, outerItem);
D;
D;

This function assumes that the jQuery $.each method will be available. If you want to use this
function, then you need to ensure that jQuery is loaded and ready before you call mapProducts. Listing
9-8 shows a very simple jQuery Mobile web app that makes use of the mapProducts function. There is
nothing new in this tiny web app, but I am going to use it to demonstrate different dependency issues
and solutions in the sections that follow.

Listing 9-8. A Simple Web App That Uses a JavaScript File That Contains an Assumed Dependency

<!DOCTYPE html>
<html>
<head>
<title>Cheeselux</title>
<link rel="stylesheet" type="text/css" href="jquery.mobile-1.0.1.css"/>
<link rel="stylesheet" type="text/css" href="styles.mobile.css"/>
<script src="jquery-1.7.1.js" type="text/javascript"s</scripts
<script type="text/javascript">
$(document).bind("mobileinit", function() {
$.mobile.autoInitializePage = false;
D;
</script>
<script src="jquery.mobile-1.0.1.js" type="text/javascript"></script>
<script src="knockout-2.0.0.js' type="text/javascript'></script>
<script src="modernizr-2.0.6.js' type='text/javascript'></script>

CHAPTER 9 = WRITING BETTER JAVASCRIPT

<script src="utils.js' type='text/javascript'></script>
<meta name="viewport" content="width=device-width, initial-scale=1">
<script>
var cheeseModel = {
selectedCount: ko.observable(0)
};

$.getISON("products.json”, function(data) {
cheeseModel.products = data;

$(document) .ready(function() {
ko.applyBindings(cheeseModel);
$.mobile.initializePage();

$('a[data-role=button]"').click(function(e) {
var count = 0;
cheeselux.utils.mapProducts(function(inner, outer) {
if (outer.category == e.currentTarget.id) {
count++;

}» cheeseModel.products, "items")
cheeseModel.selectedCount(count);
D;
D;
1;

</script>
</head>
<body>
<div data-role="page" id="page1l" data-theme="a">
<fieldset class="middle" data-role="controlgroup" data-type="horizontal"
data-bind="foreach: products">
<a data-role="button" data-bind="text: category, attr: {id: category}">
</fieldset>
<div class="middle results" data-bind="visible: selectedCount">
There are
cheeses in this category
</div>
</div>
</body>
</html>

Note This is an entirely useless web app in its own right. A button is displayed for each cheese category, and
clicking the button displays the number of cheeses within that category. Ignore, if you will, the fact that there are
easier ways to obtain this information than using the mapProducts method and that there are three cheeses in
every single category. This witless web app is perfect for demonstrating the key aspects of dependency
management.

239

CHAPTER 9 = WRITING BETTER JAVASCRIPT

240

Understanding Directly Resolved Dependencies

The tiny web app works because jQuery has been loaded long before I call the mapProducts function. The
situation would be different if I rewrote the web app to use a different toolkit. Most programmers do the
same thing when they first understand that assumed dependencies are a problem: they assume control
of the situation and take direct action to fix it. Listing 9-9 shows a typical solution.

Listing 9-9. Taking Direct Action to Resolve Assumed Dependencies
(function() {

function createNamespace(namespace) {
...code removed for brevity...
};

var utilsNS = createNamespace("cheeselux.utils");

Modernizr.load({
load: 'jquery-1.7.1.js',
complete: function() {
utilsNS.mapProducts = function(func, data, indexer) {
$.each(data, function(outerIndex, outerItem) {
$.each(outerItem[indexer], function(itemIndex, innerItem) {
func(innerItem, outerItem);
D;
D;

}
h
...code removed for brevity...

HO;

In this listing, I have taken responsibility for resolving my dependency on jQuery by using
Modernizr to load it before creating my mapProducts function. (The load property in a Modernizr.load
object specifies that the JavaScript file should always be loaded.)

In doing this, I have transformed an assumed dependency into a directly resolved dependency. A
directly resolved dependency is when I rely on another JavaScript library and I take direct action to make
my code work, usually by loading the library myself.

Understanding the Problems Caused by Resolving a Dependency

Directly resolving a dependency causes a lot of problems. First, I created an assumed dependency on
Modernizr to ensure that jQuery is loaded, which isn’t a huge step forward. But the real damage is that I
have made sure that the mapProducts function works; however, in doing so, I have undermined the
stability of the web app itself.

To see the problem, load the web app, and reload the page a few times. There are two issues. If the
web app works, you have encountered just the least serious one, which is that the jQuery library has
been loaded twice. You can see this in the browser developer tools or in the console output from the
Node.js server that prints out each URL that is requested. Here is the list of files loaded by the web app as
reported by the server, with annotations to highlight the two loads for jQuery:

CHAPTER 9

WRITING BETTER JAVASCRIPT

The "sys

Ready on port 80

Ready on port 81

GET request for /example.html

GET request for /jquery.mobile-1.0.1.css
GET request for /styles.mobile.css

GET request for /jquery-1.7.1.js <-- first load

GET request for /jquery.mobile-1.0.1.js
GET request for /knockout-2.0.0.js

GET request for /modernizr-2.0.6.js
GET request for /utils.js

GET request for /products.json

GET request for /jquery-1.7.1.js <-- second load

GET request for /images/ajax-loader.png

module is now called "util". It should have a similar interface.

You can tell whether you have encountered only the first problem because you will see three
buttons, and clicking one of them makes a message appear. You know that you have encountered the
second problem if you just get an empty window. Figure 9-1 shows both outcomes.

€ C) cheeselux.com/ examy R Sl

British Cheese French Cheese ltalian Cheese

There are 3 cheeses in this category

[(= lE =]
() Cheeselux () Cheeselux
= € O cheeselux.com/ex

¥l

Figure 9-1. The two outcomes that arise from a directly resolved dependency

The second problem is a race condition, and it won’t always manifest itself when you are loading all
of the resources from the web app from the local machine. If the Ajax request completes after Modernizr
has loaded the jQuery library and executed the callback function, then you will get the blank window,
and there will be an error message in the JavaScript console like this:

Uncaught TypeError: Cannot call method 'initializePage' of undefined

The exact wording will vary from browser to browser, but the problem is that the call to
$.mobile.initializePage has failed because there is no $.mobile object. To help force the problem to
appear, I have added a special URL to the Node.js server that introduces a delay in returning the JSON
content. To trigger this delay, change the name of the JSON file requested by the getJSON method, as

shown in Listing 9-10.

241

CHAPTER 9 = WRITING BETTER JAVASCRIPT

Listing 9-10. Deliberately Introducing a Delay in the Ajax Request for the JSON Data

<script>
var cheeseModel = {
selectedCount: ko.observable(0)
b

$.getISON("products.json.slow", function(data) {
cheeseModel.products = data;

$(document).ready(function() {
ko.applyBindings(cheeseModel);
$.mobile.initializePage();

. code removed for brevity...

b;
s

</script>

Requesting products.json.slow instead of products.json will add a one-second delay to the Ajax
request that will force the Ajax request to take longer than Modernizr requires to load the jQuery library.
You can edit the server. js file to add a longer delay if you don’t see the problem, but one-second
consistently causes the white screen for me.

Tip This is part of what makes this problem so nasty; it usually won’t appear during development because the
Ajax request will complete so quickly. Unfortunately, it does appear in deployment when requests are made to
busy servers over congested networks. If you ever find yourself getting user reports of blank screens that you can’t
replicate, it is always a good idea to see whether your libraries are self-resolving dependencies.

Here is the sequence of events when the Ajax request completes before Modernizr has loaded
jQuery:

1. jQueryisloaded by the browser from the script element in example.html and
sets up the $ shorthand reference.

2. jQuery Mobile is loaded and adds the mobile property to the jQuery $
shorthand.

3. The Ajax request completes, and the $.mobile.initializePage method is
called.

4. Modernizr loads the jQuery library again, which replaces the $ shorthand with
an object that doesn’t have the jQuery Mobile mobile property.

242

CHAPTER 9 = WRITING BETTER JAVASCRIPT

This is the best-case scenario where jQuery is loaded and executed twice, but at least the web app
works. The sequence changes when the Ajax request completes after Modernizr has loaded jQuery:

1. jQueryisloaded by the browser from the script element in example.html and
sets up the $ shorthand reference.

2. jQuery Mobile is loaded and adds the mobile property to the jQuery $
shorthand.

3. Modernizr loads the jQuery library again, which replaces the $ shorthand with
an object that doesn’t have the jQuery Mobile mobile property.

4. The Ajaxrequest completes, and the $.mobile.initializePage method is
called.

You can see the problem: the call to $.mobile.initialPage is made after the second instance of
jQuery has been loaded and the $ shorthand has been redefined, which erases the mobile property. The
effect is that loading jQuery a second time has unloaded jQuery Mobile and so the web app dies a
horrible death. Even in the best-case scenario, the only reason that the web app works is because it is so
simple; any call to a jQuery Mobile function will cause a problem once Modernizr has caused the mobile
object to be deleted.

