
Resig
Ferguson
Paxton

SECOND
EDITION

Shelve in:
Web Development/JavaScript

User level:
Intermediate–Advanced

www.apress.com

SOURCE CODE ONLINE

RELATED

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Pro JavaScript Techniques
Pro JavaScript Techniques is the ultimate JavaScript book for today’s web
developer. It provides everything you need to know about modern JavaScript,
and teaches you what JavaScript can do for your web sites. This book doesn’t
waste any time looking at things you already know, but instead concentrates on
fundamental, vital topics—what modern JavaScripting is (and isn’t), and pitfalls to
be wary of.

You will learn about the ‘this’ keyword, as well as new object tools. You will be
able to create reusable code with encapsulation, overloading and inheritance. The
most recent techniques for debugging and testing are covered comprehensively,
with information on Chrome developer tools, Jasmine, PhantomJS and Protractor.
This update finishes with chapters on constructing single-page web applications
that dominate the modern web.

The book is filled with real-world examples and case studies, as well as
numerous reusable functions and classes to save you time in your development. You
will learn the practical skills needed to build professional, dynamic web applications.
Pro JavaScript Techniques is an indispensable reference for any professional
JavaScript web developer—enhance your JavaScript development today.

9 781430 263913

53999
ISBN 978-1-4302-6391-3

www.allitebooks.com

http://www.allitebooks.org

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Authors��� xiii

About the Technical Reviewers��xv

Acknowledgments��xvii

■■Chapter 1: Professional JavaScript Techniques��� 1

■■Chapter 2: Features, Functions, and Objects�� 7

■■Chapter 3: Creating Reusable Code�� 23

■■Chapter 4: Debugging JavaScript Code�� 39

■■Chapter 5: The Document Object Model��� 49

■■Chapter 6: Events��� 73

■■Chapter 7: JavaScript and Form Validation�� 95

■■Chapter 8: Introduction to Ajax�� 107

■■Chapter 9: Web Production Tools�� 117

■■Chapter 10: AngularJS and Testing�� 125

■■Chapter 11: The Future of JavaScript��� 141

■■Appendix A: DOM Reference��� 161

Index�� 177

www.allitebooks.com

http://www.allitebooks.org

1

Chapter 1

Professional JavaScript Techniques

Welcome to Pro JavaScript Techniques. This book provides an overview of the current state of JavaScript,
particularly as it applies to the professional programmer. Who is the professional programmer? Someone
who has a firm grasp of the basics of JavaScript (and probably several other languages). You are interested
in the breadth and depth of JavaScript. You want to look at the typical features like the Document Object
Model (DOM), but also learn about what’s going on with all this talk of Model-View-Controller (MVC) on the
client side. Updated APIs, new features and functionality, and creative applications of code are what you are
looking for here.

This is the second edition of this book. Much has changed since the first edition came out in 2006.
At that time, JavaScript was going through a somewhat painful transition from being a toy scripting language
to being a language that was useful and effective for several different tasks. It was, if you will, JavaScript’s
adolescence. Now, JavaScript is at the end of another transition: to continue the metaphor, from adolescence
to adulthood. JavaScript usage is nearly ubiquitous, with anywhere from 85 to 95 percent of websites,
depending on whose statistics you believe, having some JavaScript on their main page. Many people speak
of JavaScript as the most popular programming language in the world (in the number of people who use it
on a regular basis). But more important than mere usage are effectiveness and capability.

JavaScript has transitioned from a toy language (image rollovers! status bar text manipulations!) to
an effective, if limited tool (think of client-side form validation), to its current position as a broad-featured
programming language no longer limited to mere browsers. Programmers are writing JavaScript tools that
provide MVC functionality, which was long the domain of the server, as well as complex data visualizations,
template libraries, and more. The list goes on and on. Where in the past, designers would have relied on a
.NET or Java Swing client to provide a full-featured, rich interface to server-side data, we can now realize that
application in JavaScript with a browser. And, using Node.js, we have JavaScript’s own version of a virtual
machine, an executable that can run any number of different applications, all written in JavaScript and none
requiring a browser.

This chapter will describe how we got here and where we are going. It will look at the various
improvements in browser technology (and popularity) that have abetted the JavaScript Revolution. The state
of JavaScript itself needs inspection, as we want to know where we are before we look at where we are going.
Then, as we examine the chapters to come, you will see what the professional JavaScript programmer needs
to know to live up to his or her title.

How Did We Get Here?
As of the first edition of the book, Google Chrome and Mozilla Firefox were relatively new kids on the block.
Internet Explorer 6 and 7 ruled the roost, with version 8 gaining some popularity. Several factors combined
to jump-start JavaScript development.

For most of its life, JavaScript was dependent upon the browser. The browser is the runtime
environment for JavaScript, and a programmer’s access to JavaScript functionality was highly dependent

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ Professional JavaScript Techniques

2

upon the make, model, and version of browser visiting said programmer’s website. By the mid-2000s, the
browser wars of the 90s had been easily won by Internet Explorer, and browser development stagnated.
Two browsers challenged this state of affairs: Mozilla Firefox and Google Chrome. Firefox was the
descendant of Netscape, one of the earliest web browsers. Chrome had Google’s backing, more than
enough to make it an instant player on the scene.

But both of these browsers made a few design decisions that facilitated the JavaScript revolution.
The first decision was to support the World Wide Web consortium’s implementation of various standards.
Whether dealing with the DOM, event handling, or Ajax, Chrome and Firefox generally followed the spec
and implemented it as well as possible. For programmers, this meant that we didn’t have to write separate
code for Firefox and Chrome. We were already used to writing separate code for IE and something else, so
having branching code in itself was not new. But making sure that the branching was not overly complex was
a welcome relief.

Speaking of standards, Firefox and Chrome also put in a lot of work with the European Computer
Manufacturer’s Association (ECMA, now styled Ecma). Ecma is the standards body that oversees JavaScript.
(To be technical, Ecma oversees the ECMAScript standard, since JavaScript is a trademark of Oracle and…
well, we don’t really care about those details, do we? We will use JavaScript to refer to the language and
ECMAScript to refer to the specification to which a JavaScript implementation adheres.) ECMAScript
standards had languished in much the same way as IE development. With the rise of real browser
competition, the ECMAScript standard was taken up again. ECMAScript version 5 (2009) codified many of
the changes that had been made in the ten years (!) since the previous version of the standard. The group
itself was also energized, with version 5.1 coming out in 2011. The future is provided for, with significant
work currently being done on both versions 6 and 7 of the standard.

To give credit where credit is due, Chrome pushed the updating of JavaScript as well. The Chrome
JavaScript engine, called V8, was a very important part of Chrome’s debut in 2008. The Chrome team built
an engine that was much faster than most JavaScript engines, and it has kept that goal at the top of the list
for subsequent versions. In fact, the V8 engine was so impressive that it became the core of Node.js, a
browser-independent JavaScript interpreter. Originally intended as a server that would use JavaScript
as its main application language, Node has become a flexible platform for running any number of
JavaScript-based applications.

Back to Chrome: the other major innovation Google introduced to the land of browsers was the concept
of the evergreen application. Instead of having to download a separate browser install for updates, Chrome’s
default is to automatically update the browser for you. While this approach is sometimes a pain in the
corporate world, it is a great boon to the noncorporate consumer surfer (also known as a person!). If you use
Chrome (and, for the last few years, Firefox), your browser is up-to-date, without your having to make any
effort. While Microsoft has done this for a long time in pushing security updates via Windows Update, it
does not introduce new features to Internet Explorer unless they are coupled to a new version of Windows.
To put it another way, updates to IE are slow in coming. Chrome and Firefox always have the latest and
greatest features, as well as being quite secure.

As Google pressed on with Chrome’s features, the other browser makers played catch-up. Sometimes
this came in sillier ways, such as when Firefox adapted Chrome’s version numbering. But it also resulted in
Mozilla and Microsoft taking a cold, hard look at JavaScript engines. Both browser makers have significantly
overhauled their JS engines over the last few years, and Chrome’s lead, while formidable, is no longer
insurmountable.

Finally, Microsoft has (mostly) thrown in the towel on its classic “embrace and extend” philosophy, at
least when it comes to JavaScript. With IE version 9, Microsoft implemented World Wide Web Consortium
(W3C) event handling and standardized its DOM interfaces as well as its Ajax API. For most of the standard
features of JavaScript, we no longer have to implement two versions of the same code! (Legacy code for
legacy browsers is still a bit of an issue, of course…)

It seems almost a panacea. JavaScript is faster than ever before. It is easier to write code for a variety
of different browsers. Standards documents both describe the real world and provide a useful roadmap to
features to come. And most of our browsers are fully up-to-date. So what do we need to worry about now,
and where are we going in the future?

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ Professional JavaScript Techniques

3

Modern JavaScript
It has never been easier to develop serious applications with JavaScript. We have a clear, clean break with
the bad old days of separate code for multiple browsers, poor standards poorly implemented, and slow
JavaScript engines that were often an afterthought. Let’s take a look at the state of the modern JavaScript
environment. Specifically, we will look at two areas: the modern browser and the modern toolkit.

Modern JavaScript depends on the idea of the modern browser. What is the modern browser? Different
organizations describe it in different ways. Google says that their applications support the current and
previous major versions of browsers. (Fascinating, as Gmail still works on IE9, as far as we can tell!) In an
interesting article, the people behind the British Broadcasting Company (BBC) website revealed that they
define a modern browser as one that supports the following capabilities:

	 1.	 document.querySelector() / document.querySelectorAll()

	 2.	 window.addEventListener()

	 3.	 The Storage API (localStorage and sessionStorage)

jQuery, probably the most popular JavaScript library on the web, split its versions into the 1.x line,
which supports IE 6 and later, and the 2.x line, which supports “modern” browsers like IE 9 and later. And
make no mistake, IE is the dividing line between the modern and the ancient. The other two major browsers
are evergreen. And while Safari and Opera are not evergreen, they update on a faster schedule than IE and
don’t have nearly the market share it does.

So where is the borderline for the modern browser? Alas, the border seems to wander between Internet
Explorer versions 9 through 11. But IE 8 is definitely on the far side of browser history. It does not support
most of the features of ECMAScript 5. It does not include the API for W3C event handling. The list goes on
and on. So when we discuss modern browsers, we will refer to at least Internet Explorer 9. And our coverage
will not endeavor to support ancient browsers. Where relevant and simple, we will point out polyfills for
older versions of IE, but in general, our floor is Internet Explorer 9.

The Rise of Libraries
In addition to the modern browser, there is another important aspect of the current environment for
JavaScript we need to discuss: libraries. Over the past 8 years, there has been an explosion in the number
and variety of JavaScript libraries. There are more than 800,000 GitHub repositories for JavaScript; of these,
almost 900 have more than 1,000 stars. From its humble beginnings as collections of utility functions, the
JavaScript library ecosystem has evolved (somewhat chaotically) into a vast landscape of possibilities.

How does this affect us as JavaScript developers? Well, of course, there is the model of “library as
expansion,” where a library provides additional functionality. Think of the MVC libraries like Backbone
and Angular (which we will be looking at in a later chapter), or the data visualization libraries like d3 or
Highcharts. But JavaScript is in an interesting position, as libraries can also provide a level interface to
features that are standard on some browsers but not on others.

For a long time, the standard example of a variably implemented feature in JavaScript was event
handling. Internet Explorer had its own event-handling API. Other browsers generally followed the W3C’s
API. Various libraries provided unified implementations for event handling, including the best of both
worlds. Some of these libraries stood alone, but the successful ones also normalized functionality for Ajax,
the DOM, and a number of other features that were differently implemented across browsers.

The most popular of these libraries has been jQuery. Since its inception, jQuery has been the go-to
library for using new JavaScript features without worrying about the browser’s support for those features.
So instead of using IE’s event handling or the W3C’s, you could simply use jQuery’s .on() function, which
wrapped around the variance, providing a unified interface. Several other libraries provided similar
functionality: Dojo, Ext JS, Prototype, YUI, MooTools, and so on. These toolkit libraries aimed to standardize
APIs for developers.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ Professional JavaScript Techniques

4

The standardization goes further than providing simple branching code. These libraries often
ameliorate buggy implementations. The official API for a function may not change much between versions,
but there will be bugs; sometimes those bugs will be fixed, sometimes not, and sometimes the fixes will
introduce new bugs. Where libraries could fix or work around these bugs, they did. For example, jQuery 1.11
contains more than a half-dozen fixes for problems with the event-handling API.

Some libraries (jQuery in particular) also provided new or different interpretations of certain
capabilities. The jQuery selector function, the core of the library, predates the now-standard
querySelector() and querySelectorAll() functions, and it was a driver for including those functions in
JavaScript. Other libraries provide access to functionality despite very different underlying implementations.
Later in the book, we will look at Ajax’s new Cross Origin Resource Sharing (CORS) protocol, which allows
for Ajax requests to servers other than the one that originally served the page. Some libraries have already
implemented a version of this that uses CORS but falls back to JSON with padding (JSON-P) where needed.

Because of their utility, some libraries have become part of a professional JavaScript programmer’s
standard development toolkit. Their features may not be standardized into JavaScript (yet), but they are an
accumulation of knowledge and functionality that simply makes it easier to realize designs quickly. In recent
years, though, you could get quite a few hits to your blog by asking whether jQuery (or another library) was
really necessary for development on a modern browser. Consider the BBC’s requirements; you can certainly
realize a large degree of jQuery-like functionality if you have those three methods available to you. But
jQuery also includes a simplified yet expanded DOM interface, it handles bugs for a variety of different edge
cases, and if you need support for IE 8 or earlier, jQuery is your major option. Accordingly, the professional
JavaScript programmer must look at the requirements for a project and consider whether it pays to risk
reinventing the wheel that jQuery (or another similar library) provides.

More Than a Note about Mobile
In older JavaScript and web development books, you would reliably see a section, maybe a whole chapter,
on what to do about mobile browsing. Mobile browsing was a small enough share of total browsing, and the
market was so fractured, that it seemed only specialists would be interested in mobile development. That’s
not the case anymore. Since the first edition of this book, mobile web browsing has exploded, and it is a
very different beast from desktop development. Consider some statistics: according to a variety of sources,
mobile browsing represents between 20 and 30 percent of all browsing. By the time you are reading this, it
may well represent more, as it has consistently increased since the debut of the iPhone. Speaking of which,
well over 40 percent of mobile browsing is done with iOS Safari, although Android’s browser and Chrome for
Android are gaining ground (and may have overtaken Safari, depending on whose stats you believe). Safari
on iOS is not the same as Safari on the desktop, and the same goes for Android Chrome vs. desktop Chrome
and mobile Firefox vs. desktop Firefox. Mobile is mainstream.

The browsers on mobile devices provide a new set of challenges and opportunities. Mobile devices are
often more limited than desktops (though that’s another gap that is rapidly closing). Conversely, mobile
devices offer new features (swipe events, more accurate geolocation, and so on) and new interaction idioms
(using the hand instead of the mouse, swiping for scrolling). Depending on your development requirements,
you may have to build an app that looks good on mobile as well as the desktop, or reimplement existing
functionality for a mobile platform.

The JavaScript landscape has changed extensively over the last few years. Despite some standardization
of APIs, there are also many new challenges. How will this affect us as professional JavaScript programmers?

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ Professional JavaScript Techniques

5

Where Do We Go from Here?
We should set down some standards for ourselves. We have already set one: IE9 as the floor of the modern
browser experience. The other browsers are evergreen, and not to worry about. What about mobile, then?
While the issue is complex, iOS 6 and Android 4.1 (Jelly Bean) will, in general, serve as our floors. Mobile
computing updates faster and more frequently than desktops do, so we are confident in using these more
recent versions of mobile operating systems.

That said, let us digress for a moment to discuss not browser versions, operating systems, or platforms,
but your audience. While we can quote statistics all day long, the valuable statistics tell you about your
audience, not the audience in general. Perhaps you are designing for your employer, who has standardized
on IE 10. Or maybe your idea for an application depends heavily on features that only Chrome provides.
Or maybe there isn’t even a desktop version, but you’re aiming for a roll-out to iPads and Android tablets.
Consider your target audience. This book is written to be broadly applicable, and your application may be as
well. But it would be folly to spend time worrying about bugs in IE9 for that previously mentioned tablet-
only application, wouldn’t it? Now, back to our standards.

For screenshots and testing, this book will generally prefer Google Chrome. Occasionally, we will
demonstrate code on Firefox or Internet Explorer where it is relevant. Chrome, for developers, is the gold
standard—not necessarily in user-friendliness, but certainly in the information exposed to the programmer.
In a later chapter, we will look at the various developer tools available, scrutinizing not only Chrome, but
Firefox (with and without Firebug) and IE as well.

As a standard library, we will refer to jQuery. There are many alternatives, of course, but jQuery wins for
two reasons: first, it is the most popular general-use JavaScript library on the web. Second, at least one of the
authors (John Resig) has a little bit of history with jQuery, which predisposed the other author (John Paxton)
to concede the point of working with it. In updating this book, we have replaced many of the techniques
from the previous version with jQuery’s library of functionality. In these cases, we are disinclined to reinvent
the wheel. As needed, we will refer to the appropriate jQuery functionality. We will, of course, discuss new
and exciting techniques, as well!

JavaScript IDEs have updated significantly in the last few years, driven by JavaScript’s own rise. The
possibilities are too numerous to list here, but there are a few applications of note. John Resig uses a highly
customized version of vim for his development environment. John Paxton is a little bit lazier, and has elected
to use JetBrains’ excellent WebStorm (http://www.jetbrains.com/webstorm/) as his IDE. Adobe offers the
open source, free Brackets IDE (http://brackets.io/), currently at version 1.3. Eclipse is also available, and
many people have reported positive results by customizing SublimeText or Emacs to do their bidding. As
always, use what you feel most comfortable with.

There are other tools that can assist in JavaScript development. Rather than list them here, we will
dedicate a chapter to them later in the book. Which means it’s a good time to give an outline of what’s
to come.

Coming Up Next
Starting with Chapter 2, we will look at the latest and greatest in the JavaScript language. This means looking
at new features like those available through the Object type, but also reexamining some older concepts like
references, functions, scope, and closures. We will lump all of this under the heading of Features, Functions,
and Objects, but it covers a bit more than that.

Chapter 3 discusses Creating Reusable Code. Chapter 2 skips over one of the biggest new features of
JavaScript, the Object.create() method, and its implications for object-oriented JavaScript code. So in this
chapter we will spend time with Object.create(), functional constructors, prototypes, and object-oriented
concepts as implemented in JavaScript.

Having spent two chapters developing code, we should start thinking about how to manage it. Chapter 4
shows you tools for Debugging JavaScript Code. We start by examining browsers and their developer tools.

www.allitebooks.com

http://www.jetbrains.com/webstorm/
http://brackets.io/
http://dx.doi.org/10.1007/9781430263913_2
http://dx.doi.org/10.1007/9781430263913_3
http://dx.doi.org/10.1007/9781430263913_2
http://dx.doi.org/10.1007/9781430263913_4
http://www.allitebooks.org

Chapter 1 ■ Professional JavaScript Techniques

6

Chapter 5 begins a sequence discussing some high-usage areas of JavaScript functionality. Here we look
at the Document Object Model. The DOM API has increased in complexity and has not really become more
straightforward since the last edition. But there are new features that we should familiarize ourselves with.

In Chapter 6, we attempt to master Events. The big news here is the standardization of the events API
along the lines of the W3C style. This provides us the opportunity to move away from utility libraries and
finally go deep into the events API without worrying about large variations between browsers.

One of the first non-toy applications for JavaScript was client-side form validation. Amazingly, it took
browser makers over a decade to think about adding functionality to form validation beyond capturing the
submit event. When looking in Chapter 7 at JavaScript and Form Validation, we will discover that there is a
whole new set of functionality for form validation provided by both HTML and JavaScript.

Everyone who develops with JavaScript has spent some time Introduction to Ajax. With the
introduction of Cross-Origin Resource Sharing (CORS), Ajax functionality has finally moved past the silliest
of its restrictions.

Command line tools like Yeoman, Bower, Git and Grunt are covered in Web Production Tools.
These tools will show us how to quickly add all the files and folders needed. This way we can focus on
development.

Chapter 10 covers AngularJS and Testing. Using the knowledge gained in the previous chapter, we now
start to look at what makes Angular work and how to implement both unit and end to end testing.

Last, Chapter 11 discusses the Future of JavaScript. ECMAScript 6 will be settled, more or less, by the
time this book goes to press. ECMAScript 7 is in active development. Beyond the basics of where JavaScript
is going, we will look at what features you can use right now.

Summary
We spent a lot of this chapter on everything around JavaScript: the platform(s), the history, the IDEs, and so on.
We believe that history informs the present. We wanted to explain where we were, and how we got here, to
help you understand why JavaScript is where it is, and is what it is, today. Of course, we plan to spend the
bulk of this book talking about how JavaScript works, particularly for the professional programmer. We feel
quite strongly that this book covers the techniques and APIs that every professional JavaScript programmer
should be familiar with. So without further ado…

www.allitebooks.com

http://dx.doi.org/10.1007/9781430263913_5
http://dx.doi.org/10.1007/9781430263913_6
http://dx.doi.org/10.1007/9781430263913_7
http://dx.doi.org/10.1007/9781430263913_10
http://dx.doi.org/10.1007/9781430263913_11
http://www.allitebooks.org

7

Chapter 2

Features, Functions, and Objects

Objects are the fundamental units of JavaScript. Virtually everything in JavaScript is an object and interacts
on an object-oriented level. To build up this solid object-oriented language, JavaScript includes an arsenal of
features that make it unique in both its foundation and its capabilities.

This chapter covers some of the most important aspects of the JavaScript language, such as references,
scope, closures, and context. These are not necessarily the cornerstones of the language, but the elegant
arches, which both support and refine JavaScript. We will delve into the tools available for working with
objects as data structures. A dive into the nature of object-oriented JavaScript follows, including a discussion
of classes vs. prototypes. Finally, the chapter explores the use of object-oriented JavaScript, including exactly
how objects behave and how to create new ones. This is quite possibly the most important chapter in this
book if taken to heart, as it will completely change the way you look at JavaScript as a language.

Language Features
JavaScript has a number of features that are fundamental to making the language what it is. There are very
few other languages like it. We find the combination of features to fit just right, contributing to a deceptively
powerful language.

References and Values
JavaScript variables hold data in one of two ways: by copies and references. Anything that is a primitive value
is copied into a variable. Primitives are strings, numbers, Booleans, null, and undefined. The most important
characteristic of primitives is that they are assigned, copied, and passed to and returned from functions
by value.

The rest of JavaScript relies on references. Any variable that does not hold one of the aforementioned
primitive values holds a reference to an object. A reference is a pointer to the location in memory of
an object (or array, or date, or what-have-you). The actual object (array, date, or whatever) is called the
referent. This is an incredibly powerful feature, present in many languages. It allows for certain efficiencies:
two (or more!) variables do not have their own copies of an object; they simply refer to the same object.
Updates to the referent made via one reference are reflected in the other reference. By maintaining sets of
references to objects, JavaScript affords you much more flexibility. An example of this is shown in Listing 2-1,
where two variables point to the same object, and the modification of the object’s contents via one reference
is reflected in the other reference.

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ Features, Functions, and Objects

8

Listing 2-1.  Example of Multiple Variables Referring to a Single Object

// Set obj to an empty object
// (Using {} is shorter than 'new Object()')
var obj = {};
 
// objRef now refers to the other object
var refToObj = obj;
 
// Modify a property in the original object
obj.oneProperty = true;
 
// We now see that the change is represented in both variables
// (Since they both refer to the same object)
console.log(obj.oneProperty === refToObj.oneProperty);
 
// This change goes both ways, since obj and refToObj are both references
refToObj.anotherProperty = 1;
console.log(obj.anotherProperty === refToObj.anotherProperty);

Objects have two features: properties and methods. These are often referred to collectively as the
members of an object. Properties contain the data of an object. Properties can be primitives or objects
themselves. Methods are functions that act upon the data of an object. In some discussions of JavaScript,
methods are included in the set of properties. But the distinction is often useful.

Self-modifying objects are very rare in JavaScript. Let’s look at one popular instance where this occurs.
The Array object is able to add additional items to itself using the push method. Since, at the core of an Array
object, the values are stored as object properties, the result is a situation similar to that shown in Listing 2-1,
where an object becomes globally modified (resulting in multiple variables’ contents being simultaneously
changed). An example of this situation can be found in Listing 2-2.

Listing 2-2.  Example of a Self-Modifying Object

// Create an array of items
// (Similar to 2-1, using [] is shorter than 'new Array()')
var items = ['one', 'two', 'three'];
 
// Create a reference to the array of items
var itemsRef = items;
 
// Add an item to the original array
items.push('four');
 
// The length of each array should be the same,
// since they both point to the same array object
console.log(items.length == itemsRef.length);

It’s important to remember that references point only to the referent object, not to another reference.
In Perl, for example, it’s possible to have a reference point to another variable that also is a reference. In
JavaScript, however, it traverses down the reference chain and only points to the core object. An example of
this situation can be seen in Listing 2-3, where the physical object is changed but the reference continues to
point back to the old object.

Chapter 2 ■ Features, Functions, and Objects

9

Listing 2-3.  Changing the Reference of an Object While Maintaining Integrity

// Set items to an array (object) of strings
var items = ['one', 'two', 'three'];
// Set itemsRef to a reference to items
var itemsRef = items;
 
// Set items to equal a new object
items = ['new', 'array'];
 
// items and itemsRef now point to different objects.
// items points to ['new', 'array']
// itemsRef points to ['one', 'two', 'three']
console.log(items !== itemsRef);

Finally, let’s look at a strange instance that you might think would involve references but does not.
When performing string concatenation, the result is always a new string object rather than a modified
version of the original string. Because strings (like numbers and Booleans) are primitives, they are not
actually referents, and the variables that contain them are not references. This can be seen in Listing 2-4.

Listing 2-4.  Example of Object Modification Resulting in a New Object, Not a Self-Modified Object

// Set item equal to a new string object
var item = 'test';
 
// itemRef now refers to the same string object
var itemRef = item;
 
// Concatenate some new text onto the string object
// NOTE: This creates a new object and does not modify
// the original object.
item += 'ing';
 
// The values of item and itemRef are NOT equal, as a whole
// new string object has been created
console.log(item != itemRef);

Strings are often particularly confusing because they act like objects. You can create instances of strings
via a call to new String. Strings have properties like length. Strings also have methods like indexOf and
toUpperCase. But when interacting with variables or functions, strings are very much primitives.

References can be a tricky subject to wrap your mind around, if you are new to them. Nonetheless,
understanding how references work is paramount to writing good, clean JavaScript code. In the next couple
of sections we’re going to look at features that aren’t necessarily new or exciting but are important for writing
good, clean code.

Scope
Scope is a tricky feature of JavaScript. Most programming languages have some form of scope; the
differences lie in the duration of that scope. There are only two scopes in JavaScript: functional scope and
global scope. This is deceptively simple. Functions have their own scope, but blocks (such as while, if, and
for statements) do not. This may seem strange if you are coming from a block-scoped language. Listing 2-5
shows an example of the implications of function-scoped code.

Chapter 2 ■ Features, Functions, and Objects

10

Listing 2-5.  Example of How the Variable Scope in JavaScript Works

// Set a global variable, foo, equal to test
var foo = 'test';
 
// Within an if block
if (true) {
 // Set foo equal to 'new test'
 // NOTE: This still belongs to the global scope!
 var foo = 'new test';
}
 
// As we can see here, as foo is now equal to 'new test'
console.log(foo === 'new test');
 
// Create a function that will modify the variable foo
function test() {
 var foo = 'old test';
}
 
// However, when called, 'foo' remains within the scope
// of the function
test();
 
// Which is confirmed, as foo is still equal to 'new test'
console.log(foo === 'new test');

You’ll notice that in Listing 2-5, the variables are within the global scope. All globally scoped variables
are actually visible as properties of the window object in browser-based JavaScript. In other environments,
there will be a global context to which all globally-scoped variables belong.

In Listing 2-6 a value is assigned to a variable, foo, within the scope of the test() function. However,
nowhere in Listing 2-6 is the scope of the variable actually declared (using var foo). When the foo variable
isn’t explicitly scoped, it will become defined globally, even though it is only intended to be used within the
context of the function.

Listing 2-6.  Example of Implicit Globally Scoped Variable Declaration

// A function in which the value of foo is set
function test() {
 foo = 'test';
}
 
// Call the function to set the value of foo
test();
 
// We see that foo is now globally scoped
console.log(window.foo === 'test');

Chapter 2 ■ Features, Functions, and Objects

11

JavaScript’s scoping is often a source of confusion. If you are coming from a block-scoped language, this
confusion can lead to accidentally global variables, as shown here. Often, this confusion is compounded
by imprecise usage of the var keyword. For simplicity’s sake, the pro JavaScript programmer should always
initialize variables with var, regardless of scope. This way, your variables will have the scope you expected,
and you can avoid accidental globals.

When declaring variables within a function, be aware of the issue of hoisting. Any variable declared
within a function has its declaration (not the value it is initialized with) hoisted to the top of the scope.
JavaScript does this to ensure that the variable’s name is available throughout the scope.

Especially when we combine scope with the concept of context and closures, discussed in the next two
sections, JavaScript reveals itself as a powerful scripting language.

Context
Your code will always have some form of context (a scope within which the code is operating). Context can
be a powerful tool and is essential for object-oriented code. It is a common feature of other languages, but
JavaScript, as is often the case, has a subtly different take on it.

You access context through the variable this, which will always refer to the context that the code is running
inside. Recall that global objects are actually properties of the window object. This means that even in a global
context, this will still refer to an object. Listing 2-7 shows some simple examples of working with context.

Listing 2-7.  Examples of Using Functions Within Context and Then Switching Context to Another Variable

function setFoo(fooInput) {
 this.foo = fooInput;
}
 
var foo = 5;
console.log('foo at the window level is set to: ' + foo);
 
var obj = {
 foo : 10
};
 
console.log('foo inside of obj is set to: ' + obj.foo);
 
// This will change window-level foo
setFoo(15);
console.log('foo at the window level is now set to: ' + foo);
 
// This will change the foo inside the object
obj.setFoo = setFoo;
obj.setFoo(20);
console.log('foo inside of obj is now set to: ' + obj.foo);

In Listing 2-7, our setFoo function looks a bit odd. We do not typically use this inside a generic utility
function. Knowing that we were eventually going to attach setFoo to obj, we used this so we could access
the context of obj. However, this approach is not strictly necessary. JavaScript has two methods that allow
you to run a function in an arbitrary, specified context. Listing 2-8 shows the two methods, call and apply,
that can be used to achieve just that.

Chapter 2 ■ Features, Functions, and Objects

12

Listing 2-8.  Examples of Changing the Context of Functions

// A simple function that sets the color style of its context
function changeColor(color) {
 this.style.color = color;
}
 
// Calling it on the window object, which fails, since it doesn't
// have a style object
changeColor('white');
 
// Create a new div element, which will have a style object
var main = document.createElement('div');
 
// Set its color to black, using the call method
// The call method sets the context with the first argument
// and passes all the other arguments as arguments to the function
changeColor.call(main, 'black');
 
//Check results using console.log
//The output should say 'black'
console.log(main.style.color);
 
// A function that sets the color on the body element
function setBodyColor() {
 // The apply method sets the context to the body element
 // with the first argument, and the second argument is an array
 // of arguments that gets passed to the function
 changeColor.apply(document.body, arguments);
}
 
// Set the background color of the body to black

setBodyColor('black');

While the usefulness of context may not be immediately apparent, it will become clearer when we look
at object orientation soon.

Closures
Closures are a means through which an inner function can refer to the variables present in its outer
enclosing function after its parent functions have already terminated. That’s the technical definition,
anyway. Perhaps it is more useful to think of closures tied to contexts. Up to this point, when we have
defined an object literal, that object was open for modification. We have seen that we can add properties and
functions to the object at any time. But what if we wanted a context that was locked? A context that “saved”
values as defaults. What about a context that could not be accessed without the API we provide? This is what
a closure provides: a context that is accessible only in the manner we choose.

This topic can be very powerful and very complex. We highly recommend referring to the sites
mentioned at the end of this section, as they have some excellent information about closures.

Let’s begin by looking at two simple examples of closures, shown in Listing 2-9.

Chapter 2 ■ Features, Functions, and Objects

13

Listing 2-9.  Two Examples of How Closures Can Improve the Clarity of Your Code

// Find the element with an ID of 'main'
var obj = document.getElementById('main');
 
// Change its border styling
obj.style.border = '1px solid red';
 
// Initialize a callback that will occur in one second
setTimeout(function(){
 // Which will hide the object
 obj.style.display = 'none';
}, 1000);
 
// A generic function for displaying a delayed alert message
function delayedAlert(msg, time) {
 // Initialize an enclosed callback
 setTimeout(function(){
 // Which utilizes the msg passed in from the enclosing function
 console.log(msg);
 }, time);
}
// Call the delayedAlert function with two arguments
delayedAlert('Welcome!', 2000);

The first function call to setTimeout shows an instance where new JavaScript developers often have
problems. It’s not uncommon to see code like this in a new developer’s program:

setTimeout('otherFunction()', 1000);

or even...

setTimeout('otherFunction(' + num + ',' + num2 + ')', 1000);

In both examples, the functions being called are expressed as strings. This can cause problems with the
minification process when you are about to move your code into production. By using closures, you can call
functions, use variables, and pass parameters as originally intended.

Using the concept of closures, it’s entirely possible to circumnavigate this mess of code. The first
example in Listing 2-9 is simple; there is a setTimeout callback being called 1,000 milliseconds after it is first
called, but still referring to the obj variable (which is defined globally as the element with an ID of main). The
second function defined, delayedAlert, shows a solution to the setTimeout mess that occurs, along with the
ability to have closures within function scope.

You should find that when using simple closures such as these in your code, the clarity of what you’re
writing increases instead of turning into a syntactical soup.

Let’s look at a fun side effect of what’s possible with closures. In some functional programming
languages, there’s the concept of currying, a way to prefill a number of arguments to a function, creating a
new, simpler function. Listing 2-10 has a simple example of currying, creating a new function that prefills an
argument to another function.

Chapter 2 ■ Features, Functions, and Objects

14

Listing 2-10.  Example of Function Currying Using Closures

// A function that generates a new function for adding numbers
function addGenerator(num) {
 
 // Return a simple function for adding two numbers
 // with the first number borrowed from the generator
 return function(toAdd) {
 return num + toAdd
 };
 
}
// addFive now contains a function that takes one argument,
// adds five to it, and returns the resulting number
var addFive = addGenerator(5);
 
// We can see here that the result of the addFive function is 9,
// when passed an argument of 4
console.log(addFive(4) == 9);

There’s another common JavaScript-coding problem that closures can solve. New JavaScript developers
often accidentally leave a lot of extra variables sitting in the global scope. This is generally considered bad
practice, as those extra variables could quietly interfere with other libraries, causing confusing problems
to occur. Using a self-executing anonymous function, you can essentially hide all normally global variables
from being seen by other code, as shown in Listing 2-11.

Listing 2-11.  Example of Using Anonymous Functions to Hide Variables from the Global Scope

// Create a new anonymous function, to use as a wrapper
(function(){
 // The variable that would normally be global
 var msg = 'Thanks for visiting! ';
 
 // Binding a new function to a global object
 window.onload = function(){
 // Which uses the 'hidden' variable
 console.log(msg);
 };
 
// Close off the anonymous function and execute it
})();

Finally, let’s look at one problem that occurs with closures. Remember that a closure allows you to
reference variables that exist within the parent function. However, it does not provide the value of the variable
at the time it is created; it provides the last value of the variable within the parent function. You’ll most
commonly see this occur during a for loop. There is one variable being used as the iterator (i). Inside the
for loop, new functions are being created that utilize the closure to reference the iterator again. The problem
is that by the time the new closured functions are called, they will reference the last value of the iterator (that
is, the last position in an array), not the value that you would expect. Listing 2-12 shows an example of using
anonymous functions to induce scope, to create an instance where expected closure is possible.

Chapter 2 ■ Features, Functions, and Objects

15

Listing 2-12.  Example of Using Anonymous Functions to Induce the Scope Needed to Create Multiple
Closure-Using Functions

// An element with an ID of main
var obj = document.getElementById('main');
 
// An array of items to bind to
var items = ['click', 'keypress'];
 
// Iterate through each of the items
for (var i = 0; i < items.length; i++) {
 // Use a self-executed anonymous function to induce scope
 (function(){
 // Remember the value within this scope
 // Each 'item' is unique.
 //Not relying on variables created in the parent context.
 var item = items[i];
 // Bind a function to the element
 obj['on' + item] = function() {
 // item refers to a parent variable that has been successfully
 // scoped within the context of this for loop
 console.log('Thanks for your ' + item);
 };
 })();
}

We will return to closures in our section on object-oriented code, where they will help us to implement
private properties.

The concept of closures is not a simple one to grasp; it took us a lot of time and effort to truly wrap
our minds around how powerful closures are. Luckily, there are some excellent resources explaining how
closures work in JavaScript: “JavaScript Closures” by Richard Cornford, at http://jibbering.com/faq/faq_
notes/closures.html, and another explanation at the Mozilla Developer Network, https://developer.
mozilla.org/en-US/docs/Web/JavaScript/Closures.

Function Overloading and Type-Checking
A common feature in other object-oriented languages is the ability to overload functions to perform different
behaviors depending on the type or number of arguments passed in. While this ability isn’t a language
feature in JavaScript, we can use existing capabilities to implement overloading of functions.

Our overloaded functions need to know two things: how many arguments have been passed in and
what type of arguments have been passed. Let’s start by looking at the number of arguments provided.

Inside every function in JavaScript there exists a contextual variable named arguments that acts as an
array-like object containing all the, well, arguments passed into the function. The arguments object isn’t a
true array; it does not share a prototype with Array, and it does not have array-processing functions like push
or indexOf. It does have positional array access (for example, arguments[2] returns the third argument), and
there is a length property. There are two examples of this in Listing 2-13.

http://jibbering.com/faq/faq_notes/closures.html
http://jibbering.com/faq/faq_notes/closures.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures

Chapter 2 ■ Features, Functions, and Objects

16

Listing 2-13.  Two Examples of Function Overloading in JavaScript

// A simple function for sending a message
function sendMessage(msg, obj) {
 // If both a message and an object are provided
 if (arguments.length === 2) {
 // Send the message to the object
 // (Assumes that obj has a log property!)
 obj.log(msg);
 } else {
 // Otherwise, assume that only a message was provided
 // So just display the default error message
 console.log(msg);
 }
}
 
// Both of these function calls work
sendMessage('Hello, World!');
sendMessage('How are you?', console);

You may wonder if there is a way to have the full functionality of an array available to the arguments
object. It is not possible with arguments itself, but it is possible to create a copy of arguments that is an array.
By invoking the slice method from the Array prototype, we can quickly copy the arguments object into an
array, as in Listing 2-14.

Listing 2-14.  Converting Arguments to an Array

function aFunction(x, y, z) {
 var argsArray = Array.prototype.slice.call(arguments, 0);
 console.log('The last argument is: ' + argsArray.pop());
}
 
// Will output 'The last argument is 3'.
aFunction(1, 2, 3);

We will learn more about the prototype property very soon. For the moment, suffice it to say that the
prototype allows us to access object methods in a static manner.

What if the message were not defined? We need to be able to check not just for the presence of an
argument, but also its absence. We can take advantage of the fact that any argument that isn’t provided has
a value of undefined. Listing 2-15 shows a simple function for displaying an error message and providing
a default message if a particular argument is not provided. (Note that we must use typeof here, because
otherwise, an argument with the literal string “undefined” would indicate an error.)

Listing 2-15.  Displaying an Error Message and a Default Message

function displayError(msg) {
 // Check and make sure that msg is not undefined
 if (typeof msg === 'undefined') {
 // If it is, set a default message
 msg = 'An error occurred.';
 }
 

Chapter 2 ■ Features, Functions, and Objects

17

 // Display the message
 console.log(msg);
}
 
displayError();

The use of the typeof statement helps to lead us into the topic of type-checking. Because JavaScript is a
dynamically typed language, this proves to be a very useful and important topic. There are a number of ways
to check the type of a variable; we’re going to look at two that are particularly useful.

The first way of checking the type of an object is by using the obvious-sounding typeof operator. This
utility gives us a string name representing the type of the contents of a variable. An example of this method
can be seen in Listing 2-16.

Listing 2-16.  Example of Using typeof to Determine the Type of an Object

var num = '50';
var arr = 'apples,oranges,pears';
 
// Check to see if our number is actually a string
if (typeof num === 'string') {
 // If it is, then parse a number out of it
 num = parseInt(num);
}
 
// Check to see if our array is actually a string
if (typeof arr == 'string') {
 // If that's the case, make an array, splitting on commas
 arr = arr.split(',');
}

The advantage of typeof is that you do not have to know what the actual type of the tested variable is.
This would be the perfect solution except that for variables of type Object or Array, or a custom object such
as User, typeof only returns “object”, making it hard to differentiate between specific object types. The next
two ways to figure out the type of a variable require you to test against a specific existing type.

The second way to check the type of an object is to use the instanceof operator. This operator checks
the left operand against the constructor of the right operand, which may sound a bit more complex than it
actually is! Take a look at Listing 2-17, showing an example of using instanceof.

Listing 2-17.  Example of Using instanceof

var today = new Date();
var re = /[a-z]+/i;
 
// These don't give us enough details
console.log('typeof today: ' + typeof today);
console.log('typeof re: ' + typeof re);
 
// Let's find out if the variables are of a more specific type
if (today instanceof Date) {
 console.log('today is an instance of a Date.');
}
 

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ Features, Functions, and Objects

18

if (re instanceof RegExp) {
 console.log('re is an instance of a RegExp object.');
}

In the next chapter, when we look at object-oriented JavaScript, we will discuss the
Object.isPrototypeOf() function, which also helps in type determination.

Type-checking variables and verifying the length of argument arrays are simple concepts at heart
but can be used to provide complex methods that can adapt and provide a better experience to both the
developer and code users. When you need specific type-checking (is this an Array? Is it a Date? A specific
type of custom object?), we advise creating a custom function for determining the type. Many frameworks
have convenience functions for determining Arrays, Dates, and so on. Encapsulating this code into a
function ensures that you have one and only one place to check for that specific type, instead of having
checking code scattered throughout your codebase.

New Object Tools
One of the more exciting developments in JavaScript the language has been the expansion of tools for
managing objects. As we will see, these tools can be used on object literals (which are more like data
structures) and on object instances.

Objects
Objects are the foundation of JavaScript. Virtually everything within the language is an object. Much of
the power of the language is derived from this fact. At their most basic level, objects exist as a collection
of properties, almost like a hash construct that you see in other languages. Listing 2-18 shows two basic
examples of the creation of an object with a set of properties.

Listing 2-18.  Two Examples of Creating a Simple Object and Setting Properties

// Creates a new Object object and stores it in 'obj'
var obj = new Object();
 
// Set some properties of the object to different values
obj.val = 5;
obj.click = function(){
 console.log('hello');
};
 
// Here is some equivalent code, using the {...} shorthand
// along with key-value pairs for defining properties
var obj = {
 
 // Set the property names and values using key/value pairs
 val: 5,
 click: function(){
 console.log('hello');
 }
};

In reality there isn’t much more to objects than that. Where things get tricky, however, is in the creation
of new objects, especially ones that inherit the properties of other objects.

Chapter 2 ■ Features, Functions, and Objects

19

Modifying Objects
JavaScript now has three methods that can help you control whether an object can be modified. We will look
at them on a scale of restrictiveness, from least to greatest.

An object in JavaScript by default can be modified at any time. By using Object.preventExtensions(),
you can prevent new properties from being added to the object. When this happens, all current properties
can be used but no new ones can be added. Trying to add a new property will result in a TypeError—or will
fail silently; you are more likely to see the error when running in strict mode. Listing 2-19 shows an example.

