
www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

JavaScript JSON
Cookbook

Over 80 recipes to make the most of JSON in your desktop,
server, web, and mobile applications

Ray Rischpater

BIRMINGHAM - MUMBAI

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

JavaScript JSON Cookbook

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: June 2015

Production reference: 1230615

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-690-2

www.packtpub.com

www.allitebooks.comwww.allitebooks.com

www.packtpub.com
http://www.allitebooks.org
http://www.allitebooks.org

Credits

Author
Ray Rischpater

Reviewers
Vipul A M

Robert MacLean

Charlotte Spencer

Commissioning Editor
Amarabha Banerjee

Acquisition Editors
Manish Nainani

Llewellyn Rozario

Content Development Editor
Susmita Sabat

Technical Editor
Ankur Ghiye

Copy Editor
Adithi Shetty

Project Coordinator
Suzanne Coutinho

Proofreader
Safis Editing

Indexer
Priya Sane

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

About the Author

Ray Rischpater is an engineer and author with over 20 years of experience in writing
about and developing for mobile computing platforms.

During this time, he participated in the development of Internet technologies and custom
applications for Java ME, Qualcomm BREW, Apple iPhone, Google Android, Palm OS, Newton,
and Magic Cap, as well as several proprietary platforms. Currently, he's employed as a
software development manager at Microsoft in Sunnyvale, where he works on mapping and
data visualization.

When he is not writing about software development, he enjoys hiking and photography with
his family and friends in and around the San Lorenzo Valley in Central California. When he
can, he also provides public service through amateur radio as the licensed Amateur Extra
station KF6GPE.

Among the books he's written are Application Development with Qt Creator
(now in its second edition, published by Packt Publishing, 2014) and Microsoft
Mapping (with Carmen Au, published by Apress, 2013). Ray also irregularly blog at
http://www.lothlorien.com/kf6gpe.

Ray holds a bachelor's degree in pure mathematics from the University of California,
Santa Cruz, and is a member of the IEEE, ACM, and ARRL.

www.allitebooks.comwww.allitebooks.com

http://www.lothlorien.com/kf6gpe
http://www.allitebooks.org
http://www.allitebooks.org

About the Reviewers

Vipul A M works as a software developer at BigBinary LLC. He is an avid Rails on Ruby
projects contributor. He spends his spare time exploring and contributing to many open source
Ruby projects when not dabbling with ReactJS or creating various screencasts.

He is currently working on a book titled ReactJS by Example, which walks you through how to
use ReactJS, while working on project examples.

Vipul loves Ruby's vibrant community and helps in building PuneRb. He is the founder of and
runs the RubyIndia Community newsletter and RubyIndia podcast and organizes the Deccan
Ruby Conference in Pune. He blogs prolifically at blog.bigbinary.com and loves doing
various screencasts at videos.bigbinary.com.

Robert MacLean has been working for over 18 years as a developer and an IT
professional in South Africa, where he worked on a wide variety of projects with a number
of customers. Today, he works as a developer at Microsoft, developing applications for
Windows platforms.

Charlotte Spencer is a frontend web developer with a keen interest in semantic HTML,
progressive enhancement, and accessibility. When they're not programming, they are writing
about the Web and her experiences with it, reading, or preparing for the zombie apocalypse.
They tweets at @charlotteis.

www.allitebooks.comwww.allitebooks.com

blog.bigbinary.com
videos.bigbinary.com
http://www.allitebooks.org
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print, and bookmark content

ff On demand and accessible via a web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.comwww.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org
http://www.allitebooks.org

i

Table of Contents
Preface	 v
Chapter 1: Reading and Writing JSON on the Client	 1

Introduction	 1
Reading and writing JSON in JavaScript	 4
Reading and writing JSON in C++	 7
Reading and writing JSON in C#	 11
Reading and writing JSON in Java	 13
Reading and writing JSON in Perl	 16
Reading and writing JSON in Python	 17

Chapter 2: Reading and Writing JSON on the Server	 19
Reading and writing JSON in Clojure	 19
Reading and writing JSON in F#	 22
Reading and writing JSON with Node.js	 25
Reading and writing JSON in PHP	 26
Reading and writing JSON in Ruby	 28

Chapter 3: Using JSON in Simple AJAX Applications	 31
Introduction	 31
Creating an XMLHttpRequest object	 35
Making an asynchronous request for data	 36
Sending JSON to your web server	 37
Accepting JSON using Node.js	 38
Getting the progress of an asynchronous request	 39
Parsing the returned JSON 	 42
Issuing a web service request using Node.js	 45

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

ii

Table of Contents

Chapter 4: Using JSON in AJAX Applications with jQuery
and AngularJS	 49

Introduction	 50
Adding a dependency to jQuery to your web page	 53
Requesting JSON content using jQuery	 54
Sending JSON to your web server using jQuery	 56
Getting the progress of a request using jQuery	 58
Parsing the returned JSON using jQuery	 59
Adding a dependency to AngularJS to your web page	 62
Requesting JSON content using AngularJS	 64
Sending JSON to your web server using AngularJS	 65
Getting the progress of a request using AngularJS	 67
Parsing the returned JSON using AngularJS	 68

Chapter 5: Using JSON with MongoDB	 71
Introduction	 71
Setting up MongoDB	 72
Installing the MongoDB database driver for Node.js	 73
Installing the express module for Node.js	 73
Connecting to a MongoDB database using Node.js	 78
Creating a document in MongoDB using Node.js	 80
Searching for a document in MongoDB with Node.js	 82
Updating a document in MongoDB with Node.js	 85
Deleting a document in MongoDB using Node.js	 86
Using REST to search MongoDB	 87
Using REST to create a document in MongoDB	 89
Using REST to update a document in MongoDB	 91
Using REST to delete a document in MongoDB	 92

Chapter 6: Using JSON with CouchDB	 95
Introduction	 95
Installing and setting up CouchDB and Cradle	 96
Connecting to a CouchDB database using Node.js and Cradle	 97
Creating a CouchDB database using Node.js and Cradle	 98
Creating a document in CouchDB using Node.js and Cradle	 99
Setting up a data view in CouchDB with Node.js and Cradle	 100
Searching for a document in CouchDB with Node.js and Cradle	 101
Updating a document in CouchDB with Node.js and Cradle	 102
Deleting a document in CouchDB using Node.js and Cradle	 103
Using REST to enumerate CouchDB records	 104
Using REST to search CouchDB	 107

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

iii

Table of Contents

Using REST to upsert a document in CouchDB	 108
Using REST to delete a document in CouchDB	 110

Chapter 7: Using JSON in a Type-safe Manner	 113
Introduction	 113
How to deserialize an object using Json.NET	 114
How to handle date and time objects using Json.NET	 116
How to deserialize an object using gson for Java	 118
How to use TypeScript with Node.js	 119
How to annotate simple types using TypeScript	 121
How to declare interfaces using TypeScript	 122
How to declare classes with interfaces using TypeScript	 124
Using json2ts to generate TypeScript interfaces from your JSON	 125

Chapter 8: Using JSON for Binary Data Transfer	 127
Introduction	 127
Encoding binary data as a base64 string using Node.js	 128
Decoding binary data from a base64 string using Node.js	 129
Encoding and decoding binary data as a base64 string using JavaScript
in the browser	 130
Encoding data as BSON using Json.NET	 131
Decoding data from BSON using Json.NET	 132
Using a DataView to access an ArrayBuffer	 134
Encoding and decoding base64 using an ArrayBuffer	 135
Compressing object-body content from a Node.js server built using
the express module	 136

Chapter 9: Querying JSON with JSONPath and LINQ	 139
Introduction	 139
Using the JSONPath dot-notation to query JSON documents	 141
Using JSONPath bracket-notation to query JSON documents	 143
Using JSONPath scripting to construct more complicated queries	 144
Using JSONPath in your web application	 144
Using JSONPath in your Node.js application 	 146
Using JSONPath in your PHP application	 147
Using JSONPath in your Python application	 148
Using JSONPath in your Java application	 149
Using JSONPath with SelectToken to query for JSONPath expressions
in your C# application	 151
Using LINQ with Json.NET to query JSON in your C# application	 152

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

iv

Table of Contents

Chapter 10: JSON on Mobile Platforms	 155
Introduction	 155
Parsing JSON on Android	 156
Generating JSON on Android	 158
Parsing JSON on iOS in Objective-C	 160
Generating JSON on iOS in Objective-C	 161
Parsing JSON on iOS using Swift	 161
Generating JSON on iOS using Swift	 162
Parsing JSON using Qt	 162
Generating JSON using Qt	 163

Index	 165

v

Preface
JavaScript Object Notation (JSON) has rapidly become the lingua franca for structured
document exchange on the Web, outpacing XML in many domains. Three of the reasons for
this are obvious: it plays well with JavaScript, it's simple, and it just works. However, there are
other reasons for its success as well. As you'll see in the pages of this book, it's supported by
a wide variety of languages and libraries, making it easy to use in all kinds of scenarios.

In this book, I provide recipes for common uses of JSON. You're welcome to read the book
from cover to cover, seeing all the ways JSON can be used in building web and standalone
applications. However, it's organized as a cookbook, so that you can quickly go to the chapter
or recipe that addresses a particular problem you might want to solve with JSON now. I
recommend skimming this preface to see what's where, taking a quick look at Chapter 1,
Reading and Writing JSON on the Client, or Chapter 2, Reading and Writing JSON on the
Server, depending on your interest, and then jumping right to the recipes that interest
you the most.

What this book covers
Chapter 1, Reading and Writing JSON on the Client, gives you recipes to read and write JSON
in a number of client environments, including JavaScript, C#, C++, Java, Perl, and Python.

Chapter 2, Reading and Writing JSON on the Server, goes the other way, looking at JSON on
typical server-side languages such as Clojure, C#, Node.js, PHP, and Ruby. Of course, you can
write client-side applications with these languages, as well, just as you can write a server in
C# or Java. So the division of recipes between these chapters is somewhat arbitrary; pick a
language and dive in!

Chapter 3, Using JSON in Simple AJAX Applications, shows you how to apply JSON for data
exchange with today's browsers.

Chapter 4, Using JSON in AJAX Applications with jQuery and AngularJS, discusses how to use
JSON with two popular web frameworks, jQuery and Angular.

Preface

vi

Chapter 5, Using JSON with MongoDB, shows you how MongoDB, a popular NoSQL database,
uses JSON for its stored document format and gives you recipes to use MongoDB as a REST
service in your web applications.

Chapter 6, Using JSON with CouchDB, shows you how CouchDB, another popular NoSQL
database, uses JSON and how you can use CouchDB as a standalone REST service in your
web applications.

Chapter 7, Using JSON in a Type-safe Manner, looks at how you can adapt the type-free
nature of JSON with the type safety provided by languages such as C#, Java, and TypeScript
to reduce programming errors in your application.

Chapter 8, Using JSON for Binary Data Transfer, shows you how, even though JSON is a
text-based document format, you can still use it to move binary data around if you have
to do so.

Chapter 9, Querying JSON with JSONPath and LINQ, has recipes on how you can write queries
against JSON documents to obtain just the slice of data you're looking for. This is especially
powerful when combined with the recipes from Chapters 5, Using JSON with MongoDB, and
Chapter 6, Using JSON with CouchDB.

Chapter 10, JSON on Mobile Platforms, shows you recipes for using JSON in mobile
applications that use Android, iOS, and Qt.

What you need for this book
Unlike many other technical books, this one focuses on a wide variety of supporting
technologies in its examples. I don't expect that you'll have experience or the tools to try every
example in this book, especially right away. However, it's helpful to have a few things set out.

You should have some programming experience, preferably in JavaScript. Unless a recipe is
targeted at a specific programming language such as C#, the recipes in this book are written
in JavaScript. I do this for two reasons. Firstly because the "J" in JSON stands for JavaScript
(even though it's widely applicable to other languages), and, in this day and age, every
programmer should have at least a nodding familiarity of JavaScript.

As far as software environments go, to begin with, you should have access to a good web
browser such as Chrome or a recent version of Safari, Firefox, or Internet Explorer. You can
use the JavaScript runtime in any of these browsers to experiment with JSON and get started.

