
www.allitebooks.com

http://www.allitebooks.org

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Authors�� xv

About the Technical Reviewer��� xvii

Introduction�� xix

Chapter 1: JavaScript Basics■■ ���1

Chapter 2: JavaScript Nuts and Bolts■■ ���25

Chapter 3: The DOM■■ ��57

Chapter 4: JavaScript in Action■■ ��87

Chapter 5: JavaScript Global Objects Reference■■ ��133

Chapter 6: JavaScript Control Statements Reference■■ ��185

Chapter 7: JavaScript Operators Reference■■ ���195

Chapter 8: The DOM Reference■■ ���209

Index��269

www.allitebooks.com

http://www.allitebooks.org

xix

Introduction

JavaScript has seen a huge increase in popularity in the last decade. Originally used to create interactive web pages
and handle basic form validation, JavaScript is now the backbone of many complex web applications. As a result,
people who can program well with JavaScript are in high demand for a wide range of projects. If you want to work with
web technologies, you should know JavaScript.

This book aims to provide both a complete reference for JavaScript and to cover the fundamentals of the
language. Our overall goal was to cover all the topics you need to work with JavaScript in projects of any size.

Who is this book for?
This book is aimed at two audiences: people who already know JavaScript and need a solid reference, and people
who are just learning the language and want to come up to speed quickly. In either case we assume you have at least
a basic background in programming. Chapter 1, in particular, assumes you are coming to JavaScript from a more
traditional language, such as C++ or Java.

We also assume you have a basic understanding of HTML, including semantic markup and the various document
type declarations—though throughout the book the examples that use HTML are written in HTML 5. We also assume
you have a basic understanding of CSS and how to use it to manage the appearance of your web pages.

Finally, we assume you have a basic understanding of the web and its underlying protocols.
If you have never written a line of code in your life, or if you are brand new to web technologies, this might not be

the best book for you. But as long as you have a basic understanding of programming and web technologies, this book
can help you learn JavaScript.

Overview
This book is divided into two sections. The first section is devoted to teaching the basics of JavaScript and its related
technologies. The second section is devoted to reference.

•	 Chapter 1 is aimed at the programmer who is coming to JavaScript from another language.
JavaScript is a much more dynamic language than most of the common languages, and
moving to JavaScript from those languages can present special challenges. First we cover what
JavaScript is and how it came to be, and then we dive right into the three main challenges that
programmers of other languages encounter: JavaScript’s object inheritance and lack of classes,
its rules for scoping, and its dynamic typing. All of these features work quite differently in
JavaScript than they do in other languages, and we want to get into them immediately. We wind
up the chapter by providing some common patterns in JavaScript that use what we have learned.

•	 Chapter 2 is an overall reference for the JavaScript language. We start at the beginning, with
JavaScript’s lexical structure, and quickly move into its operators, how it handles variables,
JavaScript’s take on objects, arrays, and functions. We wind up the chapter by going
over JavaScript’s flow control statements. Chapter 2 covers some of the things mentioned in
Chapter 1 in more detail. Together they form a solid introduction to the language, all the way
from the basics to intermediate concepts like closures.

www.allitebooks.com

http://www.allitebooks.org

■ Introduction

xx

•	 Chapter 3 covers the Document Object Model. While the DOM is not technically a part of
JavaScript, we include a chapter on it because chances are a significant amount of the work
you’ll be doing with JavaScript will involve the DOM. The chapter starts with a brief history of
the DOM standard and how it has evolved. Then we dive right into the details: how to access
page elements, how to manipulate them (including creating new elements and deleting
existing ones), and the event model provided by the DOM (including custom events). We wind
up the chapter with a discussion of cross-browser strategies for dealing with variations in the
implementation of the DOM from browser to browser.

•	 Chapter 4 takes everything we have learned in Chapters 1, 2, and 3 and puts them to work.
We’ve divided the chapter up into sections, and each section covers something different.
The first section, Working with JavaScript, covers what you need to get to work with JavaScript.
We cover basic workflows as well as tools and debugging techniques. The second section
covers increasing the efficiency of your JavaScript applications by closely examining how
browsers load and parse scripts, and how you can use that to your advantage. The third section
covers asynchronous communication using the XMLHTTP object—otherwise known as
AJAX. The fourth section covers an important security limitation imposed by browsers—the
single origin policy—and some techniques for working with that policy and still getting your
work done. In the firth section we provide a practical example of data caching. Section six is
all about choosing JavaScript libraries, and section seven covers the most popular JavaScript
library, jQuery. Finally, we wrap up the chapter with a practical example of building your own
library using everything we have learned so far in the chapter.

•	 Chapter 5 begins the reference section of the book, and covers the objects that are a part
of JavaScript.

•	 Chapter 6 provides a reference for JavaScript’s control statements.

•	 Chapter 7 is all about JavaScript operators.

•	 Chapter 8 is a DOM reference.

Even though they are reference chapters, we have tried to provide useful, nontrivial examples throughout.

Conventions Used In This Book
Throughout this book, code is presented in a fixed-width font. Code examples and syntax definitions are separated
from other text and use the same font. In addition, inline mentions of code elements (such as objects, primitive
values, etc) are also presented in the same font.

Code Downloads
All of the code snippets and examples are available for download from http://www.apress.com/9781430246299. This
download includes all of the example code in the book, as well as some extra bits that didn’t make it into the book
itself. We encourage you to download the code and work with it as you go through the text.

www.allitebooks.com

http://www.apress.com/9781430246299
http://www.allitebooks.org

1

Chapter 1

JavaScript Basics

In this chapter we are going to take a different approach from what you’ll find in the first chapter of most
programming language references. Most books would dive right into the syntax and other details of the language, but
we are not going to do that here. JavaScript is a surprisingly difficult language to learn, and a relatively easy one to
dislike, so we first want to explore why some people struggle with it, and then we’ll provide a different, more intuitive
approach to mastering the language.

We will begin by examining the challenges of learning and working with JavaScript. We’ll cover a bit of
background by examining the language’s evolutionary history and implementations. Then, armed with that
information, we’ll examine the three specific areas where JavaScript is a challenge: its inheritance metaphor, its
scoping metaphor, and its typing metaphor. We’ll finish up by examining two very common patterns in JavaScript—a
topic most books wouldn’t cover until much later, but which we think you’ll be amply prepared to handle by the end
of this chapter. The patterns also serve as good applications of everything you will have learned in the chapter.

As we go through this chapter, we’ll cover the bare bones basics of JavaScript as we encounter them, but we
encourage you to not get too bogged down in considerations of syntax or other details at this stage. We’ll cover those
topics in later chapters. For now, concentrate on the bigger picture we’re about to paint.

Hard to Learn, Harder to Love
JavaScript is the target of a lot of hate. If you enter “hate JavaScript” or “JavaScript sucks” into your favorite search
engine, you’ll immediately get back page after page of articles about why the language is terrible. You can read the
articles for yourself—and we encourage you to do so—but after reading several of them, you’ll notice a pattern that
emerges in the complaints. There are a few key things that people dislike about JavaScript:

Its implementation of objects and inheritance—prototypes vs. classes•	

Its scoping rules•	

Its handling of data types•	

And it’s true, JavaScript does these three things quite differently from many common languages. To make matters
worse, JavaScript employs syntax and structures similar to C or Java, which fosters the understandable expectation
that JavaScript should behave like C or Java, but it doesn’t. (This is a particular problem with JavaScript’s scoping
rules, which we’ll discuss in more detail later in this chapter.)

Also, because JavaScript is very C-like, a programmer who is familiar with C-like languages (C, C++, Java, C#, etc.)
can quickly and easily reach a level of proficiency in JavaScript without ever really understanding its inner workings.
It’s quite common to encounter talented developers who have been working with JavaScript for years (and who may
even consider themselves JavaScript experts) but who really have only a basic understanding of the language and have
little command of its true power.

So JavaScript is easy to misunderstand, difficult to master, and has significantly different implementations of
three important language features. Add to that issues like varying implementations from browser to browser, and it’s
no wonder people have a low opinion of the language.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ JavaScript Basics

2

Lest we scare you away from the language, it’s important to realize that many times this low opinion is due to
misunderstanding how JavaScript works, or attempting to apply practices from other languages that don’t map well to
how JavaScript behaves. We have found that the more a developer is willing to learn about JavaScript, the more they
appreciate it. That’s true to some extent for any language, of course, but it’s especially true for JavaScript. Its dynamic
nature and true functionality are difficult to understand but once you do understand it the language starts to take on a
beauty and simplicity that very few languages possess.

Our approach to teaching JavaScript is designed to help you form that level of understanding of JavaScript before
we even begin covering details like functions, arrays, and flow control. We’ll cover those things as well, and in great
detail, but before we do we want to address head-on the major things that people find confusing or difficult about
JavaScript. In so doing we hope to start you down your journey of mastering JavaScript. The first step in that mastery is
understanding the origins of JavaScript and its continuing evolution.

What Is JavaScript?
JavaScript is a programming language that was first released in 1995. Despite its name, JavaScript actually has nothing
to do with the Java programming language. From a high level, JavaScript has several notable features:

•	 It is a scripting language: JavaScript programs are “scripts” that are read and executed by an
interpreter (or engine). This is distinguished from compiled languages, in which programs are
read by a compiler and translated into an executable file. (Note that often JavaScript engines
themselves are written in a compiled language.) Programs written in scripting languages are
highly portable in that they can run in any environment where an interpreter for that language
has been built.

•	 It is C-like: JavaScript’s basic syntax and structure borrow heavily from C.

•	 It is an object-oriented language: JavaScript differs from most object-oriented languages,
though, in that its inheritance model is prototype-based rather than class-based.

•	 It has first-class functions: JavaScript functions are full-fledged objects and have their own
properties and methods, and may be passed into other functions as parameters or returned
from other functions and assigned to variables.

•	 It is dynamic: The term “dynamic programming language” is broad and covers a lot of features.
JavaScript’s most dynamic features are its implementation of variable typing (see next point)
and its eval() method and other functional aspects.

•	 It is both dynamically typed and weakly typed: JavaScript variables are not type-checked at
interpretation time (making JavaScript a dynamically typed language), and how operations
occur between operands of mixed types depends on specific rules within JavaScript (making
JavaScript a weakly typed language).

•	 It is an implementation of a standard: As described in the following section, JavaScript is
actually an implementation of the ECMA-262 standard, just as the C programming language is
governed by an ISO standard.

These major features combine to make JavaScript somewhat unique. They also help make JavaScript basics
fairly easy to learn if you have a passing familiarity with C-like languages, because you’ll have very little problem with
JavaScript’s syntax or structure.

JavaScript is also heavily influenced by Scheme, another functional programming language that is a dialect of
Lisp. JavaScript gets many of its design principles from Scheme, including its scoping.

So how did JavaScript come to have this unique combination of features?

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ JavaScript Basics

3

The Evolution of JavaScript and the ECMA-262 Standard
As already mentioned, JavaScript is actually an implementation of a standard. It didn’t start out that way,
though. In September of 1995, Netscape released version 2.0 of its Navigator browser, which had a new feature:
an object-oriented scripting language that could access and manipulate page elements. Created by Netscape
engineer Brendan Eich and originally code-named “Mocha,” the new scripting language was at first released as
“LiveScript.” Shortly thereafter it was renamed “JavaScript,” to ride on the coattails of Sun’s Java programming
language.

In 1996, Netscape submitted JavaScript to the European Computer Manufacturer’s Association (or ECMA for
short; see http://www.ecma-international.org/memento/history.htm) for consideration as a standard. The
resulting standard, ECMA-262, was adopted in June 1997. ECMA-262 properly defines the ECMAScript scripting
language, and JavaScript is considered a “dialect” of ECMAScript. Another notable dialect of ECMAScript is version 3
or later of ActionScript. Technically, Internet Explorer does not implement JavaScript (due to copyright concerns), but
instead implements Microsoft’s own dialect of ECMAScript called “JScript.”

The latest version of ECMAScript is 5.1, which was published in June 2011. The version trail from ECMAScript 3
to ECMAScript 5 has an interesting political history, including a division between the standards committee (as led by
Brendan Eich) and industry stakeholders like Yahoo, Microsoft, and Google. We’re not going to get into the details;
suffice it to say that in the end all parties agreed to ECMAScript 5 as a unified solution.

As a part of ECMAScript 5, ECMA International published a suite of conformance tests that can be run by any
browser and will show which ECMAScript 5 features the browser supports and which features it does not support.
This suite, called Test262, is available at http://test262.ecmascript.org/. Note that it can take several hours to
run the full suite of tests, which contains around 11,500 individual tests. As of this writing, no browser has a perfect
score in Test262; the best scores currently belong to Safari and Internet Explorer, both of which fail only seven tests.
Firefox has the worst score, currently failing 170 tests (though that’s still quite an impressive achievement). These
figures are as of this writing, and may very well change between now and publication. We encourage you to run the
test suite on your favorite browsers and explore the tests that fail in each one. This will give you some idea of the
differences in JavaScript implementations from browser to browser, and how small they really are.

The evolution of ECMAScript is continuing with the 6th edition, code-named ECMAScript Harmony.
Harmony hasn’t been officially released yet and, as of this writing, no officially sanctioned release date has been
set. However, the specification drafts are all open for public viewing at http://wiki.ecmascript.org/doku.
php?id=harmony:specification_drafts, and a quick review of them indicates that Harmony will contain several
new features, among which are a syntactic implementation of classes, default parameters for functions, new string
methods, and the addition of hyperbolic trigonometry functions to the Math library.

Many browser manufacturers have already implemented some Harmony features, but overall implementation
is spotty and varies from manufacturer to manufacturer. For the most part, in this book we’ll be covering JavaScript
as a dialect of ECMAScript 5.1. Where ECMAScript 5 and Harmony overlap, we’ll note the differences so that you can
be aware of potential support pitfalls. Also, throughout this book we’ll use “JavaScript” as the generic term for the
language and its implementations unless we need to refer to a specific implementation or the standard itself.

Thanks to the standardizing influence of ECMA-262, all modern implementations of JavaScript are quite similar.
Individual implementations will vary, especially for cutting-edge features, but the core standard is well-implemented.

JavaScript Implementations
JavaScript has been implemented in several different ways. Adobe’s Acrobat document system, for example,
implements a version of JavaScript that enables users to employ simple scripts in Acrobat documents. JavaScript
engines have also been implemented as stand-alone resources on Windows, UNIX, and Linux for quite some
time. Shortly after it first introduced JavaScript in 1995, Netscape included a server-side implementation of it in its
Enterprise Server. Today, the most notable implementation of server-side JavaScript is in the Node.js software system.

By far the most common implementations of JavaScript are in web browsers. A web browser’s JavaScript
engine typically implements most of the features specified in the ECMA-262 standard. In addition, browsers often
extend JavaScript with other features not specified by the ECMA standard. The most notable of these extensions

www.allitebooks.com

http://www.ecma-international.org/memento/history.htm
http://test262.ecmascript.org/
http://wiki.ecmascript.org/doku.php?id=harmony:specification_drafts
http://wiki.ecmascript.org/doku.php?id=harmony:specification_drafts
http://www.allitebooks.org

Chapter 1 ■ JavaScript Basics

4

is the Document Object Model, or DOM, which is a separate standard that is maintained by the World Wide Web
Consortium (W3C). It’s important to remember that the DOM and JavaScript are separate, independent standards,
though much of the work JavaScript does in the browser involves manipulating the DOM. We will cover the DOM in
more depth in Chapter 3.

Though JavaScript started its life as a browser-based scripting language, server-side implementations of
JavaScript are becoming more and more common. On the server side, a JavaScript implementation will include
most of the base features of ECMA-262. And, like browser-based implementations, server implementations can
extend JavaScript with other features, such as libraries or frameworks. Though server and browser JavaScript
implementations may differ on these extended features, the base features are the same: the JavaScript Array object
has the same methods and properties whether it is implemented in the browser or on the server (assuming the
implementation follows the ECMA standard, of course).

This makes your JavaScript skills particularly valuable. JavaScript is one of the few languages that has both client
and server implementations, so learning JavaScript is a good investment. With the use of Node.js on the server side,
along with client-side scripts, it is possible to build complex, data-driven applications with rich user interactions using
JavaScript as the primary language.

Probably two of the best examples of using JavaScript on both the client and the server are Microsoft’s Windows
Azure Platform and Windows Software Development Kit for Windows 8 (Windows SDK). Both of them support using
JavaScript for both back- and front-end implementations, making it possible to build Windows apps in JavaScript and
leverage all the power of Microsoft’s platforms.

We will not cover server-side JavaScript with Node.js in this book, but instead will focus on JavaScript in the
context of a web browser.

Web Browsers and JavaScript
Modern web browsers are complex pieces of software. Most people think of web browsers as content browsers, as a
“window on the Web” so to speak. To a programmer with an understanding of JavaScript, however, a web browser
becomes something more powerful: a user interface (UI) platform. Whether you are creating a simple web page or a
complex, data-driven application, the browser is your UI platform, and JavaScript is the language it uses.

JavaScript is just one of the many moving parts of a browser. At a very high level, a browser consists of a stack of
individual subprograms (or engines), each of which has an important function:

•	 UI engine: The actual visual interface presented to the user, with address bar, rendering
window, back and forward buttons, the bookmarks toolbar, and so forth.

•	 Browser engine: A controller that works between the UI layer and the rendering engine.

•	 Rendering engine: Responsible for reading HTML documents and their associated assets (such
as images and Cascading Style Sheets) and deciding how they should look. The rendering
engine is where the DOM lives.

•	 Network engine: Responsible for accessing the network.

•	 Data persistence engine: Manages the application’s persistence layer, which is where cookies
are stored, and where new HTML 5 features like web databases and local storage exist.

•	 JavaScript engine: Includes interfaces to the data persistence, network, and rendering engines
and can observe and modify any or all of them.

Figure 1-1 illustrates how the JavaScript engine is quite separate from the rest of the browser’s functions, though
it works very closely with other parts of the browser.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ JavaScript Basics

5

A WORD ABOUT BROWSER VERSIONS 

UI Engine

Browser Engine

Rendering Engine

Network
Engine

JavaScript
Interpeter

Data
Persistence

Figure 1-1.  Browser engine stack

Throughout this book we will be using HTML5 syntax for our HTML markup. Some of the examples will therefore
have problems running in older browsers that don’t implement HTML5 features. Most of the examples in this
book have been tested in the latest stable version of Chrome, but should also work in the latest versions of Safari,
Firefox, and Internet Explorer 10.

JavaScript in Web Pages
Web browsers load JavaScript either as blocks of content within the document itself (inline scripts) or as linked script
files that are loaded separately.

Inline scripts are denoted using the <script> tag:
 
<script>
/* Your JavaScript here */
</script>
 

Linked scripts are added using the <script> tag as well:
 
<script src="js/init-document.js"></script>
 

This instructs the browser to fetch the referenced file and feed it directly to the JavaScript engine.

Note■■   You must use both the beginning and end tags. A self-closing tag is not permitted by the HTML5 standard
(though some browsers might permit it).

You can include inline or linked scripts anywhere in the head or body of an HTML document.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ JavaScript Basics

6

Order of Execution
So now we’re including JavaScript in our web page, but what is actually happening as the document is loading and
being parsed by the browser?

As it turns out, there is an obvious specific parsing order for web browsers: browsers start parsing HTML
documents at the top and work their way down, loading specified assets as they come to them. That means that a
script (whether inline or linked) can only reference things (styles, other scripts, HTML elements, etc.) that are above it
in the document.

Consider the simple HTML page presented in Listing 1-1.

Listing 1-1.  Basic HTML Template

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Developer's Guide</title>
 </head>
 <body>
 <h1>Hello World</h1>
 </body>
</html>
 

This will simply display a “Hello Word” message within the browser. We can demonstrate the order of script
execution by adding three scripts, as shown in Listing 1-2.

Listing 1-2.  Demonstrating Order of Execution

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Developer's Guide</title>
 <script>
alert("This is the head.");
 </script>
 </head>
 <body>
 <script>
alert("This is the body, before the message.");
 </script>
 <h1>Hello World</h1>
 <script>
alert("This is the body, after the message.");
 </script>
 </body>
</html>
 

When loaded into the browser, this page will first pop up an alert window that reads This is the head. Note that
there is not yet anything in the browser window itself; the browser has not yet parsed the rest of the document.

Chapter 1 ■ JavaSCript BaSiCS

7

Next the browser will move down to the body. The next alert message will appear, but the browser window will
still be empty. Then the “Hello World” headline will appear in the browser window, and then the last alert message
will appear.

This example demonstrates not only the order of execution but also the important fact that JavaScript can block
the parsing of the document. In our case, we’re using the blocking function alert(), but if we were instead loading a
complicated script in the head that took some time to download and parse, it would block the parsing of the rest of the
document. Similarly, scripts in the body can cause delays in displaying the whole document. For complex JavaScript
applications, the combination of parsing order and blocking can cause some undesirable effects. We’ll explore some
techniques for overcoming these problems in Chapter 4.

Brief Digression: Understanding and Running Examples
As we mentioned, we’re not going to cover the details of syntax in this chapter—that’s what the rest of the book is for.
But before we jump into the deep end, we do want to cover a few important details about syntax and running these
examples:

•	 Variable declaration: Throughout these examples we’ll declare variables using the var
keyword. The syntax is simple: var variableName declares the variable variableName and
gives it the special value of undefined. Optionally, you can provide a value for your variable
as part of the declaration: var variableName = myValue will both declare variableName
and assign it the value myValue. You’ll learn more about the var keyword in the “Scoping in
JavaScript” section, later in this chapter, but we wanted to touch on it briefly before diving in.

•	 Dot notation: JavaScript uses dot notation to access properties and methods on objects:
myObject.propertyName references propertyName on myObject, and myObject.methodName()
invokes methodName on myObject.

•	 alert: Browsers provide an alert function to JavaScript that gives a quick way to display
a string. When you call the alert method and pass it a string as a parameter, the browser
performs the following steps:

a. It pauses the execution of the script.

b. It pops open a small window that displays the string you provided. The popup window
includes a button labeled OK that, when clicked, dismisses the popup window.

c. When the popup window is dismissed, the browser resumes execution of the script at
the next statement after the alert.

This makes alert an easy way to inspect variables and properties of a script with minimal •	
effort. It also has the virtue of working on just about every browser in existence, even
very old ones.

Running the Examples
There are a couple of ways you can run these examples. Probably the easiest is to take the template in Listing 1-1 and
add a <script> tag after the <H1> tag. Then copy and paste the examples into the script tag, save the file, and
load it into a browser.

Chapter 1 ■ JavaScript Basics

8

Many browsers also provide a JavaScript console that you can use to enter the examples directly. However, the
JavaScript console will evaluate your code at the time when you press Enter, and many of our examples are broken up
into multiple lines. We don’t recommend using the console, but if you want to give it a try, access the console on your
favorite browser (typically Control- or Option-Shift-J is the keyboard shortcut, but it varies); for example:

In Chrome, you can access the console via the “customize and configure Google Chrome” •	
menu. Choose Tools ➤ JavaScript Console. You’ll also see the keyboard shortcut for accessing
the console (Control-Shift-J for Windows). You can type the code samples directly here.

In Firefox, choose Tools •	 ➤ Web Developer ➤ Error Console. You can type the code samples in
the box labeled Code. If you want to use a console, be sure to type in entire valid statements
before pressing Enter. To learn what constitutes a statement in JavaScript, you can skip ahead
to Chapter 2.

JavaScript’s Three Difficult Features
As we mentioned, there are three main features of JavaScript that people find problematic: the way it implements
inheritance, the way it implements variable scope, and the way it implements data types. Rather than shy away from
these features, we’re going to dive directly into them.

Prototypal Inheritance
JavaScript is an object-oriented language, but, unlike most object-oriented languages, its inheritance is based on
prototypes rather than classes. This difference is often misunderstood, and can be difficult to explain.

The biggest difference is that in JavaScript there is no such thing as classes. You can build class emulation with
JavaScript, but out-of-the-box JavaScript has no classes. There are only objects, and you instantiate new objects from
other objects.

Inheritance in JavaScript is handled through a special property on every object, called the prototype. The
prototype property references all the properties and methods it inherited from its parent object—including its
prototype. When you attempt to access a property or method on an object, JavaScript first looks to see if it exists in
the local copy. If it doesn’t, JavaScript checks the prototype. If it doesn’t find the requested item in the prototype,
it checks the prototype's prototype, and so on, all the way on up the inheritance chain.

You can override properties and methods in the prototype. That will essentially break the prototype chain at that
point, so that object and any children instantiated from it will inherit the override, and no further searching up the
prototype chain will be done.

In a way, the prototype chain can be thought of as a one-way linked list. The prototype is the reference to the
previous element in the list.

One of the major aspects of prototypal inheritance is that if you change an inherited property or method on
an object, its children will also reflect that change even after they’ve been created. This is because the children’s
prototypes all refer back to the parent properties and methods.

Another major aspect of prototypal inheritance is that you can change the prototype of any of the global objects,
thus adding your own properties and methods to them—or even overriding their existing ones. Note however that
overriding existing properties and methods of the global objects can be dangerous. Remember that those properties
and methods were defined by a standard, so if you make them do something else, then you could lose the benefit of
standards compliance. As a result, it’s generally considered bad practice to override those properties and methods
unless you are very careful about what you are doing.

Chapter 1 ■ JavaScript Basics

9

Listing 1-3 provides a very simple example of prototypal inheritance.

Listing 1-3.  Simple Example of Prototypal Inheritance

var myParent = {
 a: 10,
 b: 50
}
 
var myChild = Object.create(myParent);
var myGrandChild = Object.create(myChild);
 
alert(myGrandChild.a); // will alert 10
myParent.a = 20;
alert(myGrandChild.a); // will alert 20
alert(myChild.a); // will alert 20
 

We’ll talk a bit more about the syntax of Object.create in a moment; for now, just concentrate on what the
script is doing: first, it creates a parent object with the properties a and b, and then it creates a child object from that
parent, and a grandchild object from the child. We now have three objects, each inheriting from its parent. When we
check the grandchild object for the value of a, JavaScript traverses the prototype chain until it finds the property in
the parent.

Since the prototype is just a reference, adding properties to a parent immediately makes them available in the
child, as demonstrated in Listing 1-4.

Listing 1-4.  Adding a Property to a Parent Makes It Available to the Children

var myParent = {
 a: 10,
 b: 50
}
 
var myChild = Object.create(myParent);
var myGrandChild = Object.create(myChild);
 
myParent.c = "hello";
alert(myChild.c); // will alert "hello"
alert(myGrandChild.c); // will alert "hello"
 

This example is similar to Listing 1-3, but we are adding a new property to the parent object after the children
have been instantiated.

In some browsers, you can even examine the prototype directly because they provide a __proto__ property on
the object, which you can view through the console (see Figure 1-2).

Chapter 1 ■ JavaScript Basics

10

In Figure 1-2, we see that myGrandChild is an object, and when we expand it, we see that it has a __proto__
property. When we expand that, we see it has another __proto__ property, and when we expand that, we find the
a and b properties. There is also another __proto__ property, which refers to the global Object object…thus, all of our
objects inherit all of the properties and methods of the global Object object.

The idea of prototypal inheritance is simple, but it’s surprisingly easy to misunderstand. Compounding the
problem is that in earlier versions of JavaScript, the methods and syntax for creating new objects from other objects,
shown in Listing 1-5, closely resembled the syntax of languages with classic inheritance.

Listing 1-5.  Old Syntax for Creating New Objects and Modifying the Prototype

function myObject() {}; // constructor function
var myInstance = new myObject; // instantiate a new instance
alert(myInstance.prop1); // will alert "undefined" because it doesn't exist
myObject.prototype.prop1 = "Here I am";
alert(myInstance.prop1); // will alert "Here I am"
 

Not only is this somewhat inelegant, the new keyword led people to think of things in terms of classical
inheritance, which only further confused the issue. And it required that any object from which you were planning on
creating children be a function.

ECMAScript 5 defines a new property on the global Object: Object.create(). This method takes an object as a
parameter, and returns a new object with the parameter object as its prototype. This syntax is tidier, as shown in Listing 1-6,
and also helps clarify the inheritance chain and removes the need of directly accessing the prototype property.

Figure 1-2.  Viewing the prototype in Chrome’s console

Chapter 1 ■ JavaScript Basics

11

Listing 1-6.  Improved Syntax for Creating New Objects

var myObject = {};
var myInstance = Object.create(myObject);
alert(myInstance.prop1); // will alert "undefined" because it doesn't exist
myObject.prop1 = "Here I am";
alert(myInstance.prop1); // will alert "Here I am"
 

This new method works in modern browsers, but if you find yourself working with an older JavaScript engine that
doesn’t support this version of the standard (most notably, Internet Explorer 8 and earlier), you can always use the
snippet shown in Listing 1-7 to provide the same functionality.

Listing 1-7.  A Method for Adding the create Method to Object If It Doesn’t Exist

if (typeof Object.create !== 'function') {
 Object.create = function (o) {
 function F() {}
 F.prototype = o;
 return new F();
 };
}
 

Listing 1-7 checks to see if Object.create exists, and if it doesn’t, it adds it to the global Object object. This is a
good example of a safe way to extend global objects.

SHIMS

Listing 1-7 is an example of what is what is known as a shim or polyfill, terms that refer to small scripts that add
missing functionality to a particular environment, or that repair incorrect implementations. Listing 1-7 is a shim
for a JavaScript shortcoming; there are also shims for various CSS issues and even HTML issues.

Shims are commonly included in JavaScript libraries—in fact, many libraries got their start as just collections of
various shims.

Scoping in JavaScript
Another much-misunderstood and often-maligned feature of JavaScript is its scoping: how JavaScript limits and
allows access to its variables. Because JavaScript closely resembles C in many ways, it’s natural to think that it uses
block-level scoping like C, an example of which is shown in Listing 1-8.

Listing 1-8.  Block-level Scoping in C

#include <stdio.h>
int main() {
 int x = 1;
 printf("%d, ", x); // 1
 if (1) {
 int x = 2;
 printf("%d, ", x); // 2
 }
 printf("%d\n", x); // 1
}
 

Chapter 1 ■ JavaScript Basics

12

In C, each code block (if statement, for loop, etc.) is its own scope: a variable defined in one scope is not
available in another. It’s logical to assume that JavaScript employs block-level scoping because it uses syntax very
similar to C . . . but it doesn’t.

Instead, JavaScript uses what is called functional scope, meaning that scope is declared by functions. A variable
defined in a function is available anywhere within that function, even in other blocks such as if statements, for loops
or nested functions. As a demonstration, here’s a listing that creates a functional scope and tests variables within:

Listing 1-9.  Demonstrating Nested Functional Scope

function testScope() {
 var myTest = true;
 if (true) {
 var myTest = "I am changed!"
 }
 alert(myTest);
}
 
testScope(); // will alert "I am changed!"
 

The example shown in Listing 1-9 creates a simple testScope function. Within it we declare a variable, myTest,
which gives it scope to be available anywhere within that function. Then we redeclare the variable within an if statement
block and give it a different value. Finally, we test to see what the results are: the script will alert I am changed!

In C or another language with block-level scope, a similar example would alert true because the myTest
redeclaration in the if statement would be limited in scope to that block.

If we tried to access the myTest variable outside of the testScope function, it would fail, as shown in Listing 1-10.

Listing 1-10.  Demonstrating Functional Scope

function testScope() {
 var myTest = true;
 if (true) {
 var myTest = "I am changed!"
 }
 alert(myTest);
}
 
testScope(); // will alert "I am changed!"
alert(myTest); // will throw a reference error, because it doesn't exist outside of the function
 

Outside of the testScope function, myTest doesn’t exist. You can make it exist though, as shown in Listing 1-11.

Listing 1-11.  Demonstrating Global Scope

var myTest = true;
function testScope() {
 if (true) {
 var myTest = "I am changed!"
 }
 alert(myTest);
}
 
testScope(); // will alert "I am changed!"
alert(myTest); // will alert "I am changed!"
 

Chapter 1 ■ JavaScript Basics

13

By defining the myTest variable outside of the testScope function, it becomes available everywhere. This is what
is called the global scope. Global functions and variables are available anywhere. This is a very powerful feature of
JavaScript, but it is easy to abuse. Generally speaking, it’s considered bad practice to clutter the global scope, mostly
because it can lead to variables with the same name clobbering each other’s values as scripts execute, causing all sorts of
difficult-to-debug problems. Instead, it’s recommended that variables be limited as much as possible to private scopes.

Limiting Scope
So far, we have been carefully declaring our new variables with the var keyword. But the var keyword is optional in
JavaScript; you can simply declare a new variable by providing it a value, as demonstrated in Listing 1-12.

Listing 1-12.  Declaring a Variable Without the var Keyword

var myNewVar = 1; // Using var to declare a variable.
myOtherNewVar = 2; // var is optional.
alert(myNewVar); // will alert 1
alert(myOtherNewVar); // will alert 2
 

However, when you declare a variable without the var keyword, JavaScript assumes that you mean you defined
the variable in a higher scope and you want to access that variable. So JavaScript will look up to the containing scope
to see if the variable was declared there using the var keyword. If it wasn’t, JavaScript keeps looking up the scope
chain until it reaches the global scope. If it reaches the global scope and still hasn’t found a declaration using the
var keyword, JavaScript will assign the variable to the global scope for you, as shown in Listing 1-13.

Listing 1-13.  Cluttering the Global Scope

function testScope() {
 myTest = true; // now myTest is global.
 alert(myTest);
}
testScope(); // will alert "true"
alert(myTest); // will alert "true" as well, because now myTest is global.
 

This feature of JavaScript is called implied global scope. It basically means that variables that are not specifically
limited in scope are assumed to be global.

To limit the scope of a variable, use the var keyword in its declaration, as shown in Listing 1-14. Using the
var keyword instructs JavaScript to limit the scope of the variable to the current one. This prevents accidentally
cluttering the global scope.

Listing 1-14.  Limiting Scope with var

function testScope() {
 var myTest = true;
 function testNestedScope() {
 var myTest = false;
 alert(myTest);
 }
 testNestedScope();
 alert(myTest);
}
 
testScope(); // will alert false, and then true.
 

Chapter 1 ■ JavaScript Basics

14

In Listing 1-14, we’re defining two different myTest variables in different scopes. Within the testNestedScope
function, myTest has a local definition that overrides the higher scope. This prevents two variables with different
names from clobbering each other’s values.

You might be wondering what would happen if we swapped the two lines within the testNestedScope function,
as shown in Listing 1-15—in other words, what would happen if we try and access a variable before it was defined in a
given scope?

Listing 1-15.  Accessing a Variable Before It Was Defined in a Given Scope

function testScope() {
 var myTest = true;
 function testNestedScope() {
 alert(myTest);
 var myTest = false;
 }
 testNestedScope();
 alert(myTest);
}
 
testScope(); // will alert "undefined", and then true.
 

Listing 1-15 will alert undefined and then true. Why? That is, why doesn’t the first line in testNestedScope alert
true? After all, myTest is set to true in a higher scope, so why isn’t it available there?

The reason is that we are limiting the scope of myTest within the testNestedScope variable by defining it with the
var keyword. But when we access it before we give it a value, it is set to “undefined.” So this code is the equivalent of
the code shown in Listing 1-16.

Listing 1-16.  More Explicit Equivalent of Listing 1-15

function testScope() {
 var myTest = true;
 function testNestedScope() {
 var myTest;
 alert(myTest);
 myTest = false;
 }
 testNestedScope();
 alert(myTest);
}
 
testScope(); // will alert "undefined", and then true.
 

Listing 1-16 illustrates what happened in Listing 1-15 by explicitly declaring the variable without a value at the
very beginning of its scope. In JavaScript, any variable declared in a given scope is available anywhere within that
scope, even before it is given a value. This feature of JavaScript is often called hoisting: a variable is “hoisted” to the
beginning of the scope where it is declared. Because of hoisting, it’s often considered a good practice in JavaScript to
explicitly declare your variables at the beginning of their scope, even if you don’t access them until much later.

Chapter 1 ■ JavaScript Basics

15

Closures
In most languages, once a function returns, all of its local variables are deallocated—removed from memory and no
longer available. In JavaScript, this doesn’t have to happen. Because of JavaScript’s dynamic nature and scoping rules,
you can code situations where local variables within a function will remain available even after that function has
finished executing. Consider the example presented in Listing 1-17.

Listing 1-17.  Causing a Scope to Be Maintained After Its Function Has Finished Executing

function greet(myName) {
 var myAlertString = "Hello " + myName; // Local variable
 function doAlert() {
 alert(myAlertString);
 }
 return doAlert; // return the new function
}
 
var greetKitty = greet("Kitty"); // greetKitty is now a function
greetKitty(); // will alert "Hello Kitty"
 

Listing 1-17 is a somewhat contrived example, and there are some unusual things going on here, so let’s go
through them one at a time. The first strange thing is that we’re returning a function from our function. This seems a
little strange, but it’s not that unusual in JavaScript. Remember, in JavaScript, functions are objects, so you can return
them and even assign them to variables just as easily as any other object.

Our greet function takes a name as a parameter, concatenates it into a string in a local variable, then defines a
local function that alerts that string. Then it returns that local function. When we call the greet function, we assign the
returned function to a variable, and then execute the returned function.

What’s special about this situation is that the greet function is called and completely executes at the time when
we assign its result to the greetKitty variable. In most languages, the myAlertString variable would at that point
be deallocated and unavailable. But in JavaScript it’s still there, because we have created a specific situation where it
needs to remain so that when we execute the returned function, everything will behave as expected. In other words,
both the returned function and its immediate nonlocal functional scope are retained, even though the function
that created them has finished running. This is a side effect of the variable scoping in JavaScript: the interpreter will
maintain a scope until it is no longer needed.

That goes for the private scope we created as well. Listing 1-18 demonstrates this by saying “Hello” to a
different cat.

Listing 1-18.  The Privacy of a Maintained Scope

function greet(myName) {
 var myAlertString = "Hello " + myName; // Local variable
 function doAlert() {
 alert(myAlertString);
 }
 return doAlert; // return the new function
}
 
var greetKitty = greet("Kitty"); // greetKitty is now a function
greetKitty(); // will alert "Hello Kitty"
var greetMax = greet("Max"); // greetMax is now a function
greetMax(); // will alert "Hello Max"
greetKitty(); // will alert "Hello Kitty"
 

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ JavaScript Basics

16

Both the greetMax and greetKitty functions have access to their own maintained scope, and those scopes are
private from each other and the global scope.

The result of this particular example happens because of the scoping rules of JavaScript. If we allow the use of a
global variable, as shown in Listing 1-19, then we no longer have a private, maintained scope for each function.

Listing 1-19.  Using a Global Variable

function greet(myName) {
 myAlertString = "Hello " + myName; // Now a global variable
 function doAlert() {
 alert(myAlertString);
 }
 return doAlert; // return the new function
}
 
var greetKitty = greet("Kitty"); // greetKitty is now a function
greetKitty(); // will alert "Hello Kitty"
var greetMax = greet("Max"); // greetMax is now a function
greetMax(); // will alert "Hello Max"
greetKitty(); // will alert "Hello Max"
var greetLenore = greet("Lenore");
greetLenore(); // will alert "Hello Lenore"
greetKitty(); // will alert "Hello Lenore"
greetMax(); // will alert "Hello Lenore"
 

In Listing 1-19 we have changed the situation by not enforcing a scope limit on the myAlertString variable.
This allows JavaScript to imply that it’s a global variable, which gets overwritten each time the greet function is called.

Maintaining a function and its parent scope even after its parent function has finished executing is called closure.
Closures are an enormously important and powerful feature of JavaScript, and we will be using them extensively
throughout this book.

Because you can use them to enforce privacy, closures are useful for encapsulating functionality and managing
scope. They play a part in some of the most common JavaScript patterns, which we’ll cover later in this chapter.

Closures are quite powerful, but they have one important drawback: because a closure requires the browser to
keep memory allocated for the function and its scope, once a closure is no longer needed, the browser sometimes
might not return all of the memory to the system. The primary symptom of this would be a memory leak: as the
script continues to execute in the browser, the browser consumes more and more memory, eventually consuming
all available memory. A memory leak assumes that the browser shouldn’t otherwise be consuming more and more
memory or is consuming it faster than it should.

Older browses had serious problems with memory leaks due to closures. Modern browsers are much more
efficient but can still have problems. You should monitor the memory use of the browser as it runs your scripts to
make sure it’s not having problems.

One of Those Weak Types, Eh?
As we mentioned earlier, JavaScript is weakly typed. This means that if there is a type mismatch problem in an
expression, JavaScript will resolve it according to its own rules. Consider as an example the code shown in Listing 1-20.

Chapter 1 ■ JavaSCript BaSiCS

17

Listing 1-20. Demonstration of Weak Typing

var myNumber = 5; // Integer
var myString = "7"; // String
var myResult = myNumber + myString; // Type mismatch: integer + string = what?
alert(myResult); // Will alert "57"

A statically typed language would throw an error as this script was parsed. But JavaScript resolves the type
mismatch itself, allowing the program to continue without crashing.

Many people consider weak typing to be a disadvantage, and indeed it is easy for novice JavaScript developers
to make plenty of mistakes with weak typing. However, once you master JavaScript’s typing rules, you can use this
feature to its full potential and create scripts that are smaller and more elegant than the scripts you might have created
with an equivalent strongly typed language.

Basic Data Types and Primitives
We’ll begin our exploration of JavaScript typing by reviewing its basic data types. Yes, though it is weakly typed,
JavaScript actually does have data types, they’re just broader than typical data types. The four basic data types are:

•	 Boolean: Variables or expressions which are either true or false.

•	 Number: All numbers in JavaScript are 64-bit floating-point numbers.

•	 String: Strings of any characters.

•	 Object: Collections of properties and methods.

JavaScript uses these data types as the basis of all of its type management. To determine the type of
anything in JavaScript, use the typeof operator, as demonstrated in Listing 1-21 (see Chapter 7 for full details on
the typeof operator).

Listing 1-21. Using the typeof Operator

var myArrayOfThings = ["hello", 5, true, {}];
for (var i = 0; i < myArrayOfThings.length; i++) {
 alert(typeof myArrayOfThings[i]);
}
alert(typeof myArrayOfThings);

This will alert, in order, “String”, “Number”, “Boolean”, “Object”, and “Object”. (Yes, in JavaScript, arrays are
objects.) Note that typeof will return “Function” for a function, though in JavaScript there is no Function type.

In addition, JavaScript has the concept of primitives: non-object simple values. JavaScript primitives are the
building blocks from which the more complex data types are built. They are

•	 Boolean: The true and false keywords are the Boolean primitives themselves.

•	 Null: The null keyword.

•	 Number: A number by itself is a number primitive.

•	 String: A string of characters enclosed in quotes is a string primitive.

•	 Undefined: A special value representing a variable that has been created with the var keyword,
but to which no value has been assigned.

It’s important to note that in JavaScript, anything that is not a primitive is an object. Functions, for example,
are objects.

Chapter 1 ■ JavaScript Basics

18

You can also convert between primitives and objects in JavaScript. You’ll notice that boolean, number, and string
primitives have global objects to match (see Chapter 5 for details on the Boolean, Number, and String global objects
and how to use them). Consider the example shown in Listing 1-22.

Listing 1-22.  So Wait, Is It a Primitive or Not?

var myString = "hello there" // primitive
alert(myString.length); // will alert 11. . .but length is a property of the String object
alert(typeof myString); // will alert "string"
 

This code snippet alerts 11, the length of the string. But why? If “hello there” is indeed a primitive, how come we
can access myString.length?

We can do that because, behind the scenes, JavaScript is converting our primitive value to its associated object,
thus giving us access to all of the properties and methods of String. This conversion is transient, which is why typeof
myString still results in “String” rather than “Object.”

This sort of behind-the-scenes conversion happens frequently in JavaScript, which is another reason why it’s
important to fully understand how JavaScript does it.

Type Conversion in JavaScript
Now that we have all of the basics defined, we can look at how JavaScript actually handles type mismatches. JavaScript has a
set of functions it uses to handle conversion from one type to another: toPrimitive(), toNumber(), and toBoolean(). These
functions are abstract, meaning they are private to the inner workings of JavaScript and can’t be directly called by scripts.

The toPrimitive() method takes an input argument, and can also take an optional preferredType argument.
It converts nonprimitives (that is to say, Objects) to their closest associated primitive type. If the input argument
can decompose to more than one primitive type, the preferredType argument can be used to specify which one to
choose. Table 1-1 summarizes the rules that toPrimitive() follows, depending on its input argument type:

Table 1-1.  Rules for toPrimitive

input Argument Type Result

Object If valueOf() returns a primitive, then return that; else, if toString returns a
primitive value, then return that; else, throw an error

Everything else No change

The toNumber() method takes an input argument and tries to convert it to a Number, as shown in Table 1-2.

Table 1-2.  Rules for toNumber

input Argument Type Result

Boolean 1 if true, +0 if false

Null +0

Number No conversion

Object toNumber(toPrimitive(object))

String Converted similarly to parseInt() (see “Miscellaneous Global Functions and Variables”
in Chapter 5 for a full explanation of parseInt()), except if the primitive value contains
anything other than numbers, a single decimal, or a leading + or –, it returns NaN

Undefined NaN

Chapter 1 ■ JavaScript Basics

19

The toBoolean() method takes an input argument and tries to convert it to either true or false, as shown
in Table 1-3.

Table 1-4.  Type Conversion Algorithm for == Operator

Type of x Type of y Result

Null Undefined true

Undefined Null true

Number String x == toNumber(y)

String Number toNumber(x) == y

Boolean Any toNumber(x) == y

Any Boolean x = toNumber(y)

String or Number Object x == toPrimitive(y)

Object String or Number toPrimitive(x) == y

The most common place where type conversion occurs in a script is during the evaluation of an if (Expression)
Statement conditional, and when using the == comparison. In the case of the conditional, Expression is reduced to a
boolean using toBoolean(). And the algorithm for type conversion for == is a simple algorithm defined by the
ECMA-262 standard and outlined in Table 1-4.

Table 1-3.  Rules for toBoolean

input Argument Type Result

Boolean No conversion

Null false

Number If –0, +0, or NaN, return false; otherwise, return true

Object true

String If the string is empty, return false; otherwise, return true

Undefined false

There are a couple of important takeaways from this algorithm: first, that null and undefined are equal to each
other and nothing else, and second, that eventually everything else gets reduced to numbers to facilitate comparison.

Even though this algorithm is actually pretty simple, many people don’t understand it and, as a result, find the
behavior of == to be confusing. People find it so confusing that a common recommended best practice for JavaScript
coding is to avoid the use of == (and !=) and instead use === (and !==) at all times. Listing 1-23 is a version of an
example that is often cited as a reason to avoid using == in JavaScript.

Listing 1-23.  Confusing Type Conversion in JavaScript

if ("Primitive String") {
 alert("Primitive String" == true);
 alert("Primitive String" == false);
}
 

Chapter 1 ■ JavaScript Basics

20

This code will first alert false and then alert false again, so it’s not hard to understand why this might cause
people to throw up their hands in frustration. Let’s walk through it step by step:

1.	 In the if statement, we see JavaScript applying toBoolean() on "Primitive String",
which evaluates to true, so execution moves into the code block.

2.	 We apply the algorithm to "Primitive String" == true, which tells us to check
"Primitive String" == toNumber(true), which is the same as "Primitive String" == 1.

3.	 We check toNumber("Primitive String") == 1, which is the same as NaN == 1, which
is false.

4.	 We go through the same thing with "Primitive String" == false, which, after a couple of
applications of the algorithm similar to step 2, gets us to NaN == false, which is also false.

Now that we understand the rules, the results of Listing 1-23 actually makes perfect sense.
Consider the common code pattern shown in Listing 1-24, in which we are trying to provide a default for an

argument in a function.

Listing 1-24.  A Common Mistake: Checking if Something is undefined or null

function myFunction(arg1) {
 // Check if arg1 wasn't provided
 if ((arg1 === undefined) || (arg1 === null)) {
 // provide default value for arg1 here
 }
 // Continue with function. . .
}
 

The common mistake in Listing 1-24 shows a lack of understanding of one of the most basic type conversion
rules: null and undefined are equal to each other and nothing else. Listing 1-25 shows a better way to write this code.

Listing 1-25.  A Better Solution to Check if Something is undefined or null

function myFunction(arg1) {
 // Check if arg1 wasn't provided
 if (arg1 == null) {
 // provide default value for arg1 here
 }
 // Continue with function. . .
}
 

You could have checked arg1 == undefined, but because undefined is a variable, it has two disadvantages: first,
comparing with undefined entails a scope chain lookup, which usually isn’t that big of a deal, but if you’re buried
deep in scope and/or implementing the check in a long loop, it can have a performance hit; second, there is a slight
chance that its value could be overwritten by accident (it’s rare, but it happens). It’s safer to compare with null.

Putting It Together: Two Common Patterns
Every language has common patterns you see used frequently, and JavaScript is no exception. JavaScript’s common
patterns make use of one or more of the features we’ve covered in this chapter, so they’re excellent practical examples
of those features and how powerful they can be. The first pattern is a syntax pattern that you will see used all the time
in JavaScript, and which you will use many times yourself. The second is an implementation pattern that is likewise
very common, and will help you begin organizing your JavaScript into manageable modules.

Chapter 1 ■ JavaScript Basics

21

Immediately Executing Function Expressions
In other examples in this chapter, we have created functions within functions and then executed them. Is it possible to
define a function and then immediately execute it without having to call it separately?

In JavaScript, the notation to call a function is to place a pair of parentheses after the function’s name (or after
the name of the variable to which it has been assigned—see Chapter 2 for more details on this distinction). So, if
we just place a pair of parentheses after a function declaration, will that execute it? For example, would the code in
Listing 1-26 work?

Listing 1-26.  Attempting to Immediately Invoke a Function

function greet(myName) {
 var myAlertString = "Hello " + myName; // Local variable
 function doAlert() {
 alert(myAlertString);
 }()
}
 
greet("Kitty");
 

The answer is no, this doesn’t work. When the JavaScript interpreter sees the keyword function, it assumes what
follows is a declaration to be added to the scope and not an expression to be evaluated. You have to explicitly tell the
interpreter that your function is an expression to be evaluated, and you do this by putting parentheses around it,
as shown in Listing 1-27.

Listing 1-27.  Immediately Invoked Function

function greet(myName) {
 var myAlertString = "Hello " + myName; // Local variable
 (function doAlert() {
 alert(myAlertString);
 })()
}
 
greet("Kitty");
 

This will actually work as you would expect. You don’t even have to name your function, either, as shown in
Listing 1-28.

Listing 1-28.  Immediately Invoked Anonymous Function

(function() {
 // do stuff here
})();
 

You can also pass variables into the invocation, as shown in Listing 1-29.

Listing 1-29.  Passing Variables into an Immediately Invoked Anonymous Function

(function(var1, var2) {
 // do stuff here
})(myExternalVar1, myExternalVar2);
 

Chapter 1 ■ JavaScript Basics

22

Immediately invoked anonymous functions are useful because they provide a way to exploit closures and
manage scope. Everything within the expression is private unless you specifically return something to the global
scope, which makes it a lot easier to keep your global scope clear of unneeded clutter. The immediately invoked
anonymous function pattern is used throughout JavaScript development, most notably in the module pattern.

The Module Pattern
Imagine you are working on a large JavaScript application with many other developers. You need a way to encapsulate
sections of code so that they can have a private namespace, so that you can avoid conflicts with existing code. How
would you do this? With the module pattern, of course.

The module pattern uses an immediately invoked function to create a closure for all of your encapsulated code.
You can have private members, and you can even publish public APIs. The basic pattern is shown in Listing 1-30.

Listing 1-30.  Module Pattern

var Module = (function() {
 var _privateVariable = "This is private",
 _otherPrivateVariable = "So is this",
 public = {}; // This object will be returned
 function privateMethod() {
 alert("This method is private as well");
 }
  
 public.publicProperty = "This is a public property";
 public.publicMethod = function() {
 alert("This is a public method");
 }
 return public;
})()
 
alert(Module._privateVariable); // will alert "undefined"
// Module.privateMethod(); // would throw an error if we let it run
alert(Module.publicProperty); // will alert "This is a public property"
Module.publicMethod(); // will alert "This is a public method"
 

The module pattern is an excellent example of using closure to manage scope. Within the module there is a
private scope that is self-contained and safe from modification.

That’s not all. You can even easily extend the module by reprocessing it through an immediately invoked
function. All you have to do is pass the original module into the new immediately invoked function as an argument,
as shown in Listing 1-31.

Listing 1-31.  Extending the Module

var Module = (function(oldModule) {
 oldModule.newMethod = function() {
 alert("This is a new method!");
 }
 return oldModule;
})(Module)
 

Chapter 1 ■ JavaScript Basics

23

You can also create submodules on modules, as shown in Listing 1-32.

Listing 1-32.  Creating Submodules

Module.sub = (function() {
 var _privateSubVariable = "This is a private variable in the submodule",
 public = {};
 public.publicSubVariable = "This is a public variable in the submodule";
 return public;
})();
 

Because it makes such great use of JavaScript’s dynamic features, the module pattern is highly flexible. In fact,
if you take a look at the source code for modern JavaScript libraries (jQuery, for example), you’ll see that many of
them are built using this pattern.

Summary
In this chapter we tackled head-on the things that people find most difficult about JavaScript. We didn’t shy away
from the fact that many people don’t like JavaScript because of these things, and we explained JavaScript’s history and
continuing evolution so that you understand how JavaScript ended up this way. Having read this chapter, you now
should understand the following:

The three things that people have the most trouble with when learning JavaScript are scoping, •	
inheritance, and types.

JavaScript’s inheritance is prototypal rather than class-based.•	

JavaScript’s scoping is based on functions rather than code blocks.•	

JavaScript’s scoping and functional nature allow you to create closures.•	

JavaScript handles types in very specific and well-defined ways.•	

You should also be familiar now with immediately executed function expressions and the module pattern, and
how the module pattern employs closure to maintain scope and enforce privacy.

With this chapter under your belt, you are ready to dig deeper into the nuts and bolts of JavaScript. In the next
chapter we will cover the details that we glossed over in this chapter, from expressions and statements to objects, and
all the way to functions and flow control.

25

Chapter 2

JavaScript Nuts and Bolts

In Chapter 1 we covered some of the basics of JavaScript. We delved quite deep into a few of the concepts that people
struggle with when learning the language. We didn’t really address the language as a whole, though, which is what
we’ll do now. In this chapter we’ll dive into the details we glossed over in Chapter 1 and get to the nuts and bolts of the
language. We’ll also discuss some of the things we touched on in Chapter 1 in more detail.

This chapter will provide you with a solid grounding in the JavaScript language, and will do so in a way that’s both
accessible to novices to the language and still a valuable reference for the experienced JavaScript developer. Our hope
is that, as you progress in your JavaScript development skills, you’ll refer to this chapter both to remind yourself of the
basics and to dive into specific topics more deeply.

We will begin by reviewing some basic matters of formatting JavaScript code, especially as related to the examples
in this book. Then we will cover expressions and statements, the two most basic building blocks of JavaScript from which
all JavaScript programs are built. With that groundwork laid, we can then discuss creating more complex statements
with operators. We will talk about variables and how to manage them in your JavaScript programs. Then we will discuss
objects and arrays, which will give you the building blocks for everything else. Then we will have an in-depth discussion
of functions: what they are, and how to make them, and we will gain some important insights into the dynamic nature of
JavaScript. Finally, we will cover how to control our programs with conditionals and loops.

By the end of this chapter, you should have a solid understanding of JavaScript’s lexical structure and syntax,
and should feel comfortable using its basic constructs for flow control and functionality.

Note■■   Throughout this chapter, we will be referring to, and even quoting directly, the ECMA-262 standard, the current
version of which is ECMAScript Language Specification, 5.1 Edition. You are encouraged to explore the standard itself at
www.ecma-international.org/ecma-262/5.1/ (which also provides a link for a downloadable PDF version), as this is
an excellent way of expanding your understanding of JavaScript.

Formatting JavaScript Code
Formatting code is one of the many subjects that will invariably result in a roomful of angry developers shouting at
each other. (I once saw someone nearly throw a chair in the middle of an argument about indenting with spaces vs.
tabs.) Even though it’s a touchy subject, this reference would be remiss without at least laying the groundwork for
future arguments, as well as defining the conventions we will use throughout this book.

Broadly, JavaScript uses C-like formatting. Most notably, JavaScript uses curly brackets ({ }) to denote blocks of
code, like loops or logical flow control.

JavaScript also uses two styles of comment delimiters. The double-slash (//) is the single-line delimiter, which
indicates that everything from that point to the end of the line is a comment. JavaScript also uses /* to denote the
beginning of a multiline comment and */ to indicate the end. Anything contained within those delimiters, regardless
of new lines, is considered a comment.

http://www.ecma-international.org/ecma-262/5.1/

Chapter 2 ■ JavaScript Nuts and Bolts

26

Whitespace, including indentation, for the most part is unimportant. To quote Section 7.2 of the ECMA-262
standard: “White space characters are used to improve source text readability and to separate tokens (indivisible
lexical units) from each other, but are otherwise insignificant.” JavaScript doesn’t care if you indent with tabs or
spaces, or even if you indent at all. Similarly, JavaScript imposes no requirements for new lines. In fact, it’s common
to “compress” JavaScript by removing all whitespace and running everything together on one line for the sake of
reducing file size (see Chapter 4 for more information on compressing JavaScript).

JavaScript uses semicolons (;) to terminate statements. However, semicolons can be considered optional
because JavaScript interpreters practice automatic semicolon insertion (ASI), which means they attempt to correct
code that would be nonfunctional without semicolons by automatically inserting them as needed. As a result you can
choose to write your JavaScript without using many (or even any) semicolons, and instead rely on ASI. Traditionally,
it has been considered a best practice to explicitly use semicolons to terminate statements. However, with the advent
of newer meta-scripting languages like CoffeeScript, many people now prefer to write terse code that employs a
minimum of semicolons and instead relies on ASI as much as possible.

From a practical standpoint, either method is acceptable in that either method will help produce consistent,
functional code. However, as with anything involving programming style, there have been many heated arguments
recently about explicit semicolon use versus relying on ASI.

Relying on ASI
ASI follows a well-defined set of rules laid out in the ECMA-262 standard (Section 7.9 of Edition 5.1). If you would like
to write JavaScript without semicolons, you are encouraged to review the standard so you know exactly what you are
doing. We won’t cover the rules in detail here, but if you would like to rely on ASI, there are some important things to
bear in mind.

Broadly, if the JavaScript engine encounters a new line (or a curly brace, though ASI is invoked mostly for new lines)
that is used to break up tokens that otherwise don’t belong together, JavaScript will insert a semicolon—but only if it needs
to do so in order to create syntactically valid code: code that the interpreter can successfully parse and execute. But the
interpreter does not care if the code results in an error when it is executed. It only cares that the code can be executed.

To illustrate this, consider the two lines of JavaScript shown in Listing 2-1.

Listing 2-1.  JavaScript with No Semicolons

myResult = argX - argY
myFunction()
 

If the interpreter were to encounter this code, it would determine that indeed a semicolon is needed to make this
code functional, and it would insert one (Listing 2-2):

Listing 2-2.  Result of ASI on Listing 2-1

myResult = argX - argY;
myFunction()
 

On the other hand, consider the two lines of code in Listing 2-3.

Listing 2-3.  More JavaScript with No Semicolons

myResult = argX - argY
[myResult].myProperty = "foo"
 

In this case, the interpreter would not insert a semicolon because, even though there is a new line, a semicolon
isn’t needed to make the code functional. Instead, the interpreter would assume we meant what you see in Listing 2-4.

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ JavaScript Nuts and Bolts

27

Listing 2-4.  What the Interpreter Thinks Listing 2-3 Means

myResult = argX - argY[myResult].myProperty = "foo";
 

If you actually run the example, your browser will throw a Reference Error complaining about an invalid
assignment. The = operator is JavaScript’s assignment operator, and JavaScript expects assignments to be formed such
that the left operand takes the value of the right operand. In this example, JavaScript is unable to determine what you
even mean in the left operand, let alone be able to use the result to assign a value.

This is a contrived example, but it does expose the main consideration when relying on ASI: you have to understand
the rules in order to use it effectively, whereas explicitly using semicolons leaves no doubt. And not only do you have to
understand the rules, anyone who will be working with you on your code will have to understand them as well.

Be Consistent
Every programmer has their own personal opinions about programming style, which is fine; what’s important is to
pick one way of doing things and be consistent. Consistently written code is much easier to read and understand than
code written with multiple bracketing styles, inconsistent indentation rules, and variable naming conventions. To that
end, in this book we employ the following styles for the sake of consistency:

•	 Semicolons: We use semicolons explicitly (instead of relying on ASI).

•	 Brackets: We use the so-called “one true bracketing style,” where opening brackets are placed
on the same line as their associated statements, and closing brackets are on their own line at
the same indention as their associated statements.

•	 Variable naming: By and large, properties are nouns and methods are verbs. In some
examples, we rely on a variation of “Hungarian notation,” wherein variable names are prefixed
with an indication of their type or functionality (e.g., intCounter or strMessage), just for the
sake of being even more explicit about the variable’s use or role within the example.

These particular choices aren’t meant to be singled out as better than others. When deciding which styles to use in
your projects, you should pick what works best for you, your team, and your situation. Consistency is what is important.

Expressions and Statements
Expressions and statements are the first things to understand really well about JavaScript because they are the basic
building blocks for JavaScript programs. The distinction between expressions and statements is simple, but subtle.

Expressions
Conceptually, expressions are like words or phrases in a spoken language. They are the simplest building blocks
of a program. In JavaScript, an expression is any section of code that resolves to a value. Since literal expressions
evaluate to actual values, JavaScript supports the same broad types of expressions as it does of variables: boolean,
number, string, and object. Expressions can be as simple as just stating a value, or they can be mathematical or logical
operations, as shown in Listing 2-5:

Listing 2-5.  JavaScript Literal Expressions

10 // Literal expression, resolves to 10
"Hello World" // Literal expression, resolves to the string "Hello World"
3+7 // Mathematical expression, resolves to 10
 

ChAPTEr 2 ■ JAvASCriPT NuTS AND BoLTS

28

You can also write compound expressions. A compound expression is an expression in which one (or more) of the
items in the expression is another expression. Compound expressions can be as complex and as nested as needed,
as in Listing 2-6:

Listing 2-6. Compound Expressions

 (3+7)/(5+5) // evaluates to 1
Math.sqrt(100) // evaluates to 10

One of the most common places you’ll encounter expressions is in a conditional, as demonstrated in Listing 2-7.

Listing 2-7. Compound Expression in a Conditional

if ((myString === "Hello World") && (myNumber > 10)) {
 // conditional code here
}

In this example, we have a compound expression consisting of two expressions, one testing the value of myString
and the other testing the value of myNumber, which will evaluate to either true or false. Those expressions are included in a
single logical AND expression, so if both evaluate to true, the conditional code will execute. (We’ll talk more about nested
multiple expressions in a bit; for now, just concentrate on each individual expression as the boolean that it represents.)

Finally, though an expression can stand on its own, as shown in Listing 2-8, such an expression typically is not
very useful.

Listing 2-8. A Not-So-Useful Literal Expression

var myNumber = 10,
 myOtherNumber = 20;

"hello world"; // um, okay?

if (myOtherNumber > myNumber) {
 alert("Condition was true!"); // will alert because conditional is true
}

This code will execute without throwing an error, and will alert “Condition was true!” as expected. The literal
expression on the third line of Listing 2-8 is perfectly valid, though it is not doing anything useful. To actually
do something, literal expressions are usually combined with operators: an assignment (using the = operator), a
conditional (using logic operators), and so forth.

The bottom line about expressions (even compound expressions) is that they only represent values. If you want
to actually do anything with those values, you need to use a statement.

Statements
In JavaScript, a statement is a collection of one or more expressions that performs a specific action. To return to the
spoken language analogy, if expressions are words and phrases, then statements are full sentences. Conceptually,
the simplest type of statement is an expression that has a side effect, such as variable assignment or a simple
mathematical operation. See Listing 2-9 for some examples.

Chapter 2 ■ JavaScript Nuts and Bolts

29

Listing 2-9.  Simple Statements

var x = 5, // variable assignment, a statement
 y = 3,
 z = x + y; // mathematical operation, also a statement
 

Sometimes these simple statements are referred to as expression statements to underline the fact that they are
essentially expressions with side effects. However, that term can confuse the subtle distinction between expressions
and statements, so in this book we will not use it.

Just as JavaScript has compound expressions, it also has compound statements. A compound statement is
a collection of statements in a block of code, often enclosed in curly brackets. Excellent examples of compound
statements are if statements and loops, shown in Listing 2-10.

Listing 2-10.  if Statements and Loops Are Compound Statements

if (expression) {
 // conditional statement--often a compound statement because it contains multiple statements.
}
for (expression) {
 // repeated statement--often a compound statement because it contains multiple statements.
}
 

Note, however, that not every section of code enclosed in curly brackets is necessarily a statement. Object literals,
for example, are expressions, not statements, despite being multiple expressions enclosed in brackets, as you can see
in Listing 2-11.

Listing 2-11.  An Object Literal Is Not a Statement

{
 prop1: "value",
 prop2: "value2"
}
 

However, as long as you remember that expressions (even compound expressions) represent values and nothing
else, the fact that an object literal is not a statement should be clear because an object literal is simply the specification
of an actual object value. For more information on object literals, see the “Objects” section later in this chapter.

Operators
Operators, perhaps unsurprisingly, perform operations on expressions. Operators perform their function (“operate”)
on operands. Most JavaScript operators are binary, meaning they take two operands, typically in this format:
 
operand1 operator operand2
 

Probably the most commonly used binary operator in JavaScript is the assignment operator, =. Other examples
include mathematical operators and most logical operators.