Listing 2-19.  An example of using Object.preventExtensions()

// Creates a new object and stores it in 'obj'
var obj = {};
 
// Creates a new Object object using preventExtensions
var obj2 = Object.preventExtensions(obj);
 
// Generates TypeError when trying to define a new property
function makeTypeError(){
'use strict';
 
//Generates TypeError when trying to define a new property
Object.defineProperty(obj2, 'greeting',{value: 'Hello World'});
}
 
makeTypeError();

Using Object.seal(), you can restrict the ability of an object, similar to what you did with
Object.preventExtensions(). Unlike our previous example, however, properties cannot be deleted or
converted into accessors (getter methods). Trying to delete or add properties will also result in a TypeError.
Existing writable properties can be updated without resulting in an error. Listing 2-20 shows an example.

Listing 2-20.  An example of using Object.seal()

// Creates a new object and uses object.seal to restrict it
var obj = {};
obj.greeting = 'Welcome';
Object.seal(obj);
 
//Updating the existing writable property
//Cannot convert existing property to accessor, throws TypeErrors
obj.greeting = 'Hello World';
Object.defineProperty(obj, 'greeting', {get:function(){return 'Hello World'; } });
 
// Cannot delete property, fails silently
delete obj.greeting;
 

Chapter 2 ■ Features, Functions, and Objects

20

function makeTypeError(){
 'use strict';
 
 //Generates TypeError when trying to delete a property
 delete obj.greeting;
 
 //Can still update property
 obj.greeting = 'Welcome';
 console.log(obj.greeting);
}
 
makeTypeError();

Object.freeze(), demonstrated in Listing 2-21, is the most restrictive of the three methods. Once it is
used, an object is considered immutable. Properties cannot be added, deleted or updated. Any attempts will
result in a TypeError. If a property is itself an object, that can be updated. This is called a shallow freeze.
In order to make an object fully immutable, all properties whose values contain objects must also be frozen.

Listing 2-21.  An example of using Object.freeze()

//Creates a new object with two properties. Second property is an object
var obj = {
 greeting: "Welcome",
 innerObj: {}
};
 
//Freeezes our obj
Object.freeze(obj);
 
//silently fails
obj.greeting = 'Hello World';
 
//innerObj can still be updated
obj.innerObj.greeting = 'Hello World';
console.log('obj.innerObj.greeting = ' + obj.innerObj.greeting);
 
 //Cannot convert existing property to accessor
//Throws TypeError
Object.defineProperty(obj, 'greeting', {get:function(){return 'Hello World'; } });
 
// Cannot delete property, fails silently
delete obj.greeting;
 
function makeTypeError(){
 'use strict';
}
 
//Generates TypeError when trying to delete a property
delete obj.greeting;
 

Chapter 2 ■ Features, Functions, and Objects

21

//Freeze inner object
Object.freeze(obj.innerObj);
 
//innerObj is now frozen. Fails silently
obj.innerObj.greeting = 'Worked so far...';
 
function makeTypeError(){
 'use strict';
 //all attempts will throw TypeErrors
  
 delete obj.greeting;
 obj.innerObj.greeting = 'Worked so far...';
 obj.greeting = "Welcome";
  
 };
  
 makeTypeError();

By understanding how you can control the mutability of an object, you can create a level of consistency.
For example, if you have an object named User, you can be sure that every new object based on that will
have the same properties as the first. Any properties that could be added at runtime would fail.

Summary
The importance of understanding the concepts outlined in this chapter cannot be understated. The first half
of the chapter, giving you a good understanding of how JavaScript behaves and how it can be best used, is
the starting point for fully grasping how to use JavaScript professionally. Simply understanding how objects
act, references are handled, and scope is decided can unquestionably change how you write JavaScript code.

Building on these skills, advanced techniques provide us with additional ways to solve problems with
JavaScript. Understanding scope and context led to using closures. Looking into how to determine types in
JavaScript allowed us to add function overloading to a language that doesn’t have it as a native feature. And
then we spent time with one of the foundational types in JavaScript: the Object. The various new features in
the Object type allow us much greater control over the object literals we create. This will lead naturally into
the next chapter, where we start building our own object-oriented JavaScript.

23

Chapter 3

Creating Reusable Code

In the introduction to the last chapter, we discussed objects as the fundamental unit of JavaScript. Having
addressed JavaScript object literals, we will use a large portion of this chapter to examine how those objects
interact with object-oriented programming. Here, JavaScript exists in a state of tension between classical
programming and JavaScript’s own, nearly unique capabilities.

Moving outward from organizing our code into objects, we will look at other patterns for managing our
code. We will want to ensure that we don’t pollute the global namespace, or (overly) rely on global variables.
That means we will start with a discussion of namespaces, but namespaces are only the tip of the iceberg,
and some newer invocation patterns are available to help us properly fence in our code: modules and, later,
immediately invoked function expressions (IIFEs or “iffies”).

Once we have organized our code well within an individual file, it makes sense to look at the tools
available for managing multiple JavaScript files. Certainly, we can rely on content delivery networks for some
libraries we might use. But we should also think about the best way to load our own JavaScript files, lest we
end up with HTML files that contain script tag after script tag after script tag.

Object-Oriented JavaScript
JavaScript is a prototypal language, not a classical language. Let’s get that out of the way up front. Java is a
classical language, as everything in Java requires a class. In JavaScript, on the other hand, everything has
a prototype; thus it is prototypal. But it is, as Douglas Crockford and others have said, “conflicted” about
its prototypal nature. Like some reluctant superhero, JavaScript sometimes doesn’t want to stand out
from the crowd of other programming languages and let its abilities shine. Well, let’s give it a cape and
see what happens!

First, let’s reiterate, JavaScript is not a classical language. There are many books, blog posts, guides, slide
decks, and libraries that will try to impose class-based language structures on JavaScript. You are welcome
to examine them in great depth, but keep in mind that in doing so, despite good intentions, their authors
are trying to hammer a square peg into a round hole. We are not trying to do that here. This chapter will not
discuss how to make JavaScript act as if it were Java. Instead, we will focus on JavaScript’s intersections with
capabilities outlined in object-oriented theory, and how it sometimes falls short and at other times exceeds
expectations.

Ultimately, why do we want to use object-oriented programming? It provides patterns of usage that
allow for simplified code reuse, eliminating duplication of effort. Also, programming in an object-oriented
style helps us to think more deeply about the code that we’re working with. It provides an outline, a map,
which we can follow to successful implementations. But it is not the only map. JavaScript’s prototypes are a
similar but distinct way to reach our destination.

Chapter 3 ■ Creating Reusable Code

24

Start with the prototype itself. Every type (an Object, a Function, a Date, and so on) in JavaScript
has a prototype. The ECMAScript standard specifies that this property is hidden and is referred to as
[[Prototype]]. Until now, you could access this property in one of two ways: the nonstandard __proto__
property and the prototype property. At first, exposing __proto__ was not reliably available across browsers,
and even when available was not always implemented the same way. [Footnote: Shocking, that browsers
would implement critical parts of JavaScript differently!] With ECMAScript 6 (coming soon to a browser
near you!), __proto__ will become an official property of types and will be available to any conforming
implementation. But the future is not yet now.

You can also access the prototype property of certain types. All of the core JavaScript types
(Date, String, Array, and so on) have a public prototype property. And any JavaScript type that is created
from a function constructor also has a public prototype property. But instances of those types, be they
strings, dates, or whatever, do not have a prototype property. That is because the prototype property is
unavailable on instances. We will not be using the prototype property here either, because we will not use
functions as constructors. We will use objects as constructors.

That’s right; we will use an object literal as the basis for other objects. If that sounds a lot like classes
and instances, there are some similarities but, as you might expect, also some differences. Consider a Person
object like that shown in Listing 3-1.

Listing 3-1.  A Person Object

var Person = {
 firstName : 'John',
 lastName : 'Connolly',
 birthDate : new Date('1964-09-05'),
 gender: 'male',
 getAge : function() {
 var today = new Date();
 var diff = today.getTime() - this.birthDate.getTime();
 var year = 1000 * 60 * 60 * 24 * 365.25;
 return Math.floor(diff / year);
 }
};

Nothing remarkable here: a person has a first name, a last name, a gender, a birth date and a way to
calculate their age. This Person is an object literal, not really anything we’d recognize as being class-like. But
we want to use this Person as if it were a class. We want to create more objects that conform to the structure
that Person has set forth. To preserve the distinction between classless JavaScript and object-oriented
languages that have classes, we will refer to Person as a type (similar to the way Date, Array, and RegExp are
all types). We want to create instances of the Person type: to do so, we can use Object.create (Listing 3-2).

Listing 3-2.  Creating People

var Person = {
 firstName : 'John',
 lastName : 'Connolly',
 birthDate : new Date('1964-09-05'),
 gender : 'male',
 getAge : function () {
 var today = new Date();
 var diff = today.getTime() - this.birthDate.getTime();
 var year = 1000 * 60 * 60 * 24 * 365.25;
 return Math.floor(diff / year);
 }, 

Chapter 3 ■ Creating Reusable Code

25

 toString : function () {
 return this.firstName + ' ' + this.lastName + ' is a ' + this.getAge() +
 ' year-old ' + this.gender;
 }
};
 
var bob = Object.create(Person);
bob.firstName = 'Bob';
bob.lastName = 'Sabatelli';
bob.birthDate = new Date('1969-06-07');
console.log(bob.toString());

An instance has been created from the Person object. We are storing an instance of Person in the
variable bob. No classes. But there is a link between the Person objects we created and the Person type. This
link is over the [[Prototype]] property. If you are running a sufficiently modern browser (at the time of this
writing, this worked in IE11, Firefox 27, and Chrome 33), you can open the console in the developer tools
and look at the __proto__ property on bob. You’ll note that it points to the Person object. In fact, you can test
this by checking that bob.__proto__ === Person.

Object.create was added to JavaScript with ECMAScript 5, ostensibly to simplify and clarify the
relationship between objects, particularly which objects were related by their prototype. But in doing so,
it allowed for a simple, one-step creation of that relationship between objects. This relationship feels very
much like the object-oriented idea of the class and the instance. But because JavaScript has no classes, we
simply have objects with a relationship between each other.

This relationship is often referred to as the prototype chain. In JavaScript, the prototype chain is one of
two places that are examined to resolve the value of a member of an object. That is, when you refer to foo.bar
or foo[bar], the JavaScript engine looks up the value of bar in two potential places: on foo itself, or on foo’s
prototype chain.

In his three-part essay on object-oriented JavaScript (http://davidwalsh.name/javascript-objects),
Kyle Simpson makes an elegant point about how we should look at this process. Instead of seeing bob’s
relationship to Person as that of an instance to a class, or a child to a parent, we should see it as a case of
behavior delegation. The bob object has its own firstName and lastName, but it does not have any getAge
functionality. That is delegated to Person. The delegate relationship is established through the use of
Object.create. The prototype chain is the mechanism of this delegation, allowing us to delegate behavior
to something further along the chain. Viewed from bob’s perspective, functionality accumulates as we
successively invoke Object.create, layering on additional capabilities.

By the way, you might be concerned that you have a browser that doesn’t support ECMAScript 5 or at
least doesn’t have its version of Object.create. This isn’t a problem; Object.create can be polyfilled quite
easily across any browser with a JavaScript engine, as shown in Listing 3-3.

Listing 3-3.  An Object.create Polyfill

if (typeof Object.create !== 'function') {
 Object.create = function (o) {
 function F() {
 }
 F.prototype = o;
 return new F();
 };
}

http://davidwalsh.name/javascript-objects

Chapter 3 ■ Creating Reusable Code

26

Finally, some people don’t like the idea of constantly using Object.create to, well, create objects.
They feel more at home with the typical phrasing of someInstance = new Type(); If that’s the case, consider
the quick modification to the Person object in Listing 3-4, which provides a factory method for generating
more Persons.

Listing 3-4.  The Person Object with a Factory Method

var Person = {
 firstName : 'John',
 lastName : 'Connolly',
 birthDate : new Date('1964-09-05'),
 gender : 'male',
 getAge : function () {
 var today = new Date();
 var diff = today.getTime() - this.birthDate.getTime();
 var year = 1000 * 60 * 60 * 24 * 365.25;
 return Math.floor(diff / year);
 },
 
 toString : function () {
 return this.firstName + ' ' + this.lastName + ' is a ' + this.getAge() +
 ' year-old ' + this.gender;
 },
 
 extend : function (config) {
 var tmp = Object.create(this);
 for (var key in config) {
 if (config.hasOwnProperty(key)) {
 tmp[key] = config[key];
 }
 }
 return tmp;
 }
};
 
var bob = Person.extend({
 firstName : 'Bob',
 lastName : 'Sabatelli',
 birthDate : new Date('1969-06-07')
});
 
console.log(bob.toString());

Here, the extend function encapsulates the call to Object.create. When extend is called, it invokes
Object.create internally. Presumably, extend is invoked with a configuration object passed in, a fairly
typical JavaScript usage pattern. By looping over the properties in tmp, the extend function also ensures that
only the properties of the config already present on the tmp object are extended onto the newly created tmp
object. Once we’ve copied the properties from config to tmp, we can return tmp, our instance of a Person.

Now that we’ve looked at the new style of setting up relationships between objects in JavaScript, let us
see how it affects JavaScript’s interactions with typical object-oriented concepts.

Chapter 3 ■ Creating Reusable Code

27

Inheritance
By far, the biggest question mark has to be inheritance. Much of the point of object-oriented code is to reuse
functionality by working from general parent classes to more specific child classes. We have already seen
that it is easy to create a relationship between two objects with Object.create. We can simply extend that
usage to create whatever sort of inheritance hierarchy we prefer. (OK, whatever sort of single-inheritance
hierarchy we prefer. Object.create does not allow multiple inheritance.) Remember the idea that we are
delegating behavior; as we create subclasses with Object.create, they are delegating some of their behavior
to types further up the prototype chain. Inheritance with Object.create tends to be more of a bottom-up
affair, rather than the typically top-down object oriented style.

Inheritance is actually quite simple: use Object.create. To elaborate, use Object.create to create a
relationship between the “parent” type and the “child” type. The child type can add functionality, delete
functionality, or override existing functionality. Call Object.create with an argument of whatever object
you decide is your “parent” type, and the returned value will be whatever you decide your “child” type is.
Then repeat the pattern from Listing 3-4 and use the extend method (or reuse Object.create!) to create
instances of that child type (Listing 3-5).

Listing 3-5.  Person Is the Parent of Teacher

var Person = {
 firstName : 'John',
 lastName : 'Connolly',
 birthDate : new Date('1964-09-05'),
 gender : 'male',
 getAge : function () {
 var today = new Date();
 var diff = today.getTime() - this.birthDate.getTime();
 var year = 1000 * 60 * 60 * 24 * 365.25;
 return Math.floor(diff / year);
 },
 
 toString : function () {
 return this.firstName + ' ' + this.lastName + ' is a ' + this.getAge() +
 ' year-old ' + this.gender;
 },
 
 extend : function (config) {
 var tmp = Object.create(this);
 for (var key in config) {
 if (config.hasOwnProperty(key)) {
 tmp[key] = config[key];
 }
 }
 return tmp;
 }
};
 

Chapter 3 ■ Creating Reusable Code

28

var Teacher = Person.extend({
 job : 'teacher',
 subject : 'English Literature',
 yearsExp : 5,
 toString : function () {
 return this.firstName + ' ' + this.lastName + ' is a ' + this.getAge() +
 ' year-old ' + this.gender + ' ' + this.subject + ' teacher.';
 }
});
 
var patty = Teacher.extend({
 firstName : 'Patricia',
 lastName : 'Hannon',
 subject: 'chemistry',
 yearsExp : 20,
 gender : 'female'
});
 
console.log(patty.toString());

Object.create established a link between the [[Prototype]] of Teacher and the [[Prototype]]
of Person. If you have one of the modern browsers mentioned earlier, you should be able to look at the
__proto__ property of Teacher and see that it points to Person.

In Chapter 2, we talked about instanceof as a way to find out whether an object is an instance of
a type. The instanceof operator will not work here. It relies on the explicit prototype property to trace
the relationship of an object to a type. Put more simply, the right-hand operand of instanceof must be a
function (though most likely a function constructor). The left-hand operand must be something that was
created from a function constructor (though not necessarily the function constructor on the right). So how
can we tell if an object is an instance of a type? Enter the isPrototypeOf function.

The isPrototypeOf function can be invoked on any object. It is present on all JavaScript objects, much
like toString. Invoke it on the object that is fulfilling the role of the type (Person or Teacher, in our examples
so far) and pass it an argument of the object that is fulfilling the role of an instance (bob or patty). Therefore,
Teacher.isPrototypeOf(patty) will return true, as you would expect. Listing 3-6 provides the code that
looks at combinations of Teachers, Persons, bob, and patty and invocations of isPrototypeOf.

Listing 3-6.  The isPrototypeOf() Function

var Person = {
 firstName : 'John',
 lastName : 'Connolly',
 birthDate : new Date('1964-09-05'),
 gender : 'male',
 getAge : function () {
 var today = new Date();
 var diff = today.getTime() - this.birthDate.getTime();
 var year = 1000 * 60 * 60 * 24 * 365.25;
 return Math.floor(diff / year);
 },
 

www.allitebooks.com

http://dx.doi.org/10.1007/9781430263913_2
http://www.allitebooks.org

Chapter 3 ■ Creating Reusable Code

29

 toString : function () {
 return this.firstName + ' ' + this.lastName + ' is a ' + this.getAge() +
 ' year-old ' + this.gender;
 },
 
 extend : function (config) {
 var tmp = Object.create(this);
 for (var key in config) {
 if (config.hasOwnProperty(key)) {
 tmp[key] = config[key];
 }
 }
 return tmp;
 }
};
 
var Teacher = Person.extend({
 job : 'teacher',
 subject : 'English Literature',
 yearsExp : 5,
 toString : function () {
 return this.firstName + ' ' + this.lastName + ' is a ' + this.getAge() +
 ' year-old ' + this.gender + ' ' + this.subject + ' teacher.';
 }
});
 
var bob = Person.extend({
 firstName : 'Bob',
 lastName : 'Sabatelli',
 birthDate : new Date('1969-06-07')
});
 
var patty = Teacher.extend({
 firstName : 'Patricia',
 lastName : 'Hannon',
 subject: 'chemistry',
 yearsExp : 20,
 gender : 'female'
});
 
console.log('Is bob an instance of Person? ' + Person.isPrototypeOf(bob)); // true
console.log('Is bob an instance of Teacher? ' + Teacher.isPrototypeOf(bob)); // false
console.log('Is patty an instance of Teacher? ' + Teacher.isPrototypeOf(patty)); // true
console.log('Is patty an instance of Person? ' + Person.isPrototypeOf(patty)); // true

There is a companion function to isPrototypeOf; it’s named getPrototypeOf. Called as
Object.getPrototypeOf(obj), it returns a reference to the type that was the basis for the current object.
As noted, you can also look at the (currently nonstandard but soon to be standard) __proto__ property for
the same information (Listing 3-7).

Chapter 3 ■ Creating Reusable Code

30

Listing 3-7.  getPrototypeOf

console.log('The prototype of bob is Person' + Object.getPrototypeOf(bob));

What about accessing overridden methods? It is, of course, possible to override a method from the
parent object in the child object. There is nothing special about this capability, and it’s expected in any
object-oriented system. But in most object-oriented systems, an overridden method has access to the parent
method via a property or accessor called something like super. That is, when you are overriding a method,
you can usually call the method you are overriding via a special keyword.

We do not have that available here. JavaScript’s prototype-based object-oriented code simply does not
have a super() feature. There are, generally, three ways to solve this problem. First, you could write some
code to reimplement super. This would involve traversing back up the prototype chain, probably with
getPrototypeOf, to find the object in the inheritance chain that had the previous edition of the method
you’re overriding. (Remember, you aren’t always overriding something in the parent; it could be something
from the “grandparent” class, or something further up the prototype chain.) Then you would need some way
to access that method and call it with the same set of arguments passed to your overriding method. This is
certainly possible, but it tends to be ugly and quite inefficient at the same time.

As a second solution, you could explicitly call the parent’s method as shown in Listing 3-8.

Listing 3-8.  Reproducing the Effect of the super Function

var Person = {
 firstName : 'John',
 lastName : 'Connolly',
 birthDate : new Date('1964-09-05'),
 gender : 'male',
 getAge : function () {
 var today = new Date();
 var diff = today.getTime() - this.birthDate.getTime();
 var year = 1000 * 60 * 60 * 24 * 365.25;
 return Math.floor(diff / year);
 },
 
 toString : function () {
 return this.firstName + ' ' + this.lastName + ' is a ' + this.getAge() +
 ' year-old ' + this.gender;
 },
 
 extend : function (config) {
 var tmp = Object.create(this);
 for (var key in config) {
 if (config.hasOwnProperty(key)) {
 tmp[key] = config[key];
 }
 }
 return tmp;
 }
};
 

Chapter 3 ■ Creating Reusable Code

31

var Teacher = Person.extend({
 job : 'teacher',
 subject : 'English Literature',
 yearsExp : 5,
 toString : function () {
 var originalStr = Person.toString.call(this);
 return originalStr + ' ' + this.subject + ' teacher.';
 }
});
 
var patty = Teacher.extend({
 firstName : 'Patricia',
 lastName : 'Hannon',
 subject: 'chemistry',
 yearsExp : 20,
 gender : 'female'
});
 
console.log(patty.toString());

Pay particular attention to the toString method in Teacher. You will note that Teacher’s toString
function makes an explicit call to Person’s toString function. Many object-oriented designers would argue
that we should not have to hard-code the relationship between Person and Teacher. But as a simple means
to an end, doing so does solve the problem quickly, neatly, and efficiently. On the other hand, it’s not
portable. This approach will only work for objects that are somehow related to the Parent object.

The third possibility is that we could simply not worry about whether we have super at all. Yes,
JavaScript the language lacks the super feature, which is present in many other object-oriented languages.
But that feature is not the be-all, end-all of object-oriented code. Perhaps in the future, JavaScript will have
a super keyword with the appropriate functionality. (Actually, it is known that in ECMAScript 6, there is a
super property for objects.) But for now, we can get along quite well without it.

Member Visibility
In object-oriented code, we often want to control the visibility of our objects’ data. Most of our members,
whether functions or properties, are public, in keeping with JavaScript’s implementation. But what if
we need private functions or private properties? JavaScript does not have easy, straightforward visibility
modifiers (like “private” or “protected” or “public”) that control who can access a member of a property.
But you can have the effect of private members. Further, you can provide special access to those private
members through what Douglas Crockford calls a privileged function.

Recall that JavaScript has only two scopes: global scope and the scope of the currently executing
function. We took advantage of this in the previous chapter with closures, a critical part of implementing
privileged access to private members. It works this way: create private members using var inside the
function that builds your object. (Whether those private members are functions or properties is up to
you.) In the same scope, create a function; it will have implied access to the private data, because both the
function and the private data belong to that same scope. Add this new function to the object itself, making
the function (but not the private data) public. Because the function comes from the same scope, it can still
access that data indirectly. Look at Listing 3-9 for details.

Chapter 3 ■ Creating Reusable Code

32

Listing 3-9.  Private Members

var Person = {
 firstName : 'John',
 lastName : 'Connolly',
 birthDate : new Date('1964-09-05'),
 gender : 'male',
 getAge : function () {
 var today = new Date();
 var diff = today.getTime() - this.birthDate.getTime();
 var year = 1000 * 60 * 60 * 24 * 365.25;
 return Math.floor(diff / year);
 },
 
 toString : function () {
 return this.firstName + ' ' + this.lastName + ' is a ' + this.getAge() +
 ' year-old ' + this.gender;
 },
 
 extend : function (config) {
 var tmp = Object.create(this);
 
 for (var key in config) {
 if (config.hasOwnProperty(key)) {
 tmp[key] = config[key];
 }
 }
 
 // When was this object created?
 var creationTime = new Date();
 
 // An accessor, at the moment, it's private
 var getCreationTime = function() {
 return creationTime;
 };
 
 tmp.getCreationTime = getCreationTime;
 return tmp;
 }
};
 
var Teacher = Person.extend({
 job : 'teacher',
 subject : 'English Literature',
 yearsExp : 5,
 toString : function () {
 var originalStr = Person.toString.call(this);
 return originalStr + ' ' + this.subject + ' teacher.';
 }
});
 

Chapter 3 ■ Creating Reusable Code

33

var patty = Teacher.extend({
 firstName : 'Patricia',
 lastName : 'Hannon',
 subject: 'chemistry',
 yearsExp : 20,
 gender : 'female'
});
 
console.log(patty.toString());
console.log('The Teacher object was created at %s', patty.getCreationTime());

As you can see, the creationTime variable is local to the extend function. It is not available outside
that function. If you were to examine Person on the console with, say, console.dir, you would not see
creationTime listed as a public property of Person. Initially, the same is true for getCreationTime. It is a
function that was created at the same scope as creationTime, so the function has access to creationTime.
Using simple assignment, we attach getCreationTime to the object instance we are returning. Now,
getCreationTime is a public method, with privileged access to the private data in creationTime.

A minor caveat: this is not the most efficient of patterns. Every time you create an instance of Person,
or any of its child types, you will be creating a brand-new function with access to the execution context of
the call to extend that created the instance of Person. By contrast, when we use Object.create, our public
functions are references to those on the type we pass into Object.create. Privileged functions are not
particularly inefficient at the small scale we are dealing with here. But if you added more privileged methods,
they would each retain a reference to that execution context, and each would be its own instance of that
privileged method. The memory costs can multiply quickly. Use privileged methods sparingly, reserving
them for data that needs strict access control. Otherwise, become comfortable with the notion that most
data in JavaScript is public anyway.

The Future of Object-Oriented JavaScript
We would be remiss in overlooking the fact that there are some changes coming to object-oriented JavaScript
with ECMAScript 6. The most important of these changes is the introduction of a working class keyword.
The class keyword will be used to define JavaScript types (not classes, as JavaScript still won’t have classes!).
It will also include provisos for the use of the keyword extends to create an inheritance relationship. Finally,
when overriding functions in a child type, ECMAScript 6 sets aside the super keyword to refer to the version
of the function on the prototype chain.

All of this is syntactic sugar, though. When these structures are desugared by the JavaScript engine,
they are revealed to be uses of functional constructors. These new features do not actually establish new
functionality: they simply introduce an idiom more palatable to programmers from other object-oriented
languages. Worse, they continue to obscure some of the best features of JavaScript by trying to have it
conform to these other languages’ notions of what a “true” object-oriented language should look like.
It appears that sometimes, JavaScript is still a little shy about putting on the cape and tights before using its
powers for good.

Packaging JavaScript
Moving outward from object-oriented JavaScript, we should consider how to organize our code for broad
reuse. We want a set of tools for properly encapsulating our code, preventing accidental use of the global
context, as well as ways to make our code reusable and redistributable. Let’s tackle the various requirements
in order.

Chapter 3 ■ Creating Reusable Code

34

Namespaces
So far, we have declared our types (and earlier, our functions and variables) to be part of the global context.
We have not done this explicitly, but by virtue of the fact that we have not declared these objects and
variables to be part of any other context. We would like to encapsulate functions, variables, objects, types,
and so on into a separate context, so as not to rely on the global context. To do so, we will rely (initially)
on namespaces.

Namespaces are not unique to JavaScript, but, as is the case with so many things in JavaScript, they are
a little different from what you might expect. A namespace provides a context for variables and functions.
The namespace itself is likely to be global, of course. This is a lesser-of-two-evils approach. Instead of having
numerous variables and functions belonging to the window, we can have one variable belong to the window,
and then a variety of data and functionality belong to that one variable. The implementation is simple: use
an object literal to encapsulate the code that you want to hide from the global context (Listing 3-10).

Listing 3-10.  Namespaces

// Namespaces example
 
var FOO = {};
 
// Add a variable
FOO.x = 10;
 
// Add a function
FOO.addEmUp = function(x, y) {
 return x + y;
};

Namespaces are best used as ad-hoc solutions to the encapsulation of otherwise unaffiliated code.
If we try to use namespaces for all our code, they can quickly become unwieldy, as they accrete more and
more functionality and data. You might be tempted to set up namespaces within namespaces, emulating
something of the way packages work with Java. The Ext JS library uses this technique well, for what it’s worth.
But they also have spent a lot of time thinking about how to organize their functionality, what code belongs
to what namespace or sub-namespace, and so on. There are trade-offs with extensive use of namespaces.

Also, namespace names are hard-coded: FOO in the example, Ext in the case of the aforementioned
library Ext JS, YAHOO in the case of the similarly popular YUI library. These namespaces are effectively
reserved words for those libraries. What happens if two or more libraries settle on the same namespace
(as with jQuery’s use of $ as a namespace)? Potential conflicts. JQuery has added explicit code to deal
with this possibility, should it arrive. Although this issue is potentially less likely with your own code, it
is a possibility that has to be considered. This is especially true in a team environment where multiple
programmers have access to the namespace, raising the possibility of accidentally overwriting or deleting
another coder’s namespace.

The Module Pattern
We have some tools for improving the way we use namespaces. We can work with the module pattern, which
encapsulates generation of the namespace within a function. This allows for a variety of improvements,
including establishing a baseline for what functions and data the namespace contains, use of private
variables within the generator function, which might make implementation of some functionality easier, and
simply having a function generate the namespace, which means that we can have JavaScript dynamically
generate part or all of the namespace at runtime instead of at compile-time.

Chapter 3 ■ Creating Reusable Code

35

Modules can be as simple or as complex as you prefer. Listing 3-11 provides a very simple example of
creating a module.

Listing 3-11.  Creating a Module

function getModule() {
 // Namespaces example
 var FOO = {};
 
 // Add a variable
 FOO.x = 10;
 
 // Add a function
 FOO.addEmUp = function (x, y) {
 return x + y;
 };
 
 return FOO;
}
 
var myNamespace = getModule();

We have encapsulated our namespace code inside a function. Thus, when we initially set up the
FOO object, it is private to the getModule function. We can then return FOO to anyone who invokes getModule,
and they can use the encapsulated structure as they see fit, including naming it whatever they want.

Another advantage to this pattern is that we can once again utilize our friend the closure to set up data
that is private only to the namespace. If our namespace, our encapsulated code, needs to have internal data
or internal functions, we can add them without worrying about making them public (Listing 3-12).

Listing 3-12.  Modules with Private Data

function getModule() {
 // Namespaces example
 var FOO = {};
 
 // Add a variable
 FOO.x = 10;
 
 // Add a function
 FOO.addEmUp = function (x, y) {
 return x + y;
 };
 
 // A private variable
 var events = [];
 
 FOO.addEvent = function(eventName, target, fn) {
 events.push({eventName: eventName, target: target, fn: fn});
 };
 

Chapter 3 ■ Creating Reusable Code

36

 FOO.listEvents = function(eventName) {
 return events.filter(function(evtObj) {
 return evtObj.eventName === eventName
 });
 };
  
 return FOO;
}
 
var myNamespace = getModule();

In this example, we have implemented a public interface for adding some sort of event tracking with
addEvents. Later, we might want to get back event references by their names via listEvents. But the actual
events collection is private, managed by the public API we provide to it, but hidden from direct access.

Modules, like namespaces, have the same problem of being a lesser-of-two-evils approach. We have
traded a global variable for our namespace for a global function getModule. Wouldn’t it be nice if we could
have full control over what winds up in the global namespace, without necessarily using globally scoped
objects or functions to do so? Luckily, we are about to see a tool that can help us do exactly that.

Immediately Invoked Function Expressions
If we want to avoid polluting the global namespace, functions are the logical solution. Functions create
their own execution context when they are running, which is subordinate to but insulated from the global
namespace. When the function finishes running, the execution context is available for garbage collection
and the resources dedicated to it can be reclaimed. But all of our functions have been either global or part of
a namespace, which is itself global. We would like to have a function that can immediately execute, without
having to be named and without having to be part of a namespace or context, global or otherwise. Then,
within that function, we could build the module that we need. We could return such an object, export it, and
make it otherwise available, but we would not have to have a public function around to take up resources
generating it. This is the idea behind the immediately invoked function expression (IIFE).

All of the functions we have worked with to this point have been function declarations. Whether we
define them as function funcName { ... } or var funcName = function() { ... }, we are declaring
functions, reserving their usage for later. Can we instead create a function expression, which would be a
function that is created and executed in one fell swoop? The answer is yes, but doing so will require a degree
of syntactical intrepidity.

How do we execute functions? Typically, with a named function, we print the name of the function,
and then append some parentheses afterwards, indicating we want to execute the code associated with that
name. We cannot do the same with a function definition, in and of itself. The result would be a SyntaxError,
obviously not what we want.

But we can put the function declaration inside a set of parentheses, a hint to the parser that this is not
a statement but an expression. Parentheses cannot contain statements, but only code to be evaluated as an
expression, which is what we want out of our function. We need one more bit of syntax to make this work,
another set of parentheses, usually at the end of the function declaration itself. Listing 3-13 will illuminate
the full syntax.

Listing 3-13.  An Immediately Invoked Function Expression

// A regular function
function foo() {
 console.log('Called foo!');
}
 

Chapter 3 ■ Creating Reusable Code

37

// Function assignment
var bar = function () {
 console.log('Called bar!');
};
 
// Function expression
(function () {
 console.log('This function was invoked immediately!')
})();
 
// Alternate syntax
(function () {
 console.log('This function was ALSO invoked immediately!')
}());

Compare and contrast the first two functions, which are function declarations, with the latter two,
which are function expressions. The expressions are wrapped in parentheses to “expressionize” them (or, if
you prefer: “de-declarify” them) and then use a second set of parentheses to invoke the expression. Nifty!

As an aside, there are a variety of JavaScript syntactical particles that will result in IIFEs: functions as
components of a logical evaluation, unary operators prefixed to a function declaration, and so on. “Cowboy”
Ben Alman’s article on IIFEs (http://benalman.com/news/2010/11/immediately-invoked-function-
expression/) contains terrific detail on valid syntaxes and goes deep into the guts of how IIFEs work and
how they came to be.

Now that we know how to create an IIFE, how do we use it? There are many applications of IIFEs,
but the one we’re concerned with here is the generation of a module. Can we capture the result of an IIFE
into a variable? Of course! So we can wrap our module generator in an IIFE and have it return the module
(Listing 3-14).

Listing 3-14.  An IIFE Module Generator

var myModule = (function () {
 // A private variable
 var events = [];
 
 return {
 x : 10,
 addEmUp : function (x, y) {
 return x + y;
 },
 addEvent : function (eventName, target, fn) {
 events.push({eventName : eventName, target : target, fn : fn});
 },
 listEvents : function (eventName) {
 return events.filter(function (evtObj) {
 return evtObj.eventName === eventName
 });
 }
 };
 
})();

http://benalman.com/news/2010/11/immediately-invoked-function-expression/
http://benalman.com/news/2010/11/immediately-invoked-function-expression/

Chapter 3 ■ Creating Reusable Code

38

We have changed a few things in this last example. First, and simplest, we are now capturing the output
of our factory IIFE in myModule instead of myNamespace. Second, instead of creating an object and then
returning it, we are returning the object directly. This simplifies our code, cutting down on reserving a space
for an object we ultimately never use.

The IIFE pattern opens up many new possibilities, including the use of libraries or other tools as
needed. The parentheses at the end of our function expression are the same parentheses we expect on a
regular function invocation. Therefore, we can pass arguments into our IIFE and use them within. Imagine
an IIFE that had access to jQuery functionality (Listing 3-15).

Listing 3-15.  Passing Arguments to an IIFE

// Here, the $ refers to jQuery and jQuery only for the entire
// scope of the module
var myModule = (function ($) {
 // A private variable
 var events = [];
 
 return {
 x : 10,
 addEmUp : function (x, y) {
 return x + y;
 },
 addEvent : function (eventName, target, fn) {
 events.push({eventName : eventName, target : target, fn : fn});
 $(target).on(eventName, fn);
 },
 listEvents : function (eventName) {
 return events.filter(function (evtObj) {
 return evtObj.eventName === eventName
 });
 }
 };
 
})(jQuery); // Assumes that we had included jQuery earlier

We pass jQuery into our IIFE, and then refer to it as $ throughout the IIFE. Internally, it’s used within the
addEvent function to add an event handler to the DOM. (Don’t worry if the syntax does not make sense; it
isn’t the core of the example!)

Based on this code, you can probably imagine a system where modules generated by IIFEs talk to each
other, passing arguments back and forth and using libraries, all without necessarily interacting at the global
level. In fact, that is part of what the next chapter is about.

Summary
The problem before us at the start of this chapter was one of code management. How can we write code
in such a way as to follow good object-oriented guidelines, and how can we encapsulate that code for
reusability? In the former case, we concentrated on JavaScript’s prototypal nature, using it to generate
something similar to classes and instances, but with a unique JavaScript spin on it. And the implementation
was a lot simpler than attempting to force JavaScript to act like C# or Java. For the latter requirement, we
worked our way through a variety of solutions that enable us to encapsulate our code: namespaces, modules,
and immediately invoked function expressions. Ultimately, a combination of all three provided us with the
best-case solution for least use of the global context.

www.allitebooks.com

http://www.allitebooks.org

39

Chapter 4

Debugging JavaScript Code

Sometimes it’s not the writing of code, but the management of it that gets to us, that drives us up a wall
and back to our favorite video game. Why does it work on this machine, not that one? What do you mean,
double-equals (==) is bad and triple-equals (===) is good? Why is running tests such a hassle? How should I
package this code for distribution? We are plagued by questions, distracted by questions that do not directly
bear on the code we are writing.

Of course, we should not ignore these issues. We want to write code of the highest quality, and when we
fall short, we want access to easy-to-use debugging tools. We want good test coverage, both for now and for
future refactorings. And we should think about how our code will be distributed down the line. That is what
this chapter is all about.

We will start by looking at how to solve problems with our code. We would love to be perfect
programmers, writing everything correctly the first time. But we all know that does not happen in the real
world. So let’s start with debugging tools.

Debugging Tools
All of the modern browsers have some form of developer’s toolkit. Even benighted Internet Explorer 8 had a
rudimentary debugger, although you needed administrator access to install it. What we have now is a far cry
from the days of development with various alert() statements or the occasional logging to a DOM element
as our only recourse.

In general, a developer’s toolkit will have the following utilities:

•	 The console: A combination JavaScript scratch pad and logging location for our
applications.

•	 A debugger: The tool that eluded JavaScript developers for so long.

•	 A DOM inspector: Much of our work concentrates on manipulating the DOM, and
right-clicking to choose View Source won’t cut it. The inspector should reflect the
current state of the DOM (not the original source). Most DOM inspectors go with a
tree-based view, with an option to select a DOM element by clicking it in either the
inspector or the page itself.

•	 A network analyzer: Show me what files were requested, which files were actually
found, and how long it took to download them.

•	 A profiler: These are often somewhat crude, but they’re better than wrapping a call in
a pair of calls to new Date().getTime().

Chapter 4 ■ Debugging JavaScript Code

40

There are also extensions that can be added to browsers to give you extra debugging capability that goes
beyond what is built into the browser. For example, Postman (http://getpostman.com) is an extension for
Chrome that will let you create any HTTP request and see what the response is. Another popular extension
is Firebug (http://getfirebug.com), an open source project that adds all the developer tools to Firefox and
can also have its own set of extensions.

In this chapter we will refer to the common set of tools as the developer’s tools or the developer’s
toolkit, unless discussing a specific browser’s toolset.

The Console
The console is where we spend a lot of our time as developers. The console interface was modeled after the
familiar logging levels on most applications: debug, info, warn, error, and log. Often, we first encounter it
as a replacement for alert() statements in our code, especially when debugging. On some older versions
of IE, only log is supported, but as of IE 11, all five functions are supported. Additionally, the console has a
dir() function, which will give you a recursive, tree-based interface to an object. On the off-chance that the
console is not present on your platform of choice, try Listing 4-1 as a polyfill.

Listing 4-1.  A Console Polyfill

if (!window.console) {
 window.console = {
 log : alert
 }
}

(Obviously, this is only a polyfill for the log function. Were you to use others, you would have to add
them individually.)

The output of the various levels varies little. On Chrome or Firefox, console.error includes an
automatic stack trace. The other browsers (and native Firefox) simply add an icon and change the text color
to differentiate the various levels. Perhaps the main reason to use the various function levels is that they can
be filtered out on all three major browsers. Listing 4-2 provides some test code, followed by screen shots
from each of the major browsers: Chrome, Firefox, and Internet Explorer (Figures 4-1 through 4-3).

Listing 4-2.  Console Levels

console.log('A basic log message.');
console.debug('Debug level.');
console.info('Info level.');
console.warn('Warn level.');
console.error('Error level (possibly with a stacktrace).');

var person = {
 name : 'John Connelly',
 age : 56,
 title : 'Teacher',
 toString: function() {
 return this.name + ' is a ' + this.age + '-year-old ' + this.title + '.';
 }
};

http://getpostman.com/
http://getfirebug.com/

Chapter 4 ■ Debugging JavaScript Code

41

Figure 4-1.  Test code viewed in Chrome 40.0

console.log('A person: ');
console.dir(person);

console.log('Person object (implicit call to toString()): ' + person);
console.log('Person object as argument, similar to console.dir: ', person);

Chapter 4 ■ Debugging JavaScript Code

42

Figure 4-2.  Test code viewed in Firefox 35.0.1

Chapter 4 ■ Debugging JavaScript Code

43

Leveraging the Console Features
So what’s the best way to use these console functions? As with many features of JavaScript, the key is
consistency. You and your team should agree on usage patterns, keeping a few things in mind: First and most
important is that all of your console statements should be removed by the time you deploy your code for the
world to see. There is no need for production code to include console statements, and it is trivially easy to
remove invocations of console functions (as you will see later in this chapter). Also remember that debugging,
which we will look at soon, can replace logging for one-off needs. In general, use console logging for
information about the state of an application: Has it started? Could it find data? What do various complicated
objects look like? And so on. Your logging will give you a chronicle of the life of the application, a view into the
application’s changing state. If your application is a highway, good logging acts as a sort of mile marker—an
indication of progress and a general indicator of where to start searching when problems inevitably arise.

The console is also much more than a logging utility. It is a JavaScript scratch pad. Consoles start in
single-line mode, where you can enter JavaScript line-by line. Should you want to enter multiple lines of
code, you can switch to multiline mode (enabled via icons in Firefox and IE; in Chrome, simply terminate
your lines with Shift+Enter). In single-line mode, you can enter various JavaScript statements, enjoying auto-
complete, by hitting either Tab or the right-arrow key. The console also includes a simple history, through
which you can move backward and forward with the up- and down-arrow keys. The console maintains state,
so variables defined on a previous line (or run of the multiline mode) hang around until you reload the page.

This last feature bears further examination. The console has the entire current state of the JavaScript
interpreter available to it. This is incredibly powerful. Have you loaded up jQuery? Then you can enter
commands according to its API. Want to check the state of a variable at the end of the page? Or maybe you
need to look at what’s going on with a particular animation? The console is your friend here. You can call
functions, examine variables, manipulate the DOM, and so on. Think of any commands you enter as being
added to the just-completed script and having access to all of its state.

Figure 4-3.  Test code viewed in Internet Explorer 11.0

Chapter 4 ■ Debugging JavaScript Code

44

The console also has an extended command-line API. Originally created by the fine folks at Firebug,
elements of it have been ported to other browsers as well. It is now supported by Chrome and native Firefox,
but not by Internet Explorer. There are numerous useful applications of this API, and we wholeheartedly
recommend checking out the details at https://getfirebug.com/wiki/index.php/Command_Line_API.
Here are a few of the highlights:

•	 debug(functionName): When functionName is invoked, the debugger will
automatically start before the first line of code in the function.

•	 undebug(functionName): Stops debugging the named function.

•	 include(url): Pulls a remote script into the page. Very handy if you want to pull in
another debugging library, or something that manipulates the DOM differently, or
what-have-you.

•	 monitor(functionName): Turns on logging for all calls to the named function; does
not affect console.* calls, but rather inserts a custom call to console.log for each
invocation of the function. This logs the function name, its arguments and their values.

•	 unmonitor(functionName): Turns off logging enabled via monitor() for all calls to
the function.

•	 profile([title]): Turns on the JavaScript profiler; you can pass in an optional title
for this profile.