Secondly, a lot of the client-server examples feature Node.js. I picked Node.js for server-side
example programming because it's also JavaScript, meaning that you don't have to jump
through different language syntaxes as you move between the client and server. Node.js runs
well on Windows, Mac OS X, and Linux, too, so you shouldn't have a problem setting it up.

Preface

vii

If you're interested in using JSON with databases, CouchDB or MongoDB are your best choices
and I discuss both of them in this book. Which one you choose is really a matter of your
domain and personal preference. I've been using MongoDB for 5 years on various projects
but have recently taken a liking to some of CouchDB's features and its integrated support for
RESTful services.

Finally, if you're a Microsoft developer, you may want to take special note of the C# examples
that use Newtonsoft's Json.NET throughout this book. Json.NET is what JSON in C# ought to
be, and it's definitely worth your attention.

Who this book is for
If you're writing applications that move structured data from one place to another, this book
is for you. This is especially true if you've been using XML to do the job because it's entirely
possible that you could do much of the same work with less code and less data overhead
in JSON.

While the book's chapters make some distinction between the client and server sides of
an application, it doesn't matter if you're a frontend, backend, or full-stack developer. The
principles behind using JSON apply to both the client and the server, and in fact, developers
who understand both sides of the equation generally craft the best applications.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do it,
How it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software or
any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the
previous section.

Preface

viii

There's more…
This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Let's look at loads and dumps further."

A block of code is set as follows:

function doAjax() {
var xmlhttp;
 if (window.XMLHttpRequest)
 {
 // code for IE7+, Firefox, Chrome, Opera, Safari
 xmlhttp=new XMLHttpRequest();
 }
}

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

function doAjax() {
var xmlhttp;
 if (window.XMLHttpRequest)
 {
 // code for IE7+, Firefox, Chrome, Opera, Safari
 xmlhttp=new XMLHttpRequest();
 }
}

Preface

ix

Any command-line input or output is written as follows:

cp /usr/src/asterisk-addons/configs/cdr_mysql.conf.sample

 /etc/asterisk/cdr_mysql.conf

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: " Then, you'll want to go to
More Tools | JavaScript console."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.packtpub.com
for all the Packt Publishing books you have purchased. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

x

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you could report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on
the Errata Submission Form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come across
any illegal copies of our works in any form on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at questions@
packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1
Reading and Writing
JSON on the Client

In this chapter, we will cover the following recipes:

ff Reading and writing JSON in JavaScript

ff Reading and writing JSON in C++

ff Reading and writing JSON in C#

ff Reading and writing JSON in Java

ff Reading and writing JSON in Perl

ff Reading and writing JSON in Python

In addition to reading and writing JSON in Python, we will begin by showing you a brief review
of JSON formatting to help set the stage for what follows in this book.

Introduction
JSON stands for JavaScript Object Notation. It's an open standard to represent data as
attributes with values. Originally derived from the JavaScript syntax (hence its name) for use
in web applications as an alternative to the more verbose and structured Extensible Markup
Language (XML), it is now used for data serialization and transport in many standalone and
web applications.

JSON provides an ideal means to encapsulate data between the client and server. In this
first chapter, you will learn how to work with JSON in languages specified at the beginning
of this chapter.

Reading and Writing JSON on the Client

2

These languages are often used for client-side development, which is what we will focus on
here. We'll look more at server-side languages in Chapter 2, Reading and Writing JSON on
the Server.

Let's take a look at some JSON returned by the web API, available at http://www.aprs.fi,
and modified a bit by me to make the example clear (later, in Chapter 4, Using JSON in AJAX
Applications with jQuery and AngularJS, you'll learn how to fetch this data yourself using a web
browser and JavaScript):

{
 "command":"get",
 "result":"ok",
 "what":"loc",
 "found":2,
 "entries":[
 {
 "class":"a",
 "name":"KF6GPE",
 "type":"l",
 "time":"1399371514",
 "lasttime":"1418597513",
 "lat":37.17667,
 "lng":-122.14650,
 "symbol":"\/-",
 "srccall":"KF6GPE",
 },
 {
 "class":"a",
 "name":"KF6GPE-7",
 "type":"l",
 "time":"1418591475",
 "lasttime":"1418591475",
 "lat":37.17633,
 "lng":-122.14583,
 "symbol":"\\K",
 "srccall":"KF6GPE-7",
 }
]
}

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing
books you have purchased. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/
support and register to have the files e-mailed directly to you.

http://www.aprs.fi

Chapter 1

3

There are a few things to notice about this example:

ff The data is organized into attributes and values, each separated by a colon. (Note
that a JSON document can also be a single value, such as a string, float, integer,
or Boolean value.)

ff Attributes appear as character strings enclosed by double quotes on the left-hand
side of a colon.

ff Values are on the right side of the colon and can be the following:
�� Character strings (enclosed in double quotes) such as KF6GPE
�� Numbers (either integers or floating point) such as 2 or 37.17667
�� Arrays (comma-delimited values contained in square brackets), such as the

value for entries
�� Whole objects consisting of more attributes and values, such as the two-array

values in the entries value
�� Alternatively (although this example doesn't show it), the Boolean values

true and false
ff Note that many other kinds of values, such as date/time pairs or individual

characters are not supported by JSON.
ff Although it's not entirely clear from this example, whitespace is insignificant.

There's no need to have each pair on its own line, for example, and the indentation
is completely arbitrary.

The attribute-name-attribute-value property of JSON, along with the ability to nest values and
represent arrays, gives JSON a lot of flexibility. You can represent a lot of common objects
using JSON, including most objects that don't have a lot of binary data (For ideas on how
to represent binary data using JavaScript and JSON, see Chapter 8, Using JSON for Binary
Data Transfer). This includes primitive values (self-documenting because each value is
accompanied by an attribute), flat objects with simple values including maps, and arrays
of simple or complex objects.

The self-documenting nature of JSON makes it an ideal choice for data transport as you develop
new objects, despite its lack of support for comments as you might find in XML. Its plaintext
nature makes it amenable to compression over the wire using popular compression schemes
such as gzip (available inside most web servers and web clients), and its format is easier for
humans to read than the more verbose XML.

Note that JSON documents are inherently trees, and thus, do not have
support for cyclical data structures, such as graphs, where a node points to
another node in the same data structure.
If you create such a data structure using the native representation in the
programming language you're using and try to convert that to JSON, you'll get
an error.

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

Reading and Writing JSON on the Client

4

Reading and writing JSON in JavaScript
JSON originated as a means to carry data between web servers and JavaScript, so let's begin
with a simple code snippet that reads and writes JSON in JavaScript in a web browser. We'll
show the entirety of a web application using AJAX and JSON in Chapter 4, Using JSON in AJAX
Applications with jQuery and AngularJS; what follows is how to obtain a JavaScript object from
JSON and how to create a JSON string from a JavaScript object.

Getting ready
You'll need a way to edit the JavaScript and run it in your browser. In this example, and nearly
all examples in this book, we'll use Google Chrome for this. You can download Google Chrome
at https://www.google.com/chrome/browser. Once you install Google Chrome, you'll
want to activate the JavaScript console by clicking on the Customize and control Doodle
Chrome icon on the right-hand side, which looks like this:

Then, you'll want to go to More Tools | JavaScript console. You should see a JavaScript
console on the side of the web page, like this:

 https://www.google.com/chrome/browser

Chapter 1

5

If you prefer key commands, you can also use Ctrl + Shift + J on Windows and Linux, or control
+ option + J on a Macintosh.

From here, you can enter JavaScript on the lower right-hand corner and press Enter (return on
a Mac OS X system) to evaluate the JavaScript.

How to do it...
Modern web browsers, such as Chrome, define a JSON object in the JavaScript runtime that
can convert the string data containing JSON to JavaScript objects, and convert a JavaScript
object to JSON. Here's a simple example:

>var json = '{"call":"KF6GPE","type":"l","time":
"1399371514","lasttime":"1418597513","lat":37.17667,"lng":
-122.14650,"result" : "ok" }';
<- "{ "call":"KF6GPE","type":"l","time":"1399371514",
"lasttime":"1418597513","lat":37.17667,"lng":-122.14650,
"result" : "ok" }"
>var object = JSON.parse(json);
<- Object {call:"KF6GPE",type:"l",time:"1399371514",
lasttime:"1418597513",lat:37.17667, lng:-122.14650,result: "ok"}
> object.result
<- "ok"
>var newJson = JSON.stringify(object);
<- "{ "call":"KF6GPE","type":"l","time":"1399371514",
"lasttime":"1418597513","lat": 37.17667,"lng": -122.14650,
"result" : "ok" }"

In this and subsequent JavaScript examples, the text you type in the
JavaScript console is preceded by a > symbol, while what the JavaScript
console prints is anything beginning with <- symbol.

How it works...
Chrome and other modern web browsers define the JSON object, which has methods to
convert between strings containing JSON and JavaScript objects.

In the previous example, we begin by setting the value of the json variable to a simple JSON
expression consisting of one attribute result with the value ok. The JavaScript interpreter
returns the resulting value of the variable json.

Reading and Writing JSON on the Client

6

The next line uses the JSON method parse to convert the JSON string referenced by json
into a JavaScript object:

>var object = JSON.parse(json);
<- Object { call:"KF6GPE", type:"l", time:"1399371514",
lasttime:"1418597513", lat:37.17667, lng:-122.14650, result: "ok"}

You can then access any of the values in the object, just as you would any other JavaScript
object; it is, after all, just an object:

> object.result;
<- "ok"

Finally, if you need to convert an object to JSON, you can do that with the JSON method
stringify:

>var newJson = JSON.stringify(object);
<- "{ "call":"KF6GPE","type":"l","time":"1399371514",
"lasttime":"1418597513","lat": 37.17667,"lng": -122.14650,
"result" : "ok" }"

There's more...
You should know two things about these methods. First of all, parse will throw an exception if
the JSON you pass is malformed, or isn't JSON at all:

>JSON.parse('{"result" = "ok" }')
<- VM465:2 Uncaught SyntaxError: Unexpected token =

The errors aren't very helpful but better than nothing if you're debugging JSON sent by a
less-than-fully compliant and debugged JSON encoder.

Second, very old web browsers may not have a JSON object with these methods. In that case,
you can use the JavaScript function eval after wrapping the JSON in parenthesis, like this:

>eval('('+json+')')
<- Object {result: "ok"}

The eval function evaluates the string you pass as JavaScript, and the JSON notation is really
just a subset of JavaScript. However, you should avoid using eval whenever you can for a few
reasons. First, it's often slower than the methods provided by the JSON object. Second, it's
not safe; your string might contain malicious JavaScript that can crash or otherwise subvert
your JavaScript application, which is not a threat you should take lightly. Use the JSON object
whenever it's available. Third, you can use the parse and stringify methods to handle
simple values, such as Booleans, numbers, and strings; you're not limited to the key-value pairs
in the previous example. If all I wanted to do was pass a Boolean (such as "the transaction
succeeded!"), I might just write the following:

Chapter 1

7

var jsonSuccess = 'true';
<- "true"
> var flag = JSON.parse(jsonSuccess);

Finally, it's worth pointing out that both the parse and stringify methods to JSON take
an optional replacer function, which is invoked on every key and value in the object being
serialized or deserialized. You can use this function to perform on-the-fly data conversions
as the JSON is being parsed; for example, you can use it to convert between the string
representation of a date and the number of seconds since midnight at the start of the epoch,
or to correct the capitalization of strings. I could use a replacer function for either side of the
transformation, as shown in the following code, to make the call field lowercase:

> var object = JSON.parse(json, function(k, v) {
 if (k == 'call') return v.toLowerCase();
});
<- Object { call:"kf6gpe", type:"l", time:"1399371514",
lasttime:"1418597513", lat:37.17667, lng:-122.14650, result: "ok"}

You can also return undefined to remove an item from the results; to omit the type field from
the JSON I generate, I can execute the following:

> var newJson = JSON.stringify(object, function (k, v) {
 if k == 'type') return undefined;
});
<- "{ "call":"KF6GPE","time":"1399371514","lasttime":
"1418597513","lat": 37.17667,"lng": -122.14650, "result" : "ok"
}"

Reading and writing JSON in C++
C++ is a language that long-predates JSON, but is still relevant for many projects. There's
no native support for JSON in C++ but there are a number of libraries that provide support
for working with JSON. Perhaps the most widely used is JsonCpp, available from GitHub at
https://github.com/open-source-parsers/jsoncpp. It's licensed under the MIT
license or public domain if you so desire, so there are virtually no limitations on its use.

