Activate Your Web Pages

@‘;’ i _F\

JavaScript
The Definitive Guide
O’REILLY" David Flanagan

vww allitebooks.conl

http://www.allitebooks.org

9

Web Programming/JavaScript

JavaScript: The Definitive Guide

This book is a programmer’s
guide and comprehensive
reference to the core JavaScript
language and to the client-side
JavaScript APIs defined by web
browsers.

The sixth edition covers HTML5
and ECMAScript 5. Many chapters
have been completely rewritten
to bring them in line with today’s
best web development practices.
New chapters in this edition
document jQuery and server-
side JavaScript.

Recommended for experienced
programmers who want to learn
the programming language of the
Web, and for current JavaScript
programmers who want to
master it.

David Flanagan is also the author
of The Ruby Programming
Language, Java in a Nutshell, and
JavaScript Pocket Reference.

Previous programming experience is
recommended.

The Essential JavaScript Reference

Since 1996, JavaScript: The Definitive Guide has been the
bible for JavaScript programmers. With more than 500,000
copies in print, web developers are still raving about it:

“ Amust-have reference for expert JavaScript
programmers...well-organized and detailed.”

—Brendan Eich
creator of JavaScript, CT0 of Mozilla

“Imade a career of what | learned from JavaScript:
The Definitive Guide.”

—Andrew Hedges
Tapulous

“The Definitive Guide taught me JavaScript.”

—Tom Robinson
cofounder of 280 North, cocreator of Cappuccino

“Iknow which parts of JavaScript matter, based on how
crinkled the spine of my copy of The Definitive Guide is
in that section.”

—J. Chris Anderson
cofounder of CouchBase, Apache CouchDB committer,
and author of CouchDB: The Definitive Guide

“...an indispensable reference for all JavaScript
developers. If there’s something | need to know about
JavaScript, | trust The Definitive Guide will have the
right answer for me. It's that good.”
—ReyBango
Microsoft Client-Web Community Program Manager and jQuery Team member

US $49.99 CAN $57.99
ISBN: 978-0-596-80552-4

54999
AU DORI

780596"80552

Twitter: @oreillymedia
facebook.com/oreilly

O’REILLY"

oreilly.com

vww allitebooks.conl

http://www.allitebooks.org

JavaScript: The Definitive Guide

vww allitebooks.cond

http://www.allitebooks.org

vww allitebooks.cond

http://www.allitebooks.org

SIXTH EDITION

JavaScript: The Definitive Guide

David Flanagan

O’REILLY*

Beijing - Cambridge - Farnham - Kéln - Sebastopol - Tokyo

vww allitebooks.cond

http://www.allitebooks.org

JavaScript: The Definitive Guide, Sixth Edition
by David Flanagan

Copyright © 2011 David Flanagan. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mike Loukides Indexer: Ellen Troutman Zaig
Production Editor: Teresa Elsey Cover Designer: Karen Montgomery
Proofreader: Teresa Elsey Interior Designer: David Futato

lllustrator: Robert Romano

Printing History:
August 1996: Beta Edition.
January 1997: Second Edition.
June 1998: Third Edition.
January 2002: Fourth Edition.
August 2006: Fifth Edition.
March 2011: Sixth Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. JavaScript: The Definitive Guide, the image of a Javan rhinoceros, and related trade
dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-0-596-80552-4
[LSI]
1302719886

vww allitebooks.cond

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://www.allitebooks.org

This book is dedicated to all who teach peace
and resist violence.

vww allitebooks.cond

http://www.allitebooks.org

vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

Preface ..ot xiii
1. Introduction to JavaScriptcovviiiiniii it i 1
1.1 Core JavaScript 4

1.2 Client-Side JavaScript 8

Partl. CoreJavaScript

2. LeXicalStructureoovuniiii it i e 21
2.1 Character Set 21

2.2 Comments 23

2.3 Literals 23

2.4 Identifiers and Reserved Words 23

2.5 Optional Semicolons 25

3. Types,Values,and Variablescccoiiriiiiiiiiiiiiiiirnninnnnnns 29
3.1 Numbers 31

3.2 Text 36

3.3 Boolean Values 40

3.4 null and undefined 41

3.5 The Global Object 42

3.6 Wrapper Objects 43

3.7 Immutable Primitive Values and Mutable Object References 44

3.8 Type Conversions 45

3.9 Variable Declaration 52

3.10 Variable Scope 53

4, Expressionsand Operatorsceeveeeneeneeneeneeneenernernarnnnes 57
4.1 Primary Expressions 57

4.2 Object and Array Initializers 58

4.3 Function Definition Expressions 59

vii

vww allitebooks.cond

http://www.allitebooks.org

4.4 Property Access Expressions 60

4.5 Invocation Expressions 61
4.6 Object Creation Expressions 61
4.7 Operator Overview 62
4.8 Arithmetic Expressions 66
4.9 Relational Expressions 71
4.10 Logical Expressions 75
4.11 Assignment Expressions 77
4.12 Evaluation Expressions 79
4.13 Miscellaneous Operators 82
5. Statementsoiiiiiiiiiii 87
5.1 Expression Statements 88
5.2 Compound and Empty Statements 88
5.3 Declaration Statements 89
5.4 Conditionals 92
5.5 Loops 97
5.6 Jumps 102
5.7 Miscellaneous Statements 108
5.8 Summary of JavaScript Statements 112
1) - PP 115
6.1 Creating Objects 116
6.2 Querying and Setting Properties 120
6.3 Deleting Properties 124
6.4 Testing Properties 125
6.5 Enumerating Properties 126
6.6 Property Getters and Setters 128
6.7 Property Attributes 131
6.8 Object Attributes 135
6.9 Serializing Objects 138
6.10 Object Methods 138
R - 7 TP 141
7.1 Creating Arrays 141
7.2 Reading and Writing Array Elements 142
7.3 Sparse Arrays 144
7.4 Array Length 144
7.5 Adding and Deleting Array Elements 145
7.6 lIterating Arrays 146
7.7 Multidimensional Arrays 148
7.8 Array Methods 148
7.9 ECMAScript 5 Array Methods 153
7.10 Array Type 157
viii | Table of Contents

vww allitebooks.cond

http://www.allitebooks.org

7.11 Array-Like Objects 158

7.12 Strings As Arrays 160

8. FUNCHioNS .. .oooet 163
8.1 Defining Functions 164

8.2 Invoking Functions 166

8.3 Function Arguments and Parameters 171

8.4 Functions As Values 176

8.5 Functions As Namespaces 178

8.6 Closures 180

8.7 Function Properties, Methods, and Constructor 186

8.8 Functional Programming 191

9. CassesandModulesccooviiiiiiiiiiiiiiiiiiiii 199
9.1 Classes and Prototypes 200

9.2 Classes and Constructors 201

9.3 Java-Style Classes in JavaScript 205

9.4 Augmenting Classes 208

9.5 Classes and Types 209

9.6 Object-Oriented Techniques in JavaScript 215

9.7 Subclasses 228

9.8 Classes in ECMAScript 5 238

9.9 Modules 246

10. Pattern Matching with Regular Expressionsccoviiiiiiinann, 251
10.1 Defining Regular Expressions 251

10.2 String Methods for Pattern Matching 259

10.3 The RegExp Object 261

11. JavaScript Subsetsand Extensionsccoiiiiiiiiiiiiiiiiiiinn., 265
11.1 JavaScript Subsets 266

11.2 Constants and Scoped Variables 269

11.3 Destructuring Assignment 271

11.4 Tteration 274

11.5 Shorthand Functions 282

11.6 Multiple Catch Clauses 283

11.7 E4X: ECMAScript for XML 283

12, Server-SideJavaScriptoviiriiiiiiii it it i 289
12.1 Scripting Java with Rhino 289

12.2 Asynchronous I/O with Node 296

Table of Contents | ix

Partll. Client-Side JavaScript

13. JavaScriptin Web Browserscccvviiiiiiiiiiiiiiiiiiiinineenennn, 307
13.1 Client-Side JavaScript 307

13.2 Embedding JavaScript in HTML 311

13.3 Execution of JavaScript Programs 317

13.4 Compatibility and Interoperability 325

13.5 Accessibility 332

13.6 Security 332

13.7 Client-Side Frameworks 338

14. TheWindow Objectcvivniriiiiiiii it it ci e ieaees EZY|
14.1 Timers 341

14.2 Browser Location and Navigation 343

14.3 Browsing History 345

14.4 Browser and Screen Information 346

14.5 Dialog Boxes 348

14.6 Error Handling 351

14.7 Document Elements As Window Properties 351

14.8 Multiple Windows and Frames 353

15, Scripting DOCUMENtSoveniri it ii i ii i ieeeeiareeaneennnns 361
15.1 Overview of the DOM 361

15.2 Selecting Document Elements 364

15.3 Document Structure and Traversal 371

15.4 Attributes 375

15.5 Element Content 378

15.6 Creating, Inserting, and Deleting Nodes 382

15.7 Example: Generating a Table of Contents 387

15.8 Document and Element Geometry and Scrolling 389

15.9 HTML Forms 396

15.10 Other Document Features 405

16, SCrPting (SS v uiiri ittt ittt ittt it ti ittt 413
16.1 Overview of CSS 414

16.2 Important CSS Properties 419

16.3 Scripting Inline Styles 431

16.4 Querying Computed Styles 435

16.5 Scripting CSS Classes 437

16.6 Scripting Stylesheets 440

17. Handling Eventsccuiiiiniiiiniiiiiiiiiiiienenareeneneennnns 445
17.1 Types of Events 447

X | Table of Contents

18.

19.

20.

21.

22,

17.2 Registering Event Handlers
17.3 Event Handler Invocation
17.4 Document Load Events
17.5 Mouse Events

17.6 Mousewheel Events

17.7 Drag and Drop Events

17.8 Text Events

17.9 Keyboard Events

Scripted HTTP oo

18.1 Using XMLHttpRequest
18.2 HTTP by <script>: JSONP
18.3 Comet with Server-Sent Events

ThejQueryLibrarycoovvviiiiiiiiiiiiiininnnns

19.1 jQuery Basics
19.2 jQuery Getters and Setters
19.3 Altering Document Structure
19.4 Handling Events with jQuery
19.5 Animated Effects
19.6 Ajax with jQuery
19.7 Utility Functions
19.8 jQuery Selectors and Selection Methods
19.9 Extending jQuery with Plug-ins
19.10 The jQuery UI Library

Client-Side Storagecovvvviiiiniininnenennn.

20.1 localStorage and sessionStorage

20.2 Cookies

20.3 IE userData Persistence

20.4 Application Storage and Offline Webapps

Scripted Media and Graphicscoonlel

21.1 Scripting Images

21.2 Scripting Audio and Video
21.3 SVG: Scalable Vector Graphics
21.4 Graphics in a <canvas>

HTMLSAPIS oo

22.1 Geolocation

22.2 History Management
22.3 Cross-Origin Messaging
22.4 Web Workers

456
460
465
467
471
474
481
484

................. 491

494
513
515

................. 523

524
531
537
540
551
558
571
574
582
585

.................. 587

589
593
599
601

.................. 613

613
615
622
630

................. 667

668
671
676
680

Table of Contents | xi

22.5 Typed Arrays and ArrayBuffers 687

22.6 Blobs 691
22.7 The Filesystem API 700
22.8 Client-Side Databases 705
22.9 Web Sockets 712

Partlll. Core JavaScript Reference

Core JavaScript Referencecovviniiiiiiiiiiiiiiiii it 719

PartIV. (Client-Side JavaScript Reference

xii | Table of Contents

Preface

This book covers the JavaScript language and the JavaScript APIs implemented by web
browsers. I wrote it for readers with at least some prior programming experience who
want to learn JavaScript and also for programmers who already use JavaScript but want
to take their understanding to a new level and really master the language and the web
platform. My goal with this book is to document the JavaScript language and platform
comprehensively and definitively. As a result, this is a large and detailed book. My hope,
however, is that it will reward careful study, and that the time you spend reading it will
be easily recouped in the form of higher programming productivity.

This book is divided into four parts. Part T covers the JavaScript language itself.
Part II covers client-side JavaScript: the JavaScript APIs defined by HTMLS and related
standards and implemented by web browsers. Part III is the reference section for the
core language, and Part IV is the reference for client-side JavaScript. Chapter 1 includes
an outline of the chapters in Parts I and II (see §1.1).

This sixth edition of the book covers both ECMAScript 5 (the latest version of the core
language) and HTMLS5 (the latest version of the web platform). You’ll find
ECMAScript 5 material throughout Part I. The new material on HTMLS5 is mostly in
the chapters at the end of Part II, but there is also some in other chapters as well.
Completely new chapters in this edition include Chapter 11, JavaScript Subsets and
Extensions; Chapter 12, Server-Side JavaScript; Chapter 19, The jQuery Library; and
Chapter 22, HTMLS5 APIs.

Readers of previous editions may notice that I have completely rewritten many of the
chapters in this book for the sixth edition. The core of Part [—the chapters covering
objects, arrays, functions, and classes—is all new and brings the book in line with
current programming styles and best practices. Similarly, key chapters of Part II, such
as those covering documents and events, have been completely rewritten to bring them
up-to-date.

Xiii

A Note About Piracy

If you are reading a digital version of this book that you (or your employer) did not pay
for (or borrow from someone who did) then you probably have an illegally pirated copy.
Writing the sixth edition of this book was a full-time job, and it took more than a year.
The only way I get paid for that time is when readers actually buy the book. And the
only way I can afford to work on a seventh edition is if I get paid for the sixth.

I do not condone piracy, but if you have a pirated copy, go ahead and read a couple of
chapters. 1 think that you’ll find that this is a valuable source of information about
JavaScript, better organized and of higher quality than what you can find freely (and
legally) available on the Web. If you agree that this is a valuable source of information,
then please pay for that value by purchasing a legal copy (either digital or print) of the
book. On the other hand, if you find that this book is no more valuable than the free
information on the web, then please discard your pirated copy and use those free
information sources.

Conventions Used in This Book

I use the following typographical conventions in this book:

Italic
Is used for emphasis and to indicate the first use of a term. Italic is also used for
email addresses, URLs and file names.

Constant width
Is used in all JavaScript code and CSS and HTML listings, and generally for any-
thing that you would type literally when programming.

Constant width italic
Is used for the names of function parameters, and generally as a placeholder to
indicate an item that should be replaced with an actual value in your program.

Example Code

The examples in this book are available online. You can find them linked from the
book’s catalog page at the publisher’s website:

http://oreilly.com/catalog/9780596805531/

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact O’Reilly
for permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example

xiv | Preface

http://oreilly.com/catalog/9780596805531/

code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

If you use the code from this book, I appreciate, but do not require, attribution. An
attribution usually includes the title, author, publisher, and ISBN. For example: “Java-
Script: The Definitive Guide, by David Flanagan (O’Reilly). Copyright 2011 David Fla-
nagan, 978-0-596-80552-4.”

For more details on the O’Reilly code reuse policy, see http://oreilly.com/publ/a/oreilly/
ask_tim/2001/codepolicy.html. If you feel your use of the examples falls outside of the
permission given above, feel free to contact O’Reilly at permissions@oreilly.com.

Errata and How to Contact Us

The publisher maintains a public list of errors found in this book. You can view the
list, and submit the errors you find, by visiting the book’s web page:

http://oreilly.com/catalog/9780596805531
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our website at:

http://lwww.oreilly.com
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

Many people have helped me with the creation of this book. I’d like to thank my editor,
Mike Loukides, for trying to keep me on schedule and for his insightful comments.
Thanks also to my technical reviewers: Zachary Kessin, who reviewed many of the
chapters in Part I, and Raffaele Cecco, who reviewed Chapter 19 and the <canvas>
material in Chapter 21. The production team at O’Reilly has done their usual fine job:
Dan Fauxsmith managed the production process, Teresa Elsey was the production
editor, Rob Romano drew the figures, and Ellen Troutman Zaig created the index.

In this era of effortless electronic communication, it is impossible to keep track of all
those who influence and inform us. I’d like to thank everyone who has answered my
questions on the es5, w3c, and whatwg mailing lists, and everyone who has shared their
insightful ideas about JavaScript programming online. I'm sorry I can’t list you all by

Preface | xv

http://oreilly.com/pub/a/oreilly/ask_tim/2001/codepolicy.html
http://oreilly.com/pub/a/oreilly/ask_tim/2001/codepolicy.html
mailto:permissions@oreilly.com
http://oreilly.com/catalog/9780596805531
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

name, but it is a pleasure to work within such a vibrant community of JavaScript
programmers.

Editors, reviewers, and contributors to previous editions of this book have included:
Andrew Schulman, Angelo Sirigos, Aristotle Pagaltzis, Brendan FEich, Christian
Heilmann, Dan Shafer, Dave C. Mitchell, Deb Cameron, Douglas Crockford, Dr.
Tankred Hirschmann, Dylan Schiemann, Frank Willison, Geoff Stearns, Herman Ven-
ter, Jay Hodges, Jeff Yates, Joseph Kesselman, Ken Cooper, Larry Sullivan, Lynn Roll-
ins, Neil Berkman, Nick Thompson, Norris Boyd, Paula Ferguson, Peter-Paul Koch,
Philippe Le Hegaret, Richard Yaker, Sanders Kleinfeld, Scott Furman, Scott Issacs,
Shon Katzenberger, Terry Allen, Todd Ditchendorf, Vidur Apparao, and Waldemar
Horwat.

This edition of the book is substantially rewritten and kept me away from my family
for many late nights. My love to them and my thanks for putting up with my absences.

— David Flanagan (davidflanagan.com), March 2011

xvi | Preface

http://davidflanagan.com/

CHAPTER1
Introduction to JavaScript

JavaScript is the programming language of the Web. The overwhelming majority of
modern websites use JavaScript, and all modern web browsers—on desktops, game
consoles, tablets, and smart phones—include JavaScript interpreters, making Java-
Script the most ubiquitous programming language in history. JavaScript is part of the
triad of technologies that all Web developers must learn: HTML to specify the content
of web pages, CSS to specify the presentation of web pages, and JavaScript to specify
the behavior of web pages. This book will help you master the language.

If you are already familiar with other programming languages, it may help you to know
that JavaScript is a high-level, dynamic, untyped interpreted programming language
that is well-suited to object-oriented and functional programming styles. JavaScript
derives its syntax from Java, its first-class functions from Scheme, and its prototype-
based inheritance from Self. But you do not need to know any of those languages, or
be familiar with those terms, to use this book and learn JavaScript.

The name “JavaScript” is actually somewhat misleading. Except for a superficial syn-
tactic resemblance, JavaScript is completely different from the Java programming lan-
guage. And JavaScript has long since outgrown its scripting-language roots to become
arobust and efficient general-purpose language. The latest version of the language (see
the sidebar) defines new features for serious large-scale software development.

JavaScript: Names and Versions

JavaScript was created at Netscape in the early days of the Web, and technically, “Java-
Script” is a trademark licensed from Sun Microsystems (now Oracle) used to describe
Netscape’s (now Mozilla’s) implementation of the language. Netscape submitted the
language for standardization to ECMA—the European Computer Manufacturer’s As-
sociation—and because of trademark issues, the standardized version of the language
was stuck with the awkward name “ECMAScript.” For the same trademark reasons,
Microsoft’s version of the language is formally known as “JScript.” In practice, just
about everyone calls the language JavaScript. This book uses the name “ECMAScript”
only to refer to the language standard.

For the last decade, all web browsers have implemented version 3 of the ECMAScript
standard and there has really been no need to think about version numbers: the lan-
guage standard was stable and browser implementations of the language were, for the
most part, interoperable. Recently, an important new version of the language has been
defined as ECMAScript version 5 and, at the time of this writing, browsers are beginning
to implement it. This book covers all the new features of ECMAScript 5 as well as all
the long-standing features of ECMAScript 3. You’ll sometimes see these language ver-
sions abbreviated as ES3 and ES5, just as you’ll sometimes see the name JavaScript
abbreviated as JS.

When we’re speaking of the language itself, the only version numbers that are relevant
are ECMAScript versions 3 or 5. (Version 4 of ECMAScript was under development
for years, but proved to be too ambitious and was never released.) Sometimes, however,
you’ll also see a JavaScript version number, such as JavaScript 1.5 or JavaScript 1.8.
These are Mozilla’s version numbers: version 1.5 is basically ECMAScript 3, and later
versions include nonstandard language extensions (see Chapter 11). Finally, there are
also version numbers attached to particular JavaScript interpreters or “engines.” Goo-
gle calls its JavaScript interpreter V8, for example, and at the time of this writing the
current version of the V8 engine is 3.0.

To be useful, every language must have a platform or standard library or API of func-
tions for performing things like basic input and output. The core JavaScript language
defines a minimal API for working with text, arrays, dates, and regular expressions but
does not include any input or output functionality. Input and output (as well as more
sophisticated features, such as networking, storage, and graphics) are the responsibility
of the “host environment” within which JavaScript is embedded. Usually that host
environment is a web browser (though we’ll see two uses of JavaScript without a web
browser in Chapter 12). Part I of this book covers the language itself and its minimal
built-in APL. Part II explains how JavaScript is used in web browsers and covers the
sprawling browser-based APIs loosely known as “client-side JavaScript.”

Part 11 is the reference section for the core APIL. You can read about the JavaScript array
manipulation API by looking up “Array” in this part of the book, for example.
Part IV is the reference section for client-side JavaScript. You might look up “Canvas”

2 | Chapter1: Introduction to JavaScript

vww allitebooks.cond

http://www.allitebooks.org

in this part of the book to read about the graphics API defined by the HTMLS5
<canvas> element, for example.

This book covers low-level fundamentals first, and then builds on those to more
advanced and higher-level abstractions. The chapters are intended to be read more or
less in order. But learning a new programming language is never a linear process, and
describing a language is not linear either: each language feature is related to other fea-
tures and this book is full of cross-references—sometimes backward and sometimes
forward to material you have notyet read. This chapter makes a quick first pass through
the core language and the client-side API, introducing key features that will make it
easier to understand the in-depth treatment in the chapters that follow.

Exploring JavaScript

When learning a new programming language, it’s important to try the examples in the
book, and then modify them and try them again to test your understanding of the
language. To do that, you need a JavaScript interpreter. Fortunately, every web browser
includes a JavaScript interpreter, and if you’re reading this book, you probably already
have more than one web browser installed on your computer.

We'll see later on in this chapter that you can embed JavaScript code within <script>
tags in HTML files, and when the browser loads the file, it will execute the code. For-
tunately, however, you don’t have to do that every time you want to try out simple
snippets of JavaScript code. Spurred on by the powerful and innovative Firebug exten-
sion for Firefox (pictured in Figure 1-1 and available for download from http://getfirebug
.com/), today’s web browsers all include web developer tools that are indispensable for
debugging, experimenting, and learning. You can usually find these tools in the Tools
menu of the browser under names like “Developer Tools” or “Web Console.”
(Firefox 4 includes a built-in “Web Console,” but at the time of this writing, the Firebug
extension is better.) Often, you can call up a console with a keystroke like F12 or Ctrl-
Shift-J. These console tools often appear as panes at the top or bottom of the browser
window, but some allow you to open them as separate windows (as pictured in Fig-
ure 1-1), which is often quite convenient.

A typical “developer tools” pane or window includes multiple tabs that allow you to
inspect things like HTML document structure, CSS styles, network requests, and so
on. One of the tabs is a “JavaScript console” that allows you to type in lines of JavaScript
code and try them out. This is a particularly easy way to play around with JavaScript,
and I recommend that you use it as you read this book.

There is a simple console API that is portably implemented by modern browsers. You
can use the function console.log() to display text on the console. This is often sur-
prisingly helpful while debugging, and some of the examples in this book (even in the
core language section) use console.log() to perform simple output. A similar but more
intrusive way to display output or debugging messages is by passing a string of text to
the alert() function, which displays it in a modal dialog box.

Introduction to JavaScript | 3

http://getfirebug.com/
http://getfirebug.com/

Eirebug =

HEE

<

& ~| console~ | HTML css Script DOM

2 Clear Persist Profile

=== var x = "hello world":

=22
"hello world"
=== var book = { topic:

=== book.topic

"JavaScript", fat: truel:

"Javascript”

=== book["fat"]

true

=== yar primes = [2, 3, 5, 7]!
>>> primes|primes.length-1]
7

== primes[0] + primes[1]

5

=== function factorial(n) {
console.logl factorial(6]);
24

120

720

undefined

var p = 1; for{v...le.log(factarial

et

Al Errors Warnings Info Debug Info

£

function factorial(n) {
var p = 1;
for{var 1 = 2; 1 <= n; i++)
p*=1i;
return p;

(S50

}

console.log(factorial(4));
console.log({factorial(5]));
console.log(factorial(6));

(51);

Run Clear Copy

Figure 1-1. The Firebug debugging console for Firefox

1.1 Core JavaScript

This section is a tour of the JavaScript language,

and also a tour of Part I of this book.

After this introductory chapter, we dive into JavaScript at the lowest level: Chapter 2,
Lexical Structure, explains things like JavaScript comments, semicolons, and the Uni-
code character set. Chapter 3, Types, Values, and Variables, starts to get more inter-
esting: it explains JavaScript variables and the values you can assign to those variables.
Here’s some sample code to illustrate the highlights of those two chapters:

// Anything following double slashes is an English-language comment.
// Read the comments carefully: they explain the JavaScript code.

// variable is a symbolic name for a value.
// Variables are declared with the var keyword:
var x;

// Values can be assigned to variables with an
X = 0; // Now the variable
X // => 0: A variable

// JavaScript supports several types of values
= 1; // Numbers.
0.01;
= "hello world";
'JavaScript’;
true;
false;

// Boolean values.

X X X X X X

// Declare a variable

named Xx.

sign
x has the value 0
evaluates to its value.

// Just one Number type for integers and reals.
// Strings of text in quotation marks.
// Single quote marks also delimit strings.

// The other Boolean value.

4 | Chapter1: Introduction to JavaScript

null; // Null is a special value that means "no value".
undefined; // Undefined is like null.

X
X

Two other very important types that JavaScript programs can manipulate are objects
and arrays. These are the subject of Chapter 6, Objects, and Chapter 7, Arrays, but they
are so important that you’ll see them many times before you reach those chapters.

// JavaScript's most important data type is the object.
// An object is a collection of name/value pairs, or a string to value map.

var book = { // Objects are enclosed in curly braces.
topic: "JavaScript", // The property "topic" has value "JavaScript".
fat: true // The property "fat" has value true.
}; // The curly brace marks the end of the object.
// Access the properties of an object with . or []:
book. topic // => "JavaScript"
book["fat"] // => true: another way to access property values.
book.author = "Flanagan"; // Create new properties by assignment.
book.contents = {}; // {} is an empty object with no properties.

// JavaScript also supports arrays (numerically indexed lists) of values:
var primes = [2, 3, 5, 7]; // An array of 4 values, delimited with [and].

primes[0] // => 2: the first element (index 0) of the array.
primes.length // => 4: how many elements in the array.
primes[primes.length-1] // => 7: the last element of the array.
primes[4] = 9; // Add a new element by assignment.
primes[4] = 11; // Or alter an existing element by assignment.
var empty = []; // [1 is an empty array with no elements.
empty.length // =>0
// Arrays and objects can hold other arrays and objects:
var points = [// An array with 2 elements.
{x:0, y:0}, // Each element is an object.

] {x:1, y:1}

)
var data = { // An object with 2 properties

triali: [[1,2], [3,4]], // The value of each property is an array.

trial2: [[2,3], [4,5]] // The elements of the arrays are arrays.
};

The syntax illustrated above for listing array elements within square braces or mapping
object property names to property values inside curly braces is known as an initializer
expression, and it is just one of the topics of Chapter 4, Expressions and Operators. An
expression is a phrase of JavaScript that can be evaluated to produce a value. The use
of . and [] to refer to the value of an object property or array element is an expression,
for example. You may have noticed in the code above that when an expression stands
alone on a line, the comment that follows it begins with an arrow (=>) and the value of
the expression. This is a convention that you’ll see throughout this book.

One of the most common ways to form expressions in JavaScript is to use operators

like these:

// Operators act on values (the operands) to produce a new value.
// Arithmetic operators are the most common:
3+2 // => 5: addition

1.1 Core JavaScript | 5

3-2 // => 1: subtraction

3 %2 // => 6: multiplication

3 /2 // => 1.5: division

points[1].x - points[0].x // => 1: more complicated operands work, too

"3 o4 " // => "32": + adds numbers, concatenates strings

// JavaScript defines some shorthand arithmetic operators

var count = 0; // Define a variable

count++; // Increment the variable

count--; // Decrement the variable

count += 2; // Add 2: same as count = count + 2;

count *= 3; // Multiply by 3: same as count = count * 3;
count // => 6: variable names are expressions, too.

// Equality and relational operators test whether two values are equal,
// unequal, less than, greater than, and so on. They evaluate to true or false.

var x = 2, y = 3; // These = signs are assignment, not equality tests
X ==y // => false: equality

x =y // => true: inequality

X<y // => true: less-than

X <=y // => true: less-than or equal

X >y // => false: greater-than

X >=y // => false: greater-than or equal

"two" == "three" // => false: the two strings are different

"two" > "three" // => true: "tw" is alphabetically greater than "th"
false == (x > y) // => true: false is equal to false

// Logical operators combine or invert boolean values

(x ==2) & (y == 3) // => true: both comparisons are true. &% is AND
(x>3) || (y<3) // => false: neither comparison is true. || is OR
I(x ==y) // => true: ! inverts a boolean value

If the phrases of JavaScript are expressions, then the full sentences are statements, which
are the topic of Chapter 5, Statements. In the code above, the lines that end with
semicolons are statements. (In the code below, you’ll see multiline statements that do
not end with semicolons.) There is actually a lot of overlap between statements and
expressions. Roughly, an expression is something that computes a value but doesn’t
do anything: it doesn’t alter the program state in any way. Statements, on the other
hand, don’t have a value (or don’t have a value that we care about), but they do alter
the state. You've seen variable declarations and assignment statements above. The
other broad category of statement is control structures, such as conditionals and loops.
Examples are below, after we cover functions.

A function is a named and parametrized block of JavaScript code that you define once,
and can then invoke over and over again. Functions aren’t covered formally until
Chapter 8, Functions, but like objects and arrays, you’ll see them many times before
you get to that chapter. Here are some simple examples:

// Functions are parameterized blocks of JavaScript code that we can invoke.

function plusi(x) { // Define a function named "plusi" with parameter "x"
return x+1; // Return a value one larger than the value passed in
} // Functions are enclosed in curly braces

6 | Chapter1: Introduction to JavaScript

plusi(y) // => 4: y is 3, so this invocation returns 3+1

var square = function(x) { // Functions are values and can be assigned to vars

return x*x; // Compute the function's value
}; // Semicolon marks the end of the assignment.
square(plusi(y)) // => 16: invoke two functions in one expression

When we combine functions with objects, we get methods:

// When functions are assigned to the properties of an object, we call
// them "methods". All JavaScript objects have methods:

var a = []; // Create an empty array
a.push(1,2,3); // The push() method adds elements to an array
a.reverse(); // Another method: reverse the order of elements

// We can define our own methods, too. The "this" keyword refers to the object
// on which the method is defined: in this case, the points array from above.
points.dist = function() { // Define a method to compute distance between points

var pl = this[0]; // First element of array we're invoked on
var p2 = this[1]; // Second element of the "this" object

var a = p2.x-pl.x; // Difference in X coordinates

var b = p2.y-pl.y; // Difference in Y coordinates

return Math.sqrt(a*a + // The Pythagorean theorem
b*b); // Math.sqrt() computes the square root
b
points.dist() // => 1.414: distance between our 2 points
Now, as promised, here are some functions whose bodies demonstrate common Java-
Script control structure statements:

// JavaScript statements include conditionals and loops using the syntax
// of C, C++, Java, and other languages.

function abs(x) { // A function to compute the absolute value
if (x >=0) { // The if statement...
return x; // executes this code if the comparison is true.
// This is the end of the if clause.
else { // The optional else clause executes its code if
return -x; // the comparison is false.
} // Curly braces optional when 1 statement per clause.
} // Note return statements nested inside if/else.

function factorial(n) { // A function to compute factorials

var product = 1; // Start with a product of 1
while(n > 1) { // Repeat statements in {} while expr in () is true
product *= n; // Shortcut for product = product * n;
n--; // Shortcut for n =n - 1
} // End of loop
return product; // Return the product
}
factorial(4) /] => 24: 1%4*3%2

function factorial2(n) { // Another version using a different loop
var i, product = 1; // Start with 1
for(i=2; i <= n; i++) // Automatically increment i from 2 up to n
product *= ij; // Do this each time. {} not needed for 1-line loops
return product; // Return the factorial

1.1 Core JavaScript | 7

factorial2(s) /] => 120: 1%¥2%3*%4%5

JavaScript is an object-oriented language, but it is quite different than most. Chapter 9,
Classes and Modules, covers object-oriented programming in JavaScript in detail, with
lots of examples, and is one of the longest chapters in the book. Here is a very simple
example that demonstrates how to define a JavaScript class to represent 2D geometric
points. Objects that are instances of this class have a single method named r() that
computes the distance of the point from the origin:

// Define a constructor function to initialize a new Point object

function Point(x,y) { // By convention, constructors start with capitals
this.x = x; // this keyword is the new object being initialized
this.y = y; // Store function arguments as object properties

} // No return is necessary

// Use a constructor function with the keyword "new" to create instances
var p = new Point(1, 1); // The geometric point (1,1)

// Define methods for Point objects by assigning them to the prototype
// object associated with the constructor function.
Point.prototype.r = function() {
return Math.sqrt(// Return the square root of x2 + y2
this.x * this.x + // This is the Point object on which the method...
this.y * this.y // ...is invoked.

)s
b
// Now the Point object p (and all future Point objects) inherits the method r()
p-x() /] => 1.414...

Chapter 9 is really the climax of Part I, and the chapters that follow wrap up some loose
ends and bring our exploration of the core language to a close. Chapter 10, Pattern
Matching with Regular Expressions, explains the regular expression grammar and dem-
onstrates how to use these “regexps” for textual pattern matching. Chapter 11, Java-
Script Subsets and Extensions, covers subsets and extensions of core JavaScript. Finally,
before we plunge into client-side JavaScript in web browsers, Chapter 12, Server-Side
JavaScript, introduces two ways to use JavaScript outside of web browsers.

1.2 Client-Side JavaScript

Client-side JavaScript does not exhibit the nonlinear cross-reference problem nearly to
the extent that the core language does, and it is possible to learn how to use JavaScript
in web browsers in a fairly linear sequence. But you’re probably reading this book to
learn client-side JavaScript, and Part Il is a long way off, so this section is a quick sketch
of basic client-side programming techniques, followed by an in-depth example.

Chapter 13, JavaScript in Web Browsers, is the first chapter of Part Il and it explains in
detail how to put JavaScript to work in web browsers. The most important thing you’ll

8 | Chapter1: Introduction to JavaScript

learn in that chapter is that JavaScript code can be embedded within HTML files using
the <script> tag:

<html>

<head>

<script src="library.js"></script> <!-- include a library of JavaScript code -->
</head>

<body>

<p>This is a paragraph of HTML</p>

<script>

// And this is some client-side JavaScript code
// literally embedded within the HTML file
</script>

<p>Here is more HTML.</p>

</body>

</html>

Chapter 14, The Window Object, explains techniques for scripting the web browser and
covers some important global functions of client-side JavaScript. For example:
<script>
function moveon() {
// Display a modal dialog to ask the user a question
var answer = confirm("Ready to move on?");
// If they clicked the "OK" button, make the browser load a new page
if (answer) window.location = "http://google.com";

}

// Run the function defined above 1 minute (60,000 milliseconds) from now.
setTimeout(moveon, 60000);
</script>

Note that the client-side example code shown in this section comes in longer snippets
than the core language examples earlier in the chapter. These examples are not designed
to be typed into a Firebug (or similar) console window. Instead you can embed them
in an HTML file and try them out by loading them in your web browser. The code
above, for instance, works as a stand-alone HTML file.

Chapter 15, Scripting Documents, gets down to the real business of client-side Java-
Script, scripting HTML document content. It shows you how to select particular HTML
elements from within a document, how to set HTML attributes of those elements, how
to alter the content of those elements, and how to add new elements to the document.
This function demonstrates a number of these basic document searching and modifi-
cation techniques:

// Display a message in a special debugging output section of the document.

// If the document does not contain such a section, create one.

function debug(msg) {

// Find the debugging section of the document, looking at HTML id attributes
var log = document.getElementById("debuglog");

// If no element with the id "debuglog" exists, create one.

if (1log) {
log = document.createElement("div"); // Create a new <div> element
log.id = "debuglog"; // Set the HTML id attribute on it

1.2 Client-Side JavaScript | 9

log.innerHTML = "<h1>Debug Log</h1>"; // Define initial content
document.body.appendChild(log); // Add it at end of document

}

// Now wrap the message in its own <pre> and append it to the log
var pre = document.createElement("pre"); // Create a <pre> tag
var text = document.createTextNode(msg); // Wrap msg in a text node
pre.appendChild(text); // Add text to the <pre>
log.appendChild(pre); // Add <pre> to the log

}

Chapter 15 shows how JavaScript can script the HTML elements that define web con-
tent. Chapter 16, Scripting CSS, shows how you can use JavaScript with the CSS styles
that define the presentation of that content. This is often done with the style or
class attribute of HTML elements:

function hide(e, reflow) { // Hide the element e by scripting its style

if (reflow) { // If 2nd argument is true
e.style.display = "none" // hide element and use its space

}

else { // Otherwise

e.style.visibility = "hidden"; // make e invisible, but leave its space
}
}

function highlight(e) { // Highlight e by setting a CSS class
// Simply define or append to the HTML class attribute.
// This assumes that a CSS stylesheet already defines the "hilite" class
if (le.className) e.className = "hilite";
else e.className += " hilite";

}

JavaScript allows us to script the HTML content and CSS presentation of documents
in web browsers, but it also allows us to define behavior for those documents with
event handlers. An event handler is a JavaScript function that we register with the
browser and the browser invokes when some specified type of event occurs. The event
of interest might be a mouse click or a key press (or on a smart phone, it might be a
two-finger gesture of some sort). Or an event handler might be triggered when the
browser finishes loading a document, when the user resizes the browser window, or
when the user enters data into an HTML form element. Chapter 17, Handling Events,
explains how you can define and register event handlers and how the browser invokes
them when events occur.

The simplest way to define event handlers is with HTML attributes that begin with
“on”. The “onclick” handler is a particularly useful one when you’re writing simple
test programs. Suppose that you had typed in the debug() and hide() functions from
above and saved them in files named debug.js and hide.js. You could write a simple
HTML test file using <button> elements with onclick event handler attributes:

<script src="debug.js"></script>

<script src="hide.js"></script>

Hello

<button onclick="hide(this,true); debug('hide button 1');">Hide1</button>

10 | Chapter1: Introduction to JavaScript

<button onclick="hide(this); debug('hide button 2');">Hide2</button>
World

Here is some more client-side JavaScript code that uses events. It registers an event
handler for the very important “load” event, and it also demonstrates a more sophis-
ticated way of registering event handler functions for “click” events:

// The "load" event occurs when a document is fully loaded. Usually we

// need to wait for this event before we start running our JavaScript code.

window.onload = function() { // Run this function when the document loads

// Find all tags in the document
var images = document.getElementsByTagName("img");

// Loop through them, adding an event handler for "click" events to each
// so that clicking on the image hides it.
for(var i = 0; i < images.length; i++) {
var image = images[i];
if (image.addEventListener) // Another way to register a handler
image.addEventListener("click", hide, false);
else // For compatibility with IE8 and before
image.attachEvent("onclick", hide);

}

// This is the event handler function registered above
function hide(event) { event.target.style.visibility = "hidden"; }

};

Chapters 15, 16, and 17 explain how you can use JavaScript to script the content
(HTML), presentation (CSS), and behavior (event handling) of web pages. The APIs
described in those chapters are somewhat complex and, until recently, riddled with
browser incompatibilities. For these reasons, many or most client-side JavaScript pro-
grammers choose to use a client-side library or framework to simplify their basic pro-
gramming tasks. The most popular such library is jQuery, the subject of Chapter 19,
The jQuery Library. jQuery defines a clever and easy-to-use API for scripting document
content, presentation, and behavior. It has been thoroughly tested and works in all
major browsers, including old ones like IE6.

jQuery code is easy to identify because it makes frequent use of a function named
$(). Here is what the debug() function used previously looks like when rewritten to use
jQuery:
function debug(msg) {
var log = $("#debuglog"); // Find the element to display msg in.
if (log.length == 0) { // If it doesn't exist yet, create it...
log = $("<div id='debuglog'><h1>Debug Log</h1></div>");
log.appendTo(document.body); // and insert it at the end of the body.

log.append($("<pre/>").text(msg)); // Wrap msg in <pre> and append to log.
The four chapters of Part 1T described so far have all really been about web pages. Four

more chapters shift gears to focus on web applications. These chapters are not about
using web browsers to display documents with scriptable content, presentation, and

1.2 Client-Side JavaScript | 11

behavior. Instead, they’re about using web browsers as application platforms, and they
describe the APIs that modern browsers provide to support sophisticated client-side
web apps. Chapter 18, Scripted HTTP, explains how to make scripted HTTP requests
with JavaScript—a kind of networking API. Chapter 20, Client-Side Storage, describes
mechanisms for storing data—and even entire applications—on the client side for use
in future browsing sessions. Chapter 21, Scripted Media and Graphics, covers a client-
side API for drawing arbitrary graphics in an HTML <canvas> tag. And, finally, Chap-
ter 22, HTMLS5 APIs, covers an assortment of new web app APIs specified by or affiliated
with HTMLS5. Networking, storage, graphics: these are OS-type services being provided
by the web browser, defining a new cross-platform application environment. If you are
targeting browsers that support these new APIs, it is an exciting time to be a client-side
JavaScript programmer. There are no code samples from these final four chapters here,
but the extended example below uses some of these new APIs.

1.2.1 Example: A JavaScript Loan Calculator

This chapter ends with an extended example that puts many of these techniques to-
gether and shows what real-world client-side JavaScript (plus HTML and CSS) pro-
grams look like. Example 1-1 lists the code for the simple loan payment calculator
application pictured in Figure 1-2.

| | JavaScript Loan Calc...

€« [| A
Enter Loan Data: Loan Balance, Cumulative Equity, and Interest Payments
Amount of the loan () |100000

Annual mierest (%) |5 I:::: Eglilail:ce
Eepayment period (years): |3[]
Zipcode (to find lenders) I
Approximate Payments: | 0ajcylate
Ifonthly payment: $536.82
Total payment: $193255.78
Total interest: $93255.78
Sponsors: Apply for your loan with one of these fine lenders:

* DBanlk of Javascript
o HTMT Credit Union

Figure 1-2. A loan calculator web application

It is worth reading through Example 1-1 carefully. You shouldn’t expect to understand
everything, but the code is heavily commented and you should be able to at least get

12 | Chapter1: Introduction to JavaScript

vww allitebooks.cond

http://www.allitebooks.org

the big-picture view of how it works. The example demonstrates a number of core
JavaScript language features, and also demonstrates important client-side JavaScript
techniques:

* How to find elements in a document.

* How to get user input from form input elements.

* How to set the HTML content of document elements.

* How to store data in the browser.

* How to make scripted HTTP requests.

* How to draw graphics with the <canvas> element.

Example 1-1. A loan calculator in JavaScript

<!DOCTYPE html>

<html>

<head>

<title>JavaScript Loan Calculator</title>

<style> /* This is a CSS style sheet: it adds style to the program output */

.output { font-weight: bold; } /* Calculated values in bold */
#payment { text-decoration: underline; } /* For element with id="payment" */
#tgraph { border: solid black 1px; } /* Chart has a simple border */

th, td { vertical-align: top; } /* Don't center table cells */
</style>

</head>

<body>

<I--

This is an HTML table with <input> elements that allow the user to enter data
and elements in which the program can display its results.
These elements have ids like "interest" and "years". These ids are used
in the JavaScript code that follows the table. Note that some of the input
elements define "onchange" or "onclick" event handlers. These specify strings
of JavaScript code to be executed when the user enters data or clicks.
-->
<table>

<tr><th>Enter Loan Data:</th>

<td></td>

<th>Loan Balance, Cumulative Equity, and Interest Payments</th></tr>
<tr><td>Amount of the loan ($):</td>

<td><input id="amount" onchange="calculate();"></td>

<td rowspan=8>

<canvas id="graph" width="400" height="250"></canvas></td></tr>

<tr><td>Annual interest (%):</td>

<td><input id="apr" onchange="calculate();"></td></tr>
<tr><td>Repayment period (years):</td>

<td><input id="years" onchange="calculate();"></td>
<tr><td>Zipcode (to find lenders):</td>

<td><input id="zipcode" onchange="calculate();"></td>
<tr><th>Approximate Payments:</th>

<td><button onclick="calculate();">Calculate</button></td></tr>
<tr><td>Monthly payment:</td>

<td>$</td></tr>
<tr><td>Total payment:</td>

<td>$</td></tr>

1.2 Client-Side JavaScript | 13

<tr><td>Total interest:</td>
<td>$</td></tr>
<tr><th>Sponsors:</th><td colspan=2>
Apply for your loan with one of these fine lenders:
<div id="lenders"></div></td></tr>
</table>

<!-- The rest of this example is JavaScript code in the <script> tag below -->
<!-- Normally, this script would go in the document <head> above but it -->
<!-- is easier to understand here, after you've seen its HTML context. -->
<script>

"use strict"; // Use ECMAScript 5 strict mode in browsers that support it

* This script defines the calculate() function called by the event handlers
* in HTML above. The function reads values from <input> elements, calculates
* loan payment information, displays the results in elements. It also
* saves the user's data, displays links to lenders, and draws a chart.
*/
function calculate() {

// Look up the input and output elements in the document

var amount = document.getElementById("amount");

var apr = document.getElementById("apr");

var years = document.getElementById("years");

var zipcode = document.getElementById("zipcode");

var payment = document.getElementById("payment");

var total = document.getElementById("total");

var totalinterest = document.getElementById("totalinterest");

// Get the user's input from the input elements. Assume it is all valid.
// Convert interest from a percentage to a decimal, and convert from

// an annual rate to a monthly rate. Convert payment period in years

// to the number of monthly payments.

var principal = parseFloat(amount.value);

var interest = parseFloat(apr.value) / 100 / 12;

var payments = parseFloat(years.value) * 12;

// Now compute the monthly payment figure.
var x = Math.pow(1 + interest, payments); // Math.pow() computes powers
var monthly = (principal*x*interest)/(x-1);

// If the result is a finite number, the user's input was good and

// we have meaningful results to display

if (isFinite(monthly)) {
// Fill in the output fields, rounding to 2 decimal places
payment.innerHTML = monthly.toFixed(2);
total.innerHTML = (monthly * payments).toFixed(2);
totalinterest.innerHTML = ((monthly*payments)-principal).toFixed(2);

// Save the user's input so we can restore it the next time they visit
save(amount.value, apr.value, years.value, zipcode.value);

// Advertise: find and display local lenders, but ignore network errors
try { // Catch any errors that occur within these curly braces
getLenders(amount.value, apr.value, years.value, zipcode.value);

14 | Chapter1: Introduction to JavaScript

catch(e) { /* And ignore those errors */ }

// Finally, chart loan balance, and interest and equity payments
chart(principal, interest, monthly, payments);

else {
// Result was Not-a-Number or infinite, which means the input was
// incomplete or invalid. Clear any previously displayed output.

payment.innerHTML = ""; // Erase the content of these elements
total.innerHTML = ""

totalinterest.innerHTML = "";

chart(); // With no arguments, clears the chart

}

// Save the user's input as properties of the localStorage object. Those
// properties will still be there when the user visits in the future
// This storage feature will not work in some browsers (Firefox, e.g.) if you
// run the example from a local file:// URL. It does work over HTTP, however.
function save(amount, apr, years, zipcode) {
if (window.localStorage) { // Only do this if the browser supports it

localStorage.loan_amount = amount;

localStorage.loan apr = apr;

localStorage.loan years = years;

localStorage.loan_zipcode = zipcode;

}

// Automatically attempt to restore input fields when the document first loads.
window.onload = function() {
// If the browser supports localStorage and we have some stored data
if (window.localStorage &3 localStorage.loan amount) {
document.getElementById("amount").value = localStorage.loan amount;
document.getElementById("apr").value = localStorage.loan apr;
document.getElementById("years").value = localStorage.loan_years;
document.getElementById("zipcode").value = localStorage.loan_zipcode;
}
b

// Pass the user's input to a server-side script which can (in theory) return
// a list of links to local lenders interested in making loans. This example
// does not actually include a working implementation of such a lender-finding
// service. But if the service existed, this function would work with it.
function getlenders(amount, apr, years, zipcode) {
// If the browser does not support the XMLHttpRequest object, do nothing
if (!window.XMLHttpRequest) return;

// Find the element to display the list of lenders in
var ad = document.getElementById("lenders");
if (lad) return; // Quit if no spot for output

1.2 Client-Side JavaScript

// Encode the user's input as query parameters in a URL
var url = "getlenders.php" + // Service url plus
"?amt=" + encodeURIComponent(amount) + // user data in query string
"8apr=" + encodeURIComponent(apr) +
"&yrs=" + encodeURIComponent(years) +
"&zip=" + encodeURIComponent(zipcode);

// Fetch the contents of that URL using the XMLHttpRequest object

var req = new XMLHttpRequest(); // Begin a new request
req.open("GET", url); // An HTTP GET request for the url
req.send(null); // Send the request with no body

// Before returning, register an event handler function that will be called
// at some later time when the HTTP server's response arrives. This kind of
// asynchronous programming is very common in client-side JavaScript.
req.onreadystatechange = function() {
if (req.readyState == 4 83 req.status == 200) {

// If we get here, we got a complete valid HTTP response

var response = req.responseText; // HTTP response as a string

var lenders = JSON.parse(response); // Parse it to a]S array

// Convert the array of lender objects to a string of HTML
var list = "";
for(var i = 0; i < lenders.length; i++) {
list += "" +
lenders[i].name + "";

}

// Display the HTML in the element from above.
ad.innerHTML = "" + list + "";

// Chart monthly loan balance, interest and equity in an HTML <canvas> element.
// If called with no arguments then just erase any previously drawn chart.
function chart(principal, interest, monthly, payments) {

var graph = document.getElementById("graph"); // Get the <canvas> tag
graph.width = graph.width; // Magic to clear and reset the canvas element

// If we're called with no arguments, or if this browser does not support
// graphics in a <canvas> element, then just return now.
if (arguments.length == 0 || !graph.getContext) return;

// Get the "context" object for the <canvas> that defines the drawing API
var g = graph.getContext("2d"); // All drawing is done with this object
var width = graph.width, height = graph.height; // Get canvas size

// These functions convert payment numbers and dollar amounts to pixels
function paymentToX(n) { return n * width/payments; }
function amountToY(a) { return height-(a * height/(monthly*payments*1.05));}

// Payments are a straight line from (0,0) to (payments, monthly*payments)

g.moveTo(paymentToX(0), amountToY(0)); // Start at lower left

g.lineTo(paymentToX(payments), // Draw to upper right
amountToY(monthly*payments));

16 | Chapter1: Introduction to JavaScript

g.lineTo(paymentToX(payments), amountToY(0)); // Down to lower right

g.closePath(); // And back to start
g.fillStyle = "#f88"; // Light red
g.fill(); // Fill the triangle
g.font = "bold 12px sans-serif"; // Define a font

g.fillText("Total Interest Payments", 20,20); // Draw text in legend

// Cumulative equity is non-linear and trickier to chart
var equity = 0;
g.beginPath(); // Begin a new shape
g.moveTo(paymentToX(0), amountToY(0)); // starting at lower-left
for(var p = 1; p <= payments; p++) {
// For each payment, figure out how much is interest
var thisMonthsInterest = (principal-equity)*interest;
equity += (monthly - thisMonthsInterest); // The rest goes to equity
g.lineTo(paymentToX(p),amountToY(equity)); // Line to this point

}

g.lineTo(paymentToX(payments), amountToY(0)); // Line back to X axis
g.closePath(); // And back to start point
g.fillStyle = "green"; // Now use green paint
g.fill(); // And fill area under curve
g.fillText("Total Equity", 20,35); // Label it in green

// Loop again, as above, but chart loan balance as a thick black line

var bal = principal;

g.beginPath();

g.moveTo(paymentToX(0),amountToY(bal));

for(var p = 1; p <= payments; p++) {
var thisMonthsInterest = bal*interest;
bal -= (monthly - thisMonthsInterest); // The rest goes to equity
g.lineTo(paymentToX(p),amountToY(bal)); // Draw line to this point

g.lineWidth = 3; // Use a thick line
g.stroke(); // Draw the balance curve
g.fillStyle = "black"; // Switch to black text
g.fillText("Loan Balance", 20,50); // Legend entry
// Now make yearly tick marks and year numbers on X axis
g.textAlign="center"; // Center text over ticks
var y = amountToY(0); // Y coordinate of X axis
for(var year=1; year*12 <= payments; year++) { // For each year
var x = paymentToX(year*12); // Compute tick position
g.fillRect(x-0.5,y-3,1,3); // Draw the tick

if (year == 1) g.fillText("Year", x, y-5); // Label the axis
if (year % 5 == 0 &% year*12 !== payments) // Number every 5 years
g.fillText(String(year), x, y-5);

}

// Mark payment amounts along the right edge

g.textAlign = "right"; // Right-justify text
g.textBaseline = "middle"; // Center it vertically

var ticks = [monthly*payments, principall; // The two points we'll mark
var rightEdge = paymentToX(payments); // X coordinate of Y axis
for(var i = 0; i < ticks.length; i++) { // For each of the 2 points

var y = amountToY(ticks[i]); // Compute Y position of tick

1.2 Client-Side JavaSaript | 17

g.fillRect(rightEdge-3, y-0.5, 3,1);
g.fillText(String(ticks[i].toFixed(0)),
rightEdge-5, y);
}
}
</script>
</body>
</html>

// Draw the tick mark
// And label it.

18 | Chapter1: Introduction to JavaScript

PART I
Core JavaScript

This part of the book, Chapters 2 though 12, documents the core JavaScript language
and is meant to be a JavaScript language reference. After you read through it once to
learn the language, you may find yourself referring back to it to refresh your memory
about some of the trickier points of JavaScript.

Chapter 2, Lexical Structure

Chapter 3, Types, Values, and Variables
Chapter 4, Expressions and Operators
Chapter 5, Statements

Chapter 6, Objects

Chapter 7, Arrays

Chapter 8, Functions

Chapter 9, Classes and Modules

Chapter 10, Pattern Matching with Regular Expressions
Chapter 11, JavaScript Subsets and Extensions
Chapter 12, Server-Side JavaScript

CHAPTER 2
Lexical Structure

The lexical structure of a programming language is the set of elementary rules that
specifies how you write programs in that language. It is the lowest-level syntax of a
language; it specifies such things as what variable names look like, the delimiter char-
acters for comments, and how one program statement is separated from the next. This
short chapter documents the lexical structure of JavaScript.

2.1 Character Set

JavaScript programs are written using the Unicode character set. Unicode is a superset
of ASCII and Latin-1 and supports virtually every written language currently used on
the planet. ECMAScript 3 requires JavaScript implementations to support Unicode
version 2.1 or later, and ECMAScript 5 requires implementations to support
Unicode 3 or later. See the sidebar in §3.2 for more about Unicode and JavaScript.

2.1.1 Case Sensitivity

JavaScript is a case-sensitive language. This means that language keywords, variables,
function names, and other identifiers must always be typed with a consistent capitali-
zation of letters. The while keyword, for example, must be typed “while,” not “While”
or “WHILE.” Similarly, online, Online, OnLine, and ONLINE are four distinct variable
names.

Note, however, that HTML is not case-sensitive (although XHTML is). Because of its
close association with client-side JavaScript, this difference can be confusing. Many
client-side JavaScript objects and properties have the same names as the HTML tags
and attributes they represent. While these tags and attribute names can be typed in any
case in HTML, in JavaScript they typically must be all lowercase. For example, the
HTML onclick event handler attribute is sometimes specified as onClick in HTML, but
it must be specified as onclick in JavaScript code (or in XHTML documents).

21

2.1.2 Whitespace, Line Breaks, and Format Control Characters

JavaScript ignores spaces that appear between tokens in programs. For the most part,
JavaScript also ignores line breaks (but see §2.5 for an exception). Because you can use
spaces and newlines freely in your programs, you can format and indent your programs
in a neat and consistent way that makes the code easy to read and understand.

In addition to the regular space character (\u0020), JavaScript also recognizes the fol-
lowing characters as whitespace: tab (\u0009), vertical tab (\uoooB), form feed
(\uoooC), nonbreaking space (\uooAo), byte order mark (\uFEFF), and any character in
Unicode category Zs. JavaScript recognizes the following characters as line terminators:
line feed (\u000A), carriage return (\uoooD), line separator (\u2028), and paragraph sep-
arator (\u2029). A carriage return, line feed sequence is treated as a single line
terminator.

Unicode format control characters (category Cf), such as RIGHT-TO-LEFT MARK
(\u200F) and LEFT-TO-RIGHT MARK (\u200E), control the visual presentation of the
text they occur in. They are important for the proper display of some non-English
languages and are allowed in JavaScript comments, string literals, and regular expres-
sion literals, but not in the identifiers (e.g., variable names) of a JavaScript program.
As aspecial case,ZERO WIDTH JOINER (\u200D) and ZERO WIDTH NON-JOINER
(\u200C) are allowed in identifiers, but not as the first character. As noted above, the
byte order mark format control character (\uFEFF) is treated as a space character.

2.1.3 Unicode Escape Sequences

Some computer hardware and software can not display or input the full set of Unicode
characters. To support programmers using this older technology, JavaScript defines
special sequences of six ASCII characters to represent any 16-bit Unicode codepoint.
These Unicode escapes begin with the characters \u and are followed by exactly four
hexadecimal digits (using uppercase or lowercase letters A—F). Unicode escapes may
appear in JavaScript string literals, regular expression literals, and in identifiers (but
not in language keywords). The Unicode escape for the character é, for example, is
\u0oE9, and the following two JavaScript strings are identical:

"café" === "caf\uooe9" // => true

Unicode escapes may also appear in comments, but since comments are ignored, they
are treated as ASCII characters in that context and not interpreted as Unicode.

2.1.4 Normalization

Unicode allows more than one way of encoding the same character. The string “é”, for
example, can be encoded as the single Unicode character \u0oE9 or as a regular ASCII
e followed by the acute accent combining mark \u0301. These two encodings may look
exactly the same when displayed by a text editor, but they have different binary en-
codings and are considered different by the computer. The Unicode standard defines
the preferred encoding for all characters and specifies a normalization procedure to

22 | Chapter2: Lexical Structure

vww allitebooks.cond

http://www.allitebooks.org

convert text to a canonical form suitable for comparisons. JavaScript assumes that the
source code it is interpreting has already been normalized and makes no attempt to
normalize identifiers, strings, or regular expressions itself.

2.2 Comments

JavaScript supports two styles of comments. Any text between a // and the end of a
line is treated as a comment and is ignored by JavaScript. Any text between the char-
acters /* and */ is also treated as a comment; these comments may span multiple lines
but may not be nested. The following lines of code are all legal JavaScript comments:

// This is a single-line comment.
/* This is also a comment */ // and here is another comment.
J*

* This is yet another comment.

* It has multiple lines.

*/

2.3 Literals

A literal is a data value that appears directly in a program. The following are all literals:

12 // The number twelve

1.2 // The number one point two

"hello world" // A string of text

'Hi' // Another string

true // A Boolean value

false // The other Boolean value

/javascript/gi // A "regular expression" literal (for pattern matching)
null // Absence of an object

Complete details on numeric and string literals appear in Chapter 3. Regular expression
literals are covered in Chapter 10. More complex expressions (see §4.2) can serve as
array and object literals. For example:

{ x:1, y:2 } // An object initializer
[1,2,3,4,5] // An array initializer

2.4 Identifiers and Reserved Words

An identifier is simply a name. In JavaScript, identifiers are used to name variables and
functions and to provide labels for certain loops in JavaScript code. A JavaScript iden-
tifier must begin with a letter, an underscore (), or a dollar sign ($). Subsequent char-
acters can be letters, digits, underscores, or dollar signs. (Digits are not allowed as the
first character so that JavaScript can easily distinguish identifiers from numbers.) These
are all legal identifiers:

i

my variable name

v13

2.4 |dentifiers and Reserved Words | 23

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

_dummy
$str

For portability and ease of editing, it is common to use only ASCII letters and digits in
identifiers. Note, however, that JavaScript allows identifiers to contain letters and digits
from the entire Unicode character set. (Technically, the ECMAScript standard also
allows Unicode characters from the obscure categories Mn, Mc, and Pc to appear in
identifiers after the first character.) This allows programmers to use variable names
from non-English languages and also to use mathematical symbols:

var si = true;
var m = 3.14;

Like any language, JavaScript reserves certain identifiers for use by the language itself.
These “reserved words” cannot be used as regular identifiers. They are listed below.