•	 profileEnd(): Ends the currently running profile and prints a report, possibly with
the title specified in the call to profile.

•	 getEventListeners(element): Gets the event listeners for the provided element.

Thanks to the console, we developers have a full-featured tool for interacting with our code. We can
record snapshots of the state of an application, and we can interact with it once it has completed loading.
The console will also figure prominently in our next tool, the debugger.

The Debugger
For years, one of the knocks against JavaScript was that it couldn’t be a "real" language because it lacked
tools like a debugger. Fast-forward to now, and a debugger is standard equipment with all of the developer
toolkits. All current browsers have a developer tools that lets you inspect your application and debug your
work. Let’s look at how these tools work, starting with the debugger.

The idea behind the debugger is simple: as a developer, you need to pause the execution of your
application and examine its current state. Although we could accomplish the latter part with judiciously
applied console.log statements, we cannot take care of the former without a debugger. Once we have
paused our application, there are a few tools we need access to. We need a way to tell the debugger to
activate. Within the code itself, we can add the simple statement debugger; to activate the debugger at that
line. As mentioned earlier, we could also invoke the debug command from the console, passing it the name
of a function that, when invoked, will start up the debugger. But the easiest way to pick when the debugger
starts is to set a breakpoint.

Breakpoints allow us to run the JavaScript code up to a certain point, and then freeze the application
there. When we hit the breakpoint we can then start to understand the current state of the application. From
here we can see the content of variables, the scope of these variables, and so on. Also, we have a navigation
menu, which includes at least four options: step into the current function (going a layer deeper into the stack),
step out of the current function (running the current stack frame to completion and resuming debugging at
the point the frame returns to), step over the current function (no need to dive into the function in the first
place) and resume execution (run until completion or the next breakpoint).

https://getfirebug.com/wiki/index.php/Command_Line_API

Chapter 4 ■ Debugging JavaScript Code

45

DOM Inspector
Many JavaScript applications make extensive changes to the state of the DOM—changes so extensive, in fact,
that it is often useless to refer to the actual HTML source code mere moments after loading a page. The DOM
inspector reflects the current state of the DOM (instead of the state of the DOM when the page was loaded).
It should dynamically and instantly update whenever there are changes made to the DOM. Developer tools
have included a DOM inspector as a standard feature.

Network Analyzer
Since the previous edition of this book, Ajax has moved from an exotic feature of JavaScript to a standard-issue
tool in the professional JavaScript programmer’s bag of tricks. It took a while for debugging tools to catch
up. Now, developer tools provide several ways to track Ajax requests. Generally, you should be able to get
information on Ajax requests at either the console or the network analyzer. The latter has the more detailed
interface. You should be able to sort on specific types of requests (XHR/Ajax, scripts, images, HTML, and
so on). Each request should get its own entry, which will usually give you information about the state of the
request (both the response code and the response message), where it went to (full URL), how much data was
exchanged, and how long the request took. Diving into an individual request, you can see the request and
response headers, a preview of processed data and, depending on the data type, a raw view of the data. For
example, if your application makes a request for JSON-formatted data, the network analyzer will both tell
you about the raw data (a plain string) and, potentially, pass that string through a JSON formatter, so it can
show you the end result of the request. Figure 4-4 shows the Network Analyzer in Chrome 40.0, and Figure 4-5
shows it in Firefox 35.0.1.

Figure 4-4.  Network Analyzer in Chrome 40.0

Chapter 4 ■ Debugging JavaScript Code

46

Using both the heap profiler and the timeline, you can detect memory leaks on both the desktop and
mobile devices. First let’s look at the timeline.

Timeline
When you first notice your page getting slow, the timeline can quickly help you see how much memory you
are using over time. The features in the timeline are very similar in all modern browsers, so to keep this short
we are going to focus on Chrome.

Go to the Timeline panel and check off the Memory checkbox. Once there you can click the Record
button on the left side. This will start to record the memory consumption of your application. While
recording, use your application in a way to expose the memory leak. Stop recording, and the graph will show
you how much memory you have been using over time.

If you find that over time your application is using memory and the level is never dropping with garbage
collection, then you have a memory leak.

Profiler
If you find that you do have a memory leak, the next step is to look at the profiler and try to understand what
is going on.

It’s helpful to understand how memory works in the browser and how it is cleaned up or
garbage-collected. Garbage collection is handled automatically in the browser. It is the process in which the
browser looks at all the objects that have been created. Objects that are no longer referenced are removed
and the memory is reclaimed.

All browsers now have profiling tools built in. These will let you see which objects are using more
memory over time.

Figure 4-5.  Network Analyzer in Firefox 35.0.1

Chapter 4 ■ Debugging JavaScript Code

47

Figure 4-6 shows the Profiles panel in Chrome 40.0.

Figure 4-7.  Profile Panel in Firefox 35.0.1

Figure 4-6.  Profiles panel in Chrome 40.0

Figure 4-7 shows the equivalent panel in Firefox 35.0.1, the Performance tab.

Chapter 4 ■ Debugging JavaScript Code

48

Using the profiler is similar in that you need the browser to record the application in action. In this case
you take what’s called a snapshot. The Gmail team recommends taking three, in the following order:

	 1.	 Take a snapshot.

	 2.	 Perform the actions where you think the leak is coming from.

	 3.	 Take the second snapshot.

	 4.	 Perform the same actions.

	 5.	 Take the third snapshot.

	 6.	 Filter the objects from Snapshot 1 and 2 in the Summary view of Snapshot 3.

At this point you can start to see all the objects that are still around and could be taking up memory.
You should now be able to see which references are remaining and dispose of them.

So what are references? Generally a reference happens when an object has a property whose value is
another object. Listing 4-3 shows an example.

Listing 4-3.  Creating Object References

var myObject = {};
myObject.property = document.createElement('div');
mainDiv.appendChild(myObject.property);

Here myObject.property now has a reference to the newly created div object. The appendChild
method can use it with no problem. If at some point you remove that div from the DOM, myObject will still
have a reference to the div and will not be garbage-collected. When objects no longer hold on to references,
they are automatically garbage-collected.

One way to remove the reference is by using the delete keyword, as illustrated in Listing 4-4.

Listing 4-4.  Deleting Object References

delete myObject.property;

Summary
As you can see, modern browsers have the tools to give you an environment that helps you fully understand
your application. If you do see areas where you can make improvements, the timeline can show how much
memory is being used over time. The debugger can help you see the values of your variables at any given
time. Using the profiler can help you see where you are leaking memory and how you can fix it.

www.allitebooks.com

http://www.allitebooks.org

49

Chapter 5

The Document Object Model

Working with the Document Object Model (the DOM) is a critical component of the professional JavaScript
programmer’s toolkit. A comprehensive understanding of DOM scripting yields benefits not only in the
range of applications we can build, but also in the quality of those applications. Like most features of
JavaScript, the DOM has a somewhat checkered history. But with modern browsers, it is easier than ever to
manipulate and interact with the DOM unobtrusively. Understanding how to use this technology and how
best to wield it can give you a head start toward developing your next web application.

In this chapter we discuss a number of topics related to the DOM. For readers new to the DOM, we will
start out with the basics and move through all the important concepts. For those of you already familiar with
the DOM, we provide a number of cool techniques that we are sure you will enjoy and start using in your
own web pages.

The DOM is also at a crossroads. Historically, because DOM interface updates were not in sync with
browser or JavaScript updates, there was a disconnect between browsers and DOM support. This disconnect
was only exacerbated by buggy implementations. Popular libraries like jQuery and Dojo have arisen to
address these problems. But with modern browsers, the DOM has normalized and the interface has settled
quite a bit. We will need to address the issue of whether to use libraries to help in our access of the DOM or
to do everything with the standard DOM interface.

An Introduction to the Document Object Model
Initially, the DOM was created as a way to represent parts of an HTML document within a browser. Using
JavaScript, a developer could look at forms, anchors, images and other components of the page, but not
necessarily the entire page. This is sometimes referred to as the “legacy DOM” or DOM Level 0. Eventually,
the DOM changed into an interface, overseen by the W3C. From humble beginnings, the DOM has become
the official interface not only to HTML documents but also to XML documents. It is not necessarily the
fastest, lightest, or easiest-to-use interface, but it is the most ubiquitous, with an implementation existing in
most programming languages (such as Java, Perl, PHP, Ruby, Python, and, of course, JavaScript). As we work
with the DOM interface, remember that just about everything you learn can be applied to HTML and XML,
even though most of the time we will refer exclusively to HTML.

The World Wide Web Consortium oversees the DOM specification. For a variety of historical reasons,
versions of the DOM specification are identified as DOM Level n. The current specification (as of publication
time) is DOM Level 4. This can sometimes be confusing, as a DOM tree itself can have levels. We will
endeavor to refer to versions of the DOM specification as DOM Level (with a capital L) and then DOM tree
levels with a lowercase l.

Chapter 5 ■ The Document Object Model

50

Before anything else, we should quickly discuss the structure of HTML documents. Because this is a
book on JavaScript, not HTML, we will focus on the effects of an HTML document on our JavaScript. Let us
set forth a few simple principles:

	 1.	 Our HTML documents should start with an HTML 5 doctype. They are very
simple: <!DOCTYPE html>. Including the doctype prevents browsers from falling
into quirks mode, where the behavior of the browser is less consistent.

	 2.	 We should prefer including separate JavaScript files via <script> tags over script
blocks or in-line scripts. This makes for easier development (separating our
JavaScript from our HTML) and easier management. There are rare cases where
script blocks make more sense than included files. But as a general rule, prefer
included files.

	 3.	 Our script tags should appear at the bottom of the HTML document,
immediately before the closing </body> tag.

The third item requires some explanation. By having our <script> includes at the bottom of the page,
we gain several advantages. The majority (if not all) of our HTML should have loaded (as well as associated
files: images, audio, video, CSS, and so on). Why is this important? Processing JavaScript code locks up the
rendering of a page! Browsers cannot render other page elements while JavaScript code is being parsed
(and sometimes when JavaScript code is running!). Therefore, we should wait until the last minute to load
our JavaScript code wherever possible. Also, in mobile or slow-connection scenarios, fetching and loading
JavaScript can be slower than on a desktop browser. Early loading of the rest of the page means your users
are not stuck looking at a blank page with nothing but a spinner. The principle here is that the user should be
able to see feedback that some of the page has loaded as soon as possible.

Right. So what does this ideal HTML page look like? Check out Listing 5-1.

Listing 5-1.  A Sample HTML File

<!DOCTYPE html>
<html>
<head>
 <title>Introduction to the DOM</title>
</head>
<body>
<h1>Introduction to the DOM</h1>
 
<p id="intro" class="test">There are a number of reasons why the DOM is awesome; here are
some:</p>
<ul id="items">
 <li id="everywhere">It can be found everywhere.
 <li class="test">It’s easy to use.
 <li class="test">It can help you to find what you want, really quickly.

<script src="01-sample.js"></script>
</body>
</html>

Sometimes, in our examples, we will have an in-line script block. If so, it will appear within the page as
appropriate to its functionality. If its location is irrelevant to its functionality, we will have the script block at
the bottom of the page, much like our script includes.

Chapter 5 ■ The Document Object Model

51

DOM Structure
The structure of an HTML document is represented in the DOM as a navigable tree. All the terminology used is
akin to that of a genealogical tree (parents, children, siblings, and so on). For our purposes, the trunk of the tree
is the Document node, also known as the document element. This element contains pointers to its children
and, in turn, each child node then contains pointers back to its parent, its fellow siblings, and its children.

The DOM uses particular terminology to refer to the different objects within the HTML tree. Just
about everything in a DOM tree is a node: HTML elements are nodes, the text within elements is a node,
comments are nodes, the DOCTYPE is a node, and even attributes are nodes! Obviously, we will need to
be able to differentiate among these nodes, so each node has a node type property called, appropriately,
nodeType (Table 5-1). We can query this property to figure out which type of node we are looking at. If you
get a reference to a node, it will be an instance of a Node type, implementing all of the methods and having
all of the properties of that type.

Table 5-1.  Node Types and Their Constant Values

Node Name Node Type Value

ELEMENT_NODE 1

ATTRIBUTE_NOTE (deprecated) 2

TEXT_NODE 3

CDATA_SECTION_NODE (deprecated) 4

ENTITY_REFERENCE_NODE (deprecated) 5

ENTITY_NODE (deprecated) 6

PROCESSING_INSTRUCTION_NODE 7

COMMENT_NODE 8

DOCUMENT_NODE 9

DOCUMENT_TYPE_NODE 10

DOCUMENT_FRAGMENT_NODE 11

NOTATION_NODE (deprecated) 12

Node types marked deprecated are superseded and may be removed, but it’s very unlikely. They probably
still work, as they have been in use for a few years now.

As you can see in the table, nodes have various specializations, which correspond to interfaces in the
DOM specification. Of particular interest are documents, elements, attributes, and text. Each of these has its
own implementing type: Document, Element, Attr, and Text, respectively.

■■ Note A ttributes are a special case. Under DOM Levels 1, 2, and 3, the Attr interface implemented the Node
interface. This is no longer true for DOM Level 4. Thankfully, this is more of a common-sense change than
anything else. More details can be found in the section on attributes.

Chapter 5 ■ The Document Object Model

52

In general, the Document is concerned with managing the HTML document as a whole. Each tag within
that document is an Element, which is itself specialized into specific HTML element types (for example,
HTMLLIElement, HTMLFormElement). The attributes of an element are represented as instances of Attr. Any
plain text within an Element is a text node, represented by the Text type. These subtypes are not all of the
types that inherit from Node, but they are the ones we are most likely to interact with.

Given our listing, let’s look at the structure: the entire document, from <!DOCTYPE html> to </html>
is the Document. The doctype is itself an instance of the Doctype type. The <html>...</html> element is
our first and main Element. It contains child Elements for the <head> and <body> tags. Diving a little more
deeply, we can see that the <p> element within the <body> has two attributes, id and class. That same <p>
element has a single Text node for its content. The hierarchical structure of the document is duplicated in
the relationships between the instances of the various DOM types. We should look at these relationships in
greater detail.

DOM Relationships
Let’s examine a very simple document fragment, to show the various relationships between nodes:

<p>Hello how are you doing?</p>

Each portion of this snippet breaks down into a DOM node with pointers from each node pointing to its
direct relatives (parents, children, siblings). If you were to completely map out the relationships that exist,
it would look something like Figure 5-1. Each portion of the snippet (rounded boxes represent elements,
regular boxes represent text nodes) is displayed along with its available references.

Every single DOM node contains a collection of pointers that it can use to refer to its relatives. You’ll be
using these pointers to learn how to navigate the DOM. All the available pointers are displayed in Figure 5-2.
Each of these properties, available on every DOM node, is a pointer to another Node or subclass thereof.
The only exception is childNodes (a collection of all of the child nodes of the current node). And, of course,
if one of these relationships is undefined, the value of the property will be null (think of an tag, which
will have neither firstChild nor lastChild defined).

lastChild

parentNode parentNode

firstChild

lastChild

nextSibling

previousSibling

hello

how are you
doing?

p

strong

parentNode

firstChild

Figure 5-1.  Relationships between nodes

Chapter 5 ■ The Document Object Model

53

Using nothing but the different pointers, it’s possible to navigate to any element or text block on a
page. Recall Listing 5-1, which showed a typical HTML page. Before, we looked at it from the perspective of
JavaScript types. Now we will look at it from the perspective of the DOM.

In the example document, the document node is the <html> element. Accessing this element is trivial
in JavaScript: document.documentElement refers directly to the <html> element. The root node has all the
pointers used for navigation, just like any other DOM node. Using these pointers you have the ability to
start browsing the entire document, navigating to any element that you desire. For example, to get the <h1>
element, you could use the following:

// Does not work!
document.documentElement.firstChild.nextSibling.firstChild

But we have just hit a major snag: The DOM pointers can point to both text nodes and elements. Our
JavaScript statement doesn’t actually point to the <h1> element; it points to the <title> element instead.
Why did this happen? It happened because of one of the stickiest and most-debated aspects of XML: white
space. If you will notice in Listing 5-1, between the <html> and <head> elements there is actually an end line,
which is considered white space, which means that there’s actually a text node first, not the <head> element.
We can learn four things from this:

•	 Writing nice, clean HTML markup can actually make things very confusing when
attempting to browse the DOM using nothing but pointers.

•	 Using nothing but DOM pointers to navigate a document can be very verbose and
impractical.

•	 In fact, DOM pointers are clearly quite brittle, as they tie your JavaScript logic to your
HTML entirely too closely.

•	 Frequently, you don’t need to access text nodes directly, only the elements that
surround them.

This leads us to a question: Is there a better way to find elements in a document? Yes, there is! More
accurately: there are! We have two major approaches available for accessing elements within the page. On
the one hand, we could continue down the line of relative access, sometimes known as DOM traversal. For

firstChild lastChild

childNodes

DOM
Node

previousSibling

parentNode

nextSibling

Figure 5-2.  Navigating the DOM tree using pointers

Chapter 5 ■ The Document Object Model

54

the reasons just listed, we will avoid this approach for general DOM access. We will revisit DOM traversal
later on, though, when we have a better handle on accessing specific elements. Instead, we will take a
second path, focusing on the various element retrieval functions provided with the modern DOM interface.

Accessing DOM Elements
All modern DOM implementations contain several methods that make it easy to find elements within the
page. Using these methods together with some custom functions can make navigating the DOM a much
smoother experience. To start with, let’s look at how we can access a single element:

document.getElementById('everywhere'): This method, which can only be run
on the document object, finds all elements that have an ID equal to everywhere.
This is a very powerful function and is the fastest way to access an element
immediately.

The getElementById method returns a reference to the HTML element with the supplied ID, or null
otherwise. The returned object is specifically an instance of the Element type. We will discuss what we can
do with this Element soon.

■■ Caution  getElementById works as you would imagine with HTML documents: it looks through all
elements and finds the one single element that has an attribute named id with the specified value. However,
if you are loading in a remote XML document and using getElementById (or using a DOM implementation
in any language other than JavaScript), it doesn’t use the id attribute by default. This is by design; an XML
document must explicitly specify what the id attribute is, generally using an XML definition or a schema.

Let’s continue our tour of element-accessing functions. The next two functions provide access to
collections of elements:

getElementsByTagName('li'): This method, which can be run on any element,
finds all descendent elements that have a tag name of li and returns them as a
live NodeList (which is nearly identical to an array).

getElementsByClassName('test'): Similar to getElementsByTag name,
this method can be run from any instance of Element. It returns a live
HTMLCollection of matching elements.

These two functions allow us to access multiple elements at once. Putting aside the difference in
return type for a moment, the collection returned is live. This means that if the DOM is modified, and those
modifications would be included in the collection (or would remove elements from the collection), the
collection will automatically update with those changes. Very powerful!

It is odd that these two methods, similar in function, return two different types. First, let’s consider the
simple parts: Both types have array-like positional access. That is, for the following:

var lis = document.getElementsByTagName('li');

you can access the second list item in the lis collection via lis[1]. Both collections have a length property,
which tells you how many items are in the collection. They also have an item method, which takes as its
argument the position to access and returns the element at that position. The item method is a functional
way to access elements positionally. Finally, neither collection has any of the higher-order Array methods,
like push, pop, map, or filter.

Chapter 5 ■ The Document Object Model

55

If you would like to use Array methods on your HTMLCollection or NodeList, you can always use them
as shown in Listing 5-2.

Listing 5-2.  Array Functions on NodeLists/HTMLCollections

// A simple filtering function
// An Element's nodeName property is always the name of the underlying tag.
function filterForListItems(el) {
 return el.nodeName === 'LI';
}
 
var testElements = document.getElementsByClassName('test');
console.log('There are ' + testElements.length + ' elements in testElements.');
 
// Generating an array from the elements gathered from testElements
// based on whether they pass the filtering proccess set up by filterForListItems
var liElements = Array.prototype.filter.call(testElements, filterForListItems);
console.log('There are ' + liElements.length + ' elements in liElements.');

The difference between methods in the return type is caused by the vagaries of DOM implementation
in browsers. In the future, both should return HTMLCollection instances, but that future is not yet here.
Because the access patterns for NodeLists and HTMLCollections are virtually identical, we do not have to
concern ourselves too much with which method returns which type.

When using either getElementsByClassName or getElementsByTagName, it is worth remembering that
they belong not only to Document instances, but also Element instances. When called from the document,
they will conduct searches over the entire document. Consider that your <head> section will be searched
for tags or that you will be looking there for elements with the class foo. This is, as you can imagine,
somewhat inefficient. Imagine that you are searching through your house for your keys. You would probably
not search in the refrigerator, or in the shower, as they are not likely spots to have left your keys. So you will
look in the bedroom, the living room, the entryway, and so on. Wherever possible, limit the scope of your
search to the appropriate containing element. Take a look at Listing 5-3, which gets the same results as
Listing 5-2 but limits its scope to a specific parent element.

Listing 5-3.  Limiting Search Scope

var ul = document.getElementById('items');
var liElements = ul.getElementsByClassName('test');
console.log('There are ' + liElements.length + ' elements in liElements.');

■■ Note  document.getElementById, unlike getElementsByClassName or getElementsByTagName,
is not available on instances of the Element type. It is only available on the document or an instance of the
Document type.

These three methods are available in all modern browsers and can be immensely helpful for locating
specific elements. Going back to the earlier example where we tried to find the <h1> element, we can now do
the following:

document.getElementsByTagName('h1')[0];

This code is guaranteed to work and will always return the first <h1> element in the document.

Chapter 5 ■ The Document Object Model

56

Finding Elements by CSS Selector
As a web developer, you already know of an alternative way to select HTML elements: CSS selectors. A
CSS selector is the expression used to apply CSS styles to a set of elements. With each revision of the CSS
standard (1, 2, and 3, also sometimes referred to as CSS Level 1, Level 2 or Level 3, respectively) more
features have been added to the selector specification, so that developers can more easily locate the exact
elements they desire. Browsers were occasionally slow to provide full implementations of CSS 2 and 3
selectors, and so you may not know of some of the cool new features that they provide. This has largely
been resolved in modern browsers. If you’re interested in all the cool new features in CSS, we recommend
exploring the W3C’s pages on the subject:

•	 CSS 1 selectors: http://www.w3.org/TR/CSS1/#basic-concepts

•	 CSS 2.1 selectors: http://www.w3.org/TR/CSS21/selector.html

•	 CSS 3 selectors: http://www.w3.org/TR/css3-selectors/

The features that are available from each CSS selector specification are generally similar, in that each
subsequent release contains all the features from the past ones, too. However, with each release a number of
new features are added. As an example, CSS 2.1 contains attribute and child selectors, while CSS 3 provides
additional language support, selecting by attribute type, and negation. For modern browsers, all of these are
valid CSS selectors:

#main <div> p: This expression finds an element with an ID of main, all <div>
element descendants, and then all <p> element descendants. All of this is a
proper CSS 1 selector.

div.items > p: This expression finds all <div> elements that have a class of
items, then locates all child <p> elements. This is a valid CSS 2 selector.

div:not(.items): This locates all <div> elements that do not have a class of
items. This is a valid CSS 3 selector.

There are two methods that provide access to elements via CSS selectors: querySelector and
querySelectorAll. Give querySelector a valid CSS selector, and it will return a reference to the first
element it finds matching that selector. The only thing that changes when using querySelectorAll is
that you get back a non-live NodeList of matching elements. (The list is not live, because a live list would
be resource-intensive). As with getElementsByTagName and getElementsByClassName, you can call
querySelector and querySelectorAll from any instance of Element. Where possible, prefer limiting the
scope of searches this way for greater efficiency and faster returns.

We now have four ways to access elements. Which should we use? First, for single-element access,
document.getElementById should always be the fastest. But for multiple-element access, or if the element
you want doesn’t have an ID, consider using getElementsByTagName, then getElementsByClassName, then
querySelectorAll. But keep in mind that this only takes into account speed. Sometimes, ease of querying,
or accuracy of matched elements, or even the need for a live collection matters more than speed. Use the
method that suits your needs best.

http://www.w3.org/TR/CSS1/#basic-concepts
http://www.w3.org/TR/CSS21/selector.html
http://www.w3.org/TR/css3-selectors/

Chapter 5 ■ The Document Object Model

57

Waiting for the HTML DOM to Load
One of the difficulties when working with HTML DOM documents is that your JavaScript code is able to
execute before the DOM is completely loaded, potentially causing a number of problems in your code.
The order of operation inside a browser looks something like this:

	 1.	 HTML is parsed.

	 2.	 External style sheets are loaded.

	 3.	 Scripts are executed as they are parsed in the document.

	 4.	 HTML DOM is fully constructed.

	 5.	 Images and external content are loaded.

	 6.	 The page is finished loading.

Of course, all of this is largely dependent on the structure of your HTML. If you have a <script> tag
before the <link> tag that loads your CSS, then the JavaScript will load before the CSS does. (By the way,
do not do this. It is inefficient.) Scripts that are in the head and loaded from an external file are executed
before the HTML DOM is actually constructed. As mentioned previously, this is a significant problem
because all scripts executed in those two places won’t have access to the DOM. That is part of why we have
avoided putting our script tags in the <head> section. But even when we follow best practices and include
our <script> tags just before the closing <body> tag, there is the possibility that the DOM is not ready for
processing by our JavaScript. Thankfully, there exist a number of workarounds for this problem.

Waiting for the Page to Load
By far the most common technique is simply waiting for the entire page to load before performing any DOM
operations. This technique can be utilized by simply attaching a function, to be fired on page load, to the
load event of the window object. We will discuss events in greater detail in Chapter 6. Listing 5-4 shows an
example of executing DOM-related code after the page has finished loading.

Listing 5-4.  The addEventListener Function for Attaching a Callback to the Window load Property

// Wait until the page is loaded
// (Uses addEventListener, described in the next chapter)
window.addEventListener('load', function() {
 // Perform HTML DOM operations
 var theSquare = document.getElementById('square');
 theSquare.style.background = 'blue';
});

While this operation may be the simplest, it will always be the slowest. From the order of loading
operations, you will notice that the page being loaded is the last step taken. The load event does not fire
until all elements with src attributes have had their files downloaded. This means that if your page has
a significant number of images, videos, and so on, your users might be waiting quite a while until the
JavaScript finally executes. On the other hand, this is the most backward-compatible solution.

http://dx.doi.org/10.1007/9781430263913_6

Chapter 5 ■ The Document Object Model

58

Waiting for the Right Event
If you have a more modern browser, you can check for the DOMContentLoaded event. This event fires when
the document has been completely loaded and parsed. In our list, this matches roughly to “HTML DOM
is fully constructed.” But keep in mind that images, stylesheets, videos, audio, and the like may not have
completely loaded by the time this event fires. If you need your code to fire after a particular image or video
file has loaded, consider using the load event for that particular tag. If you need to wait until all elements
with a src attribute have downloaded their files, fall back to using the window load event. Look at Listing 5-5
for details.

Listing 5-5.  Using DOMContentLoaded

document.addEventListener('DOMContentLoaded' functionHandler);

Internet Explorer 8 does not support DOMContentLoaded, but you can check to see if the ready
state has changed on the document. Listing 5-6 shows how to detect whether the DOM has loaded in a
cross-browser–compatible fashion.

Listing 5-6.  Cross-browser DOMContentLoaded

if(document.addEventListener){
 document.addEventListener('DOMContentLoaded', function(){
 document.removeEventListner('DOMContenLoded',arguments.callee);
})else if(document.attachEvent){
 document.attachEvent('onreadystatechange', function(){
 document.detachEvent('onreadystatechange', arguments.callee,);
}

Getting the Contents of an Element
All DOM elements can contain one of three things: text, more elements, or a mixture of text and elements.
Generally speaking, the most common situations are the first and last. In this section you’re going to see the
common ways available for retrieving the contents of an element.

Getting the Text of an Element
Getting the text inside an element is probably the most confusing task for those who are new to the DOM.
However, it is also a task that works in both HTML DOM documents and XML DOM documents, so knowing
how to do this will serve you well. In the example DOM structure shown in Figure 5-3, there is a root <p>
element that contains a element and a block of text. The element itself also contains a
block of text.

www.allitebooks.com

http://www.allitebooks.org

Chapter 5 ■ The Document Object Model

59

Let’s look at how to get the text of each of these elements. The element is the easiest to start
with, since it contains only one text node and nothing else.

It should be noted that there exists a property called innerText that captures the text inside an element
in all non–Mozilla-based browsers. It’s incredibly handy in that respect. Unfortunately, because it doesn’t
work in a noticeable portion of the browser market, and it doesn’t work in XML DOM documents, you still
need to explore viable alternatives.

The trick with getting the text contents of an element is that you need to remember that text is not
contained within the element directly; it’s contained within the child text node, which may seem a bit
strange. For example, Listing 5-7 shows how to extract text from inside an element using the DOM; it is
assumed that the variable strongElem contains a reference to the element.

Listing 5-7.  Getting the Text Contents of the Element

// Non-Mozilla Browsers:
strongElem.innerText
 
// All platforms including Non-Mozilla browsers:
strongElem.firstChild.nodeValue

Now that you know how to get the text contents of a single element, you need to look at how to get the
combined text contents of the <p> element. In doing so, you might as well develop a generic function to
get the text contents of any element, regardless of what it actually contain, as shown in Listing 5-8. Calling
text(Element) will return a string containing the combined text contents of the element and all child
elements that it contains.

Listing 5-8.  A Generic Function for Retreiving the Text Contents of an Element

function text(e) {
 var t = '' ;
 // If an element was passed, get its children,
 // otherwise assume it's an array
 e = e.childNodes || e;
 

strong

p

hello

how are you
doing?

Figure 5-3.  A sample DOM structure containing both elements and text

Chapter 5 ■ The Document Object Model

60

 // Look through all child nodes
 for (var j = 0; j < e.length; j++) {
 // If it’s not an element, append its text value
 // Otherwise, recurse through all the element's children
 t += e[j].nodeType != 1 ?
 e[j].nodeValue : text(e[j].childNodes);
 }
 
 // Return the matched text
 return t;
}

With a function that can be used to get the text contents of any element, you can retrieve the text
contents of the <p> element, used in the previous example. The code to do so would look something like this:

// Get the text contents of the <p> Element
var pElm = document.getElementsByTagName ('p');
console.log(text(pElem));

The particularly nice thing about this function is that it’s guaranteed to work in both HTML and XML
DOM documents, which means you now have a consistent way of retrieving the text contents of any element.

Getting the HTML of an Element
Unlike getting the text inside an element, getting an element’s HTML is one of the easiest DOM tasks that
can be performed. Thanks to a feature developed by the Internet Explorer team, all modern browsers now
include an extra property on every HTML DOM element: innerHTML. With this property you can get all the
HTML and text inside of an element. Additionally, using the innerHTML property is very fast—often much
faster than doing a recursive search to find all the text contents of an element. However, it isn’t all roses.
It’s up to the browser to figure out how to implement the innerHTML property, and because there’s no true
standard for that, the browser can return whatever content it deems worthy. For example, here are some of
the weird bugs you can look forward to when using the innerHTML property:

•	 Mozilla-based browsers don’t return the <style> elements in an innerHTML statement.

•	 Internet Explorer 8 and lower returns its elements in all caps, which if you’re looking
for consistency can be frustrating.

•	 The innerHTML property is consistently available only as a property on elements
of HTML DOM documents; trying to use it on XML DOM documents will result in
retrieving null values.

Using the innerHTML property is straightforward; accessing the property gives you a string containing
the HTML contents of the element. If the element doesn’t contain any subelements and only text, the
returned string will contain only the text. To look at how it works, we’re going to examine the two elements
shown in Figure 5-2:

// Get the innerHTML of the element
// Should return "Hello"
strongElem.innerHTML
// Get the innerHTML of the <p> element
// Should return "Hello how are you doing?"
pElem.innerHTML

Chapter 5 ■ The Document Object Model

61

If you’re certain that your element contains nothing but text, this method could serve as a very simple
replacement to the complexities of getting the element text. On the other hand, being able to retrieve
the HTML contents of an element means that you can build some cool dynamic applications that take
advantage of in-place editing; more on this topic can be found in Chapter 10.

Working with Element Attributes
Next to retrieving the contents of an element, getting and setting the value of an element’s attribute is
one of the most frequent operations. Typically, the list of attributes that an element has is preloaded with
information collected from the XML representation of the element itself and stored in an associative array
for later access, as in this example of an HTML snippet inside a web page:

<form name="myForm" action="/test.cgi" method="POST">
 ...
</form>

Once loaded into the DOM and the variable formElem, the HTML form element would have an
associative array from which you could collect name/value attribute pairs. The result would look something
like this:

formElem.attributes = {
 name: 'myForm',
 action: '/test.cgi',
 method: 'POST'
};

Figuring out whether an element’s attribute exists should be absolutely trivial using the attributes array,
but there’s one problem: for whatever reason Safari doesn’t support this feature. Internet Explorer version 8
and above support it, as long as IE8 is in standards mode. So how are you supposed to find out if an attribute
exists? One possible way is to use the getAttribute function (covered in the next section) and test to see
whether the return value is null, as shown in Listing 5-9.

Listing 5-9.  Determining Whether an Element Has a Certain Attribute

function hasAttribute(elem, name) {
 return elem.getAttribute(name) != null;
}

With this function in hand, and knowing how attributes are used, you are now ready to begin retrieving
and setting attribute values.

Getting and Setting an Attribute Value
There are two methods to retrieve attribute data from an element, depending on the type of DOM document
you’re using. If you want to be safe and always use generic XML DOM–compatible methods, there are
getAttribute() and setAttribute(). They can be used in this manner:

// Get an attribute
document.getElementById('everywhere').getAttribute('id');
// Set an attribute value
document.getElementsByTagName('input')[0].setAttribute('value', 'Your Name');

http://dx.doi.org/10.1007/9781430263913_10

Chapter 5 ■ The Document Object Model

62

In addition to this standard getAttribute/setAttribute pair, HTML DOM documents have an
extra set of properties that act as quick getters/setters for your attributes. These are universally available
in modern DOM implementations (but only guaranteed for HTML DOM documents), so using them can
give you a big advantage when writing short code. The following example shows how you can use DOM
properties to both access and set DOM attributes:

// Quickly get an attribute
document.getElementsByTagName('input')[0].value;
 
// Quickly set an attribute
document.getElementsByTagName('div')[0].id = 'main';

There are a couple of strange cases with attributes that you should be aware of. The one that’s
most frequently encountered is that of accessing the class name attribute. If you are referencing the
name of a class directly, elem.className will let you set and get the name. However, if you’re using the
get/setAttribute method, you can refer to it as getAttribute('class'). To work with class names
consistently in all browsers you must access the className attribute using elem.className, instead of using
the more appropriately named getAttribute('class'). This problem also occurs with the for attribute,
which gets renamed to htmlFor. Additionally, it is also the case with a couple of CSS attributes: cssFloat
and cssText. This particular naming convention arose because words such as class, for, float, and text
are all reserved words in JavaScript.

To work around all these strange cases and simplify the process of dealing with getting and setting the
right attributes, you should use a function that will take care of all those particulars for you. Listing 5-10 shows a
function for getting and setting the values of element attributes. Calling the function with two parameters, such
as attr(element, id), returns that value of that attribute. Calling the function with three parameters, such as
attr(element, class, test), will set the value of the attribute and return its new value.

Listing 5-10.  Getting and Setting the Values of Element Attributes

function attr(elem, name, value) {
 // Make sure that a valid name was provided
 if (!name || name.constructor != String) return '' ;
 
 // Figure out if the name is one of the weird naming cases
 name = { 'for': 'htmlFor', 'className': 'class' }[name] || name;
 
 // If the user is setting a value, also
 if (typeof value != 'undefined') {
 // Set the quick way first
 elem[name] = value;
 
 // If we can, use setAttribute
 if (elem.setAttribute)
 elem.setAttribute(name,value);
 }
 
  // Return the value of the attribute
 return elem[name] || elem.getAttribute(name) || '';
}

Chapter 5 ■ The Document Object Model

63

Having a standard way to both access and change attributes, regardless of their implementation, is a
powerful tool. Listing 5-11 shows some examples of how you could use the attr function in a number of
common situations to simplify the process of dealing with attributes.

Listing 5-11.  Using the attr Function to Set and Retreive Attribute Values from DOM Elements

// Set the class for the first <h1> Element
attr(document.getElementByTagName('h1')[0], 'class', 'header');
 
// Set the value for each <input> element
var input = document.getElementByTagName('input');
for (var i = 0; i < input.length; i++) {
 attr(input[i], 'value', '');
}
 
// Add a border to the <input> Element that has a name of 'invalid'
var input = document.getElementByTagName('input');
for (var i = 0; i < input.length; i++) {
 if (attr(input[i], 'name') == 'invalid') {
 input[i].style.border = '2px solid red';
 }
}

Up until now, we’ve only discussed getting/setting attributes that are commonly used in the DOM
(ID, class, name, and so on). However, a very handy technique is to set and get nontraditional attributes.
For example, you could add a new attribute (which can only be seen by accessing the DOM version of an
element) and then retrieve it again later, all without modifying the physical properties of the document. For
example, let’s say that you want to have a definition list of items, and whenever a term is clicked have the
definition expand. The HTML for this setup would look something like Listing 5-12.

Listing 5-12.  An HTML Document with a Definition List, with the Definitions Hidden

<html>
<head>
 <title>Expandable Definition List</title>
 <style>dd { display: none; }</style>
</head>
<body>
 <h1>Expandable Definition List</h1>
  
 <dl>
 <dt>Cats</dt>
 <dd>A furry, friendly, creature.</dd>
 <dt>Dog</dt>
 <dd>Like to play and run around.</dd>
 <dt>Mice</dt>
 <dd>Cats like to eat them.</dd>
 </dl>
</body>
</html>

Chapter 5 ■ The Document Object Model

64

We’ll talk more about the particulars of events in Chapter 6, but for now we’ll try to keep our event code
simple enough. What follows is a quick script that allows you to click the terms and show (or hide) their
definitions. Listing 5-13 shows the code required to build an expandable definition list.

Listing 5-13.  Allowing for Dynamic Toggling to the Definitions

// Wait until the DOM is Ready
document.addEventListener('DOMContentLoaded', addEventClickToTerms);
 
// Watch for a user click on the term
function addEventClickToTerms(){
 var dt = document.getElementsByTagName('dt');
 for (var i = 0; i < dt.length; i++) {
 dt[i].addEventListener('click', checkIfOpen);
 }
}
 
// See if the definition is already open or not
//Need two nextSiblings because the first sibling is a text node (the words that were
clicked on).
//If it's never been clicked, the style will be blank ''. F it has been, the style will be
'none', so we check for both with an if statement.
function checkIfOpen(e){
 if(e.target.nextSibling.nextSibling.style.display == '' || e.target.nextSibling.
nextSibling.style.display == 'none'){
 e.target.nextSibling.nextSibling.style.display = 'block';
 }else{
 e.target.nextSibling.nextSibling.style.display = 'none';
 }
}

Now that you know how to traverse the DOM and how to examine and modify attributes, you need to
learn how to create new DOM elements, insert them where they are needed, and remove elements that you
no longer need.

Modifying the DOM
By knowing how to modify the DOM, you can do anything from creating custom XML documents on the fly
to building dynamic forms that adapt to user input; the possibilities are nearly limitless. Modifying the DOM
comes in three steps: first you need to learn how to create a new element, then you need to learn how to
insert it into the DOM, then you need to learn how to remove it again.

Creating Nodes Using the DOM
The primary method of modifying the DOM is the createElement function, which gives you the ability to
create new elements on the fly. However, this new element is not immediately inserted into the DOM when
you create it (a common point of confusion for people just starting with the DOM). First, we’ll focus on
creating a DOM element.

http://dx.doi.org/10.1007/9781430263913_6

Chapter 5 ■ The Document Object Model

65

The createElement method takes one parameter, the tag name of the element, and returns the virtual
DOM representation of that element—no attributes or styling included. If you’re developing applications
that use XSLT-generated XHTML pages (or if the applications are XHTML pages served with an accurate
content type), you have to remember that you’re actually using an XML document and that your elements
need to have the correct XML namespace associated with them. To work around this seamlessly, you can
have a simple function that quietly tests to see whether the HTML DOM document you’re using has the
ability to create new elements with a namespace (a feature of XHTML DOM documents). If this is the case,
you must create a new DOM element with the correct XHTML namespace, as shown in Listing 5-14.

Listing 5-14.  A Generic Function for Creating a New DOM Element

function create(elem) {
 return document.createElementNS ?
 document.createElementNS('http://www.w3.org/1999/xhtml', elem) :
 document.createElement(elem);
}

For example, using the previous function you can create a simple <div> element and attach some
additional information to it:

var div = create('div');
div.className = 'items';
div.id = 'all';

Additionally, it should be noted that there is a DOM method for creating new text nodes, called
createTextNode. It takes a single argument, the text that you want inside the node, and it returns the created
text node.

Using the newly created DOM elements and text nodes, you can now insert them into your DOM
document right where you need them.

Inserting into the DOM
Inserting into the DOM is confusing and can feel clumsy at times, even for those experienced with the DOM.
You have two functions in your arsenal that you can use to get the job done.

The first function, insertBefore, allows you to insert an element before another child element. When
you use the function, it looks something like this:

parentOfBeforeNode.insertBefore(nodeToInsert, beforeNode);

The mnemonic that we use to remember the order of the arguments is the phrase “You’re inserting the
first element, before the second.”

Now that you have a function to insert nodes (including both elements and text nodes) before other
nodes, you should be asking yourself: “How do I insert a node as the last child of a parent?” There is
another function you can use, called appendChild, that allows you to do just that. appendChild is called
on an element, appending the specified node to the end of the list of child nodes. Using the function looks
something like this:

parentElem.appendChild(nodeToInsert);

http://www.w3.org/1999/xhtml

Chapter 5 ■ The Document Object Model

66

Listing 5-15 is an example of how you can use both insertBefore and appendChild in your application.

Listing 5-15.  A Function for Inserting an Element Before Another Element

document.addEventListener(DOMContentLoaded, 'addElement');
 
function addElement(){
 //Grab the ordered list that is in the document
 //Remember that getElementById returns an array like object
 
 var orderedList = document.getElementById('myList');
 
 //Create an , add a text node then append it to
 var li = document.createElement('li');
 li.appendChild(document.createTextNode('Thanks for visiting'));
 
 //element [0] is how we access what is inside the orderedList
 orderedList.insertBefore(li, orderedList[0]);
}

The instant you “insert” this information into the DOM (with either insertBefore or appendChild) it
will be immediately rendered and seen by the user. Because of this, you can use it to provide instantaneous
feedback. This is especially helpful in interactive applications that require user input.

Now that you’ve seen how to create and insert nodes using nothing but DOM-based methods, it should
be especially beneficial to look at alternative methods of injecting content into the DOM.

Injecting HTML into the DOM
A technique that is even more popular than creating normal DOM elements and inserting them into the DOM
is that of injecting HTML straight into the document. The simplest method for achieving this is by using the
previously discussed innerHTML method. Besides being a way to retrieve the HTML inside an element, it is also
a way to set the HTML inside an element. As an example of its simplicity, let’s assume that you have an empty
 element and you want to add some s to it; the code to do so would look like this:

// Add some LIs to an OL element
document.getElementsByTagName('ol')[0].innerHTML = "Cats.Dogs.Mice.";

Isn’t that so much simpler than obsessively creating a number of DOM elements and their associated
text nodes? You’ll be happy to know that (according to http://www.quirksmode.org) it’s much faster than
using the DOM methods, too. It’s not all perfect, however—there are a number of tricky problems that exist
with using the innerHTML injection method:

•	 As mentioned previously, the innerHTML method doesn’t exist in XML DOM
documents, meaning that you’ll have to continue to use the traditional DOM
creation methods.

•	 XHTML documents that are created using client-side XSLT don’t have an innerHTML
method, as they, too, are pure XML documents.

•	 innerHTML completely removes any nodes that already exist inside the element,
meaning that there’s no way to conveniently append or insert before, as we can with
the pure DOM methods.

http://www.quirksmode.org/

Chapter 5 ■ The Document Object Model

67

The last point is especially troublesome, as inserting before another element or appending onto the end
of a child list is a particularly useful feature. Let’s look at how it can be done in Listing 5-16 using the same
methods we were using before.