Getting ready
To use JsonCpp, you need to first go to the website and download the zip file with the entire
library. Once you do so, you need to integrate it with your application's source code.

How you integrate it with your application's source code differs from platform to platform,
but the general process is this:

1.	 Create an amalgamated source and header for the library using the instructions on the
website. To do this, you'll need to have JsonCpp downloaded and Python 2.6 or later
installed. From the top level directory of JsonCpp, run python amalgamate.py.

https://github.com/open-source-parsers/jsoncpp

Reading and Writing JSON on the Client

8

2.	 Include the include file dist/json/json.h in any file where you want to use the
JsonCpp library.

3.	 Include the source file dist/jsoncpp.cpp in your project's make file or
build system.

Once you do this, you should have access to the JsonCpp interface in any file that includes the
json/json.h header.

How to do it...
Here's a simple C++ application that uses JsonCpp to convert between std::string
containing some simple JSON and a JSON object:

#include <string>
#include <iostream>
#include "json/json.h"

using namespace std;

int main(int argc, _TCHAR* argv[])
{
 Json::Reader reader;
 Json::Value root;

 string json = "{\"call\": \"KF6GPE\",\"type\":\"l\",\"time\":
 \"1399371514\",\"lasttime\":\"1418597513\",\"lat\": 37.17667,
 \"lng\": -122.14650,\"result\":\"ok\"}";

 bool parseSuccess = reader.parse(json, root, false);

 if (parseSuccess)
 {
 const Json::Value resultValue = root["result"];
 cout << "Result is " << resultValue.asString() << "\n";
 }

 Json::StyledWriter styledWriter;
 Json::FastWriter fastWriter;
 Json::Value newValue;
 newValue["result"] = "ok";

 cout << styledWriter.write(newValue) << "\n";
 cout << fastWriter.write(newValue) << "\n";

 return 0;
}

Chapter 1

9

How it works...
This example begins by including the necessary includes, including json/json.h, which
defines the interface to JsonCpp. We explicitly reference the std namespace for brevity,
although don't do so for the Json namespace, in which JsonCpp defines all of its interfaces.

The JsonCpp implementation defines Json::Reader and Json::Writer, specifying
the interfaces to JSON readers and writers, respectively. In practice, the Json::Reader
interface is also the implementation of a JSON class that can read JSON, returning its values
as Json::Value. The Json::Writer variable just defines an interface; you'll want to use a
subclass of it such as Json::FastWriter or Json::StyledWriter to create JSON from
Json::Value objects.

The previous listing begins by defining Json::Reader and Json::Value; we'll use the
reader to read the JSON we define on the next line and store its value in the Json::Value
variable root. (Presumably your C++ application would get its JSON from another source,
such as a web service or local file.)

Parsing JSON is as simple as calling the reader's parse function, passing the JSON and
Json::Value into which it will write the JSON values. It returns a Boolean, which will be
true if the JSON parsing succeeds.

The Json::Value class represents the JSON object as a tree; individual values are
referenced by the attribute name in the original JSON, and the values are the values of those
keys, accessible through methods such as asString, which returns the value of the object
as a native C++ type. These methods of Json::Value includes the following:

ff asString, which returns std::string

ff asInt, which returns Int

ff asUInt, which returns UInt

ff asInt64, which returns Int64

ff asFloat, which returns float

ff asDouble, which returns double

ff asBool, which returns bool

In addition, the class provides operator[], letting you access array elements.

You can also query a Json::Value object to determine its type using one of these methods:

ff isNull, which returns true if the value is null

ff isBool, which returns true if the value is bool

ff isInt, which returns true if the value is Int

ff isUInt, which returns true if the value is UInt

Reading and Writing JSON on the Client

10

ff isIntegral, which returns true if the value is an integer

ff isDouble, which returns true if the value is double

ff isNumeric, which returns true if the value is numeric

ff isString, which returns true if the value is a string

ff isArray, which returns true if the value is an array

ff isObject, which returns true if the value is another JSON object (which you can
decompose using another Json::Value value)

At any rate, our code uses asString to fetch the std::string value encoded as the
result attribute, and writes it to the console.

The code then defines Json::StyledWriter and Json::FastWriter to create some
pretty-printed JSON and unformatted JSON in strings, as well as a single Json::Value object
to contain our new JSON. Assigning content to the JSON value is simple because it overrides
the operator[] and operator[]= methods with the appropriate implementations to
convert standard C++ types to JSON objects. So, the following line of code creates a single
JSON attribute/value pair with the attribute set to result, and the value set to ok (although
this code doesn't show it, you can create trees of JSON attribute-value pairs by assigning JSON
objects to other JSON objects):

newValue["result"] = "ok";

We first use StyledWriter and then FastWriter to encode the JSON value in newValue,
writing each string to the console.

Of course, you can also pass single values to JsonCpp; there's no reason why you can't
execute the following code if all you wanted to do was pass a double-precision number:

Json::Reader reader;
Json::Value piValue;

string json = "3.1415";
bool parseSuccess = reader.parse(json, piValue, false);
 double pi = piValue.asDouble();

See also
For the documentation for JsonCpp, you can install doxygen from http://www.stack.
nl/~dimitri/doxygen/ and run it over the doc folder of the main JsonCpp distribution.

There are other JSON conversion implementations for C++, too. For a complete list, see the
list at http://json.org/.

http://www.stack.nl/~dimitri/doxygen/
http://www.stack.nl/~dimitri/doxygen/
http://json.org/

Chapter 1

11

Reading and writing JSON in C#
C# is a common client-side language for rich applications as well as for writing the client
implementation of web services running on ASP.NET. The .NET library includes JSON
serialization and deserialization in the System.Web.Extensions assembly.

Getting ready
This example uses the built-in JSON serializer and deserializer in the System.Web.Extensions
assembly, one of the many .NET libraries that are available. If you've installed a recent
version of Visual Studio (see https://www.visualstudio.com/en-us/downloads/
visual-studio-2015-downloads-vs.aspx), it should be available. All you need to do to
use this assembly is include it in the assemblies your application references in Visual Studio
by right-clicking the References item in your project, choosing Add Reference, and scrolling
down to System.Web.Extensions in the Framework Assemblies list.

How to do it...
Here's a simple application that deserializes some JSON, as a dictionary of attribute-object
pairs:

using System;
using System.Collections.Generic;
using System.Web.Script.Serialization;

namespace JSONExample
{
 public class SimpleResult
 {
 public string result;
 }

 class Program
 {
 static void Main(string[] args)
 {
 JavaScriptSerializer serializer =
 new System.Web.Script.Serialization.
 JavaScriptSerializer();

 string json = @"{ ""call"":""KF6GPE"",""type"":
""l"",""time"":""1399371514"",""lasttime"":""1418597513"",
""lat"": 37.17667,""lng\": -122.14650,""result"": ""ok"" }";

https://www.visualstudio.com/en-us/downloads/visual-studio-2015-downloads-vs.aspx
https://www.visualstudio.com/en-us/downloads/visual-studio-2015-downloads-vs.aspx

Reading and Writing JSON on the Client

12

dynamic result = serializer.DeserializeObject(json);
 foreach (KeyValuePair<string, object> entry in result)
 {
 var key = entry.Key;
 var value = entry.Value as string;
Console.WriteLine(String.Format("{0} : {1}",
key, value));
 }
 Console.WriteLine(serializer.Serialize(result));

 var anotherResult = new SimpleResult { result="ok" };
 Console.WriteLine(serializer.Serialize(
 anotherResult));
 }
 }
}

How it works...
The System.Web.Extensions assembly provides the JavaScriptSerializer class in the
System.Web.Script.Serialization namespace. This code begins by defining a simple
class, SimpleResult, which we'll encode as JSON in our example.

The Main method first defines a JavaScriptSerializer instance, and then string
containing our JSON. Parsing the JSON is as easy as calling the JavaScriptSerializer
instance's DeserializeObject method, which returns an object whose type is determined
at run-time based on the JSON you pass.

You can also use DeserializeObject to parse JSON in a type-safe
manner, and then the type of the returned object matches the type you pass
to the method. I'll show you how to do this in Chapter 7, Using JSON in a
Type-safe Manner.

DeserializeObject returns a Dictionary of key-value pairs; the keys are the attributes
in the JSON, and the values are objects representing the values of those attributes. In our
example, we simply walk the keys and values in the dictionary, printing each. Because we
know the type of the value in the JSON, we can simply cast it to the appropriate type (string,
in this case) using the C# as keyword; if it wasn't string, we'd receive the value null.
You can use as or the type inference of C# to determine the type of unknown objects in
your JSON, making it easy to parse JSON for which you lack strict semantics.

Chapter 1

13

The JavaScriptSerializer class also includes a Serialize method; you can either
pass it as a dictionary of attribute-value pairs, as we do with our deserialized result, or you can
pass it as an instance of a C# class. If you pass it as a class, it'll attempt to serialize the class
by introspecting the class fields and values.

There's more...
The JSON implementation that Microsoft provides is adequate for many purposes, but not
necessarily the best for your application. Other developers have implemented better ones
that typically use the same interface as the Microsoft implementation. One good choice
is Newtonsoft's Json.NET, which you can get at http://json.codeplex.com/ or from
NuGet in Visual Studio. It supports a wider variety of .NET platforms (including Windows
Phone), LINQ queries, XPath-like queries against the JSON, and is faster than the Microsoft
implementation. Using it is similar to using the Microsoft implementation: install the package
from the Web or NuGet, add a reference of the assembly to your application, and then use
the JsonSerializer class in the NewtonSoft.Json namespace. It defines the same
SerializeObject and DeserializeObject methods that the Microsoft implementation
does, making switching to this library easy. James Newton-King, the author of Json.NET,
makes it available under the MIT license.

As with other languages, you can also carry primitive types through the deserialization and
serialization process. For example, after evaluating the following code, the resulting dynamic
variable piResult will contain a floating-point number, 3.14:

string piJson = "3.14";
dynamic piResult = serializer.DeserializeObject(piJson);

See also
As I previously hinted, you can do this in a type-safe manner; we'll discuss more of this
in Chapter 7, Using JSON in a Type-safe Manner. You'll do this using the generic method
DeserializeObject<>, passing a type variable of the type you want to deserialize into.

Reading and writing JSON in Java
Java, like C++, predates JSON. Oracle is presently working on adding JSON support to Java,
but in the meantime, several implementations providing JSON support are available on the
Web. Similar to the C++ implementation you saw previously in this chapter, you can convert
between JSON and Java using a third-party library; in this case, packaged as a Java archive
(JAR) file, whose implementation typically represents JSON objects as a tree of named objects.

Perhaps the best Java implementation of JSON parsing is Gson, available from Google at
http://code.google.com/p/google-gson/ licensed under the Apache License 2.0.

www.allitebooks.comwww.allitebooks.com

http://json.codeplex.com/
http://code.google.com/p/google-gson/
http://www.allitebooks.org
http://www.allitebooks.org

Reading and Writing JSON on the Client

14

Getting ready
First, you'll need to get Gson; you can do this by doing a read-only checkout of the repository
using SVN over HTTP with SVN by using the following command:

svn checkout http://google-gson.googlecode.com/svn/trunk/google-gson
-read-only

Of course, this assumes that you have a Java development kit (http://www.oracle.com/
technetwork/java/javase/downloads/index.html) and SVN (TortoiseSVN is a good
client for Windows available at http://tortoisesvn.net/downloads.html) installed.
Many Java IDEs include support for SVN.

Once you check out the code, follow the instructions that come with it to build the Gson JAR
file, and add the JAR file to your project.