2.4.1 Reserved Words

JavaScript reserves a number of identifiers as the keywords of the language itself. You
cannot use these words as identifiers in your programs:

break delete function return typeof
case do if switch var
catch else in this void
continue false instanceof throw while
debugger finally new true with
default for null try

JavaScript also reserves certain keywords that are not currently used by the language
but which might be used in future versions. ECMAScript 5 reserves the following
words:

class const enum export extends import super
In addition, the following words, which are legal in ordinary JavaScript code, are re-
served in strict mode:

implements let private public yield
interface package protected static

Strict mode also imposes restrictions on the use of the following identifiers. They are

not fully reserved, but they are not allowed as variable, function, or parameter names:
arguments eval

ECMAScript 3 reserved all the keywords of the Java language, and although this has

been relaxed in ECMAScript 5, you should still avoid all of these identifiers if you plan
to run your code under an ECMAScript 3 implementation of JavaScript:

abstract double goto native static
boolean enum implements package super

byte export import private synchronized
char extends int protected throws

class final interface public transient
const float long short volatile

24 | Chapter2: Lexical Structure

JavaScript predefines a number of global variables and functions, and you should avoid
using their names for your own variables and functions:

arguments encodeURT Infinity Number RegExp
Array encodeURIComponent isFinite Object String
Boolean Error isNaN parseFloat SyntaxError
Date eval JSON parselnt TypeError
decodeURI EvalError Math RangeError undefined
decodeURIComponent Function NaN ReferenceError URIError

Keep in mind that JavaScript implementations may define other global variables and
functions, and each specific JavaScript embedding (client-side, server-side, etc.) will
have its own list of global properties. See the Window object in Part IV for a list of the
global variables and functions defined by client-side JavaScript.

2.5 Optional Semicolons

Like many programming languages, JavaScript uses the semicolon (;) to separate state-
ments (see Chapter 5) from each other. This is important to make the meaning of your
code clear: without a separator, the end of one statement might appear to be the be-
ginning of the next, or vice versa. In JavaScript, you can usually omit the semicolon
between two statements if those statements are written on separate lines. (You can also
omit a semicolon at the end of a program or if the next token in the program is a closing
curly brace }.) Many JavaScript programmers (and the code in this book) use semico-
lons to explicitly mark the ends of statements, even where they are not required.
Another style is to omit semicolons whenever possible, using them only in the few
situations that require them. Whichever style you choose, there are a few details you
should understand about optional semicolons in JavaScript.

Consider the following code. Since the two statements appear on separate lines, the
first semicolon could be omitted:

Written as follows, however, the first semicolon is required:
a=3;b=4;

Note that JavaScript does not treat every line break as a semicolon: it usually treats line
breaks as semicolons only if it can’t parse the code without the semicolons. More for-
mally (and with two exceptions described below), JavaScript treats a line break as a
semicolon if the next nonspace character cannot be interpreted as a continuation of the
current statement. Consider the following code:

var a
a

3
console.log(a)

2.5 Optional Semicolons | 25

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

JavaScript interprets this code like this:

var a; a = 3; console.log(a);

JavaScript does treat the first line break as a semicolon because it cannot parse the code
var a a without a semicolon. The second a could stand alone as the statement a;, but
JavaScript does not treat the second line break as a semicolon because it can continue
parsing the longer statement a = 3;.

These statement termination rules lead to some surprising cases. This code looks like
two separate statements separated with a newline:

var y = x + f
(a+b).toString()

But the parentheses on the second line of code can be interpreted as a function invo-
cation of f from the first line, and JavaScript interprets the code like this:

var y = x + f(a+b).toString();

More likely than not, this is not the interpretation intended by the author of the code.
In order to work as two separate statements, an explicit semicolon is required in this
case.

In general, if a statement begins with (, [, /, +, or -, there is a chance that it could be
interpreted as a continuation of the statement before. Statements beginning with /, +,
and - are quite rare in practice, but statements beginning with (and [are not uncom-
mon at all, at least in some styles of JavaScript programming. Some programmers like
to put a defensive semicolon at the beginning of any such statement so that it will
continue to work correctly even if the statement before it is modified and a previously
terminating semicolon removed:

var x = 0 // Semicolon omitted here
; [x,x+1,x+2].forEach(console.log) // Defensive ; keeps this statement separate

There are two exceptions to the general rule that JavaScript interprets line breaks as
semicolons when it cannot parse the second line as a continuation of the statement on
the first line. The first exception involves the return, break, and continue statements
(see Chapter 5). These statements often stand alone, but they are sometimes followed
by an identifier or expression. If a line break appears after any of these words (before
any other tokens), JavaScript will always interpret that line break as a semicolon. For
example, if you write:

return
true;

26 | Chapter2: Lexical Structure

JavaScript assumes you meant:

return; true;

However, you probably meant:

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

return true;

What this means is that you must not insert a line break between return, break or
continue and the expression that follows the keyword. If you do insert a line break,
your code is likely to fail in a nonobvious way that is difficult to debug.

The second exception involves the ++ and -- operators (§4.8). These operators can be
prefix operators that appear before an expression or postfix operators that appear after
an expression. If you want to use either of these operators as postfix operators, they
must appear on the same line as the expression they apply to. Otherwise, the line break
will be treated as a semicolon, and the ++ or - - will be parsed as a prefix operator applied
to the code that follows. Consider this code, for example:

X
++

y

It is parsed as x; ++y;, not as x++; y.

2.5 Optional Semicolons | 27

CHAPTER 3
Types, Values, and Variables

Computer programs work by manipulating values, such as the number 3.14 or the text
“Hello World.” The kinds of values that can be represented and manipulated in a
programming language are known as types, and one of the most fundamental charac-
teristics of a programming language is the set of types it supports. When a program
needs to retain a value for future use, it assigns the value to (or “stores” the value in) a
variable. A variable defines a symbolic name for a value and allows the value to be
referred to by name. The way that variables work is another fundamental characteristic
of any programming language. This chapter explains types, values, and variables in
JavaScript. These introductory paragraphs provide an overview, and you may find it
helpful to refer to §1.1 while you read them. The sections that follow cover these topics
in depth.

JavaScript types can be divided into two categories: primitive types and object types.
JavaScript’s primitive types include numbers, strings of text (known as strings), and
Boolean truth values (known as booleans). A significant portion of this chapter is dedi-
cated to a detailed explanation of the numeric (§3.1) and string (§3.2) types in Java-
Script. Booleans are covered in §3.3.

The special JavaScript values null and undefined are primitive values, but they are not
numbers, strings, or booleans. Each value is typically considered to be the sole member
of its own special type. §3.4 has more about null and undefined.

Any JavaScript value that is not a number, a string, a boolean, or null or undefined is
an object. An object (that is, a member of the type object) is a collection of properties
where each property has a name and a value (either a primitive value, such as a number
or string, or an object). One very special object, the global object, is covered in §3.5,
but more general and more detailed coverage of objects is in Chapter 6.

An ordinary JavaScript object is an unordered collection of named values. The language
also defines a special kind of object, known as an array, that represents an ordered
collection of numbered values. The JavaScript language includes special syntax for
working with arrays, and arrays have some special behavior that distinguishes them
from ordinary objects. Arrays are the subject of Chapter 7.

29

JavaScript defines another special kind of object, known as a function. A function is an
object that has executable code associated with it. A function may be invoked to run
that executable code and return a computed value. Like arrays, functions behave dif-
ferently from other kinds of objects, and JavaScript defines a special language syntax
for working with them. The most important thing about functions in JavaScript is that
they are true values and that JavaScript programs can treat them like regular objects.
Functions are covered in Chapter 8.

Functions that are written to be used (with the new operator) to initialize a newly created
object are known as constructors. Each constructor defines a class of objects—the set
of objects initialized by that constructor. Classes can be thought of as subtypes of the
object type. In addition to the Array and Function classes, core JavaScript defines three
other useful classes. The Date class defines objects that represent dates. The RegExp
class defines objects that represent regular expressions (a powerful pattern-matching
tool described in Chapter 10). And the Error class defines objects that represent syntax
and runtime errors that can occur in a JavaScript program. You can define your own
classes of objects by defining appropriate constructor functions. This is explained in
Chapter 9.

The JavaScript interpreter performs automatic garbage collection for memory manage-
ment. This means that a program can create objects as needed, and the programmer
never needs to worry about destruction or deallocation of those objects. When an object
is no longer reachable—when a program no longer has any way to refer to it—the
interpreter knows it can never be used again and automatically reclaims the memory it
was occupying.

JavaScript is an object-oriented language. Loosely, this means that rather than having
globally defined functions to operate on values of various types, the types themselves
define methods for working with values. To sort the elements of an array a, for example,
we don’t pass a to a sort() function. Instead, we invoke the sort() method of a:

a.sort(); // The object-oriented version of sort(a).

Method definition is covered in Chapter 9. Technically, it is only JavaScript objects
that have methods. But numbers, strings, and boolean values behave as if they had
methods (§3.6 explains how this works). In JavaScript, null and undefined are the only
values that methods cannot be invoked on.

JavaScript’s types can be divided into primitive types and object types. And they can
be divided into types with methods and types without. They can also be categorized as
mutable and immutable types. A value of a mutable type can change. Objects and arrays
are mutable: a JavaScript program can change the values of object properties and array
elements. Numbers, booleans, null, and undefined are immutable—it doesn’t even
make sense to talk about changing the value of a number, for example. Strings can be
thought of as arrays of characters, and you might expect them to be mutable. In Java-
Script, however, strings are immutable: you can access the text at any index of a string,

30 | Chapter3: Types, Values, and Variables

but JavaScript provides no way to alter the text of an existing string. The differences
between mutable and immutable values are explored further in §3.7.

JavaScript converts values liberally from one type to another. If a program expects a
string, for example, and you give it a number, it will automatically convert the number
to a string for you. If you use a nonboolean value where a boolean is expected, JavaScript
will convert accordingly. The rules for value conversion are explained in §3.8. Java-
Script’s liberal value conversion rules affect its definition of equality, and the == equality
operator performs type conversions as described in §3.8.1.

JavaScript variables are untyped: you can assign a value of any type to a variable, and
you can later assign a value of a different type to the same variable. Variables are
declared with the var keyword. JavaScript uses lexical scoping. Variables declared out-
side of a function are global variables and are visible everywhere in a JavaScript program.
Variables declared inside a function have function scope and are visible only to code
that §ppears inside that function. Variable declaration and scope are covered in §3.9
and 83.10.

3.1 Numbers

Unlike many languages, JavaScript does not make a distinction between integer values
and floating-point values. All numbers in JavaScript are represented as floating-point
values. JavaScript represents numbers using the 64-bit floating-point format defined
by the IEEE 754 standard,! which means it can represent numbers as large as
+1.7976931348623157 x 10°%8 and as small as +5 x 107324,

The JavaScript number format allows you to exactly represent all integers between
-9007199254740992 (-233) and 9007199254740992 (23), inclusive. If you use integer
values larger than this, you may lose precision in the trailing digits. Note, however, that
certain operations in JavaScript (such as array indexing and the bitwise operators de-
scribed in Chapter 4) are performed with 32-bit integers.

When a number appears directly in a JavaScript program, it’s called a numeric literal.
JavaScript supports numeric literals in several formats, as described in the following
sections. Note that any numeric literal can be preceded by a minus sign (-) to make the
number negative. Technically, however, - is the unary negation operator (see Chap-
ter 4) and is not part of the numeric literal syntax.

1. This format should be familiar to Java programmers as the format of the double type. It is also the
double format used in almost all modern implementations of C and C++.

3.1 Numbers | 31

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

3.1.1 Integer Literals

In a JavaScript program, a base-10 integer is written as a sequence of digits. For
example:
0

3
10000000

In addition to base-10 integer literals, JavaScript recognizes hexadecimal (base-16) val-
ues. A hexadecimal literal begins with “0x” or “0X”, followed by a string of hexadecimal
digits. A hexadecimal digit is one of the digits 0 through 9 or the letters a (or A) through
f (or F), which represent values 10 through 15. Here are examples of hexadecimal in-
teger literals:

oxff // 15%16 + 15 = 255 (base 10)
OXCAFE911

Although the ECMAScript standard does not support them, some implementations of
JavaScript allow you to specify integer literals in octal (base-8) format. An octal literal
begins with the digit 0 and is followed by a sequence of digits, each between 0 and 7.
For example:

0377 // 3*64 + 7*%8 + 7 = 255 (base 10)
Since some implementations support octal literals and some do not, you should never
write an integer literal with a leading zero; you cannot know in this case whether an

implementation will interpret it as an octal or decimal value. In the strict mode of
ECMAScript 5 (§5.7.3), octal literals are explicitly forbidden.

3.1.2 Floating-Point Literals

Floating-point literals can have a decimal point; they use the traditional syntax for real
numbers. A real value is represented as the integral part of the number, followed by a
decimal point and the fractional part of the number.

Floating-point literals may also be represented using exponential notation: a real num-
ber followed by the letter e (or E), followed by an optional plus or minus sign, followed
by an integer exponent. This notation represents the real number multiplied by 10 to
the power of the exponent.
More succinctly, the syntax is:

[digits][.digits][(E|e)[(+]-)]digits]

For example:

3.14

2345.789

.333333333333333333

6.02e23 // 6.02 x 10%

1.4738223E-32 // 1.4738223 x 10732

32 | Chapter3: Types, Values, and Variables

vww allitebooks.cond

http://www.allitebooks.org

3.1.3 Arithmeticin JavaScript

JavaScript programs work with numbers using the arithmetic operators that the lan-
guage provides. These include + for addition, - for subtraction, * for multiplica-
tion, / for division, and % for modulo (remainder after division). Full details on these
and other operators can be found in Chapter 4.

In addition to these basic arithmetic operators, JavaScript supports more complex
mathematical operations through a set of functions and constants defined as properties
of the Math object:

Math.pow(2,53) // => 9007199254740992: 2 to the power 53
Math.round(.6) // => 1.0: round to the nearest integer
Math.ceil(.6) // => 1.0: round up to an integer
Math.floor(.6) // => 0.0: round down to an integer
Math.abs(-5) // => 5: absolute value

Math.max(x,y,z) // Return the largest argument
Math.min(x,y,z) // Return the smallest argument
Math.random() // Pseudo-random number x where 0 <= x < 1.0
Math.PI // m: circumference of a circle / diameter
Math.E // e: The base of the natural logarithm
Math.sqrt(3) // The square root of 3

Math.pow(3, 1/3) // The cube root of 3

Math.sin(0) // Trigonometry: also Math.cos, Math.atan, etc.
Math.log(10) // Natural logarithm of 10

Math.log(100)/Math.LN10 // Base 10 logarithm of 100
Math.log(512)/Math.LN2 // Base 2 logarithm of 512
Math.exp(3) // Math.E cubed

See the Math object in the reference section for complete details on all the mathematical
functions supported by JavaScript.

Arithmetic in JavaScript does not raise errors in cases of overflow, underflow, or divi-
sion by zero. When the result of a numeric operation is larger than the largest repre-
sentable number (overflow), the resultis a special infinity value, which JavaScript prints
as Infinity. Similarly, when a negative value becomes larger than the largest repre-
sentable negative number, the result is negative infinity, printed as -Infinity. The in-
finite values behave as you would expect: adding, subtracting, multiplying, or dividing
them by anything results in an infinite value (possibly with the sign reversed).

Underflow occurs when the result of a numeric operation is closer to zero than the
smallest representable number. In this case, JavaScript returns 0. If underflow occurs
from a negative number, JavaScript returns a special value known as “negative zero.”
This value is almost completely indistinguishable from regular zero and JavaScript
programmers rarely need to detect it.

Division by zero is not an error in JavaScript: it simply returns infinity or negative
infinity. There is one exception, however: zero divided by zero does not have a well-
defined value, and the result of this operation is the special not-a-number value, printed
as NaN. NaN also arises if you attempt to divide infinity by infinity, or take the square

3.1 Numbers | 33

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

root of a negative number or use arithmetic operators with non-numeric operands that
cannot be converted to numbers.

JavaScript predefines global variables Infinity and NaN to hold the positive infinity and
not-a-number value. In ECMAScript 3, these are read/write values and can be changed.
ECMAScript 5 corrects this and makes the values read-only. The Number object defines
alternatives that are read-only even in ECMAScript 3. Here are some examples:

Infinity // A read/write variable initialized to Infinity.
Number .POSITIVE INFINITY // Same value, read-only.

1/0 // This is also the same value.

Number .MAX_VALUE + 1 // This also evaluates to Infinity.

Number .NEGATIVE INFINITY // These expressions are negative infinity.
-Infinity

-1/0

-Number .MAX VALUE - 1

NaN // A read/write variable initialized to NaN.
Numbexr . NaN // A read-only property holding the same value.
0/0 // Evaluates to NaN.

Number .MIN_VALUE/2 // Underflow: evaluates to 0

-Number .MIN_VALUE/2 // Negative zero

-1/Infinity // Also negative 0

-0

The not-a-number value has one unusual feature in JavaScript: it does not compare
equal to any other value, including itself. This means that you can’t write x == NaN to
determine whether the value of a variable x is NaN. Instead, you should write x != x.
That expression will be true if, and only if, x is NaN. The function isNaN() is similar. It
returns true if its argument is NaN, or if that argument is a non-numeric value such as
a string or an object. The related function isFinite() returns true if its argument is a
number other than NaN, Infinity, or -Infinity.

The negative zero value is also somewhat unusual. It compares equal (even using Java-
Script’s strict equality test) to positive zero, which means that the two values are almost
indistinguishable, except when used as a divisor:

var zero = 0; // Regular zero

var negz = -0; // Negative zero

zero === negz // => true: zero and negative zero are equal
1/zero === 1/negz // => false: infinity and -infinity are not equal

3.1.4 Binary Floating-Point and Rounding Errors

There are infinitely many real numbers, but only a finite number of them
(18437736874454810627, to be exact) can be represented exactly by the JavaScript
floating-point format. This means that when you’re working with real numbers in
JavaScript, the representation of the number will often be an approximation of the
actual number.

34 | Chapter3: Types, Values, and Variables

The TEEE-754 floating-point representation used by JavaScript (and just about every
other modern programming language) is a binary representation, which can exactly
represent fractions like 1/2, 1/8, and 1/1024. Unfortunately, the fractions we use most
commonly (especially when performing financial calculations) are decimal fractions
1/10, 1/100, and so on. Binary floating-point representations cannot exactly represent
numbers as simple as 0.1.

JavaScript numbers have plenty of precision and can approximate 0.1 very closely. But
the fact that this number cannot be represented exactly can lead to problems. Consider
this code:

// thirty cents minus 20 cents

. // twenty cents minus 10 cents

X ==y // => false: the two values are not the same!
// => false: .3-.2 is not equal to .1

// => true: .2-.1 is equal to .1

<
QU
=
x
n
NoWw
!
= N
<

<
QU
=
<
n
-

Because of rounding error, the difference between the approximations of .3 and .2 is
not exactly the same as the difference between the approximations of .2 and .1. It is
important to understand that this problem is not specific to JavaScript: it affects any
programming language that uses binary floating-point numbers. Also, note that the
values x and y in the code above are very close to each other and to the correct value.
The computed values are adequate for almost any purpose: the problem arises when
we attempt to compare values for equality.

A future version of JavaScript may support a decimal numeric type that avoids these
rounding issues. Until then you might want to perform critical financial calculations
using scaled integers. For example, you might manipulate monetary values as integer
cents rather than fractional dollars.

3.1.5 Dates and Times

Core JavaScript includes a Date() constructor for creating objects that represent dates
and times. These Date objects have methods that provide an API for simple date com-
putations. Date objects are not a fundamental type like numbers are. This section
presents a quick tutorial on working with dates. Full details can be found in the refer-
ence section:

var then = new Date(2010, 0, 1); // The 1st day of the 1st month of 2010

var later = new Date(2010, 0, 1, // Same day, at 5:10:30pm, local time
17, 10, 30);

var now = new Date(); // The current date and time

var elapsed = now - then; // Date subtraction: interval in milliseconds
later.getFullYear() // => 2010

later.getMonth() // => 0: zero-based months

later.getDate() // => 1: one-based days

later.getDay() // => 5: day of week. 0 is Sunday 5 is Friday.
later.getHours() // => 17: 5pm, local time

later.getUTCHours() // hours in UTC time; depends on timezone

3.1 Numbers | 35

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

later.toString() // => "Fri Jan 01 2010 17:10:30 GMT-0800 (PST)"
later.toUTCString() // => "Sat, 02 Jan 2010 01:10:30 GMT"
later.tolocaleDateString() // => "01/01/2010"

later.tolocaleTimeString() // => "05:10:30 PM"

later.toISOString() // => "2010-01-02T01:10:30.000Z"; ES5 only

3.2 Text

A string is an immutable ordered sequence of 16-bit values, each of which typically
represents a Unicode character—strings are JavaScript’s type for representing text. The
length of a string is the number of 16-bit values it contains. JavaScript’s strings (and its
arrays) use zero-based indexing: the first 16-bit value is at position 0, the second at
position 1 and so on. The empty string is the string of length 0. JavaScript does not have
a special type that represents a single element of a string. To represent a single 16-bit
value, simply use a string that has a length of 1.

Characters, Codepoints, and JavaScript Strings

JavaScript uses the UTF-16 encoding of the Unicode character set, and JavaScript
strings are sequences of unsigned 16-bit values. The most commonly used Unicode
characters (those from the “basic multilingual plane”) have codepoints that fit in
16 bits and can be represented by a single element of a string. Unicode characters whose
codepoints do not fit in 16 bits are encoded following the rules of UTF-16 as a sequence
(known as a “surrogate pair”) of two 16-bit values. This means that a JavaScript string
of length 2 (two 16-bit values) might represent only a single Unicode character:

var p = "n"; // m is 1 character with 16-bit codepoint 0x03cO

var e = "e"; // e is 1 character with 17-bit codepoint 0x1d452

p.length // => 1: p consists of 1 16-bit element
e.length // => 2: UTF-16 encoding of e is 2 16-bit values: "\ud835\udc52"

The various string-manipulation methods defined by JavaScript operate on 16-bit val-
ues, not on characters. They do not treat surrogate pairs specially, perform no normal-
ization of the string, and do not even ensure that a string is well-formed UTF-16.

3.2.1 String Literals

To include a string literally in a JavaScript program, simply enclose the characters of
the string within a matched pair of single or double quotes (' or "). Double-quote
characters may be contained within strings delimited by single-quote characters, and
single-quote characters may be contained within strings delimited by double quotes.
Here are examples of string literals:

nn

// The empty string: it has zero characters

'testing’

"3.14"

"name="myform"'

"Wouldn't you prefer 0'Reilly's book?"

"This string\nhas two lines"

"m is the ratio of a circle's circumference to its diameter"

36 | Chapter3: Types, Values, and Variables

In ECMAScript 3, string literals must be written on a single line. In ECMAScript 5,
however, you can break a string literal across multiple lines by ending each line but the
last with a backslash (\). Neither the backslash nor the line terminator that follow it
are part of the string literal. If you need to include a newline character in a string literal,
use the character sequence \n (documented below):

"two\nlines" // A string representing 2 lines written on one line

"one\ // A one-line string written on 3 lines. ECMAScript 5 only.

long\

line"
Note that when you use single quotes to delimit your strings, you must be careful with
English contractions and possessives, such as can’t and O’Reilly’s. Since the apostrophe
is the same as the single-quote character, you must use the backslash character (\) to
“escape” any apostrophes that appear in single-quoted strings (escapes are explained
in the next section).

In client-side JavaScript programming, JavaScript code may contain strings of HTML
code, and HTML code may contain strings of JavaScript code. Like JavaScript, HTML
uses either single or double quotes to delimit its strings. Thus, when combining Java-
Script and HTML, it is a good idea to use one style of quotes for JavaScript and the
other style for HTML. In the following example, the string “Thank you” is single-
quoted within a JavaScript expression, which is then double-quoted within an
HTML event-handler attribute:

<button onclick="alert('Thank you')">Click Me</button>

3.2.2 Escape Sequences in String Literals

The backslash character (\) has a special purpose in JavaScript strings. Combined with
the character that follows it, it represents a character that is not otherwise representable
within the string. For example, \n is an escape sequence that represents a newline
character.

Another example, mentioned above, is the \ ' escape, which represents the single quote
(or apostrophe) character. This escape sequence is useful when you need to include an
apostrophe in a string literal that is contained within single quotes. You can see why
these are called escape sequences: the backslash allows you to escape from the usual
interpretation of the single-quote character. Instead of using it to mark the end of the
string, you use it as an apostrophe:

'You\'re right, it can\'t be a quote'

Table 3-1 lists the JavaScript escape sequences and the characters they represent. Two
escape sequences are generic and can be used to represent any character by specifying
its Latin-1 or Unicode character code as a hexadecimal number. For example, the se-
quence \xA9 represents the copyright symbol, which has the Latin-1 encoding given by
the hexadecimal number A9. Similarly, the \u escape represents an arbitrary Unicode
character specified by four hexadecimal digits; \u03co represents the character ,
for example.

3.2 Text | 37

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

Table 3-1. JavaScript escape sequences

Sequence Character represented

\o The NUL character (\uoooo)

\b Backspace (\u0008)

\t Horizontal tab (\u0009)

\n Newline (\uoooA)

\v Vertical tab (\uoooB)

\f Form feed (\uoooC)

\r Carriage return (\uoooD)

\" Double quote (\u0022)

\' Apostrophe or single quote (\u0027)
\\ Backslash (\uoo5C)

\x XX The Latin-1 character specified by the two hexadecimal digits XX

\uXXxx The Unicode character specified by the four hexadecimal digits XXXX

If the \ character precedes any character other than those shown in Table 3-1, the
backslash is simply ignored (although future versions of the language may, of course,
define new escape sequences). For example, \# is the same as #. Finally, as noted above,
ECMAScript 5 allows a backslash before a line break to break a string literal across
multiple lines.

3.2.3 Working with Strings

One of the built-in features of JavaScript is the ability to concatenate strings. If you use
the + operator with numbers, it adds them. But if you use this operator on strings, it
joins them by appending the second to the first. For example:

msg = "Hello, " + "world"; // Produces the string "Hello, world"

greeting = "Welcome to my blog," + + name;

To determine the length of a string—the number of 16-bit values it contains—use the
length property of the string. Determine the length of a string s like this:
s.length

In addition to this length property, there are a number of methods you can invoke on
strings (as always, see the reference section for complete details):

var s = "hello, world" // Start with some text.

s.charAt(0) // => "h": the first character.
s.charAt(s.length-1) // => "d": the last character.
s.substring(1,4) // => "ell": the 2nd, 3rd and 4th characters.
s.slice(1,4) // => "ell": same thing

s.slice(-3) // => "rld": last 3 characters
s.index0f("1") // => 2: position of first letter 1.
s.lastIndex0f("1") // => 10: position of last letter 1.
s.index0f("1", 3) // => 3: position of first "1" at or after 3

38 | Chapter3: Types, Values, and Variables

s.split(", ") // => ["hello", "world"] split into substrings
s.replace("h", "H") // => "Hello, world": replaces all instances
s.toUpperCase() // => "HELLO, WORLD"

Remember that strings are immutable in JavaScript. Methods like replace() and
toUpperCase() return new strings: they do not modify the string on which they are
invoked.

In ECMAScript 5, strings can be treated like read-only arrays, and you can access in-
dividual characters (16-bit values) from a string using square brackets instead of the
charAt() method:

s = "hello, world";

s[o] // = "h"

s[s.length-1] // => "d"
Mozilla-based web browsers such as Firefox have allowed strings to be indexed in this
way for a long time. Most modern browsers (with the notable exception of IE) followed
Moxzilla’s lead even before this feature was standardized in ECMAScript 5.

3.2.4 Pattern Matching

JavaScript defines a RegExp() constructor for creating objects that represent textual
patterns. These patterns are described with regular expressions, and JavaScript adopts
Perl’s syntax for regular expressions. Both strings and RegExp objects have methods
for performing pattern matching and search-and-replace operations using regular
expressions.

RegExps are not one of the fundamental types of JavaScript. Like Dates, they are simply
a specialized kind of object, with a useful API. The regular expression grammar is com-
plex and the API is nontrivial. They are documented in detail in Chapter 10. Because
RegExps are powerful and commonly used for text processing, however, this section
provides a brief overview.

Although RegExps are not one of the fundamental data types in the language, they do
have a literal syntax and can be encoded directly into JavaScript programs. Text be-
tween a pair of slashes constitutes a regular expression literal. The second slash in the
pair can also be followed by one or more letters, which modify the meaning of the
pattern. For example:

/AHTML/ // Match the letters H T M L at the start of a string

/[1-9][0-9]*/ // Match a non-zero digit, followed by any # of digits
/\bjavascript\b/i // Match "javascript" as a word, case-insensitive

RegExp objects define a number of useful methods, and strings also have methods that
accept RegExp arguments. For example:

var text = "testing: 1, 2, 3"; // Sample text

var pattern = /\d+/g // Matches all instances of one or more digits
pattern.test(text) // => true: a match exists
text.search(pattern) // => 9: position of first match
text.match(pattern) [/ => ["1", "2", "3"]: array of all matches

3.2 Text | 39

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

text.replace(pattern, "#"); // => "testing: #, #, #"
text.split(/\D+/); // =>["","1","2","3"]: split on non-digits

3.3 Boolean Values

A boolean value represents truth or falsehood, on or off, yes or no. There are only two
possible values of this type. The reserved words true and false evaluate to these
two values.

Boolean values are generally the result of comparisons you make in your JavaScript
programs. For example:

a==4

This code tests to see whether the value of the variable a is equal to the number 4. If it
is, the result of this comparison is the boolean value true. If a is not equal to 4, the result
of the comparison is false.

Boolean values are commonly used in JavaScript control structures. For example, the
if/else statement in JavaScript performs one action if a boolean value is true and
another action if the value is false. You usually combine a comparison that creates a
boolean value directly with a statement that uses it. The result looks like this:
if (a == 4)
b=>b+1;
else
a=a+1;

This code checks whether a equals 4. If so, it adds 1 to b; otherwise, it adds 1 to a.

As we’ll discuss in §3.8, any JavaScript value can be converted to a boolean value. The
following values convert to, and therefore work like, false:

undefined

null

0

-0

NaN

nn

// the empty string

All other values, including all objects (and arrays) convert to, and work like, true.
false, and the six values that convert to it, are sometimes called falsy values, and all
other values are called truthy. Any time JavaScript expects a boolean value, a falsy value
works like false and a truthy value works like true.

As an example, suppose that the variable o either holds an object or the value null. You
can test explicitly to see if 0 is non-null with an if statement like this:

if (o !== null) ...
The not-equal operator !== compares o to null and evaluates to either true or false.

But you can omit the comparison and instead rely on the fact that null is falsy and
objects are truthy:

40 | Chapter3: Types, Values, and Variables

if (o) ...

In the first case, the body of the if will be executed only if o is not null. The second
case is less strict: it will execute the body of the if only if o is not false or any falsy
value (such as null or undefined). Which if statement is appropriate for your program
really depends on what values you expect to be assigned to o. If you need to distinguish
null from 0 and "", then you should use an explicit comparison.

Boolean values have a toString() method that you can use to convert them to the strings
“true” or “false”, but they do not have any other useful methods. Despite the trivial
API, there are three important boolean operators.

The && operator performs the Boolean AND operation. It evaluates to a truthy value if
and only if both of its operands are truthy; it evaluates to a falsy value otherwise. The
| | operator is the Boolean OR operation: it evaluates to a truthy value if either one (or
both) of its operands is truthy and evaluates to a falsy value if both operands are falsy.
Finally, the unary ! operator performs the Boolean NOT operation: it evaluates to
true if its operand is falsy and evaluates to false if its operand is truthy. For example:

if ((x==08y==0) || !(z==0)) {
// x and y are both zero or z is non-zero
}

Full details on these operators are in §4.10.

3.4 null and undefined

null is a language keyword that evaluates to a special value that is usually used to
indicate the absence of a value. Using the typeof operator on null returns the string
“object”, indicating that null can be thought of as a special object value that indicates
“no object”. In practice, however, null is typically regarded as the sole member of its
own type, and it can be used to indicate “no value” for numbers and strings as well as
objects. Most programming languages have an equivalent to JavaScript’s null: you may
be familiar with it as null or nil.

JavaScript also has a second value that indicates absence of value. The undefined value
represents a deeper kind of absence. It is the value of variables that have not been
initialized and the value you get when you query the value of an object property or array
element that does not exist. The undefined value is also returned by functions that have
no return value, and the value of function parameters for which no argument is sup-
plied. undefined is a predefined global variable (not a language keyword like null) that
is initialized to the undefined value. In ECMAScript 3, undefined is a read/write vari-
able, and it can be set to any value. This error is corrected in ECMAScript 5 and
undefined is read-only in that version of the language. If you apply the typeof operator
to the undefined value, it returns “undefined”, indicating that this value is the sole
member of a special type.

3.4 null and undefined | 41

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

Despite these differences, null and undefined both indicate an absence of value and
can often be used interchangeably. The equality operator == considers them to be equal.
(Use the strict equality operator === to distinguish them.) Both are falsy values—they
behave like false when a boolean value is required. Neither null nor undefined have
any properties or methods. In fact, using . or [] to access a property or method of these
values causes a TypeError.

You might consider undefined to represent a system-level, unexpected, or error-like
absence of value and null to represent program-level, normal, or expected absence of
value. If you need to assign one of these values to a variable or property or pass one of
these values to a function, null is almost always the right choice.

3.5 The Global Object

The sections above have explained JavaScript’s primitive types and values. Object
types—objects, arrays, and functions—are covered in chapters of their own later in this
book. But there is one very important object value that we must cover now. The global
object is a regular JavaScript object that serves a very important purpose: the properties
of this object are the globally defined symbols that are available to a JavaScript program.
When the JavaScript interpreter starts (or whenever a web browser loads a new page),
it creates a new global object and gives it an initial set of properties that define:

* global properties like undefined, Infinity, and NaN
» global functions like isNaN(), parseInt() (§3.8.2), and eval() (§4.12).

* constructor functions like Date(), RegExp(), String(), Object(), and Array()
§3.8.2)

+ global objects like Math and JSON (§6.9)

The initial properties of the global object are not reserved words, but they deserve to
be treated as if they are. §2.4.1 lists each of these properties. This chapter has already
described some of these global properties. Most of the others will be covered elsewhere
in this book. And you can look them all up by name in the core JavaScript reference
section, or look up the global object itself under the name “Global”. For client-side
JavaScript, the Window object defines other globals that you can look up in the client-
side reference section.

In top-level code—JavaScript code that is not part of a function—you can use the
JavaScript keyword this to refer to the global object:

var global = this; // Define a global variable to refer to the global object

In client-side JavaScript, the Window object serves as the global object for all JavaScript
code contained in the browser window it represents. This global Window object has a
self-referential window property that can be used instead of this to refer to the global
object. The Window object defines the core global properties, but it also defines quite
a few other globals that are specific to web browsers and client-side JavaScript.

42 | Chapter3: Types, Values, and Variables

vww allitebooks.cond

http://www.allitebooks.org

When first created, the global object defines all of JavaScript’s predefined global values.
But this special object also holds program-defined globals as well. If your code declares
a global variable, that variable is a property of the global object. §3.10.2 explains this
in more detail.

3.6 Wrapper Objects

JavaScript objects are composite values: they are a collection of properties or named
values. We refer to the value of a property using the . notation. When the value of a
property is a function, we call it a method. To invoke the method m of an object o, we
write 0.m().

We’ve also seen that strings have properties and methods:

var s = "hello world!"; // A string
var word = s.substring(s.index0f(" ")+1, s.length); // Use string properties

Strings are not objects, though, so why do they have properties? Whenever you try to
refer to a property of a string s, JavaScript converts the string value to an object as if by
calling new String(s). This object inherits (see §6.2.2) string methods and is used to
resolve the property reference. Once the property has been resolved, the newly created
object is discarded. (Implementations are not required to actually create and discard
this transient object: they must behave as if they do, however.)

Numbers and booleans have methods for the same reason that strings do: a temporary
object is created using the Number() or Boolean() constructor, and the method is re-
solved using that temporary object. There are not wrapper objects for the null and
undefined values: any attempt to access a property of one of these values causes a
TypeError.

Consider the following code and think about what happens when it is executed:

var s = "test"; // Start with a string value.
s.len = 4; // Set a property on it.
var t = s.len; // Now query the property.

When you run this code, the value of t is undefined. The second line of code creates a
temporary String object, sets its len property to 4, and then discards that object. The
third line creates a new String object from the original (unmodified) string value and
then tries to read the len property. This property does not exist, and the expression
evaluates to undefined. This code demonstrates that strings, numbers, and boolean
values behave like objects when you try to read the value of a property (or method)
from them. But if you attempt to set the value of a property, that attempt is silently
ignored: the change is made on a temporary object and does not persist.

The temporary objects created when you access a property of a string, number, or
boolean are known as wrapper objects, and it may occasionally be necessary to distin-
guish a string value from a String object or a number or boolean value from a Number
or Boolean object. Usually, however, wrapper objects can be considered an

3.6 Wrapper Objects | 43

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

implementation detail and you don’t have to think about them. You just need to know
that string, number, and boolean values differ from objects in that their properties are
read-only and that you can’t define new properties on them.

Note that it is possible (but almost never necessary or useful) to explicitly create wrap-
per objects, by invoking the String(), Number (), or Boolean() constructors:

var s = "test", n =1, b = true; // A string, number, and boolean value.

var S = new String(s); // A String object
var N = new Number(n); // A Number object
var B = new Boolean(b); // A Boolean object

JavaScript converts wrapper objects into the wrapped primitive value as necessary, so
the objects S, N, and B above usually, but not always, behave just like the values s, n,
and b. The == equality operator treats a value and its wrapper object as equal, but you
can distinguish them with the === strict equality operator. The typeof operator will also
show you the difference between a primitive value and its wrapper object.

3.7 Immutable Primitive Values and Mutable Object
References

There is a fundamental difference in JavaScript between primitive values (undefined,
null, booleans, numbers, and strings) and objects (including arrays and functions).
Primitives are immutable: there is no way to change (or “mutate”) a primitive value.
This is obvious for numbers and booleans—it doesn’t even make sense to change the
value of a number. It is not so obvious for strings, however. Since strings are like arrays
of characters, you might expect to be able to alter the character at any specified index.
In fact, JavaScript does not allow this, and all string methods that appear to return a
modified string are, in fact, returning a new string value. For example:
var s = "hello"; // Start with some lowercase text

s.toUpperCase(); // Returns "HELLO", but doesn't alter s
s // => "hello": the original string has not changed

Primitives are also compared by value: two values are the same only if they have the
same value. This sounds circular for numbers, booleans, null, and undefined: there is
no other way that they could be compared. Again, however, it is not so obvious for
strings. If two distinct string values are compared, JavaScript treats them as equal if,
and only if, they have the same length and if the character at each index is the same.

Objects are different than primitives. First, they are mutable—their values can change:

var o = { x:1 }; // Start with an object

0.X = 2; // Mutate it by changing the value of a property
0.y = 3; // Mutate it again by adding a new property

var a = [1,2,3] // Arrays are also mutable

a[o] = o; // Change the value of an array element

a[3] = 4; // Add a new array element

44 | Chapter3: Types, Values, and Variables

Objects are not compared by value: two objects are not equal even if they have the same
properties and values. And two arrays are not equal even if they have the same elements
in the same order:

var o = {x:1}, p = {x:1}; // Two objects with the same properties

0 ===p // => false: distinct objects are never equal
var a = [], b = []; // Two distinct, empty arrays

a===>b // => false: distinct arrays are never equal

Objects are sometimes called reference types to distinguish them from JavaScript’s
primitive types. Using this terminology, object values are references, and we say that
objects are compared by reference: two object values are the same if and only if they
refer to the same underlying object.

var a = []; // The variable a refers to an empty array.

var b = a; // Now b refers to the same array.
b[1; // Mutate the array referred to by variable b.
a

0] =
[0] // => 1: the change is also visible through variable a.

===b // => true: a and b refer to the same object, so they are equal.

As you can see from the code above, assigning an object (or array) to a variable simply
assigns the reference: it does not create a new copy of the object. If you want to make
a new copy of an object or array, you must explicitly copy the properties of the object

or the elements of the array. This example demonstrates using a for loop (§85.5.3):

var a = ['a','b",'c']; // An array we want to copy
var b = []; // A distinct array we'll copy into
for(var i = 0; i < a.length; i++) { // For each index of a[]

b[i] = a[i]; // Copy an element of a into b

Similarly, if we want to compare two distinct objects or arrays, we must compare their
properties or elements. This code defines a function to compare two arrays:

function equalArrays(a,b) {
if (a.length != b.length) return false; // Different-size arrays not equal

for(var i = 0; i < a.length; i++) // Loop through all elements
if (a[i] !'== b[i]) return false; // If any differ, arrays not equal
return true; // Otherwise they are equal

3.8 Type Conversions

JavaScript is very flexible about the types of values it requires. We’ve seen this for
booleans: when JavaScript expects a boolean value, you may supply a value of any type,
and JavaScript will convert it as needed. Some values (“truthy” values) convert to
true and others (“falsy” values) convert to false. The same is true for other types: if
JavaScript wants a string, it will convert whatever value you give it to a string. If Java-
Script wants a number, it will try to convert the value you give it to a number (or to
NaN if it cannot perform a meaningful conversion). Some examples:

10 + " objects"” // => "10 objects". Number 10 converts to a string
okt // => 28: both strings convert to numbers

3.8 Type Conversions | 45

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

n,n n,n

var n = 1 - "x"; // => NaN: string "x can't convert to a number
n+ " objects" // => "NaN objects": NaN converts to string "NaN"

Table 3-2 summarizes how values convert from one type to another in JavaScript. Bold
entries in the table highlight conversions that you may find surprising. Empty cells
indicate that no conversion is necessary and none is performed.

Table 3-2. JavaScript type conversions

Value Converted to:

String Number Boolean Object
undefined "undefined" NaN false throws TypeError
null "null" 0 false throws TypeError
true "true" 1 new Boolean(true)
false "false" 0 new Boolean(false)
"" (empty string) 0 false new String("")
"1.2" (nonempty, numeric) 1.2 true new String("1.2")
"one" (nonempty, non-numeric) NaN true new String("one"
0 "0" false new Number (0)
-0 "o" false new Number(-0)
NaN "NaN" false new Number (NaN)
Infinity "Infinity" true new Number(Infinity)
-Infinity "-Infinity" true new Number(-Infinity)
1 (finite, non-zero) 1" true new Number (1)
{} (any object) see§3.8.3 see§3.83 true
[] (empty array) " 0 true
[9] (1 numeric elt) "9" 9 true
['a"] (any other array) usejoin() method ~ NaN true
function(){} (any function) see§3.8.3 NaN true

The primitive-to-primitive conversions shown in the table are relatively
straightforward. Conversion to boolean was already discussed in §3.3. Conversion to
strings is well-defined for all primitive values. Conversion to numbers is just a little
trickier. Strings that can be parsed as numbers convert to those numbers. Leading and
trailing spaces are allowed, but any leading or trailing nonspace characters that are not
part of a numeric literal cause the string-to-number conversion to produce NaN. Some
numeric conversions may seem surprising: true converts to 1, and false and the empty
string "" convert to 0.

Primitive-to-object conversions are straightforward: primitive values convert to their
wrapper object (§3.6) as if by calling the String(), Number (), or Boolean() constructor.

46 | Chapter3: Types, Values, and Variables

The exceptions are null and undefined: any attempt to use these values where an object
is expected raises a TypeError exception rather than performing a conversion.

Object-to-primitive conversion is somewhat more complicated, and it is the subject of
§3.8.3.

3.8.1 Conversions and Equality

Because JavaScript can convert values flexibly, its == equality operator is also flexible
with its notion of equality. All of the following comparisons are true, for example:

null == undefined // These two values are treated as equal.

"0" == 0 // String converts to a number before comparing.
0 == false // Boolean converts to number before comparing.
"0" == false // Both operands convert to numbers before comparing.

§4.9.1 explains exactly what conversions are performed by the == operator in order to
determine whether two values should be considered equal, and it also describes the
strict equality operator === that does not perform conversions when testing for equality.

Keep in mind that convertibility of one value to another does not imply equality of
those two values. If undefined is used where a boolean value is expected, for example,
it will convert to false. But this does not mean that undefined == false. JavaScript
operators and statements expect values of various types, and perform conversions to
those types. The if statement converts undefined to false, but the == operator never
attempts to convert its operands to booleans.

3.8.2 Explicit Conversions

Although JavaScript performs many type conversions automatically, you may some-
times need to perform an explicit conversion, or you may prefer to make the conversions
explicit to keep your code clearer.

The simplest way to perform an explicit type conversion is to use the Boolean(),
Number (), String(), or Object() functions. We’ve already seen these functions as con-
structors for wrapper objects (in §3.6). When invoked without the new operator, how-

ever, they work as conversion functions and perform the conversions summarized in
Table 3-2:

Number ("3") /] => 3

String(false) // => "false" Or use false.toString()
Boolean([]) // => true

Object(3) // => new Number(3)

Note that any value other than null or undefined has a toString() method and the
result of this method is usually the same as that returned by the String() function. Also
note that Table 3-2 shows a TypeError if you attempt to convert null or undefined to
an object. The Object() function does not throw an exception in this case: instead it
simply returns a newly created empty object.

3.8 Type Conversions | 47

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

Certain JavaScript operators perform implicit type conversions, and are sometimes
used for the purposes of type conversion. If one operand of the + operator is a string,
it converts the other one to a string. The unary + operator converts its operand to a
number. And the unary ! operator converts its operand to a boolean and negates it.
These facts lead to the following type conversion idioms that you may see in some code:

X+ "" // Same as String(x)
+X // Same as Number(x). You may also see x-0
1x // Same as Boolean(x). Note double !

Formatting and parsing numbers are common tasks in computer programs and Java-
Script has specialized functions and methods that provide more precise control over
number-to-string and string-to-number conversions.

The toString() method defined by the Number class accepts an optional argument
that specifies a radix, or base, for the conversion. If you do not specify the argument,
the conversion is done in base 10. However, you can also convert numbers in other
bases (between 2 and 36). For example:

var n = 17;

binary string = n.toString(2); // Evaluates to "10001"

octal string = "0" + n.toString(8); // Evaluates to "021"
hex_string = "0x" + n.toString(16); // Evaluates to "ox11"

When working with financial or scientific data, you may want to convert numbers to
strings in ways that give you control over the number of decimal places or the number
of significant digits in the output, or you may want to control whether exponential
notation is used. The Number class defines three methods for these kinds of number-
to-string conversions. toFixed() converts a number to a string with a specified number
of digits after the decimal point. It never uses exponential notation. toExponential()
converts a number to a string using exponential notation, with one digit before the
decimal point and a specified number of digits after the decimal point (which means
that the number of significant digits is one larger than the value you specify). toPreci
sion() converts a number to a string with the number of significant digits you specify.
It uses exponential notation if the number of significant digits is not large enough to
display the entire integer portion of the number. Note that all three methods round the
trailing digits or pad with zeros as appropriate. Consider the following examples:

var n = 123456.789;

.toFixed(0); // "123457"
.toFixed(2); // "123456.79"
.toFixed(5); // "123456.78900"

n
n
n
n.toExponential(1); // "1.2e+5"
n.toExponential(3); // "1.235e+5"
n.toPrecision(4); // "1.235e+5"
n.toPrecision(7); // "123456.8"
n.toPrecision(10); // "123456.7890"

If you pass a string to the Number () conversion function, it attempts to parse that string
as an integer or floating-point literal. That function only works for base-10 integers,
and does not allow trailing characters that are not part of the literal. The parseInt()

48 | Chapter3: Types, Values, and Variables

and parseFloat() functions (these are global functions, not methods of any class) are
more flexible. parseInt() parses only integers, while parseFloat() parses both integers
and floating-point numbers. If a string begins with “0x” or “0X”, parseInt() interprets
it as a hexadecimal number.? Both parseInt() and parseFloat() skip leading white-
space, parse as many numeric characters as they can, and ignore anything that follows.
If the first nonspace character is not part of a valid numeric literal, they return NaN:

parselnt("3 blind mice") /=3
parseFloat(" 3.14 meters") // => 3.14

parseInt("-12.34") /] => -12

parseInt("oxFF") // => 255

parseInt("oxff") // => 255

parseInt("-0XFF") // => -255

parseFloat(".1") // => 0.1

parseInt("0.1") // =>0

parseInt(".1") // => NaN: integers can't start with "."
parseFloat("$72.47"); // => NaN: numbers can't start with "$"

parseInt() accepts an optional second argument specifying the radix (base) of the
number to be parsed. Legal values are between 2 and 36. For example:

parseInt("11", 2); /] =>3 (1%2 + 1)
parseInt("ff", 16); // => 255 (15*%16 + 15)
parseInt("zz", 36); // => 1295 (35*%36 + 35)
parseInt("077", 8); /] => 63 (7*8 + 7)
parseInt("077", 10); // => 77 (7%10 + 7)

3.8.3 Object to Primitive Conversions

Object-to-boolean conversions are trivial: all objects (including arrays and functions)
convert to true. This is so even for wrapper objects: new Boolean(false) is an object
rather than a primitive value, and so it converts to true.

Object-to-string and object-to-number conversions are performed by invoking a meth-
od of the object to be converted. This is complicated by the fact that JavaScript objects
have two different methods that perform conversions, and it is also complicated by
some special cases described below. Note that the string and number conversion rules
described here apply only to native objects. Host objects (defined by web browsers, for
example) can convert to numbers and strings according to their own algorithms.

All objects inherit two conversion methods. The first is called toString(), and its job
is to return a string representation of the object. The default toString() method does
not return a very interesting value (though we’ll find it useful in Example 6-4):

({x:1, y:2}).toString() // => "[object Object]"

2. In ECMAScript 3, parseInt() may parse a string that begins with “0” (but not “0x” or “0X”) as an octal
number or as a decimal number. Because the behavior is unspecified, you should never use parseInt()
to parse numbers with leading zeros, unless you explicitly specify the radix to be used! In ECMAScript 5,
parseInt() only parses octal numbers if you explicitly pass 8 as the second argument.

3.8 Type Conversions | 49

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

Many classes define more specific versions of the toString() method. The toString()
method of the Array class, for example, converts each array element to a string and
joins the resulting strings together with commas in between. The toString() method
of the Function class returns an implementation-defined representation of a function.
In practice, implementations usually convert user-defined functions to strings of Java-
Script source code. The Date class defines a toString() method that returns a human-
readable (and JavaScript-parsable) date and time string. The RegExp class defines a
toString() method that converts RegExp objects to a string that looks like a RegExp
literal:

[1,2,3].toString() /] =>"1,2,3"
(function(x) { f(x); }).toString() // => "function(x) {\n f(x);\n}"
/\d+/g.toString() /1 => "/\\d+/g"

new Date(2010,0,1).toString() // => "Fri Jan 01 2010 00:00:00 GMT-0800 (PST)"

The other object conversion function is called value0f(). The job of this method is less
well-defined: it is supposed to convert an object to a primitive value that represents the
object, if any such primitive value exists. Objects are compound values, and most ob-
jects cannot really be represented by a single primitive value, so the default value0f()
method simply returns the object itself rather than returning a primitive. Wrapper
classes define valueOf() methods that return the wrapped primitive value. Arrays,
functions, and regular expressions simply inherit the default method. Calling
valueOf() for instances of these types simply returns the object itself. The Date class
defines a valueOf() method that returns the date in its internal representation: the
number of milliseconds since January 1, 1970:

var d = new Date(2010, 0, 1); // January 1st, 2010, (Pacific time)
d.valueOf() // => 1262332800000

With the toString() and value0f() methods explained, we can now cover object-to-
string and object-to-number conversions. Do note, however, that there are some special
cases in which JavaScript performs a different object-to-primitive conversion. These
special cases are covered at the end of this section.

To convert an object to a string, JavaScript takes these steps:

* If the object has a toString() method, JavaScript calls it. If it returns a primitive
value, JavaScript converts that value to a string (if it is not already a string) and
returns the result of that conversion. Note that primitive-to-string conversions are
all well-defined in Table 3-2.

* IftheobjecthasnotoString() method, orif that method does not return a primitive
value, then JavaScript looks for a value0f() method. If the method exists, Java-
Script calls it. If the return value is a primitive, JavaScript converts that value to a
string (if it is not already) and returns the converted value.

* Otherwise, JavaScript cannot obtain a primitive value from either toString() or
valueOf(), so it throws a TypeError.

50 | Chapter3: Types, Values, and Variables

To convert an object to a number, JavaScript does the same thing, but it tries the
valueOf() method first:

* If the object has a valueOf() method that returns a primitive value, JavaScript con-
verts (if necessary) that primitive value to a number and returns the result.

e Otherwise, if the object has a toString() method that returns a primitive value,
JavaScript converts and returns the value.

* Otherwise, JavaScript throws a TypeError.

The details of this object-to-number conversion explain why an empty array converts
to the number 0 and why an array with a single element may also convert to a number.
Arrays inherit the default value0f() method that returns an object rather than a prim-
itive value, so array-to-number conversion relies on the toString() method. Empty
arrays convert to the empty string. And the empty string converts to the number 0. An
array with a single element converts to the same string that that one element does. If
an array contains a single number, that number is converted to a string, and then back
to a number.

The + operator in JavaScript performs numeric addition and string concatenation. If
either of its operands is an object, JavaScript converts the object using a special object-
to-primitive conversion rather than the object-to-number conversion used by the other
arithmetic operators. The == equality operator is similar. If asked to compare an object
with a primitive value, it converts the object using the object-to-primitive conversion.

The object-to-primitive conversion used by + and == includes a special case for Date
objects. The Date class is the only predefined core JavaScript type that defines mean-
ingful conversions to both strings and numbers. The object-to-primitive conversion is
basically an object-to-number conversion (valueof() first) for all objects that are not
dates, and an object-to-string conversion (toString() first) for Date objects. The con-
version is not exactly the same as those explained above, however: the primitive value
returned by valueOf() or toString() is used directly without being forced to a number
or string.

The < operator and the other relational operators perform object-to-primitive conver-
sions like == does, but without the special case for Date objects: any object is converted
by trying value0f() first and then toString(). Whatever primitive value is obtained is
used directly, without being further converted to a number or string.

+, ==, |=and the relational operators are the only ones that perform this special kind of
string-to-primitive conversions. Other operators convert more explicitly to a specified
type and do not have any special case for Date objects. The - operator, for example,
converts its operands to numbers. The following code demonstrates the behavior of
+, -, ==, and > with Date objects:

var now = new Date(); // Create a Date object
typeof (now + 1) // => "string": + converts dates to strings
typeof (now - 1) // => "number": - uses object-to-number conversion

3.8 Type Conversions | 51

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

now == now.toString() // => true: implicit and explicit string conversions
now > (now -1) // => true: > converts a Date to a number

3.9 Variable Declaration

Before you use a variable in a JavaScript program, you should declare it. Variables are
declared with the var keyword, like this:

var i;
var sum;

You can also declare multiple variables with the same var keyword:

var i, sum;

And you can combine variable declaration with variable initialization:

var message = "hello";

var i =0, j=0, k =0;
If you don’t specify an initial value for a variable with the var statement, the variable
is declared, but its value is undefined until your code stores a value into it.

Note that the var statement can also appear as part of the for and for/in loops (intro-
duced in Chapter 5), allowing you to succinctly declare the loop variable as part of the
loop syntax itself. For example:

for(var i = 0; i < 10; i++) console.log(i);

for(var i = 0, j=10; i < 10; i++,j--) console.log(i*j);

for(var p in o) console.log(p);
If you’re used to statically typed languages such as C or Java, you will have noticed that
there is no type associated with JavaScript’s variable declarations. A JavaScript variable
can hold a value of any type. For example, it is perfectly legal in JavaScript to assign a
number to a variable and then later assign a string to that variable:

var i = 10;
i= "ten";

3.9.1 Repeated and Omitted Declarations

It is legal and harmless to declare a variable more than once with the var statement. If
the repeated declaration has an initializer, it acts as if it were simply an assignment
statement.

If you attempt to read the value of an undeclared variable, JavaScript generates an error.
In ECMAScript 5 strict mode (§85.7.3), it is also an error to assign a value to an unde-
clared variable. Historically, however, and in non-strict mode, if you assign a value to
an undeclared variable, JavaScript actually creates that variable as a property of the
global object, and it works much like (but not exactly the same as, see §3.10.2) a prop-
erly declared global variable. This means that you can get away with leaving your global
variables undeclared. This is a bad habit and a source of bugs, however, and you should
always declare your variables with var.

52 | Chapter3: Types, Values, and Variables

vww allitebooks.cond

http://www.allitebooks.org

3.10 Variable Scope

The scope of a variable is the region of your program source code in which it is defined.
A global variable has global scope; it is defined everywhere in your JavaScript code. On
the other hand, variables declared within a function are defined only within the body
of the function. They are local variables and have local scope. Function parameters also
count as local variables and are defined only within the body of the function.

Within the body of a function, a local variable takes precedence over a global variable
with the same name. If you declare a local variable or function parameter with the same
name as a global variable, you effectively hide the global variable:

var scope = "global"; // Declare a global variable
function checkscope() {
var scope = "local"; // Declare a local variable with the same name
return scope; // Return the local value, not the global one
}
checkscope() // => "local"

Although you can get away with not using the var statement when you write code in
the global scope, you must always use var to declare local variables. Consider what
happens if you don’t:

scope = "global"; // Declare a global variable, even without var.

function checkscope2() {
scope = "local"; // Oops! We just changed the global variable.
myscope = "local"; // This implicitly declares a new global variable.
return [scope, myscope]; // Return two values.

}

checkscope2() // => ["local", "local"]: has side effects!

scope // => "local": global variable has changed.

myscope // => "local": global namespace cluttered up.

Function definitions can be nested. Each function has its own local scope, so it is pos-
sible to have several nested layers of local scope. For example:

var scope = "global scope"; // A global variable
function checkscope() {
var scope = "local scope"; // A local variable

function nested() {
var scope = "nested scope"; // A nested scope of local variables
return scope; // Return the value in scope here

return nested();

checkscope() // => "nested scope"

3.10.1 Function Scope and Hoisting

In some C-like programming languages, each block of code within curly braces has its
own scope, and variables are not visible outside of the block in which they are declared.
This is called block scope, and JavaScript does not have it. Instead, JavaScript uses

3.10 Variable Scope | 53

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

function scope: variables are visible within the function in which they are defined and
within any functions that are nested within that function.

In the following code, the variables i, j, and k are declared in different spots, but all
have the same scope—all three are defined throughout the body of the function:

function test(o) {

var i = 0; // i is defined throughout function
if (typeof o == "object") {
var j = 0; // j is defined everywhere, not just block
for(var k=0; k < 10; k++) { // k is defined everywhere, not just loop
console.log(k); // print numbers 0 through 9
}
console.log(k); // k is still defined: prints 10
}
console.log(j); // j is defined, but may not be initialized

}

JavaScript’s function scope means that all variables declared within a function are visi-
ble throughout the body of the function. Curiously, this means that variables are even
visible before they are declared. This feature of JavaScript is informally known as hoist-
ing: JavaScript code behaves as if all variable declarations in a function (but not any
associated assignments) are “hoisted” to the top of the function. Consider the following
code:
var scope = "global";
function f() {
console.log(scope); // Prints "undefined", not "global"
var scope = "local"; // Variable initialized here, but defined everywhere
console.log(scope); // Prints "local"

}

You might think that the first line of the function would print “global”, because the
var statement declaring the local variable has not yet been executed. Because of the
rules of function scope, however, this is not what happens. The local variable is defined
throughout the body of the function, which means the global variable by the same name
is hidden throughout the function. Although the local variable is defined throughout,
itis not actually initialized until the var statement is executed. Thus, the function above
is equivalent to the following, in which the variable declaration is “hoisted” to the top
and the variable initialization is left where it is:

function f() {

var scope; // Local variable is declared at the top of the function
console.log(scope); // It exists here, but still has "undefined" value
scope = "local"; // Now we initialize it and give it a value

console.log(scope); // And here it has the value we expect

}

In programming languages with block scope, it is generally good programming practice
to declare variables as close as possible to where they are used and with the narrowest
possible scope. Since JavaScript does not have block scope, some programmers make
a point of declaring all their variables at the top of the function, rather than trying to

54 | Chapter3: Types, Values, and Variables

declare them closer to the point at which they are used. This technique makes their
source code accurately reflect the true scope of the variables.

