
www.allitebooks.com

http://www.allitebooks.org

2

By

Cody Lindley

Foreword by Daniel Jebaraj

www.allitebooks.com

http://www.allitebooks.org

3

Copyright © 2012 by Syncfusion Inc.

2501 Aerial Center Parkway

Suite 200

Morrisville, NC 27560

USA

All rights reserved.

mportant licensing information. Please read.

This book is available for free download from www.syncfusion.com on completion of a registration form.

If you obtained this book from any other source, please register and download a free copy from

www.syncfusion.com.

This book is licensed for reading only if obtained from www.syncfusion.com.

This book is licensed strictly for personal, educational use.

Redistribution in any form is prohibited.

The authors and copyright holders provide absolutely no warranty for any information provided.

The authors and copyright holders shall not be liable for any claim, damages, or any other liability arising from, out

of, or in connection with the information in this book.

Please do not use this book if the listed terms are unacceptable.

Use shall constitute acceptance of the terms listed.

dited by

This publication was edited by Jay Natarajan, senior product manager, Syncfusion, Inc.

I

E

www.allitebooks.com

http://www.syncfusion.com/
http://www.syncfusion.com/
http://www.syncfusion.com/
http://www.allitebooks.org

4

Table of Contents

About the Author ... 10
Introduction ... 11
Preface ... 13

More code, less words ... 13

Exhaustive code and repetition .. 13

Color-coding conventions .. 13
Code examples .. 14

Chapter 1: JavaScript Objects ... 16

Creating objects ... 16
JavaScript constructors create and return object instances 21

The native JavaScript object constructors ... 23
User-defined/non-native object constructor functions .. 24

Instantiating constructors using the new operator .. 25

Creating shorthand or literal values from constructors ... 27

Primitive (aka simple) values ... 28

The primitive values null, undefined, "string", 10, true, and false are not

objects ... 30

How primitive values are stored/copied in JavaScript .. 31

Primitive values are equal by value ... 32

The string, number, and Boolean primitive values act like objects when used like
objects ... 33

Complex (aka composite) values ... 34
How complex values are stored/copied in JavaScript .. 35
Complex objects are equal by reference ... 36
Complex objects have dynamic properties .. 37

The typeof operator used on primitive and complex values 37

Dynamic properties allow for mutable objects ... 39
All constructor instances have constructor properties that point to their constructor
function .. 40
Verify that an object is an instance of a particular constructor function 42

An instance created from a constructor can have its own independent properties (aka
instance properties) ... 43

The semantics of "JavaScript objects" and "Object() objects" 44

Chapter 2: Working with Objects and Properties ... 46
Complex objects can contain most of the JavaScript values as properties 46

Encapsulating complex objects in a programmatically beneficial way 47
Getting, setting, and updating an object's properties using dot notation or bracket
notation .. 48

www.allitebooks.com

http://www.allitebooks.org

5

Deleting object properties .. 51

How references to object properties are resolved ... 51

Using hasOwnProperty to verify that an object property is not from the prototype

chain .. 54

Checking if an object contains a given property using the in operator 55

Enumerate (loop over) an object’s properties using the for in loop 55

Host objects and native objects ... 56
Enhancing and extending objects with Underscore.js ... 58

Chapter 3: String() .. 61

Conceptual overview of using the String() object ... 61

String() parameters .. 61

String() properties and methods .. 62

String object instance properties and methods .. 62

Chapter 4: Number() .. 64

Conceptual overview of using the Number() object ... 64

Integers and floating-point numbers .. 64

Number() parameters .. 65

Number() properties .. 65

Number object instance properties and methods .. 66

Chapter 5: Boolean() .. 67

Conceptual overview of using the Boolean() object ... 67

Boolean() parameters .. 67

Boolean() properties and methods .. 68

Boolean object instance properties and methods .. 68
Non-primitive false Boolean objects convert to true ... 68

Certain things are false, everything else is true ... 69
Chapter 6: Working with Primitive String, Number, and Boolean Values 71

Primitive/literal values are converted to objects when properties are accessed 71
You should typically use primitive string, number, and Boolean values 72

Chapter 7: Null ... 74

Conceptual overview of using the null value.. 74

typeof returns null values as "object" ... 74

Chapter 8: Undefined .. 76

Conceptual overview of the undefined value ... 76

JavaScript ECMA-262 Edition 3 (and later) declares the undefined variable in the

global scope .. 76
Chapter 9: The Head/Global Object ... 78

Conceptual overview of the head object .. 78

Global functions contained within the head object ... 79
The head object vs. global properties and global variables 79

Referring to the head object .. 80
The head object is implied and typically not referenced explicitly 81

Chapter 10: Object() .. 83

Conceptual overview of using Object() objects ... 83

Object() parameters .. 84

Object() properties and methods .. 85

www.allitebooks.com

http://www.allitebooks.org

6

Object() object instance properties and methods ... 85

Creating Object() objects using "object literals" .. 85

All objects inherit from Object.prototype ... 87

Chapter 11: Function() .. 89

Conceptual overview of using Function() objects ... 89

Function() parameters .. 89

Function() properties and methods .. 90

Function object instance properties and methods ... 91
Functions always return a value .. 91
Functions are first-class citizens (not just syntax, but values) 92
Passing parameters to a function .. 93

this and arguments values are available to all functions ... 93

The arguments.callee property .. 94

The function instance length property and arguments.length 95

Redefining function parameters ... 96
Return a function before it is done (i.e. cancel function execution) 96

Defining a function (statement, expression, or constructor) 97

Invoking a function (function, method, constructor, or call() and apply()) 98

Anonymous functions .. 99

Self-invoking function expression .. 99
Self-invoking anonymous function statements ... 100
Functions can be nested .. 100

Passing functions to functions and returning functions from functions..................... 101
Invoking function statements before they are defined (aka function hoisting) 102

A function can call itself (aka recursion) .. 102

Chapter 12: The this Keyword .. 104

Conceptual overview of this and how it refers to objects 104

How is the value of this determined? ... 105

The this keyword refers to the head object in nested functions 106

Working around the nested function issue by leveraging the scope chain 108

Controlling the value of this using call() or apply() .. 108

Using the this keyword inside a user-defined constructor function 110

The keyword this inside a prototype method refers to a constructor instance 111

Chapter 13: Scope and Closures ... 113
Conceptual overview of JavaScript scope ... 113
JavaScript does not have block scope ... 114

Use var inside of functions to declare variables and avoid scope gotchas 114

The scope chain (aka lexical scoping) ... 115

The scope chain lookup returns the first found value... 117
Scope is determined during function definition, not invocation 117

Closures are caused by the scope chain ... 118
Chapter 14: Function Prototype Property ... 120

Conceptual overview of the prototype chain ... 120

Why care about the prototype property? ... 121

Prototype is standard on all Function() instances .. 121

The default prototype property is an Object() object .. 122

www.allitebooks.com

http://www.allitebooks.org

7

Instances created from a constructor function are linked to the constructor’s
prototype property ... 123

Last stop in the prototype chain is Object.prototype .. 124

The prototype chain returns the first property match it finds in the chain 124

Replacing the prototype property with a new object removes the default constructor

property ... 125

Instances that inherit properties from prototype will always get the latest values . 126

Replacing the prototype property with a new object does not update former

instances ... 127

User-defined constructors can leverage the same prototype inheritance as native

constructors ... 128
Creating inheritance chains (the original intention) .. 130

Chapter 15: Array() .. 131

Conceptual overview of using Array() objects ... 131

Array() parameters .. 132

Array() properties and methods .. 132

Array object instance properties and methods ... 132

Creating arrays .. 133
Adding and updating values in arrays .. 134

Length vs. index... 135

Defining arrays with a predefined length .. 135

Setting array length can add or remove values ... 136
Arrays containing other arrays (aka multidimensional arrays) 136

Looping over an array, backwards and forwards ... 137

Chapter 16: Math Function.. 139

Conceptual overview of the built-in Math object... 139

Math properties and methods .. 139

Math is not a constructor function .. 140

Math has constants you cannot augment or mutate .. 140

Review .. 141

www.allitebooks.com

http://www.allitebooks.org

8

The Story behind the Succinctly Series of
Books

Daniel Jebaraj, Vice President
Syncfusion, Inc.

taying on the cutting edge

As many of you may know, Syncfusion is a provider of software components for the
Microsoft platform. This puts us in the exciting but challenging position of always
being on the cutting edge.

Whenever platforms or tools are shipping out of Microsoft, which seems to be about
every other week these days, we have to educate ourselves, quickly.

Information is plentiful but harder to digest

In reality, this translates into a lot of book orders, blog searches, and Twitter scans.

While more information is becoming available on the Internet and more and more books are
being published, even on topics that are relatively new, one aspect that continues to inhibit us is
the inability to find concise technology overview books.

We are usually faced with two options: read several 500+ page books or scour the web for
relevant blog posts and other articles. Just as everyone else who has a job to do and customers
to serve, we find this quite frustrating.

The Succinctly series

This frustration translated into a deep desire to produce a series of concise technical books that
would be targeted at developers working on the Microsoft platform.

We firmly believe, given the background knowledge such developers have, that most topics can
be translated into books that are between 50 and 100 pages.

This is exactly what we resolved to accomplish with the Succinctly series. Isn’t everything
wonderful born out of a deep desire to change things for the better?

The best authors, the best content

Each author was carefully chosen from a pool of talented experts who shared our vision. The
book you now hold in your hands, and the others available in this series, are a result of the
authors’ tireless work. You will find original content that is guaranteed to get you up and running
in about the time it takes to drink a few cups of coffee.

Free forever

Syncfusion will be working to produce books on several topics. The books will always be free.
Any updates we publish will also be free.

S

www.allitebooks.com

http://www.allitebooks.org

9

Free? What is the catch?

There is no catch here. Syncfusion has a vested interest in this effort.

As a component vendor, our unique claim has always been that we offer deeper and broader
frameworks than anyone else on the market. Developer education greatly helps us market and
sell against competing vendors who promise to “enable AJAX support with one click,” or “turn
the moon to cheese!”

Let us know what you think

If you have any topics of interest, thoughts, or feedback, please feel free to send them to us at
succinctly-series@syncfusion.com.

We sincerely hope you enjoy reading this book and that it helps you better understand the topic
of study. Thank you for reading.

Please follow us on Twitter and “Like” us on Facebook to help us spread the
word about the Succinctly series!

www.allitebooks.com

mailto:succinctly-series@syncfusion.com
https://twitter.com/#!/Syncfusion
https://www.facebook.com/Syncfusion
http://www.allitebooks.org

10

About the Author

Cody Lindley is a client-side engineer (aka front-end developer) and recovering Flash
developer. He has an extensive background working professionally (11+ years) with
HTML, CSS, JavaScript, Flash, and client-side performance techniques as they pertain
to web development. If he is not wielding client-side code he is likely toying with
interface/interaction design or authoring material and speaking at various conferences.
When not sitting in front of a computer, it is a sure bet he is hanging out with his wife
and kids in Boise, Idaho—training for triathlons, skiing, mountain biking, road biking,
alpine climbing, reading, watching movies, or debating the rational evidence for a
Christian worldview.

www.allitebooks.com

http://www.allitebooks.org

11

Introduction

This book is not about JavaScript design patterns or implementing an object-oriented
paradigm with JavaScript code. It was not written to distinguish the good features of the
JavaScript language from the bad. It is not meant to be a complete reference guide. It is
not targeted at people new to programming or those completely new to JavaScript. Nor
is this a cookbook of JavaScript recipes. Those books have been written.

It was my intention to write a book that gives the reader an accurate JavaScript
worldview through an examination of native JavaScript objects and supporting nuances:
complex values, primitive values, scope, inheritance, the head object, etc. I intend this
book to be a short and digestible summary of the ECMA-262, Edition 3 specification,
focused on the nature of objects in JavaScript.

If you are a designer or developer who has only used JavaScript under the mantle of
libraries (such as jQuery, Prototype, etc.), it is my hope that the material in this book will
transform you from a JavaScript library user into a JavaScript developer.

Why did I write this book?

First, I must admit that I wrote this book for myself. Truth be told, I crafted this material
so I could drink my own Kool-Aid and always remember what it tastes like. In other
words, I wanted a reference written in my own words used to jog my memory as
needed. Additionally:

 Libraries facilitate a "black box" syndrome that can be beneficial in some regards but
detrimental in others. Things may be completed fast and efficiently, but you have no
idea how or why. And the how and why really matter when things go wrong or
performance becomes an issue. The fact is that anyone who intends to implement a
JavaScript library or framework when building a web application (or just a good sign-
up form) ought to look under the hood and understand the engine. This book was
written for those who want to pop the hood and get their hands dirty in JavaScript
itself.

 Mozilla has provided the most up-to-date and complete reference guide for
JavaScript 1.5. I believe what is missing is a digestible document, written from a
single point of view, to go along with their reference guide. It is my hope that this
book will serve as a "what you need to know" manual for JavaScript values, detailing
concepts beyond what the Mozilla reference covers.

 Version 1.5 of JavaScript is going to be around for a fair amount of time, but as we
move toward the new additions to the language found in ECMA Edition 5, I wanted
to document the cornerstone concepts of JavaScript that will likely be perennial.

12

 Advanced technical books written about programing languages are often full of
monolithic code examples and pointless meanderings. I prefer short explanations
that get to the point, backed by real code that I can run instantly. I coined a term,
"technical thin-slicing," to describe what I am attempting to employ in this book. This
entails reducing complex topics into smaller, digestible concepts taught with minimal
words and backed with comprehensive and focused code examples.

 Most JavaScript books worth reading are three inches thick. Definitive guides like
David Flanagan’s certainly have their place, but I wanted to create a book that hones
in on the important stuff without being exhaustive.

Who should read this book?

This book is targeted at two types of people. The first is an advanced beginner or
intermediate JavaScript developer who wishes to solidify his or her understanding of the
language through an in-depth look at JavaScript objects. The second type is a
JavaScript library veteran who is ready to look behind the curtain. This book is not ideal
for newbies to programming, JavaScript libraries, or JavaScript itself.

Why JavaScript 1.5 and ECMA-262 Edition 3?

In this book, I focus on version 1.5 of JavaScript (equivalent to ECMA-262 Edition 3)
because it is the most widely implemented version of JavaScript to date. The next
version of this book will certainly be geared toward the up-and-coming ECMA-262
Edition 5.

Why didn't I cover the Date(), Error(), or RegEx() objects?

Like I said, this book is not an exhaustive reference guide to JavaScript. Rather, it
focuses on objects as a lens through which to understand JavaScript. So I have decided
not to cover the Date(), Error(), or RegEx() objects because, as useful as they are,

grasping the details of these objects will not make or break your general understanding
of objects in JavaScript. My hope is that you simply apply what you learn here to all
objects available in the JavaScript environment.

13

Preface

Before you begin, it is important to understand various styles employed in this book.
Please do not skip this section because it contains important information that will aid
you as you read the book.

More code, less words

Please examine the code examples in detail. The text should be viewed as secondary
to the code itself. It is my opinion that a code example is worth a thousand words. Do
not worry if you’re initially confused by explanations. Examine the code. Tinker with it.
Reread the code comments. Repeat this process until the concept being explained
becomes clear. I hope you achieve a level of expertise such that well-documented code
is all you need to understand a programming concept.

Exhaustive code and repetition

You will probably curse me for repeating myself and for being so comprehensive with
my code examples. And while I might deserve it, I prefer to err on the side of being
exact, verbose, and repetitive, rather than make false assumptions some authors often
make about their readers. Yes, both approaches can be annoying depending upon what
knowledge the author brings to the subject, but they can also serve a useful purpose for
those who want to learn a subject in detail.

Color-coding conventions

Code will be colored using the normal JavaScript syntax highlighting in Visual Studio.
This will help you understand the code, but you will be just fine reading this material on
a monochrome e-book reader such as the Kindle Touch.

<!DOCTYPE html><html lang="en"><body><script>

 // This is a comment about a specific part of the code.
 var foo = 'calling out this part of the code';

</script></body></html>

In addition to syntax highlighting the code, the text in this book is colored so as to
distinguish between JavaScript words and keywords, JavaScript code, and regular text.
The following excerpt from the book demonstrates this coloring semantic.

14

“Consider that the cody object created from the Object() constructor function is not

really different from a string object created via the String() constructor function. To

drive this fact home, examine and contrast the following code:”

Notice the use of gray italicized text for code references, orange text for JavaScript
words and keywords, and regular black text for everything in-between.

Code examples

This book relies heavily on code examples to express JavaScript concepts. The code
samples are available at https://bitbucket.org/syncfusion/javascript-succinctly.

The code samples are provided as individual HTML files. A Visual Studio 2010 project is
also provided for easy navigation. You can select any file, right-click, and select the
View in Browser option to test the code.

The name of the sample file is always included above its code block in the format
Sample: $file-name.html.

Before reading this book, make sure you are comfortable with the usage and purpose of
console.log. You can open the JavaScript console window in different browsers using

the following keyboard shortcuts.

https://bitbucket.org/syncfusion/javascript-succinctly
http://stackoverflow.com/questions/4743730/javascript-what-is-console-log-and-how-do-i-use-it

15

Browser Keyboard shortcut to open JavaScript
console window

Internet Explorer F12 to open the developer tools, then
Ctrl+3 to open the console window

Chrome Ctrl+Shift+J

Firefox Ctrl+Shift+K

Safari Ctrl+Alt+I

I encourage you to download the code and follow along. I authored this book counting
on the fact that you will need to tinker with the code while you are reading and learning.

16

Chapter 1 JavaScript Objects

Creating objects

In JavaScript, objects are king: Almost everything is an object or acts like an object.
Understand objects and you will understand JavaScript. So let's examine the creation of
objects in JavaScript.

An object is just a container for a collection of named values (aka properties). Before we
look at any JavaScript code, let's first reason this out. Take myself, for example. Using
plain language, we can express in a table, a "cody":

cody

property property value

living True

age 33

gender Male

The word "cody" in the table is just a label for the group of property names and
corresponding values that make up exactly what a cody is. As you can see from the
table, I am living, 33, and a male.

JavaScript, however, does not speak in tables. It speaks in objects, which are similar to
the parts contained in the "cody” table. Translating the cody table into an actual
JavaScript object would look like this:

Sample: sample1.html

<!DOCTYPE html><html lang="en"><body><script>

 // Create the cody object
 var cody = new Object();

 // then fill the cody object with properties (using dot notation).
 cody.living = true;
 cody.age = 33;
 cody.gender = 'male';

17

 console.log(cody); // Logs Object {living = true, age = 33, gender =
'male'}

</script></body></html>

Keep this at the forefront of your mind: objects are really just containers for properties,
each of which has a name and a value. This notion of a container of properties with
named values (i.e. an object) is used by JavaScript as the building blocks for expressing
values in JavaScript. The cody object is a value which I expressed as a JavaScript

object by creating an object, giving the object a name, and then giving the object
properties.

Up to this point, the cody object we are discussing has only static information. Since we

are dealing with a programing language, we want to program our cody object to

actually do something. Otherwise, all we really have is a database akin to JSON. In
order to bring the cody object to life, I need to add a property method. Property

methods perform a function. To be precise, in JavaScript, methods are properties that
contain a Function() object, whose intent is to operate on the object the function is

contained within.

If I were to update the cody table with a getGender method, in plain English it would

look like this:

cody object

property property value

living True

age 33

gender Male

getGender return the value of gender

http://www.json.org/
http://bclary.com/2004/11/07/%23a-4.3.3

18

Using JavaScript, the getGender method from the updated cody table would look like

so:

Sample: sample2.html

<!DOCTYPE html><html lang="en"><body><script>

 var cody = new Object();
 cody.living = true;
 cody.age = 33;
 cody.gender = 'male';
 cody.getGender = function () { return cody.gender; };

 console.log(cody.getGender()); // Logs 'male'.

</script></body></html>

The getGender method, a property of the cody object, is used to return one of cody’s

other property values: the value "male" stored in the gender property. What you must

realize is that without methods, our object would not do much except store static
properties.

The cody object we have discussed thus far is what is known as an Object() object.

We created the cody object using a blank object that was provided to us by invoking

the Object() constructor function. Think of constructor functions as a template or

cookie cutter for producing predefined objects. In the case of the cody object, I used the

Object() constructor function to produce an empty object which I named cody.

Because cody is an object constructed from the Object() constructor, we call cody an

Object() object. What you really need to understand, beyond the creation of a simple

Object() object like cody, is that the majority of values expressed in JavaScript are

objects (primitive values like "foo", 5, and true are the exception but have equivalent

wrapper objects).

Consider that the cody object created from the Object() constructor function is not

really different from a string object created via the String() constructor function. To

drive this fact home, examine and contrast the following code:

Sample: sample3.html

<!DOCTYPE html><html lang="en"><body><script>

 var myObject = new Object(); // Produces an Object() object.
 myObject['0'] = 'f';
 myObject['1'] = 'o';
 myObject['2'] = 'o';

 console.log(myObject); // Logs Object { 0="f", 1="o", 2="o"}

19

 var myString = new String('foo'); // Produces a String() object.

 console.log(myString); // Logs foo { 0="f", 1="o", 2="o"}

</script></body></html>

As it turns out, myObject and myString are both . . . objects! They both can have

properties, inherit properties, and are produced from a constructor function. The
myString variable containing the 'foo' string value seems to be as simple as it goes,

but amazingly it’s got an object structure under its surface. If you examine both of the
objects produced you will see that they are identical objects in substance but not in
type. More importantly, I hope you begin to see that JavaScript uses objects to express
values.

Notes
You might find it odd to see the string value 'foo' in object form because typically a

string is represented in JavaScript as a primitive value (e.g., var myString = 'foo';).

I specifically used a string object value here to highlight that anything can be an object,
including values that we might not typically think of as an object (e.g., string, number,
Boolean). Also, I think this helps explain why some say that everything in JavaScript
can be an object.

JavaScript bakes the String() and Object() constructor functions into the language

itself to make the creation of a String() object and Object() object trivial. But you, as

a coder of the JavaScript language, can also create equally powerful constructor
functions. In the following sample, I demonstrate this by defining a non-native custom
Person() constructor function so that I can create people from it.