Tip There is a second race condition in this situation. The mapProducts function isn’t defined until Modernizr
has loaded the jQuery library, which means that a delay in processing the request (because the server or the
network is busy) can lead to the code in the inline script element calling mapProducts before it exists. | am not
going to demonstrate this issue, but you get the idea: directly resolved dependencies are exiremely dangerous.

Making a Bad Problem into a Subtle Bad Problem

Before moving to a real dependency solution, I want to show you a common attempt at fixing the
double-loading problem: testing to see whether the library is loaded, like this:

Modernizr.load({
test: $.each,
nope: 'jquery-1.7.1.js’,
complete: function() {
utilsNS.mapProducts = function(func, data, indexer) {
$.each(data, function(outerIndex, outerItem) {
$.each(outerItem[indexer], function(itemIndex, innerItem) {
func(innerItem, outerItem);
D;
D;

1)

243

CHAPTER 9 = WRITING BETTER JAVASCRIPT

244

IT'have used Modernizr to test some indicator that jQuery has already been loaded and use the nope
property to load the JavaScript file if it hasn’t. Applying this technique to my tiny example web app will
make everything work. But itisn’t a real solution, and while the new problem I created occurs less
frequently, it is much harder to track down.

The underlying problem is that I am still just trying to make my code work. If utils. js is the only file
that uses this technique, then everything will be fine, with the exception that the mapProducts function
may not be defined in a timely enough manner if the jQuery library does need to be loaded and there is a
delay in the request. However, if this technique is used in more than one file, then there is a very subtle
race condition. Imagine that there are two files that use Modernizr to test for jQuery: fileA.js and
fileB.js. Most of the time, the sequence of events will be this:

1. The browser executes the code in fileA. js, which tests for jQuery. jQuery
hasn’t been loaded, so Modernizr requests the file and then executes the
complete function.

2. The browser executes the code in fileB. js, which tests for jQuery. jQuery has
been loaded via fileA.js, and Modernizr executes the complete function
without needing to load any files.

However, Modernizr requests are asynchronous, which means that the browser will continue to
execute JavaScript code while Modernizr waits for the response from the server. So, if the timing is just
right, the sequence will really be as follows:

1. The browser executes the code in fileA. js, which tests for jQuery. jQuery
hasn’t been loaded, so Modernizr requests the file.

2. The browser continues to execute code while Modernizr is waiting and begins
processing fileB.js. The Modernizr request from fileA. js hasn’t completed
yet, so fileB. js causes Modernizr to make a second request for the jQuery file.

3. The fileA.js request completes, jQuery is loaded, and the fileA.js complete
function is executed.

4. The fileB. js request completes, jQuery is loaded for a second time, and the
fileB.js complete function is executed.

Any properties that the complete function in fileA. js adds to the jQuery $ shorthand will be lost
when Modernizr loads jQuery again. This sequence occurs infrequently, but when it does, it can kill the
web app by deleting essential functionality required in at least one of the JavaScript files. You might
think that infrequent problems are acceptable, but infrequent can still be a serious issue when your web
app has millions of users.

Using the Asynchronous Module Definition

The only real way to eliminate race conditions and duplicated library loading is to deal with
dependencies in a coordinated way, and this means taking responsibility for loading dependencies out
of individual JavaScript files and consolidating them. The best model for doing this is the Asynchronous
Module Definition (AMD), which I'll explain and demonstrate in the sections that follow.

CHAPTER 9 = WRITING BETTER JAVASCRIPT

Defining an AMD Module

Defining a module is pretty simple and hinges on the use of the define function. Listing 9-11 shows how
I have created a module in a new file called utils-amd. js. You don’t have to include amd in the file name;
that’s just my preference because I like to make it as obvious as possible to the consumers of my code
that they are dealing with AMD. Providing the define function is the responsibility of the AMD loader. As
an author of AMD modules, you can rely on the define function being present without having to worry
about which loader is being used or how the function is implemented.

Listing 9-11. The utils-amd.js File

define(['jquery-1.7.1.js'], function() {
return {
mapProducts: function(func, data, indexer) {
$.each(data, function(outerIndex, outerItem) {
$.each(outerItem[indexer], function(itemIndex, innerItem) {
func(innerItem, outerItem);
D;
D;
b

composeString: function(bindingConfig) {
var result = bindingConfig.value;
if (bindingConfig.prefix) { result = bindingConfig.prefix + result; }
if (bindingConfig.suffix) { result += bindingConfig.suffix;}
return result;

}

1
1);

The define function creates an AMD module. The first argument is an array of the libraries that the
code in the module depends on. The second argument is a function, known as the factory function, that
contains the module code. Only one AMD module can be defined in a file, and since I like to keep the
functionality defined in a module narrowly focused, my utils-amd. js file contains just the mapProducts
and composeString functions. (I'll return to some of the other code from utils. js in a while.)

An AMD module can rely on all of the declared dependencies being loaded before the factory
function is executed. In this case, I have declared a dependency on jquery-1.7.1.js, and I can assume
that this JavaScript file will be loaded and jQuery will be available for use when I set up my mapProducts
and composeString functions. The result from the factory function is an object whose properties are the
functions I want to export for use elsewhere in the web app. Any variables or functions that I define and
that are not part of the result object will be tidied up when the factory function has executed without
polluting the global namespace.

Tip Notice that there is no namespace in my module. One of the nice features of AMD is that it is up to the
consumer of my module to decide how to refer to the functionality that | define, as I'll demonstrate in the next
section.

245

CHAPTER 9 = WRITING BETTER JAVASCRIPT

246

Using an AMD Module

AMD solves the dependency issues by having a single resource loader take responsibility for loading
libraries. This loader is responsible for executing a module’s factory function and ensuring that the
libraries it relies on are loaded and ready before this happens. The main means of communication
between a module and the loader is through the define function, which the loader is responsible for
implementing.

By standardizing the loading process, the decision about which loader to use is left to the consumer
of AMD modules, rather than the author. So, I don’t have to worry about resolving dependencies when I
write an AMD module, and I don’t even have to worry about how they will be dealt with.

Although the AMD format is gaining popularity, not all resource loaders support AMD. This includes
Modernizr.load, which I have been using to load libraries so far in this book (and to demonstrate why
this is a bad idea in this chapter). My favorite AMD-aware loader is require]JS, which you can download
from http://requirejs.org. You can see how I have applied requireJS to my tiny web app in Listing 9-12.

Listing 9-12. Using require]S to Load AMD Modules

<!DOCTYPE html>
<html>
<head>
<title>Cheeselux</title>
<link rel="stylesheet" type="text/css" href="jquery.mobile-1.0.1.css"/>
<link rel="stylesheet" type="text/css" href="styles.mobile.css"/>
<script src='require.js' type='text/javascript's</scripts
<meta name="viewport" content="width=device-width, initial-scale=1">
<script>
var libs = [
'utils-amd’,
'device-amd’,
' custombindings-amd',
'jquery-1.7.1.js’,
'knockout-2.0.0.js"',
'modernizr-2.0.6.js'

15
require(libs, function(utils, device) {

var cheeseModel = {
selectedCount: ko.observable(0)
};

$(document).bind("mobileinit", function() {
$.mobile.autoInitializePage = false;
D;

$.getISON("products.json", function(data) {
cheeseModel.products = data;
device.detectDeviceFeatures(function(deviceConfig) {
cheeseModel.device = deviceConfig;
$(document).ready(function() {
ko.applyBindings(cheeseModel);

http://requirejs.org

CHAPTER 9 = WRITING BETTER JAVASCRIPT

requirejs(['jquery.mobile-1.0.1.js"'], function() {
$.mobile.initializePage();

$('a[data-role=button]"').click(function(e) {
var count = 0;
utils.mapProducts(function(inner, outer) {
if (outer.category == e.currentTarget.id) {
count++;

}, cheeseModel.products, "items")
cheeseModel.selectedCount(count);

B;

</script>
</head>
<body>
<div data-role="page" id="page1l" data-theme="a">
<fieldset class="middle" data-role="controlgroup" data-type="horizontal"
data-bind="foreach: products">
<a data-role="button" data-bind="text: category, attr: {id: category}">
</fieldset>
<div class="middle results" data-bind="fadeVisible: selectedCount()">
There are
cheeses in this category
</div>
</div>
</body>
</html>

Declaring Dependencies

The first thing to do is remove all of the script elements in the head section of the document and replace
them with a single element that imports require]S. This ensures that requireJS has a complete view of all
of the dependencies in the web app and that you don’t end up loading script files twice if they are
required in dependent libraries.