A few JavaScript operators are unary, meaning they take only one operand; for example:
 
operand operator
 

or
 
operator operand
 

Chapter 2 ■ JavaScript Nuts and Bolts

30

The order of operand and operator depends on both the operator in question and, sometimes, what you’re trying
to do with the operator. Examples include the logical NOT operator or the mathematical negation operator.

In addition, JavaScript has one ternary operator, known as the conditional operator. It takes three operands and
performs a conditional test:
 
conditionalExpression ? valueIfTrue : valueIfFalse
 

The conditional operator allows you to write more terse code than if you explicitly used an if-then-else
statement and can be used anywhere you would use a standard operator.

JavaScript operators fall into the following broad categories:

•	 Arithmetic operators: Perform arithmetical operations on their operands, such as addition,
multiplication, etc.

•	 Assignment operators: Modify variables, either by assigning their values or altering their values
according to specific rules.

•	 Bitwise operators: Treat their operands as a set of 32 bits, and perform their operations in that
context.

•	 Comparison operators: Compare their operands and return a logical value (true or false) based
on whether or not the comparison is true.

•	 Logical operators: Perform logical operations on their operands and are often used to link
together multiple comparisons.

•	 String operators: Perform operations on two strings, such as concatenation.

•	 Miscellaneous operators: Operators that don’t fall into any of the above categories. This
category includes the conditional operator and operators such as the void operator and the
comma operator.

We’re not going to cover every single operator in detail in this chapter; that reference is available in Chapter 7.
However, there is one important operator concept we want to cover here: precedence.

Precedence
If you have multiple operators in one statement, how do you determine the order in which to execute them? Do you
evaluate them strictly left to right? Are there other rules? Different orders of execution can produce different results
depending on the operators and their operands, so it’s important to have a standard way of approaching this problem.

Consider the example in Listing 2-12 involving mathematical operators.

Listing 2-12.  Multiple Mathematical Operators in a Single Statement

var myVar = 5 + 7 * 3 + 4 - 2 * 8;
alert(myVar); // what will this alert?
 

If you evaluate the statement in Listing 2-12 from left to right, performing each operation as you come to it,
you end up with 304. However, the example actually alerts 14, because some operators are evaluated before others
according to a set of rules known as precedence. In this example, multiplication has a higher precedence than addition
or subtraction, so that statement is actually evaluated as shown in Listing 2-13, which uses parentheses to indicate
precedence explicitly by grouping together the operations as they are actually evaluated.

Chapter 2 ■ JavaScript Nuts and Bolts

31

Listing 2-13.  Using Parentheses to Demonstrate Precedence Explicitly

var myVar = ((5 + (7 * 3)) + 4) - (2 * 8);
alert(myVar); // will alert 14
 

As it happens, mathematical operator precedence in JavaScript follows the precedence rules of mathematics
itself: items in parentheses or brackets are evaluated first, followed by exponents and roots, followed by multiplication
and division, followed by addition and subtraction.

Listing 2-14 provides another example, involving just addition and subtraction, two operators that are of the
same precedence.

Listing 2-14.  Multiple Operators of the Same Precedence

var myVar = 5 + 6 - 7 + 10;
alert(myVar); // what will this alert?
 

What’s the value of myVar? It depends on the order in which you execute the operations. It would be 14 if you
evaluated it from left to right, or it would be –6 if you evaluated it as (5 + 6) – (7 + 10).

When you have multiple operators of the same precedence together, they will evaluate according to their
associativity: either left to right, or right to left. In the case of mathematical operators, they are all evaluated left to
right, so the value of myVar is 14.

Because JavaScript has more than just mathematical operators, it has slightly more complex precedence rules
than those that come with mathematics, as you can see in Table 2-1.

Table 2-1.  Operator Precedence in JavaScript

Precedence Operator Type Associativity Individual Operator(s)

1 Member Left to right ., []

New Right to left new

2 Function call Left to right ()

3 Increment Not applicable (unary) ++

Decrement Not applicable (unary) --

4 Logical NOT Right to left !

Bitwise NOT Right to left ~

Unary + Right to left +

Unary negation Right to left -

Typeof Right to left typeof

Void Right to left void

Delete Right to left delete

5 Multiplication Left to right *

Division Left to right /

Modulus Left to right %

6 Addition Left to right +

(continued)

Chapter 2 ■ JavaScript Nuts and Bolts

32

Understanding operator precedence is important; otherwise, your statements might produce unexpected results.
Even so, many JavaScript best practices and style guides recommend that, for complex statements with multiple
operators, you explicitly state with parentheses the precedence you are intending. Generally, that makes for more
readable code and easier maintenance, though if you have an extremely complex statement, you can end up with lots
of parentheses. In that case, it might be worthwhile to break up the single statement into one or more statements, to
be fully explicit and reduce the overall number of parentheses.

Variables
Broadly speaking, a variable is a named storage location with an associated value. You access the value associated
with the storage location by using the name. Each language has its own implementation of variables: how to declare
them, what their scope is, and how they are managed.

Declaring Variables in JavaScript
In JavaScript, variables are declared using the var keyword, as shown in Listing 2-15.

Listing 2-15.  Declaring a Variable in JavaScript

var myVar = 1;
 

You can also simply access variables as needed without formally declaring them using the var keyword (Listing 2-16).

Table 2-1.  (continued)

Precedence Operator Type Associativity Individual Operator(s)

Subtraction Left to right -

7 Bitwise shift Left to right <<, >>, >>>

8 Relational Left to right <, <=, >, >=

In Left to right in

Instanceof Left to right instanceof

9 Equality Left to right ==, !=, ===, !==

10 Bitwise AND Left to right &

11 Bitwise XOR Left to right ^

12 Bitwise OR Left to right |

13 Logical AND Left to right &&

14 Logical OR Left to right ||

15 Conditional Right to left ? :

16 Yield Right to left yield

17 Assignment Right to left =, +=, -=, *=, /=,
%=, <<=, >>=, >>>=,
&=, ^=, !=

18 Comma Left to right ,

Chapter 2 ■ JavaScript Nuts and Bolts

33

Listing 2-16.  Creating a New Variable by Accessing It

var myVar = 1;
myOtherVar = 2;
 

Either way of declaring variables is syntactically valid, but they have different meanings for the variable’s scope
(described in the following section).

It’s common practice to declare many variables at once. You can use the var keyword for each variable, or you
can use the var keyword once and separate the variable declarations with commas. It’s also common practice to place
each variable declaration on its own line, as shown in Listing 2-17, for improved readability.

Listing 2-17.  Declaring Multiple Variables at Once

var myObject = {},
 intCounter = 0,
 strMessage = "",
 isVisible = true;
 

JavaScript style guides typically recommend declaring all variables in a given scope at the beginning of that
scope, mostly because it helps prevent problems of variable mis-scoping. It also helps JavaScript code compressors,
which will take the list of variables and run search and replace on each item to change variable names to single- or
double-letter names, thus further reducing the size of the file.

Understanding Variable Scope in JavaScript
Just as each language has rules for creating variables, each language has rules that govern where variables can be
accessed. This is known as variable scope. Basically, scoping rules determine the answer to the question, “If I create
this variable here, where else will I be able to access it?” Variable scope is an important concept of any language
because it influences just about every aspect of working with the language, from debugging to optimization.

As mentioned in Chapter 1, JavaScript has functional scope: when you formally declare a variable using the var
keyword, it is limited in scope to the current functional scope and all of the functional scopes contained within the
current functional scope. In other words, if you declare a variable within a given scope, you will be able to access it
within a subscope but not within any containing scope. Listing 2-18 provides an example to illustrate this concept.

Listing 2-18.  Functional Scope in JavaScript

function myFunction() {
 var myVariable = "Here"; // �myVariable is now limited in scope to myFunction and any scopes we

create within myFunction
 
 // Create a new function within myFunction to demonstrate scope nesting
 function myInternalFunction() {
 alert(myVariable);
 }
 myInternalFunction(); // call myInternalFunction when myFunction is called
}
myFunction(); // will alert "Here"
alert(myVariable); // will throw an error; myVariable is not defined outside of myFunction().
 

When you declare a variable in a particular scope, that scope is often referred to as the local scope for that variable.
As you nest functions within one another, you create nested functional scopes that are often referred to as scope chains.

Chapter 2 ■ JavaScript Nuts and Bolts

34

Whenever you access a variable in your program, the JavaScript engine will look throughout the current scope to see if
it is defined there. If it doesn’t find a definition there, it goes up to the containing scope and looks there, and so on, up the
chain to the topmost scope of the program. This is often referred to as a scope chain lookup, or sometimes just scope lookup.

The topmost scope of any JavaScript program is called the global scope. Any variable declared in the global scope
will be available to all scopes in the program, as demonstrated in Listing 2-19.

Listing 2-19.  Global Scope in JavaScript

var myVariable = "This is a global variable";
function myFunction() {
 myVariable = "Global variable has been changed inside a function";
 alert(myVariable);
}
 
alert(myVariable); // will alert "This is a global variable"
myFunction(); // will alert "Global variable has been changed inside a function"
alert(myVariable); // will alert "Global variable has been changed inside a function"
 

You can always override higher scope declarations by re-declaring varibles in a particular functional scope.
This essentially creates a new variable limited in scope to that functional scope; this is often referred to as local scope
precedence. To demonstrate local scope precedence, see Listing 2-20.

Listing 2-20.  Local Scope Precedence

var myVariable = "This is a global variable";
function myFunction() {
 var myVariable = "Global variable has been overridden inside a function";
 alert(myVariable);
}
 
alert(myVariable); // will alert "This is a global variable"
myFunction(); // will alert "Global variable has been overridden inside a function"
alert(myVariable); // will alert "This is a global variable"
 

Because of the precedence of local scope, JavaScript variables (and function declarations, described later in the
chapter) are available immediately at the beginning of their scope block, whether or not they have been defined yet. If
you attempt to access JavaScript variables before their initialization, you will get an undefined value, but they will be
there, and the script will not throw an error. This can be quite unexpected behavior, especially in the case of overriding
variables that have been declared in a higher scope as illustrated in Listing 2-21.

Listing 2-21.  Local Scope Overriding Higher Scope

function testScope() {
 var myTest = true; // myTest is now present in this top level scope.
 function testNestedScope() { // Create a sub-scope within the main scope
 alert(myTest); // Access myTest...but from which scope?
 var myTest = false; // Redefine myTest in this sub-scope.
 }
 testNestedScope();
 alert(myTest);
}
 
testScope(); // will alert "undefined", and then true.
 

Chapter 2 ■ JavaScript Nuts and Bolts

35

When we execute this example, it first alerts “undefined” and then alerts “true.” The first alert occurs because,
within the testNestedScope() function, we redefined the variable myTest so that it is now within that scope.
This makes its new value available everywhere within that scope, effectively erasing the value of the variable from the
higher scope everywhere within that function. This is called hoisting: A variable declaration (not its assignment, just
its declaration) is automatically “hoisted” to the beginning of its containing scope. In other words, when a new scope
is created, JavaScript immediately declares all of the local variables before doing anything else, including assignments
and function calls. As a result, Listing 2-21 is parsed as if it were written as show in Listing 2-22.

Listing 2-22.  Explicitly Hoisting Variables

function testScope() {
 var myTest = true;
 function testNestedScope() {
 var myTest;
 alert(myTest);
 myTest = false;
 }
 testNestedScope();
 alert(myTest);
}
 
testScope(); // will alert "undefined", and then true.
 

Because of variable hoisting, many JavaScript best practices and style guides recommend defining all variables at
the beginning of their scope before they are accessed, thus explicitly stating what hoisting does invisibly.

If you access a variable without declaring it using the var keyword, JavaScript will still perform a scope chain
lookup. If it reaches the global scope and still has not found the variable declaration, it will assume the variable is
meant to be global in scope and will add it there. This is known as implied global scope, an example of which is shown
in Listing 2-23.

Listing 2-23.  Implied Global Scope

function myFunction() {
 myVariable = "Declared in function, default global scope";
 alert(myVariable);
}
 
alert(typeof myVariable); // will alert "undefined" because it wasn't created yet
myFunction(); // will alert " Declared in function, default global scope "
alert(myVariable); // will alert "Declared in function, default global scope "
 

For details on variable scope, including related topics like closures, see the “Scoping in JavaScript” section
in Chapter 1.

Managing Variables in JavaScript
JavaScript tries to make variable management as easy as possible for the programmer. Once you declare a variable,
you don’t need to explicitly undeclare it to free memory—in fact, JavaScript provides no mechanism for doing so.
The interpreter will manage the variables itself, deallocating their memory when all references and any closures are
completely finished.

As mentioned in Chapter 1, JavaScript is a weakly typed language, which means it will manage variable type
mismatches in expressions according to a specific set of rules. Because JavaScript is constantly managing variable

Chapter 2 ■ JavaScript Nuts and Bolts

36

types behind the scenes, one of the most important aspects of understanding JavaScript is understanding how it
manages types, so be sure to review Chapter 1 closely. To recap, JavaScript has four broad data types:

•	 Boolean: True or False values.

•	 Number: All numbers in JavaScript are 64-bit floating-point numbers.

•	 String: Strings of any characters.

•	 Object: Collections of properties and methods.

In addition, JavaScript employs the concept of primitives: non-object, simple variables, which themselves can
be booleans, numbers, or strings. Anything that is not a primitive is an object—though JavaScript will transparently
change primitives to their associated object types and back again as needed.

When it comes to copying variables, JavaScript handles primitives and objects differently. Primitives are passed
from one variable instance to another directly. Objects, on the other hand, are passed by reference: setting a new
variable equal to an existing object does not copy that object wholesale into the new variable; rather, it only makes
the new variable a pointer to the original object. See Listing 2-24 for an example.

Listing 2-24.  Direct Assignment of Primitives and References to Objects

var myObject = {};
var myOtherObject = myObject; // myOtherObject is now a reference to myObject
myObject.bar = "bar"; // This changes myObject directly
myOtherObject.foo = "foo"; // This changes myObject via reference
alert(myObject.foo); // will alert "foo"
alert(myOtherObject.bar); // will alert "bar"
var myInt = 5; // Primitive
var myOtherInt = myInt; // myOtherInt is now its own primitive, there is no reference
myOtherInt++;
myInt--;
alert(myOtherInt); // will alert 6
alert(myInt); // will alert 4
var myPrimitiveString = "My Primitive String";
var myOtherPrimitiveString = myPrimitiveString;
myOtherPrimitiveString += " is now longer."
alert(myOtherPrimitiveString); // Will alert "My Primitive String is now longer."
alert(myPrimitiveString); // Will alert "My Primitive String"
 

Because JavaScript manages type mismatches transparently, sometimes, as you can see in Listing 2-25, it’s easy
to confuse what’s a primitive and what’s an object:

Listing 2-25.  Type Conversion Between Objects and Primitives of the Same Data Type

var myStringObject = new String("This is an object");
var myOtherStringObject = myStringObject;
myOtherStringObject += " which I just changed into a primitive"; // �Type change, so no longer a

reference!
alert(myStringObject); // will alert "This is an object"
alert(myOtherStringObject); // will alert "This is an object which I just changed into a primitive"
 

Two objects will return equal in an equality check if they reference the same object in memory, even if the two
objects are otherwise identical, as shown in Listing 2-26.

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ JavaScript Nuts and Bolts

37

Listing 2-26.  Objects Are Only Equal If They Reference the Same Object in Memory

var myObject = {};
var myOtherObject = {};
var myThirdObject = myObject;
alert(myObject == myThirdObject); // will alert "true"
alert(myOtherObject == myThirdObject); // will alert "false"
alert(myObject == myOtherObject); // will alert "false"
 

JavaScript only provides methods for making references to objects; there is no method for copying an object.
However, if you should need to, it’s not difficult to iterate through an object and copy all of its methods and properties
to a new object.

Objects
In just about every object-oriented programming language, an object is a collection of properties, and JavaScript is no
different. Properties can be either primitives or other objects, including functions. JavaScript objects can be arbitrarily
deep, meaning you can have objects that have properties that are objects, which in turn have properties that are
objects, and so on, as deeply as you wish.

Inheritance
As covered in detail in Chapter 1, JavaScript uses prototypal inheritance rather than classes. Each object has a special
prototype property that serves as a pointer to the object from which it was created. When you attempt to access a
property on the object, the interpreter checks to see if the desired property exists within the current object. If the
property does not exist, the interpreter checks the prototype. If the property is not there, the interpreter checks the
prototype’s prototype, and so on, until it either finds the property or reaches the end of the prototype chain and
returns an error. (See Chapter 1 for details and examples of prototypal inheritance.)

Accessing Properties and Enumeration
JavaScript provides two ways of accessing properties on objects, as demonstrated in Listing 2-27.

Listing 2-27.  Accessing Object Properties in JavaScript

var myObject = {};
myObject.property1 = "This is property1"; // access via dot notation
myObject["property2"] = 5; // access via square brackets
alert(myObject["property1"]); // will alert "This is property1"
alert(myObject.property2); // will alert 5
 

The ECMA-262 standard specifies that these two methods are exactly the same:

Properties are accessed by name, using either the dot notation:

MemberExpression.IdentifierName
CallExpression.IdentifierName 

or the bracket notation:

MemberExpression[Expression]
CallExpression[Expression]

 

ChAPTEr 2 ■ JAvASCriPT NuTS AND BoLTS

38

The dot notation is explained by the following syntactic conversion:

MemberExpression.IdentifierName

is identical in its behaviour to

MemberExpression[<identifier-name-string>]

and similarly

CallExpression.IdentifierName

is identical in its behaviour to

CallExpression[<identifier-name-string>]

where <identifier-name-string> is a string literal containing the same sequence of characters after
processing of Unicode escape sequences as the IdentifierName.

ECMA-262 Edition 5.1, Section 11.2.1, “Property Accessors”

The benefit of this dual notation is that you can easily programmatically access object properties using the square
bracket notation without necessarily knowing the names of all the properties. As an example, consider the need to
enumerate all the properties of an object. You don’t know what they are, so you can’t access them using dot notation.
Instead, you just query the object for each of its properties and access their values using brackets, as shown in Listing 2-28.

Listing 2-28. Traditional Method for Enumerating an Object in JavaScript

// Assuming the existence of targetObject, which has many unknown properties:
var thing,
 strMessage = "";
for (thing in targetObject) {
 strMessage += "targetObject." + thing + " = " + targetObject[thing] + "\n";
}
alert(strMessage); // will alert all of the properties in targetObject

In Listing 2-28, we are iterating over all the properties in targetObject using a for loop (see the section “for
Loops,” later in the chapter, for details about for loops). We build a string containing each property and its associated
value, one per line, and then alert the string. This will only include the noninherited properties of an object. That’s
the traditional method for enumerating properties in JavaScript. With newer versions of JavaScript, it’s possible to
enumerate objects using different methods. In Version 5 of ECMA-262, the global Object object has two new methods:
Object.keys() and Object.getOwnPropertyNames(). (See Chapter 5 for details on these two methods and how they
differ.) Now we can enumerate an object as shown in Listing 2-29.

Listing 2-29. New Method for Enumerating an Object in JavaScript

// Assuming the existence of myObject, which has many unknown properties:
var arrKeys = Object.keys(myObject),
 strMessage = "",
 i = 0,
 arrKeysLength = arrKeys.length;

Chapter 2 ■ JavaScript Nuts and Bolts

39

for (i = 0; I , arrKeysLength; i++) {
 strMessage += "myObject." + arrKeys[i] + " = " + myObject[arrKeys[i]] + "/n";
}
alert(strMessage); 

Creating Objects
JavaScript has three main ways of creating objects: using a constructor function, using literal notation, or using
Object.create().

Using Constructor Functions
The traditional method for creating new JavaScript objects is to create a constructor function and use it to make new
objects as desired. To make a constructor function, you simply create a function as you ordinarily would, and add
properties to it as needed, as shown in Listing 2-30.

Listing 2-30.  Basic Constructor Function

function myConstructor() {
 this.property1 = "foo";
 this.property2 = "bar";
 this.method1 = function() {
 alert("Hello World!");
 }
}
 

You’ll notice in this constructor that we are using the this keyword to add new properties to the object. Details
on the subtleties of the this keyword within functions are provided later in the chapter, in the section “Functions.” In
the context of constructor functions, the keyword this refers to the object that is being created by the constructor.

To create a new instance from the constructor, use the new operator, as shown in Listing 2-31.

Listing 2-31.  Creating a New Instance from a Constructor

var myObject = new myConstructor();
myObject.method1(); // will alert "Hello World!"
 

The new operator performs the following steps:

1.	 It creates a new empty object that inherits from the operand’s prototype,

2.	 It sets that new object as the execution scope of the operand (so within the operand, the
this keyword refers to the new empty object),

3.	 It invokes the operand, so the operand can then modify the new object as needed,

4.	 It returns the value that the operand returns, or if the operand does not return anything,
it automatically returns the new object it created in step 1 and that the operand modified
in step 3.

If you’re coming to JavaScript from a background in class-based languages like Java or C++, you may be thinking,
“Hey, that looks kind of like a class!” You’re correct, this method does superficially resemble classes. You can continue
down this road and fully emulate classes in JavaScript using this method in combination with others. However, you
are encouraged to try and leave behind the idea of classes when working with JavaScript so that you can better take
advantage of the language’s dynamic nature.

Chapter 2 ■ JavaScript Nuts and Bolts

40

Using Literals
Another way of creating objects in JavaScript is to use literal notation. Literal notation is a way for you to provide
values literally for an object during creation. In JavaScript, literal notation is very common, and we’ll be covering it
several times in this chapter.

To create an object literally, begin by defining it as you ordinarily would with the var keyword, as shown in Listing
2-32, and then use curly brackets to enclose properties, which should be key/value pairs separated by commas.

Listing 2-32.  Creating an Object Using Literal Notation

var myObjectLiteral = {
 property1: "one",
 property2: "two",
 method1: function() {
 alert("Hello World!");
 }
}
myObjectLiteral.method1(); // will alert "Hello World!"
 

Because we have created the object literally, we can use it immediately. Literal notation is thus the best way to
create singletons in JavaScript. Objects created this way can still be extended later by adding properties and methods
as desired, as shown in Listing 2-33.

Listing 2-33.  Extending an Object

myObjectLiteral.property3 = "New property"; // adds a new property to the previously created object

Using Object.create( )
Finally, the latest versions of JavaScript provide a third method for creating new objects: the create() method on the
global Object object. As shown in Listing 2-34, the method takes an object as its parameter and returns a new object
with the parameter object as its prototype.

Listing 2-34.  Using Object.create() to Create New Objects

var myObjectLiteral = {
 property1: "one",
 property2: "two",
 method1: function() {
 alert("Hello world!");
 }
}
var myChild = Object.create(myObjectLiteral);
myChild.method1(); // will alert "Hello world!"
 

This method can create a new object from any object, even a constructor function.

Chapter 2 ■ JavaScript Nuts and Bolts

41

Which Method Should I Use?
Which method to use is largely a matter of taste, though sometimes the choice will be dictated by convention or
situation. Some JavaScript libraries, for example, make heavy use of Object.create(). Or, if you are doing extensive
work with JSON, you might find it makes more sense to use literals to manage your singletons. And if you really feel
you need classlike behavior in your JavaScript programs, then constructor functions are the easiest way to get there.

Arrays
In JavaScript, as in most languages, arrays are essentially indexed data structures, with a value associated with each
index. JavaScript array indices all start from 0, so the second item in an array actually has an index of 1, and the length
of an array is equal to the last index + 1.

Dynamic Length
In keeping with JavaScript’s dynamic nature, its arrays have dynamic lengths. This means that you can add and
remove items from arrays, and the length of the arrays will change as needed. Thus, you cannot generate boundary
errors when you are adding or removing items from arrays. And if you attempt to access an element that does not
exist, the interpreter will return undefined instead of throwing an error. A common mistake in JavaScript is to attempt
to retrieve something from an array that does not exist, resulting in undefined, and then attempting to do something
with that value without first checking to see if it is undefined. Depending on what you attempt to do with the value, the
interpreter might throw an error at that point, but it will not throw an error at the point when the array was accessed
out of bounds.

JavaScript arrays have a length property, which contains a number that indicates the length of the array. As
elements are added to and removed from the array, this number increases or decreases as needed. The length
property can also be set directly, as shown in Listing 2-35; doing so will either remove existing items from or add
undefined items to the end of the array, as appropriate.

Listing 2-35.  Dynamic Lengths of JavaScript Arrays

var arrColors = ["red", "orange", "yellow", "green", "blue", "indigo", "violet"];
alert(arrColors.length); // will alert 7
arrColors.length = 10; // adds three new elements to the array, each set to "undefined"
alert(arrColors[8]); // will alert "undefined"
arrColors.length = 6; // arrColors is now ["red", "orange", "yellow", "green", "blue", "indigo"]

Accessing and Assigning Values
In JavaScript, arrays can contain any valid data type: objects, functions, booleans, and so forth. Data types can be
mixed within arrays, too, meaning you can have an array made up of an object, a boolean, a number, and a string.

Array values are accessed using the square bracket notation described for objects: the name of the array, followed
by a set of square brackets that contain the index of the desired value; for example, in Listing 2-36, myArray[2] will
access the third item in the array myArray.

Listing 2-36.  Accessing Arrays

var myArray = new Array();
myArray[0] = "foo";
myArray[1] = "bar";
myArray[3] = 4;

Chapter 2 ■ JavaScript Nuts and Bolts

42

alert(myArray.length); // will alert 4
alert(myArray[2]); // will alert "undefined"
 
var testVar = myArray[498]; // testVar is now "undefined" and no error will be thrown
alert(testVar); // will alert "undefined"
 

Arrays are actually special cases of JavaScript objects. You can add properties to arrays just like you can any other
object, as demonstrated in Listing 2-37.

Listing 2-37.  Assigning Values

var myArray = new Array();
myArray[0] = "foo"; // assign "foo" to the first element of the array
myArray[1] = "bar"; // assign "bar" to the second element of the array
myArray["foo"] = "bar"; // create the property "foo" on myArray and give it the value of "bar"
alert(myArray.length); // will alert 2
myArray["2"] = 7; // assign 7 to the third element of the array
alert(myArray.length); // will alert 3
var strMyIndex = "3";
myArray[strMyIndex] = 8; // will assign 8 to the fourth element of the array
alert(myArray.length); // will alert 4
 

Listing 2-37 demonstrates how JavaScript will coerce the type of a non-numeric index to a numeric value if it
can, and then use that as an index. Otherwise, it will use the supplied value as the key for a new property on the array
object itself.

Because of this behavior, it’s often said that JavaScript has “associative arrays.” This isn’t strictly true, because
JavaScript arrays cannot have non-numeric indexes. If you add something to an array with a non-numeric index,
as shown in Listing 2-38, you are simply adding it as a property on the array object itself, not adding elements to
the array.

Listing 2-38.  Array Elements vs. Properties

var myArray = new Array();
myArray["foo"] = "bar"; // adds a property, not a new element
myArray["new"] = "old"; // adds a property, not a new element
alert(myArray.length); // will alert 0, because no elements have actually been added to the array.
myArray[0] = 0; // Adds a new element to the array
alert(myArray.length); // will alert 1

Creating Arrays
There are two ways to create arrays in JavaScript: using the global Array object as a constructor, as shown in
Listing 2-39, or using literal notation, as shown in Listing 2-40.

Listing 2-39.  Creating Arrays with the Constructor

var myArrayObject = new Array(4); // creates an array with 4 undefined elements
var myOtherArray = new Array(4, 2, 5, 2, 7); // creates an array with those values
alert(myArrayObject.length); // will alert 4
alert(myOtherArray.length); // will alert 5
 

Chapter 2 ■ JavaScript Nuts and Bolts

43

Listing 2-40.  Creating Arrays with Literal Notation

var myLiteralArray = []; // Creates an array of length 0 with no elements
var myOtherArray = [1, "foo", {}, true]; // �Creates an array of length 4 with a number,

a string, an object, and a boolean
 

When using the Array object as a constructor, you can supply an optional single numeric value, which will cause
the constructor to return an array initialized with the specified number of slots. Each slot will be set to “undefined.”
If you provide more than one comma-delimited argument, the constructor will return an array with each of the
arguments as an indexed value, in order, starting from 0.

Creating arrays using literal notation is similar to creating objects with literal notation.
Listing 2-40 demonstrates that you can have multiple data types within a single array. You can even have objects

as your array values, just as you can have arrays as properties of objects.
JavaScript also supports multidimensional arrays, as arrays of arrays, as shown in Listing 2-41.

Listing 2-41.  Multidimensional Arrays

var row1 = [0, 1, 2];
var row2 = [3, 4, 5];
var row3 = [6, 7, 8];
var array3by3 = [row1, row2, row3];
alert(array3by3[2][1]); // will alert 7

Iterating over Arrays
Because arrays are numerically indexed, one of the most common things to do with them is to run through their
members in order, often doing something with each one. The most common way to iterate over an array is in a for
loop, as shown in Listing 2-42. (See “for Loops,” later in the chapter, for details on for loops and how to optimize
them.)

Listing 2-42.  Iterating over an Array Using a for Loop

var myColors = ["red", "orange", "yellow", "green", "blue", "indigo", "violet"];
for (var i = 0; i < myColors.length; i++) {
 alert(myColors[i]); // will alert each color one at a time
}
 

In this example, the for loop will continue until the iterator i reaches myColors.length -1. Each time through
the loop, JavaScript will alert the value stored at that index. This is by far the most common pattern for iterating over
arrays, and it is very fast, even for very large arrays.

You might be tempted to use a for-in loop, as we did when enumerating objects, but remember that arrays can
have properties as well as values, and a for-in loop would iterate over all of those items. Also, there’s no guarantee
that the loop would go through all of the indexed values in order, or do them all at once.

Commonly, you will want to do something with each element in the array. If you know for certain that none
of the elements in your array will be undefined, you can use a slightly different version of a for loop, as shown in
Listing 2-43.

Chapter 2 ■ JavaScript Nuts and Bolts

44

Listing 2-43.  Another Way to Iterate over an Array

var myColors = ["red", "orange", "yellow", "green", "blue", "indigo", "violet"];
for (var i = 0, color; color = myColors[i]; i++) {
 // Inside of the loop, the variable color will contain the value at the current index
 alert(color); // will alert each color one at a time
}
 

The advantage of this method is that, within the loop, the variable color is already set to a value at the current
index, saving you the trouble of getting it yourself. Note that if one of the array elements is undefined, then your
variable will likewise be undefined within the loop.

With newer versions of JavaScript, arrays have a forEach() method that you can use to iterate over them, as shown
in Listing 2-44. The method takes a function expression as an argument, and it executes that function once per array
element. The function expression can take an optional parameter, which will be set to the array value at the current index.

Listing 2-44.  Third Way to Iterate over an Array

var myColors = ["red", "orange", "yellow", "green", "blue", "indigo", "violet"];
myColors.forEach(function(color) {
 alert(color); // will alert each of the colors, one at a time
});
 

If you have an array that you wish to modify as you are iterating over it, you will need to be careful that you don’t
skip elements. Consider the example provided in Listing 2-45.

Listing 2-45.  Modifying an Array During Iteration

var myColors = ["red", "orange", "green", "green", "blue", "indigo", "violet"];
for (var i = 0; i < myColors.length; i++) {
 if (myColors[i] === "green") {
 �myColors.splice(i, 1); // the splice() method removes the item at index i (see Chapter 5 for

details on the splice() method)
 }
}
 

In this example, we start by examining each member of the myColors array one at a time, starting with “red”.
When the loop reaches i = 2, myColors[i] will be “green” and the conditional will cause that element to be removed
from the array. As a result, the array will go from being 7 elements to being 6, and the second “green” element will go
from being at index 3 to being at index 2. Then, in accordance with for loop functionality (see “for Loops,” later in
the chapter), the index will be incremented, going from 2 to 3, and the loop will continue. This will cause the second
“green” element to be missed.

Whenever you modify an array while iterating over it, you have to consider this possibility. There are two ways
to deal with it. One is to decrement the counter i inside the if statement, so that if a match occurs and an element is
popped out of the array, i will decrement by 1, then increment by 1, thus avoiding skipping the element.

Another, more elegant solution is to iterate over the array in reverse, as demonstrated in Listing 2-46.

Listing 2-46.  Iterating over an Array in Reverse

var myColors = ["red", "orange", "green", "green", "blue", "indigo", "violet"];
for (var i = myColors.length - 1; i >= 0; i--) {
 if (myColors[i] === "green") {
 myColors.slice(i, 1); // the slice method removes the specified element from the array.
 }
}
 

Chapter 2 ■ JavaScript Nuts and Bolts

45

In Listing 2-46 we are starting at the end of the array and working backward. First we test index i = 6, then i = 5,
and so on. At i = 3, we encounter a “green” element, which will be removed from the array. This will reduce the
array length by 1, and the “blue” element (and all elements that follow) will have their indices reduced by 1. Then, the
counter will decrement by 1, going to i = 2, and we will hit the other “green” element in the array. By going through
the array in reverse, you avoid having to manage the counter manually.

Array Methods and Properties
Arrays have several methods and properties for managing their elements. For example, throughout this chapter we’ve
used the length property of arrays. There are several other properties and methods as well; for a detailed description
of all array methods and properties, along with examples, see Chapter 5.

Functions
Functions are reusable blocks of code that can be called from other areas of the program. In JavaScript, functions
are also first-class objects, meaning they can be manipulated like any other object in the language: they can have
properties and methods, can be returned from functions, can be passed as arguments, and so on. The object nature of
functions in JavaScript is one of the most important keys to understanding the language’s dynamic nature.

JavaScript provides two ways to create new functions: via declarations and via expressions.

Function Declarations
JavaScript provides a function keyword that can be used to declare functions. It works similarly to the var keyword for
declaring variables, and it’s useful to consider it in the same context. According to the ECMA-262 standard, a function
declaration is of the form:
 
function Identifier (FormalParameterList optional) { FunctionBody}
 

The FormalParameterList is optional (JavaScript functions are not required to have parameters).
This will create a function with the name Identifier(), which will be visible both in its parent’s scope and in its

own scope. Listing 2-47 shows a simple function declaration.

Listing 2-47.  Simple Function Declaration

function saySomething(strMessage, strTarget) {
 alert(strMessage + " " + strTarget);
}
saySomething("Hello", "world"); // will alert "Hello world"
 

Note that because the function name is available in its own scope, a function can call itself, allowing for
recursion. Listing 2-48 provides an example that shows we can easily implement the mathematical concept of
factorials, where a number N! = N(N–1)(N–2) . . . (N–(N–1)).

Listing 2-48.  Recursive Functions

function factorial(number) {
 if (number <=1) {
 return 1

Chapter 2 ■ JavaScript Nuts and Bolts

46

 } else {
 return number * factorial(number - 1);
 }
}
alert(factorial(5)); // will alert 120
 

Like variable declarations, function declarations are hoisted to the beginning of their scope. In fact, they are
parsed and evaluated before all other statements, meaning they will be available immediately within their defined
scope, even before they are defined in the code. (See “Understanding Variable Scope in JavaScript,” earlier in the
chapter, for a full explanation of hoisting.) As a demonstration, consider the common JavaScript interview question
presented in Listing 2-49.

Listing 2-49.  Common Interview Question Demonstrating Function Declaration Hoisting

function myFunction() {
 function myInternalFunction() {
 return 10;
 }
 return myInternalFunction();
 function myInternalFunction() {
 return 20;
 }
}
alert(myFunction()); // What will this alert?
 

If you answered “It will alert 20,” then congratulations, you’re hired! The function myInternalFunction() is
defined twice, with the second one replacing the first. It doesn’t matter that you accessed the function in the middle of
the two definitions, because the definition is hoisted to the top of its scope. It’s the equivalent of Listing 2-50.

Listing 2-50.  Equivalent to Listing 2-49

function myFunction() {
 function myInternalFunction() {
 return 10;
 }
 function myInternalFunction() {
 return 20;
 }
 return myInternalFunction();
}
alert(myFunction()); // What will this alert?
 

Because function declarations are hoisted to the top of their scope, you can access them before you can declare
them. Just because you can, however, doesn’t mean you should; many JavaScript style guides recommend against
this practice because it can lead to obfuscated or confusing code. Whether or not you make use of it, though, function
declaration hoisting exists and you should bear it in mind when determining the scope of your functions.

Function Expressions
The other way you can create functions in JavaScript is with function expressions. As with any expression, a function
expression represents a value; in the case of a function expression, the value is a function object. Commonly, function
expressions are then assigned to variables so that they can be accessed.

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ JavaScript Nuts and Bolts

47

According to the ECMA-262 standard, a function expression is of the form:
 
function Identifier optional (FormalParameterList optional) { FunctionBody }

which in turn results in code like

var myFunction = function foo() {
 // function body here
}
 

You’ll notice that the Identifier is optional. JavaScript allows the creation of unnamed function expressions,
known as anonymous functions. Anonymous functions are quite common in JavaScript. It’s commonplace to not
provide identifiers when creating function expressions, because the variable serves as a way to invoke the function.
Most of the time, unless the function will need to call itself, an anonymous function is assigned to a variable as part of
a function expression:
 
var myFunction = function() {
 // function body
}
 

You’ll also notice that this definition looks almost exactly the same as the definition for a function declaration
(introduced in the previous section). This means it’s possible to have exactly the same code serve as either a function
declaration or a function expression, depending on context:
 
function myFunction() {
 // function body
}
 

In general, in the context of an assignment (like a variable assignment) or an expression (as in an anonymous
function provided as the parameter of another function), or if there is no Identifier, then the interpreter will assume
the code is a function expression. Otherwise, the code will be part of a function body (or the global context) and will
be interpreted as a function declaration. Listing 2-51 shows examples of each.

Listing 2-51.  Function Declarations vs. Function Expressions

// This is not an assignment, there is an Identifier, and it's in the
// global scope, so it's a function declarationfunction myFunction() {
 // function body
}
 
// This is part of an assignment, so it is a function expression
var myOtherFunction = function foo() {
 // function body
}
 
// Part of a new expression, so it is a function expression
new function myThirdFunction() {
 // function body
 
 // This is part of a function body, so it is a function declaration
 function myInternalFunction() {
 // internal function body
 }
}
 

ChAPTEr 2 ■ JAvASCriPT NuTS AND BoLTS

48

Assignment function expressions are hoisted just like variable declarations, but only their declaration expression
is hoisted, not their assignment expression. As an example, consider another common JavaScript interview question,
shown in Listing 2-52.

Listing 2-52. Hoisting for a Function Expression

function myTestFunction() {
 var myInternalFunction = function() {
 return "Hello World.";
 }
 return myInternalFunction();
 var myInternalFunction = function() {
 return "Second Definition.";
 }
}
alert(myTestFunction()); // What will this alert?

In this example, the code will alert “Hello Word.” The second assignment expression does not get hoisted, so the
assignment of myInternalFunction() is to return the string “Hello World.”

Invoking Functions
So far in the book we’ve been invoking functions, but we’ve never really defined the specific syntax. The syntax is
important because there are actually a few ways to invoke functions in JavaScript, and how you invoke a function will
determine its execution context.

In JavaScript, when you invoke a function, the function receives a pointer to its execution context, which will be
set to the this keyword, which can be accessed within the function.

In JavaScript, there are three ways to invoke a function:

Using the function invoker, •	 (), which works with both functions and methods (functions
attached to objects)

Using the •	 new keyword, as when constructing a new object

Using the •	 apply() and call() methods

Invoking Functions Using the Invoker

In JavaScript the function invoker is a pair of parentheses, (). Any expression that evaluates to a function can be
invoked using the invoker. To pass parameters to the invoked function, you include them in the parentheses as a
comma-delimited list.

When you invoke functions using the invoker, the execution context of the function is set to the window object.
When you invoke a method, the execution context is set to the parent object. Listing 2-53 provides some examples.

Listing 2-53. Testing the Execution Context of Functions and Methods

var myObject = {
 myMethod : function() {
 alert(this === myObject); // Test to see if this does indeed refer to the parent object of a

method.
 }
}

Chapter 2 ■ JavaScript Nuts and Bolts

49

function myGlobalFunction() {
 alert(this === window); // Test to see if this refers to the window for functions
 function mySubFunction() {
 alert(this === window); // Test to see if this refers to window as well.
 };
 mySubFunction();
}
 
 // Invoke our tests
myObject.myMethod(); // will alert "true"
myGlobalFunction(); // will alert "true" and then alert "true" again.
 

In listing 2-53, we set up an object with a method, and within that method we test to see if the this keyword
does in fact refer to the parent object. Then we create a global function that both tests to see if its this keyword is
set to window, and defines its own subfunction. The subfunction tests to see if its keyword is set to the window object
as well.

In the case of methods, having this refer to the parent object is one of the main features of JavaScript’s object-
oriented paradigm. It enables you to easily access and modify the parent object with its methods.

Invoking Functions As Constructors

A function can also be invoked by using the new operator, as shown in Listing 2-54. Any expression that evaluates to a
function can be invoked in this way.

Listing 2-54.  Invoking a Function Using the new Keyword

function myFunction() {
 alert('Hello world!');
}
new myFunction; // will alert "Hello world!"
 

Even though you can invoke any function using the new operator, it’s meant to be used for constructing new
objects. When you invoke a function in this way, JavaScript creates a new empty object that inherits its prototype
from the operand, and sets it as the execution context of the function. As a result, when you are building a constructor
function, the this keyword will refer to the new object you’re creating. Then your constructor function can either
explicitly return the new object, or the new operator will automatically return it for you.

This invocation method gives you the power to create any arbitrary object constructor you need, as demonstrated
in Listing 2-55.

Listing 2-55.  Constructor Function Used to Construct an Object

// A common convention for constructors is to capitalize their first letter.
function Kitty() {
 this.soft = true;
 this.temperature = "warm";
 this.vocalize = function() {
 alert('Purr, purr, purr');
 }
}
 

Chapter 2 ■ JavaScript Nuts and Bolts

50

var myKitty = new Kitty; // create a new kitty.
alert(myKitty.soft); // will alert true
alert(myKitty.temperature); // will alert "warm"
myKitty.vocalize(); // will alert "Purr, purr, purr"
 

In this example, when we invoke the Kitty() function using the new keyword, JavaScript first creates a new empty
object and passes it into the function as its execution context. Then, the function executes, adding the properties soft
and temperature and the method vocalize() to the object. Finally, the object is returned so that it can be assigned to
the myKitty variable.

This syntax looks remarkably like the syntax you would see for instantiating an object from a class. But don’t
forget: JavaScript has no classes, only objects. If you come from a background in class-based object-oriented
languages, don’t let this familiar syntax lull you into thinking you’re dealing with classes.

Invoking Functions Using apply() and call()

Finally, all JavaScript functions have two methods that can be used to invoke them: apply() and call(). These
methods allow us to specify any context we want for a function.

The apply() and call() methods have similar syntax:
 
myFunction.apply(thisContext, arrArgs);
myFunction.call(thisContext, arg1, arg2, arg3, ..., argN);
 

Both methods take a thisContext parameter, which is an object or reference that specifies the execution context
of the function. If you don’t specify the parameter, JavaScript will execute the function in the global context, the same
as if you had passed a reference to the window object.

The difference between the two methods is how you specify arguments for the function. With the apply()
method, you specify the arguments in an array, and with the call() method you supply them as a comma-delimited
list. Otherwise the two methods work exactly the same way.

Listing 2-56 provides an example of using these methods to invoke a function.

Listing 2-56.  Using call() and apply() to Invoke a Function

var contextObject = {
 testContext: 10
}
var otherContextObject = {
 testContext: "Hello World!"
}
 
var testContext = 15; // Global variable
 
function testFunction() {
 alert(this.testContext);
}
 
testFunction(); // This will alert 15
testFunction.call(contextObject); // Will alert 10
testFunction.apply(otherContextObject); // Will alert "Hello World!"
 

Chapter 2 ■ JavaScript Nuts and Bolts

51

In Listing 2-56, we create two context objects with the same property set to different values: one is set to the
number 10, the other to the string “Hello World!”. Then we create a global variable with the same name as the property
and set it to 15. Finally, we create a function that alerts the value of this.testContext.

When we invoke the function using the invoker, the execution context is the window object, so the function
alerts the value of the global variable. When we use the call() method and provide the first context object as the new
execution context, the function alerts the value of the property for that object. Similarly, when we use the apply()
method and provide the other context object, the function alerts that property.

Conditionals
JavaScript provides a fairly standard set of features for conditional execution of code: testing expressions and, based
on the results, executing specified statement blocks.

if Statements
The basic form of an if statement in JavaScript is:
 
if (conditionExpression) { statementBlock }
 

Explicitly, if the conditionExpression evaluates to true, the code in the statementBlock will be executed. If you
have just one line of code in your statement block, the brackets are optional.

JavaScript if statements can be expanded using the else keyword, allowing for logic branches:
 
if (conditionExpression) {
 statementBlock1
} else {
 statementBlock2
}
 

Here, if the conditionExpression evaluates to true, statementBlock1 will execute; otherwise, statementBlock2
will execute.

You can chain if statements together in this way:
 
if (conditionExpression1) {
 statementBlock1
} else if (conditionExpression2) {
 statementBlock2
} else if (conditionExpression3) {
 statementBlock3
} else {
 statementBlock4
}
 

In this example, if conditionExpression1 is true, then statementBlock1 will execute and the control of the
program will move to the end of the chain. If conditionExpression1 is false, then conditionExpression2 will be
evaluated. If it is true, statementBlock2 will execute and then the control of the program will once again move to the
end of the chain. As a result, statementBlock4 will only execute if conditionExpression1, conditionExpression2,

Chapter 2 ■ JavaScript Nuts and Bolts

52

and conditionExpression3 all evaluate to false; otherwise, it will never execute. See Listing 2-7 for an example of a
chain of if...else statements:

Listing 2-57.  An if-then-else Block

function alertGenres(authorName) {
 if (authorName === "Neil Gaiman") {
 alert("Fantasy");
 } else if (authorName === "Octavia Butler") {
 alert("Science Fiction");
 } else if (authorName === "Roger Zelazny") {
 alert("Science Fiction and Fantasy");
 } else {
 alert("Unknown author.");
 }
}
 
alertGenres("Roger Zelazny"); // will alert "Science Fiction and Fantasy"
alertGenres("Arthur C. Clarke"); // will alert "Unknown author."
 

In Listing 2-57, we built a simple function that tests an author’s name and, if it recognizes it, alerts the name of
the genre in which that author wrote. If the author is not recognized, the function alerts “Unknown author.”

switch Statements
switch statements provide an alternative to extensive if-else-if-else-if-else chains and are particularly useful
when a single conditionExpression is being tested and can have multiple results. The following is the format for a
switch statement:
 
switch (expression) {
 case result1:
 statementBlock1
 [break;]
 case result2:
 statementBlock2
 [break;]
 case result3:
 statementBlock3
 [break;]
 default:
 statementBlockDefault
}
 

In a case statement, the expression is expected to resolve to one of the case labels. This in turn will cause
execution to move to that label and begin executing the statementBlocks from that point. An optional break
statement will stop execution of the blocks. If the expression does not resolve to a matching label, then the interpreter
will look for a default label and, if present, will execute its associated statementBlock.

To demonstrate, Listing 2-58 provides a trivial example.

Chapter 2 ■ JavaScript Nuts and Bolts

53

Listing 2-58.  Trivial Example of a switch Statement

var myColor = "yellow";
switch (myColor) {
 case "red":
 alert("myColor was set to red");
 break;
 case "yellow":
 alert("myColor was set to yellow");
 case "green":
 alert("myColor was set to green");
 default:
 alert("myColor was an unknown color");
}
 

In Listing 2-58, myColor resolves to “red” so the switch statement will alert “myColor was set to red”. Because the
“red” code block includes a break statement, execution of the switch statement ends, and the program continues
after the closing bracket. If myColor were instead set to “yellow”, then the switch statement would move to the
“yellow” case and alert “myColor was set to yellow”. Then, because the “yellow” code block does not have a break
statement, the program will execute the “green” case, and then the default case.

Loops
The most common tasks you will need to perform with any programming language typically are repetitive or iterative
tasks. Imagine, for example, that you want to check all of the links on a given HTML page to see if any of them contain
a particular text value. JavaScript has a set of looping statements to handle those situations.

Generally, a loop is a statement block that executes repeatedly until a specified condition is met. JavaScript has
four basic kinds of loops: for loops, for-in loops, while loops, and do loops.

for Loops
Probably the most commonly used loop statement is the for loop. Generally, a for loop executes its statement block
over and over again until the specified condition is false. At that point the program moves execution to the next
statement after the close of the loop. A for loop will execute its condition check before executing its statement block
for the first time, so it is possible (if the condition check is false that first time) for the statement block to never execute.

The syntax for a for loop is:
 
for (initialExpression; conditionExpression; incrementExpression)
 statementBlock
 

A for loop executes as follows:

1.	 The initialExpression is executed. Typically this is used to define and initialize counting
variables, but it can be any valid expression. The initialExpression is also optional.

2.	 The conditionExpression is evaluated. If the expression evaluates to true, then
statementBlock will execute. If the expression evaluates to false, the loop will terminate
without executing the statementBlock. The conditionExpression is technically optional;
if you omit it, the interpreter assumes the condition is always true, and thus will always
execute the loop, meaning you would have to manually break out of the loop.

3.	 After statementBlock executes, incrementExpression is executed. This expression is
optional as well. Once it has executed, step 2 is repeated.

Chapter 2 ■ JavaScript Nuts and Bolts

54

Listing 2-59 provides a trivial example to demonstrate for loop execution.

Listing 2-59.  Simple for Loop

for (var i =0; i < 10; i++) {
 alert(i); // will alert 0 through 9 one at a time
}

In this example, the loop executes as follows:

1.	 A variable i is declared and set to 0.

2.	 The loop checks to see if i < 10 and, if it is, executes its statement block (in this case,
alerting the value of i).

3.	 i is incremented by 1, and step 2 is repeated.

Note that because the conditionExpression is evaluated each time the loop executes, if it is an expensive
statement, it could cause a significant performance problem in your program, especially if the loop is executed
hundreds or thousands of times. It’s a good idea to keep the conditionExpression as simple as possible. For example,
consider the loop in Listing 2-60.

Listing 2-60.  Potentially Expensive Loop

for (var i = 0; i < someArray.length; i++) {
 // do things
}
 

In Listing 2-60, at the beginning of every time through the loop, we check the length property of the someArray
array. This isn’t terribly expensive, but if someArray is several thousand items, it could add up. Listing 2-61 provides a
simple optimization.

Listing 2-61.  Optimized for Loop

var someArrayLength = someArray.length,
 i = 0;
for (i = 0; i < someArrayLength; i++) {
 // do things
}
 

In Listing 2-61 we have stored the length of the array in a variable, thus simplifying the conditionExpression.
We have also moved the variable declaration of i outside of the loop to explicitly define its scope. These are minor
improvements, but if the array is long, the benefits could add up quickly.

for-in Loops
JavaScript also has a for-in loop statement. This construct is specifically intended to enumerate object properties:
 
for (var variable in objectExpression) { statementBlock }
 

Any expression that evaluates to an object can be used in objectExpression; most often it’s just an object
of some sort. On each iteration, one of the properties of the object will be assigned to the variable and then the
statementBlock will be executed. An example is shown in Listing 2-62. See the “Objects” section earlier in the chapter
for more information and examples on using for-in loops to enumerate object properties.

Chapter 2 ■ JavaScript Nuts and Bolts

55

Listing 2-62.  Enumerating an Object

var myObject = {
 prop1: "value1",
 prop2: "value2",
 prop3: true,
 prop4: 100
}
var strAlert = "";
for (var prop in myObject) {
 strAlert += prop + " : " + myObject[prop] + "\n";
}
alert(strAlert);
 

This example will alert
 
prop1 : value1
prop2 : value2
prop3 : true
prop4 : 100

while Loops
JavaScript also has while loops, which execute their statement blocks as long as their conditional evaluates to true:
 
while (conditionExpression)
 statementBlock
 

As with for loops, the condition is tested each time before the statementBlock is executed. If on the first time
through the loop the condition evaluates to false, then the statementBlock will never execute. Listing 2-63 provides
an example.

Listing 2-63.  Trivial while Loop

var counter = 0;
while (counter < 10) {
 alert(counter);
 counter++;
}
 

In this example, the counter variable is incremented within the loop, so when it finally reaches 10, the loop will
terminate. This example will result in alerting the numbers 0 through 9, one at a time.

do Loops
Similar to while loops, do loops execute their statement blocks while their condition evaluates to true:
 
do
 statementBlock
while (conditionExpression);
 

Chapter 2 ■ JavaScript Nuts and Bolts

56

Unlike while loops and for loops, in a do loop the statementBlock is executed the first time before the
conditionExpression is evaluated. As a result, a do loop’s statementBlock will always execute at least once. Listing
2-64 provides an example.

Listing 2-64.  Trivial do Loop

var counter = 0;
do {
 alert(counter);
 counter++;
} while (counter < 10)
 

Like the previous examples, this example will alert the numbers 0 through 9, one at a time.

Summary
In this chapter we have discussed the basics of working with JavaScript:

JavaScript expressions are sections of code that evaluate to a value, and statements are blocks •	
of expressions that achieve a particular goal.

JavaScript has several different kinds of operators: arithmetic, assignment, bitwise, •	
comparison, logical, and string, as well as a few that don’t fit into those categories.

JavaScript has specific precedence for determining which operators should go first in •	
statements with multiple operators.

Variables declared with the •	 var keyword are limited in scope to the current scope; variables
that are declared simply by accessing them are assumed to be global.

You can access properties on an object with either dot notation or square brackets.•	

Objects can be created with either literal notation, constructor functions, or the •	
Object.create() method.

JavaScript arrays are dynamic, and do not throw out-of-bounds errors.•	

You can create functions either as expressions or by declaration.•	

How you invoke a function determines its execution scope.•	

You can specify execution scope for a function using either the •	 call() method or the apply()
method.

JavaScript supports both •	 if-then-else and switch conditionals.

JavaScript supports several loop types: •	 for loops, for-in loops, while loops, and do loops.

In the next chapter we will dive deep into the Document Object Model: the representation of an HTML page
in JavaScript. We will apply the knowledge from this chapter to creating dynamic web pages, animations, and other
effects.

www.allitebooks.com

http://www.allitebooks.org

57

Chapter 3

The DOM

In this chapter we'll cover the Document Object Model, or DOM. We'll start by addressing what the DOM is and how
it has evolved over time. Then we will explore its internal structure and exposed properties and methods in general,
followed by a detailed discussion of working with the DOM using JavaScript.

At the end of this chapter you should have a solid understanding of the DOM and its inner workings. You should
also have some familiarity with the standards governing it and where to find them, as well as how they evolved. You
should understand not only how to handle user events in your scripts, including how to fire them manually, but also
how to make custom events of your own.

How I Learned to Stop Worrying and Love the DOM
The Document Object Model is just that: an object that models the document currently loaded into the browser. Every
single element in the document will have a corresponding presence in the DOM: every paragraph, every list item (and
every list), every span, and so on. This includes elements that might not be visible in the rendered document, such
as <script> tags, style sheets, and so forth. Even the document's title will be in the DOM. If it is in the document's
markup, it will have a presence in the DOM. In addition, the DOM presents many useful properties for accessing and
manipulating these elements.

The DOM also provides an event model for capturing user interactions with the document: keypresses, mouse
movements, and so forth. Using DOM events, you can write scripts that respond to user interactions, from simple
things like highlighting a paragraph when the user clicks it, to dragging and dropping elements on the screen.

DOM != JAVASCRIPT

JavaScript often comes under fire for being difficult to work withwhen really the specific problem is actually
related to the DOM and not JavaScript itself. It's important to understand that the DOM isn't JavaScript. The DOM
is an interface to the document provided by the browser manufacturer. The two are closely intertwined and many
people make the mistake of assuming they are the same, but they are not.

It's easy to conflate JavaScript and the DOM because most of what you will be doing with JavaScript in the
browser will involve manipulating the document that the browser has loaded. But if you were to access
a JavaScript interpreter in a different context—for example, using Node.js on a server or workstation—you
wouldn't necessarily have a DOM to access.

The DOM is not actually part of JavaScript, nor is it defined by the ECMA-262 standard. Instead, the DOM is
governed by its own standard, maintained by the World Wide Web Consortium (W3C). Even though the DOM is not
part of JavaScript itself, no JavaScript reference would be complete without mentioning it. Much of what you will be

ChapTer 3 ■ The DOM

58

doing in browser-based JavaScript will involve working with the DOM. In fact, the DOM and JavaScript are so tightly
intertwined that it's not unusual to see less experienced JavaScript developers refer to DOM features as JavaScript features.

The DOM standard came about directly because of the so-called "browser wars" at the beginning of the
Web's history. Back then, browser manufacturers decided how they wanted to parse HTML documents and what
(if anything) they wanted to expose to their JavaScript engines. As a result, web development was a nightmare of
browser-dependent code and "best viewed in Netscape" and "best viewed in Internet Explorer" banners.

In response, the industry decided to standardize not only the languages that were being used to build the Web
(HTML, CSS, and JavaScript) but also how browsers should implement those languages. This promised to level the
playing field across all browsers, making it possible to leave behind browser-dependent coding.

The realization of this promise took some time, however. Standardizing the Web was a huge undertaking and,
in many ways, is a process that will never be truly "finished." Technologies are continuing to evolve, resulting in
standards that change with them, which is hard on the browser manufacturers because they have to aim at multiple
moving targets. Even so, the DOM and other web standards paved the way for the modern Web as we know it.

History of the DOM Standard
As previously mentioned, the DOM is governed by its own separate standard, which is owned by the W3C. The DOM
standard was originally developed in three main iterations, Level 1, Level 2, and Level 3.

The Level 1 DOM standard was the first to be proposed and provided the foundation for everything else. It had
two main features: a generic set of low-level interfaces for representing any structurally marked-up document, and
extensions to that generic specification for HTML documents in particular.

htML: DeSCrIptIVe, StrUCtUraL, SeMaNtIC

In general, markup languages are a family of languages that specify a syntax for annotating documents. Broadly,
markup languages fall into three categories:

•	 Presentational: annotations are typically of a low-level (and often not human-readable) format
and are used to specify how applications should display the content. presentational markup
is often used by word processors, for example.

•	 Procedural: Similar to presentational, but annotations are of a higher level format. annotations
are typically human readable, and are intended to specify how content should be displayed.
examples include postScript, troff, and TeX.

•	 Descriptive: annotations are used to describe individual parts of the document based on their
properties. how that content should be displayed is left up to the interpreting application.
examples include Scribe, SGML, and hTML.

hTML's tags annotate content according to their individual structural properties, so hTML is often referred to
as a "structural" markup language. It is also often referred to as a "semantic" markup language, because many
of the structural annotations refer to the semantic meaning of their target content, such as <p> for paragraph,
or <header> for a heading. however, some hTML tags are semantically null and refer only to structure, such
as <div> or tags.

Chapter 3 ■ The DOM

59

The Level 2 DOM standard followed quickly and provided much more depth than Level 1. It actually consists
of six separate specifications:

•	 Core: Extends the Level 1 DOM core specification and includes new interfaces for XML.
The specification is at www.w3.org/TR/DOM-Level-2-Core/.

•	 Events: Provides the event model that is implemented in most modern browsers. See DOM
Events, below, for specifics. Link: www.w3.org/TR/DOM-Level-2-Events/

•	 HTML: Extends the Level 2 Core specification with features specific to HTML and XHTML.
Link: www.w3.org/TR/DOM-Level-2-HTML/

•	 Traversal and Range: Provides interfaces for identifying ranges of content within a document,
as well as interfaces for moving through the DOM: for example, starting with a given element,
find all of its siblings, or all of its children. Link: www.w3.org/TR/DOM-Level-2-Traversal-Range/

•	 Style: Provides interfaces for a document's Cascading Style Sheets (CSS), as well as the styles
that have been applied to elements. Link: www.w3.org/TR/DOM-Level-2-Style/

•	 Views: Specifies the views that are presented by the browser to its scripting engines, including
JavaScript. Link: www.w3.org/TR/DOM-Level-2-Views/

The Level 3 DOM specification was written as an extension to Levels 1 and 2. It consists of five separate
specifications:

•	 Core: Serves as a further extension of Level 1 and Level 2 Core, providing new interfaces and
methods. Link: www.w3.org/TR/DOM-Level-3-Core/

•	 Events: Extends the Level 2 Events specification, providing event specifications for keyboard
and mouse wheel events, as well as mutation events (events that fire when a DOM node is
modified somehow). Link: www.w3.org/TR/DOM-Level-3-Events/

•	 Load and Save: Specifies how to parse XML and produce a DOM tree from it, and how to
serialize a DOM tree into XML. Link: www.w3.org/TR/DOM-Level-3-LS/

•	 Validation: Specifies how to keep documents internally consistent as they are changed by
various methods. Link: www.w3.org/TR/DOM-Level-3-Val/

•	 XPath: Provides a specification for using XPath to access DOM trees. Link:
www.w3.org/TR/DOM-Level-3-XPath/

Finally, the HTML5 family of specifications, which is a W3C Candidate Recommendation as of December 2012,
includes DOM specifications that are meant to subsume much of the material in the previous specifications.

At this point, there are a dozen or so documents specifying the DOM standard, some of them subsuming others wholly
or partially. To avoid confusion, and to avoid inadvertently tying the DOM standard to the HTML5 language specification
(you should be able to use the DOM standard with any structural markup language, not just HTML), the work was begun to
consolidate all the disparate parts into one specification. You can view the results in the following two places:

The December 2012 Working Draft of the DOM4 •	
(http://dvcs.w3.org/hg/domcore/raw-file/tip/Overview.html) at the W3C. This version
provides more context as to how the various versions have been merged together, including
future plans for consolidation.

The Living DOM Specification (•	 http://dom.spec.whatwg.org/) at the Web Hypertext
Application Technology Working Group (WHATWG).

The WHATWG is a separate group from the W3C that was formed in response to concerns about the W3C's
methodologies. A certain amount of tension exists between the two groups, but ultimately they have the same goals,
and though they maintain separate versions of the DOM specification, their versions should never disagree.
We encourage you to review both versions; they provide slightly different views of the same information.

http://www.w3.org/TR/DOM-Level-2-Core/
http://www.w3.org/TR/DOM-Level-2-Events/
http://www.w3.org/TR/DOM-Level-2-HTML/
http://www.w3.org/TR/DOM-Level-2-Traversal-Range/
http://www.w3.org/TR/DOM-Level-2-Style/
http://www.w3.org/TR/DOM-Level-2-Views/
http://www.w3.org/TR/DOM-Level-3-Core/
http://www.w3.org/TR/DOM-Level-3-Events/
http://www.w3.org/TR/DOM-Level-3-LS/
http://www.w3.org/TR/DOM-Level-3-Val/
http://www.w3.org/TR/DOM-Level-3-XPath/
http://dvcs.w3.org/hg/domcore/raw-file/tip/Overview.html
http://dom.spec.whatwg.org/

Chapter 3 ■ The DOM

60

Browser Dependencies
Just because governing standards exist for the DOM doesn't mean all browsers implement them equally. The DOM
standards arose over time, driven by the need to rein in disparate and diverging document model implementations
by the browser manufacturers, and even today that standardization is a work in progress. The JavaScript we have
studied in the first two chapters is fairly stable across browsers. With the DOM, we will be encountering variations
in implementations from browser to browser, and even from version to version of the same browser. Unfortunately,
these variations are often quite pronounced and, if left unaddressed, can result in code that will run in one browser
but stubbornly refuse to run in others.

The good news is that modern browsers (Internet Explorer 9 and later, Firefox 4 and later, Chrome, Safari, and
Opera) implement these standards very well. Older versions of Internet Explorer are the worst offenders for bad
implementations, and unfortunately you will often have to provide support for these older versions in your projects.
Most often these implementation problems can be mitigated with JavaScript. Even better, there are already dozens of
excellent, well-tested JavaScript libraries that do exactly that.

Probably the most popular of these libraries is jQuery, originally created by John Resig and now maintained as an
open source project. According to some browser statistics, jQuery is the most widely deployed library on the Web, so it
is definitely well tested. We'll cover using jQuery a bit in Chapter 4.

jQuery isn't the only library available; there are plenty of others. One of the first libraries created is called
Prototype, which is still widely used and is also an actively maintained open source project. Other libraries of note
are Dojo Toolkit, script-aculo-us, MooTools, and Yahoo's YUI Library. And if you want something that provides more
support—something more like a framework—there are choices like Sencha Ext JS, Closure Library and AngularJS
(both by Google), Backbone.js, and Montage (a newcomer to the JavaScript frameworks scene, but a favorite of ours).

In this chapter we'll be covering the DOM from a standards viewpoint. When we encounter serious divergences
in implementation, we'll mention them, but it's safe to assume that the older a browser version is, the greater the
chance that it won't implement some aspect of the standards correctly. We'll also discuss mitigation techniques, so
you should be able to work through the worst of the problems. Overall, though, if you find yourself in a situation where
you have to support many older browser versions, you may find that a well-chosen JavaScript library will prevent
many headaches.

If you will be supporting older browser versions, you'll want to assess how well they support the features you'll be
needing for your project. Peter-Paul Koch maintains two excellent pages on his QuirksMode web site, one for DOM
features (www.quirksmode.org/dom/w3c_core.html) and one for DOM events (www.quirksmode.org/dom/events/).
These pages are a great starting point for assessing your browser support situation.

DOM Structure
Now that you know what the DOM is and how it came to be, you are ready to dive into how it actually works for you.
Conceptually, a DOM structure can be thought of as a tree that represents the documents and subdocuments that are
loaded into the browser, as well as the individual elements of each document and subdocuments.