Sample: sample4.html

<!DOCTYPE html><html lang="en"><body><script>

 // Define Person constructor function in order to create custom Person()
objects later.
 var Person = function (living, age, gender) {
 this.living = living;
 this.age = age;
 this.gender = gender;
 this.getGender = function () { return this.gender; };
 };

 // Instantiate a Person object and store it in the cody variable.
 var cody = new Person(true, 33, 'male');

 console.log(cody);

20

 /* The String() constructor function that follows, having been defined by
JavaScript, has the same pattern. Because the string constructor is native to
JavaScript, all we have to do to get a string instance is instantiate it. But
the pattern is the same whether we use native constructors like String() or
user-defined constructors like Person(). */

 // Instantiate a String object stored in the myString variable.
 var myString = new String('foo');

 console.log(myString);

</script></body></html>

The user-defined Person() constructor function can produce Person objects, just as

the native String() constructor function can produce string objects. The Person()
constructor is no less capable, and is no more or less malleable, than the native
String() constructor or any of the native constructors found in JavaScript.

Remember how the cody object we first looked at was produced from an Object(). It’s

important to note that the Object() constructor function and the new Person()
constructor shown in the previous code example can give us identical outcomes. Both
can produce an identical object with the same properties and property methods.
Examine the two sections of code that follow, showing that codyA and codyB have

the same object values even though they are produced in different ways.

Sample: sample5.html

<!DOCTYPE html><html lang="en"><body><script>

 // Create a codyA object using the Object() constructor.

 var codyA = new Object();
 codyA.living = true;
 codyA.age = 33;
 codyA.gender = 'male';
 codyA.getGender = function () { return codyA.gender; };

 console.log(codyA); // Logs Object {living=true, age=33, gender="male",
...}

 /* The same cody object is created below, but instead of using the native
Object() constructor to create a one-off cody, we first define our own
Person() constructor that can create a cody object (and any other Person
object we like) and then instantiate it with "new". */

 var Person = function (living, age, gender) {
 this.living = living;

www.allitebooks.com

http://www.allitebooks.org

21

 this.age = age;
 this.gender = gender;
 this.getGender = function () { return this.gender; };
 };

 var codyB = new Person(true, 33, 'male');

 console.log(codyB); // Logs Object {living=true, age=33, gender="male",
...}

</script></body></html>

The main difference between the codyA and codyB objects is not found in the object

itself, but in the constructor functions used to produce the objects. The codyA object

was produced using an instance of the Object() constructor. The Person()

constructor produced codyB, but can also be used as a powerful, centrally defined

object "factory" to be used for creating more Person() objects. Crafting your own

constructors for producing custom objects also sets up prototypal inheritance for
Person() instances.

Both solutions resulted in the same complex object being created. It’s these two
patterns that are most commonly used for constructing objects.

JavaScript is really just a language that is prepackaged with a few native object
constructors used to produce complex objects which express a very specific type of
value (e.g., numbers, strings, functions, objects, arrays, etc.), as well as the raw
materials via Function() objects for crafting user-defined object constructors (e.g.,

Person()). The end result—no matter the pattern for creating the object—is typically

the creation of a complex object.

Understanding the creation, nature, and usage of objects and their primitive equivalents
is the focus of the rest of this book.

JavaScript constructors create and return object instances

The role of a constructor function is to create multiple objects that share certain qualities
and behaviors. Basically, a constructor function is a cookie cutter for producing objects
that have default properties and property methods.

If you said, "A constructor is nothing more than a function," then I would reply, "You are
correct—unless that function is invoked using the new keyword." (For example, new
String('foo')). When this happens, a function takes on a special role, and JavaScript

treats the function as special by setting the value of this for the function to the new

object that is being constructed. In addition to this special behavior, the function will
return the newly created object (i.e. this) by default instead of the value false. The

22

new object that is returned from the function is considered to be an instance of the
constructor function that constructs it.

Consider the Person() constructor again, but this time read the comments in the

following code sample carefully, as they highlight the effect of the new keyword.

Sample: sample6.html

<!DOCTYPE html><html lang="en"><body><script>

 /* Person is a constructor function. It was written with the intent of
being used with the new keyword. */
 var Person = function Person(living, age, gender) {
 // "this" below is the new object that is being created (i.e. this =
new Object();)
 this.living = living;
 this.age = age;
 this.gender = gender;
 this.getGender = function () { return this.gender; };
 // When the function is called with the new keyword, "this" is
returned instead of false.
 };

 // Instantiate a Person object named cody.
 var cody = new Person(true, 33, 'male');

 // cody is an object and an instance of Person()
 console.log(typeof cody); // Logs object.
 console.log(cody); // Logs the internal properties and values of cody.
 console.log(cody.constructor); // Logs the Person() function.

</script></body></html>

The sample6.html code leverages a user-defined constructor function (i.e. Person()) to

create the cody object. This is no different from the Array() constructor creating an

Array() object (e.g., new Array()) in the following code.

Sample: sample7.html

<!DOCTYPE html><html lang="en"><body><script>

 // Instantiate an Array object named myArray.
 var myArray = new Array(); // myArray is an instance of Array.

 // myArray is an object and an instance of the Array() constructor.
 console.log(typeof myArray); // Logs object! What? Yes, arrays are a type
of object.

23

 console.log(myArray); // Logs []

 console.log(myArray.constructor); // Logs Array()

</script></body></html>

In JavaScript, most values (excluding primitive values) involve objects being created, or
instantiated, from a constructor function. An object returned from a constructor is called
an instance. Make sure you are comfortable with these semantics, as well as the
pattern of leveraging constructors to produce objects.

The native JavaScript object constructors

The JavaScript language contains nine native (or built-in) object constructors. These
objects are used by JavaScript to construct the language, and by "construct" I mean
these objects are used to express object values in JavaScript code, as well as
orchestrate several features of the language. Thus, the native object constructors are
multifaceted in that they produce objects, but are also leveraged in facilitating many of
the language’s programming conventions. For example, functions are objects created
from the Function() constructor, but are also used to create other objects when called

as constructor functions using the new keyword.

The nine native object constructors that come prepackaged with JavaScript are:

 Number()

 String()

 Boolean()

 Object()

 Array()

 Function()

 Date()

 RegExp()

 Error()

JavaScript is mostly constructed from these nine objects (as well as string, number, and
Boolean primitive values). Understanding these objects in detail is key to taking
advantage of JavaScript’s unique programming power and language flexibility.

https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Number
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/String
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Boolean
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Object
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Array
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Function
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Date
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/RegExp
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Error

24

Notes
The Math object is the oddball here. It's a static object rather than a constructor

function, meaning you can’t do this: var x = new Math(). But you can use it as if it

has already been instantiated (e.g., Math.PI). Truly, Math is just an object namespace

set up by JavaScript to house math functions.

The native objects are sometimes referred to as "global objects" since they are the
objects that JavaScript has made natively available for use. Do not confuse the term
global object with the "head" global object that is the topmost level of the scope chain,
for example, the window object in all web browsers.

The Number(), String(), and Boolean() constructors not only construct objects; they
also provide a primitive value for a string, number, and Boolean, depending upon how
the constructor is leveraged. If you call these constructors directly, then a complex
object is returned. If you simply express a number, string, or Boolean value in your code
(primitive values like 5, "foo", and true), then the constructor will return a primitive value

instead of a complex object value.

User-defined/non-native object constructor functions

As you saw with the Person() constructor, we can make our own constructor functions
from which we can produce not just one, but multiple custom objects.

In the following sample, I present the familiar Person() constructor function:

Sample: sample8.html

<!DOCTYPE html><html lang="en"><body><script>

 var Person = function (living, age, gender) {
 this.living = living;
 this.age = age;
 this.gender = gender;
 this.getGender = function () { return this.gender; };
 };

 var cody = new Person(true, 33, 'male');
 console.log(cody); // Logs Object {living=true, age=33, gender="male",
...}

 var lisa = new Person(true, 34, 'female');
 console.log(lisa); // Logs Object {living=true, age=34, gender="female",
...}

</script></body></html>

As you can see, by passing unique parameters and invoking the Person() constructor

function, you could easily create a vast number of unique people objects. This can be

25

pretty handy when you need more than two or three objects that possess the same
properties, but with different values. Come to think of it, this is exactly what JavaScript
does with the native objects. The Person() constructor follows the same principles as

the Array() constructor. So new Array('foo','bar') is really not that different than

new Person(true, 33, 'male'). Creating your own constructor functions is just

using the same pattern that JavaScript itself uses for its own native constructor
functions.

Notes
It is not required, but when creating custom constructor functions intended to be used
with the new operator, it’s best practice to make the first character of the constructor

name uppercase: Person() rather than person().

One tricky thing about constructor functions is the use of the this value inside of the

function. Remember, a constructor function is just a cookie cutter. When used with the
new keyword, it will create an object with properties and values defined inside of the

constructor function. When new is used, the value this literally means the new object or

instance that will be created based on the statements inside the constructor function.
On the other hand, if you create a constructor function and call it without the use of the
new keyword, the this value will refer to the "parent" object that contains the function.

More detail about this topic can be found in Chapter 6.

It's possible to forgo the use of the new keyword and the concept of a constructor

function by explicitly having the function return an object. The function would have to be
written explicitly to build an Object() object and return it: var myFunction =
function() {return {prop: val}};.

Instantiating constructors using the new operator

A constructor function is basically a cookie-cutter template used to create pre-
configured objects. Take String() for example. This function, when used with the new

operator (new String('foo')), creates a string instance based on the String()
"template.” Let's look at an example.

Sample: sample9.html

<!DOCTYPE html><html lang="en"><body><script>

 var myString = new String('foo');

 console.log(myString); // Logs foo {0 = "f", 1 = "o", 2 = "o"}

</script></body></html>

26

In this snippet, we created a new string object that is an instance of the String()

constructor function. Just like that, we have a string value expressed in JavaScript.

Notes
I'm not suggesting that you use constructor functions instead of their literal/primitive
equivalents—like var string="foo";. I am, however, suggesting that you understand

what is going on behind literal/primitive values.

As previously mentioned, the JavaScript language has the following native predefined
constructors: Number(), String(), Boolean(), Object(), Array(), Function(),

Date(), RegExp(), and Error(). We can instantiate an object instance from any of

these constructor functions by applying the new operator. In the following sample, I
construct these nine native JavaScript objects.

Sample: sample10.html

<!DOCTYPE html><html lang="en"><body><script>

 // Instantiate an instance for each native constructor using the new
keyword.
 var myNumber = new Number(23);
 var myString = new String('male');
 var myBoolean = new Boolean(false);
 var myObject = new Object();
 var myArray = new Array('foo', 'bar');
 var myFunction = new Function("x", "y", "return x*y");
 var myDate = new Date();
 var myRegExp = new RegExp('\bt[a-z]+\b');
 var myError = new Error('Darn!');

 // Log/verify which constructor created the object.
 console.log(myNumber.constructor); // Logs Number()
 console.log(myString.constructor); // Logs String()
 console.log(myBoolean.constructor); // Logs Boolean()
 console.log(myObject.constructor); // Logs Object()
 console.log(myArray.constructor); // Logs Array() in modern browsers.
 console.log(myFunction.constructor); // Logs Function()
 console.log(myDate.constructor); // Logs Date()
 console.log(myRegExp.constructor); // Logs RegExp()
 console.log(myError.constructor); // Logs Error()

</script></body></html>

By using the new operator, we are telling the JavaScript interpreter that we would like an

object that is an instance of the corresponding constructor function. For example, in the
code sample, the Date() constructor function is used to create date objects. The

https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Number
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/String
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Boolean
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Object
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Array
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Function
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Date
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/RegExp
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Error

27

Date() constructor function is a cookie cutter for date objects. That is, it produces date

objects from a default pattern defined by the Date() constructor function.

At this point, you should be well acquainted with creating object instances from native
constructor functions (e.g., new String('foo')) and user-defined constructor

functions (e.g, new Person(true, 33, 'male')).

Notes
Keep in mind that Math is a static object—a container for other methods—and is not a

constructor that uses the new operator.

Creating shorthand or literal values from constructors

JavaScript provides shortcuts—called "literals"—for manufacturing most of the native
object values without having to use new Foo() or new Bar(). For the most part, the

literal syntax accomplishes the same thing as using the new operator. The exceptions

are: Number(), String(), and Boolean()—see the notes after the following sample.

If you come from other programming backgrounds, you are likely more familiar with the
literal way of creating objects. In the following sample, I instantiate the native JavaScript
constructors using the new operator and then create corresponding literal equivalents.

Sample: sample11.html

<!DOCTYPE html><html lang="en"><body><script>

 var myNumber = new Number(23); // An object.
 var myNumberLiteral = 23; // Primitive number value, not an object.

 var myString = new String('male'); // An object.
 var myStringLiteral = 'male'; // Primitive string value, not an object.

 var myBoolean = new Boolean(false); // An object.
 var myBooleanLiteral = false; // Primitive boolean value, not an object.

 var myObject = new Object();
 var myObjectLiteral = {};

 var myArray = new Array('foo', 'bar');
 var myArrayLiteral = ['foo', 'bar'];

 var myFunction = new Function("x", "y", "return x*y");
 var myFunctionLiteral = function (x, y) { return x * y };

 var myRegExp = new RegExp('\bt[a-z]+\b');
 var myRegExpLiteral = /\bt[a-z]+\b/;

28

 // Verify that literals are created from same constructor.
 console.log(myNumber.constructor, myNumberLiteral.constructor);
 console.log(myString.constructor, myStringLiteral.constructor);
 console.log(myBoolean.constructor, myBooleanLiteral.constructor);
 console.log(myObject.constructor, myObjectLiteral.constructor);
 console.log(myArray.constructor, myArrayLiteral.constructor);
 console.log(myFunction.constructor, myFunctionLiteral.constructor);
 console.log(myRegExp.constructor, myRegExpLiteral.constructor);

</script></body></html>

What you need to take away here is the fact that, in general, using literals simply
conceals the underlying process identical to using the new operator. Maybe more

importantly, it’s much more convenient!

Okay, things are a little more complicated with respect to the primitive string, number,
and Boolean values. In these cases, literal values take on the characteristics of primitive
values rather than complex object values. See the notes that follow.

Notes
When using literal values for String(), Number(), and Boolean(), an actual complex

object is never created until the value is treated as an object. In other words, you are
dealing with a primitive data type until you attempt to use methods or retrieve properties
associated with the constructor (e.g., var charactersInFoo = 'foo'.length). When

this happens, JavaScript creates a wrapper object for the literal value behind the
scenes, allowing the value to be treated as an object. Then, after the method is called,
JavaScript discards the wrapper object and the value returns to a literal type. This is
why string, number, and Boolean are considered primitive (or simple) data types. I hope
this clarifies the misconception "everything in JavaScript is an object" from the concept
"everything in JavaScript can act like an object.”

Primitive (aka simple) values

The JavaScript values 5, 'foo', true, and false , as well as null and undefined, are
considered primitive because they are irreducible. That is, a number is a number, a
string is a string, a Boolean is either true or false, and null and undefined are just

that, null and undefined. These values are inherently simple and do not represent

values that can be made up of other values.

Examine the following code and ask yourself if the string, number, Boolean, null, and

undefined values could be more complex. Contrast this to what you know of an

Object()instance, Array()instance, or really any complex object.

29

Sample: sample12.html

<!DOCTYPE html><html lang="en"><body><script>

 var myString = 'string'
 var myNumber = 10;
 var myBoolean = false; // Could be true or false, but that is it.
 var myNull = null;
 var myUndefined = undefined;

 console.log(myString, myNumber, myBoolean, myNull, myUndefined);

 /* Consider that a complex object like array or object can be made up of
multiple primitive values, and thus becomes a complex set of multiple values.
*/

 var myObject = {
 myString: 'string',
 myNumber: 10,
 myBoolean: false,
 myNull: null,
 myUndefined: undefined
 };

 console.log(myObject);

 var myArray = ['string', 10, false, null, undefined];

 console.log(myArray);

</script></body></html>

Quite simply, primitive values represent the lowest form (i.e. simplest) of data and
information available in JavaScript.

Notes
As opposed to creating values with literal syntax, when a String(), Number(), or

Boolean() value is created using the new keyword, the object created is actually a

complex object.

It’s critical that you understand the fact that the String(), Number(), and Boolean()

constructors are dual-purpose constructors used to create literal/primitive values as well
as complex values. These constructors do not always return objects, but instead, when
used without the "new" operator, can return a primitive representation of the actual

complex object value.

30

The primitive values null, undefined, "string", 10, true, and false

are not objects

The null and undefined values are such trivial values that they do not require a

constructor function, nor the use of the new operator to establish them as a JavaScript

value. To use null or undefined, all you do is use them as if they were an operator.

The remaining primitive values—string, number, and Boolean—while technically
returned from a constructor function, are not objects.

In the following sample, I contrast the difference between primitive values and the rest
of the native JavaScript objects.

Sample: sample13.html

<!DOCTYPE html><html lang="en"><body><script>

 // No object is created when producing primitive values; notice no use of
the "new" keyword.
 var primitiveString1 = "foo";
 var primitiveString2 = String('foo');
 var primitiveNumber1 = 10;
 var primitiveNumber2 = Number('10');
 var primitiveBoolean1 = true;
 var primitiveBoolean2 = Boolean('true');

 // Confirm the typeof is not object.
 console.log(typeof primitiveString1, typeof primitiveString2); // Logs
'string,string'.
 console.log(typeof primitiveNumber1, typeof primitiveNumber2); // Logs
'number,number'.
 console.log(typeof primitiveBoolean1, typeof primitiveBoolean2); // Logs
'Boolean,Boolean'.

 // Using a constructor and the "new" keyword for creating objects.

 var myNumber = new Number(23);
 var myString = new String('male');
 var myBoolean = new Boolean(false);
 var myObject = new Object();
 var myArray = new Array('foo', 'bar');
 var myFunction = new Function("x", "y", "return x * y");
 var myDate = new Date();
 var myRegExp = new RegExp('\\bt[a-z]+\\b');
 var myError = new Error('Darn!');

 // Logs 'object object object object object function object function
object'.
 console.log(
 typeof myNumber,

www.allitebooks.com

http://www.allitebooks.org

31

 typeof myString,
 typeof myBoolean,
 typeof myObject,
 typeof myArray,
 typeof myFunction, // BE AWARE typeof returns function for all
function objects.
 typeof myDate,
 typeof myRegExp, // BE AWARE typeof returns function for RegExp()
 typeof myError
);

</script></body></html>

What I would like you to learn from the previous code example is that primitive values
are not objects. Primitive values are special in that they are used to represent simple
values.

How primitive values are stored/copied in JavaScript

It is extremely important to understand that primitive values are stored and manipulated
at "face value.” It might sound simple, but this means that if I store the string value
"foo" in a variable called myString, then the value "foo" is literally stored in memory
as such. Why is this important? Once you begin manipulating (e.g., copying) values,
you have to be equipped with this knowledge, because primitive values are copied
literally.

In the following example, we store a copy of the myString value ('foo') in the variable

myStringCopy, and its value is literally copied. Even if we change the original value, the

copied value, referenced by the variable myStringCopy, remains unchanged.

Sample: sample14.html

<!DOCTYPE html><html lang="en"><body><script>

 var myString = 'foo' // Create a primitive string object.
 var myStringCopy = myString; // Copy its value into a new variable.
 var myString = null; // Manipulate the value stored in the myString
variable.

 /*The original value from myString was copied to myStringCopy. This is
confirmed by updating the value of myString then checking the value of
myStringCopy.*/

 console.log(myString, myStringCopy); // Logs 'null foo'

</script></body></html>

32

The concept to take away here is that primitive values are stored and manipulated as
irreducible values. Referring to them transfers their value. In the previous example, we
copied, or cloned, the myString value to the variable myStringCopy. When we updated

the myString value, the myStringCopy value still had a copy of the old myString

value. Remember this and contrast the mechanics here with complex objects
(discussed in the following section).

Primitive values are equal by value

Primitives can be compared to see if their values are literally the same. As logic would
suggest, if you compare a variable containing the numeric value 10 with another

variable containing the numeric value 10, JavaScript will consider these equal because

10 is the same as 10 (i.e. 10 === 10). The same, of course, would apply if you

compare the primitive string 'foo' to another primitive string with a value of 'foo'. The

comparison would say that they are equal to each other based on their value (i.e. 'foo'
=== 'foo').

In the following code, I demonstrate the "equal by value" concept using primitive
numbers, as well as contrast this with a complex number object.

Sample: sample15.html

<!DOCTYPE html><html lang="en"><body><script>

 var price1 = 10;
 var price2 = 10;
 var price3 = new Number('10'); // A complex numeric object because new
was used.
 var price4 = price3;

 console.log(price1 === price2); // Logs true.

 /* Logs false because price3 contains a complex number object and price 1
is a primitive value. */
 console.log(price1 === price3);

 // Logs true because complex values are equal by reference, not value.
 console.log(price4 === price3);

 // What if we update the price4 variable to contain a primitive value?
 price4 = 10;

 console.log(price4 === price3); // Logs false: price4 is now primitive
rather than complex.

</script></body></html>

33

The concept to take away here is that primitives, when compared, will check to see if
the expressed values are equal. When a string, number, or Boolean value is created
using the new keyword (e.g., new Number('10')), the value is no longer primitive. As

such, comparison does not work the same as if the value had been created via literal
syntax. This is not surprising, given that primitive values are stored by value (i.e. does
10 === 10), while complex values are stored by reference (i.e. does price3 and price4

contain a reference to the same value).

The string, number, and Boolean primitive values act like objects

when used like objects

When a primitive value is used as if it were an object created by a constructor,
JavaScript converts it to an object in order to respond to the expression at hand, but
then discards the object qualities and changes it back to a primitive value. In the code
that follows, I take primitive values and showcase what happens when the values are
treated like objects.

Sample: sample16.html

<!DOCTYPE html><html lang="en"><body><script>

 // Produce primitive values.
 var myNull = null;
 var myUndefined = undefined;
 var primitiveString1 = "foo";
 var primitiveString2 = String('foo'); // Did not use new, so we get
primitive.
 var primitiveNumber1 = 10;
 var primitiveNumber2 = Number('10'); // Did not use new, so we get
primitive.
 var primitiveBoolean1 = true;
 var primitiveBoolean2 = Boolean('true'); // Did not use new, so we get
primitive.