<script src='require.js' type='text/javascript's</scripts
<meta name="viewport" content="width=device-width, initial-scale=1">
<script>
var libs = [
'utils-amd’,
'device-amd’,
' custombindings-amd',
'jquery-1.7.1.js’,
'knockout-2.0.0.js",

247

CHAPTER 9 = WRITING BETTER JAVASCRIPT

248

'modernizr-2.0.6.js'

Is

require(libs, function(utils, device) {

The most important feature of an AMD loader is the require function, which is the counterpart to
define. The require function takes two arguments: an array of modules and script files that the web app
depends on and a callback function to execute when they are all loaded. I find that defining the
dependency array as a variable makes my code more readable, but that is purely a personal preference.

Note The AMD module takes care of the problems around how dependencies are resolved, but it still requires
that the JavaScript files are available from the web server. When sharing your code with others, you will still need
to let them know which libraries you depend upon and make it clear that you are using AMD and so they will need
an AMD loader.

Notice that some of the items in the dependency array have a . js suffix and others don’t. Not all of
the dependencies or a web app will be written as AMD modules. If you pass require]S the name of a
JavaScript file (i.e., with a . js suffix), then it will load the file and execute the code inside of it just like
any regular resource loader.

If you omit the . js suffix, then require]S assumes you have specified an AMD module and acts
accordingly. It will add the . js suffix when it requests the file from the server, and when it receives the
response, it will look for the define function in order to discover the dependencies and the factory
function.

Tip By forcing each file to contain only one module, AMD increases the number of HTTP requests that are
required to get the scripts for a web app. In this example, | have gone from one file (utils. js) to three (utils-
amd. js, device-amd. js, and custombindings-amd. js). | would have ended up with more if | had properly
packaged up all of the functions that utils. js contained. To address this, requireJS supports a server-side
optimizer that will concatenate multiple AMD module files into a single response. See
http://requirejs.org/docs/optimization.html for details.

Dealing with Callback Arguments

For each AMD module in the list passed to require, there is a corresponding argument passed to the
callback function. Each argument is set to the object returned by the factory function in the module.
This is a nice alternative to namespaces; the consumer of the module gets to decide how to refer to the
module functions rather than the creator.

The first module in my list is utils-amd, and this corresponds to the util argument in my callback
function. When I want to use the mapProducts function defined by the module, I make a call like this:

http://requirejs.org/docs/optimization.html

CHAPTER 9 = WRITING BETTER JAVASCRIPT

utils.mapProducts(function(inner, outer) {
if (outer.category == e.currentTarget.id) {
count++;

}, cheeseModel.products, "items")
cheeseModel.selectedCount(count);

If I later start using a regular JavaScript library that uses utils as a global variable, I can easily
change the way that I refer to the code in the utils-amd module by renaming the argument for the
callback function. And, since the functions are scoped within the context of the callback argument, AMD
modules don’t pollute the global namespace at all.

So, why are there three AMD modules in the list but only two callback arguments? The answer is
that modules are not required to return an object if they don’t need to export functions, and this is the
approach I have taken with the custombindings-amd module, which you can see in Listing 9-13.

Listing 9-13. An AMD Module That Doesn’t Export Functions
define(['utils-amd', 'jquery-1.7.1.js', 'knockout-2.0.0.js'], function(utils) {

ko.bindingHandlers.formatAttr = {
init: function(element, accessor) {
$(element).attr(accessor().attr, utils.composeString(accessor()));

)
update: function(element, accessor) {
$(element).attr(accessor().attr, utils.composeString(accessor()));

}

ko.bindingHandlers.fadeVisible = {

init: function(element, accessor) {
$(element)[accessor() ? "show" : "hide"]();

)

update: function(element, accessor) {
if (accessor() 88 $(element).is(":hidden")) {
var siblings = $(element).siblings(element.tagName +
if (siblings.length) {
siblings.fadeOut("fast", function() {
$(element).fadeIn("fast");
b

} else {
$(element).fadeIn("fast");

":visible");

}
1

In this module, I simply add my custom data bindings to the ko.bindingHandlers object, and there
are no new functions to export directly from the module for use elsewhere.

249

CHAPTER 9 = WRITING BETTER JAVASCRIPT

250

Tip Notice that the custombindings-amd module depends on the utils-amd module. The AMD loader is
responsible for ensuring that all the dependencies are resolved, which makes reusing modules very simple.

The require callback function does receive an argument when a module that doesn’t return an
object is loaded, but the value of that argument is null. So, I could easily have written my callback
function like this:

require(libs, function(utils, device, bindings) {

}

But there is little point because the bindings object will be null. The order of the arguments always
reflects the order of the modules in the require list, so I always put the modules that don’t return objects
at the end of the list so that I can omit the null arguments that correspond to them.

Declaring Inline Dependencies

Itisn’t always possible to declare all of the dependencies at the start of a script block. As an example, in
order to prevent jQuery Mobile from automatically processing the document, I need to load jQuery and
set up an event handler before the jQuery Mobile library is loaded. You can simply call the requirejs
function to declare dependencies within a require statement, like this:

requirejs(['jquery.mobile-1.0.1.js'], function() {
$.mobile.initializePage();

$('a[data-role=button]').click(function(e) {
var count = 0;
utils.mapProducts(function(inner, outer) {
if (outer.category == e.currentTarget.id) {
count++;

}» cheeseModel.products, "items")
cheeseModel.selectedCount(count);
D;
D;

In this way, I am able to declare my dependencies without having to load all of the code files at
once. This grants me space between jQuery and jQuery Mobile being loaded in which I can set up my
event handler.

This is also the technique I have used in the device-amd module to replace the Modernizr.load
method. Listing 9-14 shows the code from Chapter 7 where I load a polyfill based on the presence of a
browser feature.

CHAPTER 9 = WRITING BETTER JAVASCRIPT

Listing 9-14. Loading a Polyfill Using Modernizr

Modernizr.load([{

test: window.matchMedia,

nope: 'matchMedia.js’,

complete: function() {
var screenQuery = window.matchMedia('screen AND (max-width: 500px)');
deviceConfig.smallScreen = ko.observable(screenQuery.matches);
if (screenQuery.addListener) {

screenQuery.addListener(function(mq) {
deviceConfig.smallScreen(mq.matches);

1

deviceConfig.largeScreen = ko.computed(function() {
return !deviceConfig.smallScreen();

};

setInterval(function() {
deviceConfig.smallScreen(window.innerWidth <= 500);
}, 500);
}

1 A
complete: function() {

callback(deviceConfig);

}
1D;

The Modernizr syntax is excellent; I love being able to combine the test, loading the dependency
and the callback function so elegantly. The requireJS equivalent is shown in Listing 9-15, which shows
the device-amd. js file.

Listing 9-15. Loading a Polyfill Using require]S
define(['modernizr-2.0.6.js", 'knockout-2.0.0.js'], function() {

return {

detectDeviceFeatures: function(callback) {
var deviceConfig = {};

deviceConfig.landscape = ko.observable();

deviceConfig.portrait = ko.computed(function() {
return !deviceConfig.landscape();

B;

var setOrientation = function() {
deviceConfig.landscape(window.innerWidth > window.innerHeight);

setOrientation();

251

CHAPTER 9 = WRITING BETTER JAVASCRIPT

$(window).bind("orientationchange resize", function() {
setOrientation();

};

setInterval(setOrientation, 500);

if (window.matchMedia) {
var orientQuery = window.matchMedia('screen AND (orientation:landscape)')
if (orientQuery.addListener) {
orientQuery.addListener(setOrientation);
}

}

function setupMediaQuery() {
var screenQuery = window.matchMedia('screen AND (max-width: 500px)');
deviceConfig.smallScreen = ko.observable(screenQuery.matches);
if (screenQuery.addListener) {
screenQuery.addListener(function(mq) {
deviceConfig.smallScreen(mq.matches);
D;

deviceConfig.largeScreen = ko.computed(function() {
return !deviceConfig.smallScreen();

1

setInterval(function() {
deviceConfig.smallScreen(window.innerWidth <= 500);

}, 500);
callback(deviceConfig);
}
if (window.matchMedia) {
setupMediaQuery();
} else {
requirejs(['matchMedia.js'], function() {
setupMediaQuery();
s
}

This is a less elegant approach, but it doesn’t suffer from the problems I described earlier in the
chapter. If you are working on a large project or sharing code with others, then a single, coordinated
approach to dependences is essential, even if the code style isn’t quite as smooth.

252

CHAPTER 9 = WRITING BETTER JAVASCRIPT

Unit Testing Client-Side Code

The last topic that I want to cover in this book is unit testing. The tools for unit testing web apps are not
as sophisticated as those for desktop or server-side code, but they are still pretty good, and you will find
it easy to embrace client-side unit testing as part of your development cycle—if you are a believer in unit
testing, anyway.

AsTsaid at the beginning of this chapter, I am not going to lecture you about the importance of
testing or tell you when you should begin testing your code. From my own experience, I resisted unit
testing for a long time, in part because of the number of zealots that kept insisting that testing be done at
a certain time and in a certain way. These days, I have come to see the value in unit testing, but when
and how unit testing is best applied varies from project to project and programmer to programmer. [am
a big believer in writing better-quality code, but I have an intense dislike for rigid approaches that treat
every situation in the same way.