3.10.2 Variables As Properties

When you declare a global JavaScript variable, what you are actually doing is defining
a property of the global object (§3.5). If you use var to declare the variable, the property
that is created is nonconfigurable (see §6.7), which means that it cannot be deleted
with the delete operator. We’ve already noted that if you’re not using strict mode and
you assign a value to an undeclared variable, JavaScript automatically creates a global
variable for you. Variables created in this way are regular, configurable properties of
the global object and they can be deleted:

var truevar = 1; // A properly declared global variable, nondeletable.
fakevar = 2; // Creates a deletable property of the global object.
this.fakevar2 = 3; // This does the same thing.

delete truevar // => false: variable not deleted

delete fakevar // => true: variable deleted

delete this.fakevar2 // => true: variable deleted

JavaScript global variables are properties of the global object, and this is mandated by
the ECMAScript specification. There is no such requirement for local variables, but
you can imagine local variables as the properties of an object associated with each
function invocation. The ECMAScript 3 specification referred to this object as the “call
object,” and the ECMAScript 5 specification callsita “declarative environment record.”
JavaScript allows us to refer to the global object with the this keyword, but it does not
give us any way to refer to the object in which local variables are stored. The precise
nature of these objects that hold local variables is an implementation detail that need
not concern us. The notion that these local variable objects exist, however, is an im-
portant one, and it is developed further in the next section.

3.10.3 The Scope Chain

JavaScript is a lexically scoped language: the scope of a variable can be thought of as
the set of source code lines for which the variable is defined. Global variables are defined
throughout the program. Local variables are defined throughout the function in which
they are declared, and also within any functions nested within that function.

If we think of local variables as properties of some kind of implementation-defined
object, then there is another way to think about variable scope. Every chunk of Java-
Script code (global code or functions) has a scope chain associated with it. This scope
chain is a list or chain of objects that defines the variables that are “in scope” for that
code. When JavaScript needs to look up the value of a variable x (a process called
variable resolution), it starts by looking at the first object in the chain. If that object has
a property named x, the value of that property is used. If the first object does not have
a property named x, JavaScript continues the search with the next object in the chain.
If the second object does not have a property named x, the search moves on to the next

3.10 Variable Scope | 55

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

object, and so on. If x is not a property of any of the objects in the scope chain, then
x is not in scope for that code, and a ReferenceError occurs.

In top-level JavaScript code (i.e., code not contained within any function definitions),
the scope chain consists of a single object, the global object. In a non-nested function,
the scope chain consists of two objects. The first is the object that defines the function’s
parameters and local variables, and the second is the global object. In a nested function,
the scope chain has three or more objects. It is important to understand how this chain
of objects is created. When a function is defined, it stores the scope chain then in effect.
When that function is invoked, it creates a new object to store its local variables, and
adds that new object to the stored scope chain to create a new, longer, chain that
represents the scope for that function invocation. This becomes more interesting for
nested functions because each time the outer function is called, the inner function is
defined again. Since the scope chain differs on each invocation of the outer function,
the inner function will be subtly different each time it is defined—the code of the inner
function will be identical on each invocation of the outer function, but the scope chain
associated with that code will be different.

This notion of a scope chain is helpful for understanding the with statement (§5.7.1)
and is crucial for understanding closures (§8.6).

56 | Chapter3: Types, Values, and Variables

CHAPTER 4
Expressions and Operators

An expression is a phrase of JavaScript that a JavaScript interpreter can evaluate to
produce a value. A constant embedded literally in your program is a very simple kind
of expression. A variable name is also a simple expression that evaluates to whatever
value has been assigned to that variable. Complex expressions are built from simpler
expressions. An array access expression, for example, consists of one expression that
evaluates to an array followed by an open square bracket, an expression that evaluates
to an integer, and a close square bracket. This new, more complex expression evaluates
to the value stored at the specified index of the specified array. Similarly, a function
invocation expression consists of one expression that evaluates to a function object and
zero or more additional expressions that are used as the arguments to the function.

The most common way to build a complex expression out of simpler expressions is
with an operator. An operator combines the values of its operands (usually two of them)
in some way and evaluates to a new value. The multiplication operator * is a simple
example. The expression x * y evaluates to the product of the values of the expressions
x and y. For simplicity, we sometimes say that an operator returns a value rather than
“evaluates to” a value.

This chapter documents all of JavaScript’s operators, and it also explains expressions
(such as array indexing and function invocation) that do not use operators. If you al-
ready know another programming language that uses C-style syntax, you’ll find that
the syntax of most of JavaScript’s expressions and operators is already familiar to you.

4.1 Primary Expressions

The simplest expressions, known as primary expressions, are those that stand alone—
they do not include any simpler expressions. Primary expressions in JavaScript are
constant or literal values, certain language keywords, and variable references.

57

Literals are constant values that are embedded directly in your program. They look like
these:
1.23 // A number literal

"hello" // A string literal
/pattern/ // A regular expression literal

JavaScript syntax for number literals was covered in §3.1. String literals were docu-
mented in §3.2. The regular expression literal syntax was introduced in §3.2.4 and will
be documented in detail in Chapter 10.

Some of JavaScript’s reserved words are primary expressions:

true // Evalutes to the boolean true value
false // Evaluates to the boolean false value
null // Evaluates to the null value

this // Evaluates to the "current" object

We learned about true, false, and null in §3.3 and §3.4. Unlike the other keywords,
this isnota constant—it evaluates to different values in different places in the program.
The this keyword is used in object-oriented programming. Within the body of a meth-
od, this evaluates to the object on which the method was invoked. See §4.5, Chap-
ter 8 (especially §8.2.2), and Chapter 9 for more on this.

Finally, the third type of primary expression is the bare variable reference:

i // Evaluates to the value of the variable i.
sum // Evaluates to the value of the variable sum.
undefined // undefined is a global variable, not a keyword like null.

When any identifier appears by itself in a program, JavaScript assumes it is a variable
and looks up its value. If no variable with that name exists, the expression evaluates to
the undefined value. In the strict mode of ECMAScript 5, however, an attempt to eval-
uate a nonexistent variable throws a ReferenceError instead.

4.2 Object and Array Initializers

Object and array initializers are expressions whose value is a newly created object or
array. These initializer expressions are sometimes called “object literals” and “array
literals.” Unlike true literals, however, they are not primary expressions, because they
include a number of subexpressions that specify property and element values. Array
initializers have a slightly simpler syntax, and we’ll begin with those.

An array initializer is a comma-separated list of expressions contained within square
brackets. The value of an array initializer is a newly created array. The elements of this
new array are initialized to the values of the comma-separated expressions:

[] // An empty array: no expressions inside brackets means no elements
[1+2,3+4] // A 2-element array. First element is 3, second is 7

The element expressions in an array initializer can themselves be array initializers,
which means that these expressions can create nested arrays:

58 | Chapter4: Expressionsand Operators

var matrix = [[1,2,3], [4,5,6], [7,8,9]];

The element expressions in an array initializer are evaluated each time the array ini-
tializer is evaluated. This means that the value of an array initializer expression may be
different each time it is evaluated.

Undefined elements can be included in an array literal by simply omitting a value be-
tween commas. For example, the following array contains five elements, including three
undefined elements:

var sparseArray = [1,,,,5];

A single trailing comma is allowed after the last expression in an array initializer and
does not create an undefined element.

Object initializer expressions are like array initializer expressions, but the square brack-
ets are replaced by curly brackets, and each subexpression is prefixed with a property
name and a colon:

var p = { x:2.3, y:-1.2 }; // An object with 2 properties

var q = {}; // An empty object with no properties
g.x = 2.3; q.y = -1.2; // Now q has the same properties as p

Object literals can be nested. For example:

var rectangle = { upperLeft: { x: 2, y: 2 },
lowerRight: { x: 4, y: 5} };

The expressions in an object initializer are evaluated each time the object initializer is
evaluated, and they need not have constant values: they can be arbitrary JavaScript
expressions. Also, the property names in object literals may be strings rather than iden-
tifiers (this is useful to specify property names that are reserved words or are otherwise
not legal identifiers):

var side = 1;

var square = { "upperLeft": { x: p.x, y: p.y },

'lowerRight': { x: p.x + side, y: p.y + side}};

We'll see object and array initializers again in Chapters 6 and 7.

4.3 Function Definition Expressions

A function definition expression defines a JavaScript function, and the value of such
an expression is the newly defined function. In a sense, a function definition expression
is a “function literal” in the same way that an object initializer is an “object literal.” A
function definition expression typically consists of the keyword function followed by
a comma-separated list of zero or more identifiers (the parameter names) in parentheses
and a block of JavaScript code (the function body) in curly braces. For example:

// This function returns the square of the value passed to it.
var square = function(x) { return x * x; }

4.3 Function Definition Expressions | 59

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

A function definition expression can also include a name for the function. Functions
can also be defined using a function statement rather than a function expression. Com-
plete details on function definition are in Chapter 8.

4.4 Property Access Expressions

A property access expression evaluates to the value of an object property or an array
element. JavaScript defines two syntaxes for property access:

expression . identifier
expression [expression]

The first style of property access is an expression followed by a period and an identifier.
The expression specifies the object, and the identifier specifies the name of the desired
property. The second style of property access follows the first expression (the object or
array) with another expression in square brackets. This second expression specifies the
name of the desired property of the index of the desired array element. Here are some
concrete examples:

var o = {x:1,y:{z:3}}; // An example object

var a = [0,4,[5,6]]; // An example array that contains the object
0.X // => 1: property x of expression o

0.y.z // => 3: property z of expression o.y

o["x"] // => 1: property x of object o

a[1] // => 4: element at index 1 of expression a
a[2]["1"] // => 6: element at index 1 of expression a[2]
a[o].x // => 1: property x of expression a[0]

With either type of property access expression, the expression before the . or [is first
evaluated. If the value is null or undefined, the expression throws a TypeError, since
these are the two JavaScript values that cannot have properties. If the value is not an
object (or array), it is converted to one (see §3.6). If the object expression is followed
by a dot and an identifier, the value of the property named by that identifier is looked
up and becomes the overall value of the expression. If the object expression is followed
by another expression in square brackets, that second expression is evaluated and con-
verted to a string. The overall value of the expression is then the value of the property
named by that string. In either case, if the named property does not exist, then the value
of the property access expression is undefined.

The .identifier syntax is the simpler of the two property access options, but notice
that it can only be used when the property you want to access has a name that is a legal
identifier, and when you know then name when you write the program. If the property
name is a reserved word or includes spaces or punctuation characters, or when it is a
number (for arrays), you must use the square bracket notation. Square brackets are also
used when the property name is not static but is itself the result of a computation (see
86.2.1 for an example).

Objects and their properties are covered in detail in Chapter 6, and arrays and their
elements are covered in Chapter 7.

60 | Chapter4: Expressionsand Operators

4.5 Invocation Expressions

An invocation expression is JavaScript’s syntax for calling (or executing) a function or
method. It starts with a function expression that identifies the function to be called.
The function expression is followed by an open parenthesis, a comma-separated list of
zero or more argument expressions, and a close parenthesis. Some examples:

f(0) // f is the function expression; 0 is the argument expression.
Math.max(x,y,z) // Math.max is the function; x, y and z are the arguments.
a.sort() // a.sort is the function; there are no arguments.

When an invocation expression is evaluated, the function expression is evaluated first,
and then the argument expressions are evaluated to produce a list of argument values.
If the value of the function expression is not a callable object, a TypeError is thrown.
(All functions are callable. Host objects may also be callable even if they are not func-
tions. This distinction is explored in §8.7.7.) Next, the argument values are assigned,
in order, to the parameter names specified when the function was defined, and then
the body of the function is executed. If the function uses a return statement to return
avalue, then that value becomes the value of the invocation expression. Otherwise, the
value of the invocation expression is undefined. Complete details on function invoca-
tion, including an explanation of what happens when the number of argument expres-
sions does not match the number of parameters in the function definition, are in
Chapter 8.

Every invocation expression includes a pair of parentheses and an expression before
the open parenthesis. If that expression is a property access expression, then the invo-
cation is known as a method invocation. In method invocations, the object or array that
is the subject of the property access becomes the value of the this parameter while the
body of the function is being executed. This enables an object-oriented programming
paradigm in which functions (known by their OO name, “methods”) operate on the
object of which they are part. See Chapter 9 for details.

Invocation expressions that are not method invocations normally use the global object
as the value of the this keyword. In ECMAScript 5, however, functions that are defined
in strict mode are invoked with undefined as their this value rather than the global
object. See §5.7.3 for more on strict mode.

4.6 Object Creation Expressions

An object creation expression creates a new object and invokes a function (called a
constructor) to initialize the properties of that object. Object creation expressions are
like invocation expressions except that they are prefixed with the keyword new:

new Object()
new Point(2,3)

4.6 Object Creation Expressions | 61

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

If no arguments are passed to the constructor function in an object creation expression,
the empty pair of parentheses can be omitted:

new Object
new Date

When an object creation expression is evaluated, JavaScript first creates a new empty
object, just like the one created by the object initializer {}. Next, it invokes the specified
function with the specified arguments, passing the new object as the value of the
this keyword. The function can then use this to initialize the properties of the newly
created object. Functions written for use as constructors do not return a value, and the
value of the object creation expression is the newly created and initialized object. If a
constructor does return an object value, that value becomes the value of the object
creation expression and the newly created object is discarded.

Constructors are explained in more detail in Chapter 9.

4.7 Operator Overview

Operators are used for JavaScript’s arithmetic expressions, comparison expressions,
logical expressions, assignment expressions, and more. Table 4-1 summarizes the op-
erators and serves as a convenient reference.

Note that most operators are represented by punctuation characters such as + and =.
Some, however, are represented by keywords such as delete and instanceof. Keyword
operators are regular operators, just like those expressed with punctuation; they simply
have a less succinct syntax.

Table 4-1 is organized by operator precedence. The operators listed first have higher
precedence than those listed last. Operators separated by a horizontal line have different
precedence levels. The column labeled A gives the operator associativity, which can be
L (left-to-right) or R (right-to-left), and the column N specifies the number of operands.
The column labeled Types lists the expected types of the operands and (after the -
symbol) the result type for the operator. The subsections that follow the table explain
the concepts of precedence, associativity, and operand type. The operators themselves
are individually documented following that discussion.

Table 4-1. JavaScript operators

Operator Operation A N Types

++ Pre- or post-increment R 1 Ival-num

-- Pre- or post-decrement R 1 Ival-num

- Negate number R 1 num-num
+ Convert to number R 1 num—num
~ Invert bits R 1 int—int

! Invert boolean value R 1 bool-hool

62 | Chapter4: Expressionsand Operators

Operator Operation A N Types e
delete Remove a property R 1 Ival=bool %
typeof Determine type of operand R 1 anyostr ;“"‘
void Return undefined value R 1 any-undef £
* /% Multiply, divide, remainder L 2 num,num-num

+ - Add, subtract L 2 numnum-num

+ Concatenate strings L 2 strstrostr

<< Shift left L 2 intint—int

>> Shift right with sign extension L 2 intint—int

>>> Shift right with zero extension L 2 intint—int

<, <=>,>= Compare in numeric order L 2 num,num—bool

<, <=, 0= Compare in alphabetic order L 2 strstr—bool

instanceof Test object class L 2 objfunc—=bool

in Test whether property exists L 2 strobj—bool

== Test for equality L 2 anyany—bool

1= Test for inequality L 2 anyany—hool

=== Test for strict equality L 2 anyany—hool

l== Test for strict inequality L 2 anyany—bool

& Compute bitwise AND L 2 intint—int

A Compute bitwise XOR L 2 intint—int

| Compute bitwise OR L 2 intint>int

&& Compute logical AND L 2 anyany—any

| Compute logical OR L 2 anyany—any

?2: Choose 2nd or 3rd operand R 3 boolany,any—any

= Assign to a variable or property R 2 Ivalany—any

*= [=,%=,+=, Operateandassign R 2 Ivalany—any

= 8=, 7=, | =

<<=, 002, 550=

s Discard 1st operand, returnsecond L 2 any,any—any

4.7.1 Number of Operands

Operators can be categorized based on the number of operands they expect (their
arity). Most JavaScript operators, like the * multiplication operator, are binary opera-
tors that combine two expressions into a single, more complex expression. That is, they
expect two operands. JavaScript also supports a number of unary operators, which
convert a single expression into a single, more complex expression. The - operator in

4.7 Operator Overview | 63

the expression -x is a unary operator that performs the operation of negation on the
operand x. Finally, JavaScript supports one ternary operator, the conditional opera-
tor ?:, which combines three expressions into a single expression.

4.7.2 Operand and Result Type

Some operators work on values of any type, but most expect their operands to be of a
specific type, and most operators return (or evaluate to) a value of a specific type. The
Types column in Table 4-1 specifies operand types (before the arrow) and result type
(after the arrow) for the operators.

JavaScript operators usually convert the type (see §3.8) of their operands as needed.
The multiplication operator * expects numeric operands, but the expression "3" *
"5" is legal because JavaScript can convert the operands to numbers. The value of this
expression is the number 15, not the string “15”, of course. Remember also that every
JavaScript value is either “truthy” or “falsy,” so operators that expect boolean operands
will work with an operand of any type.

Some operators behave differently depending on the type of the operands used with
them. Most notably, the + operator adds numeric operands but concatenates string
operands. Similarly, the comparison operators such as < perform comparison in nu-
merical or alphabetical order depending on the type of the operands. The descriptions
of individual operators explain their type-dependencies and specify what type conver-
sions they perform.

4.7.3 Lvalues

Notice that the assignment operators and a few of the other operators listed in
Table 4-1 expect an operand of type 1val. lvalue is a historical term that means “an
expression that can legally appear on the left side of an assignment expression.” In
JavaScript, variables, properties of objects, and elements of arrays are lvalues. The
ECMAScript specification allows built-in functions to return lvalues but does not define
any functions that behave that way.

4.7.4 Operator Side Effects

Evaluating a simple expression like 2 * 3 never affects the state of your program, and
any future computation your program performs will be unaffected by that evaluation.
Some expressions, however, have side effects, and their evaluation may affect the result
of future evaluations. The assignment operators are the most obvious example: if you
assign a value to a variable or property, that changes the value of any expression that
uses that variable or property. The ++ and -- increment and decrement operators are
similar, since they perform an implicit assignment. The delete operator also has side
effects: deleting a property is like (but not the same as) assigning undefined to the

property.

64 | Chapter4: Expressionsand Operators

No other JavaScript operators have side effects, but function invocation and object
creation expressions will have side effects if any of the operators used in the function
or constructor body have side effects.

4.7.5 Operator Precedence

The operators listed in Table 4-1 are arranged in order from high precedence to low
precedence, with horizontal lines separating groups of operators at the same precedence
level. Operator precedence controls the order in which operations are performed. Op-
erators with higher precedence (nearer the top of the table) are performed before those
with lower precedence (nearer to the bottom).

Consider the following expression:
W = X + y*z;

The multiplication operator * has a higher precedence than the addition operator +, so
the multiplication is performed before the addition. Furthermore, the assignment op-
erator = has the lowest precedence, so the assignment is performed after all the opera-
tions on the right side are completed.

Operator precedence can be overridden with the explicit use of parentheses. To force
the addition in the previous example to be performed first, write:

W= y)h;

Note that property access and invocation expressions have higher precedence than any
of the operators listed in Table 4-1. Consider this expression:

typeof my.functions[x](y)

Although typeof is one of the highest-priority operators, the typeof operation is per-
formed on the result of the two property accesses and the function invocation.

In practice, if you are at all unsure about the precedence of your operators, the simplest
thing to do is to use parentheses to make the evaluation order explicit. The rules that
are important to know are these: multiplication and division are performed before ad-
dition and subtraction, and assignment has very low precedence and is almost always
performed last.

4.7.6 Operator Associativity

In Table 4-1, the column labeled A specifies the associativity of the operator. A value
of L specifies left-to-right associativity, and a value of R specifies right-to-left associa-
tivity. The associativity of an operator specifies the order in which operations of the
same precedence are performed. Left-to-right associativity means that operations are
performed from left to right. For example, the subtraction operator has left-to-right
associativity, so:

W=X-Yy-12z;

4.7 Operator Overview | 65

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

is the same as:
w=((x-y)-2);

On the other hand, the following expressions:
X = -y

W=X-=Y=12;
q = atb:c?d:e?f:g;

are equivalent to:

x=~(-y)w=(x=(y=2);9-=

a?b:(c?d:(e?f:g));
because the unary, assignment, and ternary conditional operators have right-to-left
associativity.

4.7.7 Order of Evaluation

Operator precedence and associativity specify the order in which operations are
performed in a complex expression, but they do not specify the order in which the
subexpressions are evaluated. JavaScript always evaluates expressions in strictly left-
to-right order. In the expression w=x+y*z, for example, the subexpression w is evaluated
first, followed by x, y, and z. Then the values of y and z are multiplied, added to the
value of x, and assigned to the variable or property specified by expression w. Adding
parentheses to the expressions can change the relative order of the multiplication, ad-
dition, and assignment, but not the left-to-right order of evaluation.

Order of evaluation only makes a difference if any of the expressions being evaluated
has side effects that affect the value of another expression. If expression x increments
a variable that is used by expression z, then the fact that x is evaluated before z is
important.

4.8 Arithmetic Expressions

This section covers the operators that perform arithmetic or other numerical manipu-
lations on their operands. The multiplication, division, and subtraction operators are
straightforward and are covered first. The addition operator gets a subsection of its
own because it can also perform string concatenation and has some unusual type con-
version rules. The unary operators and the bitwise operators are also covered in sub-
sections of their own.

The basic arithmetic operators are * (multiplication), / (division), % (modulo: remainder
after division), + (addition), and - (subtraction). As noted, we’ll discuss the + operator
in a section of its own. The other basic four operators simply evaluate their operands,
convert the values to numbers if necessary, and then compute the product, quotient,
remainder, or difference between the values. Non-numeric operands that cannot con-
vert to numbers convert to the NaN value. If either operand is (or converts to) NaN, the
result of the operation is also NaN.

66 | Chapterd4: Expressionsand Operators

The / operator divides its first operand by its second. If you are used to programming
languages that distinguish between integer and floating-point numbers, you might ex-
pect to get an integer result when you divide one integer by another. In JavaScript,
however, all numbers are floating-point, so all division operations have floating-point
results: 5/2 evaluates to 2.5, not 2. Division by zero yields positive or negative infinity,
while 0/0 evaluates to NaN: neither of these cases raises an error.

The % operator computes the first operand modulo the second operand. In other words,
it returns the remainder after whole-number division of the first operand by the second
operand. The sign of the result is the same as the sign of the first operand. For example,
5 % 2 evaluates to 1 and -5 % 2 evaluates to -1.

While the modulo operator is typically used with integer operands, it also works for
floating-point values. For example, 6.5 % 2.1 evaluates to 0.2.

4.8.1 The + Operator

The binary + operator adds numeric operands or concatenates string operands:

1+2 /] =>3
"hello" + " " + "there" // => "hello there"
II1II + "2" // => II12II

When the values of both operands are numbers, or are both strings, then it is obvious
what the + operator does. In any other case, however, type conversion is necessary, and
the operation to be performed depends on the conversion performed. The conversions
rules for + give priority to string concatenation: if either of the operands is a string or
an object that converts to a string, the other operand is converted to a string and con-
catenation is performed. Addition is performed only if neither operand is string-like.

Technically, the + operator behaves like this:

* If either of its operand values is an object, it converts it to a primitive using the
object-to-primitive algorithm described in §3.8.3: Date objects are converted by
their toString() method, and all other objects are converted via value0f(), if that
method returns a primitive value. Most objects do not have a useful value0f()
method, however, so they are converted via toString() as well.

* After object-to-primitive conversion, if either operand is a string, the other is con-
verted to a string and concatenation is performed.

* Otherwise, both operands are converted to numbers (or to NaN) and addition is
performed.

Here are some examples:

1+2 // => 3: addition

"1t 2" // => "12": concatenation

"1" + 2 // => "12": concatenation after number-to-string

1+ {} // => "1[object Object]": concatenation after object-to-string

true + true // => 2: addition after boolean-to-number

4.8 Arithmetic Expressions | 67

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

2 + null // => 2: addition after null converts to 0
2 + undefined // => NaN: addition after undefined converts to NaN

Finally, it is important to note that when the + operator is used with strings and num-
bers, it may not be associative. That is, the result may depend on the order in which
operations are performed. For example:

1+ 2+ " blind mice"; // => "3 blind mice"
1+ (2 + " blind mice"); // => "12 blind mice"

The first line has no parentheses, and the + operator has left-to-right associativity, so
the two numbers are added first, and their sum is concatenated with the string. In the
second line, parentheses alter this order of operations: the number 2 is concatenated
with the string to produce a new string. Then the number 1 is concatenated with the
new string to produce the final result.

4.8.2 Unary Arithmetic Operators

Unary operators modify the value of a single operand to produce a new value. In Java-
Script, the unary operators all have high precedence and are all right-associative. The
arithmetic unary operators described in this section (+, -, ++, and --) all convert their
single operand to a number, if necessary. Note that the punctuation characters +
and - are used as both unary and binary operators.

The unary arithmetic operators are the following:

Unary plus (+)
The unary plus operator converts its operand to a number (or to NaN) and returns
that converted value. When used with an operand that is already a number, it
doesn’t do anything.

Unary minus (-)
When - is used as a unary operator, it converts its operand to a number, if necessary,
and then changes the sign of the result.

Increment (++)
The ++ operator increments (i.e., adds 1 to) its single operand, which must be an
Ivalue (a variable, an element of an array, or a property of an object). The operator
converts its operand to a number, adds 1 to that number, and assigns the incre-
mented value back into the variable, element, or property.

The return value of the ++ operator depends on its position relative to the operand.
When used before the operand, where it is known as the pre-increment operator,
it increments the operand and evaluates to the incremented value of that
operand. When used after the operand, where it is known as the post-increment
operator, it increments its operand but evaluates to the unincremented value of that
operand. Consider the difference between these two lines of code:

var i = 1, j = ++i; // i and j are both 2
1,]

var 1 =1, j = i++; //1iis 2, jis1

68 | Chapter4: Expressionsand Operators

Note that the expression ++x is not always the same as x=x+1. The ++ operator never
performs string concatenation: it always converts its operand to a number and
increments it. If x is the string “1”, ++x is the number 2, but x+1 is the string “11”.

Also note that, because of JavaScript’s automatic semicolon insertion, you cannot
insert a line break between the post-increment operator and the operand that pre-
cedes it. If you do so, JavaScript will treat the operand as a complete statement by
itself and insert a semicolon before it.

This operator, in both its pre- and post-increment forms, is most commonly used
to increment a counter that controls a for loop (§5.5.3).

Decrement (--)

The -- operator expects an lvalue operand. It converts the value of the operand to
a number, subtracts 1, and assigns the decremented value back to the operand.
Like the ++ operator, the return value of -- depends on its position relative to the
operand. When used before the operand, it decrements and returns the decremen-
ted value. When used after the operand, it decrements the operand but returns the
undecremented value. When used after its operand, no line break is allowed be-
tween the operand and the operator.

4.8.3 Bitwise Operators

The bitwise operators perform low-level manipulation of the bits in the binary repre-
sentation of numbers. Although they do not perform traditional arithmetic operations,
they are categorized as arithmetic operators here because they operate on numeric
operands and return a numeric value. These operators are not commonly used in Java-
Script programming, and if you are not familiar with the binary representation of dec-
imal integers, you can probably skip this section. Four of these operators perform Boo-
lean algebra on the individual bits of the operands, behaving as if each bit in each
operand were a boolean value (1=true, O=false). The other three bitwise operators are
used to shift bits left and right.

The bitwise operators expect integer operands and behave as if those values were rep-
resented as 32-bit integers rather than 64-bit floating-point values. These operators
convert their operands to numbers, if necessary, and then coerce the numeric values to
32-bit integers by dropping any fractional part and any bits beyond the 32nd. The shift
operators require a right-side operand between 0 and 31. After converting this operand
to an unsigned 32-bit integer, they drop any bits beyond the 5th, which yields a number
in the appropriate range. Surprisingly, NaN, Infinity, and -Infinity all convert to O
when used as operands of these bitwise operators.

Bitwise AND (&)
The & operator performs a Boolean AND operation on each bit of its integer argu-
ments. A bit is set in the result only if the corresponding bit is set in both operands.
For example, 0x1234 & 0x00FF evaluates to 0x0034.

4.8 Arithmetic Expressions | 69

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

Bitwise OR (|)
The | operator performs a Boolean OR operation on each bit of its integer argu-
ments. A bit is set in the result if the corresponding bit is set in one or both of the
operands. For example, 0x1234 | 0x00FF evaluates to 0x12FF.

Bitwise XOR (*)
The * operator performs a Boolean exclusive OR operation on each bit of its integer
arguments. Exclusive OR means that either operand one is true or operand two is
true, but not both. A bit is set in this operation’s result if a corresponding bit is set
in one (but not both) of the two operands. For example, 0xFF00 » 0xFOF0 evaluates
to 0OXOFFO.

Bitwise NOT (~)
The ~ operator is a unary operator that appears before its single integer operand.
It operates by reversing all bits in the operand. Because of the way signed integers
are represented in JavaScript, applying the ~ operator to a value is equivalent to
changing its sign and subtracting 1. For example ~0x0F evaluates to 0xFFFFFFFO,
or -16.

Shift left (<<)
The << operator moves all bits in its first operand to the left by the number of places
specified in the second operand, which should be an integer between 0 and 31. For
example, in the operation a << 1, the first bit (the ones bit) of a becomes the second
bit (the twos bit), the second bit of a becomes the third, etc. A zero is used for the
new first bit, and the value of the 32nd bit is lost. Shifting a value left by one position
is equivalent to multiplying by 2, shifting two positions is equivalent to multiplying
by 4, and so on. For example, 7 << 2 evaluates to 28.

Shift right with sign (>>)
The >> operator moves all bits in its first operand to the right by the number of
places specified in the second operand (an integer between 0 and 31). Bits that are
shifted off the right are lost. The bits filled in on the left depend on the sign bit of
the original operand, in order to preserve the sign of the result. If the first operand
is positive, the result has zeros placed in the high bits; if the first operand is negative,
the result has ones placed in the high bits. Shifting a value right one place is equiv-
alent to dividing by 2 (discarding the remainder), shifting right two places is equiv-
alent to integer division by 4, and so on. For example, 7 >> 1 evaluates to 3, and
-7 >> 1 evaluates to -4.

Shift right with zero fill (>>>)
The >>> operator is just like the >> operator, except that the bits shifted in on the
left are always zero, regardless of the sign of the first operand. For example, -1 >>
4 evaluates to -1, but -1 >>> 4 evaluates to OXOFFFFFFF.

70 | Chapter4: Expressionsand Operators

4.9 Relational Expressions

This section describes JavaScript’s relational operators. These operators test for a re-
lationship (such as “equals,” “less than,” or “property of”) between two values and
return true or false depending on whether that relationship exists. Relational expres-
sions always evaluate to a boolean value, and that value is often used to control the
flow of program execution in if, while, and for statements (see Chapter 5). The
subsections that follow document the equality and inequality operators, the compari-
son operators, and JavaScript’s other two relational operators, in and instanceof.

4.9.1 Equality and Inequality Operators

The == and === operators check whether two values are the same, using two different
definitions of sameness. Both operators accept operands of any type, and both return
true if their operands are the same and false if they are different. The === operator is
known as the strict equality operator (or sometimes the identity operator), and it checks
whether its two operands are “identical” using a strict definition of sameness. The ==
operator is known as the equality operator; it checks whether its two operands are
“equal” using a more relaxed definition of sameness that allows type conversions.

JavaScript supports =, ==, and === operators. Be sure you understand the differences
between these assignment, equality, and strict equality operators, and be careful to use
the correct one when coding! Although it is tempting to read all three operators
“equals,” it may help to reduce confusion if you read “gets or is assigned” for =, “is
equal to” for ==, and “is strictly equal to” for ===.

The != and !== operators test for the exact opposite of the == and === operators.
The !=inequality operator returns false if two values are equal to each other according
to == and returns true otherwise. The !== operator returns false if two values are strictly
equal to each other and returns true otherwise. As you'll see in §4.10, the ! operator
computes the Boolean NOT operation. This makes it easy to remember that !=
and !== stand for “not equal to” and “not strictly equal to.”

As mentioned in §3.7, JavaScript objects are compared by reference, not by value. An
object is equal to itself, but not to any other object. If two distinct objects have the same
number of properties, with the same names and values, they are still not equal. Two
arrays that have the same elements in the same order are not equal to each other.

The strict equality operator === evaluates its operands, and then compares the two
values as follows, performing no type conversion:

¢ If the two values have different types, they are not equal.

* If both values are null or both values are undefined, they are equal.

* If both values are the boolean value true or both are the boolean value false, they
are equal.

4.9 Relational Expressions | 71

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

If one or both values is NaN, they are not equal. The NaN value is never equal to any
other value, including itself! To check whether a value x is NaN, use x !== x. NaN is
the only value of x for which this expression will be true.

If both values are numbers and have the same value, they are equal. If one value is
0 and the other is -0, they are also equal.

If both values are strings and contain exactly the same 16-bit values (see the sidebar
in §3.2) in the same positions, they are equal. If the strings differ in length or
content, they are not equal. Two strings may have the same meaning and the same
visual appearance, but still be encoded using different sequences of 16-bit values.
JavaScript performs no Unicode normalization, and a pair of strings like this
are not considered equal to the === or to the == operators. See
String.localeCompare() in Part III for another way to compare strings.

If both values refer to the same object, array, or function, they are equal. If they
refer to different objects they are not equal, even if both objects have identical
properties.

The equality operator == is like the strict equality operator, but it is less strict. If the
values of the two operands are not the same type, it attempts some type conversions
and tries the comparison again:

If the two values have the same type, test them for strict equality as described above.
If they are strictly equal, they are equal. If they are not strictly equal, they are not
equal.

If the two values do not have the same type, the == operator may still consider them
equal. Use the following rules and type conversions to check for equality:

—1If one value is null and the other is undefined, they are equal.

—If one value is a number and the other is a string, convert the string to a number
and try the comparison again, using the converted value.

— If either value is true, convert it to 1 and try the comparison again. If either value
is false, convert it to 0 and try the comparison again.

—If one value is an object and the other is a number or string, convert the object
to a primitive using the algorithm described in §3.8.3 and try the comparison
again. An object is converted to a primitive value by either its toString() method
or its valueOf() method. The built-in classes of core JavaScript attempt
valueOf() conversion before toString() conversion, except for the Date class,
which performs toString() conversion. Objects that are not part of core Java-
Script may convert themselves to primitive values in an implementation-defined
way.

— Any other combinations of values are not equal.

As an example of testing for equality, consider the comparison:

"1" == true

72 | Chapter4: Expressionsand Operators

This expression evaluates to true, indicating that these very different-looking values
are in fact equal. The boolean value true is first converted to the number 1, and the
comparison is done again. Next, the string "1" is converted to the number 1. Since both
values are now the same, the comparison returns true.

4.9.2 Comparison Operators

The comparison operators test the relative order (numerical or alphabetics) of their two
operands:

Less than (<)
The < operator evaluates to true if its first operand is less than its second operand;
otherwise it evaluates to false.

Greater than (>)
The > operator evaluates to true if its first operand is greater than its second op-
erand; otherwise it evaluates to false.

Less than or equal (<=)
The <= operator evaluates to true if its first operand is less than or equal to its
second operand; otherwise it evaluates to false.

Greater than or equal (>=)
The >= operator evaluates to true if its first operand is greater than or equal to its
second operand; otherwise it evaluates to false.

The operands of these comparison operators may be of any type. Comparison can be
performed only on numbers and strings, however, so operands that are not numbers
or strings are converted. Comparison and conversion occur as follows:

* Ifeither operand evaluates to an object, that object is converted to a primitive value
as described at the end of §3.8.3: if its value0f () method returns a primitive value,
that value is used. Otherwise, the return value of its toString() method is used.

* If, after any required object-to-primitive conversion, both operands are strings, the
two strings are compared, using alphabetical order, where “alphabetical order” is
defined by the numerical order of the 16-bit Unicode values that make up the
strings.

* If, after object-to-primitive conversion, at least one operand is not a string, both
operands are converted to numbers and compared numerically. 0 and -0 are con-
sidered equal. Infinity is larger than any number other than itself, and
-Infinity is smaller than any number other than itself. If either operand is (or
converts to) NaN, then the comparison operator always returns false.

Remember that JavaScript strings are sequences of 16-bit integer values, and that string
comparison is just a numerical comparison of the values in the two strings. The nu-
merical encoding order defined by Unicode may not match the traditional collation
order used in any particular language or locale. Note in particular that string compar-
ison is case-sensitive, and all capital ASCII letters are “less than” all lowercase ASCII

4.9 Relational Expressions | 73

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

letters. This rule can cause confusing results if you do not expect it. For example, ac-
cording to the < operator, the string “Zoo” comes before the string “aardvark”.

For a more robust string-comparison algorithm, see the String.localeCompare() meth-
od, which also takes locale-specific definitions of alphabetical order into account. For
case-insensitive comparisons, you must first convert the strings to all lowercase or all
uppercase using String.tolLowerCase() or String.toUpperCase().

Both the + operator and the comparison operators behave differently for numeric and
string operands. + favors strings: it performs concatenation if either operand is a string.
The comparison operators favor numbers and only perform string comparison if both
operands are strings:

1+ 2 // Addition. Result is 3.

1"+ "M // Concatenation. Result is "12".

1"+ 2 // Concatenation. 2 is converted to "2". Result is "12".

11 < 3 // Numeric comparison. Result is false.

"11" < "3" // String comparison. Result is true.

"11" < 3 // Numeric comparison. "11" converted to 11. Result is false.

"one" < 3 // Numeric comparison. "one" converted to NaN. Result is false.

Finally, note that the <= (less than or equal) and »>= (greater than or equal) operators do
not rely on the equality or strict equality operators for determining whether two values
are “equal.” Instead, the less-than-or-equal operator is simply defined as “not greater
than,” and the greater-than-or-equal operator is defined as “not less than.” The one
exception occurs when either operand is (or converts to) NaN, in which case all four
comparison operators return false.

4.9.3 The in Operator

The in operator expects a left-side operand that is or can be converted to a string. It
expects a right-side operand that is an object. It evaluates to true if the left-side value
is the name of a property of the right-side object. For example:

var point = { x:1, y:1 }; // Define an object

"x" in point // => true: object has property named "x"
"z" in point // => false: object has no "z" property.
"toString" in point // => true: object inherits toString method
var data = [7,8,9]; // An array with elements 0, 1, and 2

"0" in data // => true: array has an element "0"

1 in data // => true: numbers are converted to strings
3 in data // => false: no element 3

4.9.4 The instanceof Operator

The instanceof operator expects a left-side operand that is an object and a right-side
operand that identifies a class of objects. The operator evaluates to true if the left-side
object is an instance of the right-side class and evaluates to false otherwise. Chap-
ter 9 explains that, in JavaScript, classes of objects are defined by the constructor

74 | Chapter4: Expressionsand Operators

function that initializes them. Thus, the right-side operand of instanceof should be a
function. Here are examples:

var d = new Date(); // Create a new object with the Date() constructor

d instanceof Date; // Evaluates to true; d was created with Date()

d instanceof Object; // Evaluates to true; all objects are instances of Object

d instanceof Number; // Evaluates to false; d is not a Number object

var a = [1, 2, 3]; // Create an array with array literal syntax

a instanceof Array; // Evaluates to true; a is an array

a instanceof Object; // Evaluates to true; all arrays are objects

a instanceof RegExp; // Evaluates to false; arrays are not regular expressions

Note that all objects are instances of Object. instanceof considers the “superclasses”
when deciding whether an object is an instance of a class. If the left-side operand of
instanceof is not an object, instanceof returns false. If the right-hand side is not a
function, it throws a TypeError.

In order to understand how the instanceof operator works, you must understand the
“prototype chain.” This is JavaScript’s inheritance mechanism, and it is described in
§86.2.2. To evaluate the expression o instanceof f, JavaScript evaluates f.prototype,
and then looks for that value in the prototype chain of o. If it finds it, then o is an
instance of f (or of a superclass of f) and the operator returns true. If f.prototype is not
one of the values in the prototype chain of o, then o is not an instance of f and
instanceof returns false.

4.10 Logical Expressions

The logical operators 83, ||, and ! perform Boolean algebra and are often used in con-
junction with the relational operators to combine two relational expressions into one
more complex expression. These operators are described in the subsections that follow.
In order to fully understand them, you may want to review the concept of “truthy” and
“falsy” values introduced in §3.3.

4.10.1 Logical AND (&&)

The 8& operator can be understood at three different levels. At the simplest level, when
used with boolean operands, 8& performs the Boolean AND operation on the two val-
ues: it returns true if and only if both its first operand and its second operand are
true. If one or both of these operands is false, it returns false.

88 is often used as a conjunction to join two relational expressions:

X ==108 y == // true if, and only if x and y are both 0

Relational expressions always evaluate to true or false, so when used like this, the
8& operator itself returns true or false. Relational operators have higher precedence
than &3 (and | |), so expressions like these can safely be written without parentheses.

But &8 does not require that its operands be boolean values. Recall that all JavaScript
values are either “truthy” or “falsy.” (See §3.3 for details. The falsy values are false,

4.10 Logical Expressions | 75

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

null, undefined, 0, -0, NaN, and "". All other values, including all objects, are truthy.)
The second level at which 88 can be understood is as a Boolean AND operator for truthy
and falsy values. If both operands are truthy, the operator returns a truthy value. Oth-
erwise, one or both operands must be falsy, and the operator returns a falsy value. In
JavaScript, any expression or statement that expects a boolean value will work with a
truthy or falsy value, so the fact that & does not always return true or false does not
cause practical problems.

Notice that the description above says that the operator returns “a truthy value” or “a
falsy value,” but does not specify what that value is. For that, we need to describe 88
at the third and final level. This operator starts by evaluating its first operand, the
expression on its left. If the value on the left is falsy, the value of the entire expression
must also be falsy, so 8% simply returns the value on the left and does not even evaluate
the expression on the right.

On the other hand, if the value on the left is truthy, then the overall value of the ex-
pression depends on the value on the right-hand side. If the value on the right is truthy,
then the overall value must be truthy, and if the value on the right is falsy, then the
overall value must be falsy. So when the value on the left is truthy, the &3 operator
evaluates and returns the value on the right:

var o= { x : 1 };

var p = null;

o &% o.x // => 1: o is truthy, so return value of o.x

p && p.x // => null: p is falsy, so return it and don't evaluate p.x

[t is important to understand that & may or may not evaluate its right-side operand.
In the code above, the variable p is set to null, and the expression p.x would, if
evaluated, cause a TypeError. But the code uses &8 in an idiomatic way so that p.x is
evaluated only if p is truthy—not null or undefined.

The behavior of 8& is sometimes called “short circuiting,” and you may sometimes see
code that purposely exploits this behavior to conditionally execute code. For example,
the following two lines of JavaScript code have equivalent effects:

if (a == b) stop(); // Invoke stop() only if a ==
(a == b) & stop(); // This does the same thing

In general, you must be careful whenever you write an expression with side effects
(assignments, increments, decrements, or function invocations) on the right-hand side
of 8&. Whether those side effects occur depends on the value of the left-hand side.

Despite the somewhat complex way that this operator actually works, it is most com-
monly used as a simple Boolean algebra operator that works on truthy and falsy values.

4.10.2 Logical OR (||)

The || operator performs the Boolean OR operation on its two operands. If one or both
operands is truthy, it returns a truthy value. If both operands are falsy, it returns a falsy
value.

76 | Chapter4: Expressionsand Operators

Although the || operator is most often used simply as a Boolean OR operator, it, like
the && operator, has more complex behavior. It starts by evaluating its first operand,
the expression on its left. If the value of this first operand is truthys, it returns that truthy
value. Otherwise, it evaluates its second operand, the expression on its right, and re-
turns the value of that expression.

As with the 88 operator, you should avoid right-side operands that include side effects,
unless you purposely want to use the fact that the right-side expression may not be
evaluated.

An idiomatic usage of this operator is to select the first truthy value in a set of
alternatives:
// If max _width is defined, use that. Otherwise look for a value in

// the preferences object. If that is not defined use a hard-coded constant.
var max = max_width || preferences.max width || 500;

This idiom is often used in function bodies to supply default values for parameters:

// Copy the properties of o to p, and return p

function copy(o, p) {
p=rp Il {}; // If no object passed for p, use a newly created object.
// function body goes here

}
4.10.3 Logical NOT (!)

The ! operator is a unary operator; it is placed before a single operand. Its purpose is
to invert the boolean value of its operand. For example, if x is truthy !x evaluates to
false. If x is falsy, then !x is true.

Unlike the &3 and | | operators, the ! operator converts its operand to a boolean value
(using the rules described in Chapter 3) before inverting the converted value. This
means that ! always returns true or false, and that you can convert any value x to its
equivalent boolean value by applying this operator twice: ! Ix (see §3.8.2).

As a unary operator, ! has high precedence and binds tightly. If you want to invert the
value of an expression like p 8& g, you need to use parentheses: ! (p &% q). It is worth
noting two theorems of Boolean algebra here that we can express using JavaScript
syntax:

// These two equalities hold for any values of p and q

I(p && q) === Ip || !q
I(p || q) === !p & !q

4.11 Assignment Expressions

JavaScript uses the = operator to assign a value to a variable or property. For example:

i=o0 // Set the variable i to 0.
0.x =1 // Set the property x of object o to 1.

4.11 Assignment Expressions | 77

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

The = operator expects its left-side operand to be an lvalue: a variable or object property
(or array element). It expects its right-side operand to be an arbitrary value of any type.
The value of an assignment expression is the value of the right-side operand. As a side
effect, the = operator assigns the value on the right to the variable or property on the
left so that future references to the variable or property evaluate to the value.

Although assignment expressions are usually quite simple, you may sometimes see the
value of an assignment expression used as part of a larger expression. For example, you
can assign and test a value in the same expression with code like this:

(a=b) ==
If you do this, be sure you are clear on the difference between the = and == operators!

Note that = has very low precedence and parentheses are usually necessary when the
value of an assignment is to be used in a larger expression.

The assignment operator has right-to-left associativity, which means that when
multiple assignment operators appear in an expression, they are evaluated from right
to left. Thus, you can write code like this to assign a single value to multiple variables:

i=j=k=0; // Initialize 3 variables to 0
J

4.11.1 Assignment with Operation

Besides the normal = assignment operator, JavaScript supports a number of other as-
signment operators that provide shortcuts by combining assignment with some other
operation. For example, the += operator performs addition and assignment. The fol-
lowing expression:

total += sales_tax

is equivalent to this one:
total = total + sales_tax

As you might expect, the += operator works for numbers or strings. For numeric oper-
ands, it performs addition and assignment; for string operands, it performs concate-
nation and assignment.

Similar operators include -=, *=, &=, and so on. Table 4-2 lists them all.

Table 4-2. Assignment operators

Operator Example Equivalent

+= a+=b a=a+b
-= a-=b a=a-b
= a=b a=a*b
/= al/=b a=al/b
%= a%b a=a%b
<<= a<=b a=a<«b

78 | Chapter4: Expressionsand Operators

Operator Example Equivalent

>>= a>=b a=a>»hb
>>>= a>»>=b a=a>>>b
&= ad& b a=aé&b
|= al=b a=al|b
A= a’*=b a=a"b

In most cases, the expression:
aop=>b
where op is an operator, is equivalent to the expression:
a=aophb
In the first line, the expression a is evaluated once. In the second it is evaluated twice.

The two cases will differ only if a includes side effects such as a function call or an
increment operator. The following two assignments, for example, are not the same:

data[i++] *= 2;
data[i++] = data[i++] * 2;

4.12 Evaluation Expressions

Like many interpreted languages, JavaScript has the ability to interpret strings of Java-
Script source code, evaluating them to produce a value. JavaScript does this with the
global function eval():

eval("3+2") // =>5
Dynamic evaluation of strings of source code is a powerful language feature that is

almost never necessary in practice. If you find yourself using eval(), you should think
carefully about whether you really need to use it.

The subsections below explain the basic use of eval() and then explain two restricted
versions of it that have less impact on the optimizer.

Is eval() a Function or an Operator?

eval() is a function, but it is included in this chapter on expressions because it really
should have been an operator. The earliest versions of the language defined an eval()
function, and ever since then language designers and interpreter writers have been
placing restrictions on it that make it more and more operator-like. Modern JavaScript
interpreters perform a lot of code analysis and optimization. The problem with
eval() is that the code it evaluates is, in general, unanalyzable. Generally speaking, if
a function calls eval(), the interpreter cannot optimize that function. The problem with
defining eval() as a function is that it can be given other names:

var f
var g

eval;
3

4.12 Evaluation Expressions | 79

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

If this is allowed, then the interpreter can’t safely optimize any function that calls g().
This issue could have been avoided if eval was an operator (and a reserved word). We’ll
learn below (in §4.12.2 and §4.12.3) about restrictions placed on eval() to make it
more operator-like.

4.12.1 eval()

eval() expects one argument. If you pass any value other than a string, it simply returns
that value. If you pass a string, it attempts to parse the string as JavaScript code, throw-
ing a SyntaxError if it fails. If it successfully parses the string, then it evaluates the code
and returns the value of the last expression or statement in the string or undefined if
the last expression or statement had no value. If the string throws an exception, the
eval() propagates that expression.

The key thing about eval() (when invoked like this) is that it uses the variable envi-
ronment of the code that calls it. That is, it looks up the values of variables and defines
new variables and functions in the same way that local code does. If a function defines
a local variable x and then calls eval("x"), it will obtain the value of the local variable.
Ifit calls eval("x=1"), it changes the value of the local variable. And if the function calls
eval("var y = 3;"), it has declared a new local variable y. Similarly a function can
declare a local function with code like this:

eval("function f() { return x+1; }");

If you call eval() from top-level code, it operates on global variables and global func-
tions, of course.

Note that the string of code you pass to eval() must make syntactic sense on its own—
you cannot use it to paste code fragments into a function. It makes no sense to write
eval("return;"), for example, because return is only legal within functions, and the
fact that the evaluated string uses the same variable environment as the calling function
does not make it part of that function. If your string would make sense as a standalone
script (even a very short one like x=0), it is legal to pass to eval(). Otherwise eval()
will throw a SyntaxError.

4.12.2 Global eval()

It is the ability of eval() to change local variables that is so problematic to JavaScript
optimizers. As a workaround, however, interpreters simply do less optimization on any
function that calls eval(). But what should a JavaScript interpreter do, however, if a
script defines an alias for eval() and then calls that function by another name? In order
to simplify the job of JavaScript implementors, the ECMAScript 3 standard declared
that interpreters did not have to allow this. If the eval() function was invoked by any
name other than “eval”, it was allowed to throw an EvalError.

In practice, most implementors did something else. When invoked by any other name,
eval() would evaluate the string as if it were top-level global code. The evaluated code
might define new global variables or global functions, and it might set global variables,

80 | Chapter4: Expressionsand Operators

but it could not use or modify any variables local to the calling function, and would
not, therefore, interfere with local optimizations.

ECMAScript 5 deprecates EvalError and standardizes the de facto behavior of eval().
A “direct eval” is a call to the eval() function with an expression that uses the exact,
unqualified name “eval” (which is beginning to feel like a reserved word). Direct calls
to eval() use the variable environment of the calling context. Any other call—an
indirect call—uses the global object as its variable environment and cannot read, write,
or define local variables or functions. The following code demonstrates:

var geval = eval; // Using another name does a global eval
var x = "global", y = "global"; // Two global variables
function f() { // This function does a local eval
var x = "local"; // Define a local variable
eval("x += 'changed';"); // Direct eval sets local variable
return x; // Return changed local variable
function g() { // This function does a global eval
var y = "local"; // A local variable
geval("y += 'changed';"); // Indirect eval sets global variable
return y; // Return unchanged local variable

}
console.log(f(), x); // Local variable changed: prints "localchanged global":
console.log(g(), y); // Global variable changed: prints "local globalchanged":

Notice that the ability to do a global eval is not just an accommodation to the needs of
the optimizer, it is actually a tremendously useful feature: it allows you to execute
strings of code as if they were independent, top-level scripts. As noted at the beginning
of this section, it is rare to truly need to evaluate a string of code. But if you do find it
necessary, you are more likely to want to do a global eval than a local eval.

Before IE9, IE differs from other browsers: it does not do a global eval when eval() is
invoked by a different name. (It doesn’t throw an EvalError either: it simply does a local
eval.) But IE does define a global function named execScript() that executes its string
argument as if it were a top-level script. (Unlike eval(), however, execScript() always
returns null.)

4.12.3 Strict eval()

ECMAScript 5 strict mode (see §5.7.3) imposes further restrictions on the behavior of
the eval() function and even on the use of the identifier “eval”. When eval() is called
from strict mode code, or when the string of code to be evaluated itself begins with a
“use strict” directive, then eval() does a local eval with a private variable environment.
This means that in strict mode, evaluated code can query and set local variables, but it
cannot define new variables or functions in the local scope.

Furthermore, strict mode makes eval() even more operator-like by effectively making
“eval” into a reserved word. You are not allowed to overwrite the eval() function with
a new value. And you are not allowed to declare a variable, function, function param-
eter, or catch block parameter with the name “eval”.

4.12 Evaluation Expressions | 81

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

4.13 Miscellaneous Operators

JavaScript supports a number of other miscellaneous operators, described in the fol-
lowing sections.

4.13.1 The Conditional Operator (?:)

The conditional operator is the only ternary operator (three operands) in JavaScript
and is sometimes actually called the ternary operator. This operator is sometimes writ-
ten ?:, although it does not appear quite that way in code. Because this operator has
three operands, the first goes before the ?, the second goes between the ? and the :,
and the third goes after the :. It is used like this:

X>07?Xx: -X // The absolute value of x

The operands of the conditional operator may be of any type. The first operand is
evaluated and interpreted as a boolean. If the value of the first operand is truthy, then
the second operand is evaluated, and its value is returned. Otherwise, if the first operand
is falsy, then the third operand is evaluated and its value is returned. Only one of the
second and third operands is evaluated, never both.

While you can achieve similar results using the if statement (§5.4.1), the ?: operator
often provides a handy shortcut. Here is a typical usage, which checks to be sure that
a variable is defined (and has a meaningful, truthy value) and uses it if so or provides
a default value if not:

greeting = "hello " + (username ? username : "there");

This is equivalent to, but more compact than, the following if statement:

greeting = "hello ";
if (username)

greeting += username;
else

greeting += "there";

4.13.2 The typeof Operator

typeof is a unary operator that is placed before its single operand, which can be of any
type. Its value is a string that specifies the type of the operand. The following table
specifies the value of the typeof operator for any JavaScript value:

X typeof x
undefined "undefined"
null "object"
trueorfalse "boolean”
any number or NaN "number"
any string "string"

82 | Chapter4: Expressionsand Operators

X typeof x
any function "function"
any nonfunction native object ~ "object"

"o

any host object An implementation-defined string, but not “undefined”, “boolean”, “number”, or “string”.

You might use the typeof operator in an expression like this:

nin

(typeof value == "string") ? "'" + value + : value

The typeof operator is also useful when used with the switch statement (§5.4.3). Note
that you can place parentheses around the operand to typeof, which makes typeof look
like the name of a function rather than an operator keyword:

typeof(i)

Note that typeof returns “object” if the operand value is null. If you want to distinguish
null from objects, you’ll have to explicitly test for this special-case value. typeof may
return a string other than “object” for host objects. In practice, however, most host
objects in client-side JavaScript have a type of “object”.

Because typeof evaluates to “object” for all object and array values other than functions,
itis useful only to distinguish objects from other, primitive types. In order to distinguish
one class of object from another, you must use other techniques, such as the
instanceof operator (see §4.9.4), the class attribute (see §6.8.2), or the constructor
property (see §86.8.1 and §9.2.2).

Although functions in JavaScript are a kind of object, the typeof operator considers
functions to be sufficiently different that they have their own return value. JavaScript
makes a subtle distinction between functions and “callable objects.” All functions are
callable, but it is possible to have a callable object—that can be invoked just like a
function—that is not a true function. The ECMAScript 3 spec says that the typeof
operator returns “function” for all native object that are callable. The ECMAScript 5
specification extends this to require that typeof return “function” for all callable ob-
jects, whether native objects or host objects. Most browser vendors use native Java-
Script function objects for the methods of their host objects. Microsoft, however, has
always used non-native callable objects for their client-side methods, and before IE 9
the typeof operator returns “object” for them, even though they behave like functions.
In IE9 these client-side methods are now true native function objects. See §8.7.7 for
more on the distinction between true functions and callable objects.

4.13 Miscellaneous Operators | 83

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

4.13.3 The delete Operator

delete is a unary operator that attempts to delete the object property or array element
specified as its operand.' Like the assignment, increment, and decrement operators,
delete is typically used for its property deletion side effect, and not for the value it
returns. Some examples:

var o = { x: 1, y: 2}; // Start with an object

delete o.x; // Delete one of its properties

"x" in o // => false: the property does not exist anymore
var a = [1,2,3]; // Start with an array

delete a[2]; // Delete the last element of the array
a.length // => 2: array only has two elements now

Note that a deleted property or array element is not merely set to the undefined value.
When a property is deleted, the property ceases to exist. Attempting to read a non-
existent property returns undefined, but you can test for the actual existence of a prop-
erty with the in operator (§4.9.3).

delete expects its operand to be an Ivalue. If it is not an lvalue, the operator takes no
action and returns true. Otherwise, delete attempts to delete the specified lvalue.
delete returns true if it successfully deletes the specified lvalue. Not all properties can
be deleted, however: some built-in core and client-side properties are immune from
deletion, and user-defined variables declared with the var statement cannot be deleted.
Functions defined with the function statement and declared function parameters can-
not be deleted either.

In ECMAScript 5 strict mode, delete raises a SyntaxError if its operand is an unqualified
identifier such as a variable, function, or function parameter: it only works when the
operand is a property access expression (§4.4). Strict mode also specifies that delete
raises a TypeError if asked to delete any nonconfigurable property (see §6.7). Outside
of strict mode, no exception occurs in these cases and delete simply returns false to
indicate that the operand could not be deleted.

Here are some example uses of the delete operator:

var o = {x:1, y:2}; // Define a variable; initialize it to an object

delete o0.x; // Delete one of the object properties; returns true
typeof o.x; // Property does not exist; returns "undefined"
delete o.x; // Delete a nonexistent property; returns true
delete o; // Can't delete a declared variable; returns false.
// Would raise an exception in strict mode.
delete 1; // Argument is not an lvalue: returns true
this.x = 1; // Define a property of the a global object without var
delete x; // Try to delete it: returns true in non-strict mode

1. If you are a C++ programmer, note that the delete keyword in JavaScript is nothing like the delete
keyword in C++. In JavaScript, memory deallocation is handled automatically by garbage collection, and
you never have to worry about explicitly freeing up memory. Thus, there is no need for a C++-style
delete to delete entire objects.

84 | Chapter4: Expressionsand Operators

// Exception in strict mode. Use 'delete this.x' instead
X; // Runtime error: x is not defined

We'll see the delete operator again in §6.3.

4.13.4 The void Operator

void is a unary operator that appears before its single operand, which may be of any
type. This operator is unusual and infrequently used: it evaluates its operand, then
discards the value and returns undefined. Since the operand value is discarded, using
the void operator makes sense only if the operand has side effects.

The most common use for this operator is in a client-side javascript: URL, where it
allows you to evaluate an expression for its side effects without the browser displaying
the value of the evaluated expression. For example, you might use the void operator in
an HTML <a> tag as follows:

Open New Window

This HTML could be more cleanly written using an onclick event handler rather than
ajavascript: URL, of course, and the void operator would not be necessary in that case.