 /* Access the toString() property method (inherited by objects from
object.prototype) to demonstrate that the primitive values are converted to
objects when treated like objects. */

 // Logs "string string"
 console.log(primitiveString1.toString(), primitiveString2.toString());

 // Logs "number number"
 console.log(primitiveNumber1.toString(), primitiveNumber2.toString());

 // Logs "boolean boolean"
 console.log(primitiveBoolean1.toString(), primitiveBoolean2.toString());

34

 /* This will throw an error and not show up in Firebug Lite, as null and
undefined do not convert to objects and do not have constructors. */

 console.log(myNull.toString());
 console.log(myUndefined.toString());

</script></body></html>

In this code example, all of the primitive values (except null and undefined) are

converted to objects, so as to leverage the toString() method, and then are returned

to primitive values once the method is invoked and returned.

Complex (aka composite) values

The native object constructors Object(), Array(), Function(), Date(), Error(), and

RegExp() are complex because they can contain one or more primitive or complex
values. Essentially, complex values can be made up of many different types of
JavaScript objects. It could be said that complex objects have an unknown size in
memory because complex objects can contain any value and not a specific known
value. In the following code, we create an object and an array that houses all of the
primitive objects.

Sample: sample17.html

<!DOCTYPE html><html lang="en"><body><script>

 var object = {
 myString: 'string',
 myNumber: 10,
 myBoolean: false,
 myNull: null,
 myUndefined: undefined
 };

 var array = ['string', 10, false, null, undefined];

 /* Contrast this to the simplicity of the primitive values below. In a
primitive form, none of the values below can be more complex than what you
see while complex values can encapsulate any of the JavaScript values (seen
above). */

 var myString = 'string';
 var myNumber = 10;
 var myBoolean = false;
 var myNull = null;
 var myUndefined = undefined;

35

</script></body></html>

The concept to take away here is that complex values are a composite of values and
differ in complexity and composition to primitive values.

Notes
The term "complex object" has also been expressed in other writings as "composite
objects" or "reference types.” If it's not obvious, all these names describe the nature of a
JavaScript value excluding primitive values. Primitive values are not "referenced by
value" and cannot represent a composite (i.e. a thing made up of several parts or
elements) of other values, while complex objects are "referenced by value" and can
contain or encapsulate other values.

How complex values are stored/copied in JavaScript

It is extremely important to understand that complex values are stored and manipulated
by reference. When creating a variable containing a complex object, the value is stored
in memory at an address. When you reference a complex object, you’re using its name
(i.e. variable or object property) to retrieve the value at that address in memory. The
implications are significant when you consider what happens when you attempt to copy
a complex value. In the next sample, we create an object stored in the variable
myObject. The value in myObject is then copied to the variable copyOfMyObject.

Really, it is not a copy of the object—more like a copy of the address of the object.

Sample: sample18.html

<!DOCTYPE html><html lang="en"><body><script>

 var myObject = {};

 var copyOfMyObject = myObject; // Not copied by value, just the reference
is copied.

 myObject.foo = 'bar'; // Manipulate the value stored in myObject.

 /* If we log myObject and copyOfMyObject, they will have a foo property
because they reference the same object. */

 console.log(myObject, copyOfMyObject); // Logs 'Object { foo="bar"}
Object { foo="bar"}'

</script></body></html>

What you need to realize is that, unlike primitive values that would copy a value, objects
(aka complex values) are stored by reference. As such, the reference (aka address) is

36

copied, but not the actual value. This means that objects are not copied at all. Like I
said, what is copied is the address or reference to the object in the memory stack. In our
code example, myObject and copyOfMyObject point to the same object stored in

memory.

The idea to take away here is that when you change a complex value—because it is
stored by reference—you change the value stored in all variables that reference the
complex value. In our code example, both myObject and copyOfMyObject are

changed when you update the object stored in either variable.

Notes
When the values String(), Number(), and Boolean() are created using the new

keyword, or converted to complex objects behind the scenes, the values continue to be
stored/copied by value. So, even though primitive values can be treated like complex
values, they do not take on the quality of being copied by reference.

To truly make a copy of an object, you have to extract the values from the old object
and inject them into a new object.

Complex objects are equal by reference

When comparing complex objects, they are equal only when they reference the same
object (i.e. have the same address). Two variables containing identical objects are not
equal to each other since they do not actually point at the same object.

In the following sample, objectFoo and objectBar have the same properties and are,

in fact, identical objects, but when asked if they are equal via ===, JavaScript tells us

they are not.

Sample: sample19.html

<!DOCTYPE html><html lang="en"><body><script>

 var objectFoo = { same: 'same' };
 var objectBar = { same: 'same' };

 // Logs false, JS does not care that they are identical and of the same
object type.
 console.log(objectFoo === objectBar);

 // How complex objects are measured for equality.
 var objectA = { foo: 'bar' };
 var objectB = objectA;

 console.log(objectA === objectB); // Logs true because they reference the
same object.

37

</script></body></html>

The concept to take away here is that variables that point to a complex object in
memory are equal only because they are using the same "address.” Conversely, two
independently created objects are not equal even if they are of the same type and
possess the exact same properties.

Complex objects have dynamic properties

A new variable that points to an existing complex object does not copy the object. This
is why complex objects are sometimes called reference objects. A complex object can
have as many references as you want, and they will always refer to the same object,
even as the object being referenced changes.

Sample: sample20.html

<!DOCTYPE html><html lang="en"><body><script>

 var objA = { property: 'value' };
 var pointer1 = objA;
 var pointer2 = pointer1;

 // Update the objA.property, and all references (pointer1 and pointer2)
are updated.
 objA.property = null;

 // Logs 'null null null' because objA, pointer1, and pointer2 all
reference the same object.
 console.log(objA.property, pointer1.property, pointer2.property);

</script></body></html>

This allows for dynamic object properties because you can define an object, create
references, update the object, and all of the variables referring to the object will "get"
that update.

The typeof operator used on primitive and complex values

The typeof operator can be used to return the type of value you are dealing with. But

the values returned from it are not exactly consistent or what some might say, logical.
The following code exhibits the returned values from using the typeof operator.

38

Sample: sample21.html

<!DOCTYPE html><html lang="en"><body><script>

 // Primitive values.
 var myNull = null;
 var myUndefined = undefined;
 var primitiveString1 = "string";
 var primitiveString2 = String('string');
 var primitiveNumber1 = 10;
 var primitiveNumber2 = Number('10');
 var primitiveBoolean1 = true;
 var primitiveBoolean2 = Boolean('true');

 console.log(typeof myNull); // Logs object? WHAT? Be aware...
 console.log(typeof myUndefined); // Logs undefined.
 console.log(typeof primitiveString1, typeof primitiveString2); // Logs
string string.
 console.log(typeof primitiveNumber1, typeof primitiveNumber2); // Logs
number number
 console.log(typeof primitiveBoolean1, typeof primitiveBoolean2); // Logs
boolean boolean.

 // Complex values.
 var myNumber = new Number(23);
 var myString = new String('male');
 var myBoolean = new Boolean(false);
 var myObject = new Object();
 var myArray = new Array('foo', 'bar');
 var myFunction = new Function("x", "y", "return x * y");
 var myDate = new Date();
 var myRegExp = new RegExp('\\bt[a-z]+\\b');
 var myError = new Error('Darn!');

 console.log(typeof myNumber); // Logs object.
 console.log(typeof myString); // Logs object.
 console.log(typeof myBoolean); // Logs object.
 console.log(typeof myObject); // Logs object.
 console.log(typeof myArray); // Logs object.
 console.log(typeof myFunction); // Logs function? WHAT? Be aware...
 console.log(typeof myDate); // Logs object.
 console.log(typeof myRegExp); // Logs function? WHAT? Be aware...
 console.log(typeof myError); // Logs object.

</script></body></html>

When using this operator on values, you should be aware of the potential values
returned given the type of value (primitive or complex) that you are dealing with.

39

Dynamic properties allow for mutable objects

Complex objects are made up of dynamic properties. This allows user-defined objects,
and most of the native objects, to be mutated. This means that the majority of objects in
JavaScript can be updated or changed at any time. Because of this, we can change the
native pre-configured nature of JavaScript itself by augmenting its native objects.
However, I am not telling you to do this; in fact I do not think you should. But let's not
cloud what is possible with opinions.

This means it’s possible to store properties on native constructors and add new
methods to the native objects with additions to their prototype objects.

In the following code, I mutate the String() constructor function and

String.prototype.

Sample: sample22.html

<!DOCTYPE html><html lang="en"><body><script>

 // Augment the built-in String constructor Function() with the
augmentedProperties property.
 String.augmentedProperties = [];

 if (!String.prototype.trimIT) { // If the prototype does not have
trimIT() add it.
 String.prototype.trimIT = function () {
 return this.replace(/^\s+|\s+$/g, '');
 }

 // Now add trimIT string to the augmentedProperties array.
 String.augmentedProperties.push('trimIT');
 }
 var myString = ' trim me ';
 console.log(myString.trimIT()); // Invoke our custom trimIT string
method, logs 'trim me'.

 console.log(String.augmentedProperties.join()); // Logs 'trimIT'.

</script></body></html>

I want to drive home the fact that objects in JavaScript are dynamic. This allows objects
in JavaScript to be mutated. Essentially, the entire language can be mutated into a
custom version (e.g., trimIT string method). Again, I am not recommending this—I am
just pointing out that it is part of the nature of objects in JavaScript.

40

Notes
Careful! If you mutate the native inner workings of JavaScript, you potentially have a
custom version of JavaScript to deal with. Proceed with caution, as most people will
assume that JavaScript is the same wherever it’s available.

All constructor instances have constructor properties that point to

their constructor function

When any object is instantiated, the constructor property is created behind the

scenes as a property of that object or instance. This property points to the constructor
function that created the object. In the next code sample, we create an Object()
object, stored in the foo variable, and then verify that the constructor property is

available for the object we created.

Sample: sample23.html

<!DOCTYPE html><html lang="en"><body><script>

 var foo = {};

 console.log(foo.constructor === Object) // Logs true, because object()
constructed foo.
 console.log(foo.constructor) // Points to the Object() constructor
function.

</script></body></html>

This can be useful: If I’m working with some instance and I can’t see who or what
created it (especially if it is someone else’s code), I can determine if it’s an array, an
object, or whatever.

In the following sample, you can see that I have instantiated most of the pre-configured
objects that come included with the JavaScript language. Note that using literal or
primitive values does not mean that the constructor pointer is not resolved when the

primitive literal value is treated as an object.

Sample: sample24.html

<!DOCTYPE html><html lang="en"><body><script>

 var myNumber = new Number('23');
 var myNumberL = 23; // Literal shorthand.
 var myString = new String('male');
 var myStringL = 'male'; // Literal shorthand.
 var myBoolean = new Boolean('true');
 var myBooleanL = true; // Literal shorthand.
 var myObject = new Object();

www.allitebooks.com

http://www.allitebooks.org

41

 var myObjectL = {}; // Literal shorthand.
 var myArray = new Array();
 var myArrayL = []; // Literal shorthand.
 var myFunction = new Function();
 var myFunctionL = function () { }; // Literal shorthand.
 var myDate = new Date();
 var myRegExp = new RegExp('/./');
 var myRegExpL = /./; // Literal shorthand.
 var myError = new Error();

 console.log(// All of these return true.
 myNumber.constructor === Number,
 myNumberL.constructor === Number,
 myString.constructor === String,
 myStringL.constructor === String,
 myBoolean.constructor === Boolean,
 myBooleanL.constructor === Boolean,
 myObject.constructor === Object,
 myObjectL.constructor === Object,
 myArray.constructor === Array,
 myArrayL.constructor === Array,
 myFunction.constructor === Function,
 myFunctionL.constructor === Function,
 myDate.constructor === Date,
 myRegExp.constructor === RegExp,
 myRegExpL.constructor === RegExp,
 myError.constructor === Error
);

</script></body></html>

The constructor property also works on user-defined constructor functions. In the

following sample, we define a CustomConstructor() constructor function, then using

the keyword new, we invoke the function to produce an object. Once we have our

object, we can then leverage the constructor property.

Sample: sample25.html

<!DOCTYPE html><html lang="en"><body><script>

 var CustomConstructor = function CustomConstructor() { return 'Wow!'; };
 var instanceOfCustomObject = new CustomConstructor();

 // Logs true.
 console.log(instanceOfCustomObject.constructor === CustomConstructor);

 // Returns a reference to CustomConstructor() function.
 // Returns 'function() { return 'Wow!'; };'

42

 console.log(instanceOfCustomObject.constructor);

</script></body></html>

Notes
You might be confused as to why primitive values have constructor properties that point
to constructor functions when objects are not returned. By using a primitive value, the
constructor is still called, so there is still a relationship with primitive values and
constructor functions. However, the end result is a primitive value.

If you would like the constructor property to log the actual name of the constructor for

user-defined constructor functions, you have to give the constructor function an actual
name (e.g., var Person = function Person(){};).

Verify that an object is an instance of a particular constructor function

By using the instanceof operator, we can determine (true or false) if an object is an

instance of a particular constructor function.

In the next sample, we are verifying if the object InstanceOfCustomObject is an

instance of the CustomConstructor constructor function. This works with user-defined

objects as well as native objects created with the new operator.

Sample: sample26.html

<!DOCTYPE html><html lang="en"><body><script>

 // User-defined object constructor.
 var CustomConstructor = function () { this.foo = 'bar'; };

 // Instantiate an instance of CustomConstructor.
 var instanceOfCustomObject = new CustomConstructor();

 console.log(instanceOfCustomObject instanceof CustomConstructor); // Logs
true.

 // Works the same as a native object.
 console.log(new Array('foo') instanceof Array) // Logs true.

</script></body></html>

Notes
One thing to watch out for when dealing with the instanceof operator is that it will

return true any time you ask if an object is an instance of Object, since all objects

inherit from the Object() constructor.

43

The instanceof operator will return false when dealing with primitive values that

leverage object wrappers (e.g., 'foo' instanceof String // returns false). Had

the string 'foo' been created with the new operator, the instanceof operator would

have returned true. So, keep in mind that instanceof really only works with complex

objects and instances created from constructor functions that return objects.

An instance created from a constructor can have its own independent

properties (aka instance properties)

In JavaScript, objects can be augmented at any time (i.e. dynamic properties). As
previously mentioned, and to be exact, JavaScript has mutable objects. This means that
objects created from a constructor function can be augmented with properties.

In the following code sample, I create an instance from the Array() constructor and

then augment it with its own property.

Sample: sample27.html

<!DOCTYPE html><html lang="en"><body><script>

 var myArray = new Array();
 myArray.prop = 'test';

 console.log(myArray.prop) // Logs 'test'.

</script></body></html>

This could be done with Object(), RegExp(), or any of the other non-primitive

constructors—even Boolean().

Sample: sample28.html

<!DOCTYPE html><html lang="en"><body><script>

 // This can be done with any of the native constructors that actually
produce an object.
 var myString = new String();
 var myNumber = new Number();
 var myBoolean = new Boolean(true);
 var myObject = new Object();
 var myArray = new Array();
 var myFunction = new Function('return 2+2');
 var myRegExp = new RegExp('\bt[a-z]+\b');

 myString.prop = 'test';
 myNumber.prop = 'test';
 myBoolean.prop = 'test';

44

 myObject.prop = 'test';
 myArray.prop = 'test';
 myFunction.prop = 'test';
 myRegExp.prop = 'test';

 // Logs 'test', 'test', 'test', 'test', 'test', 'test', 'test'.
 console.log(myString.prop, myNumber.prop, myBoolean.prop, myObject.prop,
myArray.prop, myFunction.prop, myRegExp.prop);

 // Be aware: Instance properties do not work with primitive/literal
values.
 var myString = 'string';
 var myNumber = 1;
 var myBoolean = true;

 myString.prop = true;
 myNumber.prop = true;
 myBoolean.prop = true;

 // Logs undefined, undefined, undefined.
 console.log(myString.prop, myNumber.prop, myBoolean.prop);

</script></body></html>

Adding properties to objects created from a constructor function sometimes occurs.
Remember, object instances created from constructor functions are just plain old
objects.

Notes
Keep in mind that besides their own properties, instances can have properties inherited
from the prototype chain. Or, as we just saw in the previous code sample, properties
added to the constructor after instantiation. This highlights the dynamic nature of objects
in JavaScript.

The semantics of "JavaScript objects" and "Object() objects"

Do not confuse the general term "JavaScript objects," which refers to the notion of
objects in JavaScript, with Object() objects. An Object() object (e.g., var myObject
= new Object()) is a very specific type of value expressed in JavaScript. Just as an

Array() object is a type of object called array, an Object() object is a type of object

called object. The gist is that the Object() constructor function produces an empty

generic object container, which is referred to as an Object() object. Similarly, the

Array() constructor function produces an array object, and we refer to these objects as

Array() objects.

45

In this book, the term "JavaScript objects" is used to refer to all objects in JavaScript,
because most of the values in JavaScript can act like objects. This is due to the fact that
the majority of JavaScript values are created from a native constructor function which
produces a very specific type of object.

What you need to remember is that an Object() object is a very specific kind of value.

It’s a generic empty object. Do not confuse this with the term "JavaScript objects" used
to refer to most of the values that can be expressed in JavaScript as an object.

46

Chapter 2 Working with Objects and Properties

Complex objects can contain most of the JavaScript values as

properties

A complex object can hold any permitted JavaScript value. In the following code, I
create an Object() object called myObject and then add properties representing the

majority of values available in JavaScript.

Sample: sample29.html

<!DOCTYPE html><html lang="en"><body><script>

 var myObject = {};

 // Contain properties inside of myObject representing most of the native
JavaScript values.
 myObject.myFunction = function () { };
 myObject.myArray = [];
 myObject.myString = 'string';
 myObject.myNumber = 33;
 myObject.myDate = new Date();
 myObject.myRegExp = /a/;
 myObject.myNull = null;
 myObject.myUndefined = undefined;
 myObject.myObject = {};
 myObject.myMath_PI = Math.PI;
 myObject.myError = new Error('Darn!');

 console.log(myObject.myFunction, myObject.myArray, myObject.myString,
myObject.myNumber, myObject.myDate, myObject.myRegExp, myObject.myNull,
myObject.myNull, myObject.myUndefined, myObject.myObject, myObject.myMath_PI,
myObject.myError);

 /* Works the same with any of the complex objects, for example a
function. */
 var myFunction = function () { };

 myFunction.myFunction = function () { };
 myFunction.myArray = [];
 myFunction.myString = 'string';
 myFunction.myNumber = 33;
 myFunction.myDate = new Date();
 myFunction.myRegExp = /a/;
 myFunction.myNull = null;
 myFunction.myUndefined = undefined;
 myFunction.myObject = {};

47

 myFunction.myMath_PI = Math.PI;
 myFunction.myError = new Error('Darn!');

 console.log(myFunction.myFunction, myFunction.myArray,
myFunction.myString, myFunction.myNumber, myFunction.myDate,
myFunction.myRegExp, myFunction.myNull, myFunction.myNull,
myFunction.myUndefined, myFunction.myObject, myFunction.myMath_PI,
myFunction.myError);

</script></body></html>

The simple concept to learn here is that complex objects can contain—or refer to—
anything you can nominally express in JavaScript. You should not be surprised when
you see this done, as all of the native objects can be mutated. This even applies to
String(), Number(), and Boolean() values in their object form—i.e. when they are

created with the new operator.

Encapsulating complex objects in a programmatically beneficial way

The Object(), Array(), and Function() objects can contain other complex objects.

In the following sample, I demonstrate this by setting up an object tree using Object()
objects.

Sample: sample30.html

<!DOCTYPE html><html lang="en"><body><script>

// Encapsulation using objects creates object chains.
var object1 = {
 object1_1: {
 object1_1_1: {foo: 'bar'},
 object1_1_2: {},
 },
 object1_2: {
 object1_2_1: {},
 object1_2_2: {},
 }
};

console.log(object1.object1_1.object1_1_1.foo); // Logs 'bar'.

</script></body></html>

The same thing can be done with an Array() object (aka multidimensional array), or

with a Function() object.

48

Sample: sample31.html

<!DOCTYPE html><html lang="en"><body><script>

 // Encapsulation using arrays creates a multidimensional array chain.
 var myArray = [[[]]]; // An empty array, inside an empty array, inside an
empty array.

 /* Here is an example of encapsulation using functions: An empty function
inside an empty function inside an empty function. */
 var myFunction = function () {
 // Empty function.
 var myFunction = function () {
 // Empty function.
 var myFunction = function () {
 // Empty function.
 };
 };
 };

 // We can get crazy and mix and match too.
 var foo = [{ foo: [{ bar: { say: function () { return 'hi'; } }}]}];
 console.log(foo[0].foo[0].bar.say()); // Logs 'hi'.

</script></body></html>

The main concept to take away here is that some of the complex objects are designed
to encapsulate other objects in a programmatically beneficial way.

Getting, setting, and updating an object's properties using dot

notation or bracket notation

We can get, set, or update an object's properties using either dot notation or bracket
notation.

In the following sample, I demonstrate dot notation, which is accomplished by using the
object name followed by a period, and then followed by the property to get, set, or
update (e.g., objectName.property).

Sample: sample32.html

<!DOCTYPE html><html lang="en"><body><script>

 // Create a cody Object() object.
 var cody = new Object();

 // Setting properties.

49

 cody.living = true;
 cody.age = 33;
 cody.gender = 'male';
 cody.getGender = function () { return cody.gender; };

 // Getting properties.
 console.log(
 cody.living,
 cody.age,
 cody.gender,
 cody.getGender()
); // Logs 'true 33 male male'.

 // Updating properties, exactly like setting.
 cody.living = false;
 cody.age = 99;
 cody.gender = 'female';
 cody.getGender = function () { return 'Gender = ' + cody.gender; };

 console.log(cody);

</script></body></html>

Dot notation is the most common notation for getting, setting, or updating an object's
properties.

Bracket notation, unless required, is not as commonly used. In the following sample, I
replace the dot notation used in the previous sample with bracket notation. The object
name is followed by an opening bracket, the property name (in quotes), and then a
closing bracket:

Sample: sample33.html

<!DOCTYPE html><html lang="en"><body><script>

 // Creating a cody Object() object.
 var cody = new Object();

 // Setting properties.
 cody['living'] = true;
 cody['age'] = 33;
 cody['gender'] = 'male';
 cody['getGender'] = function () { return cody.gender; };

 // Getting properties.
 console.log(
 cody['living'],
 cody['age'],
 cody['gender'],

50

 cody['getGender']() // Just slap the function invocation on the end!
); // Logs 'true 33 male male'.