With that in mind, I am going to briefly introduce you to the client-side testing tool that I like to use
and then leave you to figure out how to apply it. Like all of the techniques in this book, you should pick
what works for you, adapt everything to your own needs, and simply ignore anything that doesn’t solve
any problems you are facing.

Using QUnit

Tuse QUnit, which is the tool developed by the jQuery team for their unit testing. It is simple and
effective and works well. You can get QUnit from http://github.com/jquery/qunit. To install QUnit,
download the QUnit package and copy the qunit.js and qunit.css files from the qunit folder in the
archive to the Node.js content folder.

QUnit tests are run from an HTML document, and there is a basic structure of elements required in
this document so that QUnit can display the test results. Listing 9-16 shows the template that I used
when testing AMD modules, which I have created as the file tests.html in the content directory.

Listing 9-16. A QUnit Template Document for AMD Testing

<!DOCTYPE html>
<html>
<head>
<link rel="stylesheet" type="text/css" href="qunit.css"/>
<script src="require.js' type='text/javascript'></script>
¢<script src="jquery-1.7.1.js' type='text/javascript's</scripts
<script src="qunit.js' type="text/javascript's</scripts
<script type="text/javascript">
$(document).ready(function() {
require(["utils-amd"], function(utils) {
module("Utils-AMD Module");
// tests for utils-amd module will go here

1;
1);

</script>
</head>
<body>

<h1 id="qunit-headex">AMD Tests</h1>

<h2 id="qunit-banner"s</h2»

<div id="qunit-testrunner-toolbar"></divs

253

http://github.com/jquery/qunit

CHAPTER 9 = WRITING BETTER JAVASCRIPT

254

<h2 id="qunit-userAgent"»</h2>

<ol id="qunit-tests">

<div id="qunit-fixture">test markup, will be hidden</div>
</body>
</html>

To use QUnit, ensure that the script and CSS files you copied into the content directory are
imported into the document.

For each module I want to test, I use the QUnit module function to denote the start of a series of tests
and use require]JS to load the module code. (The QUnit module function isn’t related to AMD modules; it
just groups together a set of related tests in the output display.)

The markup added to the template allows QUnit to display the results. You can change the markup
to format your results differently, and information about the meaning of each element can be found at
http://docs.jquery.com/QUnit, along with the full API documentation.

I have added jQuery to my list of script imports, but QUnit doesn’t require jQuery to run. I find
jQuery useful for creating more complex tests, as I'll demonstrate shortly.

Tip Be careful if you are using requireJS to load QUnit. The QUnit library initializes itself in response to the load
event on the window browser object, and this event is usually triggered before requireJS has loaded the jQuery
library and executed the callback function. If you absolutely must use requireJS, then you can make a call to
QUnit.load() in the requireJS callback function.

Adding Tests for a Module

With the basic structure in place, I can begin to add tests for my module. I am going to keep things
simple and perform some argument tests on the composeString function, making sure null arguments
don’t cause odd results. Listing 9-17 shows the addition of tests to the tests.html file.

Listing 9-17. Adding Tests to the tests.html File

<!DOCTYPE html>
<html>
<head>
<link rel="stylesheet" type="text/css" href="qunit.css"/>
<script src='require.js' type='text/javascript'></script>
<script src="jquery-1.7.1.js' type='text/javascript's</script>
<script src="qunit.js' type='text/javascript'></script>
<script type="text/javascript">
$(document) .ready(function() {
require(["utils-amd"], function(utils) {
module("Utils-AMD Module");
test("Null prefix and suffix", function() {
var config ={
prefix: null,
suffix: null,
value: "value"

http://docs.jquery.com/QUnit

CHAPTER 9 = WRITING BETTER JAVASCRIPT

>
equal(utils.composeString(config), "value");

3
test("Null value", function() {
var config ={
prefix: "prefix",
suffix: "suffix",
value: null
b

equal(utils.composeString(config), "prefixsuffix");

OH
test("No value property”, function() {
var config ={
prefix: "prefix",
suffix: "suffix",
}s

equal(utils.composeString(config), "prefixsuffix");

H
};
};

</script>
</head>
<body>
<h1 id="qunit-header">AMD Tests</h1>
<h2 id="qunit-banner"></h2>
<div id="qunit-testrunner-toolbar"></div>
<h2 id="qunit-userAgent"></h2>
<ol id="qunit-tests">
<div id="qunit-fixture">test markup, will be hidden</div>
</body>
</html>

Each test is defined with the test function, with arguments for the name of the test and a function
that contains the test code. In each of the four tests I have added, I create an object with the prefix,
suffix, and value properties that are passed to my function via my custom data bindings and pass this
to the composeString function, which I access through the utils argument to my requireJS callback
function, like this:

equal (utils.composeString(config), "prefixvalue");

Like most unit test packages, QUnit provides a series of assertions that test the result of an
operation. In this case, I have used the equal function to check that the result from calling the
composeString function matches my expectation. A range of different assertions are available, and you
can see the full list at http://docs. jquery.com/QuUnit.

To run the unit tests, simply load tests.html into the browser. QUnit will perform each test in turn
and use the markup as a container for the results. My composeString function passes one of the tests and
fails the other two. The results are displayed in the browser, as shown in Figure 9-2.

255

http://docs.jquery.com/QUnit

CHAPTER 9 = WRITING BETTER JAVASCRIPT

" (©) cheeselux.com/tests.html
€ C' O cheeselux.com/tests.html 9| X

AMD Tests mnoglobals mnotry

[T Hicke passsc] tests

Mozilla/5.0 (Windows NT 6.1; WOWB4) ApplaWebKit/535.11 [KHTML, lika Gacko)
Chrome/17.0.963.56 Safari/535.11

Tests completed in 16 milissconds,
| tests of 3 passed], 2 failecl

I Utils-AMD Moduls: Null prefix and suffix O, 1, 1)

1. failecl
Expected: -
Result: -
Diff: "prefixsuffix" "prefixnullsuffix”
| Source: at Object.<anonymous> (http://cheeselux.com/testa.html:26:21)

1. failecl
Expected: =
Result: "pr uffix”
Diff: "prefixsuffix" "prefixundefinedsuffix”
Source: at Object.<anonymous> (http://cheeselux.com/tests.html:33:21)

= = = — = —_— = = — E—

Figure 9-2. Executing unit tests on the composeString function

There is a bug in the composeString function, which doesn’t check to see whether the value property
of the object passed as the argument exists or has been assigned a value. To fix this problem, I make the

change shown in Listing 9-18 and run the tests again.

Listing 9-18. Fixing the composeString Function

composeString: function(bindingConfig) {
var result = bindingConfig.value || "";
if (bindingConfig.prefix) { result = bindingConfig.prefix + result; }
if (bindingConfig.suffix) { result += bindingConfig.suffix;}
return result;

I can run individual tests again or, by reloading the document, run all of the tests. My simple fix
resolves the problem with the two broken tests, and reloading tests.html gives me the all-clear.

256

CHAPTER 9 = WRITING BETTER JAVASCRIPT

Using jQuery to Perform Tests on HTML

I am not going to write a complete set of tests for my modules because QUnit behaves just like any other
unit test package, except it operates on JavaScript in the browser, especially for self-contained functions
like composeString where the input and the result are all expressed in JavaScript.

However, a slightly different approach is required when the effect or result of the code being tested
is expressed in HTML. This is the reason that I included jQuery in my QUnit test template, and to
demonstrate this technique, I will write some tests for the formatAttr binding in the custombindings-amd
module, which is shown in Listing 9-19.

Listing 9-19. The formatAttr Binding from the custombindings-amd Module

ko.bindingHandlers.formatAttr = {
init: function(element, accessor) {
$(element).attr(accessor().attr, utils.composeString(accessor()));

)
update: function(element, accessor) {
$(element).attr(accessor().attr, utils.composeString(accessor()));

jQuery makes it easy to create, use, and test fragments of HTML without needing to add them to the
document. Listing 9-20 shows additions to tests.html for the formatAttr binding.