4.13.5 The Comma Operator (,)

The comma operator is a binary operator whose operands may be of any type. It eval-
uates its left operand, evaluates its right operand, and then returns the value of the right
operand. Thus, the following line:

i=0, j=1, k=2;

evaluates to 2 and is basically equivalent to:
i=0;j=1;k=2;

The left-hand expression is always evaluated, but its value is discarded, which means
that it only makes sense to use the comma operator when the left-hand expression has
side effects. The only situation in which the comma operator is commonly used is with
a for loop (85.5.3) that has multiple loop variables:

// The first comma below is part of the syntax of the var statement

// The second comma is the comma operator: it lets us squeeze 2

// expressions (i++ and j--) into a statement (the for loop) that expects 1.

for(var i=0,j=10; i < j; i++,j--)

console.log(i+j);

4.13 Miscellaneous Operators | 85

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

CHAPTER5
Statements

Chapter 4 described expressions as JavaScript phrases. By that analogy, statements are
JavaScript sentences or commands. Just as English sentences are terminated and
separated from each other with periods, JavaScript statements are terminated with
semicolons (§2.5). Expressions are evaluated to produce a value, but statements are
executed to make something happen.

One way to “make something happen” is to evaluate an expression that has side effects.
Expressions with side effects, such as assignments and function invocations, can stand
alone as statements, and when used this way they are known as expression state-
ments. A similar category of statements are the declaration statements that declare new
variables and define new functions.

JavaScript programs are nothing more than a sequence of statements to execute. By
default, the JavaScript interpreter executes these statements one after another in the
order they are written. Another way to “make something happen” is to alter this default
order of execution, and JavaScript has a number of statements or control structures that
do just this:

* Conditionals are statements like 1f and switch that make the JavaScript interpreter
execute or skip other statements depending on the value of an expression.

* Loops are statements like while and for that execute other statements repetitively.

* Jumps are statements like break, return, and throw that cause the interpreter to
jump to another part of the program.

The sections that follow describe the various statements in JavaScript and explain their
syntax. Table 5-1, at the end of the chapter, summarizes the syntax. A JavaScript pro-
gram is simply a sequence of statements, separated from one another with semicolons,
so once you are familiar with the statements of JavaScript, you can begin writing Java-
Script programs.

87

5.1 Expression Statements

The simplest kinds of statements in JavaScript are expressions that have side effects.
(But see §5.7.3 for an important expression statement without side effects.) This sort
of statement was shown in Chapter 4. Assignment statements are one major category
of expression statements. For example:

"

greeting = "Hello
i*=3;

+ name;

The increment and decrement operators, ++ and --, are related to assignment state-
ments. These have the side effect of changing a variable value, just as if an assignment
had been performed:

counter++;

The delete operator has the important side effect of deleting an object property. Thus,
it is almost always used as a statement, rather than as part of a larger expression:

delete o.x;

Function calls are another major category of expression statements. For example:

alert(greeting);
window.close();

These client-side function calls are expressions, but they have side effects that affect
the web browser and are used here as statements. If a function does not have any side
effects, there is no sense in calling it, unless it is part of a larger expression or an as-
signment statement. For example, you wouldn’t just compute a cosine and discard
the result:

Math.cos(x);

But you might well compute the value and assign it to a variable for future use:

cx = Math.cos(x);

Note that each line of code in each of these examples is terminated with a semicolon.

5.2 Compound and Empty Statements

Just as the comma operator (8§4.13.5) combines multiple expressions into a single
expression, a statement block combines multiple statements into a single compound
statement. A statement block is simply a sequence of statements enclosed within curly
braces. Thus, the following lines act as a single statement and can be used anywhere
that JavaScript expects a single statement:

X = Math.PI;
cx = Math.cos(x);
console.log("cos(m) =

+ CX);

88 | Chapter5: Statements

There are a few things to note about this statement block. First, it does not end with a
semicolon. The primitive statements within the block end in semicolons, but the block
itself does not. Second, the lines inside the block are indented relative to the curly braces
that enclose them. This is optional, but it makes the code easier to read and understand.
Finally, recall that JavaScript does not have block scope and variables declared within
a statement block are not private to the block (see §3.10.1 for details).

Combining statements into larger statement blocks is extremely common in JavaScript
programming. Just as expressions often contain subexpressions, many JavaScript state-
ments contain substatements. Formally, JavaScript syntax usually allows a single sub-
statement. For example, the while loop syntax includes a single statement that serves
as the body of the loop. Using a statement block, you can place any number of state-
ments within this single allowed substatement.

A compound statement allows you to use multiple statements where JavaScript syntax
expects a single statement. The empty statement is the opposite: it allows you to include
no statements where one is expected. The empty statement looks like this:

The JavaScript interpreter takes no action when it executes an empty statement. The
empty statement is occasionally useful when you want to create a loop that has an
empty body. Consider the following for loop (for loops will be covered in §5.5.3):

// Initialize an array a

for(i = 0; i < a.length; a[i++] = 0) ;
In this loop, all the work is done by the expression a[i++] = 0, and no loop body is

necessary. JavaScript syntax requires a statement as a loop body, however, so an empty
statement—just a bare semicolon—is used.

Note that the accidental inclusion of a semicolon after the right parenthesis of a for
loop, while loop, or if statement can cause frustrating bugs that are difficult to detect.
For example, the following code probably does not do what the author intended:
if ((@a ==0) || (b ==0)); // Oops! This line does nothing...
o = null; // and this line is always executed.
When you intentionally use the empty statement, it is a good idea to comment your
code in a way that makes it clear that you are doing it on purpose. For example:

for(i = 0; i < a.length; a[i++] = 0) /* empty */ ;

5.3 Declaration Statements

The var and function are declaration statements—they declare or define variables and
functions. These statements define identifiers (variable and function names) that can
be used elsewhere in your program and assign values to those identifiers. Declaration
statements don’t do much themselves, but by creating variables and functions they, in
an important sense, define the meaning of the other statements in your program.

5.3 Declaration Statements | 89

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

The subsections that follow explain the var statement and the function statement, but
do not cover variables and functions comprehensively. See §3.9.and §3.10 for more on
variables. And see Chapter 8 for complete details on functions.

5.3.1 var

The var statement declares a variable or variables. Here’s the syntax:
var name_1 [= value 1] [,..., name_n [= value n]]
The var keyword is followed by a comma-separated list of variables to declare; each

variable in the list may optionally have an initializer expression that specifies its initial
value. For example:

var i; // One simple variable
var j = 0; // One var, one value
var p, q; // Two variables
var greeting = "hello" + name; // A complex initializer
var x = 2.34, y = Math.cos(0.75), r, theta; // Many variables
var x = 2, y = x*x; // Second var uses the first
var x = 2, // Multiple variables...
f = function(x) { return x*x }, // each on its own line
y = f(x);

If a var statement appears within the body of a function, it defines local variables,
scoped to that function. When var is used in top-level code, it declares global variables,
visible throughout the JavaScript program. As noted in §3.10.2, global variables are
properties of the global object. Unlike other global properties, however, properties
created with var cannot be deleted.

If no initializer is specified for a variable with the var statement, the variable’s initial
value is undefined. As described in §3.10.1, variables are defined throughout the script
or function in which they are declared—their declaration is “hoisted” up to the start
of the script or function. Initialization, however, occurs at the location of the var state-
ment, and the value of the variable is undefined before that point in the code.

Note that the var statement can also appear as part of the for and for/in loops. (These
variables are hoisted, just like variables declared outside of a loop.) Here are examples
repeated from §3.9:

for(var i = 0; i < 10; i++) console.log(i);

for(var i = 0, j=10; i < 10; i++,j--) console.log(i*j);

for(var i in o) console.log(i);

Note that it is harmless to declare the same variable multiple times.

90 | Chapter5: Statements

5.3.2 function

The function keyword is used to define functions. We saw it in function definition
expressions in §4.3. It can also be used in statement form. Consider the following two
functions:

var f = function(x) { return x+1; } // Expression assigned to a variable
function f(x) { return x+1; } // Statement includes variable name

A function declaration statement has the following syntax:

function funcname([arg1 [, arg2 [..., argn]]]) {
statements
}

funcname is an identifier that names the function being declared. The function name is
followed by a comma-separated list of parameter names in parentheses. These identi-
fiers can be used within the body of the function to refer to the argument values passed
when the function is invoked.

The body of the function is composed of any number of JavaScript statements, con-
tained within curly braces. These statements are not executed when the function is
defined. Instead, they are associated with the new function object for execution when
the function is invoked. Note that the curly braces are a required part of the function
statement. Unlike statement blocks used with while loops and other statements, a
function body requires curly braces, even if the body consists of only a single statement.

Here are some more examples of function declarations:

function hypotenuse(x, y) {
return Math.sqrt(x*x + y*y); // return is documented in the next section

}

function factorial(n) { // A recursive function
if (n <= 1) return 1;
return n * factorial(n - 1);

}

Function declaration statements may appear in top-level JavaScript code, or they may
be nested within other functions. When nested, however, function declarations may
only appear at the top level of the function they are nested within. That is, function
definitions may not appear within if statements, while loops, or any other statements.
Because of this restriction on where function declarations may appear, the ECMAScript
specification does not categorize function declarations as true statements. Some Java-
Script implementations do allow function declarations to appear anywhere a statement
can appear, but different implementations handle the details differently and placing
function declarations within other statements is nonportable.

Function declaration statements differ from function definition expressions in that they
include a function name. Both forms create a new function object, but the function
declaration statement also declares the function name as a variable and assigns the
function object to it. Like variables declared with var, functions defined with function

5.3 Declaration Statements | 91

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

definition statements are implicitly “hoisted” to the top of the containing script or
function, so that they are visible throughout the script or function. With var, only the
variable declaration is hoisted—the variable initialization code remains where you
placed it. With function declaration statements, however, both the function name and
the function body are hoisted: all functions in a script or all nested functions in a func-
tion are declared before any other code is run. This means that you can invoke a Java-
Script function before you declare it.

Like the var statement, function declaration statements create variables that cannot be
deleted. These variables are not read-only, however, and their value can be overwritten.

5.4 Conditionals

Conditional statements execute or skip other statements depending on the value of a
specified expression. These statements are the decision points of your code, and they
are also sometimes known as “branches.” If you imagine a JavaScript interpreter fol-
lowing a path through your code, the conditional statements are the places where the
code branches into two or more paths and the interpreter must choose which path to
follow.

The subsections below explain JavaScript’s basic conditional, the if/else statement,
and also cover switch, a more complicated multiway branch statement.

54.1 if

The if statement is the fundamental control statement that allows JavaScript to make
decisions, or, more precisely, to execute statements conditionally. This statement has
two forms. The first is:
if (expression)
statement

In this form, expression is evaluated. If the resulting value is truthy, statement is exe-
cuted. If expression is falsy, statement is not executed. (See §3.3 for a definition of
truthy and falsy values.) For example:

if (username == null) // If username is null or undefined,
username = "John Doe"; // define it

Or similarly:

nn

// If username is null, undefined, false, 0,
if (lusername) username = "John Doe";

, or NaN, give it a new value

Note that the parentheses around the expression are a required part of the syntax for
the if statement.

JavaScript syntax requires a single statement after the if keyword and parenthesized
expression, but you can use a statement block to combine multiple statements into
one. So the if statement might also look like this:

92 | Chapter5: Statements

if (laddress) {
address = "";
message = "Please specify a mailing address.";

}

The second form of the if statement introduces an else clause that is executed when
expression is false. Its syntax is:
if (expression)
statement1

else
statement2

This form of the statement executes statement1 if expression is truthy and executes
statement?2 if expression is falsy. For example:
if (n==1)
console.log("You have 1 new message.");

else

console.log("You have " + n + " new messages.");

When you have nested if statements with else clauses, some caution is required to
ensure that the else clause goes with the appropriate if statement. Consider the fol-
lowing lines:

i=j=1;
k = 2;
if (i == j)
if (§7== k)

console.log("i equals k");
else
console.log("i doesn't equal j"); // WRONG!!

In this example, the inner if statement forms the single statement allowed by the syntax
of the outer if statement. Unfortunately, it is not clear (except from the hint given by
the indentation) which if the else goes with. And in this example, the indentation is
wrong, because a JavaScript interpreter actually interprets the previous example as:
if (i ==73){
if (j ==Kk
console.log("i equals k");
else

console.log("i doesn't equal j"); // 00PS!
}

The rule in JavaScript (as in most programming languages) is that by default an else
clause is part of the nearest if statement. To make this example less ambiguous and
easier to read, understand, maintain, and debug, you should use curly braces:
if (i == 3J) {
if (3 ==Kk {
console.log("i equals k");
}

else { // What a difference the location of a curly brace makes!

5.4 Conditionals | 93

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

console.log("i doesn't equal j");

}

Although it is not the style used in this book, many programmers make a habit of
enclosing the bodies of if and else statements (as well as other compound statements,
such as while loops) within curly braces, even when the body consists of only a single
statement. Doing so consistently can prevent the sort of problem just shown.

5.4.2 elseif

The if/else statement evaluates an expression and executes one of two pieces of code,
depending on the outcome. But what about when you need to execute one of many
pieces of code? One way to do this is with an else if statement. else if is not really
a JavaScript statement, but simply a frequently used programming idiom that results
when repeated if/else statements are used:

if (n==1) {
// Execute code block #1

}
else if (n == 2) {
// Execute code block #2

}
else if (n == 3) {
// Execute code block #3

}
else {

// If all else fails, execute block #4
}

There is nothing special about this code. It is just a series of if statements, where each
following if is part of the else clause of the previous statement. Using the else ifidiom
is preferable to, and more legible than, writing these statements out in their syntactically
equivalent, fully nested form:
if (n==1) {
// Execute code block #1

}
else {
if (n==2) {
// Execute code block #2
}
else {
if (n ==3) {
// Execute code block #3
}
else {
// If all else fails, execute block #4
}
}
}

94 | Chapter5: Statements

5.4.3 switch

An if statement causes a branch in the flow of a program’s execution, and you can use
the else if idiom to perform a multiway branch. This is not the best solution, however,
when all of the branches depend on the value of the same expression. In this case, it is
wasteful to repeatedly evaluate that expression in multiple if statements.

The switch statement handles exactly this situation. The switch keyword is followed
by an expression in parentheses and a block of code in curly braces:

switch(expression) {
statements
}

However, the full syntax of a switch statement is more complex than this. Various
locations in the block of code are labeled with the case keyword followed by an ex-
pression and a colon. case is like a labeled statement, except that instead of giving the
labeled statement a name, it associates an expression with the statement. When a
switch executes, it computes the value of expression and then looks for a case label
whose expression evaluates to the same value (where sameness is determined by the
=== operator). If it finds one, it starts executing the block of code at the statement labeled
by the case. If it does not find a case with a matching value, it looks for a statement
labeled default:. If there is no default: label, the switch statement skips the block of
code altogether.

switch is a confusing statement to explain; its operation becomes much clearer with an
example. The following switch statement is equivalent to the repeated if/else state-
ments shown in the previous section:

switch(n) {

case 1: // Start here if n ==
// Execute code block #1.
break;

// Stop here

case 2: // Start here if n ==
// Execute code block #2.
break; // Stop here

case 3: // Start here if n ==
// Execute code block #3.
break; // Stop here

default: // If all else fails...
// Execute code block #4.
break; // stop here

}

Note the break keyword used at the end of each case in the code above. The break
statement, described later in this chapter, causes the interpreter to jump to the end (or
“break out”) of the switch statement and continue with the statement that follows it.
The case clauses in a switch statement specify only the starting point of the desired
code; they do not specify any ending point. In the absence of break statements, a
switch statement begins executing its block of code at the case label that matches the

5.4 Conditionals | 95

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

value of its expression and continues executing statements until it reaches the end of
the block. On rare occasions, it is useful to write code like this that “falls through” from
one case label to the next, but 99 percent of the time you should be careful to end every
case with a break statement. (When using switch inside a function, however, you may
use a return statement instead of a break statement. Both serve to terminate the
switch statement and prevent execution from falling through to the next case.)

Here is a more realistic example of the switch statement; it converts a value to a string
in a way that depends on the type of the value:

function convert(x) {
switch(typeof x) {

case 'number': // Convert the number to a hexadecimal integer
return x.toString(16);

case 'string': // Return the string enclosed in quotes
return "o+ x 4 M

default: // Convert any other type in the usual way

return String(x);

}

Note that in the two previous examples, the case keywords are followed by number
and string literals, respectively. This is how the switch statement is most often used in
practice, but note that the ECMAScript standard allows each case to be followed by an
arbitrary expression.

The switch statement first evaluates the expression that follows the switch keyword
and then evaluates the case expressions, in the order in which they appear, until it finds
avalue that matches.! The matching case is determined using the === identity operator,
not the == equality operator, so the expressions must match without any type
conversion.

Because not all of the case expressions are evaluated each time the switch statement is
executed, you should avoid using case expressions that contain side effects such as
function calls or assignments. The safest course is simply to limit your case expressions
to constant expressions.

As explained earlier, if none of the case expressions match the switch expression, the
switch statement begins executing its body at the statement labeled default:. If there
is no default: label, the switch statement skips its body altogether. Note that in the
examples above, the default: label appears at the end of the switch body, following all
the case labels. This is a logical and common place for it, but it can actually appear
anywhere within the body of the statement.

1. The fact that the case expressions are evaluated at run-time makes the JavaScript switch statement much
different from (and less efficient than) the switch statement of C, C++, and Java. In those languages, the
case expressions must be compile-time constants of the same type, and switch statements can often
compile down to highly efficient jump tables.

96 | Chapter5: Statements

5.5 Loops

To understand conditional statements, we imagined the JavaScript interpreter follow-
ing a branching path through your source code. The looping statements are those that
bend that path back upon itself to repeat portions of your code. JavaScript has four
looping statements: while, do/while, for, and for/in. The subsections below explain
each in turn. One common use for loops is to iterate over the elements of an array.
§7.6 discusses this kind of loop in detail and covers special looping methods defined
by the Array class.

5.5.1 while

Just as the if statement is JavaScript’s basic conditional, the while statement is Java-
Script’s basic loop. It has the following syntax:

while (expression)
statement

To execute a while statement, the interpreter first evaluates expression. If the value of
the expression is falsy, then the interpreter skips over the statement that serves as the
loop body and moves on to the next statement in the program. If, on the other hand,
the expression is truthy, the interpreter executes the statement and repeats, jumping
back to the top of the loop and evaluating expression again. Another way to say this is
that the interpreter executes statement repeatedly while the expression is truthy. Note
that you can create an infinite loop with the syntax while(true).

Usually, you do not want JavaScript to perform exactly the same operation over and
over again. In almost every loop, one or more variables change with each iteration of
the loop. Since the variables change, the actions performed by executing statement may
differ each time through the loop. Furthermore, if the changing variable or variables
are involved in expression, the value of the expression may be different each time
through the loop. This is important; otherwise, an expression that starts off truthy
would never change, and the loop would never end! Here is an example of a while loop
that prints the numbers from 0 to 9:

var count = 0;

while (count < 10) {

console.log(count);
count++;

}

As you can see, the variable count starts off at 0 and is incremented each time the body
of the loop runs. Once the loop has executed 10 times, the expression becomes false
(i.e., the variable count is no longer less than 10), the while statement finishes, and the
interpreter can move on to the next statement in the program. Many loops have a
counter variable like count. The variable names i, j, and k are commonly used as loop
counters, though you should use more descriptive names if it makes your code easier
to understand.

5.5 Loops | 97

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

5.5.2 do/while

The do/while loop is like a while loop, except that the loop expression is tested at the
bottom of the loop rather than at the top. This means that the body of the loop is always
executed at least once. The syntax is:

do

statement
while (expression);

The do/while loop is less commonly used than its while cousin—in practice, it is some-
what uncommon to be certain that you want a loop to execute at least once. Here’s an
example of a do/while loop:

function printArray(a) {
var len = a.length, i = 0;

if (len == 0)
console.log("Empty Array");
else {
do {

console.log(a[i]);
} while (++i < len);

}

There are a couple of syntactic differences between the do/while loop and the ordinary
while loop. First, the do loop requires both the do keyword (to mark the beginning of
the loop) and the while keyword (to mark the end and introduce the loop condition).
Also, the do loop must always be terminated with a semicolon. The while loop doesn’t
need a semicolon if the loop body is enclosed in curly braces.

5.5.3 for

The for statement provides a looping construct that is often more convenient than the
while statement. The for statement simplifies loops that follow a common pattern.
Most loops have a counter variable of some kind. This variable is initialized before the
loop starts and is tested before each iteration of the loop. Finally, the counter variable
isincremented or otherwise updated at the end of the loop body, just before the variable
is tested again. In this kind of loop, the initialization, the test, and the update are the
three crucial manipulations of a loop variable. The for statement encodes each of these
three manipulations as an expression and makes those expressions an explicit part
of the loop syntax:
for(initialize ; test ; increment)

statement
initialize, test, and increment are three expressions (separated by semicolons) that
are responsible for initializing, testing, and incrementing the loop variable. Putting
them all in the first line of the loop makes it easy to understand what a for loop is doing
and prevents mistakes such as forgetting to initialize or increment the loop variable.

98 | Chapter5: Statements

The simplest way to explain how a for loop works is to show the equivalentwhile loop?:
initialize;
while(test) {
statement
increment;

}

In other words, the initialize expression is evaluated once, before the loop begins.
To be useful, this expression must have side effects (usually an assignment). JavaScript
also allows initialize to be a var variable declaration statement so that you can declare
and initialize a loop counter at the same time. The test expression is evaluated before
each iteration and controls whether the body of the loop is executed. If test evaluates
to a truthy value, the statement that is the body of the loop is executed. Finally, the
increment expression is evaluated. Again, this must be an expression with side effects
in order to be useful. Generally, either it is an assignment expression, or it uses the ++
or -- operators.

We can print the numbers from 0 to 9 with a for loop like the following. Contrast it
with the equivalent while loop shown in the previous section:

for(var count = 0; count < 10; count++)
console.log(count);

Loops can become a lot more complex than this simple example, of course, and some-
times multiple variables change with each iteration of the loop. This situation is the
only place that the comma operator is commonly used in JavaScript; it provides a way
to combine multiple initialization and increment expressions into a single expression
suitable for use in a for loop:

var 1i,j;

for(i =0, j =10; i< 10 ; i++, j--)

sum += i * j;

In all our loop examples so far, the loop variable has been numeric. This is quite com-
mon but is not necessary. The following code uses a for loop to traverse a linked list
data structure and return the last object in the list (i.e., the first object that does not
have a next property):

function tail(o) { // Return the tail of linked list o
for(; o.next; o = o.next) /* empty */ ; // Traverse while o.next is truthy
return o;

}

Note that the code above has no initialize expression. Any of the three expressions
may be omitted from a for loop, but the two semicolons are required. If you omit the
test expression, the loop repeats forever, and for(;;) is another way of writing an
infinite loop, like while(true).

2. When we consider the continue statement in §5.6.3, we’ll see that thiswhile loop is not an exact equivalent
of the for loop.

5.5 Loops | 99

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

5.5.4 for/in

The for/in statement uses the for keyword, but it is a completely different kind of loop
than the regular for loop. A for/in loop looks like this:

for (variable in object)
statement

variable typically names a variable, but it may be any expression that evaluates to an
Ivalue (§4.7.3) or a var statement that declares a single variable—it must be something
suitable as the left side of an assignment expression. object is an expression that eval-
uates to an object. As usual, statement is the statement or statement block that serves
as the body of the loop.

It is easy to use a regular for loop to iterate through the elements of an array:

for(var i = 0; i < a.length; i++) // Assign array indexes to variable i
console.log(a[i]); // Print the value of each array element

The for/in loop makes it easy to do the same for the properties of an object:

for(var p in o) // Assign property names of o to variable p
console.log(o[p]); // Print the value of each property

To execute a for/in statement, the JavaScript interpreter first evaluates the object ex-
pression. If it evaluates to null or undefined, the interpreter skips the loop and moves
on to the next statement.? If the expression evaluates to a primitive value, that value is
converted to its equivalent wrapper object (§3.6). Otherwise, the expression is already
an object. The interpreter now executes the body of the loop once for each enumerable
property of the object. Before each iteration, however, the interpreter evaluates the
variable expression and assigns the name of the property (a string value) to it.

Note that the variable in the for/in loop may be an arbitrary expression, as long as it
evaluates to something suitable for the left side of an assignment. This expression is
evaluated each time through the loop, which means that it may evaluate differently
each time. For example, you can use code like the following to copy the names of all
object properties into an array:

var o = {x:1, y:2, z:3};

var a = [], i = 0;

for(a[i++] in o) /* empty */;
JavaScript arrays are simply a specialized kind of object and array indexes are object
properties that can be enumerated with a for/in loop. For example, following the code
above with this line enumerates the array indexes 0, 1, and 2:

for(i in a) console.log(i);

The for/in loop does not actually enumerate all properties of an object, only the enu-
merable properties (see §6.7). The various built-in methods defined by core JavaScript
are not enumerable. All objects have a toString() method, for example, but the

3. ECMAScript 3 implementations may instead throw a TypeError in this case.

100 | Chapter5: Statements

for/inloop does not enumerate this toString property. In addition to built-in methods,
many other properties of the built-in objects are nonenumerable. All properties and
methods defined by your code are enumerable, however. (But in ECMAScript 5, you
can make them nonenumerable using techniques explained in §6.7.) User-defined in-
herited properties (see §6.2.2) are also enumerated by the for/in loop.

If the body of a for/in loop deletes a property that has not yet been enumerated, that
property will not be enumerated. If the body of the loop defines new properties on the
object, those properties will generally not be enumerated. (Some implementations may
enumerate inherited properties that are added after the loop begins, however.)

5.5.4.1 Property enumeration order

The ECMAScript specification does not specify the order in which the for/in loop
enumerates the properties of an object. In practice, however, JavaScript implementa-
tions from all major browser vendors enumerate the properties of simple objects in the
order in which they were defined, with older properties enumerated first. If an object
was created as an object literal, its enumeration order is the same order that the prop-
erties appear in the literal. There are sites and libraries on the Web that rely on this
enumeration order, and browser vendors are unlikely to change it.

The paragraph above specifies an interoperable property enumeration order for
“simple” objects. Enumeration order becomes implementation dependent (and non-
interoperable) if:

* The object inherits enumerable properties;
* the object has properties that are integer array indexes;
* you have used delete to delete existing properties of the object; or

* you have used Object.defineProperty() (§6.7) or similar methods to alter property
attributes of the object.

Typically (but not in all implementations), inherited properties (see §6.2.2) are enum-
erated after all the noninherited “own” properties of an object, but are also enumerated
in the order in which they were defined. If an object inherits properties from more than
one “prototype” (see §6.1.3)—i.e., if it has more than one object in its “prototype
chain”—then the properties of each prototype object in the chain are enumerated in
creation order before enumerating the properties of the next object. Some (but not all)
implementations enumerate array properties in numeric order rather than creation or-
der, but they revert to creation order if the array is given other non-numeric properties
as well or if the array is sparse (i.e., if some array indexes are missing).

5.5 Loops | 101

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

5.6 Jumps

Another category of JavaScript statements are jump statements. As the name implies,
these cause the JavaScript interpreter to jump to a new location in the source code. The
break statement makes the interpreter jump to the end of a loop or other statement.
continue makes the interpreter skip the rest of the body of a loop and jump back to the
top of a loop to begin a new iteration. JavaScript allows statements to be named, or
labeled, and the break and continue can identify the target loop or other statement label.

The return statement makes the interpreter jump from a function invocation back to
the code that invoked it and also supplies the value for the invocation. The throw state-
ment raises, or “throws,” an exception and is designed to work with the try/catch/
finally statement, which establishes a block of exception handling code. This is a
complicated kind of jump statement: when an exception is thrown, the interpreter
jumps to the nearest enclosing exception handler, which may be in the same function
or up the call stack in an invoking function.

Details of each of these jump statements are in the sections that follow.

5.6.1 Labeled Statements

Any statement may be labeled by preceding it with an identifier and a colon:

identifier: statement

By labeling a statement, you give it a name that you can use to refer to it elsewhere in
your program. You can label any statement, although it is only useful to label statements
that have bodies, such as loops and conditionals. By giving a loop a name, you can use
break and continue statements inside the body of the loop to exit the loop or to jump
directly to the top of the loop to begin the next iteration. break and continue are the
only JavaScript statements that use statement labels; they are covered later in this

chapter. Here is an example of a labeled while loop and a continue statement that uses
the label.

mainloop: while(token != null) {
// Code omitted...
continue mainloop; // Jump to the next iteration of the named loop
// More code omitted...

}

The identifier you use to label a statement can be any legal JavaScript identifier that
is not a reserved word. The namespace for labels is different than the namespace for
variables and functions, so you can use the same identifier as a statement label and as
a variable or function name. Statement labels are defined only within the statement to
which they apply (and within its substatements, of course). A statement may not have
the same label as a statement that contains it, but two statements may have the same
label as long as neither one is nested within the other. Labeled statements may them-
selves be labeled. Effectively, this means that any statement may have multiple labels.

102 | Chapter5: Statements

5.6.2 break

The break statement, used alone, causes the innermost enclosing loop or switch state-
ment to exit immediately. Its syntax is simple:

break;

Because it causes a loop or switch to exit, this form of the break statement is legal only
if it appears inside one of these statements.

You’ve already seen examples of the break statement within a switch statement. In
loops, it is typically used to exit prematurely when, for whatever reason, there is no
longer any need to complete the loop. When a loop has complex termination condi-
tions, it is often easier to implement some of these conditions with break statements
rather than trying to express them all in a single loop expression. The following code
searches the elements of an array for a particular value. The loop terminates in the
normal way when it reaches the end of the array; it terminates with a break statement
if it finds what it is looking for in the array:

for(var i = 0; i < a.length; i++) {

if (a[i] == target) break;
}

JavaScript also allows the break keyword to be followed by a statement label (just the
identifier, with no colon):

break labelname;

When break is used with a label, it jumps to the end of, or terminates, the enclosing
statement that has the specified label. It is a syntax error to use break in this form if
there is no enclosing statement with the specified label. With this form of the break
statement, the named statement need not be a loop or switch: break can “break out of”
any enclosing statement. This statement can even be a statement block grouped within
curly braces for the sole purpose of naming the block with a label.

A newline is not allowed between the break keyword and the labelname. This is a result
of JavaScript’s automatic insertion of omitted semicolons: if you put a line terminator
between the break keyword and the label that follows, JavaScript assumes you meant
to use the simple, unlabeled form of the statement and treats the line terminator as a
semicolon. (See §2.5.)

You need the labeled form of the break statement when you want to break out of a
statement that is not the nearest enclosing loop or a switch. The following code
demonstrates:

var matrix = getData(); // Get a 2D array of numbers from somewhere
// Now sum all the numbers in the matrix.
var sum = 0, success = false;
// Start with a labeled statement that we can break out of if errors occur
compute_sum: if (matrix) {
for(var x = 0; x < matrix.length; x++) {
var row = matrix[x];
if (!row) break compute sum;

5.6 Jumps | 103

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

for(var y = 0; y < row.length; y++) {
var cell = row[y];
if (isNaN(cell)) break compute_sum;
sum += cell;

}
}

success = true;

// The break statements jump here. If we arrive here with success == false
// then there was something wrong with the matrix we were given.
// Otherwise sum contains the sum of all cells of the matrix.

Finally, note that a break statement, with or without a label, can not transfer control
across function boundaries. You cannot label a function definition statement, for ex-
ample, and then use that label inside the function.

5.6.3 continue

The continue statement is similar to the break statement. Instead of exiting a loop,
however, continue restarts a loop at the next iteration. The continue statement’s syntax
is just as simple as the break statement’s:

continue;

The continue statement can also be used with a label:

continue labelname;

The continue statement, in both its labeled and unlabeled forms, can be used only
within the body of a loop. Using it anywhere else causes a syntax error.

When the continue statement is executed, the current iteration of the enclosing loop is
terminated, and the next iteration begins. This means different things for different types
of loops:

* Inawhileloop, the specified expression at the beginning of the loop is tested again,
and if it’s true, the loop body is executed starting from the top.

* In a do/while loop, execution skips to the bottom of the loop, where the loop
condition is tested again before restarting the loop at the top.

* In a for loop, the increment expression is evaluated, and the test expression is
tested again to determine if another iteration should be done.

* Ina for/in loop, the loop starts over with the next property name being assigned
to the specified variable.

Note the difference in behavior of the continue statement in the while and for loops:
a while loop returns directly to its condition, but a for loop first evaluates its
increment expression and then returns to its condition. Earlier we considered the be-
havior of the for loop in terms of an “equivalent” while loop. Because the continue
statement behaves differently for these two loops, however, it is not actually possible
to perfectly simulate a for loop with a while loop alone.

104 | Chapter5: Statements

The following example shows an unlabeled continue statement being used to skip the
rest of the current iteration of a loop when an error occurs:
for(i = 0; i < data.length; i++) {
if (!data[i]) continue; // Can't proceed with undefined data
total += data[i];
}

Like the break statement, the continue statement can be used in its labeled form within
nested loops, when the loop to be restarted is not the immediately enclosing loop. Also,
like the break statement, line breaks are not allowed between the continue statement
and its 1abelname.

5.6.4 return

Recall that function invocations are expressions and that all expressions have values.
A return statement within a function specifies the value of invocations of that function.
Here’s the syntax of the return statement:

return expression;

A return statement may appear only within the body of a function. It is a syntax error
for it to appear anywhere else. When the return statement is executed, the function
that contains it returns the value of expression to its caller. For example:

function square(x) { return x*x; } // A function that has a return statement
square(2) // This invocation evaluates to 4

With no return statement, a function invocation simply executes each of the statements
in the function body in turn until it reaches the end of the function, and then returns
to its caller. In this case, the invocation expression evaluates to undefined. The
return statement often appears as the last statement in a function, but it need not be
last: a function returns to its caller when a return statement is executed, even if there
are other statements remaining in the function body.

The return statement can also be used without an expression to make the function
return undefined to its caller. For example:
function display_object(o) {
// Return immediately if the argument is null or undefined.
if (lo) return;
// Rest of function goes here...

}

Because of JavaScript’s automatic semicolon insertion §2.5), you cannot include a line
break between the return keyword and the expression that follows it.

5.6.5 throw

An exception is a signal that indicates that some sort of exceptional condition or error
has occurred. To throw an exception is to signal such an error or exceptional condition.
To catch an exception is to handle it—to take whatever actions are necessary or

5.6 Jumps | 105

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

appropriate to recover from the exception. In JavaScript, exceptions are thrown when-
ever a runtime error occurs and whenever the program explicitly throws one using the
throw statement. Exceptions are caught with the try/catch/finally statement, which
is described in the next section.

The throw statement has the following syntax:

throw expression;

expression may evaluate to a value of any type. You might throw a number that rep-
resents an error code or a string that contains a human-readable error message. The
Error class and its subclasses are used when the JavaScript interpreter itself throws an
error, and you can use them as well. An Error object has a name property that specifies
the type of error and a message property that holds the string passed to the constructor
function (see the Error class in the reference section). Here is an example function that
throws an Error object when invoked with an invalid argument:
function factorial(x) {

// If the input argument is invalid, throw an exception!

if (x < 0) throw new Error("x must not be negative");

// Otherwise, compute a value and return normally

for(var f = 1; x > 1; f *= x, x--) /* empty */ ;

return f;

}

When an exception is thrown, the JavaScript interpreter immediately stops normal
program execution and jumps to the nearest exception handler. Exception handlers are
written using the catch clause of the try/catch/finally statement, which is described
in the next section. If the block of code in which the exception was thrown does not
have an associated catch clause, the interpreter checks the next highest enclosing block
of code to see if it has an exception handler associated with it. This continues until a
handler is found. If an exception is thrown in a function that does not contain a try/
catch/finally statement to handle it, the exception propagates up to the code that
invoked the function. In this way, exceptions propagate up through the lexical structure
of JavaScript methods and up the call stack. If no exception handler is ever found, the
exception is treated as an error and is reported to the user.

5.6.6 try/catch/finally

The try/catch/finally statement is JavaScript’s exception handling mechanism. The
try clause of this statement simply defines the block of code whose exceptions are to
be handled. The try block is followed by a catch clause, which is a block of statements
that are invoked when an exception occurs anywhere within the try block. The catch
clause is followed by a finally block containing cleanup code that is guaranteed to be
executed, regardless of what happens in the try block. Both the catch and finally
blocks are optional, but a try block must be accompanied by atleast one of these blocks.
The try, catch, and finally blocks all begin and end with curly braces. These braces
are a required part of the syntax and cannot be omitted, even if a clause contains only
a single statement.

106 | Chapter5: Statements

The following code illustrates the syntax and purpose of the try/catch/finally
statement:

try {
// Normally, this code runs from the top of the block to the bottom
// without problems. But it can sometimes throw an exception,
// either directly, with a throw statement, or indirectly, by calling
// a method that throws an exception.

}

catch (e) {
// The statements in this block are executed if, and only if, the try
// block throws an exception. These statements can use the local variable
// e to refer to the Error object or other value that was thrown.
// This block may handle the exception somehow, may ignore the
// exception by doing nothing, or may rethrow the exception with throw.

}
finally {
// This block contains statements that are always executed, regardless of
// what happens in the try block. They are executed whether the try
// block terminates:
// 1) normally, after reaching the bottom of the block
// 2) because of a break, continue, or return statement
// 3) with an exception that is handled by a catch clause above
// 4) with an uncaught exception that is still propagating
}

Note that the catch keyword is followed by an identifier in parentheses. This identifier
is like a function parameter. When an exception is caught, the value associated with
the exception (an Error object, for example) is assigned to this parameter. Unlike reg-
ular variables, the identifier associated with a catch clause has block scope—it is only
defined within the catch block.

Here is a realistic example of the try/catch statement. It uses the factorial() method
defined in the previous section and the client-side JavaScript methods prompt() and
alert() for input and output:
try {

// Ask the user to enter a number

var n = Number(prompt("Please enter a positive integer", ""));

// Compute the factorial of the number, assuming the input is valid

var f = factorial(n);

// Display the result

alert(n + "! = " + f);

catch (ex) { // If the user's input was not valid, we end up here
alert(ex); // Tell the user what the error is
}

This example is a try/catch statement with no finally clause. Although finally is not
used as often as catch, it can be useful. However, its behavior requires additional ex-
planation. The finally clause is guaranteed to be executed if any portion of the try
block is executed, regardless of how the code in the try block completes. It is generally
used to clean up after the code in the try clause.

5.6 Jumps | 107

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

In the normal case, the JavaScript interpreter reaches the end of the try block and then
proceeds to the finally block, which performs any necessary cleanup. If the interpreter
left the try block because of a return, continue, or break statement, the finally block
is executed before the interpreter jumps to its new destination.

If an exception occurs in the try block and there is an associated catch block to handle
the exception, the interpreter first executes the catch block and then the finally block.
If there is no local catch block to handle the exception, the interpreter first executes
the finally block and then jumps to the nearest containing catch clause.

Ifa finally block itself causes a jump with a return, continue, break, or throw statement,
or by calling a method that throws an exception, the interpreter abandons whatever
jump was pending and performs the new jump. For example, if a finally clause throws
an exception, that exception replaces any exception that was in the process of being
thrown. If a finally clause issues a return statement, the method returns normally,
even if an exception has been thrown and has not yet been handled.

try and finally can be used together without a catch clause. In this case, the finally
block is simply cleanup code that is guaranteed to be executed, regardless of what
happens in the try block. Recall that we can’t completely simulate a for loop with a
while loop because the continue statement behaves differently for the two loops. If we
add a try/finally statement, we can write a while loop that works like a for loop and
that handles continue statements correctly:

// Simulate for(initialize ; test ; increment) body;

initialize ;

while(test) {

try { body ; }
finally { increment ; }

}
Note, however, that a body that contains a break statement behaves slightly differently
(causing an extra increment before exiting) in the while loop than it does in the for

loop, so even with the finally clause, it is not possible to completely simulate the
for loop with while.

5.7 Miscellaneous Statements

This section describes the remaining three JavaScript statements—with, debugger, and
use strict.

5.7.1 with

In §3.10.3, we discussed the scope chain—a list of objects that are searched, in order,
to perform variable name resolution. The with statement is used to temporarily extend
the scope chain. It has the following syntax:

with (object)
statement

108 | Chapter5: Statements

This statement adds object to the front of the scope chain, executes statement, and
then restores the scope chain to its original state.

The with statement is forbidden in strict mode (see §5.7.3) and should be considered
deprecated in non-strict mode: avoid using it whenever possible. JavaScript code that
uses with is difficult to optimize and is likely to run more slowly than the equivalent
code written without the with statement.

The common use of the with statement is to make it easier to work with deeply nested
object hierarchies. In client-side JavaScript, for example, you may have to type expres-
sions like this one to access elements of an HTML form:

document.forms[0].address.value

If you need to write expressions like this a number of times, you can use the with
statement to add the form object to the scope chain:

with(document.forms[0]) {
// Access form elements directly here. For example:
name.value = "";
address.value =

email.value = "";

nn,
b

}

This reduces the amount of typing you have to do: you no longer need to prefix each
form property name with document.forms[0]. That object is temporarily part of the
scope chain and is automatically searched when JavaScript needs to resolve an identifier
such as address. It is just as simple, of course, to avoid the with statement and write
the code above like this:

var f = document.forms[0];
f.name.value = "";
f.address.value =

f.email.value = "";

wn,
1

Keep in mind that the scope chain is used only when looking up identifiers, not when
creating new ones. Consider this code:

with(o) x = 1;

If the object o has a property x, then this code assigns the value 1 to that property. But
if x is not defined in o, this code is the same as x = 1 without the with statement. It
assigns to a local or global variable named x, or creates a new property of the global
object. A with statement provides a shortcut for reading properties of o, but not for
creating new properties of o.

5.7.2 debugger

The debugger statement normally does nothing. If, however, a debugger program is
available and is running, then an implementation may (but is not required to) perform
some kind of debugging action. In practice, this statement acts like a breakpoint: exe-
cution of JavaScript code stops and you can use the debugger to print variables’ values,

5.7 Miscellaneous Statements | 109

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

examine the call stack, and so on. Suppose, for example, that you are getting an ex-
ception in your function f() because it is being called with an undefined argument, and
you can’t figure out where this call is coming from. To help you in debugging this
problem, you might alter f() so that it begins like this:

function f(o) {

if (o === undefined) debugger; // Temporary line for debugging purposes
// The rest of the function goes here.
}

Now, when f() is called with no argument, execution will stop, and you can use the
debugger to inspect the call stack and find out where this incorrect call is coming from.

debugger was formally added to the language by ECMAScript 5, but it has been imple-
mented by major browser vendors for quite some time. Note that it is not enough to
have a debugger available: the debugger statement won’t start the debugger for you. If
a debugger is already running, however, this statement will cause a breakpoint. If you
use the Firebug debugging extension for Firefox, for example, you must have Firebug
enabled for the web page you want to debug in order for the debugger statement to work.

5.7.3 “use strict”

"use strict" is a directive introduced in ECMAScript 5. Directives are not statements
(but are close enough that "use strict" is documented here). There are two important
differences between the "use strict" directive and regular statements:

* It does not include any language keywords: the directive is just an expression
statement that consists of a special string literal (in single or double quotes). Java-
Script interpreters that do not implement ECMAScript 5 will simply see an ex-
pression statement with no side effects and will do nothing. Future versions of the
ECMAScript standard are expected to introduce use as a true keyword, allowing
the quotation marks to be dropped.

* It can appear only at the start of a script or at the start of a function body, before
any real statements have appeared. It need not be the very first thing in the script
or function, however: a "use strict" directive may be followed or preceded by
other string literal expression statements, and JavaScript implementations are al-
lowed to interpret these other string literals as implementation-defined directives.
String literal expression statements that follow the first regular statement in a script
or function are simply ordinary expression statements; they may not be interpreted
as directives and they have no effect.

The purpose of a "use strict" directive is to indicate that the code that follows (in the
script or function) is strict code. The top-level (nonfunction) code of a script is strict
code if the script has a "use strict" directive. A function body is strict code if it is
defined within strict code or if it has a "use strict" directive. Code passed to the
eval() method is strict code if eval() is called from strict code or if the string of code
includes a "use strict" directive.

110 | Chapter5: Statements

Strict code is executed in strict mode. The strict mode of ECMAScript 5 is a restricted
subset of the language that fixes a few important language deficiencies and provides
stronger error checking and increased security. The differences between strict mode
and non-strict mode are the following (the first three are particularly important):

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

¢ The with statement is not allowed in strict mode.

* In strict mode, all variables must be declared: a ReferenceError is thrown if you
assign a value to an identifier that is not a declared variable, function, function
parameter, catch clause parameter, or property of the global object. (In non-strict
mode, this implicitly declares a global variable by adding a new property to the
global object.)

¢ In strict mode, functions invoked as functions (rather than as methods) have a
this value of undefined. (In non-strict mode, functions invoked as functions are
always passed the global object as their this value.) This difference can be used to
determine whether an implementation supports strict mode:

var hasStrictMode = (function() { "use strict"; return this===undefined}());

Also, in strict mode, when a function is invoked with call() or apply(), the this
value is exactly the value passed as the first argument to call() or apply(). (In
nonstrict mode, null and undefined values are replaced with the global object and
non-object values are converted to objects.)

* In strict mode, assignments to nonwritable properties and attempts to create new
properties on nonextensible objects throw a TypeError. (In non-strict mode, these
attempts fail silently.)

* In strict mode, code passed to eval() cannot declare variables or define functions
in the caller’s scope as it can in non-strict mode. Instead, variable and function
definitions live in a new scope created for the eval(). This scope is discarded when
the eval() returns.

* In strict mode, the arguments object (§8.3.2) in a function holds a static copy of
the values passed to the function. In non-strict mode, the arguments object has
“magical” behavior in which elements of the array and named function parameters
both refer to the same value.

* In strict mode, a SyntaxError is thrown if the delete operator is followed by an
unqualified identifier such as a variable, function, or function parameter. (In non-
strict mode, such a delete expression does nothing and evaluates to false.)

e In strict mode, an attempt to delete a nonconfigurable property throws a
TypeError. (In non-strict mode, the attempt fails and the delete expression eval-
uates to false.)

* In strict mode, it is a syntax error for an object literal to define two or more prop-
erties by the same name. (In non-strict mode, no error occurs.)

* In strict mode, it is a syntax error for a function declaration to have two or more
parameters with the same name. (In non-strict mode, no error occurs.)

5.7 Miscellaneous Statements | 111

* In strict mode, octal integer literals (beginning with a 0 that is not followed by an
x) are not allowed. (In non-strict mode, some implementations allow octal literals.)

* In strict mode, the identifiers eval and arguments are treated like keywords, and
you are not allowed to change their value. You cannot assign a value to these iden-
tifiers, declare them as variables, use them as function names, use them as function
parameter names, or use them as the identifier of a catch block.

* In strict mode, the ability to examine the call stack is restricted. argu
ments.caller and arguments.callee both throw a TypeError within a strict mode
function. Strict mode functions also have caller and arguments properties that
throw TypeError when read. (Some implementations define these nonstandard
properties on non-strict functions.)

5.8 Summary of JavaScript Statements

This chapter introduced each of the JavaScript language’s statements. Table 5-1 sum-
marizes them, listing the syntax and purpose of each.

Table 5-1. JavaScript statement syntax

Statement Syntax Purpose

break break [labell; Exit from the innermost loop or switch orfrom
named enclosing statement

case case expression: Label a statement withina switch

continue continue [label]; Begin nextiteration of the innermostloop or the
named loop

debugger debugger; Debugger breakpoint

default default: Label the default statement within a switch

do/while do statement while (expression); An alternative to the while loop

empty ; Do nothing

for for(init; test; incr) statement An easy-to-use loop

for/in for (var in object) statement Enumerate the properties of object

function function name([param[,...]1]) { body } Declare a function named name

if/else if (expr) statement1 [else statement2] Execute statement1 or statement2

label label: statement Give statement the name Iabel

return return [expression]; Return a value from a function

switch switch (expression) { statements } Multiway branch to case or default: labels

throw throw expression; Throw an exception

try try { statements } Handle exceptions

[catch { handler statements }]
[finally { cleanup statements }]

112 | Chapter5: Statements

Statement
use strict
var

while

with

Syntax

"use strict";

var name [= expr] [,... 1;
while (expression) statement

with (object) statement

Purpose
Applystrictmoderestrictionstoscriptorfunction
Declare and initialize one or more variables

A basic loop construct

Extendthescope chain (forbiddeninstrictmode)

5.8 Summary of JavaScript Statements | 113

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

CHAPTER 6
Objects

JavaScript’s fundamental datatype is the object. An object is a composite value: it ag-
gregates multiple values (primitive values or other objects) and allows you to store and
retrieve those values by name. An object is an unordered collection of properties, each
of which has a name and a value. Property names are strings, so we can say that objects
map strings to values. This string-to-value mapping goes by various names: you are
probably already familiar with the fundamental data structure under the name “hash,”
“hashtable,” “dictionary,” or “associative array.” An object is more than a simple string-
to-value map, however. In addition to maintaining its own set of properties, a JavaScript
object also inherits the properties of another object, known as its “prototype.” The
methods of an object are typically inherited properties, and this “prototypal inheri-
tance” is a key feature of JavaScript.

JavaScript objects are dynamic—properties can usually be added and deleted—but
they can be used to simulate the static objects and “structs” of statically typed lan-
guages. They can also be used (by ignoring the value part of the string-to-value map-
ping) to represent sets of strings.

Any value in JavaScript that is not a string, a number, true, false, null, or undefined
is an object. And even though strings, numbers, and booleans are not objects, they
behave like immutable objects (see §3.6).

Recall from §3.7 that objects are mutable and are manipulated by reference rather than
by value. If the variable x refers to an object, and the code var y = x; is executed, the
variable y holds a reference to the same object, not a copy of that object. Any modifi-
cations made to the object through the variable y are also visible through the variable x.

The most common things to do with objects are create them and to set, query, delete,
test, and enumerate their properties. These fundamental operations are described in
the opening sections of this chapter. The sections that follow cover more advanced
topics, many of which are specific to ECMAScript 5.

A property has a name and a value. A property name may be any string, including the
empty string, but no object may have two properties with the same name. The value

115

may be any JavaScript value, or (in ECMAScript 5) it may be a getter or a setter function
(or both). We’ll learn about getter and setter functions in §6.6. In addition to its name
and value, each property has associated values that we’ll call property attributes:

* The writable attribute specifies whether the value of the property can be set.

* The enumerable attribute specifies whether the property name is returned by a
for/in loop.

* The configurable attribute specifies whether the property can be deleted and
whether its attributes can be altered.

Prior to ECMAScript 5, all properties in objects created by your code are writable,
enumerable, and configurable. In ECMAScript 5, you can configure the attributes of
your properties. §6.7 explains how to do this.

In addition to its properties, every object has three associated object attributes:
* An object’s prototype is a reference to another object from which properties are
inherited.
* An object’s class is a string that categorizes the type of an object.
* Anobject’s extensible flag specifies (in ECMAScript 5) whether new properties may
be added to the object.

We'll learn more about prototypes and property inheritance in §6.1.3 and §6.2.2, and
we will cover all three attributes in more detail in §6.8.

Finally, here are some terms we’ll use to distinguish among three broad categories of
JavaScript objects and two types of properties:

* A native object is an object or class of objects defined by the ECMAScript specifi-
cation. Arrays, functions, dates, and regular expressions (for example) are native
objects.

* A host object is an object defined by the host environment (such as a web browser)
within which the JavaScript interpreter is embedded. The HTMLElement objects
that represent the structure of a web page in client-side JavaScript are host objects.
Host objects may also be native objects, as when the host environment defines
methods that are normal JavaScript Function objects.

* A user-defined object is any object created by the execution of JavaScript code.
* An own property is a property defined directly on an object.
* An inherited property is a property defined by an object’s prototype object.

6.1 Creating Objects

Objects can be created with object literals, with the new keyword, and (in
ECMAScript 5) with the Object.create() function. The subsections below describe
each technique.

116 | Chapter6: Objects

6.1.1 Object Literals

The easiest way to create an object is to include an object literal in your JavaScript code.
An object literal is a comma-separated list of colon-separated name:value pairs, en-
closed within curly braces. A property name is a JavaScript identifier or a string literal
(the empty string is allowed). A property value is any JavaScript expression; the value
of the expression (it may be a primitive value or an object value) becomes the value of
the property. Here are some examples:

var empty = {}; // An object with no properties

var point = { x:0, y:0 }; // Two properties

var point2 = { x:point.x, y:point.y+1 }; // More complex values

var book = {

"main title": "JavaScript", // Property names include spaces,
'sub-title': "The Definitive Guide", // and hyphens, so use string literals
"for": "all audiences", // for is a reserved word, so quote
author: { // The value of this property is
firstname: "David", // itself an object. Note that
surname: "Flanagan" // these property names are unquoted.
}

|5

In ECMAScript 5 (and some ECMAScript 3 implementations), reserved words may be
used as property names without quoting. In general, however, property names that are
reserved words must be quoted in ECMAScript 3. In ECMAScript 5, a trailing comma
following the last property in an object literal is ignored. Trailing commas are ignored
in most ECMAScript 3 implementations, but IE considers them an error.

An object literal is an expression that creates and initializes a new and distinct object
each time it is evaluated. The value of each property is evaluated each time the literal
is evaluated. This means that a single object literal can create many new objects if it
appears within the body of a loop in a function that is called repeatedly, and that the
property values of these objects may differ from each other.

6.1.2 Creating Objects with new

The new operator creates and initializes a new object. The new keyword must be followed
by a function invocation. A function used in this way is called a constructor and serves
to initialize a newly created object. Core JavaScript includes built-in constructors for
native types. For example:

var o = new Object(); // Create an empty object: same as {}.
var a = new Array(); // Create an empty array: same as [].
var d = new Date(); // Create a Date object representing the current time

var r = new RegExp("js"); // Create a RegExp object for pattern matching.

In addition to these built-in constructors, it is common to define your own constructor
functions to initialize newly created objects. Doing so is covered in Chapter 9.

6.1 Creating Objects | 117

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

6.1.3 Prototypes

Before we can cover the third object creation technique, we must pause for a moment
to explain prototypes. Every JavaScript object has a second JavaScript object (or null,
but this is rare) associated with it. This second object is known as a prototype, and the
first object inherits properties from the prototype.

All objects created by object literals have the same prototype object, and we can refer
to this prototype object in JavaScript code as Object.prototype. Objects created using
the new keyword and a constructor invocation use the value of the prototype property
of the constructor function as their prototype. So the object created by new Object()
inherits from Object.prototype just as the object created by {} does. Similarly, the
object created by new Array() uses Array.prototype as its prototype, and the object
created by new Date() uses Date.prototype as its prototype.

Object.prototype is one of the rare objects that has no prototype: it does not inherit
any properties. Other prototype objects are normal objects that do have a prototype.
All of the built-in constructors (and most user-defined constructors) have a prototype
that inherits from Object.prototype. For example, Date.prototype inherits properties
from Object.prototype, so a Date object created by new Date() inherits properties from
both Date.prototype and Object.prototype. This linked series of prototype objects is
known as a prototype chain.

An explanation of how property inheritance works is in §6.2.2. We’ll learn how to
query the prototype of an object in §6.8.1. And Chapter 9 explains the connection
between prototypes and constructors in more detail: it shows how to define new
“classes” of objects by writing a constructor function and setting its prototype property
to the prototype object to be used by the “instances” created with that constructor.

6.1.4 Object.create()

ECMAScript 5 defines a method, Object.create(), that creates a new object, using its
first argument as the prototype of that object. Object.create() also takes an optional
second argument that describes the properties of the new object. This second argument
is covered in §6.7.

Object.create() is a static function, not a method invoked on individual objects. To
use it, simply pass the desired prototype object:

var ol = Object.create({x:1, y:2}); // o1 inherits properties x and y.
You can pass null to create a new object that does not have a prototype, but if you do

this, the newly created object will not inherit anything, not even basic methods like
toString() (which means it won’t work with the + operator either):

var 02 = Object.create(null); // 02 inherits no props or methods.

118 | Chapter6: Objects

If you want to create an ordinary empty object (like the object returned by {} or new
Object()), pass Object.prototype:

var o3 = Object.create(Object.prototype); // o3 is like {} or new Object().

The ability to create a new object with an arbitrary prototype (put another way: the
ability to create an “heir” for any object) is a powerful one, and we can simulate it in
ECMAScript 3 with a function like the one in Example 6-1.!

Example 6-1. Creating a new object that inherits from a prototype

// inherit() returns a newly created object that inherits properties from the
// prototype object p. It uses the ECMAScript 5 function Object.create() if
// it is defined, and otherwise falls back to an older technique.
function inherit(p) {

if (p == null) throw TypeError(); // p must be a non-null object

if (Object.create) // If Object.create() is defined...
return Object.create(p); // then just use it.

var t = typeof p; // Otherwise do some more type checking

if (t !== "object" & t !== "function") throw TypeError();

function f() {}; // Define a dummy constructor function.

f.prototype = p; // Set its prototype property to p.

return new f(); // Use f() to create an "heir" of p.

}

The code in the inherit() function will make more sense after we’ve covered con-
structors in Chapter 9. For now, please just accept that it returns a new object that
inherits the properties of the argument object. Note that inherit() is not a full re-
placement for Object.create(): it does not allow the creation of objects with null pro-
totypes, and it does not accept the optional second argument that Object.create()
does. Nevertheless, we’ll use inherit() in a number of examples in this chapter and
again in Chapter 9.

One use for our inherit() function is when you want to guard against unintended (but
nonmalicious) modification of an object by a library function that you don’t have con-
trol over. Instead of passing the object directly to the function, you can pass an heir. If
the function reads properties of the heir, it will see the inherited values. If it sets prop-
erties, however, those properties will only affect the heir, not your original object:

var o = { x: "don't change this value" };
library function(inherit(o)); // Guard against accidental modifications of o

To understand why this works, you need to know how properties are queried and set
in JavaScript. These are the topics of the next section.

1. Douglas Crockford is generally credited as the first to propose a function that creates objects in this way.
See http://javascript.crockford.com/prototypal.html.

6.1 Creating Objects | 119

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

http://javascript.crockford.com/prototypal.html

6.2 Querying and Setting Properties

To obtain the value of a property, use the dot (.) or square bracket ([]) operators
described in §4.4. The left-hand side should be an expression whose value is an object.
If using the dot operator, the right-hand must be a simple identifier that names the
property. If using square brackets, the value within the brackets must be an expression
that evaluates to a string that contains the desired property name:

var author = book.author; // Get the "author" property of the book.

var name = author.surname // Get the "surname" property of the author.
var title = book["main title"] // Get the "main title" property of the book.

To create or set a property, use a dot or square brackets as you would to query the
property, but put them on the left-hand side of an assignment expression:

book.edition = 6; // Create an "edition" property of book.
book["main title"] = "ECMAScript"; // Set the "main title" property.

In ECMAScript 3, the identifier that follows the dot operator cannot be a reserved word:
you cannot write o. for or o.class, for example, because for is a language keyword and
class is reserved for future use. If an object has properties whose name is a reserved
word, you must use square bracket notation to access them: o["for"] and
o["class"]. ECMAScript 5 relaxes this restriction (as do some implementations of
ECMAScript 3) and allows reserved words to follow the dot.

When using square bracket notation, we’ve said that the expression inside the square
brackets must evaluate to a string. A more precise statement is that the expression must
evaluate to a string or a value that can be converted to a string. In Chapter 7, for ex-
ample, we’ll see that it is common to use numbers inside the square brackets.

6.2.1 Objects As Associative Arrays

As explained above, the following two JavaScript expressions have the same value:
object.property
object["property"]
The first syntax, using the dot and an identifier, is like the syntax used to access a static
field of a struct or object in C or Java. The second syntax, using square brackets and a
string, looks like array access, but to an array indexed by strings rather than by numbers.
This kind of array is known as an associative array (or hash or map or dictionary).
JavaScript objects are associative arrays, and this section explains why that is important.

In C, C++, Java, and similar strongly typed languages, an object can have only a fixed
number of properties, and the names of these properties must be defined in advance.
Since JavaScript is a loosely typed language, this rule does not apply: a program can
create any number of properties in any object. When you use the . operator to access
a property of an object, however, the name of the property is expressed as an identifier.
Identifiers must be typed literally into your JavaScript program; they are not a datatype,
so they cannot be manipulated by the program.

120 | Chapter6: Objects

On the other hand, when you access a property of an object with the [] array notation,
the name of the property is expressed as a string. Strings are JavaScript datatypes, so
they can be manipulated and created while a program is running. So, for example, you
can write the following code in JavaScript:
var addr =
for(i = 0; i < 4; i++) {
addr += customer["address" + i] + '\n';

nn,
3

This code reads and concatenates the addresso, addressi, address2, and address3
properties of the customer object.