 // Updating properties, very similar to setting.
 cody['living'] = false;
 cody['age'] = 99;
 cody['gender'] = 'female';
 cody['getGender'] = function () { return 'Gender = ' + cody.gender; };

 console.log(cody);

</script></body></html>

Bracket notation can be very useful when you need to access a property key and what
you have to work with is a variable that contains a string value representing the property
name. In the next sample, I demonstrate the advantage of bracket notation over dot
notation by using it to access the property foobar. I do this using two variables that,

when joined, produce the string version of the property key contained in foobarObject.

Sample: sample34.html

<!DOCTYPE html><html lang="en"><body><script>

 var foobarObject = { foobar: 'Foobar is code for no code' };

 var string1 = 'foo';
 var string2 = 'bar';

 console.log(foobarObject[string1 + string2]); // Let's see dot notation
do this!

</script></body></html>

Additionally, bracket notation can come in handy for getting at property names that are
invalid JavaScript identifiers. In the following code, I use a number and a reserved
keyword as a property name (valid as a string) that only bracket notation can access.

Sample: sample35.html

<!DOCTYPE html><html lang="en"><body><script>

 var myObject = { '123': 'zero', 'class': 'foo' };

 // Let's see dot notation do this! Keep in mind 'class' is a keyword in
JavaScript.
 console.log(myObject['123'], myObject['class']); //Logs 'zero foo'.

www.allitebooks.com

http://www.allitebooks.org

51

 // It can't do what bracket notation can do, in fact it causes an error.
 // console.log(myObject.0, myObject.class);

</script></body></html>

Notes
Because objects can contain other objects, cody.object.object.object.object or

cody['object']['object']['object']['object'] can be seen at times. This is

called object chaining. The encapsulation of objects can go on indefinitely.

Objects are mutable in JavaScript, meaning that getting, setting, or updating them can
be performed on most objects at any time. By using the bracket notation (e.g.,
cody['age']), you can mimic associative arrays found in other languages.

If a property inside an object is a method, all you have to do is use the () operators

(e.g., cody.getGender()) to invoke the property method.

Deleting object properties

The delete operator can be used to completely remove properties from an object. In

the following code snippet, we delete the bar property from the foo object.

Sample: sample36.html

<!DOCTYPE html><html lang="en"><body><script>

 var foo = { bar: 'bar' };
 delete foo.bar;
 console.log('bar' in foo); // Logs false, because bar was deleted from
foo.

</script></body></html>

Notes
delete will not delete properties that are found on the prototype chain.

Deleting is the only way to actually remove a property from an object. Setting a property
to undefined or null only changes the value of the property. It does not remove the

property from the object.

How references to object properties are resolved

If you attempt to access a property that is not contained in an object, JavaScript will
attempt to find the property or method using the prototype chain. In the following
sample, I create an array and attempt to access a property called foo that has not yet

52

been defined. You might think that because myArray.foo is not a property of the

myArray object, JavaScript will immediately return undefined. But JavaScript will look

in two more places (Array.prototype and then Object.prototype) for the value of

foo before it returns undefined.

Sample: sample37.html

<!DOCTYPE html><html lang="en"><body><script>

 var myArray = [];

 console.log(myArray.foo); // Logs undefined.

 /* JS will look at Array.prototype for Array.prototype.foo, but it is not
there. Then it will look for it at Object.prototype, but it is not there
either, so undefined is returned! */

</script></body></html>

When I attempt to access a property of an object, it will check that object instance for
the property. If it has the property, it will return the value of the property, and there is no
inheritance occurring because the prototype chain is not leveraged. If the instance does
not have the property, JavaScript will then look for it on the object's constructor function
prototype object.

All object instances have a property that is a secret link (aka __proto__) to the
constructor function that created the instance. This secret link can be leveraged to grab
the constructor function, specifically the prototype property of the instance’s constructor
function.

This is one of the most confusing aspects of objects in JavaScript. But let's reason this
out. Remember that a function is also an object with properties. It makes sense to allow
objects to inherit properties from other objects. Just like saying: "Hey object B, I would
like you to share all the properties that object A has." JavaScript wires this all up for
native objects by default via the prototype object. When you create your own

constructor functions, you can leverage prototype chaining as well.

How exactly JavaScript accomplishes this is confusing until you see it for what it is: just
a set of rules. Let's create an array to examine the prototype property closer.

Sample: sample38.html

<!DOCTYPE html><html lang="en"><body><script>

 // myArray is an Array object.
 var myArray = ['foo', 'bar'];

https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Object/proto

53

 console.log(myArray.join()); // join() is actually defined at
Array.prototype.join

</script></body></html>

Our Array() instance is an object with properties and methods. As we access one of

the array methods, such as join(), let’s ask ourselves: Does the myArray instance

created from the Array() constructor have its own join() method? Let's check.

Sample: sample39.html

<!DOCTYPE html><html lang="en"><body><script>

 var myArray = ['foo', 'bar'];

 console.log(myArray.hasOwnProperty('join')); // Logs false.

</script></body></html>

No it does not. Yet myArray has access to the join() method as if it were its own

property. What happened here? Well, you just observed the prototype chain in action.
We accessed a property that, although not contained in the myArray object, could be

found by JavaScript somewhere else. That somewhere else is very specific. When the
Array() constructor was created by JavaScript, the join() method was added (among

others) as a property of the prototype property of Array().

To reiterate, if you try to access a property on an object that does not contain it,
JavaScript will search the prototype chain for this value. First it will look at the

constructor function that created the object (e.g., Array), and inspect its prototype (e.g.,

Array.prototype) to see if the property can be found there. If the first prototype object

does not have the property, then JavaScript keeps searching up the chain at the
constructor behind the initial constructor. It can do this all the way up to the end of the
chain.

Where does the chain end? Let's examine the example again, invoking the
toLocaleString() method on myArray.

Sample: sample40.html

<!DOCTYPE html><html lang="en"><body><script>

 // myArray and Array.prototype contain no toLocaleString() method.
 var myArray = ['foo', 'bar'];

 // toLocaleString() is actually defined at
Object.prototype.toLocaleString

54

 console.log(myArray.toLocaleString()); // Logs 'foo,bar'.

</script></body></html>

The toLocaleString() method is not defined within the myArray object. So, the

prototype chaining rule is invoked and JavaScript looks for the property in the Array

constructor’s prototype property (e.g., Array.prototype). It is not there either, so the

chain rule is invoked again and we look for the property in the Object() prototype

property (Object.prototype). And yes, it is found there. Had it not been found there,

JavaScript would have produced an error stating that the property was undefined.

Since all prototype properties are objects, the final link in the chain is
Object.prototype. There is no other constructor prototype property that can be

examined.

There is an entire chapter ahead that breaks down the prototype chain into smaller
parts, so if this was completely lost on you, read that chapter and then come back to
this explanation to solidify your understanding. From this short read on the matter, I
hope you understand that when a property is not found (and deemed undefined),

JavaScript will have looked at several prototype objects to determine that a property is
undefined. A lookup always occurs, and this lookup process is how JavaScript handles

inheritance as well as simple property lookups.

Using hasOwnProperty to verify that an object property is not from the

prototype chain

While the in operator can check for properties of an object, including properties from

the prototype chain, the hasOwnProperty method can check an object for a property

that is not from the prototype chain.

In the following sample, we want to know if myObject contains the property foo, and

that it is not inheriting the property from the prototype chain. To do this, we ask if
myObject has its own property called foo.

Sample: sample41.html

<!DOCTYPE html><html lang="en"><body><script>

 var myObject = {foo: 'value'};

 console.log(myObject.hasOwnProperty('foo')) // Logs true.

 // Versus a property from the prototype chain.
 console.log(myObject.hasOwnProperty('toString')); // Logs false.

</script></body></html>

55

The hasOwnProperty method should be leveraged when you need to determine

whether a property is local to an object or inherited from the prototype chain.

Checking if an object contains a given property using the in operator

The in operator is used to verify (true or false) if an object contains a given property. In

this sample, we are checking to see if foo is a property in myObject.

Sample: sample42.html

<!DOCTYPE html><html lang="en"><body><script>

 var myObject = { foo: 'value' };
 console.log('foo' in myObject); // Logs true.

</script></body></html>

You should be aware that the in operator not only checks for properties contained in

the object referenced, but also for any properties that object inherits via the prototype

chain. Thus, the same property lookup rules apply and the property, if not in the current
object, will be searched for on the prototype chain.

This means that myObject in the previous sample actually contains a toString

property method via the prototype chain (Object.prototype.toString), even if we

did not specify one (e.g., myObject.toString = 'foo').

Sample: sample43.html

<!DOCTYPE html><html lang="en"><body><script>

 var myObject = { foo: 'value' };
 console.log('toString' in myObject); // Logs true.

</script></body></html>

In the last code example, the toString property is not literally inside of the myObject

object. However, it is inherited from Object.prototype, and so the in operator

concludes that myObject does in fact have an inherited toString() property method.

Enumerate (loop over) an object’s properties using the for in loop

By using for in, we can loop over each property in an object. In the following sample,

we are using the for in loop to retrieve the property names from the cody object.

56

Sample: sample44.html

<!DOCTYPE html><html lang="en"><body><script>

 var cody = {
 age: 23,
 gender: 'male'
 };

 for (var key in cody) { // key is a variable used to represent each
property name.
 // Avoid properties inherited from the prototype chain.
 if (cody.hasOwnProperty(key)) {
 console.log(key);
 }
 }

</script></body></html>

Notes
The for in loop has a drawback. It will not only access the properties of the specific

object being looped over. It will also include in the loop any properties inherited (via the
prototype chain) by the object. Thus, if this is not the desired result, and most of the
time it is not, we have to use a simple if statement inside of the loop to make sure we

only access the properties contained within the specific object we are looping over. This
can be done by using the hasOwnProperty() method inherited by all objects.

The order in which the properties are accessed in the loop is not always the order in
which they are defined within the loop. Additionally, the order in which you defined
properties is not necessarily the order they are accessed.

Only properties that are enumerable (i.e. available when looping over an object’s
properties) show up with the for in loop. For example, the constructor property will not

show up. It is possible to check which properties are enumerable with the
propertyIsEnumerable() method.

Host objects and native objects

You should be aware that the environment (e.g., a web browser) in which JavaScript is
executed typically contains what are known as host objects. Host objects are not part of
the ECMAScript implementation, but are available as objects during execution. Of
course, the availability and behavior of a host object depends completely on what the
host environment provides.

For example, in the web browser environment the window/head object and all of its
containing objects (excluding what JavaScript provides) are considered host objects.

https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Object/propertyIsEnumerable
https://developer.mozilla.org/en/Gecko_DOM_Reference
https://developer.mozilla.org/en/Gecko_DOM_Reference

57

In the following example, I examine the properties of the window object.

Sample: sample45.html

<!DOCTYPE html><html lang="en"><body><script>

 for (x in window) {
 console.log(x); // Logs all of the properties of the window/head
object.
 }

</script></body></html>

You might have noticed that native JavaScript objects are not listed among the host
objects. It’s fairly common that a browser distinguishes between host objects and native
objects.

As it pertains to web browsers, the most famous of all hosted objects is the interface for
working with HTML documents, also known as the DOM. The following sample is a
method to list all of the objects contained inside the window.document object provided

by the browser environment.

Sample: sample46.html

<!DOCTYPE html><html lang="en"><body><script>

 for (x in window.document) {
 console.log();
 }

</script></body></html>

What I want you to learn here is that the JavaScript specification does not concern itself
with host objects and vice versa. There is a dividing line between what JavaScript
provides (e.g., JavaScript 1.5, ECMA-262, Edition 3 versus Mozilla's JavaScript 1.6, 1.7,
1.8, 1.8.1, 1.8.5) and what the host environment provides, and these two should not be
confused.

Notes
The host environment (e.g., a web browser) that runs JavaScript code typically provides
the head object (e.g., window object in a web browser) where the native portions of the
language are stored along with host objects (e.g., window.location in a web browser)
and user-defined objects (e.g., the code you write to run in the web browser).

https://developer.mozilla.org/en/DOM/document
https://developer.mozilla.org/en/JavaScript/New_in_JavaScript/1.6
https://developer.mozilla.org/en/JavaScript/New_in_JavaScript/1.7
https://developer.mozilla.org/en/JavaScript/New_in_JavaScript/1.8
https://developer.mozilla.org/En/JavaScript/New_in_JavaScript/1.8.1
https://developer.mozilla.org/en/JavaScript/New_in_JavaScript/1.8.5

58

Sometimes a web browser manufacturer, as the host of the JavaScript interpreter, will
push forward a version of JavaScript or add future specifications to JavaScript before
they have been approved (e.g., Mozilla's Firefox JavaScript 1.6, 1.7, 1.8, 1.8.1, 1.8.5).

Enhancing and extending objects with Underscore.js

JavaScript 1.5 is lacking when it comes time to seriously manipulate and manage
objects. If you are running JavaScript in a web browser, I would like to be bold here and
suggest the usage of Underscore.js when you need more functionality than is provided
by JavaScript 1.5. Underscore.js provides the following functionality when dealing with
objects.

These functions work on all objects and arrays:

 each()

 map()

 reduce()

 reduceRight()

 detect()

 select()

 reject()

 all()

 any()

 include()

 invoke()

 pluck()

 max()

 min()

 sortBy()

 sortIndex()

https://developer.mozilla.org/en/JavaScript/New_in_JavaScript/1.6
https://developer.mozilla.org/en/JavaScript/New_in_JavaScript/1.7
https://developer.mozilla.org/en/JavaScript/New_in_JavaScript/1.8
https://developer.mozilla.org/En/JavaScript/New_in_JavaScript/1.8.1
https://developer.mozilla.org/en/JavaScript/New_in_JavaScript/1.8.5
http://documentcloud.github.com/underscore/

59

 toArray()

 size()

These functions work on all objects:

 keys()

 values()

 functions()

 extend()

 clone()

 tap()

 isEqual()

 isEmpty()

 isElement()

 isArray()

 isArguments

 isFunction()

 isString()

 isNumber

 isBoolean

 isDate

 isRegExp

 isNaN

 isNull

 isUndefined

60

I like this library because it takes advantage of the new native additions to JavaScript
where browsers support them, but also provides the same functionality to browsers that
do not, all without changing the native implementation of JavaScript unless it has to.

Notes
Before you start to use Underscore.js, make sure the functionality you need is not
already provided by a JavaScript library or framework that might already be in use in
your code.

www.allitebooks.com

http://www.allitebooks.org

61

Chapter 3 String()

Conceptual overview of using the String() object

The String() constructor function is used to create string objects and string primitive
values.

In the following sample, I detail the creation of string values in JavaScript.

Sample: sample47.html

<!DOCTYPE html><html lang="en"><body><script>

 // Create a string object using the new keyword and the String()
constructor.
 var stringObject = new String('foo');
 console.log(stringObject); // Logs foo {0 = 'f', 1 = 'o', 2 = 'o'}
 console.log(typeof stringObject); // Logs 'object'.

 // Create string literal/primitive by directly using the String
constructor.
 var stringObjectWithOutNewKeyword = String('foo'); // Without new
keyword.
 console.log(stringObjectWithOutNewKeyword); // Logs 'foo'.
 console.log(typeof stringObjectWithOutNewKeyword); // Logs 'string'.

 // Create string literal/primitive (constructor leveraged behind the
scene).
 var stringLiteral = 'foo';
 console.log(stringLiteral); // Logs foo.
 console.log(typeof stringLiteral); // Logs 'string'.

</script></body></html>

String() parameters

The String() constructor function takes one parameter: the string value being created.

In the following sample, we create a variable, stringObject, to contain the string value

"foo".

Sample: sample48.html

<!DOCTYPE html><html lang="en"><body><script>

 // Create string object.
 var stringObject = new String('foo');

62

 console.log(stringObject); // Logs 'foo {0="f", 1="o", 2="o"}'

</script></body></html>

Notes
When used with the new keyword, instances from the String() constructor produce an

actual complex object. You should avoid doing this (use literal/primitive numbers) due to
the potential problems associated with the typeof operator. The typeof operator

reports complex string objects as 'object' instead of the primitive label ('string') you
might expect. Additionally, the literal/primitive value is just faster to write and is more
concise.

String() properties and methods

The String object has the following properties and methods (not including inherited

properties and methods):

Properties (e.g., String.prototype;)

 prototype

Methods (e.g., String.fromCharChode();)

 fromCharCode()

String object instance properties and methods

String object instances have the following properties and methods (not including
inherited properties and methods):

Instance Properties (e.g., var myString = 'foo'; myString.length;)

 constructor

 length

Instance Methods (e.g., var myString = 'foo'; myString.toLowerCase();)

 charAt()

 charCodeAt()

 concat()

https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/prototype
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/fromCharCode
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/constructor
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/length
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/charAt
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/charCodeAt
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/concat

63

 indexOf()

 lastIndexOf()

 localeCompare()

 match()

 quote()

 replace()

 search()

 slice()

 split()

 substr()

 substring()

 toLocaleLowerCase()

 toLocaleUpperCase()

 toLowerCase()

 toString()

 toUpperCase()

 valueOf()

https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/indexOf
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/lastIndexOf
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/localeCompare
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/match
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/quote
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/replace
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/search
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/slice
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/split
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/substr
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/substring
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/toLocaleLowerCase
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/toLocaleUpperCase
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/toLowerCase
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/toString
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/toUpperCase
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/valueOf

64

Chapter 4 Number()

Conceptual overview of using the Number() object

The Number() constructor function is used to create numeric objects and numeric
primitive values.

In the following sample, I detail the creation of numeric values in JavaScript.

Sample: sample49.html

<!DOCTYPE html><html lang="en"><body><script>

 // Create number object using the new keyword and the Number()
constructor.
 var numberObject = new Number(1);
 console.log(numberObject); // Logs 1.
 console.log(typeof numberObject) // Logs 'object'.

 // Create number literal/primitive using the number constructor without
new.
 var numberObjectWithOutNew = Number(1); // Without using new keyword.
 console.log(numberObjectWithOutNew); // Logs 1.
 console.log(typeof numberObjectWithOutNew) // Logs 'number'.

 // Create number literal/primitive (constructor leveraged behind the
scenes).
 var numberLiteral = 1;
 console.log(numberLiteral); // Logs 1.
 console.log(typeof numberLiteral); // Logs 'number'.

</script></body></html>

Integers and floating-point numbers

Numbers in JavaScript are typically written as either integer values or floating-point
values. In the following code, I create a primitive integer number and a primitive floating-
point number. This is the most common usage of number values in JavaScript.

Sample: sample50.html

<!DOCTYPE html><html lang="en"><body><script>

 var integer = 1232134;
 console.log(integer); // Logs '1232134'.

 var floatingPoint = 2.132;

65

 console.log(floatingPoint); // Logs '2.132'.

</script></body></html>

Notes
A numeric value can be a hexadecimal value or octal value in JavaScript, but this is
typically not done.

Number() parameters

The Number() constructor function takes one parameter: the numeric value being

created. In the following snippet, we create a number object for the value 456 called

numberOne.

Sample: sample51.html

<!DOCTYPE html><html lang="en"><body><script>

 var numberOne = new Number(456);

 console.log(numberOne); // Logs '456{}'.

</script></body></html>

Notes
When used with the new keyword, instances from the Number() constructor produce a

complex object. You should avoid creating number values using the Number()

constructor (use literal/primitive numbers) due to the potential problems associated with
the typeof operator. The typeof operator reports number objects as 'object' instead of

the primitive label ('number') you might expect. The literal/primitive value is just more
concise.

Number() properties

The Number() object has the following properties:

Properties (e.g., Number.prototype;)

 MAX_VALUE

 MIN_VALUE

 NaN

http://en.wikipedia.org/wiki/Hexadecimal
http://en.wikipedia.org/wiki/Octal
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Number/MAX_VALUE
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Number/MIN_VALUE
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Number/NaN

66

 NEGATIVE_INFINITY

 POSITIVE_INFINITY

 prototype

Number object instance properties and methods

Number object instances have the following properties and methods (not including
inherited properties and methods):

Instance Properties (e.g., var myNumber = 5; myNumber.constructor;)

 constructor

Instance Methods (e.g., var myNumber = 1.00324; myNumber.toFixed();)

 toExponential()

 toFixed()

 toLocaleString()

 toPrecision()

 toString()

 valueOf()

https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Number/NEGATIVE_INFINITY
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Number/POSITIVE_INFINITY
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Number/prototype
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Number/constructor
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Number/toExponential
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Number/toFixed
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Number/ToLocaleString
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Number/toPrecision
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Number/toString
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Number/valueOf

67

Chapter 5 Boolean()

Conceptual overview of using the Boolean() object

The Boolean() constructor function can be used to create Boolean objects, as well as

Boolean primitive values, that represent either a true or a false value.

In the following code, I detail the creation of Boolean values in JavaScript.

Sample: sample52.html

<!DOCTYPE html><html lang="en"><body><script>

 // Create a Boolean object using the new keyword and the Boolean()
constructor.
 var myBoolean1 = new Boolean(false); // Using new keyword.
 console.log(typeof myBoolean1); // Logs 'object'.

 // Create a Boolean literal/primitive by directly using the number
constructor without new.
 var myBoolean2 = Boolean(0); // Without new keyword.
 console.log(typeof myBoolean2); // Logs 'boolean'.

 // Create Boolean literal/primitive (constructor leveraged behind the
scenes).
 var myBoolean3 = false;
 console.log(typeof myBoolean3); // Logs 'boolean'.
 console.log(myBoolean1, myBoolean2, myBoolean3); // Logs false false
false.

</script></body></html>

Boolean() parameters

The Boolean() constructor function takes one parameter to be converted to a Boolean

value (i.e. true or false). Any valid JavaScript value that is not 0, -0, null, false,

NaN, undefined, or an empty string ("") will be converted to true. In the following

sample, we create two Boolean object values: One true and one false.

Sample: sample53.html

<!DOCTYPE html><html lang="en"><body><script>

 // Parameter passed to Boolean() = 0 = false, thus foo = false
 var foo = new Boolean(0)
 console.log(foo);

68

 // Parameter passed to Boolean() = Math = true, thus bar = true
 var bar = new Boolean(Math)
 console.log(bar);

</script></body></html>

Notes
When used with the new keyword, instances from the Boolean() constructor produce

an actual complex object. You should avoid creating Boolean values using the
Boolean() constructor (instead, use literal/primitive numbers) due to the potential

problems associated with the typeof operator. The typeof operator reports Boolean

objects as 'object', instead of the primitive label ('boolean') you might expect.
Additionally, the literal/primitive value is faster to write.