The top of the structure is the window object, which represents the actual browser window containing the loaded
document. Since HTML documents can contain subdocuments through the use of iframes, the window object is
actually an array-like object. It has a length property, representing the number of iframes the document contains,
and these iframes can be accessed via indexes (e.g., window[0]) or, if the <iframe> tags have name attributes, via
window['iframename']. The window object also has a frames property that is an array representing the number of iframes
present in the document. It is just a reference to the window object itself (in other words, window === window.frames
and window[0] === window.frames[0] if a subdocument was present), but it has the virtue of being more explicit.
Either syntax will work.

Each subdocument will have its own window object, and since any given subdocument can itself contain
subdocuments, a subdocument's window object will also be an array-like object.

The window object has several other useful methods and properties. The window object also serves as the global
context for JavaScript, as demonstrated in Listing 3-1.

http://www.quirksmode.org/dom/w3c_core.html
http://www.quirksmode.org/dom/events/

Chapter 3 ■ The DOM

61

Listing 3-1.  The window Object Is the Global Context for JavaScript

myVar = 5; // defined without var keyword, so it is global
alert(window.myVar); // will alert 5
 

Since window provides the global context for JavaScript, you do not need to access the document object explicitly
as a property on the window object; instead, you can access it directly (in other words, referencing window.document.
title is the same thing as referencing document.title anywhere in your script).

The window object has a document property that is a reference to the document that has been loaded into the
browser window. The document object contains the tree representing the elements of the document itself. Every
paragraph tag, every span tag, every div tag, and even script tags, the HTML and body tags, and the document title will
all have a presence in the document object. If it's in the HTML markup, it will be represented in the document object.
In addition, the document object has several methods for accessing elements, and provides the base for events.

Structurally, the DOM consists of nodes, with each node representing content (usually a tag, but can also
represent comments and metadata) in the HTML document. Because HTML is structural, nodes are organized
structurally: an element's node in the DOM can have child nodes that represent tags that the element itself contains.
Similarly, a node in the DOM can have a parent node that represents that element's parent tag.

Consider the simple example document shown in Listing 3-2.

Listing 3-2.  Simple HTML Document

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Programmer's Reference</title>
 </head>
 <body>
 <p id="myParagraph">This is my paragraph! Lorem ipsum dolor
sit amet.</p>
 <p class="hideme">Another paragraph!</p>
 <script>
alert(document.title); // will alert "JavaScript Programmer's Reference"
 </script>
 </body>
</html>
 

HTML5 EXAMPLES

Listing 3-2 is the first example where we have shown an entire HTML document instead of just a JavaScript
snippet. Because DOM manipulation involves working with HTML documents, we'll be using this format for our
examples in this chapter. In particular, we'll be using HTML5, as specified by the DOCTYPE tag.

Note that if you are using a particularly old browser version (e.g., Internet Explorer 6 or Firefox 2), it might have
problems with these examples. (If you are using such an old browser version, we encourage you to upgrade if at
all possible.)

If you load this document, the browser will alert "JavaScript Programmer's Reference" because the title is
referenced by the document.title property.

Chapter 3 ■ The DOM

62

The nodes within the body are referenced by the childNodes property on the document object:
 
alert(document.childNodes); // Depending on browser, will alert something like "[object NodeList]"
 

Nodes within the DOM are represented by array-like node lists. They have a length property representing how
many nodes are present, and the individual nodes themselves can be accessed via their index.

Each individual node will have properties that vary depending on the element it represents, but essentially any
attribute on the element will have a representation as a property on the node. For example, the class attribute on a
paragraph tag will be represented in the className property on its node.

Using this tree of nodes, you can access any element in the DOM. For example,
document.childNodes[1].childNodes[2].childNodes[3] represents the second paragraph in our markup:
 
alert(document.childNodes[1].childNodes[2].childNodes[3].className); // will alert "hideme"
 

Individual nodes have a reference to their parent via the parentNode property. Since a tag can have only one
parent, the parentNode property is not an array-like collection but rather a simple property:
 
alert(document.childNodes[1].childNodes[2] == document.childNodes[1].childNodes[2].childNodes[3].
parentNode); // will alert "true" because the body tag is the parent node of the paragraph
 

That's the basic structure of the DOM, but it's pretty unwieldy when it comes to accessing elements. You can
access anything, but even with our super-simple document, we're already producing fairly long reference chains.
Imagine how long those chains would be if we had a complex document! Fortunately, the DOM provides better ways
to access elements than through these long reference chains.

Accessing Elements in the DOM
Typically you want to access an element within the DOM directly and do something with it: hide it, show it, move it,
delete it, make it listen for an event, and so on. The DOM provides several different methods for accessing elements
either directly or by starting from a known place and traversing the tree.

Probably the most famous and easiest way to access an element is to use the document.getElementById()
method, as shown in Listing 3-3.

Listing 3-3.  Using getElementById()

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Programmer's Reference</title>
 </head>
 <body>
 <p id="myParagraph">This is my paragraph! Lorem ipsum dolor sit
amet.</p>
 <p class="hideme">Another paragraph!</p>
 <script>
var myPar = document.getElementById("myParagraph"); // myPar is now a pointer to the paragraph.
myPar.innerText = "I have changed the content!"; // Change the text of the paragraph to "I have
changed the content!"
 </script>
 </body>
</html>
 

4

Chapter 3 ■ The DOM

63

In this example, we are getting a pointer to a specific node and then updating its innerText property with new
content. When this document loads, you will see two paragraphs: the first will read "I have changed the content!" and
the second will read "Another paragraph!"

In Listing 3-3, the document.getElementById() method and innerText property are specified by the DOM
standard rather than the JavaScript standard. Since they integrate so seamlessly with JavaScript in the browser, you
can see how easy it is to mistake them for JavaScript, as mentioned previously.

There are several other methods that the DOM exposes for accessing nodes directly. The
getElementsByTagName() method takes a tag name as a parameter and returns a collection of all the nodes it finds in
the document that are that sort of tag, as shown in Listing 3-4. The collection is an array-like object, so you can iterate
over the individual elements, which are presented in order of parsing in the document, as demonstrated in Listing 3-4.

Listing 3-4.  Using getElementsByTagName()

<!DOCTYPE html>
<html> <head>
 <title>JavaScript Programmer's Reference</title>
 </head>
 <body>
 <p id="myParagraph">This is my paragraph! Lorem ipsum dolor sit
amet.</p>
 <p class="hideme">Another paragraph!</p> <script>
var myPars = document.getElementsByTagName("p"),
 mySpans = document.getElementsByTagName("span"),
 myParsLength = myPars.length,
 mySpansLength = mySpans.length,
 i;
 
// Give paragraphs a red background color
for (i = 0; i < myParsLength; i++) {
 myPars[i].style.backgroundColor = "red";
}
 
// Add some content to our empty span, and alert its index
for(i = 0; i < mySpansLength; i++) {
 if (mySpans[i].innerText === "") {
 mySpans[i].innerText = "No longer empty!";
 alert(i);
 }
} </script>
 </body>
</html>
 

Listing 3-4 will change both paragraphs to be red, add the text "No longer empty!" to the empty span, and alert the
number 1, which is the index of the empty span in the collection of spans returned by the getElementsByTagName()
method.

Prior to HTML5, getElementById() and getElementsByTagName() were the two methods the DOM
standard specified for accessing elements directly. The HTML5 specification adds three new methods:
getElementsByClassName(), querySelector(), and querySelectorAll().

The getElementsByClassName() method works like getElementById(), except it takes a class as a parameter and
returns an array-like collection of elements that have that class, as shown in Listing 3-5.

Chapter 3 ■ The DOM

64

Listing 3-5.  Using getElementsByClass()

<!DOCTYPE html>
<html>
 <head>
 	 <title>JavaScript Programmer's Reference</title>
 </head>
 <body>
 <p id="myParagraph">This is my paragraph! Lorem ipsum dolor sit
amet.</p>
 <p class="hideme">Another paragraph!</p>
 <script>
var hideme = document.getElementsByClassName("hideme"),
 hidemeLength = hideme.length,
 i;
 
// Hide all the elements that have a class of "hideme"
for (i = 0; i < hidemeLength; i++) {
 hideme[i].style.display = "none";
}
 </script>
 </body>
</html>
 

In Listing 3-5, we are getting all elements that have a class of "hideme" and then hiding each one by changing its
CSS display attribute to "none."

The querySelector() and querySelectorAll() methods provide a lot more flexibility than the other methods.
Both methods take any valid CSS selector as a parameter. The querySelector() parameter will return the first
element (in markup order) in the document that matches, while querySelectorAll() will return an array-like
collection of all elements that match the selector (if there is only one match, the method will return an array-like
object with one member; if there are no matches, the method will return an array-like object with no members—that
is, a length of 0). This gives us a powerful tool for accessing elements in the DOM, as demonstrated in Listing 3-6.

Listing 3-6.  Using querySelector()

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Programmer's Reference</title>
 </head>
 <body>
 <p id="myParagraph">This is my paragraph! Lorem ipsum dolor sit
amet.</p>
 <p class="hideme">Another paragraph!</p>
 <script>
var emptySpan = document.querySelector("#myParagraph span:last-child"); // Get the last span
emptySpan.innerText = "Not empty anymore!" // And give it some text.
 </script>
 </body>
</html>
 

In this example, we access the last span of the paragraph using the CSS pseudo-selector last-child. When it is
run, this example will place the words "Not empty anymore!" in that last span.

Chapter 3 ■ The DOM

65

One of the interesting things about using querySelector() and querySelectorAll() is that the elements you
want to access with JavaScript often are the same elements you want to access with your style sheets. Thus, often you
will find that some of the same selectors you're using in your CSS will show up in your JavaScript as queries.

Caution■■   If you intend to write code that relies on querySelector() or querySelectorAll() and are planning to
support older browser versions, those versions may not provide these methods for you because the methods are recent
additions to the DOM standard. In that case, you could always use a selector library to add the feature. The most
commonly used selector engine is called Sizzle, available at www.sizzlejs.com/. It has no dependencies on other
libraries and is quite small, very efficient, and well tested (it is the engine included in the jQuery library).

Finally, each node in the DOM possesses these element selection methods, just like the top-level document object
does. When you use one of these methods on a DOM node, the method's scope is limited to the children of that node,
as you can see in Listing 3-7.

Listing 3-7.  Using the Methods on an Element

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Programmer's Reference</title>
 </head>
 <body>
 <p id="myParagraph">This is my paragraph! Lorem ipsum dolor sit
amet.</p>
 <p class="hideme">Another paragraph!</p>
 <script>
var myPar = document.getElementById("myParagraph"), // Get a reference to the first paragraph
 mySpan = myPar.querySelector("span:last-child"); // Get a reference to the last span in that
paragraph
 
mySpan.innerText = "Not empty anymore!"
 </script>
 </body>
</html>
 

This example, like Listing 3-6, will add the text "Not empty anymore!" to the last span of that paragraph. In this case,
we first get a reference to the paragraph using getElementById() and then search just that paragraph's child elements
using querySelector(). This applies to DOM fragments as well (see the next section for details on DOM fragments).

Traversing the DOM
Another way of accessing elements in the DOM is to start at a known place in the DOM tree and then traverse to a
different location using parent/child/sibling relationships. We've already seen a basic example of that in the previous
section. Fortunately, the DOM provides some convenient properties for traversal:

•	 Node.firstChild: Reference to the first child of the node

•	 Node.lastChild: Reference to the last child of the node

•	 Node.nextSibling: Reference to the next sibling of the node

•	 Node.previousSibling: Reference to the previous sibling of the node

http://www.sizzlejs.com/

Chapter 3 ■ The DOM

66

Listing 3-8 shows an example of these traversal properties.

Listing 3-8.  Using Traversal Properties

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Programmer's Reference</title>
 </head>
 <body>
 <p id="myParagraph">This is my paragraph! Lorem ipsum dolor sit
amet.</p>
 <p class="hideme">Another paragraph!</p>
 <script>
var mySpan = document.getElementById("myParagraph").lastChild;
mySpan.innerText = "Not empty anymore!"
 </script>
 </body>
</html>
 

This example will fill in the last span in the first paragraph with the text “Not empty anymore!”
Now that you know how to access elements in the DOM, the following section covers what you can do with them.

Modifying the DOM
In addition to enabling you to access elements in the document, the DOM provides a flexible framework for manipulating
those elements. You can modify existing elements by changing their properties, changing their content, or even
moving them completely from one place in the DOM to another. You can also delete elements and create new ones.

Modifying Existing Elements
Probably the most basic modification you might want to make to an existing element is to access and change its
properties. Most simple element properties are presented as simple properties on the element's associated node,
and you can get and set the values directly.

For example, Listing 3-9 shows how to change the href property of a simple anchor tag directly.

Listing 3-9.  Modifying an Element's Properties

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Programmer's Reference</title>
 </head>
 <body>
 <p id="myParagraph">This is my link!</p>
 <script>
var myLink = document.querySelector("#myParagraph a");
myLink.href = "http://www.google.com";
 </script>
 </body>
</html>
 

www.allitebooks.com

http://www.yahoo.com/
http://www.google.com/
http://www.allitebooks.org

Chapter 3 ■ The DOM

67

In this example, we are modifying the href property, changing it from www.yahoo.com to www.google.com. If
you load this example into your browser and click the link, it will take you to Google rather than to Yahoo. Using
this technique, you can modify most of the simple properties on an element: name, href, even the element's id.

Modifying Styles
For some properties, the DOM provides a more robust interface. For example, in Listing 3-10, an element's style
attribute provides a mapping of all of the inline styles on an element.

Listing 3-10.  Modifying an Element's style Attribute

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Programmer's Reference</title>
 </head>
 <body>
 <p id="myParagraph">This is my link!</p>
 <script>
var myLink = document.querySelector("#myParagraph a");
myLink.style.backgroundColor = "#ff0000";
myLink.style.color = "#fff";
 </script>
 </body>
</html>
 

In this example, we are modifying the link so that the background color is red and the foreground color is white.
When accessing an element's style attribute, as shown in Listing 3-11, all you are doing is working with

inline styles. The style attribute is not a representation of styles applied to the element through a style sheet,
as demonstrated in Listing 3-11.

Listing 3-11.  The style Attribute Is Only for Inline Styles

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Programmer's Reference</title>
 <style>
#myParagraph a {
 background-color: #ff0000;
 color: #ffffff;
}
 </style>
 </head>
 <body>
 <p id="myParagraph">This is my link!</p>
 <script>
var myLink = document.querySelector("#myParagraph a");
alert(myLink.style.backgroundColor); // will alert "" (empty)
alert(myLink.style.color); // will alert "" (empty)
 </script>
 </body>
</html> 

http://www.yahoo.com/
http://www.google.com/
http://www.yahoo.com/
http://www.yahoo.com/

ChapTer 3 ■ The DOM

68

Both of these alerts will be empty, even though we have set the background color and text color. That's because
they were set using a style sheet rather than an inline style.

Similarly, if you modify an element's style attribute, the DOM will insert your changes as an inline style.
Examining the element in Listing 3-11, you would see that it now looks something like this:

<a href="http://www.yahoo.com/" style="background-color: rgb(255, 0, 0); color: rgb(255, 255,
255);">This is my link!

You can determine which styles are currently at work on an element by using the DOM's getComputedStyle()
method of the window object, as shown in Listing 3-12. This method takes an element reference and returns an object
representing the styles that are currently active on the element, whether they came from a style sheet or an inline
style. The object will be of the same format as the style attribute on the element.

Listing 3-12. Using the window.getComputedStyle() Method

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Programmer's Reference</title>
 <style>
#myParagraph a {
 background-color: #ff0000;
 color: #ffffff;
}
 </style>
 </head>
 <body>
 <p id="myParagraph">This is my
link!</p>
 <script>
var myLink = document.querySelector("#myParagraph a"),
 styleObject = window.getComputedStyle(myLink);

alert(styleObject.backgroundColor); // will alert something like "rgb(255, 0, 0)"
alert(styleObject.color); // will alert something like "rgb(0, 255, 0)"
 </script>
 </body>
</html>

This example will first alert the color applied to the background of the target element—in this case red, or
rgb(255, 0, 0). The second alert will show the color of the text. In this case, we have two conflicting styles, one in the
style sheet and an inline style. The inline style has the higher specificity, so it wins, and the script will alert green, or
rgb(0, 255, 0).

Another common property to change is an element's class. The HTML5 DOM specification includes a robust
interface for managing classes: the classList property. When accessed directly, the classList property will return
an array-like object containing the classes applied to the element. (If no classes are applied to the element, the object
will be of length 0.) Each individual class can be accessed via indexes. In addition, the classList property exposes a
set of useful helper methods (seen in use in Listing 3-13):

•	 classList.add(classname): Adds class classname to the classList.

•	 classList.contains(classname): Returns true if classname is present in classList.

http://www.yahoo.com/
http://www.yahoo.com/

Chapter 3 ■ The DOM

69

•	 classList.remove(classname): Removes class classname from classList.

•	 classList.toggle(classname): If classname is present in classList, it is removed; otherwise
it is added.

Listing 3-13.  Using the classList Interface

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Programmer's Reference</title>
 <style>
.redclass {
 background-color: #ff0000;
}
.greenclass {
 background-color: #00ff00;
}
 </style>
 </head>
 <body>
 <p id="myParagraph" class="redclass">Here is a paragraph.</p>
 <script>
var myPar = document.getElementById("myParagraph");
myPar.classList.toggle("redclass"); // removes redclass from classList
myPar.classList.add("greenclass"); // adds greenclass to classList
 </script>
 </body>
</html>
 

In this example, the background color of the paragraph will be green.
Older versions of browsers will not have the classList interface, and you will instead have to manually modify the

class string through the className property. Also, many JavaScript libraries provide methods for managing classes.

Modifying Content
Another common task is accessing and modifying the content of an element. The DOM provides a property to access
the actual markup inside an element as well as a property to access just the text contained within that markup:

•	 Node.innerHTML: Provides an interface to the HTML inside of a node. When simply accessed,
it returns the HTML contained within the node. If used as a setter, it erases the HTML
contained within the element (and its associated nodes in the DOM) and replaces it with the
specified HTML (and adds the associated nodes to the DOM). This interface was originally
created by the Internet Explorer team many years ago, and it was so incredibly useful that all
other browser teams implemented it before it became part of the HTML5 standard.

•	 Node.innerText (nonstandard, available in all browsers except Firefox) or Node.textContent
(standard, available in modern browsers except Internet Explorer): Similar to Node.innerHTML
except it only returns the text of all the elements contained within the node. It does not return
any HTML markup. When used as a setter, it erases all content within the node and inserts
the supplied text.

Chapter 3 ■ The DOM

70

Listing 3-14 shows examples of both of these in use.

Listing 3-14.  Using innerHTML and innerText

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Programmer's Reference</title>
 </head>
 <body>
 <p id="firstParagraph">Here is a paragraph.</p>
 <p id="secondParagraph">Here is another paragraph. It contains some other
tags, as well.</p>
 <script>
var firstPar = document.getElementById("firstParagraph"),
 secondPar = document.getElementById("secondParagraph");
 
alert(firstPar.innerText); // will alert "Here is a paragraph."
alert(secondPar.innerText); // will alert "Here is another paragraph. It contains some other
tags, as well."
alert(firstPar.innerHTML); // will alert "Here is a paragraph."
alert(secondPar.innerHTML); // will alert "Here is another paragraph. It contains some
other tags, as well."
 
firstPar.innerText = "I have changed the text."; // will change the text of the first paragraph
secondPar.innerHTML = "How do I love thee?Let me count the ways!";
// will change the HTML inside the second paragraph
 </script>
 </body>
</html>
 

In this example, we first use the properties to see the content of the paragraphs, then we use them to change
the content.

Caution■■   These methods are remarkably useful, but carry with them an important caveat: be very careful with
innerHTML, as anything that you put in there will be parsed into DOM nodes and inserted into the DOM. This can present
a serious security problem if you are not carefully sanitizing the HTML you are inserting into the DOM. Specifically, be very
careful of using innerHTML with any content that comes from the user, or that you do not have complete control over.
These methods will insert any HTML, including script tags, so if you blindly insert user-provided HTML into your docu-
ment, it would be trivial for a user to include a malicious script that could access your application's data and compromise
your security completely.

Creating New Elements
In addition to innerHTML, the DOM provides a generic method for creating new elements: the createElement()
method. It takes as an argument an HTML tag name, and returns a plain DOM node of the specified type. You
can then work with this node as if it were one you had accessed via one of the access methods: you can modify its
properties, change its content, and so forth.

http://www.google.com/
http://www.google.com/

Chapter 3 ■ The DOM

71

The resulting node is not attached to the document, so the DOM also provides the following set of methods for
inserting these fragments into the main DOM, thus causing their associated markup to be rendered in the browser window:

•	 parentNode.appendChild(fragment): Appends the DOM fragment as a child of parentNode,
at the end of its existing child nodes (if any)

•	 parentNode.insertBefore(fragment, targetNode): Inserts the DOM fragment as a child of
parentNode and a sibling of targetNode just before it in the document

•	 parentNode.replaceChild(fragment, targetNode): Replaces targetNode with fragment

Note that the fragment can refer either to a detached fragment created using createElement() (or other
methods) or to an existing node within the document. If the latter, these methods will remove the fragment from its
previous location before inserting it into its new location. This makes it easy to move nodes from one place to another
within the DOM.

Finally, the DOM provides a way to copy existing nodes using the cloneNode() method, seen in Listing 3-15.
The cloneNode() method can take an optional boolean argument that, if set to true, instructs the clone to be "deep"
and include all child nodes of the target node.

Listing 3-15.  Using DOM Methods to Create New Nodes and Add Them to the Document

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Programmer's Reference</title>
 </head>
 <body>
 <p id="firstParagraph">Here is a paragraph.</p>
 <p id="secondParagraph">Here is another paragraph. It contains some other
tags, as well.</p>
 <script>
var firstPar = document.getElementById("firstParagraph"),
 secondPar = document.getElementById("secondParagraph"),
 targetLink = document.querySelector("#secondParagraph a"),
 myNewList = document.createElement("ul"),
 myNewListItemTemplate = document.createElement("li"),
 myNewListItem = myNewListItemTemplate.cloneNode();
 
myNewListItem.classList.add("menuitem");
myNewListItem.innerText = "One";
myNewList.appendChild(myNewListItem);
myNewListItem = myNewListItemTemplate.cloneNode();
myNewListItem.appendChild(targetLink);
myNewList.appendChild(myNewListItem);
firstPar.appendChild(myNewList);
 </script>
 </body>
</html>
 

In this example, we start out by creating an unordered list and a list item template using the createElement()
method. Then we clone the template, give the clone a new CSS class and some text using the innerText property,
and append it to the unordered list. Then we clone the template again and append to it the link from the second
paragraph. This removes that link from that location and inserts it into the list item. Finally, we append the list item to
the list and append the list to the first paragraph.

t

http://www.google.com/

Chapter 3 ■ The DOM

72

Deleting Elements
The DOM gives us a few ways to delete target nodes:

•	 parentNode.removeChild(targetNode): Deletes targetNode from parentNode.

•	 parentNode.innerHTML: By setting the innerHTML of a node to an empty string, we can remove
all of its children at once.

There are some caveats when it comes to deleting elements from the DOM, however. If the elements have event
handlers attached to them, particularly event handlers that make liberal use of closure to maintain their state, simply
removing the elements those handlers are bound to will not necessarily clear them out of memory. This is a prime
cause of memory leaks in dynamic applications. Be sure to explicitly remove event handlers from elements (and their
children, of course) before removing them from the DOM.

Older versions of Internet Explorer (6 and 7 mostly) are particularly bad about not freeing up memory when
elements are removed from the DOM. In fact, these older versions of Internet Explorer hold on to some of the memory
for each element even after the elements have been removed from the DOM, resulting in a memory leak. Highly
dynamic pages, where lots of elements are added and removed from the DOM, will simply grow larger and larger in
memory in IE. There is a simple trick to getting around this: the IE proprietary property outerHTML.

The outerHTML property references the HTML of the parents of the element; when used as a setter and given
an empty string, it removes the element from the DOM and efficiently from memory. It doesn't completely clear the
element from memory, but it does help.

So, for an average element deletion, you should follow steps similar to these (as demonstrated in Listing 3-16):

1.	 Delete any event handlers from the target element and its children.

2.	 Delete the element using removeChild().

3.	 Check if outerHTML is available and, if so, use it to clear the memory in IE.

Listing 3-16.  Efficiently Removing an Element from the DOM and from Memory

var myTarget = document.getElementById("deleteme");
deleteme.removeEventListener("click", clickHandler, false);
 
myTarget.parentNode.removeChild(myTarget);
 
if (typeof document.outerHTML !== "undefined") {
 myTarget.outerHTML = "";
}
 

In the contrived example shown in Listing 3-16, we first get a reference to our target element, then we remove
its event handler, and then we remove it from the DOM. Then we check if we are operating in Internet Explorer and,
if so, clear the memory associated with the element.

If you're using a JavaScript library, it will probably manage this process for you, especially if it exposes its own API
for deleting elements from the DOM.

DOM Events
In addition to providing access to elements, the DOM specifies a framework for handling user interactions with
elements. As the user interacts with the elements on the page—mousing over them, clicking them, selecting them,
dragging them, typing within them, and so on—the browser translates those interactions into events within the
elements. You can then attach an event handler to an element for a specific event; an event handler is essentially
a block of code that the browser will execute when the event happens.

Chapter 3 ■ The DOM

73

The DOM provides a simple but robust framework for handling events. . . and Internet Explorer ignores it almost
completely until IE9. In versions prior to IE9, Internet Explorer used different methods to bind event handlers,
provided a different execution context for events, and even didn't have an entire phase of the event model.

On the positive side, dealing with Internet Explorer's different event model is a common task, so solutions
are plentiful and robust. We will discuss some of these solutions at the end of this section, but for now we will just
concentrate on how the event model is designed to work.

Event Phases
When the user interacts with an element, the browser checks whether an event handler is registered for that event
type on that element. If so, the browser executes that handler.

Because HTML is structural and tags can be nested, the DOM specifies that an event that starts in one element
will "bubble up" through its parent elements—after all, an event in a child element might need to be counted
in a parent element as well. After an event has occurred on a target element, the browser will then "bubble up" the
event to the target element's parent. It will then perform the same check to determine if a handler is registered for
the event type and execute it if there is. Then it will bubble up to the next parent, and so on. Eventually the event
will reach the trunk of the DOM tree—the body element, which is the ultimate grandparent of any element in the
document. At that point, the event will traverse back down the path it just followed to the original target, again
checking for and executing registered event handlers at each element, all the way back to the original target element.
Once the round trip is completed, the event terminates.

The phase when the event is moving up the DOM tree is called the bubbling phase, and the phase when the event
is going back down the DOM tree is called the capturing phase. You can specify which phase you want your event
handler to execute in, giving you great flexibility in handling events on nested elements. For example, if you want
to have a click event execute on a parent element before it executes on the original child target, you can register the
parent event handler in the bubble phase and register the child event handler in the capture phase.

There is a third phase for events, called at target, which is when the event is currently at the target element. There
is no way to target this phase directly when binding event handlers, but you can access it via a property in the Event
object (see "The Event Object," below).

Event Execution Context
When the browser executes an event handler, it has to provide an execution context for that function. The DOM
standard specifies that this context should be the element that the event handler is bound to. So, within an event
handler function, the this keyword will be a pointer to the DOM element that the event is executing on.

Also, when an event handler is executed, the browser will pass into it (as a parameter) an Event object that
contains several useful properties that provide details about the event: the original target element where the event
originated, the mouse location within the target, the mouse location within the page, and so on. In addition, the Event
object has some useful methods for modifying the event's propagation behavior (we will cover these in the section
titled "The Event Object," below).

Different Events
The DOM standard provides a huge number of events. They can be grouped into six basic groups:

•	 Mouse events: click, mousedown, mouseup, mousemove, etc. These are covered by the DOM
MouseEvents module.

•	 Keyboard events: keypress, keydown, and keyup. Covered by the DOM KeyboardEvents module.

•	 Object events: load, error, resize, scroll, etc. Covered by the DOM HTMLEvents module.

Chapter 3 ■ The DOM

74

•	 Form events: select, change, submit, reset, focus, etc. Also covered by the DOM
HTMLEvents module.

•	 User Interface events: focusin and focusout. Covered by the DOM UIEvents module.

•	 Mutation events: Events that are fired as things change within the DOM, such as
DOMNodeInserted, DOMAttrModified, etc. Covered by the DOM MutationEvents module.

In addition, browsers on mobile devices might also expose other events related to touch interactions
(tap, doubletap, taphold, swipe, etc.) or other occurrences unique to mobile devices (orientation changes, shaking,
movement, location, etc.).

Binding Event Handlers
In order for a browser to react to events on an element, you must first bind a handler for that event to the element.
Binding an event handler is essentially the same as saying, "When the user interacts with this element in this
way, execute this code when the event passes through this phase." The method the DOM provides for that is the
addEventListener() method, which takes three arguments: an event type argument (click, keypress, etc.),
a listener argument (the code to execute when the event happens), and an optional boolean phase parameter that
instructs the event handler to execute either during the capture phase (if set to true) or during the bubbling phase (if set
to false, which is the default). (In some older browser versions, the boolean for capture wasn't always optional, so it's
considered good practice to always include it.) The event handler can take an event object as a parameter, and you can
then access the event object within the handler. You can see an example of binding a click event handler in Listing 3-17.

Listing 3-17.  Binding a Click Event Handler to an Element

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Programmer's Reference</title>
 </head>
 <body>
 <p id="firstParagraph">Click Me!</p>
 <script>
var firstPar = document.getElementById("firstParagraph");
 
function myEventHandler(event) {
 alert("You clicked me!");
}
 
firstPar.addEventListener("click", myEventHandler, false);
 </script>
 </body>
</html>
 

When you click the paragraph, the alert box will open.
You can add more than one event handler to an event on a single object:

 
firstPar.addEventListener("click", myFirstEventHandler, false);
firstPar.addEventListener("click", mySecondEventHandler, false);
etc.
 

Chapter 3 ■ The DOM

75

The event handlers will execute in the order of binding when the event is triggered.
That's the basic pattern for binding event handlers to elements. You can use an inline anonymous function

instead of a named function if you prefer, as shown in Listing 3-18, which is also a fairly common pattern.

Listing 3-18.  Using an Anonymous Inline Function as an Event Handler

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Programmer's Reference</title>
 </head>
 <body>
 <p id="firstParagraph">Click Me!</p>
 <script>
var firstPar = document.getElementById("firstParagraph");
 
firstPar.addEventListener("click", function(event) {
 alert("You clicked me!");
}, false);
 
 </script>
 </body>
</html>
 

This example will behave exactly the same as the example in Listing 3-17. The difference is only in the named
function. Note that if you are going to have a complex event handler, it's probably worth the effort to create a named
function for it and pass it as a parameter. If you have an inline event handler that becomes too long (especially if it gets
long enough to go across more than one screen), your code can be confusing to read.

Unbinding Event Handlers
To unbind an event handler, use the removeEventListener() method, as shown in Listing 3-19. Just like
addEventListener(), removeEventListener() takes three parameters: an event type, the handler function to remove
(in the case of named functions), and the boolean phase parameter.

Listing 3-19.  Removing an Event Handler

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Programmer's Reference</title>
 </head>
 <body>
 <p id="firstParagraph">Click Me!</p>
 <script>
var firstPar = document.getElementById("firstParagraph");
 
function eventHandler(event) {
 alert("I'm unbinding the event handler!");
 firstPar.removeEventListener("click", eventHandler, false);
}

Chapter 3 ■ The DOM

76

firstPar.addEventListener("click", eventHandler, false);
 
 </script>
 </body>
</html>
 

In this example, when you click the paragraph, it will execute the handler, which will then unbind itself. Note also
that this example uses a closure: both the firstPar variable and the eventHandler function remain available even
after the event handler has been bound and the script has completed execution. That way, when the event handler
is called by an event on the target object, it will be able to successfully execute. Maintaining state for event handlers
is one of the more common uses of closures in JavaScript development. (See Chapter 1 for more details about closures.)

If you call removeEventListener() with a combination of parameters that doesn't match any event handlers that
have been added to the object, the method simply terminates. It does not throw an error or give any indication that it
had no effect.

There is no way to unbind an event handler that uses an anonymous inline function. You need to be able to refer
to a function name for removeEventListener().

The Event Object
The Event object is passed into the event handler, so if you want to, you can access it within your scripts. The Event
object has several useful properties and methods, most notably:

•	 event.clientX, event.clientY: The mouse coordinates of the event relative to the browser
window (if a mouse event).

•	 event.offsetX, event.offsetY: The mouse coordinates of the event relative to the target
element (if a mouse event).

•	 event.keyCode: The ASCII code of the key that was pressed (if a keyboard event).

•	 event.target: A pointer to the DOM element where the event originated.

•	 event.currentTarget: A pointer to the DOM element where the event is currently bubbled
(or captured) to. For example, if you had an unordered list consisting of a UL tag containing LI
tags, when you click an LI tag, the click event will bubble up to the parent UL tag, then up to
the parent of the UL tag, and so on. As the event bubbles up, the currentTarget property will
change value to reflect the location of the event in the bubbling process.

•	 event.eventPhase: An integer code indicating which phase the event is currently in: 1 for
capture, 2 for at target, 3 for bubbling.

•	 event.type: The type of the event ("click", "keypress", etc.).

•	 event.relatedTarget: Used in some specific events (such as mouseout) to point to the
element where the event originated (or that received the event, in the case of mouseout).

•	 event.stopPropagation(): When this method is called, it stops the event from propagating
any further through the DOM. If more than one event handler is registered to this element for
this event, however, any remaining event handlers will still execute.

•	 event.stopImmediatePropagation(): Like stopPropagation(), but when this method is
called, it will also stop any remaining event handlers on the current element from executing
as well as preventing any further propagation.

Chapter 3 ■ The DOM

77

•	 event.preventDefault(): If there is a default action associated with the event, calling this
method will prevent it from executing. For example, if you registered a click event handler to
an anchor tag, calling preventDefault() within it would prevent the browser from following
the link. In Internet Explorer, this method is not present. Instead, it is replaced with a boolean
property returnValue, which, when set to false, will cancel the default action.

These properties tell us a lot about the event and give us a lot of flexibility in writing our event handlers.
To illustrate, Listing 3-20 offers a simple game of Kitten Rescue.

Listing 3-20.  Rescue the Kittens!

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Programmer's Reference</title>
 <style>
.basket {
 width: 300px;
 height: 300px;
 position: absolute;
 top: 100px;
 right: 100px;
 border: 3px double #000000;
 border-radius: 10px;
}
 </style>
 </head>
 <body>
 <h3>Rescue the kittens!</h3>
 <p>Click on them to put them in their basket!</p>
 <ul id="kittens">
 Rowly
 Fred
 Mittens
 Lenore

 <ul class="basket">
 <script>
var basket = document.querySelector(".basket"),
 kittens = document.querySelectorAll("li"),
 kittensLength = kittens.length,
 i;
 
for(i = 0; i < kittensLength; i++) {
 kittens[i].addEventListener("click", function(event) {
 basket.appendChild(event.target);
 }, false);
}
 </script>
 </body>
</html>
 

ChapTer 3 ■ The DOM

78

In this example, we are registering a click event handler to each kitten, so that when you click on a kitten,
it is magically transported to the safety of its basket (or, in our case, we simply append it to the target DOM node, which
automatically removes it from its original location in the DOM).

In this game, there's a bit of an inefficiency: we assign an event handler to each item separately. We don't actually
have to do this; if we want to, we can take advantage of the fact that events bubble up through the DOM using
a method called event delegation.

Event Delegation
A common pattern you'll see in event handling is event delegation. Basically, delegating an event means allowing
the event to be handled by an element that is higher up in the DOM tree than the original target. This can reduce the
number of event handlers you have to employ, and thus can have a significant effect on efficiency.

As an example, let's redo our game using event delegation. Instead of applying a separate event handler to each
kitten, let's delegate the event handler to the containing element, as shown in Listing 3-21.

Listing 3-21. Kitten Rescue, Event Delegation Version

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Programmer's Reference</title>
 <style>
.basket {
 width: 300px;
 height: 300px;
 position: absolute;
 top: 100px;
 right: 100px;
 border: 3px double #000000;
 border-radius: 10px;
}
 </style>
 </head>
 <body>
 <h3>Rescue the kittens!</h3>
 <p>Click on them to put them in their basket!</p>
 <ul id="kittens">
 Rowly
 Fred
 Mittens
 Lenore

 <ul class="basket">
 <script>
var basket = document.querySelector(".basket"),
 kittens = document.getElementById("kittens");

kittens.addEventListener("click", function(event) {
 basket.appendChild(event.target);
}, false);

Chapter 3 ■ The DOM

79

 </script>
 </body>
</html>
 

In this example, we let the containing unordered list element handle the click events. Now we have only one
event handler, and our code is that much simpler.

Manually Firing Events
The DOM also enables you to trigger events manually. When you manually trigger an event in your code, it behaves
exactly as an event that was dispatched by a user.

Manually triggering an event involves three steps:

	1.	 Create an event object of the appropriate type.

	2.	 Configure the object appropriately. The DOM provides several methods for correctly
initializing event objects so that they have all the parameters necessary. The DOM also
provides a simpler method for initializing event objects for situations where you only need
a minimum of information for your event.

	3.	 Dispatch the event on the element.

Let's look at each of those steps in detail.

NEW MANUAL EVENTS ON THE HORIZON

The latest version of the HTML5 specification proposes a new way of modeling events using a global Event object.
In this proposal, this Event object can act as a constructor just like Object or Array, and you can create and
configure your event objects that way. Although this is not yet approved, it is already being implemented in some
browsers. For details on this upcoming functionality, see the "Interface CustomEvent" section in the W3C DOM4
standard, at https://dvcs.w3.org/hg/domcore/raw-file/tip/Overview.html#interface-customevent.

Creating an Event Object
To create an event object, you use the document.createEvent() method. This method takes a single parameter,
which is a string representing the DOM event module you are going to be using. The following are the most
commonly used modules:

MouseEvents: Events dealing with mouse interactions, such as •	 click, mousedown, mousemove, etc.

UIEvents: Used for focus events, which occur when elements are focused and are receiving •	
keyboard input, as in the case of form fields or content editing.

HTMLEvents: Used for browser-oriented events such as document loading and unloading, as •	
well as content selection, resizing, and scrolling.

MutationEvents: Events dealing with changes to the DOM, such as •	 DOMNodeInserted,
DOMAttrModified, etc.

KeyboardEvents: Events dealing with keypresses: •	 keyup, keydown, and keypress.

Event: This is a generic event module that can be used to send any event.•	

Once you have an event object of the appropriate type, you can configure it as needed.

https://dvcs.w3.org/hg/domcore/raw-file/tip/Overview.html#interface-customevent

Chapter 3 ■ The DOM

80

Configuring an Event Object
The DOM provides convenience methods to help you appropriately configure your shiny new event object. Which
method you should use depends on which module your event is a member of.

Events in the MouseEvents module use Event.initMouseEvent(type, canBubble, cancelable, view, detail,
screenX, screenY, clientX, clientY, ctrlKey, altKey, shiftKey, metaKey, button, relatedTarget), where
the properties are as follows:

•	 type: The actual event type, such as click, mousedown, etc.

•	 canBubble: A boolean indicating whether or not the event should bubble up through the DOM.

•	 cancelable: A boolean indicating whether or not the event's default action can be canceled
using event.preventDefault.

•	 view: The event's meta context, which in JavaScript is always the global context, so always pass
a reference to the window object here.

•	 detail: Specific detail about the event. For MouseEvents, it is the number of mouse clicks in
the same location (thus, if detail = 2, it was a double-click event).

•	 screenX and screenY: The x and y coordinates relative to the body of the event.

•	 clientX and clientY: The x and y coordinates relative to the target element of the event.

•	 ctrlKey, altKey, shiftKey, metaKey (Mac OS X): Booleans indicating whether or not those
keys were pressed at the time of the event.

•	 button: A number indicating which button was clicked: 0 indicates a left click, 1 indicates
a middle button (usually the mouse wheel on modern mice), and 2 indicates a right-click.

•	 relatedTarget: The related target for the event, if appropriate.

Events of the UIEvents module use Event.initUIEvent(type, canBubble, cancelable, view, detail), where:

•	 type: The actual event type.

•	 canBubble: A boolean indicating whether or not the event should bubble up through the DOM.

•	 cancelable: A boolean indicating whether or not the event's default action can be canceled
using event.preventDefault.

•	 view: The event's meta context, which in JavaScript is always the global context, so always pass
a reference to the window object here.

•	 detail: Specific detail about the event. For UIEvents, it's usually the number of times the
mouse was clicked as part of the event, so this is often set to 1.

Events of the HTMLEvents module use Event.initEvent(type, canBubble, cancelable), where:

•	 type: The actual event type.

•	 canBubble: A boolean indicating whether or not the event should bubble up through the DOM.

•	 cancelable: A boolean indicating whether or not the event's default action can be canceled
using event.preventDefault.

Events of the MutationEvents module use Event.initMutationEvent(type, canBubble, cancelable,
relatedTarget, previousValue, newValue, attributeName, attributeChange), where:

•	 type: The actual event type.

•	 canBubble: A boolean indicating whether or not the event should bubble up through the DOM.

Chapter 3 ■ The DOM

81

•	 cancelable: A boolean indicating whether or not the event's default action can be canceled
using event.preventDefault.

•	 relatedTarget: The related target for the event, if appropriate.

•	 previousValue: The previous value of the modified node.

•	 newValue: The new value of the modified node.

•	 attributeName: The name of the modified attribute.

•	 attributeChange: An integer indicating how the attribute was changed: 1 = modification,
2 = addition, 3 = removal.

When it comes to initializing a KeyboardEvents event, you use Event.initKeyboardEvent(type, canBubble,
cancelable, view, ctrlKey, altKey, shiftKey, metaKey, keyCode, charCode), where:

•	 type: The actual event type.

•	 canBubble: A boolean indicating whether or not the event should bubble up through the DOM.

•	 cancelable: A boolean indicating whether or not the event's default action can be canceled
using event.preventDefault.

•	 view: The event's meta context, which in JavaScript is always the global context, so always pass
a reference to the window object here.

•	 ctrlKey, altKey, shiftKey, metaKey (Mac OS X): Booleans indicating whether or not the
virtual keypress happened while these keys were pressed.

•	 keyCode: The ASCII code of the key.

•	 charCode: The Unicode character of the key.

Note that the nonstandard browser here is Firefox, which instead calls the method initKeyEvent(). Originally
the KeybordEvent module was defined in early versions of the DOM Level 2 specification, but it was removed from
that specification.

EXTENDING EVENT OBJECTS

Feel free to extend these event objects if you want. They're objects, just like any other objects in JavaScript, so
you can add your own properties and methods to them. One of our favorite techniques is to provide an appDetail
property to the events, which contains useful information about the event and why it was triggered. This also
makes it easy to determine which events were manually triggered and which events were triggered directly by
users. It also works great with custom events (described a bit later in the chapter).

Now that you have a configured event, you just have to dispatch it.

Dispatching an Event
Dispatching your event is quite simple. As shown in Listing 3-22, you call the dispatchEvent() method on the
target element.

Chapter 3 ■ The DOM

82

Listing 3-22.  Firing a Custom Event

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Programmer's Reference</title>
 </head>
 <body>
 <p id="clickme">Click me to see an alert!</p>
 <script>
var myPar = document.getElementById("clickme");
myPar.addEventListener("click", function(event) {
 alert('This is your alert!');
}, false);
 
// Create and dispatch a new click event
var myClickEvent = document.createEvent("MouseEvents");
myClickEvent.initMouseEvent("click", true, true, window, 0, 0, 0, 0, false, false, false, false,
1, null);
myPar.dispatchEvent(myClickEvent);
 </script>
 </body>
</html>
 

In this example, we are manually firing a click event, so that when you load this page, you'll immediately see an
alert as if you had clicked the paragraph. You can click the paragraph to see the alert again.

In Listing 3-22, though, we don't actually need all of those parameters—we set the coordinates to 0 (even though
that's not at all accurate), we don't really care about the Cntrl, Shift, or meta keys, and so forth. If you won't be needing
all of those properties, you can use the simpler event object generated by the generic Events module. Consider, for
example, Listing 3-23, which automates our Kitten Rescue game—because nothing's more fun than making a game
that finishes itself.

Listing 3-23.  Automating Kitten Rescue

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Programmer's Reference</title>
 <style>
.basket {
 width: 300px;
 height: 300px;
 position: absolute;
 top: 100px;
 right: 100px;
 border: 3px double #000000;
 border-radius: 10px;
}
 </style>
 </head>
 <body>
 <h3>Rescue the kittens!</h3>

Chapter 3 ■ The DOM

83

 <p>Click on them to put them in their basket!</p>
 <ul id="kittens">
 Rowly
 Fred
 Mittens
 Lenore

 <ul class="basket">
 <script>
var basket = document.querySelector(".basket"),
 kittens = document.getElementById("kittens");
 
kittens.addEventListener("click", function(event) {
 basket.appendChild(event.target);
}, false);
 
// Make JavaScript rescue the kittens!
var allKittens = document.querySelectorAll("#kittens li"),
 allKittensLength = allKittens.length,
 i,
 clickKittenEvent = document.createEvent("Event");
 
clickKittenEvent.initEvent("click", true, true);
 
for (i = 0; i < allKittensLength; i++) {
 allKittens[i].dispatchEvent(clickKittenEvent);
}
 </script>
 </body>
</html>
 

In Listing 3-23, we are looping through each kitten and firing a minimally configured click event on them, which
we created using the generic Events module. This provides a quick way of firing events, should you need it.

Note, however, that some events require more complex event objects. Keyboard events in particular seem to be
sensitive to this. You might need to experiment to find out what you can use.

Custom Events
You can use the DOM event model to dispatch any kind of event you want! Yes, you read that right: you aren't limited
to clicks and keypresses. If you want to define your own events, you can do that. Just specify your event type when you
use the addEventListener() method to attach the event handler, and then use the generic Events module to create
and fire your own events.

Consider our Kitten Rescue game. Imagine that instead of listening for a click event, we listen for a "rescue" event,
as shown in Listing 3-24. We can then manually generate rescue events and rescue all the kittens.

Listing 3-24.  Custom Events to the Rescue

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Programmer's Reference</title>

Chapter 3 ■ The DOM

84

 <style>
.basket {
 width: 300px;
 height: 300px;
 position: absolute;
 top: 100px;
 right: 100px;
 border: 3px double #000000;
 border-radius: 10px;
}
 </style>
 </head>
 <body>
 <h3>Rescue the kittens!</h3>
 <p>Click on them to put them in their basket!</p>
 <ul id="kittens">
 Rowly
 Fred
 Mittens
 Lenore

 <ul class="basket">
 <script>
var basket = document.querySelector(".basket"),
 kittens = document.getElementById("kittens");
 
kittens.addEventListener("rescue", function(event) {
 basket.appendChild(event.target);
}, false);
 
// Make JavaScript rescue the kittens!
var allKittens = document.querySelectorAll("#kittens li"),
 allKittensLength = allKittens.length,
 i,
 clickKittenEvent = document.createEvent("Event");
 
clickKittenEvent.initEvent("rescue", true, true);
 
for (i = 0; i < allKittensLength; i++) {
 allKittens[i].dispatchEvent(clickKittenEvent);
}
 </script>
 </body>
</html>
 

In this example, we just change the click event handler to a rescue event handler, and then we simply create a
rescue event and dispatch it from each kitten, just like we did with click events.

Creating custom events is a powerful technique that allows you to create decoupled components in your code.
Each component only needs to publish events as things happen to it, and then other components can listen for those
events, or not. That way, all components are completely decoupled: components A, B, and C do not need to know
anything about one another, or even if they exist or not, but they can still communicate with one another using events.

i

Chapter 3 ■ The DOM

85

Cross-Browser Strategies
As we mentioned at the beginning of this section, Internet Explorer pretty much ignores the standard for DOM events
up until version 9. Most notably, instead of addEventListener() and removeEventListener(), Internet Explorer uses
the methods attachEvent() and removeEvent(). In addition, Internet Explorer doesn’t set the proper context for the
executing event handler; instead of setting it to the element where the handler was registered, IE sets it to the window
object. IE also doesn't support the capture phase for events. And finally, IE doesn't pass an Event object into its event
handlers; instead, it tacks it on to the window object.

Fortunately, most of these problems are easy to mitigate with a bit of JavaScript. The lack of a capture phase is
difficult to overcome, but the capture phase is not widely used, so if we focus on the registration methods and context
problems, we can come up with a fairly simple solution.

What we'll do is create two new functions that we'll use to register our events: addEventHandler() and
removeEventHandler(), as shown in Listing 3-25. If we're working in a browser that supports the DOM standard, we'll
just alias our functions to the DOM functions and leave it at that. If we're in IE, though, we'll need to do a bit more to
fix our context problems.

Listing 3-25.  Creating Cross-Browser Event Binding Methods

if (document.addEventListener) {
 // DOM events available, so just use them.
 window.addEventHandler = function(targetEl, eventType, handler) {
 targetEl.addEventListener(eventType, handler, false);
 return handler;
 };
 window.removeEventHandler = function(targetEl, eventType, handler) {
 targetEl.removeEventListener(eventType, handler, false);
 }
} else {
 // Internet Explorer. Fix context problems as well as create alias.
 window.addEventHandler = function(targetEl, eventType, handler) {
 var fixContext = function() {
 return handler.apply(targetEl, arguments);
 };
 targetEl.attachEvent("on" + eventType, fixContext);
 return fixContext;
 }
  
 window.removeEventHandler = function(targetEl, eventType, handler) {
 targetEl.detachEvent("on" + eventType, handler);
 }
}
 

In this example we add two new methods to the global context: addEventHandler() and removeEventHandler().
In IE, for addEventHandler(), we fix our context problem by creating a dummy function called fixContext() and
binding that as the event handler. When fixContext() is called by the event, it manually invokes the handler using
the apply() method, which enables us to force the target element to be the execution context.

We also mentioned that Internet Explorer doesn't pass in an Event object as a parameter to its event handlers.
There's a simple way around that, too, as shown in Listing 3-26: within the event handlers, just check to see if there
was an event passed in and, if not, pull it from the window object (which is where IE puts it).

Chapter 3 ■ The DOM

86

Listing 3-26.  Fixing the Other IE Problem

function clickHandler(event) {
 if(!event) {
 event = window.event;
 }
 // continue...
}
 

Addressing the lack of a capture phase is more problematic, but these fixes take care of the worst of the problems.
If you find you need a more robust solution, many JavaScript libraries handle this problem very well. jQuery in
particular fixes all the problems, as well as providing many useful extensions to the event model.

Summary
In this chapter we have covered an important feature in browsers, the DOM, which provides JavaScript with an
interface for accessing and manipulating the document that has been loaded into the browser. Here are the important
points to take away from the chapter:

The DOM is a separate standard; it is not governed by the JavaScript standard.•	

The DOM has evolved over time, and browser compliance is an ongoing process.•	

The DOM is structured like a tree, and everything that is in the HTML document •	
is represented in that tree.

The DOM can be traversed using parent/child/sibling relationships and convenience •	
methods.

Nodes in the DOM can be accessed directly using methods like •	 getElementById() and
querySelector().

The DOM provides several important methods for manipulating its members, including ways •	
to change their properties and their content.

The DOM allows you to create nodes as needed, and work with them as if they were taken •	
from a document.

The DOM has a rich and flexible event model. . . which Internet Explorer doesn't follow.•	

Event handlers can be added to any element, and removed just as easily.•	

Event handling can be delegated to elements higher in the DOM because events bubble up •	
through the DOM structure, eventually reaching the body tag.

Events can be manually fired.•	

You can create custom events.•	

This chapter marks the end of the discussion chapters. In Chapter 4 we'll have some fun applying everything
we've covered in the first three chapters in some practical projects.

87

Chapter 4

JavaScript in Action

Now that we’ve covered the basics of JavaScript and the DOM, let’s work with our new tools. In this chapter we have
picked seven projects that will help you build your own projects, as well as illustrate many of the techniques and
JavaScript features we have covered in other chapters:

Working with JavaScript•	

Loading Scripts Efficiently•	

Asynchronous Communication using XMLHttpRequest•	

Cross-Domain Techniques•	

Data Caching•	

Choosing a JavaScript Library•	

Using jQuery•	

Building Your Own JavaScript Library•	

Working with JavaScript
Although not technically a “project,” we wanted to discuss some important aspects of working with JavaScript.
Probably the most common questions we get from JavaScript novices have to do with working with JavaScript: which
editors are good? How do you debug? What’s the best environment to work with? Are there any tricks to working with
the language? We wanted to take this opportunity to answer these questions.

Over the years, we’ve written JavaScript in just about every environment imaginable. One of the great things
about JavaScript is that you don’t need a lot of tools to work with it. A simple text editor and a browser will suffice
to get you started, and for basic projects that’s really all you need. Once you start working on projects with a little
complexity, though, you’ll quickly find yourself wanting more advanced tools.

In this section we want to cover the basic tools of the JavaScript trade. To start we wanted to go over the trinity of
JavaScript development tools: integrated development environments, browsers, and personal web servers.

We’ll start by talking a little about some of the more popular integrated development environments (IDEs) with
JavaScript support. Having a solid IDE with features like syntax highlighting, code completion, refactoring support,
and collaboration capabilities can help tame a complex project. There are many available, and it’s hard to know which
one to pick.

We also want to cover the developer support provided by web browsers. Modern web browsers provide a wide
variety of very useful tools for monitoring and debugging the JavaScript that they’re running.

Finally we’ll cover the most commonly-used personal web servers. You can use your browser’s Open File feature
to test your scripts, and that’s okay for basic work. Asynchronous communication, however, is one of the cornerstones

Chapter 4 ■ JavaSCript in aCtion

88

of building JavaScript applications, and it requires a web server. (We cover asynchronous communication in the
Asynchronous Communication with XMLHttpRequest section, below.)

Once we’ve covered the tools of the trade we will talk about how to use them. We’ll provide some insights into our
usual workflow when working with JavaScript, and then talk a little about methods for debugging your scripts.

JavaScript IDEs
Since JavaScript is essentially text, all you really need to write it is a text editor. Any text editor can serve the purpose,
even something simple like the Notepad application on Windows. There are also several code editors available that
work well with JavaScript, and some even provide basic features like syntax highlighting. We’ve used vi to create
projects, and know several colleagues who are die-hard emacs users. We’re also very fond of TextMate and Sublime
Edit, two great editing programs that support a variety of languages.

When you start working with complex projects with many JavaScript files, you’ll quickly find that you’ll need
more features than simple code editors can provide. That’s where integrated development environments (IDEs) come
into play. (And if you’re already familiar with code editing environments for other languages, you’ll want the same
features for your JavaScript projects.)

An integrated development environment takes a code editor to the next level. A typical IDE will provide features
for managing multiple files and file types, grouping them together in projects or applications (the exact term varies), and
will often provide features for collaborating with other developers, such as integration with source control systems.

There are several IDEs that support JavaScript development. Typically they all provide a basic set of editing
features (e.g. file creation, deletion, renaming, moving; find/replace in a single file or across multiple files; auto
indenting). The better IDEs will provide more advanced features like code assist (a feature that acts as a dynamic
assistant, providing suggestions or autocompletion based on what you have typed).

In addition, much of the time you won’t be working exclusively with JavaScript. If you’re working on a typical web
project you’ll also be working with HTML and CSS, so you’ll want the IDE to support those as well. We find, however, that
we can live with fewer features for HTML and CSS in an IDE if the JavaScript support is particularly good.

If you’re new to using IDEs entirely, we recommend looking through this list and trying a couple of the options.
Many developers are passionate about their IDEs and will claim that their choice is the only logical one, but really
the choice is one of personal preference. Trying a few IDEs will help you figure out what your preferences are—which
features you really like, which ones you can work without—and you can make a choice at that point.

aptana studio
http://www.aptana.com

Aptana Studio is our preferred IDE. It’s built on Eclipse (see below) and is available as either a standalone install
or as an Eclipse plugin. Aptana has all of the features of the base Eclipse IDE (build integration, cross-platform,
scriptability, etc). In addition, Aptana has several very useful features for web development in general, and JavaScript
development in particular:

Code assist with JavaScript, HTML, and CSS.•	

Code assist with jQuery (which has its own syntax, see Using jQuery, below).•	

Out-of-the-box Git integration (Git is a highly popular source control system; •	
see http://git-scm.com/ for details).

Built-in CLI, for working with script interpreters like node (or ruby if you’re working with Rails).•	

JSLint integration (JSLint is a JavaScript syntax and style checker; •	
see http://www.jslint.com/lint.html for details).

Open Source, with an active community. Bug reports are answered quickly and fixes are •	
pushed regularly via the internal updating system.

http://git-scm.com/
http://www.jslint.com/lint.html

Chapter 4 ■ JavaScript in Action

89

Because it is built on Eclipse, many existing Eclipse plugins will work with Aptana •	
(e.g. the SVN plugin).

Aptana is free.•	

Aptana also has the fully configurable UI of Eclipse, and also provides a nice library of predefined themes to try
and change to your liking. (We’re very fond of the “Espresso Libre” theme.)

Aptana is backed by Appcelerator, a company that focuses on creating tools for building mobile applications.
 See http://www.appcelerator.com for details.

Eclipse
http://www.eclipse.org

Eclipse is an open-source IDE. Eclipse was built for Java development (and is itself built using Java), but now includes
support for many other languages: JavaScript, C/C++, Ruby, Python, PHP, etc. Eclipse is a full-fledged IDE, so it can
handle entire projects, and even has integration with popular build systems like Ant. In addition:

Eclipse is cross-platform. Because it’s built with Java, Eclipse runs on many operating systems. •	
This means you can learn Eclipse once and not have to worry about changing from Windows to
Mac and having to learn a whole new IDE.

Eclipse supports plugins. Anyone can create plugins to extend Eclipse’s functionality, and •	
many plugins exist for everything from browser debugging to unit testing to SVN and Git
integration.

Eclipse is Open Source and has an active community.•	

Eclipse is free.•	

Out of the box Eclipse provides very little support for working with JavaScript (or HTML or CSS). You can add
varying degrees of support through a plugin. The most prominent Eclipse plugin for JavaScript support is Aptana
(see above), but if that’s too much there are a couple other choices.

We’ve had good luck with Amateras
http://amateras.sourceforge.jp/cgi-bin/fswiki_en/wiki.cgi?page=EclipseHTMLEditor which provides
basic functionality including code highlighting, content assist, outlining, and validation. If all you’re looking for is basic
coding support in a lightweight plugin, Amateras is a good choice.

The Eclipse Web Tools Platform is a project that aims to provide tools for all aspects of web development. You can
read more at http://www.eclipse.org/webtools/. They have a JavaScript Developer’s Tools (JSDT) sub-project at
http://www.eclipse.org/webtools/jsdt/ that works very well, and provides basic code editing features as well as
integrated debugging, code assist with browser dependencies, code outlining and perspectives, etc. When we are
working with a plain Eclipse install and cannot use Aptana, the Eclipse Web Tools Platform is our preferred plugin for
JavaScript support.

Microsoft Visual Web Developer and Visual Studio Express
http://www.microsoft.com/visualstudio/eng/products/visual-studio-express-products

Microsoft’s Visual Studio is an excellent IDE, but quite expensive for a full license. To make their tools (and thus
their platforms) easier to access, Microsoft has created a line of “express” versions of Visual Studio. The Visual Studio
Express for Web IDE is a great environment for creating HTML/CSS/JavaScript applications. We’ve worked with the

http://www.appcelerator.com/
http://www.eclipse.org/
http://amateras.sourceforge.jp/cgi-bin/fswiki_en/wiki.cgi?page=EclipseHTMLEditor
http://www.eclipse.org/webtools/
http://www.eclipse.org/webtools/jsdt/
http://www.microsoft.com/visualstudio/eng/products/visual-studio-express-products

Chapter 4 ■ JavaScript in Action

90

2010 version (which was called Visual Web Developer) and it provided all the features we needed for integrating
web-based UI work with .NET backend work. Features:

Integrated workflows with full versions of Visual Studio, allowing you to keep the expensive •	
licenses to a minimum without limiting collaboration.

Code highlighting and syntax checking for JavaScript and HTML.•	

SVN and Git integration.•	

Unit testing integration.•	

Active community of users who are helpful about answering questions and providing •	
suggestions.

Free.•	

If you will be building projects for Windows, or will be collaborating with people who do, the Visual Studio line
would be a great choice.

WebStorm
http://www.jetbrains.com/webstorm

We know many JavaScript developers that swear by WebStorm and will not even consider using another IDE.
Its features include:

Code highlighting and completion.•	

Unit testing integration.•	

JSlint integration.•	

Internal debugger.•	

30-day free trial, $49 for a personal license.•	

We’ve not used WebStorm ourselves, but we have seen enough of it over the shoulders of colleagues to be
suitably impressed.

Browsers
Probably as important as your choice of IDE is your choice of browser for doing your development. You’ll be testing
in all of your target browsers, of course, but you’ll have one main browser that will be your go-to choice for ongoing
work, that will always be running in the background waiting for you to switch back to it and hit refresh to see your
latest changes. Which browser you choose as this faithful companion will depend largely on how well it supports
JavaScript development.

Not long ago, browsers had very little support for developers. You could view the source of a web page but
that was it. Errors in your JavaScript (or HTML or CSS) would pass unremarked, except for inducing unpredictable
behavior in your applications. Debugging a complex script was as much a matter of defensive coding and knowledge
of arcane idiosyncrasies of the browser as it was a matter of following any sort of set pattern.

Today all the modern browsers (Safari, Chrome, Firefox, and Internet Explorer) have tools for supporting
development. Some browsers provide highly advanced features, but all of them provide at least a JavaScript console
and the ability to view generated source.

JavaScript console: They all provide a console where the browser can output error •	
messages. The browsers also provide access to the console to your scripts (see Using the
Console, below).

http://www.jetbrains.com/webstorm

Chapter 4 ■ JavaScript in Action

91

View generated source: All modern browsers provide a way for you to view the source of a •	
document that results after all of the JavaScript within the page has run. If that JavaScript
has modified the DOM, those changes will be reflected in the markup. This feature is
enormously helpful in determining if your DOM manipulations are behaving as you expected.
Each browser’s implementation of this feature is different; consult with your browser’s
documentation to learn how to use it.

Most browsers have other features that are quite useful, including the ability to monitor HTTP traffic as it
happens (which is helpful when you’re making asynchronous requests and are wondering if the server you queried
returned the response you expected), the ability to step through code line by line, the ability to directly manipulate
HTML, CSS, and even JavaScript as the application is running, etc.

In addition to native development support, some browsers (most notably Firefox) have an extensive library of
third party add-ons that provide even more features. In fact, third party add-ons were among the first developer tools
available. Their popularity helped convince browser manufacturers that providing native tools is a great way to attract
developers to using their browsers.

Developer support features evolve constantly because modern browsers are also evolving and push regular and
frequent updates. For example, Firefox recently added a 3-D view to their developer tools, which provides a
three-dimensional view of the DOM which you can view from different angles.

Chrome
Google Chrome is our go-to browser for web development. The developer tools are robust and feature the ability to
apply break points to JavaScript code, run stack traces, profile efficiency, and more. We work with Chrome on a daily
basis and have not yet found its developer tools to be wanting.

Firefox
Firefox is probably the most extensible of the web browsers. The latest versions include an impressive set of
development tools which includes the highly useful Scratchpad, which enables you to enter JavaScript code and run it
in the context of the current tab.

Firefox didn’t always have such robust development tools built in, however, so for many years web developers
had to rely on plugins to provide that functionality. Probably the most popular is Firebug (http://www.getfirebug.com)
which provides all the features you need for web development in Firefox: a DOM inspector, script and network
monitors, a JavaScript console, etc.

Another favorite Firefox extension is the Web Developer’s Toolbar
(https://addons.mozilla.org/en-US/firefox/addon/web-developer/?redirectlocale=en-US&redirectslug=
Web_Developer_Extension_%28external%29). This extension adds a toolbar to Firefox with many useful features:
The ability to selectively enable or disable features such as scripts, image display, or Firefox’s native popup blocker;
inspectors for the DOM, cookies, forms; validation tools, etc.

Internet Explorer
Internet Explorer’s development tools are a relatively new addition, but as of version 10 are quite extensive. To access Internet
Explorer’s developer’s tools, hit F12 while viewing a page. This will bring up a window containing the available tools.

Internet Explorer’s tools include all of the basic ones: a console, the ability to add breakpoints to your JavaScript,
efficiency profiling, network monitoring, etc. In addition, it provides several useful features such as standards
validation, which submits the current page to various validators for checking. IE’s developer tools also includes an
accessibility validator, which submits the current page to the validator at www.contentquality.com.

IE’s dev tools also help you manage some of Internet Explorer’s more quirky aspects. For example, using conditional
comments you can write code that targets specific versions of Internet Explorer, the tools provide a way to see what
mode you currently are using. You can also change modes, making it easier to test your work in different viewing modes.

http://www.getfirebug.com/
https://addons.mozilla.org/en-US/firefox/addon/web-developer/?redirectlocale=en-US&redirectslug=Web_Developer_Extension_%28external%29
https://addons.mozilla.org/en-US/firefox/addon/web-developer/?redirectlocale=en-US&redirectslug=Web_Developer_Extension_%28external%29
http://www.contentquality.com/

Chapter 4 ■ JavaScript in Action

92

(Explaining document modes in IE is a bit beyond the scope of this section; for a really good explanation
see http://www.nczonline.net/blog/2010/01/19/internet-explorer-8-document-and-browser-modes/.)

Safari
Safari also has an extensive set of web developer tools. To use them go to Preferences ➤ Advanced and check the
“Show Develop menu in menu bar” option. That will add a Develop item to the main menu bar, which is how you
access Safari’s developer tools.