This brief example demonstrates the flexibility of using array notation to access prop-
erties of an object with string expressions. The code above could be rewritten using the
dot notation, but there are cases in which only the array notation will do. Suppose, for
example, that you are writing a program that uses network resources to compute the
current value of the user’s stock market investments. The program allows the user to
type in the name of each stock she owns as well as the number of shares of each stock.
You might use an object named portfolio to hold this information. The object has one
property for each stock. The name of the property is the name of the stock, and the
property value is the number of shares of that stock. So, for example, if a user holds
50 shares of stock in IBM, the portfolio.ibm property has the value 50.

Part of this program might be a function for adding a new stock to the portfolio:

function addstock(portfolio, stockname, shares) {
portfolio[stockname] = shares;
}

Since the user enters stock names at runtime, there is no way that you can know the
property names ahead of time. Since you can’t know the property names when you
write the program, there is no way you can use the . operator to access the properties
of the portfolio object. You can use the [] operator, however, because it uses a string
value (which is dynamic and can change at runtime) rather than an identifier (which is
static and must be hardcoded in the program) to name the property.

Chapter 5 introduced the for/in loop (and we’ll see it again shortly in §6.5). The power
of this JavaScript statement becomes clear when you consider its use with associative
arrays. Here’s how you’d use it when computing the total value of a portfolio:

function getvalue(portfolio) {
var total = 0.0;

for(stock in portfolio) { // For each stock in the portfolio:
var shares = portfolio[stock]; // get the number of shares
var price = getquote(stock); // look up share price
total += shares * price; // add stock value to total value
}
return total; // Return total value.

6.2 Querying and Setting Properties | 121

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

6.2.2 Inheritance

JavaScript objects have a set of “own properties,” and they also inherit a set of properties
from their prototype object. To understand this, we must consider property access in
more detail. The examples in this section use the inherit() function from Exam-
ple 6-1 in order to create objects with specified prototypes.

Suppose you query the property x in the object o. If o does not have an own property
with that name, the prototype object of o is queried for the property x. If the prototype
object does not have an own property by that name, but has a prototype itself, the query
is performed on the prototype of the prototype. This continues until the property x is
found or until an object with a null prototype is searched. As you can see, the proto-
type attribute of an object creates a chain or linked list from which properties are
inherited.

var o = {} // o inherits object methods from Object.prototype

0.X = 1; // and has an own property x.

var p = inherit(o); // p inherits properties from o and Object.prototype

p.y = 2; // and has an own property y.

var q = inherit(p); // q inherits properties from p, o, and Object.prototype
q.z = 3; // and has an own property z.

var s = q.toString(); // toString is inherited from Object.prototype

q.Xx + q.y // => 3: x and y are inherited from o and p

Now suppose you assign to the property x of the object o. If o already has an own
(noninherited) property named x, then the assignment simply changes the value of this
existing property. Otherwise, the assignment creates a new property named x on the
object o. If o previously inherited the property x, that inherited property is now hidden
by the newly created own property with the same name.

Property assignment examines the prototype chain to determine whether the assign-
ment is allowed. If o inherits a read-only property named x, for example, then the
assignment is not allowed. (Details about when a property may be set are in §6.2.3.) If
the assignment is allowed, however, it always creates or sets a property in the original
object and never modifies the prototype chain. The fact that inheritance occurs when
querying properties but not when setting them is a key feature of JavaScript because it
allows us to selectively override inherited properties:

var unitcircle = { r:1 }; // An object to inherit from

var c¢ = inherit(unitcircle); // c inherits the property r

c.x =1; cy = 1; // c defines two properties of its own

c.r = 2; // c overrides its inherited property
unitcircle.r; // => 1: the prototype object is not affected

There is one exception to the rule that a property assignment either fails or creates or
sets a property in the original object. If o inherits the property x, and that property is
an accessor property with a setter method (see §6.6), then that setter method is called
rather than creating a new property x in o. Note, however, that the setter method is
called on the object o, not on the prototype object that defines the property, so if the

122 | Chapter6: Objects

setter method defines any properties, it will do so on o, and it will again leave the
prototype chain unmodified.

6.2.3 Property Access Errors

Property access expressions do not always return or set a value. This section explains
the things that can go wrong when you query or set a property.

It is not an error to query a property that does not exist. If the property x is not found
as an own property or an inherited property of o, the property access expression 0.x
evaluates to undefined. Recall that our book object has a “sub-title” property, but not
a “subtitle” property:

book.subtitle; // => undefined: property doesn't exist

It is an error, however, to attempt to query a property of an object that does not exist.
The null and undefined values have no properties, and it is an error to query properties
of these values. Continuing the above example:

// Raises a TypeError exception. undefined doesn't have a length property
var len = book.subtitle.length;

Unless you are certain that both book and book.subtitle are (or behave like) objects,
you shouldn’t write the expression book.subtitle.length, since it might raise an ex-
ception. Here are two ways to guard against this kind of exception:

// A verbose and explicit technique

var len = undefined;

if (book) {

if (book.subtitle) len = book.subtitle.length;
}

// A concise and idiomatic alternative to get subtitle length or undefined
var len = book && book.subtitle && book.subtitle.length;

To understand why this idiomatic expression works to prevent TypeError exceptions,
you might want to review the short-circuiting behavior of the 8& operator in §4.10.1.

Attempting to set a property on null or undefined also causes a TypeError, of course.
Attempts to set properties on other values do not always succeed, either: some prop-
erties are read-only and cannot be set, and some objects do not allow the addition of
new properties. Curiously, however, these failed attempts to set properties usually fail
silently:

// The prototype properties of built-in constructors are read-only.
Object.prototype = 0; // Assignment fails silently; Object.prototype unchanged

This historical quirk of JavaScript is rectified in the strict mode of ECMAScript 5. In
strict mode, any failed attempt to set a property throws a TypeError exception.

6.2 Querying and Setting Properties | 123

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

The rules that specify when a property assignment succeeds and when it fails are in-
tuitive but difficult to express concisely. An attempt to set a property p of an object o
fails in these circumstances:

* 0 has an own property p that is read-only: it is not possible to set read-only prop-
erties. (See the defineProperty() method, however, for an exception that allows
configurable read-only properties to be set.)

* ohasaninherited property p that is read-only: it is not possible to hide an inherited
read-only property with an own property of the same name.

* 0 does not have an own property p; o does not inherit a property p with a setter
method, and o’s extensible attribute (see §6.8.3) is false. If p does not already
exist on o, and if there is no setter method to call, then p must be added to o. But
if 0 is not extensible, then no new properties can be defined on it.

6.3 Deleting Properties

The delete operator (§4.13.3) removes a property from an object. Its single operand
should be a property access expression. Surprisingly, delete does not operate on the
value of the property but on the property itself:

delete book.author; // The book object now has no author property.
delete book["main title"]; // Now it doesn't have "main title", either.

The delete operator only deletes own properties, not inherited ones. (To delete an
inherited property, you must delete it from the prototype object in which it is defined.
Doing this affects every object that inherits from that prototype.)

A delete expression evaluates to true if the delete succeeded or if the delete had no
effect (such as deleting a nonexistent property). delete also evaluates to true when used
(meaninglessly) with an expression that is not a property access expression:

o = {x:1}; // o has own property x and inherits property toString
delete o.x; // Delete x, and return true

delete o.x; // Do nothing (x doesn't exist), and return true

delete o.toString; // Do nothing (toString isn't an own property), return true
delete 1; // Nonsense, but evaluates to true

delete does not remove properties that have a configurable attribute of false. (Though
it will remove configurable properties of nonextensible objects.) Certain properties of
built-in objects are nonconfigurable, as are properties of the global object created by
variable declaration and function declaration. In strict mode, attempting to delete a
nonconfigurable property causes a TypeError. In non-strict mode (and in
ECMAScript 3), delete simply evaluates to false in this case:

delete Object.prototype; // Can't delete; property is non-configurable

var x = 1; // Declare a global variable
delete this.x; // Can't delete this property
function f() {} // Declare a global function
delete this.f; // Can't delete this property either

124 | Chapter6: Objects

When deleting configurable properties of the global object in non-strict mode, you can
omit the reference to the global object and simply follow the delete operator with the
property name:

this.x = 1; // Create a configurable global property (no var)
delete x; // And delete it

In strict mode, however, delete raises a SyntaxError if its operand is an unqualified
identifier like x, and you have to be explicit about the property access:

delete x; // SyntaxError in strict mode
delete this.x; // This works

6.4 Testing Properties

JavaScript objects can be thought of as sets of properties, and it is often useful to be
able to test for membership in the set—to check whether an object has a property with
a given name. You can do this with the in operator, with the hasOwnProperty() and
propertyIsEnumerable() methods, or simply by querying the property.

The in operator expects a property name (as a string) on its left side and an object on
its right. It returns true if the object has an own property or an inherited property by
that name:

var o = { x: 1}

x" in o; // true: o has an own property "x

non non

y" in o; // false: o doesn't have a property "y
"toString" in o; // true: o inherits a toString property

The hasOwnProperty() method of an object tests whether that object has an own prop-
erty with the given name. It returns false for inherited properties:

var o = { x: 1}

o0.hasOwnProperty("x"); // true: o has an own property x

o0.hasOwnProperty("y"); // false: o doesn't have a property y
o.hasOwnProperty("toString"); // false: toString is an inherited property

The propertyIsEnumerable() refines the hasOwnProperty() test. It returns true only if
the named property is an own property and its enumerable attribute is true. Certain
built-in properties are not enumerable. Properties created by normal JavaScript code
are enumerable unless you’ve used one of the ECMAScript 5 methods shown later to
make them nonenumerable.

var o = inherit({ y: 2 });

0.X = 1;

o.propertyIsEnumerable("x"); // true: o has an own enumerable property x

o.propertyIsEnumerable("y"); // false: y is inherited, not own
Object.prototype.propertyIsEnumerable("toString"); // false: not enumerable

Instead of using the in operator it is often sufficient to simply query the property and
use !== to make sure it is not undefined:

var o = { x: 1}
0.x !== undefined; // true: o has a property x

6.4 Testing Properties | 125

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

0.y !== undefined; // false: o doesn't have a property y
o.toString !== undefined; // true: o inherits a toString property

There is one thing the in operator can do that the simple property access technique
shown above cannot do. in can distinguish between properties that do not exist and
properties that exist but have been set to undefined. Consider this code:

var o = { x: undefined } // Property is explicitly set to undefined

0.x !== undefined // false: property exists but is undefined
0.y !== undefined // false: property doesn't even exist
"x" in o // true: the property exists
"y" in o // false: the property doesn't exists
delete o.x; // Delete the property x
"x" in o // false: it doesn't exist anymore
Note that the code above uses the !== operator instead of !=. !== and === distinguish

between undefined and null. Sometimes, however, you don’t want to make this
distinction:

// If o has a property x whose value is not null or undefined, double it.
if (o.x != null) o.x *= 2;

// If o has a property x whose value does not convert to false, double it.
// If x is undefined, null, false, "", 0, or NaN, leave it alone.
if (0.x) o0.x *= 2;

6.5 Enumerating Properties

Instead of testing for the existence of individual properties, we sometimes want to
iterate through or obtain a list of all the properties of an object. This is usually done
with the for/in loop, although ECMAScript 5 provides two handy alternatives.

The for/in loop was covered in §5.5.4. It runs the body of the loop once for each
enumerable property (own or inherited) of the specified object, assigning the name of
the property to the loop variable. Built-in methods that objects inherit are not
enumerable, but the properties that your code adds to objects are enumerable (unless
you use one of the functions described later to make them nonenumerable). For
example:

var o = {x:1, y:2, z:3}; // Three enumerable own properties

o.propertyIsEnumerable("toString") // => false: not enumerable

for(p in o) // Loop through the properties
console.log(p); // Prints x, y, and z, but not toString

Some utility libraries add new methods (or other properties) to Object.prototype so
that they are inherited by, and available to, all objects. Prior to ECMAScript 5, however,
there is no way to make these added methods nonenumerable, so they are enumerated
by for/in loops. To guard against this, you might want to filter the properties returned
by for/in. Here are two ways you might do so:

for(p in o) {
if (lo.hasOwnProperty(p)) continue; // Skip inherited properties
}

126 | Chapter6: Objects

for(p in o) {
if (typeof o[p] === "function") continue; // Skip methods

Example 6-2 defines utility functions that use for/in loops to manipulate object prop-
erties in helpful ways. The extend() function, in particular, is one that is commonly
included in JavaScript utility libraries.

Example 6-2. Object utility functions that enumerate properties
/*
* Copy the enumerable properties of p to o, and return o.
* If o and p have a property by the same name, o's property is overwritten.
* This function does not handle getters and setters or copy attributes.
*/
function extend(o, p) {

for(prop in p) { // For all props in p.
o[prop] = p[propl; // Add the property to o.
return o;
}
/¥

* Copy the enumerable properties of p to o, and return o.

* If o and p have a property by the same name, o's property is left alone.
* This function does not handle getters and setters or copy attributes.
*/

function merge(o, p) {

for(prop in p) { // For all props in p.
if (o.hasOwnProperty[prop]) continue; // Except those already in o.
o[prop] = p[prop]; // Add the property to o.
return o;
}
/*

* Remove properties from o if there is not a property with the same name in p.
* Return o.

*/
function restrict(o, p) {
for(prop in o) { // For all props in o
if (!(prop in p)) delete o[prop]; // Delete if not in p
return o;
}
J*

* For each property of p, delete the property with the same name from o.
* Return o.

*/

function subtract(o, p) {

2. The implementation of extend() shown here is correct but does not compensate for a well-known bug in
Internet Explorer. We’ll see a more robust version of extend() in Example 8-3.

6.5 Enumerating Properties | 127

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

for(prop in p) { // For all props in p
delete o[prop]; // Delete from o (deleting a
// nonexistent prop is harmless)
}

return o;

}

/*
* Return a new object that holds the properties of both o and p.

* If o and p have properties by the same name, the values from o are used.
*/

function union(o,p) { return extend(extend({},0), p); }

/*
* Return a new object that holds only the properties of o that also appear
* in p. This is something like the intersection of o and p, but the values of
* the properties in p are discarded
*/

function intersection(o,p) { return restrict(extend({}, o), p); }

/*
* Return an array that holds the names of the enumerable own properties of o.
*/

function keys(o) {

if (typeof o !== "object") throw TypeError(); // Object argument required
var result = []; // The array we will return
for(var prop in o) { // For all enumerable properties
if (o.hasOwnProperty(prop)) // If it is an own property
result.push(prop); // add it to the array.
}
return result; // Return the array.

}

In addition to the for/in loop, ECMAScript 5 defines two functions that enumerate
property names. The first is Object.keys(), which returns an array of the names of the
enumerable own properties of an object. It works just like the keys() utility function
shown in Example 6-2.

The second ECMAScript 5 property enumeration function is Object.getOwnProperty
Names (). It works like Object.keys() but returns the names of all the own properties of
the specified object, not just the enumerable properties. There is no way to write this
function in ECMAScript 3, because ECMAScript 3 does not provide a way to obtain
the nonenumerable properties of an object.

6.6 Property Getters and Setters

We’ve said that an object property is a name, a value, and a set of attributes. In
ECMAScript 5° the value may be replaced by one or two methods, known as a getter

3. And in recent ECMAScript 3 versions of major browsers other than IE.

128 | Chapter6: Objects

and a setter. Properties defined by getters and setters are sometimes known as accessor
properties to distinguish them from data properties that have a simple value.

When a program queries the value of an accessor property, JavaScript invokes the getter
method (passing no arguments). The return value of this method becomes the value of
the property access expression. When a program sets the value of an accessor property,
JavaScript invokes the setter method, passing the value of the right-hand side of the
assignment. This method is responsible for “setting,” in some sense, the property value.
The return value of the setter method is ignored.

Accessor properties do not have a writable attribute as data properties do. If a property
has both a getter and a setter method, it is a read/write property. If it has only a getter
method, it is a read-only property. And if it has only a setter method, it is a write-only
property (something that is not possible with data properties) and attempts to read it
always evaluate to undefined.

The easiest way to define accessor properties is with an extension to the object literal
syntax:
var o = {

// An ordinary data property
data_prop: value,

// An accessor property defined as a pair of functions

get accessor_prop() { /* function body here */ },

set accessor_prop(value) { /* function body here */ }

1

Accessor properties are defined as one or two functions whose name is the same as the
property name, and with the function keyword replaced with get and/or set. Note that
no colon is used to separate the name of the property from the functions that access
that property, but that a comma is still required after the function body to separate the
method from the next method or data property. As an example, consider the following
object that represents a 2D Cartesian point. It has ordinary data properties to represent
the X and Y coordinates of the point, and it has accessor properties for the equivalent
polar coordinates of the point:

var p = {
// x and y are regular read-write data properties.
x: 1.0,
y: 1.0,

// r is a read-write accessor property with getter and setter.
// Don't forget to put a comma after accessor methods.
get r() { return Math.sqrt(this.x*this.x + this.y*this.y); },
set r(newvalue) {
var oldvalue = Math.sqrt(this.x*this.x + this.y*this.y);
var ratio = newvalue/oldvalue;
this.x *= ratio;
this.y *= ratio;

b

6.6 Property Getters and Setters | 129

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

// theta is a read-only accessor property with getter only.
get theta() { return Math.atan2(this.y, this.x); }

>

Note the use of the keyword this in the getters and setter above. JavaScript invokes
these functions as methods of the object on which they are defined, which means that
within the body of the function this refers to the point object. So the getter method for
the r property can refer to the x and y properties as this.x and this.y. Methods and
the this keyword are covered in more detail in §8.2.2.

Accessor properties are inherited, just as data properties are, so you can use the object
p defined above as a prototype for other points. You can give the new objects their own
x and y properties, and they’ll inherit the r and theta properties:

var q = inherit(p); // Create a new object that inherits getters and setters
g.x =0, q.y = 0; // Create q's own data properties

console.log(q.r); // And use the inherited accessor properties
console.log(q.theta);

The code above uses accessor properties to define an API that provides two represen-
tations (Cartesian coordinates and polar coordinates) of a single set of data. Other
reasons to use accessor properties include sanity checking of property writes and re-
turning different values on each property read:

// This object generates strictly increasing serial numbers

var serialnum = {
// This data property holds the next serial number.
// The $ in the property name hints that it is a private property.
$n: 0,

// Return the current value and increment it
get next() { return this.$n++; },

// Set a new value of n, but only if it is larger than current
set next(n) {
if (n >= this.$n) this.$n = n;
else throw "serial number can only be set to a larger value";
}
b

Finally, here is one more example that uses a getter method to implement a property
with “magical” behavior.

// This object has accessor properties that return random numbers.
// The expression "random.octet", for example, yields a random number
// between 0 and 255 each time it is evaluated.
var random = {
get octet() { return Math.floor(Math.random()*256); },
get uint16() { return Math.floor(Math.random()*65536); },
get int16() { return Math.floor(Math.random()*65536)-32768; }
b

This section has shown only how to define accessor properties when creating a new
object from an object literal. The next section shows how to add accessor properties
to existing objects.

130 | Chapter6: Objects

6.7 Property Attributes

In addition to a name and value, properties have attributes that specify whether they
can be written, enumerated, and configured. In ECMAScript 3, there is no way to set
these attributes: all properties created by ECMAScript 3 programs are writable, enu-
merable, and configurable, and there is no way to change this. This section explains
the ECMAScript 5 API for querying and setting property attributes. This APl is partic-
ularly important to library authors because:

* It allows them to add methods to prototype objects and make them nonenumer-
able, like built-in methods.

e It allows them to “lock down” their objects, defining properties that cannot be
changed or deleted.

For the purposes of this section, we are going to consider getter and setter methods of
an accessor property to be property attributes. Following this logic, we’ll even say that
the value of a data property is an attribute as well. Thus, we can say that a property has
a name and four attributes. The four attributes of a data property are value, writable,
enumerable, and configurable. Accessor properties don’t have a value attribute or a
writable attribute: their writability is determined by the presence or absence of a setter.
So the four attributes of an accessor property are get, set, enumerable, and configurable.

The ECMAScript 5 methods for querying and setting the attributes of a property use
an object called a property descriptor to represent the set of four attributes. A property
descriptor object has properties with the same names as the attributes of the property
it describes. Thus, the property descriptor object of a data property has properties
named value, writable, enumerable, and configurable. And the descriptor for an ac-
cessor property has get and set properties instead of value and writable. The writa
ble, enumerable, and configurable properties are boolean values, and the get and set
properties are function values, of course.

To obtain the property descriptor for a named property of a specified object, call
Object.getOwnPropertyDescriptor():

// Returns {value: 1, writable:true, enumerable:true, configurable:true}
Object.getOwnPropertyDescriptor ({x:1}, "x");

// Now query the octet property of the random object defined above.
// Returns { get: /*func*/, set:undefined, enumerable:true, configurable:true}
Object.getOwnPropertyDescriptor(random, "octet");

// Returns undefined for inherited properties and properties that don't exist.
Object.getOwnPropertyDescriptor ({}, "x"); // undefined, no such prop
Object.getOwnPropertyDescriptor({}, "toString"); // undefined, inherited

As its name implies, Object.getOwnPropertyDescriptor () works only for own proper-
ties. To query the attributes of inherited properties, you must explicitly traverse the
prototype chain (see Object.getPrototype0f() in §6.8.1).

6.7 Property Attributes | 131

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

To set the attributes of a property, or to create a new property with the specified at-
tributes, call Object.defineProperty(), passing the object to be modified, the name of
the property to be created or altered, and the property descriptor object:
var o = {}; // Start with no properties at all
// Add a nonenumerable data property x with value 1.
Object.defineProperty(o, "x", { value : 1,
writable: true,

enumerable: false,
configurable: true});

// Check that the property is there but is nonenumerable
0.X; /] =>1
Object.keys(o) // => []

// Now modify the property x so that it is read-only
Object.defineProperty(o, "x", { writable: false });

// Try to change the value of the property
0.X = 2; // Fails silently or throws TypeError in strict mode
0.X /] =>1

// The property is still configurable, so we can change its value like this:
Object.defineProperty(o, "x", { value: 2 });
0.X /] => 2

// Now change x from a data property to an accessor property
Object.defineProperty(o, "x", { get: function() { return o; } });
0.X // =>0

The property descriptor you pass to Object.defineProperty() does not have to include
all four attributes. If you’re creating a new property, then omitted attributes are taken
to be false or undefined. If you’re modifying an existing property, then the attributes
you omit are simply left unchanged. Note that this method alters an existing own
property or creates a new own property, but it will not alter an inherited property.

If you want to create or modify more than one property at a time, use Object.define
Properties(). The first argument is the object that is to be modified. The second ar-
gument is an object that maps the names of the properties to be created or modified to
the property descriptors for those properties. For example:

var p = Object.defineProperties({}, {

x: { value: 1, writable: true, enumerable:true, configurable:true },
y: { value: 1, writable: true, enumerable:true, configurable:true },

r: {
get: function() { return Math.sqrt(this.x*this.x + this.y*this.y) },
enumerable:true,
configurable:true
}
b;

This code starts with an empty object, then adds two data properties and one read-only
accessor property to it. It relies on the fact that Object.defineProperties() returns the
modified object (as does Object.defineProperty()).

132 | Chapter6: Objects

We saw the ECMAScript 5 method Object.create() in §6.1. We learned there that the
first argument to that method is the prototype object for the newly created object. This
method also accepts a second optional argument, which is the same as the second
argument to Object.defineProperties(). If you pass a set of property descriptors to
Object.create(), then they are used to add properties to the newly created object.

Object.defineProperty() and Object.defineProperties() throw TypeError if the at-
tempt to create or modify a property is not allowed. This happens if you attempt to
add a new property to a nonextensible (see §6.8.3) object. The other reasons that these
methods might throw TypeError have to do with the attributes themselves. The writ-
able attribute governs attempts to change the value attribute. And the configurable
attribute governs attempts to change the other attributes (and also specifies whether a
property can be deleted). The rules are not completely straightforward, however. It is
possible to change the value of a nonwritable property if that property is configurable,
for example. Also, it is possible to change a property from writable to nonwritable even
if that property is nonconfigurable. Here are the complete rules. Calls to
Object.defineProperty() or Object.defineProperties() that attempt to violate them
throw TypeError:

* If an object is not extensible, you can edit its existing own properties, but you
cannot add new properties to it.

* Ifaproperty is not configurable, you cannot change its configurable or enumerable
attributes.

* If an accessor property is not configurable, you cannot change its getter or setter
method, and you cannot change it to a data property.

* Ifadata property is not configurable, you cannot change it to an accessor property.

* Ifadata property is not configurable, you cannot change its writable attribute from
false to true, but you can change it from true to false.

* Ifadata property is not configurable and not writable, you cannot change its value.
You can change the value of a property that is configurable but nonwritable, how-
ever (because that would be the same as making it writable, then changing the
value, then converting it back to nonwritable).

Example 6-2 included an extend() function that copied properties from one object to
another. That function simply copied the name and value of the properties and ignored
their attributes. Furthermore, it did not copy the getter and setter methods of accessor
properties, but simply converted them into static data properties. Example 6-3 shows
a new version of extend() that uses Object.getOwnPropertyDescriptor() and
Object.defineProperty() to copy all property attributes. Rather than being written as
a function, this version is defined as a new Object method and is added as a nonenu-
merable property to Object.prototype.

6.7 Property Attributes | 133

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

Example 6-3. Copying property attributes

/*

Add a nonenumerable extend() method to Object.prototype.

This method extends the object on which it is called by copying properties
from the object passed as its argument. All property attributes are
copied, not just the property value. All own properties (even non-
enumerable ones) of the argument object are copied unless a property

with the same name already exists in the target object.

EE O

*/
Object.defineProperty(Object.prototype,

"extend", // Define Object.prototype.extend
{
writable: true,
enumerable: false, // Make it nonenumerable
configurable: true,
value: function(o) { // Its value is this function
// Get all own props, even nonenumerable ones
var names = Object.getOwnPropertyNames(o);
// Loop through them
for(var i = 0; i < names.length; i++) {
// Skip props already in this object
if (names[i] in this) continue;
// Get property description from o
var desc = Object.getOwnPropertyDescriptor(o,names[i]);
// Use it to create property on this
Object.defineProperty(this, names[i], desc);

}
1

6.7.1 Legacy API for Getters and Setters

The object literal syntax for accessor properties described in §6.6 allows us to define
accessor properties in new objects, but it doesn’t allow us to query the getter and setter
methods or to add new accessor properties to existing objects. In ECMAScript 5 we
can use Object.getOwnPropertyDescriptor() and Object.defineProperty() to do these
things.

Most JavaScript implementations (with the major exception of the IE web browser)
supported the object literal get and set syntax even before the adoption of
ECMAScript 5. These implementations support a nonstandard legacy API for querying
and setting getters and setters. This API consists of four methods available on all objects.
__lookupGetter () and _ lookupSetter () return the getter or setter method for a
named property. And __defineGetter () and _ defineSetter () define a getter or
setter: pass the property name first and the getter or setter method second. The names
of each of these methods begin and end with double underscores to indicate that they
are nonstandard methods. These nonstandard methods are not documented in the
reference section.

134 | Chapter6: Objects

6.8 Object Attributes

Every object has associated prototype, class, and extensible attributes. The subsections
that follow explain what these attributes do and (where possible) how to query and
set them.

6.8.1 The prototype Attribute

An object’s prototype attribute specifies the object from which it inherits properties.
(Review §6.1.3 and §6.2.2 for more on prototypes and property inheritance.) This is
such an important attribute that we’ll usually simply say “the prototype of o” rather
than “the prototype attribute of 0.” Also, it is important to understand that when
prototype appears in code font, it refers to an ordinary object property, not to the
prototype attribute.

The prototype attribute is set when an object is created. Recall from §6.1.3 that objects
created from object literals use Object.prototype as their prototype. Objects created
with new use the value of the prototype property of their constructor function as their
prototype. And objects created with Object.create() use the first argument to that
function (which may be null) as their prototype.

In ECMAScript 5, you can query the prototype of any object by passing that object to
Object.getPrototypeOf(). There is no equivalent function in ECMAScript 3, but it is
often possible to determine the prototype of an object o using the expression
o.constructor.prototype. Objects created with a new expression usually inherit a
constructor property that refers to the constructor function used to create the object.
And, as described above, constructor functions have a prototype property that specifies
the prototype for objects created using that constructor. This is explained in more detail
in §9.2, which also explains why it is not a completely reliable method for determining
an object’s prototype. Note that objects created by object literals or by
Object.create() have a constructor property that refers to the Object() constructor.
Thus, constructor. prototype refers to the correct prototype for object literals, but does
not usually do so for objects created with Object.create().

To determine whether one object is the prototype of (or is part of the prototype chain
of) another object, use the isPrototype0f() method. To find out if p is the prototype
of o write p.isPrototype0f(o). For example:

var p = {x:1}; // Define a prototype object.
var o = Object.create(p); // Create an object with that prototype.
p.isPrototypeOf(o) // => true: o inherits from p

Object.prototype.isPrototypeOf(o) // => true: p inherits from Object.prototype

Note that isPrototype0f() performs a function similar to the instanceof operator (see
§4.9.4).

Mozilla’s implementation of JavaScript has (since the early days of Netscape) exposed
the prototype attribute through the specially named _ proto__ property, and you can
use this property to directly query or set the prototype of any object. Using _ proto__

6.8 Object Attributes | 135

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

is not portable: it has not been (and probably never will be) implemented by IE or
Opera, although it is currently supported by Safari and Chrome. Versions of Firefox
that implement ECMAScript 5 still support __proto_, but restrict its ability to change
the prototype of nonextensible objects.

6.8.2 The class Attribute

An object’s class attribute is a string that provides information about the type of the
object. Neither ECMAScript 3 nor ECMAScript 5 provide any way to set this attribute,
and there is only an indirect technique for querying it. The default toString() method
(inherited from Object.prototype) returns a string of the form:

[object class]

So to obtain the class of an object, you can invoke this toString() method on it, and
extract the eighth through the second-to-last characters of the returned string. The
tricky part is that many objects inherit other, more useful toString() methods, and to
invoke the correct version of toString(), we must do so indirectly, using the
Function.call() method (see §8.7.3). Example 6-4 defines a function that returns the
class of any object you pass it.

Example 6-4. A classof() function

function classof(o) {

if (o === null) return "Null";

if (o === undefined) return "Undefined";

return Object.prototype.toString.call(o).slice(8,-1);
}

This classof () function works for any JavaScript value. Numbers, strings, and booleans
behave like objects when the toString() method is invoked on them, and the function
includes special cases for null and undefined. (The special cases are not required in
ECMAScript 5.) Objects created through built-in constructors such as Array and Date
have class attributes that match the names of their constructors. Host objects typically
have meaningful class attributes as well, though this is implementation-dependent.
Objects created through object literals or by Object.create have a class attribute of
“Object”. If you define your own constructor function, any objects you create with it
will have a class attribute of “Object”: there is no way to specify the class attribute for
your own classes of objects:

classof(null) // => "Null"

classof(1) // => "Number"

classof("") // => "String"

classof(false) // => "Boolean"

classof({}) // => "Object"

classof([]) // => "Array"

classof(/./) // => "Regexp"

classof(new Date()) // => "Date"

classof(window) // => "Window" (a client-side host object)

function f() {}; // Define a custom constructor
classof(new f()); // => "Object"

136 | Chapter6: Objects

6.8.3 The extensible Attribute

The extensible attribute of an object specifies whether new properties can be added to
the object or not. In ECMAScript 3, all built-in and user-defined objects are implicitly
extensible, and the extensibility of host objects is implementation defined. In ECMA-
Script 5, all built-in and user-defined objects are extensible unless they have been
converted to be nonextensible, and the extensibility of host objects is again implemen-
tation defined.

ECMAScript 5 defines functions for querying and setting the extensibility of an object.
To determine whether an object is extensible, pass it to Object.isExtensible(). To
make an object nonextensible, pass it to Object.preventExtensions(). Note that there
is no way to make an object extensible again once you have made it nonextensible. Also
note that calling preventExtensions() only affects the extensibility of the object itself.
If new properties are added to the prototype of a nonextensible object, the nonexten-
sible object will inherit those new properties.

The purpose of the extensible attribute is to be able to “lock down” objects into a known
state and prevent outside tampering. The extensible object attribute is often used in
conjunction with the configurable and writable property attributes, and
ECMAScript 5 defines functions that make it easy to set these attributes together.

Object.seal() works like Object.preventExtensions(), but in addition to making the
object nonextensible, it also makes all of the own properties of that object nonconfig-
urable. This means that new properties cannot be added to the object, and existing
properties cannot be deleted or configured. Existing properties that are writable can
still be set, however. There is no way to unseal a sealed object. You can use
Object.isSealed() to determine whether an object is sealed.

Object.freeze() locks objects down even more tightly. In addition to making the object
nonextensible and its properties nonconfigurable, it also makes all of the object’s own
data properties read-only. (If the object has accessor properties with setter methods,
these are not affected and can still be invoked by assignment to the property.) Use
Object.isFrozen() to determine if an object is frozen.

[t is important to understand that Object.seal() and Object.freeze() affect only the
object they are passed: they have no effect on the prototype of that object. If you want
to thoroughly lock down an object, you probably need to seal or freeze the objects in
the prototype chain as well.

Object.preventExtensions(), Object.seal(), and Object.freeze() all return the object
that they are passed, which means that you can use them in nested function invocations:
// Create a sealed object with a frozen prototype and a nonenumerable property

var o = Object.seal(Object.create(Object.freeze({x:1}),
{y: {value: 2, writable: true}}));

6.8 Object Attributes | 137

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

6.9 Serializing Objects

Object serialization is the process of converting an object’s state to a string from which
it can later be restored. ECMAScript 5 provides native functions JSON. stringify() and
JSON.parse() to serialize and restore JavaScript objects. These functions use the JSON
data interchange format. JSON stands for “JavaScript Object Notation,” and its syntax
is very similar to that of JavaScript object and array literals:

{x:1, y:{z:[false,null,""]}}; // Define a test object

JSON.stringify(o); /] s is "{"x":1,"y":{"z":[false,null,""]}}'
JSON.parse(s); // p is a deep copy of o

[0]
S

P

The native implementation of these functions in ECMAScript 5 was modeled very
closely after the public-domain ECMAScript 3 implementation available at http://json
.org/json2.js. For practical purposes, the implementations are the same, and you can
use these ECMAScript 5 functions in ECMAScript 3 with this json2.js module.

JSON syntax is a subset of JavaScript syntax, and it cannot represent all JavaScript
values. Objects, arrays, strings, finite numbers, true, false, and null are supported and
can be serialized and restored. NaN, Infinity, and -Infinity are serialized to null. Date
objects are serialized to ISO-formatted date strings (see the Date.toJSON() function),
but JSON.parse() leaves these in string form and does not restore the original Date
object. Function, RegExp, and Error objects and the undefined value cannot be serial-
ized or restored. JSON. stringify() serializes only the enumerable own properties of an
object. If a property value cannot be serialized, that property is simply omitted from
the stringified output. Both JSON. stringify() and JSON.parse() accept optional second
arguments that can be used to customize the serialization and/or restoration process
by specitying a list of properties to be serialized, for example, or by converting certain
values during the serialization or stringification process. Complete documentation for
these functions is in the reference section.

6.10 Object Methods

As discussed earlier, all JavaScript objects (except those explicitly created without a
prototype) inherit properties from Object.prototype. These inherited properties are
primarily methods, and because they are universally available, they are of particular
interest to JavaScript programmers. We've already seen the hasOwnProperty(),
propertyIsEnumerable(), and isPrototype0f() methods. (And we’ve also already cov-
ered quite a few static functions defined on the Object constructor, such as
Object.create() and Object.getPrototype0f().) This section explains a handful of uni-
versal object methods that are defined on Object.prototype, but which are intended to
be overridden by other, more specialized classes.

138 | Chapter6: Objects

http://json.org/json2.js
http://json.org/json2.js

6.10.1 The toString() Method

The toString() method takes no arguments; it returns a string that somehow represents
the value of the object on which it is invoked. JavaScript invokes this method of an
object whenever it needs to convert the object to a string. This occurs, for example,
when you use the + operator to concatenate a string with an object or when you pass
an object to a method that expects a string.

The default toString() method is not very informative (though it is useful for deter-
mining the class of an object, as we saw in §6.8.2). For example, the following line of
code simply evaluates to the string “[object Object]”:

var s = { x:1, y:1 }.toString();

Because this default method does not display much useful information, many classes
define their own versions of toString(). For example, when an array is converted to a
string, you obtain a list of the array elements, themselves each converted to a string,
and when a function is converted to a string, you obtain the source code for the function.
These customized versions of the toString() method are documented in the reference
section. See Array.toString(), Date.toString(), and Function.toString(), for
example.

§9.6.3 describes how to define a custom toString() method for your own classes.

6.10.2 The toLocaleString() Method

In addition to the basic toString() method, objects all have a toLocaleString(). The
purpose of this method is to return a localized string representation of the object. The
default toLocaleString() method defined by Object doesn’t do any localization itself:
it simply calls toString() and returns that value. The Date and Number classes define
customized versions of tolLocaleString() that attempt to format numbers, dates, and
times according to local conventions. Array defines a tolLocaleString() method that
works like toString() except that it formats array elements by calling their toLocale
String() methods instead of their toString() methods.

6.10.3 The toJSON() Method

Object.prototype does not actually define a toJSON() method, but the
ISON. stringify() method (see §6.9) looks for a toJSON() method on any object it is
asked to serialize. If this method exists on the object to be serialized, it is invoked, and
the return value is serialized, instead of the original object. See Date.toJSON() for an
example.

6.10 Object Methods | 139

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

6.10.4 The valueOf() Method

The value0f() method is much like the toString() method, but it is called when Java-
Script needs to convert an object to some primitive type other than a string—typically,
a number. JavaScript calls this method automatically if an object is used in a context
where a primitive value is required. The default value0Of() method does nothing inter-
esting, but some of the built-in classes define their own value0Of() method (see
Date.value0f(), for example). §9.6.3 explains how to define a value0f() method for
custom object types you define.

140 | Chapter6: Objects

CHAPTER 7
Arrays

An array is an ordered collection of values. Each value is called an element, and each
element has a numeric position in the array, known as its index. JavaScript arrays are
untyped: an array element may be of any type, and different elements of the same array
may be of different types. Array elements may even be objects or other arrays, which
allows you to create complex data structures, such as arrays of objects and arrays of
arrays. JavaScript arrays are zero-based and use 32-bit indexes: the index of the first
element is 0, and the highest possible index is 4294967294 (232-2), for a maximum
array size of 4,294,967,295 elements. JavaScript arrays are dynamic: they grow or shrink
as needed and there is no need to declare a fixed size for the array when you create it
or to reallocate it when the size changes. JavaScript arrays may be sparse: the elements
need not have contiguous indexes and there may be gaps. Every JavaScript array has a
length property. For nonsparse arrays, this property specifies the number of elements
in the array. For sparse arrays, length is larger than the index of all elements.

JavaScript arrays are a specialized form of JavaScript object, and array indexes are really
little more than property names that happen to be integers. We’ll talk more about the
specializations of arrays elsewhere in this chapter. Implementations typically optimize
arrays so that access to numerically indexed array elements is generally significantly
faster than access to regular object properties.

Arrays inherit properties from Array.prototype, which defines a rich set of array ma-
nipulation methods, covered in §7.8 and §7.9. Most of these methods are generic,
which means that they work correctly not only for true arrays, but for any “array-like
object.” We’ll discuss array-like objects in §7.11. In ECMAScript 3, strings behave like
arrays of characters, and we’ll discuss this in §7.12.

7.1 Creating Arrays

The easiest way to create an array is with an array literal, which is simply a comma-
separated list of array elements within square brackets. For example:

4

var empty = []; // An array with no elements
var primes = [2, 3, 5, 7, 11]; // An array with 5 numeric elements

non

var misc = [1.1, true, "a",]; // 3 elements of various types + trailing comma

The values in an array literal need not be constants; they may be arbitrary expressions:

var base = 1024;
var table = [base, base+1, base+2, base+3];

Array literals can contain object literals or other array literals:
var b = [[1,{x:1, y:2}], [2, {x:3, y:4}]];

If you omit a value from an array literal, the omitted element is given the value
undefined:

var count = [1,,3]; // An array with 3 elements, the middle one undefined.
var undefs = [,,]; // An array with 2 elements, both undefined.

Array literal syntax allows an optional trailing comma, so [,,] has only two elements,
not three.

Another way to create an array is with the Array() constructor. You can invoke this
constructor in three distinct ways:

* (Call it with no arguments:
var a = new Array();
This method creates an empty array with no elements and is equivalent to the array
literal [].
* Call it with a single numeric argument, which specifies a length:
var a = new Array(10);
This technique creates an array with the specified length. This form of the
Array() constructor can be used to preallocate an array when you know in advance

how many elements will be required. Note that no values are stored in the array,
and the array index properties “0”, “1”, and so on are not even defined for the array.

* Explicitly specify two or more array elements or a single non-numeric element for
the array:

var a = new Array(5, 4, 3, 2, 1, "testing, testing");

In this form, the constructor arguments become the elements of the new array.
Using an array literal is almost always simpler than this usage of the Array()
constructor.

7.2 Reading and Writing Array Elements

You access an element of an array using the [] operator. A reference to the array should
appear to the left of the brackets. An arbitrary expression that has a non-negative integer

142 | Chapter7: Arays

value should be inside the brackets. You can use this syntax to both read and write the
value of an element of an array. Thus, the following are all legal JavaScript statements:

var a = ["world"]; // Start with a one-element array

var value = a[0]; // Read element 0

a[1] = 3.14; // Write element 1

i=2;

a[i] = 3; // Write element 2

a[i + 1] = "hello"; // Write element 3

ala[i]] = a[o0]; // Read elements 0 and 2, write element 3

Remember that arrays are a specialized kind of object. The square brackets used to
access array elements work just like the square brackets used to access object properties.
JavaScript converts the numeric array index you specify to a string—the index 1 be-
comes the string "1"—then uses that string as a property name. There is nothing special
about the conversion of the index from a number to a string: you can do that with
regular objects, too:

o={}; // Create a plain object
o[1] = "one"; // Index it with an integer

What is special about arrays is that when you use property names that are non-negative
integers less than 232, the array automatically maintains the value of the length property
for you. Above, for example, we created an array a with a single element. We then
assigned values at indexes 1, 2, and 3. The length property of the array changed as we

did so:
a.length /] =>4

It is helpful to clearly distinguish an array index from an object property name. All
indexes are property names, but only property names that are integers between 0 and
2321 are indexes. All arrays are objects, and you can create properties of any name on
them. If you use properties that are array indexes, however, arrays have the special
behavior of updating their length property as needed.

Note that you can index an array using numbers that are negative or that are not inte-

gers. When you do this, the number is converted to a string, and that string is used as

the property name. Since the name is not a non-negative integer, it is treated as a regular

object property, not an array index. Also, if you index an array with a string that hap-

pens to be a non-negative integer, it behaves as an array index, not an object property.

The same is true if you use a floating-point number that is the same as an integer:
a[-1.23] = true; // This creates a property named "-1.23"

a["1000"] = 0; // This the 1001st element of the array
a[1.000] // Array index 1. Same as a[1]

The fact that array indexes are simply a special type of object property name means
that JavaScript arrays have no notion of an “out of bounds” error. When you try to
query a nonexistent property of any object, you don’t get an error, you simply get
undefined. This is just as true for arrays as it is for objects:

7.2 Reading and Writing Array Elements | 143

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

a = [true, false]; // This array has elements at indexes 0 and 1
a[2] // => undefined. No element at this index.
a[-1] // => undefined. No property with this name.

Since arrays are objects, they can inherit elements from their prototype. In
ECMAScript 5, they can even have array elements defined by getter and setter methods
(86.6). If an array does inherit elements or use getters and setters for elements, you
should expect it to use a nonoptimized code path: the time to access an element of such
an array would be similar to regular object property lookup times.

7.3 Sparse Arrays

A sparse array is one in which the elements do not have contiguous indexes starting at
0. Normally, the length property of an array specifies the number of elements in the
array. If the array is sparse, the value of the length property is greater than the number
of elements. Sparse arrays can be created with the Array() constructor or simply by
assigning to an array index larger than the current array length.

a = new Array(5); // No elements, but a.length is 5.
a=1[]; // Create an array with no elements and length = 0.
a[1000] = 0; // Assignment adds one element but sets length to 1001.

We’ll see later that you can also make an array sparse with the delete operator.

Arrays that are sufficiently sparse are typically implemented in a slower, more memory-
efficient way than dense arrays are, and looking up elements in such an array will take
about as much time as regular object property lookup.

Note that when you omit value in an array literal, you are not creating a sparse array.
The omitted element exists in the array and has the value undefined. This is subtly
different than array elements that do not exist at all. You can detect the difference
between these two cases with the in operator:

var a1 = [,,,]; // This array is [undefined, undefined, undefined]
var a2 = new Array(3); // This array has no values at all

0 in a1 // => true: a1l has an element with index 0

0 in a2 // => false: a2 has no element with index 0

The difference between a1 and a2 is also apparent when you use a for/in loop. See §7.6.

Understanding sparse arrays is an important part of understanding the true nature of
JavaScript arrays. In practice, however, most JavaScript arrays you will work with will
not be sparse. And, if you do have to work with a sparse array, your code will probably
treat it just as it would treat a nonsparse array with undefined elements.

7.4 Array Length

Every array has a length property, and it is this property that makes arrays different
from regular JavaScript objects. For arrays that are dense (i.e., not sparse), the length

144 | Chapter7: Arays

property specifies the number of elements in the array. Its value is one more than the
highest index in the array:

[1.1length // => 0: the array has no elements

['a','b",'c'].length // => 3: highest index is 2, length is 3
When an array is sparse, the length property is greater than the number of elements,
and all we can say about it is that length is guaranteed to be larger than the index of
every element in the array. Or, put another way, an array (sparse or not) will never have
an element whose index is greater than or equal to its length. In order to maintain this
invariant, arrays have two special behaviors. The first was described above: if you assign
avalue to an array element whose index i is greater than or equal to the array’s current
length, the value of the length property is set to i+1.

The second special behavior that arrays implement in order to maintain the length
invariant is that if you set the length property to a non-negative integer n smaller than
its current value, any array elements whose index is greater than or equal to n are deleted
from the array:

a = [1,2,3,4,5]; // Start with a 5-element array.

a.length = 3; // a is now [1,2,3].
a.length = 0; // Delete all elements. a is [].
a.length = 5; // Length is 5, but no elements, like new Array(5)

You can also set the length property of an array to a value larger than its current value.
Doing this does not actually add any new elements to the array, it simply creates a
sparse area at the end of the array.

In ECMAScript 5, you can make the length property of an array read-only with
Object.defineProperty() (see §6.7):

a = [1,2,3]; // Start with a 3-element array.

Object.defineProperty(a, "length", // Make the length property
{writable: false}); // readonly.

a.length = 0; // a is unchanged.

Similarly, if you make an array element nonconfigurable, it cannot be deleted. If it
cannot be deleted, then the length property cannot be set to less than the index of the
nonconfigurable element. (See §6.7 and the Object.seal() and Object.freeze() meth-
ods in §6.8.3.)

7.5 Adding and Deleting Array Elements
We've already seen the simplest way to add elements to an array: just assign values to
new indexes:

a=1[] // Start with an empty array.
a[o] = "zero"; // And add elements to it.
a[1] = "one";

You can also use the push() method to add one or more values to the end of an array:

7.5 Adding and Deleting Array Elements | 145

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

a=1[]; // Start with an empty array
a.push("zero" // Add a value at the end. a = ["zero"
a.push("one", "two") // Add two more values. a = ["zero", "one", "two"]

Pushing a value onto an array a is the same as assigning the value to a[a.length]. You
can use the unshift() method (described in §7.8) to insert a value at the beginning of
an array, shifting the existing array elements to higher indexes.

You can delete array elements with the delete operator, just as you can delete object
properties:

a = [1,'2)3];

delete a[1]; // a now has no element at index 1

11in a // => false: no array index 1 is defined
a.length // => 3: delete does not affect array length

Deleting an array element is similar to (but subtly different than) assigning undefined
to that element. Note that using delete on an array element does not alter the length
property and does not shift elements with higher indexes down to fill in the gap that is
left by the deleted property. If you delete an element from an array, the array becomes
sparse.

As we saw above, you can also delete elements from the end of an array simply by setting
the length property to the new desired length. Arrays have a pop() method (it works
with push()) that reduces the length of an array by 1 but also returns the value of the
deleted element. There is also a shift() method (which goes with unshift()) to remove
an element from the beginning of an array. Unlike delete, the shift() method shifts
all elements down to an index one lower than their current index. pop() and shift()
are covered in §7.8 and in the reference section.

Finally, splice() is the general-purpose method for inserting, deleting, or replacing
array elements. It alters the length property and shifts array elements to higher or lower
indexes as needed. See §7.8 for details.

7.6 Iterating Arrays

The most common way to loop through the elements of an array is with a for loop
(85.5.3):

var keys = Object.keys(o); // Get an array of property names for object o

var values = [] // Store matching property values in this array
for(var i = 0; i < keys.length; i++) { // For each index in the array

var key = keys[i]; // Get the key at that index

values[i] = o[key]; // Store the value in the values array
}

In nested loops, or other contexts where performance is critical, you may sometimes
see this basic array iteration loop optimized so that the array length is only looked up
once rather than on each iteration:

146 | Chapter7: Arays

for(var i = 0, len = keys.length; i < len; i++) {
// loop body remains the same

}

These examples assume that the array is dense and that all elements contain valid data.
If this is not the case, you should test the array elements before using them. If you want
to exclude null, undefined, and nonexistent elements, you can write this:

for(var i = 0; i < a.length; i++) {

if (!a[i]) continue; // Skip null, undefined, and nonexistent elements
// loop body here

If you only want to skip undefined and nonexistent elements, you might write:

for(var i = 0; i < a.length; i++) {
if (a[i] === undefined) continue; // Skip undefined + nonexistent elements
// loop body here

Finally, if you only want to skip indexes for which no array element exists but still want
to handle existing undefined elements, do this:
for(var i = 0; i < a.length; i++) {
if (I(i in a)) continue ; // Skip nonexistent elements

// loop body here
}

You can also use a for/in loop (§85.5.4) with sparse arrays. This loop assigns enumera-
ble property names (including array indexes) to the loop variable one at a time. Indexes
that do not exist will not be iterated:
for(var index in sparseArray) {
var value = sparseArray[index];
// Now do something with index and value

}

As noted in §6.5, a for/in loop can return the names of inherited properties, such as
the names of methods that have been added to Array.prototype. For this reason you
should not use a for/in loop on an array unless you include an additional test to filter
out unwanted properties. You might use either of these tests:
for(var i in a) {
if (la.hasOwnProperty(i)) continue; // Skip inherited properties
// loop body here
}

for(var i in a) {
// Skip i if it is not a non-negative integer
if (String(Math.floor(Math.abs(Number(i)))) !== i) continue;

The ECMAScript specification allows the for/in loop to iterate the properties of an
object in any order. Implementations typically iterate array elements in ascending or-
der, but this is not guaranteed. In particular, if an array has both object properties and
array elements, the property names may be returned in the order they were created,

7.6 Iterating Arrays | 147

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

rather than in numeric order. Implementations differ in how they handle this case, so
if iteration order matters for your algorithm, it is best to use a regular for loop instead
of for/in.

ECMAScript 5 defines a number of new methods for iterating array elements by passing
each one, in index order, to a function that you define. The forEach() method is the
most general of these methods:

var data = [1,2,3,4,5]; // This is the array we want to iterate

var sumOfSquares = 0; // We want to compute the sum of the squares of data

data.forEach(function(x) { // Pass each element of data to this function
sumOfSquares += x*x; // add up the squares

b;
sum0fSquares // =>55 : 1+4+9+16+25

forEach() and related iteration methods enable a simple and powerful functional pro-
gramming style for working with arrays. They are covered in §7.9, and we’ll return to
them in §8.8, when we cover functional programming.

7.7 Multidimensional Arrays

JavaScript does not support true multidimensional arrays, but you can approximate
them with arrays of arrays. To access a value in an array of arrays, simply use the []
operator twice. For example, suppose the variable matrix is an array of arrays of num-
bers. Every element in matrix[x] is an array of numbers. To access a particular number
within this array, you would write matrix[x][y]. Here is a concrete example that uses
a two-dimensional array as a multiplication table:

// Create a multidimensional array

var table = new Array(10); // 10 rows of the table
for(var i = 0; i < table.length; i++)
table[i] = new Array(10); // Each row has 10 columns

// Initialize the array
for(var row = 0; row < table.length; row++) {
for(col = 0; col < table[row].length; col++) {
table[row][col] = row*col;

}

// Use the multidimensional array to compute 5%7
var product = table[5][7]; // 35

7.8 Array Methods

ECMAScript 3 defines a number of useful array manipulation functions on
Array.prototype, which means that they are available as methods of any array. These
ECMAScript 3 methods are introduced in the subsections below. As usual, complete
details can be found under Array in the client-side reference section. ECMAScript 5
adds new array iteration methods; those methods are covered in §7.9.

148 | Chapter7: Arays

7.8.1 join()

The Array.join() method converts all the elements of an array to strings and concat-
enates them, returning the resulting string. You can specify an optional string that
separates the elements in the resulting string. If no separator string is specified, a comma
is used. For example, the following lines of code produce the string “1,2,3”:

var a = [1, 2, 3]; // Create a new array with these three elements
a.join(); // => "1,2,3"

a.join(" "); // =>"12 3"

a.join(""); // => "123"

var b = new Array(10); // An array of length 10 with no elements
b.join('-") [l => "o "t a string of 9 hyphens

The Array.join() method is the inverse of the String.split() method, which creates
an array by breaking a string into pieces.

7.8.2 reverse()

The Array.reverse() method reverses the order of the elements of an array and returns
the reversed array. It does this in place; in other words, it doesn’t create a new array
with the elements rearranged but instead rearranges them in the already existing array.
For example, the following code, which uses the reverse() and join() methods, pro-
duces the string “3,2,1”:

var a = [1,2,3];
a.reverse().join() // => "3,2,1" and a is now [3,2,1]

7.8.3 sort()

Array.sort() sorts the elements of an array in place and returns the sorted array. When
sort() is called with no arguments, it sorts the array elements in alphabetical order
(temporarily converting them to strings to perform the comparison, if necessary):

var a = new Array(“"banana", "cherry", "apple");

a.sort();
var s = a.join(", "); // s == "apple, banana, cherry"

If an array contains undefined elements, they are sorted to the end of the array.

To sort an array into some order other than alphabetical, you must pass a comparison
function as an argument to sort(). This function decides which of its two arguments
should appear first in the sorted array. If the first argument should appear before the
second, the comparison function should return a number less than zero. If the first
argument should appear after the second in the sorted array, the function should return
a number greater than zero. And if the two values are equivalent (i.e., if their order is
irrelevant), the comparison function should return 0. So, for example, to sort array
elements into numerical rather than alphabetical order, you might do this:
var a = 33, 4, 1111, 222];

a.sort(); // Alphabetical order: 1111, 222, 33, 4
a.sort(function(a,b) { // Numerical order: 4, 33, 222, 1111

7.8 Array Methods | 149

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

return a-b; // Returns 81t; 0, 0, or > 0, depending on order

B

a.sort(function(a,b) {return b-a}); // Reverse numerical order

Note the convenient use of unnamed function expressions in this code. Since the com-
parison functions are used only once, there is no need to give them names.

As another example of sorting array items, you might perform a case-insensitive al-
phabetical sort on an array of strings by passing a comparison function that converts
both of its arguments to lowercase (with the toLowerCase() method) before comparing
them:
a=['ant', 'Bug', 'cat', 'Dog'l]
a.sort(); // case-sensitive sort: ['Bug','Dog','ant',cat']
a.sort(function(s,t) { // Case-insensitive sort
var a = s.tolLowerCase();
var b = t.tolLowerCase();
if (a < b) return -1;
if (a > b) return 1;
return 0;
1 // => ['ant','Bug','cat', 'Dog']

7.8.4 concat()

The Array.concat() method creates and returns a new array that contains the elements
of the original array on which concat() was invoked, followed by each of the arguments
to concat(). If any of these arguments is itself an array, then it is the array elements that
are concatenated, not the array itself. Note, however, that concat () does not recursively
flatten arrays of arrays. concat() does not modify the array on which it is invoked. Here
are some examples:

var a = [1,2,3];

a.concat(4, 5) // Returns [1,2,3,4,5]
a.concat([4,5]); // Returns [1,2,3,4,5]
a.concat([4,5],[6,7]) // Returns [1,2,3,4,5,6,7]
a.concat(4, [5,[6,7]1) // Returns [1,2,3,4,5,[6,7]]

7.8.5 slice()

The Array.slice() method returns a slice, or subarray, of the specified array. Its two
arguments specify the start and end of the slice to be returned. The returned array
contains the element specified by the first argument and all subsequent elements up
to, but not including, the element specified by the second argument. If only one argu-
ment is specified, the returned array contains all elements from the start position to the
end of the array. If either argument is negative, it specifies an array element relative to
the last element in the array. An argument of -1, for example, specifies the last element
in the array, and an argument of -3 specifies the third from last element of the array.
Note that slice() does not modify the array on which it is invoked. Here are some
examples:

var a = [1)2)3)4)5];
a.slice(0,3); // Returns [1,2,3]

150 | Chapter7: Arrays

a.slice(3); // Returns [4,5]
a.slice(1,-1); // Returns [2,3,4]
a.slice(-3,-2); // Returns [3]

7.8.6 splice()

The Array.splice() method is a general-purpose method for inserting or removing
elements from an array. Unlike slice() and concat(), splice() modifies the array on
which it is invoked. Note that splice() and slice() have very similar names but per-
form substantially different operations.

splice() can delete elements from an array, insert new elements into an array, or per-
form both operations at the same time. Elements of the array that come after the in-
sertion or deletion point have their indexes increased or decreased as necessary so that
they remain contiguous with the rest of the array. The first argument to splice() speci-
fies the array position at which the insertion and/or deletion is to begin. The second
argument specifies the number of elements that should be deleted from (spliced out of)
the array. If this second argument is omitted, all array elements from the start element
to the end of the array are removed. splice() returns an array of the deleted elements,
or an empty array if no elements were deleted. For example:

var a = [1,2,3,4,5,6,7,8];

a.splice(4); // Returns [5,6,7,8]; a is [1,2,3,4]

a.splice(1,2); // Returns [2,3]; a is [1,4]

a.splice(1,1); // Returns [4]; a is [1]

The first two arguments to splice() specify which array elements are to be deleted.
These arguments may be followed by any number of additional arguments that specify
elements to be inserted into the array, starting at the position specified by the first
argument. For example:

var a = [1,2,3,4,5];

a.splice(2,0,'a",'b"); // Returns []; a is [1,2,'a"','b",3,4,5]

a.splice(2,2,[1,2],3); // Returns ['a','b']; a is [1,2,[1,2],3,3,4,5]
Note that, unlike concat (), splice() inserts arrays themselves, not the elements of those
arrays.

7.8.7 push() and pop()

The push() and pop() methods allow you to work with arrays as if they were stacks.
The push() method appends one or more new elements to the end of an array and
returns the new length of the array. The pop() method does the reverse: it deletes the
last element of an array, decrements the array length, and returns the value that it
removed. Note that both methods modify the array in place rather than produce a
modified copy of the array. The combination of push() and pop() allows you to use a
JavaScript array to implement a first-in, last-out stack. For example:

var stack = []; // stack: []
stack.push(1,2); // stack: [1,2] Returns 2
stack.pop(); // stack: [1] Returns 2

7.8 Array Methods | 151

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

stack.push(3); // stack: [1,3] Returns 2
stack.pop(); // stack: [1] Returns 3
stack.push([4,5]); // stack: [1,[4,5]] Returns 2
stack.pop() // stack: [1] Returns [4,5]
stack.pop(); // stack: [] Returns 1

7.8.8 unshift() and shift()

The unshift() and shift() methods behave much like push() and pop(), except that
they insert and remove elements from the beginning of an array rather than from the
end. unshift() adds an element or elements to the beginning of the array, shifts the
existing array elements up to higher indexes to make room, and returns the new length
of the array. shift() removes and returns the first element of the array, shifting all
subsequent elements down one place to occupy the newly vacant space at the start of
the array. For example:

var a = []; /] a:[]

a.unshift(1); // a:[1] Returns: 1
a.unshift(22); // a:[22,1] Returns: 2
a.shift(); // a:[1] Returns: 22
a.unshift(3,[4,5]); // a:[3,[4,5],1] Returns: 3
a.shift(); // a:[[4,5],1] Returns: 3
a.shift(); // a:[1] Returns: [4,5]
a.shift(); // a:[] Returns: 1

Note the possibly surprising behavior of unshift() when it’s invoked with multiple
arguments. Instead of being inserted into the array one at a time, arguments are inserted
all at once (as with the splice() method). This means that they appear in the resulting
array in the same order in which they appeared in the argument list. Had the elements
been inserted one at a time, their order would have been reversed.