Boolean() properties and methods

The Boolean() object has the following properties:

Properties (e.g., Boolean.prototype;):

 prototype

Boolean object instance properties and methods

Boolean object instances have the following properties and methods (not including
inherited properties and methods):

Instance Properties (e.g., var myBoolean = false; myBoolean.constructor;):

 constructor

Instance Methods (e.g., var myNumber = false; myBoolean.toString();):

 toSource()

 toString()

 valueOf()

Non-primitive false Boolean objects convert to true

A false Boolean object (as opposed to a primitive value) created from the Boolean()

constructor is an object, and objects convert to true. Thus, when creating a false

https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Boolean/prototype
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Boolean/constructor
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Boolean/toSource
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Boolean/toString
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Boolean/valueOf

69

Boolean object via the Boolean() constructor, the value itself converts to true. In the

following sample, I demonstrate how a false Boolean object is always "truthy.”

Sample: sample54.html

<!DOCTYPE html><html lang="en"><body><script>

 var falseValue = new Boolean(false);

 console.log(falseValue); // We have a false Boolean object, but objects
are truthy.

 if (falseValue) { // Boolean objects, even false Boolean objects, are
truthy.
 console.log('falseValue is truthy');
 }

</script></body></html>

If you need to convert a non-Boolean value into a Boolean, just use the Boolean()

constructor without the new keyword and the value returned will be a primitive value

instead of a Boolean object.

Certain things are false, everything else is true

It has already been mentioned, but is worth mentioning again because it pertains to
conversions: If a value is 0, -0, null, false, NaN, undefined, or an empty string(""), it

is false. Any value in JavaScript except the aforementioned values will be converted to

true if used in a Boolean context (i.e. if (true) {};).

Sample: sample55.html

<!DOCTYPE html><html lang="en"><body><script>

 // All of these return a false Boolean value.
 console.log(Boolean(0));
 console.log(Boolean(-0));
 console.log(Boolean(null));
 console.log(Boolean(false));
 console.log(Boolean(''));
 console.log(Boolean(undefined));
 console.log(Boolean(null));

 // All of these return a true Boolean value.
 console.log(Boolean(1789));
 console.log(Boolean('false')); // 'false' as a string is not false the
Boolean value.

70

 console.log(Boolean(Math));
 console.log(Boolean(Array()));

</script></body></html>

It's critical that you understand which JavaScript values are reduced to false so you

are aware that all other values are considered true.

www.allitebooks.com

http://www.allitebooks.org

71

Chapter 6 Working with Primitive String, Number,
and Boolean Values

Primitive/literal values are converted to objects when properties are

accessed

Do not be mystified by the fact that string, number, and Boolean literals can be treated
like an object with properties (e.g., true.toString()). When these primitive values are

treated like objects by attempting to access their properties, JavaScript will create a
wrapper object from the primitive’s associated constructor, so that the properties and
methods of the wrapper object can be accessed. Once the properties have been
accessed, the wrapper object is discarded. This conversion allows us to write code that
would make it appear as if a primitive value was, in fact, an object. Truth be told, when it
is treated like an object in code, JavaScript will convert it to an object so property
access will work, and then convert it back to a primitive value once a value is returned.
The key thing to notice here is what is occurring, and that JavaScript is doing this for
you behind the scenes.

String
Sample: sample56.html

<!DOCTYPE html><html lang="en"><body><script>

 // String object treated like an object.
 var stringObject = new String('foo');
 console.log(stringObject.length); // Logs 3.
 console.log(stringObject['length']); // Logs 3.

 // String literal/primitive converted to an object when treated as an
object.
 var stringLiteral = 'foo';
 console.log(stringLiteral.length); // Logs 3.
 console.log(stringLiteral['length']); // Logs 3.
 console.log('bar'.length); // Logs 3.
 console.log('bar'['length']); // Logs 3.

</script></body></html>

Number
Sample: sample57.html

<!DOCTYPE html><html lang="en"><body><script>

 // Number object treated like an object.

72

 var numberObject = new Number(1.10023);
 console.log(numberObject.toFixed()); // Logs 1.
 console.log(numberObject['toFixed']()); // Logs 1.

 // Number literal/primitive converted to an object when treated as an
object.
 var numberLiteral = 1.10023;
 console.log(numberLiteral.toFixed()); // Logs 1.
 console.log(numberLiteral['toFixed']()); // Logs 1.
 console.log((1234).toString()); // Logs '1234'.
 console.log(1234['toString']()); // Logs '1234'.

</script></body></html>

Boolean
Sample: sample58.html

<!DOCTYPE html><html lang="en"><body><script>

 // Boolean object treated like an object.
 var booleanObject = new Boolean(0);
 console.log(booleanObject.toString()); // Logs 'false'.
 console.log(booleanObject['toString']()); // Logs 'false'.

 // Boolean literal/primitive converted to an object when treated as an
object.
 var booleanLiteral = false;
 console.log(booleanLiteral.toString()); // Logs 'false'.
 console.log(booleanLiteral['toString']()); // Logs 'false'.
 console.log((true).toString()); // Logs 'true'.
 console.log(true['toString']()); // Logs 'true'.

</script></body></html>

Notes
When accessing a property on a primitive number directly (not stored in a variable), you
have to first evaluate the number before the value is treated as an object (e.g.,
(1).toString(); or 1..toString();). Why two dots? The first dot is considered a

numeric decimal, not an operator for accessing object properties.

You should typically use primitive string, number, and Boolean values

The literal/primitive values that represent a string, number, or Boolean are faster to write
and are more concise in the literal form.

73

You should use the literal value because of this. Additionally, the accuracy of the
typeof operator depends on how you create the value (literal versus constructor

invocation). If you create a string, number, or Boolean object, the typeof operator

reports the type as an object. If you use literals, the typeof operator returns a string

name of the actual value type (e.g., typeof 'foo' // returns 'string').

I demonstrate this fact in the following code.

Sample: sample59.html

<!DOCTYPE html><html lang="en"><body><script>

 // String, number, and Boolean objects.
 console.log(typeof new String('foo')); // Logs 'object'.
 console.log(typeof new Number(1)); // Logs 'object'.
 console.log(typeof new Boolean(true)); // Logs 'object'.

 // String, number, and Boolean literals/primitives.
 console.log(typeof 'foo'); // Logs 'string'.
 console.log(typeof 1); // Logs 'number'.
 console.log(typeof true); // Logs 'boolean'.

</script></body></html>

If your program depends upon the typeof operator to identify string, number, or

Boolean values in terms of those primitive types, you should avoid the String, Number,

and Boolean constructors.

74

Chapter 7 Null

Conceptual overview of using the null value

You can use null to explicitly indicate that an object property does not contain a value.

Typically, if a property is set up to contain a value, but the value is not available for
some reason, the value null should be used to indicate that the reference property has

an empty value.

Sample: sample60.html

<!DOCTYPE html><html lang="en"><body><script>

 // The property foo is waiting for a value, so we set its initial value
to null.
 var myObjectObject = { foo: null };

 console.log(myObjectObject.foo); // Logs 'null'.

</script></body></html>

Notes
Don't confuse null with undefined. undefined is used by JavaScript to tell you that

something is missing. null is provided so you can determine when a value is expected

but not available yet.

typeof returns null values as "object"

For a variable that has a value of null, the typeof operator returns "object”. If you

need to verify a null value, the ideal solution would be to see if the value you are after

is equal to null. In the following sample, we use the === operator to specifically verify

that we are dealing with a null value.

Sample: sample61.html

<!DOCTYPE html><html lang="en"><body><script>

 var myObject = null;

 console.log(typeof myObject); // Logs 'object', not exactly helpful.
 console.log(myObject === null); // Logs true, only for a real null value.

</script></body></html>

75

Notes
When verifying a null value, always use === because == does not distinguish between

null and undefined.

76

Chapter 8 Undefined

Conceptual overview of the undefined value

The undefined value is used by JavaScript in two slightly different ways.

The first way it's used is to indicate that a declared variable (e.g., var foo) has no
assigned value. The second way it's used is to indicate that an object property you’re
trying to access is not defined (i.e. it has not even been named), and is not found in the
prototype chain.

In the following sample, I examine both usages of undefined by JavaScript.

Sample: sample62.html

<!DOCTYPE html><html lang="en"><body><script>

 var initializedVariable; // Declare variable.

 console.log(initializedVariable); // Logs undefined.
 console.log(typeof initializedVariable); // Confirm that JavaScript
returns undefined.

 var foo = {};

 console.log(foo.bar); // Logs undefined, no bar property in foo object.
 console.log(typeof foo.bar); // Confirm that JavaScript returns
undefined.

</script></body></html>

Notes
It is considered good practice to allow JavaScript alone to use undefined. You should

never find yourself setting a value to undefined, as in foo = undefined. Instead, null
should be used if you are specifying that a property or variable value is not available.

JavaScript ECMA-262 Edition 3 (and later) declares the undefined

variable in the global scope

Unlike previous versions, JavaScript ECMA-262 Edition 3 (and later) has a global
variable called undefined declared in the global scope. Because the variable is

declared and not assigned a value, the undefined variable is set to undefined.

77

Sample: sample63.html

<!DOCTYPE html><html lang="en"><body><script>

 // Confirm that undefined is a property of the global scope.
 console.log(undefined in this); // Logs true.

</script></body></html>

78

Chapter 9 The Head/Global Object

Conceptual overview of the head object

JavaScript code itself must be contained within an object. For example, when crafting
JavaScript code for a web browser environment, JavaScript is contained and executed
within the window object. This window object is considered to be the "head object," or

sometimes confusingly referred to as "the global object." All implementations of
JavaScript require the use of a single head object.

The head object is set up by JavaScript behind the scenes to encapsulate user-defined
code and to house the native code with which JavaScript comes prepackaged. User-
defined code is placed by JavaScript inside the head object for execution. Let's verify
this as it pertains to a web browser.

In the following sample, I am creating some JavaScript values and verifying the values
are placed in the head window object.

Sample: sample64.html

<!DOCTYPE html><html lang="en"><body><script>

 var myStringVar = 'myString';
 var myFunctionVar = function () { };
 myString = 'myString';
 myFunction = function () { };

 console.log('myStringVar' in window); // Returns true.
 console.log('myFunctionVar' in window); // Returns true.
 console.log('myString' in window); // Returns true.
 console.log('myFunction' in window); // Return true.

</script></body></html>

You should always be aware that when you write JavaScript, it will be written in the
context of the head object. The remaining material in this chapter assumes you are
aware that the term "head object" is synonymous with "global object."

Notes
The head object is the highest scope/context available in a JavaScript environment.

79

Global functions contained within the head object

JavaScript ships with some predefined functions. The following native functions are
considered methods of the head object (e.g., in a web browser,
window.parseInt('500')). You can think of these as ready-to-use functions and
methods (of the head object) provided by JavaScript.

 decodeURI()

 decodeURIComponent()

 encodeURI()

 encodeURIComponent()

 eval()

 isFinite()

 isNaN()

 parseFloat()

 parseInt()

The head object vs. global properties and global variables

Do not confuse the head object with global properties or global variables contained
within the global scope. The head object is an object that contains all objects. The term
"global properties" or "global variables" is used to refer to values directly contained
inside the head object and are not specifically scoped to other objects. These values
are considered global because no matter where code is currently executing, in terms of
scope, all code has access (via the scope chain) to these global properties and
variables.

In the following sample, I place a foo property in the global scope, then access this

property from a different scope.

Sample: sample65.html

<!DOCTYPE html><html lang="en"><body><script>

 var foo = 'bar'; // foo is a global object and a property of the
head/window object.

 var myApp = function () { // Remember functions create scope.
 var run = function () {

https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/decodeURI
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/decodeURIComponent
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/encodeURI
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/encodeURIComponent
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/eval
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/isFinite
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/isNaN
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/parseFloat
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/parseInt

80

 // Logs bar, foo's value is found via the scope chain in the head
object.
 console.log(foo);
 } ();
 }

 myApp();

</script></body></html>

Had I placed the foo property outside of the global scope, the console.log function

would return undefined. This is demonstrated in the next code example.

Sample: sample66.html

<!DOCTYPE html><html lang="en"><body><script>

 var myFunction = function () { var foo = 'bar' }; // foo is now in the
scope of myFunction()

 var myApp = function () {
 var run = function () {
 console.log(foo); // foo is undefined, no longer in the global
scope, an error occurs.
 } ();
 }

 myApp();

</script></body></html>

In the browser environment, this is why global property methods (e.g.,
window.alert()) can be invoked from any scope. What you need to take away from

this is that anything in the global scope is available to any scope, and thus gets the title
of "global variable" or "global property.”

Notes
There is a slight difference between using var and not using var in the global scope

(global properties vs. global variables). Have a look at this Stack Overflow exchange for
the details: Difference between using var and not using var in JavaScript.

Referring to the head object

There are typically two ways to reference the head object. The first way is to simply
reference the name given to the head object (e.g., in a web browser this would be

http://stackoverflow.com/questions/1470488/difference-between-using-var-and-not-using-var-in-javascript/1471738%231471738

81

window). The second way is to use the this keyword in the global scope. Each of these

is detailed in the following sample.

Sample: sample67.html

<!DOCTYPE html><html lang="en"><body><script>

 var foo = 'bar';

 windowRef1 = window;
 windowRef2 = this;

 console.log(windowRef1, windowRef2); // Logs reference to window object.

 console.log(windowRef1.foo, windowRef2.foo); // Logs 'bar', 'bar'.

</script></body></html>

In this example, we explicitly store a reference to the head object in two variables that
are then used to gain access to the global foo variable.

The head object is implied and typically not referenced explicitly

Typically a reference to the head object is not used because it is implied. For example,
in the browser environment window.alert and alert() are essentially the same

statement. JavaScript fills in the blanks here. Because the window object (i.e. the head

object) is the last object checked in the scope chain for a value, the window object is

essentially always implied. In the next example, we leverage the alert() function

which is contained in the global scope.

Sample: sample68.html

<!DOCTYPE html><html lang="en"><body><script>

 var foo = { // window is implied here, window.foo
 fooMethod: function () {
 alert('foo' + 'bar'); // window is implied here, window.alert
 window.alert('foo' + 'bar'); // window is explicitly used, with
the same effect.
 }
 }

 foo.fooMethod(); // window is implied here, window.foo.fooMethod()

</script></body></html>

82

Make sure you understand that the head object is implied even when you don't explicitly
include it, because the head object is the last stop in the scope chain.

Notes
Being explicit (e.g., window.alert() vs. alert()) costs a little bit more with regard to

performance (how fast the code runs). It's faster if you rely on the scope chain alone
and avoid explicitly referencing the head object even if you know the property you want
is contained in the global scope.

83

Chapter 10 Object()

Conceptual overview of using Object() objects

Using the built-in Object() constructor function, we can create generic empty objects
on the fly. In fact, if you remember back to the beginning of Chapter 1, this is exactly
what we did by creating the cody object. Let’s recreate the cody object.

Sample: sample69.html

<!DOCTYPE html><html lang="en"><body><script>

 var cody = new Object(); // Create an empty object with no properties.

 for (key in cody) { // Confirm that cody is an empty generic object.
 if (cody.hasOwnProperty(key)) {
 console.log(key); // Should not see any logs, because cody itself
has no properties.
 }
 }

</script></body></html>

Here, all we are doing is using the Object() constructor function to create a generic

object called cody. You can think of the Object() constructor as a cookie cutter for

creating empty objects that have no predefined properties or methods (except, of
course, those inherited from the prototype chain).

Notes
If it’s not obvious, the Object() constructor is an object itself. That is, the constructor

function is based on an object created from the Function constructor. This can be

confusing. Just remember that like the Array constructor, the Object constructor

simply spits out blank objects. And yes, you can create all the empty objects you like.
However, creating an empty object like cody is very different than creating your own

constructor function with predefined properties. Make sure you understand that cody is

just an empty object based on the Object() constructor. To really harness the power of
JavaScript, you will need to learn not only how to create empty object containers from
Object(), but also how to build your own "class" of objects (e.g., Person()) like the

Object() constructor function itself.

84

Object() parameters

The Object() constructor function takes one optional parameter. That parameter is the

value you would like to create. If you provide no parameter, then a null or undefined

value will be assumed.

Sample: sample70.html

<!DOCTYPE html><html lang="en"><body><script>

 // Create an empty object with no properties.
 var cody1 = new Object();
 var cody2 = new Object(undefined);
 var cody3 = new Object(null);

 console.log(typeof cody1, typeof cody2, typeof cody3); // Logs 'object
object object'.

</script></body></html>

If a value besides null or undefined is passed to the Object constructor, the value

passed will be created as an object. So theoretically, we can use the Object()

constructor to create any of the other native objects that have a constructor. In the next
example, I do just that.

Sample: sample71.html

<!DOCTYPE html><html lang="en"><body><script>

 /* Use the Object() constructor to create string, number, array,
function, Boolean, and regex objects. */

 // The following logs confirm object creation.
 console.log(new Object('foo'));
 console.log(new Object(1));
 console.log(new Object([]));
 console.log(new Object(function () { }));
 console.log(new Object(true));
 console.log(new Object(/\bt[a-z]+\b/));

 /* Creating string, number, array, function, Boolean, and regex object
instances via the Object() constructor is really never done. I am just
demonstrating that it can be done. */

</script></body></html>

85

Object() properties and methods

The Object() object has the following properties (not including inherited properties and

methods):

Properties (e.g., Object.prototype;):

 prototype

Object() object instance properties and methods

Object() object instances have the following properties and methods (does not include

inherited properties and methods):

Instance Properties (e.g., var myObject = {}; myObject.constructor;):

 constructor

Instance Methods (e.g., var myObject = {}; myObject.toString();):

 hasOwnProperty()

 isPrototypeOf()

 propertyIsEnumerable()

 toLocaleString()

 toString()

 valueOf()

Notes
The prototype chain ends with Object.prototype, and thus all of the properties and

methods of Object() are inherited by all JavaScript objects.

Creating Object() objects using "object literals"

Creating an "object literal" entails instantiating an object with or without properties using
braces (e.g., var cody = {};). Remember at the beginning of Chapter 1 when we

created the one-off cody object and then gave the cody object properties using dot

notation? Let's do that again.

https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Object/prototype
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Object/constructor
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Object/hasOwnProperty
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Object/isPrototypeOf
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Object/propertyIsEnumerable
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Object/toLocaleString
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Object/toString
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Object/valueOf

86

Sample: sample72.html

<!DOCTYPE html><html lang="en"><body><script>

 var cody = new Object();
 cody.living = true;
 cody.age = 33;
 cody.gender = 'male';
 cody.getGender = function () { return cody.gender; };

 console.log(cody); // Logs cody object and properties.

</script></body></html>

Notice in the code that creating the cody object and its properties took five statements.

Using the object literal notation we can express the same cody object in one statement.

Sample: sample73.html

<!DOCTYPE html><html lang="en"><body><script>

 var cody = {
 living: true,
 age: 23,
 gender: 'male',
 getGender: function () { return cody.gender; }
 };
 // Notice the last property has no comma after it.

 console.log(cody); // Logs the cody object and its properties.

</script>
</body>

Using literal notation gives us the ability to create objects, including defined properties,
with less code and visually encapsulate the related data. Notice the use of the : and ,
operators in a single statement. This is actually the preferred syntax for creating objects
in JavaScript because of its terseness and readability.

You should be aware that property names can also be specified as strings:

Sample: sample74.html

<!DOCTYPE html><html lang="en"><body><script>

 var cody = {
 'living': true,

87

 'age': 23,
 'gender': 'male',
 'getGender': function () { return cody.gender; }
 };

 console.log(cody); // Logs the cody object and its properties.

</script>
</body>

It’s not necessary to specify properties as strings unless the property name:

 Is one of the reserved keywords (e.g., class).

 Contains spaces or special characters (anything other than numbers, letters, the
dollar sign ($), or the underscore (_) character).

 Starts with a number.

Notes
Careful! The last property of an object should not have a trailing comma. This will cause
an error in some JavaScript environments.

All objects inherit from Object.prototype

The Object() constructor function in JavaScript is special, as its prototype property is

the last stop in the prototype chain.

In the following sample, I augment the Object.prototype with a foo property and then

create a string and attempt to access the foo property as if it were a property of the

string instance. Since the myString instance does not have a foo property, the

prototype chain kicks in and the value is looked for at String.prototype. It is not

there, so the next place to look is Object.prototype, which is the final location

JavaScript will look for an object value. The foo value is found because I added it, thus

it returns the value of foo.

Sample: sample75.html

<!DOCTYPE html><html lang="en"><body><script>

 Object.prototype.foo = 'foo';

 var myString = 'bar';

https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Reserved_Words

88

 // Logs 'foo', being found at Object.prototype.foo via the prototype
chain.
 console.log(myString.foo);

</script>
</body>

Notes
Careful! Anything added to Object.prototype will show up in a for in loop and the

prototype chain. Because of this, it’s been said that changing Object.prototype is

forbidden.

http://erik.eae.net/archives/2005/06/06/22.13.54/

89

Chapter 11 Function()

Conceptual overview of using Function() objects

A function is a container of code statements that can be invoked using the parentheses
() operator. Parameters can be passed inside of the parentheses during invocation so
that the statements in the function can access certain values when the function is
invoked.

In the following code, we create two versions of an addNumbers function object—one

using the new operator and another using the more common literal pattern. Both are

expecting two parameters. In each case, we invoke the function, passing parameters in
the parentheses () operator.

Sample: sample76.html

<!DOCTYPE html><html lang="en"><body><script>

 var addNumbersA = new Function('num1', 'num2', 'return num1 + num2');

 console.log(addNumbersA(2, 2)); // Logs 4.

 // Could also be written the literal way, which is much more common.
 var addNumbersB = function (num1, num2) { return num1 + num2; };

 console.log(addNumbersB(2, 2)); // Logs 4.

</script></body></html>

A function can be used to return a value, construct an object, or as a mechanism to
simply run code. JavaScript has several uses for functions, but in its most basic form a
function is simply a unique scope of executable statements.