Listing 5-16.  Adding New DOM Nodes to an Existing Ordered List

document.addEventListener('DOMContentLoaded', activateButtons);
 
function activateButtons(){
 //ad event listeners to buttons
 var appendBtn = document.querySelector('#appendButon');
 appendBtn.addEventListener('click', appendNode);
  
 var addBtn = document.querySelector('#addButton');
 addBtn.addEventListener('click', addNode);
}
  
function appendNode(e){
  
 //get the s that exist and make a new one.
 var listItems = document.getElementsByTagName('li');
 var newListItem = document.createElement('li');
 //append a new text node
 newListItem.appendChild(document.createTextNode('Mouse trap.'));
  
 //append to existing list as the new 4th item
 listItems[2].appendChild(newListItem);
}
 
function addNode(e){
  
 //get the whole list
 var orderedList = document.getElementById('myList');
  
 //get all the s
 var listItems = document.getElementsByTagName('li');
 //make a new and attach text node
 var newListItem = document.createElement('li');
 newListItem.appendChild(document.createTextNode('Zebra.'));
 //add to list, pushing the 2nd one down to 3rd
 orderedList.insertBefore(newListItem,listItems[1]);
}

Using this example you can see that it is not very difficult to make changes to an existing document.
However, what if you want to move the other way and remove nodes from the DOM? As always, there’s
another method to handle that, too.

Chapter 5 ■ The Document Object Model

68

Removing Nodes from the DOM
Removing nodes from the DOM occurs nearly as frequently as creating and inserting them. When you’re
creating a dynamic form asking for an unlimited number of items, for example, it becomes important to
allow the user to be able to remove portions of the page that they no longer wish to deal with. The ability to
remove a node is encapsulated into one function: removeChild. It’s used just like appendChild, but it has the
opposite effect. The function in action looks something like this:

NodeParent.removeChild(NodeToRemove);

With this in mind, you can create two separate functions to quickly remove nodes. The first removes a
single node, as shown in Listing 5-17.

Listing 5-17.  Function for Removing a Node from the DOM

// Remove a single Node from the DOM
function remove(elem) {
 if (elem) elem.parentNode.removeChild(elem);
}

Listing 5-18 shows a function for removing all child nodes from an element, using only a reference to
the DOM element.

Listing 5-18.  A Function for Removing All Child Nodes from an Element

// Remove all of an Element’s children from the DOM
function empty(elem) {
 while (elem.firstChild)
 remove(elem.firstChild);
}

As an example, let’s say you want to remove an that you added in a previous section, assuming that
you’ve already given the user enough time to view the and that it can be removed without implication.
Listing 5-19 shows the JavaScript code that you can use to perform such an action, creating a desirable result.

Listing 5-19.  Removing Either a Single Element or All Elements from the DOM

// Remove the last from an
var listItems = document.getElementsByTagName('li');
remove(listItems[2]);
 
// The preceding will convert this:

 Learn Javascript.
 ???
 Profit!

// Into this:

 
 Learn Javascript.
 ???

 

www.allitebooks.com

http://www.allitebooks.org

Chapter 5 ■ The Document Object Model

69

// If we were to run the empty() function instead of remove()
var orderedList = document.getElementById('myList');
empty(orderedList);
// It would simply empty out our , leaving:

Handling White Space in the DOM
Let’s go back to our example HTML document. Previously, you attempted to locate the single <h1> element
and had difficulty because of the extraneous text nodes. That may be acceptable for one single element, but
what if you want to find the next element after the <h1> element? You still hit the infamous white space bug,
and you’ll need to do .nextSibling.nextSibling to skip past the end lines between the <h1> and the <p>
elements. All is not lost, though. There is one technique that can act as a workaround for the white-space
bug, shown in Listing 5-20. This particular technique removes all white-space–only text nodes from a DOM
document, making it easier to traverse. Doing this will have no noticeable effect on how your HTML renders,
but it will make it easier for you to navigate by hand. It should be noted that the results of this function are
not permanent and will need to be rerun every time the HTML document is loaded.

Listing 5-20.  A Workaround for the White-Space Bug in XML Documents

function cleanWhitespace(element) {
 // If no element is provided, do the whole HTML document
 element = element || document;
 // Use the first child as a starting point
 var cur = element.firstChild;
 // Go until there are no more child nodes
 while (cur != null) {
 // If the node is a text node, and it contains nothing but whitespace
 if (cur.nodeType == 3 && ! /\S/.test(cur.nodeValue)) {
 // Remove the text node
 element.removeChild(cur);
 // Otherwise, if it’s an element
 } else if (cur.nodeType == 1) {
 // Recurse down through the document
 cleanWhitespace(cur);
 }
 cur = cur.nextSibling; // Move through the child nodes
 }
}

Let’s say that you want to use this function in your example document to find the element after the first
<h1> element. The code to do so would look something like this:

cleanWhitespace();
// Find the H1 Element
document.documentElement
 .firstChild // Find the Head Element
 .nextSibling // Find the <body> Element
 .firstChild // Get the H1 Element
 .nextSibling // Get the adjacent Paragraph

Chapter 5 ■ The Document Object Model

70

This technique has both advantages and disadvantages. The greatest advantage is that you get to
maintain some level of sanity when trying to navigate your DOM document. However, this technique is
particularly slow, considering that you have to traverse every single DOM element and text node looking
for the text nodes that contain nothing but white space. If you have a document with a lot of content in it, it
could significantly slow down the loading of your site. Additionally, every time you inject new HTML into
your document, you’ll need to rescan that portion of the DOM, making sure that no additional space-filled
text nodes were added.

One important aspect of this function is the use of node types. A node’s type can be determined by
checking its nodeType property for a particular value. We have a list of types at the beginning of this chapter.
So you can see are a number of possible values, but the three that you’ll encounter the most are the following:

Element (nodeType = 1): This matches most elements in an XML file.
For example, , <a>, <p>, and <body> elements all have a nodeType of 1.

Text (nodeType = 3): This matches all text segments within your document.
When navigating through a DOM structure using previousSibling and
nextSibling, you’ll frequently encounter pieces of text inside and between
elements.

Document (nodeType = 9): This matches the root element of a document.
For example, in an HTML document it’s the <html> element.

Additionally, you can use constants to refer to the different DOM node types (in version 9 of IE and
later). For example, instead of having to remember 1, 3, or 9, you could just use document.ELEMENT_NODE,
document.TEXT_NODE, or document.DOCUMENT_NODE. Since constantly cleaning the DOM’s white space has
the potential to be cumbersome, you should explore other ways to navigate a DOM structure.

Simple DOM Navigation
Using the principle of pure DOM navigation (having pointers in every navigable direction), you can develop
functions that might better suit you when navigating an HTML DOM document. This particular principle
reflects the fact that most web developers only need to navigate around DOM elements and very rarely
navigate through sibling text nodes. To aid you, there are a number of helpful functions that can be used in
place of the standard previousSibling, nextSibling, firstChild, lastChild, and parentNode. Listing 5-21
shows a function that returns the element previous to the current element, or null if no previous element is
found, similar to the previousSibling element property.

Listing 5-21.  A Function for Finding the Previous Sibling Element in Relation to an Element

function prev(elem) {
 do {
 elem = elem.previousSibling;
 } while (elem && elem.nodeType != 1);
 return elem;
}

Listing 5-22 shows a function that returns the element next to the current element, or null if no next
element is found, similar to the nextSibling element property.

Chapter 5 ■ The Document Object Model

71

Listing 5-22.  A Function for Finding the Next Sibling Element in Relation to an Element

function next(elem) {
 do {
 elem = elem.nextSibling;
 } while (elem && elem.nodeType != 1);
 return elem;
}

Listing 5-23 shows a function that returns the first element child of an element, similar to the
firstChild element property.

Listing 5-23.  A Function for Finding the First Child Element of an Element

function first(elem) {
 elem = elem.firstChild;
 return elem && elem.nodeType != 1 ?
 next (elem) : elem;
}

Listing 5-24 shows a function that returns the last element child of an element, similar to the lastChild
element property.

Listing 5-24.  A Function for Finding the Last Child Element of an Element

function last(elem) {
 elem = elem.lastChild;
 return elem && elem.nodeType != 1 ?
 prev (elem) : elem;
}

Listing 5-25 shows a function that returns the parent element of an element, similar to the parentNode
element property. You can optionally provide a number to navigate up multiple parents at a time—for
example, parent(elem,2) is equivalent to parent(parent(elem)).

Listing 5-25.  A Function for Finding the Parent of an Element

function parent(elem, num) {
 num = num || 1;
 for (var i = 0; i < num; i++)
 if (elem != null) elem = elem.parentNode;
 return elem;
}

Using these new functions you can quickly browse through a DOM document without having to worry
about the text in between each element. For example, to find the element next to the <h1> element, as
before, you can now do the following:

// Find the Element next to the <h1> Element
next(first(document.body))

Chapter 5 ■ The Document Object Model

72

You should notice two things with this code. First, there is a new reference: document.body. All modern
browsers provide a reference to the <body> element inside the body parameter of an HTML DOM document.
You can use this to make your code shorter and more understandable. The other thing you might notice is
that the way the functions are written is very counterintuitive. Normally, when you think of navigating you
might say, “Start at the <body> element, get the first element, and then get the next element,” but with the
way it’s physically written, it seems backward.

Summary
In this chapter we talked a lot about what the DOM is and how it’s structured. We also covered relationships
between nodes, node types and how to access elements using JavaScript. When we have access to these
elements we can change the attributes of them by using element.get/setAttribute(). We also discussed
creating and adding new nodes to the DOM, handing white space, and navigating though the DOM. In the
next chapter we will talk about events with JavaScript.

73

Chapter 6

Events

It was the best of times; it was the worst of times. It was the age of Netscape; it was the age of Internet
Explorer. The new event handlers before us made it the spring of hope. The fact that browsers implemented
event handling differently left us in a winter of despair. But in recent years, the sun has shone clear and
bright, and the event-handling API has standardized across browsers (most aspects of the API, anyway).
The ultimate goal of writing usable JavaScript code has always been to have a web page that will work for the
users, no matter what browser they use or what platform they are on. For too long, this has meant writing
event-handling code that managed two different event-handling models. But with the advent of modern
browsers, we developers never have to worry about that again.

The concept of events in JavaScript has advanced through the years to the reliable, usable plateau where
we now stand. Once Internet Explorer implemented the W3C model for event handling in version 8, we could
stop writing libraries for managing differences between browsers and instead focus on doing interesting and
amazing things with events. Eventually, this leads us toward the powerful Model-View-Controller (MVC)
model for JavaScript, which we will discuss in a later chapter.

In this chapter we will start with an introduction to how events work in JavaScript. Following this
theory with a practical application, we will look at how to bind events to elements. Then we will examine the
information the event model provides and how you can best control it. Of course, we also need to cover the
types of events available to us. We conclude with event delegation and a few bits of advice about events and
best practices.

Introduction to JavaScript Events
If you look at the core of any JavaScript code, you’ll see that events are the glue that holds everything
together. Whether using a full MVC-based single-page application or simply using JavaScript to add some
functionality to a page or two, event handlers are how the user communicates with our code. Our data will
be bound in JavaScript, probably as object literals. We will represent this data in the DOM, using it as our
view. Events, raised from the DOM, handled by JavaScript code, capture user interactions and guide the flow
of our application. The combination of using the DOM and JavaScript events is the fundamental union that
makes all modern web applications possible.

The Stack, the Queue, and the Event Loop
In many programming languages, including JavaScript, there are metaphors which describe the flow of
control, elements in memory, and planning for what happens next. The code we run, whether from the
global context, directly as a function, or as a function called from (or within!) another function, is known as
the stack. If you are running a function foo, which calls a function bar, then the stack is three frames deep
(global, foo, and then bar). What’s up after this code runs? That’s the province of the queue, which manages

Chapter 6 ■ Events

74

the next set of code to run after the current stack is resolved. Any time the stack empties, it goes to the queue
and picks up a new bit of code to run. These are the elements that are critical to our understanding of events.
There is a third element, though: the heap. This is where variables and functions and other named objects
live. When JavaScript needs to access an object, a function, or a variable, it goes to the heap to get access
to the information. For us, the heap is less relevant, as it does not play as big a role in event handling as the
stack and the queue do.

How do the stack and the queue factor into event handling? To answer this question, we need to
introduce the event loop. This is a collaboration between two threads in your browser: the event-tracking
thread, and the JavaScript thread.

■■ Note  Remember that, except for web workers, JavaScript is single-threaded.

These threads work together to capture user events and then sort them according to the events for
which we have registered events handlers. This process is collectively known as the event loop. Each time it
runs, user events are checked to see if there are event handlers registered against them. If not, then nothing
happens. If there are event handlers, the loop pushes them onto the top of JavaScript’s queue, so that the
handler is executed at JavaScript’s earliest convenience.

And there’s the rub. The queue manages the notion of “earliest convenience.” Generally, this means
after the current stack has been resolved. This may give event handling an asynchronous feel, particularly if
the stack is many frames deep or contains long-running code. Events are allowed to jump to the head of the
queue, but they may not interrupt the stack. Most of the time, the distinction is immaterial to developers,
because the duration between when an event fires, a stack frame resolves, and event-handling code runs
may not be perceptible in human terms. Nonetheless, it is important for us to understand that the event loop
only jumps events to the front of the line; it does not push currently running code out of the way.

We now understand how the browser, the queue, and the stack work together to determine when an
event handler will run. Soon, we will look at the mechanics of binding events to event handlers. But there is
one architectural issue we need to cover first. Consider this: If you click a link in a list item in an unordered
list in a paragraph in a div in the body of your HTML document, which of those elements handles that
event? Could more than one element handle the event? If so, which element gets the event first? To answer
this question, we’ll need to look at event phases.

Event Phases
JavaScript events are executed in two phases, called capturing and bubbling. What this means is that when
an event is fired from an element (for example, the user clicking a link, causing the click event to fire), the
elements that are allowed to handle it, and in what order, vary. You can see an example of the execution
order in Figure 6-1. It shows which event handlers are fired and in what order, whenever a user clicks the first
<a> element on the page.

Chapter 6 ■ Events

75

Looking at this simple example of someone clicking a link, you can see the order of execution for
an event. Imagine that the user clicked the <a> element; the click handler for the document is fired first,
then the <body>’s handler, then the <div>’s handler, and so on, down to the <a> element, a cycle called the
capturing phase. Once that finishes, it moves back up the tree again, and the , , <div>, <body>, and
document event handlers are all fired, in that order.

There are very specific historical reasons why event handling is built this way. When Netscape
introduced event handling, it decided that event capturing should be used. When Internet Explorer caught
up with its own version of event handling, it went with event bubbling. It was the time of the browser wars,
and diametrically opposed architectural choices like this were commonplace. They hampered development
of JavaScript for years, as programmers had to waste time maintaining libraries that normalized event
handling (and some of the DOM, and Ajax, and a few other things!).

The good news is that we now live in the future. Modern browsers allow users to choose at which phase to
capture events. In fact, you can assign event handlers at both phases, if you so choose. It’s a brave new world.

Regardless of at which phase you bind events, two things should be immediately apparent. First,
we discussed the idea that you might click on an anchor tag within a list item. Shouldn’t that send you
off to wherever the href attribute for the link points? Maybe there is some way to override that behavior.
Additionally, consider the general premise of event phases: whether capturing or bubbling, an event is
communicated through the DOM hierarchy. What if we do not want that event to be communicated? Can we
prevent an event from being passed up (or down) the hierarchy?

But we are getting ahead of ourselves. We have not even discussed how to bind event listeners yet! Let’s
take care of that right now.

Binding Event Listeners
The best way to bind event handlers to elements has been a constantly evolving quest in JavaScript. It began with
browsers forcing users to write their event-handler code inline, in the HTML document. First efforts are thought
of as drafts or alpha code for a reason! It turns out that, later on, when we want to follow established best practices
like separating logic from presentation, using in-line event handlers is, let’s say suboptimal. OK, it’s severely
problematic. Try to imagine managing a codebase where half of your critical paths depend on code embedded in
your presentation layer. Not something that the professional JavaScript programmer wants to do! Thankfully,
that technique has been obviated by evolving browser APIs, as well as evolving standards of best practices.

Figure 6-1.  The two phases of event handling

Chapter 6 ■ Events

76

When Netscape and Internet Explorer were actively competing with each other, they each developed
separate, but very similar, event registration models. In the end, Netscape’s model was modified to become
a W3C standard, and Internet Explorer’s stayed the same. Until Internet Explorer 9, that is, when Microsoft
finally caved and implemented what is generally called W3C event handling. In fact, it went further and
deprecated its older API for event handling. This was a boon for developers, as now we no longer had to
write and maintain libraries dealing with the quibbling difficulties between browsers.

Today, there are two ways of reliably registering events. The traditional method is an offshoot of the old
inline way of attaching event handlers, but it’s reliable and works consistently, even on older browsers. The
other method is to use the W3C standard for registering events. We will, of course, look at both, as you are
likely to encounter both.

Traditional Binding
The traditional way of binding events is the simplest way of binding event handlers. This takes advantage of
the fact that event handlers are properties of DOM elements. To use this method, you attach a function as a
property to the DOM element that you wish to watch. Retrieve an element with document.getElementById
(or any of the other element-retrieving functions we discussed in Chapter 5). Let’s assume that you want to
watch for click events. Simply assign a function to the onclick property of the retrieved element. Done!

For the examples in this chapter, we will use a standard HTML page with many targetable elements.
The content for the page is presented in Listing 6-1.

Listing 6-1.  Example HTML Code Used for Event Handling

<!DOCTYPE html>
<html>
<head lang="en">
 <meta charset="UTF-8">
 <title>Event Handling</title>
 <link rel="stylesheet" href="school.css"/>
</head>
<body>
 
<div id="main">
 <nav id="navbar">

 Students

 <li id="Academics">Academics
 <li id="Athletics">Athletics
 <li id="Extracurriculars">Extracurriculars

 Faculty

 <li id="Frank Walsh">Frank Walsh
 <li id="Diane Walsh">Diane Walsh
 <li id="John Mullin">John Mullin
 <li id="Lou Garaventa">Lou Garaventa

http://dx.doi.org/10.1007/9781430263913_5

Chapter 6 ■ Events

77

 <li id="Dan Tully">Dan Tully
 <li id="Emily Su">Emily Su

 </nav>
 <div id="welcome">
 <h1>Welcome to the School of JavaScript</h1>
 <h3 id="welcome-header">Click here for a welcome message!</h3>
 �<p id="welcome-content">Welcome to the School of JavaScript. Here, you will find many

 examples of JavaScript,
 �taught by our most esteemed faculty. <span

id="disclaimer">Please note that these are only examples, and are not
 necessarily production-ready code.</p>
 </div>
 <hr/>
 <div id="form-container">
 <h2>Contact Form</h2>
 
 �<p>Thank you for your interest in the School of JavaScript. Please fill out the form

below so we can send you even more materials!</p>
 
 <form id="main-form">

 <label for="firstName">First Name: </label><input id="firstName" type="text"/>
 <label for="lastName">Last Name: </label><input id="lastName" type="text"/>
 <label for="city">City: </label><input id="city" type="text"/>
 <label for="state">State: </label><input id="state" type="text"/>
 <label for="postCode">Postal Code: </label><input id="postCode" type="text"/>
 <label for="comments">Comments: </label>

 <textarea name="" id="comments" cols="30" rows="10"></textarea>

 <input type="submit"/> <input type="reset"/>

 </form>
 </div>
</div>
 
</body>
</html>

As you can see, there are many elements in the front page for our imaginary School of JavaScript. The
navbar will eventually have appropriate event handling to function as a menu, we will add event handling
to the form for simple validation (with more complex validations coming in Chapter 8), and we also plan to
have a bit of interactivity in the welcome message.

For now, let’s do something simple. When we click into the firstName field, let’s record that on the
console, and then set a yellow background for our element. Obviously, we are planning to do more soon, but
baby steps first! Let’s bind this event with traditional event handling (Listing 6-2).

http://dx.doi.org/10.1007/9781430263913_8

Chapter 6 ■ Events

78

Listing 6-2.  Binding a Click Event the Traditional Way

// Retrieve the firstName element
var firstName = document.getElementById('firstName');
 
// Attach the event handler
firstName.onclick = function() {
 console.log('You clicked in the first name field!');
 firstName.style.background = 'yellow';
};

Terrific! It works. But it lacks a certain something. That something is flexibility. At this rate, we would
have to write a separate event-handling function for each of the form fields. Tedious! Could there be a way to
get a reference to the element that fired the event?

In fact, there are two ways! The first, and most straightforward, is to provide an argument in your
event-handling function, as shown in Listing 6-3. This argument is the event object, which contains
information about the event that just fired. We will be looking at the event object in greater detail shortly.
For now, know that the target property of that event object refers to the DOM element that emitted the
event in the first place.

Listing 6-3.  Event Binding with an Argument

// Retrieve the firstName element
var firstName = document.getElementById('firstName');
 
// Attach the event handler
firstName.onclick = function(e) {
 console.log('You clicked in the ' + e.target.id + ' field!');
 e.target.style.background = 'yellow';
};

Since e.target points to the firstName field, and is, in fact, a reference to the DOM element for the
firstName field, we can check its id property to see what field we clicked in. More importantly, we can
change its style property as well! This means we can broaden this event handler to work on just about any of
the text fields in the form.

There is an alternative to using the event object explicitly. We could also use the this keyword in the
function, as shown in Listing 6-4. In the context of an event-handling function, this refers to the emitter of the
event. Put another way, event.target and this are synonymous, or, at least, they point to the same thing.

Listing 6-4.  Event Binding Using the this Keyword

// Retrieve the firstName element
var firstName = document.getElementById('firstName');
 
// Attach the event handler
firstName.onclick = function() {
 console.log('You clicked in the ' + this.id + ' field!');
 this.style.background = 'yellow';
};

Chapter 6 ■ Events

79

Which should you use? The event object gives you all of the information you need, while the this
object is somewhat limited, as it only points to the DOM element that emitted the event. There is no cost in
using one over the other, so, in general, we recommend preferring the event object, as you will always have
all the details of the event immediately available. However, there are some cases where the this object is
still useful. The target always refers to the closest element emitting the event. Look at the <div> with the ID
welcome back in Listing 6-1. Let’s say we added a mouseover event handler to change the background color
when we hovered over the element, and a mouseout event handler to change the background color back
when the mouse leaves the <div>. If you make the style change on e.target, the event will fire for each of
the subelements (welcome-header, welcome-content, and more)! On the other hand, if you make the style
change on this, the change is made only on the welcome <div>. When we discuss event delegation, we will
cover this difference in greater detail.

Advantages of Traditional Binding
Traditional binding has the following advantages:

•	 The biggest advantage of using the traditional method is that it is incredibly simple
and consistent, in that you’re pretty much guaranteed that it will work the same no
matter what browser you use it in.

•	 When handling an event, the this keyword refers to the current element, which can
be useful (as demonstrated in Listing 6-4).

Disadvantages of Traditional Binding
It also has some disadvantages, however:

•	 The traditional method allows no control over event capturing or bubbling. All
events bubble, and there is no possibility of changing to event capturing.

•	 It’s only possible to bind one event handler to an element at a time. This has the
potential to cause confusing results when working with the popular window.onload
property (effectively overwriting other pieces of code that have used the same
method of binding events). An example of this problem is shown in Listing 6-5,
where an event handler overwrites an earlier event handler.

Listing 6-5.  Event Handlers Overwriting Each Other

// Bind your initial load handler
window.onload = myFirstHandler;
 
// somewhere, in another library that you've included,
// your first handler is overwritten
// only 'mySecondHandler' is called when the page finishes loading
window.onload = mySecondHandler;

•	 The event object argument is not available in Internet Explorer 8 and older. Instead,
you would have to use window.event.

Knowing that it’s possible to blindly override other events, you should probably opt to use the
traditional means of event binding only in simple situations, where you can trust all the other code that is
running alongside yours. One way to get around this troublesome mess, however, is to use the W3C event-
binding method implemented by modern browsers.

Chapter 6 ■ Events

80

DOM Binding: W3C
The W3C’s method of binding event handlers to DOM elements is the only truly standardized means of
doing so. With that in mind, every modern browser supports this way of attaching events. Internet Explorer
8 and older do not, but old versions of Internet Explorer are hardly modern browsers. If you must design for
those, consider using traditional binding.

The code for attaching a new handler function is simple. It exists as a function available on every DOM
element. The function is named addEventListener and takes three parameters: the name of the event
(such as click; note the lack of the prefix on), the function that will handle the event, and a Boolean flag to
enable or disable event capturing. An example of addEventListener in use is shown in Listing 6-6.

Listing 6-6.  Sample Code That Uses the W3C Way of Binding Event Handlers

// Retrieve the firstName element
var firstName = document.getElementById('firstName');
 
// Attach the event handler
firstName.addEventListener('click', function (e) {
 console.log('You clicked in the ' + e.target.id + ' field!');
 e.target.style.background = 'yellow';
});

Note that in this example, we are not passing a third argument to addEventListener. In this case, the
third argument defaults to false, meaning that event bubbling will be used. If we had wanted to use event
capturing, we could have passed a true value explicitly.

Advantages of W3C Binding
The advantages to the W3C event-binding method are the following:

•	 This method supports both the capturing and bubbling phases of event handling.
The event phase is toggled by setting the last parameter of addEventListener to false
(the default, for bubbling) or true (for capturing).

•	 Inside the event-handler function, the this keyword refers to the current element, as
it did in traditional event handling.

•	 The event object is always available in the first argument of the handling function.

•	 You can bind as many events to an element as you wish, with no overwriting
previously bound handlers. Handlers are stacked internally by JavaScript and run in
the order that they were registered.

Disadvantage of W3C Binding
The W3C event-binding method has only one disadvantage:

•	 It does not work in Internet Explorer 8 and older. IE uses attachEvent with a
similar syntax.

Chapter 6 ■ Events

81

Unbinding Events
Now that we have bound events, what if we want to unbind events? Perhaps that button we tied a click
event handler to is now disabled. Or we no longer need to highlight that div when hovering over it.
Disconnecting an event and its handler is relatively simple.

For traditional event handling, simply assign an empty string or null to the event handler, as shown here:

document.getElementById('welcome-content').onclick = null;

Not too difficult, right?
The situation with W3C event handling is somewhat more complex. The relevant function is

removeEventListener. Its three arguments are the same: the type of event to remove, the associated handler,
and a true/false value for capture or bubble mode. There is a catch, though. First and foremost, the function
must be a reference to the same function that was assigned with addEventListener. Not just the same lines
of code, but the same reference. So if you assigned an anonymous, in-line function with addEventListener,
you cannot remove it.

■■ Tip  You should always use a named function for an event handler if you think you might need to remove
that handler later on.

In a similar vein, if you set the third argument when you originally invoked addEventListener,
you must set it again in removeEventListener. If you leave the argument off, or give it the wrong value,
removeEventListener will silently fail. Listing 6-7 has an example of unbinding an event handler.

Listing 6-7.  Unbinding an Event Handler

// Assume we have two buttons 'foo' and 'bar'
var foo = document.getElementById('foo');
var bar = document.getElementById('bar');
 
// When we click on foo, we want to log to the console "Clicked on foo!"
function fooHandler() {
 console.log('Clicked on the foo button!');
}
 
foo.addEventListener('click', fooHandler);
 
// When we click on bar, we want to _remove_ the event handler for foo.
function barHandler() {
 console.log('Removing event handler for foo....');
 foo.removeEventListener('click', fooHandler);
}
 
bar.addEventListener('click', barHandler);

Chapter 6 ■ Events

82

Common Event Features
JavaScript events have a number of relatively consistent features that give you more power and control
when developing. The simplest and oldest concept is that of the event object, which provides you with a set
of metadata and contextual functions so you can deal with things such as mouse events and key presses.
Additionally, there are functions that can be used to modify the normal capture/bubbling flow of an event.
Learning these features inside and out can make your life much simpler.

The Event Object
One standard feature of event handlers is some way to access an event object, which contains contextual
information about the current event. This object serves as a very valuable resource for certain events. For
example, when handling key presses you can access the keyCode property of the object to get the specific key
that is pressed. There are some subtle differences between event objects, but we will address those later in
the chapter. For now, let us address two dangling issues: event propagation and default behavior.

Canceling Event Bubbling
You know how event capturing/bubbling works, so let’s explore how you can take control of it. An important
point brought up in the previous example is that if you want an event to occur only on its target and not
on its parent elements, you have no way to stop it. Stopping the flow of an event bubble would cause an
occurrence similar to what is shown in Figure 6-2, where the result of an event is captured by the first <a>
element and the subsequent bubbling is canceled.

Stopping the bubbling (or capturing) of an event can prove immensely useful in complex applications.
And it’s simple to implement. Invoke the event object’s stopPropagation method to prevent the event from
traversing further up (or down) the hierarchy. Listing 6-8 shows an example.

Figure 6-2.  The result of an event being captured by the first <a> element

Chapter 6 ■ Events

83

Listing 6-8.  An Example of Stopping Event Bubbling

document.getElementById('disclaimer').addEventListener('click', function (e) {
 
 // When clicking on the disclaimer, highlight it by making it bold
 e.target.style.fontWeight = 'bold';
 
 // The parent element wants to hide itself if this element is clicked on. We need to
prevent that behavior
 e.stopPropagation();
});
 
document.getElementById('welcome-content').addEventListener('click', function (e) {
 e.target.style.visibility = 'hidden';
});

Listing 6-9 shows a brief snippet that adds a red border around the element that the user is hovering
over. You do this by adding a mouseover and a mouseout event handler to every DOM element. If you don’t
stop the event bubbling, every time the mouse is moved over an element, the element and all of its parent
elements will have the red border, which isn’t what you want.

Listing 6-9.  Using stopPropagation to Keep All the Elements from Changing Color

// Event handling functions
function mouseOverHandler(e) {
 e.target.style.border = '1px solid red';
 e.stopPropagation();
}
 
function mouseOutHandler(e) {
 this.style.border = '0px';
 e.stopPropagation();
}
 
// Locate, and traverse, all the elements in the DOM
var all = document.getElementsByTagName('*');
for (var i = 0; i < all.length; i++) {
 
 // Watch for when the user moves the mouse over the element
 // and add a red border around the element
 all[i].addEventListener('mouseover', mouseOverHandler);
 
 // Watch for when the user moves back out of the element
 // and remove the border that we added
 all[i].addEventListener('mouseout', mouseOutHandler);
 
}

With the ability to stop the event bubbling, you now have complete control over which elements can
see and handle an event. This is a fundamental tool necessary for exploring the development of dynamic
web applications. The final aspect is to cancel the default action of the browser, allowing you to completely
override what the browser does and implement new functionality instead.

Chapter 6 ■ Events

84

Overriding the Browser’s Default Action
For most events that take place, the browser has some default action that will always occur. For example,
clicking an <a> element will take you to its associated web page; this is a default action in the browser. This
action will always occur after both the capturing and the bubbling event phases, as shown in Figure 6-3,
which illustrates the results of a user clicking an <a> element in a web page. The event begins by traveling
through the DOM in both a capturing and bubbling phase (as discussed previously). However, once the
event has finished traversing, the browser attempts to execute the default action for that event and element.
In this case, it’s visiting the / web page.

Default actions can be summarized as anything the browser does that you did not explicitly tell it to do.
Here’s a sampling of the different types of default actions that occur, and on what events:

•	 Clicking an <a> element will redirect you to a URL provided in its href attribute.

•	 Using your keyboard and pressing Ctrl+S, the browser will attempt to save a physical
representation of the site.

•	 Submitting an HTML <form> will submit the query data to the specified URL and
redirect the browser to that location.

•	 Moving your mouse over an with an alt or a title attribute (depending on
the browser) will cause a tool tip to appear, providing the value of the attribute.

All of the previous actions are executed by the browser even if you stop the event bubbling or if you
have no event handler bound at all. This can lead to significant problems in your scripts. What if you want
your submitted forms to behave differently? Or what if you want <a> elements to behave differently than
their intended purpose? Because canceling event bubbling isn’t enough to prevent the default action, you
need some specific code to handle that directly. The W3C event handling API provides this functionality
with the preventDefault method of the event object (Listing 6-10). With many browsers you can choose to
simply return false from your event handler as an alternative, and you may see this behavior coded in some
examples and libraries. Using preventDefault is preferred, though, as it is self-documenting—unlike the
somewhat obscure technique of occasionally returning false from an event handler.

Figure 6-3.  The full life cycle of an event

Chapter 6 ■ Events

85

Listing 6-10.  A Generic Function for Preventing the Default Browser Action from Occurring

document.getElementById('examples-link').addEventListener('click', function(e) {
 e.preventDefault();
 console.log("examples-link clicked");
});

Using the preventDefault function, you can now stop any default action presented by the browser.
For example, this allows you to take advantage of mouseover events for a link, without worrying about the
user accidentally clicking on the link and sending the browser elsewhere. And you can override the default
behavior of showing where the link goes in the status bar. Or consider a Submit button that you want to
use to kick off form validation. You can now hold off on submitting the form (the default behavior) if that
validation fails.

Event Delegation
We have almost all the tools in place to manipulate event handlers. The one lingering problem is a matter of
technique. Presume that we have an unordered list with 20 items in it. We want to add an event handler for
each list item. More accurately, we want to be able to handle clicks from each list item differently. We could
grab all of the elements with document.querySelectorAll, iterate over the results, and attach individual
event handlers. This is inefficient both as a process and in the browser. We are setting up 20 event handlers
(even if they all point to the same handling function) when we could set up just one.

All of the list items are contained within an unordered list tag, so why not take advantage of the fact that
we can capture click events at the level? The only thing we need is some way to differentiate between
the various list items. Back in the section on traditional event binding, when we discussed the this object, we
noted that this refers to the element where the event is captured, while event.target refers to the element
that actually emits the event in question. Clearly, we could use a combination of this and event.target.
But the event-handling specification provides the event.currentTarget property to solve this problem.

In our list item scenario, we attach a click event handler to the unordered list. In the event handler, the
 is event.currentTarget. Each list item will be the event.target property. Therefore, we can check
event.target to see which list item was clicked and dispatch to the appropriate function. Listing 6-11 shows
an example of event delegation in action.

Listing 6-11.  Event Delegation

function clickHandler(e) {
 console.log('Handled at ' + e.currentTarget.id);
 console.log('Emitted by ' + e.target.id);
}
 
var navbar = document.getElementById('navbar');
navbar.addEventListener('click', clickHandler);

The clickHandler function handles events at the <nav> level, but it receives events emitted from a
variety of list items under the <nav> element.

Chapter 6 ■ Events

86

The Event Object
The event object is provided, or is available, inside every event-handler function. In general, the properties
of the event object cover the details you might want to know about an event: what kind of event it was,
where it originated from, what coordinates were clicked, or maybe what keys were pressed. There are some
subtle differences between the ways different browsers communicate this information, though.

General Properties
A number of properties exist on the event object for every type of event being captured. All of these event
object properties relate directly to the event itself, and nothing is browser-specific. What follows is a list of all
the event object properties with explanations and example code.

type
This property contains the name of the event currently being fired (such as click or mouseover). It can
be used to provide a generic event-handler function, which then deterministically executes related code.
Listing 6-12 shows an example of using this property to make a handler have different effects depending on
the event type.

Listing 6-12.  Using the type Property to Provide Hoverlike Functionality for an Element

function mouseHandler(e){
 // Toggle the background color of the <div>, depending on the
 // type of mouse event that occurred
 this.style.background = (e.type === 'mouseover') ? '#EEE' : '#FFF';
}
 
// Locate the <div> that we want to hover over
var div = document.getElementById('welcome');
 
// Bind a single function to both the mouseover and mouseout events
div.addEventListener('mouseover', mouseHandler);
div.addEventListener('mouseout', mouseHandler);

target
This property contains a reference to the element that fired to the event. For example, binding a click
handler to an <a> element would have a target property equal to the <a> element itself.

stopPropagation
The stopPropagation method stops the event bubbling (or capturing) process, making the current element
the last one to receive the particular event.

preventDefault / returnValue = false
Calling the preventDefault method stops the browser’s default action from occurring in all modern W3C-
compliant browsers.

Chapter 6 ■ Events

87

Mouse Properties
Mouse properties exist within the event object only when a mouse-related event is initiated (such as click,
mousedown, mouseup, mouseover, mousemove, mouseout, mouseenter, and mouseleave). At any other time, you
can assume that the values being returned do not exist or are not reliably present. This section lists all the
properties that exist on the event object during a mouse event.

pageX and pageY
These properties contain the x- and y-coordinates of the mouse cursor relative to the absolute upper-left
corner of the browser window. They will be the same regardless of scrolling.

clientXand clientY
These properties contain the x- and y-coordinates of the mouse cursor relative to the browser window.
Therefore, if you have scrolled the document down (or across), the numbers are relative to the edges of the
browser window. These numbers change as you scroll through your document.

layerX/layerY and offsetX/offsetY
These properties should contain the x- and y-coordinates of the mouse cursor relative to the event’s target
element. The offset* properties work in Chrome and IE, but not in Firefox. Firefox supports layerX and
layerY, but they don’t contain the same information. Instead, the layer* properties seem to be equivalent
to the appropriate page* property.

button
This property, available only on the click, mousedown, and mouseup events, is a number representing the
mouse button that’s currently being clicked. Left clicks are 0 (zero), middle clicks are 1, right clicks are 2.

relatedTarget
This event property contains a reference to the element that the mouse has just left. More often than not,
relatedTarget is used in situations where you need to use mouseover/mouseout, but you also need to know
where the mouse just was, or where it is going. Listing 6-13 shows a variation on a tree menu (elements
containing other elements) in which the subtrees display only the first time the user moves the mouse
over the subelement.

Listing 6-13.  Using the relatedTarget Property to Create a Navigable Tree

// When DOMContent is ready, get the references to the elements.
document.addEventListener('DOMContentLoaded', init);

function init(){
 var top = document.getElementById("top");
 var bottom = document.getElementById("bottom");
 
 top.addEventListener("mouseover", onMouseOver);
 top.addEventListener("mouseout", onMouseOut);

Chapter 6 ■ Events

88

 bottom.addEventListener("mouseover", onMouseOver);
 bottom.addEventListener("mouseout", onMouseOut);
}
 
function onMouseOut(event) {
 console.log("exited " + event.target.id + " for " + event.relatedTarget.id);
}
 
function onMouseOver(event) {
 console.log("entered " + event.target.id + " from " + event.relatedTarget.id);
}
 
// Sample HTML:
<style>
div > div {
 height: 128px;
 width: 128px;
}
#top { background-color: red; }
#bottom { background-color: blue; }
</style>
<title>Untitled Document</title>
</head>
 
<body>
 
 
<div id="outer">
 <div id="top"></div>
 <div id="bottom"></div>
</div>

Keyboard Properties
Keyboard properties generally only exist within the event object when a keyboard-related event is initiated
(such as keydown, keyup, and keypress). The exception to this rule is for the ctrlKey and shiftKey
properties, which are available during mouse events (allowing the user to Ctrl+click an element). At any
other time, you can assume that the values contained within a property do not exist or are not reliably
present.

ctrlKey
This property returns a Boolean value representing whether the keyboard Ctrl key is being held down. The
ctrlKey property is available for both keyboard and mouse events.

keyCode
This property contains a number corresponding to the different keys on a keyboard. The availability of
certain keys (such as PageUp and Home) can vary, but generally speaking, all other keys work reliably.
Table 6-1 is a reference for all of the commonly used keyboard keys and their associated key codes.

Chapter 6 ■ Events

89

shiftKey
This property returns a Boolean value representing whether the keyboard Shift key is being held down. The
shiftKey property is available for both keyboard and mouse events.

Types of Events
Common JavaScript events can be grouped into several categories. Probably the most commonly used
category is that of mouse interaction, followed closely by keyboard and form events. The following
list provides a broad overview of the different classes of events that exist and can be handled in a web
application.

Loading and error events: Events of this class relate to the page itself, observing
its load state. They occur when the user first loads the page (the load event) and
when the user finally leaves the page (the unload and beforeunload events).
Additionally, JavaScript errors are tracked using the error event, giving you the
ability to handle errors individually.

UI events: These are used to track when users are interacting with one aspect
of a page over another. With these tools you can reliably know when a user has
begun input into a form element, for example. The two events used to track this
are focus and blur (for when an object loses focus).

Mouse events: These fall into two categories: events that track where the mouse
is currently located (mouseover, mouseout), and events that track where the
mouse is clicking (mouseup, mousedown, click).

Table 6-1.  Commonly Used Key Codes

Key Key Code

Backspace 8

Tab 9

Enter 13

Space 32

Left arrow 37

Up arrow 38

Right arrow 39

Down arrow 40

0–9 48–57

A–Z 65–90

Chapter 6 ■ Events

90

Keyboard events: These are responsible for tracking when keyboard keys are
pressed and within what context—for example, tracking keystrokes inside form
elements as opposed to keystrokes that occur within the entire page. As with the
mouse, three event types are used to track the keyboard: keyup, keydown, and
keypress.

Form events: These relate directly to interactions that occur only with forms and
form input elements. The submit event is used to track when a form is submitted;
the change event watches for user input into an element; and the select event
fires when a <select> element has been updated.

Page Events
All page events deal specifically with the function and status of the entire page. The majority of the event
types handle the loading and unloading of a page (whenever a user visits the page and then leaves again).

load
The load event is fired once the page has completely finished loading; this event includes all images,
external JavaScript files, and external CSS files. It’s also available on most elements with a src attribute (img,
script, audio, video, and so on). Load events do not bubble.

beforeunload
This event is something of an oddity, as it’s completely nonstandard but widely supported. It behaves very
similarly to the unload event, with an important difference. Within your event handler for the beforeunload
event, if you return a string, that string will be shown in a confirmation message asking users if they wish
to leave the current page. If they decline, they will be able to stay on the current page. Dynamic web
applications, such as Gmail, use this to prevent users from potentially losing any unsaved data.

error
The error event is fired every time an error occurs within your JavaScript code. It can serve as a way to capture
error messages and display or handle them gracefully. This event handler behaves differently than others,
in that instead of passing in an event object, it includes a message explaining the specific error that occurred.

resize
Page events: The resize event occurs every time the user resizes the browser window. When the user adjusts
the size of the browser window, the resize event will only fire once the resize is complete, not at every step
of the way.

scroll
The scroll event occurs when the user moves the position of the document within the browser window.
This can occur from keyboard presses (such as using the arrow keys, Page Up/Down, or the spacebar) or by
using the scrollbar.

Chapter 6 ■ Events

91

unload
This event fires whenever the user leaves the current page (for example, by clicking a link, hitting the Back
button, or even closing the browser window). Preventing the default action does not work for this event (the
next best thing is the beforeunload event).

UI Events
User interface events deal with how the user is interacting with the browser or page elements. The UI events
can help you determine what elements on the page the user is currently interacting with and provide them
with more context (such as highlighting or help menus).

focus
The focus event is a way of determining where the page cursor is currently located. By default, the focus
is within the entire document; however, whenever a link or a form input element is clicked or tabbed into
using the keyboard, it moves to that instead. (An example of this event is shown in Listing 6-14).

blur
The blur event occurs when the user shifts focus from one element to another (within the context of links,
input elements, or the page itself). (An example of this event is shown in Listing 6-14).

Mouse Events
Mouse events occur when the user either moves the mouse pointer or clicks one of the mouse buttons.

click
A click event occurs when a user presses the left mouse button down on an element (see the mousedown
event) and releases the mouse button (see the mouseup event) on the same element.

dblclick
The dblclick event occurs after the user has completed two click events in rapid succession. The rate of
the double-click depends upon the settings of the operating system.

mousedown
The mousedown event occurs when the user presses down a mouse button. Unlike the keydown event, this
event will only fire once while the mouse is down.

mouseup
The mouseup event occurs when the user releases the pressed mouse button. If the button is released on the
same element that the button is pressed on, a click event also occurs.