7.8.9 toString() and toLocaleString()

An array, like any JavaScript object, has a toString() method. For an array, this method
converts each of its elements to a string (calling the toString() methods of its elements,
if necessary) and outputs a comma-separated list of those strings. Note that the output
does not include square brackets or any other sort of delimiter around the array value.
For example:

[1,2,3].toString() // Yields '1,2,3'

["a", "b", "c"].toString() // Yields 'a,b,c’

[1, [2,"'c"]].toString() // Yields '1,2,c'
Note that the join() method returns the same string when it is invoked with no
arguments.

toLocaleString() is the localized version of toString(). It converts each array element
to a string by calling the toLocaleString() method of the element, and then it concat-
enates the resulting strings using a locale-specific (and implementation-defined) sepa-
rator string.

152 | Chapter7: Arays

7.9 ECMAScript 5 Array Methods

ECMAScript 5 defines nine new array methods for iterating, mapping, filtering, testing,
reducing, and searching arrays. The subsections below describe these methods.

Before we cover the details, however, it is worth making some generalizations about
these ECMAScript 5 array methods. First, most of the methods accept a function as
their first argument and invoke that function once for each element (or some elements)
of the array. If the array is sparse, the function you pass is not invoked for nonexistent
elements. In most cases, the function you supply is invoked with three arguments: the
value of the array element, the index of the array element, and the array itself. Often,
you only need the first of these argument values and can ignore the second and third
values. Most of the ECMAScript 5 array methods that accept a function as their first
argument accept an optional second argument. If specified, the function is invoked as
if it is a method of this second argument. That is, the second argument you pass be-
comes the value of the this keyword inside of the function you pass. The return value
of the function you pass is important, but different methods handle the return value in
different ways. None of the ECMAScript 5 array methods modify the array on which
they are invoked. If you pass a function to these methods, that function may modify
the array, of course.

7.9.1 forEach()

The forEach() method iterates through an array, invoking a function you specify for
each element. As described above, you pass the function as the first argument to
forEach(). forEach() then invokes your function with three arguments: the value of the
array element, the index of the array element, and the array itself. If you only care about
the value of the array element, you can write a function with only one parameter—the
additional arguments will be ignored:

var data = [1,2,3,4,5]; // An array to sum

// Compute the sum of the array elements

var sum = 0; // Start at o
data.forEach(function(value) { sum += value; }); // Add each value to sum
sum /] => 15

// Now increment each array element
data.forkach(function(v, i, a) { a[i] = v + 1; });
data /] = [2)3)4)5)6]

Note that forEach() does not provide a way to terminate iteration before all elements
have been passed to the function. That is, there is no equivalent of the break statement
you can use with a regular for loop. If you need to terminate early, you must throw an
exception, and place the call to forEach() within a try block. The following code defines
a foreach() function that calls the forEach() method within such a try block. If the
function passed to foreach() throws foreach.break, the loop will terminate early:

function foreach(a,f,t) {
try { a.forEach(f,t); }

7.9 ECMAScript 5 Array Methods | 153

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

catch(e) {

if (e === foreach.break) return;
else throw e;
}

}

foreach.break = new Error("StopIteration");

7.9.2 map()

Themap() method passes each element of the array on which itis invoked to the function
you specify, and returns an array containing the values returned by that function. For
example:

[1, 2, 3];
a.map(function(x) { return x*x; }); // b is [1, 4, 9]

a
b

The function you pass to map() is invoked in the same way as a function passed to
forEach(). For the map() method, however, the function you pass should return a value.
Note that map() returns a new array: it does not modify the array it is invoked on. If
that array is sparse, the returned array will be sparse in the same way: it will have the
same length and the same missing elements.

7.9.3 filter()

The filter() method returns an array containing a subset of the elements of the array
on which it is invoked. The function you pass to it should be predicate: a function that
returns true or false. The predicate is invoked just as for forEach() and map(). If the
return value is true, or a value that converts to true, then the element passed to the
predicate is a member of the subset and is added to the array that will become the return
value. Examples:

a =[5, 4,3, 2,1];

smallvalues = a.filter(function(x) { return x < 3 }); // [2, 1]
everyother = a.filter(function(x,i) { return i%2==0 }); // [5, 3, 1]

Note that filter() skips missing elements in sparse arrays, and that its return value is
always dense. To close the gaps in a sparse array, you can do this:

var dense = sparse.filter(function() { return true; });

And to close gaps and remove undefined and null elements you can use filter like this:

a = a.filter(function(x) { return x !== undefined && x != null; });

7.9.4 every() and some()

The every() and some() methods are array predicates: they apply a predicate function
you specify to the elements of the array, and then return true or false.

The every() method is like the mathematical “for all” quantifier V: it returns true if
and only if your predicate function returns true for all elements in the array:

154 | Chapter7: Arrays

a = [1)2)3)4;5];
a.every(function(x) { return x < 10; }) // => true: all values < 10.
a.every(function(x) { return x % 2 === 0; }) // => false: not all values even.

The some() method is like the mathematical “there exists” quantifier 3: it returns
true if there exists at least one element in the array for which the predicate returns
true, and returns false if and only if the predicate returns false for all elements of
the array:

a = [1,2,3,4,5];

a.some(function(x) { return x%2===0; }) // => true a has some even numbers.
a.some(isNaN) // => false: a has no non-numbers.

Note that both every() and some() stop iterating array elements as soon as they know
what value to return. some() returns true the first time your predicate returns true, and
only iterates through the entire array if your predicate always returns false. every() is
the opposite: it returns false the first time your predicate returns false, and only iter-
ates all elements if your predicate always returns true. Note also that by mathematical
convention, every() returns true and some returns false when invoked on an empty
array.

7.9.5 reduce(), reduceRight()

The reduce() and reduceRight() methods combine the elements of an array, using the
function you specify, to produce a single value. This is a common operation in func-
tional programming and also goes by the names “inject” and “fold.” Examples help
illustrate how it works:

var a = [1,2,3,4,5]

var sum = a.reduce(function(x,y) { return x+y }, 0); // Sum of values

var product = a.reduce(function(x,y) { return x*y }, 1); // Product of values
var max = a.reduce(function(x,y) { return (x>y)?x:y; }); // Largest value

reduce() takes two arguments. The first is the function that performs the reduction
operation. The task of this reduction function is to somehow combine or reduce two
values into a single value, and to return that reduced value. In the examples above, the
functions combine two values by adding them, multiplying them, and choosing the
largest. The second (optional) argument is an initial value to pass to the function.

Functions used with reduce() are different than the functions used with forEach() and
map(). The familiar value, index, and array values are passed as the second, third, and
fourth arguments. The first argument is the accumulated result of the reduction so far.
On the first call to the function, this first argument is the initial value you passed as the
second argument to reduce(). On subsequent calls, it is the value returned by the pre-
vious invocation of the function. In the first example above, the reduction function is
first called with arguments 0 and 1. It adds these and returns 1. It is then called again
with arguments 1 and 2 and it returns 3. Next it computes 3+3=6, then 6+4=10, and
finally 10+5=15. This final value, 15, becomes the return value of reduce().

7.9 ECMAScript 5 Array Methods | 155

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

You may have noticed that the third call to reduce() above has only a single argument:
there is no initial value specified. When you invoke reduce() like this with no initial
value, it uses the first element of the array as the initial value. This means that the
first call to the reduction function will have the first and second array elements as its
first and second arguments. In the sum and product examples above, we could have
omitted the initial value argument.

Calling reduce() on an empty array with no initial value argument causes a TypeError.
If you call it with only one value—either an array with one element and no initial value
or an empty array and an initial value—it simply returns that one value without ever
calling the reduction function.

reduceRight () works just like reduce(), except that it processes the array from highest
index to lowest (right-to-left), rather than from lowest to highest. You might want to
do this if the reduction operation has right-to-left precedence, for example:

var a = [2, 3, 4]

// Compute 2%(3"4). Exponentiation has right-to-left precedence

var big = a.reduceRight(function(accumulator,value) {
return Math.pow(value,accumulator);

s

Note that neither reduce() nor reduceRight() accepts an optional argument that speci-
fies the this value on which the reduction function is to be invoked. The optional initial
value argument takes its place. See the Function.bind() method if you need your re-
duction function invoked as a method of a particular object.

It is worth noting that the every() and some() methods described above perform a kind
of array reduction operation. They differ from reduce(), however, in that they terminate
early when possible, and do not always visit every array element.

The examples shown so far have been numeric for simplicity, but reduce() and reduce
Right() are not intended solely for mathematical computations. Consider the
union() function from Example 6-2. It computes the “union” of two objects and returns
a new object that has the properties of both. This function expects two objects and
returns another object, so it works as a reduction function, and we can use reduce() to
generalize it and compute the union of any number of objects:

var objects = [{x:1}, {y:2}, {z:3}];

var merged = objects.reduce(union); /] => {x:1, y:2, z:3}
Recall that when two objects have properties with the same name, the union() function
uses the value of that property from the first argument. Thus reduce() and reduce
Right() may give different results when used with union():

var objects = [{x:1,a:1}, {y:2,a:2}, {z:3,a:3}];

var leftunion = objects.reduce(union); // {x:1, y:2, z:3, a:1}
var rightunion = objects.reduceRight(union); // {x:1, y:2, z:3, a:3}

156 | Chapter7: Arrays

7.9.6 index0f() and lastIndex0f()

index0f() and lastIndex0f() search an array for an element with a specified value, and
return the index of the first such element found, or —1 if none is found. index0f()
searches the array from beginning to end, and lastIndex0f() searches from end to
beginning.

a = [0,1,2,1,0];

a.index0f(1) // => 1: a[1] is 1
a.lastIndex0f(1) // => 3: a[3] is 1
a.index0f(3) // => -1: no element has value 3

Unlike the other methods described in this section, index0f() and lastIndex0f() do
not take a function argument. The first argument is the value to search for. The second
argument is optional: it specifies the array index at which to begin the search. If this
argument is omitted, index0f() starts at the beginning and lastIndex0f() starts at the
end. Negative values are allowed for the second argument and are treated as an offset
from the end of the array, as they are for the splice() method: a value of -1, for example,
specifies the last element of the array.

The following function searches an array for a specified value and returns an array of
all matching indexes. This demonstrates how the second argument to index0f() can
be used to find matches beyond the first.

// Find all occurrences of a value x in an array a and return an array

// of matching indexes
function findall(a, x) {

var results = [], // The array of indexes we'll return
len = a.length, // The length of the array to be searched
pos = 0; // The position to search from
while(pos < len) { // While more elements to search...
pos = a.indexOf(x, pos); // Search
if (pos === -1) break; // If nothing found, we're done.
results.push(pos); // Otherwise, store index in array
pos = pos + 1; // And start next search at next element
return results; // Return array of indexes

}

Note that strings have index0f() and lastIndex0f() methods that work like these array
methods.

7.10 Array Type

We’ve seen throughout this chapter that arrays are objects with some special behavior.
Given an unknown object, it is often useful to be able to determine whether it is an
array or not. In ECMAScript 5, you can do this with the Array.isArray() function:

Array.isArray([]) /] => true
Array.isArray({}) // => false

7.10 Array Type | 157

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

Prior to ECMAScript 5, however, distinguishing arrays from nonarray objects was sur-
prisingly difficult. The typeof operator does not help here: it returns “object” for arrays
(and for all objects other than functions). The instanceof operator works in simple
cases:

[] instanceof Array // => true
({}) instanceof Array // => false

The problem with using instanceof is that in web browsers, there can be more than
one window or frame open. Each has its own JavaScript environment, with its own
global object. And each global object has its own set of constructor functions. Therefore
an object from one frame will never be an instance of a constructor from another frame.
While interframe confusion does not arise often, it is enough of a problem that the
instanceof operator is not deemed a reliable test for arrays.

The solution is to inspect the class attribute (see §6.8.2) of the object. For arrays, this
attribute will always have the value “Array”, and we can therefore write an isArray()
function in ECMAScript 3 like this:
var isArray = Function.isArray || function(o) {

return typeof o === "object" &&

Object.prototype.toString.call(o) === "[object Array]";
This test of the class attribute is, in fact, exactly what the ECMAScript 5
Array.isArray() function does. The technique for obtaining the class of an object using
Object.prototype.toString() is explained in §6.8.2 and demonstrated in Example 6-4.

7.11 Array-Like Objects

As we’ve seen, JavaScript arrays have some special features that other objects do
not have:

* The length property is automatically updated as new elements are added to the list.
* Setting length to a smaller value truncates the array.
* Arrays inherit useful methods from Array.prototype.
* Arrays have a class attribute of “Array”.
These are the features that make JavaScript arrays distinct from regular objects. But
they are not the essential features that define an array. It is often perfectly reasonable

to treat any object with a numeric length property and corresponding non-negative
integer properties as a kind of array.

These “array-like” objects actually do occasionally appear in practice, and although
you cannot directly invoke array methods on them or expect special behavior from the
length property, you can still iterate through them with the same code you’d use for a
true array. It turns out that many array algorithms work just as well with array-like

158 | Chapter7: Arrays

objects as they do with real arrays. This is especially true if your algorithms treat the
array as read-only or if they at least leave the array length unchanged.

The following code takes a regular object, adds properties to make it an array-like
object, and then iterates through the “elements” of the resulting pseudo-array:

var a = {}; // Start with a regular empty object

// Add properties to make it "array-like"
var i = 0;
while(i < 10) {
a[i] = i * i;
i++;
}
a.length = i;

// Now iterate through it as if it were a real array
var total = 0;
for(var j = 0; j < a.length; j++)

total += a[jl;

The Arguments object that’s described in §8.3.2 is an array-like object. In client-side
JavaScript, a number of DOM methods, such as document.getElementsByTagName(),
return array-like objects. Here’s a function you might use to test for objects that work
like arrays:

// Determine if o is an array-like object.

// Strings and functions have numeric length properties, but are

// excluded by the typeof test. In client-side JavaScript, DOM text
// nodes have a numeric length property, and may need to be excluded
// with an additional o.nodeType != 3 test.

function isArraylike(o) {

if (o && // o is not null, undefined, etc.
typeof o === "object" &3 // o is an object
isFinite(o.length) && // o.length is a finite number
o.length >= 0 8& // o.length is non-negative
o.length===Math.floor(o.length) 8&% // o.length is an integer
o.length < 4294967296) // o.length < 2732
return true; // Then o is array-like

else
return false; // Otherwise it is not

}

We'll see in §7.12 that ECMAScript 5 strings behave like arrays (and that some brows-
ers made strings indexable before ECMAScript 5). Nevertheless, tests like the one above
for array-like objects typically return false for strings—they are usually best handled
as strings, not as arrays.

The JavaScript array methods are purposely defined to be generic, so that they work
correctly when applied to array-like objects in addition to true arrays. In
ECMAScript 5, all array methods are generic. In ECMAScript 3, all methods except
toString() and tolLocaleString() are generic. (The concat() method is an exception:
although it can be invoked on an array-like object, it does not property expand that
object into the returned array.) Since array-like objects do not inherit from

7.11 Array-Like Objects | 159

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

Array.prototype, you cannot invoke array methods on them directly. You can invoke
them indirectly using the Function.call method, however:
var a = {"0":"a", "1":"b", "2":"c", length:3}; // An array-like object
Array.prototype.join.call(a, "+") // => "atb+c"
Array.prototype.slice.call(a, 0) // => ["a","b","c"]: true array copy
Array.prototype.map.call(a, function(x) {
return x.toUpperCase();
) /1 => ["A","B","C"]:
We've seen this call() technique before in the isArray() method of §7.10. The
call() method of Function objects is covered in more detail in §8.7.3.

The ECMAScript 5 array methods were introduced in Firefox 1.5. Because they were
written generically, Firefox also introduced versions of these methods as functions de-
fined directly on the Array constructor. With these versions of the methods defined,
the examples above can be rewritten like this:

var a = {"0":"a", "1":"b", "2":"c", length:3}; // An array-like object

Array.join(a, "+")

Array.slice(a, 0)

Array.map(a, function(x) { return x.toUpperCase(); })
These static function versions of the array methods are quite useful when working with
array-like objects, but since they are nonstandard, you can’t count on them to be de-
fined in all browsers. You can write code like this to ensure that the functions you need
exist before you use them:

Array.join = Array.join || function(a,sep) {
return Array.prototype.join.call(a,sep);
15

Array.slice = Array.slice || function(a,from,to) {
return Array.prototype.slice.call(a,from,to);
};

Array.map = Array.map || function(a, f, thisArg) {
return Array.prototype.map.call(a, f, thisArg);
}

7.12 Strings As Arrays

In ECMAScript 5 (and in many recent browser implementations—including IE8—
prior to ECMAScript 5), strings behave like read-only arrays. Instead of accessing in-
dividual characters with the charAt() method, you can use square brackets:

var s = test;

s.charAt(0) /] = "t"

s[1] /] =>"e"
The typeof operator still returns “string” for strings, of course, and the
Array.isArray() method returns false if you pass it a string.

The primary benefit of indexable strings is simply that we can replace calls to
charAt() with square brackets, which are more concise and readable, and potentially

160 | Chapter7: Arrays

more efficient. The fact that strings behave like arrays also means, however, that we
can apply generic array methods to them. For example:
s = "JavaScript"

Array.prototype.join.call(s, " ") // =>"JavaScript"
Array.prototype.filter.call(s, // Filter the characters of the string

function(x) {
return x.match(/[*aeiou]/); // Only match nonvowels
}).join("") // => "IvScrpt"
Keep in mind that strings are immutable values, so when they are treated as arrays, they
are read-only arrays. Array methods like push(), sort(), reverse(), and splice() mod-
ify an array in place and do not work on strings. Attempting to modify a string using
an array method does not, however, cause an error: it simply fails silently.

7.12 Strings As Arrays | 161

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

CHAPTER 8
Functions

A function is a block of JavaScript code that is defined once but may be executed, or
invoked, any number of times. You may already be familiar with the concept of a func-
tion under a name such as subroutine or procedure. JavaScript functions are parame-
terized: a function definition may include a list of identifiers, known as parameters, that
work as local variables for the body of the function. Function invocations provide val-
ues, or arguments, for the function’s parameters. Functions often use their argument
values to compute a return value that becomes the value of the function-invocation
expression. In addition to the arguments, each invocation has another value—the
invocation context—that is the value of the this keyword.

If a function is assigned to the property of an object, it is known as a method of that
object. When a function is invoked on or through an object, that object is the invocation
context or this value for the function. Functions designed to initialize a newly created
object are called constructors. Constructors were described in 8§6.1 and will be covered
again in Chapter 9.

In JavaScript, functions are objects, and they can be manipulated by programs. Java-
Script can assign functions to variables and pass them to other functions, for example.
Since functions are objects, you can set properties on them, and even invoke methods
on them.

JavaScript function definitions can be nested within other functions, and they have
access to any variables that are in scope where they are defined. This means that Java-
Script functions are closures, and it enables important and powerful programming
techniques.

163

8.1 Defining Functions

Functions are defined with the function keyword, which can be used in a function
definition expression (§4.3) or in a function declaration statement (§5.3.2). In either
form, function definitions begin with the keyword function followed by these
components:

* An identifier that names the function. The name is a required part of function
declaration statements: it is used as the name of a variable, and the newly defined
function object is assigned to the variable. For function definition expressions, the
name is optional: if present, the name refers to the function object only within the
body of the function itself.

* A pair of parentheses around a comma-separated list of zero or more identifiers.
These identifiers are the parameter names for the function, and they behave like
local variables within the body of the function.

* A pair of curly braces with zero or more JavaScript statements inside. These state-
ments are the body of the function: they are executed whenever the function is
invoked.

Example 8-1 shows some function definitions using both statement and expression
forms. Notice that a function defined as an expression is only useful if it is part of a
larger expression, such as an assignment or invocation, that does something with the
newly defined function.

Example 8-1. Defining JavaScript functions

// Print the name and value of each property of o. Return undefined.
function printprops(o) {
for(var p in o)

console.log(p +

" "

+ofp] + "\n");
}

// Compute the distance between Cartesian points (x1,y1) and (x2,y2).
function distance(x1, y1, x2, y2) {

var dx = x2 - x1;

var dy = y2 - yi;

return Math.sqrt(dx*dx + dy*dy);
}

// A recursive function (one that calls itself) that computes factorials
// Recall that x! is the product of x and all positive integers less than it.
function factorial(x) {
if (x <= 1) return 1;
return x * factorial(x-1);
}
// This function expression defines a function that squares its argument.
// Note that we assign it to a variable
var square = function(x) { return x*x; }

// Function expressions can include names, which is useful for recursion.

164 | Chapter8: Functions

var f = function fact(x) { if (x <= 1) return 1; else return x*fact(x-1); };

// Function expressions can also be used as arguments to other functions:
data.sort(function(a,b) { return a-b; });

// Function expressions are sometimes defined and immediately invoked:
var tensquared = (function(x) {return x*x;}(10));

Note that the function name is optional for functions defined as expressions. A function
declaration statement actually declares a variable and assigns a function object to it. A
function definition expression, on the other hand, does not declare a variable. A name
is allowed for functions, like the factorial function above, that need to refer to them-
selves. If a function definition expression includes a name, the local function scope for
that function will include a binding of that name to the function object. In effect, the
function name becomes a local variable within the function. Most functions defined as
expressions do not need names, which makes their definition more compact. Function
definition expressions are particularly well suited for functions that are used only once,
as in the last two examples above.

Function Names

Any legal JavaScript identifier can be a function name. Try to choose function names
that are descriptive but concise. Striking the right balance is an art that comes with
experience. Well-chosen function names can make a big difference in the readability
(and thus maintainability) of your code.

Function names are often verbs or phrases that begin with verbs. It is a common con-
vention to begin function names with alowercase letter. When a name includes multiple
words, one convention is to separate words with underscores like this(); another
convention is to begin all words after the first with an uppercase letter likeThis().
Functions that are supposed to be internal or hidden (and not part of a public API) are
sometimes given names that begin with an underscore.

In some styles of programming, or within well-defined programming frameworks, it
can be useful to give frequently used functions very short names. The client-side Java-
Script framework jQuery (covered in Chapter 19), for example, makes heavy use in its
public API of a function named $() (yes, just the dollar sign). (Recall from §2.4 that
dollar signs and underscores are the two characters besides letters and numbers that
are legal in JavaScript identifiers.)

As described in §5.3.2, function declaration statements are “hoisted” to the top of the
enclosing script or the enclosing function, so that functions declared in this way may
be invoked from code that appears before they are defined. This is not true for functions
defined as expressions, however: in order to invoke a function, you must be able to
refer to it, and you can’t refer to a function defined as an expression until it is assigned
to a variable. Variable declarations are hoisted (see §3.10.1, but assignments to those
variables are not hoisted, so functions defined with expressions cannot be invoked
before they are defined.

8.1 Defining Functions | 165

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

Notice that most, but notall, of the functions in Example 8-1 contain a return statement
(85.6.4). The return statement causes the function to stop executing and to return the
value of its expression (if any) to the caller. If the return statement does not have an
associated expression, it returns the undefined value. If a function does not contain a
return statement, it simply executes each statement in the function body and returns
the undefined value to the caller.

Most of the functions in Example 8-1 are designed to compute a value, and they use
return to return that value to their caller. The printprops() function is different: its job
is to output the names and values of an object’s properties. No return value is necessary,
and the function does not include a return statement. The value of an invocation of
the printprops() function is always undefined. (Functions with no return value are
sometimes called procedures.)

8.1.1 Nested Functions

In JavaScript, functions may be nested within other functions. For example:

function hypotenuse(a, b) {
function square(x) { return x*x; }
return Math.sqrt(square(a) + square(b));
}

The interesting thing about nested functions is their variable scoping rules: they can
access the parameters and variables of the function (or functions) they are nested with-
in. In the code above, for example, the inner function square() can read and write the
parameters a and b defined by the outer function hypotenuse(). These scope rules for
nested functions are very important, and we’ll consider them again in §8.6.

As noted in §85.3.2, function declaration statements are not true statements, and the
ECMAScript specification only allows them as top-level statements. They can appear
in global code, or within other functions, but they cannot appear inside of loops, con-
ditionals, or try/catch/finally or with statements.' Note that this restriction applies
only to functions declared as statements. Function definition expressions may appear
anywhere in your JavaScript code.

8.2 Invoking Functions

The JavaScript code that makes up the body of a function is not executed when the
function is defined but when it is invoked. JavaScript functions can be invoked in four
ways:

¢ as functions,

¢ as methods,

1. Some JavaScript implementations relax this rule. Firefox, for example, allows “conditional function
declarations” that appear within if statements.

166 | Chapter8: Functions

* as constructors, and

* indirectly through their call() and apply() methods.

8.2.1 Function Invocation

Functions are invoked as functions or as methods with an invocation expression
(§4.5). An invocation expression consists of a function expression that evaluates to a
function object followed by an open parenthesis, a comma-separated list of zero or
more argument expressions, and a close parenthesis. If the function expression is a
property-access expression—if the function is the property of an object or an element
of an array—then it is a method invocation expression. That case will be explained
below. The following code includes a number of regular function invocation
expressions:

printprops({x:1});

var total = distance(0,0,2,1) + distance(2,1,3,5);

var probability = factorial(5)/factorial(13);

In an invocation, each argument expression (the ones between the parentheses) is eval-
uated, and the resulting values become the arguments to the function. These values are
assigned to the parameters named in the function definition. In the body of the function,
a reference to a parameter evaluates to the corresponding argument value.

For regular function invocation, the return value of the function becomes the value of
the invocation expression. If the function returns because the interpreter reaches the
end, the return value is undefined. If the function returns because the interpreter exe-
cutes a return, the return value is the value of the expression that follows the return or
undefined if the return statement has no value.

For function invocation in ECMAScript 3 and nonstrict ECMAScript 5, the invocation
context (the this value) is the global object. In strict mode, however, the invocation
context is undefined.

Functions written to be invoked as functions do not typically use the this keyword at
all. It can be used, however, to determine whether strict mode is in effect:

// Define and invoke a function to determine if we're in strict mode.
var strict = (function() { return !this; }());

8.2.2 Method Invocation

A method is nothing more than a JavaScript function that is stored in a property of an
object. If you have a function f and an object o, you can define a method named m of
o with the following line:

o.m = f;
Having defined the method m() of the object o, invoke it like this:

o.m();

8.2 Invoking Functions | 167

mn
(=]
=
m
—
=
<
[
w
Pa)
=.
=1
-

Or, if m() expects two arguments, you might invoke it like this:
o.m(x, y);

The code above is an invocation expression: it includes a function expression o.m and
two argument expressions, x and y. The function expression is itself a property access
expression (§4.4), and this means that the function is invoked as a method rather than
as a regular function.

The arguments and return value of a method invocation are handled exactly as descri-
bed above for regular function invocation. Method invocations differ from function
invocations in one important way, however: the invocation context. Property access
expressions consist of two parts: an object (in this case o) and a property name (m). In
a method invocation expression like this, the object o becomes the invocation context,
and the function body can refer to that object by using the keyword this. Here is a
concrete example:
var calculator = { // An object literal

operandl: 1,

operand2: 1,

add: function() {

// Note the use of the this keyword to refer to this object.
this.result = this.operandl + this.operand2;

}
5
calculator.add(); // A method invocation to compute 1+1.
calculator.result /] => 2

Most method invocations use the dot notation for property access, but property access
expressions that use square brackets also cause method invocation. The following are
both method invocations, for example:

o["m"](x,y); // Another way to write o.m(x,y).
a[0](z) // Also a method invocation (assuming a[0] is a function).

Method invocations may also involve more complex property access expressions:

customer.surname.toUpperCase(); // Invoke method on customer.surname
£().m(); // Invoke method m() on return value of f()

Methods and the this keyword are central to the object-oriented programming para-
digm. Any function thatis used as a method is effectively passed an implicit argument—
the object through which it is invoked. Typically, a method performs some sort of
operation on that object, and the method-invocation syntax is an elegant way to express
the fact that a function is operating on an object. Compare the following two lines:

rect.setSize(width, height);
setRectSize(rect, width, height);

The hypothetical functions invoked in these two lines of code may perform exactly the
same operation on the (hypothetical) object rect, but the method-invocation syntax in
the first line more clearly indicates the idea that it is the object rect that is the primary
focus of the operation.

168 | Chapter8: Functions

Method Chaining

When methods return objects, you can use the return value of one method invocation
as part of a subsequent invocation. This results in a series (or “chain” or “cascade”) of
method invocations as a single expression. When working with the jQuery library
(Chapter 19), for example, it is common to write code like this:

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

// Find all headers, map to their ids, convert to an array and sort them
$(":header").map(function() { return this.id }).get().sort();

When you write a method that does not have a return value of its own, consider having
the method return this. If you do this consistently throughout your API, you will enable
a style of programming known as method chaining® in which an object can be named
once and then multiple methods can be invoked on it:

shape.setX(100).setY(100).setSize(50).setOutline("red").setFill("blue").draw();

Don’t confuse method chaining with constructor chaining, which is described in
§9.7.2.

Note that this is a keyword, not a variable or property name. JavaScript syntax does
not allow you to assign a value to this.

Unlike variables, the this keyword does not have a scope, and nested functions do not
inherit the this value of their caller. If a nested function is invoked as a method, its
this value is the object it was invoked on. If a nested function is invoked as a function
then its this value will be either the global object (non-strict mode) or undefined (strict
mode). It is a common mistake to assume that a nested function invoked as a function
can use this to obtain the invocation context of the outer function. If you want to access
the this value of the outer function, you need to store that value into a variable that is
in scope for the inner function. It is common to use the variable self for this purpose.
For example:

var o = { // An object o.
m: function() { // Method m of the object.
var self = this; // Save the this value in a variable.
console.log(this === 0); // Prints "true": this is the object o.
£(); // Now call the helper function f().
function f() { // A nested function f
console.log(this === 0); // "false": this is global or undefined
console.log(self === 0); // "true": self is the outer this value.
}
}
b
o.m(); // Invoke the method m on the object o.

Example 8-5, in §8.7.4, includes a more realistic use of the var self=this idiom.

2. The term was coined by Martin Fowler. See http://martinfowler.com/dslwip/MethodChaining.html.

8.2 Invoking Functions | 169

http://martinfowler.com/dslwip/MethodChaining.html

8.2.3 Constructor Invocation

If a function or method invocation is preceded by the keyword new, then it is a
constructor invocation. (Constructor invocations were introduced in §4.6 and
§6.1.2, and constructors will be covered in more detail in Chapter 9.) Constructor
invocations differ from regular function and method invocations in their handling of
arguments, invocation context, and return value.

If a constructor invocation includes an argument list in parentheses, those argument
expressions are evaluated and passed to the function in the same way they would be
for function and method invocations. But if a constructor has no parameters, then
JavaScript constructor invocation syntax allows the argument list and parentheses to
be omitted entirely. You can always omit a pair of empty parentheses in a constructor
invocation and the following two lines, for example, are equivalent:

var o = new Object();
var o = new Object;

A constructor invocation creates a new, empty object that inherits from the
prototype property of the constructor. Constructor functions are intended to initialize
objects and this newly created object is used as the invocation context, so the con-
structor function can refer to it with the this keyword. Note that the new object is used
as the invocation context even if the constructor invocation looks like a method invo-
cation. That is, in the expression new 0.m(), o is not used as the invocation context.

Constructor functions do not normally use the return keyword. They typically initialize
the new object and then return implicitly when they reach the end of their body. In this
case, the new object is the value of the constructor invocation expression. If, however,
a constructor explicitly used the return statement to return an object, then that object
becomes the value of the invocation expression. If the constructor uses return with no
value, or if it returns a primitive value, that return value is ignored and the new object
is used as the value of the invocation.

8.2.4 Indirect Invocation

JavaScript functions are objects and like all JavaScript objects, they have methods. Two
of these methods, call() and apply(), invoke the function indirectly. Both methods
allow you to explicitly specify the this value for the invocation, which means you can
invoke any function as a method of any object, even if it is not actually a method of
that object. Both methods also allow you to specify the arguments for the invocation.
The call() method uses its own argument list as arguments to the function and the
apply() method expects an array of values to be used as arguments. The call() and
apply() methods are described in detail in §8.7.3.

170 | Chapter8: Functions

8.3 Function Arguments and Parameters

JavaScript function definitions do not specify an expected type for the function pa-
rameters, and function invocations do not do any type checking on the argument values
you pass. In fact, JavaScript function invocations do not even check the number of
arguments being passed. The subsections that follow describe what happens when a
function is invoked with fewer arguments than declared parameters or with more ar-
guments than declared parameters. They also demonstrate how you can explicitly test
the type of function arguments if you need to ensure that a function is not invoked with
Inappropriate arguments.

8.3.1 Optional Parameters

When a function is invoked with fewer arguments than declared parameters, the ad-
ditional parameters are set to the undefined value. It is often useful to write functions
so that some arguments are optional and may be omitted when the function is invoked.
To do this, you must be able to assign a reasonable default value to parameters that are
omitted. Here is an example:

// Append the names of the enumerable properties of object o to the

// array a, and return a. If a is omitted, create and return a new array.
function getPropertyNames(o, /* optional */ a) {

if (a === undefined) a = []; // If undefined, use a new array
for(var property in o) a.push(property);
return a;

}

// This function can be invoked with 1 or 2 arguments:
var a = getPropertyNames(o); // Get o's properties into a new array
getPropertyNames(p,a); // append p's properties to that array

Instead of using an if statement in the first line of this function, you can use the ||
operator in this idiomatic way:

a=all[l;

Recall from §4.10.2 that the || operator returns its first argument if that argument is
truthy and otherwise returns its second argument. In this case, if any object is passed
as the second argument, the function will use that object. But if the second argument
is omitted (or null or another falsy value is passed), a newly created empty array will
be used instead.

Note that when designing functions with optional arguments, you should be sure to
put the optional ones at the end of the argument list so that they can be omitted. The
programmer who calls your function cannot omit the first argument and pass the sec-
ond: she would have to explicitly pass undefined the first argument. Also note the use
of the comment /* optional */ in the function definition to emphasize the fact that
the parameter is optional.

8.3 Function Arguments and Parameters | 171

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

8.3.2 Variable-Length Argument Lists: The Arguments Object

When a function is invoked with more argument values than there are parameter
names, there is no way to directly refer to the unnamed values. The Arguments object
provides a solution to this problem. Within the body of a function, the identifier
arguments refers to the Arguments object for that invocation. The Arguments object is
an array-like object (see §7.11) that allows the argument values passed to the function
to be retrieved by number, rather than by name.

Suppose you define a function f that expects to be passed one argument, x. If you invoke
this function with two arguments, the first argument is accessible within the function
by the parameter name x or as arguments[0]. The second argument is accessible only
as arguments[1]. Furthermore, like true arrays, arguments has a length property that
specifies the number of elements it contains. Thus, within the body of the function f,
invoked with two arguments, arguments.length has the value 2.

The Arguments object is useful in a number of ways. The following example shows
how you can use it to verify that a function is invoked with the expected number of
arguments, since JavaScript doesn’t do this for you:

function f(x, y, z)

{
// First, verify that the right number of arguments was passed
if (arguments.length != 3) {
throw new Error("function f called with " + arguments.length +
"arguments, but it expects 3 arguments.");
// Now do the actual function...
}

Note that it is often unnecessary to check the number of arguments like this. Java-
Script’s default behavior is fine in most cases: missing arguments are undefined and
extra arguments are simply ignored.

One important use of the Arguments object is to write functions that operate on any
number of arguments. The following function accepts any number of numeric argu-
ments and returns the value of the largest argument it is passed (see also the built-in
function Math.max (), which behaves the same way):

function max(/* ... */) {
var max = Number.NEGATIVE INFINITY;
// Loop through the arguments, looking for, and remembering, the biggest.
for(var i = 0; i < arguments.length; i++)
if (arguments[i] > max) max = arguments[i];
// Return the biggest
return max;

}

var largest = max(1, 10, 100, 2, 3, 1000, 4, 5, 10000, 6); // => 10000

172 | Chapter8: Functions

Functions like this one that can accept any number of arguments are called variadic
functions, variable arity functions, or varargs functions. This book uses the most collo-
quial term, varargs, which dates to the early days of the C programming language.

Note that varargs functions need not allow invocations with zero arguments. It is per-
fectly reasonable to use the arguments[] object to write functions that expect some fixed
number of named and required arguments followed by an arbitrary number of un-
named optional arguments.

Remember that arguments is not really an array; it is an Arguments object. Each Argu-
ments object defines numbered array elements and a length property, but it is not
technically an array; it is better to think of it as an object that happens to have some
numbered properties. See §7.11 for more on array-like objects.

The Arguments object has one very unusual feature. In non-strict mode, when a func-
tion has named parameters, the array elements of the Arguments object are aliases for
the parameters that hold the function arguments. The numbered elements of the Ar-
guments object and the parameter names are like two different names for the same
variable. Changing the value of an argument with an argument name changes the value
that is retrieved through the arguments[] array. Conversely, changing the value of an
argument through the arguments[] array changes the value that is retrieved by the ar-
gument name. Here is an example that clarifies this:

function f(x) {

console.log(x); // Displays the initial value of the argument
arguments[0] = null; // Changing the array element also changes x!
console.log(x); // Now displays "null"

}

This is emphatically not the behavior you would see if the Arguments object were an
ordinary array. In that case, arguments[0] and x could refer initially to the same value,
but a change to one would have no effect on the other.

This special behavior of the Arguments object has been removed in the strict mode of
ECMAScript 5. There are other strict-mode differences as well. In non-strict functions,
arguments is just an identifier. In strict mode, it is effectively a reserved word. Strict-
mode functions cannot use arguments as a parameter name or as a local variable name,
and they cannot assign values to arguments.

8.3.2.1 The callee and caller properties

In addition to its array elements, the Arguments object defines callee and caller prop-
erties. In ECMAScript 5 strict mode, these properties are guaranteed to raise a Type-
Errorif you try to read or write them. Outside of strict mode, however, the ECMAScript
standard says that the callee property refers to the currently running function.
callerisanonstandard but commonly implemented property that refers to the function
that called this one. The caller property gives access to the call stack, and the callee
property is occasionally useful to allow unnamed functions to call themselves
recursively:

8.3 Function Arguments and Parameters | 173

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

var factorial = function(x) {
if (x <= 1) return 1;
return x * arguments.callee(x-1);

b
8.3.3 Using Object Properties As Arguments

When a function has more than three parameters, it becomes difficult for the pro-
grammer who invokes the function to remember the correct order in which to pass
arguments. To save the programmer the trouble of consulting the documentation each
time she uses the function, it can be nice to allow arguments to be passed as name/
value pairs in any order. To implement this style of method invocation, define your
function to expect a single object as its argument and then have users of the function
pass an object that defines the required name/value pairs. The following code gives an
example and also demonstrates that this style of function invocation allows the function
to specify defaults for any arguments that are omitted:
// Copy length elements of the array from to the array to.
// Begin copying with element from start in the from array
// and copy that element to to_start in the to array.
// It is hard to remember the order of the arguments.
function arraycopy(/* array */ from, /* index */ from_start,
/* array */ to, /* index */ to_start,
/* integer */ length)

// code goes here

// This version is a little less efficient, but you don't have to
// remember the order of the arguments, and from start and to_start
// default to o.
function easycopy(args) {
arraycopy(args.from,
args.from start || 0, // Note default value provided
args.to,
args.to start || o,
args.length);
}

// Here is how you might invoke easycopy():
var a = [1,2,3,4], b = [];
easycopy({from: a, to: b, length: 4});

8.3.4 Argument Types

JavaScript method parameters have no declared types, and no type checking is
performed on the values you pass to a function. You can help to make your code self-
documenting by choosing descriptive names for function arguments and also by in-
cluding argument types in comments, as in the arraycopy() method just shown. For
arguments that are optional, you can include the word “optional” in the comment. And
when a method can accept any number of arguments, you can use an ellipsis:

function max(/* number... */) { /* code here */ }

174 | Chapter8: Functions

As described in §3.8, JavaScript performs liberal type conversion as needed. So if you
write a function that expects a string argument and then call that function with a value
of some other type, the value you passed will simply be converted to a string when the
function tries to use it as a string. All primitive types can be converted to strings, and
all objects have toString() methods (if not necessarily useful ones), so an error never
occurs in this case.

Thisis not always true, however. Consider again the arraycopy () method shown earlier.
It expects an array as its first argument. Any plausible implementation will fail if that
first argument is anything but an array (or possibly an array-like object). Unless you
are writing a “throwaway” function that will be called only once or twice, it may be
worth adding code to check the types of arguments like this. It is better for a function
to fail immediately and predictably when passed bad values than to begin executing
and fail later with an error message that is likely to be unclear. Here is an example
function that performs type-checking. Note that it uses the isArraylLike() function
from §7.11:
// Return the sum of the elements of array (or array-like object) a.
// The elements of a must all be numbers or null and undefined are ignored.
function sum(a) {
if (isArrayLike(a)) {
var total = 0;
for(var i = 0; i < a.length; i++) { // Loop though all elements
var element = a[i];
if (element == null) continue; // Skip null and undefined
if (isFinite(element)) total += element;
else throw new Error("sum(): elements must be finite numbers");

}

return total;

else throw new Error("sum(): argument must be array-like");

}

This sum() method is fairly strict about the argument it accepts and throws suitably
informative errors if it is passed bad values. It does offer a bit of flexibility, however,
by working with array-like objects as well as true arrays and by ignoring null and
undefined array elements.

JavaScript is a very flexible and loosely typed language, and sometimes it is appropriate
to write functions that are flexible about the number and type of arguments they are
passed. The following flexisum() method takes this approach (probably to an ex-
treme). For example, it accepts any number of arguments but recursively processes any
arguments that are arrays. In this way, it can be used as a varargs method or with an
array argument. Furthermore, it tries its best to convert nonnumeric values to numbers
before throwing an error:
function flexisum(a) {
var total = 0;
for(var i = 0; i < arguments.length; i++) {
var element = arguments[i], n;
if (element == null) continue; // Ignore null and undefined arguments

8.3 Function Arguments and Parameters | 175

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

if (isArray(element)) // If the argument is an array
n = flexisum.apply(this, element); // compute its sum recursively

else if (typeof element === "function") // Else if it's a function...
n = Number(element()); // invoke it and convert.
else n = Number(element); // Else try to convert it

if (isNaN(n)) // If we couldn't convert to a number, throw an error
throw Error("flexisum(): can't convert " + element + " to number");
total += n; // Otherwise, add n to the total

}

return total;

8.4 Functions As Values

The most important features of functions are that they can be defined and invoked.
Function definition and invocation are syntactic features of JavaScript and of most
other programming languages. In JavaScript, however, functions are not only syntax
but also values, which means they can be assigned to variables, stored in the properties
of objects or the elements of arrays, passed as arguments to functions, and so on.?

To understand how functions can be JavaScript data as well as JavaScript syntax, con-
sider this function definition:

function square(x) { return x*x; }

This definition creates a new function object and assigns it to the variable square. The
name of a function is really immaterial; it is simply the name of a variable that refers to
the function object. The function can be assigned to another variable and still work the
same way:

var s = square; // Now s refers to the same function that square does
square(4); /] => 16
s(4); /] => 16

Functions can also be assigned to object properties rather than variables. When you
do this, they’re called methods:

var o = {square: function(x) { return x*x; }}; // An object literal
var y = o.square(16); // y equals 256

Functions don’t even require names at all, as when they’re assigned to array elements:

var a = [function(x) { return x*x; }, 20]; // An array literal

afo](a[1]); /] => 400

The syntax of this last example looks strange, but it is still a legal function invocation
expression!

3. This may not seem like a particularly interesting point unless you are familiar with languages such as Java,
in which functions are part of a program but cannot be manipulated by the program.

176 | Chapter8: Functions

Example 8-2 demonstrates the kinds of things that can be done when functions are
used as values. This example may be a little tricky, but the comments explain what is
going on.

Example 8-2. Using functions as data

// We define some simple functions here
function add(x,y) { return x +y; }
function subtract(x,y) { return x - y; }
function multiply(x,y) { return x * y; }
function divide(x,y) { return x / y; }

// Here's a function that takes one of the above functions
// as an argument and invokes it on two operands
function operate(operator, operandi, operand2) {
return operator(operandl, operand2);
}

// We could invoke this function like this to compute the value (2+3) + (4*5):
var i = operate(add, operate(add, 2, 3), operate(multiply, 4, 5));

// For the sake of the example, we implement the simple functions again,
// this time using function literals within an object literal;
var operators = {

add: function(x,y) { return x+y; },

subtract: function(x,y) { return x-y; },

multiply: function(x,y) { return x*y; },

divide: function(x,y) { return x/y; },

pow: Math.pow // Works for predefined functions too

|5

// This function takes the name of an operator, looks up that operator
// in the object, and then invokes it on the supplied operands. Note
// the syntax used to invoke the operator function.
function operate2(operation, operandi, operand2) {
if (typeof operators[operation] === "function")
return operators[operation](operand1, operand2);
else throw "unknown operator";

}

// Compute the value ("hello" + " " + "world") like this:

var j = operate2("add", "hello", operate2("add", " ", "world"));
// Using the predefined Math.pow() function:

var k = operate2("pow", 10, 2);

As another example of functions as values, consider the Array.sort() method. This
method sorts the elements of an array. Because there are many possible orders to sort
by (numerical order, alphabetical order, date order, ascending, descending, and so on),
the sort() method optionally takes a function as an argument to tell it how to perform
the sort. This function has a simple job: for any two values it is passed, it returns a value
that specifies which element would come first in a sorted array. This function argument
makes Array.sort() perfectly general and infinitely flexible; it can sort any type of data
into any conceivable order. Examples are shown in §7.8.3.

8.4 Functions As Values | 177

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

8.4.1 Defining Your Own Function Properties

Functions are not primitive values in JavaScript, but a specialized kind of object, which
means that functions can have properties. When a function needs a “static” variable
whose value persists across invocations, it is often convenient to use a property of the
function, instead of cluttering up the namespace by defining a global variable. For
example, suppose you want to write a function that returns a unique integer whenever
it is invoked. The function must never return the same value twice. In order to manage
this, the function needs to keep track of the values it has already returned, and this
information must persist across function invocations. You could store this information
in a global variable, but that is unnecessary, because the information is used only by
the function itself. It is better to store the information in a property of the Function
object. Here is an example that returns a unique integer whenever it is called:

// Initialize the counter property of the function object.

// Function declarations are hoisted so we really can

// do this assignment before the function declaration.
uniqueInteger.counter = 0;

// This function returns a different integer each time it is called.
// It uses a property of itself to remember the next value to be returned.
function uniquelnteger() {

return uniqueInteger.counter++; // Increment and return counter property
}

As another example, consider the following factorial() function that uses properties
of itself (treating itself as an array) to cache previously computed results:
// Compute factorials and cache results as properties of the function itself.

function factorial(n) {
if (isFinite(n) && n>0 && n==Math.round(n)) { // Finite, positive ints only

if (!(n in factorial)) // 1If no cached result
factorial[n] = n * factorial(n-1); // Compute and cache it
return factorial[n]; // Return the cached result
else return NaN; // If input was bad

}

factorial[1] = 1; // Initialize the cache to hold this base case.

8.5 Functions As Namespaces

Recall from §3.10.1 that JavaScript has function scope: variables declared within a
function are visible throughout the function (including within nested functions) but
do not exist outside of the function. Variables declared outside of a function are global
variables and are visible throughout your JavaScript program. JavaScript does not de-
fine any way to declare variables that are hidden within a single block of code, and for
this reason, it is sometimes useful to define a function simply to act as a temporary
namespace in which you can define variables without polluting the global namespace.

178 | Chapter8: Functions

Suppose, for example, you have a module of JavaScript code that you want to use in a
number of different JavaScript programs (or, for client-side JavaScript, on a number of
different web pages). Assume that this code, like most code, defines variables to store
the intermediate results of its computation. The problem is that since this module will
be used in many different programs, you don’t know whether the variables it creates
will conflict with variables used by the programs that import it. The solution, of course,
is to put the code into a function and then invoke the function. This way, variables that
would have been global become local to the function:
function mymodule() {
// Module code goes here.

// Any variables used by the module are local to this function
// instead of cluttering up the global namespace.

}
mymodule(); // But don't forget to invoke the function!

This code defines only a single global variable: the function name “mymodule”. If de-
fining even a single property is too much, you can define and invoke an anonymous
function in a single expression:

(function() { // mymodule function rewritten as an unnamed expression

// Module code goes here.
10); // end the function literal and invoke it now.

This technique of defining and invoking a function in a single expression is used fre-
quently enough that it has become idiomatic. Note the use of parentheses in the code
above. The open parenthesis before function is required because without it, the Java-
Script interpreter tries to parse the function keyword as a function declaration state-
ment. With the parenthesis, the interpreter correctly recognizes this as a function
definition expression. It is idiomatic to use the parentheses, even when they are not
required, around a function that is to be invoked immediately after being defined.

Example 8-3 demonstrates this namespace technique. It defines an anonymous func-
tion that returns an extend() function like the one shown in Example 6-2. The code in
the anonymous function tests whether a well-known Internet Explorer bug is present
and, if so, returns a patched version of the function. In addition, the anonymous func-
tion’s namespace serves to hide an array of property names.

Example 8-3. The extend() function, patched if necessary

// Define an extend function that copies the properties of its second and
// subsequent arguments onto its first argument.
// We work around an IE bug here: in many versions of IE, the for/in loop
// won't enumerate an enumerable property of o if the prototype of o has
// a nonenumerable property by the same name. This means that properties
// like toString are not handled correctly unless we explicitly check for them.
var extend = (function() { // Assign the return value of this function
// First check for the presence of the bug before patching it.
for(var p in {toString:null}) {
// If we get here, then the for/in loop works correctly and we return
// a simple version of the extend() function
return function extend(o) {

8.5 Functions As Namespaces | 179

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

for(var i = 1; i < arguments.length; i++) {
var source = arguments[i];
for(var prop in source) o[prop] = source[prop];

return o;

b

// If we get here, it means that the for/in loop did not enumerate
// the toString property of the test object. So return a version
// of the extend() function that explicitly tests for the nonenumerable
// properties of Object.prototype.
return function patched_extend(o) {
for(var i = 1; i < arguments.length; i++) {

var source = arguments[i];

// Copy all the enumerable properties

for(var prop in source) o[prop] = source[prop];

// And now check the special-case properties
for(var j = 0; j < protoprops.length; j++) {
prop = protoprops[j];
if (source.hasOwnProperty(prop)) o[prop] = source[prop];
}
}

return o;

};

// This is the list of special-case properties we check for
var protoprops = ["toString", "valueOf", "constructor", "hasOwnProperty",

"isPrototypeOf", "propertyIsEnumerable","tolLocaleString"];
10);

8.6 Closures

Like most modern programming languages, JavaScript uses lexical scoping. This means
that functions are executed using the variable scope that was in effect when they were
defined, not the variable scope that is in effect when they are invoked. In order to
implement lexical scoping, the internal state of a JavaScript function object must in-
clude not only the code of the function but also a reference to the current scope chain.
(Before reading the rest of this section, you may want to review the material on variable
scope and the scope chain in §3.10 and §3.10.3.) This combination of a function object
and a scope (a set of variable bindings) in which the function’s variables are resolved
is called a closure in the computer science literature.”

Technically, all JavaScript functions are closures: they are objects, and they have a scope
chain associated with them. Most functions are invoked using the same scope chain
that was in effect when the function was defined, and it doesn’t really matter that there
is a closure involved. Closures become interesting when they are invoked under a

4. This is an old term that refers to the fact that the function’s variables have bindings in the scope chain
and that therefore the function is “closed over” its variables.

180 | Chapter8: Functions

different scope chain than the one that was in effect when they were defined. This
happens most commonly when a nested function object is returned from the function
within which it was defined. There are a number of powerful programming techniques
that involve this kind of nested function closures, and their use has become relatively
common in JavaScript programming. Closures may seem confusing when you first en-
counter them, but it is important that you understand them well enough to use them
comfortably.

The first step to understanding closures is to review the lexical scoping rules for nested
functions. Consider the following code (which is similar to code you’ve already seen
in §3.10):

var scope = "global scope"; // A global variable
function checkscope() {
var scope = "local scope"; // A local variable

function f() { return scope; } // Return the value in scope here
return ();

checkscope() // => "local scope"

The checkscope() function declares a local variable and then defines and invokes a
function that returns the value of that variable. It should be clear to you why the call
to checkscope() returns “local scope”. Now let’s change the code just slightly. Can you
tell what this code will return?

var scope = "global scope"; // A global variable

function checkscope() {
var scope = "local scope"; // A local variable
function f() { return scope; } // Return the value in scope here
return f;

}

checkscope()() // What does this return?

In this code, a pair of parentheses has moved from inside checkscope() to outside of it.
Instead of invoking the nested function and returning its result, checkscope() now just
returns the nested function object itself. What happens when we invoke that nested
function (with the second pair of parentheses in the last line of code) outside of the
function in which it was defined?

Remember the fundamental rule of lexical scoping: JavaScript functions are executed
using the scope chain that was in effect when they were defined. The nested function
f() was defined under a scope chain in which the variable scope was bound to the value
“local scope”. That binding is still in effect when f is executed, wherever it is executed
from. So the last line of code above returns “local scope”, not “global scope”. This, in
a nutshell, is the surprising and powerful nature of closures: they capture the local
variable (and parameter) bindings of the outer function within which they are defined.

8.6 Closures | 181

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

Implementing Closures

Closures are easy to understand if you simply accept the lexical scoping rule: functions
are executed using the scope chain that was in effect when they were defined. Some
programmers find closures confusing, however, because they get caught up in imple-
mentation details. Surely, they think, the local variables defined in the outer function
cease to exist when the outer function returns, so how can the nested function execute
using a scope chain that does not exist anymore? If you’re wondering about this your-
self, then you have probably been exposed to low-level programming languages like C
and to stack-based CPU architectures: if a function’s local variables are defined on a
CPU stack, then they would indeed cease to exist when the function returned.

But remember our definition of scope chain from §3.10.3. We described it as a list of
objects, nota stack of bindings. Each time a JavaScript function is invoked, a new object
is created to hold the local variables for that invocation, and that object is added to the
scope chain. When the function returns, that variable binding object is removed from
the scope chain. If there were no nested functions, there are no more references to the
binding object and it gets garbage collected. If there were nested functions defined,
then each of those functions has a reference to the scope chain, and that scope chain
refers to the variable binding object. If those nested functions objects remained within
their outer function, however, then they themselves will be garbage collected, along
with the variable binding object they referred to. But if the function defines a nested
function and returns it or stores it into a property somewhere, then there will be an
external reference to the nested function. It won’t be garbage collected, and the variable
binding object it refers to won’t be garbage collected either.

In §8.4.1 we defined a uniqueInteger() function that used a property of the function
itself to keep track of the next value to be returned. A shortcoming of that approach is
that buggy or malicious code could reset the counter or set it to a noninteger, causing
the uniqueInteger() function to violate the “unique” or the “integer” part of its con-
tract. Closures capture the local variables of a single function invocation and can use
those variables as private state. Here is how we could rewrite the uniqueInteger()
function using closures:
var uniqueInteger = (function() { // Define and invoke

var counter = 0; // Private state of function below
return function() { return counter++; };

HOMH

In order to understand this code, you have to read it carefully. At first glance, the first
line of code looks like it is assigning a function to the variable uniqueInteger. In fact,
the code is defining and invoking (as hinted by the open parenthesis on the first line)
a function, so it is the return value of the function that is being assigned to
uniquelInteger. Now, if we study the body of the function, we see that its return value
is another function. It is this nested function object that gets assigned to
uniqueInteger. The nested function has access to the variables in scope, and can use
the counter variable defined in the outer function. Once that outer function returns,
no other code can see the counter variable: the inner function has exclusive access to it.

182 | Chapter8: Functions

Private variables like counter need not be exclusive to a single closure: it is perfectly
possible for two or more nested functions to be defined within the same outer function
and share the same scope chain. Consider the following code:

function counter() {
var n = 0;
return {
count: function() { return n++; },
reset: function() { n =o0; }

};
}
var ¢ = counter(), d = counter(); // Create two counters
c.count() // =>0
d.count() // => 0: they count independently
c.reset() // reset() and count() methods share state
c.count() // => 0: because we reset c
d.count() // => 1: d was not reset

The counter() function returns a “counter” object. This object has two methods:
count() returns the next integer, and reset() resets the internal state. The first thing to
understand is that the two methods share access to the private variable n. The second
thing to understand is that each invocation of counter() creates a new scope chain and
a new private variable. So if you call counter () twice, you get two counter objects with
different private variables. Calling count() or reset() on one counter object has no
effect on the other.

It is worth noting here that you can combine this closure technique with property
getters and setters. The following version of the counter() function is a variation on
code that appeared in §6.6, but it uses closures for private state rather than relying on
a regular object property:

function counter(n) { // Function argument n is the private variable
return {

// Property getter method returns and increments private counter var.
get count() { return n++; },
// Property setter doesn't allow the value of n to decrease
set count(m) {
if (m>=n)n=m
else throw Error("count can only be set to a larger value");

}

b
}
var ¢ = counter(1000);
c.count // => 1000
c.count // => 1001
c.count = 2000
c.count // => 2000
c.count = 2000 // => Error!

8.6 Closures | 183

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

Note that this version of the counter() function does not declare a local variable, but
just uses its parameter n to hold the private state shared by the property accessor meth-
ods. This allows the caller of counter () to specify the initial value of the private variable.

Example 8-4 is a generalization of the shared private state through closures technique
we’ve been demonstrating here. This example defines an addPrivateProperty() func-
tion that defines a private variable and two nested functions to get and set the value of
that variable. It adds these nested functions as methods of the object you specify:

Example 8-4. Private property accessor methods using closures

// This function adds property accessor methods for a property with
// the specified name to the object o. The methods are named get<name>
// and set<name>. If a predicate function is supplied, the setter
// method uses it to test its argument for validity before storing it.
// If the predicate returns false, the setter method throws an exception.
//
// The unusual thing about this function is that the property value
// that is manipulated by the getter and setter methods is not stored in
// the object o. Instead, the value is stored only in a local variable
// in this function. The getter and setter methods are also defined
// locally to this function and therefore have access to this local variable.
// This means that the value is private to the two accessor methods, and it
// cannot be set or modified except through the setter method.
function addPrivateProperty(o, name, predicate) {
var value; // This is the property value

// The getter method simply returns the value.
o["get" + name] = function() { return value; };

// The setter method stores the value or throws an exception if
// the predicate rejects the value.
o["set" + name] = function(v) {
if (predicate && !predicate(v))
throw Error("set" + name +
else
value = v;

" "

: invalid value " + v);

s
}

// The following code demonstrates the addPrivateProperty() method.
var o = {}; // Here is an empty object

// Add property accessor methods getName and setName()
// Ensure that only string values are allowed
addPrivateProperty(o, "Name", function(x) { return typeof x == "string"; });

o.setName("Frank"); // Set the property value
console.log(o.getName()); // Get the property value
o.setName(0); // Try to set a value of the wrong type

We’ve now seen a number of examples in which two closures are defined in the same
scope chain and share access to the same private variable or variables. This is an

184 | Chapter8: Functions

important technique, but it is just as important to recognize when closures inadver-
tently share access to a variable that they should not share. Consider the following code:

// This function returns a function that always returns v
function constfunc(v) { return function() { return v; }; }

// Create an array of constant functions:
var funcs = [];
for(var i = 0; 1 < 10; i++) funcs[i] = constfunc(i);

// The function at array element 5 returns the value 5.
funcs[5]() // =>5

When working with code like this that creates multiple closures using a loop, it is a
common error to try to move the loop within the function that defines the closures.
Think about the following code, for example:
// Return an array of functions that return the values 0-9
function constfuncs() {
var funcs = [];
for(var i = 0; 1 < 10; i++)
funcs[i] = function() { return i; };
return funcs;

}

var funcs = constfuncs();
funcs[5]() // What does this return?