Function() parameters

The Function() constructor takes an indefinite number of parameters, but the last

parameter expected by the Function() constructor is a string containing statements

that comprise the body of the function. Any parameters passed to the constructor before
the last will be available to the function being created. It’s also possible to send multiple
parameters as a comma-separated string.

In the following code, I contrast the usage of the Function() constructor with the more

common patterns of instantiating a function object.

90

Sample: sample77.html

<!DOCTYPE html><html lang="en"><body><script>

 var addFunction = new Function('num1', 'num2', 'return num1 + num2');

 /* Alternately, a single comma-separated string with arguments can be
 the first parameter of the constructor, with the function body following.
*/
 var timesFunction = new Function('num1,num2', 'return num1 * num2');

 console.log(addFunction(2, 2), timesFunction(2, 2)); // Logs '4 4'

 // Versus the more common patterns for instantiating a function:
 var addFunction = function (num1, num2) { return num1 + num2; }; //
Expression form.
 function addFunction(num1, num2) { return num1 + num2; } // Statement
form.

</script></body></html>

Notes
Directly leveraging the Function() constructor is not recommended or typically ever

done because JavaScript will use eval() to parse the string containing the function’s

logic. Many consider eval() to be unnecessary overhead. If it’s in use, a flaw in the

design of the code is highly possible.

Using the Function() constructor without the new keyword has the same effect as

using only the constructor to create function objects (e.g., new Function('x','return
x') vs. function(('x','return x')).

No closure is created (see Chapter 7) when invoking the Function() constructor

directly.

Function() properties and methods

The function object has the following properties (not including inherited properties and
methods):

Properties (e.g., Function.prototype;):

 prototype

https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Function/prototype

91

Function object instance properties and methods

Function object instances have the following properties and methods (not including
inherited properties and methods):

Instance Properties (e.g., var myFunction = function(x, y, z) {};
myFunction.length;):

 arguments

 constructor

 length

Instance Methods (e.g., var myFunction = function(x, y, z) {};
myFunction.toString();):

 apply()

 call()

 toString()

Functions always return a value

While it’s possible to create a function simply to execute code statements, it’s also very
common for a function to return a value. In the following sample, we are returning a
string from the sayHi function.

Sample: sample78.html

<!DOCTYPE html><html lang="en"><body><script>

 var sayHi = function () {
 return 'Hi';
 };

 console.log(sayHi()); // Logs "Hi".

</script></body></html>

If a function does not specify a return value, undefined is returned. In the following

sample, we call the yelp function which logs the string 'yelp' to the console without

explicitly returning a value.

https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Function/arguments
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Function/constructor
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Function/length
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Function/apply
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Function/call
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Function/toString

92

Sample: sample79.html

<!DOCTYPE html><html lang="en"><body><script>

 var yelp = function () {
 console.log('I am yelping!');
 // Functions return undefined even if we don't.
 }

 /* Logs true because a value is always returned, even if we don't
specifically return one. */
 console.log(yelp() === undefined);

</script></body></html>

The concept to take away here is that all functions return a value, even if you do not
explicitly provide a value to return. If you do not specify a value to return, the value
returned is undefined.

Functions are first-class citizens (not just syntax, but values)

In JavaScript, functions are objects. This means that a function can be stored in a
variable, array, or object. Also, a function can be passed to and returned from a
function. A function has properties because it is an object. All of these factors make
functions first-class citizens in JavaScript.

Sample: sample80.html

<!DOCTYPE html><html lang="en"><body><script>

 // Functions can be stored in variables (funcA), arrays (funcB), and
objects (funcC).
 var funcA = function () { }; // Called like so: funcA()
 var funcB = [function () { }]; // Called like so: funcB[0]()
 var funcC = { method: function () { } }; // too.method() or
funcC['method']()

 // Functions can be sent to and sent back from functions.
 var funcD = function (func) {
 return func
 };

 var runFuncPassedToFuncD = funcD(function () { console.log('Hi'); });

 runFuncPassedToFuncD();

 // Functions are objects, which means they can have properties.
 var funcE = function () { };

93

 funcE.answer = 'yup'; // Instance property.
 console.log(funcE.answer); // Logs 'yup'.

</script></body></html>

It is crucial that you realize a function is an object, and thus a value. It can be passed
around or augmented like any other expression in JavaScript.

Passing parameters to a function

Parameters are vehicles for passing values into the scope of a function when it is
invoked. In the following sample we invoke addFunction(). Since we have predefined

it to take two parameters, two added values become available within its scope.

Sample: sample81.html

<!DOCTYPE html><html lang="en"><body><script>

 var addFunction = function (number1, number2) {
 var sum = number1 + number2;
 return sum;
 }

 console.log(addFunction(3, 3)); // Logs 6.

</script></body></html>

Notes
In contrast to some other programming languages, it is perfectly legal in JavaScript to
omit parameters even if the function has been defined to accept these arguments. The
missing parameters are simply given the value undefined. Of course, by leaving out

values for the parameters, the function might not work properly.

If you pass a function unexpected parameters (those not defined when the function was
created), no error will occur. And it's possible to access these parameters from the
arguments object, which is available to all functions.

this and arguments values are available to all functions

Inside the scope and body of all functions, the this and arguments values are

available.

The arguments object is an array-like object containing all of the parameters being

passed to the function. In the following code, even though we forgo specifying

94

parameters when defining the function, we can rely on the arguments array passed to

the function to access parameters if they are sent upon invocation.

Sample: sample82.html

<!DOCTYPE html><html lang="en"><body><script>

 var add = function () {
 return arguments[0] + arguments[1];
 };

 console.log(add(4, 4)); // Returns 8.

</script></body></html>

The this keyword, passed to all functions, is a reference to the object that contains the

function. As you might expect, functions contained within objects as properties (i.e.
methods) can use this to gain a reference to the parent object. When a function is

defined in the global scope, the value of this is the global object. Review the following

code and make sure you understand what this is returning.

Sample: sample83.html

<!DOCTYPE html><html lang="en"><body><script>

 var myObject1 = {
 name: 'myObject1',
 myMethod: function () { console.log(this); }
 };

 myObject1.myMethod(); // Logs 'myObject1'.

 var myObject2 = function () { console.log(this); };

 myObject2(); // Logs window.

</script></body></html>

The arguments.callee property

The arguments object has a property called callee, which is a reference to the

function currently executing. This property can be used to reference the function from
within the scope of the function (e.g., arguments.callee)—a self-reference. In the

following code, we use this property to gain a reference to the calling function.

95

Sample: sample84.html

<!DOCTYPE html><html lang="en"><body><script>

 var foo = function foo() {
 console.log(arguments.callee); // Logs foo()
 // callee could be used to invoke recursively the foo function (e.g.,
arguments.callee())
 } ();

</script></body></html>

This can be useful when a function needs to be called recursively.

The function instance length property and arguments.length

The arguments object has a unique length property. While you might think this length

property will give you the number of defined arguments, it actually gives the number of
parameters sent to the function during invocation.

Sample: sample85.html

<!DOCTYPE html><html lang="en"><body><script>

 var myFunction = function (z, s, d) {
 return arguments.length;
 };

 console.log(myFunction()); // Logs 0 because no parameters were passed to
the function.

</script></body></html>

Using the length property of all Function() instances, we can actually grab the total
number of parameters the function is expecting.

Sample: sample86.html

<!DOCTYPE html><html lang="en"><body><script>

 var myFunction = function (z, s, d, e, r, m, q) {
 return myFunction.length;
 };

 console.log(myFunction()); // Logs 7.

</script></body></html>

96

Notes
The arguments.length property was deprecated in JavaScript 1.4, but the number of

arguments sent to a function can be accessed from the length property of the function

object. Moving forward, you can get the length value by leveraging the callee property

to first gain reference to the function being invoked (i.e. arguments.callee.length).

Redefining function parameters

A function’s parameters can be redefined inside the function either directly, or by using
the arguments array. Take a look at this code:

Sample: sample87.html

<!DOCTYPE html><html lang="en"><body><script>

 var foo = false;
 var bar = false;

 var myFunction = function (foo, bar) {
 arguments[0] = true;
 bar = true;
 console.log(arguments[0], bar); // Logs true true.
 }

 myFunction();

</script></body></html>

Notice that I can redefine the value of the bar parameter using the arguments index or

by directly reassigning a new value to the parameter.

Return a function before it is done (i.e. cancel function execution)

Functions can be cancelled at any time during invocation by using the return keyword

with or without a value. In the following sample, we are canceling the add function if the

parameters are undefined or not a number.

Sample: sample88.html

<!DOCTYPE html><html lang="en"><body><script>

 var add = function (x, y) {
 // If the parameters are not numbers, return error.
 if (typeof x !== 'number' || typeof y !== 'number') { return 'pass in
numbers'; }
 return x + y;

97

 }
 console.log(add(3, 3)); // Logs 6.
 console.log(add('2', '2')); // Logs 'pass in numbers'.

</script></body></html>

The concept to take away here is that you can cancel a function's execution by using
the return keyword at any point in the execution of the function.

Defining a function (statement, expression, or constructor)

A function can be defined in three different ways: a function constructor, a function
statement, or a function expression. In the following example, I demonstrate each
variation.

Sample: sample89.html

<!DOCTYPE html><html lang="en"><body><script>

 /* Function constructor: The last parameter is the function logic,
 everything before it is a parameter. */
 var addConstructor = new Function('x', 'y', 'return x + y');

 // Function statement.
 function addStatement(x, y) {
 return x + y;
 }

 // Function expression.
 var addExpression = function (x, y) {
 return x + y;
 };

 console.log(addConstructor(2, 2), addStatement(2, 2), addExpression(2,
2)); // Logs '4 4 4'.

</script></body></html>

Notes
Some have said that there is a fourth type of definition for functions, called the "named
function expression." A named function expression is simply a function expression that
also contains a name (e.g., var add = function add(x, y) {return x+y}).

98

Invoking a function (function, method, constructor, or call() and

apply())

Functions are invoked using four different scenarios or patterns.

 As a function

 As a method

 As a constructor

 Using apply() or call()

In the following sample, we examine each of these invocation patterns.

Sample: sample90.html

<!DOCTYPE html><html lang="en"><body><script>

 // Function pattern.
 var myFunction = function () { return 'foo' };
 console.log(myFunction()); // Logs 'foo'.

 // Method pattern.
 var myObject = { myFunction: function () { return 'bar'; } }
 console.log(myObject.myFunction()); // Logs 'bar'.

 // Constructor pattern.
 var Cody = function () {
 this.living = true;
 this.age = 33;
 this.gender = 'male';
 this.getGender = function () { return this.gender; };
 }
 var cody = new Cody(); // Invoke via the Cody constructor.
 console.log(cody); // Logs the cody object and properties.

 // apply() and call() pattern.
 var greet = {
 runGreet: function () {
 console.log(this.name, arguments[0], arguments[1]);
 }
 }

 var cody = { name: 'cody' };
 var lisa = { name: 'lisa' };

 // Invoke the runGreet function as if it were inside of the cody object.
 greet.runGreet.call(cody, 'foo', 'bar'); // Logs 'cody foo bar'.

99

 // Invoke the runGreet function as if it were inside of the lisa object.
 greet.runGreet.apply(lisa, ['foo', 'bar']); // Logs 'lisa foo bar'.

 /* Notice the difference between call() and apply() in how parameters are
sent to the function being invoked. */

</script></body></html>

Make sure you are aware of all four of the invocation patterns, as code you will
encounter may contain any of them.

Anonymous functions

An anonymous function is a function that is not given an identifier. Anonymous functions
are mostly used for passing functions as a parameter to another function.

Sample: sample91.html

<!DOCTYPE html><html lang="en"><body><script>

 // function(){console.log('hi');}; // Anonymous function, but no way to
invoke it.

 // Create a function that can invoke our anonymous function.
 var sayHi = function (f) {
 f(); // Invoke the anonymous function.
 }

 // Pass an anonymous function as a parameter.
 sayHi(function () { console.log('hi'); }); // Logs 'hi'.

</script></body></html>

Self-invoking function expression

A function expression (really any function except one created from the Function()

constructor) can be immediately invoked after definition by using the parentheses
operator. In the following sample, we create a sayWord() function expression and then

immediately invoke the function. This is considered to be a self-invoking function.

Sample: sample92.html

<!DOCTYPE html><html lang="en"><body><script>

 var sayWord = function () { console.log('Word 2 yo mo!'); } (); // Logs
'Word 2 yo mo!'

100

</script></body></html>

Self-invoking anonymous function statements

It’s possible to create an anonymous function statement that is self-invoked. This is
called a self-invoking anonymous function. In the following sample, we create several
anonymous functions that are immediately invoked.

Sample: sample93.html

<!DOCTYPE html><html lang="en"><body><script>

 // Most commonly used/seen in the wild.
 (function (msg) {
 console.log(msg);
 })('Hi');

 // Slightly different, but achieving the same thing:
 (function (msg) {
 console.log(msg)
 } ('Hi'));

 // The shortest possible solution.
 !function sayHi(msg) { console.log(msg); } ('Hi');

 // FYI, this does NOT work!
 // function sayHi() {console.log('hi');}();

</script></body></html>

Notes
According to the ECMAScript standard, the parentheses around the function (or
anything that transforms the function into an expression) are required if the function is to
be invoked immediately.

Functions can be nested

Functions can be nested inside of other functions indefinitely. In the following code
sample, we encapsulate the goo function inside of the bar function, which is inside of

the foo function.

Sample: sample94.html

<!DOCTYPE html><html lang="en"><body><script>

 var foo = function () {

101

 var bar = function () {
 var goo = function () {
 console.log(this); // Logs reference to head window object.
 } ();
 } ();
 } ();

</script></body></html>

The simple concept here is that functions can be nested and there is no limit to how
deep the nesting can go.

Notes
Remember, the value of this for nested functions will be the head object (e.g., the

window object in a web browser) in JavaScript 1.5, ECMA-262, Edition 3.

Passing functions to functions and returning functions from functions

As previously mentioned, functions are first-class citizens in JavaScript. And since a
function is a value, and a function can be passed any sort of value, a function can be
passed to a function. Functions that take and/or return other functions are sometimes
called "higher-order functions.”

In the following code, we are passing an anonymous function to the foo function which

we then immediately return from the foo function. It is this anonymous function that the

variable bar points to, since foo accepts and then returns the anonymous function.

Sample: sample95.html

<!DOCTYPE html><html lang="en"><body><script>

 // Functions can be sent to, and sent back from, functions.
 var foo = function (f) {
 return f;
 }

 var bar = foo(function () { console.log('Hi'); });

 bar(); // Logs 'Hi'.

</script></body></html>

So when bar is invoked, it invokes the anonymous function that was passed to the

foo() function, which is then passed back from the foo() function and referenced from

102

the bar variable. All this is to showcase the fact that functions can be passed around

just like any other value.

Invoking function statements before they are defined (aka function

hoisting)

A function statement can be invoked during execution before its actual definition. This is
a bit odd, but you should be aware of it so you can leverage it, or at least know what’s
going on when you encounter it. In the following sample, I invoke the sayYo() and

sum() function statements before they are defined.

Sample: sample96.html

<!DOCTYPE html><html lang="en"><body><script>

 // Example 1
 var speak = function () {
 sayYo(); // sayYo() has not been defined yet, but it can still be
invoked, logs 'yo'.
 function sayYo() { console.log('Yo'); }
 } (); // Invoke

 // Example 2
 console.log(sum(2, 2)); // Invoke sum(), which is not defined yet, but
can still be invoked.
 function sum(x, y) { return x + y; }

</script></body></html>

This happens because before the code runs, function statements are interpreted and
added to the execution stack/context. Make sure you are aware of this as you use
function statements.

Notes
Functions defined as function expressions are not hoisted. Only function statements are
hoisted.

A function can call itself (aka recursion)

It’s perfectly legitimate for a function to call itself. In fact, this is often used in well-known
coding patterns. In the code that follows, we kick off the countDownFrom function, which

then calls itself via the function name countDownFrom. Essentially, this creates a loop

that counts down from 5 to 0.

103

Sample: sample97.html

<!DOCTYPE html><html lang="en"><body><script>

 var countDownFrom = function countDownFrom(num) {
 console.log(num);
 num--; // Change the parameter value.
 if (num < 0) { return false; } // If num < 0 return function with no
recursion.
 // Could have also done arguments.callee(num) if it was an anonymous
function.
 countDownFrom(num);
 };

 countDownFrom(5); // Kick off the function, which logs separately 5, 4,
3, 2, 1, 0.

</script></body></html>

You should be aware that it’s natural for a function to invoke itself (aka recursion) or to
do so repetitively.

104

Chapter 12 The this Keyword

Conceptual overview of this and how it refers to objects

When a function is created, a keyword called this is created (behind the scenes),

which links to the object in which the function operates. Said another way, this is

available to the scope of its function, yet is a reference to the object of which that
function is a property or method.

Let’s take a look at the cody object from Chapter 1 again:

Sample: sample98.html

<!DOCTYPE html><html lang="en"><body><script>

 var cody = {
 living: true,
 age: 23,
 gender: 'male',
 getGender: function () { return cody.gender; }
 };

 console.log(cody.getGender()); // Logs 'male'.

</script></body></html>

Notice how inside of the getGender function, we are accessing the gender property

using dot notation (e.g., cody.gender) on the cody object itself. This can be rewritten

using this to access the cody object because this points to the cody object.

Sample: sample99.html

<!DOCTYPE html><html lang="en"><body><script>

 var cody = {
 living: true,
 age: 23,
 gender: 'male',
 getGender: function () { return this.gender; }
 };

 console.log(cody.getGender()); // Logs 'male'.

</script></body></html>

105

The this used in this.gender simply refers to the cody object on which the function is

operating.

The topic of this can be confusing, but it does not have to be. Just remember that in

general, this is used inside of functions to refer to the object the function is contained

within, as opposed to the function itself (exceptions include using the new keyword or

call() and apply()).

Notes
The keyword this looks and acts like any other variable, except you can't modify it.

As opposed to arguments and any parameters sent to the function, this is a keyword

(not a property) in the call/activation object.

How is the value of this determined?

The value of this, passed to all functions, is based on the context in which the function
is called at run time. Pay attention here, because this is one of those quirks you just
need to memorize.

The myObject object in the following code sample is given a property called sayFoo,

which points to the sayFoo function. When the sayFoo function is called from the global

scope, this refers to the window object. When it is called as a method of myObject,

this refers to myObject.

Since myObject has a property named foo, that property is used.

Sample: sample100.html

<!DOCTYPE html><html lang="en"><body><script>

 var foo = 'foo';
 var myObject = { foo: 'I am myObject.foo' };

 var sayFoo = function () {
 console.log(this['foo']);
 };

 // Give myObject a sayFoo property and have it point to the sayFoo
function.
 myObject.sayFoo = sayFoo;

 myObject.sayFoo(); // Logs 'I am myObject.foo'.
 sayFoo(); // Logs 'foo'.

</script></body></html>

106

Clearly, the value of this is based on the context in which the function is being called.

Consider that both myObject.sayFoo and sayFoo point to the same function. However,

depending upon where (i.e. the context) sayFoo() is called from, the value of this is

different.

If it helps, here is the same code with the head object (i.e. window) explicitly used.

Sample: sample101.html

<!DOCTYPE html><html lang="en"><body><script>

 window.foo = 'foo';
 window.myObject = { foo: 'I am myObject.foo' };

 window.sayFoo = function () {
 console.log(this.foo);
 };

 window.myObject.sayFoo = window.sayFoo;

 window.myObject.sayFoo();
 window.sayFoo();

</script></body></html>

Make sure that as you pass around functions, or have multiple references to a function,
you realize that the value of this will change depending upon the context in which you
call the function.

Notes
All variables except this and arguments follow lexical scope.

The this keyword refers to the head object in nested functions

You might be wondering what happens to this when it is used inside of a function that

is contained inside of another function. The bad news is in ECMA 3, this loses its way

and refers to the head object (the window object in browsers), instead of the object

within which the function is defined.

In the following code, this inside of func2 and func3 loses its way and refers not to

myObject but instead to the head object.

Sample: sample102.html

<!DOCTYPE html><html lang="en"><body><script>

http://en.wikipedia.org/wiki/Lexical_scope%23Lexical_scoping

107

 var myObject = {
 func1: function () {
 console.log(this); // Logs myObject.
 var func2 = function () {
 console.log(this) // Logs window, and will do so from this
point on.
 var func3 = function () {
 console.log(this); // Logs window, as it’s the head
object.
 } ();
 } ();
 }
 }

 myObject.func1();

</script></body></html>

The good news is that this will be fixed in ECMAScript 5. For now, you should be aware
of this predicament, especially when you start passing functions around as values to
other functions.

Consider the next sample and what happens when passing an anonymous function to
foo.func1. When the anonymous function is called inside of foo.func1 (a function

inside of a function), the this value inside of the anonymous function will be a

reference to the head object.

Sample: sample103.html

<!DOCTYPE html><html lang="en"><body><script>

 var foo = {
 func1: function (bar) {
 bar(); // Logs window, not foo.
 console.log(this); // The this keyword here will be a reference
to the foo object.
 }
 }

 foo.func1(function () { console.log(this) });

</script></body></html>

Now you will never forget: the this value will always be a reference to the head object

when its host function is encapsulated inside of another function or invoked within the
context of another function (again, this is fixed in ECMAScript 5).

108

Working around the nested function issue by leveraging the scope

chain

So that the this value does not get lost, you can simply use the scope chain to keep a

reference to this in the parent function. The following sample demonstrates how, using

a variable called that, and leveraging its scope, we can keep better track of function

context.

Sample: sample104.html

<!DOCTYPE html><html lang="en"><body><script>

var myObject = {
 myProperty: 'I can see the light',
 myMethod : function(){
 var that = this; // Store a reference to this (i.e. myObject) in
myMethod scope.
 var helperFunction = function() { // Child function.
 // Logs 'I can see the light' via scope chain because that
= this.
 console.log(that.myProperty); // Logs 'I can see the
light'.
 console.log(this); // Logs window object, if we don't use
"that".
 }();
 }
}

myObject.myMethod(); // Invoke myMethod.