How to do it...
To begin, you need to create a com.google.gson.Gson object. This class defines the
interface you'll use to convert between JSON and Java:

Gson gson = new com.google.gson.Gson();
String json = "{\"call\": \"KF6GPE\", \"type\": \"l\", \"time\":
\"1399371514\", \"lasttime\": \"1418597513\", \"lat\": 37.17667,
\"lng\": -122.14650,\"result\":\"ok\"}";
com.google.gson.JsonObject result = gson.fromJson(json,
JsonElement.class).getAsJsonObject();

The JsonObject class defines the top-level object for containing a JSON object; you use its
get and add methods to get and set attributes, like this:

JsonElement result = result.get("result").getAsString();

The Gson library uses the JsonElement class to encapsulate a single JSON value; it has the
following methods that let you get the value contained in JsonElement as a plain Java type:

ff getAsBoolean, which returns the value as Boolean

ff getAsByte, which returns the value as byte

ff getAsCharacter, which returns the value as char

ff getAsDouble, which returns the value as double

ff getAsFloat, which returns the value as float

ff getAsInt, which returns the value as int

ff getAsJsonArray, which returns the value as JsonArray

ff getAsJsonObject, which returns the value as JsonObject

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://tortoisesvn.net/downloads.html

Chapter 1

15

ff getAsLong, which returns the value as long

ff getAsShort, which returns the value as short

ff getAsString, which returns the value as String

You can also learn about the type in JsonElement using one of the following methods:

ff isJsonArray, which returns true if the element is an array of objects

ff isJsonNull, which returns true if the element is null

ff isJsonObject, which returns true if the element is a composite object
(another JSON tree) instead of a single type

ff isJsonPrimitive, which returns true if the element is a primitive type, such as a
number or string

There's more…
You can also convert instances of your classes directly to JSON, writing something like this:

public class SimpleResult {
 public String result;
}

// Elsewhere in your code…
Gson gson = new com.google.gson.Gson();
SimpleResult result = new SimpleResult;
result.result = "ok";
String json = gson.toJson(result);	

This defines a class SimpleResult, which we use to create a single instance, and then
use the Gson object instance to convert to a string containing the JSON using the Gson
method toJson.

Finally, because JsonElement encapsulates a single value, you can also handle simple
values expressed in JSON, like this:

Gson gson = new com.google.gson.Gson();
String piJson = "3.14";
double result = gson.fromJson(piJson,
JsonElement.class).getAsDouble();

This converts the primitive value 3.14 in JSON to a Java double.

Reading and Writing JSON on the Client

16

See also
Like the C# example, you can convert directly from JSON to a plain old Java object (POJO) in a
type-safe manner. You'll see how to do this in Chapter 7, Using JSON in a Type-safe Manner.

There are other JSON conversion implementations for Java, too. For a complete list, see the
list at http://json.org/.

Reading and writing JSON in Perl
Perl predates JSON, although there's a good implementation of JSON conversion available
from CPAN, the Comprehensive Perl Archive Network.

How to do it...
To begin with, download the JSON module from CPAN and install it. Typically, you'll download
the file, unpack it, and then run the following code on a system that already has Perl and
make configured:

perl Makefile.PL
make
make install

Here's a simple example:

use JSON;
use Data::Dumper;
my $json = '{ "call":"KF6GPE","type":"l","time":"1399371514",
"lasttime":"1418597513","lat": 37.17667,"lng": -122.14650,
"result" : "ok" }';
my %result = decode_json($json);
print Dumper(result);
print encode_json(%result);

Let's look at the interface the JSON module provides.

How it works...
The CPAN module defines the decode_json and encode_json methods to decode and
encode JSON respectively. These methods interconvert between Perl objects, such as literal
values and associative arrays, and strings containing JSON respectively.

The code begins by importing the JSON and Data::Dumper modules. Next, it defines a single
string, $json, which contains the JSON we want to parse.

http://json.org/

Chapter 1

17

With the JSON in $json, we define %result to be the associative array containing the
objects defined in the JSON, and dump the values in the hash on the next line.

Finally, we re-encode the hash as JSON and print the results to the terminal.

See also
For more information and to download the JSON CPAN module,
visit https://metacpan.org/pod/JSON.

Reading and writing JSON in Python
Python has had native support for JSON since Python 2.6 through the json module. Using the
module is as simple as using the import statement to import the module and then accessing
the encoder and decoder through the json object that it defines.

Getting ready
Simply enter the following in your source code to be able to reference the JSON facility:

import json

How to do it...
Here's a simple example from the Python interpreter:

>>> import json
>>>json = '{ "call":"KF6GPE","type":"l","time":"1399371514",
"lasttime":"1418597513","lat": 37.17667,"lng": -122.14650,
"result" : "ok" }'
u'{"call":"KF6GPE","type":"l","time":"1399371514",
"lasttime":"1418597513","lat": 37.17667,"lng": -122.14650,
"result": "ok" }'
>>>result = json.loads(json)
{u'call':u'KF6GPE',u'type':u'l',u'time':u'1399371514',
u'lasttime':u'1418597513',u'lat': 37.17667,u'lng':
-122.14650,u'result': u'ok'}
>>> result['result']
u'ok'
>>> print json.dumps(result)
{"call":"KF6GPE","type":"l","time":"1399371514",
"lasttime":"1418597513","lat": 37.17667,"lng": -122.14650,
"result":"ok"}
>>> print json.dumps(result,

https://metacpan.org/pod/JSON

Reading and Writing JSON on the Client

18

... indent=4)
{
"call":"KF6GPE",
"type":"l",
"time":"1399371514",
"lasttime":"1418597513",
"lat": 37.17667,
"lng": -122.14650,
 "result": "ok"
}

Let's look at loads and dumps further.

How it works...
Python has great support for associative arrays through its object hierarchy. The json module
offers a json object with loads and dumps method that convert from JSON in text strings
to associative arrays, and from associative arrays to JSON in text strings. If you're familiar
with the Python marshal and pickle modules, the interface is similar; you use the loads
method to obtain a Python object from its JSON representation and the dumps method to
convert an object into its JSON equivalent.

The previous listing does just this. It defines a variable j that contains our JSON, and then
obtains a Python object result using json.loads. Fields in the JSON are accessible as
named objects in the resulting Python object. (Note that we can't call our JSON string json
because it would shadow the definition of the interface to the module.)

To convert to JSON, we use the json.dumps method. By default, dumps creates a compact
machine-readable version of JSON with minimum whitespace; this is best used for over-the-wire
transmissions or for storage in a file. When you're debugging your JSON, it helps to pretty-print
it with indentation and some whitespace around separators; you can do this using the optional
indent and separators arguments. The indent argument indicates the number of spaces
that each successive nested object should be indented in the string, and separators indicates
the separators between each object and between each attribute and value.

See also
For more documentation on the json module, see the Python documentation at
https://docs.python.org/2/library/json.html.

https://docs.python.org/2/library/json.html

2
Reading and Writing
JSON on the Server

In the previous chapter, we looked at JSON handling in some of the most common client-side
environments. In this chapter, we will turn our attention to server-side JSON encoding and
decoding. We'll look at recipes on how to do this in the following environments:

ff Reading and writing JSON in Clojure

ff Reading and writing JSON in F#

ff Reading and writing JSON in Node.js

ff Reading and writing JSON in PHP

ff Reading and writing JSON in Ruby

Some languages, such as C++ and Java, are used on both client-side and server-side; for
these, refer to Chapter 1, Reading and Writing JSON on the Client (one exception is the
discussion of JSON in Node.js because Node.js plays a big role in subsequent chapters of
this book).

Reading and writing JSON in Clojure
Clojure is a modern Lisp variant running on top of the Java and Microsoft Common Language
Runtime (CLR) platforms. As such, you can use the facilities we discussed in Chapter 1,
Reading and Writing JSON on the Client, to convert between JSON and objects in the native
runtime, but there's a better way, and that is the Clojure's data.json module, available at
https://github.com/clojure/data.json.

https://github.com/clojure/data.json

Reading and Writing JSON on the Server

20

Getting ready
To begin, you need to specify your dependency in the data.json module. You can do this
with the following dependency in your Leiningen file:

[org.clojure/data.json "0.2.5"]

If you're using Maven, you'll want this:

<dependency>
<groupId>org.clojure</groupId>
<artifactId>data.json</artifactId>
<version>0.2.5</version>
</dependency>

Of course, the version of data.json may change between the time I write
this and the time you include it in your project as a dependency. Check with
the data.json project for the current version.

Finally, you need to include the data.json module in your code in a namespace such
as json:

(ns example
 (:require [clojure.data.json :as json])

This makes the implementation of the data.json module available through the
namespace json.

How to do it...
Encoding a Clojure map as JSON is easy, just call json/write-str. For example:

(json/write-str {:call "KF6GPE",:type "l",:time
"1399371514":lasttime"1418597513",:lat 37.17667,:lng
-122.14650: :result "ok"})
;;=>"{\"call\": \"KF6GPE\", \"type\": \"l\", \"time\":
\"1399371514\", \"lasttime\": \"1418597513\", \"lat\": 37.17667,
\"lng\": -122.14650,\"result\":\"ok\"}"

If you've got a stream implementing java.io.Writer that you want to write the JSON to, you
can also use json/write:

(json/write {:call "KF6GPE",:type "l", :time
"1399371514":lasttime "1418597513",:lat 37.17667, :lng
-122.14650: result "ok" } stream)

Chapter 2

21

Reading is the opposite of writing and reads JSON into associative arrays that you can
process further:

(json/read-str "{\"result\":\"ok\"}")
;;=> {"result" "ok"}

Also, there's json/read, the counterpart of json/write that takes a stream from which
you can read and return a map of the parsed JSON.

There's more...
These methods all take two optional arguments, a :key-fn argument that the module
applies to each JSON attribute name, and a :value-fn argument that the module applies to
attribute values. For example, you can convert JSON to the more traditional Clojure keyword
maps using the :key-fn keyword, like this:

(json/read-str "{\"call\": \"KF6GPE\", \"type\": \"l\", \"time\":
\"1399371514\", \"lasttime\": \"1418597513\", \"lat\": 37.17667,
\"lng\": -122.14650,\"result\":\"ok\"}:key-fn keyword)
;;=> {:call "KF6GPE",:type "l", :time
"1399371514":lasttime "1418597513",:lat 37.17667, :lng
-122.14650: :result "ok"}

Alternatively, you can provide a lambda, such as the following one, that converts keys
to uppercase:

(json/write-str {:result "OK"}
 :key-fn #(.toUpperCase %))
;;=> "{\"RESULT\":"OK"}"

Here's a nice example from the data.json documentation that uses :value-fn to convert
ISO dates as strings to Java Date objects as you parse the JSON:

(defn my-value-reader [key value]
 (if (= key :date)
 (java.sql.Date/valueOf value)
 value))

(json/read-str "{\"result\":\"OK\",\"date\":\"2012-06-02\"}"
 :value-fn my-value-reader
 :key-fn keyword)
;;=> {:result"OK", :date #inst "2012-06-02T04:00:00.000-00:00"}

Reading and Writing JSON on the Server

22

The preceding code does the following:

1.	 Defines a helper function my-value-reader that uses the keyword of the JSON
key-value pair to determine its type.

2.	 Given a JSON key value of :date, it treats the value as a string to be passed to the
java.sql.Date method valueOf, which returns a Date instance with the value
from the string it parses.

3.	 Calls json/read-str to parse some simple JSON consisting of two fields: a result
field and a date field.

4.	 The JSON parser parses the JSON, converts JSON attribute names to keywords, and
uses the value converter we previously defined to convert date values to their java.
sql.Date representation.

Reading and writing JSON in F#
F# is a language running on the CLR and .NET that excels in functional and object-oriented
programming tasks. Because it's on top of .NET, you can use third-party libraries such as
Json.NET (mentioned in Chapter 1, Reading and Writing JSON on the Client) to convert
between JSON and CLR objects. However, there's a better way: the open source library F#
Data, which creates native data type providers to process data in a number of different
structured formats, including JSON.