Chapter 6 ■ Events

92

mousemove
A mousemove event occurs whenever the user moves the mouse pointer at least one pixel on the page.
The number of mousemove events fired (for a full movement of the mouse) depends on how fast the user is
moving the mouse and how quickly the browser can keep up with the updates.

mouseover
The mouseover event occurs whenever the user moves the mouse into an element from another. To find
which element the user has come from, use the relatedTarget property. This event is resource-intensive,
as it can fire once for each pixel or subelement that it goes over. Prefer mouseenter, described shortly.

mouseout
The mouseout event occurs whenever the user moves the mouse outside an element. This includes moving
the mouse from a parent element to a child element (which may seem unintuitive at first). To find which
element the user is going to, use the relatedTarget property. This event is resource-intensive, as, paired
with mouseover, it can fire many, many times. Prefer mouseleave, described shortly.

mouseenter
Functions like mouseover, but intelligently pays attention to where it is within an element. Will not fire again
until it leaves the element’s box.

mouseleave
Functions like mouseout, but intelligently pays attention to when it leaves an element.

Listing 6-14 shows an example of attaching pairs of events to elements to allow for keyboard-accessible
(and mouse-accessible) web page use. Whenever the user moves the mouse over a link or uses the keyboard
to navigate to it, the link will receive some additional color highlighting.

Listing 6-14.  Creating a Hover Effect by Using the mouseover and mouseout Events

// mouseEnter handler
function mouseEnterHandler() {
 this.style.backgroundColor = 'blue';
}
 
// mouseLeave handler
function mouseLeaveHandler() {
 this.style.backgroundColor = 'white';
}
 
// Find all the <a> elements, to attach the event handlers to them
var a = document.getElementsByTagName('a');
for (var i = 0; i < a.length; i++) {
 

Chapter 6 ■ Events

93

 // Attach a mouseover and focus event handler to the <a> element,
 // which changes the <a>s background to blue when the user either
 // mouses over the link, or focuses on it (using the keyboard)
 a[i].addEventListener('mouseenter', mouseEnterHandler);
 a[i].addEventListener('focus', mouseEnterHandler);
 
 // Attach a mouseout and blur event handler to the <a> element
 // which changes the <a>s background back to its default white
 // when the user moves away from the link
 a[i].addEventListener('mouseleave', mouseLeaveHandler);
 a[i].addEventListener('blur', mouseLeaveHandler);
 
}

Keyboard Events
Keyboard events handle all instances of a user pressing keys on the keyboard, whether inside or outside a
text input area.

keydown/keypress
The keydown event is the first keyboard event to occur when a key is pressed. If the user continues to hold
down the key, the keydown event will continue to fire. The keypress event is a common synonym for the
keydown event; they behave virtually identically, with one exception: if you wish to prevent the default action
of a key being pressed, you must do it on the keypress event.

keyup
The keyup event is the last keyboard event to occur (after the keydown event). Unlike the keydown event, this
event will only fire once when released (since you can’t release a key for a long period of time).

Form Events
Form events deal primarily with <form>, <input>, <select>, <button>, and <textarea> elements, the
staples of HTML forms.

select
The select event fires every time a user selects a different block of text within an input area, using the
mouse. With this event, you can redefine the way a user interacts with a form.

change
The change event occurs when the value of an input element (this includes <select> and <textarea> elements)
is modified by a user. The event fires only after the user has already left the element, letting it lose focus.

Chapter 6 ■ Events

94

submit
The submit event occurs only in forms and only when a user clicks a Submit button (located within the
form) or hits Enter/Return within one of the input elements. By binding a Submit handler to the form, and
not a click handler to the Submit button, you’ll be sure to capture all attempts to submit the form by the user.

reset
The reset event only occurs when a user clicks a Reset button inside a form (as opposed to the Submit
button, which can be duplicated by hitting the Enter key).

Event Accessibility
The final piece to take into consideration when developing a purely unobtrusive web application is to
make sure that your events will work even without the use of a mouse. By doing this, you help two groups of
people: those in need of accessibility assistance (vision-impaired users), and people who don’t like to use a
mouse. (Sit down one day, disconnect your mouse from your computer, and learn how to navigate the Web
using only the keyboard. It’s a real eye-opening experience).

To make your JavaScript events more accessible, any time you use the click, mouseover, and mouseout
events, you should strongly consider providing alternative nonmouse bindings. Thankfully, there are easy
ways to remedy this situation quickly:

The click event: One smart move on the part of browser developers was to
make the click event work whenever the Enter key is pressed. This completely
removes the need to provide an alternative to this event. One point to note,
however, is that some developers like to bind click handlers to Submit buttons
in forms to watch for when a user submits a web page. Instead of using that
event, the developer should bind to the submit event on the form object, a smart
alternative that works reliably.

The mouseover event: When navigating a web page using a keyboard, you’re
actually changing the focus to different elements. By attaching event handlers
to both the mouseover and focus events, you can make sure that you’ll have an
equivalent solution for both keyboard and mouse users.

The mouseout event: Like the focus event for the mouseover event, the blur
event occurs whenever the user’s focus moves away from an element. You
can then use the blur event as a way to simulate the mouseout event with the
keyboard.

In reality, adding the ability to handle keyboard events, in addition to typical mouse events, is
completely trivial. If nothing else, doing so can help keyboard-dependent users better use your site, which is
a huge win for everyone.

Summary
In this chapter we started with an introduction to how events work in JavaScript and compared them to
event models in other languages. Then you saw what information the event model provides and how you
can best control it. We then explored binding events to DOM elements, and the different types of events that
are available. We concluded with a discussion of event object properties, event types, and how to code for
accessibility.

95

Chapter 7

JavaScript and Form Validation

It is inevitable that, when encountering a form, one considers the fate of the data for that form. One of the
first practical applications of JavaScript was providing a way to validate data on the client side, instead of
having to endure a round trip to the server. Form validation was a bit ad hoc at the time, with no practical
API and no real integration with the browser. Instead, programmers bound together events and basic text
manipulation to provide a handy user interface enhancement.

Fast-forward to the present day, and form validation is in much better shape. With modern browsers,
we have an integrated validation API, which works with both HTML and CSS to provide an extensive set of
form validation features. We also have regular expressions, which—for all their complications—are much
better for data validation than, say, iterating over a string character by character.

Our concern in this chapter is JavaScript and forms. While we will focus on form validation, we will also
look at general improvements in the ways JavaScript interacts with forms, as well as some newly available
form-related APIs.

HTML and CSS Form Validation
As mentioned, form validation has come a long way since the early days of JavaScript. To really dive into the
state of form validation, we will need to look at not only JavaScript, but also HTML5 and CSS. Let’s start with
the HTML side of things. In the last few years, HTML has evolved and added many new features, thanks to
the hard work of the Web Hypertext Application Technology Working Group (WHATWG). This organization
has pushed for the evolution and updating of HTML into what has come to be known as HTML5. Although
the scope of the HTML5 specification means that we can’t discuss the details here, you can find more
information in HTML5 Programmer’s Reference by Jonathan Reid (Apress, 2015).

Of particular note in HTML5 are the advances to the set of form controls. These changes have broadly
fallen into two categories: addition of new controls or styles of controls (URL fields, date pickers, and the
like), and form validation. Initially, our focus will be on the latter. Simple form validation has moved into
HTML, without the need of any JavaScript whatsoever. This validation is available through the addition
of certain attributes to form controls. A simple example is the required attribute, which pairs with input
elements and forces the field to have value before the form can be submitted. Listing 7-1 is a basic example.

Listing 7-1.  A Simple Form

<!DOCTYPE html>
<html>
<head>
 <title>A basic form</title>
</head>
<body>
<h2>A basic form</h2>
 

Chapter 7 ■ JavaScript and Form Validation

96

<p>Please provide your first and last names.</p>
 
<form>
 <fieldset>
 <label for="firstName">First Name:</label>

 <input id="firstName" name="firstName" type="text" required/>

 <label for="lastName">Last Name:</label>

 <input type="text" name="lastName" id="lastName"/>

 </fieldset>
 <input type="submit" value="Submit the form"/> <input type="reset" value="Reset the
form"/>
</form>
 
</body>
</html>

Notice that in the form, we have an input field with an ID of firstName, which has added the
aforementioned required attribute. Were we to attempt to submit the form without filling out this field, we
would see a result something like Figure 7-1.

Figure 7-1.  First name is missing from this basic form

The display looks roughly the same on Chrome and IE 11 (Chrome does not surround the field with a
red border, but IE has a blockier, more assertive red border). If you were to make both the firstName and
lastName fields required, the border would appear on each of the fields, but the popup tooltip would only be
associated with the first field that had a problem. What about customizing the popup? We will deal with that
soon, but it will require JavaScript.

Chapter 7 ■ JavaScript and Form Validation

97

There are several other types of validation that can be activated via HTML attributes. They are

•	 pattern: This attribute takes a regular expression as an argument. The regular
expression does not need to be surrounded by slashes. The regular expression
language engine is the same as JavaScript’s (with the same issues as well). This
is attached to the input element. Note that input types of email and url imply
pattern values appropriate to valid email addresses and URLs, respectively. Pattern
validation does not work with Safari 8, iOS Safari 8.1, or Opera Mini.

•	 step: Forces the value to match a multiple of the specified step value. Constrained
to input types of number, range, or one of the date-times. Step validation works in
Chrome 6.0, Firefox 16.0, IE 10, Opera 10.62, and Safari 5.0.

•	 min / max: Minimum or maximum values, appropriate to not only numbers but also
date-times. This method works in Chrome 41, Opera 27, and Chrome for Android 41.

•	 maxlength: Maximum length, in characters, of the data in the field. Only valid for
input types of text, email, search, password, tel, or url. This method usually does
not validate so much as prevent a user from entering too much data in the field it is
attached to. It works on all modern browsers.

At the form level, you can turn off validation as a whole one of two ways. Either you can add the
formnovalidate attribute to the Submit button for the form, or you can add the novalidate attribute to the
form element itself.

CSS
Not content to have HTML5 do all the work, the CSS specification has been updated to address form
validation as well. Form elements that are in an invalid state can be accessed via the :invalid pseudoclass.
Unfortunately, the implementation of this pseudoclass leaves a bit to be desired. First, form elements are
checked for their validity at page load. Thus, if you had styling like the following:

:invalid { background-color: yellow }

when the page loaded, many of your fields would have a yellow background. Second, Chrome and IE
apply :invalid only to form elements. Firefox will apply it to the entire form, if any element in the form is
invalid. Consider Listing 7-2.

Listing 7-2.  Using the :invalid Pseudoclass

<!DOCTYPE html>
<html>
<head>
 <title>A basic form</title>
 <style>
 :invalid {
 background-color: yellow
 }
 </style>
</head>
<body>
<h2>A basic form</h2>
 
<p>Please provide your first and last names.</p>
 

Chapter 7 ■ JavaScript and Form Validation

98

<form>
 <fieldset>
 <label for="firstName">First Name:</label>

 <input id="firstName" name="firstName" type="text" required/>

 <label for="lastName">Last Name:</label>

 <input type="text" name="lastName" id="lastName"/>

 </fieldset>
 <input type="submit" value="Submit the form"/> <input type="reset" value="Reset the
form"/>
</form>
 
</body>
</html>:

In this listing, Firefox displays the entire form with a yellow background, since one element of the
form is in an invalid state. Fix this by changing the styling for :invalid to input:invalid, which gives you
consistent behavior across browsers.

CSS also provides a few other pseudoclasses:

•	 :valid covers elements that are in a valid state.

•	 :required gets elements that have their required attribute set to true.

•	 :optional gets elements that do not have the required attribute set.

•	 :in-range is used for elements that are within their min/max boundaries; it is not
supported by IE.

•	 :out-of-range is used for those that are outside those bounds; it is not supported by IE.

Finally, let’s talk about the red glow and the popup message. There is a red glow effect around an invalid
element after submission in Firefox. (In Internet Explorer, it’s a straightforward red border, without a glow
effect.) Firefox exposes the effect as the :-moz-ui-invalid pseudoclass. You can override it as follows:

:-moz-ui-invalid { box-shadow: none }

Internet Explorer, alas, does not expose its effect as a pseudoclass. This means we have reached the limit
of what we can do with HTML and CSS alone. There are features we would like to change and features we
would like to implement. This is where JavaScript comes back into play. >:

JavaScript Form Validation
Thanks in large part to the HTML5 living standard, JavaScript now has a coherent API for form validation.
This rests on a relatively simple lifecycle for validation checking: Does this form element have a validation
routine? If so, does it pass? If it fails, why did it fail? Interweaved with this process are logical access points
for JavaScript, either through method calls or capturing events. It’s a good system, although that’s not to say
it could not bear a bit of improvement. But let’s not get ahead of ourselves.

The simplest way to check a form element’s validity is to call checkValidity on it. The JavaScript object
backing every form element now has this checkValidity method available. This method accesses the
validation constraint set in the HTML for the element. Each constraint is tested against the element’s current
value. If any of the constraints fail, checkValidity returns false. If all pass, checkValidity returns true. Calls
to checkValidity are not limited to individual elements. They can also be made against a form tag. If this
is the case, the checkValidity call will be delegated to each of the form elements within the form. If all of
the subcalls come back true (that is, all of the form elements are valid), then the form is valid as a whole.
Conversely, if any of the subcalls come back false, then the form is invalid.

Chapter 7 ■ JavaScript and Form Validation

99

In addition to getting a simple Boolean answer on the validity of an element, we can find out why the
element failed validity. Any element’s validity property is an object containing all the possible reasons it could
fail validation, known as a ValidityState object. We can iterate over its properties and, if one is true, we know
that this is one of the reasons that the element failed its validity check. The properties are shown in Table 7-1.

Table 7-1.  Validity State Properties

Property Explanation

valid Whether or not the element’s value is valid. Start with this property first.

valueMissing A required element without a value.

patternMismatch Failed a check against a regexp specified by pattern.

rangeUnderflow Value is lower than min value.

rangeOverflow Value is higher than max value.

stepMismatch Value is not a valid step value.

tooLong Value is greater (in characters) than maxlength allows.

typeMismatch Value fails a check for the email or url input types.

customError True if a custom error has been thrown.

badInput A sort of catch-all for when the browser thinks the value is invalid but not for one
of the reasons already listed; not implemented in Internet Explorer.

The act of checking an element’s validity property runs the validity checks. It is not necessary to
invoke element.checkValidity first.

Let’s take a look at validity checks in action. First, Listing 7-3 shows the relevant section of our HTML.

Listing 7-3.  Our HTML Form

<body>
<h2>A basic form</h2>
 
<p>Please fill in the requested information.</p>
 
<form id="nameForm">
 <div id="fields">
 <label for="firstName">First Name:</label>

 <input id="firstName" name="firstName" type="text" class="foo" required/>

 <label for="lastName">Last Name:</label>

 <input type="text" name="lastName" id="lastName" required/>

 <label for="phone">Phone</label>

 <input type="tel" id="phone"/>

 
 <label for="age">Age (must be over 13):</label>

 <input type="number" name="age" id="age" step="2" min="14" max="100"/>

 <label for="email">Email</label>

 <input type="email" id="email"/>

 <label for="url">Website</label>

 <input type="url" id="url"/>

 </div>
 

Chapter 7 ■ JavaScript and Form Validation

100

 <div id="buttons">
 <input id="overallBtn" value="Check overall validity" type="button"/>
 <input id="validBtn" type="button" value="Display validity"/>
 <input id="submitBtn" type="submit" value="Submit the form"/>
 <input type="reset" id="resetBtn" value="Reset the form"/>
 </div>
</form>
 
<div>
 <h2>Validation results</h2>
 <div id="vResults"></div>
 <div id="vDetails"></div>
</div>
 
</body>

Note that the submit, reset, and validity checking buttons are in their own div. This makes it easier to
use document.querySelectorAll to retrieve only the relevant form fields, which are in a separate div. Now,
on to our JavaScript (Listing 7-4).

Listing 7-4.  Form Validation and Validity

window.addEventListener('DOMContentLoaded', function () {
 var validBtn = document.getElementById('validBtn');
 var overAllBtn = document.getElementById('overallBtn');
 var form = document.getElementById('nameForm'); // Or document.forms[0]
 var vDetails = document.getElementById('vDetails');
 var vResults = document.getElementById('vResults');
 
 overallBtn.addEventListener('click', function () {
 var formValid = form.checkValidity();
 vResults.innerHTML = 'Is the form valid? ' + formValid;
 });
 
 validBtn.addEventListener('click', function () {
 var output = '';
 
 var inputs = form.querySelectorAll('#fields > input');
 
 for (var x = 0; x < inputs.length; x++) {
 var el = inputs[x];
 output += el.id + ' : ' + el.validity.valid;
 if (! el.validity.valid) {
 output += ' [';
 for (var reason in el.validity) {
 if (el.validity[reason]) {
 output += reason
 }
 }
 output += ']';
 }

Chapter 7 ■ JavaScript and Form Validation

101

 output += '
'
 }
 
 vDetails.innerHTML = output;
 });
});

The entire code block is an event tied to when the DOM has loaded. Recall that we don’t want to try to
add event handlers to elements that may not have been created yet. First, we will retrieve relevant elements
within the page: the two validity checking buttons, the output divs, and the form. Next, we will set up event
handling for the overall validity check. Note that in this case, we are checking the validity of the entire form
for simplicity’s sake. We display the results of this check in the vResults div.

The second event handler covers checking the individual validity state of each of the form elements. We
capture the appropriate elements by using querySelectorAll to grab all the input fields under the div with
ID fields. (This winds up being simpler than writing an extended CSS selector to find input types that do
not include submits, resets, and buttons.) After obtaining the elements we want, it’s simple enough to iterate
over the elements and check the valid subproperty of their validity property. If they are invalid (valid
is false), then we print out the reason the field is invalid. We encourage you to try this out with a variety of
different input values.

This demonstration reveals some interesting things. First, if you load up the page and click the
"Display validity" button, the firstName and lastName fields are invalid (as you would expect, since they
are empty), but the phone, age, email, and url fields (also empty) are valid! If the field is not required, an
empty value is valid. Also, note that the email field has two validations, the implied validation of email, as
well as a pattern requirement. Try entering an email that does not contain something like “@foo.com” and
you will see it is possible to fail multiple validations at once. Firefox will also tell you that the value fails
for typeMismatchbadInput if you enter an incomplete email address (say, just a username). You might
be inclined to rely on only the valid property, but knowing which reason(s) the field failed validation is
important information to convey to the user, who will not, after all, be able to submit the form successfully
without passing the various validation constraints.

Validation and Users
So far, we have spent most of our time on the technical aspects of form validation. We should also discuss
when form validation should be performed. We have a number of options. Simply using the form validation
API means that we have automatic form validation at submission time. And we have the capability to invoke
validation on any given element when we want to, thanks to the checkValidity method. As a best practice,
we should perform form validation as early as possible. What this means in practice depends on the field
being validated. Start with the idea that we should validate on a change in the form field. Attach a change
event handler to your form control and have it call checkValidity on that control. Working within the form
validation API, this is a fairly straightforward answer to the question of when to validate.

But what if we aren’t working within the form validation API? One of the more significant limitations
of working within the form validation API is that it has no facility for custom validations. You cannot add a
chunk of custom code, bound in a function, say, to run as a validation routine. But you will doubtless want
to do that at some point. When you find yourself in this case, it still makes general and practical sense to tie
the validation to the change event handler. There are possible exceptions. Consider a field that requires an
Ajax call to validate its value, perhaps based on the first few characters entered into the field. In this case, you
would tie validation to a keypress event, possibly integrating autosuggest functionality as well. In the next
chapter, covering Ajax, we will look at an example of this.

At whatever stage you choose to validate, keep your users in mind. It is very frustrating to fill out a form
and then find out that much of the data is invalid for whatever reasons. Users tend to be more accepting of
in-line fixes, rather than being presented with a list of errors at submission time.

Chapter 7 ■ JavaScript and Form Validation

102

Validation Events
Another addition to the form validation API is the fact that invalid form elements now throw an invalid
event. This event is only thrown in response to a call to checkValidity. The checkValidity call can be made
on either the element itself or the form that contains the element. The invalid event does not bubble. Forms
do not have an invalid event themselves, despite the fact that forms can be invalid.

You can capture the event with the usual call to addEventListener on the emitting control. Once inside
the event handler, the event object itself does not provide any validation-related information. You will have
to retrieve the element via the event.target property, and then query its validity property to find out
exactly why the element is invalid. But you can do something quite interesting with the preventDefault
method of the event. When you invoke preventDefault, the browser’s styling behavior for invalid elements
will not be applied. Keep in mind that styling changes are only consistently applied when the form is
submitted. (Firefox will apply styling changes if you change the value of the form control and blur away from
it.) This means different things for different browsers:

•	 Chrome, which does not style invalid elements but does give them a popup message,
will suppress the popup for that element.

•	 Firefox, which has both popup and styling, will suppress the popup but will not
suppress or prevent the red glow effect around the element.

•	 Internet Explorer, which has both popup and a red border around the element, will
suppress both the popup and the border around the element.

Let’s look at an example that shows this behavior in action. Start with a relatively familiar HTML form in
Listing 7-5.

Listing 7-5.  Validity Events Form

<!DOCTYPE html>
<html>
<head>
 <title>A basic form</title>
 <style>
 input:invalid {
 background-color: yellow
 }
 </style>
</head>
<body>
<h2>A basic form</h2>
 
<p>Please provide your first and last names.</p>
 
<form id="nameForm">
 <fieldset>
 <label for="firstName">First Name:</label>

 <input id="firstName" name="firstName" type="text" required/>

 <label for="lastName">Last Name:</label>

 <input type="text" name="lastName" id="lastName" required/>

 </fieldset>
 <div>
 <input type="submit" value="Submit the form"/> <input type="reset" value="Reset the
form"/>

Chapter 7 ■ JavaScript and Form Validation

103

 </div>
 <div>
 <input id="firstNameBtn" type="button" value="Check first name validity."/>
 <input id="formBtn" type="button" value="Check form validity"/>
 <input id="preventBtn" type="button" value="Prevent default behavior"/>
 <input id="restoreBtn" type="button" value="Restore default behavior"/>
 </div>
</form>
 
<div id="vResults"></div>
 
<script src="listing_7_5.js"></script>
</body>
</html> .

Note that we have added styling for invalid input elements. This styling is not associated with the default
behavior for an invalid event. Let’s look at the backing code (Listing 7-6).

Listing 7-6.  Validity Events in JavaScript

window.addEventListener('DOMContentLoaded', function () {
 var outputDiv = document.getElementById('vResults');
 var firstName = document.getElementById('firstName');
 
 firstName.addEventListener("focus", function(){
 outputDiv.innerHTML = '';
 });
 
 function preventDefaultHandler(evt) {
 evt.preventDefault();
 }
 
 firstName.addEventListener('invalid', function (event) {
 outputDiv.innerHTML = 'firstName is invalid';
 });
 
 document.getElementById('firstNameBtn').addEventListener('click', function () {
 firstName.checkValidity();
 });
 
 document.getElementById('formBtn').addEventListener('click', function () {
 document.getElementById('nameForm').checkValidity();
 });
 
 document.getElementById('preventBtn').addEventListener('click', function () {
 firstName.addEventListener('invalid', preventDefaultHandler);
 });
 
 document.getElementById('restoreBtn').addEventListener('click', function () {
 firstName.removeEventListener('invalid', preventDefaultHandler);
 });
 
}); .

Chapter 7 ■ JavaScript and Form Validation

104

As usual, all of our code is activated after the DOMContentLoaded event has fired. We have a basic event
handler for invalid events on the firstName field, which outputs to the vResults div. Then we add event
handlers for the specialized buttons. First we create two convenience buttons: one for checking the validity
of the firstName field, the other for checking the validity of the entire form. Then we add behavior for
overriding or restoring the default behavior associated with invalid events. Try it out!

Customizing Validation
We now have almost all the tools available to us to control form validation comprehensively. We can choose
which validations to activate. We can control when validation is performed. And we can capture invalid
events and prevent the default behavior (particularly as regards styling) from firing. As discussed before, we
cannot customize the actual validation routines (alas). So what is left for us to work with? We might like to
control the message in the validation popup users see on submitting a form. (The look and feel of the popup
is also not customizable. Remember that we mentioned there were some shortcomings with the API and its
implementation?)

To change the validation message that appears when a form field is invalid, use the setCustomValidity
function associated with the form control. Pass setCustomValidity a string as an argument, and that
string will appear as the text of the popup. This does have some other side effects, though. In Firefox,
the field will show, at page load time, as invalid, with the red glow effect. Using setCustomValidity with
either Internet Explorer or Chrome has no effect at page load time. The Firefox styling can be turned off, as
mentioned earlier, by overriding the :-moz-ui-invalid pseudoclass. But more problematic is that when
setCustomValidity is used, the customError property of the validityState of the form control in question
is set to true. This means that the valid property of the validityState is false, which means it reads as
invalid. All for simply changing the message associated with the validity check! This is unfortunate and
renders setCustomValidity nearly useless.

An alternative would be to use a polyfill. There is a long list of polyfills, not only for form validation but
also for other HTML5 items that may not have support on every browser you need to work on. You can find
them here:

https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-Browser-Polyfills

Preventing Form Validation
There is one aspect of form validation we have not explored: turning it off. The majority of this chapter has
focused on using the new form validation API, and exploring its limits. But what if there were a deal-breaker
with the API, some feature (or bug, or inconsistency) that prevented our wholesale use of the API? Were this
the case, we would want to do two things: discontinue the automatic form validation, and substitute our
own. It is the former which interests us, as the latter is simply the case of reimplementing an API according
to our whims. To turn off form validation behavior, add the novalidate attribute to the form element. You
can prevent behavior per submit-button click by adding the formnovalidate attribute to a submit button,
but this does not turn off form validation for the form as a whole. Since we might want to substitute our own
customized API for form validation, we want to use the novalidate attribute to deactivate form validation
(for the parent element) entirely.

https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-Browser-Polyfills

Chapter 7 ■ JavaScript and Form Validation

105

Summary
In this chapter we spent the bulk of our time looking at the new JavaScript form validation API. Within its
constraints, it is a powerful tool for automatically validating user data. Validation happens automatically
on form submission, and we can validate at any time (or times) of our own choosing as well. Validation
can be turned off if needed. We can customize the appearance of valid and invalid elements, and can even
customize the message displayed when an element is invalid.

The API is not without problems. it lacks some critical customization capabilities, like allowing styling
for error messages, or custom validation routines. There are small implementation differences between
the major browsers that can be a bit of a pain to clean up after. Some official parts of the API (think the
willValidate property) are not currently implemented and other parts (setCustomValidity) have crippling
problems.

Overall the API is a big step forward for JavaScript, HTML, CSS, and the browser. We look forward to
seeing how it will be refined in the future.

107

Chapter 8

Introduction to Ajax

Ajax is a term coined by Jesse James Garrett of Adaptive Path to describe the asynchronous client-to-server
communication that is made possible using the XMLHttpRequest object, which is provided by all modern
browsers. An acronym for Asynchronous JavaScript and XML, Ajax has evolved into a term used to encapsulate
the techniques necessary to create a dynamic web application. Additionally, the individual components of the
Ajax technique are completely interchangeable—using JSON instead of XML (for example) is perfectly valid.

Since the first edition of this book, usage of Ajax has changed significantly. Once an exotic API, Ajax
is now a standard part of the professional JavaScript programmer's toolbox. The W3C has overhauled the
XMLHttpRequest object, the foundation of Ajax, by the, adding new features and clarifying the behavior of
other features. One of the core rules of Ajax: no connections to outside domains; this is enforced by using the
Cross-Origin Resource Sharing standard, also known as CORS.

In this chapter, you’re going to see the details that make up the full Ajax process. We will concentrate on
the XMLHttpRequest object API, but we’ll also discuss ancillary issues like handling responses, managing
HTTP status codes, and so on. The intent is to provide you with a comprehensive understanding of what
goes on within an Ajax request/response cycle.

We will not provide an API for Ajax interactions. Writing code to the various specifications governing
Ajax is a straightforward affair, but writing a complete Ajax library for the real world is most assuredly not.
Consider the Ajax portion of the jQuery library, which has over a dozen edge cases that handle various
oddities about the API in Internet Explorer, Firefox, Chrome, and other browsers. Also, because jQuery, Dojo,
Ext JS, and several other smaller libraries already have Ajax implementations, we see no reason to reinvent
that particular wheel here. Instead, we will provide examples of Ajax interactions, written according to the
current (as of publishing) specifications. These examples are intended to be instructive and demonstrative,
not final. We encourage you when using Ajax to look into utility libraries like jQuery, Zepto, Dojo, Ext JS, and
MooTools, or Ajax-focused libraries like Fermata and reqwest.

That leaves quite a bit to discuss! This chapter will cover the following:

•	 Examining the different types of HTTP requests

•	 Determining the best way to send data to a server

•	 Looking at the entire HTTP response and thinking about how to handle not only a
successful response, but one that goes wrong (in some fashion) as well

•	 Reading, traversing, and manipulating the data result that comes from the server in
its response

•	 Handling asynchronous responses

•	 Making requests across domains, enabled by CORS

Chapter 8 ■ Introduction to Ajax

108

Using Ajax
It doesn’t take much code to create a simple Ajax implementation; however, what the implementation
affords you is great. For example, instead of having to force the user to request an entirely new web page
after a form submission, your code can handle the submission process asynchronously, loading a small
portion of desired results upon completion. In fact, when we tie Ajax requests to handlers for events like
a keypress, there is no need to wait for the form submission at all. This is what is behind the “magic” of
Google's autosuggest search function. When you start to enter a search term, Google fires an Ajax request
based on your entry. As you refine your search, it sends out other Ajax requests. Google will display not only
suggestions but, based on the first possible option, even a first page of results. Figure 8-1 shows an example
of this process.

HTTP Requests
The most important and probably most consistent aspect of the Ajax process is the HTTP request portion.
The Hypertext Transfer Protocol (HTTP) was designed simply to transfer HTML documents and associated
files. Thankfully, all modern browsers support a means of establishing HTTP connections dynamically and
asynchronously, using JavaScript. This proves to be incredibly useful in developing more responsive web
applications.

Asynchronously sending data to the server and receiving additional data back is the ultimate purpose of
Ajax. How the data is formatted ultimately depends on your specific requirements.

In the following sections, you will see how to format data to be transferred to a server using the different
HTTP requests. You will then look at how to establish basic connections with the server, and you will see the
details needed to make this happen in a cross-browser environment.

Establishing a Connection
All Ajax processes start with a connection to the server. Connections to the server are generally organized
through the XMLHttpRequest object. (The lone exception is in older versions of Internet Explorer
when making cross-domain requests. But we will cover that later on. For now, we shall rely upon the
XMLHttpRequest object.)

Communication with the XMLHttpRequest object follows a lifecycle:

	 1.	 Create an instance of XMLHttpRequest.

	 2.	 Configure the object with appropriate settings.

Figure 8-1.  An example of Instant Domain Search looking for domain names as you type

Chapter 8 ■ Introduction to Ajax

109

	 3.	 Open the request via a specific HTTP verb and destination.

	 4.	 Send the request.

Listing 8-1 shows how to establish a basic GET request with the server.

Listing 8-1.  A Cross-Browser Means of Establishing an HTTP GET Request with the Server

// Create the request object
var xml = new XMLHttpRequest();
 
// If we needed to do any special configuration, we would do it here
 
// Open the socket
xml.open('GET', '/some/url.cgi', true);
 
// Establish the connection to the server and send any additional data
xml.send();

The code needed to establish a connection with a server, as you can see, is quite simple; there really
isn’t much to it. One set of difficulties arises when you want advanced features (such as checking for time-
outs or modified data); we will cover those details in the “HTTP Response” section of this chapter. Another
set of difficulties comes into play when you want to transfer data from the client (your browser) to the server.
This is one of the most important features of the whole Ajax methodology. Will we send simple data on the
URL? What about POSTed data? What about more complicated formats? With these questions (and others,
of course) in mind, let’s look at the details needed to package some data and send it to a server.

Serializing Data
The first step of sending a set of data to a server is to format it so that the server can easily read it; this
process is called serialization. We need to ask a few questions before serializing data. First:

	 1.	 What data are we sending? Are we sending variable-and-value pairs? Large sets
of data? Files?

	 2.	 How are we sending this data, GET? POST? Another HTTP verb?

	 3.	 What format of data are we using? There are two: application/x-www-form-
urlencoded and multipart/form-data. The former is sometimes called query
string encoding and takes the familiar form of var1=val1&var2=val2...

From a JavaScript perspective, the third question is the most important. The first and second questions
are issues of design. They will have an effect on our application but will not necessarily require different
code. But the question of which data format we use has a strong effect on our application.

In modern browsers, it is actually easier to deal with multipart/form-data information. Thanks to the
FormData object, we can very easily serialize data into an object that our browser will automatically convert
to the multipart/form-data format. Unfortunately, not all browsers support every option that is in the
specification yet. But there is a lot we can do right now.

Chapter 8 ■ Introduction to Ajax

110

FormData Objects
FormData objects are a relatively new proposal covered by HTML5. The WHATWG and the W3C intended
to give a more object-oriented, map-like approach to information sent as part of an Ajax (or really any
HTTP) request. Accordingly, a FormData object can be either initialized as empty or associated with a
form. If you are initializing with a form, get a reference to the containing form DOM element (usually via
getElementById) and pass it into the FormData constructor. Otherwise, as stated, the FormData object will
be empty. Either way, you can choose to add new data via the append function (Listing 8-2).

Listing 8-2.  An Example Using the append method with FormData

// Create the formData object
var formDataObj= new FormData();
 
//append name/values to be sent to the server
formDataObj.append('first', 'Yakko');
formDataObj.append('second', 'Wakko');
formDataObj.append('third', 'Dot');
 
// Create the request object
var xml = new XMLHttpRequest();
 
// Set up a POST to the server
xml.open('POST', '/some/url.cgi');
 
// Send over the formData
xml.send(formDataObj);

There are some differences in the specifications, though. The WHATWG specification also includes
functions for deleting, getting, and setting values on the object. None of the modern browsers implement
these functions. In part, that’s because the W3C version of the specification has only the append function.
The modern browsers follow this W3C spec, at least at the moment. This means that a FormData object is
one-way: data goes in, but is only accessible on the other side of an HTTP request.

The alternative to FormData objects is to serialize in JavaScript. That is, take the data you intend to
transfer to the server, URL-encode it, and send it to the server as part of the request. This is not too difficult,
although there are some caveats to be cautious of.

Let’s take a look at some examples of the type of data that you can send to the server, along with their
resulting server-friendly, serialized output, shown in Listing 8-3.

Listing 8-3.  Examples of Raw JavaScript Objects Converted to Serialized Form

// A simple object holding key/value pairs
{
 name: 'John',
 last: 'Resig',
 city: 'Cambridge',
 zip: 02140
}
// Serialized form
name=John&last=Resig&city=Cambridge&zip=02140
 

Chapter 8 ■ Introduction to Ajax

111

// Another set of data, with multiple values
[
 { name: 'name', value: 'John' },
 { name: 'last', value: 'Resig' },
 { name: 'lang', value: 'JavaScript' },
 { name: 'lang', value: 'Perl' },
 { name: 'lang', value: 'Java' }
]
 
// And the serialized form of that data
name=John&last=Resig&lang=JavaScript&lang=Perl&lang=Java
 
// Finally, let's find some input elements
[
 document.getElementById('name'),
 document.getElementById('last'),
 document.getElementById('username'),
 document.getElementById('password')
]
// And serialize them into a data string
name=John&last=Resig&username=jeresig&password=test

The format that you’re using to serialize the data is the standard format for passing additional parameters
in an HTTP request. You’re likely to have seen them in a standard HTTP GET request looking like this:

http://someurl.com/?name=John&last=Resig

This data can also be passed to a POST request (and in a much greater quantity than a simple GET).
We will look at those differences in an upcoming section.

For now, let’s build a standard means of serializing the data structures presented in Listing 8-3. A function
to do just that can be found in Listing 8-4. This function is capable of serializing most form input elements,
with the exception of multiple-select inputs.

Listing 8-4.  A Standard Function for Serializing Data Structures to an HTTP-Compatible Parameter Scheme

// Serialize a set of data. It can take two different types of objects:
// - An array of input elements.
// - A hash of key/value pairs
// The function returns a serialized string
function serialize(a) {
 // The set of serialize results
 var s = [];
 
 // If an array was passed in, assume that it is an array
 // of form elements
 if (a.constructor === Array) {
 
 // Serialize the form elements
 for (var i = 0; i < a.length; i++)
 s.push(a[i].name + '=' + encodeURIComponent(a[i].value));
 

http://someurl.com/?name=John&last=Resig

Chapter 8 ■ Introduction to Ajax

112

 // Otherwise, assume that it's an object of key/value pairs
 } else {
 
 // Serialize the key/values
 for (var j in a)
 s.push(j + '=' + encodeURIComponent(a[j]));
 }
 
 // Return the resulting serialization
 return s.join('&');
}

Now that there is a serialized form of your data (in a simple string), you can look at how to send that
data to the server using a GET or a POST request.

Establishing a GET Request
Let’s revisit establishing an HTTP GET request with a server, using XMLHttpRequest, but this time sending
along additional serialized data. Listing 8-5 shows a simple example of this.

Listing 8-5.  A Cross-Browser Means of Establishing an HTTP GET Request with the Server (and Not
Reading Any Resulting Data)

// Create the request object
var xml = new XMLHttpRequest();
 
// Open the asynchronous GET request
xml.open('GET', '/some/url.cgi?' + serialize(data), true);
 
// Establish the connection to the server
xml.send();

The important part to note is that the serialized data is appended to the server URL (separated by a
? character). All web servers and application frameworks know to interpret the data included after the ? as a
serialized set of key/value pairs.

Establishing a POST Request
The other way to establish an HTTP request with a server, using XMLHttpRequest, is with a POST, which
involves a fundamentally different way of sending data to the server. Primarily, a POST request is capable of
sending data of any format and of any length (not just limited to your serialized string of data).

The serialization format that you’ve been using for your data is generally given the content type
application/x-www-form-urlencoded when passed to the server. This means that you could also send pure
XML to the server (with a content type of text/xml or application/xml) or even a JavaScript object (using the
content type application/json).

A simple example of establishing the request and sending additional serialized data appears in Listing 8-6.

Chapter 8 ■ Introduction to Ajax

113

Listing 8-6.  A Cross-Browser Means of Establishing an HTTP POST Request with the Server (and Not
Reading Any Resulting Data)

// Create the request object
var xml = new XMLHttpRequest();
 
// Open the asynchronous POST request
xml.open('POST', '/some/url.cgi', true);
 
// Set the content-type header, so that the server
// knows how to interpret the data that we're sending
xml.setRequestHeader(
 'Content-Type', 'application/x-www-form-urlencoded');
 
// Establish the connection to the server and send the serialized data
xml.send(serialize(data));

To expand on the previous point, let’s look at a case of sending data that is not in your serialized format
to the server. Listing 8-7 shows an example.

Listing 8-7.  An Example of POSTing XML Data to a Server

// Create the request object
var xml = new XMLHttpRequest();
 
// Open the asynchronous POST request
xml.open('POST', '/some/url.cgi', true);
 
// Set the content-type header, so that the server
// knows how to interpret the XML data that we're sending
xml.setRequestHeader('Content-Type', 'text/xml');
 
// Establish the connection to the server and send the serialized data
xml.send('<items><item id='one'/><item id='two'/></items>');

The ability to send bulk amounts of data (there is no limit on the amount of data that you can send;
by contrast, a GET request maxes out at just a couple KB of data, depending on the browser) is extremely
important. With it, you can create implementations of different communication protocols, such as XML-RPC
or SOAP.

This discussion, however, for simplicity is limited to some of the most common and useful data formats
that can be made available as an HTTP response.

HTTP Response
Level 2 of the XMLHttpRequest class now provides better control over telling the browser how we want
our data back. We do this by setting the responseType property and receive the requested data using the
response property.

To start, let’s look at a very naïve example of processing the data from a server response, as shown in
Listing 8-8.

Chapter 8 ■ Introduction to Ajax

114

Listing 8-8.  Establishing a Connection with a Server and Reading the Resulting Data

// Create the request object
var request = new XMLHttpRequest();
 
// Open the asynchronous POST request
request.open('GET', '/some/image.png', true);
 
//Blob is a Binary Large Object
request.responseType = 'blob';
 
request.addEventListener('load', downloadFinished, false);
 
function downloadFinished(evt){
 if(this.status == 200){
 var blob = new Blob([this.response], {type: 'img/png'});
 }
}

In this example you can see how to receive binary data and convert it into a PNG file. The responseType
property can be set to any of the following:

•	 Text: Results return as a string of text

•	 ArrayBuffer: Results return as an array of binary data

•	 Document: Results are assumed to be a XML document, but it could be
an HTML document

•	 Blob: Results return as a file like object of raw data

•	 JSON: Results return as a JSON document

Now that we know how to set the responseType, we can look at how to monitor the progress of our request.

Monitoring Progress
As we have seen before, using addEventListener makes our code easy to read and very flexible. Here we use
the same technique on our request object. No matter whether you are downloading data from the server or
uploading to it, you can listen for these events as shown in Listing 8-9.

Listing 8-9.  Using addEventListener to Listen for Progress on a Request from the Server

var myRequest = new XMLHttpRequest();
 
myRequest.addEventListener('loadstart', onLoadStart, false);
myRequest.addEventListener('progress', onProgress, false);
myRequest.addEventListener('load', onLoad, false);
myRequest.addEventListener('error', onError, false);
myRequest.addEventListener('abort', onAbort, false);
 
//Must add eventListeners before running a send or open method
 
myRequest.open('GET', '/fileOnServer');
 

Chapter 8 ■ Introduction to Ajax

115

function onLoadStart(evt){
 console.log('starting the request');
}
  
function onProgress(evt){
 var currentPercent = (evt.loaded / evt.total) * 100;
 console.log(currentPercent);
}
 
function onLoad(evt){
 console.log('transfer is complete');
}
 
function onError(evt){
 console.log('error during transfer');
}
 
function onAbort(evt){
 console.log('the user aborted the transfer');
}

You can now understand a lot more about what is going on with your file than you could before. Using
the loaded and total properties you might work out the percentage of the file being downloaded. If for some
reason the user decided to stop the download, you would receive the abort event. If there was something
wrong with the file, or if it had finished loading, you would receive either the error or the load event. Finally,
when you first make the request of the server, you would receive the loadstart event. Now let’s take a quick
look at timeouts.

Checking for Time-Outs and Cross-Origin Resource Sharing
Simply put, time-outs let you set a time for how long the application should wait until it stops looking for a
response from the server. It is easy to set a time-out and listen for it.

Listing 8-10 shows how you would go about checking for a time-out in an application of your own.

Listing 8-10.  An Example of Checking for a Request Time-Out

// Create the request object
var xml = new XMLHttpRequest();
 
// We're going to wait for a request for 5 seconds, before giving up
xml.timeout = 5000;
 
//Listen for the timeout event
xml.addEventListener('timeout', onTimeOut, false);
 
// Open the asynchronous POST request
xml.open('GET', '/some/url.cgi', true);
  
// Establish the connection to the server
xml.send();

Chapter 8 ■ Introduction to Ajax

116

By default, browsers will not allow applications to make request to servers other than the one the
site originated from. This protects users from cross-site scripting attacks. The server must allow requests;
otherwise, an INVALID_ACCESS error is given. The header given by the server would look like this:

Access-Control-Allow-Origin:*
 //Using a wild card (*) to allow access from anyone.
Access-Control-Allow_origin:http://spaceappleyoshi.com
 //Allowing from a certain domain

Summary
We now have a solid foundation to work with data on the server. We can tell the server what kind of results
we expect back. We can also listen for events that will tell us things like the progress of the file transfer or if
there was an error during the transfer. Finally, we discussed time-outs and cross-origin resource sharing or
(CORS). In the next chapter we’ll take a look a few development tools for web production.

http://spaceappleyoshi.com/

117

Chapter 9

Web Production Tools

The tools for developing websites have matured over the years. We went from using simple editors like
Notepad to full-scale development environments like WebStorm. We also have libraries like JQuery. We can
use Handlebars as a templating engine and AngularJS as a full MVC framework. There are also unit testing
frameworks and version control systems to help us do our jobs better and faster. So now that we have all of
these things available, how do we keep them all organized?