Safari’s developer tools are quite similar to Chrome’s, and that makes sense because they both share a common
codebase. However, the developers tools do differ between the two browsers. Safari, for example, has the surprisingly
useful Snippets editor: From the Develop menu choose “Show Snippet editor” to pop open the editor. The Snippets
editor essentially provides a stripped-down browser for you to work with. Type in your HTML, CSS, and JavaScript in
the top pane and it will instantly be rendered in the bottom pane. The Snippets editor is great for testing styles and
prototyping interactions, giving you a place to quickly try code without having to go through the extra steps of creating
a full HTML file.

Web Servers
Now that you have an editor for creating JavaScript and a browser to run it in, you need a way to get your scripts into
the browser. Many of the examples in this book can be saved as simple files on your hard drive and then opened
directly in the browser, but for real web development you’ll want to run your own local server for testing your work.
Each operating system has its own options for web servers, and there is even one cross-platform option available.

MacOS
MacOS comes with an Apache web server built in, and prior to Mountain Lion you could activate it via the Sharing
pane in the Control Panel. Apple removed the Control Panel interface, but left the server intact. You can manage the
server from the command line, or we were able to find at least one person who had posted a custom Control Panel
pane that purportedly restored the feature. (We didn’t try that, but if you want to give it a try head to your favorite
search engine and search for “replacement system preferences pane web sharing” and you should find it right away.)

Windows
Windows has its own web server called Internet Information Services, or IIS. Most of the various editions of Windows 7
and Windows 8 do not come with IIS installed or enabled by default, but you can easily add it to your installation.
We can’t cover the details here (that would be an entire chapter in and of itself), but searching for “windows 7 IIS
install” or “windows 8 IIS install” should get you started.

Xampp
http://www.apachefriends.org/en/xampp.html

Xampp is an easy to install cross-platform version of the Apache web server (configured with PHP), along with the
MySQL database and several other useful tools. It’s available for Windows, MacOS, Linux, and Solaris. We’ve had very
good luck with Xampp on both Windows and MacOS, and recommend it.

IDE Debugging Servers
Many IDEs have built-in debugging servers. These will allow you to serve a single page, or possibly an entire project,
from within the IDE. In addition to simply serving the files, the IDE will also often provide integrated features for

http://www.nczonline.net/blog/2010/01/19/internet-explorer-8-document-and-browser-modes/
http://www.apachefriends.org/en/xampp.html

Chapter 4 ■ JavaScript in Action

93

debugging your code, like breakpoints, stack traces, and stepping through code, all in the same environment. We’ve
found that the Visual Studio tools for integrated debugging are particularly good, but Aptana’s tools are also quite
useful. Consult the documentation for your tool for details on how to configure and use your IDE’s integrated server.

JavaScript Development Workflow
Now that you’ve picked an editor, a browser, and a way to serve your files, you’re ready to go. At its most simple,
a typical JavaScript development workflow looks like the workflow for any other language (write, test, repeat):

	 1.	 Write some code.

	 2.	 Load it in the browser and observe the results.

	 3.	 Repeat, fixing the problems that occurred or adding more features.

As you write more complex JavaScript, you’ll need ways to inspect your scripts as they execute. Some IDEs and
browser developer tools provide features that help, like inspectors or breakpoints, but there are some basic techniques
you can use that give you a lot of what you need.

Using the Browser Console
Throughout this book we’ve been using alerts to monitor the progress of our scripts. Alerts are fine, but they have the
disadvantage of pausing the execution of a script while it waits for someone to click the OK button.

Fortunately, there is a robust alternative to alerts in the browser’s JavaScript console. All modern browsers
have a JavaScript console that you can access, typically as part of the browser’s built-in Developer Tools, see
Figure 4-1 for an example. Most browsers have a keyboard shortcut to bring up the console: for Chrome it’s
Shift-Control-I, for Firefox it’s Shift-Control-J. IE also has a console; hit F12 to bring up the Developer Tools and
click on the Console tab.

Figure 4-1.  The Screenshot of the Chrome browser console

Chapter 4 ■ JavaScript in Action

94

Modern browsers expose an interface for the console to JavaScript in the form of the window.console object.
Each browser’s console is different, so each browser’s console object is different. But all of them provide methods for
outputting your own text to the console:

•	 console.log(strText): Output the specified text to the console as a simple log.

•	 console.warn(strText): Output the specified text to the console as a warning.

•	 console.error(strText): Output the specified text to the console as an error.

Both Firefox and Chrome provide ways to filter the console output so you can view just the types of output you want.
Outputting text to the console has the virtue of not interrupting the execution of your script like an alert would.

Now that you know about the console, you can execute any example in this book and replace the alert call with
console.log and see the same output on the console, rather than as an alert.

Logging to the console provides a great way to keep an eye on the state of your scripts. One of the most common
uses is to output the value of variables at different points in your script’s execution so that you can see how the
variable changes. In Chrome and IE, you can output anything to the console, not just strings. If you output an object,
you’ll see it enumerated on the console (see Figure 4-2):

In Chrome you can even drill down into an object to an arbitrary depth, including its prototypal inheritances.
This is a great way to learn more about JavaScript and the DOM; try outputting the window object to the console and
poking around in it.

In addition, you can interact directly with the console (see Figure 4-3). At the top of the Firefox console is an input
field with a button labeled “Evaluate.” In IE’s console, it’s the input field at the bottom of the window marked with the
>> symbol. In Chrome, you just click in the console window.

Figure 4-2.  Displaying an object in the Chrome browser console

Chapter 4 ■ JavaScript in Action

95

We are getting a reference to the body of the current document and then hiding it by setting its display property
to none.

You can type in any valid JavaScript here and it will execute in the context of the page that’s been loaded into the
browser window. As an experiment go to any page and type alert(document.title) into the console. (Usually you
can just press Enter to cause the console to evaluate your code, but sometimes you have to click the Evaluate button
in Firefox.) The browser window should alert the title of the page that’s loaded. If you enter window.document into
the console and press enter (or evaluate), the document object should appear in the console. In Chrome, when you
drill down into this object you’ll see HTML markup . . . and as you mouse over the elements Chrome will highlight the
corresponding elements in the window. IE will only enumerate the first few properties on an object, and Firefox will
only output the results of the toString() method of any object.

Breakpoints
One of the most useful tools for debugging scripts is the ability to set breakpoints in the code: specified points at
which the browser stops executing the script and allows you to inspect the current state of the scripts and even change
things. If you’ve never used breakpoints as part of your debugging process, we highly recommend giving it a try. It’s
also useful for examining scripts to learn how they work.

Chrome’s developer tools support breakpoints and stepping through JavaScript code line by line. For an excellent
tutorial, see https://developers.google.com/chrome-developer-tools/docs/scripts-breakpoints.

Firebug also supports breakpoints as part of script debugging.
See https://getfirebug.com/wiki/index.php/Script_Debugging for details.

Loading Scripts Efficiently
As you start writing complex JavaScript applications, you’ll quickly find that one of the biggest performance issues
you’ll have is slowness when your application first loads and initializes. Sometimes these problems are due to
technical issues, like script blocking or inefficient download order, and sometimes these problems are purely

Figure 4-3.  Entering JavaScript commands into the Chrome browser console

https://developers.google.com/chrome-developer-tools/docs/scripts-breakpoints
https://getfirebug.com/wiki/index.php/Script_Debugging

Chapter 4 ■ JavaScript in Action

96

perceptual: you can optimize your application loading process from a technical aspect, but that has side effects (like
brief flashes of unmodified content) that result in your application seeming like it is slow, inefficient, or unpolished.

In this section we’ll discuss techniques that you can use that will be optimized for both actual speed and
perceived speed. The first step is to talk about how browsers download and parse their assets, and then we’ll provide
four common tips you can use to increase the loading efficiency of your application.

How Browsers Download and Process Content
The details of downloading and processing content aren’t specified in any standard, so browser manufacturers are free
to implement any methodologies they prefer. As a result, there is some variation from browser to browser (and even from
version to version of a given browser) on how that is implemented. Overall, though, there are some general commonalities:

Browsers parse HTML documents in order. As the browser parses a document, the elements •	
it parses will become available in the DOM and it will begin downloading specified assets
(images, external scripts, stylesheets, etc).

Browsers can download multiple assets in parallel. Older browsers will only download two •	
assets in parallel, but newer browsers can handle up to six.

Loading an external JavaScript file will block other asset downloads. This is because a •	
script might modify the DOM, or even redirect the browser to a different page, so to avoid
unnecessary downloads the browser will not begin any other parallel downloads until the
script is loaded, parsed, and executed.

Throughout this book our examples have illustrated document parsing order by always placing the JavaScript
at the end of the HTML markup, just before the </body> tag. This guarantees that the browser will have parsed the
HTML before the script tries to access the elements. If you reverse the order, you’ll end up with a script trying to
access an element that doesn’t exist yet, and usually that results in an error. To demonstrate, consider Listing 3-3
from Chapter 3:

Listing 3-3.  Using getElementById()

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Developer’s Guide</title>
 </head>
 <body>
 <p id="myParagraph">This is my paragraph! Lorem ipsum dolor
 sit amet.</p>
 <p class="hideme">Another paragraph!</p>
 <script>
var myPar = document.getElementById("myParagraph"); // myPar is now a pointer to the paragraph.
myPar.innerText = "I have changed the content!"; // Change the text of the paragraph to "I have
changed the content!"
 </script>
 </body>
</html>
 

Chapter 4 ■ JavaScript in Action

97

This simple example illustrates using the getElementByID() method and changing the text of a paragraph. If we
place the <script> tag before the <p> tag, the example won’t work, as in Listing 4-1:

Listing 4-1.  Trying to access a DOM element before it is available

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Developer's Guide</title>
 </head>
 <body>
 <script>
var myPar = document.getElementById("myParagraph"); // myPar is now a pointer to the paragraph.
myPar.innerText = "I have changed the content!"; // Change the text of the paragraph to "I have
changed the content!"
 </script>
 <p id="myParagraph">This is my paragraph! Lorem ipsum dolor
 sit amet.</p>
 <p class="hideme">Another paragraph!</p>
 </body>
</html>
 

The script will not be able to access the paragraph, so getElementById() will return null. When we attempt to
change the innerText property of null, the JavaScript engine will throw an error because null has no properties.

Also, in all of our examples our scripts are inline, meaning they’re actually in the document itself. As you write
longer and more complex scripts, you’ll find it’s easier to keep them in separate files rather than placing them inline.
Separate files make maintenance and collaboration with other programmers easier, and allow you to leverage
deployment options like content distribution networks.

Unfortunately, when you load your scripts as separate files, it means that they will block the parallel download of
assets that follow them in the document. That brings us to our first technique for optimizing your applications: load
scripts at the end of the document.

Optimization Tip #1: Load Scripts at the End of the Document
One key technique (if an idea this simple can be called a technique) for optimizing your application loading process
is to load scripts at the end of the document, after everything else has already been loaded. Then they won’t be in a
position to block any other downloads, and any elements your scripts may need to access will be present in the DOM.

This technique can sometimes have an undesired side effect: Imagine you have a simple HTML document that
you modify heavily with complex JavaScript. You’ve set up your document structure such that all your scripts are
loaded at the end of the document. This results in a simple HTML document loading and appearing in the browser,
and then the browser starts to load, parse, and execute your scripts. While the browser is doing that, your unmodified
content is being displayed to the user and even worse because script loading is a blocking process, if the user attempts
to interact with the page nothing will happen. Then the browser will finish loading, parsing, and executing your
scripts and all of a sudden the browser will display the application as you intended. This “flash of unmodified
 (or unstyled) content,” brief though it may be, makes your application appear unpolished and inefficient even though
technically your application has been optimized for loading efficiency.

If you find yourself dealing with a flash of unmodified content, remember that it’s a perceptual problem. The user
is seeing something that they don’t expect and doesn’t help them, and that gives the perception that your application
is at fault. In cases of perceptual inefficiencies, you can often turn it back to your advantage by providing the user with
something that is helpful, like a loading screen. A loading screen tells the user that the application is still functioning;
it’s just not ready yet. If your scripts are otherwise loading and executing efficiently, that’s usually enough to buy your
application the time it needs to get going.

Chapter 4 ■ JavaSCript in aCtion

98

Creating a loading indicator is easy; just include the markup for it at the very beginning of your document, so
that it’s the first thing that is parsed and displayed. It can be a simple box in the middle of the screen with the message
“Loading…” or it can be a small image. Typically a loading indicator is absolutely positioned in the middle of the
screen and blocks access to elements underneath it. To dismiss it all you have to do is place a simple call at the end
of your last script to access the loader in the DOM and either remove it or, if you might want to use it again later, to
simply hide it.

Here’s an example that simulates a loading delay with a timer. In Listing 4-2, we’ve got a simple loading indicator
that covers everything on the screen, and then when the application is “ready” (in this case, when the timer is up) the
script hides it:

Listing 4-2. A simple loading indicator

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Developer's Guide</title>
 <style>
body, h1 {
 margin: 0;
 padding: 0;
}
#container-loading {
 position: absolute;
 /*
 * Radial gradient CSS generated by CSS Background Maker
 * http://ie.microsoft.com/testdrive/graphics/cssgradientbackgroundmaker/default.html
 */
 /* IE10 Consumer Preview */
 background-image: -ms-radial-gradient(center, circle farthest-corner, #9E9E9E 0%, #141414 100%);
 /* Mozilla Firefox */
 background-image: -moz-radial-gradient(center, circle farthest-corner, #9E9E9E 0%, #141414 100%);
 /* Opera */
 background-image: -o-radial-gradient(center, circle farthest-corner, #9E9E9E 0%, #141414 100%);
 /* Webkit (Safari/Chrome 10) */
 background-image: -webkit-gradient(radial, center center, 0, center center, 506,
 color-stop(0, #9E9E9E), color-stop(1, #141414));
 /* Webkit (Chrome 11+) */
 background-image: -webkit-radial-gradient(center, circle farthest-corner, #9E9E9E 0%, #141414 100%);
 /* W3C Markup, IE10 Release Preview */
 background-image: radial-gradient(circle farthest-corner at center, #9E9E9E 0%, #141414 100%);
}

#container-loading div {
 width: 200px;
 height: 100px;
 border: 2px solid #ccc;
 background-color: #fff;
 text-align: center;
 line-height: 100px;
 font-family: arial, helvetica, sans-serif;
 font-weight: bold;
 font-size: 1.5em;

http://ie.microsoft.com/testdrive/graphics/cssgradientbackgroundmaker/default.html

Chapter 4 ■ JavaScript in Action

99

 border-radius: 20px;
 position: absolute;
}
 </style>
 <script>
function showLoading(boolShow) {
 var loadingIndicator = document.getElementById("container-loading"),
 loadingMessage = loadingIndicator.querySelector("div");
 if (boolShow === true) {
 // Show the loading indicator.
 // Position everything
 loadingIndicator.style.width = window.innerWidth + "px";
 loadingIndicator.style.height = window.innerHeight + "px";
 loadingMessage.style.left = ((window.innerWidth - 200) / 2) + "px";
 loadingMessage.style.top = ((window.innerHeight - 100) / 2) + "px";
 loadingIndicator.style.display = "block";
 } else {
 loadingIndicator.style.display = "none";
 }
}
 </script>
 </head>
 <body>
 
 <!-- Begin: Loading Indicator -->
 <div id="container-loading">
 <div>
 Loading...
 </div>
 </div>
 <script>
// Initialize and show the loading indicator.
showLoading(true);
 </script>
 <!-- End: Loading Indicator -->
 
 <!-- Begin: Rest of document -->
 <h1>Hello World!</h1>
 <!-- Pretend complex markup goes here -->
 <!-- End: Rest of document -->
 
 <!-- Begin: loading scripts -->
 <!-- Script(s) loaded here -->
 <!-- End: loading scripts -->
 <script>
// Simulate a loading delay with a timer
setTimeout(function() {
 showLoading(false);
}, 2000);
 </script>
 </body>
</html>
 

Chapter 4 ■ JavaScript in Action

100

Note that in this loading indicator we do include two bits of inline JavaScript to handle positioning and layout,
as well as hiding and showing the indicator. The first bit of inline JavaScript is in the head of the document, and it sets
up a showLoading() function that we can use to show or hide the loading dialog. We could easily have included the
function definition in the body, after the loading dialog markup, but the function doesn’t need to follow the markup
in order to be defined because it doesn’t access the elements until it is called. If we define the function in the head,
but don’t call it until after the elements it accesses are parsed, it will work as expected. We could even pull this simple
script out into a separate file and load it using a non-blocking technique if we wanted; see Tip #3.

The other bit of inline JavaScript simply calls the showLoading() function to initialize the loader and show it
correctly. Because this script does only one thing, in the name of efficiency it makes sense to keep it inline in the
document, rather than pulling it out into a separate file (pulling it out into a separate file would also cause it to block
the loading of the complex document that came after).

Loading screens are an easy solution to the problem of blocking scripts, but they come with a couple of caveats.
First, they’re not really appropriate for every situation. If you’re building an informational website, for example, you
certainly don’t want to make people wait for your site to load. On the other hand, if you are building a complex
data-driven web application, a loading indicator can be quite useful.

Second, you should always try to minimize the loading delays so that you’ll never need a loading indicator, or so
that it will only be on the screen for as brief a time as possible. Our next optimization tip will help you achieve that goal.

Optimization Tip #2: Combine, Minify, and GZip
A common technique for increasing the efficiency of JavaScript applications is to combine scripts into as few files
as possible. This reduces the number of HTTP requests the browser has to make, and can have a big impact on the
loading speed of your application. Even if you only have a dozen or so JavaScript files, it would be a good idea to look
through them and decide which ones could be combined.

If you’re hesitant to combine your scripts into one file because it will make them difficult to maintain, that’s
a legitimate concern. That’s why many projects have a publication step that takes a development version of the
application and combines the JavaScript files together into one file. That way developers get to keep the more
manageable separate files, but the user doesn’t have to suffer the extra loading times they would entail. Note that
when you do this, it means that the environment you and your fellow programmers are working in is not the same
as what your users will be experiencing. The users will be experiencing a more optimized environment, which could
result in problems you will not witness. You should test your application regularly in a “compiled” production version
to avoid being surprised by bugs at time of deployment.

Another common deployment optimization technique is to minify the combined JavaScript files. Minification is
a method where an automated parsing program loads a JavaScript file and then attempts to reduce the overall size of
the file by removing comments, removing unnecessary whitespace, and replacing long variable, property, and method
names with smaller ones. The result is JavaScript that is very difficult for humans to read, but which browsers have no
problem understanding and which is significantly smaller in filesize, thus reducing download times.

Finally, JavaScript files are often compressed using the GZip compression algorithm before they’re deployed.
Browsers have the ability to accept a GZipped JavaScript file and unzip them internally before processing them. Even
though this introduces an extra step for the browser to perform, the time it takes is generally much less than the time
it would take for an uncompressed file to be transmitted to the browser, resulting in an overall performance increase.
GZip is only applicable for files above 100 bytes or so; files smaller than that will actually get bigger because GZipping
does involve some overhead in the file. If your file is big enough, though, the overhead will not be noticeable in
comparison to the size savings.

You can just minify or just GZip your JavaScript files, but the best savings in size (and therefore network
transmission time) are when you do both. There are several tools available for minifying JavaScript:

Google’s Closure Compiler: Google’s Closure Compiler doesn’t just minify your JavaScript, it •	
will also optimize it. It removes unused code paths, rewrites inefficient code, and then minifies
the results. The output is often much smaller than plain minification, and will run measurably
faster. See https://developers.google.com/closure/compiler/ for details on using the
Closure Compiler in your project.

https://developers.google.com/closure/compiler/

Chapter 4 ■ JavaScript in Action

101

JSMin: One of the oldest minifiers available, but still very good, is Douglas Crockford’s JSMin, •	
available at http://www.crockford.com/javascript/jsmin.html. It just minifies code, it does
not rewrite inefficient code like the Closure Compiler, so provides a slightly less heavy-handed
approach. It’s written in C, but is easy to build and integrates well into deployment scripts.

YUI Compressor: Built by Yahoo and part of their YUI library, YUI Compressor is a great •	
choice for minifying your JavaScript. As an added bonus it can also minify CSS files. YUI
Compressor can also be included in a Node script, making it super-easy to write your own
deployment scripts using JavaScript! See http://yui.github.com/yuicompressor/ for details
on YUI Compressor.

GZipping your files is something you can either do by hand as you deploy, or most modern web servers can be
instructed to automatically compress certain file types before transmitting them. The Apache module mod_deflate
(see http://httpd.apache.org/docs/2.2/mod/mod_deflate.html) makes it easy to specify what file types to
compress, or even which browsers to compress for. If you’re using Xampp, it can be configured to use mod_deflate by
uncommenting the appropriate directive in the configuration files,
see http://stackoverflow.com/questions/6993320/how-to-enable-gzip-compression-in-xampp-server for details.
For other servers check the documentation to see what’s possible.

Optimization Tip #3: Load Scripts In the Document Head
Using a Non-Blocking Technique
In Tip #2 we had a small bit of inline script in the head of the document that defined the function for hiding and
showing the loading indicator. It was safe to include in the head of the document because it was just a function
definition, and did not access the DOM as part of its definition. As you write your scripts, you’ll find a significant
portion of them will fall into the category of JavaScript that could be loaded in the head of the document because it
doesn’t access the DOM until called. JavaScript libraries often fall into this category.

If we could load those scripts in the head, we wouldn’t have to load them at the end of the document, and that
would reduce the amount of time the users would have to look at our loading dialog and maybe even eliminate the
need for one entirely. But if we load them as separate files in the head, they’ll block anything that comes after.

Fortunately, there is a way to load scripts asynchronously. The reason why scripts block other assets from loading
is because they’re included as part of the regular document flow. If we inject scripts into the document, they won’t be
a part of the regular document flow. The browser will still load, parse, and execute them, but they won’t be blocking
other assets from loading.

Script tags can be injected into a document just like any other DOM element. You just create a new <script> tag,
set its src property, and then append it to the DOM. The moment you append it to the DOM, the browser will begin
downloading the script.

As an example, imagine we had several functions we wanted to define—maybe our own personal JavaScript
library. And we had several predefined data objects we would like to create, which are defined in a separate file,
and maybe there’s an analytics package we want to load as well as a third party library being served from a content
distribution network. None of these scripts require the DOM in order for them to be executed (though any of them
might define methods that when called would access the DOM—but as long as we don’t call those methods until the
DOM is ready we’ll be okay) so we can load them in the head. Listing 4-3 is an example script called manifest-loader.js
that would do all of that:

Listing 4-3.  manifest-loader.js

// Define a manifest array of scripts to load
var defaultManifest = [
 "scripts/js-lib.js",
 "scripts/js-objects.js",

http://www.crockford.com/javascript/jsmin.html
http://yui.github.com/yuicompressor/
http://httpd.apache.org/docs/2.2/mod/mod_deflate.html
http://stackoverflow.com/questions/6993320/how-to-enable-gzip-compression-in-xampp-server%20f

Chapter 4 ■ JavaScript in Action

102

 "scripts/third-party/omniture.js",
 "http://big.cdn.com/useful-library.js"
]
 
// Define a function to load a manifest array.
function loadManifest(arrManifest) {
 var i,
 arrManifestLength = arrManifest.length;
 
 for (i = 0; i < arrManifestLength; i++) {
 var newScript = document.createElement("script");
 newScript.src = arrManifest[i];
 document.getElementsByTagName("head")[0].appendChild(newScript);
 }
}
 

In this example we first create a manifest array of all the URLs we want to load asynchronously. Then we define
a function that, when given a manifest array, will loop through the array, create a new script tag, set the src attribute,
and then append the script tag to the head of the document, thus causing the script to load asynchronously.

Now we can just load this script into the head of our hypothetical document. We can also include an even smaller
inline script that calls loadManifest(defaultManifest) and all of our scripts will begin loading without blocking the
rest of the document, as shown in Listing 4-4:

Listing 4-4.  Using the manifest loader

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Developer's Guide</title>
 <script src="scripts/js-loader.js"></script>
 <script>
loadManifest(defaultManifest);
 </script>
 </head>
 <body>
 
 <h1>Hello World!</h1>
 
 </body>
</html>
 

It’s very important that none of these scripts in the manifest need the DOM to be ready, because it almost certainly
not be available when they’re loaded. Note that it is possible to determine when the document is ready, but the
details vary greatly from browser to browser and even version to version of a given browser. However, it’s a common
functionality that many JavaScript libraries provide (like jQuery, see below).

If you don’t want to build this sort of infrastructure for yourself, you can always look for the features you need
in an existing JavaScript library. For example, RequireJS (http://requirejs.org/) takes this technique one step
further and allows you to specify dependencies in your JavaScript files, which can be dynamically loaded on an
as-needed basis.

http://big.cdn.com/useful-library.js
http://requirejs.org/

Chapter 4 ■ JavaScript in Action

103

Optimization Tip #4: Moderation is Good
Don’t fall into the trap of thinking that you absolutely must use any (or all) of these techniques. As you are optimizing
your application loading process, you should always look at what makes the most sense for your specific situation.
In our loading indicator example above, we kept some scripts inline in the document rather than loading them from
external files. We did this because placing them where they are guarantees that they’ll be available when we need
them (right after the browser parses the necessary part of the document) and because they are small enough that
optimizing them wasn’t really necessary.

In your projects you should experiment to see what combination of techniques provides the best results. You’ll
probably find that you’ll use a combination of these techniques to balance development needs with deployment
requirements across all your target browsers.

As mentioned in Tip #3, if you don’t want to build this sort of optimization infrastructure yourself you can always
look for the features you need in a JavaScript library or framework.

Asynchronous Communication using XMLHttpRequest
In addition to loading and displaying pages based on user requests (or JavaScript commands), browsers provide
another method for accessing servers: the XMLHttpRequest object. This object provides an interface for JavaScript
to make requests to web servers and process the responses as needed. The primary difference between this interface
and simply loading a page is that these requests can be made asynchronously—they run in the background and
will not block user interactions with the main page. In addition, the results of these requests can be processed by
JavaScript and incorporated into the current document as needed. Using this technique it is therefore possible to
create user interactions that do not require page refreshes, enabling a much more application-like look and feel for a
web application.

As you might think from the name XMLHttpRequest, the request can involve XML. And indeed when the
technique was first implemented, XML was the preferred way of encoding information. However, the technique can
involve any encoded data that is valid for transmission across HTTP: HTML, JSON, or even plain text. The technique
also has another name: Asynchronous JavaScript and XML, or AJAX for short.

Originally implemented by Microsoft, the XMLHttpRequest technique was so useful that other browsers quickly
implemented it, and it is now a part of the DOM standard at http://www.w3.org/TR/XMLHttpRequest/

How It Works
The XMLHttpRequest object performs all of the network access for you, going through all of the necessary steps
to contact the server and communicate correctly with it. As it does its work, it will dispatch events at various
points—when it has finished communicating with the server, for example, or if an error has occurred. You provide
event handlers for those events to correctly process the results.

The basic steps are as follows:

Create the desired event handler functions.•	

Create a new instance of the XMLHttpRequest object and configure it for use (including •	
providing the event handlers).

Instruct the XMLHttpRequest object to make the request. As it does its work, it will dispatch •	
events at the appropriate times.

Let’s go over each of those steps one at a time.

http://www.w3.org/TR/XMLHttpRequest/

Chapter 4 ■ JavaScript in Action

104

Step 1: Event Handlers
As it goes through its work, the XMLHttpRequest object will dispatch events for which you can provide handlers.
As with the DOM interaction events (like click or keypress), the event handler will be called when the event occurs,
and will be passed an event object which will contain information about the event. The event types are:

•	 readystatechange: This event is fired multiple times as the XMLHttpRequest object does its
work. When fired, this event will provide a readyState property on the event object that will
have one of the following values:

0: Unsent, meaning the XMLHttpRequest object has been created but the request has not •	
been sent.

1: Opened, meaning the •	 open() method has been called and has successfully completed
(and thus a request is underway).

2: Headers received, meaning all headers have been received from the server (this •	
includes redirect headers, if any). At this point the status property of the event object is
now available, and will have the HTTP response code from the server.

3: Loading, meaning the response is being loaded.•	

4: Done, meaning the response has been successfully loaded. The response from the •	
server is now located in the responseText property of the event object.

•	 abort: Fired when the request has been aborted (as when the XMLHttpRequest.abort()
method is called).

•	 error: Fired when an error condition has occurred.

•	 load: Fired when the request has completed successfully.

•	 loadend: Fired when the request has completed regardless of success.

•	 loadstart: Fired when the request is sent.

•	 progress: Fired during the loading process as it progresses.

•	 timeout: Fired if a specified timeout period elapses before the request could be completed.

All of these events except the readystatechange event are new to the most recent version of the XMLHttpRequest
specification, and so they may not be fully implemented in all of your target browsers. (Webkit, for example, only just
implemented the timeout event; see https://bugs.webkit.org/show_bug.cgi?id=74802.) The readystatechange
event is the legacy event specified by the original specification and is widely implemented, and it provides all the
information we need for handling most success and error situations.

A good readystatechange event handler uses the readyState property to see how far the request has progressed
and uses that to act accordingly. It will also use the status property to check for HTTP status messages (like status 404
for file not found). We can see this in Listing 4-5:

Listing 4-5.  A simple readystatechange event handler

function handleReadyStateChange(objXHR) {
 if (objXHR.readyState === 4) {
 // Request is done. Was the requested file found?
 If ((objXHR.status !== 200) && (objEvent.status !== 304)) {
 // Something happened..possibly the requested file wasn't found?
 // Tell the user that something went wrong.
 console.error("An error occurred while processing the request.");

https://bugs.webkit.org/show_bug.cgi?id=74802

Chapter 4 ■ JavaScript in Action

105

 } else {
 // The requested file was found and sent and the content is now available in
 // the objXHR.responseText property:
 console.log(objXHR.responseText);
 }
 }
}
 

We assume this event handler will be called multiple times as the request progresses, but the only time we want
to do anything is if the readyState property is 4, meaning the request is Done. Then we check the HTTP status that
was returned by the server, located in the status property. We’re going to assume that any status other than a 200
(success) or 304 (resource not modified) is an error condition; however you could do more detailed error handling
based on different status codes if you wanted. (See http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html for
a full list of status codes, their meanings, and when they are provided.) Assuming the request was a success,
we simply output the result to the console. (Obviously you can do much more with the result than just send it to the
console; this is a simple example to illustrate the pattern.)

Step 2: Creating and Configuring the XMLHttpRequest Object
The browser’s XMLHttpRequest object is an abstract object, meaning it isn’t accessed directly but rather is used as
a pattern to create new instances. It’s these new instances that you use in your scripts to perform the asynchronous
requests. You can even have more than one.

To create a new XMLHttpRequest object, you simply use the new keyword as with any JavaScript constructor:
 
var myXHR = new XMLHttpRequest();
 

This syntax is valid in all browsers that support this feature with the single exception of Internet Explorer 6.
For IE6, the feature is still available but involves evoking a new ActiveX object.

Once you have a new object, you will need to configure it. At the very least, an XMLHttpRequest object needs to
know a URL to request, what HTTP method to use to make the request (typically GET or POST, but you can also do HEAD
requests if you just want to examine the headers of a URL without actually fetching it), any supporting data needed
(e.g. form data in the case of a POST), and at least one event handler to execute in case of success.

You start by opening the object using the open() method:
 
myXHR.open(strMethod, strURL, boolAsynchronous);
 

•	 strMethod: The HTTP method to use for the request

•	 strURL: The desired URL to use

•	 boolAsynchronous: A boolean indicating whether or not to perform the request
asynchronously. This parameter is optional; if omitted it defaults to true. (If set to false this
will cause the request to be performed synchronously, and it will pause the browser for the
duration of the request just like a regular page load.)

Then, once you have opened the object, you can register your event handler. The most common choice is to
register an event handler on the readystatechange event:
 
myXHR.onreadystatechange = function() {
 handleReadyStateChange(myXHR);
};
 

r

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Chapter 4 ■ JavaScript in Action

106

This registers our previously-defined handleReadyStateChange() function as the event handler for the
readystatechange event. (If you are working only with browsers that implement the latest version of the standard,
you can also use the addEventListener() method, just as if this were any other DOM event.)

Step 3: Sending the Request
Sending the request is easy. All you have to do is call the send() method on the configured object:
 
myXHR.send(postData);
 

•	 postData: Data from a form that is being posted as part of the request. In the case of GET
requests, this will always be null.

At that point the object will perform the request and trigger event handlers as outlined.

Note■■   You can send an XHR request to any server, even one that is on a different domain from the source of your
page. However, access to the request result is limited by the Same Origin Policy. Unless the origin of the response and
the origin of your script match, your script will be unable to access the response. The "Cross Domain Methods" section
of this chapter discusses some techniques for safely getting around these limitations.

Putting It All Together
It’s pretty simple to configure and send an XMLHttpRequest, but we can make it even easier in our scripts if we create
a single function that can do it all for us.

There are a lot of things we need for a robust XMLHttpRequest object: a URL, the method, any post data, and
callbacks for success, error, and timeouts. We could provide each of those things as a separate parameter in a single
function, but it would be tidier to gather them all up into a single object and then provide that object as a single
parameter to the function, as in Listing 4-6:

Listing 4-6.  A configuration object for an XMLHttpRequest function

var myXhrDefs = {
 strMethod : "GET",
 strUrl : "http://myhost.com/ajax-test.txt",
 intTimeout: 3000,
 postData: null,
 boolAsync: true,
 successCallback: function(objXHR) {
 // Do things when the request is successful
 console.log(objXHR.responseText);
 },
 errorCallback: function(objXHR) {
 // Do things when there is an error in the request.
 console.error("The XHR failed with error ", objXHR.status);
 },
 timeoutCallback: function() {
 // Do things when a timeout occurs.
 console.error("The XHR timed out.");
 }
} 

http://myhost.com/ajax-test.txt

Chapter 4 ■ JavaScript in Action

107

Here we have gathered everything up into one object, even the callbacks which are methods on the object.
In Listing 4-7, we can then build a function that uses this object as a parameter to handle our XMLHttpRequests:

Listing 4-7.  An XMLHttpRequest function

function doXHR(myXhrDefs) {
 
 // Create and configure a new XMLHttpRequest object
 var myXhr = new XMLHttpRequest(),
 myTimer = null;
 myXhr.open(myXhrDefs.strMethod, myXhrDefs.strUrl, myXhrDefs.boolAsync);
 
 // Register the error and success handlers
 myXhr.onreadystatechange = function() {
 
 // If readyState is 4, request is complete.
 if (myXhr.readyState === 4) {
 
 // Cancel the timeout timer if we set one.
 if (myTimer !== null) {
 clearTimeout(myTimer);
 }
 
 // If there's an error, call the error callback,
 // Otherwise call the success callback.
 if ((myXhr.status !== 200) && (myXhr.status !== 304)) {
 if (myXhrDefs.errorCallback != null) {
 myXhrDefs.errorCallback(myXhr);
 }
 } else {
 myXhrDefs.successCallback(myXhr);
 }
 }
 }
 
 // Handle timeouts (set myXhrDefs.intTimeout to null to skip)
 // If we're working with a newer implementation, we can just set the
 // timeout property and register the timeout callback.
 // If not, we have to set a start running that will execute the
 // timeout callback. We can cancel the timer if/when the server responds.
 if (myXhrDefs.intTimeout !== null) {
 if (typeof myXhr.ontimeout !== "undefined") {
 myXhr.timeout = myXhrDefs.intTimeout;
 myXhr.ontimeout = myXhrDefs.timeoutCallback;
 } else {
 myTimer = setTimeout(myXhrDefs.timeoutCallback, myXhrDefs.intTimeout);
 }
 }
 
 // Send the request
 myXhr.send(myXhrDefs.postData);
} 

Chapter 4 ■ JavaSCript in aCtion

108

In this example, we’re creating a function that can handle all of our XMLHttpRequest needs. It creates and
configures a new XMLHttpRequest object and then registers the provided event handlers as needed. To browsers that
do not yet implement the timeout feature for XMLHttpRequest, it implements a timer using setTimeout(). Then it
sends the request for us. All we have to do to use the function is set up an object and then call the function:

doXHR(myXhrDefs);

Pulling all of our XMLHttpRequest code into one function makes maintenance and upgrading easier; instead of
manually managing XMLHttpRequest objects in possibly multiple places in our code, we call it in only one spot.

Cross Domain Techniques
All browsers implement a security measure called the Same Origin Policy. This policy allows scripts on a page to
access each other’s properties and methods as long as they are all served from the same origin: the same protocol
(http or https), the same host name, and the same port number (if specified). Scripts from different origins are not
allowed to interact with one another. Without this policy malicious scripts could access our pages and data.

Unfortunately, this policy also stands in the way of easily making applications that work with data from multiple
origins. There are a few methods for getting around this limitation, however, and because this is a common barrier in
JavaScript development we wanted to cover them here briefly.

Note that all of these techniques involve potential security risks, and what risks are involved will vary depending
on how you employ them. You should evaluate these techniques carefully for security problems before employing
them, to avoid malicious scripts from gaining access to your pages or your data.

Server-side proxy
One of the easiest solutions to implement is to create a simple proxy service that runs on your domain, and use that to
do all of your cross-domain queries. From the browser’s standpoint all requests are coming from the same origin,
so everything is okay.

You can implement the server-side proxy in any language you want, including JavaScript (thanks to node.js). In fact,
there are already several proxy servers built using node. We’ve built simple proxies using both PHP and Java. For a great
example, see Ben Alman’s Simple PHP Proxy, available at http://benalman.com/projects/php-simple-proxy/

JSONP
JSONP stands for “JSON with padding,” a rather confusing name for a technique that gets around the Same Origin
Policy by making use of script injection.

One of the exceptions to the Same Origin Policy is that scripts loaded through a <script> tag with a src attribute
are exempt, and can access and be accessed by scripts from another origin. For an example of this, see the examples
in the Using jQuery section, below, where we load jQuery from a content distribution network, which is definitely a
different origin than the example pages. If it weren’t for this exception, we wouldn’t be able to do this.

Ordinarily when you query a service you’d get back a JSON string as a response. You’d then use JSON.parse()
to deserialize the string into an object, and then access the properties on the object to do what you need. The Same
Origin Policy prevents this if the service is in a different origin than the querying page.

But what if the service didn’t return a simple JSON string, and instead returned a script that could be injected into
the querying page? If we did that, the injected script would be exempt from the Same Origin Policy, and we’d be able
to access its properties and methods as desired. That’s the key to JSONP: the service doesn’t return straight JSON for
parsing, it returns JSON padded inside a script that is injected into the host document.

http://benalman.com/projects/php-simple-proxy/

Chapter 4 ■ JavaScript in Action

109

There are two different kinds of padding that are typically used in JSONP. One is that the returned script simply
does a variable assignment, like so:
 
myResponse = { "foo" : bar, "serial" : 238 };
 

If that’s injected into the host document via a script tag, the variable myResponse would become available in the
global scope, enabling you to access the properties as needed.

The other way is for the returned script to execute a function call, like so:
 
responseHandler({ "foo" : bar, "serial" : 238 });
 

This executes the responseHandler() function with the desired data as an object literal. (This assumes you have
defined a function responseHandler() already, so that the injected script can call it, of course.)

Which kind of padding you will need will typically be specified by the target service. You, in turn, will specify the
name of the variable or function in your query to the target service when you inject the script tag, like this:
 
<script src="http://www.service.com/getserial?jsonp=myResponse"></script>
<script src="http://www.service.com/getserial?jsonp=responseHandler"></script>
 

The exact syntax will be provided by the service; it may not be “jsonp=varname” or “jsonp=functionname”.
(Twitter, for example, specifies that the format should be “callback=functionname”—see
https://dev.twitter.com/docs/things-every-developer-should-know#jsonp.)

Step by step, here’s how it goes:

If the service specifies that it will pad the JSON with a function call, create a function that you •	
can use to handle the data. If the service specifies that it will pad the JSON with a variable
assignment you can namespace the variable if you wish.

Create a new •	 <script> tag. Update its src attribute to have the target URL formatted as the
service specifies.

Append the •	 <script> tag to the document. This will cause the browser to go fetch its URL,
resulting in a cross-domain call.

Note that this will mean you’ll be creating a new <script> tag with every JSONP call. If you’re only making a few
calls (maybe a dozen or less) that will probably be okay. But if you’re relying heavily on JSONP, you’ll want to re-use
your <script> tags so you don’t end up with a bloated DOM and the resulting memory problems. The easiest way to
do this is to write a simple function that can handle all of your JSONP calls, as in Listing 4-8:

Listing 4-8.  A function that executes JSONP calls and recycles the script tag

function executeJSONPQuery(strUrl) {
 // Check to see if a jsonp script tag has already been injected.
 // Also, create a new script tag with our new URL.
 var oldScript = document.getElementById("jsonp"),
 newScript = document.createElement("script");
 newScript.src = strUrl;
 newScript.id = "jsonp";
 
 // If there is already a jsonp script tag in the DOM we'll
 // replace it with the new one.
 // Otherwise, we'll just append the new script tag to the DOM.
 if (oldScript !== null) {
 document.body.replaceChild(newScript, oldScript);

http://www.service.com/getserial?jsonp=myResponse
http://www.service.com/getserial?jsonp=responseHandler
https://dev.twitter.com/docs/things-every-developer-should-know

Chapter 4 ■ JavaScript in Action

110

 } else {
 document.body.appendChild(newScript);
 }
}
 

This example function takes a URL as a parameter. It creates a new script tag with the URL as its src attribute and
“jsonp” as its ID. It then looks to see if there is another script tag with that ID. If it finds one, it replaces it with the new
one, otherwise it simply injects the new script tag into the DOM. Either way, adding the new script tag to the DOM
causes the browser to go load the specified URL as a script.

A great example for using this is Twitter. They provide a robust but simple API for searching tweets that will
provide responses in JSONP format. For a simple example, let’s just show the last 20 tweets from the author Jon Reid.
We’ll build a function called handlejsonpresults() which will receive an object literal as its parameter. According
to the Twitter API documentation, the object will have an array called “results” as one of its properties. Each result is
an object representing a single tweet, and has a property called “text” that contains the text of the tweet. In Listing 4-9
we’ll loop through the array and create a list item for each tweet, and then append the results to the document:

Listing 4-9.  Fetching tweets from the Twitter API and displaying them in the document

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Developer's Guide</title>
 <script src="http://code.jquery.com/jquery-1.9.1.min.js"></script>
 </head>
 <body>
 <h1>Hello World</h1>
 <p id="clickme">Click here for tweeting goodness!</p>
 <script>
// Attach a click event handler to the paragraph so that it will load
// the tweets.
var clickme = document.getElementById("clickme");
clickme.addEventListener("click", function(event) {

executeJSONPQuery("http://searcexact syntax will be provided by the servim:jreid01&callback=
handlejsonpresults");
});
 
// Execute a JSONP query, reusing the script tag.
function executeJSONPQuery(strUrl) {
 // Check to see if a jsonp script tag has already been injected.
 // Also, create a new script tag with our new URL.
 var oldScript = document.getElementById("jsonp"),
 newScript = document.createElement("script");
 newScript.src = strUrl;
 newScript.id = "jsonp";
 
 // If there is already a jsonp script tag in the DOM we'll
 // replace it with the new one.
 // Otherwise, we'll just append the new script tag to the DOM.

http://code.jquery.com/jquery-1.9.1.min.js
http://search.twitter.com/search.json?rpp=20&q=from:jreid01&callback=handlejsonpresults
http://search.twitter.com/search.json?rpp=20&q=from:jreid01&callback=handlejsonpresults

Chapter 4 ■ JavaScript in Action

111

 if (oldScript !== null) {
 document.body.replaceChild(newScript, oldScript);
 } else {
 document.body.appendChild(newScript);
 }
}
 
// This function is called by the injected scripts.
function handlejsonpresults(objData) {
 var arrTweets = objData.results,
 arrTweetsLength = objData.results.length,
 i,
 myNewList = document.createElement("ul");
 
 // Loop through the results array and create a list item for
 // each tweet containing its text.
 for (i = 0; i < arrTweetsLength; i++) {
 var myLi = document.createElement("li"),
 myTextNode = document.createTextNode(arrTweets[i].text);
 myLi.appendChild(myTextNode);
 myNewList.appendChild(myLi);
 }
 
 // Now that all of the tweets have been compiled, append the list to the DOM.
 document.body.appendChild(myNewList);
}
 </script>
 </body>
</html>
 

In this example, every time you click on the paragraph the script will execute a JSONP call using our function
(and thus recycling the script tag) and append the results to the page.

JSONP is useful, but it’s not without its drawbacks. The biggest problem is that it necessarily involves a security
risk. You’re trusting the target URL to not send a malicious script in response to your request. If the target URL
responds with a malicious script, you would inject it into your own page and not even know it. Currently there is no
effective way to close that particular security hole, so be very sure you want to open it.

CORS
Created in response to the security concerns with JSONP, CORS is a proposed standard that is gaining some traction.
An acronym for Cross Origin Resource Sharing, CORS specifies new HTTP headers that browsers and servers must
provide as part of their communication with one another. Though many of the latest versions of browsers support
CORS headers, older ones do not, making this a poor choice for projects that will be targeting even slightly out of
date browsers.

Post Message
HTML 5 provides a new feature that can be used for cross-domain communication: the Post Message standard. This
standard specifies a new DOM method, window.postMessage(), and a new DOM event, message, that are used to
communicate between iframes.

Chapter 4 ■ JavaScript in Action

112

An iframe can load a document from a different origin than the host document, but the Same Origin Policy
prevents scripts from either document interacting with each other. Post Message, however, provides a secure means
for transmitting strings between them.

In the sending document, your script can call the postMessage() method on a pointer to the target document,
which can be either a child document or a parent document. The postMessage() method takes as a parameter the
string to be transmitted to the target document, along with the desired origin of the target document.

When the target document receives the message, it triggers a DOM message event. You can create a handler for
this event and register it to the window object. The event object passed into the handler will contain the string that
was sent along with the origin that was specified. You can then make sure that you are received the message from the
expected origin.

The Post Message method is widely supported among modern browsers. Older browsers support it as well;
Internet Explorer 8 and greater support it, as does Firefox 16+, Chrome 23+, and Safari 5.1+. Post Message enjoys
even more support on mobile browsers: Safari Mobile on iOS has supported it since 3.2, and the Android browser has
supported it since 2.1.

We cover the postMessage() method in detail in the Chapter 8 under window.postMessage(). See that section for
details on syntax and an example.

Data Caching
As you do more asynchronous programming with XMLHttpRequest, it’s not uncommon to find yourself wanting to
cache data locally for speed and efficiency. This is particularly true with mobile applications, where having a local
cache of data can not only speed up your application (because accessing cached data is faster than going over the
potentially quite slow network) but also make your application use less battery power (because accessing the network
requires power). Even for desktop applications it’s common to want to cache commonly used information that
doesn’t change very often.

Data caches are very simple, and typically consist of an identifier representing the service or data source,
a timestamp of the last time the service was accessed, and the data that was returned the last time the service was
accessed. Every time you look at the cache, you can see if the data you want is cached; if it isn’t, you can simply
call the service and cache it with a new timestamp. If there is data in the cache, you check its timestamp. If it
was accessed too long ago, you’ll know you need to access the service and cache the new results. But if it wasn’t
accessed too long ago, you can just use the cached data.

We’ve already built a doXHR() function in the Asynchronous Communication using XMLHttpRequest section above.
When we call that method, we provide an object that specifies the URL to call, as well as other information (such as a
success method to call, or an error method to call). What would be nice is if we specified a length of time as a property,
the doXHR() function would know that we want to cache the data from that URL and it could perform as follows:

Check to see if there is already data in our hypothetical cache.•	

If the data does not exist in the cache, go and fetch the data from the URL, and save it in the •	
cache with the current timestamp.

If the data does exist in the cache, check the timestamp.•	

If the timestamp is too old, go and fetch the data from the URL and save it in the cache •	
with the current timestamp.

If the timestamp isn’t too old, just use the data from the cache.•	

We can easily extend our doXHR() function to handle caching. In our example, we’ll use the localStorage feature
defined by HTML 5, because it is widely supported (especially among mobile browsers). As covered in detail in
Chapter 8, window.localStorage takes key/value pairs and stores them in a cache that persists even if the user closes
their browser or reboots their computer, which makes it an ideal choice for our data cache.

Chapter 4 ■ JavaScript in Action

113

We’ll begin by extending our XHR definition object in Listing 4-10 to include two new properties: A name for the
service we’re caching, and a duration for when the cache is valid:

Listing 4-10.  An updated version of the XHR definition object

var myXhrDefs = {
 intCacheDuration: 14400,
 cacheName: "ajax-test",
 strMethod : "GET",
 strUrl : "http://127.0.0.1:8020/developers-guide/chapter-4/ajax-test.txt",
 intTimeout: 3000,
 postData: null,
 boolAsync: true,
 successCallback: function(objEvent) {
 // Do things when the request is successful
 console.log(objEvent.responseText);
 },
 errorCallback: function(objEvent) {
 // Do things when there is an error in the request.
 console.error("The XHR failed with error ", objEvent.status);
 },
 timeoutCallback: function() {
 // Do things when a timeout occurs.
 console.error("The XHR timed out.");
 }
}
 

The two new properties are intCacheDuration (which we will specify in seconds; 14400 seconds is four hours),
and cacheName, which provides a base name for the cached data. When we cache the information, we’ll append
“-timestamp” to cacheName for the key, and when we cache the data, we’ll append “-data” to cacheName for the key.
(So in this example, our sample URL of ajax-test.txt will use “ajax-test-timestamp” for its timestamp key and
“ajax-test-data” for its data key.)

To make use of this new object, in Listing 4-11 we’ll wrap our existing doXHR() method within another method,
which we’ll call doCachedXHR(). This will take the same XHR definition object and either read from the cache or use
doXHR() to fetch new information and cache it:

Listing 4-11.  The doCachedXHR() method

// Either perform an asynchronous call to a service and cache it with a timestamp,
// or if the service has already been called and cached, just use that if the data isn't
// too old. If the data is too old, perform the asynchronous call again and cache the
// results with a new timestamp.
function cachedXHR(myXhrDefs) {
 var fetchNewData = false,
 now = new Date(),
 lastTimeStamp = localStorage.getItem(myXhrDefs.cacheName + "-timestamp");
 
 // Does the cache even have the specified item?
 if (lastTimeStamp == null) {
 fetchNewData = true;
 } else {
 // We've cached the service at least once. Check the last timestamp.

http://127.0.0.1:8020/developers-guide/chapter-4/ajax-test.txt

Chapter 4 ■ JavaScript in Action

114

 var timeStamp = new Date(lastTimeStamp);
 if ((timeStamp.getTime() + (myXhrDefs.intCacheDuration * 1000)) < now.getTime()) {
 fetchNewData = true;
 }
 }
 
 // If we need to fetch new data, we need to extend the existing successCallback method
 // to cache the new results with a new timestamp.
 if (fetchNewData) {
 myXhrDefs.successCallback = (function(oldCallback) {
 function extendedCallback(objEvent) {
 localStorage.setItem(this.cacheName + "-data", objEvent.responseText);
 localStorage.setItem(this.cacheName + "-timestamp", now.toISOString());
 oldCallback(objEvent);
 }
 return extendedCallback;
 })(myXhrDefs.successCallback);
 
 // Perform the XHR request.
 doXHR(myXhrDefs);
 } else {
 // Just use the cached data.
 var cachedData = localStorage.getItem(myXhrDefs.cacheName + "-data"),
 fakeEvent = {
 responseText : cachedData
 };
 myXhrDefs.successCallback(fakeEvent);
 }
}
 

There’s a lot going on in this method, including a trick for extending methods, so let’s walk through it one step at
a time.

At the heart of the method is a simple check: is the data cached or not? If it isn’t cached, the method needs to go
get the data and cache it. If it is cached but too old, it needs to refresh the cache. If the data isn’t too old, we can use it.
That simple logic makes up the skeleton of the method.

The first thing we need to do is create a new Date object representing the current time. Then we check to see if
the data has even been cached by looking for a timestamp. If the timestamp doesn’t exist, we know we need to fetch
and cache the data.

If the timestamp does exist in the cache, we need to check to see if it’s too old. First, we create a new Date object
using the timestamp. Then we can use the getTime() method of the date objects to perform our age comparison—the
getTime() method returns the number of milliseconds from midnight, January 1, 1970, so we’ll have to convert our
intCacheDuration time from seconds to milliseconds before adding them to the timestamp. (This is a great practical
example of comparing the values of Date objects.)

If the data isn’t too old, we can just use it. But if it is too old, we have to fetch new data. We’ve defined our
successCallback() method on the XHR definition object, but we want to extend that method so that it caches the
result of the XHR request. Basically what we do is we overwrite the old successCallback() method with the results
that are returned from an immediately executed function expression (IEFE). We pass the old successCallback()
method into the IEFE as the oldCallback parameter. So within the IEFE we create a new function that caches
the data, then calls the oldCallback function. The IEFE then returns that new function, which takes over the
successCallback() method.

Chapter 4 ■ JavaScript in Action

115

We could have just re-written the successCallback() methods in our XHR definition objects, but with this
technique you can add the new cachedXHR() method to existing code and not have to modify a bunch of your
methods to account for caching. The new method will handle that for you.

We encourage you to test this function to verify that it works the way you expect. You’ll need to set up your own
personal web server—in this example, we’re just using the debugging server that comes with Aptana, which runs on
port 8020. We’re also using a simple ajax-test.txt file that contains the text “hello world.” But you could easily transmit
JSON-formatted data, or XML-formatted data.

This function is pretty basic, and could use some more features. For example, what if the browser doesn’t support
localStorage? You could easily extend this function to use document.cookie in that case; see Chapter 8 for details on
using cookies.

JavaScript Libraries and Frameworks
Like any language, JavaScript has a plethora of libraries and frameworks you can use in your projects. These can range
from highly specific libraries designed to do one thing, to more generic libraries that enforce their own syntax, to
complete frameworks for creating web-based applications in modern browsers.

Generally speaking a library is a collection of re-usable code, often small and optimized, and focused on a
specific task such as providing convenience routines for complex tasks or extending the base language with new
features. Common examples include mathematical libraries, libraries for accessing databases, and libraries for
accessing filesystems.

In the specific case of JavaScript, libraries often extend JavaScript with new features (like animation) as well as
convenience routines for more complex tasks (like asynchronous communication). In addition, JavaScript libraries
can also focus on overcoming inconsistencies in the implementation of the various standards, allowing you to write
code that works in multiple browsers across multiple platforms.

The term framework is a bit harder to nail down because there’s no traditional definition as there is for library.
As a result, “framework” can mean many different things depending on the language and context in question. In
terms of JavaScript, we like to think of frameworks as complex collections of libraries and routines that provide a pre-
defined structure for you to fill in as you need. One way we’ve heard the difference explained is, “Libraries are things
your code calls and frameworks are things that call your code.”

Choosing a Library
When it comes to choosing a library, the first step is easy: find libraries that do what you need. But many libraries have
overlapping features, so how do you choose which one is best for your project? The answer isn’t very
cut-and-dry, but there are some simple questions to ask yourself to help you choose:

License: Does the library have a license that is compatible with your needs? Most libraries are •	
open source and allow redistribution, but others do not. You should check the license carefully
to make sure it allows you the freedom you need for your project.

Support: What sort of support is there for the library? Is it under active development? Can you •	
get help if you need it? Some libraries are backed by companies that sell support contracts but
most are open source projects with varying degrees of documentation.

Style: Does the library work well with your programming style? How easy is it to set up and •	
maintain in your project? Some libraries (and many frameworks) enforce their own syntax and
style, and you’ll want to make sure you’re comfortable with that.

Size: How big is the library? Can the library be minified and GZipped? How expensive is the •	
library when it loads, does it cause noticeable delays?

Chapter 4 ■ JavaScript in Action

116

Security: Does the library meet your security needs? If it is an open source library, do you •	
see anything questionable in the code for the library? Security is often ignored, but it’s as
important as any of the other considerations.

Testing: Does the library have its own unit tests? How will you write tests for code that uses the •	
library? Does that work with your existing testing practices?

Not all of these considerations will be relevant to your situation. Probably the most important are license and
support, but thinking about all of them will help you make a good choice.

Here is a brief list of common JavaScript libraries and frameworks. This list isn’t meant to be conclusive or even
representative, the ecosystem of JavaScript libraries is just too vast to make those claims. However, this list does
represent the libraries that we have commonly encountered and worked with, and is meant as a starting point for your
own exploration of JavaScript libraries.

Prototype and Scriptaculous
http://www.prototypejs.org/ and http:// script.aculo.us/

Prototype is one of the first JavaScript libraries. It provides support for classes, event delegation, AJAX convenience
routines, and extensions to the DOM. Scriptaculous is built on Prototype and provides a rich framework for user
interfaces and interactions. It includes support for animation effects, dragging and dropping of DOM elements, and
various DOM utilities. Both libraries are well-supported by active communities and are undergoing active development.
Both frameworks have their own unit tests, and Scriptaculous includes support for testing your own code.

Dojo Toolkit
http://www.dojotoolkit.org/

The Dojo Toolkit is a lightweight library that provides support for event normalization, simplified AJAX interactions,
and DOM manipulation. In addition, Dojo has built-in support for modules, allowing you to encapsulate your code
for reuse easily. Dojo also supports dynamic loading of modules, so that applications can load modules as they need
them rather than all at once.

jQuery
http://www.jquery.org

jQuery is probably the most widely-used JavaScript library in the world. jQuery enforces a selector-based syntax, and
includes features for normalizing events across platforms, simplifying AJAX interactions, basic animation, and a wide
variety of convenience routines. See the next section for details on using jQuery.

Sencha ext JS
http://www.sencha.com/products/extjs/

Sencha’s ext JS is a framework focused on creating application-like user interfaces for JavaScript applications. It has
a rich set of UI widgets and includes support for charting and drawing. The framework also includes an advanced
layout engine that allows you to create complex interactive layouts with docking and other features.

http://www.prototypejs.org/
http://%20script.aculo.us/
http://www.dojotoolkit.org/
http://www.jquery.org/
http://www.sencha.com/products/extjs/

Chapter 4 ■ JavaScript in Action

117

YUI
http://www.yuilibrary.com/

YUI is a set of open source JavaScript libraries built and maintained by Yahoo. Yahoo uses YUI in their products,
and as a result it is highly performant and well-tested. It includes event normalization, animation, a lightweight
application framework, and several UI interactions (like drag and drop and sortables) and widgets (like a rich text
editor and a datagrid). YUI has several libraries and all together is quite extensive, but you can pick and choose which
libraries you need and create a customized smaller library. YUI also includes CSS libraries; we’ve had very good luck
with their Fonts and CSS normalization libraries.

Closure
https://developers.google.com/closure/

Closure is Google’s JavaScript application framework. It includes the Closure JavaScript Library, the Closure Compiler,
and Closure Templates. The Closure JavaScript Library includes all the standard features of a JavaScript library, as
well as having a wide variety of UI interactions and widgets. Closure uses a strictly namespaced object-oriented
syntax, and is probably the most accessible to developers migrating to JavaScript from languages like C#, Java, or C++.
Closure also includes the Closure Compiler, which we’ve mentioned earlier in the chapter. It can compile, optimize,
and minify any JavaScript, but works particularly well with JavaScript that uses the Closure Library. Finally, Closure
Templates provide a templating solution for both HTML and JavaScript. The entire framework is completely
unit-tested and supports (and encourages) unit testing of your own code.

Node.js
http://www.nodejs.org

Node is a server-side JavaScript platform. It’s built on Chrome’s V8 JavaScript engine and so is not only very compliant
with the ECMA-262 standard but is also highly performant. Since Node operates outside of a browser context, it
doesn’t have any of the usual features you would expect in a JavaScript library: it has no event normalization or DOM
manipulation features. Instead, it has a set of APIs for building server features such as web servers, accessing the file
system, network operations (including raw socket management), and a module system.

Montage
http://www.montagejs.org

A relative newcomer to the field, Montage is an impressive framework that is built around the latest features of
JavaScript, HTML, and CSS. It is focused on building complex applications and includes its own templating system
built around HTML and CSS, and has an impressive array of prebuilt UI components that work in both mobile and
desktop contexts. Montage itself is built using an MVC pattern, and you will naturally fall into that pattern as you use
Montage, so it’s a great introduction to MVC applications built with JavaScript. Finally, because it does a lot of the
heavy lifting for you behind the scenes, Montage allows you to program pretty much in pure JavaScript without any
enforced syntax like selectors, arbitrary namespaces, or other syntactic sugar.

http://www.yuilibrary.com/
https://developers.google.com/closure/
http://www.nodejs.org/
http://www.montagejs.org/

Chapter 4 ■ JavaSCript in aCtion

118

MicroJS
http://www.microjs.com/

MicroJS is actually a clearinghouse of small JavaScript libraries that you can combine as needed. The site lets you
search for libraries based on the functionality that you need. All of the libraries are quite small, but their licensing,
support, style, security and testing vary, so you’ll have to explore individual libraries yourself. We mention it here
because it’s a great starting point for finding libraries that are focused on a single task.

Using jQuery
Created in 2006 by John Resig, jQuery is one of the most widely used JavaScript libraries in the world. There are many
libraries available, but jQuery is our preferred choice. It provides a robust and cross-browser API for everything from
animation to AJAX.

The biggest benefits of jQuery are:

jQuery is small. At only 32kb (minified and GZipped) it’s remarkably small for such a •	
full-featured library.

jQuery fixes a lot of browser dependent problems. One of the main reasons jQuery was created •	
was to help overcome the variations in browser implementations of JavaScript and the DOM
standard. If you’re looking to solve cross-browser issues in your scripts, jQuery is a great
candidate.

jQuery is well-tested. Not only is jQuery well-tested by its own suite of unit tests, jQuery is •	
used on so many sites by so many people that bugs are reported quickly.

jQuery is fast. The internal coding for jQuery is highly optimized and efficient.•	

Writing jQuery code is fast. Because jQuery provides convenient shorthand methods for so •	
many common tasks, writing code in jQuery can take less time than writing equivalent code in
straight JavaScript.

jQuery is easy to use. All you have to do is include the jQuery script in the header of your •	
document and all of its functionality will be available to any scripts that come after.

One of the main caveats to remember with jQuery is that because it abstracts away so much of JavaScript and the
DOM that it tends to enforce its own way of doing things. That’s fine, but it’s not necessarily congruent with how you
might approach the same problems in pure JavaScript. We usually recommend that novice JavaScript developers bear
that in mind while they’re working with jQuery so as to avoid potentially harmful habits. (Many JavaScript libraries
enforce their own syntax, so this advice applies to more than just working with jQuery.)

We’re not going to cover everything about jQuery in this section—entire books have been written about that. Fortunately,
jQuery’s online documentation is some of the best available, and you can find it at http://docs.jquery.com/ You’ll
find the entire jQuery API documented in detail there, along with examples for just about everything.

How It Works
jQuery works by creating a jQuery() function object in the global scope (aliased to $() for brevity; you can use either)
that you can then use in your own scripts. The jQuery() function takes as a parameter a CSS selector for an element
in the DOM (just like the DOM standard methods querySelector() and querySelectorAll()and returns a reference
to that element wrapped in a jQuery object (similar to how JavaScript will wrap a string primitive with a String object
to give it needed functionality). The resulting object is often referred to as a “jQuery selector” and it has an impressive
set of methods and properties you can access that will affect the element(s) it refers to.

http://www.microjs.com/
http://docs.jquery.com/

Chapter 4 ■ JavaScript in Action

119

As an example, say you want to hide an element on the page, as in Listing 4-12. In regular JavaScript, you might
write something like this:

Listing 4-12.   Hiding an element using JavaScript

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Developer's Guide</title>
 </head>
 <body>
 <h1>Hello World</h1>
 <script>
var myHeadline = document.querySelector("h1");
myHeadline.style.display = "none";
 </script>
 </body>
</html>
 

In this example, we use the querySelector() method to get a reference to the headline, and then we set an inline
style property of display: none on it. As soon as the example loads in your browser, the headline will disappear
(you may not even see the headline before it disappears).

In jQuery, you would provide the selector to the jQuery() function (we’ll use $() throughout these examples)
and then call the hide() method on the result, as in Listing 4-13:

Listing 4-13.  Hiding an element using jQuery

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Developer's Guide</title>
 <script src="http://code.jquery.com/jquery-1.9.1.min.js"></script>
 </head>
 <body>
 <h1>Hello World</h1>
 <script>
$("h1").hide();
 </script>
 </body>
</html>
 

Same result as the previous example in only one line of code. Note that we have included the jQuery library in
the head of our example; you must include the library before attempting to use it. jQuery is available via a content
distribution network (CDN) thanks to the generosity of MediaTemple. You could just as easily download jQuery and
serve your own private copy. See http://www.jquery.com/download for details and examples.