Getting ready
Begin by getting a copy of the library, available at https://github.com/fsharp/
FSharp.Data. Once you download it, you'll need to build it; you can do this by running the
build.cmd build batch file that comes with the distribution (for details, see the F# Data
website). Alternatively, you can find the same package on NuGet, by choosing Manage NuGet
Packages from the Projects menu and searching for F# Data. Once you find it, click on
Install. I prefer using NuGet because it automatically adds the FSharp.Data assembly to
your project, and saves you the hassle of building the sources on your own. On the other hand,
the source distribution makes documentation you can read offline, which can be handy, too.

Once you have the F# Data, you simply need to open it in the source files where you're going
to use it with the open directive, like this:

open FSharp.Data

https://github.com/fsharp/FSharp.Data
https://github.com/fsharp/FSharp.Data

Chapter 2

23

How to do it...
Here's a bit of sample code that converts between some JSON and an F# object, and then
makes a new bit of JSON from another F# object:

open FSharp.Data

type Json = JsonProvider<""" { "result":"" } """>
let result = Json.Parse(""" { "result":"OK" } """)
let newJson = Json.Root(result = "FAIL")

[<EntryPoint>]
let main argv =
 printfn "%A" result.Result
 printfn "%A" newJson
 printfn "Done"

Let's see how it works.

How it works...
First, it's important to remember that F# is strongly typed and infers types from data.
Understanding this is crucial to understand how the F# Data library works. Unlike the examples
we've seen in past sections, where converters map JSON to key-value pairs, the F# Data library
infers a whole data type from the JSON you present it with. In many ways, this is the best of both
the dynamic collection-oriented approach, that other converters take to converting JSON, and
the type-safe approaches that I'll show you in Chapter 7, Using JSON in a Type-safe Manner. This
is because you don't have to laboriously craft class representations for the JSON you're parsing,
and you get all the advantages of compile-time type safety in the code you write. Even better,
the classes F# Data construct are all Intellisense-aware, so you get tooltip hints and name
completion right in the editor!

Let's look at the previous example piece by piece and see what it does:

open FSharp.Data

The first line makes the F# Data classes available to your program. Among other things,
this defines the JsonProvider class, which creates F# types from sources of JSON:

type Json= JsonProvider<""" { "result":"" } """>

This line defines a new F# type, Json, with fields and field types inferred from the JSON you
provide. Under the hood, this does a lot: it infers member names, the types of members,
and even handles things such as mixed numeric values (say that you have an array with
both integers and floating-point numbers, it correctly infers the type as numeric so you can
represent either), as well as complex records and optional fields.

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

Reading and Writing JSON on the Server

24

You can pass one of the following three things to JsonProvider:

1.	 A string containing JSON. This is the simplest case.

2.	 A path to a file containing JSON. The library will open the file and read the contents
and perform the type inference on the contents, and then return a type capable of
representing the JSON in the file.

3.	 A URL. The library will fetch the document at the URL, parse the JSON, and then do
the same type inference on the contents, returning a type that represents the JSON
at the URL.

The next line parses a single JSON document, as follows:

let result = Json.Parse(""" { "result":"OK" } """)

This at first may seem a little weird: why are we passing JSON to both the JsonProvider
and Parse methods? Recall that JsonProvider makes a type from the JSON you provide.
In other words, it doesn't parse the JSON for its values, but for the types of data it represents
in order to make a class that can model the JSON document itself. This is very important; to
the JsonProvider, you'll want to pass a representative JSON document that has the fields
and values common across all the JSON documents of a particular type that your application
is likely to encounter. You'll pass a specific JSON document (say, a web service result) to the
Parse method of the class that JsonProvider creates. In turn, Parse returns an instance
of the class on which you invoked Parse.

You can now access the fields in the instance of the class Parse returns; for example, later,
I will print the value of result.Result in my application's main function.

To create JSON, you need an instance of the type modeling the data you want to serialize.
In the next line, we use the Json type we just created to create a new JSON string:

let newJson = Json.Root(result = "FAIL")

This creates an instance of the Json type with the result field set to the string FAIL, and then
serializes that instance into a new string.

Finally, the remainder of the program is our program's entry point, and just prints the parsed
object and the created JSON.

There's more...
The F# Data library supports a lot more than just JSON; it also supports Comma Separated
Values (CSV), HTML, and XML. It's an excellent library for doing all kinds of structured data
access, and if you're working in F#, it's definitely something to become more familiar with.

Chapter 2

25

Reading and writing JSON with Node.js
Node.js is a JavaScript environment for server-side programming based on the same
high-performance JavaScript runtime Google built for Chrome, backed by Joyent. Its high
performing and asynchronous programming model makes it an excellent environment
for custom web servers and it's used by major companies, including Walmart, in
production settings.

Getting ready
Because we'll use Node.js in the next two chapters as well, it's worth pointing out to you
how to download and install it, even if your daily server environment is something more like
Apache or Microsoft IIS. You'll need to go to http://www.nodejs.org/ and download the
installer from the front page. This will install all you need to run Node.js and npm, the package
manager used by Node.js.

After installing on Windows, I had to reboot to get the Windows shell to
correctly find the node and npm commands that the Node.js installer
installed.

Once you get Node.js installed, we can test the installation by bringing up a simple HTTP
server in Node.js. To do this, put the following code in a file called example.js:

var http = require('http');
http.createServer(function(req, res) {
 res.writeHead(200, {'Content-Type': 'text/plain'});
 res.end('Hello world\n');
}).listen(1337, 'localhost');
console.log('Server running at http://localhost:1337');

This code loads Node.js's http module, and then creates a Web server bound to the port
1337 running on your local machine. You can run it by entering the following command at a
command prompt in the same directory as the file you created:

node example.js

Once you do so, point your browser to the URL http://localhost:1337/. If everything's
successful, you should see the message "Hello world" in your web browser.

You may need to tell your system firewall to enable access to ports
being served by the node command.

http://www.nodejs.org/

Reading and Writing JSON on the Server

26

How to do it...
Since Node.js uses Chrome's V8 JavaScript engine, working with JSON is the same with Node.
js as it is in Chrome. The JavaScript runtime defines the JSON object, which provides a JSON
parser and serializer for you.

To parse JSON, all you need to do is invoke the JSON.parse method, like this:

var json = '{ "call":"KF6GPE","type":"l","time":
"1399371514","lasttime":"1418597513","lat": 37.17667,"lng":
-122.14650,"result" : "ok" }';
var object = JSON.parse(json);

This parses the JSON, returning the JavaScript object containing the data, which we assigned
here to the variable object.

Of course, you can do the opposite, using JSON.stringify, like this:

var object = {
call:"KF6GPE",
type:"l",
time:"1399371514",
lasttime:"1418597513",
lat:37.17667,
lng:-122.14650,
result: "ok"
};

var json = JSON.stringify(object);

See also
For more on parsing and creating JSON in JavaScript, see Reading and Writing JSON in
JavaScript in Chapter 1, Reading and Writing JSON on the Client.

Reading and writing JSON in PHP
PHP is a popular server-side scripting environment easily integrated with the Apache and
Microsoft IIS web servers. It has native support for simple JSON encoding and decoding.

How to do it...
PHP provides two functions, json_encode and json_decode, to encode and decode
JSON respectively.

Chapter 2

27

You can pass primitive types or user-defined classes to json_encode and it returns a string
containing the JSON representing the object. For example:

$result = array(
"call" =>"KF6GPE",
"type" =>"l",
"time" =>"1399371514",
"lasttime" =>"1418597513",
"lat" =>37.17667,
"lng" =>-122.14650,
"result" =>"ok");
$json = json_encode($result);

This creates a string $json containing the JSON representation of our associative array.

The json_encode function takes an optional second argument, which lets you specify
arguments to the encoder. The arguments are flags, so you combine them with the binary
or | operator. You can pass a combination of the following flags:

ff JSON_FORCE_OBJECT: This flag forces the encoder to encode the JSON as an object.

ff JSON_NUMERIC_CHECK: This flag checks the contents of each string in the
incoming structure and if it contains a number, converts the string to a number
before encoding it.

ff JSON_PRETTY_PRINT: This flag formats the JSON for easier reading by humans
(don't do this in production, as it makes the JSON bigger)

ff JSON_UNESCAPED_SLASHES: This flag instructs the encoder to not escape
slash characters.

Finally, you can pass a third argument, which specifies the depth to which the encoder should
walk the expression when encoding the value you pass.

The complement of json_encode is json_decode, which takes the JSON to decode, and a
set of optional arguments. Its simplest use might be something like this:

$json = '{ "call":"KF6GPE","type":"l","time":
"1399371514","lasttime":"1418597513","lat": 37.17667,"lng":
-122.14650,"result" : "ok" }';
$result = json_decode($json);

The json_decode function takes up to three optional arguments:

ff The first argument, when true, specifies that the result should be returned in an
associative array rather than an object of type stdClass.

ff The second argument specifies an optional recursion depth to determine how deep
into the JSON the parser should parse.

Reading and Writing JSON on the Server

28

ff The third argument may be the option JSON_BIGINT_AS_STRING, which when set
indicates that integers that overflow the integer values should be returned as strings,
not cast to floating-point numbers (which may lose precision).

These functions return true on success or false on error; you can determine the cause of
the last error using JSON by examining the return value of json_last_error.

Reading and writing JSON in Ruby
Ruby provides the json gem for JSON handling. In earlier versions of Ruby, you have to install
this gem yourself; it's part of the base installation from Ruby 1.9.2 and onwards.

Getting ready
If you're running an earlier version of Ruby than Ruby 1.9.2, first install the gem with the
following command:

gem install json

Note that Ruby's implementation is in C, so installing the gem may require a C compiler. If you
don't have one installed on your system, you can install the pure Ruby implementation of the
gem using the following command:

gem install json_pure

Regardless of whether you need to install the gem or not, you'll need to include it in your code.
To do this, include both rubygems and json or json/pure, depending on which gem you
installed; do this using require, like this:

require 'rubygems'
require 'json'

The preceding code handles the former case, while the following code handles the latter:

require 'rubygems'
require 'json/pure'

How to do it...
The gem defines the JSON object, which includes the methods parse and generate, which
serialize and deserialize JSON respectively. Using them is what you'd expect by now. Create an
object or some JSON, invoke the appropriate function, and look at the results. For example, to
create some JSON using JSON.generate, you can execute the following:

require 'rubygems'
require 'json'

Chapter 2

29

object = {
"call" =>"KF6GPE",
"type" =>"l",
"time" =>"1399371514",
"lasttime" =>"1418597513",
"lat" => 37.17667,
"lng" => -122.14650,
"result" =>"ok"
}
json = JSON.generate(object)

This includes the necessary modules, creates an associative array with a single field, and then
serializes it to JSON.

Deserializing works the same way:

require 'rubygems'
require 'json'
json = '{ "call":"KF6GPE","type":"l","time":
"1399371514","lasttime":"1418597513","lat": 37.17667,"lng":
-122.14650,"result" : "ok" }'
object = JSON.parse(object)

The parse function can take an optional second argument, a hash with the following keys,
indicating options to the parser:

ff max_nesting indicates the maximum depth of nesting allowed in the parsed data
structures. It defaults to 19 or you can disable the nesting depth checking by passing
:max_nesting => false.

ff allow_nan, which if set to true, allows NaN, Infinity, and -Infinity in defiance of RFC
4627 to be parsed.

ff symbolize_names, which when true, returns symbols for the attribute names in a
JSON object; otherwise, strings are returned (strings are the default).

See also
Documentation for the JSON Ruby gem is available on the Web at
http://flori.github.io/json/doc/index.html.

http://flori.github.io/json/doc/index.html

3
Using JSON in Simple

AJAX Applications

In this chapter, we'll look at the part that JSON plays in asynchronous JavaScript and XML
(AJAX) applications that provide better responsiveness than older web pages by dynamically
loading bits of a web page on demand.

In this chapter, you'll find the following recipes:

ff Creating an XMLHttpRequest object

ff Making an asynchronous request for data

ff Sending JSON to your web server

ff Accepting JSON using Node.js

ff Getting the progress of an asynchronous request

ff Parsing the returned JSON

ff Issuing a web service request using Node.js

Introduction
AJAX is a set of web development techniques used on the client side of web development to
create asynchronous web applications—web pages that can fetch their content from different
servers, once the base content has been loaded. The "X" in AJAX stands for XML, but today's
AJAX applications typically use JSON to encapsulate data between the client and server.