</script></body></html>

Controlling the value of this using call() or apply()

The value of this is normally determined from the context in which a function is called

(except when the new keyword is used—more about that in a minute), but you can

overwrite and control the value of this using apply() or call() to define what object

this points to when invoking a function. Using these methods is like saying: "Hey, call

X function but tell the function to use Z object as the value for this." By doing so, the

default way in which JavaScript determines the value of this is overridden.

In the next sample, we create an object and a function. We then invoke the function via
call() so that the value of this inside the function uses myObject as its context. The

statements inside the myFunction function will then populate myObject with properties

instead of populating the head object. We have altered the object to which this (inside

of myFunction) refers.

109

Sample: sample105.html

<!DOCTYPE html><html lang="en"><body><script>

 var myObject = {};

 var myFunction = function (param1, param2) {
 // Set via call(), 'this' points to myObject when function is
invoked.
 this.foo = param1;
 this.bar = param2;
 console.log(this) // Logs Object {foo = 'foo', bar = 'bar'}
 };

 myFunction.call(myObject, 'foo', 'bar'); // Invoke function, set this
value to myObject.

 console.log(myObject) // Logs Object {foo = 'foo', bar = 'bar'}

</script></body></html>

In the previous example, we used call(), but apply() could be used as well. The

difference between the two is how the parameters for the function are passed. Using
call(), the parameters are just comma-separated values. Using apply(), the

parameter values are passed inside of an array as shown in the following sample.

Sample: sample106.html

<!DOCTYPE html><html lang="en"><body><script>

 var myObject = {};

 var myFunction = function (param1, param2) {
 // Set via apply(), this points to myObject when function is invoked.
 this.foo = param1;
 this.bar = param2;
 console.log(this) // Logs Object {foo = 'foo', bar = 'bar'}
 };

 myFunction.apply(myObject, ['foo', 'bar']); // Invoke function, set this
value.

 console.log(myObject) // Logs Object {foo = 'foo', bar = 'bar'}

</script></body></html>

110

What you need to learn here is that you can override the default way in which
JavaScript determines the value of this in a function's scope.

Using the this keyword inside a user-defined constructor function

When a function is invoked with the new keyword, the value of this—as it’s stated in

the constructor—refers to the instance itself. Said another way: In the constructor
function, we can leverage the object via this before the object is actually created. In

this case, the default value of this changes in a way similar to using call() or

apply().

In the following sample, we set up a Person constructor function that uses this to

reference an object being created. When an instance of Person is created, this.name

will reference the newly created object and place a property called name in the new

object with a value from the parameter (name) passed to the constructor function.

Sample: sample107.html

<!DOCTYPE html><html lang="en"><body><script>

 var Person = function (name) {
 this.name = name || 'john doe'; // this will refer to the instance
created.
 }

 var cody = new Person('Cody Lindley'); // Create an instance based on the
Person constructor.

 console.log(cody.name); // Logs 'Cody Lindley'.

</script></body></html>

Again, this refers to the "object that is to be" when the constructor function is invoked

using the new keyword. Had we not used the new keyword, the value of this would be

the context in which Person is invoked—in this case the head object. Let's examine the
following scenario:

Sample: sample108.html

<!DOCTYPE html><html lang="en"><body><script>

 var Person = function (name) {
 this.name = name || 'john doe';
 }

 var cody = Person('Cody Lindley'); // Notice we did not use 'new'.

111

 console.log(cody.name); // Undefined. The value is actually set at
window.name

 console.log(window.name); // Logs 'Cody Lindley'.

</script></body></html>

The keyword this inside a prototype method refers to a constructor

instance

When used in functions added to a constructor’s prototype property, this refers to the

instance on which the method is invoked. Say we have a custom Person() constructor

function. As a parameter, it requires the person’s full name. In case we need to access
the full name of the person, we add a whatIsMyFullName method to the

Person.prototype so that all Person instances inherit the method. When using this,

the method can refer to the instance invoking it (and thus its properties).

Here I demonstrate the creation of two Person objects (cody and lisa) and the

inherited whatIsMyFullName method that contains the this keyword to access the

instance.

Sample: sample109.html

<!DOCTYPE html><html lang="en"><body><script>

 var Person = function (x) {
 if (x) { this.fullName = x };
 };

 Person.prototype.whatIsMyFullName = function () {
 return this.fullName; // 'this' refers to the instance created from
Person()
 }

 var cody = new Person('cody lindley');
 var lisa = new Person('lisa lindley');

 // Call the inherited whatIsMyFullName method, which uses this to refer
to the instance.
 console.log(cody.whatIsMyFullName(), lisa.whatIsMyFullName());

 /* The prototype chain is still in effect, so if the instance does not
have a fullName property, it will look for it in the prototype chain. Next,
we add a fullName property to both the Person prototype and the Object
prototype. See the notes that follow this sample. */

 Object.prototype.fullName = 'John Doe';

112

 var john = new Person(); // No argument is passed so fullName is not
added to the instance.
 console.log(john.whatIsMyFullName()); // Logs 'John Doe'.

</script></body></html>

The concept to take away here is that the keyword this is used to refer to instances

when used inside of a method contained in the prototype object. If the instance does
not contain the property, the prototype lookup begins.

Notes
If the instance or the object pointed to by this does not contain the property being

referenced, the same rules that apply to any property lookup are applied, and the
property will be "looked up" on the prototype chain. So in our example, if the fullName

property was not contained within our instance, fullName would be looked for at

Person.prototype.fullName, then Object.prototype.fullName.

113

Chapter 13 Scope and Closures

Conceptual overview of JavaScript scope

In JavaScript, scope is the context in which code is executed. There are three types of
scope: global scope, local scope (sometimes referred to as "function scope"), and eval
scope.

Code defined using var inside of a function is locally scoped, and is only "visible" to

other expressions in that function, which includes code inside any nested/child
functions. Variables defined in the global scope can be accessed from anywhere
because it is the highest level and last stop in the scope chain.

Examine the code that follows and make sure you understand that each declaration of
foo is unique because of scope.

Sample: sample110.html

<!DOCTYPE html><html lang="en"><body><script>

 var foo = 0; // Global scope.
 console.log(foo); // Logs 0.

 var myFunction = function () {

 var foo = 1; // Local scope.

 console.log(foo); // Logs 1.

 var myNestedFunction = function () {

 var foo = 2; // Local scope.

 console.log(foo); // Logs 2.
 } ();
 } ();

 eval('var foo = 3; console.log(foo);'); // eval() scope.

</script></body></html>

Make sure you understand that each foo variable contains a different value because

each one is defined in a specifically delineated scope.

114

Notes
An unlimited number of function and eval scopes can be created, while only one global
scope is used by a JavaScript environment.

The global scope is the last stop in the scope chain.

Functions that contain functions create stacked execution scopes. These stacks, which
are chained together, are often referred to as the scope chain.

JavaScript does not have block scope

Since logic statements (e.g., if) and looping statements (e.g., for) do not create a
scope, variables can overwrite each other. Examine the following code and make sure
you understand that the value of foo is being redefined as the program executes the

code.

Sample: sample111.html

<!DOCTYPE html><html lang="en"><body><script>

 var foo = 1; // foo = 1.

 if (true) {
 foo = 2; // foo = 2.
 for (var i = 3; i <= 5; i++) {
 foo = i; // foo = 3, 4, then 5.
 console.log(foo); // Logs 3, 4, 5.
 }
 }

</script></body></html>

So foo is changing as the code executes because JavaScript has no block scope—only
function, global, or eval scope.

Use var inside of functions to declare variables and avoid scope

gotchas

JavaScript will declare any variables lacking a var declaration (even those contained in

a function or encapsulated functions) to be in the global scope instead of the intended
local scope. Have a look at the code that follows and notice that without the use of var

to declare bar, the variable is actually defined in the global scope and not the local

scope, where it should be.

115

Sample: sample112.html

<!DOCTYPE html><html lang="en"><body><script>

 var foo = function () {
 var boo = function () {
 bar = 2; // No var used, so bar is placed in the global scope at
window.bar
 } ();
 } ();

 console.log(bar); // Logs 2, because bar is in the global scope.

 // As opposed to...

 var foo = function () {
 var boo = function () {
 var doo = 2;
 } ();
 } ();

 // console.log(doo); logs undefined. doo is in the boo function scope, so
an error occurs

</script></body></html>

The concept to take away here is that you should always use var when defining

variables inside of a function. This will prevent you from dealing with potentially
confusing scope problems. The exception to this convention, of course, is when you
want to create or change properties in the global scope from within a function.

The scope chain (aka lexical scoping)

There is a lookup chain that is followed when JavaScript looks for the value associated
with a variable. This chain is based on the hierarchy of scope. In the code that follows, I
am logging the value of sayHiText from the func2 function scope.

Sample: sample113.html

<!DOCTYPE html><html lang="en"><body><script>

 var sayHiText = 'howdy';

 var func1 = function () {
 var func2 = function () {
 console.log(sayHiText); // func2 scope, but it finds sayHiText in
global scope.
 } ();

116

 } ();

</script></body></html>

How is the value of sayHiText found when it is not contained inside of the scope of the

func2 function? JavaScript first looks in the func2 function for a variable named

sayHiText. Not finding func2 there, it looks up to func2’s parent function, func1. The

sayHiText variable is not found in the func1 scope, either, so JavaScript then

continues up to the global scope where sayHiText is found, at which point the value of

sayHiText is delivered. If sayHiText had not been defined in the global scope,

undefined would have been returned by JavaScript.

This is a very important concept to understand. Let's examine another code example,
one in which we grab three values from three different scopes.

Sample: sample114.html

<!DOCTYPE html><html lang="en"><body><script>

 var x = 10;
 var foo = function () {
 var y = 20;
 var bar = function () {
 var z = 30;
 console.log(z + y + x); // z is local, y and z are found in the
scope chain.
 } ();
 } ()

 foo(); // Logs 60.

</script></body></html>

The value for z is local to the bar function and the context in which the console.log is

invoked. The value for y is in the foo function, which is the parent of bar(), and the

value for x is in the global scope. All of these are accessible to the bar function via the

scope chain. Make sure you understand that referencing variables in the bar function

will check all the way up the scope chain for the variables referenced.

Notes
The scope chain, if you think about it, is not that different from the prototype chain. Both
are simply a way for a value to be looked up by checking a systematic and hierarchical
set of locations.

117

The scope chain lookup returns the first found value

In the code sample that follows, a variable called x exists in the same scope in which it

is examined with console.log. This "local" value of x is used, and one might say that it

shadows, or masks, the identically named x variables found further up in the scope
chain.

Sample: sample115.html

<!DOCTYPE html><html lang="en"><body><script>

 var x = false;
 var foo = function () {
 var x = false;
 bar = function () {
 var x = true;
 console.log(x); // Local x is first in the scope so it shadows
the rest.
 } ();
 }

 foo(); // Logs true.

</script></body></html>

Remember that the scope lookup ends when the variable is found in the nearest
available link of the chain, even if the same variable name is used further up the chain.

Scope is determined during function definition, not invocation

Since functions determine scope and functions can be passed around just like any
JavaScript value, one might think that deciphering the scope chain is complicated. It is
actually very simple. The scope chain is decided based on the location of a function
during definition, not during invocation. This is also called lexical scoping. Think long
and hard about this, as most people stumble over it often in JavaScript code.

The scope chain is created before you invoke a function. Because of this, we can create
closures. For example, we can have a function return a nested function to the global
scope, yet our function can still access, via the scope chain, its parent function's scope.
In the following sample, we define a parentFunction that returns an anonymous

function, and we call the returned function from the global scope. Because our
anonymous function was defined as being contained inside of parentFunction, it still

has access to parentFunction’s scope when it is invoked. This is called a closure.

Sample: sample116.html

<!DOCTYPE html><html lang="en"><body><script>

118

 var parentFunction = function () {
 var foo = 'foo';
 return function () { // Anonymous function being returned.
 console.log(foo); // Logs 'foo'.
 }
 }

 // nestedFunction refers to the nested function returned from
parentFunction.
 var nestedFunction = parentFunction();

 nestedFunction(); // Logs foo because the returned function accesses foo
via the scope chain.

</script></body></html>

The idea you should take away here is that the scope chain is determined during
definition—literally in the way the code is written. Passing around functions inside of
your code will not change the scope chain.

Closures are caused by the scope chain

Take what you have learned about the scope chain and scope lookup in this chapter,
and a closure should not be overly complicated to understand. In the following sample,
we create a function called countUpFromZero. This function actually returns a reference

to the child function contained within it. When this child function (nested function) is
invoked, it still has access to the parent function's scope because of the scope chain.

Sample: sample117.html

<!DOCTYPE html><html lang="en"><body><script>

 var countUpFromZero = function () {
 var count = 0;
 return function () { // Return nested child function when
countUpFromZero is invoked.
 return ++count; // count is defined up the scope chain, in parent
function.
 };
 } (); // Invoke immediately, return nested function.

 console.log(countUpFromZero()); // Logs 1.
 console.log(countUpFromZero()); // Logs 2.
 console.log(countUpFromZero()); // Logs 3.

</script></body></html>

119

Each time the countUpFromZero function is invoked, the anonymous function contained

in (and returned from) the countUpFromZero function still has access to the parent

function's scope. This technique, facilitated via the scope chain, is an example of a
closure.

Notes
If you feel I have over-simplified closures, you are likely correct in this thought. But I did
so purposely as I believe the important parts come from a solid understanding of
functions and scope, not necessarily the complexities of execution context. If you are in
need of an in-depth dive into closures, have a look at JavaScript Closures.

http://jibbering.com/faq/notes/closures/

120

Chapter 14 Function Prototype Property

Conceptual overview of the prototype chain

The prototype property is an object created by JavaScript for every Function()

instance. Specifically, it links object instances created with the new keyword back to the

constructor function that created them. This is done so that instances can share, or
inherit, common methods and properties. Importantly, the sharing occurs during
property lookup. Remember from Chapter 1 that every time you look up or access a
property on an object, the property will be searched for on the object as well as the
prototype chain.

Notes
A prototype object is created for every function, regardless of whether you intend to use
that function as a constructor.

In the following code, I construct an array from the Array() constructor, and then I

invoke the join() method.

Sample: sample118.html

<!DOCTYPE html><html lang="en"><body><script>

 var myArray = new Array('foo', 'bar');

 console.log(myArray.join()); // Logs 'foo,bar'.

</script></body></html>

The join() method is not defined as a property of the myArray object instance, but

somehow we have access to join() as if it were. This method is defined somewhere,

but where? Well, it is defined as a property of the Array() constructor's prototype

property. Since join() is not found within the array object instance, JavaScript looks up

the prototype chain for a method called join().

Okay, so why are things done this way? Really, it is about efficiency and reuse. Why
should every array instance created from the array constructor function have a uniquely
defined join() method when join() always functions the same way? It makes more

sense for all arrays to leverage the same join() function without having to create a

new instance of the function for each array instance.

This efficiency we speak of is all possible because of the prototype property, prototype

linkage, and the prototype lookup chain. In this chapter, we break down these often
confusing attributes of prototypal inheritance. But truth be told, you would be better off

121

by simply memorizing the mechanics of how the chain hierarchy actually works. Refer
back to Chapter 1 if you need a refresher on how property values are resolved.

Why care about the prototype property?

You should care about the prototype property for four reasons.

Reason 1
The first reason is that the prototype property is used by the native constructor functions
(e.g., Object(), Array(), Function(), etc.) to allow constructor instances to inherit

properties and methods. It is the mechanism that JavaScript itself uses to allow object
instances to inherit properties and methods from the constructor function's prototype

property. If you want to understand JavaScript better, you need to understand how
JavaScript itself leverages the prototype object.

Reason 2
When creating user-defined constructor functions, you can orchestrate inheritance the
same way JavaScript native objects do. But first you have to learn how it works.

Reason 3
You might really dislike prototypal inheritance or prefer another pattern for object
inheritance, but the reality is that someday you might have to edit or manage someone
else's code who thought prototypal inheritance was the bee's knees. When this
happens, you should be aware of how prototypal inheritance works, as well as how it
can be replicated by developers who make use of custom constructor functions.

Reason 4
By using prototypal inheritance, you can create efficient object instances that all
leverage the same methods. As already mentioned, not all array objects, which are
instances of the Array() constructor, need their own join() methods. All instances

can leverage the same join() method because the method is stored in the prototype

chain.

Prototype is standard on all Function() instances

All functions are created from a Function() constructor, even if you do not directly

invoke the Function() constructor (e.g., var add = new Function('x', 'y',
'return x + z');) and instead use the literal notation (e.g., var add =
function(x,y){return x + z};).

When a function instance is created, it is always given a prototype property, which is

an empty object. In the following sample, we define a function called myFunction and

then access the prototype property which is simply an empty object.

122

Sample: sample119.html

<!DOCTYPE html><html lang="en"><body><script>

 var myFunction = function () { };
 console.log(myFunction.prototype); // Logs object{}
 console.log(typeof myFunction.prototype); // Logs 'object'.

</script></body></html>

Make sure you completely understand that the prototype property is coming from the
Function() constructor. It is only once we intend to use our function as a user-defined

constructor function that the prototype property is leveraged, but this does not change
the fact that the Function() constructor gives each instance a prototype property.

The default prototype property is an Object() object

All this prototype talk can get a bit heavy. Truly, prototype is just an empty object

property called "prototype" created behind the scenes by JavaScript and made available
by invoking the Function() constructor. If you were to do it manually, it would look

something like this:

Sample: sample120.html

<!DOCTYPE html><html lang="en"><body><script>

 var myFunction = function () { };

 myFunction.prototype = {}; // Add the prototype property and set it to an
empty object.

 console.log(myFunction.prototype); // Logs an empty object.

</script></body></html>

In fact, this sample code actually works just fine, essentially just duplicating what
JavaScript already does.

Notes
The value of a prototype property can be set to any of the complex values (i.e. objects)
available in JavaScript. JavaScript will ignore any prototype property set to a primitive
value.

123

Instances created from a constructor function are linked to the

constructor’s prototype property

While it’s only an object, prototype is special because the prototype chain links every

instance to its constructor function's prototype property. This means that any time an
object is created from a constructor function using the new keyword (or when an object

wrapper is created for a primitive value), it adds a hidden link between the object
instance created and the prototype property of the constructor function used to create it.
This link is known inside the instance as __proto__ (though it is only
exposed/supported via code in Firefox 2+, Safari, Chrome, and Android). JavaScript
wires this together in the background when a constructor function is invoked, and it’s
this link that allows the prototype chain to be, well, a chain. In the following sample, we
add a property to the native Array() constructor’s prototype, which we can then

access from an Array() instance using the __proto__ property set on that instance.

Sample: sample121.html

<!DOCTYPE html><html lang="en"><body><script>

 // This code only works in browsers that support __proto__ access.
 Array.prototype.foo = 'foo';
 var myArray = new Array();

 console.log(myArray.__proto__.foo); // Logs foo, because
myArray.__proto__ = Array.prototype

</script></body></html>

Since accessing __proto__ is not part of the official ECMA standard, there is a more

universal way to trace the link from an object to the prototype object it inherits, and that
is by using the constructor property. This is demonstrated in the following sample.

Sample: sample122.html

<!DOCTYPE html><html lang="en"><body><script>

 Array.prototype.foo = 'foo'; // All instances of Array() now inherit a
foo property.
 var myArray = new Array();

 // Trace foo in a verbose way leveraging *.constructor.prototype
 console.log(myArray.constructor.prototype.foo); // Logs foo.

 // Or, of course, leverage the chain.
 console.log(myArray.foo) // Logs foo.
 // Uses prototype chain to find property at Array.prototype.foo

https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Object/Proto

124

</script></body></html>

In this example, the foo property is found within the prototype object. You need to

realize this is only possible because of the association between the instance of Array()

and the Array() constructor prototype object (i.e. Array.prototype). Simply put,

myArray.__proto__ (or myArray.constructor.prototype) references

Array.prototype.

Last stop in the prototype chain is Object.prototype

Since the prototype property is an object, the last stop in the prototype chain or lookup
is at Object.prototype. In the code that follows, I create myArray, which is an empty

array. I then attempt to access a property of myArray that has not yet been defined,

engaging the prototype lookup chain. The myArray object is examined for the foo

property. Being absent, the property is looked for at Array.prototype, but it is not

there either. So the final place JavaScript looks is Object.prototype. Because it is not

defined in any of those three objects, the property is undefined.

Sample: sample123.html

<!DOCTYPE html><html lang="en"><body><script>

 var myArray = [];

 console.log(myArray.foo) // Logs undefined.

 /* foo was not found at myArray.foo or Array.prototype.foo or
Object.prototype.foo, so it is undefined. */

</script></body></html>

Take note that the chain stopped with Object.prototype. The last place we looked for

foo was Object.prototype.

Notes
Careful! Anything added to Object.prototype will show up in a for in loop.

The prototype chain returns the first property match it finds in the

chain

Like the scope chain, the prototype chain will use the first value it finds during the

chain lookup.

125

Modifying the previous code example, if we added the same value to the
Object.prototype and Array.prototype objects, and then attempted to access a

value on an array instance, the value returned would be from the Array.prototype

object.

Sample: sample124.html

<!DOCTYPE html><html lang="en"><body><script>

 Object.prototype.foo = 'object-foo';
 Array.prototype.foo = 'array-foo';
 var myArray = [];

 console.log(myArray.foo); // Logs 'array-foo', which was found at
Array.prototype.foo

 myArray.foo = 'bar';

 console.log(myArray.foo) // Logs 'bar', was found at Array.foo

</script></body></html>

In this sample, the foo value at Array.prototype.foo is shadowing, or masking, the

foo value found at Object.prototype.foo. Just remember that the lookup ends when

the property is found in the chain, even if the same property name is also used farther
up the chain.

Replacing the prototype property with a new object removes the

default constructor property

It’s possible to replace the default value of a prototype property with a new value.
However, doing so will eliminate the default constructor property found in the "pre-
made" prototype object—unless you manually specify one.

In the code that follows, we create a Foo constructor function, replace the prototype

property with a new empty object, and verify that the constructor property is broken (it
now references the less useful Object prototype).