In addition to the hide() method, jQuery also provides a fadeOut() method which causes the target element to
fade out of sight, as in Listing 14:

Listing 4-14.  The jQuery fadeOut() method

<!DOCTYPE html>
<html>
 <head>

http://code.jquery.com/jquery-1.9.1.min.js
http://www.jquery.com/download

Chapter 4 ■ JavaScript in Action

120

 <title>JavaScript Developer's Guide</title>
 <script src="http://code.jquery.com/jquery-1.9.1.min.js"></script>
 </head>
 <body>
 <h1>Hello World</h1>
 <script>
$("h1").fadeOut();
 </script>
 </body>
</html>
 

When you load this example, you’ll see the headline fade out quickly. jQuery also provides a fadeIn() method,
shown in Listing 4-15:

Listing 4-15.  The jQuery fadeIn() method

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Developer's Guide</title>
 <script src="http://code.jquery.com/jquery-1.9.1.min.js"></script>
 </head>
 <body>
 <h1>Hello World</h1>
 <script>
$("h1").fadeOut();
$("h1").fadeIn();
 </script>
 </body>
</html>
 

In this example, we first fade out the headline, then we fade it back in. You’ll notice that we called the jQuery()
function twice to select the element, which is a little inefficient. The jQuery() function is kind of expensive; it has
to go and fetch the element and then wrap it in a jQuery object. If you’re going to be using the same selector more
than once, you can alias it to a variable. Also, almost all jQuery methods return the original selector, so you can chain
commands as in Listing 4-16:

Listing 4-16.  Chaining jQuery methods for efficiency

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Developer's Guide</title>
 <script src="http://code.jquery.com/jquery-1.9.1.min.js"></script>
 </head>
 <body>
 <h1>Hello World</h1>
 <script>
$("h1").fadeOut().fadeIn();
 </script>
 </body>
</html>
 

http://code.jquery.com/jquery-1.9.1.min.js
http://code.jquery.com/jquery-1.9.1.min.js
http://code.jquery.com/jquery-1.9.1.min.js

Chapter 4 ■ JavaScript in Action

121

This example has exactly the same result as the previous example, but it is both more efficient (because we only call
the jQuery() function once to select the element and then use chaining) and also smaller—it’s shorter by 8 characters.
That’s not a big savings, but on average you’ll find jQuery code can be quite terse, resulting in smaller scripts.

Events in jQuery
jQuery started its life as a way to provide cross-browser functionality for JavaScript developers, and one of the most
important ways it does this is by providing an event system that works the same in all of its supported browsers.
If you’ll recall from Chapter 3, the DOM event model is not correctly implemented in Internet Explorer versions lower
than 9. jQuery handles those problems for you, so that your event handlers will execute as you expect in all supported
browsers.

As of version 1.7, jQuery uses the on() method to attach event handlers, and uses the off() method to remove
event handlers. jQuery’s on() method has a simple syntax:

$(targetSelector).on(events, filterSelector, data, handler);

•	 targetSelector: A selector for the element(s) you wish to attach the event handler to.

•	 events: One or more event types; multiple event types can be separated by spaces. For
example, “click keydown” would specify that the event handler should be fired whenever the
user clicks on the target element, or whenever the user presses a key while the target element
has keyboard focus. You can also apply namespaces to your events by appending .namespace
to an event type (e.g. click.kittenRescue). This allows you to add and remove multiple event
handlers of the same type to a given targetSelector.

•	 filterSelector: a jQuery selector specifying that this event handler should only execute if the
specified event types originated on elements that match filterSelector (and are children of
targetSelector). This feature allows you to have a lot of flexibility in your event delegation.
Note, however, that the selector is checked every time the specified events are dispatched to
targetSelector. For most events that happen infrequently that isn’t a problem, but for events
that fire rapidly many times (like mouseover events) it can cause a performance hit.

•	 data: Either an object reference or an object literal. This object will be available on the
resulting event object in the handler as the event.data property. This feature allows you to
pass in arbitrary data into your event handlers.

•	 handler: a function expression (which can be an anonymous inline function) that accepts
an event object as a parameter, and is executed when the specified events fire on the
targetSelector.

For an example using jQuery’s event system, consider our Kitten Rescue game from Chapter 3. In straight
JavaScript it looks like this:
 
<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Developer's Guide</title>
 <style>
.basket {
 width: 300px;
 height: 300px;
 position: absolute;
 top: 100px;

Chapter 4 ■ JavaScript in Action

122

 right: 100px;
 border: 3px double #000000;
 border-radius: 10px;
}
 </style>
 </head>
 <body>
 <h3>Rescue the kittens!</h3>
 <p>Click on them to put them in their basket!</p>
 <ul id="kittens">
 Rowly
 Fred
 Mittens
 Lenore

 <ul class="basket">
 <script>
var basket = document.querySelector(".basket"),
 kittens = document.getElementById("kittens");
 
kittens.addEventListener("click", function(event) {
 basket.appendChild(event.target);
}, false);
 
 </script>
 </body>
</html>
 

Here we are delegating the click event handler to the unordered list so that we don’t have to attach an event
handler to each individual list item.

Written in jQuery, the game would look like Listing 4-17:

Listing 4-17.  Kitten Rescue written in jQuery

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Developer's Guide</title>
 <script src="http://code.jquery.com/jquery-1.9.1.min.js"></script>
 <style>
.basket {
 width: 300px;
 height: 300px;
 position: absolute;
 top: 100px;
 right: 100px;
 border: 3px double #000000;
 border-radius: 10px;
}
 </style>
 </head>

http://code.jquery.com/jquery-1.9.1.min.js

Chapter 4 ■ JavaScript in Action

123

 <body>
 <h3>Rescue the kittens!</h3>
 <p>Click on them to put them in their basket!</p>
 <ul id="kittens">
 Rowly
 Fred
 Mittens
 Lenore

 <ul class="basket">
 <script>
var $basket = $(".basket");
$("#kittens").on("click", function(event) {
 $basket.append(event.target);
});
 </script>
 </body>
</html>
 

In the jQuery version we first save a reference to the jQuery(".basket") selector so that we can reuse it every
time the event handler fires—that way we don’t have to get a reference to the basket every time the event fires. Then
we attach an even	 t handler to the unordered list using the on() method. We could have specified a filterSelector
of “li” but in this case it was unnecessary, because events can only originate on list items.

Event handlers are removed using the off() method:
 
$(targetSelector).off(events, filterSelector, handler);
 

•	 targetSelector: the selector specifying the element(s) to remove the event handlers from.

•	 events: The list of event types, or namespaces, of the event handlers(s) to remove.

•	 filterSelector: The selector specified when the event was delegated using the on() method.

•	 handler: The function specified when the event was bound.

Note that you can specify just a namespace to remove all the event handlers that share that namespace on
targetSelector. For example, if you added the following hypothetical event handlers with the same namespace:
 
$(targetSelector).on("click.myEventHandler", "li", handleClickEvent);
$(targetSelector).on("focus.myEventHandler", handleFocusEvent);
 

You could remove both by specifying just their namespace:
 
$(targetSelector).off(".myEventHandler");
 

That would remove both the click event handler and the focus event handler at the same time.
A convenient event that jQuery provides is a document ready event that is triggered when the DOM of a given

document has been loaded and parsed and is available for manipulation. This event gives you an extra level of
flexibility in your scripts; with it you do not need to load your scripts at the end of a document (see the section on
Optimization Techniques earlier in this chapter for details). You listen for the ready event on the document just like
any other event on any other target element, as in Listing 4-18:

Chapter 4 ■ JavaScript in Action

124

Listing 4-18.  Using the document ready event in jQuery

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Developer's Guide</title>
 <script src="http://code.jquery.com/jquery-1.9.1.min.js"></script>
 <script>
$(document).on("ready", function() {
 $("h1").fadeOut().fadeIn();
});
 </script>
 
 </head>
 <body>
 <h1>Hello World</h1>
 </body>
</html>
 

In this example, we have a script in the head that accesses a DOM element. Ordinarily, the element wouldn’t be
ready at the time the script was executed, so we create an event handler for the document’s ready event. When that
event fires, we know the DOM is parsed and available for manipulation, so we can execute our code.

jQuery UI
jQuery UI is a library of user interface interactions and themable widgets maintained by the jQuery group. It provides
a set of easy to use interactions:

Draggable: Allows you to specify elements as draggable, meaning the user can click and drag •	
them around on the page.

Droppable: Allows you to specify elements as droppables, meaning they can have draggable •	
elements dropped on them.

Resizable: Allows you to specify elements as resizable, meaning the user can “grab” an edge •	
(you specify which) and resize the element.

Selectable: Allows you to select elements, multiselect using modifier keys, and marquee select •	
by dragging and drawing a box around target elements.

Sortable: Allows you to specify a set of elements can be sorted using drag-and-drop •	
interactions. Elements can be a simple list or a grid.

jQuery UI also has a full set of useful user interface widgets, including a datepicker and a dialog system capable
of producing popups and modals. All the widgets are completely customizable in appearance. You can use the
themeroller available on the jQuery UI site to roll a custom theme, or you can write custom CSS to make the widgets
appear exactly as you want.

For more information about jQuery UI see http://jqueryui.com.

jQuery Mobile
jQuery Mobile provides a basic framework for producing mobile web applications. It provides a set of events focused
on touch interactions like tapping and swiping, as well as interactions unique to mobile devices like orientation
changes. jQuery Mobile also provides a set of mobile-optimized user interface widgets that provide UI features that are
common on mobile applications, such as toolbars, expandable and collapsible content areas, sliders, and list views.

http://code.jquery.com/jquery-1.9.1.min.js
http://jqueryui.com/

Chapter 4 ■ JavaScript in Action

125

jQuery Mobile works a bit differently than other jQuery products. Instead of operating directly on jQuery
selectors, jQuery Mobile defines a set of data attributes that you can apply to your markup. These data attributes
provide a way for you to specify what the elements are supposed to be: headers, footers, list views, panels, buttons,
sliders, etc. You create semantic markup, apply jQuery Mobile data attributes to the elements, and then load in jQuery
Mobile and it initializes the elements for you.

For example, consider the very basic two-page mobile application in Listing 4-19:

Listing 4-19.  A two page mobile application built using jQuery Mobile

<!DOCTYPE html>
<html>
 <head>
 <title>jJavaScript Developer's Guide</title>
 <link rel="stylesheet" href="http://code.jquery.com/mobile/1.3.0/jquery.mobile-1.3.0.min.css" />
 <script src="http://code.jquery.com/jquery-1.8.2.min.js"></script>
 <script src="http://code.jquery.com/mobile/1.3.0/jquery.mobile-1.3.0.min.js"></script>
 </head>
 <body>
 <section id="page1" data-role="page">
 <header data-role="header"><h1>JavaScript Developer's Guide</h1></header>
 <div class="content" data-role="content">
 <p>Here is a sample jQuery Mobile application.</p>
 <p>Go to next page</p>
 </div>
 <footer data-role="footer" data-position="fixed"><h1>Apress</h1></footer>
 </section>
 
 <section id="page2" data-role="page">
 <header data-role="header"><h1>JavaScript Developer's Guide</h1></header>
 <div class="content" data-role="content">
 <p>This is the second page.</p>
 <p><a href="#page1" data-transition="slide"
 data-direction="reverse">Go to previous page</p>
 </div>
 <footer data-role="footer" data-position="fixed"><h1>Apress</h1></footer>
 </section>
 </body>
</html>
 

In this example, we started with basic semantic HTML 5 markup, with sections, headers, footers, etc. Then, using
jQuery Mobile’s predefined data attributes, we specified pages, headers, content areas, etc. We even specified the
transitions between the pages should be a slide transition from page 1 to page 2, and a reverse slide transition when
going back from page 2 to page 1.

When you load this application into a browser and jQuery Mobile initializes, it scans for data attributes, applies
the necessary modifications to them, and handles all of the page management for you. jQuery Mobile exposes all of
its functionality through data attributes, so it’s possible to create fairly complex mobile applications with just semantic
HTML and never writing a single line of JavaScript.

This is just scratching the surface of jQuery Mobile. For more details, see jQuery Mobile’s documentation at
http://jquerymobile.com.

http://code.jquery.com/mobile/1.3.0/jquery.mobile-1.3.0.min.css
http://code.jquery.com/jquery-1.8.2.min.js
http://code.jquery.com/mobile/1.3.0/jquery.mobile-1.3.0.min.js
http://jquerymobile.com/

Chapter 4 ■ JavaScript in Action

126

Building a Library
As with any language, the more you work with JavaScript, the more you’ll find you are recreating the same bits of
code in your projects. Maybe you have a specific way you like to enumerate objects. Maybe you have a particular way
of handling DOM events. Whatever they are, it might make sense to roll these commonly-used bits into your own
JavaScript library. So far in this chapter, we’ve provided a useful set of methods for performing asynchronous requests,
caching data, and performing cross-domain requests.

In this chapter we’ve also introduced you to jQuery, one of the most common JavaScript libraries, so you’ve had
some exposure to what a good library can do for you. What if we wanted to create our own jQuery-like library that
included all of the methods we’ve built in this chapter? We would want our new library to have a selector-based syntax
and to support chaining of commands, just like jQuery.

That’s actually very easy to to do. In this section we’ll create a new library called “jkl” (pronounced “Jekyll,” after the
eponymous good doctor) because “jkl” is really easy to type. The basic pattern to create our library looks like Listing 4-20:

Listing 4-20.  Basic library pattern

(function() {
 var window = this,
 undefined;
 
 jkl = window.jkl = function(selector) {
 return new jkl.jklm.init(selector);
 }
 
 jkl.jklm = jkl.prototype = {
 init: function(selector) {
 this.selector = selector;
 return this;
 }
 }
 jkl.jklm.init.prototype = jkl.jklm;
})();
 

Here we are once again using an immediately invoked function expression to create a closure that we can use
as our own private playground. We want our library to exist entirely in its own namespace, and to expose only one
method in the global namespace: the jkl() function. To do that, we have to do a little bit of fancy footwork:

	 1.	 We define the jkl() function in the global context (which is the window object). This
function calls a constructor function called init() which lives on a subproperty of
jkl. This subproperty of jkl, which we’re calling jklm (also for ease of typing) is the
namespace where we’ll be adding our methods.

	 2.	 So far everything we’ve done has been fairly straightforward, but here is the first bit of
mind-bending code: we set jkl.jklm to be a reference to jkl’s prototype. So any property
or method we add to jkl.jklm will be added to jkl’s prototype, and will thus be available to
jkl(). Another way of looking at it is that we’re creating a private namespace within jkl that
will have its properties and methods exposed on jkl as if they were defined there originally.

	 3.	 Within the jkl.jklm namespace, we create our init() function, which will act as a
constructor for our library. Every time someone calls jkl(selector) it will be the equivalent
of calling new jkl.jklm.init(selector). Our init() function adds the selector to the
newly-constructed copy of jkl, and then returns the results to the global scope.

	 4.	 Finally, we set the prototype of jkl.jklm.init to be a reference to jkl.jklm (and thus to
jkl.prototype), which closes the prototype circle.

Chapter 4 ■ JavaScript in Action

127

This library doesn’t do anything at the moment, because aside from init() it has no methods. We add methods
by extending jkl.jklm as in Listing 4-21:

Listing 4-21.  Adding a few basic methods to the library

(function() {
 var window = this,
 undefined;
 
 jkl = window.jkl = function(selector) {
 return new jkl.jklm.init(selector);
 }
 
 jkl.jklm = jkl.prototype = {
 init: function(selector) {
 this.selector = selector;
 return this;
 },
 
 // Hide the target element.
 hide : function() {
 document.querySelector(selector).style.display = "none";
 return this;
 },
 
 // Show the target element.
 show : function() {
 document.querySelector(selector).style.display = "inherit";
 return this;
 },
 
 // Make the target element red
 enredden : function() {
 document.querySelector(this.selector).style.backgroundColor = "#F00";
 return this;
 }
 }
 jkl.jklm.init.prototype = jkl.jklm;
})();
 

Now our library will have three methods: hide(), show() and enredden(). Note that at the end of every method
we return this, which allows for method chaining, just like jQuery. We can use our library in Listing 4-22 like this:

Listing 4-22.  Using the jkl library

<!DOCTYPE html>
<html>
 <head>
 <title>jJavaScript Developer's Guide</title>
 <script src="jkl-0.0.1.js"></script>
 </head>

Chapter 4 ■ JavaSCript in aCtion

128

 <body>
 <h1>Testing the jkl Library</h1>
 <script>
jkl("h1").enredden();
 </script>
 </body>
</html>

In this simple example, we use the enredden() method to change the headline’s background to red. Now, in
Listing 4-23, we can add the other methods to the library (performing an XHR request, performing a JSONP query,
and data caching):

Listing 4-23. Adding other methods to the jkl library

(function() {
 var window = this,
 undefined;

 jkl = window.jkl = function(selector) {
 return new jkl.jklm.init(selector);
 }

 jkl.jklm = jkl.prototype = {
 init: function(selector) {
 this.selector = selector;
 return this;
 },
 // Hide the target element.
 hide : function() {
 document.querySelector(selector).style.display = "none";
 return this;
 },

 // Show the target element.
 show : function() {
 document.querySelector(selector).style.display = "inherit";
 return this;
 },

 // Make the target element red
 enredden : function() {
 document.querySelector(this.selector).style.backgroundColor = "#F00";
 return this;
 },

 // Perform an asynchronous request defined by myXhrDefs object.
 doXHR : function(myXhrDefs) {
 // Create and configure a new XMLHttpRequest object
 var myXhr = new XMLHttpRequest(),
 myTimer = null;

Chapter 4 ■ JavaScript in Action

129

 myXhr.open(myXhrDefs.strMethod, myXhrDefs.strUrl, myXhrDefs.boolAsync);
 // Register the error and success handlers
 myXhr.onreadystatechange = function(objEvent) {
 // If readyState is 4, request is complete.
 if (myXhr.readyState === 4) {
 // Cancel the timeout timer if we set one.
 if (myTimer !== null) {
 clearTimeout(myTimer);
 }
 // If there’s an error, call the error callback,
 // Otherwise call the success callback.
 if ((myXhr.status !== 200) && (myXhr.status !== 304)) {
 if (myXhrDefs.errorCallback != null) {
 myXhrDefs.errorCallback(myXhr);
 }
 } else {
 myXhrDefs.successCallback(myXhr);
 }
 }
 }
  
 // Handle timeouts (set myXhrDefs.intTimeout to null to skip)
 // If we're working with a newer implementation, we can just set the
 // timeout property and register the timeout callback.
 // If not, we have to set a timer running that will execute the
 // timeout callback.
 if (myXhrDefs.intTimeout !== null) {
 if (typeof myXhr.ontimeout !== "undefined") {
 myXhr.timeout = myXhrDefs.intTimeout;
 myXhr.ontimeout = myXhrDefs.timeoutCallback;
 } else {
 myTimer = setTimeout(myXhrDefs.timeoutCallback, myXhrDefs.intTimeout);
 }
 }
  
 // Send the request
 myXhr.send(myXhrDefs.postData);
 return this;
 },
 
 // Execute a cross-domain JSONP query.
 executeJSONPQuery : function(strUrl) {
 // Check to see if a jsonp script tag has already been injected.
 // Also, create a new script tag with our new URL.
 var oldScript = document.getElementById("jsonp"),
 newScript = document.createElement("script");
 newScript.src = strUrl;
 newScript.id = "jsonp";
  
 // If there is already a jsonp script tag in the DOM we’ll
 // replace it with the new one.

Chapter 4 ■ JavaScript in Action

130

 // Otherwise, we'll just append the new script tag to the DOM.
 if (oldScript !== null) {
 document.body.replaceChild(newScript, oldScript);
 } else {
 document.body.appendChild(newScript);
 }
 return this;
 },
 
 // Perform a cached XHR request.
 cachedXHR : function(myXhrDefs) {
 var fetchNewData = false,
 now = new Date(),
 lastTimeStamp = localStorage.getItem(myXhrDefs.cacheName + "-timestamp");
  
 // Does the cache even have the specified item?
 if (lastTimeStamp == null) {
 fetchNewData = true;
 } else {
 // We've cached the service at least once. Check the last timestamp.
 var timeStamp = new Date(lastTimeStamp);
 if ((timeStamp.getTime() + (myXhrDefs.intCacheDuration * 1000)) < now.getTime()) {
 fetchNewData = true;
 }
 }
 
 // If we need to fetch new data, we need to extend the existing successCallback method
 // to cache the new results with a new timestamp.
 if (fetchNewData) {
 myXhrDefs.successCallback = (function(oldCallback) {
 function extendedCallback(objEvent) {
 localStorage.setItem(this.cacheName + "-data", objEvent.responseText);
 localStorage.setItem(this.cacheName + "-timestamp", now.toISOString());
 oldCallback(objEvent);
 }
 return extendedCallback;
 })(myXhrDefs.successCallback);
 
 // Perform the XHR request.
 doXHR(myXhrDefs);
 } else {
 // Just use the cached data.
 var cachedData = localStorage.getItem(myXhrDefs.cacheName + "-data"),
 fakeEvent = {
 responseText : cachedData
 };
 myXhrDefs.successCallback(fakeEvent);
 }
 return this;
 },
 
 // Perform an asynchronous call to the specified URL and load the results into
 // the target element.

Chapter 4 ■ JavaScript in Action

131

 load : function(strUrl){
 var ptrTarget = document.querySelector(this.selector),
 myXhrDefs = {
 strMethod : "GET",
 strUrl : strUrl,
 intTimeout: 3000,
 postData: null,
 boolAsync: true,
 successCallback: function(objEvent) {
 // Do things when the request is successful
 ptrTarget.innerHTML = objEvent.responseText;
 },
 errorCallback: function(objEvent) {
 // Do things when there is an error in the request.
 console.error("The XHR failed with error ", objEvent.status);
 },
 timeoutCallback: function() {
 // Do things when a timeout occurs.
 console.error("The XHR timed out.");
 }
 };
  
 this.doXHR(myXhrDefs);
 return this;
 }
 }
 jkl.jklm.init.prototype = jkl.jklm;
})();
 

Here we have added our doXHR(), cachedXHR(), and executeJSONPQuery() methods that we have previously
defined, basically by copying and pasting their code into our library with very few modifications. The only difference
is that at the end of each we return this so that we can chain methods.

In addition, we’ve added one new method: a shorthand method called load() which will perform an
asynchronous call to the specified URL and place the results as the HTML in the target selector. Assuming that on our
local development server we have a simple text file called ajax-test.txt that contains the text “hello world”, we can
use our new load() method in Listing 4-24:

Listing 4-24.  Using the new load() method

<!DOCTYPE html>
<html>
 <head>
 <title>jJavaScript Developer's Guide</title>
 <script src="jkl-0.0.1.js"></script>
 </head>
 <body>
 <h1>Testing The jkl Library</h1>
 <script>
jkl("h1").load("http://127.0.0.1:8020/developers-guide/chapter-4/ajax-test.txt").enredden();
 </script>
 </body>
</html> 

http://127.0.0.1:8020/developers-guide/chapter-4/ajax-test.txt

Chapter 4 ■ JavaScript in Action

132

When you load this example, the headline will immediately be replaced with “hello world” and then its
background color will be set to red. The load() method is a great example of how a library can save you a lot of
trouble; it’s very common to want to fetch information from the server and insert it directly into a target element in the
DOM and now our library will do that for us with a single function call. We can even make a cachedLoad() method
which will use our cachedXHR() method to cache the results.

Summary
In this chapter we have tried to address the practical aspects of working with JavaScript.

We started by giving an overview of popular tools available for working with JavaScript, •	
including IDEs and personal servers. And we discussed some basic techniques for debugging
your scripts.

We discussed how to load your scripts efficiently. We also discussed the difference between •	
perceptual delay and actual delays, and discussed techniques for dealing with both.

We talked about asynchronous communication using the XMLHttpRequest object, •	
a technique that forms the basis of many JavaScript applications. We even built a reusable
method easily employing AJAX in your own projects.

Because asynchronous communication is limited by the Same Origin Policy, we discussed •	
some common cross-domain techniques that would allow you to bypass the policy with
relative safety. As part of that process we built a simple method for efficiently performing
JSONP requests.

We explored a way to cache data in the browser, for efficiency and speed, and built a function •	
that will cache your asynchronous requests as you specify.

We discussed how to choose a JavaScript library, and reviewed some of the more common •	
JavaScript libraries.

We did a very quick overview of jQuery and how it works. We couldn’t go into jQuery in depth, •	
because it is a very featureful library, but we hope that we piqued your interest. We also
touched briefly on jQuery UI and jQuery Mobile.

Finally, we discussed how to build your own library. By following a simple pattern, it’s easy to •	
build your own library of methods that you use frequently.

Each of these projects provided concrete examples of many of the topics covered in this book: closures, events,
prototypal inheritance, the Date object, etc.

This concludes the discussion chapters of this book. The next several chapters in the book are reference chapters,
starting with a complete reference for JavaScript objects.

133

Chapter 5

JavaScript Global Objects Reference

Since one of the basic features of JavaScript is prototypal inheritance, it has no base classes for things like arrays
or strings. Instead, JavaScript has a set of base objects from which other objects of the same type can inherit their
properties and methods. These base objects reside in the global scope (which in the browser is the window object)
and can thus be accessed at any time.

This chapter provides a reference for the major JavaScript global objects Array, Boolean, Date, Number, RegExp,
and String. It also includes documentation for the Math object, which, unlike the other objects, does not serve as a
base object for inheritance purposes (you’ll never make a new Math object) but rather as a library for mathematical
methods and functions. The reference is arranged in alphabetical order by object name, and each object is organized
by property and method. In addition, there are several other variables and functions that are kept in the global scope
that are quite useful, and we’ll cover those in the last section of the chapter, “Miscellaneous Global Variables and
Functions.”

Array
The JavaScript Array object is a global constructor for arrays. An array is a simple data structure of numerically
indexed values. In JavaScript, arrays are accessed using a familiar square bracket notation; for example,
arrayName[12] will access the value of the array stored at index 12. JavaScript arrays have the following basic
properties:

JavaScript arrays are zero-indexed, so the first element in an array is at index 0 rather than •	
index 1.

JavaScript arrays have dynamic lengths, so you do not have to define how many elements an •	
array will have.

JavaScript arrays do not throw out-of-bounds errors when you access a nonexistent element. •	
Instead, JavaScript returns the value undefined.

JavaScript arrays can index any type of valid JavaScript element: strings, numbers, other arrays •	
(which is how JavaScript implements multidimensional arrays), even objects. JavaScript
arrays can also contain more than one type of element, so you can place objects, strings, and
booleans as different elements in a single array.

JavaScript arrays are themselves objects—they inherit from the global •	 Object object and have
access to all of the features of objects.

The Array object has several useful methods for managing arrays. For a detailed discussion of JavaScript arrays,
see the “Arrays” section in Chapter 2.

There are two main ways to construct a new array: directly using the Array object as a constructor, or using literal
notation.

Chapter 5 ■ JavaScript Global Objects Reference

134

If you use the Array object as a constructor, the method takes an optional parameter that is an integer
representing the array’s length. This integer is expected to be between 0 and 2^321; any other value will throw a
RangeError exception. If the parameter is supplied, the new array will be initialized with the specified number of
elements (each of which will be set to undefined). From a practical standpoint, because JavaScript arrays are of a
dynamic length and JavaScript doesn’t throw out-of-bounds errors when attempting to access a nonexistent element,
there’s not much point in creating arrays with predefined lengths.

To construct an array with data, simply include the data as a comma-delimited list within either the constructor
or the literal notation.

Syntax

var exampleArray = new Array(length); // Create an array using the Array constructor.
var exampleArray = []; // Create a new array literal.

Examples

// Initialize an empty array
var myArray = new Array(); // myArray will be empty--have a length of 0.
var myOtherArray = []; // Literal notation
var myLongArray = new Array(100); // length is 100.
alert(myLongArray[47]); // will alert "undefined"
 
// Initializing new arrays with values
var myFilledArray = new Array("this", "and", "the", "other");
var myIntegerArray = new Array(202, 53, 12, 0);
var myOtherFilledArray = ["more", "like", "this"];
var mySmallArrayOfDecimals = [0.1, 0.4];
 
// Constructing multidimensional arrays
var row1 = [1, 2, 3];
var row2 = [4, 5, 6];
var row3 = [7, 8, 9];
var array3by3 = [row1, row2, row3]; // array3by3 is now a multidimensional array
alert(array3by3[1][1]); // alerts 5
 
// Constructing arrays of objects
var object1 = {
 "myName" : "object1"
};
var object2 = {
 "myName" : "object2"
};
var object3 = {
 "myName" : "object3"
};
 
var arrayOfObjects = [object1, object2, object3]; // arrayOfObjects now contains the objects
alert(arrayOfObjects[1].myName); // alerts "object2".
 

Chapter 5 ■ JavaScript Global Objects Reference

135

Array Properties
The JavaScript Array global object has only a few default properties, and most of those are inherited from
Object. Array’s only default property that it defines itself is the length property.

length
Each array has a length property that corresponds with the total number of elements in the array. Empty arrays have
a length of 0. If an array has elements, then the index of the last element will be length – 1, because JavaScript arrays
are zero-indexed.

Syntax

exampleArray.length;

Examples

var myArray = ["this", "is", "an", "array"];
alert(myArray.length); // alerts 4
alert(myArray[myArray.length]); // alerts "undefined"; there is no such element with index of 4.
alert(myArray[myArray.length -1]); // alerts "array". 

Array Methods
The Array object provides several very useful methods for manipulating arrays.

concat( )
The Array.concat() method joins two (or more) arrays together into one new array. It will not affect the target arrays.

Syntax

var newArray = exampleArray.concat(array1, array2, ..., arrayN);

Examples

var array1 = ["bunnies", "kittens", "puppies"];
var array2 = ["velociraptors"];
var array3 = array1.concat(array2); // array3 will now contain ["bunnies", "kittens", "puppies",
"velociraptors"]. 

indexOf( )
Array.indexOf() provides an easy way to search arrays for particular values. If the provided element is present in the
array, this method will return the index of its first occurrence. If the provided element is not in the array, this method
will return –1.

Chapter 5 ■ JavaScript Global Objects Reference

136

This method also takes an optional integer argument, which is interpreted as a starting index for the search.
A positive integer is interpreted as a starting index from the beginning of the array, and a negative integer is
interpreted as a starting index from the end of the array. In both cases, the search proceeds to the end of the array.

Syntax

exampleArray.indexOf(element, startingIndex);

Examples

var myArray = ["bunnies", "kittens", "puppies", "ponies", "polar bear cubs"];
var indexOfKittens = myArray.indexOf("kittens"); // 1
var indexOfVelociraptors = myArray.indexOf("velociraptors"); // -1
var indexOfPuppies = myArray.indexOf("puppies", -1); // this will return -1 because puppies
is not contained within the subset specified by the starting index.
var indexOfPuppiesForReal = myArray.indexOf("puppies", -3); // 2 

join( )
Array.join() concatenates all the elements of an array into a string. The method takes an optional parameter that
serves as the separator character(s); if the parameter is not specified, then a comma is used by default.

Syntax

exampleArray.join(separator);

Examples

var myArray = ["bunnies", "kittens", "puppies", "ponies", "polar bear cubs"];
var strCuteThings = myArray.join(); // strCuteThings now contains
"bunnies,kittens,puppies,ponies,polar bear cubs"
var sentence = myArray.join(" are cute and ") + "are cute!"; // sentence now contains "bunnies are
cute and kittens are cute and puppies are cute and ponies are cute and polar bear cubs are cute!" 

lastIndexOf( )
Array.lastIndexOf() provides a useful way to find the last occurrence of an element within an array. If the element is
found, this method will return the index of the last occurrence; if the element is not found, it will return −1.

Like Array.indexOf(), this method takes an optional integer argument that serves as a starting index. A positive
integer is interpreted as a starting index from the beginning, and the search will proceed to the end. A negative integer
will be interpreted as an index from the end, and the search will proceed to the beginning of the array.

Syntax

exampleArray.lastIndexOf(element, startingIndex);

Examples

var myArray = ["bunnies", "kittens", "puppies", "ponies", "polar bear cubs", "bunnies", "kittens"];
alert(myArray.lastIndexOf("bunnies")); // alerts 5
alert(myArray.lastIndexOf("ponies", 4)); // alerts -1
alert(myArray.lastIndexOf("kittens", -2)); // alerts 1
 

Chapter 5 ■ JavaScript Global Objects Reference

137

pop( )
Array.pop() removes the last element from an array, and returns that element. Compare with Array.shift().

Syntax

exampleArray.pop();

Examples

var myArray = ["bunnies", "kittens", "puppies", "ponies", "polar bear cubs"];
var cubs = myArray.pop(); // myArray is now ["bunnies", "kittens", "puppies", "ponies"] and cubs
is now "polar bear cubs" 

push( )
The Array.push() method provides a way to add new elements to an array. The new elements need to be specified
using literal notation. The method returns the new length of the array.

Note that one array can be pushed into another array. This is one way of creating multidimensional arrays.
(To concatenate arrays together, use Array.concat().)

Syntax

exampleArray.push(element1, element2, ..., elementN);

Examples

var myArray = ["bunnies", "kittens", "puppies", "ponies", "polar bear cubs"];
var newLength = myArray.push("chinchillas", "sugar gliders"); // newLength is 7
var predators = ["velociraptors", "wolves"];
newLength = myArray.push(predators); // newLength is 8 (not 9!)
alert(myArray[7]); // alerts "velociraptors,wolves"
alert(myArray[7][1]); // alerts "wolves" 

reverse( )
Array.reverse() reverses the order of the elements in the array. It does this “in place,” meaning the array itself is
reversed when this method is called upon it.

Syntax

exampleArray.reverse();

Examples 

var myArray = ["bunnies", "kittens", "puppies", "ponies", "polar bear cubs"];
myArray.reverse(); // myArray is now ["polar bear cubs", "ponies", "puppies", "kittens",
"bunnies"];
 

Chapter 5 ■ JavaSCript Global obJeCtS referenCe

138

shift()
Array.shift() removes the first element from an array and returns that item. Compare with Array.unshift() and
Array.pop().

Syntax

exampleArray.shift();

Examples

var myArray = ["bunnies", "kittens", "puppies", "ponies", "polar bear cubs"];
var bunnies = myArray.shift(); // myArray is now ["kittens", "puppies", "ponies", "polar bear cubs"]
and bunnies is now "bunnies"

slice()
The Array.slice() method removes elements from an array based on the specified range of indices. The method
takes two integers as arguments: a start index and an end index. The method will select the elements starting at the
starting index and ending at the end index (but it will not include the element specified by the end index). Positive
integers are interpreted as indices from the beginning of the array, and negative integers are interpreted as indices
from the end of the array. The method returns the specified elements as a new array, and does not affect the
target array.

Syntax

exampleArray.slice(startingIndex, endingIndex);

Examples

var myArray = ["bunnies", "kittens", "puppies", "ponies", "polar bear cubs"];
var commonPets = myArray.slice(1, 2); // commonPets is now ["kittens", "puppies"];
var carnivores = myArray.slice(4, 5); // carnivores is now ["polar bear cubs"];

sort()
Array.sort() will sort the elements of an array. If no argument is specified, the array is sorted in place in ascending
alphabetical order.

If ascending alphabetical order is not useful, the method can take as a parameter a sorting function, either as
an inline function or as a named function. The sorting function must expect two parameters, a and b (which will be
array elements), and compare them. If a is a lower index than b, the function should return −1. If the two are equal,
the function should return 0. And if b is a lower index than a, the function should return 1. This makes it possible to do
complex sorting of arrays.

Note, however, that complex sort functions can be expensive to run on large arrays because Array.sort() will
run the function on every element. Exactly what constitutes “complex” and “large” depends on your specific situation,
so if you find that your application is running slow and it is doing a complex sort, this is a logical place to look for
opportunities to optimize performance.

Chapter 5 ■ JavaScript Global Objects Reference

139

Syntax

exampleArray.sort(sortMethod);

Examples

var myArray = ["bunnies", "kittens", "puppies", "ponies", "polar bear cubs"];
myArray.sort(); // myArray is now ["bunnies", "kittens", "polar bear cubs", "ponies", "puppies"]
var arrayOfIntegers = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13];
arrayOfIntegers.sort(); // arrayOfIntegers is now [0, 1, 10, 11, 12, 13, 2, 3, 4, 5, 6, 7, 8, 9],
which is possibly not useful
function mySortingFunction(a, b) {
 return a-b;
}
arrayOfIntegers.sort(mySortingFunction); // arrayOfIntegers is now [0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13] 

splice( )
Array.splice() provides a generic method for manipulating arrays. The method can either add or remove elements
from an array, and the target array is manipulated in place. The method will return, as an array object, any elements
that were removed from the array.

The method takes three arguments. The first argument is an integer and is the start index for the manipulation,
and is required. Like other Array methods that take indices as arguments, a positive integer is interpreted as an index
from the beginning of the array, and a negative integer is interpreted as an index counted from the end of the array.

The second argument is required, and is either 0 or a positive integer. It specifies how many elements to remove
from the array. If set to 0, no elements will be removed.

The third argument is optional and is the new item(s) to be added to the array via a concatenation. This can be a
literal list or another array object.

Syntax

exampleArray.splice(startingIndex, numberOfElements, item1, item2, item3, ..., itemN);
 
Or
 
exampleArray.splice(startingIndex, numberOfElements, arrayOfNewItems);

Examples

var myArray = ["bunnies", "kittens", "puppies", "ponies", "polar bear cubs"];
var arrayOfPuppies = myArray.splice(2, 1); // This just removes "puppies" from myArray.
arrayOfPuppies is now ["puppies"]
var arrayOfKittens = myArray.splice(1, 1, "maru"); // arrayOfKittens is now ["kittens"] and myArray
is now ["bunnies", "maru", "ponies", "polar bear cubs"];
var arrayOfPredators = ["velociraptors", "wolves"];
myArray.splice(2, 0, arrayOfPredators); // myArray is now ["bunnies", "maru", "ponies",
["velociraptors", "wolves"], "polar bear cubs"] 

Chapter 5 ■ JavaScript Global Objects Reference

140

toString( )
Array.toString() concatenates all of the elements of the array together into a comma-delimited string. This method
is exactly the same as calling Array.join() with no arguments.

Syntax

exampleArray.toString();

Examples

var myArray = ["bunnies", "kittens", "puppies", "ponies", "polar bear cubs"];
var strCuteThings = myArray.toString(); // strCuteThings now contains
"bunnies,kittens,puppies,ponies,polar bear cubs" 

unshift( )
Array.unshift() will add specified elements to the beginning of an array. Compare to Array.shift() and
Array.push().

Syntax

exampleArray.unshift(element1, element2, ..., elementN);

Examples

var myArray = ["bunnies", "kittens", "puppies", "ponies", "polar bear cubs"];
myArray.unshift("chinchillas"); // myArray is now ["chinchillas", "bunnies", "kittens", "puppies",
"ponies", "polar bear cubs"] 

Boolean
The JavaScript Boolean is an object wrapper for the boolean (true or false) data type. JavaScript also has the boolean
primitives true and false; if you attempt to access a Boolean property or method on a boolean primitive, JavaScript
will silently wrap it with a Boolean object to provide the requested functionality.

You can construct a new boolean object using the Boolean object as a constructor, which takes an optional
parameter. If the parameter is 0, null, "", false, undefined, or NaN (or not specified at all), then the value property
of the new Boolean object will be false. Otherwise it will be set to true (even in the case of specifying a string value
of “false”). Just remember that when creating Boolean objects with the constructor, the result is an object, not the
primitive value. Note that, from a practical standpoint, you’ll rarely need to create Boolean objects because JavaScript
will wrap boolean primitives for you.

Syntax

var exampleBoolean = new Boolean(parameter);

Examples

var newBooleanObject = new Boolean(false); // create new Boolean object with a value of false
var newBooleanPrimitive = false; // create new primitive boolean
alert(typeof newBooleanObject); // will alert "object"
alert(typeof newBooleanPrimitive); // will alert "boolean"
 

Chapter 5 ■ JavaScript Global Objects Reference

141

// This alert will happen because objects cast to true, even though the value is false
if (newBooleanObject) {
 alert("newBooleanObject is true!");
}
 
// This alert will not happen because it is a primitive set to false.
if (newBooleanPrimitive) {
 alert("newBooleanPrimitive is true!");
} 

Boolean Methods
Boolean objects provide a couple of useful methods for determining their values. These are most often used in casting
situations.

toString( )
The Boolean.toString() method will return a string representing the value of the boolean (either “true” or “false“).

Syntax

exampleBoolean.toString();

Examples

var myBoolean = false; // Create a new boolean with the false primitive
alert(myBoolean.toString()); // alerts "false"
var myOtherBoolean = new Boolean("false");
alert(myOtherBoolean.toString()); // alerts "true"
var myLiteralBoolean = true;
alert(myLiteralBoolean.toString()); // alerts "true" 

valueOf( )
The Boolean.valueOf() method will return the value of the boolean as a primitive value (as opposed to
Boolean.toString(), which returns the value of the boolean as a string).

Syntax

exampleBoolean.valueOf();

Examples

var newBool = false // Create a new boolean with the false primitive
var otherBool = newBool.valueOf();
alert(typeof otherBool); // will alert "boolean"
alert(otherBool.toString()); // will alert "false" 

Chapter 5 ■ JavaScript Global Objects Reference

142

Date
The Date object is used to return the date, the form of which is generated by its many constructor functions. Each
instance of the Date object is a value derived in milliseconds, and is relative to the zero hour point of January 1, 1970.
All positive values represent a date after January 1, 1970. All negative values represent a date before January 1, 1970.

When using arguments with the Date object, follow the sequence of year, month, day, hours, minutes, seconds,
and milliseconds. The browser stores the time as a millisecond value in the UTC() method. UTC, also known simply
as Universal Time, stands for Coordinated Universal Time, which is essentially Greenwich Mean Time taken from the
January 1, 1970 point. The time returned to the browser is taken from your operating system, so keep in mind that an
incorrect system time may be causing any problems you may be encountering when working with the Date object.

Date objects are complex but provide many convenience methods for managing, comparing, and formatting
dates. With a little practice they become easier to use.

Dates are constructed using the Date object as a constructor. The constructor takes an optional argument that
can be a single integer (representing the number of milliseconds since the zero hour point of January 1, 1970 and
which can be either positive, negative, or 0), a string of information formatted according to the requirements in
Date.parse(), or a set of integers representing the desired year, month, day, etc. If no argument is specified, the
current date is returned.

Syntax

var exampleDate = new Date();
var exampleDate = new Date(milliseconds);
var exampleDate = new Date(string);
var exampleDate = new Date(year, month, day, hours, minutes, seconds, milliseconds);

Example

var currentDate = new Date(); // No arguments so the current date is returned
alert(currentDate.getDate()); // alerts the current day of the month (see getDate() method, below). 

Date Methods
The Date object provides several very useful methods for manipulating and comparing dates.

getDate( )
The Date.getDate() method is used to return the day of the month of the Date object.

Syntax

exampleDate.getDate();

Example

var dateObject = new Date(); // Create new date object with today's date.
alert(dateObject.getDate()); // alerts today's day of the month. 

Chapter 5 ■ JavaScript Global Objects Reference

143

getDay( )
The Date.getDay() method is used to return the day of the week of the Date object. Days are zero-indexed, with
Sunday being 0.

Syntax

exampleDate.getDay();

Example

var dateObject = new Date(); // Create new date object for today
alert(dateObject.getDay()); // Alerts today's day of the week 

getFullYear( )
The Date.getFullYear() method is used to return the four digits representing the year, which is taken from the date
specified by your operating system, and used by the Date object.

Syntax

exampleDate.getFullYear();

Example

var dateObject = new Date(); // Create new date object with today's date
alert(dateObject.getFullYear()); // Alerts the year 

getHours( )
The Date.getHours() method is used to return the hour of the day, which is taken from the date specified by your
operating system, and used by the Date object. The hour returned is based on the 24-hour clock system.

Syntax

exampleDate.getHours();

Example

var dateObject = new Date(); // Create new date object with today's date
alert(dateObject.getHours()); // Alerts the current hour. 

getMilliseconds( )
The Date.getMilliseconds() method is used to return a number between 0 and 999, inclusive, that represents the
milliseconds of the Date object.

Chapter 5 ■ JavaScript Global Objects Reference

144

Syntax

exampleDate.getMilliseconds();

Example

var dateObject = new Date(); // Create new date object as of that moment
alert(dateObject.getMilliseconds()); // Alerts the milliseconds at the time when
dateObject was formed. 

getMinutes( )
The Date.getMinutes() method is used to return the minutes of the hour of the day.

Syntax

exampleDate.getMinutes();

Example

var dateObject = new Date(); // Create new date object with today's date
alert(dateObject.getMinutes()); // Alerts the minutes of the hour 

getMonth( )
The Date.getMonth() method is used to return the month of the year, which is taken from the date specified by your
operating system, and used by the Date object. The value returned is the numeric representation of the month, not the
month name. Months are zero-indexed, so January is 0 and December is 11.

Syntax

exampleDate.getMonth();

Example

var dateObject = new Date(); // Create new date object with today's date
alert(dateObject.getMonth()); // Alerts the month 

getSeconds( )
The Date.getSeconds() method is used to return the seconds of the minute, which is taken from the date specified by
your operating system, and used by the Date object.

Syntax

exampleDate.getSeconds();

Example

var dateObject = new Date(); // Create new date object with today's date
alert(dateObject.getSeconds()); // Alerts the seconds 

Chapter 5 ■ JavaScript Global Objects Reference

145

getTime( )
The Date.getTime() method is used to return the number of milliseconds that have passed since January 1, 1970,
the time for which is taken from the date specified by your operating system, and used by the Date object. The value
returned is in milliseconds.

This may seem like a strange and arbitrary way of representing dates, but it makes date mathematics
(comparisons, addition and subtraction, etc.) quite easy.

Syntax

exampleDate.getTime();

Example

var dateObject = new Date(); // Create new date object with today's date
alert(dateObject.getTime()); // Alerts the milliseconds since January 1, 1970 

getTimezoneOffset( )
The Date.getTimezoneOffset() method is used to return the number of minutes corresponding to the difference
between GMT and the time on the client computer, which is the time specified by your operating system, and used by
the Date object.

Syntax

exampleDate.getTimezoneOffset();

Example

var dateObject = new Date(); // Create new date object with today's date
alert(dateObject.getTimezoneOffset()); // Alerts the timezone offset 

getUTCDate( )
The Date.getUTCDate() method is used to return the day of the month as specified by your operating system,
expressed in UTC time or time without your local offset. The value returned is a value from 1 to 31. UTC stands for
Universal Time Coordinated and is the same as Greenwich Mean Time (GMT).

Syntax

exampleDate.getUTCDate();

Example

var dateObject = new Date(); // Create new date object with today's date
alert(dateObject.getUTCDate()); // alerts the day of the month 

getUTCDay( )
The Date.getUTCDay() method is used to return the day of the week (0 to 6, for the seven days of the week), as
specified by your operating system, expressed in UTC time or time without your local offset. The value returned is a
value from 0 to 6. UTC stands for Universal Time Coordinated and is the same as Greenwich Mean Time (GMT).

Chapter 5 ■ JavaScript Global Objects Reference

146

Syntax

exampleDate.getUTCDay();

Example

var dateObject = new Date(); // Create new date object with today's date
alert(dateObject.getUTCDay()); // Alerts the day of the week 

getUTCFullYear( )
The Date.getUTCFullYear() method is used to return the four-digit representation of the current year as specified
by your operating system, expressed in UTC time or time without your local offset. UTC stands for Universal Time
Coordinated and is the same as Greenwich Mean Time (GMT).

Syntax

exampleDate.getUTCFullYear();

Example

var dateObject = new Date(); // Create new date object with today's date
alert(dateObject.getUTCFullYear()); // Alerts the current year 

getUTCHours( )
The Date.getUTCHours() method is used to return the hour of the day, expressed in UTC time or time without your
local offset. The value returned is a value from 00 to 23, using the 24-hour time clock. UTC stands for Universal Time
Coordinated and is the same as Greenwich Mean Time (GMT).

Syntax

exampleDate.getUTCHours();

Example

var dateObject = new Date(); // Create new date object with today's date
alert(dateObject.getUTCHours()); // Alerts the current hour of the day 

getUTCMilliseconds( )
The Date.getUTCMilliseconds() method is used to return the millisecond portion of the current date, expressed by
an integer between 0 and 999 (inclusive), as specified by your operating system, expressed in UTC time or time without
your local offset. UTC stands for Universal Time Coordinated and is the same as Greenwich Mean Time (GMT).

Syntax

exampleDate.getUTCMilliseconds();

Example

var dateObject = new Date(); // Create new date object with today's date
alert(dateObject.getUTCMilliseconds()); // Alerts the milliseconds of dateObject
 

Chapter 5 ■ JavaScript Global Objects Reference

147

getUTCMinutes( )
The Date.getUTCMinutes() method is used to return the number of minutes past the last hour, as specified by your
operating system, expressed in UTC time or time without your local offset. The value returned is a value from 0 to 59.
UTC stands for Universal Time Coordinated and is the same as Greenwich Mean Time (GMT).

Syntax

exampleDate.getUTCMinutes();

Example

var dateObject = new Date(); // Create new date object with today's date
alert(dateObject.getUTCMinutes()); // Alerts the UTC minutes of the hour. 

getUTCMonth( )
The Date.getUTCMonth() method is used to return the month of the year, as specified by your operating system,
expressed in UTC time or time without your local offset. The value returned is a value from 0 to 11. UTC stands for
Universal Time Coordinated and is the same as Greenwich Mean Time (GMT).

Syntax

exampleDate.getUTCMonth();

Example

var dateObject = new Date(); // Create new date object with today's date
alert(dateObject.getUTCMonth()); // Alerts the month. 

getUTCSeconds( )
The Date.getUTCSeconds() method is used to return the number of seconds past the last minute, the time for which
being taken from the time specified by your operating system, expressed in UTC time or time without your local offset.
The value returned is a value from 0 to 59. UTC stands for Universal Time Coordinate and is the same as Greenwich
Mean Time (GMT).

Syntax

exampleDate.getUTCSeconds();

Example

var dateObject = new Date(); // Create new date object with today's date
alert(dateObject.getUTCSeconds()); // Alerts the seconds past the minute
 

Chapter 5 ■ JavaSCript Global obJeCtS referenCe

148

parse()
The Date.parse() method is used to return the time, measured in milliseconds from the date given as date
(see syntax) to the present date. The present date is taken from the client operating system. The full date specified
must be in the following form:

DayOfWeek, dayOfMonth MM YYYY HH:MM:SS TimeZoneOffset

The above is the format followed by the toGMTString() method.

Syntax

exampleDate.parse(date);

Example

alert("The number of milliseconds from January 1st, 1970 to Sun, Jan 3 1999 10:15:30 is : " +
Date.parse('Sun, Jan 3 1999 10:15:30')); // Will alert "The number of milliseconds from
January 1st, 1970 to Sun, Jan 3 1999 10:15:30 is : 915387330000"

setDate()
The Date.setDate() method is used to set the day of the month property of the Date object. The Date object will then
use this value for its operations. The date and time of your system clock is not consulted with this method.

The day parameter is expected to be between 1 and 31 (inclusive). If you provide 0, the day of the month property
will set to the last hour of the previous month. If you provide −1, the day of the month property will set to the hour
before the last hour of the previous month. If the month has 30 days, providing 32 will set the day of the month
property to the second day of the next month. If the month has 31 days, then providing 32 will set the day of the month
property to the first day of the next month.

This method returns an integer representing the number of milliseconds between the new value of the
Date object and midnight, January 1, 1970.

Syntax

exampleDate.setDate(day);

Example

var dateObject = new Date(); // Create new date object with today's date
dateObject.setDate(3); // Changes the day from whatever it currently is to 3 (Wednesday)
alert(dateObject.getDate()); // Alerts 3

setFullYear()
The Date.setFullYear() method is used to set the year property of the Date object. The Date object will then use this
value for its operations. The date and time of your system clock is not consulted with this method.

In addition, this method can be used to set the month and day properties of the Date object by providing optional
month and day parameters.

The year parameter is expected to be a zero-padded four-digit year. Negative values are allowed.

Chapter 5 ■ JavaScript Global Objects Reference

149

The month parameter is expected to be an integer between 0 and 11. If you provide −1, the month property will set
to the last month of the previous year. If you provide 12, the month property will set to the first month of the next year,
and if you provide 13, the month property will set to the second month of the next year.

The day parameter is expected to be an integer between 1 and 31. If you provide 0, the day will set to the last day
of the previous month. If you provide −1, the day will set to the day before the last day of the previous month. If the
month has 31 days, providing 32 will result in the first day of the next month, and if the month has 30 days, providing
32 will result in the second day of the next month.

This method returns an integer representing the number of milliseconds between the new value of the
Date object and midnight, January 1, 1970.

Syntax

exampleDate.setFullYear(year, month, day);

Example

var dateObject = new Date(); // Create new date object with today's date
dateObject.setFullYear(1999); // Set year to 1999
alert(dateObject.getFullYear()); // Alerts 1999. 

setHours( )
The Date.setHours() method is used to set the hour of the day property of the Date object. The Date object will then
use this value for its operations. The date and time of your system clock is not consulted with this method.

In addition, this method can be used to set the minutes, seconds, and milliseconds properties of the Date object
by providing optional minutes, seconds, and milliseconds parameters.

The hours parameter is expected to be an integer between 0 and 23. If you provide −1, the hours property will set
to the last hour of the previous day, and if you provide 24, the hours property will set to the first hour of the next day.

The minutes parameter is expected to be an integer between 0 and 59. If you provide −1, the minutes property
will set to the last minute of the previous hour, and if you provide 60, the minutes property will set to the first minute
of the next hour.

The seconds parameter is expected to be an integer between 0 and 59. If you provide −1, the seconds property
will set to the last second of the previous minute, and if you provide 60, the seconds property will set to the first
second of the next minute.

The milliseconds parameter is expected to be an integer between 0 and 999. If you provide −1, the milliseconds
property will set to the last millisecond of the previous second. If you provide 1000, the milliseconds property will set
to the first millisecond of the next second.

This method returns an integer representing the number of milliseconds between the new value of the
Date object and midnight, January 1, 1970.

Syntax

exampleDate.setHours(hour, minutes, seconds, milliseconds);

Example

var dateObject = new Date(); // Create new date object with today's date
dateObject.setHours(11); // Set the hour to 11am
alert(dateObject.getHours()); // Alerts 11. 

Chapter 5 ■ JavaScript Global Objects Reference

150

setMilliseconds( )
The Date.setMilliseconds() method is used to set the milliseconds property of the Date object. The Date object will
then use this value for its operations. The date and time of your system clock is not consulted with this method.

The milliseconds parameter is expected to be an integer between 0 and 999. If you provide −1, the milliseconds
property will set to the last millisecond of the previous second. If you provide 1000, the milliseconds property will set
to the first millisecond of the next second.

This method returns an integer representing the number of milliseconds between the new value of the
Date object and midnight, January 1, 1970.

Syntax

exampleDate.setMilliseconds(milliseconds);

Example

var dateObject = new Date(); // Create new date object with today's date
dateObject.setMilliseconds(300); // Sets the milliseconds value to 300
alert(dateObject.getMilliseconds()); // Alerts 300 

setMinutes( )
The Date.setMinutes() method is used to set the minutes property of the Date object. The Date object will then use
this value for its operations. The date and time of your system clock is not consulted with this method. You can also
set the seconds and milliseconds of the Date object by providing optional seconds and milliseconds parameters to
this method.

The minutes parameter is expected to be an integer between 0 and 59. If you provide −1, the minutes property
will set to the last minute of the previous hour, and if you provide 60, the minutes property will set to the first minute
of the next hour.

The seconds parameter is expected to be an integer between 0 and 59. If you provide −1, the seconds property
will set to the last second of the previous minute, and if you provide 60, the seconds property will set to the first
second of the next minute.

The milliseconds parameter is expected to be an integer between 0 and 999. If you provide −1, the milliseconds
property will set to the last millisecond of the previous second. If you provide 1000, the milliseconds property will set
to the first millisecond of the next second.

This method returns an integer representing the number of milliseconds between the new value of the
Date object and midnight, January 1, 1970.

Syntax

exampleDate.setMinutes(minutes, seconds, milliseconds);

Example

var dateObject = new Date(); // Create new date object with today's date
dateObject.setMinutes(40); // Sets the minutes value to 40
alert(dateObject.getMinutes()); // Alerts 40
 

Chapter 5 ■ JavaScript Global Objects Reference

151

setMonth( )
The Date.setMonth() method is used to set the month property of the Date object. The Date object will then use this
value for its operations. The date and time of your system clock is not consulted with this method. In addition, you can
set the day property of the Date object by providing an optional day parameter.

The month parameter is expected to be an integer between 0 and 11. If you provide −1, the month property will set
to the last month of the previous year. If you provide 12, the month property will set to the first month of the next year,
and if you provide 13, the month property will set to the second month of the next year.

The day parameter is expected to be an integer between 1 and 31. If you provide 0, the day will set to the last day
of the previous month. If you provide −1, the day will set to the day before the last day of the previous month. If the
month has 31 days, providing 32 will result in the first day of the next month, and if the month has 32 days, providing
32 will result in the second day of the next month.

This method returns an integer representing the number of milliseconds between the new value of the
 Date object and midnight, January 1, 1970.

Syntax

exampleDate.setMonth(month, day);

Example

var dateObject = new Date(); // Create new date object with today's date
dateObject.setMonth(4); // Sets the month value to 4
alert(dateObject.getMonth()); // Alerts 4 

setSeconds( )
The Date.setSeconds() method is used to set the seconds property of the Date object. The Date object will then use
this value for its operations. The date and time of your system clock is not consulted with this method. In addition,
this method can be used to set the milliseconds property of the Date object by providing an optional milliseconds
parameter.

The seconds parameter is expected to be an integer between 0 and 59. If you provide −1, the seconds property
will set to the last second of the previous minute, and if you provide 60, the seconds property will set to the first
second of the next minute.

The milliseconds parameter is expected to be an integer between 0 and 999. If you provide −1, the milliseconds
property will set to the last millisecond of the previous second. If you provide 1000, the milliseconds property will set
to the first millisecond of the next second.

This method returns an integer representing the number of milliseconds between the new value of the
Date object and midnight, January 1, 1970.

Syntax

exampleDate.setSeconds(seconds, milliseconds);

Example

var dateObject = new Date(); // Create new date object with today's date
dateObject.setSeconds(11); // Set seconds to 11
alert(dateObject.getSeconds()); // Alerts 11.
 

Chapter 5 ■ JavaScript Global Objects Reference

152

setTime( )
The Date.setTime() method is used to set the number of milliseconds since midnight, January 1, 1970. The date and
time of your system clock is not consulted with this method.

The milliseconds parameter is expected to be a positive or negative integer value. The Date object will then
calculate the day, month, year, hours, minutes, seconds, and milliseconds based on the parameter.

This method returns an integer representing the number of milliseconds between the new value of the
 Date object and midnight, January 1, 1970.

Syntax

exampleDate.setTime(milliseconds);

Example

var dateObject = new Date(); // Create new date object with today's date
dateObject.setTime(-8348438943984); // Subtract 83,848,438,943,984 milliseconds from midnight
January 1 1970
alert(dateObject.toDateString()); // Alerts "Sat Jun 13 1705" 

setUTCDate( )
The Date.setUTCDate() method is used to set the day of the month property of the Date object according to Universal
Time. The Date object will then use this value for its operations. The date and time of your system clock is not
consulted with this method.

UTC stands for Universal Coordinated Time and is set by the World Time Standard. It is the same as Greenwich
Mean Time (GMT).

The day parameter is expected to be between 1 and 31. If you provide 0, the day of the month property will set
to the last hour of the previous month. If you provide −1, the day of the month property will set to the day before the
last hour of the previous month. If the month has 30 days, providing 32 will set the day of the month property to the
second day of the next month. If the month has 31 days, providing 32 will set the day of the month property to the first
day of the next month.

This method returns an integer representing the number of milliseconds between the new value of the
Date object and midnight, January 1, 1970.

Syntax

exampleDate.setUTCDate(day);

Example

var dateObject = new Date(); // Create new date object with today's date
dateObject.setUTCDate(3); // Changes the day from whatever it currently is to 3
alert(dateObject.getUTCDate()); // Alerts 3 

setUTCFullYear( )
The Date.setUTCFullYear() method is used to set the year property of the Date object according to Universal Time.
The Date object will then use this value for its operations. The date and time of your system clock is not consulted with
this method.

Chapter 5 ■ JavaScript Global Objects Reference

153

UTC stands for Universal Coordinated Time and is set by the World Time Standard. It is the same as Greenwich
Mean Time (GMT).

In addition, this method can be used to set the month and day properties of the Date object by providing optional
month and day parameters.

The year parameter is expected to be a zero-padded four-digit year. Negative values are allowed.
The month parameter is expected to be an integer between 0 and 11. If you provide −1, the month property will set

to the last month of the previous year. If you provide 12, the month property will set to the first month of the next year,
and if you provide 13, the month property will set to the second month of the next year.

The day parameter is expected to be an integer between 1 and 31. If you provide 0, the day will set to the last day
of the previous month. If you provide −1, the day will set to the day before the last day of the previous month. If the
month has 31 days, providing 32 will result in the first day of the next month, and if the month has 30 days,
providing 32 will result in the second day of the next month.

This method returns an integer representing the number of milliseconds between the new value of the Date
object and midnight, January 1, 1970.

Syntax

exampleDate.setUTCFullYear(year, month, day);

Example

var dateObject = new Date(); // Create new date object with today's date
dateObject.setUTCFullYear(1999); // Set year to 1999
alert(dateObject.getUTCFullYear()); // Alerts 1999. 

setUTCHours( )
The Date.setUTCHours() method is used to set the hour of the day property of the Date object according to Universal
Time. The Date object will then use this value for its operations. The date and time of your system clock is not
consulted with this method.

UTC stands for Universal Coordinated Time and is set by the World Time Standard. It is the same as Greenwich
Mean Time (GMT).

In addition, this method can be used to set the minutes, seconds, and milliseconds properties of the Date object
by providing optional minutes, seconds, and milliseconds parameters.

The hours parameter is expected to be an integer between 0 and 23. If you provide −1, the hours property will set
to the last hour of the previous day, and if you provide 24, the hours property will set to the first hour of the next day.

The minutes parameter is expected to be an integer between 0 and 59. If you provide −1, the minutes property
will set to the last minute of the previous hour, and if you provide 60, the minutes property will set to the first minute
of the next hour.

The seconds parameter is expected to be an integer between 0 and 59. If you provide −1, the seconds property
will set to the last second of the previous minute, and if you provide 60, the seconds property will set to the first
second of the next minute.

The milliseconds parameter is expected to be an integer between 0 and 999. If you provide −1, the milliseconds
property will set to the last millisecond of the previous second. If you provide 1000, the milliseconds property will set
to the first millisecond of the next second.

This method returns an integer representing the number of milliseconds between the new value of the Date
object and midnight, January 1, 1970.

Chapter 5 ■ JavaScript Global Objects Reference

154

Syntax

exampleDate.setUTCHours(hour, miutes, seconds, milliseconds);

Example

var dateObject = new Date(); // Create new date object with today's date
dateObject.setUTCHours(11); // Set the hour to 11am
alert(dateObject.getUTCHours()); // Alerts 11. 

setUTCMilliseconds( )
The Date.setUTCMilliseconds() method is used to set the milliseconds property of the Date object according to
Universal Time. The Date object will then use this value for its operations. The date and time of your system clock is
not consulted with this method.

UTC stands for Universal Coordinated Time and is set by the World Time Standard. It is the same as Greenwich
Mean Time (GMT).

The milliseconds parameter is expected to be an integer between 0 and 999. If you provide −1, the milliseconds
property will set to the last millisecond of the previous second. If you provide 1000, the milliseconds property will set
to the first millisecond of the next second.

This method returns an integer representing the number of milliseconds between the new value of the
Date object and midnight, January 1, 1970.

Syntax

exampleDate.setUTCMilliseconds(milliseconds);

Example

var dateObject = new Date(); // Create new date object with today's date
dateObject.setUTCMilliseconds(300); // Sets the milliseconds value to 300
alert(dateObject.getUTCMilliseconds()); // Alerts 300 

setUTCMinutes( )
The Date.setUTCMinutes() method is used to set the minutes property of the Date object according to Universal
Time. The Date object will then use this value for its operations. The date and time of your system clock is not
consulted with this method. You can also set the seconds and milliseconds of the Date object by providing optional
seconds and milliseconds parameters to this method.

UTC stands for Universal Coordinated Time and is set by the World Time Standard. It is the same as Greenwich
Mean Time (GMT).

The minutes parameter is expected to be an integer between 0 and 59. If you provide −1, the minutes property
will set to the last minute of the previous hour, and if you provide 60, the minutes property will set to the first minute
of the next hour.

The seconds parameter is expected to be an integer between 0 and 59. If you provide −1, the seconds property
will set to the last second of the previous minute, and if you provide 60, the seconds property will set to the first
second of the next minute.

The milliseconds parameter is expected to be an integer between 0 and 999. If you provide −1, the milliseconds
property will set to the last millisecond of the previous second. If you provide 1000, the milliseconds property will set
to the first millisecond of the next second.

This method returns an integer representing the number of milliseconds between the new value of the
 Date object and midnight, January 1, 1970.

Chapter 5 ■ JavaScript Global Objects Reference

155

Syntax

exampleDate.setUTCMinutes(minutes, seconds, milliseconds);

Example

var dateObject = new Date(); // Create new date object with today's date
dateObject.setUTCMinutes(40); // Sets the minutes value to 40
alert(dateObject.getUTCMinutes()); // Alerts 40 

setUTCMonth( )
The Date.setUTCMonth() method is used to set the month property of the Date object according to Universal Time.
The Date object will then use this value for its operations. The date and time of your system clock is not consulted with
this method. In addition, you can set the day property of the Date object by providing an optional day parameter.

UTC stands for Universal Coordinated Time and is set by the World Time Standard. It is the same as Greenwich
Mean Time (GMT).

The month parameter is expected to be an integer between 0 and 11. If you provide −1, the month property will set
to the last month of the previous year. If you provide 12, the month property will set to the first month of the next year,
and if you provide 13, the month property will set to the second month of the next year.

The day parameter is expected to be an integer between 1 and 31. If you provide 0, the day will set to the last day
of the previous month. If you provide −1, the day will set to the day before the last day of the previous month. If the
month has 31 days, providing 32 will result in the first day of the next month, and if the month has 32 days, providing
32 will result in the second day of the next month.

This method returns an integer representing the number of milliseconds between the new value of the
Date object and midnight, January 1, 1970.