The underpinning components of AJAX are actually quite old, dating back to an ActiveX
component in Internet Explorer introduced by Microsoft back in 1998.

Using JSON in Simple AJAX Applications

32

However, the technique really gained widespread traction by 2005, when Jesse Garrett wrote
his article titled Ajax: A New Approach to Web Applications. In April of 2006, the World Wide
Web Consortium released the first draft standard for the XMLHttpRequest object, which is
the underlying object powering all of today's AJAX applications in modern browsers.

In this chapter, we'll build a simple AJAX application that returns the latitude and longitude
of an amateur radio station reported through the Automated Packet Reporting System
(APRS) network as cached by http://www.aprs.fi/, a popular website in the amateur
radio community. We'll build the client side using HTML and JavaScript for Google Chrome
and Internet Explorer, and build the server side using Node.js.

To begin, be sure you installed Node.js as instructed in Chapter 2, Reading
and Writing JSON on the Server, in the section Reading and writing JSON
with Node.js. You'll also need to install the request module of Node.js. Do this
by running npm install request at a command prompt once you've
installed Node.js.

Setting up the server
We'll start with a bare-bones server. Make a directory for your node applications and save the
following to json-encoder.js:

var http = require('http');
var fs = require('fs');
var url = require('url');

http.createServer(function(req, res) {
if (req.method == 'POST') {
 console.log('POST');
 var body = '';
 req.on('data', function(data) {
 body += data;
 });
 req.on('end', function() {
 res.writeHead(200,
 {'Content-Type': 'application/json'});
 res.end("null");
 });
 }
 elseif (req.method == 'GET')
 {
 console.log('GET');
 var urlParts = url.parse(req.url);
 if (urlParts.pathname == "/favicon.ico")

http://www.aprs.fi/

Chapter 3

33

 {
 res.end("");
 return;
 }

 res.writeHead(200, {'Content-Type': 'text/plain'});

 var html = fs.readFileSync('./public' + urlParts.pathname);
 res.writeHead(200, {'Content-Type': 'text/html'});
 res.end(html);
 return;
 }
}).listen(1337, 'localhost');
console.log('Server running at http://127.0.0.1:1337');

This code handles two kinds of HTTP requests: POST requests and GET requests. It begins
by allocating http, filesystem, and url manipulation objects, and then registers an
HTTP server on port 1337 of the localhost. Its server switches on the request type. For POST
requests, it presently returns an empty JSON body, ignoring its incoming content. For GET
requests, it attempts to load the file indicated in the URL out of the public subdirectory
below the current working directory and return it to the client as an HTML document. If the
incoming request is for a favicon, it ignores the request.

This server is crude but adequate for our purposes. If you're interested in learning more about
Node.js, you might want to extend it for the following purposes:

ff Correctly determine the MIME type of the documents it returns, and send the
appropriate Content-Type header based on the document MIME type.

ff Not throw an exception and kill the server if a given document isn't found, returning a
404 page not found error instead.

We'll extend the server-side JavaScript throughout this chapter.

Setting up the client page
Make a subdirectory inside json-encoder.js and call it public. In this directory, create an
HTML file containing the following HTML and name it json-example.html:

<!DOCTYPE html>
<html>
<head>

</head>
<body onload="doAjax()">

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

Using JSON in Simple AJAX Applications

34

<p>Hello world</p>
<p>
<div id="debug"></div>
</p>
<p>
<div id="json"></div>
</p>
<p>
<div id="result"></div>
</p>

<p>Powered by aprs.fi</p>

<script type="text/javascript">
var debug = document.getElementById('debug');

function doAjax() {
 document.getElementById("result").innerHTML =
 "loaded... executing.";
}
</script>
</body>
</html>

This is a simple HTML document with three div tags we'll populate with data from the
asynchronous requests: debug to show debug messages; json to show the raw JSON; and
result to show the actual result, which will show some formatted data from the JavaScript
object obtained by parsing the JSON. There's one script at the bottom of the page, doAjax,
which the browser invokes after loading all the HTML through the onload attribute of the
body tag.

Loading the web page in Chrome with the developer's tools active, you should see something
like this:

Chapter 3

35

We'll extend the HTML throughout this chapter.

Creating an XMLHttpRequest object
All modern web browsers provide an XMLHttpRequest class you can instantiate in your
code, which you can use to issue asynchronous calls to obtain content over HTTP. You'll
create one or more of these in your client-side JavaScript using the new operator.

How to do it...
You'll want to create an instance of this class early on in your JavaScript after the page loads,
as shown in the following code:

function doAjax() {
var xmlhttp;

Using JSON in Simple AJAX Applications

36

if (window.XMLHttpRequest)
 {
 // code for IE7+, Firefox, Chrome, Opera, Safari
 xmlhttp=new XMLHttpRequest();
 }
}

How it works…
The preceding code tests the root-level JavaScript window object for the XMLHttpRequest
class, and if the browser defines the class, creates an instance of the class for us to use in the
making of asynchronous requests.

See also
If you're working with a very old version of Internet Explorer, you may need to use a
Microsoft.XMLHTTP ActiveX object. In which case, the test for window.XMLHttpRequest
will fail.

Making an asynchronous request for data
You use the instance of the XMLHttpRequest class you created to request data. You can
request data using any HTTP method; typically you'll use GET or POST. GET is good if you don't
need to pass any arguments, or if the arguments are encoded in the service URL; POST is
necessary if you're going to post JSON to the server as arguments for your server-side script.

How to do it...
Continuing to enhance our client page script's doAjax function, here's how to issue an
asynchronous request, modifying the previous example:

function doAjax() {
 var xmlhttp;
 if (window.XMLHttpRequest)
 {
 // code for IE7+, Firefox, Chrome, Opera, Safari
 xmlhttp=newXMLHttpRequest();

 xmlhttp.open("POST","/", true);
 xmlhttp.send("");
 }
}

Chapter 3

37

How it works…
The XMLHttpRequest class has two methods you use to make a request: open and send.
You use the open method to start the process of issuing the request, and the send method if
you need to send data (say, with a POST request) for the server to process.

The open method takes three arguments: the HTTP method, the URL (relative to the page
containing the script), and a Boolean indicating whether the request should be synchronous
(indicated by the value false) or asynchronous (indicated by the value true). In the
preceding code, we submit a POST request to the web server's root and request the browser
to handle the request asynchronously, so the page will be rendered and the user can interact
with the page.

The send method takes a single argument, a string containing the data you'd like to send
to the server. In this example, we're not sending anything; we'll use this method to send the
JSON for our argument.

See also
This recipe is closely related to the next, Sending JSON to your web server, in which we
actually create a JavaScript object, stringify it, and send it using the send method.

Sending JSON to your web server
Some AJAX requests just need to get data at a URL. This is the case when the server updates
an object for all clients, or when the URL for an object uniquely identifies the object (common
when you design a service using Representational State Transfer (REST)). Other times, you
may want to pass JavaScript data to the server, such as when you have a complex query you'd
like the server to process. To do this, create your JavaScript object, then stringify it and pass
the string containing the JSON to the XMLHttpRequest object's send method.

How to do it...
Omitting the code that creates an XMLHttpRequest object, you send JSON to a server with
the following code:

function doAjax() {
 // … create XMLHTTPObject as before

 var request = {
 call: "kf6gpe-7"
 };

xmlhttp.open("POST","/", true);

Using JSON in Simple AJAX Applications

38

xmlhttp.setRequestHeader("Content-Type","application/json");
xmlhttp.send(JSON.stringify(request));
}

Note that we're using an HTTP POST request here, which submits the JSON document to the
server as an HTTP object body.

How it works…
This code creates a JavaScript object request that has a single field: call. The call field's value
is set to the station we're looking for and the server will use it when it processes the request.

When you pass data to the server, you should correctly set the Content-Type header, which
HTTP uses to indicate to the server the type of the data being carried. The MIME type for
JSON is application/json; however, some web application developers have chosen alternate
representations, such as text/x-json, text/x-javascript, text/javascript, or
application/x-javascript. You should use application/json unless you have a
compelling reason (think legacy code you can't fix on a server). You specify the content type
by setting a request header using the setRequestHeader method. This method takes
two arguments: the name of the header to set and its value. Note that header names are
case sensitive!

Once you set the request header, the final thing to do is call send and pass the stringified
JavaScript object. We do this in the last line of the preceding example.

Accepting JSON using Node.js
Different web server systems accept data posted by a client in different ways. That being said,
in most cases, you read the data piecewise as it comes in from the client and once the POST
request finishes, process it as a batch. Here's how to do it with Node.js.

How to do it...
In our case, we accept JSON submitted from the client via HTTP POST requests. To do this, we
need to read the data from the client, aggregate it in a string, and when all of the data arrives
at the server, convert the data from a JSON string to a JavaScript object. In json-encoder, js,
we modify it to read as the following:

 // … beginning of script is the same as in the introduction
 if (req.method == 'POST') {
 console.log('POST');
 var body = '';
 req.on('data', function(data) {
 body += data;
 });

Chapter 3

39

 req.on('end', function() {
 var json = JSON.parse(body);
 json.result = 'OK';
 res.writeHead(200,
 {'Content-Type': 'application/json'});

 res.end(JSON.stringify(json));
 });
 }
 // and script continues with the GET if statement and code

How it works…
The preceding code extends the server-side Node.js script we saw in this chapter's
introduction. The code begins by testing for the POST request method. If we get a POST
request, we create an empty string body to contain the body of the request. Node.js is event-
driven; to read data from the POST request, we add a 'data' event handler to the request,
which concatenates newly-read data to the value referred to by the variable body.

At some point, the POST request concludes, which causes the request to raise the 'end'
event. We register an event handler for this event, which uses JSON.parse to parse the
incoming JSON. Then, we set an additional field in the resulting object, the result field, giving
it a value of 'OK'. Finally, we write the Content-Type header and then the JSON representing
the object to the client using the writeHead and end methods respectively.

See also
As suggested in the introduction, how you read posted data on your server depends a lot on
the server environment and server-side scripting language. If you haven't done this before, a
quick trip to a search engine such as Bing or Google is in order. Once you do so, be prepared
to take the resulting string data and convert it to an object in your server-side scripting
language using one of the recipes from Chapter 2, Reading and Writing JSON on the Server.

Getting the progress of an asynchronous
request

Our request is pretty lightweight but that's not always going to be the case in your application.
Moreover, progressing is especially important in mobile web applications, where the mobile
device may move in and out of network coverage and suffer temporary network outages.
A robust application will test progress status and errors and retry important requests.

Using JSON in Simple AJAX Applications

40

The XMLHttpRequest object provides events for it to notify you about the progress of a
pending request. These events are as follows:

ff load: This event executes immediately after you open a connection.

ff loadstart: This event executes as a load first starts.

ff progress: This event executes periodically as the load takes place.

ff error: This event executes in the event of a network error.

ff abort: This event executes in the event that the network transaction is aborted (such
as the user navigating away from the page issuing the request).

How to do it...
For each of these events, you'll want to register a function that handles the event in some
way. For example, the error handler should notify the user that an error occurs, while the
abort handler should clean up any client-side data that is left lingering in the event of an
abandoned request.

Here's an example of how to do this, which reports debugging information for each of these
events; this would go in the <script> tag at the bottom of our example HTML:

// Add the following functions to the script in the HTML…
function progress(evt){
 debug.innerHTML += "'progress' called...<...
";/>";
}

function abort(evt){
 debug.innerHTML += "'abort' called...
";
}

function error(evt){
 debug.innerHTML += "'error' called...
";
}

function load(evt){
 debug.innerHTML += "'load' called...
";
}

function loadstart(evt){
 debug.innerHTML += "'loadstart' called
;
}

function doAjax() {
 // create xmlhttp object as usual

Chapter 3

41

 var request = {
 call: "kf6gpe-7"
 };

 xmlhttp.addEventListener("loadstart", loadstart, false);
 xmlhttp.addEventListener("progress", progress, false);
 xmlhttp.addEventListener("load", load, false);
 xmlhttp.addEventListener("abort", abort, false);
 xmlhttp.addEventListener("error", error, false);

 // issue request in the usual way…
}

How it works…
The XMLHttpRequest object offers the addEventListener method, which you use to
register functions the object should invoke when particular events occur. To this method, you
pass the name of the event, the function (or a closure) to invoke on the event, and whether
the registered function should capture the event or not (usually not). In the preceding
example, we invoke that method for each of the events, passing the function that we wrote to
handle the event. Each of our functions just logs the fact that the event was received in the
debug div in our HTML content.