To answer that, we are going to break this down into two parts. First, we’ll look at tools for the creation
of a site, then at tools for keeping track of the changes to that site. In order to create a site we will explore
Yeoman, Grunt, Bower, and Node Package Manager (NPM). To track changes we will use Git.

All of these tools work together, so let’s break down what each one does:

•	 Bower is a package management system. Its purpose is to make sure that all the
client-side code that your project depends on has been downloaded and installed.
Site: http://bower.io/

•	 Grunt is what’s called a build tool. It lets you automate many types of tasks, including
unit testing, linting (checking JavaScript for errors), and adding your code to version
control. It can also be used in deploying your code to a server. Site: http://gruntjs.com/

•	 Yeoman is what’s called the scaffolding tool. It creates the files and folders needed to
make a bare-bones version of the project. It then uses Bower to gather all the code
that the project is dependent on. Finally it uses a build tool (like Grunt) to automate
tasks. It does this by way of using generators. Site: http://yeoman.io/

•	 Node Package Manager (NPM), as you can see from its name, manages packages.
These packages run on top of Node.js. As Node became more popular, some of these
packages were developed for client-side development instead of just server-side,
where Node.js is used. Site: https://nodejs.org/

•	 Git is a version control system. If you have heard of tools like Subversion or Perforce,
Git is similar. It will keep track of all the files you work with and can tell you the
difference between the files. Site: http://git-scm.com/

Scaffolding Your Projects
Computers are great at doing tasks that people don’t want to do, and they can do them over and over again
without getting bored. No one wants to make folders for the images, CSS, and JavaScript files every time
you create a project. There are plenty of small tasks that we take for granted that can now be automated.
Wouldn’t it be nice to start a project that just has all the folders worked out for you with a single command?

http://bower.io/
http://gruntjs.com/
http://yeoman.io/
https://nodejs.org/
http://git-scm.com/

Chapter 9 ■ Web Production Tools

118

That’s the idea behind scaffolding. Because most websites are organized the same way, there isn’t a need
to work out the structure manually. Yeoman lets you scaffold just about any type of web project you want.
Using best practices from the community, Yeoman uses generators to set up our project quickly and easily.

Generators are really templates that anyone can make. There are teams that sponsor projects to create
“official” generators, but if that one doesn’t do the thing you want, someone else may have made one that
does. Generators are also open source so you can look under one’s hood and see how it was made. In order
to work with Yeoman, we first need to install Node.js.

NPM is the Foundation for Everything
Node Package Manager (NPM) gives you the ability to manage dependencies in an application. This means
that if you need code for your project (say JQuery), NPM makes it easy to add to your project. It is also what is
running behind the scenes with most of the tools we are about to install. NPM is part of Node.js, which is an
open source cross-platform environment for making server-side applications with JavaScript. Even though
we are not going to create a Node.js project here, we do need to install node. There are a few ways to do this;
for our example, we will try to make it as simple as possible.

When you go to nodejs.org, the site will figure out what operating system you have. Click the Install
button to download and run the installer.

Once it is installed, you can go to terminal mode (Mac, Linux) or the command prompt (Windows) and
type node –version. You should see the current version of node displayed in the window.

With node installed, now we can get everything else we need. To install Yeoman, type npm install –g
yo, for Grunt type npm install –g grunt-cli, and for Bower type npm install –g bower. Using -g means
that the install will happen globally; you can run these utilities in any folder as you create new projects.
The cli stands for command line interface. For our exercise, we will be spending time at the command line.
It’s a good thing to get used to it, and worth the effort. Now we can install a generator and start looking at the
other tools.

Generators
As we talked about before, generators are really templates that describe the structure of the site. You can
adjust these templates by passing different parameters to Yeoman. At Yeoman.io you can find a list of
generators and links back to the GitHub repositories. The repositories have all the instructions on how to use
the generators. For example, if you wanted to make a site using AngularJS, you would enter

npm install –g generator-angular

This will install the AngularJS generator. If you wanted an AngularJS site and also wanted to add Karma
(a JavaScript test runner) to help run your unit tests, the install would look like this:

npm install –g generator-angular generator-karma

Now that you have a generator installed, by typing yo at the command line you can look at a list of
generators that are installed and update them. From here you can also install new generators.

At this point, you should make a folder for your project and, while you are in that folder, the next
command should be

yo angular

Yeoman will start to ask you questions about your app. For example, it will ask whether you would like
to use Sass, as shown in Figure 9-1.

Chapter 9 ■ Web Production Tools

119

You will be asked a few other questions about how you want the project set up. Once it is finished,
Bower will grab the latest versions of all the libraries you need from GitHub and scaffold your project
together for you. Once everything is installed, type the following to see the site in action:

grunt serve

This time we are using Grunt to create a local web server in your current folder and serve the home page
(Figure 9-2).

Figure 9-1.  Yeoman setting up an AngularJS site

Chapter 9 ■ Web Production Tools

120

That’s all you need to do. You now have a site that is ready to go. This would be a good time to put our
code in version control.

Version Control
Change is constant. Our files are updated over and over again. As we work, things sometimes break. In
some cases, a simple undo is fine. At other times we may need to revert to a previous state, especially when
working with a team and there are many changes. One change can break the whole site, and it can be
difficult to track down the problem. This is where version control can be very helpful.

Figure 9-2.  Yeoman running AngularJS on a local server

Chapter 9 ■ Web Production Tools

121

Git is the version control system we are going to use. It’s popular and has GUI clients as well. Just
as we did with the Node.js example, we are going to take the quickest way to get it installed. To do that, go to
git-scm.com to download and install Git.

Once it is installed, you can configure it by using the command line. To add your identity, type
git config –global user.name "your name" and git config –global user.email your@email.com.

Now that you have Git installed and configured, we are going to quickly add files and then commit them
locally. Make sure you are in a project folder. Type git init inside that folder. That creates a .Git folder that
will hold all the information about the project. This folder is usually invisible, so you may need to change
some settings in your operating system if you want to see it. Next, let’s check the status of our commit. Type
git status and you can see that at this point, no files have been added to version control (Figure 9-3).

Figure 9-3.  Files have not yet been added to Git

Adding Files, Updates, and the First Commit
Next we add files so they can be tracked by Git. Adding files to the repository is as simple as typing git add
file name/folder. Git will then start to track the files. In Figure 9-4 we added the app folder by typing git
add app/. You can check the status again and see the results.

http://mailto:your@email.com/

Chapter 9 ■ Web Production Tools

122

Continue adding files, especially bower.json and package.json. These files keep track of your
dependent modules and the versions of those modules. Gruntfile.js will have all the tasks you can run. We
ran a task before by typing grunt serve. That task ran a local server for us.

As a best practice, the node_modules and bower_components folders are not added to version control.
You can reinstall them later by using the npm install and bower install commands.

Files that you do not want to add to Git are defined in the .gitignore file. You can modify this file to
include file types or anything else you would like Git to ignore.

We talked about how files change over time, so you may ask how Git knows when a file is changed. First,
the file needs to be added to the repository. We did that with the git add command. Then, when a change
happens, you can ask for the status again. This will list any files that have changed since the last time it’s
been added. Just remember that you need Git to know about the file before you make the change, so that can
track the changes over time. In Figure 9-5 we can change the README.md file to illustrate our point.

Figure 9-4.  The app folder has been added to Git

Chapter 9 ■ Web Production Tools

123

When a file has been changed you can add it again just as you did before. The next time you check the
status it will be back on the list of tracked items.

Now that you have all the files being tracked by Git, you can commit all the files. Think of a commit as
a snapshot of the project at its current state (Figure 9-6). If anything were to happen to the project, you can
always revert back to the last state.

Figure 9-5.  Git can see when a file has been modified

Chapter 9 ■ Web Production Tools

124

To commit, type git commit –m "notes about the commit". The –m flag stands for message.
Alternatively, you can use a text editor to make your message. If you want to see the history of messages, you
can type git log.

We now have a way of keeping track of changes on our local machine. This will work just fine if you are a
lone developer.

If you want to share the code or work with a team, however, you will need to add a server-side
component. Two of the most popular options are GitHub (https://github.com/) and BitBucket
(https://bitbucket.org/). Using either of these options, you can have a remote repository in addition to
the files on your local machine.

Summary
We hope that after reading this chapter, you see the large amount of resources available to you. The ability
to put a site together quickly, using Yeoman generators, will save you time and effort as you put new projects
together. Yeoman can also be used as a learning tool to understand how different frameworks work.

We gave just a basic overview of Git. It’s a subject that could be a book by itself. Fortunately, there is
Pro Git by Scott Chacon and Ben Straub (Apress, 2nd edition 2014). A link to it can also be found on the
Git home page (http://git-scm.com/). It’s online or as a digital file. Now that we can quickly put a site
together, let’s take a look in Chapter 10 at a very popular framework, AngularJS.

Figure 9-6.  Files committed and shown in the log

https://github.com/)
https://bitbucket.org/)
http://git-scm.com/)
http://dx.doi.org/10.1007/9781430263913_10

125

Chapter 10

AngularJS and Testing

In the previous chapter, you learned how to use the current set of tools to quickly put a site together and use
version control to keep track of all the files you work with and the difference between them. In this chapter,
we’ll dig in and understand how frameworks like Angular work.

Briefly, frameworks help you build large applications in a way that is more organized and easier to
maintain. One of the other benefits to using a framework is a shorter learning curve for the team. Once a
new member learns the framework, they have a better understanding of how the entire site works. With our
example we will take a high-level look at AngularJS.

At the time of this writing, the current version of Angular is 1.4.1. Information can be found at
https://angularjs.org/. Information about Angular 2 can be found at https://angular.io/.

One of the problems Angular tries to solve is to make it easy to develop dynamic applications. HTML
on its own isn’t designed to make single-page applications. Angular provides a way to develop modern web
applications in a way that is quick to learn. It does this by keeping each part of the application separate, so
that each part can be updated independently of the others. This architectural pattern is called Model-View-
Controller (MVC). You will find that other frameworks, like Backbone and Ember, work in a similar way.

In Chapter 9 we introduced some development tools that can help us be more productive. Yeoman
(http://yeomanio/.) uses community-built generators to quickly develop all the files and folders needed
to get a basic site working. Grunt (http://gruntjs.com/) is used to automate tasks like unit testing and
optimizing files for a production-ready site. This chapter assumes that both tools are installed. Please refer to
the previous chapter or the sites listed for information on installing them.

To create a new Angular project, type your angular. In response, Yeoman asks some questions about
how you want to set up the project:

•	 Would you like to use Sass (with Compass)? Sass (http://sass-lang.com/)stands
for Syntactically Awesome Style Sheets. Sass gives you features like nesting selectors
and using variables to develop style sheets. Compass is a tool written in Ruby that
uses Sass files and adds features like generating sprite sheets out of a series of images.

By agreeing to this option, you will get a SCSS file using Twitter Bootstrap’s styles
as default. If you choose no, Yeoman will give you a regular CSS file with the
same CSS selectors.

•	 Would you like to include Bootstrap? Twitter Bootstrap (http://getbootstrap.com/)
helps you develop the user interface for your website. Bootstrap can help make
your site responsive so it can look good on multiple devices and gives you items like
buttons, an image carousel, and other user interface components.

https://angularjs.org/
https://angular.io/
http://dx.doi.org/10.1007/9781430263913_9
http://yeomanio/
http://gruntjs.com/
http://sass-lang.com/
http://getbootstrap.com/)

Chapter 10 ■ AngularJS and Testing

126

If you choose to use this tool, Yeoman then asks whether to use the Sass version
of Bootstrap.

•	 Which modules would you like to include? Modules give Angular extra abilities.
For example, the angular-aria module provides accessibility features, while
angular-route gives you the ability to add deep linking features. You can choose to
add or remove any of the modules. Modules can also be added later manually.

Once you have answered the questions, all of the files needed will be downloaded, and Grunt will then
launch a local server with the default browser loading http://localhost:9000, as shown in Figure 10-1.

Figure 10-1.  AngularJS running on port 9000

Chapter 10 ■ AngularJS and Testing

127

From here we can look at the folders that make up this project. The app folder contains our main
application, and it is where we are going to start.

The folders are very standard for what you would find in an HTML site. Inside the scripts folder is
where it starts to get interesting.

At the root of the scripts folder is app.js. This is the main application file for Angular. Open this file to
see how Angular is being bootstrapped. In Figure 10-2, you find the name of the application chapter10app
(because that was the name of the folder the app was created in). This works with the ng-app directive
in index.html. A directive gives added ability to DOM elements. In this case, it tells Angular that the
application starts here and is called chapter10app.

Figure 10-2.  Using the ng-app directive tells Angular where the root element of the application is.

As you look at app.js, you see after the name of the application that numerous modules are loaded,
which give Angular extra ability. One of these modules is named ngRoute; it will let you handle URLs for
the application. The .config method uses $routeProvider to understand the URL and load the correct
template with the controller by using a series of when statements.

The when statement enables you to customize the URLs for the application. In this example, if you were
to type /about, Angular would know to load the about.html template and use AboutCtrl as the controller.
Let’s explain in detail what that means.

Views and Controllers
We’ve discussed that Angular, like other frameworks, use the MVC pattern. This means that the application
is broken up into three distinct parts.

•	 Model: Stores the data for the application.

•	 View: Creates a representation of the model data; for example, generating a chart to
represent data.

•	 Controller: Sends commands to the model to update data. Also sends commands to
the view to update the presentation of the model’s data.

The views folder contains the HTML templates that can be updated with the data coming from the
model. The controllers folder contains the JavaScript files that will communicate with both the model and
the view files.

Let’s look at the about.html file. Here we will add a button and have the controller work with it.
Open about.html, found in the views folder. Inside it, add a button tag. In this button tag we are going

to use another directive, which will let Angular know when the button is clicked.
We need to add the ng-click directive to the button. Type ng-click='onButtonClick()' as shown

in Listing 10-1. This will be resolved by our controller, giving us separation between the visual parts of the
application and the business logic.

Chapter 10 ■ AngularJS and Testing

128

Listing 10-1.  Defining a Method Using the ng-click Directive

<button ng-click="onButtonClick()">Button</button>

Open about.js in the controllers folder. Controllers let you add all the business logic you need for
this part of the application to work. In the controller method you see the name AboutCtrl, which matches
what we saw in the app.js file. The other thing you see in the controller method is the $scope property.

$scope lets you add methods or properties to the view that you are working with. Here we will deal with
a function that was declared in the HTML file. Because ng-click="onButtonClick()" was defined in the
HTML code, it is part of the scope of this controller.

Listing 10-2 shows how we get our controller and HTML to work together.

Listing 10-2.  Using the Controller to Define the Function Declared in the HTML File

angular.module('chapter10App')
.controller('AboutCtrl', function ($scope, $http) {
 $scope.awesomeThings = [
 'HTML5 Boilerplate',
 'AngularJS',
 'Karma'
];
 $scope.onButtonClick = function(){
 console.log('hello world');
 };
 });

If the app is currently running in the browser, it should see that the JavaScript file has been updated and
recompile everything. Once that is done, you can click the button, look at the console, and see the message.

Otherwise, go to the command line and in the main folder of your application type grunt serve.
This is just the beginning of being able to separate the application’s view from its business logic. For

example, what if you wanted display a list of items?
Going back to the controller, we will add a JSON object to our scope; Listing 10-3 shows the code.

Listing 10-3.  Data Assigned to the Scope of the about Controller

$scope.bands = [
{'name':"Information Society", 'album':"_hello world"},
{'name':"The Cure", 'album':"Wish"},
{'name':"Depeche Mode", 'album':"Delta Machine"}];

Now that we have data we need, the next step is to pass the data to the HTML template. Back in the
about.html file, we will use the ng-repeat directive (Listing 10-4).

Listing 10-4.  The ng-repeat Directive Loops through the Data Provided by the Controller to Display the
Correct Number of Items in the List

<li ng-repeat="band in bands">{{band.name}}<p>{{band.album}}</p>

At this point your page should look something like Figure 10-3.

Chapter 10 ■ AngularJS and Testing

129

So far, we have been able to connect the controller to items that are defined in the HTML view using
directives. Our data has also been defined in the controller. So, you may ask, suppose we wanted to get the
data from an outside source; how do we make a call to a remote server and display the results? We will take
that up in the next section.

Remote Data Sources
Let’s take our button method and use it as a way to get some remote data.

We are going to use the $http service, which will handle the remote call for us. This is similar to the
AJAX method in JQuery. In order to take advantage of the service, we first need to add it to the controller
method.

In the controller method add the $http service. It should now look something like Listing 10-5.

Listing 10-5.  Adding the $http Service to the AboutCtrl Controller

.controller('AboutCtrl', function($scope, $http){
$scope.awesomeThings = [
'HTML5 Boilerplate',
'AngularJS',
'Karma'
];
});

Now that the service is available to the controller, we can use it with the onButtonClick method. We are
going to use the get method, which matches the REST get verb. For more information about REST methods,
look at this Wikipedia article:

http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods

Figure 10-3.  The data from the controller rendered on the page

http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods

Chapter 10 ■ AngularJS and Testing

130

We‘ll also use JSONPlaceholder, a service that lets you test your REST requests and return fake data. In
the onButtonClick method, remove the existing code and add the code shown in Listing 10-6.

Listing 10-6.  Making an HTTP Call and Assigning the Results to the results Property

$http.get('http://jsonplaceholder.typicode.com/photos').success(function(data){
 $scope.results = data;
});

Looking at this code we see that we are using the get method but we are also listening for the success
event. If the call is successful, we use an anonymous function to assign the result to a property called
results.

Now that we have the results, we can update the template to display not just the text but also the
thumbnail images that return from the service. We do that by using another directive for the image tag.

Open about.html and update the existing code. Remove the previous list and add the fcode shown in
Listing 10-7 to the template.

Listing 10-7.  Creating an Unordered List Based on the Results That Came Back from the REST Service

 <li ng-repeat="result in results">
 <p>ID: {{result.id}}</p>
 <p>{{result.title}}</p>
 <p></p>

Here we are using the ng-src directive to tell the image tag where to find each image from the list. Just
as in the previous example, this will loop though the whole list of results and display them all on screen. One
of the nice things about using this directive is that the image tag will not try to display an image until the data
has been received. So we just need to get results back from the REST service.

At this point the page should look something like Figure 10-4.

http://jsonplaceholder.typicode.com/photos

Chapter 10 ■ AngularJS and Testing

131

With a few steps we have a site that is able to retrieve data from a remote source and render it to the
browser when we need it. Angular has many features, but we are going to cover one more. Our next lesson
will cover routes.

Routes
Routes allow us to create custom URLs for our application and give us the ability to bookmark a page so we
can go directly to it later.

We saw an example of this in the app.js file. The .config method uses the $routeProvider API.
Within the series of when statements, we are able to work out what HTML template will be loaded and which
controller will be used with that template.

Now that we have a good feel for how this works, what if you wanted to pass parameters to the
application? For example, suppose we only wanted to show one post from the previous example. Here we
will create a route that will do exactly that.

If you created the application with Yeoman as in the previous lessons, then go over to the command line
and type:

yo angular:route post

Using this command, Yeoman will update the app.js file by adding a new a new route. It will also create
a new JavaScript file for your controller and an HTML file for the view. Not bad for one command.

If the application is running, you can go to the browser and type:

http://localhost:9000/#/post

Figure 10-4.  Displaying the results from a REST service

Chapter 10 ■ AngularJS and Testing

132

You should see that the post view is ready to go.
The goal here is to load a post based on the number added to our URL. So, for example, if the URL looks

like this:

http://localhost:9000/#/post/4

You should see the fourth post in the list based on the service we used in the last example.

Route Parameters
In order to get this to work we need to make our routing function a little more flexible. Open app.js; here we
are going to update the post route so it can take variables in the URL.

It should go from:

/post

to:

 /post/:postId

By adding :postId we create a variable that we can use in the controller. This variable will represent the
number in the URL. To illustrate that, let’s update the controller.

Open post.js, where you’ll see that inside the controller method you have an anonymous function
using $scope. In our other examples we saw that $scope gives us the ability to control our HTML template.
We will add an extra parameter called $routeParams so that we can access our variable in the URL.

Now we can grab the variable from the URL and assign it to $scope. This will enable us to display it once
we update the template.

Type the following in the controller method:

$scope.postId = $routeParams.postId;

To see our number on screen, we can quickly update the template.
Open the post.html file in the views folder. Here we can quickly update this template. First remove the

copy between the paragraph tags, so that it looks like this:

<p>{{postId}}</p>

With that done, you can type a number into the url and see it displayed on screen. At this point, the
browser should look like Figure 10-5.

Chapter 10 ■ AngularJS and Testing

133

That wasn’t so bad. So now we just need to connect it to a GET request and display the results. The code
here will be very similar to what we did before. In the post control we need to add the $HTTP service so we
can make the REST call. Listing 10-8 shows the code.

Listing 10-8.  The Complete PostCtrl with Both the $routeParams and $http Services Added

.controller('PostCtrl', function($scope, $routeParams, $http){
$scope.awesomeThings = [
'HTML5 Boilerplate',
'AngularJS',
'Karma'
];
});

Right under this we will make the same REST call as before but this time add the postId variable, as
shown in Listing 10-9.

Listing 10-9.  Using the $http Service and routeParam to Get a Single Result

$http.get('http://jsonplaceholder.typicode.com/photos/'+$routeParams.postId).
success(function(data){
 $scope.results = data;
});

As for the HTML template (Listing 10-10), we’ll use the same code as the about example; the only
difference is that we will remove the ng-repeat directive and make sure we use the word results.

Listing 10-10.  HTML Template for Displaying the Post

 <p>ID: {{results.id}}</p>
 <p>{{results.title}}</p>
 <p></p>

Figure 10-5.  Displaying a variable on screen based on the URL

http://jsonplaceholder.typicode.com/photos/

Chapter 10 ■ AngularJS and Testing

134

Now as you update the number in the address bar, you should see a new post (Figure 10-6).

Figure 10-6.  Single post being displayed based on the URL variable

Application Testing
As you read the documentation for Angular, one of the things you will see is how to write tests that cover the
different parts of the application you are building.

Testing helps you make sure that the code you write is stable all the time. For example, if you need to make
a change to a function, it should still give you the same result, even if you change how the function works. If that
change creates an unexpected result somewhere else in the application, the test should let you know.

So with that out of the way, how do you test an Angular application? There are two types of tests we will
consider: unit testing and end-to-end (E2E) testing.

Unit Testing
When you write a function, you consider what parameters it should receive, what it does with that
information, and what the result should be. Having a test for that unit of code will assure you that it behaves
the way you expect it to.

If you have been using the Yeoman-generated version of Angular from the previous chapters, we need
to install a few extra items to get the tests working. Go to the command line and type

npm install grunt-karma -–save-dev

This will install Karma.
Karma is described in the Angular developer guide as “a JavaScript command line tool that can be used

to spawn a web server which loads your application’s source code and executes your tests.” In short, Karma
will launch browsers, run the code against the tests that you have written, and give you the results. If you
don’t have a browser installed that you want to test (for example, IE if you are using a Mac), you can use a

Chapter 10 ■ AngularJS and Testing

135

service like BrowserStack (https://www.browserstack.com/) or Sauce Labs (https://saucelabs.com/).
For the most up-to-date information about Karma, go to http://karma-runner.github.io/.

Next we need to install PhantomJS. Type

npm install karma-phantomjs-launcher -–save-dev

at the command line.
PhantomJS is a headless browser—a browser without a user interface. By including it, you can run your

application in a browser, and all the commands will be executed from the command line. For the latest
information about PhantomJS, go to http://phantomjs.org/.

Finally, type

npm install karma-jasmine -–save-dev

at the command line. This will install Jasmine, the testing framework we’ll use to test our application. You’ll
find documentation at http://jasmine.github.io/.

At this point, let’s make sure that everything works, by typing grunt test. This should run the tests that
are in the test folder.

Adding New Tests
One of the benefits of using Yeoman is that when you create new controllers, it also creates corresponding
files for unit tests.

Look at the main folder. There you will find a test folder. Inside that folder will be a spec folder,
containing a controllers folder, which contains files that will unit-test every controller that has been
created.

Open about.js so we can see how to test a controller.
Before we start writing tests, let us first look at the code that exists to get an idea of what is going on.
At the top there is a describe method, which is used to talk about the tests that are about to be written.

The describe method can be used to describe at a high level everything that is about to be tested.
Next there is a beforeEach method, which will run before each test. This gives us access to the entire

application by loading it as a module.
Two variables are created, AboutCtrl and scope; then we create another beforeEach method, which

assigns the variables the values of the controller and the scope inside that controller, as if we were using the
controller directly.

Finally we can write our tests, which we describe in a series of it methods. This helps to make the tests
easy to document. Here you describe how the function should work.

The default test has the message "should attach a list of awesomeThings to the scope"; then it
runs a function with an expect method. This method is important because it give you a chance to test the
expected result. In this case, we check the length of the array awesomeThings and expect it to be 3. If it isn’t,
the test will fail.

We can now test the length of the array bands that we created before. Add a new it method as shown in
Listing 10-11.

Listing 10-11.  Unit Test for the number of Bands That Should Be In the about Controller

it('should have at least 3 bands', function(){
 expect(scope.bands.length).toBe(3);
});

https://www.browserstack.com/
https://saucelabs.com/)
http://karma-runner.github.io/
http://phantomjs.org/
http://jasmine.github.io/

Chapter 10 ■ AngularJS and Testing

136

If you go to the command line and type grunt test, this test should pass. If you had a different number
in the expect method, for example 2, the test would fail. You can see that in Figure 10-7.

Figure 10-7.  Test expected two items and received three

We can also check the value of an item in the array (Listing 10-12).

Listing 10-12.  Unit Test to Check the Value in the Array

it('should have the second album be Wish', function(){
 expect(scope.bands[1].album).toEqual('Wish');
});

This is a very quick overview of how to test the controller. From here, you can test methods that have
been written and evaluate the result. Jasmine gives you many ways to make sure the code you write is solid.
Let’s take another look at testing, by opening post.js and testing our HTTP request.

Testing HTTP Requests with $httpBackend
In our previous example, we tested some of the data that was associated with the controller. In that case the
data originated inside the controller. In most applications, you will get data from a remote source. So how do
you write a test where you do not have control of the data source? In this case you use $httpBckend to make
sure that the requests you create work independently of the service.

This test will recreate everything we did with $routeParams. It will be self-contained and will not
actually make a call to the server.

First, we will add a few variables. In addition to PostCtrl and scope, add httpBackend and
routeParams. In this case we are not referring to the directives, so you don’t need to add the dollar ($) sign.

The second beforeEach method is where we are currently initializing the controller. This is where we
will add directives, just as in the real controller; here add $httpBackend and $routeParams.

Now we assign values to the variables we created earlier. In the browser we were able to get a single post
by assigning a value to postId from the URL. We simulate it as shown in Listing 10-13.

Chapter 10 ■ AngularJS and Testing

137

Listing 10-13.  Assigning Values So We Can Simulate Getting a Value from the Browser (Part 1)

beforeEach(inject(function($controller,$rootScope,$httpBackend,$routeParams){
 scope = $routeScope.$new();
 routeParams = $routeParams;
 routeParams.postId = 1;
 httpBackend = $httpBackend;
 �httpBackend.expectGet('http://jsonplaceholder.typicode.com/photos/'+routeParams.postId).
respond({id:'1', title:'title 1', thumbnailUrl:'myImage.png'});

PostCtrl = $controller('PostCtrl', {
 $scope: scope
});
httpBackend.flush();
});

Since we are not loading this in a browser to make sure it works, we will hard-code the value of postId
to 1. Then, using httpBackend, we simulate the call the same way it’s done in the controller. In this case we
use the method expectGet. This will simulate an HTTP GET request. If you wanted to do a POST request, you
would use the expectPost method.

The response method gives us the payload that we can test against. Here we pass back a simple object
that is just like what the API delivers.

After the scope is assigned, we see the httpBackend object once again using the flush method. This will
make the response available for testing as if you had made the HTTP call.

Now on to the tests. Just as in the other example, a series of it methods describe what you are
expecting.

Let us first make sure that we are only getting one result back from the server (Listing 10-14).

Listing 10-14.  Assigning Values So We Can Simulate Getting a Value from the Browser (Part 2)

it('should be a single post', function(){
 expect(scope.results).not.toBeGreaterThan(1);
});

Jasmine makes the tests easy to read. We have results and just want to make sure that we have only one
object.

If we wanted to make sure there was an ID property on this object, we’d use the code shown in
Listing 10-15.

Listing 10-15.  Checking the ID Property

it('should have an id', function(){
 expect(scope.results.id).toBeDefined();
}

Just as before, we can add tests that will allow us to understand the controller as we add more
functionality to it. The process of writing tests first as you develop your code is called test-driven
development. In this approach you first write a test knowing that it will fail, and then go back and write a
minimum amount of code to get the test to work. After that, you can refactor as needed. Jasmine is used to
test units of code. It is also used to test integration with the browser. So how do you simulate button clicks on
multiple browsers? After all, from the history of web development, we know even things that seem simple
sometimes don’t work in certain browsers. This is where Protractor comes in.

http://jsonplaceholder.typicode.com/photos/

Chapter 10 ■ AngularJS and Testing

138

End to End Testing with Protractor
Protractor (http://angular.github.io/protractor) is a tool that lets you run real browsers and run
tests in them. For example, you can make sure that when a button is clicked, it submits a form. Unlike unit
testing where you are testing small units of code, end to end (E2E) testing lets you test whole sections of the
application against an HTTP server. It is similar to you opening the site up in a browser and making sure
things work. The nice part about this is that it’s automated.

Tasks like this should be automated. Protractor is able to do this because it is built on top of WebDriver,
a tool used to automate testing inside a browser. Protractor also has features that support Angular, so there is
very little configuration on your part.

Let’s install Protractor and run a few tests. At the command line, type:

npm install –g protractor –-save-dev

As it did with other node packages, this line will install Protractor globally so you can use it with
other projects.

There is some configuration we need to do to get this working. Let’s create the config file.
Create a new file, which we will call protractor.conf.js, and save it in the test folder right next to the

karma.config.js file.
In this file, we will give Protractor some information about where to find the Selenium server, what

browsers to run, and where the test files are. Listing 10-16 shows the code.

Listing 10-16.  Basic Configuration File for Protractor

export.config = {
 seleniumAddress: 'http://localhost:4444/wd/hub',
 multiCapabilities: [{browserName: ‘firefox’},{browserName: ‘chrome’}],
 baseUrl: 'http://localhost.9000',
 framework: 'jasmine',
 specs: ['protractor/*.js']
};

There are a few things to unpack here, so let’s take a look.
The seleniumAddress property tells Protractor where the Selenium server is running. Next, the

multiCapabilities property tells Protractor which browsers to run the tests on. As you can see, it’s an array
of objects listing the name of each browser.

Because we are testing locally, we can only test browsers that are installed on the machine. So you
can’t test IE if you are running a Mac. If you need to test browsers like IE or mobile browsers, you can add
properties that will allow you to connect to either SauceLabs or BrowserStack.

Next we have the baseUrl property, which tells Protractor what server is hosting the application that is
being tested. It’s important that the site is running on a local server when you run the tests. The framework
property is set to Jasmine, because that is the framework we are using for our tests.

The specs property is important because it is where we tell Protractor what folder has the tests in it. In our
case, it is in the protractor folder, and we use the wild card to tell it to look at any JavaScript file in that folder.

We now have Protractor set up. It’s time to write some tests. Within the tests folder create a Protractor
folder. Here we will write a basic test.

Create a file called app-spec.js in the Protractor folder. The format will be very similar to what we did
in the previous examples.

We start with the describe method for the suite of tests we are about to run. Right after that is our set of
it statements (Listing 10-17). To make this simple we will use examples right from the Protractor site.

http://angular.github.io/protractor

Chapter 10 ■ AngularJS and Testing

139

Listing 10-17.  It Method Checking Whether the Site Has a Title

it('should have a title', function(){
 browser.get('http://juliemr.github.io/protractor-demo');
 expect(browser.getTitle()).toEqual('Super Calculator');
});

We now have everything we need. We are going to run this from the command line. If you are not
already running the serve task and looking at the site locally, type:

grunt serve

This will let you run the site from the local server on port 9000, which is where we told Protractor to look
when it runs the tests.

Now type

protractor test/protractor.conf.js

This will look in the test folder, run the configuration file, and launch the browser so it can run the tests.
As shown in Figure 10-8, we should be getting a passing result.

Figure 10-8.  Protractor test passing in both Firefox and Chrome

http://juliemr.github.io/protractor-demo

Chapter 10 ■ AngularJS and Testing

140

This will direct the browser to the URL and check the title. Pretty simple.
Now let’s write a test where we can use the same calculator to add two values together and then check

the result. Listing 10-18 shows the code.

Listing 10-18.  Typing in Two Text Fields and Then Testing the Result

describe('Protractor Demo App', function() {
 it('should add one and two', function() {
 browser.get('http://juliemr.github.io/protractor-demo/');
 element(by.model('first')).sendKeys(1);
 element(by.model('second')).sendKeys(2);
 
 element(by.id('gobutton')).click();
 
 expect(element(by.binding('latest')).getText()).
 toEqual('3');
 });
});

Here we are able to look right into Angular’s ng-model directive to access the text fields and give them
values. Then we can find the button by its ID and click on it. That click triggers the method doAddition.
Finally, we are able to look at and check the value that is being updated by the result of the method.

Summary
This was a very high-level look at AngularJS and writing both unit and end-to-end tests. Both of these topics
can be books own their own.

As your projects become larger and more involved, having a framework can help you keep everything
organized. In addition, being able to test your code gives you more confidence in the code that you write.

Unit tests lets you know that your front-end code is working as expected. Integration tests lets you know
if that same code works with different browsers.

The site Year of Moo (www.yearofmoo.com/2013/09/advanced-testing-and-debugging-in-
angularjs.html) has an excellent breakdown of testing and debugging with Angular. It covers topics like
when you should write tests, testing in older browsers, and what to test and what not to test.

Now you can refactor with confidence, knowing that what you wrote will not break the app; and if it
does, you will know about it as soon as possible.

http://juliemr.github.io/protractor-demo/
http://www.yearofmoo.com/2013/09/advanced-testing-and-debugging-in-angularjs.html
http://www.yearofmoo.com/2013/09/advanced-testing-and-debugging-in-angularjs.html

141

Chapter 11

The Future of JavaScript

We have taken quite the tour of JavaScript in this book. It is clear that JavaScript is a language in transition.
From its humble beginnings as something of a toy language, JavaScript has ascended to the level of an
enterprise-critical language. In the process, the seams have begun to show and, frankly, come somewhat
loose. When developers from more mature languages come to JavaScript, they often marvel at what we have
accomplished, given JavaScript’s limitations. They are given to wonder at how the language got so far, and
whether it will improve in the future.

JavaScript’s “graduating class” of 1995 has some of the brightest lights of programming: Java, Ruby, PHP,
and even ColdFusion are all thriving languages to this very day. Many developers would say that JavaScript’s
classmates are far ahead of JavaScript. Yet many of them are taking their cues from JavaScript, looking at
its use of prototypes, its implementation of functions as first-class citizens, its flexible style and more as
inspiration for their own new features.

What does the future hold for JavaScript? Where does it go from here? Thankfully, unlike our own
dim and obscured futures, the future of JavaScript has a road map and even some evolving specifications.
ECMAScript 6 will probably be a fully adopted (if not quite implemented) standard by the time this book is
published. ECMAScript 7 is already in development and under debate. To deploy a cliché, JavaScript’s future
looks bright indeed.

Let’s take a look at what lies ahead for JavaScript. We will discuss a little bit of how we got here
and where we are going, looking at the standards process. Then we will look at what we need to do to
use JavaScript with our current set of tools. But the bulk of this chapter is concerned with the details of
ECMAScript 6: the language features you can expect to be working with over the next few years. We will even
hint at some of the distant future, which may or may not come to pass...

Of course, we do not have the space to go over the entirety of the ECMAScript 6 specification. We have
worked to pick and choose the more useful, better defined, and most interesting features to look at.

The Once and Future ECMAScript
We should start with what we know. The European Computer Manufacturers Association, now known as
Ecma International, is the body that oversees the standard to which JavaScript adheres. One could write a
book on how this came to pass, and it’s not really important for our jobs as JavaScript programmers. What
is important is that a group within Ecma, Technical Committee 39 (TC39), has taken up the banner of
JavaScript standards and is promulgating updates. Perhaps more important is the fact that various computer
manufacturers, software companies, and other interested parties are vested in the success of this standard.
We, as the JavaScript community, have a viable system for directing the future of the language. This should
help to head off some of the rancorous differences we have endured in the past, as well as to streamline the
process of positioning JavaScript as an effective, enterprise-class language.

Chapter 11 ■ The Future of JavaScript

142

The process of wrangling JavaScript into an effective and effectively governed standard has been a
long one. Most of the features that we think of as “standard” JavaScript came from ECMAScript version 3.
This version comes from the era when Ecma was still playing catch-up with the browser makers. Although
there were efforts to create a fourth version of the ECMAScript standard, they were ultimately abandoned.
Ten years after version 3, version 5 of the standard was offered in 2009. This aimed to set a new status quo,
catch up to the intervening changes in the landscape, and clarify the many ambiguities from version 3. The
standard was widely accepted and helped to clear the path for Ecma’s resumption of its duties managing the
JavaScript standard.

Even now, wide acceptance of ECMAScript version 5 is not a given. Internet Explorer 9 was the first
version of IE to implement the standard. A significant portion of the world still uses IE 8 and earlier. The
challenge for Ecma International and TC39 has not so much been setting the standard, but getting the
audience to upgrade to the standards once they are offered.

There was some confusion about what the next step would be after version 5. In the end, two tracks
were taken: there was a 5.1 standard, which brought ECMAScript in line with the International Organization
for Standardization’s specification for ECMAScript (a long and boring story in itself). And there would be a
new version of the ECMAScript standard, version 6, often referred to as ECMAScript Harmony (the name
comes from a variety of proposals over time to harmonize various standards of JavaScript, ECMAScript,
JScript and so on, as well as the original code name for ECMAScript version 4).

As programmers, we are most interested in the new standard and what it will enable us to do. The ES6/
Harmony proposal should be finalized by the middle of 2015. So let’s leave the world of standards behind
and talk about how we can work with Harmony today.

Using ECMAScript Harmony
Unlike ECMAScript 5, which had a long life as a de facto standard before it became a de jure standard,
Harmony is leading, rather than following. This means that current (as of the writing this chapter)
implementation of Harmony is spotty. We need a few tools to manage Harmony’s various states of
implementation. First, we will need resources to tell us which browsers implement which aspects of
Harmony. Second, we will look at how to enable Harmony in those browsers, and third, we will examine
some software tools that can transpile our ES6 code into ES5-compliant code. After that, we should be able
to dive into some of the features of the standard that are either in wide use or widely expected to make it into
the final standard.

Harmony Resources
TC39 maintains a wiki that allows the public to track the state of the Harmony proposal, at
http://wiki.ecmascript.org/. Two pages are of particular interest: the requirements/goals/means page
and the proposals page. The requirements page lists the methodology that guided the development of
ES6. While not critical in our understanding of the language, it does inform us about why certain decisions
were made, in terms of the goals and means defined for the Harmony project. For example, Harmony has a
proposal for proper block scope, but implements it through the addition of a keyword (let) instead of simply
redefining the way JavaScript interpreters work. The proposal itself follows the first two subpoints of the first
goal: Be a better language for writing complex applications and libraries. But the implementation follows
the fourth goal (keep versioning as simple and linear as possible) as well as the first means (minimize the
additional semantic state needed beyond ES5). You can find the requirements, goals, and means of the
Harmony project at http://wiki.ecmascript.org/doku.php?id=harmony:harmony.

The other important page for the Harmony process is the proposals page. This tracks the various
proposals made for ES6 and the state of each one. The call for proposals was closed in 2011, so the page
should not see additions. For the most part, you should see the existing proposals, and, occasionally,
proposals that have been removed from the specification. You can find the proposals page at
http://wiki.ecmascript.org/doku.php?id=harmony:proposals.

http://wiki.ecmascript.org/
http://wiki.ecmascript.org/doku.php?id=harmony:harmony
http://wiki.ecmascript.org/doku.php?id=harmony:proposals

Chapter 11 ■ The Future of JavaScript

143

Specifications are wonderful as reference documents, but they are sometimes lacking in
implementation details. We would like to have a reference that tells us the state of ES6 implementation
across browsers and other JavaScript engines. Luckily, we have two such pages. The best page is by the
noted JavaScript developer who calls himself kangax (Juriy Zaytsev), and is known as the ECMAScript 6
compatibility table. You can find it here: http://kangax.github.io/compat-table/es6/. The compatibility
table breaks down ES6 implementation by feature and checks it against most modern browsers, desktop and
mobile, as well as other JavaScript implementations like Node.js. The tests are somewhat simplistic, usually
focusing on existence of a proposal, not the functionality thereof and not the implementation’s conformance
with the proposal. Nonetheless, it’s a great starting point. kangax also maintains compatibility tables for
ES5, the coming ECMAScript 7 specification, as well as nonstandard features like __defineGetter__ or the
caller property on functions.

Thomas Lahn also maintains the ECMAScript matrix, which tracks implementation of ECMAScript
standards across current versions of JavaScript engines. You can find his efforts at http://pointedears.de/
es-matrix/. Lahn’s approach is somewhat different from kangax’s. Lahn is interested in current JavaScript
engines, so he only tracks JavaScript, V8 (Google Chrome’s engine), Opera, and a few others. Contrast this
with kangax, who is more browser- and software-oriented. Also, Lahn’s matrix tracks all of ECMAScript,
at least through version 6, so you can see the let keyword evaluated alongside arrays and for loops. His
approach is more thorough, but also leads to a larger table (and a somewhat more slowly loading page).
Nonetheless, this, like kangax’s compatibility table, is an indispensable resource for the professional
JavaScript developer.

Working with Harmony
There are four states in which a browser can work with the features of Harmony.

•	 The browser, particularly evergreen Chrome and Firefox, may have a ready-to-go
implementation of a Harmony feature with no special effort needed on the part of
the programmer. Very few features work this way as of publication time, though.

•	 Most browsers will require you to “opt-in” to using Harmony features. We will talk
about this in detail shortly.

•	 If your browser does not have a feature enabled or implemented (or it is not
implemented properly!), you may consider using a transpiler, which will let you write
ES6-level code and then output ES5 that can run on the engine of your choice.

•	 Alternatively, you could use a polyfill for a particular feature from ECMAScript 6 you
would like to use.

Obviously, the first state requires little explanation, so let’s talk about the second state. Both Chrome
and Firefox have their own quirks in working with ECMAScript 6.

In Chrome, you will have to go to the chrome://flags URL, which allows you to enable experimental
features. Specifically, you will need to enable chrome://flags/#enable-javascript-harmony. Now, keep
in mind that doing so may change Chrome’s behavior in many circumstances, and could have odd results
in the way Chrome renders certain pages. And the change to the state of enable-javascript-harmony is
persistent. If you would prefer, instead, to change only at startup of a specific session, run Chrome from
the command line with the --javascript-harmony switch. Additionally, some examples require running
JavaScript in strict mode, which can be managed at the code level.

For Firefox, you do not have to change any settings when you start it up, but you may have to change
your code. In general, Firefox will require you to label your code as being different from standard JavaScript.
Add the type attribute to your script tags, and set the type to application/javascript;version=1.7, This
should enable most Harmony features. If there are any additional changes needed to run Harmony code, we
will note them with the specific feature they enable.

http://kangax.github.io/compat-table/es6/
http://pointedears.de/es-matrix/
http://pointedears.de/es-matrix/

Chapter 11 ■ The Future of JavaScript

144

Interestingly, Internet Explorer requires the least configuration to run ECMAScript 6 code—“least” in
the sense of “none.” On the other hand, IE 10 has only four items in the specification implemented. Internet
Explorer 11 has a total of 12 items in the specification implemented, but it lags far behind Firefox and Chrome.
It can be said that while IE 11 has not implemented much, what it has implemented, it has done so simply.