Listing 9-20. Unit Testing Using HTML Fragments

<!DOCTYPE html>

<html>

<head>
<link rel="stylesheet" type="text/css" href="qunit.css"/>
<script src='require.js' type='text/javascript'></script>
<script src='jquery-1.7.1.js' type='text/javascript'></script>
<script src="qunit.js' type='text/javascript'></script>
<script type="text/javascript">

$(document).ready(function() {

require(["utils-amd"], function(utils) {
module("Utils-AMD Module");
// other utils-amd tests removed for brevity
test("No value property"”, function() {
var config ={
prefix: "prefix",
suffix: "suffix",

eaual(utils .composeString(config), "prefixsuffix");

};
}s

require(["custombindings-amd", "knockout-2.0.0.js"], function() {
module("Custombindings-AMD Module");
test("Correct attribute applied”, function() {
var viewModel = {

257

CHAPTER 9 = WRITING BETTER JAVASCRIPT

258

cat: "British"
};
var testElem = $("<ar</a»").attr("data-bind",

"formatAttr: {attr: 'href', prefix: '#', value: cat}")[0];
ko.applyBindings(viewModel, testElem);

equal(testElem.attributes.length, 2);
equal($(testElem).attr("href"), "#British");

};

</script>
</head>
<body>
<h1 id="qunit-header">AMD Tests</h1>
<h2 id="qunit-banner"></h2>
<div id="qunit-testrunner-toolbar"></div>
<h2 id="qunit-userAgent"></h2>
<ol id="qunit-tests">
<div id="qunit-fixture">test markup, will be hidden</div>
</body>
</html>

IT'have added a new test that uses jQuery to create an a element and apply a data-bind attribute. If
you pass an HTML fragment to the jQuery $ shorthand function, the result is a DOM API element that is
not attached to the document. As a bonus, I don’t have to make sure that the single and double quotes in
the data-bind attribute are properly escaped when using the jQuery attr method:

var testElem = $("<a>").attr("data-bind",
"formatAttr: {attr: 'href', prefix: '#', value: cat}")[o0];

Notice that I used an array-style indexer to get the first element in the object returned by the jQuery
$ shorthand function. The ko.applyBindings method works on the DOM API object rather than jQuery
objects and so I need to unwrap the a element I have created from the jQuery object. At this point, I can
get Knockout.js to apply bindings to my HTML fragment using my test view model:

ko.applyBindings(viewModel, testElem);

To test the result, I use the QUnit equal function and both the DOM API and jQuery to inspect the
result:

equal(testElem.attributes.length, 2);
equal($(testElem).attr("href"), "#British");

jQuery makes it easy to create and prepare HTML for testing and check the results, and as this
example shows, you can use the DOM API to get information about the elements after the test has
completed. As you can see, jQuery and QUnit together make testing every aspect of a web app possible
and, for the most part, easy to do.

CHAPTER 9 = WRITING BETTER JAVASCRIPT

Summary

In this chapter, I showed you the tools and techniques I use to write better JavaScript, not better in the
sense of a more complete use of the language features but better in the sense of easier for others to work
with, easier for me to maintain, and, with the application of unit testing, so the user will experience
fewer problems. These techniques, combined with those from earlier chapters, give you a solid
foundation on which to build scalable, dynamic, and flexible web apps that are easy to use and easy to
maintain. Good luck on all of your projects, and remember, as I said in Chapter 1, that anything worth
doing on the server side is worth considering for the client side, too.

259

Index

A

Ajaxrequests, 129
adding Ajax GET request, 130-131
adding Ajax URL to main manifest, 135

adding Ajax URL to manifest NETWORK

section, 135

error handling, 133-134

POST request behavior, 135

products.json File, 131

restructuring, 131-133
Application cache entries, 122
Application cache specification, 126
Asynchronous module definition (AMD)

callback arguments, 248-250

definition, 245

dependency declaration, 247-248

dependency issues, 246-247

factory function, 245

inline dependencies, 250-252

B

Bidirectional bindings, 58-60

C

Cache-control header, 122
CheeseLux, 9-12
adding routing, 101-105
browser, 105
enhancing view model, 106
managing application state, 107-108
mapProducts function, 106
Click event, 25-26
Code
fragment, 6
HTML document, 5
Content distribution network (CDN), 16
CSS class, 22-24

D

Data Storage, browser. See HTML5 local storage
feature

Default actions management, 27-29

Design patterns, 4

Desktop web browser, 7

Dynamic basket, 29

E

Empty basket, 71-74
Event, definition, 24

F

Fallback entries, 122-126
Flow control bindings, 52-53
$ function, 18-19

G

Graphic design and layouts, 4

H

Hover method, jQuery, 26
HTML editor, 7
HTML5 History API
preserving view model state, 96-97
restoring application state, 99-101
storing application state, 98-99
HTMLS5 local storage feature, 137-139
complex data storage (see IndexedDB)
with form elements, 143-144
for JSON data, 139-141
with objects, 141-142
with offline web applications
adding buttons, 154-155

261

INDEX

HTMLS5 local storage feature, with offline web
applications (cont.)
cached CheeseLux web app, 150-153
createDialog function, 156-157
enhanceViewModel function, 153-154
script element changes, 155-156
persistent forms, 142-143
session storage
benefits, 148-149
semi-persistent observable data item, 149
synchronizing view models, 144
KO subscribe method, 146
main document modification, 147-148
persistentObservable function, 144, 146—
147
StorageEvent object, 145
HTMLElement properties, 35

IndexedDB, 156

DBO object, 158-160
locating objects

using cursor, 166

using Index, 167

by key, 165-166
onupgradeneeded property, 160-161
success outcomes, 161
to web application, 162-165
WebSQL, 157
working principle, 157

J

JavaScript

dependencies in libraries, 238

AMD module (see Asynchronous module
definition (AMD))

assumed dependency, 238-239
directly resolved dependency, 240
double-loading problem, 243-244
issues, 240-243

global namespaces, 229-230

global variables, 230

namespaces
configuration, 233-234
definition, 230-231
nested, 231-232
nested, using a function, 232-233
self-executing function, 234-235

262

naming collision, 229
property, method and function, 235-238
unit testing, 253
adding tests, 254-256
jQuery, 257-258
QUnit, 253-254
JavaScript libraries, 7
JavaScript polyfill libraries, 129
jQuery
addClass method, 23
bind method, change and keyup events, 32—
33
custom selectors, 20
hover method, 26
importing, 15-18
method chaining, 23
methods for inserting elements in document,
22
statement, 19
Ul button, 43-44
UI toolkit, 42-43
jQuery Mobile
content changes, 214-215
event sequence, 211-212
disabling automatic processing, 212-213
pageinit event, 213-214
pages, 201-202
widgets, 202

K

Knockout (KO)
data bindings, 51
definition, 49
library, 49-53

ko object, 50

L

Latent content, 29, 31-32

Method chaining, 23
Method pairs, 23
Mobile browser emulator, 7
Mobile Web Apps, 195
CheeseLux Mobile Web App
basic implementation, 209
formatText data binding, 210-211

INDEX

initial version, 206-209 monitoring
duplicating elements using templates, 215 adding elements and bindings, 128
with custom data, 218 detecting state of network, 126-128
data-bind attribute, 218-220 POST request behavior, 135
using two-pass data bindings, 215-218 revised document, 109-111
getIndexOfCategory function, 226
goals, 205
jQuery Mobile P! Q
askmobile.html document, 198 Polyfill, 98
CheeseLux web app, 204 POST request behavior, 135
data attributes, 201 -
events, 203
installation, 201 R

setCookie, 203 . . .
mobile device detection Recurring Ajax requests polyfills, 129

capabilities, 197-198 Responsive Web Apps, 169
user agent, 195-196 screen orientation, 184-188
multipage model screen size
adding support, 220-223 adap‘qng source data, 183
changePage method, 225 adapting web app layout, 179-183
mapping page names to routes, 224-225 conditional jQuery Ul styling, 183-184
navigation, 223 - CSS media queries, 173-174
replacing radio buttons with anchors, 223 detectDeviceFeatures function, 177-178

Mouseenter and mouseleave events, 26-27 image loading, 178-179
- JavaScript media queries, 174-175

matchMedia feature, 176-177
N polyfill, 175-176
removing elements, 184

Node.js, 8 touch interaction
application routes, 193
(@) detecting touch support, 189-190
navigation, 191-193
Offline web apps, 109 touchSwipe library, 190-191
Ajax requests viewport, 169-172
adding Ajax GET request, 129-131
adding Ajax URL to main manifest, 135 S T
adding Ajax URL to manifest NETWORK ’
section, 135 Single handler function, 27
error handling, 133-134 Submit button upgradation
POST request behavior, 135 CSS class, 22-24
products.json file, 131 $ function, 18-19
restructuring, 131-133 input element selection and hiding, 19-21
HTMLS5 application cache jQuery, 15-18 -

accepting changes to manifest, 115-116

- . new element insertion, 21-22
adding manifest to HTML document, —

112-113
adding network and fallback entries, 122— U
126 _
cached content, 113-114 URL routing
control of cache update process, 116-122 CheeseLux
manifest file, 111-112 adding routing, 101-104

263

INDEX

URL routing, CheeseLux (cont.)
browser, 104
enhancing view model, 106
managing application state, 107-108
mapProducts function, 106
consolidating routes
adding default route, 89-90
optional segments, 88-89
unexpected segment values, 86-88
variable segments, 85-86
event-driven controls to navigation
bridging events and routing, 92-94
bridging URL routing and JavaScript
events, 90-92
selected data binding, 94
using HTML5 History API
history.replaceState method, 95
preserving view model state, 96-97
restoring application state, 99-101
steps demonstrating the issue, 95
storing application state, 98-99
simple routed web application, 77-78
adding navigation markup, 81-83
adding routing library, 79
adding view model and content markup,
79-81
applying controls and elements, 83-85