There's more...
The XMLHttpResult object defines an attribute, onreadystatechange, to which you can
assign a function that the object will invoke periodically as the request runs. The next recipe,
Parsing the returned JSON, describes how to use this to monitor the status of a request.

The behavior of these events varies from browser to browser, and worse, from browser version
to browser version. For example, early versions of Microsoft Internet Explorer (prior to Version
9) don't support these events at all. You should take a lowest-common-denominator approach
to handle these events if your web application is to run on multiple browsers, especially if
they're different versions.

See also
Because the support for these events varies by browser and browser version, this is another
area where using a JavaScript framework such as jQuery or AngularJS can really help. These
frameworks abstract away specific browser differences. Chapter 4, Using JSON in AJAX
Applications with jQuery and AngularJS, discusses using these frameworks for AJAX.

Using JSON in Simple AJAX Applications

42

See Getting the progress of an asynchronous request using jQuery and Getting the progress
of an asynchronous request using AngularJS in Chapter 4, Using JSON in AJAX Applications
with jQuery and AngularJS, for browser-independent ways to respond to these events.

Parsing the returned JSON
Once the server returns the result, you need a way to get that result from the
XMLHttpRequest object and convert the result from a string to a JavaScript object.

How to do it...
The XMLHttpRequest object defines the onreadystatechange attribute to which you
assign a function that is called periodically throughout the lifespan of a request. Here's our
doAjax function in its entirety, including a function assigned to this attribute to monitor the
request for completion:

function doAjax() {
 var xmlhttp;
 xmlhttp = new XMLHttpRequest();

 var request = {
 call: "kf6gpe-7"
 };

 xmlhttp.addEventListener("loadstart", loadstart, false);
 xmlhttp.addEventListener("progress", progress, false);
 xmlhttp.addEventListener("load", load, false);
 xmlhttp.addEventListener("abort", abort, false);
 xmlhttp.addEventListener("error", error, false);

 xmlhttp.onreadystatechange = function() {
 if (xmlhttp.readyState == 4 &&xmlhttp.status == 200)
 {
 var result = JSON.parse(xmlhttp.responseText);
 document.getElementById("json").innerHTML =
 xmlhttp.responseText;
 document.getElementById("result").innerHTML = result.call + ":"
+ result.lat + ", " + result.lng;
 }
 };

xmlhttp.open("POST","/", true);

Chapter 3

43

xmlhttp.setRequestHeader("Content-type","application/json");
xmlhttp.send(JSON.stringify(request));
}

How it works…
After adding the various event listeners, we assign a function to the onreadystatechange
attribute. This function is called as the state of the request object changes; at each invocation,
we test the readyState field of the request object and its status. The readyState field
indicates the state of the request; we're interested in state 4, which indicates that the request
is complete. Once complete, we can find the HTTP status of the request in the status field
of the request; the HTTP status code 200 indicates a normal successful status in reading
content from the server.

Once we get readyState of 4 and a HTTP status of 200, we define a new variable result
as the object returned by parsing the JSON returned by the server, available from the
request's responseText field. You can do whatever you want with the resulting object; we
copy the JSON to jsondiv so you can see the JSON and read a few fields of the JavaScript
object when we create the contents of resultdiv.

There's more...
The XMLHttpRequest class defines the following ready states:

ff 0 indicates that the request has not been initialized

ff 1 indicates that the request has been set up

ff 2 indicates that the request has been sent

ff 3 indicates that the request is in progress

ff 4 indicates that the request is complete

In practice, you should usually use only the last value and use events for other
progress reporting.

HTTP result codes are defined in the HTTP request for comment, Internet RFC 2616; the
section you'd be interested in for this purpose is at http://www.w3.org/Protocols/
rfc2616/rfc2616-sec10.html. The 200 series of results indicate a successful
transaction; how you handle the other notifications will depend on the business logic
for your web application.

The final Node.js server looks like this:

var http = require('http');
var fs = require('fs');
var url = require('url');

www.allitebooks.comwww.allitebooks.com

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.allitebooks.org
http://www.allitebooks.org

Using JSON in Simple AJAX Applications

44

var request = require("request");

console.log("Starting");

http.createServer(function(req, res) {
 if (req.method == 'POST') {
 console.log('POST');
 var body = '';
 req.on('data', function(data) {
 body += data;
 });
 req.on('end', function() {
 var json = JSON.parse(body);
 var apiKey = "<<key>>";
 var serviceUrl = "http://api.aprs.fi/api/get?name=" +
 json.call + "&what=loc&apikey=" + apiKey + "&format=json";
 request(serviceUrl, function(error, response, body) {
 var bodyObject = JSON.parse(body);
 if (bodyObject.entries.length>0)
 {
 json.call = bodyObject.entries[0].name;
 json.lat = bodyObject.entries[0].lat;
 json.lng = bodyObject.entries[0].lng;
 json.result = "OK";
 }
 else
 {
 json.result = "ERROR";
 }
 res.writeHead(200, {'Content-Type': 'application/json'});
 res.end(JSON.stringify(json));
 });
 });
 }
 elseif (req.method == 'GET')
 {
 console.log('GET');
 var urlParts = url.parse(req.url);
 if (urlParts.pathname == "/favicon.ico")
 {
 res.end("");
 return;
 }
 res.writeHead(200, {'Content-Type': 'text/plain'});

Chapter 3

45

 var html = fs.readFileSync('./public' + urlParts.pathname);
 res.writeHead(200, {'Content-Type': 'text/html'});
 res.end(html);
 return;
 }
}).listen(1337, 'localhost');
console.log('Server running at http://localhost:1337');

Issuing a web service request using Node.js
So far, our server doesn't do much in response to a POST request; all it does is say "OK" and
return the client's JSON back to the client. Typically, your server will need to do something
with the JSON you provide, that is, make a web or database query, for example, or perform a
computation. Our example queries the web service JSON endpoint at http://www.aprs.fi/,
which lets you see how you can make a server-to-server web service request using Node.js.

Getting ready
If you want to run the example for yourself, you'll first need to go to http://www.aprs.fi,
register for an account, and obtain an API key. Follow the links on the page to do this, and
substitute your API key for the text "—key-"in the example that follows.

How to do it...
Our Node.js code will construct a URL with the identifier of the station we're interested in and
our API key, and issue an additional HTTP request on behalf of the client. It looks like this:

var request = require('server');

///...

if (req.method == 'POST') {
 console.log('POST');
 var body = '';
 req.on('data', function(data) {
 body += data;
 });
 req.on('end', function() {
 var json = JSON.parse(body);
 var apiKey = "—key-";
 var serviceUrl = "http://api.aprs.fi/api/get?name=" +
 json.call +
 "&what=loc&apikey=" + apiKey +

http://www.aprs.fi/
http://www.aprs.fi

Using JSON in Simple AJAX Applications

46

 "&format=json";

 request(serviceUrl, function(error, response, body) {
 var bodyObject = JSON.parse(body);
 if (bodyObject.entries.length>0)
 {
 json.call = bodyObject.entries[0].name;
 json.lat = bodyObject.entries[0].lat;
 json.lng = bodyObject.entries[0].lng;
 json.result = "OK";
 }
 else
 {
 json.result = "ERROR";
 }
 res.writeHead(200,
 {'Content-Type': 'application/json'});

 res.end(JSON.stringify(json));
 });
 });
 }
 elseif (req.method == 'GET')
 {
 // …Original GET handling code here…
 }
}).listen(1337, 'localhost');
console.log('Server running at http://127.0.0.1:1337');

How it works…
After converting the client JSON to a JavaScript object, the code creates a URL for our web
request consisting of the request station identifier, API key, and the fact that we'd like JSON
for the result. We then use the request method to issue a simple GET request to that URL,
passing a function that Node.js will invoke when the request succeeds.

Node.js invokes our callback function with an indicator of an error, a response object with
fields containing the details of the HTTP response, and the body returned by the request. In
this example, we assume success for brevity, and convert the resulting body from JSON to
a JavaScript object using JSON.parse. The resulting object is a JavaScript object similar
to what you saw in Chapter 1, Reading and Writing JSON on the Client, in the Introduction
section. It has an entries array which has zero or more records indicating the location of each
station in the record's lat and lng fields. We extract the first returned result and copy the
relevant data to the JavaScript object we'll return to the original client.

Chapter 3

47

There's more...
Most server-side frameworks provide various ways to modify the semantics of a web service
request, including specifying headers and the HTTP method to use when issuing the request.
Node.js's request module is no different.

First, the request method can take a JavaScript object instead of a URL with a number of fields
that let you customize the request. If you pass an object, you should put the URL to which the
request should be made in the URI or URL attributes. You can also specify the following:

ff The HTTP method to use, which is passed in the method parameter

ff The HTTP headers to send, which are passed as a JavaScript object with
attribute-value pairs for each header in the attribute headers

ff A body to pass to the client for PATCH, POST, and PUT method requests, in the
body attribute

ff A timeout indicating how long to wait in milliseconds in the timeout attribute

ff Whether or not to gzip the response, indicated by setting the gzip attribute to true

Other options are available as well. See the Node.js documentation for details at
https://nodejs.org/api/index.html.

See also
The Node.js request module has its documentation on GitHub at
https://github.com/request/request

https://nodejs.org/api/index.html
https://github.com/request/request

49

Using JSON in AJAX
Applications with

jQuery and AngularJS

In this chapter, we'll look at the part that JSON plays in asynchronous JavaScript and XML
(AJAX) applications that provide better responsiveness than older web pages by dynamically
loading bits of a web page on demand. In this chapter, you'll find the following recipes:

ff Adding a dependency to jQuery to your web page

ff Requesting JSON content using jQuery

ff Sending JSON to your web server using jQuery

ff Getting the progress of a request using jQuery

ff Parsing the returned JSON using jQuery

ff Adding a dependency to AngularJS to your web page

ff Requesting JSON content using AngularJS

ff Sending JSON to your web server using AngularJS

ff Getting the progress of a request using AngularJS

ff Parsing the returned JSON using AngularJS

4

Using JSON in AJAX Applications with jQuery and AngularJS

50

Introduction
In the last chapter, you saw recipes that showed you how to use XMLHttpRequest to make
AJAX requests that exchanged JSON. In practice, handling all of the special cases in different
browsers makes this a pesky, error-prone job. Fortunately, most client-side JavaScript
frameworks wrap this object for you, giving you a browser-independent way to do the same
thing. Often, the interface is easier to use too—as you'll soon see, in the case of AngularJS,
you don't need to do anything special to move objects back and forth using JSON; the
framework even takes care of serializing and deserializing the JSON for you!

Both AngularJS and jQuery are client-side JavaScript frameworks that make developing web
applications easier. jQuery was one of the first and is probably the most widely adopted
framework; AngularJS is newer and has the additional advantage of providing you with
the ability to structure your code using the model-view-controller (MVC) paradigm.

MVC is a design pattern that dates back decades, originally introduced as
a part of Smalltalk in the 1970s. This pattern divides your code into three
distinct segments: the model, which contains the data your user wants
to manipulate, the view, which shows the contents of the model, and the
controller, which accepts events and changes the model in response to
the accepted events.

In this chapter, we will use the server in Node.js that we based last chapter's recipes on, with
an extension to support serving client-side JavaScript as well as HTML. Here's the code for
this, broken down step by step:

var http = require('http');
var fs = require('fs');
var url = require('url');
var request = require("request");

These four lines include the interfaces our server needs—the modules to handle the HTTP
server module, the file system module, the URL parsing module, and a simple module to
make HTTP requests.