Sample: sample125.html

<!DOCTYPE html><html lang="en"><body><script>

 var Foo = function Foo() { };

 Foo.prototype = {}; // Replace prototype property with an empty object.

 var FooInstance = new Foo();

126

 console.log(FooInstance.constructor === Foo); // Logs false, we broke the
reference.
 console.log(FooInstance.constructor); // Logs Object(), not Foo()

 // Compare to code in which we do not replace the prototype value.

 var Bar = function Bar() { };

 var BarInstance = new Bar();

 console.log(BarInstance.constructor === Bar); // Logs true.
 console.log(BarInstance.constructor); // Logs Bar()

</script></body></html>

If you intend to replace the default prototype property (common with some JS OOP

patterns) set up by JavaScript, you should wire back together a constructor property
that references the constructor function. In the following sample, we alter our previous
code so that the constructor property will again provide a reference to the proper

constructor function.

Sample: sample126.html

<!DOCTYPE html><html lang="en"><body><script>

 var Foo = function Foo() { };

 Foo.prototype = { constructor: Foo };

 var FooInstance = new Foo();

 console.log(FooInstance.constructor === Foo); // Logs true.
 console.log(FooInstance.constructor); // Logs Foo()

</script></body></html>

Instances that inherit properties from prototype will always get the

latest values

The prototype property is dynamic in the sense that instances will always get the latest
value from the prototype regardless of when it was instantiated, changed, or appended.
In the code that follows, we create a Foo constructor, add the property x to the

prototype, and then create an instance of Foo() named FooInstance. Next, we log

the value of x. Then we update the prototype’s value of x and log it again to find that our

instance has access to the latest value found in the prototype object.

127

Sample: sample127.html

<!DOCTYPE html><html lang="en"><body><script>

 var Foo = function Foo() { };

 Foo.prototype.x = 1;

 var FooInstance = new Foo();

 console.log(FooInstance.x); // Logs 1.

 Foo.prototype.x = 2;

 console.log(FooInstance.x); // Logs 2, the FooInstance was updated.

</script></body></html>

Given how the lookup chain works, this behavior should not be that surprising. If you are
wondering, this works the same regardless of whether you use the default prototype

object or override it with your own. In the next sample, I replace the default prototype

object to demonstrate this fact.

Sample: sample128.html

<!DOCTYPE html><html lang="en"><body><script>

 var Foo = function Foo() { };

 Foo.prototype = { x: 1 }; // The logs that follow still work the same.

 var FooInstance = new Foo();

 console.log(FooInstance.x); // Logs 1.

 Foo.prototype.x = 2;

 console.log(FooInstance.x); // Logs 2, the FooInstance was updated.

</script></body></html>

Replacing the prototype property with a new object does not update

former instances

You might think that you can replace the prototype property entirely at any time and

that all instances will be updated, but this is not correct. When you create an instance,
that instance will be tied to the prototype that was minted at the time of instantiation.

128

Providing a new object as the prototype property does not update the connection
between instances already created and the new prototype.

But remember, as I stated previously, you can update or add to the originally created
prototype object and those values remain connected to the first instance(s).

Sample: sample129.html

<!DOCTYPE html><html lang="en"><body><script>

 var Foo = function Foo() { };

 Foo.prototype.x = 1;

 var FooInstance = new Foo();

 console.log(FooInstance.x); // Logs 1, as you think it would.

 // Now let’s replace/override the prototype object with a new Object()
object.
 Foo.prototype = { x: 2 };

 console.log(FooInstance.x); // Logs 1. WHAT? Shouldn't it log 2 because
we just updated prototype?
 /* FooInstance still references the same state of the prototype object
that was there when it was instantiated. */

 // Create a new instance of Foo()
 var NewFooInstance = new Foo();

 // The new instance is now tied to the new prototype object value (i.e.
{x:2};).
 console.log(NewFooInstance.x); // Logs 2.

</script></body></html>

The key idea to take away here is that an object’s prototype should not be replaced with
a new object once you start creating instances. Doing so will result in instances that
have a link to different prototypes.

User-defined constructors can leverage the same prototype

inheritance as native constructors

Hopefully at this point in the chapter, it is sinking in how JavaScript itself leverages the
prototype property for inheritance (e.g., Array.prototype). This same pattern can be

leveraged when creating non-native, user-defined constructor functions. In the following

129

sample, we take the classic Person object and mimic the pattern that JavaScript uses

for inheritance.

Sample: sample130.html

<!DOCTYPE html><html lang="en"><body><script>

 var Person = function () { };

 // All Person instances inherit the legs, arms, and countLimbs
properties.
 Person.prototype.legs = 2;
 Person.prototype.arms = 2;
 Person.prototype.countLimbs = function () { return this.legs + this.arms;
};

 var chuck = new Person();

 console.log(chuck.countLimbs()); // Logs 4.

</script></body></html>

In this code, a Person() constructor function is created. We then add properties to the

prototype property of Person(), which can be inherited by all instances. Clearly, you

can leverage the prototype chain in your code the same way that JavaScript leverages it
for native object inheritance.

As a good example of how you might leverage this, you can create a constructor
function whose instances inherit the legs and arms properties if they are not provided

as parameters. In the following sample, if the Person() constructor is sent parameters,

the parameters are used as instance properties, but if one or more parameters are not
provided, there is a fallback. These instance properties then shadow or mask the
inherited properties, giving you the best of both worlds.

Sample: sample131.html

<!DOCTYPE html><html lang="en"><body><script>

 var Person = function (legs, arms) {
 // Shadow prototype value.
 if (legs !== undefined) { this.legs = legs; }
 if (arms !== undefined) { this.arms = arms; }
 };

 Person.prototype.legs = 2;
 Person.prototype.arms = 2;
 Person.prototype.countLimbs = function () { return this.legs + this.arms;
};

130

 var chuck = new Person(0, 0);

 console.log(chuck.countLimbs()); // Logs 0.

</script></body></html>

Creating inheritance chains (the original intention)

Prototypal inheritance was conceived to allow inheritance chains that mimic the
inheritance patterns found in traditional object oriented programming languages. In
order for one object to inherit from another object in JavaScript, all you have to do is
instantiate an instance of the object you want to inherit from and assign it to the
prototype property of the object that is doing the inheriting.

In the code sample that follows, Chef objects (i.e. cody) inherit from Person(). This

means that if a property is not found in a Chef object, it will then be looked for on the

prototype of the function that created Person() objects. To wire up the inheritance, all

you have to do is instantiate an instance of Person() as the value for Chef.prototype

(i.e. Chef.prototype = new Person();).

Sample: sample132.html

<!DOCTYPE html><html lang="en"><body><script>

 var Person = function () { this.bar = 'bar' };
 Person.prototype.foo = 'foo';

 var Chef = function () { this.goo = 'goo' };
 Chef.prototype = new Person();
 var cody = new Chef();

 console.log(cody.foo); // Logs 'foo'.
 console.log(cody.goo); // Logs 'goo'.
 console.log(cody.bar); // Logs 'bar'.

</script></body></html>

All we did in this sample was leverage a system that was already in place with the
native objects. Consider that Person() is not unlike the default Object() value for
prototype properties. In other words, this is exactly what happens when a prototype
property, containing its default empty Object() value, looks to the prototype of the

constructor function created (i.e. Object.prototype) for inherited properties.

131

Chapter 15 Array()

Conceptual overview of using Array() objects

An array is an ordered list of values typically created with the intention of looping
through numerically indexed values, beginning with the index zero. What you need to
know is that arrays are numerically ordered sets, as opposed to objects which have
property names associated with values in non-numeric order. Essentially, arrays use
numbers as a lookup key, while objects have user-defined property names. JavaScript
does not have true associative arrays, but objects can be used to achieve the
functionality of associative arrays.

In the following sample, I store four strings in myArray that I can access using a

numeric index. I compare and contrast myArray to an object literal mimicking an

associative array.

Sample: sample133.html

<!DOCTYPE html><html lang="en"><body><script>

 var myArray = ['blue', 'green', 'orange', 'red'];

 console.log(myArray[0]); // Logs blue using the 0 index to access the
string in myArray.

 // Versus

 var myObject = { // aka an associative array/hash, known as an object in
JavaScript.
 'blue': 'blue',
 'green': 'green',
 'orange': 'orange',
 'red': 'red'
 };

 console.log(myObject['blue']); // Logs blue.

</script></body></html>

Notes
Arrays can hold any type of values, and these values can be updated or deleted at any
time.

If you need a hash (aka associative array), an object is the closest solution.

132

An Array() is just a special type of Object(). That is, Array() instances are basically

Object() instances with a couple of extra functions (e.g., .length and a built-in

numeric index).

Values contained in an array are commonly referred to as elements.

Array() parameters

You can pass the values of an array instance to the constructor as comma-separated
parameters (e.g., new Array('foo', 'bar');). The Array() constructor can take up

to 4,294,967,295 parameters.

However, if only one parameter is sent to the Array() constructor and that value is an

integer (e.g., '1', '123', or '1.0'), it will be used to set up the length of the array, and will

not be used as a value contained within the array.

Sample: sample134.html

<!DOCTYPE html><html lang="en"><body><script>

 var foo = new Array(1, 2, 3);
 var bar = new Array(100);

 console.log(foo[0], foo[2]); // Logs '1 3'.
 console.log(bar[0], bar.length); // Logs 'undefined 100'.

</script></body></html>

Array() properties and methods

The Array() object has the following properties (not including inherited properties and

methods):

Properties (e.g., Array.prototype):

 prototype

Array object instance properties and methods

Array object instances have the following properties and methods (not including
inherited properties and methods):

Instance Properties (e.g., var myArray = ['foo', 'bar']; myArray.length;):

 constructor

https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Array/prototype
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Array/constructor

133

 length

Instance Methods (e.g., var myArray = ['foo']; myArray.pop();):

 pop()

 push()

 reverse()

 shift()

 sort()

 splice()

 unshift()

 concat()

 join()

 slice()

Creating arrays

Like most of the objects in JavaScript, an array object can be created using the new

operator in conjunction with the Array() constructor, or by using the literal syntax.

In the following sample, I create the myArray1 array with predefined values using the

Array() constructor, and then myArray2 using literal notation.

Sample: sample135.html

<!DOCTYPE html><html lang="en"><body><script>

 // Array() constructor.
 var myArray1 = new Array('blue', 'green', 'orange', 'red');

 console.log(myArray1); // Logs ["blue", "green", "orange", "red"]

 // Array literal notation.
 var myArray2 = ['blue', 'green', 'orange', 'red'];

 console.log(myArray2); // logs ["blue", "green", "orange", "red"]

</script></body></html>

https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Array/length
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Array/pop
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Array/push
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Array/reverse
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Array/shift
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Array/splice
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Array/unshift
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Array/concat
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Array/join
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Array/slice

134

It is more common to see an array defined using the literal syntax, but it should be
noted that this shortcut is merely concealing the use of the Array() constructor.

Notes
In practice, the array literal is typically all you will ever need.

Regardless of how an array is defined, if you do not provide any predefined values to
the array, it will still be created but will simply contain no values.

Adding and updating values in arrays

A value can be added to an array at any index, at any time. In the sample that follows,
we add a value to the numeric index 50 of an empty array. What about all the indexes
before 50? Well, like I said, you can add a value to an array at any index, at any time.
But if you add a value to the numeric index 50 of an empty array, JavaScript will fill in all
of the necessary indexes before it with undefined values.

Sample: sample136.html

<!DOCTYPE html><html lang="en"><body><script>

 var myArray = [];
 myArray[50] = 'blue';
 console.log(myArray.length); /* Logs 51 (0 is counted) because JS created
values 0 to 50 before "blue".*/

</script></body></html>

Additionally, considering the dynamic nature of JavaScript and the fact that JavaScript
is not strongly typed, an array value can be updated at any time and the value
contained in the index can be any legal value. In the following sample, I change the
value at the numeric index 50 to an object.

Sample: sample137.html

<!DOCTYPE html><html lang="en"><body><script>

 var myArray = [];
 myArray[50] = 'blue';
 myArray[50] = { 'color': 'blue' }; // Change object type from string to
Object() object.
 console.log(myArray[50]); // Logs 'Object {color="blue"}'.

135

 // Using brackets to access the index in the array, then the property
blue.
 console.log(myArray[50]['color']); // Logs 'blue'.

 // Using dot notation.
 console.log(myArray[50].color); // Logs 'blue'.

</script></body></html>

Length vs. index

An array starts indexing values at zero. This means that the first numeric slot to hold a
value in an array looks like myArray[0]. This can be a bit confusing—if I create an

array with a single value, the index of the value is 0 while the length of the array is 1.
Make sure you understand that the length of an array represents the number of values
contained within the array, while the numeric index of the array starts at zero.

In the following sample, the string value blue is contained in the myArray array at the

numeric index 0, but since the array contains one value, the length of the array is 1.

Sample: sample138.html

<!DOCTYPE html><html lang="en"><body><script>

 var myArray = ['blue'] // The index 0 contains the string value 'blue'.
 console.log(myArray[0]); // Logs 'blue'.
 console.log(myArray.length); // Logs 1.

</script></body></html>

Defining arrays with a predefined length

As I mentioned earlier, by passing a single integer parameter to the Array()

constructor, it’s possible to predefine the array’s length, or the number of values it will
contain. In this case, the constructor makes an exception and assumes you want to set
the length of the array and not pre-populate the array with values.

In the next sample, we set up the myArray array with a predefined length of 3. Again,
we are configuring the length of the array, not passing it a value to be stored at the 0
index.

Sample: sample139.html

<!DOCTYPE html><html lang="en"><body><script>

 var myArray = new Array(3);

136

 console.log(myArray.length); // Logs 3 because we are passing one numeric
parameter.
 console.log(myArray[0]); // Logs undefined.

</script></body></html>

Notes
Providing a predefined length will give each numeric index, up to the length specified,

an associated value of undefined.

You might be wondering if it is possible to create a predefined array containing only one
numeric value. Yes, it is—by using the literal form var myArray = [4].

Setting array length can add or remove values

The length property of an array object can be used to get or set the length of an array.

As shown previously, setting the length greater than the actual number of values
contained in the array will add undefined values to the array. What you might not

expect is that you can actually remove values from an array by setting the length value
to a number less than the number of values contained in the array.

Sample: sample140.html

<!DOCTYPE html><html lang="en"><body><script>

 var myArray = ['blue', 'green', 'orange', 'red'];
 console.log(myArray.length); // Logs 4.
 myArray.length = 99;
 console.log(myArray.length); // Logs 99, remember we set the length, not
an index.
 myArray.length = 1; // Removed all but one value, so index [1] is gone!
 console.log(myArray[1]); // Logs undefined.

 console.log(myArray); // Logs '["blue"]'.

</script></body></html>

Arrays containing other arrays (aka multidimensional arrays)

Since an array can hold any valid JavaScript value, an array can contain other arrays.
When this is done, the array containing encapsulated arrays is considered a
multidimensional array. Accessing encapsulated arrays is done by bracket chaining. In
the following sample, we create an array literal that contains an array, inside of which
we create another array literal, inside of which we create another array literal, containing
a string value at the 0 index.

137

Sample: sample141.html

<!DOCTYPE html><html lang="en"><body><script>

 var myArray = [[[['4th dimension']]]];
 console.log(myArray[0][0][0][0]); // Logs '4th dimension'.

</script></body></html>

This code example is rather silly, but you get the idea that arrays can contain other
arrays and you can access encapsulated arrays indefinitely.

Looping over an array, backwards and forwards

The simplest and arguably the fastest way to loop over an array is to use the while
loop.

In the following code, we loop from the beginning of the index to the end.

Sample: sample142.html

<!DOCTYPE html><html lang="en"><body><script>

 var myArray = ['blue', 'green', 'orange', 'red'];

 var myArrayLength = myArray.length; // Cache array length to avoid
unnecessary lookup.
 var counter = 0; // Set up counter.

 while (counter < myArrayLength) { // Run if counter is less than array
length.
 console.log(myArray[counter]); // Logs 'blue', 'green', 'orange',
'red'.
 counter++; // Add 1 to the counter.
 }

</script></body></html>

And now we loop from the end of the index to the beginning.

Sample: sample143.html

<!DOCTYPE html><html lang="en"><body><script>

 var myArray = ['blue', 'green', 'orange', 'red'];

 var myArrayLength = myArray.length;

138

 while (myArrayLength--) { // If length is not zero, loop
and subtract 1.
 console.log(myArray[myArrayLength]); // Logs 'red', 'orange',
'green', 'blue'.
 }

</script></body></html>

If you are wondering why I am not showing for loops here, it is because while loops

have fewer moving parts and I believe they are easier to read.

139

Chapter 16 Math Function

Conceptual overview of the built-in Math object

The Math object contains static properties and methods for mathematically dealing with

numbers or providing mathematical constants (e.g., Math.PI;). This object is built into

JavaScript, as opposed to being based on a Math() constructor that creates math

instances.

Notes
It might seem odd that Math starts with a capitalized letter since you do not instantiate

an instance of a Math object. Do not be thrown off by this. Simply be aware that

JavaScript sets this object up for you.

Math properties and methods

The Math object has the following properties and methods:

Properties (e.g., Math.PI;):

 E

 LN2

 LN10

 LOG2E

 LOG10E

 PI

 SQRT1_2

 SQRT2

Methods (e.g., Math.random();):

 abs()

 acos()

 asin()

 atan()

 atan2()

https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/E
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/LN2
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/LN10
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/LOG2E
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/LOG10E
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/PI
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/SQRT1_2
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/SQRT2
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/abs
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/acos
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/asin
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/atan
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/atan2

140

 ceil()

 cos()

 exp()

 floor()

 log()

 max()

 min()

 pow()

 random()

 round()

 sin()

 sqrt()

 tan()

Math is not a constructor function

The Math object is unlike the other built-in objects that are instantiated. Math is a one-off

object created to house static properties and methods, ready to be used when dealing
with numbers. Just remember, there is no way to create an instance of Math, as there is
no constructor.

Math has constants you cannot augment or mutate

Many of the Math properties are constants that cannot be mutated. Since this is a

departure from the mutable nature of JavaScript, these properties are in all caps (e.g.,
Math.PI;). Do not confuse these property constants for constructor functions due to the

capitalization of their first letter. They are simply object properties that cannot be
changed.

Notes
User-defined constants are not possible in JavaScript 1.5, ECMA-262, Edition 3.

https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/ceil
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/cos
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/exp
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/floor
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/log
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/max
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/min
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/pow
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/random
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/round
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/sin
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/sqrt
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/tan
http://en.wikipedia.org/wiki/Constant_(programming)

141

Review

The following points summarize what you should have learned by reading this book
(and investigating the code examples). Read each summary, and if you don't
understand what is being said, return to the topic in the book.

 An object is made up of named properties that store values.

 Most everything in JavaScript can act like an object. Complex values are objects,
and primitive values can be treated like objects. This is why you may hear people
say that everything in JavaScript is an object.

 Objects are created by invoking a constructor function with the new keyword, or by

using a shorthand literal expression.

 Constructor functions are objects (Function() objects), thus, in JavaScript,
objects create objects.

 JavaScript offers nine native constructor functions: Object(), Array(),

String(), Number(), Boolean(), Function(), Date(), RegExp(), and Error().

The String(), Number(), and Boolean() constructors are dual-purposed in

providing a) primitive values and b) object wrappers when needed, so that
primitive values can act like objects.

 The values null, undefined, "string", 10, true, and false are all primitive
values, without an object nature unless treated like an object.

 When the Object(), Array(), String(), Number(), Boolean(), Function(),

Date(), RegExp(), and Error() constructor functions are invoked using the new

keyword, an object is created that is known as a "complex object" or "reference
object."

 "string", 10, true, and false, in their primitive forms, have no object qualities
until they are used as objects; then JavaScript, behind the scenes, creates
temporary wrapper objects so that such values can act like objects.

 Primitive values are stored by value, and when copied, are literally copied.
Complex object values on the other hand are stored by reference, and when
copied, are copied by reference.

 Primitive values are equal to other primitive values when their values are equal,
whereas complex objects are equal only when they reference the same value.

142

That is: a complex value is equal to another complex value when both refer to the
same object.

 Due to the nature of complex objects and references, JavaScript objects have
dynamic properties.

 JavaScript is mutable, which means that native objects and user-defined object
properties can be manipulated at any time.

 Getting/setting/updating an object’s properties is done by using dot notation or
bracket notation. Bracket notation is convenient when the name of the object
property being manipulated is in the form of an expression (e.g.,
Array['prototype']['join'].apply()).

 When referencing object properties, a lookup chain is used to first look at the
object that was referenced for the property. If the property is not there, the
property is looked for on the constructor function’s prototype property. If it’s not

found there, because the prototype holds an object value and the value is created
from the Object() constructor, the property is looked for on the Object()

constructor’s prototype property (Object.prototype). If the property is not

found there, then the property is determined to be undefined.

 The prototype lookup chain is how inheritance (aka prototypal inheritance) was

design to be accomplished in JavaScript.

 Because of the object property lookup chain (aka prototypal inheritance), all
objects inherit from Object() simply because the prototype property is, itself, an

Object() object.

 JavaScript functions are first-class citizens: functions are objects with properties
and values.

 The this keyword, when used inside a function, is a generic way to reference the

object containing the function.

 The value of this is determined during run time based on the context in which the
function is called.

 Used in the global scope, the this keyword refers to the global object.

 JavaScript uses functions as a way to create a unique scope.

 JavaScript provides the global scope, and it’s in this scope that all JavaScript code
exists.

143

 Functions (specifically, encapsulated functions) create a scope chain for resolving
variable lookups.

 The scope chain is set up based on the way code is written, not necessarily by the
context in which a function is invoked. This permits a function to have access to
the scope in which it was originally written, even if the function is called from a
different context. This result is known as a closure.

 Function expressions and variables declared inside a function without using var

become global properties. However, function statements inside of a function scope
remain defined in the scope in which they are written.

 Functions and variables declared (without var) in the global scope become

properties of the global object.

 Functions and variables declared (with var) in the global scope become global
variables.

	Table of Contents
	The Story behind the Succinctly Series of Books
	About the Author
	Introduction
	Preface
	Chapter 1 JavaScript Objects
	Chapter 2 Working with Objects and Properties
	Chapter 3 String()
	Chapter 4 Number()
	Chapter 5 Boolean()
	Chapter 6 Working with Primitive String, Number, and Boolean Values
	Chapter 7 Null
	Chapter 8 Undefined
	Chapter 9 The Head/Global Object
	Chapter 10 Object()
	Chapter 11 Function()
	Chapter 12 The this Keyword
	Chapter 13 Scope and Closures
	Chapter 14 Function Prototype Property
	Chapter 15 Array()
	Chapter 16 Math Function
	Review