\'}

Value bindings, 51-52
View model, 47
adding more products, 53-54
dynamic basket
adding basket line items, 66-69
adding basket structure and template, 70—
71
adding subtotals, 64-66
empty basket, 71-74
removing items, 71
generating content, 61-63
model creation
adding data to document, 48

264

adopting view model library, 49
bidirectional bindings, 58-60
extending the model. 60-61
generating content, 49-53
observable data items, 55-58

resetting, 47-48

reviewing, 63-64

URL routing, 79-80

W, X, Y,Z

Web app development principles, 15
dynamic basket data
adding basket elements, 29-31
bind method, change and keyup events,
32-33
changing form target, 37-39
latent content, 31-32
overall total calculation, 35-37
subtotal calculation, 33-34
subtotal display, 34-35
event handling
click event, 25-26
default actions, 28-29
using event object, 27
mouseenter and mouseleave, 26-27
single handler function, 27
JavaScript disabled and enabled, 39-40
JavaScript-only policy, 41
non-JavaScript users, 40
submit button upgradation
CSS class, 22-24
$ function, 18-19
input element selection and hiding, 19-21
jQuery, 15-19
new element insertion, 21-22
UI toolkit
creating jQuery Ul button, 43-44
setting up jQuery UlI, 42
Web server, 7
whitelist entries, 122
WUREFL database, 195

Pro JavaScript for Web
Apps

Adam Freeman

Apress®

ii

Pro JavaScript for Web Apps
Copyright © 2012 by Adam Freeman

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is
concerned, specifically th erightsof translati on, repr inting, reuse o fillus trations, recitation, broadcasti ng,
reproduction on microf ilms ori n any other physical way , an d transmission or i nformation stor age an d re trieval,
electronic adaptation, computer sof tware, orbysi milarord issimilar methodology now known or hereaf ter
developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or
material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use
by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained
from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-4461-5
ISBN-13 (electronic): 978-1-4302-4462-2

Trademarked names, logos, an d images may app ear in this book. Rather than us e a trademark s ymbol with every
occurrence of a trademarked name, logo, or ima ge we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, tr ademarks, service ma rks, a nd s imilar terms, ev en ifth eyare not
identified as such, is not to be ta ken as an expression of opinion as to whether or not they are subject to proprietary
rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor th e publisher can accept any legal responsibility for any errors or o missions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning

Lead Editor: Ben Renow-Clarke

Development Editor: Louise Corrigan

Technical Reviewer: R] Owen

Editorial Board: Ste ve An glin, Ewan Buckin gham, Gary Corn ell, Louise Corrigan , Morgan Erte 1, Jon athan
Gennick, Jonathan Hassell, Robert Hutchin son, Michelle Lowman, James Markh am, Matthew M oodie, Je ff
Olson,] effrey P epper, D ouglas Pundick, Ben R enow-Clarke, D ominic Shakeshaft, Gwenan Sp earing, M att
Wade, Tom Welsh

Coordinating Editor: Jennifer L. Blackwell

Copy Editor: Kim Wimpsett

Compositor: Bytheway Publishing Services

Indexer: SPi Global

Artist: SPi Global

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Scie nce+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013.Phone 1-800-SPRINGER, f ax (20 1) 348 -4505, e-mail orders-ny@springer-sbm.com, orv isit
www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit waw.apress.com.

Apress and friends of ED book s maybe purchasedinbulkf or academic, corporate, or promo tional use. eBoo k
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales—eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the authori n this text is av ailable to re aders at
www. apress.com. For detailed inf ormation about how to loca te your book’s source code, go to
WWW.apress.com/source-code.

mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com
http://www.apress.com/source-code

Dedicated to my lovely wife, Jacqui Griffyth.

iii

Contents

About the AUNOL.........cccccimimmmmisnnnmsssnnssssssssssassssasssssasssssanssssanssssannssssnnnsssnnsnssnnnnssn Xii
About the Technical ReVIEWETccuvssmissmsmmssmssmmsmis s ssssssssssssssnsns Xiil
Acknowledgmentsccuemmsmmmsasmssnmmssnsssanssssssssssssansssnssssnsssassssnsssansssassssnnssansnsans Xiv
Chapter 1: Getting Readycsssmmsmmssmssmssmssmssmssmsssssssssss s ssssssssssssssssssssssssssssnsaes 1
ADOUL TS BOOK......cccreiuereeriesnstsesessesss s ss s sss s s sss s sn s snssnsnsssnns 1
WHO AT YOU? ...t e e e e e e e e e e e s 1
What Do You Need to Know Before You Read This BOOK?..........ccuvmmmnnnnnnnnnssssesssssssesssesssesenes 2
What If You Don’t Have That EXPEHENCE?ccueeeererneieresneese s ssesesesssssesssssssssssssssssssesssssssssssssssnsnns 2
IS This @ BOOK ADOUE HTIMLS?ceeecc e e 2
What Is the Structure of THIiS BOOK?ccvvrererererenesssssssssssssssssssssssssssssnes 2
Do You Describe Design PAtterNS?ovevcvricicscrssescssss s sesss s sesssss e ssssssssssessssssssesssssssaes 4
Do You Talk About Graphic Design and LayOUES?..........ccccerrencnmrernnencsesnesse s sesesssnenes 4
What If You Don’t Like the Techniques or TooIS | DESCHDE? ... 5
Is There a Lot of Code in ThiS BOOK?coeeerererererercrercresesesesesese e 5
What Software Do You Need for This BOOK?...........ccverinnnnnnnnnensse s 6
Getting the SOUICE COUE.........coceeeecerecee e e e e e 6
Getting an HTML EdItOr ... 7
Getting a DeSKtop WED BrOWSETcccvrererererererereresesesereesessesessesessssessesessessssesssssssssssssssssessnesssnenaes 7
Getting a Mobile Browser EMUIALOT ... 7
Getting the JavaSCript LIDIArIESc.cveeeeerererereresesesese e ss e s s s se s s s sssssssssssssssssssssens 7
GEHING @ WED SEIVE ...t e e e p s 7
Introducing the CheeseLux EXampleccocvvercerrercrserres s 9

vi

CONTENTS

Font AttriDULION.......ccco e ——————— 12
31T 111 T PSSR 13
Chapter 2: Getting Startedccccccmismmmmsmmmnssnmnsnmmsssee s assessnn 15
Upgrading the Submit BUtton ..o 15
Preparing t0 USE JAUBTY ..o s 15
Understanding the Ready EVENL ... s 18
Selecting and Hiding the INPut EIEMENTccorvereirerrerererere v s sse e ssesassesassessssesassesasnenaes 19
Inserting the NEw EIBMENT ... e e 21
ADPPIYING @ CSS ClASS....courtiueeririreierirasssseseresss et s s ss s e sesssss e st s st e s sse s st st s s et sas e sasse e e sssnns 22
Responding 10 EVENES ... sn s s s 24
Handling the ClICK EVENL...........coerrenererercresesesese e ss s s ss s ss s s s s s s s s s s 25
Handling Mouse HOVEE EVENES........ccccceiicncrrnese e sss e e se s s ssssssenes 26
USiNg the EVENT ODJECTcoveeicre et e 27
Dealing with Default ACHONScoieiierir e 28
Adding Dynamic Basket Datac.ccccueerrserennsinesnnenssssesssse e snssessssssnes 29
Adding the Basket EIBMENTS............oceiiicirercce e 29
Showing the Latent CONENT ... snsnnas A
Responding t0 USEr INPUL ..o s a s s s ae e s n s n s s r s ne e 32
Calculating the OVErall TOMal........c.cccueeeeerinercrirse s e s nsnn s 35
Changing the FOrM Targel.........cccooiccrree et 37
Understanding Progressive Enhancement.............cocoeoeeevececcsssessesses s s ses e e 39
Revisiting the Button: Using @ Ul TOOIKIL...........cccoueiirinissnsncs e sne e 42
T T I T o 42
Creating @ JAUErY UL BUHTON ...t 43
R3] 11142 45