The code above creates 10 closures, and stores them in an array. The closures are all
defined within the same invocation of the function, so they share access to the variable
i. When constfuncs() returns, the value of the variable i is 10, and all 10 closures share
this value. Therefore, all the functions in the returned array of functions return the same
value, which is not what we wanted at all. It is important to remember that the scope
chain associated with a closure is “live.” Nested functions do not make private copies
of the scope or make static snapshots of the variable bindings.

Another thing to remember when writing closures is that this is a JavaScript keyword,
not a variable. As discussed earlier, every function invocation has a this value, and a
closure cannot access the this value of its outer function unless the outer function has
saved that value into a variable:

var self = this; // Save this value in a variable for use by nested funcs.
The arguments binding is similar. This is not a language keyword, but it is automatically
declared for every function invocation. Since a closure has its own binding for

arguments, it cannot access the outer function’s arguments array unless the outer func-
tion has saved that array into a variable by a different name:

var outerArguments = arguments; // Save for use by nested functions

Example 8-5, later in this chapter, defines a closure that uses these techniques to refer
to both the this and arguments values of the outer function.

8.6 Closures | 185

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

8.7 Function Properties, Methods, and Constructor

We've seen that functions are values in JavaScript programs. The typeof operator re-
turns the string “function” when applied to a function, but functions are really a spe-
cialized kind of JavaScript object. Since functions are objects, they can have properties
and methods, just like any other object. There is even a Function() constructor to create
new function objects. The subsections that follow document function properties and
methods and the Function() constructor. You can also read about these in the reference
section.

8.7.1 The length Property

Within the body of a function, arguments.length specifies the number of arguments
that were passed to the function. The length property of a function itself, however, has
a different meaning. This read-only property returns the arity of the function—the
number of parameters it declares in its parameter list, which is usually the number of
arguments that the function expects.

The following code defines a function named check() that is passed the arguments array
from another function. It compares arguments.length (the number of arguments ac-
tually passed) to arguments.callee.length (the number expected) to determine wheth-
er the function was passed the right number of arguments. If not, it throws an exception.
The check() function is followed by a test function f() that demonstrates how
check() can be used:

// This function uses arguments.callee, so it won't work in strict mode.
function check(args) {

var actual = args.length; // The actual number of arguments
var expected = args.callee.length; // The expected number of arguments
if (actual !== expected) // Throw an exception if they differ.

throw Error("Expected " + expected + "args; got " + actual);

}

function f(x, y, z) {
check(arguments); // Check that the actual # of args matches expected #.
return x +y + z; // Now do the rest of the function normally.

}
8.7.2 The prototype Property

Every function has a prototype property that refers to an object known as the prototype
object. Every function has a different prototype object. When a function is used as a
constructor, the newly created object inherits properties from the prototype object.
Prototypes and the prototype property were discussed in §6.1.3 and will be covered
again in Chapter 9.

186 | Chapter8: Functions

8.7.3 The call() and apply() Methods

call() and apply() allow you to indirectly invoke (88.2.4) a function as if it were a
method of some other object. (We used the call() method in Example 6-4 to invoke
Object.prototype.toString on an object whose class we wanted to determine, for ex-
ample.) The first argument to both call() and apply() is the object on which the func-
tion is to be invoked; this argument is the invocation context and becomes the value
of the this keyword within the body of the function. To invoke the function () as a
method of the object o (passing no arguments), you could use either call() or apply():

f.call(o);

f.apply(o);

Either of the lines of code above are similar to the following (which assume that o does
not already have a property named m):
o.m = f; // Make f a temporary method of o.

o.m(); // Invoke it, passing no arguments.
delete o.m; // Remove the temporary method.

In ECMAScript 5 strict mode the first argument to call() or apply() becomes the value
of this, even if it is a primitive value or null or undefined. In ECMAScript 3 and non-
strict mode, a value of null or undefined is replaced with the global object and a prim-
itive value is replaced with the corresponding wrapper object.

Any arguments to call() after the first invocation context argument are the values that
are passed to the function that is invoked. For example, to pass two numbers to the
function f() and invoke it as if it were a method of the object o, you could use code

like this:
f.call(o, 1, 2);

The apply() method is like the call() method, except that the arguments to be passed
to the function are specified as an array:

f.apply(o, [1,2]);

If a function is defined to accept an arbitrary number of arguments, the apply () method
allows you to invoke that function on the contents of an array of arbitrary length. For
example, to find the largest number in an array of numbers, you could use the
apply() method to pass the elements of the array to the Math.max() function:

var biggest = Math.max.apply(Math, array of numbers);

Note that apply() works with array-like objects as well as true arrays. In particular, you
can invoke a function with the same arguments as the current function by passing the
arguments array directly to apply(). The following code demonstrates:

// Replace the method named m of the object o with a version that logs
// messages before and after invoking the original method.
function trace(o, m) {
var original = o[m]; // Remember original method in the closure.
o[m] = function() { // Now define the new method.
console.log(new Date(), "Entering:", m); // Log message.

8.7 Function Properties, Methods, and Constructor | 187

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

var result = original.apply(this, arguments); // Invoke original.
console.log(new Date(), "Exiting:", m); // Log message.
return result; // Return result.

1
}
This trace() function is passed an object and a method name. It replaces the specified
method with a new method that “wraps” additional functionality around the original
method. This kind of dynamic alteration of existing methods is sometimes called
“monkey-patching.”

8.7.4 The bind() Method

The bind() method was added in ECMAScript 5, but it is easy to simulate in
ECMAScript 3. As its name implies, the primary purpose of bind() is to bind a function
to an object. When you invoke the bind() method on a function f and pass an object
0, the method returns a new function. Invoking the new function (as a function) invokes
the original function f as a method of 0. Any arguments you pass to the new function
are passed to the original function. For example:

function f(y) { return this.x +y; } // This function needs to be bound

var o = { x : 1 }; // An object we'll bind to
var g = f.bind(o); // Calling g(x) invokes o.f(x)
8(2) // =>3

It is easy to accomplish this kind of binding with code like the following:

// Return a function that invokes f as a method of o, passing all its arguments.
function bind(f, o) {
if (f.bind) return f.bind(o); // Use the bind method, if there is one
else return function() { // Otherwise, bind it like this
return f.apply(o, arguments);
};

}

The ECMAScript 5 bind() method does more than just bind a function to an object. It
also performs partial application: any arguments you pass to bind() after the first are
bound along with the this value. Partial application is a common technique in func-
tional programming and is sometimes called currying. Here are some examples of the
bind() method used for partial application:

var sum = function(x,y) { return x +y }; // Return the sum of 2 args

// Create a new function like sum, but with the this value bound to null

// and the 1st argument bound to 1. This new function expects just one arg.

var succ = sum.bind(null, 1);
succ(2) // => 3: x is bound to 1, and we pass 2 for the y argument

function f(y,z) { return this.x + y + z }; // Another function that adds
var g = f.bind({x:1}, 2); // Bind this and y
g(3) // => 6: this.x is bound to 1, y is bound to 2 and z is 3

We can bind the this value and perform partial application in ECMAScript 3. The
standard bind() method can be simulated with code like that shown in Example 8-5.

188 | Chapter8: Functions

Note that we save this method as Function.prototype.bind, so that all function objects
inherit it. This technique is explained in detail in §9.4.

Example 8-5. A Function.bind() method for ECMAScript 3

if (!Function.prototype.bind) {
Function.prototype.bind = function(o /*, args */) {
// Save the this and arguments values into variables so we can
// use them in the nested function below.
var self = this, boundArgs = arguments;

// The return value of the bind() method is a function

return function() {
// Build up an argument list, starting with any args passed
// to bind after the first one, and follow those with all args
// passed to this function.
var args = [], i;
for(i = 1; i < boundArgs.length; i++) args.push(boundArgs[i]);
for(i = 0; i < arguments.length; i++) args.push(arguments[i]);

// Now invoke self as a method of o, with those arguments
return self.apply(o, args);
b
b
}

Notice that the function returned by this bind() method is a closure that uses the var-
iables self and boundArgs declared in the outer function, even though that inner func-
tion has been returned from the outer function and is invoked after the outer function
has returned.

The bind() method defined by ECMAScript 5 does have some features that cannot be
simulated with the ECMAScript 3 code shown above. First, the true bind() method
returns a function object with its length property properly set to the arity of the bound
function minus the number of bound arguments (but not less than zero). Second, the
ECMAScript 5 bind() method can be used for partial application of constructor func-
tions. If the function returned by bind() is used as a constructor, the this passed to
bind() is ignored, and the original function is invoked as a constructor, with some
arguments already bound. Functions returned by the bind() method do not have a
prototype property (the prototype property of regular functions cannot be deleted) and
objects created when these bound functions are used as constructors inherit from the
prototype of the original, unbound constructor. Also, a bound constructor works just
like the unbound constructor for the purposes of the instanceof operator.

8.7.5 The toString() Method

Like all JavaScript objects, functions have a toString() method. The ECMAScript spec
requires this method to return a string that follows the syntax of the function declara-
tion statement. In practice most (but not all) implementations of this toString() meth-
od return the complete source code for the function. Built-in functions typically return
a string that includes something like “[native code]” as the function body.

8.7 Function Properties, Methods, and Constructor | 189

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

8.7.6 The Function() Constructor

Functions are usually defined using the function keyword, either in the form of a func-
tion definition statement or a function literal expression. But functions can also be
defined with the Function() constructor. For example:

n,n non

var f = new Function("x", "y", "return x*y;");

This line of code creates a new function that is more or less equivalent to a function
defined with the familiar syntax:

var f = function(x, y) { return x*y; }

The Function() constructor expects any number of string arguments. The last argument
is the text of the function body; it can contain arbitrary JavaScript statements, separated
from each other by semicolons. All other arguments to the constructor are strings that
specify the parameters names for the function. If you are defining a function that takes
no arguments, you simply pass a single string—the function body—to the constructor.

Notice that the Function() constructor is not passed any argument that specifies a name
for the function it creates. Like function literals, the Function() constructor creates
anonymous functions.

There are a few points that are important to understand about the Function()
constructor:

* The Function() constructor allows JavaScript functions to be dynamically created
and compiled at runtime.

* The Function() constructor parses the function body and creates a new function
object each time it is called. If the call to the constructor appears within a loop or
within a frequently called function, this process can be inefficient. By contrast,
nested functions and function definition expressions that appear within loops are
not recompiled each time they are encountered.

* A last, very important point about the Function() constructor is that the functions
it creates do not use lexical scoping; instead, they are always compiled as if they
were top-level functions, as the following code demonstrates:

var scope = "global";
function constructFunction() {
var scope = "local";
return new Function("return scope"); // Does not capture the local scope!

}

// This line returns "global" because the function returned by the
// Function() constructor does not use the local scope.
constructFunction()(); // => "global"

The Function() constructor is best thought of as a globally-scoped version of eval()
(see §4.12.2) that defines new variables and functions in its own private scope. You
should rarely need to use this constructor in your code.

190 | Chapter8: Functions

8.7.7 (allable Objects

We learned in §7.11 that there are “array-like” objects that are not true arrays but can
be treated like arrays for most purposes. A similar situation exists for functions. A
callable object is any object that can be invoked in a function invocation expression.
All functions are callable, but not all callable objects are functions.

Callable objects that are not functions are encountered in two situations in today’s
JavaScript implementations. First, the IE web browser (version 8 and before) imple-
ments client-side methods such as Window.alert() and Document.getElementsById()
using callable host objects rather than native Function objects. These methods work
the same in IE as they do in other browsers, but they are not actually Function objects.
IE9 switches to using true functions, so this kind of callable object will gradually be-
come less common.

The other common form of callable objects are RegExp objects—in many browsers,
you can invoke a RegExp object directly as a shortcut for invoking its exec() method.
This is a completely nonstandard feature of JavaScript that was introduced by Netscape
and copied by other vendors for compatibility. Do not write code that relies on the
callability of RegExp objects: this feature is likely to be deprecated and removed in the
future. The typeof operator is not interoperable for callable RegExps. In some browsers
it returns “function” and in others it returns “object”.

If you want to determine whether an object is a true function object (and has function
methods) you can test its class attribute (§6.8.2) using the technique shown in
Example 6-4:

function isFunction(x) {
return Object.prototype.toString.call(x) === "[object Function]";
}

Note that this isFunction() function is quite similar to the isArray() function shown
in §7.10.

8.8 Functional Programming

JavaScript is not a functional programming language like Lisp or Haskell, but the fact
that JavaScript can manipulate functions as objects means that we can use functional
programming techniques in JavaScript. The ECMAScript 5 array methods such as
map() and reduce() lend themselves particularly well to a functional programming style.
The sections that follow demonstrate techniques for functional programming in Java-
Script. They are intended as a mind-expanding exploration of the power of JavaScript’s
functions, not as a prescription for good programming style.’

5. If this piques your interest, you may be interested in using (or at least reading about) Oliver Steele’s
Functional JavaScript library. See http://osteele.com/sources/javascript/functionall.

8.8 Functional Programming | 191

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

http://osteele.com/sources/javascript/functional/

8.8.1 Processing Arrays with Functions

Suppose we have an array of numbers and we want to compute the mean and standard
deviation of those values. We might do that in nonfunctional style like this:

var data = [1,1,3,5,5]; // This is our array of numbers

// The mean is the sum of the elements divided by the number of elements
var total = 0;

for(var i = 0; i < data.length; i++) total += data[i];

var mean = total/data.length; // The mean of our data is 3

// To compute the standard deviation, we first sum the squares of
// the deviation of each element from the mean.
total = 0;
for(var i = 0; i < data.length; i++) {
var deviation = data[i] - mean;
total += deviation * deviation;

}
var stddev = Math.sqrt(total/(data.length-1)); // The standard deviation is 2

We can perform these same computations in concise functional style using the array
methods map() and reduce() like this (see §7.9 to review these methods):

// First, define two simple functions
var sum = function(x,y) { return x+y; };
var square = function(x) { return x*x; };

// Then use those functions with Array methods to compute mean and stddev
var data = [1,1,3,5,5];

var mean = data.reduce(sum)/data.length;

var deviations = data.map(function(x) {return x-mean;});

var stddev = Math.sqrt(deviations.map(square).reduce(sum)/(data.length-1));

Whatif we’re using ECMAScript 3 and don’t have access to these newer array methods?
We can define our own map() and reduce() functions that use the built-in methods if
they exist:

// Call the function f for each element of array a and return
// an array of the results. Use Array.prototype.map if it is defined.
var map = Array.prototype.map
? function(a, f) { return a.map(f); } // Use map method if it exists
: function(a,f) { // Otherwise, implement our own
var results = [];
for(var i = 0, len = a.length; i < len; i++) {
if (i in a) results[i] = f.call(null, a[i], i, a);

return results;

};

// Reduce the array a to a single value using the function f and
// optional initial value. Use Array.prototype.reduce if it is defined.
var reduce = Array.prototype.reduce
? function(a, f, initial) { // If the reduce() method exists.
if (arguments.length > 2)
return a.reduce(f, initial); // If an initial value was passed.

192 | Chapter8: Functions

else return a.reduce(f); // Otherwise, no initial value.

}

: function(a, f, initial) { // This algorithm from the ES5 specification
var i = 0, len = a.length, accumulator;

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

// Start with the specified initial value, or the first value in a
if (arguments.length > 2) accumulator = initial;
else { // Find the first defined index in the array
if (len == 0) throw TypeError();
while(i < len) {
if (1 in a) {
accumulator = a[i++];
break;

}

else i++;

if (i == len) throw TypeError();
}

// Now call f for each remaining element in the array
while(i < len) {
if (1 in a)
accumulator = f.call(undefined, accumulator, a[i], i, a);
i++;

}

return accumulator;
};

With these map() and reduce() functions defined, our code to compute the mean and
standard deviation now looks like this:

var data = [1,1,3,5,5];

var sum = function(x,y) { return x+y; };

var square = function(x) { return x*x; };

var mean = reduce(data, sum)/data.length;

var deviations = map(data, function(x) {return x-mean;});
var stddev = Math.sqrt(reduce(map(deviations, square), sum)/(data.length-1));

8.8.2 Higher-Order Functions

A higher-order function is a function that operates on functions, taking one or more
functions as arguments and returning a new function. Here is an example:
// This higher-order function returns a new function that passes its

// arguments to f and returns the logical negation of f's return value;
function not(f) {

return function() { // Return a new function
var result = f.apply(this, arguments); // that calls f
return !result; // and negates its result.
};
}
var even = function(x) { // A function to determine if a number is even
return x % 2 === 0;
};

8.8 Functional Programming | 193

var odd = not(even); // A new function that does the opposite
[1,1,3,5,5].every(odd); // => true: every element of the array is odd

The not() function above is a higher-order function because it takes a function argu-
ment and returns a new function. As another example, consider the mapper () function
below. It takes a function argument and returns a new function that maps one array to
another using that function. This function uses the map() function defined earlier, and
it is important that you understand how the two functions are different:

// Return a function that expects an array argument and applies f to

// each element, returning the array of return values.

// Contrast this with the map() function from earlier.

function mapper(f) {
return function(a) { return map(a, f); };
}

var increment = function(x) { return x+1; };
var incrementer = mapper(increment);
incrementer([1,2,3]) // => [2,3,4]

Here is another, more general, example that takes two functions f and g and returns a
new function that computes f(g()):

// Return a new function that computes f(g(...)).
// The returned function h passes all of its arguments to g, and then passes
// the return value of g to f, and then returns the return value of f.
// Both f and g are invoked with the same this value as h was invoked with.
function compose(f,g) {
return function() {
// We use call for f because we're passing a single value and
// apply for g because we're passing an array of values.
return f.call(this, g.apply(this, arguments));
};
}

var square = function(x) { return x*x; };

var sum = function(x,y) { return x+y; };

var squareofsum = compose(square, sum);
squareofsum(2,3) /] => 25

The partial() and memoize() functions defined in the sections that follow are two more
important higher-order functions.

8.8.3 Partial Application of Functions

The bind() method of a function f (§8.7.4) returns a new function that invokes f in a
specified context and with a specified set of arguments. We say that it binds the function
to an object and partially applies the arguments. The bind() method partially applies
arguments on the left—that is, the arguments you pass to bind() are placed at the start
of the argument list that is passed to the original function. But it is also possible to
partially apply arguments on the right:

194 | Chapter8: Functions

// A utility function to convert an array-like object (or suffix of it)
// to a true array. Used below to convert arguments objects to real arrays.
function array(a, n) { return Array.prototype.slice.call(a, n || 0); }

// The arguments to this function are passed on the left
function partialleft(f /*, ...*/) {
var args = arguments; // Save the outer arguments array
return function() { // And return this function

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

var a = array(args, 1); // Start with the outer args from 1 on.
a = a.concat(array(arguments)); // Then add all the inner arguments.
return f.apply(this, a); // Then invoke f on that argument list.

};
}

// The arguments to this function are passed on the right
function partialRight(f /*, ...*/) {
var args = arguments; // Save the outer arguments array
return function() { // And return this function
var a = array(arguments); // Start with the inner arguments.
a = a.concat(array(args,1)); // Then add the outer args from 1 on.
return f.apply(this, a); // Then invoke f on that argument list.
};
}

// The arguments to this function serve as a template. Undefined values
// in the argument list are filled in with values from the inner set.
function partial(f /*, ... */) {
var args = arguments; // Save the outer arguments array
return function() {
var a = array(args, 1); // Start with an array of outer args
var i=0, j=0;
// Loop through those args, filling in undefined values from inner
for(; i < a.length; i++)
if (a[i] === undefined) a[i] = arguments[j++];
// Now append any remaining inner arguments
a = a.concat(array(arguments, j))
return f.apply(this, a);
};
}

// Here is a function with three arguments

var f = function(x,y,z) { return x * (y - z); };

// Notice how these three partial applications differ

partialleft(f, 2)(3,4) // => -2: Bind first argument: 2 * (3 - 4)
partialRight(f, 2)(3,4) // => 6: Bind last argument: 3 * (4 - 2)
partial(f, undefined, 2)(3,4) // => -6: Bind middle argument: 3 * (2 - 4)

These partial application functions allow us to easily define interesting functions out
of functions we already have defined. Here are some examples:

var increment = partialleft(sum, 1);

var cuberoot = partialRight(Math.pow, 1/3);
String.prototype.first = partial(String.prototype.charAt, 0);
String.prototype.last = partial(String.prototype.substr, -1, 1);

8.8 Functional Programming | 195

Partial application becomes even more interesting when we combine it with other
higher-order functions. Here, for example, is a way to define the not() function shown
above using composition and partial application:

var not = partialleft(compose, function(x) { return !x; });

var even = function(x) { return x % 2 === 0; };

var odd = not(even);
var isNumber = not(isNaN)

We can also use composition and partial application to redo our mean and standard
deviation calculations in extreme functional style:

var data = [1,1,3,5,5]; // Our data

var sum = function(x,y) { return x+y; }; // Two elementary functions
var product = function(x,y) { return x*y; };

var neg = partial(product, -1); // Define some others

var square = partial(Math.pow, undefined, 2);
var sqrt = partial(Math.pow, undefined, .5);
var reciprocal = partial(Math.pow, undefined, -1);

// Now compute the mean and standard deviation. This is all function
// invocations with no operators, and it starts to look like Lisp code!
var mean = product(reduce(data, sum), reciprocal(data.length));
var stddev = sqrt(product(reduce(map(data,
compose(square,
partial(sum, neg(mean)))),
sum),
reciprocal(sum(data.length,-1))));

8.8.4 Memoization

In §8.4.1 we defined a factorial function that cached its previously computed results.
In functional programming, this kind of caching is called memoization. The code below
shows a higher-order function, memoize() that accepts a function as its argument and
returns a memoized version of the function:

// Return a memoized version of f.
// It only works if arguments to f all have distinct string representations.
function memoize(f) {

var cache = {}; // Value cache stored in the closure.

return function() {
// Create a string version of the arguments to use as a cache key.
var key = arguments.length + Array.prototype.join.call(arguments,",");
if (key in cache) return cache[key];
else return cache[key] = f.apply(this, arguments);
1
}

The memoize() function creates a new object to use as the cache and assigns this object
to a local variable, so that it is private to (in the closure of) the returned function. The
returned function converts its arguments array to a string, and uses that string as a
property name for the cache object. If a value exists in the cache, it returns it directly.

196 | Chapter8: Functions

Otherwise, it calls the specified function to compute the value for these arguments, o
caches that value, and returns it. Here is how we might use memoize(): g
")
// Return the Greatest Common Divisor of two integers, using the Euclidian Ei
// algorithm: http://en.wikipedia.org/wiki/Euclidean_algorithm é}
function gcd(a,b) { // Type checking for a and b has been omitted -
var t; // Temporary variable for swapping values
if (a < b) t=b, b=a, a=t; // Ensure that a >= b
while(b != 0) t=b, b = a%b, a=t; // This is Euclid's algorithm for GCD
return a;

}

var gcdmemo = memoize(gcd);
gcdmemo(85, 187) // => 17

// Note that when we write a recursive function that we will be memoizing,
// we typically want to recurse to the memoized version, not the original.

var factorial = memoize(function(n) {
return (n <= 1) ? 1 : n * factorial(n-1);

5
factorial(s) // => 120. Also caches values for 4, 3, 2 and 1.

8.8 Functional Programming | 197

CHAPTER 9
Classes and Modules

JavaScript objects were covered in Chapter 6. That chapter treated each object as a
unique set of properties, different from every other object. It is often useful, however,
to define a class of objects that share certain properties. Members, or instances, of the
class have their own properties to hold or define their state, but they also have properties
(typically methods) that define their behavior. This behavior is defined by the class and
is shared by all instances. Imagine a class named Complex to represent and perform
arithmetic on complex numbers, for example. A Complex instance would have prop-
erties to hold the real and imaginary parts (state) of the complex number. And the
Complex class would define methods to perform addition and multiplication (behav-
ior) of those numbers.

In JavaScript, classes are based on JavaScript’s prototype-based inheritance mecha-
nism. If two objects inherit properties from the same prototype object, then we say that
they are instances of the same class. JavaScript prototypes and inheritance were covered
in §6.1.3 and §6.2.2, and you must be familiar with the material in those sections to
understand this chapter. This chapter covers prototypes in §9.1.

If two objects inherit from the same prototype, this typically (but not necessarily) means
that they were created and initialized by the same constructor function. Constructors
have been covered in §4.6, §6.1.2, and §8.2.3, and this chapter has more in §9.2.

If you’re familiar with strongly-typed object-oriented programming languages like Java
or C++, you’ll notice that JavaScript classes are quite different from classes in those
languages. There are some syntactic similarities, and you can emulate many features
of “classical” classes in JavaScript, but it is best to understand up front that JavaScript’s
classes and prototype-based inheritance mechanism are substantially different from the
classes and class-based inheritance mechanism of Java and similar languages. §9.3
demonstrates classical classes in JavaScript.

One of the important features of JavaScript classes is that they are dynamically extend-
able. §9.4 explains how to do this. Classes can be thought of as types, and §9.5 explains
several ways to test or determine the class of an object. That section also covers a

199

programming philosophy known as “duck-typing” that de-emphasizes object type in
favor of object capability.

After covering all of these fundamentals of object-oriented programming in JavaScript,
the chapter shifts to more practical and less architectural matters. §9.6 includes two
nontrivial example classes and demonstrates a number of practical object-oriented
techniques for improving those classes. §9.7 demonstrates (with many examples) how
to extend or subclass other classes and how to define class hierarchies in JavaScript.
§9.8 covers some of the things you can do with classes using the new features of
ECMAScript 5.

Defining classes is a way of writing modular, reusable code, and the last section of this
chapter talks about JavaScript modules more generally.

9.1 Classes and Prototypes

In JavaScript, a class is a set of objects that inherit properties from the same prototype
object. The prototype object, therefore, is the central feature of a class. In Exam-
ple 6-1 we defined an inherit() function that returns a newly created object that in-
herits from a specified prototype object. If we define a prototype object, and then use
inherit() to create objects that inherit from it, we have defined a JavaScript class.
Usually, the instances of a class require further initialization, and it is common to define
a function that creates and initializes the new object. Example 9-1 demonstrates this:
it defines a prototype object for a class that represents a range of values and also defines
a “factory” function that creates and initializes a new instance of the class.

Example 9-1. A simple JavaScript class

// range.js: A class representing a range of values.

// This is a factory function that returns a new range object.

function range(from, to) {
// Use the inherit() function to create an object that inherits from the
// prototype object defined below. The prototype object is stored as
// a property of this function, and defines the shared methods (behavior)
// for all range objects.
var r = inherit(range.methods);

// Store the start and end points (state) of this new range object.
// These are noninherited properties that are unique to this object.
r.from = from;

r.to = to;

// Finally return the new object
return r;

}

// This prototype object defines methods inherited by all range objects.
range.methods = {
// Return true if x is in the range, false otherwise

200 | Chapter9: Classesand Modules

// This method works for textual and Date ranges as well as numeric.
includes: function(x) { return this.from <= x &% x <= this.to; },
// Invoke f once for each integer in the range.
// This method works only for numeric ranges.
foreach: function(f) {
for(var x = Math.ceil(this.from); x <= this.to; x++) f(x);

b

// Return a string representation of the range

toString: function() { return "(" + this.from + "..." + this.to + ")"; }
5
// Here are example uses of a range object.
var r = range(1,3); // Create a range object
r.includes(2); // => true: 2 is in the range
r.foreach(console.log); // Prints 1 2 3
console.log(r); // Prints (1...3)

There are a few things worth noting in the code of Example 9-1. This code defines a
factory function range() for creating new range objects. Notice that we use a property
of this range() function range.methods as a convenient place to store the prototype
object that defines the class. There is nothing special or idiomatic about putting the
prototype object here. Second, notice that the range() function defines from and to
properties on each range object. These are the unshared, noninherited properties that
define the unique state of each individual range object. Finally, notice that the shared,
inherited methods defined in range.methods all use these from and to properties, and
in order to refer to them, they use the this keyword to refer to the object through which
they were invoked. This use of this is a fundamental characteristic of the methods of
any class.

9.2 (lasses and Constructors

Example 9-1 demonstrates one way to define a JavaScript class. It is not the idiomatic
way to do so, however, because it did not define a constructor. A constructor is a func-
tion designed for the initialization of newly created objects. Constructors are invoked
using the new keyword as described in §8.2.3. Constructor invocations using new au-
tomatically create the new object, so the constructor itself only needs to initialize the
state of that new object. The critical feature of constructor invocations is that the
prototype property of the constructor is used as the prototype of the new object. This
means that all objects created with the same constructor inherit from the same object
and are therefore members of the same class. Example 9-2 shows how we could alter
the range class of Example 9-1 to use a constructor function instead of a factory
function:

Example 9-2. A Range class using a constructor

// range2.js: Another class representing a range of values.

// This is a constructor function that initializes new Range objects.
// Note that it does not create or return the object. It just initializes this.

9.2 Classes and Constructors | 201

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

function Range(from, to) {
// Store the start and end points (state) of this new range object.
// These are noninherited properties that are unique to this object.
this.from = from;
this.to = to;

}

// All Range objects inherit from this object.
// Note that the property name must be "prototype" for this to work.
Range.prototype = {
// Return true if x is in the range, false otherwise
// This method works for textual and Date ranges as well as numeric.
includes: function(x) { return this.from <= x &% x <= this.to; },
// Invoke f once for each integer in the range.
// This method works only for numeric ranges.
foreach: function(f) {
for(var x = Math.ceil(this.from); x <= this.to; x++) f(x);
b

// Return a string representation of the range
toString: function() { return "(" + this.from + "..." + this.to + ")"; }

};

// Here are example uses of a range object
var r = new Range(1,3); // Create a range object

r.includes(2); // => true: 2 is in the range
r.foreach(console.log); // Prints 123
console.log(r); // Prints (1...3)

It is worth comparing Example 9-1 and Example 9-2 fairly carefully and noting the
differences between these two techniques for defining classes. First, notice that we
renamed the range() factory function to Range() when we converted it to a constructor.
This is a very common coding convention: constructor functions define, in a sense,
classes, and classes have names that begin with capital letters. Regular functions and
methods have names that begin with lowercase letters.

Next, notice that the Range() constructor is invoked (at the end of the example) with
the new keyword while the range() factory function was invoked without it. Exam-
ple 9-1 uses regular function invocation (§8.2.1) to create the new object and Exam-
ple 9-2 uses constructor invocation (§8.2.3). Because the Ra nge() constructor is invoked
with new, it does not have to call inherit() or take any action to create a new object.
The new object is automatically created before the constructor is called, and it is ac-
cessible as the this value. The Range() constructor merely has to initialize this. Con-
structors do not even have to return the newly created object. Constructor invocation
automatically creates a new object, invokes the constructor as a method of that object,
and returns the new object. The fact that constructor invocation is so different from
regular function invocation is another reason that we give constructors names that start
with capital letters. Constructors are written to be invoked as constructors, with the
new keyword, and they usually won’t work properly if they are invoked as regular func-
tions. A naming convention that keeps constructor functions distinct from regular
functions helps programmers to know when to use new.

202 | Chapter9: Classesand Modules

Another critical difference between Example 9-1 and Example 9-2 is the way the pro-
totype object is named. In the first example, the prototype was range.methods. This was
a convenient and descriptive name, but arbitrary. In the second example, the prototype
is Range.prototype, and this name is mandatory. An invocation of the Range() con-
structor automatically uses Range.prototype as the prototype of the new Range object.

Finally, also note the things that do not change between Example 9-1 and Exam-
ple 9-2: the range methods are defined and invoked in the same way for both classes.

9.2.1 Constructors and Class Identity

Aswe’ve seen, the prototype object is fundamental to the identity of a class: two objects
are instances of the same class if and only if they inherit from the same prototype object.
The constructor function that initializes the state of a new object is not fundamental:
two constructor functions may have prototype properties that point to the same pro-
totype object. Then both constructors can be used to create instances of the same class.

Even through constructors are not as fundamental as prototypes, the constructor serves
as the public face of a class. Most obviously, the name of the constructor function is
usually adopted as the name of the class. We say, for example, that the Range() con-
structor creates Range objects. More fundamentally, however, constructors are used
with the instanceof operator when testing objects for membership in a class. If we have
an object r and want to know if it is a Range object, we can write:

r instanceof Range // returns true if r inherits from Range.prototype

The instanceof operator does not actually check whether r was initialized by the
Range constructor. It checks whether it inherits from Range.prototype. Nevertheless,
the instanceof syntax reinforces the use of constructors as the public identity of a class.
We'll see the instanceof operator again later in this chapter.

9.2.2 The constructor Property

In Example 9-2 we set Range.prototype to a new object that contained the methods for
our class. Although it was convenient to express those methods as properties of a single
object literal, it was not actually necessary to create a new object. Any JavaScript
function can be used as a constructor, and constructor invocations need a prototype
property. Therefore, every JavaScript function (except functions returned by the EC-
MAScript 5 Function.bind() method) automatically has a prototype property. The val-
ue of this property is an object that has a single nonenumerable constructor property.
The value of the constructor property is the function object:

var F = function() {}; // This is a function object.

var p = F.prototype; // This is the prototype object associated with it.

var c¢ = p.constructor; // This is the function associated with the prototype.
c===F // => true: F.prototype.constructor==F for any function

9.2 Classes and Constructors | 203

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

The existence of this predefined prototype object with its constructor property means
that objects typically inherit a constructor property that refers to their constructor.
Since constructors serve as the public identity of a class, this constructor property gives
the class of an object:

var o = new F(); // Create an object o of class F
o.constructor === // => true: the constructor property specifies the class

Figure 9-1 illustrates this relationship between the constructor function, its prototype
object, the back reference from the prototype to the constructor, and the instances
created with the constructor.

Constructor Prototype Instances
inherits
Range“ PR . SRR L I . new Range[Lz)
prototype4-.... »| includes:..
foreach: ... o
tOSt"ng o - mh@"ts new Range[3’4)

Figure 9-1. A constructor function, its prototype, and instances

Notice that Figure 9-1 uses our Range() constructor as an example. In fact, however,
the Range class defined in Example 9-2 overwrites the predefined Range.prototype ob-
ject with an object of its own. And the new prototype object it defines does not have a
constructor property. So instances of the Range class, as defined, do not have a con
structor property. We can remedy this problem by explicitly adding a constructor to
the prototype:
Range.prototype = {
constructor: Range, // Explicitly set the constructor back-reference
includes: function(x) { return this.from <= x & x <= this.to; },

foreach: function(f) {
for(var x = Math.ceil(this.from); x <= this.to; x++) f(x);
b

toString: function() { return "(" + this.from + "..." + this.to + ")"; }

};

Another common technique is to use the predefined prototype object with its
constructor property, and add methods to it one at a time:

// Extend the predefined Range.prototype object so we don't overwrite
// the automatically created Range.prototype.constructor property.
Range.prototype.includes = function(x) { return this.from<=x &3 x<=this.to; };
Range.prototype.foreach = function(f) {

for(var x = Math.ceil(this.from); x <= this.to; x++) f(x);

I
Range.prototype.toString = function() {

return "(" + this.from + "..." + this.to + ")";
I

204 | Chapter9: Classesand Modules

9.3 Java-Style Classes in JavaScript

If you have programmed in Java or a similar strongly-typed object-oriented language,
you may be accustomed to thinking about four kinds of class members:

Instance fields
These are the per-instance properties or variables that hold the state of individual
objects.

Instance methods
These are methods that are shared by all instances of the class that are invoked
through individual instances.

Class fields
These are properties or variables associated with the class rather than the instances
of the class.

Class methods
These are methods that are associated with the class rather than with instances.

One way JavaScript differs from Java is that its functions are values, and there is no
hard distinction between methods and fields. If the value of a property is a function,
that property defines a method; otherwise, it is just an ordinary property or “field.”
Despite this difference, we can simulate each of Java’s four categories of class members
in JavaScript. In JavaScript, there are three different objects involved in any class defi-
nition (see Figure 9-1), and the properties of these three objects act like different kinds
of class members:

Constructor object
Aswe’ve noted, the constructor function (an object) defines a name for a JavaScript
class. Properties you add to this constructor object serve as class fields and class
methods (depending on whether the property values are functions or not).

Prototype object
The properties of this object are inherited by all instances of the class, and prop-
erties whose values are functions behave like instance methods of the class.

Instance object
Each instance of a class is an object in its own right, and properties defined directly
on an instance are not shared by any other instances. Nonfunction properties de-
fined on instances behave as the instance fields of the class.

We can reduce the process of class definition in JavaScript to a three-step algorithm.
First, write a constructor function that sets instance properties on new objects. Second,
define instance methods on the prototype object of the constructor. Third, define class
fields and class properties on the constructor itself. We can even implement this algo-
rithm as a simple defineClass() function. (It uses the extend() function of Exam-
ple 6-2 as patched in Example 8-3):

// A simple function for defining simple classes
function defineClass(constructor, // A function that sets instance properties

9.3 Java-Style Classes in JavaScript | 205

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

methods, // Instance methods: copied to prototype

statics) // Class properties: copied to constructor
{
if (methods) extend(constructor.prototype, methods);
if (statics) extend(constructor, statics);
return constructor;
}

// This is a simple variant of our Range class
var SimpleRange =
defineClass(function(f,t) { this.f = f; this.t = t; },
{

includes: function(x) { return this.f <= x 8&% x <= this.t;},
toString: function() { return this.f + "..." + this.t; }

b
{ upto: function(t) { return new SimpleRange(0, t); } 1});

Example 9-3 is a longer class definition. It creates a class that represents complex num-
bers and demonstrates how to simulate Java-style class members using JavaScript. It
does this “manually”—without relying on the defineClass() function above.

Example 9-3. Complex.js: A complex number class

/*
* Complex.js:

* This file defines a Complex class to represent complex numbers.

* Recall that a complex number is the sum of a real number and an

* imaginary number and that the imaginary number i is the square root of -1.

*/
/*

* This constructor function defines the instance fields r and i on every
* instance it creates. These fields hold the real and imaginary parts of
* the complex number: they are the state of the object.
*/
function Complex(real, imaginary) {
if (isNaN(real) || isNaN(imaginary)) // Ensure that both args are numbers.

throw new TypeError(); // Throw an error if they are not.
this.r = real; // The real part of the complex number.
this.i = imaginary; // The imaginary part of the number.
}
/*

* The instance methods of a class are defined as function-valued properties

* of the prototype object. The methods defined here are inherited by all

* instances and provide the shared behavior of the class. Note that JavaScript
* instance methods must use the this keyword to access the instance fields.

*/

// Add a complex number to this one and return the sum in a new object.
Complex.prototype.add = function(that) {

return new Complex(this.r + that.r, this.i + that.i);
b

// Multiply this complex number by another and return the product.
Complex.prototype.mul = function(that) {

206 | Chapter9: Classesand Modules

return new Complex(this.r * that.r - this.i * that.i,
this.r * that.i + this.i * that.r);

|5

// Return the real magnitude of a complex number. This is defined
// as its distance from the origin (0,0) of the complex plane.
Complex.prototype.mag = function() {

return Math.sqrt(this.r*this.r + this.i*this.i);

};

// Return a complex number that is the negative of this one.
Complex.prototype.neg = function() { return new Complex(-this.r, -this.i); };

// Convert a Complex object to a string in a useful way.
Complex.prototype.toString = function() {

return "{" + this.r + "," + this.i + "}";

};

// Test whether this Complex object has the same value as another.
Complex.prototype.equals = function(that) {

return that != null && // must be defined and non-null
that.constructor === Complex && // and an instance of Complex
this.r === that.r & this.i === that.i; // and have the same values.
I
/*

* Class fields (such as constants) and class methods are defined as
* properties of the constructor. Note that class methods do not
* generally use the this keyword: they operate only on their arguments.

*/

// Here are some class fields that hold useful predefined complex numbers.
// Their names are uppercase to indicate that they are constants.

// (In ECMAScript 5, we could actually make these properties read-only.)
Complex.ZERO = new Complex(0,0);

Complex.ONE = new Complex(1,0);

Complex.I = new Complex(0,1);

// This class method parses a string in the format returned by the toString
// instance method and returns a Complex object or throws a TypeError.
Complex.parse = function(s) {
try { // Assume that the parsing will succeed
var m = Complex. format.exec(s); // Regular expression magic
return new Complex(parseFloat(m[1]), parseFloat(m[2]));
} catch (x) { // And throw an exception if it fails
throw new TypeError("Can't parse '" + s + "' as a complex number.");
}

};

// A "private" class field used in Complex.parse() above.

// The underscore in its name indicates that it is intended for internal
// use and should not be considered part of the public API of this class.
Complex. format = /"\{([*,]+),([*}]+)\}$/;

9.3 Java-Style Classes in JavaScript | 207

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

With the Complex class of Example 9-3 defined, we can use the constructor, instance
fields, instance methods, class fields, and class methods with code like this:

var ¢ = new Complex(2,3); // Create a new object with the constructor
var d = new Complex(c.i,c.r); // Use instance properties of c
c.add(d).toString(); // => "{5,5}": use instance methods

// A more complex expression that uses a class method and field

Complex.parse(c.toString()). // Convert c to a string and back again,
add(c.neg()). // add its negative to it,
equals(Complex.ZERO) // and it will always equal zero

Although JavaScript classes can emulate Java-style class members, there are a number

of significant Java features that JavaScript classes do not support. First, in the instance

methods of Java classes, instance fields can be used as if they were local variables—

there is no need to prefix them with this. JavaScript does not do this, but you could

achieve a similar effect using a with statement (this is not recommended, however):
Complex.prototype.toString = function() {

with(this) {
return "{" 4T+ ", 4 i+ "}
}

};

Java allows fields to be declared final to indicate that they are constants, and it allows
fields and methods to be declared private to specify that they are private to the class
implementation and should not be visible to users of the class. JavaScript does not have
these keywords, and Example 9-3 uses typographical conventions to provide hints that
some properties (whose names are in capital letters) should not be changed and that
others (whose names begin with an underscore) should not be used outside of the class.
We'll return to both of these topics later in the chapter: private properties can be emu-
lated using the local variables of a closure (see §9.6.6) and constant properties are
possible in ECMAScript 5 (see §9.8.2).

9.4 Augmenting Classes

JavaScript’s prototype-based inheritance mechanism is dynamic: an object inherits
properties from its prototype, even if the prototype changes after the object is created.
This means that we can augment JavaScript classes simply by adding new methods to
their prototype objects. Here is code that adds a method for computing the complex
conjugate to the Complex class of Example 9-3:

// Return a complex number that is the complex conjugate of this one.
Complex.prototype.conj = function() { return new Complex(this.r, -this.i); };

The prototype object of built-in JavaScript classes is also “open” like this, which means
that we can add methods to numbers, strings, arrays, functions, and so on. We did this
in Example 8-5 when we added a bind() method to the function class in
ECMAScript 3 implementations where it did not already exist:

if (!Function.prototype.bind) {
Function.prototype.bind = function(o /*, args */) {

208 | Chapter9: Classesand Modules

// Code for the bind method goes here...

1
}

Here are some other examples:

// Invoke the function f this many times, passing the iteration number
// For example, to print "hello" 3 times:
// var n = 3;
// n.times(function(n) { console.log(n + " hello"); });
Number.prototype.times = function(f, context) {

var n = Number(this);

for(var i = 0; i < n; i++) f.call(context, i);

};

// Define the ES5 String.trim() method if one does not already exist.
// This method returns a string with whitespace removed from the start and end.
String.prototype.trim = String.prototype.trim || function() {
if (!this) return this; // Don't alter the empty string
return this.replace(/*\s+|\s+$/g, ""); // Regular expression magic

};

// Return a function's name. If it has a (nonstandard) name property, use it.
// Otherwise, convert the function to a string and extract the name from that.
// Returns an empty string for unnamed functions like itself.
Function.prototype.getName = function() {

return this.name || this.toString().match(/function\s*([~(1*)\(/)[1];
};

Itis possible to add methods to Object. prototype, making them available on all objects.
This is not recommended, however, because prior to ECMAScript 5, there is no way
to make these add-on methods nonenumerable, and if you add properties to Object.pro
totype, those properties will be reported by all for/in loops. In §9.8.1 we’ll see an
example of using the ECMAScript 5 method Object.defineProperty() to safely aug-
ment Object.prototype.

It is implementation-dependent whether classes defined by the host environment (such
as the web browser) can be augmented in this way. In many web browsers, for example,
you can add methods to HTMLElement.prototype and those methods will be inherited
by the objects that represent the HTML tags in the current document. This does not
work in current versions of Microsoft’s Internet Explorer, however, which severely
limits the utility of this technique for client-side programming.

9.5 Classes and Types

Recall from Chapter 3 that JavaScript defines a small set of types: null, undefined,
boolean, number, string, function, and object. The typeof operator (§4.13.2) allows
us to distinguish among these types. Often, however, it is useful to treat each class as
its own type and to be able to distinguish objects based on their class. The built-in
objects of core JavaScript (and often the host objects of client-side JavaScript) can be
distinguished on the basis of their class attribute (8§6.8.2) using code like the

9.5 Classesand Types | 209

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

classof() function of Example 6-4. But when we define our own classes using the
techniques shown in this chapter, the instance objects always have a class attribute of
“Object”, so the classof() function doesn’t help here.

The subsections that follow explain three techniques for determining the class of an
arbitrary object: the instanceof operator, the constructor property, and the name of
the constructor function. None of these techniques is entirely satisfactory, however,
and the section concludes with a discussion of duck-typing, a programming philosophy
that focuses on what an object can do (what methods it has) rather than what its
class is.

9.5.1 The instanceof operator

The instanceof operator was described in §84.9.4. The left-hand operand should be the
object whose class is being tested, and the right-hand operand should be a constructor
function thatnames a class. The expression o instanceof cevaluates to trueifoinherits
from c.prototype. The inheritance need not be direct. If o inherits from an object that
inherits from an object that inherits from c.prototype, the expression will still evaluate
to true.

As noted earlier in this chapter, constructors act as the public identity of classes, but
prototypes are the fundamental identity. Despite the use of a constructor function with
instanceof, this operator is really testing what an object inherits from, not what con-
structor was used to create it.

If you want to test the prototype chain of an object for a specific prototype object and
do not want to use the constructor function as an intermediary, you can use the
isPrototype0Of() method. For example, we could test whether an object r was a member
of the range class defined in Example 9-1 with this code:

range.methods.isPrototypeOf(r); // range.methods is the prototype object.

One shortcoming of the instanceof operator and the isPrototype0f() method is that
they do not allow us to query the class of an object, only to test an object against a class
we specify. A more serious shortcoming arises in client-side JavaScript where a web
application uses more than one window or frame. Each window or frame is a distinct
execution context, and each has its own global object and its own set of constructor
functions. Two arrays created in two different frames inherit from two identical but
distinct prototype objects, and an array created in one frame is not instanceof the
Array() constructor of another frame.

210 | Chapter9: Classes and Modules

9.5.2 The constructor property

Another way to identify the class of an object is to simply use the constructor property.
Since constructors are the public face of classes, this is a straightforward approach. For
example:

function typeAndvalue(x) {

if (x == null) return ""; // Null and undefined don't have constructors
switch(x.constructor) {

case Number: return "Number: " + x; // Works for primitive types
case String: return "String: '" + x + "'";
case Date: return "Date: " + x; // And for built-in types

case RegExp: return "Regexp: " + x;
case Complex: return "Complex: " + x; // And for user-defined types
}

}

Note that the expressions following the case keyword in the code above are functions.
If we were using the typeof operator or extracting the class attribute of the object, they
would be strings instead.

This technique of using the constructor property is subject to the same problem as
instanceof. It won’t always work when there are multiple execution contexts (such as
multiple frames in a browser window) that share values. In this situation, each frame
has its own set of constructor functions: the Array constructor in one frame is not the
same as the Array constructor in another frame.

Also, JavaScript does not require that every object have a constructor property: this is
a convention based on the default prototype object created for each function, but it is
easy to accidentally or intentionally omit the constructor property on the prototype.
The first two classes in this chapter, for example, were defined in such a way (in
Examples 9-1 and 9-2) that their instances did not have constructor properties.

9.5.3 The Constructor Name

The main problem with using the instanceof operator or the constructor property for
determining the class of an object occurs when there are multiple execution contexts
and thus multiple copies of the constructor functions. These functions may well be
identical, but they are distinct objects and are therefore not equal to each other.

One possible workaround is to use the name of the constructor function as the class
identifier rather than the function itself. The Array constructor in one window is not
equal to the Array constructor in another window, but their names are equal. Some
JavaScript implementations make the name of a function available through a nonstan-
dard name property of the function object. For implementations without a name property,
we can convert the function to a string and extract the name from that. (We did this in
§9.4 when we showed how to add a getName() method to the Function class.)

Example 9-4 defines a type() function that returns the type of an object as a string. It
handles primitive values and functions with the typeof operator. For objects, it returns

9.5 Classesand Types | 211

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

either the value of the class attribute or the name of the constructor. The type() function
uses the classof() function from Example 6-4 and the Function.getName() method
from §9.4. The code for that function and method are included here for simplicity.

Example 9-4. A type() function to determine the type of a value
/**

* Return the type of o as a string:

-If o is null, return "null", if o is NaN, return "nan".
-If typeof returns a value other than "object" return that value.
(Note that some implementations identify regexps as functions.)
-If the class of o is anything other than "Object", return that.
-If o has a constructor and that constructor has a name, return it.
-Otherwise, just return "Object".

ESE S S S I

**/
function type(o) {
var t, ¢, n; // type, class, name

// Special case for the null value:
if (o === null) return "null";

// Another special case: NaN is the only value not equal to itself:
if (o !== o) return "nan";

// Use typeof for any value other than "object".
// This identifies any primitive value and also functions.
if ((t = typeof o) !== "object") return t;

// Return the class of the object unless it is "Object".
// This will identify most native objects.
if ((c = classof(o)) !== "Object") return c;

// Return the object's constructor name, if it has one
if (o.constructor &8 typeof o.constructor === "function" &&
(n = o.constructor.getName())) return n;

// We can't determine a more specific type, so return "Object"
return "Object";

}

// Return the class of an object.
function classof(o) {

return Object.prototype.toString.call(o).slice(8,-1);
};

// Return the name of a function (may be
Function.prototype.getName = function() {
if ("name" in this) return this.name;
return this.name = this.toString().match(/function\s*([*(]*)\(/)[1];

nn

) or null for nonfunctions

};

This technique of using the constructor name to identify the class of an object has one
of the same problems as using the constructor property itself: not all objects have a
constructor property. Furthermore, not all functions have a name. If we define a

212 | Chapter9: Classes and Modules

constructor using an unnamed function definition expression, the getName() method
will return an empty string:

// This constructor has no name

var Complex = function(x,y) { this.r = x; this.i =y; }

// This constructor does have a name

var Range = function Range(f,t) { this.from = f; this.to = t; }

9.5.4 Duck-Typing

None of the techniques described above for determining the class of an object are
problem-free, at least in client-side JavaScript. An alternative is to sidestep the issue:
instead of asking “what is the class of this object?” we ask instead, “what can this object
do?” This approach to programming is common in languages like Python and Ruby
and is called duck-typing after this expression (often attributed to poet James Whitcomb
Riley):

When [see a bird that walks like a duck and swims like a duck and quacks like a duck,

I call that bird a duck.

For JavaScript programmers, this aphorism can be understood to mean “if an object
can walk and swim and quack like a Duck, then we can treat it as a Duck, even if it
does not inherit from the prototype object of the Duck class.”

The Range class of Example 9-2 serves as an example. This class was designed with
numeric ranges in mind. Notice, however, that the Range() constructor does not check
its arguments to ensure that they are numbers. It does use the > operator on them,
however, so it assumes that they are comparable. Similarly, the includes() method uses
the <= operator but makes no other assumptions about the endpoints of the range.
Because the class does not enforce a particular type, its includes() method works for
any kind of endpoint that can be compared with the relational operators:

var lowercase = new Range("a", "z");
var thisYear = new Range(new Date(2009, 0, 1), new Date(2010, 0, 1));

The foreach() method of our Range class doesn’t explicitly test the type of the range
endpoints either, butits use of Math.ceil() and the ++ operator means that it only works
with numeric endpoints.

As another example, recall the discussion of array-like objects from §7.11. In many
circumstances, we don’t need to know whether an object is a true instance of the Array
class: it is enough to know that it has a nonnegative integer length property. The ex-
istence of an integer-valued length is how arrays walk, we might say, and any object
that can walk in this way can (in many circumstances) be treated as an array.

Keep in mind, however, that the length property of true arrays has special behavior:
when new elements are added, the length is automatically updated, and when the length
is set to a smaller value, the array is automatically truncated. We might say that this is
how arrays swim and quack. If you are writing code that requires swimming and
quacking, you can’t use an object that only walks like an array.

9.5 Classesand Types | 213

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

The examples of duck-typing presented above involve the response of objects to the <
operator and the special behavior of the length property. More typically, however,
when we talk about duck-typing, we’re talking about testing whether an object imple-
ments one or more methods. A strongly-typed triathlon() function might require its
argument to be an TriAthlete object. A duck-typed alternative could be designed to
accept any object that has walk(), swim(), and bike() methods. Less frivolously, we
might redesign our Range class so that instead of using the < and ++ operators, it uses
the compareTo() and succ() (successor) methods of its endpoint objects.

One approach to duck-typing is laissez-faire: we simply assume that our input objects
implement the necessary methods and perform no checking at all. If the assumption is
invalid, an error will occur when our code attempts to invoke a nonexistent method.
Another approach does check the input objects. Rather than check their class, however,
it checks that they implement methods with the appropriate names. This allows us to
reject bad input earlier and can result in more informative error messages.

Example 9-5 defines a quacks() function (“implements” would be a better name, but
implements is a reserved word) that can be useful when duck-typing. quacks() tests
whether an object (the first argument) implements the methods specified by the re-
maining arguments. For each remaining argument, if the argument is a string, it checks
for a method by that name. If the argument is an object, it checks whether the first
object implements methods with the same names as the methods of that object. If the
argument is a function, it is assumed to be a constructor, and the function checks
whether the first object implements methods with the same names as the prototype
object.

Example 9-5. A function for duck-type checking

// Return true if o implements the methods specified by the remaining args.
function quacks(o /*, ... */) {
for(var i = 1; i < arguments.length; i++) { // for each argument after o
var arg = arguments[i];
switch(typeof arg) { // If arg is a:

case 'string': // string: check for a method with that name
if (typeof o[arg] !== "function") return false;
continue;

case 'function': // function: use the prototype object instead

// If the argument is a function, we use its prototype object
arg = arg.prototype;
// fall through to the next case

case 'object': // object: check for matching methods
for(var m in arg) { // For each property of the object
if (typeof arg[m] !== "function") continue; // skip non-methods
if (typeof o[m] !== "function") return false;
}

}

// If we're still here, then o implements everything
return true;

214 | Chapter9: Classes and Modules

There are a couple of important things to keep in mind about this quacks() function.
First, it only tests that an object has one or more function-valued properties with speci-
fied names. The existence of these properties doesn’t tell us anything about what those
functions do or how many and what kind of arguments they expect. This, however, is
the nature of duck-typing. If you define an API that uses duck-typing rather than a
stronger version of type checking, you are creating a more flexible API but also en-
trusting the user of your API with the responsibility to use the API correctly. The second
important point to note about the quacks() function is that it doesn’t work with built-
in classes. For example, you can’t write quacks(o, Array) to test that o has methods
with the same names as all Array methods. This is because the methods of the built-in
classes are nonenumerable and the for/in loop in quacks() does not see them. (Note
that this can be remedied in ECMAScript 5 with the use of Object.getOwnProperty
Names().)

9.6 Object-Oriented Techniques in JavaScript

So far in this chapter we’ve covered the architectural fundamentals of classes in Java-
Script: the importance of the prototype object, its connections to the constructor func-
tion, how the instanceof operator works, and so on. In this section we switch gears
and demonstrate a number of practical (though not fundamental) techniques for pro-
gramming with JavaScript classes. We begin with two nontrivial example classes that
are interesting in their own right but also serve as starting points for the discussions
that follow.

9.6.1 Example: A Set Class

A set is a data structure that represents an unordered collection of values, with no
duplicates. The fundamental operations on sets are adding values and testing whether
a value is a member of the set, and sets are generally implemented so that these oper-
ations are fast. JavaScript’s objects are basically sets of property names, with values
associated with each name. It is trivial, therefore, to use an object as a set of strings.
Example 9-6 implements a more general Set class in JavaScript. It works by mapping
any JavaScript value to a unique string, and then using that string as a property name.
Objects and functions do not have a concise and reliably unique string representation,
so the Set class must define an identifying property on any object or function stored in
the set.

Example 9-6. Set.js: An arbitrary set of values

function Set() { // This is the constructor
this.values = {}; // The properties of this object hold the set
this.n = 0; // How many values are in the set

this.add.apply(this, arguments); // All arguments are values to add
}

// Add each of the arguments to the set.
Set.prototype.add = function() {

9.6 Object-Oriented Techniques in JavaScript | 215

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

for(var i = 0; i < arguments.length; i++) { // For each argument

var val = arguments[i]; // The value to add to the set
var str = Set. v2s(val); // Transform it to a string
if (!this.values.hasOwnProperty(str)) { // If not already in the set
this.values[str] = val; // Map string to value
this.n++; // Increase set size
}
}
return this; // Support chained method calls

};

// Remove each of the arguments from the set.
Set.prototype.remove = function() {
for(var i = 0; i < arguments.length; i++) { // For each argument

var str = Set. v2s(arguments[i]); // Map to a string
if (this.values.hasOwnProperty(str)) { // If it is in the set
delete this.values[str]; // Delete it
this.n--; // Decrease set size
}
}
return this; // For method chaining

};

// Return true if the set contains value; false otherwise.
Set.prototype.contains = function(value) {

return this.values.hasOwnProperty(Set. v2s(value));
b

// Return the size of the set.
Set.prototype.size = function() { return this.n; };

// Call function f on the specified context for each element of the set.
Set.prototype.foreach = function(f, context) {
for(var s in this.values) // For each string in the set
if (this.values.hasOwnProperty(s)) // Ignore inherited properties
f.call(context, this.values[s]); // Call f on the value

};

// This internal function maps any JavaScript value to a unique string.
Set. v2s = function(val) {
switch(val) {

case undefined: return 'u’; // Special primitive

case null: return 'n'; // values get single-letter
case true: return 't'; // codes.

case false: return 'f';

default: switch(typeof val) {
case 'number': return '#' + val; // Numbers get # prefix.
case 'string': return '"' + val; // Strings get " prefix.
default: return '@' + objectId(val); // Objs and funcs get @

}

// For any object, return a string. This function will return a different
// string for different objects, and will always return the same string

// if called multiple times for the same object. To do this it creates a
// property on o. In ES5 the property would be nonenumerable and read-only.

216 | Chapter9: Classes and Modules

function objectId(o) {
var prop = "|**objectid**|"; // Private property name for storing ids
if (!o.hasOwnProperty(prop)) // If the object has no id
o[prop] = Set. v2s.next++; // Assign it the next available
return o[prop]; // Return the id

}
|5

Set._v2s.next = 100; // Start assigning object ids at this value.

9.6.2 Example: Enumerated Types

An enumerated type is a type with a finite set of values that are listed (or “enumerated”)
when the type is defined. In C and languages derived from it, enumerated types are
declared with the enum keyword. enum is a reserved (but unused) word in
ECMAScript 5 which leaves open the possibility that JavaScript may someday have
native enumerated types. Until then, Example 9-7 shows how you can define your own
enumerated types in JavaScript. Note that it uses the inherit() function from
Example 6-1.

Example 9-7 consists of a single function enumeration(). This is not a constructor
function, however: it does not define a class named “enumeration”. Instead, this is a
factory function: each invocation creates and returns a new class. Use it like this:

// Create a new Coin class with four values: Coin.Penny, Coin.Nickel, etc.
var Coin = enumeration({Penny: 1, Nickel:5, Dime:10, Quarter:25});

var ¢ = Coin.Dime; // This is an instance of the new class
¢ instanceof Coin // => true: instanceof works
c.constructor == Coin // => true: constructor property works
Coin.Quarter + 3*Coin.Nickel // => 40: values convert to numbers
Coin.Dime == 10 // => true: more conversion to numbers
Coin.Dime > Coin.Nickel // => true: relational operators work

n,n

String(Coin.Dime) + + Coin.Dime // => "Dime:10": coerce to string

The point of this example is to demonstrate that JavaScript classes are much more
flexible and dynamic than the static classes of languages like C++ and Java.