Syntax

exampleDate.setUTCMonth(month, day);

Example

var dateObject = new Date(); // Create new date object with today's date
dateObject.setUTCMonth(4); // Sets the month value to 4
alert(dateObject.getUTCMonth()); // Alerts 4 

setUTCSeconds( )
The Date.setUTCSeconds() method is used to set the seconds property of the Date object according to Universal
Time. The Date object will then use this value for its operations. The date and time of your system clock is not
consulted with this method. In addition, this method can be used to set the milliseconds property of the Date object
by providing an optional milliseconds parameter.

UTC stands for Universal Coordinated Time and is set by the World Time Standard. It is the same as Greenwich
Mean Time (GMT).

The seconds parameter is expected to be an integer between 0 and 59. If you provide −1, the seconds property
will set to the last second of the previous minute, and if you provide 60, the seconds property will set to the first
second of the next minute.

The milliseconds parameter is expected to be an integer between 0 and 999. If you provide −1, the milliseconds
property will set to the last millisecond of the previous second. If you provide 1000, the milliseconds property will set
to the first millisecond of the next second.

Chapter 5 ■ JavaScript Global Objects Reference

156

This method returns an integer representing the number of milliseconds between the new value of the Date
object and midnight, January 1, 1970.

Syntax

exampleDate.setUTCSeconds(seconds, milliseconds);

Example

var dateObject = new Date(); // Create new date object with today's date
dateObject.setUTCSeconds(11); // Set seconds to 11
alert(dateObject.getUTCSeconds()); // Alerts 11. 

toDateString( )
The Date.toDateString() method returns a formatted string that represents the date (not the time) of the Date
object. The format is a three-letter Day abbreviation followed by MMM DD YYYY; for example, “Sun Jan 26 2013”.

Syntax

exampleDate.toDateString();

Example

var dateObject = new Date(); // Create new date object with today's date
alert(dateObject.toDateString()); // Alerts the current date. 

toISOString( )
The Date.toISOString() method returns a string representing the value of the Date object, formatted according to
ISO-8601: YYYY-MM-DDTHH:mm:ss.sssZ.

Syntax

exampleDate.toISOString();

Example

var dateObject = new Date(); // Create new date object with today's date
alert(dateObject.toISOString()); // Alerts today's date in ISO-8601 format. 

toJSON( )
The Date.toJSON() method will return a string representing the date formatted in JSON format. The JSON format is
identical to the ISO format, so this method is identical to calling Date.toISOString().

Chapter 5 ■ JavaScript Global Objects Reference

157

Syntax

exampleDate.toJSON();

Example

var dateObject = new Date(); // Create new date object with today's date
alert(dateObject.toJSON()); // Alerts today's date in ISO-8601 format. 

toLocaleDateString( )
The Date.toLocaleDateString() method is used to return the date in a standardized format, the date for which is
taken from the date specified by your operating system, and used by the Date object. The value is formatted according
to locale conventions specified by the host browser, the host operating system, and possibly the user’s settings.
As a result, this method will behave differently in different browsers and on different operating systems

Syntax

exampleDate.toLocaleDateString();

Example

var dateObject = new Date(); // Create new date object with today's date
alert(dateObject.toLocaleDateString()); // Alerts today's date in a formatted
string, e.g. "Thursday, September 13, 2012" 

toLocaleTimeString( )
The Date.toLocaleTimeString() method is used to return the time portion of a Date object in a standardized format,
the information for which is taken from the date specified by your operating system, and used by the Date object.
The value is returned using locale conventions specified by the host browser, the host operating system, and possibly
the user’s settings. As a result, this method will behave differently in different browsers and on different operating
systems.

Syntax

exampleDate.toLocaleTimeString();

Example

var dateObject = new Date(); // Create new date object with today's date
alert(dateObject.toLocaleTimeString()); // Alerts the current time, e.g. "09:17:42" 

toLocaleString( )
The Date.toLocaleString() method is used to return the value of a Date object in a standardized format, the
information for which is taken from the date specified by your operating system, and used by the Date object. The
value is returned using locale conventions specified by the host browser, the host operating system, and possibly
the user’s settings. As a result, this method will behave differently in different browsers and on different operating
systems.

Chapter 5 ■ JavaSCript Global obJeCtS referenCe

158

Syntax

exampleDate.toLocaleString();

Example

var dateObject = new Date(); // Create new date object with today's date
alert(dateObject.toLocaleString()); // Alerts the current time, e.g. "Thu Sep 13 2012
09:17:42 GMT-0700 (Pacific Daylight Time)"

toString()
The Date.toString() method is used to convert a Date object into a string.

Syntax

exampleDate.toString();

Example

var dateObject = new Date(); // Create new date object with today's date
alert(dateObject.toString()); // Alerts the current time, e.g. " Thu Sep 13 2012 09:17:42 GMT-0700
(Pacific Daylight Time)"

toTimeString()
The Date.toTimeString() method is used to convert the time portion of a Date object into a string.

Syntax

exampleDate.toTimeString();

Example

var dateObject = new Date(); // Create new date object with today's date
alert(dateObject.toTimeString()); // Alerts the current time, e.g. "09:17:42 GMT-0700
(Pacific Daylight Time)"

toUTCString()
The Date.toUTCString() method is used to convert a Date object into a string according to Universal
Coordinated Time.

Syntax

exampleDate.toUTCString();

Example

var dateObject = new Date(); // Create new date object with today's date
alert(dateObject.toUTCString()); // Alerts the current time, e.g. " Thu Sep 13 2012 16:17:42 GMT"

Chapter 5 ■ JavaScript Global Objects Reference

159

UTC( )
Unlike the other methods on the Date object, the Date.UTC() method is a static method exposed for convenience.
Thus you do not have to create a new Date object in order to access it—in fact, you can’t access it from a Date object.
Instead, you access it directly from the global Date object.

The Date.UTC() method takes a set of parameters as follows:

•	 Year: The four-digit year; any year after 1900 is valid. Required.

•	 Month: An integer from 0 to 11 representing the desired month. Required.

•	 Date: An integer from 1 to 31 representing the desired day of the month.

•	 Hours: An integer from 0 to 23 representing the desired hour.

•	 Min: An integer from 0 to 59 representing the desired minutes.

•	 Sec: An integer from 0 to 59 representing the desired seconds.

•	 MS: An integer from 0 to 999 representing the desired milliseconds.

The method will return a number that represents the number of milliseconds between the date specified and
midnight, January 1, 1970.

Syntax

Date.UTC(Year, Month, Date, Hours, Min, Sec, MS);

Example

var intMilliseconds = Date.UTC(2013,01,26); // intMilliseconds is now 1361836800000
var myNewDate = new Date(intMilliseconds); // Create a new date object
alert(myNewDate.toUTCString()): // Alerts "Tue, 26 Feb 2013 00:00:00 GMT". 

valueOf( )
The Date.valueOf() method returns the primitive value of a Date object, which is the number of seconds from
midnight, January 1, 1970, UTC.

Syntax

exampleDate.valueOf();

Example

var dateObject = new Date(); // Create new date object with today's date
alert(dateObject.valueOf()); // Alerts the milliseconds from midnight January 1 1970,
e.g."1347553875570" 

Math
The Math object provides access to various mathematical properties and functions. Unlike other objects outlined
in this chapter, the Math object is not a constructor. You do not need to make a new Math object to use it; you can use
its properties and methods directly.

Chapter 5 ■ JavaScript Global Objects Reference

160

Math Properties
The Math object has several properties that correspond to common mathematical constants:

•	 E: Euler’s number

•	 LN2: The natural logarithm of 2

•	 LN10: The natural logarithm of 10

•	 LOG2E: The base−2 logarithm of E

•	 LOG10E: The base−10 logarithm of E

•	 PI: The value of pi (p)

•	 SQRT1_2: The square root of 1/2

•	 SQRT2: The square root of 2

Syntax

Math.E;
Math.LN2;
Math.PI;

Examples

alert(Math.E);
alert(Math.LN2);
alert(Math.PI); 

Math Methods
The Math object has several methods, including trigonometric functions, rounding, and randomization.

abs( )
The Math.abs() method is used to calculate the absolute value of the supplied parameter. Non-numeric parameters
are cast as numeric for purposes of calculation.

Syntax

Math.abs(number);

Examples

alert(Math.abs(-1)); // will alert "1"
alert(Math.abs(0.1)); // will alert "0.1"
alert(Math.abs("Math is fun!")); // will alert "NaN"
alert(Math.abs(null)); // will alert "0"
 

Chapter 5 ■ JavaScript Global Objects Reference

161

acos( )
The Math.acos() method returns the arccosine (in radians) of the supplied parameter. Non-numeric parameters
are cast as numeric for purposes of calculation.

Syntax

Math.acos(number);

Examples

alert(Math.acos(1)); // will alert 0
alert(Math.acos(-1)); // will alert 3.141592653589793
alert(Math.acos(0.1)); // will alert 1.4706289056333368
alert(Math.acos("Math is fun!")); // will alert NaN
alert(Math.acos(null)); // will alert 1.5707963267948966 

asin( )
The Math.asin() method returns the arcsine (in radians) of the supplied parameter. Non-numeric parameters
are cast as numeric for purposes of calculation.

Syntax

Math.asin(number);

Examples

alert(Math.asin(1)); // will alert 1. 5707963267948966
alert(Math.asin(-1)); // will alert -1. 5707963267948966
alert(Math.asin(0.1)); // will alert 0.1001674211615598
alert(Math.asin("Math is fun!")); // will alert NaN
alert(Math.asin(null)); // will alert 0 

atan( )
The Math.atan() method returns the arctangent (in radians) of the supplied parameter. Non-numeric parameters
are cast as numeric for purposes of calculation.

Syntax

Math.atan(number);

Examples

alert(Math.atan(1)); // will alert 0.7853981633974483
alert(Math.atan(-1)); // will alert 0.7853981633974483
alert(Math.atan(0.1)); // will alert 0.09966865249116204
alert(Math.atan("Math is fun!")); // will alert NaN
alert(Math.atan(null)); // will alert 0
 

Chapter 5 ■ JavaScript Global Objects Reference

162

atan2( )
The Math.atan2() method returns the arctangent of the quotient of its two parameters. The value is returned
in radians between -PI/2 and PI/2. Non-numeric parameters are cast as numeric for purposes of calculation.

Syntax

Math.atan2(num1, num2);

Examples

alert(Math.atan2(1, 7)); // will alert 0.1418970546416394
alert(Math.atan2("Math is fun!", 8)); // will alert NaN
alert(Math.atan2(null, null)); // will alert 0 

ceil( )
The Math.ceil() method returns the parameter rounded up to the next nearest integer. Non-numeric parameters are
cast as numeric for purposes of calculation. Compare to Math.floor().

Syntax

Math.ceil(number);

Examples

alert(Math.ceil(0.4)); // will alert 1
alert(Math.ceil(-7.9)); // will alert -7
alert(Math.ceil("Math is fun")); // will alert NaN
alert(Math.ceil("0.1")); // will alert 1 

cos( )
The Math.cos() method returns the cosine (in radians) of the supplied parameter. Non-numeric parameters are cast
as numeric for purposes of calculation.

Syntax

Math.cos(number);

Examples

alert(Math.cos(1)); // will alert 0.540323058681398
alert(Math.cos(0.1)); // will alert 0.9950041652780258
alert(Math.cos("Math is fun!")); // will alert NaN
alert(Math.cos(null)); // will alert 1 

Chapter 5 ■ JavaScript Global Objects Reference

163

exp( )
The Math.exp() method takes a numeric parameter and returns e^number as a result.

Syntax

Math.exp(number);

Example

alert(Math.exp(-1)); // will alert 0.36787944117144233 

floor( )
The Math.floor() method returns the parameter rounded down to the next nearest integer. Non-numeric parameters
are cast as numeric for purposes of calculation. Compare to Math.ceil().

Syntax

Math.floor(number);

Examples

alert(Math.floor(0.4)); // will alert 0
alert(Math.floor(-7.9)); // will alert -8
alert(Math.floor("Math is fun")); // will alert NaN
alert(Math.floor("0.1")); // will alert 0 

log( )
The Math.log() method will return the natural logarithm of the parameter. Non-numeric parameters are cast for the
purposes of calculation.

Syntax

Math.log(number);

Examples

alert(Math.log(2)); // will alert 0.691347185599453
alert(Math.log("0)); // will alert -Infinity
alert(Math.log(-34)); // Will alert NaN 

max( )
The Math.max() method takes a set of numeric parameters and will return the largest of them. Passing a non-numeric
parameter will cause the method to return NaN. If no arguments are given, the method will return -Infinity.
Compare to Math.min().

Chapter 5 ■ JavaScript Global Objects Reference

164

Syntax

Math.max(num1, num2, ..., numN);

Example

alert(Math.max(5, 0, 2, 100, 4, 68490, 4, -1, 234)); // will alert 68490 

min( )
The Math.min() method takes a set of numeric parameters and will return the smallest of them. Passing a non-numeric
parameter will cause the method to return NaN. If no arguments are given, the method will return Infinity. Compare
to Math.max().

Syntax

Math.min(num1, num2, ..., numN);

Example

alert(Math.min(5, 0, 2, 100, 4, 68490, 4, -1, 234)); // will alert -1 

pow( )
The Math.pow() method takes two parameters, numberBase and numberExponent, and returns
numberBase^numberExponent. Non-numeric parameters are cast for purposes of calculation.

Syntax

Math.pow(numberBase, numberExponent);

Examples

alert(Math.pow(10, 10)); // will alert 10000000000
alert(Math.pow(100, 0.5)); // will alert 10
alert((Math.pow(2, 0.5) == Math.SQRT2)); // will alert true 

random( )
The Math.random() method will return a floating-point number of 16 decimal places that is greater than or equal
to 0 and less than 1.

Syntax

Math.random();

Examples

alert(Math.random()); // will alert a random number, such as 0.40920510
// Function to generate a random integer between 0 and intMax
function generateRandomInt(intMax) {
 return Math.floor((Math.random() * intMax) + 1);
}
alert(generateRandomInt(100)); // will alert a random integer between 0 and 100.
 

Chapter 5 ■ JavaScript Global Objects Reference

165

round( )
The Math.round() method takes a numeric parameter and will return that number rounded to the nearest integer.
Non-numeric parameters will be cast for purposes of calculation.

Syntax

Math.round(number);

Examples

alert(Math.round(1.49)); // will alert 1
alert(Math.round(1.5)); // will alert 2 

sin( )
The Math.sin() method returns the sine (in radians) of the supplied parameter. Non-numeric parameters are cast
as numeric for purposes of calculation.

Syntax

Math.sin(number);

Examples

alert(Math.sin(1)); // will alert 0.8414709848078965
alert(Math.cos(0.1)); // will alert 0.09983341664682815
alert(Math.cos("Math is fun!")); // will alert NaN
alert(Math.cos(null)); // will alert 1 

sqrt( )
The Math.sqrt() method takes a numeric parameter and returns the square root of that number. Negative numbers
will return NaN, and non-numeric parameters will be cast for purposes of calculation.

Syntax

Math.sqrt(number);

Example

alert(Math.sqrt(100)); // will alert 10 

tan( )
The Math.tan() method returns the tangent (in radians) of the supplied parameter. Non-numeric parameters are
cast as numeric for purposes of calculation.

Syntax

Math.tan(number);

Chapter 5 ■ JavaScript Global Objects Reference

166

Examples

alert(Math.tan(1)); // will alert 1.5574077246549023
alert(Math.tan(0.1)); // will alert 0.10033467208545055
alert(Math.tan("Math is fun!")); // will alert NaN
alert(Math.tan(null)); // will alert 0 

Number
The Number object is a wrapper class for numeric values. In JavaScript all numeric values are 64-bit floating point
numbers.

Number Properties
The JavaScript Number object has a few properties that are useful in numeric comparisons, particularly since JavaScript
is weakly typed:

•	 MAX_VALUE: The largest possible numeric value in JavaScript

•	 MIN_VALUE: The smallest possible numeric value in JavaScript

•	 NEGATIVE_INFINITY: Negative infinity

•	 NaN: The special “Not a Number” value (see Chapter 2 for details)

•	 POSITIVE_INFINITY: Positive infinity

Syntax

Number.MAX_VALUE;
Number.MIN_VALUE;

Example

alert(Number.MAX_VALUE); // will alert 1.7976931348623157e+308 

Number Methods
toExponential( )
The Number.toExponential() method returns a string representing the number in exponential notation. The method
takes an optional integer parameter between 0 and 20 that represents the number of digits after the decimal point; if it
is omitted, the method will use as many digits as needed to fully represent the number.

Syntax

exampleNumber.toExponential(digits);

Examples

var myNumber = 4309;
alert(myNumber.toExponential()); // will alert 4.309e+3
alert(myNumber.toExponential(2)); // will alert 4.31e+3 

Chapter 5 ■ JavaScript Global Objects Reference

167

toFixed( )
The Number.toFixed() method returns a string representing the number in decimal notation and has exactly the
number of digits after the decimal specified by the optional integer parameter. If the parameter is not specified,
it is treated as 0 and the number will be rounded to its nearest integer.

Syntax

exampleNumber.toFixed(places);

Examples

var myNumber = 40.29;
alert(myNumber.toFixed()); // will alert 40
alert(myNumber.toFixed(1)); // will alert 40.3
alert(myNumber.toFixed(4)); // will alert 40.2900 

toPrecision( )
The Number.toPrecision() method returns a string representing the specified number rounded to the number
of significant digits specified by the parameter. The result can be either fixed-point or exponential notation as
needed. Typically the parameter is expected to be an integer value between 1 and 21, though this can vary depending
on implementation. Parameters outside of the allowed range will throw a range error. If no numeric parameter
is specified, the method simply returns a string representation of the number and is the equivalent of calling the
toString() method.

Syntax

exampleNumber.toPrecision(precision);

Examples

var myNumber = 40.29;
alert(myNumber.toPrecision()); // alerts 40.29
alert(myNumber.toPrecision(1)); // alerts 4e+1 (which is 40 in exponential notation)
alert(myNumber.toPrecision(10)); // alerts 40.2900000000 

toString( )
The Number.toString() method returns a string that represents the value of the number. The method takes an optional
parameter that is an integer between 2 and 26 and represents the radix (base) of the string. If you provide a parameter
outside the accepted range, an exception will be thrown. If you do not provide a radix at all, the default is 10.

Syntax

exampleNumber.toString(radix);

Examples

var myNumber = 17;
alert(myNumber.toString()); // alerts 17
alert(myNumber.toString(2)); // alerts 10001 

Chapter 5 ■ JavaSCript Global obJeCtS referenCe

168

valueOf()
The Number.valueOf() method returns the primitive value of the number as a numeric data type. This method is not
commonly used because direct assignment is preferred.

Syntax

exampleNumber.valueOf();

Examples

var myNumber = 17;
var myOtherNumber = myNumber.valueOf();
var myBetterWay = myNumber; // direct assignment
alert(myOtherNumber === myBetterWay); // Will alert true, because the two are the same

RegExp
The JavaScript RegExp object provides the implementation for regular expressions in JavaScript. Regular expressions
are a powerful tool for searching and manipulating strings of text and have their own language and methodologies.
This reference covers only the JavaScript implementation of regular expressions and does not delve into how to
actually build them.

In JavaScript, regular expressions are created in one of two ways: via the RegExp object constructor, or via a literal.
When using the constructor, any strings present in the expression have to be escaped.

Syntax

var exampleRegExp = new RegExp(regularExpression);
var exampleRegExp = regularExpression;

Examples

var myConstructedRegExp = new RegExp("the", "g"); // same as myLiteralRegExp
var myLiteralRegExp = /the/g; // search an entire string for "the"

RegExp Properties
Regular expressions have several properties (global, case insensitivity, etc.) and the RegExp object has matching
properties for all of them.

global
The RegExp.global property is a boolean that is set to true if the global flag has been set for the regular expression.

Syntax

exampleRegExp.global;

Chapter 5 ■ JavaScript Global Objects Reference

169

Example

var myRegExp = /the/g;
alert(myRegExp.global); // will alert true 

ignoreCase
The RegExp.ignoreCase property is a boolean indicating whether or not the ignore case flag has been set for the
regular expression.

Syntax

exampleRegExp.ignoreCase;

Example

var myRegExp = /the/i;
alert(myRegExp.ignoreCase); // will alert true 

lastIndex
The RegExp.lastIndex property will contain an integer representing the character position immediately after the last
match found by the RegExp.match() method or RegExp.test() method. This property will only be set if the global
property is set to true.

Syntax

exampleRegExp.lastIndex;

Example

var slogan = "Never give up, never surrender!";
var regExp = /never/gi;
while (regExp.test(slogan) === true) {
 alert("Found 'never'; index is now " + regExp.lastIndex);
} 

multiline
The RegExp.multiline property is a boolean indicating whether or not the multiline flag has been set on the regular
expression.

Syntax

exampleRegExp.multiline;

Example

var myRegExp = /never/m;
alert(myRegExp.multiline); // will alert true 

Chapter 5 ■ JavaScript Global Objects Reference

170

source
The RegExp.source property contains a string representing the regular expression itself.

Syntax

exampleRegExp.source;

Example

var myRegExp = /never/g;
alert(myRegExp.source); // will alert "/never/g" (some browsers will just alert "never" which is
equivalent) 

RegExp Methods
The RegExp object methods are used to run the regular expression on targets.

exec( )
The RegExp.exec() method takes a target string as a parameter and runs the regular expression match on it. If no
match is found, the method returns null. If a match is found, the method stops and returns an array with the following
properties:

The first element in the array is the matched text.•	

Subsequent elements in the array are the contents of any matching parentheses in the regular •	
expression.

The array will have an •	 input property that will contain the target string.

The array will have an •	 index property that will contain an integer representing the index of the
matched substring.

In addition, the method will update lastIndex of the RegExp object.
If the regular expression has the global flag set, subsequent calls to the match() method will continue the

scanning process on the string, returning any matches found until there are no more.
Because of its iterative nature, RegExp.exec() is typically used inside a loop.

Syntax

exampleRegExp.exec(target)

Examples

var regExp = /never/gi; // global case-insensitive search for "never"
var slogan = "Never give up, never surrender!";
alert(regExp.exec(slogan)); // will alert "Never"
alert(regExp.exec(slogan)); // will alert "never"
alert(regExp.exec(slogan)); // will alert null
 
// Demonstrate using a loop: this will alert "Never" and then "never".
var regExp = /never/gi,
 slogan = "Never give up, never surrender!",

Chapter 5 ■ JavaScript Global Objects Reference

171

 result;
while(result = regExp.exec(slogan)) {
 alert(result);
} 

test( )
The RegExp.test() method takes a target string as a parameter and runs the regular expression match on the target
string. If there is a match, then the method returns true; otherwise it returns false.

Syntax

exampleRegExp.test(target);

Examples

var regExp = /never/g;
var slogan = "Never give up, never surrender!";
var otherSlogan = "May the force be with you!";
alert(regExp.test(slogan)); // will alert true
alert(regExp.test(otherSlogan)); // will alert false 

String
The String object is a wrapper class for all strings. Whenever you access one of the properties or methods of String
on a string literal, JavaScript will wrap that literal with a String object behind the scenes, giving you the functionality
you requested. Your literal string will remain unchanged but will appear to have all of the properties and methods
of a String object.

The String object is rarely used directly; you will almost never have call to create a String object using String
as a constructor. The only advantage of creating a String object is that, because the result is an object, you could then
give it other properties or methods.

If you should need to create a String object using the String constructor, the syntax is simple and the result is an
object with all of the string properties and methods. To access the actual string you used to construct the object, use
the valueOf() method.

Syntax

var exampleString = new String("desired string");

Examples

var myConstructedString = new String("Hi");
var myLiteralString = "Hi";
alert(myConstructedString === myLiteralString); // will alert false, because literals and
objects are different types.
alert(myConstructedString == myLiteralString); // will alert true, because JavaScript
uses the valueOf method in cast comparisons.
alert(myConstructedString.valueOf() === myLiteralString); // will alert true.
 

Chapter 5 ■ JavaScript Global Objects Reference

172

String Properties
The JavaScript global String object has a few properties, most of which it inherits from Object. The one property it
does define for itself is length.

length
The String.length property contains an integer representing the total number of characters in the string.

Syntax

exampleString.length;

Example

var myString = "Hi";
alert(myString.length); // will alert 2 

String Methods
JavaScript provides several very useful methods for manipulating strings, including translation into arrays and regular
expression scanning.

charAt( )
The String.charAt() method expects as a parameter an integer representing an index within the string, and will
return the character present at that index. Characters in a string are zero-indexed from left to right. If you specify an
index that is outside the length of the string, the method will return an empty string.

Syntax

exampleString.charAt(index);

Example

var myString = "Hello World";
alert(myString.charAt(6)); // will alert "W"--spaces are characters too! 

charCodeAt( )
The String.charCodeAt() method expects as a parameter an integer representing an index within the string, and will
return the numeric Unicode value of the character present at that index. Characters in a string are zero-indexed from
left to right. If you specify an index that is outside the length of the string, the method will return an empty string.

Syntax

exampleString.charCodeAt(index);

Example

var myString = "Hello World";
alert(myString.charCodeAt(6)); // will alert "87" 

Chapter 5 ■ JavaScript Global Objects Reference

173

concat( )
The String.concat() method combines one or more strings (provided as parameters) and returns the result.
The original strings are not changed.

Syntax

exampleString.concat(string1, string2, ..., stringN);

Example

var myString = "Hello";
var myOtherString = "World";
var mySpace = " ";
var myFullMessage = myString.concat(mySpace, myOtherString, "!");
alert(myFullMessage) // will alert Hello World! 

fromCharCode( )
The String.fromCharCode() method takes as parameters any number of Unicode character codes. It converts the
codes into their associated characters and returns the resulting string.

Note that this is a static method of the String object, so it can be called directly; you do not need to first create
a String object.

Syntax

exampleString.fromCharCode(charCode1, charCode2, ..., charCodeN);

Example

alert(String.fromCharCode(87)); // will alert W 

indexOf( )
The String.indexOf() method takes a substring as a parameter and searches the string from the beginning for that
substring. If it is found, the method returns the index of the first character of the first occurrence; otherwise it returns −1.

The method can also take an optional integer parameter that specifies the starting index for the search. If it not
specified, the default value is 0. If you specify an index outside the bounds of the string, the method returns −1.

Syntax

exampleString.indexOf(substring, startIndex);

Examples

var myString = "Never give up, never surrender!";
alert(myString.indexOf("up")); // will alert 11
alert(myString.indexOf("up", 12)); // will alert -1
 

Chapter 5 ■ JavaScript Global Objects Reference

174

lastIndexOf( )
The String.lastIndexOf() method takes a substring as a parameter and searches the string from the end for the
substring. If the substring is found, the method returns the index; otherwise it returns −1.

The method can also take an optional integer parameter that specifies the index to start from. If the index is not
specified, the method defaults to the length of the string.

Syntax

exampleString.lastIndexOf(substring, startIndex);

Example

var myString = "Never give up, never surrender!";
alert(myString.lastIndexOf("er"); // will alert 28. 

match( )
The String.match() method takes a regular expression object as a parameter, and then runs that regular expression
on the string. The method returns an array of matches; if the global flag is not set, then only the first match will be
returned. If there is no match, the method returns null.

Syntax

exampleString.match(regexp);

Examples

var regExp = /never/gi,
 slogan = "Never give up, never surrender!",
 otherSlogan = "May the force be with you!";
alert(slogan.match(regExp)); // will alert "Never, never"
alert(otherSlogan.match(regExp)); // will alert "null" 

replace( )
The JavaScript String.replace() method provides a way to search a string for a given pattern and replace it with
a given substring. The search parameter can be a regular expression or a string, and the replacement can be either
a string or a function. The method returns the modified string, and the original string and parameter strings are not
changed.

If you provide a function as a replacement parameter, the function will be executed upon each match. The
matched substring will be replaced by the output of the function. The function will be provided with the following
parameters, in order:

•	 match: The matched substring

•	 paren1, paren2, ..., parenN: The substrings matched by any matching parentheses in the
regular expression (if there were any)

•	 offset: The index in the string of the matched substring

•	 string: The string being searched

Chapter 5 ■ JavaScript Global Objects Reference

175

Functions can be supplied as either named functions or inline functions.

Syntax

exampleString.replace(searchParam, replaceParam);

Examples

// Simple find and replace
var slogan = "May the force be with you!";
var newSlogan = slogan.replace("force", "Force"); // newSlogan is now "May the Force be with you!"
 
// Using a regular expression to search and a function to replace
var slogan = "Never give up, never surrender!",
 regExp = /never/gi,
 newSlogan;
function sarrisify(matchedString) {
 if (matchedString === "Never") {
 return "Always";
 }
 if (matchedString === "never") {
 return "always";
 }
}
newSlogan = slogan.replace(regExp, sarrisify); // newSlogan is now "Always give up, always
surrender!" 

search( )
The String.search() method takes a regular expression for a substring search as a parameter and executes that
search on the string. If the substring is found, the method returns an integer representing the index of the start of the
first occurrence of the substring. If the substring is not found, the method returns −1. If you provide a parameter that is
not a regular expression, JavaScript will attempt to cast it as if you had created it using the RegExp constructor. (See the
“RegExp” section for an explanation on creating regular expressions.)

Syntax

exampleString.search(regexp);

Example

var slogan = "Never give up, never surrender!",
 regexp = /up/i;
alert(slogan.search(regexp)); // will alert 11 

Chapter 5 ■ JavaScript Global Objects Reference

176

slice( )
The String.slice() method provides a way to extract a substring from a larger string based on character indexes.
The method takes two parameters:

•	 startIndex: An integer representing the start index of the substring. Negative integers are
permitted and represent an index counted from the end of the string.

•	 endIndex: An integer representing the end index of the substring. This parameter is optional;
if it is omitted, the method will extract to the end of the target string. Negative integers are
permitted, and represent indexes from the end of the string. Note that the character at this
index is not contained in the returned slice.

The method returns the specified substring. The target string is not changed. Compare to String.substr().

Syntax

exampleString.slice(startIndex, endIndex);

Example

var slogan = "Never give up, never surrender!";
var mySlice = slogan.slice(1, 5); // mySlice is now "ever" 

split( )
The String.split() method provides a way of converting a string to an array. The method takes as a parameter
a string that represents a delimiter. The method searches through the target string and splits it along each occurrence
of the delimiter (which is not included in the new substrings). The substrings are then placed in order into an array,
which is what the method returns. If the delimiter is not provided, the entire string is returned as the first element in
an array.

The method also takes an optional limit parameter, which is an integer representing the maximum number of
elements in the returned array. If the parameter is omitted, all elements are returned.

The target string is not altered.

Syntax

exampleString.split(delimiter, limit);

Example

var slogan = "Never give up, never surrender!";
var arrWords = slogan.split(" "); // split the slogan along the spaces, resulting in the array
["Never", "give", "up,", "never", "surrender!"] 

substr( )
The String.substr() method provides a way of extracting a substring from a larger string based on a starting
index and a length. The method takes two parameters: startIndex, which is an integer representing the start of the
substring, and length, which is an integer representing the desired length of the new substring.

The startIndex parameter can be a positive or negative integer, or 0. If it is a positive integer, it represents the
index from the start of the string; if it is a negative integer, it represents the index from the end of the string.

If the length parameter is omitted, the method will return the substring starting at the specified starting index all
the way to the end of the target string. If the length parameter would specify a substring longer than is available in the
target string, the method will return the substring through the end of the target string.

Chapter 5 ■ JavaScript Global Objects Reference

177

Syntax

exampleString.substr(startIndex, length);

Examples

var slogan = "Never give up, never surrender!";
var subString = slogan.substr(15, 5); // subString is now "never"
var newSlogan = slogan.substr(15); // newSlogan is now "never surrender!" 

substring( )
The String.substring() method provides a way to extract a substring from a larger string based on character
indexes. The method takes two parameters:

•	 startIndex: An integer representing the start index of the substring. Negative integers are not
permitted and will cause the method to return an empty string.

•	 endIndex: An integer representing the end index of the substring. This parameter is optional;
if it is omitted, the method will extract to the end of the target string. Negative integers are
permitted, and represent indexes from the end of the string. Note that the character at this
index is not included in the returned substring.

The method returns the specified substring. The target string is not changed. Compare to String.slice().

Syntax

exampleString.substring(startIndex, endIndex);

Example

var slogan = "Never give up, never surrender!";
var mySubstring = slogan.substring(1, 5); // mySubstring is now "ever" 

toLowerCase( )
The String.toLowerCase() method returns the target string with all characters converted to lowercase. The target
string itself is not affected.

Syntax

exampleString.toLowerCase();

Example

var slogan = "Never give up, never surrender!";
alert(slogan.toLowerCase()); // will alert "never give up, never surrender!" 

toUpperCase( )
The String.toUpperCase() method returns the target string with all characters converted to uppercase. The target
string itself is not affected.

Chapter 5 ■ JavaSCript Global obJeCtS referenCe

178

Syntax

exampleString.toUpperCase();

Example

var slogan = "Never give up, never surrender!";
alert(slogan.toUpperCase()); // will alert "NEVER GIVE UP, NEVER SURRENDER!"

trim()
The String.trim() method returns the target string with all leading and trailing whitespaces removed. The original
target string is not changed.

Syntax

exampleString.trim();

Example

var myString = " hello world ";
alert(myString.trim()); // will alert "hello world"

trimLeft()
The String.trimLeft() method returns the target string with all leading whitespaces removed. The original target
string is not changed.

Syntax

exampleString.trimLeft ();

Example

var myString = " hello world ";
alert(myString.trimLeft()); // will alert "hello world "

trimRight()
The String.trimRight() method returns the target string with all trailing whitespaces removed. The original target
string is not changed.

Syntax

exampleString.trimRight();

Example

var myString = " hello world ";
alert(myString.trimRight()); // will alert " hello world"

Chapter 5 ■ JavaScript Global Objects Reference

179

Miscellaneous Global Variables and Functions
This section covers the miscellaneous variables and functions that also exist within the JavaScript global scope. Many
of these are not well-known but can be very useful.

Variables
JavaScript makes a few important variables available in the global scope.

Infinity
Infinity is a number representing infinity. There is no difference between this and Number.POSITIVE_INFINITY.

Syntax

Infinity

Example

alert(Infinity == Number.POSITIVE_INFINITY); // will alert true 

JSON
JSON is a global object that collects the methods related to creating and reading JSON formatted data. We won’t cover
JSON in detail here; for more information about JSON, see www.json.org.

JSON.parse()

The JSON.parse() method parses a JSON string and then re-creates and returns the object it represents. The method
takes a JSON string parameter. If the string does not parse as valid JSON, the method will throw a Syntax Error
exception.

The method also takes an optional transformation function. The transformation function provides a way to
examine JSON key/value pairs and provide a different value if desired. The function takes two parameters, key and
value, and returns only the value, which is then used as the value in the JSON object. If the function returns undefined
or nothing at all, the key is deleted from the JSON object.

Note that the translation function will be called on each key/value pair in the object in order. Then, once all of the
key/value pairs have been processed, the translation function is called once more and given the empty string as
a key and the reconstituted object itself. You can modify the object further at this point, or return it as is (if you do not
handle this last step correctly, the translation will fail).

Translation functions are sometimes used to transform values from strings to objects—for example, if a value
were a string that was formatted like a date, the translator could actually create a Date object based on that string and
return that. When used in this capacity, the function is sometimes called a reviver.

http://www.json.org/

Chapter 5 ■ JavaScript Global Objects Reference

180

Syntax

JSON.parse(jsonString, translator);

Examples

var myJsonString = '{"one" : 1, "two" : 2, "three" : 3}';
myObject = JSON.parse(myJsonString);
alert(myObject.one); // will alert 1
 
function myNumeralTranslator(key, value) {
 if (key === "one") {
 return "I";
 } else if (key === "two") {
 return "II";
 } else if (key === "three") {
 return "III"
 } else {
 return value;
 }
}
myNumeralObject = JSON.parse(myJsonString, myNumeralTranslator);
alert(myNumeralObject.two); // Will alert "II"
 

In this example, we create a simple JSON-formatted string with three key/value pairs. First we restore it to an
object as is, then we create a translation function to change the integers to Roman numerals, and then we use that to
restore the same string to a different object.
 
var purchaseJsonString = '{"type" : "gift", "method" : "cash", "date" :
"2013-01-28T05:08:11.873Z"}';
function revivePurchase(key, value) {
 if (key === "date") {
 return new Date(value);
 } else {
 return value;
 }
}
var myPurchase = JSON.parse(purchaseJsonString, revivePurchase);
alert(myPurchase.method); // will alert "cash";
alert(myPurchase.date.toUTCString()); // will alert "Mon, 28 Jan 2013 :05:08:11 GMT"
 

In this example, we create a JSON-formatted string containing some purchase information, including a value that
contains a date-formatted string. We then build a simple reviver function that looks for the date and creates a new
Date object with that value.

JSON.stringify()

The JSON.stringify() method takes an object as a parameter and returns the corresponding JSON string.
The method also can take an optional filter parameter, which can be use to filter the key/value pairs included

in the JSON string. The parameter can be either an array or a function.
If the filter parameter is an array, then the members should represent the keys that will be included in the string.

Keys that are not in the filter array will not be included in the JSON string.

Chapter 5 ■ JavaScript Global Objects Reference

181

If the filter is a function, it will be passed the key and value as parameters, and should return the desired value
for that key. If the returned value is undefined or nothing at all, the key is not included in the JSON string.

Syntax

JSON.stringify(object, filter);

Examples

var myObject = {"a" : 1, "b" : 2, "foo" : "bar"},
 arrFilter = ["a", "foo"];
function myFilter(key, value) {
 if (key === "a") {
 return undefined;
 } else {
 return value;
 }
}
 
var firstString = JSON.stringify(myObject); // stringifies entire object
var secondString = JSON.stringify(myObject, arrFilter); // Leaves out "b", only stringifies
"a" and "foo"
var thirdString = JSON.stringify(myObject, myFilter); // leaves out "a", only stringifies
"b" and "foo"
alert(firstString + "\n" + secondString + "\n" + thirdString); // Compare all three results. 

NaN
The NaN property is the special “Not a Number” property in JavaScript. This property is only used internally in
JavaScript and should not be used in comparisons. To determine if something is NaN, use the isNaN() method
discussed in the upcoming “Functions” section.

undefined
The undefined property is the primitive value for undefined in JavaScript. The following things are considered
undefined:

Any variable that has been defined but not assigned a value•	

Statements that attempt to evaluate such undefined variables•	

Functions that do not have an explicit return value (either by not using the •	 return
keyword or by logic)

See Chapter 2 for an in-depth discussion of undefined and how to determine if things are undefined
in JavaScript.

Note that in earlier implementations of JavaScript, this property is writable, allowing scripts to override the value.
In the ECMAScript 5 standard (which corresponds to JavaScript 1.8.5), this property is read-only. Overriding such an
important value is considered bad practice.

Chapter 5 ■ JavaScript Global Objects Reference

182

Functions
JavaScript also provides several convenience functions in the global scope.

decodeURI( ), encodeURI( ), decodeURIComponent( ), encodeURIComponent( )
These methods provide convenience routines for encoding and decoding entire URIs as well as their individual
components (e.g., the query string).

The encoding methods do not encode alphanumeric characters or the characters - _ . ! ~ * ’ (and). In addition,
the encodeURI() method will not encode the reserved characters ; , / ? : @ & = + $ and #. All other characters will be
replaced with one, two, three, or four escape sequences representing the UTF-8 encoding of that character.

Syntax

decodeURI(encodedURI);
encodeURI(unencodedURI);
decodeURIComponent(encodedURI);
encodeURIComponent(unencodedURI);

Example

var myURI = 'http://www.apress.com/?foo=bar&a="something new"';
alert(encodeURI(myURI)); // will alert http://www.apress.com?foo=bar&a=%22something%20new%22 

eval( )
The eval() method takes a string parameter and parses it as JavaScript. The string can contain references to objects
present in the scope in which eval() was called.

For an in-depth discussion of eval and its caveats and alternatives, see Chapter 2.

Syntax

eval(target);

Example

var myString = "10 + 2";
var myResult = eval(myString);
alert(myResult); // will alert 12 

isFinite( )
The isFinite() method checks the parameter and returns true if it is a finite number or false if not. This is
a convenience routine for checking finite numbers instead of using equalities.

Beware: the method also returns false if the parameter is NaN.

http://www.apress.com/?foo=bar%26a=%22something%20new%22
http://www.apress.com/?foo=bar&a=%22something%20new%22

Chapter 5 ■ JavaScript Global Objects Reference

183

Syntax

isFinite(target);

Examples

alert(isFinite(243988)); // will alert true
alert(isFinite(Number.NEGATIVE_INFINITY)); // will alert false 

isNaN( )
The isNaN() method checks the parameter and returns true if it is NaN and false otherwise.

Under the hood, this method first coerces the parameter to a numeric value if it isn’t already one. Then it checks
to see if the resulting numeric value is equivalent to NaN. This behavior occasionally trips up JavaScript novices, who
think the method can be used to determine if something is a numeric value or not.

Syntax

isNaN(target);

Examples

alert(isNaN(10)); // will alert false
alert(isNaN("10")); // will alert false even though strings are not numbers; "10" coerces to 10
which is not equal to NaN
alert(isNaN("")); // will alert false
alert(isNaN(NaN)); // will alert true 

parseFloat( )
The parseFloat() method parses the supplied parameter and attempts to return the numeric decimal value that
is contained in the beginning of the string. Basically, the method starts at the beginning of the string and builds the
number. If it encounters a character that is not a number, an exponent, a decimal point, or a sign (+ or –), the method
will stop and return any number it has already created. If the first character of the string cannot be converted to
a number (with the exception of spaces), this method returns NaN.

Syntax

parseFloat(target);

Examples

var myString = "This will return NaN",
 mySecondString = "10.27 this will return 10.27",
 myThirdString = "Even though this has 10.27 in it, it will return NaN",
 myFourthString = "10.27 50.20 this will return only the first number, 10.27";
alert(parseFloat(myString) + "\n" + parseFloat(mySecondString) + "\n" +
parseFloat(myThirdString) + "\n" + parseFloat(myFourthString)); 

Chapter 5 ■ JavaScript Global Objects Reference

184

parseInt( )
The parseInt() method parses the parameter and returns the numeric integer value that is contained in the
beginning of the string. The method starts at the beginning of the string and builds the number. If it encounters a
character that is not a number, an exponent, a decimal point, or a sign (+ or –) the method will stop and return the
number that has been created. If the first character of the string cannot be converted to a number (with the exception
of spaces), this method will return NaN.

Syntax

parseInt(target);

Examples

var myString = "This will return NaN",
 mySecondString = "10.97 this will return 10",
 myThirdString = "Even though this has 10.27 in it, it will return NaN",
 myFourthString = "10.97 50.20 this will return only the first number, 10";
alert(parseInt(myString) + "\n" + parseInt(mySecondString) + "\n" + parseInt(myThirdString) + "\n" +
parseInt(myFourthString)); 

Summary
In this chapter we have covered the properties and methods of several global objects and how they are used:

You can create arrays either by using literal notation or by using the •	 Array object
as a constructor.

JavaScript silently wraps string and boolean literals with their associated objects when •	
needed.

You can create strings and booleans using their associated global objects as constructors, •	
but there is little need to.

The •	 Date object provides a plethora of properties and methods for manipulating dates.

JavaScript has a fully functional implementation of regular expressions via its •	 RegExp global
object.

The •	 Math object provides many static properties and methods related to mathematics.

In addition, we covered several other global functions and variables, including: the JSON object, which provides
functionality for creating and manipulating JSON serializations.

In the next chapter, we’ll provide a similar reference for all of the available control statements in JavaScript,
and provide examples of their use.

185

Chapter 6

JavaScript Control
Statements Reference

Introduction
As we discussed in Chapter 2, JavaScript has the usual control statements you would expect for a C-like language:

•	 do loops

•	 for and for/in loops

•	 while loops

•	 if-else conditionals

•	 switch conditionals

In addition, JavaScript provides ways to manage your loop iterations, break out of loops entirely, and even limit
the scope of your loops.

In this chapter we’ll provide a solid reference for all JavaScript control statements, in alphabetical order. For
detailed discussions of these statements, see Chapter 2.

break
The break statement terminates the current loop or the current label or switch statement. The statement takes an
optional label, which corresponds to the label of the loop to break.

Syntax

break label;

 Example

// Set up a loop that would ordinarily alert 0 through 10, but instead breaks at 2.
var i = 0;
while (i <= 10) {
 alert(i);
 if (i === 2) {
 break;
 } else {
 i++
 }
}
 

Chapter 6 ■ JavaScript Control Statements Reference

186

continue
The continue statement stops the current iteration of the loop and moves on to the next. The statement takes an
optional label that refers to the label of the loop to interrupt.

The continue statement can only be used inside of for loops, for/in loops, and while and do/while loops.
If used within a for loop, the loop will jump back to its incrementation expression, execute it, and then check to
see if it should continue.

If used within a for/in loop, the loop will proceed to the next field and continue looping from there.
If used within a while or do/while loop, the loop will immediately retest the conditional and continue or not

depending on that result.

Note■■   Use continue judiciously. It’s easy to write code that uses continue that is difficult to read and maintain. It’s
not uncommon, in fact, to see style guides specify that continue should be avoided entirely.

Syntax

continue label 

Example

var i;
for (i = 0; i < 11; i++) {
 if (i < 4) continue;
 alert(i);
 if (i < 7) continue;
 alert(10 * i);
}
 

In this example, we create a loop that iterates the variable i from 0 to 10 (details on for loops are provided a bit
later). If i < 4, we do nothing. Once i is 5 or higher, we start to alert its value. And once i > 6, we start to alert 10 * i.
So this script will alert, in order, 4, 5, 6, 7, 70, 8, 80, 9, 90, 10, and 100.

This is a somewhat contrived example, but it does illustrate one of the commonly used patterns for continue:
layered tests. In this case, we are layering simple checks on the value of the iterator of our loop, but a layered test could
be any test on anything that will change as your particular loop progresses.

Of course, this example could be rewritten so that it doesn’t use continue at all:
 
var i;
for (i = 0; i < 11; i++) {
 if (i > 3) {
 alert(i);
 }
 if (i > 6) {
 alert(10 * i);
 }
}
 

Either way is valid.

Chapter 6 ■ JavaScript Control Statements Reference

187

do/while
The do/while loop creates a loop with a conditional test at the end. Because the conditional is evaluated at the end of
each loop, the loop will execute at least once.

Syntax

do {
 // things
} while (conditional); 

Example

// A way to alert only odd numbers
var i = 1;
do {
 alerti);
 i = i + 2;
} while (i <= 10); 

for and for/in
In JavaScript, for loops can be set up as either for or for/in loops.

for
In a basic for loop, the for statement takes three parameters:

An •	 initializer, which is run once when the loop first starts.

A •	 conditional, which is tested each time the loop executes. If it evaluates as true, the loop
is executed; if false, the loop terminates and control passes to the next statement after the
for loop.

An •	 expression, which is executed at the end of every loop.

Any variables declared in the initializer have the same scope as the for statement.

Syntax

for (initializer, conditional, expression) {
 // do things
} 

Example

// Another way to alert odd numbers
for (var i = 1; i <= 10; i = i +2) {
 alert(i);
} 

Chapter 6 ■ JavaSCript Control StatementS referenCe

188

for/in
A for/in loop iterates over an object, providing access to each property. The for statement takes two parameters, the
property and the object. This provides a convenient way to enumerate objects, as discussed in Chapter 2.

Syntax

for (property in object) {
 // Do things
}

Example

// All-purpose enumeration loop
var testObject = {
 property1 : "this is a test object.",
 property2 : 1,
 arrIntegers : [1, 2, 3, 4],
 boolIsTrue : true
}

var strAlert = "";
for (var thing in testObject) {
 strAlert += thing + ": " + testObject[thing] + "\n";
}
alert(strAlert);

This example will enumerate all of the properties of our testObject in one alert:

if
The if statement provides the standard logical flow control for JavaScript. An if statement evaluates its parameter,
and if that parameter is true, the statement will execute the conditional code.

An if statement can be followed by an else statement, which will execute if the parameter evaluates to false. An
else statement may similarly be followed by an if statement, allowing for chaining of conditionals.

Syntax

if (condition) {
 // conditional code, executed if condition is true
}

Chapter 6 ■ JavaScript Control Statements Reference

189

if (condition) {
 // conditional code to be executed if condition is true
} else {
 // conditional code to be executed if condition is false
}
 
if (condition1) {
 // conditional code to be executed if condition1 is true
} else if (condition2) {
 // conditional code to be executed if condition2 is true
} else {
 // conditional code to be executed if both condition1 and condition2 are false.
} 

Example

// Play with random numbers
var myNumber = Math.floor((Math.random() * 100) + 1); // Generate a random number from 1 to 100
if (myNumber <= 10) {
 alert("number is less than 10");
} else if (myNumber <=50) {
 alert("number is less than 50");
} else {
 alert("Number is frighteningly large.");
} 

label
The label statement associates an identifier with a particular statement that can be referred to using break
or continue.

Labels are considered bad practice in JavaScript because they make code difficult to read. Typically, instead of
using a label, you can use a named function.

Syntax

label:
 statement 

Example

outerloop:
for (var i =0; i < 5; i++) {
 innerloop:
 for (var j = 0; j < 5; j++) {
 if ((i == 2) && (j == 2)) {
 continue outerloop; // skip when both indices are 2
 } else {
 alert(i + ", " + j);
 }
 }
} 

Chapter 6 ■ JavaScript Control Statements Reference

190

return
The return statement is used to specify the return value of a function. The value can be any valid JavaScript data type:
a string, boolean, array, function, date, regular expression, etc.

Syntax

return value; 

Example

// Trivial function to test whether a value is less than ten or simply too large to understand.
function testValue(intValue) {
 if (intValue < = 10) {
 return "value is less than ten";
 } else {
 return "value is terrifyingly large.";
 }
}
var niceNumber = 5,
 scaryNumber = 20909239;
 
alert(testValue(niceNumber)); // will alert "value is less than ten"
alert(testValue(scaryNumber)); // will alert "value is terrifyingly large" 

switch/case
switch statements provide a convenient way of providing different conditionals based on multiple values of a given
expression.

A switch statement evaluates an expression, then searches for a case associated with that result. If a case is
found, the associated conditional code is executed.

In addition, each conditional code block can contain an optional break statement at the end. If present, the
switch statement will end immediately; if not, the switch statement will continue searching for matching case
statements.

Syntax

switch (expression) {
 case value1:
 conditional1
 break;
 case value2:
 conditional2
 break;
 case value3:
 conditional3
 break;
 default
 default conditional
} 

Chapter 6 ■ JavaScript Control Statements Reference

191

Example

switch(booze) {
 case "tequila":
 alert("Margarita time!");
 break;
 case "vodka":
 alert("Mr. Bond, is that you?");
 break;
 case "scotch":
 alert("Aye.");
 break;
 default:l
 alert("But why is the rum gone?");
}
 

In this example, we’re switching on the ever-popular booze variable; depending on its value, we’ll get an
appropriate alert.

Here’s a fully functional example that switches on literary subgenres:
 
var leftBehind = "religious";
var dogstar = "apocalyptic";
var kinglear = "shakespeare";
 
function defineSubGenre(strType) {
 var strResult = "";
 switch (strType) {
 case "religious":
 strResult += "religious ";
 case "apolcalyptic":
 strResult += "apocalyptic ";
 case "science fiction":
 strResult += "science ";
 default:
 strResult += "fiction";
 }
 return strResult;
}
 
alert(defineSubGenre(leftBehind)); // will alert "religious apocalyptic science fiction"
alert(defineSubGenre(dogstar)); // will alert "apocalyptic science fiction"
alert(defineSubGenre(kinglear)); // will alert "fiction"
 

In this example, we’re demonstrating the use of a switch statement without break statements. This works well
with cases of increasing generality that contain one another: fiction contains the subgenre science fiction; science
fiction contains the subgenre apocalyptic fiction; and apocalyptic science fiction contains the subgenre religious
apocalyptic science fiction.

The switch statement builds a return string, which the function returns. We try three different books: one for
“religious” (which alerts “religious apocalyptic science fiction”), one for “apocalyptic” (which alerts “apocalyptic
science fiction”), and one for “shakespeare” (which alerts just “fiction”).

Chapter 6 ■ JavaScript Control Statements Reference

192

while
The while statement creates a loop that will continue to execute each time the specified expression evaluates to
true. The expression is evaluated before each iteration of the loop. (Compare with do. . .while loops, where the
conditional test is at the end.)

Syntax

while (expression) {
 // code to execute each time
} 

Example

// alert the integers 1 through 10
var i = 0;
while (i < 11) {
 alert(i);
 i++;
} 

with
The with statement modifies the scope chain for a given block of code. Recall that if you access a variable, JavaScript
checks to see if it is defined within the immediate scope. If the variable is not found, JavaScript checks the containing
scope, and so on, up to the global scope. The with statement adds the specified object to the head of the scope chain,
ensuring that it gets searched for all scope lookups that happen within a given block of code.

Although it was originally included in the language as a convenience, the with statement is considered bad
practice because it can make code difficult to read and maintain, and is in fact forbidden in ECMAScript 5 strict mode.
If you are going to use the with statement, remember that every scope lookup that happens within the specified block
of code will check the specified object first, so you should try to limit the following:

Scope lookups in the managed block of code to the specified object•	

The complexity of the object•	

Limiting both of these will help the efficiency of your code.

Syntax

with (object) {
 // statements with scope limited to object
} 

Example

alert(Math.PI); // will alert the value of PI.
// Limit the scope to just Math
with(Math) {
 alert(PI); // will alert the value of PI.
 alert(cos(PI));
}
 

Chapter 6 ■ JavaScript Control Statements Reference

193

Summary
In this chapter we have covered JavaScript’s control statements, which are used to direct the logical flow of
your programs:

JavaScript’s control statements are similar to those found in other C-like languages.•	

JavaScript has two conditional flow control statements: •	 if statements and switch statements.

JavaScript has four different methods for looping: •	 do. . .while, for, for-in, and while.

You can modify loop execution with the •	 break and continue statements.

The •	 with statement modifies the scope chain, but is considered bad practice.

JavaScript has the concept of •	 label statements, but they are considered bad practice as well.

In the next chapter, we’ll provide a reference for JavaScript operators, including assignment operators, arithmetic
operators, and comparison operators.

195

Chapter 7

JavaScript Operators Reference

In JavaScript, operators perform operations on expressions. The expressions that the operators operate on are called
operands. JavaScript supports unary operators (operators that work on one expression, like the increment operator),
binary operators (operators that require two expressions, like most mathematical operators), and one ternary operator
(which requires three expressions).

Operators in JavaScript can be grouped into seven broad categories:

•	 Assignment: Assign values to variables

•	 Comparison: Compare values

•	 Arithmetic: Perform basic arithmetic—addition, subtraction, modulus, etc.

•	 Bitwise: Modify operands based on their binary representations

•	 Logical: Logical constructions like AND and OR

•	 String: Modifies strings (this category includes only one operator)

•	 Miscellaneous: Catch-all group for remaining operators that don’t fit in the other categories

We’ll cover each of these categories in order in this reference.

Assignment Operators
JavaScript assignment operators are used to assign values to their left operand based on the value of their right
operand, the simplest example of which is the basic assignment operator =:
 
x = 1;
strLocation = "California";
boolSuccess = false;
 

JavaScript has several other assignment operators that are shorthand for other operations. These shorthand
operators, listed in Table 7-1, provide a way to write more concise code.

Chapter 7 ■ JavaScript Operators Reference

196

Examples

var num1 = 5,
num2 = 9;
num1 += num2; // num1 is now 13
num1 -= num2; // num1 (which was 13) is now 5 again
num1 *= num2; // num1 is now 45
num1 /= num2; // num1 is now 5 again
 

Note that if either of the operands is a string, the shorthand operator += will perform a string concatenation rather
than an arithmetical addition. If the other operand is not a string, it will be cast as one first. See “String Operator,” later
in the chapter, for more information.

JavaScript also supports several shorthand binary operators, listed in Table 7-2. Binary operators operate on
their operands by modifying the bits that compose them. For a full discussion of binary operators, see the “Bitwise
Operators” section later in the chapter.

Table 7-1.  Shorthand Mathematical Operators

Shorthand Operator Equivalent Expression

operand1 += operand2 operand1 = operand1 + operand2

operand1 -= operand2 operand1 = operand1 - operand2

operand1 *= operand2 operand1 = operand1 * operand2

operand1 /= operand2 operand1 = operand1 / operand2

Table 7-2.  Shorthand Bitwise Operators

Shorthand Operator Equivalent Expression

operand1 %= operand2 operand1 = operand1 % operand2

operand1 ^= operand2 operand1 = operand1 ^ operand2

operand1 <<= operand2 operand1 = operand1 << operand2

operand1 >>= operand2 operand1 = operand1 >> operand2

operand1 >>> operand2 operand1 = operand1 >>> operand2

operand1 |= operand2 operand1 = operand1 | operand2

Example

var num1 = 100,
 num2 = 50;
num1 %= num2; // num1 is now 0 

Comparison Operators
Comparison operators are used to compare two operands. Since JavaScript is weakly typed, it has two different kinds
of comparisons: strict and coerced.

In strict comparisons, the operator compares both the value of the operands and their type. If either doesn’t
match, the comparison returns false. For example, the strict comparison true === "true" evaluates to false
because true is a boolean, which is a different type than "true", which is a string.

Chapter 7 ■ JavaScript Operators Reference

197

In coerced comparisons, the operator converts the operands to the same type before comparing their values. This
conversion process, called casting or coercing, follows very specific algorithms defined in the ECMA-262 standard, so
the results are perfectly predictable—as long as you’re familiar with the algorithms. If you’re not, the results can be
counterintuitive. For example:
 
if ("true") {
 alert("true" == true); // will alert false
 alert("true" == false); // will alert false
}
 

This example will fire both alerts, which will be false even though the if statement surrounding them must have
evaluated to true for the alerts to even happen.

To avoid confusion, it’s considered good practice when writing JavaScript to use strict comparisons whenever
possible, and use coerced comparisons either when no casting will happen or when it will happen but will produce a
known desirable outcome. For example, the toString() method on objects by definition only ever returns a string, so
if you are comparing to a string literal, there is no need to do a strict comparison because casting will never happen:
 
// toString only ever returns a string, so no need for strict comparison with a string literal
if (myObject.toString() == "string literal") {
 // (do stuff)
}
// The variable testVar might change types, so a strict comparison is a good idea
if (myObject.toString() === testVar) {
 // (do stuff)
}
 

For details on the coercion algorithms that JavaScript uses, see Chapter 1.

Strict Comparisons
When using strict comparison operators, JavaScript compares both the value and the type of the operands. The two
strict comparison operators are strict equality (===), which returns true if both operands are equal in value and type,
and strict inequality (!==), which returns true if the operands are different in either type or value.

Syntax

operand1 === operand2
operand1 !== operand2 

Examples

var boolOperand1 = true,
 boolOperand2 = false,
 intOperand1 = 1,
 intOperand2 = 2,
 strOperand1 = "1",
 strOperand2 = "2";
 
alert(boolOperand1 === boolOperand2); // will alert false
alert(boolOperand1 !== boolOperand2); // will alert true
alert(intOperand1 !== intOperand2); // will alert true
alert(intOperand1 === strOperand1); // will alert false
alert(strOperand1 === strOperand2); // will alert false
 

Chapter 7 ■ JavaScript Operators Reference

198

Coerced Comparisons
When doing coerced comparisons, JavaScript first converts the operands to the same data type before comparing their
values (see Table 7-3 for more information). For details on how JavaScript performs type coercion, see Chapter 1.

Table 7-3.  Coerced Comparison Operators

Operation Syntax Returns

Equality operand1 == operand2 true if the values of the operands are the same. If both
operands are objects, this operator returns true if the two
objects refer to the same object in memory.

Inequality operand1 != operand2 true if the values of the operands are not the same. If both
operands are objects, this operator returns true if they refer
to different objects in memory.

Greater than operand1 > operand2 true if operand1 is greater than operand2.

Less than operand1 < operand2 true if operand1 is less than operand2.

Greater than or equal to operand1 >= operand2 true if operand1 is greater than or equal to operand2.

Less than or equal to operand1 <= operand2 true if operand1 is less than or equal to operand2.

Examples

var strOperand1 = "1",
 intOperand1 = 1,
 boolOperand1 = true;
alert(strOperand1 == intOperand1); // will alert true
alert(intOperand1 == boolOperand1); // will alert true
alert(strOperand1 == boolOperand1); // will alert true 

Arithmetic Operators
JavaScript has a set of basic arithmetic operators, listed in Table 7-4, that perform the specified arithmetical operation
on the operands.

Table 7-4.  Arithmetic Operators

Operation Syntax Returns

Addition operand1 + operand2 The sum of operand1 and operand2.

Subtraction operand1 - operand2 The difference of operand1 and operand2.

Multiplication operand1 * operand2 The product of operand1 and operand2.

Division operand1 / operand2 The quotient of operand1 divided by operand2.

Modulus operand1 % operand2 ; returns operand1 modulo operand2.

(continued)

Chapter 7 ■ JavaSCript OperatOrS referenCe

199

Note that all arithmetic operators in JavaScript will attempt to perform type coercion for non-numeric operands,
which can have nonintuitive results. See Chapter 1 for more information about JavaScript’s type coercion rules.

Examples

var intOperand1 = 1,
 intOperand2 = 2,
 boolOperand1 = true;
alert(intOperand1 + intOperand2); // will alert 3
alert(intOperand1 + boolOperand1); // will alert 2
var testResult = intOperand1++;
alert(testResult); // will alert 1
alert(intOperand1); // will alert 2
testResult = ++intOperand2;
alert(testResult); // will alert 3
alert(intOperand2); // will alert 3

Bitwise Operators
JavaScript’s bitwise operators take integer operands and perform operations on them based on their 32-bit
representations. Non-integer operands are first coerced (see Chapter 1). And although the bitwise operators perform
on a bit level, they return integers.

A Bit About Binary Numbers
JavaScript’s bitwise operators, see Table 7-5, all convert their operands into signed 32-bit integers. In general, 32-bit
integers can have their most significant bit on the left, with bits decreasing in significance from left to right, or they
can have their most significant bit on the right, with significance decreasing from right to left. The former is referred
to as big-endian notation, while the latter is referred to as little-endian notation. The origin of these terms is Jonathan
Swift’s novel Gulliver's Travels, which tells the tale of the ongoing tensions between the rival kingdoms of Lilliput
(whose inhabitants crack their soft-boiled eggs on the small end) and Blefescu (whose inhabitants crack their
soft-boiled eggs on the large end).

Operation Syntax Returns

Increment by 1 operand1++ (or ++operand) operand1++ returns the value of operand1 before
incrementing, while ++operand1 returns the value of
operand1 after incrementing.

Decrement by 1 operand1-- (or --operand) operand1-- returns the value of operand1 before
decrementing, while --operand1 returns the value of
operand1 after decrementing.

Negative value - operand1 The negative value of operand1. operand1 remains
unchanged.

Positive value + operand1 The positive value of operand1. operand1 remains
unchanged.

Table 7-4. (continued)

Chapter 7 ■ JavaScript Operators Reference

200

JavaScript’s 32-bit integers are big-endian, so the largest bit is always to the left, and two's complement, meaning
negative numbers are the bitwise inversion of their positive value, plus one.

As a practical example, let’s convert the number 5 into a JavaScript binary number. In binary, 5 is represented as
101. In big-endian format, the most significant bit is on the left. 101 is only 3 bits; to make it a 32-bit number, we have
to pad it with zeros:
 
00000000000000000000000000000101
 

That’s the 32-bit big-endian representation of the number 5. JavaScript converts operands into this format before
performing any bitwise operations on them.

Bitwise operations are fairly uncommon in JavaScript. For some useful nontrivial examples, see Chapter 4.

Logical Operators
JavaScript has a set of logical operators, listed in Table 7-6, that are used to implement boolean logic. Typically these
are used in conjunction with flow-control statements.

Table 7-5.  Bitwise Operators

Operation Syntax Details

Bitwise AND operand1 & operand2 Compares each bit position in both operands and returns
a new number formed by placing a 1 in each bit position
where both operands have a 1.

Bitwise OR operand1 | operand2 Compares each bit position in both operands and returns
a new number formed by placing a 1 in each bit position
where either operand has a 1.

Bitwise XOR operand1 ^ operand2 Compares each bit position in both operands and returns a
new number formed by placing a 1 in each position where
either operand (but not both) has a 1.

Bitwise NOT ~ operand1 Returns a new number formed by inverting the bits of
operand1.

Bitwise left shift operand1 << operand2 Returns a new number formed by shifting operand1’s bits to
the left by the number of positions specified by operand2,
with zeros padded on the right.

Bitwise sign-propagating
right shift

operand1 >> operand2 Returns a new number formed by shifting operand1’s bits to
the right by the number of positions specified by operand2.
Bits that are shifted off are discarded rather than wrapped
(thus preserving the sign bit).

Bitwise zero-fill
right shift

operand1 >>> operand2 Returns a new number formed by shifting operand1’s bits to
the right by the number of positions specified by operand2.
Bits that are shifted off are discarded. Zeros are filled in
from the left.

Chapter 7 ■ JavaScript Operators Reference

201

Examples

if (expression1 && expression2) {
 // Do something if both expression1 and expression2 are true
}
var boolFalse = !true;
alert(boolFalse); // will alert false
if (expression1 && !expression2) {
 // Do something if expression1 is true and expression2 is false
} 

String Operator
JavaScript has a single string operator: the concatenation operator +. This operator returns both operands
concatenated together. If one of the operands is not a string, it will be converted to a string by this operator.