CONTENTS

Chapter 3: Adding a View Model.........cccuccmmmmmssmmmmmmssssssnmmssssssnmsssssssnssssssssnssssssnnnnns 47
Resetting the EXAmPIe.........ccoveerincnmrie s s 47
Creating @ VIiew MOAEL..........ccveeeeieererese e sns s sn s sre e s sns e s sssse s 48
Adopting @ View Model LIDFary..........ooenrescrerece s sssnnns 49
Generating Content from the View MOGEL..........cccccceiiennnnccrnsese e ssssenes 49
Taking Advantage of the View Modelccccoviereniicnnnncrnsresse e 53
Adding More Products to the View MOl ... sesssss s ssssssesssnns 53
Creating Observable Data HEMS ... e e e 55
Creating Bidirectional BiNAINGScccceerrmerennneenesnese s sesss s ssssssssesessssssesessssssssesssssssssssssssenes 58
Adding @ Dynamic Basket...........cccvvrverinienininnersessessessesses s se e snsenns 64
AddiNG SUDTOTAIScceveerererererere e s e e e e e e s 64
Adding the Basket Line ltems and Total.........c.ccouvveeernnnescnnnnescsssese s sessssssssessssnns 66
Finishing the EXAMPIE ..ot e il
SUMMANY ...t a s a e e e e e R e R e e e e e Ren e 74
Chapter 4: Using URL ROULiNG ...ccoossnemmmmnmmsmsssssssssnsnnnsssssssssssssnsnnnnsssssssssssnnnnnnsnsssssss 77
Building a Simple Routed Web Application..........cccocvvrvrvrrrrensesss e 77
Adding the ROULING LIDIAIYccveeveeereerererere s s eras e ses e rse e sas e sse e ssesssesassessssesassessensssessssesassassesassenes 78
Adding the View Model and Content MarkUpcocvveesereresssesesesssesssessenns 79
Adding the Navigation MarkUpcccceieeniennennsene s e sessssessssessssesssssssessssesssssssssesssssssessssenns 81
APPIYING URL ROULING ...veereererereecreerereeserseressesesserssesaesessssessssssssssssessssessssesssssssssssssssssensssssassasassassenassenes 83
Consolidating ROULESc.cviueirmrinensise s s 85
USING Variable SEQMENTS........cocverererrerererererereressersesersesessesessessssessssessssesssssssssssessssessssssssssssessssenssnssaes 85
UsSing Optional SEGMENTScccceereiccrre s e 88
Adding a Default ROULE........c.cou i s 88
Adapting Event-Driven Controls to Navigation............ccocucvernsnesnsesssssesssesessssessssennes 89
Using the HTMLS HiStOry API ... s s s sns s e s e e e 94
Adding History State to the Example AppliCation ..o 95

vii

CONTENTS

viii

Adding URL Routing to the CheeseLux Webh ApPpccocverrerrersersesses s e s e e 101
Moving the mapProducts FUNCHION............cccceviiescnernecc s sens 105
Enhancing the VIew MOEL ... s 105
Managing APPlication STAte.........cccccverrierrrerrrerrre e re e sa e ae e ae e ae e naenanaens 106

O30 3] 1 108

Chapter 5: Creating Offline Web APPS....cccciruuseemmmnssssnnnsmssssnssssssssssssssssssssssssssnnnes 109

Resetting the EXample.........ccocvvririnsnnnsn s s 109

Using the HTML5 Application Cache.........cccoeverererere s sse e sse e sssssessesssssessens 111
Understanding When Cached Content IS USEdccccceernescnennncscnennsese s sessssssssessssssenes 113
Accepting Changes 10 the Manifest...........cccrrernnnnss s 115
Taking Control of the Cache Update PrOCESScuvvererererererereresesesesesesesesesesesesesesesesesesesssssssesssssssnes 116
Adding Network and Fallback Entries to the Manifestcccccernieinrnniesnns e 122

Monitoring Offline Status...........cccrrinriin s ———— 126

Understanding with Ajax and POST REQUESLScccecererrerrerrersessesses s sessesssssessessessessenns 129
Understanding the Default Ajax GET BENAVIOLcccoveerrnncncninsscsess e sesesss s sesessssnses 131
Adding the Ajax URL to the Main Manifest or FALLBACK SeCtiONS.......c...cooeeeeerereneseressnesesessssesesesensens 135
Adding the Ajax URL to the Manifest NETWORK Section..........ccccoveenrrescnnnsccrereeeseseseeeseenas 135
Understanding the POST Request BERAVIOF..........cccvrcererererererereresessesessesersesessesesessssessesesssssssssenaens 135

O30 3] 1 136

Chapter 6: Storing Data in the BrowSercccucsmssmssesmssnssssnsssasssssssssssssassssnsssns 137

USing LOCAl STOrage.......ccceeeruererercrire s se s s sn e e s 137
STOMING JSON DALA........ceceeeceeececeeece e se e e e e e e e e e e e e e e e e sesesassenensnsnsnnnas 139
STOrING FOIM DALA ...ttt e e e e e e e ne e e s s s s nsnsnnnnas 142

Synchronizing View Model Data Between DoCUMENtScccceeveveevrrnnensesses s sessennenns 144

USiNgG SESSION STOrAQe......ccceeeurrerererirerere st r e e e 148

Using Local Storage with Offline Web Applications.........c.ccccuevenniennsncsnscsesnsesnnens 149
Using Local Storage with Offling FOIMScccvevrerrcerrre st eresesee e raesesse e ssesassessssesassesassanaens 153

CONTENTS

Using Persistence in the Offline APPlCAtioN..........ccocoerercenre s 154
Storing Complex Data.........c.cceeerernsmiesnsere e 156
Creating the IndexedDB Database and Object STOreccoceerreecnrnsrcsrr s 158
Incorporating the Database into the Web Applicationcccccevvereveverererrerere e sereesesaesenaens 162
Locating an ObjECt DY KEYccceererecirirseire e se e se s ss e s ss 165
Locating Objects USING @ CUISO.........cccererrrererrssnesessssssssesesss s esessssssssessssssssessssssssssssssssssssssssssesssssssaes 166
Locating Objects USING an INAEXcceceverererererererenersssessesessesessessssessssessssesssssssssssssssssensssesssssssssasaens 167
31 3] 1 167
Chapter 7: Creating Responsive Webh APPS....uccerrmmmsssnmmmssssnsssssssssssssssssssssssssnnnns 169
Setting the VIEWPOI ... e sn s 169
Responding 10 SCreen Size........ccvoeciceicrsrcr s 173
Using Media Queries With JAVASCHIPL........ccoeeverrerrerr s re e rer s res e rse e ssesesaesassessesesassesassansens 174
Adapting the Webh App LayOUL ..ottt 179
Responding to Screen Orientation..........ccovceecncvnsnccncc s 184
Integrating Screen Orientation into the Web App ... 186
Responding 10 TOUCHc.cvcvcrrr s sn e sn e e sn e sr e nnnnens 188
Detecting TOUCH SUPPO ... s e sn e 189
Using Touch to Navigate the Web ApPp HiSTOIYccvcecvverrierrrirssereseresesesereressessssesassessssessssesassanaens 191
Integrating with the Application ROULESccvererierrcrer e sae e 193
RS0 101 1 194
Chapter 8: Creating Mobile Web APPScccvuseemmmmsssssnsmmssssnsnmsssssssssssssssssssssssnnnss 195
Detecting MoDbile DEVICESccceerrerrrieresrssesse s ss e sse e sss s se s snesesnes 195
Detecting the USEr AQENT.........co st n e e r s s srnnennnnens 195
Detecting DEVICe CapabilitieScccrvvrereriererrerersererseresereseseresseressersesessesessesessessssessssessssessesessssesassansens 196
Creating a Simple Mobile WED APDcovervrieriirrerrer e sssessesssessesssesssessessssssesssssnenns 198
Installing JAUEIY MODIIEcoveeeeeererere st re s e s s se e e se e se e e s sa e e sae e sae e e e saenesaeananns 201
Understanding the jQuery Mobile Data AttribUeS ..o 201

ix

CONTENTS

Dealing with jQuery Mobile EVENTS. ...t 203
Storing the USEr’S DECISIONcccieecrrirncririnss s s ss s se s e e e ss s 203
Detecting the User’s Decision in the WED AP . ..ot ssssesaesenaens 204
Building the Mobile Web ApPP. ... 205
Managing the EVENnt SEQUENCE. ..o s 211
Preparing for Content CRANGEScceeverererererererereressersesesesessessssessesassessssessesessesassessensssessssesasasaens 214
Duplicating Elements and Using TempIatesc.ccocveerererserensesessnsesesessesessessesessessnsens 215
Using Two-Pass Data BiNAINGS.cceeeeerereriernnerererseressessesesessssesssssssessssessssessessssessssesssnsssesssssssssssaens 215
Adopting the Multipage MOMEL.ccoeerrriernnmiesnsesesrse e ssesnnsens 220
Reworking Category Navigationcccccerverererienrserenserenesessssessesessesassessssessessssesassessessssessssesassasaens 223
Replacing Radio Buttons With ANCROISoveceirniccrirne e s 223
Mapping Page Names t0 ROULESccocervererinienrir e se e sne e 224
EXplicitly Changing PAQEScccceeerrereerirerereresereseresessersesessesessessssessesassessesessessssesassessensssessssesasnssaens 225
Adding the Final CRromecccornnnnn s 225
T4 1P RS SSS 228
Chapter 9: Writing Better JavaScript..........ccccmnmmnmmismmimmmmmmmsssssss s 229
Managing the Global NameSPaCe.cccceeereereereerrere e 229
Defining a JavaScript NAMESPACE.ccoveeereresinereniesese st sessssnses 230
Using Self-executing FUNCLIONS.cccoiiiinc s e 234
Creating Private Properties, Methods, and FUNGtionsccccvevvrvervnrenrnsensensensenienne 235
Managing DEPeNdENCIESccceerrererrerresesesse e e e sse e sse e ssesse e ssesse s e sresnesresnesnesnesns 238
Understanding Assumed Dependency Problems. ... 238
Understanding Directly Resolved Dependencies.covvcrerrnencnensnesesesesese e 240
Making a Bad Problem into a Subtle Bad Problem. ... 243
Using the Asynchronous Module Definition.ccovcccenrnnennnenerreere e 244
Unit Testing Client-Side COe.........covrererrrrre s saesaesassassaessesaens 253

USING QUNIL. ... s s g e e nn e e e 253

CONTENTS

Adding Tests for @ MOdUIE.............cererrerererer s 254
Using jQuery to Perform Tests 0N HTML........cccoeceiiecncnns e se s se s e ssssssens 257
O30 3] 1 259
INAEX cereeirensiesnimsss s s —————————_————— 261

About the Author
/

xii

Adam Freeman is an experienced IT professional who has held senior
positions in a range of companies, most recently serving as chief technology
officer and chief operating officer of a global bank. Now retired, he spends his
time writing and running.