Example 9-7. Enumerated types in JavaScript

// This function creates a new enumerated type. The argument object specifies
// the names and values of each instance of the class. The return value
// is a constructor function that identifies the new class. Note, however
// that the constructor throws an exception: you can't use it to create new
// instances of the type. The returned constructor has properties that
// map the name of a value to the value itself, and also a values array,
// a foreach() iterator function
function enumeration(namesToValues) {
// This is the dummy constructor function that will be the return value.
var enumeration = function() { throw "Can't Instantiate Enumerations"; };

// Enumerated values inherit from this object.

var proto = enumeration.prototype = {
constructor: enumeration, // Identify type
toString: function() { return this.name; }, // Return name
valueOf: function() { return this.value; }, // Return value

9.6 Object-Oriented Techniques in JavaScript | 217

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

toJSON: function() { return this.name; } // For serialization

b
enumeration.values = []; // An array of the enumerated value objects

// Now create the instances of this new type.

for(name in namesToValues) { // For each value
var e = inherit(proto); // Create an object to represent it
e.name = name; // Give it a name
e.value = namesToValues[name]; // And a value
enumeration[name] = e; // Make it a property of constructor
enumeration.values.push(e); // And store in the values array

// A class method for iterating the instances of the class
enumeration.foreach = function(f,c) {
for(var i = 0; 1 < this.values.length; i++) f.call(c,this.values[i]);

};

// Return the constructor that identifies the new type
return enumeration;

}

The “hello world” of enumerated types is to use an enumerated type to represent the
suits in a deck of cards. Example 9-8 uses the enumeration() function in this way and
also defines classes to represents cards and decks of cards."

Example 9-8. Representing cards with enumerated types

// Define a class to represent a playing card
function Card(suit, rank) {
this.suit = suit; // Each card has a suit
this.rank = rank; // and a rank

}

// These enumerated types define the suit and rank values
Card.Suit = enumeration({Clubs: 1, Diamonds: 2, Hearts:3, Spades:4});
Card.Rank = enumeration({Two: 2, Three: 3, Four: 4, Five: 5, Six: 6,
Seven: 7, Eight: 8, Nine: 9, Ten: 10,
Jack: 11, Queen: 12, King: 13, Ace: 14});

// Define a textual representation for a card
Card.prototype.toString = function() {

return this.rank.toString() + " of " + this.suit.toString();
1
// Compare the value of two cards as you would in poker
Card.prototype.compareTo = function(that) {

if (this.rank < that.rank) return -1;

if (this.rank > that.rank) return 1;

return 0;

};

// A function for ordering cards as you would in poker

1. This example is based on a Java example by Joshua Bloch, available at http://jcp.org/about]ava/
communityprocess/jsr/tiger/enum.html.

218 | Chapter9: Classes and Modules

http://jcp.org/aboutJava/communityprocess/jsr/tiger/enum.html
http://jcp.org/aboutJava/communityprocess/jsr/tiger/enum.html

Card.orderByRank = function(a,b) { return a.compareTo(b); };

// A function for ordering cards as you would in bridge
Card.orderBySuit = function(a,b) {

if (a.suit < b.suit) return -1;

if (a.suit > b.suit) return 1;

if (a.rank < b.rank) return -1;

if (a.rank > b.rank) return 1;

return 0;

};

// Define a class to represent a standard deck of cards
function Deck() {

var cards = this.cards = []; // A deck is just an array of cards

Card.Suit.foreach(function(s) { // Initialize the array

Card.Rank.foreach(function(r) {
cards.push(new Card(s,r));
b;
b;

}

// Shuffle method: shuffles cards in place and returns the deck
Deck.prototype.shuffle = function() {
// For each element in the array, swap with a randomly chosen lower element
var deck = this.cards, len = deck.length;
for(var i = len-1; i > 0; i--) {
var r = Math.floor(Math.random()*(i+1)), temp; // Random number
temp = deck[i], deck[i] = deck[r], deck[r] = temp; // Swap

return this;

};

// Deal method: returns an array of cards
Deck.prototype.deal = function(n) {
if (this.cards.length < n) throw "Out of cards";
return this.cards.splice(this.cards.length-n, n);

};

// Create a new deck of cards, shuffle it, and deal a bridge hand
var deck = (new Deck()).shuffle();
var hand = deck.deal(13).sort(Card.orderBySuit);

9.6.3 Standard Conversion Methods

§3.8.3 and §6.10 described important methods used for type conversion of objects,
some of which are invoked automatically by the JavaScript interpreter when conversion
is necessary. You do not need to implement these methods for every class you write,
but they are important methods, and if you do not implement them for your classes, it
should be a conscious choice not to implement them rather than mere oversight.

The first, and most important, method is toString(). The purpose of this method is to
return a string representation of an object. JavaScript automatically invokes this meth-
od if you use an object where a string is expected—as a property name, for example,

9.6 Object-Oriented Techniques in JavaScript | 219

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

or with the + operator to perform string concatenation. If you don’t implement this
method, your class will inherit the default implementation from Object.prototype and
will convert to the useless string “[object Object]”. A toString() method might return
a human-readable string suitable for display to end users of your program. Even if this
is not necessary, however, it is often useful to define toString() for ease of debugging.
The Range and Complex classes in Examples 9-2 and 9-3 have toString() methods, as
do the enumerated types of Example 9-7. We’ll define a toString() method for the Set
class of Example 9-6 below.

The tolLocaleString() is closely related to toString(): it should convert an object to a
string in a locale-sensitive way. By default, objects inherit a toLocaleString() method
that simply calls their toString() method. Some built-in types have useful toLocale
String() methods that actually return locale-dependent strings. If you find yourself
writing a toString() method that converts other objects to strings, you should also
define a tolLocaleString() method that performs those conversions by invoking the
tolocaleString() method on the objects. We’ll do this for the Set class below.

The third method is value0f(). Its job is to convert an object to a primitive value. The
valueOf() method isinvoked automatically when an object is used in a numeric context,
with arithmetic operators (other than +) and with the relational operators, for example.
Most objects do not have a reasonable primitive representation and do not define this
method. The enumerated types in Example 9-7 demonstrate a case in which the
valueOf() method is important, however.

The fourth method is toJSON(), which is invoked automatically by JSON. stringify().
The JSON format is intended for serialization of data structures and can handle Java-
Script primitive values, arrays, and plain objects. It does not know about classes, and
when serializing an object, it ignores the object’s prototype and constructor. If you call
JSON.stringify() on a Range or Complex object, for example, it returns a string like
{"from":1, "to":3}or{"r":1, "i":-1}.If you pass these strings to JSON.parse(), you’ll
obtain a plain object with properties appropriate for Range and Complex objects, but
which do not inherit the Range and Complex methods.

This kind of serialization is appropriate for classes like Range and Complex, but for
other classes you may want to write a toJSON() method to define some other serializa-
tion format. If an object has a toJSON() method, JSON.stringify() does not serialize
the object but instead calls toJSON() and serializes the value (either primitive or object)
that it returns. Date objects, for example, have a toJSON() method that returns a string
representation of the date. The enumerated types of Example 9-7 do the same: their
t0JSON() method is the same as their toString() method. The closest JSON analog to
a set is an array, so we’ll define a toJSON() method below that converts a Set object to
an array of values.

The Set class of Example 9-6 does not define any of these methods. A set has no prim-
itive representation, so it doesn’t make sense to define a value0Of() method, but the
class should probably have toString(), toLocaleString(), and toJSON() methods. We

220 | Chapter9: Classesand Modules

can do that with code like the following. Note the use of the extend() function (Ex-
ample 6-2) to add methods to Set.prototype:

// Add these methods to the Set prototype object.
extend(Set.prototype, {
// Convert a set to a string
toString: function() {
var s = "{", i = 0;
this.foreach(function(v) { s += ((i++ > 0)?", ":"") + v; });

return s + "}";

b
// Like toString, but call tolLocaleString on all values
tolLocaleString : function() {

var s = "{", i = 0;
this.foreach(function(v) {
if (i++>0) s += ", ";
if (v == null) s += v; // null & undefined
else s += v.tolLocaleString(); // all others
1

return s + "}";

b

// Convert a set to an array of values

toArray: function() {
var a = [];
this.foreach(function(v) { a.push(v); });
return a;

}

¥

// Treat sets like arrays for the purposes of JSON stringification.
Set.prototype.toJSON = Set.prototype.toArray;

9.6.4 Comparison Methods

JavaScript equality operators compare objects by reference, not by value. That is, given
two object references, they look to see if both references are to the same object. They
do not check to see if two different objects have the same property names and values.
It is often useful to be able to compare two distinct objects for equality or even for
relative order (as the < and > operators do). If you define a class and want to be able to
compare instances of that class, you should define appropriate methods to perform
those comparisons.

The Java programming language uses methods for object comparison, and adopting
the Java conventions is a common and useful thing to do in JavaScript. To enable
instances of your class to be tested for equality, define an instance method named
equals(). It should take a single argument and return true if that argument is equal to
the object it is invoked on. Of course it is up to you to decide what “equal” means in
the context of your own class. For simple classes you can often simply compare the
constructor properties to ensure that the two objects are of the same type and then
compare the instance properties of the two objects to ensure that they have the same
values. The Complex class in Example 9-3 has an equals() method of this sort, and we
can easily write a similar one for the Range class:

9.6 Object-Oriented Techniques in JavaScript | 221

mn
(=]
=
m
—
=
<
[
w
Pa)
=.
=1
-

// The Range class overwrote its constructor property. So add it now.
Range.prototype.constructor = Range;

// A Range is not equal to any nonrange.
// Two ranges are equal if and only if their endpoints are equal.
Range.prototype.equals = function(that) {
if (that == null) return false; // Reject null and undefined
if (that.constructor !== Range) return false; // Reject non-ranges
// Now return true if and only if the two endpoints are equal.
return this.from == that.from 8& this.to == that.to;

}

Defining an equals() method for our Set class is somewhat trickier. We can’t just com-
pare the values property of two sets but must perform a deeper comparison:

Set.prototype.equals = function(that) {
// Shortcut for trivial case
if (this === that) return true;

// If the that object is not a set, it is not equal to this one.

// We use instanceof to allow any subclass of Set.

// We could relax this test if we wanted true duck-typing.

// Or we could strengthen it to check this.constructor == that.constructor
// Note that instanceof properly rejects null and undefined values

if (!(that instanceof Set)) return false;

// If two sets don't have the same size, they're not equal
if (this.size() != that.size()) return false;

// Now check whether every element in this is also in that.
// Use an exception to break out of the foreach if the sets are not equal.

try {
this.foreach(function(v) { if (!that.contains(v)) throw false; });
return true; // A1l elements matched: sets are equal.
} catch (x) {
if (x === false) return false; // An element in this is not in that.
throw x; // Some other exception: rethrow it.
}

};

It is sometimes useful to compare objects according to some ordering. That is, for some
classes, it is possible to say that one instance is “less than” or “greater than” another
instance. You might order Range object based on the value of their lower bound, for
example. Enumerated types could be ordered alphabetically by name, or numerically
by the associated value (assuming the associated value is a number). Set objects, on the
other hand, do not really have a natural ordering.

If you try to use objects with JavaScript’s relation operators, such as < and <=, JavaScript
first calls the value0f() method of the objects and, if this method returns a primitive
value, compares those values. The enumerated types returned by the enumeration()
method of Example 9-7 have a value0f() method and can be meaningfully compared
using the relational operators. Most classes do not have a value0f() method, however.
To compare objects of these types according to an explicitly defined ordering of your

222 | Chapter9: Classesand Modules

own choosing, you can (again, following Java convention) define a method named
compareTo().

The compareTo() method should accept a single argument and compare it to the object
on which the method is invoked. If the this object is less than the argument,
compareTo() should return a value less than zero. If the this object is greater than the
argument object, the method should return a value greater than zero. And if the two
objects are equal, the method should return zero. These conventions about the return
value are important, and they allow you to substitute the following expressions for
relational and equality operators:

Replace this With this

a<h a.compareTo(b) <0
a<=b a.compareTo(b) <=0
a>bh a.compareTo(b) >0
a>=b a.compareTo(b) >=0
a==b a.compareTo(b) ==0
al=b a.compareTo(b) =0

The Card class of Example 9-8 defines a compareTo() method of this kind, and we can
write a similar method for the Range class to order ranges by their lower bound:

Range.prototype.compareTo = function(that) {
return this.from - that.from;
};

Notice that the subtraction performed by this method correctly returns a value less than
zero, equal to zero, or greater than zero, according to the relative order of the two
Ranges. Because the Card.Rank enumeration in Example 9-8 has a value0f() method,
we could have used this same idiomatic trick in the compareTo() method of the Card
class.

The equals() methods above perform type checking on their argument and return
false to indicate inequality if the argument is of the wrong type. The compareTo()
method does not have any return value that indicates “those two values are not com-
parable,” so a compareTo() method that does type checking should typically throw an
error when passed an argument of the wrong type.

Notice that the compareTo() method we defined for the Range class above returns 0
when two ranges have the same lower bound. This means that as far as compareTo() is
concerned, any two ranges that start at the same spot are equal. This definition of
equality is inconsistent with the definition used by the equals() method, which requires
both endpoints to match. Inconsistent notions of equality can be a pernicious source
of bugs, and it is best to make your equals() and compareTo() methods consistent. Here
is a revised compareTo() method for the Range class. It is consistent with equals() and
also throws an error if called with an incomparable value:

9.6 Object-Oriented Techniques in JavaScript | 223

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

// Order ranges by lower bound, or upper bound if the lower bounds are equal.
// Throws an error if passed a non-Range value.
// Returns 0 if and only if this.equals(that).
Range.prototype.compareTo = function(that) {
if (!(that instanceof Range))
throw new Error("Can't compare a Range with " + that);
var diff = this.from - that.from; // Compare lower bounds
if (diff == 0) diff = this.to - that.to; // If equal, compare upper bounds
return diff;
};
One reason to define a compareTo() method for a class is so that arrays of instances of
that class can be sorted. The Array.sort() method accepts as an optional argument a
comparison function that uses the same return-value conventions as the compareTo()
method. Given the compareTo() method shown above, itis easy to sort an array of Range

objects with code like this:

ranges.sort(function(a,b) { return a.compareTo(b); });

Sorting is important enough that you should consider defining this kind of two-
argument comparison function as a class method for any class for which you define a
compareTo() instance method. One can easily be defined in terms of the other. For
example:

Range.byLowerBound = function(a,b) { return a.compareTo(b); };

With a method like this defined, sorting becomes simpler:

ranges.sort(Range.byLowerBound);

Some classes can be ordered in more than one way. The Card class, for example, defines
one class method that orders cards by suit and another that orders them by rank.

9.6.5 Borrowing Methods

There is nothing special about methods in JavaScript: they are simply functions as-
signed to object properties and invoked “through” or “on” an object. A single function
can be assigned to two properties, and it then serves as two methods. We did this for
our Set class, for example, when we copied the toArray() method and made it do dual-
duty as a toJSON() method as well.

A single function can even be used as a method of more than one class. Most of the
built-in methods of the Array class, for example, are defined generically, and if you
define a class whose instances are array-like objects, you can copy functions from
Array.prototype to the prototype object of your class. If you view JavaScript through
the lens of classical object-oriented languages, the use of methods of one class as meth-
ods of another class can be thought of as a form of multiple inheritance. JavaScript is
not a classical object-oriented language, however, and I prefer to describe this kind of
method reuse using the informal term borrowing.

It is not only Array methods that can be borrowed: we can write our own generic
methods. Example 9-9 defines generic toString() and equals() methods that are suit-

224 | Chapter9: Classesand Modules

able for use by simple classes like our Range, Complex, and Card classes. If the Range
class did not have an equals() method, we could borrow the generic equals() like this:

Range.prototype.equals = generic.equals;

Note that the generic.equals() method does only a shallow comparison, and it is not
suitable for use with classes whose instance properties refer to objects with their own
equals() methods. Also notice that this method includes special case code to handle
the property added to objects when they are inserted into a Set (Example 9-6).

Example 9-9. Generic methods for borrowing

var generic = {
// Returns a string that includes the name of the constructor function
// if available and the names and values of all noninherited, nonfunction
// properties.
toString: function() {
var s = '[';
// If the object has a constructor and the constructor has a name,
// use that class name as part of the returned string. Note that
// the name property of functions is nonstandard and not supported
// everywhere.
if (this.constructor 8& this.constructor.name)

s += this.constructor.name + ": ";

// Now enumerate all noninherited, nonfunction properties

var n = 0;

for(var name in this) {
if (!this.hasOwnProperty(name)) continue; // skip inherited props
var value = this[name];

if (typeof value === "function") continue; // skip methods
if (n++) s += ", ";
s += name + '=' + value;

}

return s + ']';

1

// Tests for equality by comparing the constructors and instance properties
// of this and that. Only works for classes whose instance properties are
// primitive values that can be compared with ===.
// As a special case, ignore the special property added by the Set class.
equals: function(that) {
if (that == null) return false;
if (this.constructor !== that.constructor) return false;
for(var name in this) {
if (name === "|**objectid**|") continue; // skip special prop.
if (!this.hasOwnProperty(name)) continue; // skip inherited
if (this[name] !== that[name]) return false; // compare values

return true; // If all properties matched, objects are equal.

};

9.6 Object-Oriented Techniques in JavaScript | 225

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

9.6.6 Private State

In classical object-oriented programming, it is often a goal to encapsulate or hide the
state of an object within the object, allowing access to that state only through the
methods of the object, and now allowing the important state variables to be read or
written directly. To achieve this goal, languages like Java allow the declaration of “pri-
vate” instance fields of a class that are only accessible to the instance method of the
class and cannot be seen outside of the class.

We can approximate private instance fields using variables (or arguments) captured in
the closure of the constructor invocation that creates an instance. To do this, we define
functions inside the constructor (so they have access to the constructor’s arguments
and variables) and assign those functions to properties of the newly created object.
Example 9-10 shows how we can do this to create an encapsulated version of our Range
class. Instead of having from and to properties that give the endpoints of the range,
instances of this new version of the class have from and to methods that return the
endpoints of the range. These from() and to() methods are defined on the individual
Range object and are not inherited from the prototype. The other Range methods are
defined on the prototype as usual, but modified to call the from() and to() methods
rather than read the endpoints directly from properties.

Example 9-10. A Range class with weakly encapsulated endpoints

function Range(from, to) {
// Don't store the endpoints as properties of this object. Instead
// define accessor functions that return the endpoint values.
// These values are stored in the closure.
this.from = function() { return from; };
this.to = function() { return to; };

}

// The methods on the prototype can't see the endpoints directly: they have
// to invoke the accessor methods just like everyone else.
Range.prototype = {
constructor: Range,
includes: function(x) { return this.from() <= x 88 x <= this.to(); },
foreach: function(f) {
for(var x=Math.ceil(this.from()), max=this.to(); x <= max; x++) f(x);
1

toString: function() { return "(" + this.from() + "..." + this.to() + ")"; }
b

This new Range class defines methods for querying the endpoints of a range, but no
methods or properties for setting those endpoints. This gives instances of this class a
kind of immutability: if used correctly, the endpoints of a Range object will not change
after it has been created. Unless we use ECMAScript 5 features (see §9.8.3), however,
the from and to properties are still writable, and Range objects aren’t really immutable
at all:

var r = new Range(1,5); // An "immutable" range
r.from = function() { return 0; }; // Mutate by replacing the method

226 | Chapter9: Classesand Modules

Keep in mind that there is an overhead to this encapsulation technique. A class that
uses a closure to encapsulate its state will almost certainly be slower and larger than
the equivalent class with unencapsulated state variables.

9.6.7 Constructor Overloading and Factory Methods

Sometimes we want to allow objects to be initialized in more than one way. We might
want to create a Complex object initialized with a radius and an angle (polar coordi-
nates) instead of real and imaginary components, for example, or we might want to
create a Set whose members are the elements of an array rather than the arguments
passed to the constructor.

One way to do this is to overload the constructor and have it perform different kinds
of initialization depending on the arguments it is passed. Here is an overloaded version
of the Set constructor, for example:

function Set() {

this.values = {}; // The properties of this object hold the set
this.n = 0; // How many values are in the set

// If passed a single array-like object, add its elements to the set
// Otherwise, add all arguments to the set
if (arguments.length == 1 8& isArraylLike(arguments[0]))
this.add.apply(this, arguments[0]);
else if (arguments.length > 0)
this.add.apply(this, arguments);
}

Defining the Set() constructor this way allows us to explicitly list set members in the
constructor call or to pass an array of members to the constructor. The constructor has
an unfortunate ambiguity, however: we cannot use it to create a set that has an array
as its sole member. (To do that, we’d have to create an empty set and then call the
add() method explicitly.)

In the case of complex numbers initialized to polar coordinates, constructor overload-
ing really isn’t viable. Both representations of complex numbers involve two floating-
point numbers and, unless we add a third argument to the constructor, there is no way
for the constructor to examine its arguments and determine which representation is
desired. Instead, we can write a factory method—a class method that returns an in-
stance of the class. Here is a factory method for returning a Complex object initialized
using polar coordinates:

Complex.polar = function(r, theta) {
return new Complex(r*Math.cos(theta), r*Math.sin(theta));
};

And here is a factory method for initializing a Set from an array:

Set.fromArray = function(a) {
s = new Set(); // Create a new empty set
s.add.apply(s, a); // Pass elements of array a to the add method

9.6 Object-Oriented Techniques in JavaScript | 227

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

return s; // Return the new set
b
The appeal of factory methods here is that you can give them whatever name you want,
and methods with different names can perform different kinds of initializations. Since
constructors serve as the public identity of a class, however, there is usually only a single
constructor per class. This is not a hard-and-fast rule, however. In JavaScript it is pos-
sible to define multiple constructor functions that share a single prototype object, and
if you do this, objects created by any of the constructors will be of the same type. This
technique is not recommended, but here is an auxiliary constructor of this type:
// An auxiliary constructor for the Set class.
function SetFromArray(a) {
// Initialize new object by invoking Set() as a function,

// passing the elements of a as individual arguments.
Set.apply(this, a);

// Set the prototype so that SetFromArray creates instances of Set
SetFromArray.prototype = Set.prototype;

var s = new SetFromArray([1,2,3]);
s instanceof Set // => true

In ECMAScript 5, the bind() method of functions has special behavior that allows it
to create this kind of auxiliary constructor. See §8.7.4.

9.7 Subclasses

In object-oriented programming, a class B can extend or subclass another class A. We
say that A is the superclass and B is the subclass. Instances of B inherit all the instance
methods of A. The class B can define its own instance methods, some of which may
override methods of the same name defined by class A. If a method of B overrides a
method of A, the overriding method in B may sometimes want to invoke the overridden
method in A: this is called method chaining. Similarly, the subclass constructor B() may
sometimes need to invoke the superclass constructor A(). This is called constructor
chaining. Subclasses can themselves have subclasses, and when working with hierar-
chies of classes, it can sometimes be useful to define abstract classes. An abstract class
is one that defines one or more methods without an implementation. The implemen-
tation of these abstract methods is left to the concrete subclasses of the abstract class.

The key to creating subclasses in JavaScript is proper initialization of the prototype
object. If class B extends A, then B.prototype must be an heir of A.prototype. Then
instances of B will inherit from B.prototype which in turn inherits from A.prototype.
This section demonstrates each of the subclass-related terms defined above, and also
covers an alternative to subclassing known as composition.

Using the Set class of Example 9-6 as a starting point, this section will demonstrate how
to define subclasses, how to chain to constructors and overridden methods, how to use
composition instead of inheritance, and finally, how to separate interface from imple-

228 | Chapter9: Classesand Modules

mentation with abstract classes. The section ends with an extended example that de-
fines a hierarchy of Set classes. Note that the early examples in this section are intended
to demonstrate basic subclassing techniques. Some of these examples have important
flaws that will be addressed later in the section.

9.7.1 Defining a Subclass

JavaScript objects inherit properties (usually methods) from the prototype object of
their class. If an object O is an instance of a class B and B is a subclass of A, then O
must also inherit properties from A. We arrange this by ensuring that the prototype
object of B inherits from the prototype object of A. Using our inherit() function
(Example 6-1), we write:

B.prototype = inherit(A.prototype); // Subclass inherits from superclass
B.prototype.constructor = B; // Override the inherited constructor prop.

These two lines of code are the key to creating subclasses in JavaScript. Without them,
the prototype object will be an ordinary object—an object that inherits from
Object.prototype—and this means that your class will be a subclass of Object like all
classes are. If we add these two lines to the defineClass () function (from §9.3), we can
transform it into the defineSubclass() function and the Function.proto
type.extend() method shown in Example 9-11.

Example 9-11. Subclass definition utilities

// A simple function for creating simple subclasses

function defineSubclass(superclass, // Constructor of the superclass
constructor, // The constructor for the new subclass
methods, // Instance methods: copied to prototype
statics) // Class properties: copied to constructor

// Set up the prototype object of the subclass
constructor.prototype = inherit(superclass.prototype);
constructor.prototype.constructor = constructor;

// Copy the methods and statics as we would for a regular class
if (methods) extend(constructor.prototype, methods);

if (statics) extend(constructor, statics);

// Return the class

return constructor;

}

// We can also do this as a method of the superclass constructor

Function.prototype.extend = function(constructor, methods, statics) {
return defineSubclass(this, constructor, methods, statics);

b

Example 9-12 demonstrates how to write a subclass “manually” without using the
defineSubclass() function. It defines a SingletonSet subclass of Set. A SingletonSet is
a specialized set that is read-only and has a single constant member.

9.7 Subclasses | 229

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

Example 9-12. SingletonSet: a simple set subclass

// The constructor function
function SingletonSet(member) {

this.member = member; // Remember the single member of the set
}

// Create a prototype object that inherits from the prototype of Set.
SingletonSet.prototype = inherit(Set.prototype);

// Now add properties to the prototype.
// These properties override the properties of the same name from Set.prototype.
extend(SingletonSet.prototype, {
// Set the constructor property appropriately
constructor: SingletonSet,
// This set is read-only: add() and remove() throw errors
add: function() { throw "read-only set"; },
remove: function() { throw "read-only set"; },
// A SingletonSet always has size 1
size: function() { return 1; },
// Just invoke the function once, passing the single member.
foreach: function(f, context) { f.call(context, this.member); },
// The contains() method is simple: true only for one value
contains: function(x) { return x === this.member; }

1

Our SingletonSet class has a very simple implementation that consists of five simple
method definitions. It implements these five core Set methods, but inherits methods
such as toString(), toArray() and equals() from its superclass. This inheritance of
methods is the reason for defining subclasses. The equals() method of the Set class
(defined in §9.6.4), for example, works to compare any Set instance that has working
size() and foreach() methods with any Set that has working size() and contains()
methods. Because SingletonSet is a subclass of Set, it inherits this equals() implemen-
tation automatically and doesn’t have to write its own. Of course, given the radically
simple nature of singleton sets, it might be more efficient for SingletonSet to define its
own version of equals():

SingletonSet.prototype.equals = function(that) {
return that instanceof Set 8& that.size()==1 && that.contains(this.member);
};

Note that SingletonSet does not statically borrow a list of methods from Set: it dynam-
ically inherits the methods of the Set class. If we add a new method to Set.prototype,
it immediately becomes available to all instances of Set and of SingletonSet (assuming
SingletonSet does not already define a method by the same name).

9.7.2 Constructor and Method Chaining

The SingletonSet class in the last section defined a completely new set implementation,
and completely replaced the core methods it inherited from its superclass. Often, how-
ever, when we define a subclass, we only want to augment or modify the behavior of
our superclass methods, not replace them completely. To do this, the constructor and

230 | Chapter9: Classesand Modules

methods of the subclass call or chain to the superclass constructor and the superclass
methods.

Example 9-13 demonstrates this. It defines a subclass of Set named NonNullSet: a set
that does not allow null and undefined as members. In order to restrict the membership
in this way, NonNullSet needs to test for null and undefined values in its add() method.
But it doesn’t want to reimplement the add() method completely, so it chains to the
superclass version of the method. Notice also that the NonNullSet () constructor doesn’t
take any action of its own: it simply passes its arguments to the superclass constructor
(invoking it as a function, not as a constructor) so that the superclass constructor can
initialize the newly created object.

Example 9-13. Constructor and method chaining from subclass to superclass

/*

* NonNullSet is a subclass of Set that does not allow null and undefined

* as members of the set.

*/

function NonNullSet() {
// Just chain to our superclass.
// Invoke the superclass constructor as an ordinary function to initialize
// the object that has been created by this constructor invocation.
Set.apply(this, arguments);

}

// Make NonNullSet a subclass of Set:
NonNullSet.prototype = inherit(Set.prototype);
NonNullSet.prototype.constructor = NonNullSet;

// To exclude null and undefined, we only have to override the add() method
NonNullSet.prototype.add = function() {
// Check for null or undefined arguments
for(var i = 0; i < arguments.length; i++)
if (arguments[i] == null)
throw new Error("Can't add null or undefined to a NonNullSet");

// Chain to the superclass to perform the actual insertion
return Set.prototype.add.apply(this, arguments);

|5

Let’s generalize this notion of a non-null set to a “filtered set”: a set whose members
must pass through a filter function before being added. We’ll define a class factory
function (like the enumeration() function from Example 9-7) that is passed a filter
function and returns a new Set subclass. In fact, we can generalize even further and
define our class factory to take two arguments: the class to subclass and the filter to
apply to its add() method. We’ll call this factory method filteredSetSubclass(), and
we might use it like this:
// Define a set class that holds strings only

var StringSet = filteredSetSubclass(Set,
function(x) {return typeof x==="string";});

// Define a set class that does not allow null, undefined or functions

9.7 Subclasses | 231

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

var MySet = filteredSetSubclass(NonNullSet,
function(x) {return typeof x !== "function";});

The code for this class factory function is in Example 9-14. Notice how this function
performs the same method and constructor chaining as NonNullSet did.

Example 9-14. A class factory and method chaining
/*

* This function returns a subclass of specified Set class and overrides
* the add() method of that class to apply the specified filter.
*/

function filteredSetSubclass(superclass, filter) {
var constructor = function() { // The subclass constructor
superclass.apply(this, arguments); // Chains to the superclass
};
var proto = constructor.prototype = inherit(superclass.prototype);
proto.constructor = constructor;
proto.add = function() {
// Apply the filter to all arguments before adding any
for(var i = 0; i < arguments.length; i++) {
var v = arguments[i];
if (!filter(v)) throw("value " + v + " rejected by filter");

// Chain to our superclass add implementation
superclass.prototype.add.apply(this, arguments);
};
return constructor;

}

One interesting point to note about Example 9-14 is that by wrapping a function around
our subclass creation code, we are able to use the superclass argument in our con-
structor and method chaining code rather than hard-coding the name of the actual
superclass. This means that if we wanted to change the superclass, we would only have
to change it in one spot, rather than searching our code for every mention of it. This is
arguably a technique that is worth using, even if we’re not defining a class factory. For
example, we could rewrite our NonNullSet using a wrapper function and the
Function.prototype.extend() method (of Example 9-11) like this:
var NonNullSet = (function() { // Define and invoke function
var superclass = Set; // Only specify the superclass once.
return superclass.extend(
function() { superclass.apply(this, arguments); }, // the constructor
// the methods
add: function() {
// Check for null or undefined arguments
for(var i = 0; i < arguments.length; i++)
if (arguments[i] == null)
throw new Error("Can't add null or undefined");

// Chain to the superclass to perform the actual insertion
return superclass.prototype.add.apply(this, arguments);

232 | Chapter9: Classes and Modules

};
}0);

Finally, it is worth emphasizing that the ability to create class factories like this one
arises from the dynamic nature of JavaScript. Class factories are a powerful and useful
feature that has no analog in languages like Java and C++.

9.7.3 Composition Versus Subclassing

In the previous section, we wanted to define sets that restricted their members accord-
ing to certain criteria, and we used subclassing to accomplish this, creating a custom
subclass of a specified set implementation that used a specified filter function to restrict
membership in the set. Each combination of superclass and filter function required the
creation of a new class.

There is a better way to accomplish this, however. A well-known principle in object-
oriented design is “favor composition over inheritance.”” In this case we can use com-
position by defining a new set implementation that “wraps” another set object and
forwards requests to it, after filtering out prohibited members. Example 9-15 shows
how it is done.

Example 9-15. Composing sets instead of subclassing them

/*
* A FilteredSet wraps a specified set object and applies a specified filter
* to values passed to its add() method. All of the other core set methods
* simply forward to the wrapped set instance.
*/
var FilteredSet = Set.extend(
function FilteredSet(set, filter) { // The constructor
this.set = set;
this.filter = filter;
b
{ // The instance methods
add: function() {
// If we have a filter, apply it
if (this.filter) {
for(var i = 0; i < arguments.length; i++) {
var v = arguments[i];
if (!this.filter(v))
throw new Error("FilteredSet: value " + v +
" rejected by filter");

"

}

// Now forward the add() method to this.set.add()
this.set.add.apply(this.set, arguments);
return this;
1
// The rest of the methods just forward to this.set and do nothing else.
remove: function() {

2. See Design Patterns by Erich Gamma et al. or Effective Java by Joshua Bloch, for example.

9.7 Subclasses | 233

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

this.set.remove.apply(this.set, arguments);
return this;

b

contains: function(v) { return this.set.contains(v); },
size: function() { return this.set.size(); },
foreach: function(f,c) { this.set.foreach(f,c); }

B

One of the benefits of using composition in this case is that only a single FilteredSet
subclass is required. Instances of this class can be created to restrict the membership
of any other set instance. Instead of using the NonNullSet class defined earlier, for
example, we can do this:

var s = new FilteredSet(new Set(), function(x) { return x !== null; });

We can even filter a filtered set:

var t = new FilteredSet(s, { function(x} { return !(x instanceof Set); });

9.7.4 (lass Hierarchies and Abstract Classes

In the previous section you were urged to “favor composition over inheritance.” But to
illustrate this principle, we created a subclass of Set. We did this so that the resulting
class would be instanceof Set, and so that it could inherit the useful auxiliary Set
methods like toString() and equals(). These are valid pragmatic reasons, but it still
would have been nice to be able to do set composition without subclassing a concrete
implementation like the Set class. A similar point can be made about our SingletonSet
class from Example 9-12—that class subclassed Set, so that it could inherit the auxiliary
methods, but its implementation was completely different than its superclass.
SingletonSet is not a specialized version of the Set class, but a completely different kind
of Set. SingletonSet should be a sibling of Set in the class hierarchy, not a descendant
of it.

The solution in classical OO languages and also in JavaScript is to separate interface
from implementation. Suppose we define an AbstractSet class which implements the
auxiliary methods like toString() but does not implement the core methods like
foreach(). Then, our set implementations, Set, SingletonSet, and FilteredSet, can all
be subclasses of AbstractSet. FilteredSet and SingletonSet no longer subclass an unre-
lated implementation.

Example 9-16 takes this approach further and defines a hierarchy of abstract set classes.
AbstractSet defines only a single abstract method, contains(). Any class that purports
to be a set must define at least this one method. Next, we subclass AbstractSet to define
AbstractEnumerableSet. That class adds abstract size() and foreach() methods, and
defines useful concrete methods (toString(), toArray(), equals(), and so on) on top
of them. AbstractEnumerableSet does not define add() or remove() methods and rep-
resents read-only sets. SingletonSet can be implemented as a concrete subclass. Finally,
we define AbstractWritableSet as a subclass of AbstractEnumerableSet. This final ab-
stract set defines the abstract methods add() and remove(), and implements concrete

234 | Chapter9: Classes and Modules

methods like union() and intersection() that use them. AbstractWritableSet is the
appropriate superclass for our Set and FilteredSet classes. They are omitted from this
example, however, and a new concrete implementation named ArraySet is included
instead.

Example 9-16 is a long example, but worth reading through in its entirety. Note that
it uses Function.prototype.extend() as a shortcut for creating subclasses.

Example 9-16. A hierarchy of abstract and concrete Set classes

// A convenient function that can be used for any abstract method
function abstractmethod() { throw new Error("abstract method"); }

/*

* The AbstractSet class defines a single abstract method, contains().

*/
function AbstractSet() { throw new Error("Can't instantiate abstract classes");}
AbstractSet.prototype.contains = abstractmethod;

* NotSet is a concrete subclass of AbstractSet.

* The members of this set are all values that are not members of some

* other set. Because it is defined in terms of another set it is not

* writable, and because it has infinite members, it is not enumerable.

* All we can do with it is test for membership.

* Note that we're using the Function.prototype.extend() method we defined
* earlier to define this subclass.

var NotSet = AbstractSet.extend(
function NotSet(set) { this.set = set; },

{
contains: function(x) { return !this.set.contains(x); },
toString: function(x) { return "~" + this.set.toString(); },
equals: function(that) {
return that instanceof NotSet 8& this.set.equals(that.set);
}
}
)s
/*

* AbstractEnumerableSet is an abstract subclass of AbstractSet.
* It defines the abstract methods size() and foreach(), and then implements
* concrete isEmpty(), toArray(), to[Locale]String(), and equals() methods
* on top of those. Subclasses that implement contains(), size(), and foreach()
* get these five concrete methods for free.
*/
var AbstractEnumerableSet = AbstractSet.extend(
function() { throw new Error("Can't instantiate abstract classes"); },

size: abstractmethod,
foreach: abstractmethod,
iskEmpty: function() { return this.size() == o; },
toString: function() {
var s = "{", i = 0;

9.7 Subclasses | 235

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

this.foreach(function(v) {
if (i++>0) s +=", ";
S 4= v;
1)
return s + "}";
b
tolLocaleString : function() {
var s = "{", i = 0;
this.foreach(function(v) {
if (i++>0) s +=", ";
if (v == null) s += v; // null & undefined
else s += v.tolocaleString(); // all others

1s
return s + "}";
b
toArray: function() {
var a = [];
this.foreach(function(v) { a.push(v); });
return a;
b

equals: function(that) {
if (!(that instanceof AbstractEnumerableSet)) return false;
// If they don't have the same size, they're not equal
if (this.size() != that.size()) return false;
// Now check whether every element in this is also in that.
try {
this.foreach(function(v) {if (!that.contains(v)) throw false;});
return true; // All elements matched: sets are equal.
} catch (x) {
if (x === false) return false; // Sets are not equal
throw x; // Some other exception occurred: rethrow it.

}
s

/*
* SingletonSet is a concrete subclass of AbstractEnumerableSet.
* A singleton set is a read-only set with a single member.

*/
var SingletonSet = AbstractEnumerableSet.extend(
function SingletonSet(member) { this.member = member; },

{
contains: function(x) { return x === this.member; },
size: function() { return 1; },
foreach: function(f,ctx) { f.call(ctx, this.member); }
}
)5
/*

* AbstractWritableSet is an abstract subclass of AbstractEnumerableSet.
* It defines the abstract methods add() and remove(), and then implements
* concrete union(), intersection(), and difference() methods on top of them.
*/
var AbstractWritableSet = AbstractEnumerableSet.extend(
function() { throw new Error("Can't instantiate abstract classes"); },

236 | Chapter9: Classesand Modules

add: abstractmethod,

remove: abstractmethod,

union: function(that) {
var self = this;
that.foreach(function(v) { self.add(v); });
return this;

b

intersection: function(that) {
var self = this;
this.foreach(function(v) { if (!that.contains(v)) self.remove(v);});
return this;

b

difference: function(that) {
var self = this;
that.foreach(function(v) { self.remove(v); });
return this;

}
1;

/*

* An ArraySet is a concrete subclass of AbstractWritableSet.

* It represents the set elements as an array of values, and uses a linear

* search of the array for its contains() method. Because the contains()

* method is O(n) rather than 0(1), it should only be used for relatively

* small sets. Note that this implementation relies on the ES5 Array methods
* index0f() and forEach().

*/

var ArraySet = AbstractWritableSet.extend(
function ArraySet() {
this.values = [];
this.add.apply(this, arguments);

b
{
contains: function(v) { return this.values.indexOf(v) != -1; },
size: function() { return this.values.length; },
foreach: function(f,c) { this.values.forEach(f, c); },
add: function() {
for(var i = 0; i < arguments.length; i++) {
var arg = arguments[i];
if (!this.contains(arg)) this.values.push(arg);
}
return this;
b
remove: function() {
for(var i = 0; i < arguments.length; i++) {
var p = this.values.indexOf(arguments[i]);
if (p == -1) continue;
this.values.splice(p, 1);
}
return this;
}
}

)s

9.7 Subclasses | 237

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

9.8 (lasses in ECMAScript 5

ECMAScript 5 adds methods for specifying property attributes (getters, setters, enu-
merability, writability, and configurability) and for restricting the extensibility of ob-
jects. These methods were described in §6.6,86.7, and §6.8.3, but turn out to be quite
useful when defining classes. The subsections that follow demonstrate how to use these
ECMAScript 5 capabilities to make your classes more robust.

9.8.1 Making Properties Nonenumerable

The Set class of Example 9-6 used a trick to store objects as set members: it defined an
“object id” property on any object added to the set. Later, if other code uses that object
ina for/inloop, this added property will be returned. ECMAScript 5 allows us to avoid
this by making properties nonenumerable. Example 9-17 demonstrates how to do this
with Object.defineProperty() and also shows how to define a getter function and how
to test whether an object is extensible.

Example 9-17. Defining nonenumerable properties

// Wrap our code in a function so we can define variables in the function scope
(function() {
// Define objectId as a nonenumerable property inherited by all objects.
// When this property is read, the getter function is invoked.
// It has no setter, so it is read-only.
// It is nonconfigurable, so it can't be deleted.
Object.defineProperty(Object.prototype, "objectId", {
get: idGetter, // Method to get value
enumerable: false, // Nonenumerable
configurable: false // Can't delete it

1;
// This is the getter function called when objectId is read
function idGetter() { // A getter function to return the id
if (!(idprop in this)) { // If object doesn't already have an id

if (!Object.isExtensible(this)) // And if we can add a property
throw Error("Can't define id for nonextensible objects");
Object.defineProperty(this, idprop, { // Give it one now.
value: nextid++, // This is the value
writable: false, // Read-only
enumerable: false, // Nonenumerable
configurable: false // Nondeletable

1

return this[idprop]; // Now return the existing or new value
};
// These variables are used by idGetter() and are private to this function
var idprop = "|**objectId**|"; // Assume this property isn't in use
var nextid = 1; // Start assigning ids at this #

}()); // Invoke the wrapper function to run the code right away

238 | Chapter9: Classesand Modules

9.8.2 Defining Immutable Classes

In addition to making properties nonenumerable, ECMAScript 5 allows us to make
properties read-only, which is handy if we want to define classes whose instances are
immutable. Example 9-18 is an immutable version of our Range class that does
this using Object.defineProperties() and with Object.create(). It also uses
Object.defineProperties() to set up the prototype object for the class, making the
instance methods nonenumerable, like the methods of built-in classes. In fact, it goes
further than this and makes those instance methods read-only and nondeletable, which
prevents any dynamic alterations (“monkey-patching”) to the class. Finally, as an in-
teresting trick, Example 9-18 has a constructor function that works as a factory function
when invoked without the new keyword.

Example 9-18. An immutable class with read-only properties and methods

// This function works with or without 'new': a constructor and factory function
function Range(from,to) {
// These are descriptors for the read-only from and to properties.
var props = {
from: {value:from, enumerable:true, writable:false, configurable:false},
to: {value:to, enumerable:true, writable:false, configurable:false}

s

if (this instanceof Range) // If invoked as a constructor
Object.defineProperties(this, props); // Define the properties
else // Otherwise, as a factory
return Object.create(Range.prototype, // Create and return a new
props); // Range object with props
}

// If we add properties to the Range.prototype object in the same way,
// then we can set attributes on those properties. Since we don't specify
// enumerable, writable, or configurable, they all default to false.
Object.defineProperties(Range.prototype, {
includes: {
value: function(x) { return this.from <= x 88 x <= this.to; }

b
foreach: {

value: function(f) {

for(var x = Math.ceil(this.from); x <= this.to; x++) f(x);

}
b
toString: {

value: function() { return "(" + this.from + "..." + this.to + ")"; }
}

s

Example 9-18 uses Object.defineProperties() and Object.create() to define immut-
able and nonenumerable properties. These are powerful methods, but the property
descriptor objects they require can make the code difficult to read. An alternative is to
define utility functions for modifying the attributes of properties that have already been
defined. Example 9-19 shows two such utility functions.

9.8 Classes in ECMAScript5 | 239

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

Example 9-19. Property descriptor utilities

// Make the named (or all) properties of o nonwritable and nonconfigurable.
function freezeProps(o) {
var props = (arguments.length == 1) // If 1 arg
? Object.getOwnPropertyNames (o) // use all props
: Array.prototype.splice.call(arguments, 1); // else named props
props.forEach(function(n) { // Make each one read-only and permanent
// Ignore nonconfigurable properties
if (!Object.getOwnPropertyDescriptor(o,n).configurable) return;
Object.defineProperty(o, n, { writable: false, configurable: false });
1;
return o; // So we can keep using it

}

// Make the named (or all) properties of o nonenumerable, if configurable.
function hideProps(o) {
var props = (arguments.length == 1) // If 1 arg
? Object.getOwnPropertyNames(o) // use all props
: Array.prototype.splice.call(arguments, 1); // else named props
props.forEach(function(n) { // Hide each one from the for/in loop
// Ignore nonconfigurable properties
if (!Object.getOwnPropertyDescriptor(o,n).configurable) return;
Object.defineProperty(o, n, { enumerable: false });
1;
return o;

}

Object.defineProperty() and Object.defineProperties() can be used to create new
properties and also to modify the attributes of existing properties. When used to define
new properties, any attributes you omit default to false. When used to alter existing
properties, however, the attributes you omit are left unchanged. In the hideProps()
function above, for example, we specify only the enumerable attribute because that is
the only one we want to modify.

With these utility functions defined, we can take advantage of ECMAScript 5 features
to write an immutable class without dramatically altering the way we write classes.
Example 9-20 shows an immutable Range class that uses our utility functions.

Example 9-20. A simpler immutable class

function Range(from, to) { // Constructor for an immutable Range class
this.from = from;
this.to = to;
freezeProps(this); // Make the properties immutable

}

Range.prototype = hideProps({ // Define prototype with nonenumerable properties
constructor: Range,
includes: function(x) { return this.from <= x &% x <= this.to; },
foreach: function(f) {for(var x=Math.ceil(this.from);x<=this.to;x++) f(x);},
toString: function() { return "(" + this.from + "..." + this.to + ")"; }

s

240 | Chapter9: Classesand Modules

9.8.3 Encapsulating Object State

§9.6.6 and Example 9-10 showed how you can use variables or arguments of a con-
structor function as private state for the objects created by that constructor. The short-
coming of this technique is that in ECMAScript 3, the accessor methods that provide
access to that state can be replaced. ECMAScript 5 allows us to encapsulate our state
variables more robustly by defining property getter and setter methods that cannot be
deleted. Example 9-21 demonstrates.

Example 9-21. A Range class with strongly encapsulated endpoints

// This version of the Range class is mutable but encapsulates its endpoint
// variables to maintain the invariant that from <= to.
function Range(from, to) {

// Verify that the invariant holds when we're created

if (from > to) throw new Error("Range: from must be <= to");

// Define the accessor methods that maintain the invariant
function getFrom() { return from; }
function getTo() { return to; }
function setFrom(f) { // Don't allow from to be set > to
if (f <= to) from = f;
else throw new Error(“"Range: from must be <= to");

function setTo(t) { // Don't allow to to be set < from
if (t >= from) to = t;
else throw new Error("Range: to must be >= from");

}

// Create enumerable, nonconfigurable properties that use the accessors
Object.defineProperties(this, {
from: {get: getFrom, set: setFrom, enumerable:true, configurable:false},
to: { get: getTo, set: setTo, enumerable:true, configurable:false }

1;
}

// The prototype object is unchanged from previous examples.
// The instance methods read from and to as if they were ordinary properties.
Range.prototype = hideProps({
constructor: Range,
includes: function(x) { return this.from <= x &% x <= this.to; },
foreach: function(f) {for(var x=Math.ceil(this.from);x<=this.to;x++) f(x);},
toString: function() { return "(" + this.from + "..." + this.to + ")"; }

bs
9.8.4 Preventing Class Extensions

It is usually considered a feature of JavaScript that classes can be dynamically extended
by adding new methods to the prototype object. ECMAScript 5 allows you to prevent
this, if you want to. Object.preventExtensions() makes an object nonextensible
(86.8.3), which means that no new properties can be added to it. Object.seal() takes
this a step further: it prevents the addition of new properties and also makes all current
properties nonconfigurable, so that they cannot be deleted. (A nonconfigurable

9.8 Classes in ECMAScript5 | 241

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

property can still be writable, however, and can still be converted into a read-only
property.) To prevent extensions to Object.prototype, you can simply write:

Object.seal(Object.prototype);

Another dynamic feature of JavaScript is the ability to replace (or “monkey-patch”)
methods of an object:
var original sort method = Array.prototype.sort;
Array.prototype.sort = function() {
var start = new Date();
original sort method.apply(this, arguments);

var end = new Date();
console.log("Array sort took " + (end - start) +

milliseconds.");

b
You can prevent this kind of alteration by making your instance methods read-only.
The freezeProps() utility function defined above is one way to accomplish this. An-
other way is with Object. freeze(), which does everything that Object.seal() does, but
also makes all properties read-only and nonconfigurable.

There is a feature of read-only properties that is important to understand when
working with classes. If an object o inherits a read-only property p, an attempt to assign
to o.p will fail and will not create a new property in o. If you want to override an
inherited read-only property, you have to wuse Object.defineProperty() or
Object.defineProperties() orObject.create() to create the new property. This means
that if you make the instance methods of a class read-only, it becomes significantly
more difficult for subclasses to override those methods.

It is not usually necessary to lock down prototype objects like this, but there are some
circumstances where preventing extensions to an object can be useful. Think back to
the enumeration() class factory function of Example 9-7. That function stored the in-
stances of each enumerated type in properties of the constructor object, and also in the
values array of the constructor. These properties and array serve as the official list of
instances of the enumerated type, and it is worth freezing them, so that new instances
cannot be added and existing instances cannot be deleted or altered. In the
enumeration() function we can simply add these lines of code:

Object.freeze(enumeration.values);
Object.freeze(enumeration);

Notice that by calling Object.freeze() on the enumerated type, we prevent the future
use of the objectId property defined in Example 9-17. A solution to this problem is to
read the objectId property (calling the underlying accessor method and setting the
internal property) of the enumerated type once before freezing it.

9.8.5 Subclasses and ECMAScript 5

Example 9-22 demonstrates subclassing using ECMAScript 5 features. It defines a
StringSet class as a subclass of the AbstractWritableSet class from Example 9-16. The
main feature of this example is the use of Object.create() to create a prototype object

242 | Chapter9: Classes and Modules

that inherits from the superclass prototype and also define the properties of the newly
created object. The difficulty with this approach, as mentioned earlier, is that it requires
the use of awkward property descriptors.

Another interesting point about this example is that it passes null to Object.create()
to create an object that inherits nothing. This object is used to store the members of
the set, and the fact that it has no prototype allows us to use the in operator with it
instead of the hasOwnProperty() method.

Example 9-22. StringSet: a set subclass using ECMAScript 5

function StringSet() {
this.set = Object.create(null); // Create object with no proto
this.n = 0;
this.add.apply(this, arguments);

}

// Note that with Object.create we can inherit from the superclass prototype
// and define methods in a single call. Since we don't specify any of the
// writable, enumerable, and configurable properties, they all default to false.
// Readonly methods makes this class trickier to subclass.
StringSet.prototype = Object.create(AbstractWritableSet.prototype, {
constructor: { value: StringSet },
contains: { value: function(x) { return x in this.set; } },
size: { value: function(x) { return this.n; } },
foreach: { value: function(f,c) { Object.keys(this.set).forEach(f,c); } },
add: {
value: function() {
for(var i = 0; i < arguments.length; i++) {
if (!(arguments[i] in this.set)) {
this.set[arguments[i]] = true;

this.n++;
}
return this;
}
b
remove: {
value: function() {
for(var i = 0; i < arguments.length; i++) {
if (arguments[i] in this.set) {
delete this.set[arguments[i]];
this.n--;
}
}
return this;
}
}

1)

9.8.6 Property Descriptors

§6.7 described the property descriptors of ECMAScript 5 but didn’t include many
examples of their use. We conclude this section on ECMAScript 5 with an extended

9.8 Classes in ECMAScript5 | 243

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

example that will demonstrate many operations on ECMAScript 5 properties.
Example 9-23 will add a properties() method (nonenumerable, of course) to
Object.prototype. The return value of this method is an object that represents a list of
properties and defines useful methods for displaying the properties and attributes (use-
ful for debugging), for obtaining property descriptors (useful when you want to copy
properties along with their attributes), and for setting attributes on the properties (use-
ful alternatives to the hideProps() and freezeProps() functions defined earlier). This
one example demonstrates most of the property-related features of ECMAScript 5, and
also uses a modular coding technique that will be discussed in the next section.

Example 9-23. ECMAScript 5 properties utilities

/*
Define a properties() method in Object.prototype that returns an
object representing the named properties of the object on which it
is invoked (or representing all own properties of the object, if
invoked with no arguments). The returned object defines four useful
methods: toString(), descriptors(), hide(), and show().

ECEEE S S SR

*/

(function namespace() { // Wrap everything in a private function scope

// This is the function that becomes a method of all object
function properties() {
var names; // An array of property names
if (arguments.length == 0) // All own properties of this
names = Object.getOwnPropertyNames(this);
else if (arguments.length == 1 88 Array.isArray(arguments[0]))
names = arguments[0]; // Or an array of names
else // Or the names in the argument list
names = Array.prototype.splice.call(arguments, 0);

// Return a new Properties object representing the named properties
return new Properties(this, names);

}

// Make it a new nonenumerable property of Object.prototype.
// This is the only value exported from this private function scope.
Object.defineProperty(Object.prototype, "properties", {

value: properties,

enumerable: false, writable: true, configurable: true

B

// This constructor function is invoked by the properties() function above.
// The Properties class represents a set of properties of an object.
function Properties(o, names) {
this.o = o; // The object that the properties belong to
this.names = names; // The names of the properties

}

// Make the properties represented by this object nonenumerable
Properties.prototype.hide = function() {
var o = this.o, hidden = { enumerable: false };
this.names.forEach(function(n) {
if (o0.hasOwnProperty(n))

244 | Chapter9: Classes and Modules

Object.defineProperty(o, n, hidden);
1;

return this;

b

// Make these properties read-only and nonconfigurable
Properties.prototype.freeze = function() {
var o = this.o, frozen = { writable: false, configurable: false };
this.names.forEach(function(n) {
if (o0.hasOwnProperty(n))
Object.defineProperty(o, n, frozen);
b;

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

return this;

b

// Return an object that maps names to descriptors for these properties.
// Use this to copy properties along with their attributes:
// Object.defineProperties(dest, src.properties().descriptors());
Properties.prototype.descriptors = function() {
var o = this.o, desc = {};
this.names.forEach(function(n) {
if (lo.hasOwnProperty(n)) return;
desc[n] = Object.getOwnPropertyDescriptor(o,n);
1;

return desc;

b

// Return a nicely formatted list of properties, listing the
// name, value and attributes. Uses the term "permanent" to mean
// nonconfigurable, "readonly" to mean nonwritable, and "hidden"
// to mean nonenumerable. Regular enumerable, writable, configurable
// properties have no attributes listed.
Properties.prototype.toString = function() {

var o = this.o; // Used in the nested function below

var lines = this.names.map(nameToString);

return "{\n " + lines.join(",\n ") + "\n}";

function nameToString(n) {

var s = "", desc = Object.getOwnPropertyDescriptor(o, n);

if (!desc) return "nonexistent " + n + ": undefined";

if (!desc.configurable) s += "permanent ";

if ((desc.get 8& !desc.set) || !desc.writable) s += "readonly ";

if (!desc.enumerable) s += "hidden ";

if (desc.get || desc.set) s += "accessor " + n

else s += n + ": " + ((typeof desc.value==="function")?"function"
:desc.value);

n

return s;

}
b

// Finally, make the instance methods of the prototype object above
// nonenumerable, using the methods we've defined here.
Properties.prototype.properties().hide();

}()); // Invoke the enclosing function as soon as we're done defining it.

9.8 Classes in ECMAScript5 | 245

9.9 Modules

An important reason to organize code into classes is to make that code more modular
and suitable for reuse in a variety of situations. Classes are not the only kind of modular
code, however. Typically, a module is a single file of JavaScript code. A module file
might contain a class definition, a set of related classes, a library of utility functions, or
just a script of code to execute. Any chunk of JavaScript code can be a module, as long
as it is written in a modular way. JavaScript does not define any language constructs
for working with modules (it does reserve the keywords imports and exports, however,
so future versions of the language might), which means that writing modular JavaScript
is largely a matter of following certain coding conventions.

Many JavaScript libraries and client-side programming frameworks include some kind
of module system. Both the Dojo toolkit and Google’s Closure library, for example,
define provide() and require() functions for declaring and loading modules. And the
Common]S server-side JavaScript standardization effort (see http://commonjs.org) has
created a modules specification that also uses a require() function. Module systems
like this often handle module loading and dependency management for you and are
beyond the scope of this discussion. If you use one of these frameworks, then you
should use and define modules following the conventions appropriate to that frame-
work. In this section we’ll discuss very simple module conventions.

The goal of modules is to allow large programs to be assembled using code from dis-
parate sources, and for all of that code to run correctly even in the presence of code
that the module authors did not anticipate. In order for this to work, the various mod-
ules must avoid altering the global execution environment, so that subsequent modules
are allowed to run in the pristine (or near pristine) environment that it expects. As a
practical matter, this means that modules should minimize the number of global sym-
bols they define—ideally, no module should define more than one. The subsections
that follow describe simple ways to accomplish this. You’ll see that writing modular
code in JavaScript is not at all tricky: we’ve seen examples of the techniques described
here throughout this book.

9.9.1 Objects As Namespaces

One way for a module to avoid the creation of global variables is to use an object as its
namespace. Instead of defining global functions and variables, it stores the functions
and values as properties of an object (which may be referenced by a global variable).
Consider the Set class of Example 9-6. It defines a single global constructor function
Set. It defines various instance methods for the class, but it stores them as properties
of Set.prototype so they are not globals. That example also defines a _v2s() utility
function, but instead of making it a global function, it stores it as a property of Set.

Next, consider Example 9-16. That example defined a number of abstract and concrete
set classes. Each class had only a single global symbol, but the whole module (the single

246 | Chapter9: Classesand Modules

file of code) defined quite a few globals. From the standpoint of a clean global name-
space, it would be better if this module of set classes defined a single global:

var sets = {};

This sets object is the namespace for the module, and we define each of the set classes
as a property of this object:

sets.SingletonSet = sets.AbstractEnumerableSet.extend(...);

When we want to use a class defined like this, we simply include the namespace when
we refer to the constructor:

var s = new sets.SingletonSet(1);

The author of a module cannot know what other modules their module will be used
with and must guard against name collisions by using namespaces like this. The pro-
grammer who uses the module, however, knows what modules are in use and what
names are defined. This programmer doesn’t have to keep using the namespaces rigidly,
and can import frequently used values into the global namespace. A programmer who
was going to make frequent use of the Set class from the sets namespace might import
the class like this:

var Set = sets.Set; // Import Set to the global namespace
var s = new Set(1,2,3); // Now we can use it without the sets prefix.

Sometimes module authors use more deeply nested namespaces. If the sets module was
part of a larger group of collections modules, it might use collections.sets as a name-
space, and the module would begin with code like this:
var collections; // Declare (or re-declare) the single global variable
if (!collections) // If it doesn't already exist
collections = {}; // Create a toplevel namespace object
collections.sets = {} // And create the sets namespace within that.

// Now start defining our set classes inside collections.sets
collections.sets.AbstractSet = function() { ... }

Sometimes the top-level namespace is used to identify the person or organization that
created the modules and prevent name collisions between namespace names. The
Google Closure library, for example, defines its Set class in the namespace goog.structs.
Individuals can reverse the components of an Internet domain name to create a globally
unique namespace prefix that is unlikely to be in use by any other module authors.
Since my website is at davidflanagan.com, 1 could publish my sets module in the name-
space com.davidflanagan.collections.sets.

With namespaces this long, importing values becomes important for any user of your
module. Rather than importing individual classes, however, a programmer might im-
port the entire module to the global namespace:

var sets = com.davidflanagan.collections.sets;
By convention, the filename of a module should match its namespace. The sets module

should be stored in a file named sets.js. If that module uses the namespace
collections.sets, then this file should be stored in a directory named collections/ (this

9.9 Modules | 247

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

directory might also include a file named maps.js). And a module that used the name-
space com.davidflanagan.collections.sets would be in com/davidflanagan