Example

var strString1 = "Hello",
 strString2 = "World";
alert(strString1 + " " + strString2); // will alert Hello World 

Miscellaneous Operators
Now that we’ve covered the major categories of operators, we’re left with a few operators that don’t quite fit but are
nonetheless important. These operators include the only ternary operator in JavaScript, the conditional operator, as
well as some useful operators for examining data types and manipulating objects and their properties.

Conditional Operator
The conditional operator is JavaScript’s only ternary operator. It provides a shorthand for if/then/else statements.

Some JavaScript style guides recommend avoiding the conditional operator in favor of explicit if/then/else
statements to make code more readable.

Syntax

conditional ? trueOperand : falseOperand // If conditional is true, evaluate trueOperand, otherwise
evaluate falseOperand 

Example

(3 > 4) ? alert("Three is greater than four") : alert("Three is not greater than four"); // will
alert Three is not greater than four.
 

Table 7-6.  Logical Operators

Operation Syntax Returns

Logical AND operand1 && operand2 true if both operands are true.

Logical OR operand1 || operand2 true if either operand is true.

Logical NOT !operand1 false if operand is true and returns true if operand is false.

Chapter 7 ■ JavaScript Operators Reference

202

Comma Operator
The JavaScript comma operator (,) takes two operands. It evaluates both operands and returns the value of the
second one. The two most common uses of the comma operator are to define multiple variables in one var statement
and to supply multiple parameters in for loops.

Syntax

operand1, operand2 

Examples

// Initialize an array of integers
var myArray = [];
for (var i = 0, j = 100; i <= 100; i++, j--) {
 myArray[i] = j;
}
 
// Multiple variable declarations with one var statement.
var myVar = "one",
 numericVar = 1,
 booleanVar = true; 

delete Operator
The delete operator takes an object property as an operand and deletes it from its parent object. It returns false if it
was unable to delete the property and returns true otherwise.

Syntax

delete myObject.myProperty;
delete myObject[myProperty];
delete myArray[index]; 

Examples

var myObject = {
 "prop1" : 1,
 "prop2" : "two",
 "prop3" : true
};
alert(delete myObject.prop1); // will alert true
alert(myObject.prop1); // will alert undefined
alert(delete myObject["prop2"]); // will alert true
alert(myObject.prop2); // will alert undefined
 

Note that you cannot delete properties of predefined objects like Math (so delete Math.PI will return false and
not delete the property).

If you delete an overridden property on an object, the original property from the object’s prototype will be
restored. Also, you cannot delete a property from an object that was inherited from the object’s prototype, though
you can delete the property directly from the prototype. (See Chapter 1 for a detailed discussion of objects and their
prototypes.)

Chapter 7 ■ JavaScript Operators Reference

203

If you delete elements from an array by index, the length of the array will not be affected. The deleted property
will simply be undefined:
 
var myArray = [0, 1, 2];
alert(delete myArray[1]); // will alert true
alert(myArray[1]); // will alert undefined
alert(myArray.length); // will alert 3 

function Operator
The JavaScript function operator is used to declare a new function expression. (For an in-depth discussion of
functions, function expressions, and function statements, see Chapter 1.)

Syntax

function identifier(param1, param2, ..., paramN) {
 // body
} 

Example

var newFunctionExpression = function() {
 alert('This is my new function expression.');
}
newFunctionExpression(); // Will alert "This is my new function expression." 

get Operator
The JavaScript get operator provides an interface for accessing data within an object. You can use it to define a getter
method on an object that can return a value or execute another method.

Syntax

// Object literal notation
var myObject = {
 prop1: value,
 get prop1: function() {
 return this.prop1;
 }
}
// object notation
function myObject() {
 // Constructor.
}
myObject.prototype = {
 prop1: value,
 get prop1 : function() {
 return this.prop1;
 }
}
 

Chapter 7 ■ JavaScript Operators Reference

204

Example

var myObject = {
 "privateValue" : 10,
 "units" : "degrees",
 get angle () {
 return this.privateValue + " " + this.units;
 }
}
alert(myObject.angle); // will alert "10 degrees" 

in Operator
The in operator takes two operands: a target object and a target property. It returns true if the target property is in the
target object, and returns false otherwise.

Syntax

targetProperty in targetObject; 

Examples

var myObject = {
 "prop1" :1,
 "prop2" : "two"
}
alert("prop1" in myObject); // will alert true
alert("two" in myObject); // will alert false; there is no property named "two" 

instanceof Operator
The instanceof operator takes two operands: an object and a constructor. It returns true if the object has the
constructor in its prototype chain, and returns false if it doesn’t.

Syntax

targetObject instanceof targetConstructor; 

Example

// Everything in JavaScript is an Object--or maybe not.
var myArray = new Array();
var myBool = true;
alert(myArray instanceof Object); // will alert true
alert(myBool instanceof Object); // will alert false--primitives are not objects.
myBool = new Boolean(true);
alert(myBool instanceof Object); // will alert true, because we constructed a new boolean object,
not just a primitive.
 

In this example, we’re demonstrating that primitive values are not objects in JavaScript, while arrays and boolean
objects are.

Chapter 7 ■ JavaScript Operators Reference

205

new Operator
The new operator takes an object constructor function as an operand. It then creates a new empty object whose
prototype inherits from the operand, sets the context of the constructor function to the empty object (so within the
function the keyword this will refer to the empty object), and then invokes the function. If the constructor function does
not explicitly return the resulting object, the new keyword will do it for you, allowing you to create and assign new objects
as desired. This syntax resembles the syntax for instantiating classes in other languages, but don’t forget: JavaScript has
no classes and instead has a prototypal inheritance model. For details on JavaScript’s inheritance model, see Chapter 1.

Syntax

var myNewObject = new objectConstructor; 

Example

var myNewArray = new Array(); // Creates a new array object.
function myConstructor() {
 this.message = "hello world"
}
var myObject = new myConstructor();
alert(myObject.message); // will alert "hello world" 

set Operator
The set operator provides an interface for mutating values in an object. Compare it to the get operator described
earlier in the chapter.

Syntax

// Object literal notation
var myObject = {
 prop1: value,
 get prop1: function() {
 return this.prop1;
 },
 set prop1: function(newVal) {
 this.prop1 = newVal;
 }
}
// object notation
function myObject() {
 // Constructor.
}
myObject.prototype = {
 prop1: value,
 get prop1 : function() {
 return this.prop1;
 },
 set prop1 : function(newVal) {
 this.prop1 = newVal;
 }
}
 

Chapter 7 ■ JavaScript Operators Reference

206

Example

var myAngle = {
 "privateValue" : 10,
 "privateUnits" : "degrees",
 get angle() {
 return this.privateValue + " " + this.units;
 },
 set units(newVal) {
 // Allow the user to set the units to either degrees or radians
 if ((newVal !== "degrees") && (newVal !== "radians")) {
 alert("Allowed units are degrees and radians.");
 }
 if (newVal !== this.privateUnits) {
 this.privateUnits = newVal;
 if (newVal === "radians") {
 // Need to convert our value from degrees to radians
 this.privateValue = (this.privateValue * 0.01745);
 } else {
 // need to convert our value from radians to degrees
 this.privateValue = (this.privateValue * 57.3);
 }
 }
 }
}
alert(myAngle.angle); // will alert "10 degrees"
myAngle.units = "radians";
alert(myAngle.angle); // will alert "0.1745 radians"
 

In this example, we’re building an object that will automatically convert the angle’s units when the units are
changed. This is a great example of using a setter in an object to do more than just set an internal value. You could do
anything here, including firing a custom event or even modifying properties on other objects. For a great example of
using getters and setters for advanced operations, see Chapter 4.

typeof Operator
The typeof operator returns the data type of the operand. A common misconception is that the typeof operator
has to be used as a function and its operand has to be placed within parentheses. That’s unnecessary. The typeof
operator returns the data type of its operand. Novice JavaScript developers commonly mistake typeof as a function,
and enclose the operand within parentheses. However, parentheses only serve to group expressions into a single
statement, and are thus unnecessary for single operands.

Syntax

typeof operand; 

Examples

var myObject = new Object();
var myBoolean = true;
alert(typeof myObject); // will alert Object
alert(typeof myBoolean); // will alert Boolean 

Chapter 7 ■ JavaScript Operators Reference

207

void Operator
The void operator evaluates its operand and then returns undefined.

Syntax

void operand; 

Example

alert(void 0); // will alert "undefined"
alert(void(alert("hi"))); // Will alert "hi" first, then will alert "undefined" 

Summary
In this chapter we’ve covered JavaScript’s various operators in detail:

Most of JavaScript’s operators are unary or binary; the single exception is the comparison •	
operator, which is a ternary operator.

JavaScript operators include bitwise operators, assignment operators, mathematical operators, •	
string operators, comparison operators, and logic operators.

You can use the •	 get and set operators to modify properties on objects.

In the next chapter we’ll provide a reference for the DOM, including the window and document objects.

209

Chapter 8

The DOM Reference

As described in Chapter 3, the DOM isn’t JavaScript and it isn’t part of the ECMA-262 standard. Instead, the DOM
is specified by the W3C across multiple specifications. However, much of what you’ll be doing with JavaScript will
involve the DOM, so it’s important to cover it.

We’ve already covered the important aspects of the DOM in Chapter 3, including:

The history of the DOM and the different specifications that comprise it•	

Accessing elements in the DOM•	

Creating, deleting, and modifying elements in the DOM•	

DOM events: handlers, custom events, etc.•	

This chapter provides a reference for the topics covered in Chapter 3, as well as several other common features
of the DOM that we didn’t cover in Chapter 3. Because the DOM specifications are quite large, this chapter won’t be
exhaustive. Instead, we’ll focus on the features that are the most commonly used. We’ll also cover features that offer
highly useful functionality but perhaps aren’t commonly used, either because they’re new or because they’re not
often covered in references.

Browser Support
As mentioned in Chapter 3, the DOM has varying support across browsers, and between versions of individual
browsers. This reference presumes so-called “modern” browsers: Internet Explorer 9 and later, and the latest versions
of auto-updating browsers such as Safari, Firefox, and Chrome. If a particular feature has support problems in these
target browsers, we’ll mention it. If your project needs to target older browsers, you should make sure the features
you want to use are supported in your target browsers. A good reference for ensuring this are the compatibility tables
at the QuirksMode.org web site: DOM features are covered at www.quirksmode.org/dom/w3c_core.html, and DOM
events are covered at www.quirksmode.org/dom/events/.

DOM Objects
The most common work you’ll be doing with the DOM will involve accessing and manipulating documents and their
elements. In this reference we’ll focus on the DOM objects that are the most relevant to those tasks:

•	 window: The window object models the browser window itself, where the document is loaded.
It includes properties and methods to handle scrolling the window, positioning the browser, etc.

•	 document: The document object models the document. It has properties and methods for
accessing and modifying the contents of the document.

http://www.quirksmode.org/dom/w3c_core.html
http://www.quirksmode.org/dom/events/

Chapter 8 ■ the DOM referenCe

210

•	 element: The element object is an abstract object (meaning it is not something you access
directly, like window or document, but rather serves as a template from which other objects
inherit) that defines the properties and methods exposed on the elements contained within a
document. As you work with DOM elements, all of element’s properties and methods will be
available on them.

We’ll cover these objects in the preceding order (rather than alphabetically, as we did for the main JavaScript
objects in the reference in Chapter 5) because it represents a progression of containers: the window object contains the
document object, and the document object contains element objects.

The Window Object Reference
The window object is the top of the DOM tree and represents a document loaded into the browser. Typically you’ll
have only one document at a time loaded into the browser, but you can load more than one through the use of
iframes. Since each document needs its own window object, by default the window object is an array-like object: the
main object represents the main document, the indexed entries represent subdocuments loaded within iframes,
and a length property represents the number of subdocuments. Thus, if you have only the main document with no
subdocuments, the window.length property will be 0. Each iframe is its own window object, and if a given iframe has
subdocuments within it, then it too will have indexed elements with the number of subdocuments represented in its
length property as well.

Subdocuments can be accessed via their indices; they are in the same order as they appear in the document.
Through the window.parent property, a script in a subdocument can access its parent document. As a result, any
script in a document loaded into the browser can have access to any other document loaded into the browser.
For security reasons, this access is limited by the Single Origin Policy.

Note■ the Single Origin policy is a security feature in browsers that is designed to prevent malicious scripts from
accessing content they shouldn’t. the policy basically says that scripts served from a particular site can access only
documents served from that same site. More specifically, both documents must have been served using the same
protocol (http or httpS) and port (if one was specified), from the same host. If any of those are different, access
between documents is not permitted.

The window object also serves as the global context for JavaScript. Each document therefore has its own global
context. Because the window object is the global context, you do not need to preface any of its properties or methods
with the window. identifier. For example, to access the location property, you can simply use location rather than
window.location. However, some properties and methods are accessed with the window. identifier for the sake of
explicitness. (For details on creating and managing your own properties and methods in the global scope, see Chapter 2.)
In this section we’ll explicitly use the window. reference.

Properties
In addition to serving as the global context for JavaScript, the window object has its own properties that you can access
with your scripts. These properties represent the various aspects of the browser window and the document loaded
within: the URL of the document, the geometry of the window, etc.

Chapter 8 ■ The DOM Reference

211

window.document
The window.document property is the reference to the HTML document that has been loaded into the browser
window. (See “The document Object Reference” section later in the chapter.) The document object is one of the
properties that traditionally is not referenced using the window. identifier.

Syntax

document.propertyName;
document.method(); 

window.frames
The window.frames property is just a reference to the window object itself, and provides a way to explicitly access the
different subdocuments loaded into the main document (if any). This property is a holdover from older versions of
HTML that supported loading multiple documents in a single window using a frameset, a feature that is no longer
supported. Note that since window.frames is just a reference to window, window === window.frames and
window[3] === window.frames[3] if subdocuments are present.

Syntax

window.frames[intIndex]; 

window.history
The window.history property is a reference to the History object, which is exposed by browsers to provide access
to the session history. It is basically a model of the pages that have been visited, along with some useful methods for
manipulating them.

Properties

The History object has one property, length.

length
The length property refers to the length of the history—the number of pages that have been loaded into the window.
A new window (or tab) that has had a single document loaded into it would have a window.history.length of 1.

Syntax

var myLength = window.history.length; 

Methods

The History object has three methods to navigate the browser history.

back( )
The back() method moves back one entry in the browser history. If you’re already at the beginning of the history,
calling this method has no effect. Calling this method is the equivalent of clicking the browser’s Back button.

Chapter 8 ■ The DOM Reference

212

Syntax

window.history.back(); 

forward( )
The forward() method moves forward one entry in the browser history. If you’re already at the end of the browser
history, this method does nothing. Calling this method is the equivalent of clicking the browser’s Forward button.

Syntax

window.history.forward(); 

go( )
The go() method traverses the browser history by the specified number of entries. A positive number moves forward
in the history (and is the equivalent of clicking the browser’s Forward button), and a negative number moves back
(and is the equivalent of clicking the browser’s Back button).

Syntax

window.history.go(intDelta); 

Examples

var myHist = window.history; // Get a reference to the history object--saves a bit of typing.
myHist.back(); // goes back 1 entry in the history.
myHist.go(-3); // goes back 3 more entries in history.
myHist.forward(); // goes forward 1 entry in history.
myHist.go(3); // returns to the most recent page. 

window.innerHeight
The window.innerHeight property contains the height of the actual rendering viewport of the browser, in pixels.
The value includes the horizontal scrollbar, if present. (Compare with window.outerHeight and window.innerWidth.)
This property is read-only; if you wish to change the height of the window, use the window.resizeBy() and
window.resizeTo() methods.

Syntax

var currentHeight = window.innerHeight; 

Example

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Programmer's Reference</title>
 <style>
#centerme {
 width: 100px;
 height: 100px;
 position: absolute;

Chapter 8 ■ The DOM Reference

213

 top: 0px;
 left: 0px;
 background-color: #ccc;
}
 </style>
 </head>
 <body>
 <div id="centerme"></div>
 <script>
var centerMe = document.getElementById("centerme");
// Center vertically
var newPos = (window.innerHeight - 100) / 2;
centerMe.style.top = newPos + "px";
 </script>
 </body>
</html>
 

This example creates a gray box with a width of 100 pixels and a height of 100 pixels and centers it vertically on
the screen.

window.innerWidth
The window.innerWidth property contains the width of the actual rendering viewport of the browser, in pixels.
This value will include the vertical scrollbar, if present. (Compare with window.outerWidth and window.innerHeight.)
This property is read-only; if you wish to change the width of the window, use the window.resizeBy() and
window.resizeTo() methods.

Syntax

var currentWidth = window.innerWidth; 

Example

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Programmer's Reference</title>
 <style>
#centerme {
 width: 100px;
 height: 100px;
 position: absolute;
 top: 0px;
 left: 0px;
 background-color: #ccc;
}
 </style>
 </head>
 <body>
 <div id="centerme"></div>
 <script>

Chapter 8 ■ The DOM Reference

214

var centerMe = document.getElementById("centerme");
// Center horizontally
var newPos = (window.innerWidth - 100) / 2;
centerMe.style.left = newPos + "px";
 </script>
 </body>
</html>
 

This example creates a gray box with a width of 100 pixels and a height of 100 pixels and centers it horizontally
on the screen.

window.length
The window.length property returns the number of subdocuments loaded via iframes. If no subdocuments are
present, this property will be 0.

Syntax

var numberOfSubdocuments = window.length; 

Example

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Programmer's Reference</title>
 </head>
 <body>
 <iframe name="frame1"></iframe>
 <iframe name="frame2"></iframe>
 <iframe name="frame3"></iframe>
 <script>
alert(window.length); // will alert 3
 </script>
 </body>
</html>
 

In this example, we create three iframes, to set window.length to 3.

window.location
The window.location property provides a Location object that represents the URL of the loaded document.
A Location object has the following properties::

•	 hash: The part of a URL that follows the #, if present. Includes the #. For example, for the URL
http://www.example.com:8080/subdirectory/index.html?prop=value#anchor, the hash is
"#anchor".

•	 host: The host part of a URL, including the port number (if specified). For example, for the
URL http://www.example.com:8080/subdirectory/index.html?prop=value#anchor, the
host is "www.example.com:8080".

http://www.example.com:8080/subdirectory/index.html?prop=value
http://www.example.com:8080/subdirectory/index.html?prop=value
http://www.example.com:8080/

Chapter 8 ■ The DOM Reference

215

•	 hostname: The host part of the URL without the port number. For example, for the URL
http://www.example.com:8080/subdirectory/index.html?prop=value#anchor, the
hostname is "www.example.com".

•	 href: The full URL. For example, for the URL
http://www.example.com:8080/subdirectory/index.html?prop=value#anchor, the href is
"http://www.example.com:8080/subdirectory/index.html?prop=value#anchor".

•	 origin: The protocol, host, and port. For example, for the URL
http://www.example.com:8080/subdirectory/index.html?prop=value#anchor,
the origin is "http://www.example.com:8080".

•	 pathname: The path relative to the host. For example, for the URL
http://www.example.com:8080/subdirectory/index.html?prop=value#anchor,
the pathname is "/subdirectory/index.html".

•	 port: The port of the URL, if specified. If no port is specified, this property is "".
For example, for the URL
http://www.example.com:8080/subdirectory/index.html?prop=value#anchor,
the port is "8080".

•	 protocol: The transfer protocol used. For example, for the URL
http://www.example.com:8080/subdirectory/index.html?prop=value#anchor,
the protocol is "http:".

•	 search: The part of the URL that follows the first ?, if any. Includes the question mark.
For example, for the URL
http://www.example.com:8080/subdirectory/index.html?prop=value#anchor,
the search is "?prop=value".

A Location object has the following methods:

•	 assign(targetURL): Loads targetURL into the browser.

•	 reload(boolIgnoreCache): Reloads the current URL. If boolIgnoreCache is true, the browser
reloads the document fresh from the server; otherwise it may reload the document from its
cache if appropriate.

•	 replace(targetURL): Deletes the current document’s entry from the browser history and
replaces it with targetURL. Also loads targetURL into the browser. See window.history,
above, for more information on handling browser history.

•	 toString(): Returns the full URL as a simple string.

Syntax

var currentLocation = window.location; 

Individual properties:

var currHash = currentLocation.hash;
var currHost = currentLocation.host;
var currHostname = currentLocation.hostname;
etc.
 

http://www.example.com:8080/subdirectory/index.html?prop=value
http://www.example.com/
http://www.example.com:8080/subdirectory/index.html?prop=value
http://www.example.com:8080/subdirectory/index.html?prop=value
http://www.example.com:8080/subdirectory/index.html?prop=value
http://www.example.com:8080/
http://www.example.com:8080/subdirectory/index.html?prop=value
http://www.example.com:8080/subdirectory/index.html?prop=value
http://www.example.com:8080/subdirectory/index.html?prop=value
http://www.example.com:8080/subdirectory/index.html?prop=value

Chapter 8 ■ The DOM Reference

216

Individual methods:

currentLocation.reload(true); // Reloads the current document, bypassing the cache.
currentLocation.assign("http://www.google.com"); // Loads the Google front page.
etc. 

Example

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Programmer's Reference</title>
 </head>
 <body>
 <h1>Hello World</h1>
 <script>
var currentLocation = window.location;
alert(currentLocation.toString()); // Will alert the URL of this page.
 </script>
 </body>
</html>
 

This example alerts the URL of the document as soon as it is loaded.

window.localStorage
The window.localStorage property provides an interface to the Local Storage feature (also referred to as “DOM
Storage”) in modern browsers. Specified as part of HTML5, the Local Storage feature provides an alternative to
cookies for storing arbitrary data within the browser in the form of key/value pairs. (See document.cookie for details
on cookies.) Local Storage persists across browser sessions, meaning the user can close their web browser and even
reboot their computer and the data will persist. Access is limited by the Same Origin Policy, just like cookies; scripts
from one origin will not be able to access the data stored by scripts from another origin.

The localStorage interface provides three methods for accessing Local Storage:

•	 localStorage.getItem(key): Returns the value previously stored with key. If no such value
was stored, this method returns null.

•	 localStorage.removeItem(key): Removes the key/value pair specified by key from Local
Storage.

•	 localStorage.setItem(key, value): Saves the data value under key for later retrieval.

•	 localStorage.clear(): Clears all key/value pairs in Local Storage.

Note that Local Storage can only store strings; it cannot store things like arrays or objects. You can, however,
convert such items to JSON strings first using JSON.stringify() and then store the resulting string in Local Storage.
When you retrieve the string later, you can reconstitute the item using JSON.parse(). For details on
JSON.stringify() and JSON.parse(), see Chapter 5.

Also note that even if you use Local Storage in your application, there’s no guarantee that your data will be there
later. Most modern browsers implement some form of “private browsing,” wherein each session starts with no data
and at the end of the session all data, including Local Storage, is wiped. Users can also manually wipe out their Local
Storage. So if you are planning on using Local Storage in your application, you should code with this in mind.

http://www.google.com/

Chapter 8 ■ The DOM Reference

217

Syntax

var storedValue = localStorage.getItem(key);
localStorage.removeItem(key);
localStorage.setItem(key, valueToStore); 

Example

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Programmer's Reference</title>
 </head>
 <body>
 <h1>Hello World!</h1>
 <script>
// Check to see if we've visited this page before.
var myValue = localStorage.getItem("test");
if (myValue == null) {
 alert('This is your first time here!');
 localStorage.setItem("test", "true");
} else {
 alert('You have been here before!');
}
 </script>
 </body>
</html>
 

In this example, we check to see if a particular key has been used to store a value in Local Storage. If there isn’t a
value, we assume the user hasn’t visited the site yet, and store a value using that key. If there is a value stored,
we assume the user has visited the site. Test this example as follows:

	 1.	 Load it normally. It will alert “This is your first time here!”

	 2.	 Click the Reload button. It will alert “You have been here before!”

	 3.	 If your browser supports tabbed browsing, open a new tab and load the example again.
It will alert “You have been here before!”

	 4.	 Close your browser and restart it. Reload the example, and it will alert “You have been
here before!”

Perform these tests again in private browsing mode, if your browser supports it. You should see that the value has
been deleted each time you close the browser and reopen it.

See Chapter 4 for an example using Local Storage.

window.opener
If this window was opened by a script using the window.open() method, the window.opener property will contain a
reference to the window that contained that script. If this window was opened manually by the user (e.g., by starting
the browser, or opening a new tab), then this property will be null.

Syntax

var myOpener = window.opener; 

Chapter 8 ■ The DOM Reference

218

window.outerHeight
The window.outerHeight property contains the total height of the browser, including all chrome, toolbars, etc.,
in pixels. (Compare with window.outerWidth and window.innerHeight.) This value is read-only; if you want to
change the dimensions of the browser, use the window.resizeBy() and window.resizeTo() methods.

Syntax

var totalHeight = window.outerHeight; 

window.outerWidth
The window.outerWidth property contains the total width of the browser, including all chrome, toolbars, etc.,
in pixels. (Compare with window.outerHeight and window.innerWidth.) This value is read-only; if you want to
change the dimensions of the browser, use the window.resizeBy() and window.resizeTo() methods.

Syntax

var totalWidth = window.outerWidth; 

window.pageXOffset
The window.pageXOffset property contains the value of the number of pixels that the document has been scrolled
horizontally. (Compare with window.pageYOffset.) This value is read-only; if you want to scroll the document,
use the window.scroll(), window.scrollBy(), window.scrollByLines(), window.scrollByPages(), and
window.scrollTo() methods.

Note■■  T he window.pageXOffset and window.scrollX properties both reference the same value. The pageXOffset
property predates scrollX, but most browsers implement both…except Internet Explorer. Prior to version 9, Internet
Explorer did not provide either property and instead provided the document.body.scrollLeft property.

Syntax

var horizScroll = window.pageXOffset; 

window.pageYOffset
The window.pageYOffset property contains the value of the number of pixels that the document has been scrolled
vertically. (Compare with window.pageXOffset.) This value is read-only; if you want to scroll the document, use the
window.scroll(), window.scrollBy(), window.scrollByLines(), window.scrollByPages(), and
window.scrollTo() methods.

Note■■  T he window.pageYOffset and window.scrollY properties both reference the same value. The pageYOffset
property predates scrollY, but most browsers implement both…except Internet Explorer. Prior to version 9, Internet
Explorer did not provide either property and instead provided the document.body.scrollTop property.

-

Chapter 8 ■ The DOM Reference

219

Syntax

var vertScroll = window.pageYOffset; 

window.parent
If this window is an iframe, the window.parent property will contain a reference to the window that contains it.
Otherwise, it will be null.

Syntax

var myParent = window.parent; 

window.scrollX
The window.scrollX property contains the value of the number of pixels that the document has been scrolled
horizontally. (Compare with window.scrollY and window.pageXOffset.) This value is read-only; if you want to scroll
the document, use the window.scroll(), window.scrollBy(), window.scrollByLines(), window.scrollByPages(),
and window.scrollTo() methods.

Note■■  T he window.pageXOffset and window.scrollX properties both reference the same value. The pageXOffset
property predates scrollX, but most browsers implement both…except Internet Explorer. Prior to version 9, Internet
Explorer did not provide either property and instead provided the document.body.scrollLeft property.

Syntax

var horizScroll = window.scrollX; 

window.scrollY
The window.scrollY property contains the value of the number of pixels that the document has been scrolled
vertically. (Compare with window.scrollX.) This value is read-only; if you want to scroll the document, use the
window.scroll(), window.scrollBy(), window.scrollByLines(), window.scrollByPages(), and
window.scrollTo() methods.

Note■■  T he window.pageYOffset and window.scrollY properties both reference the same value. The pageYOffset
property predates scrollY, but most browsers implement both…except Internet Explorer. Prior to version 9, Internet
Explorer did not provide either property and instead provided the document.body.scrollTop property.

Syntax

var vertScroll = window.scrollY; 

Chapter 8 ■ the DOM referenCe

220

window.sessionStorage
The Session Storage feature is similar to the Local Storage feature, except that data stored using Session Storage will
be lost when the session ends. Like Local Storage, access to Session Storage data is limited by the Single Origin Policy,
and like Local Storage, Session Storage can only store strings. See window.localStorage, earlier in the chapter, for
more details and an example.

Syntax

var storedValue = sessionStorage.getItem(key);
sessionStorage.removeItem(key);
sessionStorage.setItem(key, valueToStore);
sessionStorage.clear();

window.top
In the case of nested iframes, the window.top property provides a reference to the topmost window that is the parent
to all iframes. In the topmost window, or in the case of a window with no subdocuments, this will be a reference to the
window object itself.

Syntax

var myTopWindow = window.top;

Methods
The window object has several important methods, which can be used to set timers, communicate with the user, scroll
the document, and even move the browser window.

window.addEventListener()
The window.addEventListener() method allows you to add event listeners to the window object itself. Otherwise, this
method behaves the same as element.addEventListener(). See that entry for details and examples.

Syntax

window.addEventListener(strEventType, eventHandler, boolCapture);

window.alert()
The window.alert() method opens an alert pop-up dialog containing the specified text. Note that this is one method
that is often accessed without the window. identifier.

Syntax

alert(strMessage);

Example

alert("We've been using alerts throughout the book.");

Chapter 8 ■ The DOM Reference

221

window.clearTimeout( )
The window.clearTimeout() method takes a timer ID as a parameter and clears the timeout specified by the ID:
that is, it removes it without executing its function. The ID is the value returned when the timer is created with the
window.setTimeout() method or the window.setInterval() method. (See the entries for the window.setTimeout()
and window.setInterval() methods for details.)

Syntax

window.clearTimeout(timeoutID); 

Example

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Programmer's Reference</title>
 </head>
 <body>
 <h1>Hello World</h1>
 <script>
// Set a timeout that will result in an alert after a 5 second delay
var myID = setTimeout(function() {
 alert('Five seconds has passed!');
}, 5000);
 
// Clear the timeout so it will never execute.
clearTimeout(myID);
 </script>
 </body>
</html>
 

This example sets a timer that would cause an alert after a 5-second delay, and then clears the timer so that the
alert never happens. To verify, comment out the clearTimeout() call and rerun the script. After the delay, the alert
will happen.

window.close( )
The window.close() method closes the window. Only windows that have been opened with the window.open()
method can be closed.

Syntax

var windowRef = window.open(strURL);
windowRef.close(); 

Example

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Programmer's Reference</title>
 </head>

Chapter 8 ■ The DOM Reference

222

 <body>
 <p id="opener">Click here to open a search window.</p>
 <p id="closer">Click here to close the search window.</p>
 <script>
var opener = document.getElementById("opener"),
 closer = document.getElementById("closer"),
 windowRef = false;
 
opener.addEventListener("click", function() {
 // If the search window isn't open, we should open it.
 // If the search window is open, we should let the user know.
 if (windowRef === false) {
 windowRef = window.open("http://www.google.com");
 } else {
 alert("The search window is already open.");
 }
});
 
closer.addEventListener("click", function() {
 // If the search window is open, we should close it.
 // If the search window isn't open, we should let the user know.
 if (windowRef !== false) {
 windowRef.close();
 windowRef = false;
 } else {
 alert("The search window isn't open.")
 }
})
 </script>
 </body>
</html>
 

In this example, we first get references to the two paragraphs. For the opener reference, we add a click event
handler that will open a search window if one isn’t already open, and store the reference to that window in a variable.
If one is already open, we alert the user. For the closer reference, we add a click event handler that will close the search
window if it’s open and set the reference variable back to false. If the search window isn’t open, we’ll alert the user.

window.confirm( )
The window.confirm() method opens a confirm pop-up dialog containing the text specified as the parameter.
Confirm pop-up dialogs have an OK button and a Cancel button; when the user clicks OK, the method returns true,
and when the user clicks Cancel, the method returns false.

Syntax

var returnVal = confirm(message); 

http://www.google.com/

Chapter 8 ■ The DOM Reference

223

Example

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Programmer's Reference</title>
 </head>
 <body>
 <p id="opener">Click here to open a search window.</p>
 <p id="closer">Click here to close the search window.</p>
 <script>
var opener = document.getElementById("opener"),
 closer = document.getElementById("closer"),
 windowRef = false;
 
opener.addEventListener("click", function() {
 // If the search window isn't open, we should open it.
 // If the search window is open, we should let the user know.
 if (windowRef === false) {
 windowRef = window.open("http://www.google.com");
 } else {
 var returnVal = confirm("The search window is already open. Would you like to close it?");
 if (returnVal === true) {
 windowRef.close();
 windowRef = false;
 }
 }
}, false);
 
closer.addEventListener("click", function() {
 // If the search window is open, we should close it.
 // If the search window isn't open, we should let the user know.
 if (windowRef !== false) {
 windowRef.close();
 windowRef = false;
 } else {
 var returnVal = confirm("The search window isn't open. Would you like to open it?");
 if (returnVal === true) {
 windowRef = window.open("http://www.google.com");
 }
 }
}, false);
 </script>
 </body>
</html>
 

This example extends our previous example: instead of using an alert to communicate with the user in the error
conditions, we use a confirm dialog to ask the user what they would like to do.

http://www.google.com/
http://www.google.com/

Chapter 8 ■ The DOM Reference

224

window.getComputedStyle( )
When provided an element reference (required) and an optional pseudo-element, the window.getComputedStyle()
method returns the styles that are actually used to display the element. The return value is a read-only Style object
of the same format as the element’s style property: each CSS property that is set on the element has a corresponding
property in the object.

Syntax

var appliedStyles = window.getComputedStyle(targetElement, pseudo); 

Example

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Programmer's Reference</title>
 <style>
.styledElement {
 background-color: #ccccff;
 border: 1px solid #000000;
 color: #0000FF;
}
#testElement {
 border-width: 50px;
 color: #00FF00;
}
p#testElement {
 border-width: 5px;
}
 </style>
 </head>
 <body>
 <p id="testElement" class="styledElement" style="border=color: #FF0000;">This is a test
paragraph.</p>
 <script>
var myTarget = document.getElementById("testElement"),
 appliedStyles = window.getComputedStyle(myTarget);
 
alert(appliedStyles.backgroundColor); // Will alert something like "rgb(204, 204, 255)"
alert(appliedStyles.borderWidth); // Will alert 5
alert(appliedStyles.color); // Will alert something like "rgb(0, 255, 0)"
alert(appliedStyles.margin); // Will alert something like "16px 0px"
alert(appliedStyles.padding); // Will alert something like "0px"
 </script>
 </body>
</html>
 

In this example, we apply some styles using rules in a style sheet and an inline style. Note that we can examine both
the styles that we set and the default styles on the element: we didn’t set either margins or padding on the element, but
they are present in the appliedStyles object. (Exactly what margin and padding are applied will vary from browser to
browser because each browser has its own default style sheet; in Chrome, the margin is 16px 0px and the padding is 0px.)

Chapter 8 ■ The DOM Reference

225

Note that what is actually alerted can vary from browser to browser. In some browsers, for example, colors
are alerted as RGB values; in others, they are alerted as hexadecimal values. The values are correct, just formatted
differently. In addition, some browsers attempt to provide shorthand values whenever possible. This can be
problematic when trying to compare style values—if you’re expecting an RGB value string for a color but instead get a
hexadecimal string, then that can cause comparisons to fail.

window.open( )
The window.open() method opens a window with the specified parameters. In browsers that implement tabbed
browsing, new windows that have no features set will open as new tabs. Setting the features string usually forces
the browser to open the window as a stand-alone window rather than as a new tab, though users can override that
behavior as well and specify that all new windows open as tabs.

The valid parameters for the window.open() method are as follows:

•	 url: The URL of the desired document to display within the new window.

•	 strName: The name of the window (optional). This does not specify the title of the
window—that is specified by the <title> tag of the document loaded into the new window.
This name can be used as the target of links and forms using their target attribute.

•	 strFeatures: A comma-delimited list of desired window features, in the form of
feature=value pairs. Available features and their implementation vary from browser to
browser, but the most common are as follows:

•	 left: The left position of the new window in the user’s workspace, relative to the left edge
of the monitor. Valid values are integers; many browsers only permit positive integers.

•	 top: The top position of the new window in the user’s workspace, relative to the top edge
of the monitor. Valid values are integers; many browsers only permit positive integers.

•	 height: The desired height of the content window in pixels; equivalent to
window.innerHeight. Valid values are integers; minimum value is 100.

•	 width: The desired width of the content window in pixels; equivalent to window.
innerWidth. Valid values are integers; minimum value is 100.

•	 menubar: When set to yes, causes the new window to render its menu bar (the menu bar
contains the File, Edit, View, etc. menus of the browser). If you use a features parameter
and do not set this property, it will be set to no and the menu bar will not display. Valid
values are yes or no.

•	 toolbar: When set to yes, causes the new window to render its toolbar (the toolbar
contains the Back, Forward, Reload, Stop, etc. buttons). If you use a features parameter
and do not set this property, it will be set to no and the tool bar will not display. Valid
values are yes or no.

•	 location: When set to yes, causes the new window to render its location bar (the location
bar contains the URL entry field). If you use a features parameter and do not set this
property, it will be set to no and the location bar will not display. Valid values are yes or no.

•	 status: When set to yes, causes the new window to render its status bar (the bar at
the bottom of the browser window). If you use a features parameter and do not set this
property, it will be set to no and the status bar will not display. Valid values are yes or no.

•	 resizable: If set to yes, will allow the user to resize the new window. If you use a features
parameter and do not specify the resizable property, it will be set to no and the window
will not be resizable. For good usability, you should always specify this value as yes. Valid
values are yes or no.

Chapter 8 ■ The DOM Reference

226

•	 scrollbars: If set to yes, allows the new window to show horizontal and vertical
scrollbars if the content is too large for the specified area. If you use a features parameter
and do not specify the scrollbars property, it will be set to no and the scrollbars will
not be added to the window, leaving no way for the user to scroll the content. For good
usability, you should always specify this value as yes. Valid values are yes or no.

The window.open() method returns a reference to the window that was opened.
Of all the methods in the DOM, window.open() is probably one of the most abused, both by malicious spammers

and by careless programmers. As a result, many browsers now allow the user to override specified settings and even
disallow its use altogether through the use of pop-up blocking parameters and plug-ins. If the pop-up is prevented
by a browser’s internal blocking parameter, then the method will return null instead of a window reference. If the
pop-up is blocked by a plug-in, often you will not be able to tell (which is why many applications that rely on pop-up
windows advise users to disable pop-up blockers).

Because of these limitations, if you want to use pop-up windows in your application, you should test carefully to
make sure users who are using pop-up blockers won’t be denied access to important areas of your application.

Syntax

var strFeatures = "left=0,right=0,scrollbars=true,resizable=true";
var windowRef = window.open(URL, strName, strFeatures); 

Example

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Programmer's Reference</title>
 </head>
 <body>
 <p id="opener">Click here to open a search window.</p>
 <p id="closer">Click here to close the search window.</p>
 <script>
var opener = document.getElementById("opener"),
 closer = document.getElementById("closer"),
 windowRef = false;
 
opener.addEventListener("click", function() {
 // If the search window isn't open, we should open it.
 // If the search window is open, we should let the user know.
 if (windowRef === false) {
 windowRef = window.open("http://www.google.com", "searchwindow",
"left=0,top=0,resizable=true,scrollbars=true");
 } else {
 var returnVal = confirm("The search window is already open. Would you like to close it?");
 if (returnVal === true) {
 windowRef.close();
 windowRef = false;
 }
 }
}, false);
 

http://www.google.com/

Chapter 8 ■ The DOM Reference

227

closer.addEventListener("click", function() {
 // If the search window is open, we should close it.
 // If the search window isn't open, we should let the user know.
 if (windowRef !== false) {
 windowRef.close();
 windowRef = false;
 } else {
 var returnVal = confirm("The search window isn't open. Would you like to open it?");
 if (returnVal === true) {
 windowRef = window.open("http://www.google.com");
 }
 }
}, false);
 </script>
 </body>
</html>
 

This example extends our previous example by specifying a window name and some features for the new
window. If your browser implements tabbed browsing, chances are the previous version of the example opened the
new window as a tab. In this version of the example, setting the features should cause your browser to open the search
window as a stand-alone window. The features we specify should cause the window to open in the upper-left corner
of your screen, and be both resizable and have scrollbars. Since we didn’t specify the menubar, toolbar, location, or
status features, those should default to no and not display, but whether or not that will be honored by the browser
depends on which browser you are using and the settings for that browser. (In our version of Chrome, the new
window opens as a stand-alone window, but the specified position isn’t honored and the location bar displays; in our
version of Firefox, the window opens at the desired position and both the location bar and the status bar display.)
Try opening the example in different browsers with different settings and see how its behavior changes.

window.postMessage( )
The Post Message feature is new to HTML5 and provides a secure way of sending strings from one frame to another,
even if direct access between the frames in question would be forbidden by the Single Origin Policy. When you call the
postMessage() method, it will dispatch a message event in the target window, with the string you specify as the data
attribute of the resulting Event object. The receiving iframe will need to have a document loaded that implements an
event listener for the message event, and it can then receive the Event object and read the message.

When you call the postMessage() method, you specify not only the string you wish to send, but also the desired
origin of the document loaded into the iframe as a URL. If the document loaded into the iframe comes from a different
origin, the event is not dispatched. This security feature enables you to ensure that only a document from the origin
you desire will be able to receive your message. You can opt to send the message to all domains (as we do in the next
example by using the asterisk, "*"), but doing so would leave a security hole in your application that a malicious site
could exploit by listening for message events.

In the receiving window, the event handler receives an Event object that has a data attribute containing the
message. It also has a source attribute that will contain the origin of the document that dispatched the message.
You should always check the source to make sure the message you have received has come from the expected origin.
If the origin doesn’t match, you can discard the message. This way you prevent malicious sites from injecting
potentially harmful data into your site.

According to the DOM standard, the message can be anything, and the latest versions of some browsers will permit
sending objects. Most browsers only support sending strings. Even so, you can first serialize objects and arrays and other
things with the JSON.stringify() method, and then reconstitute them on the receiving end with JSON.parse().

http://www.google.com/

Chapter 8 ■ The DOM Reference

228

The Post Message feature is new to HTML5 but enjoys wide support among modern browsers. In Internet
Explorer, however, Post Message only works between iframes, and not windows opened with the window.open()
method.

Syntax

In the sending window:

windowRef.postMessage(strMessage, targetOrigin); 

In the receiving window:

function handleMessage(event) {
 // Check event.source to make sure it comes from the desired origin
 // The message is in event.data
}
window.addEventListener("message", handleMessage, false);
 

To create an example, we’ll need two pages, which we’ll call the Main Page and the Target Page. The Main Page
will contain an iframe that loads the Target Page.

Main Page

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Programmer's Reference</title>
 </head>
 <body>
 <iframe src="target-page.html" id="targetFrame"></iframe>
 <p id="clickme">Click to send a message to the iframe.</p>
 <script>
var strMessage = "Hello, main window here, are you receiving?",
 clickme = document.getElementById("clickme"),
 targetFrame = document.getElementById("targetFrame");
 
clickme.addEventListener("click", function() {
 targetFrame.contentWindow.postMessage(strMessage, "*");
})
 
function handleMessage(event) {
 var strAlert = "Main Window:\n";
 strAlert += event.data;
 alert(strAlert);
}
window.addEventListener("message", handleMessage, false);
 </script>
 </body>
</html>
 

Chapter 8 ■ The DOM Reference

229

Target Page

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Programmer's Reference</title>
 </head>
 <body>
 <h1>Target iframe</h1>
 <script>
function handleMessage(event) {
 var strAlert = "Target iframe:\n";
 strAlert += event.data;
 alert(strAlert);
 window.top.postMessage("Hello, target iframe here, I received your message.", "*");
}
window.addEventListener("message", handleMessage, false);
 </script>
 </body>
</html>
 

To run this example, save the Main Page under any name, and then save the Target Page in the same directory,
under the name target-page.html. When you load the first page into your browser, it will load the second page in
the iframe.

Both documents bind message event handlers to their window objects, and both handle any message by
alerting it.

When you click the text to send the message to the iframe, the script will use postMessage() to send the
message “Hello, main window here, are you receiving?” The iframe will receive the message and process it using its
handleMessage() event handler, which will alert the message we just sent. Then, the Target Page will send a message
back to the Main Page via the window.top reference (see window.top, above, for details). The Main Page will handle
the resulting message event and alert the message.

Note that in this example we are not specifying the target origin in our calls to postMessage(), nor are we
checking the source origin in our event handlers. We do this because this is a test case, and we don’t know how you
will be running these examples. You should always specify the target origin and check the source origin in any scripts
that will be released into the wild—it is very important for security. In fact, we encourage you to modify these scripts
so that they do specify the target origin and check the source origin according to your specific environment. Also, try
setting them to different values to verify for yourself that the examples behave as expected.

window.print( )
The window.print() method opens the print dialog for the browser, just as if the user had chosen File ➤ Print from
the menu. For security reasons, you cannot access any of the features of the print dialog from JavaScript, including
closing a print dialog once it is open.

Syntax

window.print(); 

Chapter 8 ■ the DOM referenCe

230

Example

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Programmer's Reference</title>
 </head>
 <body>
 <h1>Hello World</h1>
 <script>
window.print();
 </script>
 </body>
</html>

As soon as you load this example, it will open your browser’s print dialog, giving you the opportunity to print
the page.

window.prompt()
The window.prompt() method opens a prompt dialog, which will display a specified string and provide the user with
a text entry field. The prompt dialog has two buttons, OK and Cancel. Clicking OK will close the dialog and cause the
method to return whatever the user entered in the text entry field. Clicking Cancel will close the dialog and cause
the method to return null.

Syntax

var strReturnValue = prompt(strMessage);

Example

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Programmer's Reference</title>
 </head>
 <body>
 <h1></h1>
 <script>
var header = document.querySelector("h1"),
 userName = prompt("Hey there, what's your name?");

if ((userName !== null) && (userName !== "")) {
 header.innerText = "Pleased to meet you, " + userName + "!";
} else {
 header.innerText = "I wish I knew your name. :(";
}
 </script>
 </body>
</html>

Chapter 8 ■ The DOM Reference

231

In this example, we prompt the user for their name. If they click Cancel, or if they enter nothing and click OK,
we tell them how sad that makes us. Otherwise, we tell them we are pleased to meet them.

window.removeEventListener( )
The window.removeEventListener() method removes an event listener previously registered on the window.
Otherwise it behaves exactly like element.removeEventListener(). See element.removeEventListener() for details
and examples.

Syntax

window.removeEventListener(strEventType, eventHandler, boolCapture); 

window.resizeBy( )
The window.resizeBy() method changes the width and height of the window by the specified number of pixels.
A positive number causes the dimension to increase in size, while a negative number causes the dimension to
decrease. (Compare with window.resizeTo().)

Most browsers allow you to resize only windows that have been opened using the window.open() method and
that are stand-alone windows (not tabs, if the browser implements tabbed browsing). Some browsers also give the
user the option of explicitly disabling this feature.

Syntax

window.resizeBy(changeInWidth, changeInHeight); 

Example

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Programmer's Reference</title>
 </head>
 <body>
 <h1>Hello World!</h1>
 <script>
var myWindow = window.open("http://www.google.com", "searchWindow",
"top=10,left=10,width=500,height=500");
myWindow.resizeBy(-100, -100); // Shrinks the window's width and height by 100 px each.
 </script>
 </body>
</html>
 

In this example, we open a search window that is 500 pixels wide and 500 pixels high. Then we resize it by
reducing both the width and the height by 100 pixels. You may see a brief flash as the browser first opens at the
500x500 size and then shrinks to the 400x400 size. See window.open() for details on that method, including browser
dependencies and limitations.

http://www.google.com/

Chapter 8 ■ The DOM Reference

232

window.resizeTo( )
The window.resizeTo() method resizes the window to the dimensions (in pixels) specified. (Compare with
window.resizeBy().) Most browsers allow you to resize only windows that have been opened using the window.open()
method and that are stand-alone windows (not tabs, if the browser implements tabbed browsing). Some browsers
also give the user the option of explicitly disabling this feature.

Syntax

window.resizeTo(intWidth, intHeight); 

Example

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Programmer's Reference</title>
 </head>
 <body>
 <h1>Hello World!</h1>
 <script>
var myWindow = window.open("http://www.google.com", "searchWindow",
"top=10,left=10,width=500,height=500");
myWindow.resizeTo(200, 200); // Resize the window to 200 pixels by 200 pixels.
 </script>
 </body>
</html>
 

In this example, we open a search window that is 500 pixels wide and 500 pixels high. Then we resize it to 200 by
200 pixels. You may see a brief flash as the browser first opens at the 500x500 size and then shrinks to the 200x200 size.
See window.open() for details on that method, including browser dependencies and limitations.

window.scroll( )
The window.scroll() method scrolls the document in the window to the specified x and y coordinates, in pixels,
with the origin (0, 0) being the top left of the document. Both parameters are required.

Syntax

windowRef.scroll(intX, intY); 

window.scrollBy( )
The window.scrollBy() method scrolls the window by the specified offsets, in pixels. A positive number scrolls the
window down (or to the right), while a negative number scrolls the window up (or to the left).

Syntax

windowRef.scrollBy(intX, intY); 

http://www.google.com/

Chapter 8 ■ The DOM Reference

233

window.scrollByLines( )
The window.scrollByLines() method scrolls the window vertically by the specified number of lines of text. A positive
number scrolls down, while a negative number scrolls up.

Syntax

windowRef.scrollByLines(intLines); 

window.scrollByPages( )
The window.scrollByPages() method scrolls the window vertically by the specified number of pages of text.
A positive number scrolls down, while a negative number scrolls up.

Syntax

windowRef.scrollByPages(intPages); 

window.scrollTo( )
The window.scrollTo() method functions the same as window.scroll().

Syntax

windowRef.scrollTo(intX, intY); 

window.setInterval( )
The window.setInterval() method allows you to set up a timer that will call a specified function once every
specified number of milliseconds. The method returns the ID of the timer, which when provided as a parameter to
the window.clearTimeout() method will cancel the timer. If not canceled, the timer will continue to run, calling
the specified function every interval, until the window is closed (by closing the tab or the browser itself) or a new
document is loaded into the window.

Note that a timer will run its function every specified number of milliseconds regardless of how long it takes for
the function to execute. If the function takes longer than the interval to execute, you can end up with your function
executing simultaneously. For example, if the function takes 700 milliseconds to run, and you schedule it to be run
every 500 milliseconds, you’ll end up with simultaneous executions of the function.

Syntax

var timerID = setInterval(functionToExecute, intMilliseconds); 

Example

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Programmer's Reference</title>
 </head>

Chapter 8 ■ The DOM Reference

234

 <body>
 <h1>JavaScript Clock</h1>
 <h2>hh : mm : ss</h2>
 <p><button>Start</button></p>
 <script>
var clockID = null,
 buttonRef = document.querySelector("button");
 
// Create a function that can be called every second to update the clock.
function updateClock() {
 var ptrClock = document.querySelector("h2"),
 myTime = new Date(),
 strTime;
  
 // Build a string with the current time
 strTime = myTime.getHours() + " : ";
 strTime += myTime.getMinutes() + " : ";
 strTime += myTime.getSeconds();
  
 // Update the clock
 ptrClock.innerText = strTime;
}
 
// Handle clicks on the button to either start or stop the clock.
function handleButtonClick() {
 // If the clockID is null, then we need to start the clock.
 // Otherwise, we need to stop the clock.
 if (clockID == null) {
 updateClock(); // Set the clock to the correct time
 clockID = setInterval(updateClock, 1000); // start the timer
 } else {
 clearTimeout(clockID); // Stop the timer
 // Clear the ID so that the next time we click on the
 // button we'll know there is no timer running
 clockID = null;
 }
}
 
// Bind the event handler to the button.
buttonRef.addEventListener("click", handleButtonClick, false);
 </script>
 </body>
</html>
 

In this example, we create a simple clock that you can start and stop by clicking the button. First, we create a
function that can be called every second by the timer, called updateClock(). This function gets the current time using
the Date object and builds a string representing the time using Date methods (see Chapter 5 for details on the Date
object and its methods). Then, it updates the text of the clock.

When the user clicks the button, we want to start the clock if it is stopped, or stop the clock if it is started, so we
create an event handler that checks to see if the clockID is set. If the clock isn’t stopped, the event handler updates the
clock and then starts the timer. If the clock is stopped, the event handler stops the timer and clears the clockID.

Chapter 8 ■ The DOM Reference

235

window.setTimeout( )
The window.setTimeout() method works similarly to the setInterval() method in that it allows you to specify
a function to run after a specified number of milliseconds. However, unlike setInterval(), setTimeout() only
executes the function once. Like setInterval(), setTimeout() returns an ID that represents the new timer, which
can be cleared using the clearInterval() method.

Syntax

var timerID = setTimeout(functionRef, intMilliseconds); 

Example

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Programmer's Reference</title>
 </head>
 <body>
 <h1>Hello World</h1>
 <script>
// This will alert "Hello World" after 5 seconds.
var timerID = setTimeout(function() {
 alert('Hello World!');
}, 5000);
 </script>
 </body>
</html>
 

In this example, we create a simple timeout to alert “Hello World” five seconds after the page is loaded.

window.sizeToContent( )
The window.sizeToContent() method sizes a window to its content. It is useful for sizing a pop-up window to be the
size needed to fit its content. Note that the DOM has to be loaded and ready before this method is called. If you call it
before the DOM is loaded, it may resize the window to the incorrect size.

Syntax

windowRef.sizeToContent(); 

The document Object Reference
The document object represents the document that has been loaded into the window. The document object is a
property of the window object, so you can access it as window.document. Since the window object also serves as the
global context for JavaScript, you can omit specifying the window. identifier and simply use document (which is a very
common convention).

Chapter 8 ■ The DOM Reference

236

Properties
The properties on the document object provide information about the document itself, such as the URL and cookies.

document.activeElement
The document.activeElement property provides a read-only reference to the element in the document that currently
has keyboard focus. If there is nothing with focus, this property returns a reference to the body element.

Syntax

var myElementReference = document.activeElement; 

document.body
The document.body property provides a reference to the body element of the document.

Syntax

var bodyRef = document.body; 

Example

var myDiv = document.createElement("div"); // Creates a new element.
document.body.appendChild(myDiv); //Appends the new DIV to the document at the end. 

document.compatMode
The document.compatMode property returns the compatibility mode used to render the document. Browsers can
render documents according to different levels of compatibility, and with the document.compatMode property, you can
tell which was used to render the current document. The values are:

•	 CSS1Compat: The browser rendered the document in strict mode, meaning it rendered the
document’s markup according to the relevant standards to produce predictable results.

•	 BackCompat: The document was rendered using quirks mode. Quirks mode is a rendering
mode designed to maintain backward compatibility with older, nonstandard markup. Because
quirks mode is a departure from the standard, results can be unpredictable.

Note that all modern browsers (and even most older browsers) automatically render HTML5 documents in
strict mode.

Syntax

var strCompat = document.compatMode; 

Example

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Programmer's Reference</title>
 </head>

Chapter 8 ■ The DOM Reference

237

 <body>
 <h1>Hello World</h1>
 <script>
var strCompat = document.compatMode;
alert(strCompat); // will alert "CSS1Compat" because this is an HTML 5 document.
 </script>
 </body>
</html>
 

This example alerts the rendering mode of the document. Because it’s an HTML5 document (as specified by the
doctype tag on the first line), the browser is rendering in standards-compliant mode.

document.cookie
The document.cookie property provides access to the cookies associated with this document. Cookies provide a way
of storing small amounts of information on the user’s system for later retrieval. This information can persist across
browser sessions, enabling you to retrieve the stored data even after the user has closed their browser or rebooted
their computer. Access to cookies is limited by the Single Origin Policy, so scripts from one origin cannot access
cookies set by scripts from another origin. It is possible, however, for a script from one origin to set a cookie with
a different origin than its own, resulting in a cookie with a different origin (and which the original script would be
unable to read, but which scripts from the specified origin could access). Such cookies are referred to as third-party
cookies. Third-party cookies are commonly employed to track users across web sites: each domain employs a script to
write a cookie for a third domain, and also loads a script for that domain that can read that cookie. In that way, a third
domain can monitor users and their activities as they move from domain to domain. Third-party cookies carry with
them some serious privacy concerns, and can be used as a security hole by malicious scripts.

The stored cookie is a string consisting of a single key/value pair, followed by the following optional attributes:

•	 domain: The domain of the document that can read the resulting cookie. You can specify an
exact domain (e.g., “www.apress.com”, which would allow the cookie to be read only from
scripts served from the www.apress.com domain) or subdomains (e.g., .apress.com, which
allows the cookie to be read from any subdomain of apress.com: www.apress.com, my.apress.com,
examples.my.apress.com, etc.).

•	 expires: A date in GMT format that specifies when the data expires. If you are managing the
dates in your application using Date objects, the Date.toUTCString method will produce
a string of the correct format. If neither the expires value nor the max-age value is set, the
cookie will expire at the end of the session.

•	 max-age: The maximum age of the cookie, in seconds. If neither the expires value nor the
max-age value is set, the cookie will expire at the end of the session.

•	 path: Specifies the path of the document that can read the resulting cookie. If not set, this
defaults to the path of the current document.

•	 secure: If this key is included (it does not need a value, just inclusion in the string), then the
cookie can only be read over a secure (HTTPS) connection.

Cookies can contain only text, not objects, and cannot contain semicolons, commas, or spaces. You can set more
than one cookie for a given domain.

Syntax

var myCookie = document.cookie; // reads the cookie string that has been set
document.cookie = myCookie; // sets the cookie string for the document 

http://www.apress.com/
http://www.apress.com/
http://.apress.com
http://apress.com
http://www.apress.com
http://my.apress.com
http://examples.my.apress.com

Chapter 8 ■ The DOM Reference

238

For an example, consider a common use case for cookies: storing user preferences. On your hypothetical
site, users are allowed to customize their user interface by specifying a theme and a language. You can store this
information as cookies so that when the users return to your site, their settings will persist. You also want to specify
that the cookies should last 5 days (or 432000 seconds) and be read on any subdomain.

Example

// Set the cookies
document.cookie = "username=uberuser;max-age=432000;domain=.yourdomain.com";
// Sets a cookie for username.
document.cookie = "theme=greenapple;max-age=432000;domain=.yourdomain.com";
// Sets a cookie for theme.
 

Reading a cookie is a slightly more complex matter because you get all cookies sent back at once in a
semicolon-delimited string. So for the preceding example, accessing document.cookie would return the string
username=uberuser; theme=greenapple. To handle multiple cookies, you need a way to search that string for a given
key/value pair. The solution is the fact that the format of the string follows a very specific schema: given a particular
key, you need to search for the value associated with it, which means you need to look for the text between the first
occurrence of the string "key=" and the next semicolon. There are many ways of doing that, but the most succinct
is to use a regular expression. A regular expression can search for a substring delimited by a beginning and an end
delimiter: (?:^|;)\\s?key=(.*?)(?:;|$) This regular expression specifies that from the beginning of the string, we’ll
search for the substring "key=" and, once it is found, return the substring between that and the next semicolon. Here’s
a function that uses that regular expression:
 
// Returns the value associated with strKey within the document's cookie, or null if not found.
function readCookie(strKey) {
 var myCookie = document.cookie,
 cookieReg = new RegExp('(?:^|;)\\s?' + strKey + '=(.*?)(?:;|$)'),
 myVal = myCookie.match(cookieReg);
 if(myVal == null) {
 return myVal;
 } else {
 return myVal[1];
 }
}
 

Here’s an example that puts everything together:

Example

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Programmer's Reference</title>
 <script>
// Returns the value associated with strKey within the document's cookie, or null if not found.
function readCookie(strKey) {
 var myCookie = document.cookie,
 cookieReg = new RegExp('(?:^|;)\\s?' + strKey + '=(.*?)(?:;|$)'),
 myVal = myCookie.match(cookieReg);

Chapter 8 ■ The DOM Reference

239

 if(myVal == null) {
 return myVal;
 } else {
 return myVal[1];
 }
}
 
var myCookie = document.cookie;
if (readCookie("username") != null) {
 // We have been here before! Use the readCookie function to get our preferences
 var myUsername = readCookie("username"),
 myTheme = readCookie("theme");
 alert("Hello " + myUsername + ", your theme is " + myTheme);
} else {
 // We have not been here before. Set new cookies.
 document.cookie = "username=uberuser"; // Sets a cookie for username.
 document.cookie = "theme=greenapple"; // Sets a cookie for theme.
 alert('Cookie set. Reload the browser to see the results.')
}
 </script>
 </head>
 <body>
 <h1>Testing Cookies</h1>
 </body>
</html>
 

In this example, we set cookies for username and theme. We don’t set either max-age or expires values on them,
though, so they are session cookies and will be erased as soon as you close the browser. Try setting a max-age on one
of the cookies of a few minutes to verify that the cookie persists as expected and then is not available after it expires.
(Most browsers will not access cookies for pages loaded from the filesystem, so if you wish to run this example you will
probably need to serve it using a personal web server.)

Cookie strings are limited in size to 4kb total, so you are limited in the amount of data you can store. In addition,
many browsers provide users with fine control over their cookies, including overriding their expiration or content or
even disallowing them altogether.

For a modern alternative to cookies, see the discussion of window.sessionStorage and window.localStorage,
earlier in the chapter.

document.head
The document.head property returns a reference to the head element of the document. This property can be used as a
shortcut for accessing elements within the head, such as scripts, style sheets, etc.

Syntax

var myHead = document.head; 

Example

var docTitle = document.head.title; 

Chapter 8 ■ the DOM referenCe

240

document.location
The document.location property behaves the same as window.location, returning a Location object.
See window.location for full details.

document.referrer
In the case where the user came to the current page by clicking a link on another page, the document.referrer
property returns the URL of the referring page. Otherwise, it returns an empty string ("").

Syntax

var myReferrer = document.referrer;

document.title
The document.title property returns a string containing the contents of the document’s title tag.

Syntax

var myTitle = document.title;

document.URL
The document.URL property returns a string containing the URL of the document.

Syntax

var myUrl = document.URL;

Methods
The document object has several methods that are useful for manipulating document content, accessing elements, and
managing events.

document.addEventListener()
The document.addEventListener() method adds an event listener to the document. Otherwise it behaves exactly the
same as element.addEventListener(); see that entry for details and examples.

Syntax

document.addEventListener(strEventType, eventHandler, boolCapture);

document.createComment()
The document.createComment() method creates a new comment element with the specified text. This element can
then be inserted into the DOM using any of the DOM manipulation methods.

Chapter 8 ■ The DOM Reference

241

Syntax

var myCommentEl = document.createComment("This is my comment."); 

Example

var myCommentEl = document.createComment("END OF DOCUMENT");
document.body.appendChild(myCommentEl); // appends the new comment to the end of the document. 

document.createDocumentFragment( )
The document.createDocumentFragment() method creates a new document fragment. Document fragments are
generic containers that can serve as a staging area for new elements that you are creating. After you configure the
document fragment to your liking, you can append it to the main document at the desired location.

Syntax

var myFrag = document.createDocumentFragment(); 

Example

var myFrag = document.createDocumentFragment(),
 myPar = document.createElement("p"),
 myText = document.createTextNode("Hello world!");
myPar.appendChild(myText); // append the text to the paragraph.
myFrag.appendChild(myPar); // Append the paragraph to the document fragment.
document.body.appendChild(myFrag); // Append the total fragment to the end of the document body. 

document.createElement( )
The document.createElement() method creates a new DOM element of the specified type. The type is a string
enclosed in quotes, and if you supply an invalid type, the method throws an error.

Syntax

var myEl = document.createElement(tagName); 

document.createEvent( )
The document.createEvent() method creates a DOM Event object of the specified type that can then be configured
and dispatched on a target using target.dispatchEvent(). For details and examples, see Chapter 3.

Syntax

var myEvent = document.createEvent(eventType); 

document.createTextNode( )
The document.createTextNode() method creates a text node with the desired text. This node can then be appended
to another node.

Chapter 8 ■ The DOM Reference

242

Syntax

var myTextNode = document.createTextNode(strText); 

Example

var myParagraph = document.createElement("p"),
 myTextNode = document.createTextNode("This is a dynamically added paragraph.");
 
myParagraph.appendChild(myTextNode);
document.body.appendChild(myParagraph); // Appends the paragraph to the very end of the document. 

document.getElementById( )
The document.getElementById() method returns a reference to the element with the specified ID. IDs are presumed
to be unique within a document; if there are duplicate IDs within a document, this method returns the reference to
the first element it encounters with the specified ID.

Syntax

var targetEl = document.getElementById(strID); 

document.getElementsByClassName( )
The document.getElementsByClassName() method searches through the document for all elements that have the
specified class and returns an array-like object containing their references. Each match will be present as an indexed
element in the object, and the length property will represent the total number of elements. If no elements match, this
method returns an array-like object with no members and a length property set to 0.

Syntax

var myTags = document.getElementsByClassName(strClass); 

Example

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Programmer's Reference</title>
 </head>
 <body>
 <h1>Hello World</h1>

 This should stay visible.
 <li class="hideme">This should be hidden.
 This should stay visible.
 This should stay visible.
 <li class="hideme">This should be hidden.
 This should stay visible.
 <li class="hideme">This should be hidden.
 <li class="hideme">This should be hidden.
 This should stay visible.

Chapter 8 ■ The DOM Reference

243

 <p>This should stay visible.</p>
 <p class="hideme">This should be hidden.</p>
 <div class="hideme">
 <p>This div and everything within it should be hidden.</p>
 </div>
 <div>
 <p>This div and everything within it should be visible.</p>
 </div>
 <script>
var myEls = document.getElementsByClassName("hideme"),
 i;
for (i = 0; i < myEls.length; i++) {
 myEls[i].style.display = "none";
}
 </script>
 </body>
</html>
 

In this example, we get a reference to all of the items that have the class "hideme" and then we loop through the
collection and set the display property of each one to be hidden.

document.getElementsByTagName( )
The document.getElementsByTagName() method returns an array-like object containing references to all elements
of the specified tag name. Each match will be present as an indexed element in the object, and the length property
will represent the total number of elements. If no elements match, this method returns an array-like object with no
members and a length property set to 0.