About the Technical Reviewer .

RJ Owen is the lead experience planner at EffectiveUI, focusing on
customer insight work, including ethnographic research, design validation,
co-creation exercises, and expert design. R]J started his career as a software
developer and spent ten years working in C++, Java, and Flex before moving
to the design research and customer insight team at EffectiveUI. He truly
loves good design and understanding what makes people tick. RJ holds an
MBA and a bachelor’s in physics and computer science. He is a frequent
speaker at many industry events, including Web 2.0, SXSW, and Adobe
MAX.

xiii

Xiv

Acknowledgments

I'would like to thank everyone at Apress for working so hard to bring this book to print. In particular,
I'would like to thank Jennifer Blackwell for keeping me on track and Ben Renow-Clarke for
commissioning and editing this title. I would also like to thank my technical reviewer, R] Owen,
whose efforts made this book far better than it would have been otherwise.

	Cover

	Contents at a Glance

	Contents

	About the Author

	About the Technical Reviewer

	Acknowledgments

	Getting Ready
	About This Book
	Who Are You?
	What Do You Need to Know Before You Read This Book?
	What If You Don’t Have That Experience?
	Is This a Book About HTML5?
	What Is the Structure of This Book?
	Chapter 1: Getting Ready
	Chapter 2: Getting Started
	Chapter 3: Adding a View Model
	Chapter 4: Using URL Routing
	Chapter 5: Creating Offline Web Apps
	Chapter 6: Storing Data
	Chapter 7: Creating Responsive Web Apps
	Chapter 8: Creating Mobile Web Apps
	Chapter 9: Writing Better JavaScript

	Do You Describe Design Patterns?
	Do You Talk About Graphic Design and Layouts?
	What If You Don’t Like the Techniques or Tools I Describe?
	Is There a Lot of Code in This Book?

	What Software Do You Need for This Book?
	Getting the Source Code
	Getting an HTML Editor
	Getting a Desktop Web Browser
	Getting a Mobile Browser Emulator
	Getting the JavaScript Libraries
	Getting a Web Server
	Getting and Preparing Node.js

	Introducing the CheeseLux Example
	Font Attribution
	Summary

	Getting Started
	Upgrading the Submit Button
	Preparing to Use jQuery
	Understanding the Ready Event
	Selecting and Hiding the Input Element
	Inserting the New Element
	Applying a CSS Class

	Responding to Events
	Handling the Click Event
	Handling Mouse Hover Events
	Using the Event Object
	Dealing with Default Actions

	Adding Dynamic Basket Data
	Adding the Basket Elements
	Showing the Latent Content
	Responding to User Input
	Calculating the Subtotal
	Displaying the Subtotal

	Calculating the Overall Total
	Changing the Form Target

	Understanding Progressive Enhancement
	Revisiting the Button: Using a UI Toolkit
	Setting Up jQuery UI
	Creating a jQuery UI Button

	Summary

	Adding a View Model
	Resetting the Example
	Creating a View Model
	Adopting a View Model Library
	Generating Content from the View Model
	Understanding Value Bindings
	Understanding Flow Control Bindings

	Taking Advantage of the View Model
	Adding More Products to the View Model
	Creating Observable Data Items
	Creating Bidirectional Bindings
	Extending the View Model
	Generating the Content
	Reviewing the Result

	Adding a Dynamic Basket
	Adding Subtotals
	Adding the Basket Line Items and Total
	Extending the View Model
	Adding the Basket Structure and Template
	Removing Items from the Basket

	Finishing the Example

	Summary

	Using URL Routing
	Building a Simple Routed Web Application
	Adding the Routing Library
	Adding the View Model and Content Markup
	Adding the Navigation Markup
	Applying URL Routing

	Consolidating Routes
	Using Variable Segments
	Dealing with Unexpected Segment Values

	Using Optional Segments
	Adding a Default Route

	Adapting Event-Driven Controls to Navigation
	Using the HTML5 History API
	Adding History State to the Example Application
	Storing the Application State
	Restoring the Application State

	Adding URL Routing to the CheeseLux Web App
	Moving the mapProducts Function
	Enhancing the View Model
	Managing Application State

	Summary

	Creating Offline Web Apps
	Resetting the Example
	Using the HTML5 Application Cache
	Understanding When Cached Content Is Used
	Accepting Changes to the Manifest
	Taking Control of the Cache Update Process
	Adding Network and Fallback Entries to the Manifest

	Monitoring Offline Status
	Understanding with Ajax and POST Requests
	Understanding the Default Ajax GET Behavior
	Restructuring the Application
	Handling the Ajax Error

	Adding the Ajax URL to the Main Manifest or FALLBACK Sections
	Adding the Ajax URL to the Manifest NETWORK Section
	Understanding the POST Request Behavior

	Summary

	Storing Data in the Browser
	Using Local Storage
	Storing JSON Data
	Storing Form Data

	Synchronizing View Model Data Between Documents
	Using Session Storage
	Using Local Storage with Offline Web Applications
	Using Local Storage with Offline Forms
	Using Persistence in the Offline Application

	Storing Complex Data
	Creating the IndexedDB Database and Object Store
	Responding to the Upgrade-Needed Outcome
	Responding to the Success Outcome

	Incorporating the Database into the Web Application
	Locating an Object by Key
	Locating Objects Using a Cursor
	Locating Objects Using an Index

	Summary

	Creating Responsive Web Apps
	Setting the Viewport
	Responding to Screen Size
	Using Media Queries with JavaScript
	Loading the Polyfill
	Detecting the Screen Size
	Integrating Capability Detection into the Web App
	Deferring Image Loading

	Adapting the Web App Layout
	Adapting the Source Data
	Applying Conditional jQuery UI Styling
	Removing Elements from the Document

	Responding to Screen Orientation
	Integrating Screen Orientation into the Web App

	Responding to Touch
	Detecting Touch Support
	Using Touch to Navigate the Web App History
	Integrating with the Application Routes

	Summary

	Creating Mobile Web Apps
	Detecting Mobile Devices
	Detecting the User Agent
	Detecting Device Capabilities

	Creating a Simple Mobile Web App
	Installing jQuery Mobile
	Understanding the jQuery Mobile Data Attributes
	Defining Pages
	Configuring Widgets

	Dealing with jQuery Mobile Events
	Storing the User’s Decision
	Detecting the User’s Decision in the Web App

	Building the Mobile Web App
	Managing the Event Sequence
	Disabling Automatic Processing
	Responding to the pageinit Event

	Preparing for Content Changes

	Duplicating Elements and Using Templates
	Using Two-Pass Data Bindings
	Invoking a Template with Custom Data
	Using a Template to Generate Bindings
	Reapplying the Data Bindings

	Adopting the Multipage Model
	Reworking Category Navigation
	Replacing Radio Buttons with Anchors
	Mapping Page Names to Routes
	Explicitly Changing Pages

	Adding the Final Chrome
	Summary

	Writing Better JavaScript
	Managing the Global Namespace
	Defining a JavaScript Namespace
	Using Self-executing Functions

	Creating Private Properties, Methods, and Functions
	Managing Dependencies
	Understanding Assumed Dependency Problems
	Understanding Directly Resolved Dependencies
	Understanding the Problems Caused by Resolving a Dependency

	Making a Bad Problem into a Subtle Bad Problem
	Using the Asynchronous Module Definition
	Defining an AMD Module
	Using an AMD Module
	Declaring Dependencies
	Dealing with Callback Arguments
	Declaring Inline Dependencies

	Unit Testing Client-Side Code
	Using QUnit
	Adding Tests for a Module
	Using jQuery to Perform Tests on HTML

	Summary

	Index
	A

	B

	C

	D

	E
	F
	G

	H
	I
	J

	K
	L
	M
	N

	O
	P, Q
	R
	S, T
	U
	V
	W, X, Y, Z