Transpilers
The third option for working with ECMAScript 6 is a transpiler. A transpiler takes code written for
ECMAScript 6 and cross-compiles it into ECMAScript 5-compatible code. There are a number of different
transpiling tools. Addy Osmani maintains a list at GitHub of transpilers and polyfills. You can view the list
at https://github.com/addyosmani/es6-tools. You can see from that link that there are a number of
transpilers and polyfills. We will demonstrate using the Traceur transpiler to take some ECMAScript 6 code
and run it in a browser using ECMAScript 5. Traceur is among the more popular transpilers, and it is also
among the more frequently updated.

The easiest way to use Traceur is to load it via Node.js. Similar to the way we used Node as our own
JavaScript VM in the chapter on JavaScript tools, we will use Node here to load up additional code via NPM.
Start by loading Traceur

npm install traceur

This installs the Traceur transpiler, currently on version 0.0.72. Recall that you can use the -g option if
you want Traceur to be globally available. Either way, you will probably need to update your PATH variable to
include Traceur. On Windows, in your node_modules folder you will find the following file: .bin\traceur.
cmd, which is a Windows batch file wrapped around running Traceur with Node.js. You should be able to
run Traceur directly if you add the node_modules\.bin directory to your PATH. Check that Traceur is on your
path by running traceur--version, which should return the version number or an error message if Traceur
can’t be found.

You can run Traceur against existing ES6 code. Invoke traceur from the command line and pass it,
as an argument, a JavaScript file that contains ES6 code. (You could, of course, pass it a file that only has
ES5 code in it, but where’s the fun in that?) Traceur will run your code and output anything it prints to the
console.

Consider an example of the new class syntax in JavaScript. Quickly, ES6 will allow you to create classes,
though the code is just a syntactic wrapper around the functional style of type. The syntax is easy to read and
figure out, so let’s use it for our Traceur example, shown in Listing 11-1.

Listing 11-1.  ECMAScript 6 Classes with Traceur

class Car {
 
 constructor(make, model) {
 this.make = make;
 this.model = model;
 this.speed = 0;
 }
 
 drive(newSpeed) {
 console.log('DEBUG: Speed was previously %d', this.speed);
 this.speed = newSpeed;
 console.log('DEBUG: Speed is now %d', this.speed);
 }
 

https://github.com/addyosmani/es6-tools

Chapter 11 ■ The Future of JavaScript

145

 brake() {
 this.speed = 0;
 console.log('DEBUG: Setting speed to 0');
 }
 
 getSpeed() {
 return this.speed;
 }
 
 toString() {
 return this.make + ' ' + this.model;
 }
}
var honda = new Car('Honda', 'Civic');
console.log('honda.toString(): %s', honda.toString());
honda.drive(55);
console.log('The Honda is going %d mph', honda.getSpeed());

As you can see, we create a type, Car, and define three properties (make, model, and speed) as well as a
few methods which are wrappers around a property (brake, drive, getSpeed) or conveniences (toString).
Nothing too crazy.

This code will not run in any modern browser. We know, because we tested it. Also, if you look at
kangax’s compatibility tables (as of publication time), you will see that classes are not implemented by any of
the major browsers. So this code is a good choice for experimentation with Traceur.

If you were to save the code in a file (classes.js in the folder for this chapter, as a matter of fact), you
could run it with Traceur:

traceur classes.js

Your output would look something like this:

As you can see, Traceur handles the code just fine. Behind the scenes, Traceur compiled the code down
to ES5, and then simply ran the code using Node.js itself. No big deal.

But what about browsers? Well, we have two different options. We can use Traceur to generate output
files that run in browsers which support ES5. Alternatively, we can use ES6 code directly in the browser
and have Traceur transpile it live. Start with transpiling output. Use the --out option to tell Traceur to
generate output to a file of your choosing. The output file is not a standalone file. You can run it with Traceur,
obviously, but you cannot simply include it into an HTML page. You will need to load up the Traceur
runtime first, and then the script you want to run. Listing 11-2 is an example of a Traceur HTML shell.

Chapter 11 ■ The Future of JavaScript

146

Listing 11-2.  HTML Shell for Traceur

<!DOCTYPE html>
<html>
<head>
 <title>Traceur and classes</title>
</head>
<body>
<h2>Running Traceur output in the browser</h2>
 
<script src="../node_modules/traceur/bin/traceur-runtime.js"></script>
<script src="classes-es5.js"></script>
</body>
</html>

Note that we are loading the traceur-runtime.js file from the bin file of Traceur. This file is a
distillation of the code needed to run Traceur-transpiled files. (The other, considerably larger, file in the
directory is the code for Traceur itself.) Loading Listing 11-2 (available as classes-es5.html in the chapter
folder) yields results on the console as expected. Perhaps more importantly, it works great for current
versions of Firefox, Chrome, and Internet Explorer.

If you wanted to work with ECMAScript Harmony code directly, you could always have Traceur
transpile your code live. We can use the original Harmony code from Listing 11-1, and modify the HTML
shell from Listing 11-2 as follows:

<script src="https://google.github.io/traceur-compiler/bin/traceur.js"></script>
<script src="https://google.github.io/traceur-compiler/src/bootstrap.js"></script>
<script src="classes.js" type="module"></script>

We have switched to using Google’s GitHub repository for Traceur simply because it’s the easiest
way to access the second file: bootstrap.js. This file is not included in the NPM install of Traceur. It is
also not included in the Bower install of Traceur. So we will refer to it directly. Bootstrap allows you to run
Traceur from within a JavaScript context. Also, we are now referring to the file classes.js as being of type
module. This is a convention of bootstrap.js, which loads classes.js, via Ajax, as an explicitly ES6 file.
Additionally, the type attribute has the side effect of not loading error-provoking code into the browser. As
an alternative, you can simply include the JavaScript ES6 code in an inline script block, though you will still
need the type attribute set to module.

While in-line transpiling is a fun experiment, we cannot recommend it as a regular way to develop or
deploy. It’s extra work that has to be done every time a page loads, work that can be done once by transpiling
to an output file. Not to mention that traceur.js plus bootstrap.js plus your code is a much more
significant download than traceur-runtime.js plus your code.

Polyfills
Finally, for some aspects of ECMAScript 6, you could load a polyfill into your page. The use case for this
solution is a bit narrower, but the application is much broader. Instead of the whole set of ECMAScript 6,
which you get with something like Traceur, you can focus on exactly the features you want by using polyfills.
But this comes at a cost. It is easy and logical for a polyfill to provide the new methods on the prototypes for
String, Number, and Array, or to implement the WeakMap and the Set. On the other hand, polyfills cannot,
by their very nature, substitute language features like let, const, or arrow functions. So the set of Harmony
features you can access with polyfills is limited.

https://google.github.io/traceur-compiler/bin/traceur.js
https://google.github.io/traceur-compiler/src/bootstrap.js

Chapter 11 ■ The Future of JavaScript

147

All that said, for the implementable polyfills, there are quite a number of high-quality implementations.
Addy Osmani’s directory of ES6 tools contains a section on ES6 polyfills. Of note is Paul Miller’s ES6-Shim
(https://github.com/paulmillr/es6-shim/), which has polyfills for most aspects of Harmony that can
be polyfilled. When we go over the features list for ECMAScript 6 later in this chapter, we will note those
features that are provided by ES6-Shim.

ECMAScript Harmony Language Features
ECMAScript 6 introduces a large number of new language features. These are features that fill in what
have been glaring blind spots in JavaScript (block scope), trim down the syntax to focus on the core of
functionality (arrow functions), and expand JavaScript’s ability to handle more complex code patterns
(classes, modules, and promises).

Take block scope as an opening example. JavaScript’s odd approach to scope and hoisting (the practice
of lifting variable and function definitions to the top of their local scope) has been a stumbling block for
new JavaScript programmers for years. It is also a cultural impediment: programmers from “real” languages
(whatever that might mean) scoff at JavaScript because it lacks block scope (or classes, or this, or that).
Regardless of the substance of this criticism, it is preventing some people from coming to experience the
good parts of JavaScript. So let’s address it and move forward.

The let keyword allows you to scope variables to an arbitrary block. Variables scoped with let are not
hoisted. Those are the two critical differences between let and var. It could be said that variables scoped
with let act the way you would expect most local variables to act (whereas variables scoped with var have
some interesting features/capabilities). If you try to access a let-scoped variable outside its block, you get a
ReferenceError, much as you would if you tried to access an inaccessible var-scoped variable. It isn’t more
complicated than that. Use let in place of var when you want block scoping.

As a companion to let, there is also const, which allows you to declare a constant-value variable. For
variables declared with const, you should initialize at declaration time because otherwise, what’s the point?
You will not be able to change the value of the variable later on! Like let, const variables are not hoisted,
and they are scoped to the block they are declared in. The semantics of trying to access const variables are
a little different from browser to browser. If you try to modify a variable declared const, your browser will
either fail silently or may throw an error of some type. Constants enable certain bits of code to be compiled
into faster code, as the JavaScript engine knows that they will never change. Also, when paired with some
of the collections we will see later in the chapter, you can use constants to store private data for a class. See
http://fitzgeraldnick.com/weblog/53/ for details.

Arrow Functions
Another cateogry of improvements in ECMAScript 6 is the introduction of syntactic changes that simplify
certain declarations. One of these changes is the arrow function. Arrow functions serve to give you a shorter
syntax for defining functions, particularly in-line functions. Consider this code:

var numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9];
numbers.forEach(function(num) {
 // Do something with the number here
});

It’s not unwieldy, but it is a touch verbose. JavaScript has a unique challenge: try to minimize literal
code length, while not compiling code. Having to define functions using the keyword function is not light
on bandwidth. And the more functions we use, the more times we have to use the word function. It would
be nice to have shorter function syntax.

https://github.com/paulmillr/es6-shim/
http://fitzgeraldnick.com/weblog/53/

Chapter 11 ■ The Future of JavaScript

148

Inspired by CoffeeScript, TC39 introduced a proposal for arrow functions or, more clearly, arrow-
defined functions. The previous example can be written like so:

var numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9];
numbers.forEach(num => {
 // Do something with the number here
});

Somewhat more elegant, no? Here are the critical parts of the syntax:

arguments => { code }
() => { code } // No arguments
i => { code } // One argument
(i, j) => { code } // multiple arguments

For specifying the body of the function, you may wrap multiple lines of code within a set of curly braces
or, if you have only one line of code, you may leave it bare. Thus

x => x * 2

Is the equivalent of

function(x) {
 return x * 2;
}

There are a few differences between arrow functions and regular or standard functions. First, arrow
functions are always bound to the context in which they are defined. This sounds complicated. You may
have run into this problem:

var courseAssignments = {
 teacher : 'Stephen Duffy',
 canTeach: function(courses) {
 courses.forEach(function (course) {
 console.log('Ask %s if he can teach %s', this.teacher, course);
 });
 }
};
 
courseAssignments.canTeach(['Greek', 'Latin', 'Theology', 'History']);

When you run this code, you will see output like this:

Ask undefined if he can teach Greek

Clearly not what we want. The context and value of this within the forEach function refers back to the
canTeach() function, not to the courseAssignments object. Usually the problem is repaired this way:

var courseAssignments = {
 teacher : 'Stephen Duffy',
 canTeach: function(courses) {
 var that = this; // Store the context of canTeach

Chapter 11 ■ The Future of JavaScript

149

 courses.forEach(function (course) {
 console.log('Ask %s if he can teach %s', that.teacher, course);
 });
 }
};
 
courseAssignments.canTeach(['Greek', 'Latin', 'Theology', 'History']);

Note the code in bold, which highlights a strategy for storing the context of this at the canTeach level,
instead of inside the forEach.

Arrow functions simplify this situation dramatically. They are automatically bound to the proper
context. You could rewrite the previous code as

var courseAssignments = {
 teacher : 'Stephen Duffy',
 canTeach: function(courses) {
 courses.forEach(course => console.log('Ask %s if he can teach %s', this.teacher,
course));
 }
};
 
courseAssignments.canTeach(['Greek', 'Latin', 'Theology', 'History']);

With the arrow function, this.teacher is automatically bound to the context of this in canTeach,
which is what we wanted all along. Terrific!

There are two other differences with arrow functions. Arrow functions cannot be used as constructors.
They lack the internal code to act as such. Arrow functions also do not support the arguments object. This
is fine because ECMAScript 6 also defines and permits parameter default values and rest parameters, so we
will no longer need to rely on the arguments object in functions in general.

Classes
One of the biggest syntactical changes in ECMAScript 6 is the introduction of classes. The keyword class
had been reserved in JavaScript since its inception. But there was no implementation behind it. With the
rise of object-oriented JavaScript, TC39 acknowledged that JavaScript needed a more syntactically clear
way to implement classes and inheritance. At the same time, there was no desire to add yet another way to
implement types, classes, or something like classes. The idea was to simplify and to relieve confusion, not
create more confusion.

Classes, ECMAScript 6:The ECMAScript Harmony specification settled on using the class keyword as
syntactic sugar to implement function-based types. If that reads a bit strange, here’s what actually happens:

You write a JavaScript class, based on the new ES6 syntax.

The JavaScript engine compiles it down to a function which defines a type.

You interact with that class the same way you would a type.

Chapter 11 ■ The Future of JavaScript

150

So the semantics of interacting with the class/type and its instances have not changed. And many of
the semantics of defining a class/type are the same as well. Let’s go back to our previous example for more
detail. Recall how we defined a class in JavaScript:

class [classname] {
 constructor(arg1, arg2) { ... }
 [other methods]
}

Define the class with the class keyword. Include a function called constructor. This is the function
that will be called when invoking new [classname] later on. Supply other methods as needed. The other
methods will be copied onto the prototype of the function defined as the constructor. Pretty nifty!

Classes will also have two critical features long desired for the object-oriented side of JavaScript: easy
inheritance and a super accessor. Inheritance is available via the extends keyword:

class Car extends Vehicle

Within a subclass, you can use super as an accessor to the superclass’s methods and properties. Unlike
some languages (Java for instance), ECMAScript 6 doesn’t let you invoke super as a method itself. Rather, it
holds a reference to the superclass, similar to the way this holds a reference to the current instance.

Unfortunately, classes are not implemented at all in any of the major current browsers. The class
specification will be part of the final specification of ECMAScript 6 released in 2015, and it seems that
browser makers are waiting until the final specification to make sure their implementations don’t get
anything wrong. In the meantime, the Traceur transpiler handles classes quite well, including extends
and super.

Promises
Back when we were talking about Ajax, we discussed a bit of the problem with Ajax-based systems: code
flow. When involved with a function that returns results asynchronously, it is difficult to program dependent
code. For a long time, there was no concrete, straightforward solution. Most programmers either wrote very
long callbacks (which may have, in turn, called their own asynchronous functions, complicating the matter!)
or used named functions, but bounced around the call stack. (Not to mention that this method introduces
another complication; there are many named functions. Do you manage them with a module? Just a
namespace?) Asynchronously running code is at the heart of JavaScript’s feature list, so we needed a better
way to manage asynchronous interactions. Enter promises.

A promise is a pattern that helps to manage asynchronously-returning code. It encapsulates that code
and adds a layer of management that tastes of event-handling. We can register code with the promise that
should run if it returns successfully or unsuccessfully. When the promise does complete, the appropriate
code is run. We can register any number of functions to run on success or on failure (very much like event
handling), and we can register a handler at any time (whether the promise has completed or not; very much
NOT like event handling).

Let’s take a technical walkthrough of a promise to clarify the feature’s operation, as demonstrated
in Listing 11-3. Broadly, the promise has two states: pending or settled. The promise is pending until the
asynchronous call it wraps around returns or times out or otherwise finishes. At that point, the promise is
settled. The state of being settled has two flavors (if you will): resolved and rejected. A resolved promise
settled successfully, a rejected promise settled unsuccessfully. As promises are arbitrary (technically, they do
not even require asynchronous code!), the definition of rejection or resolution is really up to you.

Chapter 11 ■ The Future of JavaScript

151

Listing 11-3.  Promises

var p = new Promise(function(resolve, reject) {
 // Do some things here, maybe some Ajax work?
 
 setTimeout(function() {
 var result = 10 * 5;
 
 if (result === 50) {
 resolve(50);
 } else {
 reject(new Error('Bad math, mate'));
 }
 }, 1000);
 
});
 
p.then(function(result) {
 console.log('Resolved with a value of %d', result);
 
});
 
p.catch(function(err) {
 console.error('Something went horribly wrong.');
});

Admittedly, this is a bit contrived, but it is nonetheless a good simple example of some asynchronous
code. At the heart of the matter is the call to setTimeout. Of course, the function we are scheduling for later
execution does nothing other than run a mathematical equation. The critical parts are the calls to resolve
and reject. The resolve function tells a promise consumer that the promise has resolved (completed
successfully). And the reject function does the same for promises that settled unsuccessfully. Note that
in either case, we are passing along a value as well. That value will be what the consumer receives in the
function that handles the resolution or rejection.

We also have some code here that consumes the promise. Note the use of then and of catch. Think
of these as the “onSuccess” and “onFailure” event handlers. To be strict, the signature for then is Promise.
then(onSuccess, onFailure). So you could use a call to then directly. In terms of style, though, it is much
clearer to have a separate call to catch to handle any errors that come along.

The really clever bit is that we have disconnected the handling of the promise from the state of the
promise. That is, we could call p.then (or p.catch) as many times as we want, regardless of the state of the
promise. If we are still inside the 1000 millisecond time it took to settle the promise, code registered with
p.then will be added to the stack of code to be called when the promise settles. If we are after that 1000
millisecond time period (as we are likely to be), the code will execute immediately. You could imagine some
pseudocode inside the promise implementation that works like this:

function then(onSuccess, onFailure) {
 if (this.state === "pending") {
 addSuccessStack(onSuccess);
 addFailureStack(onFailure);
 } else if (this.state === "settled") {

Chapter 11 ■ The Future of JavaScript

152

 if (this.settledState === "success") {
 onSuccess();
 } else {
 onFailure();
 }
 }
}

The actual implementation has a few more details which we won’t go into here. Nonetheless, this
is a useful approximation of what goes on inside a promise when you register code to run when that
promise settles.

Promises are the standard, ECMAScript 6 way of managing asynchronous code. Indeed, many
JavaScript libraries are already using promises to manage Ajax, animation, and other typically asynchronous
interactions. As we will see in the very next section, we will need to have and understand promises to use the
Harmony implementation of modules.

If you want to work with promises in the meantime, there are a variety of options. Traceur understands
promises and uses them internally to implement modules (and a few other features). Libraries like jQuery,
Angular, and a few others have their own implementations of promises, though there are some differences
from the official specification. This is particularly the case with jQuery, so be careful. ES6-Shim contains a
promise implementation, and the excellent Q library by Kris Kowal has a Q.Promise type which implements
the ES6 API.

Our lightweight discussion here has only touched on the promise of promises). There is more to the API
and there is more to the type. There are a number of terrific articles on promises on the web, but if you are
going to start somewhere, consider this HTML5Rocks article by Jake Archibald: http://www.html5rocks.
com/en/tutorials/es6/promises/.

Modules
Wait, haven’t we seen modules before? Well, yes, when speaking of, say, RequireJS, you can talk about AMD
(Asynchronous Module Definition) modules. And if you are in the world of Node.js, you might think of
CommonJS modules. The ECMAScript 6 standard seeks to resolve these two different styles of modules into
one syntax. It is somewhat successful. Inevitably, there will be complaints from both sides. But in striking a
middle ground, using aspects of both standards, TC39 has provided programmers with a clear path to follow.
If you want to stick with AMD styled modules, or prefer CommonJS style modules, someone will eventually
write a transpiler... possibly you.

That having been said, let’s look at the implementation of ES6 modules. We will not spend time
comparing and contrasting ES6 modules with AMD or CommonJS modules. That is an exercise for
another chapter of another book (or for an excellent blog post by Alex Rauschmeyer: http://www.2ality.
com/2014/09/es6-modules-final.html). Instead, we will work with modules to look at what they provide us.

The idea behind the module is simple: we want a safe, encapsulated namespace inside of which we can
define data and functionality. Then, at our discretion, we can make some or all of that data and functionality
available. Reusability is the main use of a module, allowing us to define functionality once and use it
anywhere we need to. Listing 11-4 shows how modules implement these requirements.

Listing 11-4.  A Module Defined

export const schoolName = 'Mickey Kullen Memorial High School';
 
export const firstSport = 'Basketball';
 
export function getPrincipal() {

http://www.html5rocks.com/en/tutorials/es6/promises/
http://www.html5rocks.com/en/tutorials/es6/promises/
http://www.2ality.com/2014/09/es6-modules-final.html
http://www.2ality.com/2014/09/es6-modules-final.html

Chapter 11 ■ The Future of JavaScript

153

 // Probably a call to a server in the real world
 return 'Jason Franzke';
}
 
export function fgPct(shots, baskets) {
 return baskets / shots;
}

As you can see, we export the public API for the module via the export keyword. When using export on
a member-by-member basis, we can export constants, regular variables, and functions. If we prefer, we can
list all of the exports as the last line of the file (even changing their names in the process!):

export {schoolName, firstSport, getPrincipal, fgPct};
export {schoolName as name, firstSport as sport ... };

You can also set a single member of the module to be the default export. This member is marked,
unsurprisingly, with the default keyword, like so:

export default function () { ... };
export default 'foo';

You can mix both a default and named members, though that will complicate things when you later
import these members.

With all these options, which should we choose? Choose the one that works! But if you are looking for
expert guidance, Dave Herman, who is an integral part of the ES6 design process, suggested a preference
for single export modules, using defaults. There was much discussion on this point, with many people in
opposition, or at least expressing alternative preferences. It’s JavaScript: go with a style that works for your needs.

When using a module, we have two ways to interact with it: declarative and programmatic. The
declarative syntax, shown in Listing 11-5, is simple and straightforward.

Listing 11-5.  Using a Module Declaratively

import * as school from 'test-module';
 
console.log('The principal of %s is %s.', school.schoolName, school.getPrincipal());

The import keyword allows you to define which parts of the module are imported into what namespace.
The module name is the same as the file name, minus the .js extension. Paths are allowed, so foo/bar
would find bar.js under the directory foo relative to the current file location.

The import command is quite flexible, as you can import as much or as little of the module as you
would like:

// Imports 'schoolName' only
import schoolName from 'test-module';
 
// Imports both of these named members
import {schoolName, getPrincipal} from 'test-module;
 
// Imports the default exports
import someDefault from 'test-module';
 

Chapter 11 ■ The Future of JavaScript

154

// Imports the default, plus a named member; DOES NOT WORK IN TRACEUR
import someDef {schoolName} from 'test-module';
 
// Imports the entire module, the default function/variable/whatever is
// available as default
import * as school from 'test-module';
console.log(s.default()); // Executes the function exported as a default

Modules are loaded asynchronously. Your browser will wait until all modules have loaded before
executing any code. If you want greater control over this process (or prefer a different syntax) you can use the
programmatic style of module import (Listing 11-6).

Listing 11-6.  Programmatic Imports

System.import('test-module')
 .then(school => {
 console.log('The principal of %s is %s.', school.schoolName, school.getPrincipal());
 })
 .catch(error => {
 console.error('Something has gone horribly wrong.');
 });

The syntax of the underlying module does not change. Instead, we have a promise-based syntax for
loading up modules if you want to tie specific code to the loading or execution of specific modules. (We
threw in a use of the new arrow function syntax just for fun!) The details of what else you can do with this
syntax are more complex than space here allows. Suffice it to say, you will have extensive control over the
loading and running of your modules, should you want or need it.

Several polyfills for modules are available. Traceur does a reasonable job with modules, with one or
two exceptions. The ES6-Tools page keeps up to date on a few others, including a package named, simply,
ES6 Module Loader Polyfill (https://github.com/ModuleLoader/es6-module-loader). Note that ES6-Shim
does not have a module polyfill.

Type Extensions
The last category of changes to ECMAScript is improvements to existing types. Some of these changes
formalize features long available in JavaScript, like the HTML functions on String types and so on. Some of
these are self-explanatory, but others could use some clarification, which is what we’re here to provide!

Strings
This set of String functions should be called from an instance of String. Put another way, they are available
on String.prototype. First there are the HTML functions: anchor, big, bold, fixed, fontcolor, fontsize,
italics, link, small, strike, sub, and sup. Each of these takes the String instance and returns a copy
wrapped in the appropriate tag. Various browsers may add or subtract from this group (Chrome, for
instance, has a blink function).

https://github.com/ModuleLoader/es6-module-loader

Chapter 11 ■ The Future of JavaScript

155

There are also some String utility functions:

String.prototype.startsWith(str) Does the String start with the provided substring?

String.prototype.endsWith(str) Does the String end with the provided substring?

String.prototype.contains(str, [startPos]) Does the String contain the provided substring?

String.prototype.repeat(count) Generates a new string, which is a repetition of String
for count times.

Numbers
The Number type gains several static methods, most of which are used to determine characteristics of the
passed argument.

Number.isNaN(num) Is num a Number? Replaces the global isNaN function, which had
some issues.

Number.isFinite(num) Is num finite? Positive and negative Infinity, NaN, and
non-numbers are not finite.

Number.isInteger(num) Is the number an integer? NaN is not an integer, nor is anything
non-numeric.

Number.isSafeInteger(num) Can this number be safely represented as an IEEE-754
double-precision number, and does no other IEEE-754
double-precision number round to this number?

Number.parseInt(string, [radix]) Replaces global parseInt(); prefer supplying a radix, as this can
ameliorate implementation differences.

Number.parseFloat(string) Replaces global parseFloat().

Math
The Math utility library expands with a few useful functions. Most of these are more esoteric than we have
time to go into here, but here is a brief list:

Math.imul(x, y) Returns the result of the C-like 32-bit multiplication of the two parameters.

Math.clz32(num) Returns the number of leading zero bits in the 32-bit binary representation of a
number.

Math.fround(num) Returns the nearest single-precision float representation of a number.

Math.log10(num) Returns the base 10 logarithm of a number.

Math.log2(num) Returns the base 2 logarithm of a number.

Math.log1p(num) Returns the natural logarithm (base e) of 1 + a number.

Math.expm1(x) Returns ex - 1, where x is the argument, and e the base of the natural logarithms.

Math.cosh(num) Returns the hyperbolic cosine of a number.

(continued)

http://en.wikipedia.org/wiki/Single_precision#link%20to%20the%20wikipedia%20page%20on%20single%20precision
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/E
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/E

Chapter 11 ■ The Future of JavaScript

156

Math.sinh(num) Returns the hyperbolic sine of a number.

Math.tanh(num) Returns the hyperbolic tangent of a number.

Math.acosh(num) Returns the hyperbolic arc-cosine of a number.

Math.asinh(num) Returns the hyperbolic arc-sine of a number.

Math.atanh(num) Returns the hyperbolic arc-tangent of a number.

Math.hypot([num,
num2, num3, ...])

Returns the square root of the sum of squares of its arguments.

Math.trunc(num) Returns the integral part of a number by removing any fractional digits. It does not
round any numbers.

Math.sign(num) Returns the sign of a number, which may be positive, negative, or zero.

Math.cbrt(num) Returns the cube root of a number.

Arrays
Many new things have happened in the world of Arrays. Let’s look at functions first. The first is a simple
utility function: Array.from(), statically available on the Array type. This takes array-like objects, or iterable
objects, and converts them to Arrays (giving you all the functions and features of Arrays). Think of arguments
inside a function, or the return value of document.querySelectorAll, which are both like Arrays but lack
many of the features of Arrays. Now you can convert iterables on-the-fly to Arrays.

Arrays also gain three new tools for iterating over their contents: keys, values, and entries. You can
probably deduce that keys gives you the indices of an array, values the indices of the values, and entries an
array consisting of the key and the value for each array entry. The part that’s a little different is that this is done
via an iterator. That is, instead of getting all the values, you see the individual elements as you are passing over
them. This can be useful for dynamic arrays, better memory management, array searches, and so on.

For searching through arrays, we already have the Array.prototype.indexOf function. But if you want
to test for something other than simple equality, you can use Array.prototype.find and Array.prototype.
findIndex. Both take an argument of a predicate function and an optional context in which to run. The
predicate function, much like the predicate functions for forEach, map, and so on, takes arguments of
element, index, and a reference back to the original code. Listing 11-7 shows an example.

Listing 11-7.  Using Array.prototype.find()

var names = ['John', 'Jon', 'José', 'Joseph', 'Mike',
 'Andre', 'Melanie', 'Jaymi', 'Kathy', 'Jennifer'];
 
names.find(function (element, index) {
 if (element.startsWith('J')) {
 console.log('The name %s at position %d starts with "J"!', element, index);
 }
});

Finally, there’s Array.prototype.fill, which allows you to fill an array with values, optionally passing
in start and end positions.

There is one more important improvement to arrays: the spread operator. For a long time, JavaScript
programmers have wanted to be able to “unwind” an array as an argument to a function. Up through
ECMAScript 5, there was no way to do this, though you could use Function.prototype.apply, which took

Chapter 11 ■ The Future of JavaScript

157

an array and spread it out as arguments to the function being called. This was unwieldy and unclear to say
the least. Now, you can use the spread operator:

[1, 2, 3].push(...[4, 5, 6])
[1, 2, 3, 4, 5, 6]

Nice, right? In many ways, this makes push, pop, shift, and unshift more powerful, and makes splice
and concat much more specialized.

Polyfills
The Traceur transpiler does not support these expansions of standard types. Traceur, in general, is focused
on new syntactical changes, not expansions of existing types.

On the other hand, ES6-shim supports all of these features. And you can find polyfills for most of these
functions, often broken out by function or by type, at Addy Osmani’s ES6 Tools page.

New Collection Types
JavaScript has suffered from a dearth of collection implementations. Before ECMAScript Harmony, your
only choices for native data strutures were the Array and the Object. This was hardly ideal. ECMAScript 6
introduces the Set, WeakSet, Map, and WeakMap as new data structures. At their most basic, these intend
to be a new Collections API for JavaScript. In the future, you should be able to think of JavaScript collections
as Map, WeakMap, Set, WeakSet, and Array, leaving Objects to do work as just objects, not double-duty as
maps/associative arrays as well.

Let’s talk about the non-Weak versions of these objects first. The Map is a set of keys and values. The
keys can be any primitive or object value, as can the values. These are explicitly intended to replace Objects
as a data structure. There are some critical differences:

•	 Keys for Objects are always Strings, whereas keys for Maps can be any data type.

•	 Maps have a property for size, Objects do not; put another way, you have to track the
size of your Objects manually, where Maps do this automatically.

•	 Objects have prototypes. Strictly speaking, Maps have prototypes as well, but Map
instances do not have prototypes the way that Object instances do. This is important
in that Objects have default keys, where Maps do not.

Sets are Arrays that guarantee uniqueness. Set entries must be unique according to === (triple-
equals). Data can be retrieved from a Set in insertion order. A Set can be created from an Array by passing
the Array as an argument to the Set constructor. It is not easy to convert a Set to an Array in cross-browser
ECMAScript, but you could always iterate over the elements of a Set with for...of or Set.prototype.
forEach and push the individual element onto an array, should you need to.

The new collections are supported by recent editions of both Firefox and Chrome. Internet Explorer
has “basic” support for Map, WeakMap, and Set (though not WeakSet!). This means that IE knows about the
type, and has some of it implemented, but does not, for instance, allow you to use new Map(iterable) to
create an instance of Map. But you can create empty Maps, Sets, and WeakMaps and then add elements to
them with the appropriate API calls. Full support is expected in the next edition of IE, according to status.
modern.ie.

Chapter 11 ■ The Future of JavaScript

158

That’s Weak
So what’s the deal with the WeakSet and the WeakMap? To understand these, you have to understand a little
bit about JavaScript garbage collection. In general, an object is available for garbage collection when its
reference count is zero. That means there are no extant references to the object in question: no variables, no
keys, no values, no entries and so on. The entries in Maps and Sets count as references.

Imagine that you have created a reference to a complex object and stored it in a variable. Later, you also
stashed that reference in a Set. Before your function or section of code returned, you deallocated the variable,
setting it equal to null. Great, right? All cleaned up! Not so fast. The entry in the Set persists and your object is
not elligible for garbage collection until you remove it from the Set (or deallocate the entire Set!).

Enter WeakSets and WeakMaps. In the case of a WeakSet, the object references are held weakly. This
means that the instance held in the Set does not count toward overall reference count. The reference is
weakly held. If all other references to the object have been deallocated, the object is available for garbage
collection. This can be quite useful for memory management but somewhat tricky if you were counting on
that reference sticking around.

WeakMaps are similar in that their keys are held weakly, the same way as the entries for a Set are held
weakly. Additionally, keys in a WeakMap can only be Objects, not primitves. Unlike regular Maps, the
keys for WeakMaps cannot be iterated, because their state is nondeterministic, due to potential garbage
collection. You will have to maintain a list of keys yourself, perhaps as an array, if you want access to it.

Collections API
The various collection implementations share a common API. Not all functions are found on all collections,
but most are shared by two or more classes of collection.

Function/Property Set WeakSet Map WeakMap Description

size Y Y Y N Number of entries in the collection.

add(e) Y Y N N Adds an element to the Set.

clear() Y Y Y Y Removes all elements from the collection.

delete(k) Y Y Y Y For Maps, deletes the entry for this key; for
Sets, deletes the entry for this value.

has(k) Y Y Y Y Returns Boolean true or false based on
whether the key (Maps) or value (Sets) is
present in the collection.

get(k) N N Y Y Gets the value associated with this key.

set(k, v) N N Y Y Sets the key k to value v.

entries() Y N Y N Returns an iterator which will return
individual arrays for key/ value pairs (Maps)
or two-element arrays of each value (Sets).

forEach(fn,
[scope])

Y N Y N Iterates over the elements of the collection,
running the function fn once for each
element (values for Sets, key/value pairs as
an array for Maps).

keys() Y N Y N Returns the keys for the collection. In Sets,
keys and values are the same thing.

values() Y N Y N Returns the values for the collection.

Chapter 11 ■ The Future of JavaScript

159

Polyfills
As with the extensions to JavaScript types, Traceur does not implement ES5 transpilations of these
features. That is the realm of the polyfill. And, as noted earlier, the ES6-Shim polyfill has ES5-compliant
implementations of Map, Set, WeakMap, and WeakSet. There’s also the harmony-collections polyfill
(https://github.com/Benvie/harmony-collections), which implements only Map, Set, WeakMap, and
WeakSet.

Keep in mind, though, that while a polyfill can ape the API, it cannot duplicate a critical feature of
WeakMaps and WeakSets: holding references weakly so that they don’t count toward overall reference count
for garbage collection purposes. That can only be implemented through changes to the JavaScript engine.
It can only emulate the behavior of a WeakMap, without having an actual relationship with the garbage
collector whereby weakly held references can be released.

Summary
In this chapter, we have tried to give you an overview of some of the new features coming to JavaScript with
ECMAScript 6. In doing so, we have necessarily overlooked a large amount of the specification. Some time in
2015, the specification will settle into its final form, and APress will offer several books covering the material.

Meanwhile, we have focused on the tools that ameliorate some of JavaScript’s more annoying quirks
(think arrow functions here). We also walked through how to use some features that many programmers
are using today (promises, classes, modules). We are very excited about the future of JavaScript. With
ECMAScript 6 well defined by the time this book is published, we are looking forward to ECMAScript 7,
which TC39 is already starting to work on!

https://github.com/Benvie/harmony-collections

161

Appendix A

DOM Reference

This appendix serves as a reference for the functionality provided by the Document Object Model discussed
in Chapter 5.

Resources
DOM functionality has come in a variety of flavors, starting with the original prespecification DOM
Level 0 on up to DOM Level 3. One of the things to understand about the DOM is that it is considered
a living standard. Each level is describes the features and behaviors that are added. The DOM itself is a
representation of the document with nodes and properties the can have events associated with them.

If you wanted to understand some of the details of DOM the W3C’s web sites serve as an excellent
reference for learning how the DOM should work as well as the Web Hypertext Application Technology
Working Group (WHATWG):

•	 HTML DOM Level 3: http://www.w3.org/TR/DOM-Level-3-Core/

•	 WHATWG DOM: https://dom.spec.whatwg.org/

Additionally, there exist a number of excellent references for learning how DOM functionality works,
but none is better than the resources that exist at Quirksmode.org, a site run by Peter-Paul Koch. He has
comprehensively looked at every available DOM method and compared its results in all modern browsers
(plus some). It’s an invaluable resource for figuring out what is, or is not, possible in the browsers that you’re
developing for. Another source is also caniuse.com created by Alexis Devera. Here you can search for a
feature you would like to use and see a compatibioity table for witch browsers support that feature.

Terminology
In Chapter 5 on the Document Object Model and in this appendix, I use common XML and DOM
terminology to describe the different aspects of a DOM representation of an XML document. The following
words and phrases are terminology that relate to the Document Object Model and XML documents in
general. All of the terminology examples will relate to the sample HTML document shown in Listing A-1.

Listing A-1.  A Reference Point for Discussing DOM and XML Terminology

<!doctype html>
<html>
<head>
 <title>Introduction to the DOM</title>
</head>

http://dx.doi.org/10.1007/9781430263913_5
http://www.w3.org/TR/DOM-Level-3-Core/
https://dom.spec.whatwg.org/
http://dx.doi.org/10.1007/9781430263913_5

Appendix A ■ DOM Reference

162

<body>
 <h1>Introduction to the DOM</h1>
 <p class="test">There are a number of reasons why the DOM is awesome,
 here are some:</p>

 <li id="everywhere">It can be found everywhere.
 <li class="test">It's easy to use.
 <li class="test">It can help you to find what you want, really quickly.

</body>
</html>

Ancestor

Very similar to the genealogical term, ancestor refers to the parent of the current element, and that parent’s
parent, and that parent’s parent, and so on. In Listing A-1 the ancestor elements of the element are the
<body> element and the <html> element.

Attribute

Attributes are properties of elements that contain additional information about them. In Listing A-1
the <p> element has the attribute class that contains the value test.

Child

Any element can contain any number of nodes (each of which are considered to be children of the parent
element). In Listing A-1 the contains seven child nodes; three of the child nodes are the elements,
the other four are the endlines that exist in between each element (contained within text nodes).

Document

An XML document consists of one element (called the root node or document element) that contains all
other aspects of the document. In Listing A-1 the <html> is the document element containing the rest of the
document.

Descendant

An element’s descendants include its child nodes, its children’s children, and their children, and so on.
In Listing A-1 the <body> element’s descendants include <h1>, <p>, , all the elements, and all the
text nodes contained inside all of them.

Element

An element is a container that holds attributes and other nodes. The primary, and most noticeable,
component of any HTML document is its elements. In Listing A-1 there are a ton of elements; the <html>,
<head>, <title>, <body>, <h1>, <p>, , and tags all represent elements.

Node

A node is the common unit within a DOM representation. Elements, attributes, comments, documents, and
text nodes are all nodes and therefore have typical node properties (for example, nodeType, nodeName, and
nodeValue exist in every node).

Parent

Parent is the term used to refer to the element that contains the current node. All nodes have a parent, except
for the root node. In Listing A-1 the parent of the <p> element is the <body> element.

Appendix A ■ DOM Reference

163

Sibling

A sibling node is a child of the same parent node. Generally this term is used in the context of
previousSibling and nextSibling, two attributes found on all DOM nodes. In Listing A-1 the siblings of the
<p> element are the <h1> and elements (along with a couple white space–filled text nodes).

Text Node

A text node is a special node that contains only text; this includes visible text and all forms of white space.
So when you’re seeing text inside of an element (for example, hello world!), there is actually a
separate text node inside of the element that contains the “hello world!” text. In Listing A-1, the text “It’s
easy to use” inside of the second element is contained within a text node.

Global Variables
Global variables exist within the global scope of your code, but they exist to help you work with common
DOM operations.

document
This variable contains the active HTML DOM document, which is viewed in the browser. However, just
because this variable exists and has a value, doesn’t mean that its contents have been fully loaded and
parsed. See Chapter 5 for more information on waiting for the DOM to load. Listing A-2 shows some
examples of using the document variable that holds a representation of the HTML DOM to access document
elements.

Listing A-2.  Using the Document Variable to Access Document Elements

// Locate the element with the ID of 'body'
document.getElementById("body")
 
// Locate all the elements with the tag name of <div>.
document.getElementsByTagName("div")

HTMLElement
This variable is the superclass object for all HTML DOM elements. Extending the prototype of this element
extends all HTML DOM elements. This superclass is available by default in Mozilla-based browsers and
Opera. It’s possible to add it to Internet Explorer and Safari. Listing A-3 shows an example of binding new
functions to a global HTML element superclass. Attaching a hasClass function provides the ability to see
whether an element has a specific class.

Listing A-3.  Binding New Functions to a Global HTML Element SuperClass

// Add a new method to all HTML DOM Elements
// that can be used to see if an Element has a specific class, or not.
HTMLElement.prototype.hasClass = function(class) {
 return new RegExp("(^|\\s)" + class + "(\\s|$)").test(this.className);
};

http://dx.doi.org/10.1007/9781430263913_5

Appendix A ■ DOM Reference

164

DOM Navigation
The following properties are a part of all DOM elements and can be used to traverse DOM documents.

body
This property of the global HTML DOM document (the document variable) points directly to the HTML
<body> element (of which there should only be the one). This particular property is one that has been
carried over from the days of DOM 0 JavaScript. Listing A-4 shows some examples of accessing the <body>
element from the HTML DOM document.

Listing A-4.  Accessing the <body> Element Inside of an HTML DOM Document

// Change the margins of the <body>
document.body.style.margin = "0px";
 
// document.body is equivalent to:
document.getElementsByTagName("body")[0]   

childNodes
This is a property of all DOM elements, containing an array of all child nodes (this includes elements, text
nodes, comments, etc.). This property is read-only. Listing A-5 shows how you would use the childNodes
property to add a style to all child elements of a parent element.

Listing A-5.  Adding a Red Border Around Child Elements of the <body> Element Using the
childNodes Property

// Add a border to all child elements of <body>
var c = document.body.childNodes;
for (var i = 0; i < c.length; i++) {
 // Make sure that the Node is an Element
 if (c[i].nodeType == 1)
 c[i].style.border = "1px solid red";
}

documentElement
This is a property of all DOM nodes acting as a reference to the root element of the document (in the case of
HTML documents, this will always point to the <html> element). Listing A-6 shows an example of using the
documentElement to find a DOM element.

Listing A-6.  Example of Locating the Root Document Element From Any DOM Node

// Find the documentElement, to find an Element by ID
someRandomNode.documentElement.getElementById("body")

Appendix A ■ DOM Reference

165

firstChild
This is a property of all DOM elements, pointing to the first child node of that element. If the element has no
child nodes, firstChild will be equal to null. Listing A-7 shows an example of using the firstChild property to
remove all child nodes from an element.

Listing A-7.  Removing All Child Nodes From an Element

// Remove all child nodes from an element
var e = document.getElementById("body");
while (e.firstChild)
 e.removeChild(e.firstChild);

getElementById(elemID)
This is a powerful function that locates the one element in the document that has the specified ID.
The function is only available on the document element. Additionally, the function may not work as
intended in non-HTML DOM documents; generally with XML DOM documents you have to explicitly
specify the ID attribute in a DTD (Document Type Definition) or schema.

This function takes a single argument: the name of the ID that you’re searching for, as demonstrated in
Listing A-8.

Listing A-8.  Two Examples of Locating HTML Elements by Their ID Attributes

// Find the Element with an ID of body
document.getElementById("body")
 
// Hide the Element with an ID of notice
document.getElementById("notice").style.display = 'none';

getElementsByTagName(tagName)
This property finds all descendant elements—beginning at the current element—that have the specified tag
name. This function works identically in XML DOM and HTML DOM documents.

In all modern browsers, you can specify * as the tag name and find all descendant elements, which is
much faster than using a pure-JavaScript recursive function.