Syntax

var myEls = document.getElementsByTagName(strTagName); 

document.querySelector( )
The document.querySelector() method returns a reference to the first element that matches the specified CSS
selector. If there is no match, the method returns null. (Compare to document.querySelectorAll().) For details on
querySelector(), see the Chapter 3 section “Accessing Elements in the DOM.”

Syntax

var myEl = document.querySelector(strSelector); 

document.querySelectorAll( )
The document.querySelectorAll() method returns an array-like object whose members are elements that
match the specified CSS selector. Each match will be present as an indexed element in the object, and the length
property will represent the total number of elements. If no elements match, this method returns an array-like
object with no members and a length property set to 0. (Compare to document.querySelector().) For details on
querySelectorAll(), see the Chapter 3 section “Accessing Elements in the DOM.”

Chapter 8 ■ The DOM Reference

244

Syntax

var myEls = document.querySelectorAll(strSelector); 

Example

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Programmer's Reference</title>
 </head>
 <body>
 <h1>Hello World</h1>
 <table>
 <tr>
 <td>1</td>
 <td>1</td>
 <td>1</td>
 <td>1</td>
 <td>1</td>
 </tr>
 <tr>
 <td>1</td>
 <td>1</td>
 <td>1</td>
 <td>1</td>
 <td>1</td>
 </tr>
 <tr>
 <td>1</td>
 <td>1</td>
 <td>1</td>
 <td>1</td>
 <td>1</td>
 </tr>
 <tr>
 <td>1</td>
 <td>1</td>
 <td>1</td>
 <td>1</td>
 <td>1</td>
 </tr>
 <tr>
 <td>1</td>
 <td>1</td>
 <td>1</td>
 <td>1</td>
 <td>1</td>
 </tr>
 <tr>
 <td>1</td>
 <td>1</td>

Chapter 8 ■ The DOM Reference

245

 <td>1</td>
 <td>1</td>
 <td>1</td>
 </tr>
 </table>
 <script>
var myEls = document.querySelectorAll("tr:nth-child(odd)"),
 i;
for (i = 0; i < myEls.length; i++) {
 myEls[i].style.backgroundColor = "#ccc";
}
 </script>
 </body>
</html>
 

In this example, we use querySelectorAll() to access all the odd-numbered rows of the table and then give
them a different background color.

The element Object Reference
Unlike the window and document objects, the element object is an abstract object: you don’t access it directly. Instead,
it serves as a template object from which other objects can inherit. Any HTML element in the DOM inherits from the
element object, so any element in the DOM will have all of element’s properties and methods.

Properties
Many of the properties on an HTML element (class, ID, href, target, etc.) are exposed as properties on its associated
DOM element object. In addition, DOM element objects have properties that provide access to the element’s children,
siblings, and parents, as well as its position in the page.

element.childNodes
The element.childNodes property provides an array-like object, the members of which are the immediate child nodes
of the element. This includes child elements as well as other children such as comments, cdata sections, and even text
nodes representing whitespace in the HTML markup. Each node will be present as an indexed element in the object,
and the length property will represent the total number of child nodes. If the element has no child nodes, this property
returns an array-like object with no members and a length property set to 0. (Compare with element.children.)

Syntax

var targetElement = document.getElementById("myId");
var myChildNodes = targetElement.childNodes; 

element.children
The element.children property provides an array-like object, the members of which are the immediate child
elements of the target element. Each element will be present as an indexed element in the object, and the length
property will represent the total number of child elements. If the element has no child nodes, this property returns an
array-like object with no members and a length property set to 0. (Compare with element.childNodes.)

Chapter 8 ■ The DOM Reference

246

Syntax

var myChildren = targetElement.children; 

element.classList
The element.classList property provides an interface to the CSS classes that have been applied to an object. When
accessed by itself, this property provides an array-like collection, the members of which are the individual classes on
the element. Each class will be present as an indexed element in the object, and the length property will represent
the total number of classes. If the element has no classes, this property provides an array-like object with no members
and a length property set to 0.

In addition, the classList interface has several useful methods:

•	 add(className): Adds the specified class to the element.

•	 remove(className): Removes the specified class from the element.

•	 toggle(className): Removes the class from the element if present; adds the class if
not present.

•	 contains(className): Returns true if the specified class is on the element; returns false
if not.

The element.classList feature is relatively new. Internet Explorer 9 and lower does not support it, nor does
Safari 5.0 and lower. In older browsers, you can access an element’s class through the className property.

Syntax

var myClasses = targetElement.classList;
targetElement.classList.add(strClass);
targetElement.classList.remove(strClass);
targetElement.classList.toggle(strClass);
var boolHasClass = targetElement.classList.contains(strClass); 

element.className
The element.className property provides access to the classes that have been applied to the element. When
accessed, it provides a string that is a space-delimited list of all the classes, or an empty string if none. When used in
an assignment, it changes the classes on the element to the specified list of space-delimited classes.

Syntax

var myClasses = targetElement.className;
targetElement.className = myClasses; 

Example

var targetElement = document.getElementById("myId");
targetElement.className = "class1 class2"); // Add 2 classes to the element 

Chapter 8 ■ The DOM Reference

247

element.contentEditable
The element.contentEditable property sets the contentEditable property on an element. Setting this value to true
enables editing, while setting it to false disables editing. Setting the value to inherit causes the element to inherit
its parent element’s contentEditable value. To determine if the element is editable or not, use the
element.isContentEditable property.

According to the HTML5 specs, almost any element can be editable. (Actually, this is an old feature, but it wasn’t
a part of the standards until HTML5.) All you have to do is set the contentEditable property on the element, and the
user can modify the text content it contains.

Syntax

targetElement.contentEditable = true;
targetElement.contentEditable = false;
targetElement.contentEditable = "inherit"; 

Example

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Programmer's Reference</title>
 </head>
 <body>
 <h1>Hello World</h1>
 <script>
var headline = document.querySelector("h1");
headline.contentEditable = true;
 </script>
 </body>
</html>
 

In this example, the headline is editable. The user can click it and then change its content.

element.id
The element.id property provides access to the ID that has been applied to the element. Changing this property
changes the ID on the element.

Syntax

var elID = targetElement.id;
targetElement.id = differentID; 

element.innerHTML
The element.innerHTML property provides access to the HTML contained within the target element. When used
as an accessor, it returns a string containing the serialized HTML within the element. When used in an assignment,
it takes the HTML string provided, removes the element’s descendents, deserializes the provided HTML, and inserts
the resulting elements into the DOM as descendents of the target element.

Chapter 8 ■ The DOM Reference

248

Setting this property to null or an empty string removes all the target element’s child elements. In older browsers
this can result in memory leaks; see the Chapter 3 section “Deleting Elements” for details.

Note that any valid HTML can be inserted into the element this way, including scripts. When working with
user-provided content or content that you’re not sure is safe, you should be careful to sanitize the HTML before
inserting it, to avoid compromising the security of your application.

Syntax

var strHtml = targetElement.innerHTML;
targetElement.innerHTML = strDifferentHtml; 

Example

document.body.innerHTML = ""; // completely erase a document
var strHtml = '<h1>Hello World</h1><p>This is dynamically created.</p>';
document.body.innerHTML = strHtml; // Add our content. 

element.isContentEditable
The element.isContentEditable property is a read-only property that is set to true if the element’s contentEditable
property is set to true, or if it is set to “inherit” and the element’s parent element’s contentEditable is set to true.

Syntax

var boolEditable = targetElement.isContentEditable; 

element.lastChild
The element.lastChild property provides a read-only pointer to the last child node of the target element. If the
element has no child nodes, this is set to null. Nodes include elements, tags, cdata sections, or even text nodes
representing whitespace in the markup. (Compare with element.lastElementChild.)

Syntax

var childNode = targetElement.lastChild; 

element.lastElementChild
The element.lastElementChild property provides a read-only pointer to the last HTML element child of the target
element. If the element has no child elements, this is set to null. (Compare with element.lastChild.)

Syntax

var childNode = targetElement.lastElementChild; 

element.name
The element.name property provides access to the element’s name property.

Chapter 8 ■ The DOM Reference

249

Syntax

var myName = targetElement.name;
targetElement.name = myName; 

element.nextSibling
The element.nextSibling property provides a read-only pointer to the node that is the immediate next sibling of the
target element. If the element has no siblings, this is set to null. Nodes include elements, tags, cdata sections, or even
text nodes representing whitespace in the markup. (Compare with element.nextElementSibling.)

Syntax

var mySeebl = targetElement.nextSibling; 

element.nextElementSibling
The element.nextElementSibling property provides a read-only pointer to the HTML element that is the
immediate next sibling of the target element. If the element has no sibling elements, this is set to null.
(Compare with element.nextSibling.)

Syntax

var mySeebl = targetElement.nextElementSibling; 

element.offsetHeight
The element.offsetHeight property provides read-only access to the height of the target element, calculated by
adding the height of the content plus the top and bottom padding plus the top and bottom border width. It does not
include the top or bottom margins.

Syntax

var elHeight = targetElement.offsetHeight; 

element.offsetLeft
The element.offsetLeft property provides read-only access to the number of pixels the target element’s top-left
border is offset from the top-left border of its offset parent. An element’s offset parent is the first parent element that
has its CSS position property set to either relative or absolute.

Syntax

var elLeft = targetElement.offsetLeft; 

element.offsetParent
The element.offsetParent property provides a read-only pointer to the target element’s offset parent, which is the
first parent element that has its CSS position property set to either relative or absolute.

Chapter 8 ■ the DOM referenCe

250

Syntax

var ptrOffsetParent = targetElement.offsetParent;

element.offsetTop
The element.offsetTop property provides read-only access to the number of pixels the target element’s top-left
border is offset from the top-left border of its offset parent. An element’s offset parent is the first parent element that
has its CSS position property set to either relative or absolute.

Syntax

var elTop = targetElementoffsetTop;

element.offsetWidth
The element.offsetWidth property provides read-only access to the target element’s offset width, which is calculated
by adding the element’s content width plus the left and right padding plus the left and right border width. It does not
include the left or right margins.

Syntax

var elWidth = targetElement.offsetWidth;

element.outerHTML
The element.outerHTML property provides access to the HTML of the target element and all of its descendents. When
used as an accessor, it returns a string containing the serialized HTML of the element and its descendents. When
used in an assignment, it takes the HTML string provided, removes the element and its descendents, deserializes the
provided HTML, and inserts the resulting elements into the DOM.

Setting this property to null or an empty string removes the target element and all of its descendents. In older
browsers this can result in memory leaks; see the Chapter 3 section “Deleting Elements” for details.

Note that any valid HTML can be inserted into the element this way, including scripts. When working with
user-provided content or content that you’re not sure is safe, you should be careful to sanitize the HTML before
inserting it, to avoid compromising the security of your application.

Syntax

var strHtml = targetElement.outerHTML;
targetElement.outerHTML = strHtml;

Example

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Programmer's Reference</title>
 </head>

Chapter 8 ■ The DOM Reference

251

 <body>
 <h1>Hello World</h1>

 Apples
 Oranges
 Bananas

 <script>
var myList = document.querySelector("ul"),
 strToDo = 'LaundryGrocery StoreDry cleaning';
 
myList.outerHTML = strToDo; // Replace the list and all of its children with our to-do list.
 </script>
 </body>
</html>
 

In this example, we want to replace the list of fruits with our to-do list. We begin by getting a reference to the list,
and then we create a string containing the HTML we wish to insert into the document. Then we use outerHTML to
replace the target element with our new markup.

element.parentNode
The element.parentNode property provides a read-only pointer to the element’s parent node. If the element is within
a DOM fragment or has not been added to the DOM, it will be set to null.

Syntax

var myParent = targetElement.parentNode; 

element.previousSibling
The element.previousSibling property provides a read-only pointer to the node that is the immediate previous
sibling to the target element. If there is no previous sibling, this will be null. Nodes can be elements or they can be
cdata sections, comments, or even text nodes representing the whitespace in the markup. (Compare with
element.previousElementSibling.)

Syntax

var mySeebl = targetElement.previousSibling; 

element.previousElementSibling
The element.previousElementSibling property provides a read-only pointer to the element that is the immediate
previous sibling to the target element. If there is no previous sibling, this will be null. (Compare with
element.previousSibling.)

Syntax

var mySeebl = targetNode.previousElementSibling; 

Chapter 8 ■ The DOM Reference

252

element.scrollHeight
The element.scrollHeight property provides read-only access to the element’s height plus the top and bottom
margins. This is equivalent to the minimum height a containing element would have to be to display all of the
element’s content without scrolling.

Syntax

var myHeight = targetElement.scrollHeight; 

element.scrollLeft
The element.scrollLeft property provides access to the left scroll offset of the target element. When used as an
accessor, this returns the number of pixels that the target element’s content has scrolled horizontally. When assigned
a value, it causes the target element’s contents to scroll to the specified position.

Syntax

var scrollPos = targetElement.scrollLeft;
targetElement.scrollLeft = scrollPos; 

element.scrollTop
The element.scrollTop property provides access to the vertical scroll offset of the target element. When used as an
accessor, this returns the number of pixels that the target element’s content has scrolled vertically. When assigned a
value, it causes the target element’s contents to scroll to the specified position.

Syntax

var scrollPos = targetElement.scrollTop;
targetElement.scrollTop = scrollPos; 

element.scrollWidth
The element.scrollWidth property provides read-only access to the width of the content of the element plus the left
and right padding. It does not include the left or right margins. This is equivalent to the minimum width a containing
element would have to be to display all of the element’s content without horizontal scrolling.

Syntax

var myWidth = targetElement.scrollWidth; 

element.style
The element.style property provides access to the element’s style attribute via a Style object. The Style object has
attributes representing all of the CSS properties set in an element’s style attribute. New ones can be added as desired.
These attributes can be used to read the current values or to set them to new values.

Syntax

var myValue = targetElement.style.desiredCssAttribute;
targetElement.style.desiredCssAttribute = myValue; 

Chapter 8 ■ The DOM Reference

253

Example

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Programmer's Reference</title>
 </head>
 <body>
 <h1 style="border: 1px solid red;color: #00F;background-color: #ccc">Hello World</h1>
 <script>
var headline = document.querySelector("h1");
 
alert(headline.style.backgroundColor); // will alert something like "rgb(204, 204, 204)"
headline.style.fontStyle = "italic"; // will make the text within the headline italic.
 </script>
 </body>
</html>
 

In this example, we set some inline styles on the headline element and then use the element’s style attribute to
both examine the background color and to italicize the text.

element.tabIndex
The element.tabIndex property provides access to the element’s tabindex attribute. The browser maintains a default
tabbing order for form elements in the document—by default it is the order in which they are marked up in the
HTML. You can override this order by using this property. In addition, you can force the browser to include non-form
elements in the tabbing order by setting this property. The value is an integer that starts at 0. Setting the value to −1
means the element cannot be accessed with the Tab key.

Syntax

var myTabIndex = targetElement.tabIndex;
targetElement.tabIndex = newTabIndex; 

element.tagName
The element.tagName property is a read-only property that returns a string that is the tag of the element.

Syntax

var strTag = targetElement.tagName; 

Example

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Programmer's Reference</title>
 </head>

Chapter 8 ■ The DOM Reference

254

 <body>
 <h1>Hello World</h1>
 <script>
var headline = document.querySelector("h1");
 
alert(headline.tagName); // will alert "H1"
 </script>
 </body>
</html> 

element.title
The element.title property provides access to the element’s title property. This is the text that appears in a tool tip
when the user mouses over the element.

Syntax

var myTitle = targetElement.title;
targetElement.title = myTitle; 

Methods
The element object’s methods provide useful functionality for managing elements and the events that happen
on them.

element.addEventListener( )
The element.addEventListener() method registers an event handler for a specified event type on the target element.
Every time an event of the specified type is dispatched to the element (whether by the browser, or manually by a script),
the event handler will execute. The method takes the following parameters:

•	 strEventType: The event type for which you are registering the handler.

•	 eventHandler: An object that will receive the event notification. This object can be a function
(which will be executed when the event occurs) or it can be an object that implements an event
listener interface (see Event Handler Objects, below, for details on the event listener interface).
The event handler can be a named function or an anonymous inline function expression.

•	 useCapture: A boolean that, if set to true, indicates that the event handler should execute
during the capture phase. If set to false (or if omitted), the event handler will execute during
the bubble phase. This parameter is marked as optional in the standard, but many browsers
required it until quite recently, so specifying it is a good idea.

Event Handler Objects

Typically you’ll see functions as event handlers, but the DOM standard specifies that the handler could be an object
as well, as long as the object implements what the DOM standard calls a listener interface. A listener interface is a
method named handleEvent() and which receives an Event object as a parameter. When the method is called to
handle the event, the execution context (referred to by the this keyword) is set to the object that is the parent of the
listener interface.

For details on DOM events, see Chapter 3.

Chapter 8 ■ The DOM Reference

255

Syntax

targetElement.addEventListener(strEventType, eventHandler, useCapture); 

Example

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Programmer's Reference</title>
 </head>
 <body>
 <h1>Hello World</h1>
 <p id="functionHandler">Click me to test an event handler function!</p>
 <p id="objectHandler">Click me to test using an object that implements a listener
interface!</p>
 <script>
var functionHandler = document.getElementById("functionHandler"),
 objectHandler = document.getElementById("objectHandler"),
 objHandleClick;
 
// Implement the listener interface on objHandleClick
objHandleClick = {
 handleEvent: function(event) {
 alert('This is the event listener interface!');
 alert(this == objHandleClick); // Will alert true
 }
}
 
// Create an event handler function
function fctHandleClick(event) {
 alert('This is the function event handler!');
 alert(this == functionHandler); // Will alert true
}
 
functionHandler.addEventListener("click", fctHandleClick, false);
objectHandler.addEventListener("click", objHandleClick, false);
 </script>
 </body>
</html>
 

In this example, we create two different event handlers: one is a function, and the other is an object that
implements a listener interface. We bind each handler to its own target.

See the example under element.dispatchEvent() for another example of using an object to handle events.

element.appendChild( )
The element.appendChild() method appends the specified DOM fragment or element as the last child of the
target element.

Syntax

targetElement.appendChild(fragment); 

Chapter 8 ■ The DOM Reference

256

Example

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Programmer's Reference</title>
 </head>
 <body>
 <h1>Hello World</h1>
 <div id="myTarget">
 <p>This paragraph was already here.</p>
 </div>
 <script>
var myTarget = document.getElementById("myTarget"),
 textNode = document.createTextNode("This one is new."),
 myPar = document.createElement("p");
 
myPar.appendChild(textNode); // Append the text node to the paragraph
myTarget.appendChild(myPar); // Append the paragraph to the div as the last child
 </script>
 </body>
 

In this example, we create a new text node and a new paragraph, and then we append the text node to the
paragraph. Then we append the paragraph to the DOM as the last child of the target <div>, so that it appears after the
original paragraph.

element.blur( )
The element.blur() method removes keyboard focus from the element. (Compare with element.focus().)

Syntax

targetElement.blur(); 

element.click( )
The element.click() method simulates a click event on the element. This is a convenient shorthand method for
firing click events without using the standard way of manually dispatching events.

Syntax

targetElement.click(); 

element.cloneNode( )
The element.cloneNode() method returns a clone of the target element. If the optional parameter is set to true,
a “deep” clone is performed and all the target element’s descendant nodes are cloned as well. The result is a DOM
fragment that can be further manipulated if desired or appended to the document.

This method does not clone any event handlers that have been registered on the target element or its
descendants, but it does clone attributes, including IDs (so be careful not to introduce duplicate IDs in your
document).

Chapter 8 ■ The DOM Reference

257

Syntax

var newClone = targetElement.cloneNode(boolDeep); 

Example

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Programmer's Reference</title>
 </head>
 <body>
 <h1>Hello World</h1>
 <div id="myTarget">
 <p>This paragraph was already here.</p>
 </div>
 <script>
var myTarget = document.getElementById("myTarget"),
 myClone = myTarget.cloneNode(true);
 
myClone.id="myNewTarget"; // update the ID so it is not a duplicate
myClone.querySelector("p").innerText = "This is a new clone."
// Update the text in the paragraph.
document.body.appendChild(myClone);
// Appends the clone to the document as the last child.
 </script>
 </body>
</html>
 

In this example, we perform a deep clone of the target div. Then we change the clone’s ID (to prevent introducing
duplicate IDs in the document) and change the text in the paragraph. Then we append the clone to the document as
the last child.

element.dispatchEvent( )
The element.dispatchEvent() method manually dispatches the specified event to the target element. It can be used
to simulate user interactions or to dispatch custom events. See Chapter 3 for details on manually dispatching events.

Syntax

targetElement.dispatchEvent(eventObject); 

Example

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Programmer's Reference</title>
 </head>
 <body>
 <h1>Hello World</h1>
 <p id="targetMouseup">On mouseup here there will be an alert.</p>
 <p id="targetClick">Clicking here will manually dispatch a mouseup event to the
paragraph above.</p>

Chapter 8 ■ The DOM Reference

258

 <script>
var targetMouseup = document.getElementById("targetMouseup"),
 targetClick = document.getElementById("targetClick"),
 eventObject;
 
// Implement an event listener interface on our object
eventObject = {
 handleEvent : function(event) {
 // Route the event to the correct handler
 if (event.type === "click") {
 this.handleClick(event);
 } else if (event.type === "mouseup") {
 this.handleMouseup(event);
 }
 },
 handleClick: function(event) {
 var myCustomEvent = document.createEvent("Event"); // use the generic event module
 myCustomEvent.initEvent("mouseup", true, true); // Initialize the event as a mouseup event
 targetMouseup.dispatchEvent(myCustomEvent); // Dispatch the event.
 },
 handleMouseup: function(event) {
 alert('A mouseup event was dispatched to this element!');
 }
}
 
targetMouseup.addEventListener("mouseup", eventObject, false);
targetClick.addEventListener("click", eventObject, false);
 
 </script>
 </body>
</html>
 

In this example, we’re using a single eventObject to handle all our event-handling needs. The event listener
interface (the handleEvent() method) detects the type of event and routes the event to the correct method. Then we
implement methods for handling click and mouseup events.

Within the click event handler, we manually create an Event object using the generic event module. (We could
have used the MouseEvent module, but generic events are simpler.) Then we initialize the new Event object to be a
mouseup event, and then dispatch the event to the target element.

element.focus( )
The element.focus() method sends keyboard focus to the target element. (Compare to element.blur().)

Syntax

targetElement.focus(); 

element.getAttribute( )
The element.getAttribute() method returns the value of the specified attribute. If the attribute does not exist on the
element, it returns null. (Compare with element.setAttribute().)

Chapter 8 ■ The DOM Reference

259

Note that in most browsers, accessing an attribute by its named property on the element (if there is one) is faster
than using the getAttribute() method.

Syntax

var myAttrValue = targetElement.getAttribute(strAttributeName); 

Example

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Programmer's Reference</title>
 </head>
 <body>
 <h1 id="headline" class="myclass" name="greeting">Hello World</h1>
 <script>
var headline = document.getElementById("headline");
alert(headline.getAttribute("id")); // Will alert "headline"
alert(headline.getAttribute("name")); // will alert "greeting"
alert(headline.getAttribute("class")); // will alert "myclass"
alert(headline.getAttribute("href")); // will alert null
 </script>
 </body>
</html>
 

In this example, we use getAttribute to query the ID, class, and name of an element. We also used
getAttribute to query the href property on the element, but found that it was null (not set).

element.getElementsByClassName( )
The element.getElementsByClassName() method behaves the same as document.getElementsByClassName() but the
search is limited to the descendants of the target element. See document.getElementsByClassName() for an example.

Syntax

var myEls = targetElement.getElementsByClassName(strClass); 

element.getElementsByTagName( )
The element.getElementsByTagName() method behaves the same as document.getElementsByTagName() but the
search is limited to the descendants of the target element. See document.getElementsByTagName() for an example.

Syntax

var myEls = targetElement.getElementsByTagName(strTagName); 

element.hasAttribute( )
The element.hasAttribute() method returns true if the target element has the specified attribute, or false if it
does not.

Chapter 8 ■ the DOM referenCe

260

Syntax

var boolHasAttribute = targetElement.hasAttribute(strAttribute);

Example

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Programmer's Reference</title>
 </head>
 <body>
 <h1 id="headline" class="myclass" name="greeting">Hello World</h1>
 <script>
var headline = document.getElementById("headline");
alert(headline.hasAttribute("id")); // Will alert true
alert(headline.hasAttribute("href")); // will alert false
 </script>
 </body>
</html>

In this example, we are querying the target element to see if it has an ID (which it does, so hasAttribute("id")
returns true) or an href (which it does not, so hasAttribute("href") returns false).

element.hasAttributes()
The element.hasAttributes() method returns true if the target element has any attributes at all, and returns false
if it does not.

Syntax

var boolHasAttributes = targetElement.hasAttributes();

Example

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Programmer's Reference</title>
 </head>
 <body>
 <h1 id="headline" class="myclass" name="greeting">Hello World</h1>
 <h2>JavaScript is awesome</h2>
 <script>
var headline = document.getElementById("headline"),
 subHead = document.querySelector("h2");
alert(headline.hasAttributes()); // Will alert true
alert(subHead.hasAttributes()); // will alert false
 </script>
 </body>
</html>

Chapter 8 ■ The DOM Reference

261

In this example, we check to see if the headline has attributes (it does, so hasAttributes() returns true) and if
the subheadline has attributes (it does not, so hasAttributes() returns false).

element.hasChildNodes( )
The element.hasChildNodes() method returns true if the target element has any child nodes, and returns false if
it does not. Child nodes can be HTML elements as well as comments, cdata sections, or even text nodes representing
whitespace in the markup.

Syntax

var boolHasChildNodes = targetElement.hasChildNodes(); 

Example

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Programmer's Reference</title>
 </head>
 <body>
 <h1 id="headline" class="myclass" name="greeting">Hello World</h1>
 <div id="div1">
  
 </div>
 <div id="div2">
 <p>JavaScript is awesome.</p>
 </div>
 <div id="div3"></div>
 <script>
var headline = document.getElementById("headline"),
 div1 = document.querySelector("#div1"),
 div2 = document.querySelector("#div2"),
 div3 = document.querySelector("#div3");
alert(headline.hasChildNodes()); // Will alert true; the headline has a text node as a child
alert(div1.hasChildNodes()); // will alert true; div1 has a text node representing empty space
 in the markup
alert(div2.hasChildNodes()); // will alert true; div2 has a paragraph as a child node
alert(div3.hasChildNodes()); // will alert false.
 </script>
 </body>
</html>
 

In this example, we have several different elements, and we check them all to see if they have child nodes.
The H1 tag has a text node as a child node; div1 has a text node representing the empty space in the markup as a child
node; div2 has a paragraph as a child node; and div3 has no child nodes.

Chapter 8 ■ The DOM Reference

262

element.insertBefore( )
The element.insertBefore() method inserts a new element as a child of the target element before the reference
element. If no reference element is provided, the new element is appended to the end of the child elements of the
target element.

Syntax

targetElement.insertBefore(newElement, referenceElement); 

Example

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Programmer's Reference</title>
 </head>
 <body>
 <h1>Hello World</h1>

 1
 2
 4
 5

 
 <script>
var targetList = document.querySelector("ul"),
 referenceElement = document.querySelectorAll("li")[2],
 myTextNode = document.createTextNode("3"),
 myLi = document.createElement("li");
 
myLi.appendChild(myTextNode);
targetList.insertBefore(myLi, referenceElement);
 </script>
 </body>
</html>
 

In this example, we have a list of consecutive numbers missing the number 3, so we need to create a new list item
for the number 3 and insert it as a child of the unordered list before list item 4.

First we get a reference to the unordered list, and then we get a reference to list item 4 by querying all list items
and using the one at index 3. Then we create a text node and a new list item, append the next node to the list item,
and then use insertBefore() to insert the list item as a child of the unordered list before our chosen reference item.

element.querySelector( )
The element.querySelector() method behaves the same as document.querySelector(), except the search is limited
to descendent nodes of the target element. See document.querySelector() for details and examples.

Syntax

var myEl = targetElement.querySelector(strSelector); 

Chapter 8 ■ The DOM Reference

263

element.querySelectorAll( )
The element.querySelectorAll() method behaves the same as document.querySelectorAll() except the search is
limited to the descendent nodes of the target element. See document.querySelectorAll() for details and examples.

Syntax

var myEls = targetElement.querySelectorAll(strSelector); 

element.removeAttribute( )
The element.removeAttribute() method removes the specified attribute from the target element.

Syntax

targetElement.removeAttribute(strAttribute); 

Example

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Programmer's Reference</title>
 </head>
 <body>
 <h1 name="headline">Hello World</h1>
 <script>
var targetEl = document.querySelector("h1");
alert(targetEl.hasAttributes()); // will alert true
targetEl.removeAttribute("name"); // removes the name. Now the H1 should have no attributes.
alert(targetEl.hasAttributes()); // Will alert false
 </script>
 </body>
</html>
 

In this example, we are removing the name attribute from the headline. The hasAttributes() method returns
true the first time because the name attribute is present, and returns false the second time because the name attribute
has been removed.

element.removeChild( )
The element.removeChild() method removes the specified child element from the target element. If the specified
element is not a child of the target element, this method throws an exception.

Syntax

targetElement.removeChild(childElement); 

Chapter 8 ■ The DOM Reference

264

Example

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Programmer's Reference</title>
 </head>
 <body>
 <h1>Hello World</h1>

 1
 2
 3
 4
 5

 
 <script>
var targetList = document.querySelector("ul"),
 targetElement = document.querySelectorAll("li")[2];
 
targetList.removeChild(targetElement);
 </script>
 </body>
</html>
 

In this example, we are removing the third item from the list using removeChild(). First we get a reference to the
list, and to the element we want to remove, and then we use removeChild() to remove the element.

element.removeEventListener( )
The element.removeEventListener() method “undoes” the element.addEventListener() method. As such, it takes
the same parameters, and will remove the event handler that was added with those parameters. If no event handler
matches the parameters provided, the method does nothing.

Syntax

targetElement.removeEventListener(strEventType, eventHandler, useCapture); 

Example

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Programmer's Reference</title>
 </head>
 <body>
 <h1>Hello World</h1>
 <p>Click me!</p>
 <script>
var myPar = document.querySelector("p"),
 myEventObject;
 

Chapter 8 ■ The DOM Reference

265

// Implement a listener interface on myEventObject
myEventObject = {
 handleEvent : function(event) {
 alert('You clicked on the paragraph!');
 event.target.removeEventListener("click", this, false); // Unregister the event handler
 }
}
 
myPar.addEventListener("click", myEventObject, false);
 </script>
 </body>
</html>
 

In this example, we create an event handler that executes only once, because it removes itself when it executes.
We begin by creating an object that implements a DOM listener interface (see element.addEventListener() for
details). Within the listener interface, we have an alert to indicate that the handler fired, and then we remove the
event handler from the target element. Note that within a listener interface, the value of this is set to the object that
contains the interface; that’s why in the removeEventListener() call we refer to the event handler as this, and in the
addEventListener() call we refer to the event handler as myEventObject—they refer to the same thing.

element.replaceChild( )
The element.replaceChild() method replaces the specified child of the target element with the specified
new element.

Syntax

targetElement.replaceChild(newElement, oldElement); 

Example

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Programmer's Reference</title>
 </head>
 <body>
 <h1>Hello World</h1>

 1
 2
 3
 4
 5

 
 <script>
var targetList = document.querySelector("ul"),
 targetElement = document.querySelectorAll("li")[2],
 newTextNode = document.createTextNode("three"),
 newLi = document.createElement("li");
 

Chapter 8 ■ The DOM Reference

266

newLi.appendChild(newTextNode);
 
targetList.replaceChild(newLi, targetElement);
 </script>
 </body>
</html>
 

In this example, we replace the third list item with a generated one. First we get a reference to the unordered list
(the parent element), and then a reference to the element we want to replace. Then we build our new list item, and
use replaceChild() to replace the target element.

element.scrollIntoView( )
If the target element is outside of the viewport as a result of scrolling, the element.scrollIntoView() method causes
the element to scroll into view and align with the top of the viewable area. If the optional boolean parameter is
provided, true causes the element to scroll to the top of the viewable area (default behavior), while false causes the
element to align with the bottom of the viewable area.

Syntax

targetElement.scrollIntoView(boolAlignWithTop); 

Example

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Programmer's Reference</title>
 <style>
.container {
 width: 300px;
 height: 500px;
 overflow: auto;
 border: 1px solid #000;
}
 </style>
 </head>
 <body>
 <div class="container">
  
 </div>
 <script>
// Create many elements to induce scroll.
var myDocFrag = document.createDocumentFragment();
for (var i = 0 ; i < 200; i++) {
 var newParagraph = document.createElement("p"),
 newTextNode = document.createTextNode("This is paragraph #" + i);
 newParagraph.id = "id" + i;
 newParagraph.appendChild(newTextNode);
 myDocFrag.appendChild(newParagraph);
}
 

Chapter 8 ■ The DOM Reference

267

// Get a reference to our container and append the fragment.
var targetDiv = document.querySelector(".container");
targetDiv.appendChild(myDocFrag);
 
// Get a reference to the element we want to scroll into view.
var targetParagraph = document.getElementById("id150");
targetParagraph.scrollIntoView();
 </script>
 </body>
</html>
 

In this example, we first have a document that has a single div, which we have styled to be a specific width and
height. Then we create many paragraphs and append them as children to the div. Then we get a reference to one of
those paragraphs and scroll it into view using its scrollIntoView() method.

element.setAttribute( )
The element.setAttribute() method sets the specified attribute to the specified value. If the attribute does not exist
on the target element, it will be added. Note that changing attributes through their named properties on the element
is faster than setting their values using setAttribute().

Syntax

targetElement.setAttribute(strAttribute, strValue); 

Example

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Programmer's Reference</title>
 </head>
 <body>
 <h1>Hello World</h1>
 <script>
var headline = document.querySelector("h1");
 
alert(headline.hasAttribute("name")); // Will alert false, the headline has no name attribute.
headline.setAttribute("name", "headline"); // Sets the name.
alert(headline.hasAttribute("name")); // Will alert true
 </script>
 </body>
</html>
 

In this example, we are adding the name attribute to the headline. At first, the headline has no name attribute,
so hasAttribute("name") returns false. Then we set the attribute and check again, and hasAttribute("name")
returns true.

Chapter 8 ■ The DOM Reference

268

Summary
In this chapter, we have provided a basic reference for three of the most commonly used objects specified by
the DOM:

•	 window, which models the window where the document is loaded and displayed, and also
includes references to other windows. It also serves as the global scope for JavaScript.

•	 document, which models the document that has been loaded into the window. The document
object has properties and methods for accessing elements in the document and modifying
them.

element, which provides the abstract template for elements. DOM elements have properties and methods for
accessing and modifying an element’s contents, as well as for managing events. For detailed discussions of many of
the topics covered here, along with more examples, see Chapter 4.

This concludes the reference section of the book. We hope that you find both this reference section and the
discussion section (consisting of Chapters 1 through 4) to be helpful in your JavaScript programming. Good luck!

A�       �
Anonymous functions, 47
appDetail property, 81
Arithmetic operators, 198
Arrays

access arrays, 41
array with data, 134
array elements vs.

properties, 42
assign values, 42
concat() method, 135
constructor, 42, 133
dynamic length, 41
indexOf() method, 135
iteration, 43
join() method, 136
lastIndexOf()

method, 136
length property, 135
literal notation, 43, 133
multidimensional

arrays, 43
pop() method, 137
properties, 133
push() method, 137
reverse() method, 137
shift() method, 138
slice() method, 138
sort() method, 138
splice() method, 139
toString() method, 140
unshift() method, 140

Assignment operators, 195

B�       �
Bitwise operators, 199
Boolean

syntax, 140
toString() method, 141
valueOf() method, 141

break statement, 185

C�       �
cachedXHR()method, 115
Comma operator, 202
Conditional operator, 30, 201
Conditionals

if statement, 51
switch statements, 52

continue statement, 186
Cross domain technique

CORS, 111
JSONP, 108
postMessage() method, 111
server-side proxy, 108

D�       �
Date objects

getDate() method, 142
getDay() method, 143
getFullYear() method, 143
getHours() method, 143
getMilliseconds() method, 143
getMinutes() method, 144
getMonth() method, 144
getSeconds() method, 144
getTime() method, 145
getTimezoneOffset() method, 145
getUTCDate() method, 145
getUTCDay() method, 145
getUTCFullYear() method, 146
getUTCHours() method, 146
getUTCMilliseconds() method, 146
getUTCMinutes() method, 147

Index

269

getUTCMonth() method, 147
getUTCSeconds() method, 147
parse() method, 148
setDate() method, 148
setFullYear() method, 148
setHours() method, 149
setMilliseconds() method, 150
setMinutes() method, 150
setMonth() method, 151
setSeconds() method, 151
setTime() method, 152
setUTCDate() method, 152
setUTCFullYear() method, 152
setUTCHours() method, 153
setUTCMilliseconds() method, 154
setUTCMinutes() method, 154
setUTCMonth() method, 155
setUTCSeconds() method, 155
syntax, 142
toDateString() method, 156
toISOString() method, 156
toJSON() method, 156
toLocaleDateString() method, 157
toLocaleString() method, 157
toLocaleTimeString() method, 157
toString() method, 158
toTimeString() method, 158
toUTCString() method, 158
UTC() method, 142, 159
valueOf() method, 159

delete operator, 202
doCachedXHR() method, 113
Document object, 209, 235

methods
addEventListener(), 240
creatComment(), 240
document.createEvent(), 241
document.createTextNode(), 241
document fragment(), 241
getElementById(), 242
getElementsByClassName(), 242
getElementsByTagName(), 243
querySelector(), 243
querySelectorAll(), 243, 245

properties
active element, 236
body elements, 236
compatMode, 236–237
cookies, 237, 239
document.referrer, 240
head element, 239
Location object, 240
document’s title, 240
URL, 240

Document object model (DOM), 209
accessing elements

traversal properties, 65
using getElementById(), 62
using getElementsByClass(), 64
using getElementsByTagName(), 63
using methods on element, 65
using querySelector(), 64

browser, 60
events

binding event handlers, 74
cross-browser strategies, 85
custom events, 83
delegation, 78
execution context, 73
form events, 74
keyboard events, 73
manually firing events, 79
model, 57
mouse events, 73
mutation events, 74
object events, 73
phases, 73
unbinding event handlers, 75
user interface events, 74

HTML, 58, 61
and JavaScript, 57
modification

element content, 69
element deletion, 72
href property, 66
new element creation, 70
style attribute, 67

objects
document (see Document object)
element (see Element object)
window object (see window object reference)

standard
Level 1 DOM standard, 58
Level 2 DOM standard, 59
Level 3 DOM specification, 59

structure, 60
do loops, 55, 185
DOM. See Document object model (DOM)
do/while loop, 187

E������
Element object, 210, 245

methods
addEventListener() method, 254–255
appendChild() method, 255–256
click events, 256
cloneNode(), 256–257
dispatchEvent(), 257–258

■ index

270

Date objects (cont.)

element.blur(), 256
element.focus(), 258
element.hasAttribute(), 259, 261
element.hasChildNodes(), 261
getAttribute() method, 258
getElementsByClassName(), 259
getElementsByTagName(), 259
insertBefore(), 262
querySelector(), 262
querySelectorAll(), 263
removeAttribute(), 263
removeChild(), 263
removeEventListener(), 264–265
replaceChild(), 265–266
scrollIntoView(), 266–267
setAttribute(), 267

properties, 245
child nodes, 245
classList feature, 246
className, 246
contentEditable property, 247
element.children, 245
ID, 247
innerHTML, 248
isContentEditable property, 248
last child node, 248
name property, 249
nextElementSibling, 249
nextSibling, 249
offsetHeight and offsetLeft, 249
offsetParent and offsetTop, 249
offsetWidth, 250
outerHTML, 250–251
parent node, 251
previous sibling, 251
scroll property, 252
Style object, 252–253
tabIndex, 253
title property, 254

European Computer Manufacturer’s
Association (ECMA) script, 3

Expressions, 27

F�       �
fadeIn() method, 120
fadeOut() method, 119
Firefox, 5
for/in loop, 185, 188
for-in loops, 54
for loop, 53, 185, 187
Formatting code

ASI, 26
brackets ({ }), 25
consistency, 27

multiline comment (/* and */), 25
semicolons (;), 26
single-line delimiter (//), 25

Function
declaration, 45
expression

apply() and call(), 50
constructors, 49
form, 47
vs. function declarations, 47
hoisting, 48
invoker, 48

function operator, 203

G�       �
getElementByID() method, 97
get operator, 203
getTime() method, 114
Global function

decodeURI(), 182
decodeURIComponent(), 182
encodeURI(), 182
encodeURIComponent(), 182
eval() method, 182
isFinite() method, 182
isNaN() method, 183
parseFloat() method, 183
parseInt() method, 184

Global variable
infinity, 179
JSON

JSON.parse() method, 179
JSON.stringify() method, 180

NaN property, 181
undefined property, 181

Google’s closure compiler, 100

H�       �
handlejsonpresults()function, 110
handleReadyStateChange() function, 106
hide() method, 119
HTML5 syntax, 5

I�       �
IDE. See Integrated development

environment (IDE)
if-else conditionals, 185
if statement, 51, 188
Immediately executed function

expression (IEFE), 114
in operator, 204
instanceof operator, 204

■ Index

271

Integrated development environment (IDE)
Aptana Studio, 88
code assist, 88
die-hard emacs users, 88
Eclipse, 89
Microsoft’s Visual Studio, 89
WebStorm, 90

Internet Explorer 5, 10

J, K�       �
JavaScript

alert method, 7
breakpoints, 95
browsers

3-D view, 91
features, 90
Firefox, 91
Google Chrome, 91
HTTP traffic, 91
Internet Explorer, 91
Safari, 92

Chrome, 8
C-like languages, 1
control statements

break, 185
continue, 186
do loop, 185
do/while loop, 187
for/in loop, 185, 188
for loop, 185, 187
if, 188
if-else conditionals, 185
label statement, 189
return, 190
switch/case, 190
switch conditionals, 185
while, 185, 192
with, 192

cross domain technique
CORS, 111
JSONP, 108
postMessage() method, 111
server-side proxy, 108

data caches
cacheName, 113
definition, 113
doCachedXHR() method, 113
doXHR() function, 112
getTime() method, 114
intCacheDuration, 113
new Date object

creation, 114
successCallback() method, 114
timestamp, 112

dot notation, 7
drawbacks, 1
evolution and ECMA-262 standard, 3
features, 2
Firefox, 8
function execution, 21
IDE

Aptana Studio, 88
code assist, 88
die-hard emacs users, 88
Eclipse, 89
Microsoft’s Visual Studio, 89
WebStorm, 90

implementation, 3
inheritance metaphor, 1
jkl() function

cachedLoad() method, 132
doXHR(), cachedXHR(), and

executeJSONPQuery() methods, 131
enredden() method, 128
library pattern, 126
load() method, 131
methods, 127
namespace, 126

jQuery
benefits of, 118
document ready event, 124
efficiency, 120
fadeIn() method, 120
fadeOut() method, 119
hiding elements, 119
kitten rescue game, 121
mobile, 124
off() method, 123
on() method, 121
UI, 124

library and framework
closure, 117
dojo toolkit, 116
features, 115
jQuery, 116
microJS, 118
montage, 117
node.js, 117
prototype, 116
re-usable code, 115
Sencha ext JS, 116
YUI, 117

loading efficiency
combine, minify, and GZip, 100
document end, 97
downloading and processing

content, 96
moderation, 103
non-blocking technique, 101

■ index

272

module pattern, 22
prototypal inheritance

Chrome’s console, 10
new objects creation, 11
new property addition, 10
object.create syntax, 9
old syntax, 10
properties override, 9
prototype property, 8

scoping
block-level scope, 12
closures, 15, 17
functional scope, 12–13
global scope, 13
limitation, 13–14
metaphor, 1
nested functional scope, 12

typing metaphor, 1
variable declaration, 7
weak types

data types and primitives, 17–18
demonstration, 17
type conversion (see Type conversion, JavaScript)

web browsers
function, 4
UI platform, 4
web pages, 5, 7

web servers
debugging servers, 92
MacOS, 92
Windows, 92
Xampp, 92

workflow
chrome browser console, 93
commands, 95
console output, 94
object display, 94
toString() method, 95
window.console object, 94

XMLHttpRequest object
creation and configuration, 105
event handler, 104
function, 106
send() method, 106
user interaction, 103

JavaScript operators
arithmetic, 198
assignment, 195
bitwise, 199
comma operator, 202
comparison operators

coerced comparison, 198
conversion process, 197
strict, 197
toString() method, 197

conditional, 201
constructor function, 205
delete, 202
function, 203
get operator, 203
in operator, 204
instanceof, 204
logical, 200
set operator, 205
string, 201
typeof, 206
void, 207

jQuery off() method, 123
jQuery on() method, 121
JSMin, 101
JSON.parse() method, 108

L�       �
label statement, 189
Logical operators, 200
Loops

do Loops, 55
for-in loops, 54
for loops, 53
while loops, 55

M�       �
Math

abs() method, 160
acos() method, 161
asin() method, 161
atan() method, 161
atan2() method, 162
ceil() method, 162
cos() method, 162
exp() method, 163
floor() method, 163
log() method, 163
max() method, 163
min() method, 164
pow() method, 164
properties, 160
random() method, 164
round() method, 165
sin() method, 165
sqrt() method, 165
tan() method, 165

N�       �
Number

properties, 166
toExponential() method, 166

■ Index

273

toFixed() method, 167
toPrecision() method, 167
toString() method, 167
valueOf() method, 168

O�       �
Objects

access properties, 37
constructor functions, 39
enumeration, 38
inheritance, 37
literals, 40
Object.create(), 40

Operators
categories, 30
conditional operator, 30
operands, 29
precedence, 30

P�       �
postMessage() method, 112

Q�       �
querySelector() method, 119

R�       �
RegExp

exec() method, 170
global property, 168
ignoreCase property, 169
lastIndex property, 169
multiline property, 169
source property, 170
syntax, 168
test() method, 171

responseHandler()
function, 109

return statement, 190

S�       �
Safari, 5
set operator, 205
showLoading() function, 100
Statements, 28
String

charAt() method, 172
charCodeAt() method, 172
concat() method, 173
fromCharCode() method, 173

indexOf() method, 173
lastIndexOf() method, 174
length property, 172
match() method, 174
replace() method, 174
search() method, 175
slice() method, 176
split() method, 176
substring() method, 177
substr() method, 176
syntax, 171
toLowerCase() method, 177
toUpperCase() method, 177
trimLeft() method, 178
trim() method, 178
trimRight() method, 178

String operator, 201
successCallback() method, 114
switch/case statement, 190
switch conditionals, 185
switch Statements, 52

T�       �
Type conversion, JavaScript

algorithm type, 20
confusing type, 20
primitive rules, 20
toBoolean rules, 20
toNumber rules, 20
undefined or null, 20–21

typeof operator, 206

U�       �
user interface (UI), 4

V�       �
Variables

declaring variables, 32
management, 35
variable scope, 33

void operator, 207

W, X�       �
while loops, 55, 185, 192
window object reference

global context, 210
iframes, 210
methods, 220

element.addEventListener(), 220
element.removeEventListener(), 231
postMessage() method, 227, 229

■ index

274

Number (cont.)

scroll method, 232–233
setInterval() method, 233–234
setTimeout() method, 235
window.alert(), 220
window.clearTimeout(), 221
window.close(), 221
window.confirm(), 222
window.getComputedStyle(), 224–225
window.open (), 225, 227
window.print(), 229
window.prompt(), 230
window.resizeBy(), 231
window.resizeTo(), 232
window.sizeToContent(), 235

properties
document.method, 211
History object, 211–212
innerHeight property, 212
innerWidth property, 213–214

length property, 214
localStorage property, 216–217
location property, 214, 216
open() method, 217
outerHeight and outerWidth, 218
pageXoffset and pageYoffset, 218
scrollX and scrollY, 219
Session Storage feature, 220
window.frames, 211
window.parent, 219
window.top, 220

Single Origin Policy, 210
subdocuments, 210
window.scrollY, 219

with statement, 192

Y, Z�       �
YUI compressor, 101

■ Index

275

JavaScript Programmer’s
Reference

Jonathan Reid

Thomas Valentine

JavaScript Programmer’s Reference

Copyright © 2013 by Jonathan Reid and Thomas Valentine

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-4629-9

ISBN-13 (electronic): 978-1-4302-4630-5

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: Ben Renow-Clarke
Technical Reviewers: RJ Owen
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan, Morgan Ertel,

Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham,
Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Gwenan Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Christine Ricketts
Copy Editors: William McManus and Mary Bearden
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science +
Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook Licensing
web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

http://orders-ny@springer-sbm.com
http://www.springeronline.com
http://rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com
http://www.apress.com/source-code/

For Mom and Dad, who have always been there for me.

—Jon Reid

For my Rock, my Mother

—Thomas Valentine

vii

Contents

About the Authors�� xv

About the Technical Reviewer��� xvii

Introduction�� xix

Chapter 1: JavaScript Basics■■ ���1

Hard to Learn, Harder to Love��1

What Is JavaScript?��2

The Evolution of JavaScript and the ECMA-262 Standard�� 3

JavaScript Implementations��� 3

Web Browsers and JavaScript���4

JavaScript in Web Pages�� 5

Brief Digression: Understanding and Running Examples���7

Running the Examples�� 7

JavaScript’s Three Difficult Features���8

Prototypal Inheritance�� 8

Scoping in JavaScript��� 11

One of Those Weak Types, Eh?��� 16

Putting It Together: Two Common Patterns��20

Immediately Executing Function Expressions�� 21

The Module Pattern�� 22

Summary��23

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

■ Contents

viii

Chapter 2: JavaScript Nuts and Bolts ■ ��25

Formatting JavaScript Code ��25

Relying on ASI �� 26

Be Consistent ��� 27

Expressions and Statements ���27

Expressions ��� 27

Statements �� 28

Operators ���29

Precedence �� 30

Variables ��32

Declaring Variables in JavaScript �� 32

Understanding Variable Scope in JavaScript ��� 33

Managing Variables in JavaScript ��� 35

Objects ��37

Inheritance ��� 37

Accessing Properties and Enumeration ��� 37

Creating Objects �� 39

Arrays ��41

Dynamic Length ��� 41

Accessing and Assigning Values �� 41

Creating Arrays �� 42

Functions ���45

Function Declarations �� 45

Function Expressions ��� 46

Conditionals ���51

if Statements ��� 51

switch Statements ��� 52

■ Contents

ix

Loops��53

for Loops��� 53

for-in Loops�� 54

while Loops�� 55

do Loops��� 55

Summary��56

Chapter 3: The DOM■■ ��57

How I Learned to Stop Worrying and Love the DOM���57

History of the DOM Standard��58

Browser Dependencies��60

DOM Structure��60

Accessing Elements in the DOM��62

Traversing the DOM�� 65

Modifying the DOM���66

Modifying Existing Elements�� 66

Creating New Elements�� 70

Deleting Elements�� 72

DOM Events��72

Event Phases�� 73

Event Execution Context��� 73

Different Events�� 73

Binding Event Handlers�� 74

Unbinding Event Handlers�� 75

The Event Object��� 76

Event Delegation��� 78

Manually Firing Events��� 79

Custom Events�� 83

Cross-Browser Strategies�� 85

Summary��86

■ Contents

x

Chapter 4: JavaScript in Action■■ ��87

Working with JavaScript��87

JavaScript IDEs��� 88

Browsers�� 90

Web Servers��� 92

JavaScript Development Workflow��� 93

Breakpoints�� 95

Loading Scripts Efficiently��95

How Browsers Download and Process Content�� 96

Optimization Tip #1: Load Scripts at the End of the Document�� 97

Optimization Tip #2: Combine, Minify, and GZip�� 100

Optimization Tip #3: Load Scripts In the Document Head Using a Non-Blocking Technique������������������������������ 101

Optimization Tip #4: Moderation is Good�� 103

Asynchronous Communication using XMLHttpRequest���103

How It Works��� 103

Cross Domain Techniques��108

Server-side proxy��� 108

JSONP��� 108

CORS��� 111

Post Message��� 111

Data Caching��112

JavaScript Libraries and Frameworks��115

Choosing a Library�� 115

Using jQuery���118

How It Works��� 118

Events in jQuery�� 121

jQuery UI��� 124

jQuery Mobile��� 124

Building a Library���126

Summary��132

■ Contents

xi

Chapter 5: JavaScript Global Objects Reference■■ ��133

Array���133

Array Properties�� 135

Array Methods�� 135

Boolean��140

Boolean Methods�� 141

Date��142

Date Methods��� 142

Math���159

Math Properties�� 160

Math Methods��� 160

Number��166

Number Properties��� 166

Number Methods�� 166

RegExp���168

RegExp Properties�� 168

RegExp Methods��� 170

String��171

String Properties��� 172

String Methods��� 172

Miscellaneous Global Variables and Functions��179

Variables��� 179

Functions�� 182

Summary��184

Chapter 6: JavaScript Control Statements Reference■■ ��185

Introduction��185

break��185

continue���186

do/while���187

■ Contents

xii

for and for/in��187

for��� 187

for/in��� 188

if���188

label���189

return���190

switch/case��190

while���192

with��192

Summary��193

Chapter 7: JavaScript Operators Reference■■ ���195

Assignment Operators��195

Comparison Operators��196

Strict Comparisons��� 197

Coerced Comparisons��� 198

Arithmetic Operators��198

Bitwise Operators���199

A Bit About Binary Numbers��� 199

Logical Operators���200

String Operator���201

Miscellaneous Operators��201

Conditional Operator��� 201

Comma Operator�� 202

delete Operator��� 202

function Operator�� 203

get Operator�� 203

in Operator�� 204

instanceof Operator�� 204

■ Contents

xiii

new Operator�� 205

set Operator�� 205

typeof Operator��� 206

void Operator�� 207

Summary��207

Chapter 8: The DOM Reference■■ ���209

Browser Support��209

DOM Objects���209

The Window Object Reference���210

Properties��� 210

Methods�� 220

The document Object Reference��235

Properties��� 236

Methods�� 240

The element Object Reference���245

Properties��� 245

Methods�� 254

Summary��268

Index��269

xv

About the Authors

Jonathan Reid has been building web-based applications since 1996 and is passionate about creating awesome and
compelling user experiences on the web. He is a firm believer in user-centered creative processes and is an advocate
for standards and accessibility. Jon has a wide range of experience developing web applications, ranging from
genetic analysis software to cutting-edge advertising. Jon teaches courses in JavaScript, jQuery, and jQuery Mobile,
and has written extensively on all three topics. Jon bet his career on web technologies early on, and he is happy to
see his bet paying off.

Jon is an alumnus of the University of Colorado, Boulder, where he graduated with a degree in physics and
mathematics. He currently works as a Senior JavaScript Developer at Google, and lives in Sunnyvale, California with
his partner of 15 years. He occasionally tweets as @jreid01 and blogs even more occasionally at
webdev.dreamwidth.org.

Thomas Valentine lives in the small town of Selkirk, Manitoba, Canada on the shores of the Red River. His love of the
written word has shaped his career and life and will continue to do so for many years to come.

http://@jreid01
http://webdev.dreamwidth.org

xvii

About the Technical Reviewer

RJ Owen is a Product Manager and Design Lead at Convercent in Denver, Colorado.
RJ started his career as a software developer and spent ten years working in C++,
Java, and Flex before moving to the design and product side of things. He truly loves
good design and understanding what makes people tick. RJ holds an MBA and
a bachelor’s in physics and computer science. He is a frequent speaker at many
industry events including Web 2.0, SXSW Interactive, and Adobe MAX

	JavaScript Programmer’s Reference
	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Introduction
	Chapter 1: JavaScript Basics
	Hard to Learn, Harder to Love
	What Is JavaScript?
	The Evolution of JavaScript and the ECMA-262 Standard
	JavaScript Implementations

	Web Browsers and JavaScript
	JavaScript in Web Pages
	Order of Execution

	Brief Digression: Understanding and Running Examples
	Running the Examples

	JavaScript’s Three Difficult Features
	Prototypal Inheritance
	Scoping in JavaScript
	Limiting Scope
	Closures

	One of Those Weak Types, Eh?
	Basic Data Types and Primitives
	Type Conversion in JavaScript

	Putting It Together: Two Common Patterns
	Immediately Executing Function Expressions
	The Module Pattern

	Summary

	Chapter 2: JavaScript Nuts and Bolts
	Formatting JavaScript Code
	Relying on ASI
	Be Consistent

	Expressions and Statements
	Expressions
	Statements

	Operators
	Precedence

	Variables
	Declaring Variables in JavaScript
	Understanding Variable Scope in JavaScript
	Managing Variables in JavaScript

	Objects
	Inheritance
	Accessing Properties and Enumeration
	Creating Objects
	Using Constructor Functions
	Using Literals
	Using Object.create( )
	Which Method Should I Use?

	Arrays
	Dynamic Length
	Accessing and Assigning Values
	Creating Arrays
	Iterating over Arrays
	Array Methods and Properties

	Functions
	Function Declarations
	Function Expressions
	Invoking Functions
	Invoking Functions Using the Invoker
	Invoking Functions As Constructors
	Invoking Functions Using apply() and call()

	Conditionals
	if Statements
	switch Statements

	Loops
	for Loops
	for-in Loops
	while Loops
	do Loops

	Summary

	Chapter 3: The DOM
	How I Learned to Stop Worrying and Love the DOM
	History of the DOM Standard
	Browser Dependencies
	DOM Structure
	Accessing Elements in the DOM
	Traversing the DOM

	Modifying the DOM
	Modifying Existing Elements
	Modifying Styles
	Modifying Content

	Creating New Elements
	Deleting Elements

	DOM Events
	Event Phases
	Event Execution Context
	Different Events
	Binding Event Handlers
	Unbinding Event Handlers
	The Event Object
	Event Delegation
	Manually Firing Events
	Creating an Event Object
	Configuring an Event Object
	Dispatching an Event

	Custom Events
	Cross-Browser Strategies

	Summary

	Chapter 4: JavaScript in Action
	Working with JavaScript
	JavaScript IDEs
	aptana studio
	Eclipse
	Microsoft Visual Web Developer and Visual Studio Express
	WebStorm

	Browsers
	Chrome
	Firefox
	Internet Explorer
	Safari

	Web Servers
	MacOS
	Windows
	Xampp
	IDE Debugging Servers

	JavaScript Development Workflow
	Using the Browser Console

	Breakpoints

	Loading Scripts Efficiently
	How Browsers Download and Process Content
	Optimization Tip #1: Load Scripts at the End of the Document
	Optimization Tip #2: Combine, Minify, and GZip
	Optimization Tip #3: Load Scripts In the Document Head Using a Non-Blocking Technique
	Optimization Tip #4: Moderation is Good

	Asynchronous Communication using XMLHttpRequest
	How It Works
	Step 1: Event Handlers
	Step 2: Creating and Configuring the XMLHttpRequest Object
	Step 3: Sending the Request
	Putting It All Together

	Cross Domain Techniques
	Server-side proxy
	JSONP
	CORS
	Post Message

	Data Caching
	JavaScript Libraries and Frameworks
	Choosing a Library
	Prototype and Scriptaculous
	Dojo Toolkit
	jQuery
	Sencha ext JS
	YUI
	Closure
	Node.js
	Montage
	MicroJS

	Using jQuery
	How It Works
	Events in jQuery
	jQuery UI
	jQuery Mobile

	Building a Library
	Summary

	Chapter 5: JavaScript Global Objects Reference
	Array
	Array Properties
	length

	Array Methods
	concat( )
	indexOf( )
	join( )
	lastIndexOf( )
	pop( )
	push( )
	reverse( )
	shift( )
	slice( )
	sort( )
	splice( )
	toString( )
	unshift( )

	Boolean
	Boolean Methods
	toString( )
	valueOf( )

	Date
	Date Methods
	getDate( )
	getDay( )
	getFullYear( )
	getHours( )
	getMilliseconds( )
	getMinutes( )
	getMonth( )
	getSeconds( )
	getTime( )
	getTimezoneOffset( )
	getUTCDate( )
	getUTCDay( )
	getUTCFullYear( )
	getUTCHours( )
	getUTCMilliseconds( )
	getUTCMinutes( )
	getUTCMonth( )
	getUTCSeconds( )
	parse( )
	setDate( )
	setFullYear( )
	setHours( )
	setMilliseconds( )
	setMinutes( )
	setMonth( )
	setSeconds( )
	setTime( )
	setUTCDate( )
	setUTCFullYear( )
	setUTCHours( )
	setUTCMilliseconds( )
	setUTCMinutes( )
	setUTCMonth( )
	setUTCSeconds( )
	toDateString( )
	toISOString( )
	toJSON( )
	toLocaleDateString( )
	toLocaleTimeString( )
	toLocaleString( )
	toString( )
	toTimeString( )
	toUTCString( )
	UTC( )
	valueOf( )

	Math
	Math Properties
	Math Methods
	abs( )
	acos( )
	asin( )
	atan( )
	atan2( )
	ceil( )
	cos( )
	exp( )
	floor( )
	log( )
	max( )
	min( )
	pow( )
	random( )
	round( )
	sin( )
	sqrt( )
	tan( )

	Number
	Number Properties
	Number Methods
	toExponential( )
	toFixed( )
	toPrecision( )
	toString( )
	valueOf( )

	RegExp
	RegExp Properties
	global
	ignoreCase
	lastIndex
	multiline
	source

	RegExp Methods
	exec( )
	test( )

	String
	String Properties
	length

	String Methods
	charAt( )
	charCodeAt( )
	concat( )
	fromCharCode( )
	indexOf( )
	lastIndexOf( )
	match( )
	replace( )
	search( )
	slice( )
	split( )
	substr( )
	substring( )
	toLowerCase( )
	toUpperCase( )
	trim( )
	trimLeft( )
	trimRight( )

	Miscellaneous Global Variables and Functions
	Variables
	Infinity
	JSON
	JSON.parse()
	JSON.stringify()

	NaN
	undefined

	Functions
	decodeURI( ), encodeURI( ), decodeURIComponent( ), encodeURIComponent( )
	eval( )
	isFinite( )
	isNaN( )
	parseFloat( )
	parseInt( )

	Summary

	Chapter 6: JavaScript Control Statements Reference
	Introduction
	break
	continue
	do/while
	for and for/in
	for
	for/in

	if
	label
	return
	switch/case
	while
	with
	Summary

	Chapter 7: JavaScript Operators Reference
	Assignment Operators
	Comparison Operators
	Strict Comparisons
	Coerced Comparisons

	Arithmetic Operators
	Bitwise Operators
	A Bit About Binary Numbers

	Logical Operators
	String Operator
	Miscellaneous Operators
	Conditional Operator
	Comma Operator
	delete Operator
	function Operator
	get Operator
	in Operator
	instanceof Operator
	new Operator
	set Operator
	typeof Operator
	void Operator

	Summary

	Chapter 8: The DOM Reference
	Browser Support
	DOM Objects
	The Window Object Reference
	Properties
	window.document
	window.frames
	window.history
	Properties
	length

	Methods
	back( )
	forward( )
	go( )

	window.innerHeight
	window.innerWidth
	window.length
	window.location
	window.localStorage
	window.opener
	window.outerHeight
	window.outerWidth
	window.pageXOffset
	window.pageYOffset
	window.parent
	window.scrollX
	window.scrollY
	window.sessionStorage
	window.top

	Methods
	window.addEventListener( )
	window.alert( )
	window.clearTimeout( )
	window.close( )
	window.confirm( )
	window.getComputedStyle( )
	window.open( )
	window.postMessage( )
	window.print( )
	window.prompt( )
	window.removeEventListener( )
	window.resizeBy( )
	window.resizeTo( )
	window.scroll( )
	window.scrollBy( )
	window.scrollByLines( )
	window.scrollByPages( )
	window.scrollTo( )
	window.setInterval( )
	window.setTimeout( )
	window.sizeToContent( )

	The document Object Reference
	Properties
	document.activeElement
	document.body
	document.compatMode
	document.cookie
	document.head
	document.location
	document.referrer
	document.title
	document.URL

	Methods
	document.addEventListener( )
	document.createComment( )
	document.createDocumentFragment( )
	document.createElement( )
	document.createEvent( )
	document.createTextNode( )
	document.getElementById( )
	document.getElementsByClassName( )
	document.getElementsByTagName( )
	document.querySelector( )
	document.querySelectorAll( )

	The element Object Reference
	Properties
	element.childNodes
	element.children
	element.classList
	element.className
	element.contentEditable
	element.id
	element.innerHTML
	element.isContentEditable
	element.lastChild
	element.lastElementChild
	element.name
	element.nextSibling
	element.nextElementSibling
	element.offsetHeight
	element.offsetLeft
	element.offsetParent
	element.offsetTop
	element.offsetWidth
	element.outerHTML
	element.parentNode
	element.previousSibling
	element.previousElementSibling
	element.scrollHeight
	element.scrollLeft
	element.scrollTop
	element.scrollWidth
	element.style
	element.tabIndex
	element.tagName
	element.title

	Methods
	element.addEventListener( )
	Event Handler Objects

	element.appendChild( )
	element.blur( )
	element.click( )
	element.cloneNode( )
	element.dispatchEvent( )
	element.focus( )
	element.getAttribute( )
	element.getElementsByClassName( )
	element.getElementsByTagName( )
	element.hasAttribute( )
	element.hasAttributes( )
	element.hasChildNodes( )
	element.insertBefore( )
	element.querySelector( )
	element.querySelectorAll( )
	element.removeAttribute( )
	element.removeChild( )
	element.removeEventListener( )
	element.replaceChild( )
	element.scrollIntoView( )
	element.setAttribute( )

	Summary

	Index