This function takes a single argument: the tag name of the elements that you’re searching for. Listing A-9
shows examples of getElementsByTagName. The first block adds a highlight class to all <div> elements in the
document. The second block finds all the elements inside of the element with an ID of body, and hides any
that have a class of highlight.

Listing A-9.  Two Code Blocks That Demonstrate How getElementsByTagName Is Used

// Find all <div> Elements in the current HTML document
// and set their class to 'highlight'
var d = document.getElementsByTagName("div");
for (var i = 0; i < d.length; i++) {
 d[i].className = 'hilite';
}

Appendix A ■ DOM Reference

166

// Go through all descendant elements of the element with
// an ID of body. Then find all elements that have one class
// equal to 'hilite'. Then hide all those elements that match.
var all = document.getElementById("body").getElementsByTagName("*");
for (var i = 0; i < all.length; i++) {
 if (all[i].className == 'hilite')
 all[i].style.display = 'none';
}

lastChild
This is a reference available on all DOM elements, pointing to the last child node of that element. If no child
nodes exist, lastChild will be null. Listing A-10 shows an example of using the lastChild property to insert an
element into a document.

Listing A-10.  Creating a New <div> Element and Inserting It Before the Last Element in the <body>

// Insert a new Element just before the last element in the <body>
var n = document.createElement("div");
n.innerHTML = "Thanks for visiting!";
 
document.body.insertBefore(n, document.body.lastChild);

nextSibling
This is a reference available on all DOM nodes, pointing to the next sibling node. If the node is the last
sibling, nextSibling will be null. It’s important to remember that nextSibling may point to a DOM element, a
comment, or even a text node; it does not serve as an exclusive way to navigate DOM elements. Listing A-11
is an example of using the nextSibling property to create an interactive definition list.

Listing A-11.  Making All <dt> Elements Expand Their Sibling <dd> Elements Once Clicked

// Find all <dt> (Defintion Term) elements
var dt = document.getElementsByTagName("dt");
for (var i = 0; i < dt.length; i++) {
 // Watch for when the term is clicked
 dt[i].onclick = function() {
 // Since each Term has an adjacent <dd> (Definition) element
 // We can display it when it's clicked
 
 // NOTE: Only works when there's no whitespace between <dd> elements
 this.nextSibling.style.display = 'block';
 };
}

parentNode
This is a property of all DOM nodes. Every DOM node’s parentNode points to the element that contains it,
except for the document element, which points to null (since nothing contains the root element). Listing A-12
is an example of using the parentNode property to create a custom interaction. Clicking the Cancel button
hides the parent element.

Appendix A ■ DOM Reference

167

Listing A-12.  Using the parentNode Property to Create a Custom Interaction

// Watch for when a link is clicked (e.g. a Cancel link)
// and hide the parent element
document.getElementById("cancel").onclick = function(){
 this.parentNode.style.display = 'none';
}; 

previousSibling
This is a reference available on all DOM nodes, pointing to the previous sibling node. If the node is the
first sibling, the previousSibling will be null. It’s important to remember that previousSibling may point
to a DOM element, a comment, or even a text node; it does not serve as an exclusive way to navigate DOM
elements. Listing A-13 shows an example of using the previousSibling property to hide elements.

Listing A-13.  Hiding All Elements Before the Current Element

// Find all elements before this one and hide them
var cur = this.previousSibling;
while (cur != null) {
 cur.style.display = 'none';
 cur = this.previousSibling;
}

Node Information
These properties exist on most DOM elements in order to give you easy access to common element
information.

innerText
This is a property of all DOM elements (which only exists in non-Mozilla-based browsers, as it’s not part
of a W3C standard). This property returns a string containing all the text inside of the current element.
Since this property is not supported in Mozilla-based browsers, you can utilize a workaround (where you
use a function to collect the values of descendant text nodes). Listing A-14 shows an example of using the
innerText property and the text( ) function from Chapter 5.

Listing A-14.  Using the innerText Property to Extract Text Information From an Element

// Let's assume that we have an element like this, stored in the variable 'li':
// Please visit my web site.
 
// Using the innerText property
li.innerText
 
// or the text() function described in Chapter 5
text(li)
 
// The result of either the property or the function is:
"Please visit my web site."
 

http://dx.doi.org/10.1007/9781430263913_5
http://mysite.com/
http://dx.doi.org/10.1007/9781430263913_5

Appendix A ■ DOM Reference

168

nodeName
This is a property available on all DOM elements that contains an uppercase version of the element name.
For example, if you have an element and you access its nodeName property, it will return LI. Listing A-15
shows an example of using the nodeName property to modify the class names of parent elements.

Listing A-15.  Locating All Parent Elements and Setting Their Class to current

// Find all the parents of this node, that are an element
var cur = this.parentNode;
while (cur != null) {
 // Once the element is found, and the name verified, add a class
 if (cur.nodeName == 'LI')
 cur.className += " current";
 cur = this.parentNode;
}

nodeType
This is a common property of all DOM nodes, containing a number corresponding to the type of node that it
is. The three most popular node types used in HTML documents are the following:

•	 Element node (a value of 1 or document.ELEMENT_NODE)

•	 Text node (a value of 3 or document.TEXT_NODE)

•	 Document node (a value of 9 or document.DOCUMENT_NODE)

Using the nodeType property is a reliable way of making sure that the node that you’re trying to access
has all the properties that you think it does (e.g., a nodeName property is only useful on a DOM element; so
you could use nodeType to make sure that it’s equal to 1 before accessing it). Listing A-16 shows an example
of using the nodeType property to add a class to a number of elements.

Listing A-16.  Locating the First Element in the HTML <body> and Applying a header Class to It

// Find the first element in the <body>
var cur = document.body.firstChild;
while (cur != null) {
 // If an element was found, add the header class to it
 if (cur.nodeType == 1) {
 cur.className += " header";
 cur = null;          

 // Otherwise, continue navigating through the child nodes
 } else {
 cur = cur.nextSibling;
 }
}

nodeValue
This is a useful property of text nodes that can be used to access and manipulate the text that they contain.
The best example of this in use is the text function presented in Chapter 5, which is used to retrieve all the
text contents of an element. Listing A-17 shows an example of using the nodeValue property to build a
simple text value function.

http://dx.doi.org/10.1007/9781430263913_5

Appendix A ■ DOM Reference

169

Listing A-17.  A Function That Accepts an Element and Returns the Text Contents of It and All Its
Descendant Elements

function text(e) {
 var t = " ";
 // If an element was passed, get its children,
 // otherwise assume it's an array
 e = e.childNodes || e;
 
 // Look through all child nodes
 for (var j = 0; j < e.length; j++) {
 // If it's not an element, append its text value
 // Otherwise, recurse through all the element's children
 t += e[j].nodeType != 1 ?
 e[j].nodeValue : text(e[j].childNodes);
 }
 
 // Return the matched text
 return t;
}

Attributes
Most attributes are available as properties of their containing element. For example, the attribute ID can be
accessed using the simple element.id. This feature is residual from the DOM 0 days, but it’s very likely that
it’s not going anywhere, due to its simplicity and popularity.

className
This property allows you to add and remove classes from a DOM element. This property exists on all DOM
elements. The reason I’m mentioning this specifically is that its name, className, is very different from the
expected name of class. The strange naming is due to the fact that the word class is a reserved word in most
object-oriented programming languages; so its use is avoided to limit difficulties in programming a web
browser. Listing A-18 shows an example of using the className property to hide a number of elements.

Listing A-18.  Finding All <div> Elements That Have a Class of special and Hiding Them

// Find all the <div> elements in the document
var div = document.getElementsByTagName("div");
for (var i = 0; i < div.length; i++) {
 // Find all the <div> elements that have a single class of 'special'
 if (div[i].className == "special") {
 // And hide them
 div[i].style.display = 'none';
 }
}

Appendix A ■ DOM Reference

170

getAttribute(attrName)
This is a function that serves as the proper way of accessing an attribute value contained within a DOM
element. Attributes are initialized with the values that the user has provided in the straight HTML document.

The function takes a single argument: the name of the attribute that you want to retrieve. Listing A-19
shows an example of using the getAttribute( ) function to find input elements of a specific type.

Listing A-19.  Finding the <input> Element Named text and Copying Its Value Into an Element With an ID
of preview

// Find all the form input elements
var input = document.getElementsByTagName("input");
for (var i = 0; i < input.length; i++) {
 
 // Find the element that has a name of "text"
 if (input[i].getAttribute("name") == "text") {
 
 // Copy the value into another element
 document.getElementById("preview").innerHTML =
 input[i].getAttribute("value");
 }
}

removeAttribute(attrName)
This is a function that can be used to completely remove an attribute from an element. Typically, the result
of using this function is comparable to doing a setAttribute with a valueof “ ” (an empty string) or null; in
practice, however, you should be sure to always clean up extra attributes in order to avoid any unexpected
consequences.

This function takes a single argument: the name of the attribute that you wish to remove. Listing A-20
shows an example of unchecking some check boxes in a form.

Listing A-20.  Finding All Check Boxes in a Document and Unchecking Them

// Find all the form input elements
var input = document.getElementsByTagName("input");
for (var i = 0; i < input.length; i++) {
 
 // Find all the checkboxes
 if (input[i].getAttribute("type") == "checkbox") {
 
 // Uncheck the checkbox
 input[i].removeAttribute("checked");
 
 }
 
}

Appendix A ■ DOM Reference

171

setAttribute(attrName, attrValue)
This is a function that serves as a way of setting the value of an attribute contained within a DOM element.
Additionally, it’s possible to add in custom attributes that can be accessed again later while leaving the
appearance of the DOM elements unaffected. setAttribute tends to behave rather strangely in Internet Explorer,
keeping you from setting particular attributes (such as class or maxlength). This is explained more in Chapter 5.

The function takes two arguments. The first is the name of the attribute. The second is the value to set
the attribute to. Listing A-21 shows an example of setting the value of an attribute on a DOM element.

Listing A-21.  Using the setAttribute Function to Create an <a> Link to Google

// Create a new <a> element
var a = document.createElement("a").
 
// Set the URL to visit to Google's web site
a.setAttribute("href","http://google.com/");
 
// Add the inner text, giving the user something to click
a.appendChild(document.createTextNode("Visit Google!"));
 
// Add the link at the end of the document
document.body.appendChild(a);

DOM Modification
The following are all the properties and functions that are available to manipulate the DOM.

appendChild(nodeToAppend)
This is a function that can be used to add a child node to a containing element. If the node that’s being
appended already exists in the document, it is moved from its current location and appended to the current
element. The appendChild function must be called on the element that you wish to append into.

The function takes one argument: a reference to a DOM node (this could be one that you just created
or a reference to a node that exists elsewhere in the document). Listing A-22 shows an example of creating
a new element and moving all elements into it from their original location in the DOM, then
appending the new to the document body.

Listing A-22.  Appending a Series of Elements to a Single

// Create a new element
var ul = document.createElement("ul");
 
// Find all the first elements
var li = document.getElementsByTagName("li");
for (var i = 0; i < li.length; i++) {
 
 // append each matched into our new element
 ul.appendChild(li[i]);
}
 
// Append our new element at the end of the body
document.body.appendChild(ul);

http://dx.doi.org/10.1007/9781430263913_5
http://google.com/

Appendix A ■ DOM Reference

172

cloneNode(true|false)
This function is a way for developers to simplify their code by duplicating existing nodes, which can then be
inserted into the DOM. Since doing a normal insertBefore or appendChild call will physically move a DOM
node in the document, the cloneNode function can be used to duplicate it instead.

The function takes one true or false argument. If the argument is true, the node and everything inside
of it is cloned; if false, only the node itself is cloned. Listing A-23 shows an example of using this function to
clone an element and append it to itself.

Listing A-23.  Finding the First Element in a Document, Making a Complete Copy of It, and
Appending It to Itself

// Find the first element
var ul = document.getElementsByTagName("ul")[0];
 
// Clone the node and append it after the old one
ul.parentNode.appendChild(ul.cloneNode(true));

createElement(tagName)
This is the primary function used for creating new elements within a DOM structure. The function exists as a
property of the document within which you wish to create the element.

■■ Note I f you’re using XHTML served with a content-type of application/xhtml+xml instead of regular
HTML served with a content-type of text/html, you should use the createElementNS function instead of the
createElement function.

This function takes one argument: the tag name of the element to create. Listing A-24 shows an example
of using this function to create an element and wrap it around some other elements.

Listing A-24.  Wrapping the Contents of a <p> Element in a Element

// Create a new element
var s = document.createElement("strong");
 
// Find the first paragraph
var p = document.getElementsByTagName("p")[0];
 
// Wrap the contents of the <p> in the element
while (p.firstChild) {
 s.appendChild(p.firstChild);
}
 
// Put the element (containing the old <p> contents)
// back into the <p> element
p.appendChild(s);

Appendix A ■ DOM Reference

173

createElementNS(namespace, tagName)
This function is very similar to the createElement function, in that it creates a new element; however, it also
provides the ability to specify a namespace for the element (for example, if you’re adding an item to an XML
or XHTML document).

This function takes two arguments: the namespace of the element that you’re adding, and the tag name
of the element. Listing A-25 shows an example of using this function to create a DOM element in a valid
XHTML document.

Listing A-25.  Creating a New XHTML <p> Element, Filling It With Some Text, and Appending It to the
Document Body

// Create a new XHTML-compliant <p>
var p = document.createElementNS("http://www.w3.org/1999/xhtml", "p");
 
// Add some text into the <p> element
p.appendChild(document.createTextNode("Welcome to my site."));
 
// Add the <p> element into the document
document.body.insertBefore(p, document.body.firstChild);

createTextNode(textString)
This is the proper way to create a new text string to be inserted into a DOM document. Since text nodes are
just DOM-only wrappers for text, it is important to remember that they cannot be styled or appended to.
The function only exists as a property of a DOM document.

The function takes one argument: the string that will become the contents of the text node. Listing A-26
shows an example of using this function to create a new text node and appending it to the body of an
HTML page.

Listing A-26.  Creating an <h1> Element and Appending a New Text Node

// Create a new <h1> element
var h = document.createElement("h1");
 
// Create the header text and add it to the <h1> element
h.appendChild(document.createTextNode("Main Page"));
 
// Add the header to the start of the <body>
document.body.insertBefore(h, document.body.firstChild);

innerHTML
This is an HTML DOM–specific property for accessing and manipulating a string version of the HTML
contents of a DOM element. If you’re only working with an HTML document (and not an XML one), this
method can be incredibly useful, as the code it takes to generate a new DOM element can be cut down
drastically (not to mention it is a faster alternative to traditional DOM methods). While this property is not
part of any particular W3C standard, it still exists in every modern browser. Listing A-27 shows an example of
using the innerHTML property to change the contents of an element whenever the contents of a <textarea>
are changed.

http://www.w3.org/1999/xhtml

Appendix A ■ DOM Reference

174

Listing A-27.  Watching a <textarea> for Changes and Updating a Live Preview With Its Value

// Get the textarea to watch for updates
var t = document.getElementsByTagName("textarea")[0];
 
// Grab the current value of a <textarea> and update a live preview,
// everytime that it's changed
t.onkeypress = function() {
 document.getElementById("preview").innerHTML = this.value;
};

insertBefore(nodeToInsert, nodeToInsertBefore)
This function is used to insert a DOM node anywhere into a document. The function must be called on the
parent element of the node that you wish to insert it before. This is done so that you can specify null for
nodeToInsertBefore and have your node inserted as the last child node.

The function takes two arguments. The first argument is the node that you wish to insert into the DOM;
the second is the DOM node that you’re inserting before. This should be a reference to a valid node.
Listing A-28 shows an example of using this function to insert the favicon (the icon that you see next to a
URL in the address bar of a browser) of a site next to a set of URLs on a page.

Listing A-28.  Going Through All <a> Elements and Adding an Icon Consisting of the Site’s Favicon

// Find all the <a> links within the document
var a = document.getElementsByTagName("a");
for (var i = 0; i < a.length; i++) {
 
 // Create an image of the linked-to site's favicon
 var img = document.createElement("img");
 img.src = a[i].href.split('/').splice(0,3).join('/') + '/favicon.ico';
 
 // Insert the image before the link
 a[i].parentNode.insertBefore(img, a[i]);
}

removeChild(nodeToRemove)
This function is used to remove a node from a DOM document. The removeChild function must be called on
the parent element of the node that you wish to remove.

The function takes one argument: a reference to the DOM node to remove from the document. Listing A-29
shows an example of running through all the <div> elements in the document, removing any that have a
single class of warning.

Appendix A ■ DOM Reference

175

Listing A-29.  Removing All Elements That Have a Particular Class Name

// Find all <div> elements
var div = document.getElementsByTagName("div");
for (var i = 0; i < div.length; i++) {
 // If the <div> has one class of 'warning'
 if (div[i].className == "warning") {
 
 // Remove the <div> from the document
 div[i].parentNode.removeChild(div[i]);
 }
}

replaceChild(nodeToInsert, nodeToReplace)
This function serves as an alternative to the process of removing a node and inserting another node in its
place. This function must be called by the parent element of the node that you are replacing.

This function takes two arguments: the node that you wish to insert into the DOM, and the node that
you are going to replace. Listing A-30 shows an example of replacing all <a> elements with a
element containing the URL originally being linked to.

Listing A-30.  Converting a Set of Links Into Plain URLs

// Convert all links to visible URLs (good for printing
// Find all <a> links in the document
var a = document.getElementsByTagName("a");
while (a.length) {
 
 // Create a element
 var s = document.createElement("strong");
 
 // Make the contents equal to the <a> link URL
 s.appendChild(document.createTextNode(a[i].href));
 
 // Replace the original <a> with the new element
 a[i].replaceChild(s, a[i]);
}

177

�       � A
Ajax

connections
basic GET request, 109
XMLHttpRequest object, 108

FormData objects
append method, 110
Raw JavaScript Objects, 110–111
serialization, 111–112
WHATWG specification, 110

GET request, 112
HTTP requests, 108
HTTP response, 113
implementation, 108
Instant Domain Search, 108
monitoring progress

abort event, 115
addEventListener, 114

POST request
serialization, 112–113
XML data to server, 113

serialization, 109
time-outs and CORS, 115

Angular JS
angular-aria module, 126
app folder, 127
app.js, scripts folder, 127
chapter10app, application, 127
E2E testing (see End to end (E2E)

testing, Angular)
remote data sources, 129–130
route

.config method, 131
parameters, 132–134

running on port 9000, 126
Sass, 125
Twitter Bootstrap, 125
unit testing (see Unit testing, Angular)
version, 1.4.1 Information, 125
views and controllers

about.html file, 127

and HTML, 128
and model, 127
grunt serve, 128
ng-click directive, 127
ng-repeat directive, 128
$scope property, 128

Arrays
Array.prototype.fill, 156
array.prototype.find(), 156

Arrow functions
canTeach() function, 148–149
forEach function, 148
in-line functions, 147
vs. regular/standard functions, 148

�       � B
Bower, 117–119, 122, 146

�       � C
Classes, ECMAScript 6

features, 150
inheritance, 150

Closures
anonymous functions, inducing

scope, 14–15
currying, 13–14
definition, 12
examples of, 12–13
for loop, 14
hide variables, global scope, 14
multiple, 15

Collections API, 158
Console interface, debugging

dir() function, 40
levels, 40–41
polyfill, 40
test code

in Chrome 40.0, 41
in Firefox 35.0.1, 42
in Internet Explorer 11.0, 43

Index

■ index

178

Context
changing context of functions, 12
working with, 11

CORS. See Cross Origin Resource Sharing
(CORS) protocol

Cross Origin Resource Sharing (CORS)
protocol, 4, 115

�       � D
Debugging JavaScript code

console
console.error, 40
dir() function, 40
levels, 40–41
leveraging, 43
polyfill, 40
test code, 40–43

debugger
console.log statements, 44
DOM inspector, 45
Network Analyzer, 45–46
profiler, 46, 48
timeline, 46

Document Object Model (DOM)
accessing elements

array functions, node list/HTML
collections, 55

finding elements, CSS selector, 56
functions, 54
getElementById method, 54
item method, 54
limiting search scope, 55

definition, 49
element attributes, 61, 63–64
handling white space, 69
HTML DOM loading

DOMContentLoaded event, 58
waiting, page to load, 57

HTML of element, 60–61
injecting HTML into DOM, 66–67
inserting into DOM

appendChild function, 65
insertBefore function, 65

legacy DOM/DOM Level 0, 49
navigation, 70–71
nodes creation, 64–65
relationships

between nodes, 52
childNodes, 52
DOM traversal, 53
navigation, pointers, 53

removing nodes, 68–69
structure

doctype, 52

node types and constant values, 51
text of an element, 58–60
versions, 49

DOM. See Document Object Model (DOM)

�       � E
Ecma. See European Computer Manufacturer’s

Association (ECMA/Ecma)
ECMAScript Harmony

Chrome, 143
compatibility table, ECMAScript 6, 143
Firefox, 143
Internet Explorer, 144
language features

arrow functions, 147–149
classes, 149–150
let keyword, 147
modules, 152–154
Promises, 150–152

proposals page, 142
resources, 142–143
transpilers, 144–146
working states, 143

End to end (E2E) testing, Angular
app-spec.js, Protractor folder, 138
basic Configuration File, Protractor, 138
grunt serve, 139
in Firefox and Chrome, 139
Protractor, 138
seleniumAddress property, 138
text fields and result, 140

European Computer Manufacturer’s Association
(ECMA/Ecma)

arrays, 156–157
Collections API, 158
Technical Committee 39 (TC39), 141–142
type extensions

Math utility library, 155–156
Number type, 155
strings, 154

version 5, 2, 142
version 6 (see ECMA Script Harmony)

Event object
description, 82
keyboard properties

ctrlKey, 88
keyCode, 88–89
shiftKey, 89

mouse properties
button, 87
clientXand clientY, 87
layerX/layerY and offsetX/offsetY, 87
pageX and pageY, 87
relatedTarget, 87–88

■ Index

179

properties
preventDefault method, 86
stopPropagation method, 86
target, 86
type, 86

Events
accessibility

click event, 94
mouseout event, 94
mouseover event, 94

binding
traditional (see Traditional binding)
W3C (see W3C binding)
W3C event handling, 76

canceling event bubbling
first <a> element, 82
stopping, 82–83
stopPropagation, 82–83

default actions
life cycle, event, 84
preventDefault function, 84–85

delegation, 85
form, 90, 93
keyboard, 90, 93
loading and error, 89
mouse, 89, 91, 93
object (see Event objects)
page events, 90–91
phases

capturing and bubbling, 74
execution order, 74
in Internet Explorer and Netscape, 75

stack, queue and event loop, 73
UI events, 89, 91
unbinding

addEventListener function, 81
event handler, 81
removeEventListener function, 81

�       � F
Form events

change, 93
definition, 90
reset, 94
select, 93
submit, 94

Form validation
CSS, 97–98
HTML

attributes, 97
controls, 95
form creation, 96
HTML5, 95

JavaScript

API, 101, 104
checkValidity method, 98, 101
event, 102
event handler, 101
setCustomValidity, 104
validity events form, 102–103
validityState, 104
validity state properties, 99–100

Function Overloading
arguments object, 15
arguments to array converison, 16
examples of, 15–16

�       � G
Git, 6, 117, 121–124
Google Chrome, 1–2, 5, 143
Grunt, 6, 117–119, 125–126

�       � H
HTTP. See Hypertext Transfer Protocol (HTTP)
Hypertext Transfer Protocol (HTTP)

GET request, 109
request, 108

�       � I, J
IIFE/iffies. See Immediately invoked function

expression (IIFE/iffies)
Immediately invoked function expression

(IIFE/iffies)
jQuery, 38
module generator, 37
passing arguments, 38

Instant Domain Search, 108

�       � K
Keyboard events

definition, 90
keydown/keypress, 93
keyup event, 93

�       � L
Language features, JavaScript

closures, 12–15
context, 11–12
function overloading and type-checking, 15–17
references and values, 7–9
scope, 9, 11

Libraries
jQuery, 3
rise of, 3–4

■ index

180

�       � M
Math utility library, 155–156
Model-View-Controller (MVC), 1, 3, 73, 117,

125, 127
Modern browser

borderline, 3
definition, 3
IE9, 5

Modern JavaScript
jQuery, 3
libraries, 3–4
mobile browsing, 4
modern browser, 3

Modules
declarative, 153
definition, 152
export keyword, 153
import command, 153
polyfills, 154
programmatic imports, 154
promise-based syntax, 154

Mouse events
click event, 91
dblclick event, 91
definition, 89
mousedown event, 91
mouseenter, 92
mouseleave, 92
mousemove event, 92
mouseout event, 92
mouseover event, 92
mouseup event, 91

Mozilla Firefox, 1–2

�       � N
Namespaces

Ext JS library, 34
implementation, 34
jQuery, 34

Network Analyzer
in Chrome 40.0, 45
in Firefox 35.0.1, 46
JSON-formatted data, 45

Node Package Manager (NPM)
definition, 117
node installation, 118
Node.js, 118

�       � O
Object-oriented JavaScript

class keyword, 33
creating people, 24–25
ECMAScript 6, 33

ECMAScript standard, 24
factory method, generating persons, 26
inheritance

child type instances, 27–28
getPrototypeOf, 29–30
isPrototypeOf function, 28–29
Object.create, 27–28
super function, 30–31

member visibility
creationTime variable, 33
private members, 32–33

Object.create, 25
person object, 24
prototype property, 24
[[Prototype]], 24–25

Objects
features, 8
members, 8
modification, 9
self-modifying, 8

�       � P, Q
Packaging JavaScript

IIFE (see Immediately invoked function
expression (IIFE/iffies))

module pattern
creation, 35
getModule function, 35
private data, 35

namespaces
Ext JS library, 34
hard-coded, 34
implementation, 34
JQuery, 34

Page events
beforeunload, 90
error event, 90
load event, 90
resize event, 90
scroll event, 90
unload event, 91

Polyfills, 3, 104, 144, 146–147, 154, 157, 159
Primitives, 7–9, 157
Professional JavaScript techniques

branching code, 2
browser, 1
ECMAScript standards, 2
Microsoft, 2
Modern JavaScript

jQuery, 3, 5
libraries, 3–4
mobile browsing, 4
modern browser, 3

V8, Chrome JavaScript engine, 2
Professional programmer, definition, 1

■ Index

181

Profiler, debugging
deleting object references, 48
in Chrome 40.0, 47
in Firefox 35.0.1, 47
myObject.property, 48
snapshot, 48

Promises
definition, 150
pending, 150
reject function, 151
resolve function, 151
resolved, 150

�       � R
Reference

definition, 7
multiple variables referring to single object, 8
referent, 7

Reusable code
object-oriented JavaScript

creating people, 24
ECMAScript 6, 33
ECMAScript standard, 24
inheritance, 27–31
member visibility, 31–33
Object.create, 25–26
prototype property, 24–25

packaging (see Packaging JavaScript)

�       � S
Safari, iOS, 4, 61, 97, 163
Scope

blocks, 9
functional and global, 9
implicit globally scoped variable declaration, 10
var keyword, 11
variable, 10

Self-modifying objects, 8
String functions, 31, 154
Strings

concatenation, 9
length, 9

�       � T
Tools, JavaScript language, 18–21
Traceur transpiler

ECMAScript 6 classes, 144–145
HTML shell, 146
polyfills, 157

Traditional binding

advantages, 79
click event, 78
disadvantages, 79
HTML code, event handling, 76–77
this keyword, 78
with argument, 78

Transpilers
ES6 code, 144
in-line transpiling, 146
installation, 144
Traceur, 144–145

Type-checking
instanceof, 17–18
object type, 17

�       � U
Unit testing, Angular

about Controller, 135
and writing tests, 135
beforeEach method, 135
describe method, 135
expect method, 136
grunt test, typing, 135
HTTP requests with $httpBackend, 136–137
installation

Jasmine, 135
Karma, 134
PhantomJS, 135

test-driven development, 137
value checking, in array, 136

User interface events
blur event, 91
definition, 89
focus event, 91

�       � V
V8, Chrome JavaScript engine, 2

�       � W, X
W3C binding

addEventListener function, 80
advantages, 80
disadvantage, 80
sample code, 80

WeakMaps, 146, 157–159
Web Hypertext Application Technology Working

Group (WHATWG), 95, 110, 161
Web production tools

adding files, updates, and first commit
app folder, 122

■ index

182

files committed and shown in log, 124
git add command, 122
node_modules and bower_components

folders, 122
generators

AngularJS, 118–120
Grunt, 119

NPM (see Node Package Manager (NPM))
scaffolding projects, 117
version control, 12

WHATWG. See Web Hypertext Application
Technology Working
Group (WHATWG)

World Wide Web Consortium (W3C)
event handling, 2–3, 76

�       � Y, Z
Yeoman

AngularJS site, 119
definition, 117

Web production tools (cont.)

Pro JavaScript
Techniques

Second Edition

John Resig

Russ Ferguson

John Paxton

Pro JavaScript Techniques

Copyright © 2015 by John Resig, Russ Ferguson, and John Paxton

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-6391-3

ISBN-13 (electronic): 978-1-4302-6392-0

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr
Acquisitions Editor: Louise Corrigan
Technical Reviewer: Mark Nenadov, Ian Devlin
Editorial Board: Steve Anglin, Mark Beckner, Gary Cornell, Louise Corrigan, James DeWolf,

Jonathan Gennick, Robert Hutchinson, Celestin Suresh John, Michelle Lowman, James Markham,
Susan McDermott, Matthew Moodie, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke,
Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Rita Fernando
Copy Editor: James Compton
Compositor: SPi Global
Indexer: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to
readers at www.apress.com. For detailed information about how to locate your book’s source code,
go to www.apress.com/source-code/.

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

I will forever be grateful to my dad. Even now I’m still learning from his example.
Dad, Rodd, we miss you both. Watching Doctor Who and The Twilight Zone has never been

the same.

—Russ Ferguson

For Andreina, who always believed.

—John Paxton

vii

Contents

About the Authors��� xiii

About the Technical Reviewers��xv

Acknowledgments��xvii

■■Chapter 1: Professional JavaScript Techniques��� 1

How Did We Get Here?�� 1

Modern JavaScript�� 3

The Rise of Libraries�� 3

More Than a Note about Mobile��� 4

Where Do We Go from Here?��� 5

Coming Up Next��� 5

Summary��� 6

■■Chapter 2: Features, Functions, and Objects�� 7

Language Features�� 7

References and Values�� 7

Scope��� 9

Context�� 11

Closures��� 12

Function Overloading and Type-Checking��� 15

New Object Tools��� 18

Objects��� 18

Modifying Objects�� 19

Summary��� 21

viii

■ Contents

■■Chapter 3: Creating Reusable Code�� 23

Object-Oriented JavaScript��� 23

Inheritance��� 27

Member Visibility��� 31

The Future of Object-Oriented JavaScript��� 33

Packaging JavaScript�� 33

Namespaces�� 34

The Module Pattern��� 34

Immediately Invoked Function Expressions�� 36

Summary��� 38

■■Chapter 4: Debugging JavaScript Code�� 39

Debugging Tools�� 39

The Console��� 40

Leveraging the Console Features�� 43

The Debugger�� 44

DOM Inspector��� 45

Network Analyzer�� 45

Timeline��� 46

Profiler��� 46

Summary��� 48

■■Chapter 5: The Document Object Model��� 49

An Introduction to the Document Object Model�� 49

DOM Structure��� 51

DOM Relationships�� 52

Accessing DOM Elements��� 54

Finding Elements by CSS Selector�� 56

Waiting for the HTML DOM to Load��� 57

Waiting for the Page to Load��� 57

Waiting for the Right Event�� 58

ix

■ Contents

Getting the Contents of an Element��� 58

Getting the Text of an Element��� 58

Getting the HTML of an Element�� 60

Working with Element Attributes��� 61

Getting and Setting an Attribute Value��� 61

Modifying the DOM�� 64

Creating Nodes Using the DOM��� 64

Inserting into the DOM��� 65

Injecting HTML into the DOM��� 66

Removing Nodes from the DOM�� 68

Handling White Space in the DOM��� 69

Simple DOM Navigation��� 70

Summary��� 72

■■Chapter 6: Events��� 73

Introduction to JavaScript Events��� 73

The Stack, the Queue, and the Event Loop�� 73

Event Phases��� 74

Binding Event Listeners��� 75

Traditional Binding��� 76

DOM Binding: W3C��� 80

Unbinding Events��� 81

Common Event Features��� 82

The Event Object�� 82

Canceling Event Bubbling�� 82

Overriding the Browser’s Default Action�� 84

Event Delegation�� 85

The Event Object��� 86

General Properties��� 86

Mouse Properties�� 87

Keyboard Properties�� 88

x

■ Contents

Types of Events��� 89

Page Events��� 90

UI Events�� 91

Mouse Events�� 91

Keyboard Events�� 93

Form Events��� 93

Event Accessibility��� 94

Summary��� 94

■■Chapter 7: JavaScript and Form Validation�� 95

HTML and CSS Form Validation��� 95

CSS�� 97

JavaScript Form Validation�� 98

Validation and Users�� 101

Validation Events��� 102

Customizing Validation�� 104

Preventing Form Validation�� 104

Summary��� 105

■■Chapter 8: Introduction to Ajax�� 107

Using Ajax�� 108

HTTP Requests�� 108

HTTP Response�� 113

Summary��� 116

■■Chapter 9: Web Production Tools�� 117

Scaffolding Your Projects�� 117

NPM is the Foundation for Everything��� 118

Generators��� 118

Version Control�� 120

Adding Files, Updates, and the First Commit��� 121

Summary��� 124

xi

■ Contents

■■Chapter 10: AngularJS and Testing�� 125

Views and Controllers��� 127

Remote Data Sources�� 129

Routes��� 131

Route Parameters�� 132

Application Testing�� 134

Unit Testing�� 134

End to End Testing with Protractor�� 138

Summary��� 140

■■Chapter 11: The Future of JavaScript��� 141

The Once and Future ECMAScript��� 141

Using ECMAScript Harmony�� 142

Harmony Resources�� 142

Working with Harmony�� 143

ECMAScript Harmony Language Features�� 147

Arrow Functions�� 147

Classes�� 149

Promises�� 150

Modules��� 152

Type Extensions��� 154

New Collection Types��� 157

Summary��� 159

■■Appendix A: DOM Reference��� 161

Resources��� 161

Terminology��� 161

Global Variables��� 163

document��� 163

HTMLElement�� 163

xii

■ Contents

DOM Navigation��� 164
body��� 164

childNodes��� 164

documentElement�� 164

firstChild�� 165

getElementById(elemID)�� 165

getElementsByTagName(tagName)��� 165

lastChild��� 166

nextSibling��� 166

parentNode�� 166

previousSibling�� 167

Node Information��� 167
innerText�� 167

nodeName��� 168

nodeType��� 168

nodeValue�� 168

Attributes��� 169
className��� 169

getAttribute(attrName)��� 170

removeAttribute(attrName)�� 170

setAttribute(attrName, attrValue)��� 171

DOM Modification�� 171
appendChild(nodeToAppend)��� 171

cloneNode(true|false)�� 172

createElement(tagName)��� 172

createElementNS(namespace, tagName)�� 173

createTextNode(textString)�� 173

innerHTML��� 173

insertBefore(nodeToInsert, nodeToInsertBefore)��� 174

removeChild(nodeToRemove)�� 174

replaceChild(nodeToInsert, nodeToReplace)�� 175

Index�� 177

xiii

About the Authors

John Resig is a developer at Khan Academy and the creator of the jQuery
JavaScript library. In addition to Pro JavaScript Techniques, he’s also the
author of Secrets of the JavaScript Ninja (Manning, 2012).

John is a Visiting Researcher at Ritsumeikan University in Kyoto
working on the study of Ukiyo-e (Japanese woodblock printing). He has
developed a comprehensive woodblock print database and image search
engine, located at http://ukiyo-e.org.

Russ Ferguson is a developer and instructor working in and around New York City. He is currently a
manager with SunGard Consulting Services, developing applications for clients like Morgan Stanley and
Comcast. For many years Russ has been an instructor for Pratt Institute and Parsons School of Design.

He has developed applications for both start-ups and established organizations like Chase Bank,
Publicis Groupe, DC Comics, and MTV/Viacom.

Some of his interests are encouraging young people to code and the ways technology changes media
consumption and participation.

Other interests include practicing Japanese, writing, film, concerts, and finding a good wine or sake.
Tweets can be found @asciibn.

John Paxton is a programmer, trainer, author, and presenter who lives in his native New Jersey. Studying
history at Johns Hopkins University, he discovered that he spent more time in the computer lab than at the
document archives. Since then, his career has oscillated between programming and training, working with
many of the various languages used in web development over the last 15 years. He now concentrates on
JavaScript and Java, with the occasional nostalgic visits to Perl and XML. He can be found on Twitter
@paxtonjohn and at his website: speedingplanet.com.

http://ukiyo-e.org
http://@asciibn
http://speedingplanet.com

xv

About the Technical Reviewers

Ian Devlin is interested in all things web, and currently works as a senior web
developer at a web agency based in Düsseldorf, Germany. He is an HTML5
Doctor and a founding contributor to Intel’s HTML5 Hub and has written
articles for a number of developer zones such as Mozilla, Opera, Intel,
and Adobe, and for net magazine. He has also written a book on HTML5
multimedia and has been technical reviewer for a number of Apress books.

Mark Nenadov is a software developer with around 15 years of experience,
predominantly with open source technologies. Mark lives in Essex, Ontario,
Canada with his lovely wife and their two adorable daughters—with a son
on the way. When he’s not developing software or spending time with his
family, he is usually hiking, observing wildlife, reading, researching history,
reviewing/editing manuscripts, or writing. Mark is an avid poet and his
poems have appeared in publications in the United States, Canada, Pakistan,
India, Australia, England, and Ireland.

xvii

Acknowledgments

There are always a lot of people to thank: The good people at Apress, including Louise Corrigan, Rita Fernando,
and Christine Ricketts. Without them I would not have had the opportunity to work on this. The other authors
on this project, John Paxton and John Resig, whose knowledge and experience are in the pages of this book.

Technical Reviewers make good books great, so thanks to Mark Nenadov and Ian Devlin for helping me
clarify my intentions. Thanks to my family and friends, who have been very understanding while I disappear
for hours at a time to sit in front of a computer for even more time than usual.

—Russ Ferguson

My contributions to this book would not have happened without the faith, patience, endurance, and guidance
of Louise Corrigan and Christine Ricketts. They both put up with far more in delays and late chapters than
any reasonable human being should have.

—John Paxton

	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewers
	Acknowledgments
	Chapter 1: Professional JavaScript Techniques
	 How Did We Get Here?
	 Modern JavaScript
	 The Rise of Libraries
	 More Than a Note about Mobile
	 Where Do We Go from Here?

	 Coming Up Next
	 Summary

	Chapter 2: Features, Functions, and Objects
	 Language Features
	 References and Values
	 Scope
	 Context
	 Closures
	 Function Overloading and Type-Checking

	 New Object Tools
	 Objects
	 Modifying Objects

	 Summary

	Chapter 3: Creating Reusable Code
	 Object-Oriented JavaScript
	 Inheritance
	 Member Visibility
	 The Future of Object-Oriented JavaScript

	 Packaging JavaScript
	 Namespaces
	 The Module Pattern
	 Immediately Invoked Function Expressions

	 Summary

	Chapter 4: Debugging JavaScript Code
	 Debugging Tools
	 The Console
	 Leveraging the Console Features

	 The Debugger
	 DOM Inspector
	 Network Analyzer
	 Timeline
	 Profiler

	 Summary

	Chapter 5: The Document Object Model
	 An Introduction to the Document Object Model
	 DOM Structure
	 DOM Relationships

	 Accessing DOM Elements
	 Finding Elements by CSS Selector

	 Waiting for the HTML DOM to Load
	 Waiting for the Page to Load
	 Waiting for the Right Event

	 Getting the Contents of an Element
	 Getting the Text of an Element
	 Getting the HTML of an Element

	 Working with Element Attributes
	 Getting and Setting an Attribute Value

	 Modifying the DOM
	 Creating Nodes Using the DOM
	 Inserting into the DOM
	 Injecting HTML into the DOM
	 Removing Nodes from the DOM
	 Handling White Space in the DOM
	 Simple DOM Navigation

	 Summary

	Chapter 6: Events
	 Introduction to JavaScript Events
	 The Stack, the Queue, and the Event Loop
	 Event Phases

	 Binding Event Listeners
	 Traditional Binding
	Advantages of Traditional Binding
	Disadvantages of Traditional Binding

	 DOM Binding: W3C
	Advantages of W3C Binding
	Disadvantage of W3C Binding

	 Unbinding Events

	 Common Event Features
	 The Event Object
	 Canceling Event Bubbling
	 Overriding the Browser’s Default Action
	 Event Delegation

	 The Event Object
	 General Properties
	type
	 target
	stopPropagation
	preventDefault / returnValue = false

	 Mouse Properties
	pageX and pageY
	 clientXand clientY
	 layerX/layerY and offsetX/offsetY
	 button
	 relatedTarget

	 Keyboard Properties
	ctrlKey
	 keyCode
	 shiftKey

	 Types of Events
	 Page Events
	load
	beforeunload
	error
	resize
	scroll
	 unload

	 UI Events
	focus
	blur

	 Mouse Events
	click
	dblclick
	mousedown
	mouseup
	mousemove
	mouseover
	mouseout
	 mouseenter
	 mouseleave

	 Keyboard Events
	keydown/keypress
	keyup

	 Form Events
	select
	change
	submit
	reset

	 Event Accessibility

	 Summary

	Chapter 7: JavaScript and Form Validation
	 HTML and CSS Form Validation
	 CSS

	 JavaScript Form Validation
	 Validation and Users
	 Validation Events

	 Customizing Validation
	 Preventing Form Validation

	 Summary

	Chapter 8: Introduction to Ajax
	 Using Ajax
	 HTTP Requests
	Establishing a Connection
	Serializing Data
	FormData Objects
	Establishing a GET Request
	Establishing a POST Request

	 HTTP Response
	Monitoring Progress
	Checking for Time-Outs and Cross-Origin Resource Sharing

	 Summary

	Chapter 9: Web Production Tools
	 Scaffolding Your Projects
	 NPM is the Foundation for Everything
	 Generators
	 Version Control
	 Adding Files, Updates, and the First Commit

	 Summary

	Chapter 10: AngularJS and Testing
	 Views and Controllers
	 Remote Data Sources
	 Routes
	 Route Parameters
	 Application Testing
	 Unit Testing
	Adding New Tests
	Testing HTTP Requests with $httpBackend

	 End to End Testing with Protractor

	 Summary

	Chapter 11: The Future of JavaScript
	 The Once and Future ECMAScript
	 Using ECMAScript Harmony
	 Harmony Resources
	 Working with Harmony
	Transpilers
	 Polyfills

	 ECMAScript Harmony Language Features
	 Arrow Functions
	 Classes
	 Promises
	 Modules
	 Type Extensions
	Strings
	 Numbers
	Math
	 Arrays
	 Polyfills

	 New Collection Types
	That’s Weak
	 Collections API
	Polyfills

	 Summary

	Appendix A: DOM Reference
	 Resources
	 Terminology
	 Global Variables
	 document
	 HTMLElement

	 DOM Navigation
	 body
	 childNodes
	 documentElement
	 firstChild
	 getElementById(elemID)
	 getElementsByTagName(tagName)
	 lastChild
	 nextSibling
	 parentNode
	 previousSibling

	 Node Information
	 innerText
	 nodeName
	 nodeType
	 nodeValue

	 Attributes
	 className
	 getAttribute(attrName)
	 removeAttribute(attrName)
	 setAttribute(attrName, attrValue)

	 DOM Modification
	 appendChild(nodeToAppend)
	 cloneNode(true|false)
	 createElement(tagName)
	 createElementNS(namespace, tagName)
	 createTextNode(textString)
	 innerHTML
	 insertBefore(nodeToInsert, nodeToInsertBefore)
	 removeChild(nodeToRemove)
	 replaceChild(nodeToInsert, nodeToReplace)

	Index