Next, we log that the server starts and create an HTTP server that accepts all requests with a
single function callback:

console.log("Starting");
http.createServer(function(req, res) {

Chapter 4

51

Our server handles two kinds of requests: POST requests and GET requests. The POST
request handler needs to read the incoming data that's been posted to the server, which
we do by concatenating it with an originally empty body buffer:

 if (req.method == 'POST') {
 console.log('POST');
 var body = '';
 req.on('data', function(data) {
 body += data;
 });

We register a function that Node.js calls back when the HTTP post finishes, which parses
the JSON and makes a GET request to the remote server for our data, simulating what a
middleware server might do:

 req.on('end', function() {
 var json = JSON.parse(body);

 var apiKey = " --- api key here --- ";
 var serviceUrl = "http://api.aprs.fi/api/get?name=" +
 json.call + "&what=loc&apikey=" + apiKey + "&format=json";

This request itself has a callback, which parses the incoming JSON from the remote server,
looks for the first element of the array in the result entries attribute, and constructs a JSON
object to return to the web client. If we don't get a valid response, we set an error value so the
client can do something with the error. We return this by converting the JavaScript object to
JSON and writing it to the client:

 request(serviceUrl, function(error, response, body) {
 var bodyObject = JSON.parse(body);
 if (bodyObject.entries.length>0)
 {
 json.call = bodyObject.entries[0].name;
 json.lat = bodyObject.entries[0].lat;
 json.lng = bodyObject.entries[0].lng;
 json.result = "OK";
 }
 else
 {
 json.result = "ERROR";
 }
 res.writeHead(200, {'Content-Type': 'application/json'});
 res.end(JSON.stringify(json));
 });
 });
 }

Using JSON in AJAX Applications with jQuery and AngularJS

52

If it's not a POST request we're handling, it might be a GET request. Here's the new code from
the last chapter. We need to determine whether the incoming URL indicates that the content
to be fetched is an HTML file (whose suffix is .html or .htm) or a JavaScript file (whose suffix
is .js). First, we see whether we're getting a request for a favicon; Chrome always does this,
and we just return an empty object body. Assuming that it's not a favicon being requested,
we check the incoming URL to see how it ends, so we can write the appropriate Content-Type
header (either text/html or application/json). If it's neither of those, we assume plaintext and
send a text/plain Content-Type header:

 else if (req.method == 'GET')
 {
 console.log('GET');
 var urlParts = url.parse(req.url);
 if (urlParts.pathname == "/favicon.ico")
 {
 res.end("");
 return;
 }

 if (urlParts.pathname.lastIndexOf(".html") ==
 urlParts.pathname.length - 5 ||
 urlParts.pathname.lastIndexOf(".htm") ==
 urlParts.pathname.length - 4)
 {
 res.writeHead(200, {'Content-Type': 'text/html'});
 }
 else if (urlParts.pathname.lastIndexOf(".js") ==
 urlParts.pathname.length - 3)
 {
 res.writeHead(200, {'Content-Type': 'application/json'});
 }
 else
 {
 res.writeHead(200, {'Content-Type': 'text/plain'});
 }

Next, we read the content from the public directory below the Node.js server source and
return it to the client:

 var c = fs.readFileSync('./public' + urlParts.pathname);
 res.end(c);
 return;
 }

Chapter 4

53

Finally, this big function gets registered as a listening HTTP server on port 1337 of the
localhost, and we log that the server's started:

}).listen(1337, 'localhost');
console.log('Server running at http://localhost:1337');

A real server probably shouldn't guess the MIME type of the returned
data by looking at the incoming URL, but actually sniff the outgoing data
and make a determination as to the MIME type and use that. There's a
Node.js module magic that does just this; if you're a little less paranoid,
you could use the file name suffix on the disk and hope that the content
provider was correctly naming files.

That's it for the server, which you'll find in the ZIP for the samples that accompany this book.

Adding a dependency to jQuery to your
web page

jQuery is a popular client-side framework for AJAX applications that gives you
browser-independent support to search and manipulate the Document Object Model
(DOM) and Cascading Style Sheets (CSS), perform AJAX queries, as well as include several
HTML controls you can style using CSS. You need to include the source for jQuery in your
page, either by pointing to a released version on the jQuery Content Delivery Network (CDN),
or by going to http://www.jquery.com and downloading a copy of the framework for you
to serve with your own application.

How to do it...
You'll need to include the jQuery library in your web page by starting a new json-example.html
file, like this:

<!doctype HTML>
<html>
<head>
 <script type="text/javascript"
 src="/code.jquery.com/jquery-1.11.2.min.js"></script>
</head>

www.allitebooks.comwww.allitebooks.com

http://www.jquery.com
http://www.allitebooks.org
http://www.allitebooks.org

Using JSON in AJAX Applications with jQuery and AngularJS

54

How it works…
These two lines include two scripts containing the minified version of the jQuery client library
from the jquery.com CDN. This is probably what you want to do for production applications;
the minified jQuery implementation is smaller than the full-blown library, so it's faster for your
clients to download, and using the version on the CDN provides performance that may well
be faster than what you can provide, unless you're hosting multiple servers at a major cloud
provider such as Amazon Web Services or Microsoft Azure.

There's more…
If you don't want to include the minified versions—often the case when you're deep in your
development cycle and want to debug your code—you can include the standard version served
from your server. Just download the necessary files from http://www.jquery.com/ and
serve them from your server.

jQuery comes in two revisions: revision 1.x, which has support for older browsers, including
Microsoft Internet Explorer 6 and above, and revision 2.x, which requires at least Microsoft
Internet Explorer 9. Our examples will use jQuery 1.x, but never fear; the APIs we discuss are
the same for jQuery 2.x.

See also
Head over to http://www.jquery.com to download jQuery or learn more about it. If you're
looking for a JavaScript framework, it's probably worth looking at the jQuery learning center at
http://learn.jquery.com/, or perhaps take a look at Packt Publishing's book, Learning
jQuery – Fourth Edition, by Jonathan Chaffer and Karl Swedberg.

Requesting JSON content using jQuery
jQuery defines the variable $, which exposes methods for everything you want to do with
the interface. (There are ways to rename that variable, say if you're working with another
JavaScript environment that uses the same variable, but I don't recommend it). Among the
methods $ exposes is the ajax method, which you use to make AJAX queries. Let's see how.

http://www.jquery.com/
http://www.jquery.com
http://learn.jquery.com/

Chapter 4

55

How to do it...
Here's a whole page that makes an AJAX request. The AJAX code is in bold:

<!doctype HTML>
<html>
<head>
<script type="text/javascript"
 src="//code.jquery.com/jquery-1.11.2.min.js"></script>
</head>
<body>

<p>Hello world</p>
<p>
 <div id="debug"></div>
</p>
<p>
 <div id="json"></div>
</p>
<p>
 <div id="result"></div>
</p>

<p>Powered by aprs.fi</p>

<script>
$(function () {
 $('#debug').html("loaded... executing.");

 var request = {
 call: "kf6gpe-7"
 };

 $.ajax({
 type: "POST",
 url: "/",
 dataType:"json" });
});

</script>
</body>
</html>

The HTML in this example is straightforward. It includes the jQuery modules, and then defines
three div regions for the AJAX request to update when the request is complete. Let's look at
the JavaScript function doAjax in more detail.

Using JSON in AJAX Applications with jQuery and AngularJS

56

How it works…
The doAjax function, called when the page finishes loading, first sets the HTML contents of
div named debug to the text "loaded… executing.". The $() syntax is the jQuery syntax
to find an item in the DOM; you can find items by their ID by prefixing the name with a # (hash)
symbol, such as a CSS selector. The value returned isn't the actual DOM element but a jQuery
class that wraps the DOM element that exposes simple methods such as html to get or set
the HTML contents of the item.

Next, we define the JSON object that has the particulars of our request, as we did in the
previous chapter's recipes. It has one attribute, call, containing the call sign of the station
we're interested in.

Next, we invoke the ajax method of $, passing a JavaScript object with the semantics of our
request. It should have the following fields:

ff The type field, which indicates the HTTP method of the request (such as POST
or GET).

ff The url field, which indicates the URL to which the request should be submitted.

ff The data field, containing string data to be sent to the server for the request (if any).
We'll see that used in the next recipe.

ff The dataType field, indicating the type of data you're expecting from the server;
an optional field, which can be xml, json, script, or html.

See also
Curious readers should consult the jQuery ajax method documentation available at
http://api.jquery.com/jQuery.ajax/.

Sending JSON to your web server using
jQuery

Sending JSON to your server using jQuery is easy. Just get the data in the JSON format and
specify it using the ajax method argument's data field.

http://api.jquery.com/jQuery.ajax/

Chapter 4

57

How to do it...
Let's look at doAjax again, this time modified to send our request JSON:

function doAjax() {
 $('#debug').html("loaded... executing.");

 var request = {
 call: "kf6gpe-7"
 };

 $.ajax({
 type: "POST",
 url: "/",
 data: JSON.stringify(request),
 dataType:"json"
 });
}

</script>
</body>
</html>

How it works…
The magic line in the previous listing is highlighted; it's the following line in the arguments
passed to the ajax method:

 data: JSON.stringify(request),

Of course, we use JSON.stringify to encode the JavaScript object as JSON before
assigning it to the data field.

Using JSON in AJAX Applications with jQuery and AngularJS

58

Getting the progress of a request using
jQuery

jQuery abstracts the various progress reporting mechanisms of the underlying
XMLHttpRequest object in a platform-agnostic way, giving you the ability to determine
whether your request succeeded or failed. You do this by registering functions that the
jQuery AJAX handler will invoke when an error occurs or the results are successfully loaded.

How to do it...
Here's doAjax rewritten to support getting notifications on failure, regardless of whether the
event succeeds or fails:

function doAjax() {
 $('#debug').html("loaded... executing.");

 var request = {
 call: "kf6gpe-7"
 };

 $.ajax({
 type: "POST",
 url: "/",
 data: JSON.stringify(request),
 dataType:"json",
 })
 .fail(function() {
 $('#debug').append("
failed");
 })
 .always(function() {
 $('#debug').append("
complete");
 });
}

The new methods here are the fail and always methods.

Chapter 4

59

How it works…
jQuery uses a pattern called chaining, in which most of its methods return an instance of an
object to which you can apply additional methods. So, methods such as fail and always
operate on the same object, and return the same object, that encapsulates the return value
from the $.ajax method call using chaining yields easier-to-read and easier-to-write code.
In the case of $.ajax, what's returned is an instance of a jQuery XMLHttpRequest object,
whose fields are a superset of the XMLHttpRequest object returned by the browser.

Here, I'm setting two event handlers on the return value to $.ajax: one for the failure case,
in which the request fails for some reason, and one for the always case. Note that thanks to
chaining, I could have reversed these and put the handler for the always case first and the
handler for the failure case second. It's entirely up to you which you prefer.

The always and failure methods take a single function, which can take up to three
arguments. In this case, I'm not using any of the available arguments and just appending
some text to the HTML of the div region with the id debug. jQuery passes the failure
event handler to the jQuery XMLHttpRequest object, a textual status message, and
the error code associated with the failure, while it passes the always method to either
those arguments on an error, or the data, a textual status message, and the jQuery
XMLHttpRequest object.

There's more...
If you'd prefer, you can specify the fail event handler as a function in the attribute named
error in the initial JavaScript object argument to $.ajax. Similarly, you can specify the always
event handler as a function in the attribute named complete in the initial JavaScript object
to $.ajax. While this puts all of the code in one place, I personally find that harder to read
because the indentation can get unwieldy quickly.

Parsing the returned JSON using jQuery
Finally, it's time to see how to get the returned JSON from the server and use it. You'll do this
by registering an event handler on $.ajax to receive the resulting JavaScript object, which
jQuery helpfully deserializes from JSON for you.

Using JSON in AJAX Applications with jQuery and AngularJS

60

How to do it...
To get the result from the AJAX request, we need to add an event handler to the jQuery
XMLHttpRequest object's done event, as follows:

function doAjax() {
 $('#debug').html("loaded... executing.");

 var request = {
 call: "kf6gpe-7"
 };

 $.ajax({
 type: "POST",
 url: "/",
 data: JSON.stringify(request),
 dataType:"json",
 })
 .fail(function() {
 $('#debug').html($('#debug').html() + "
failed");
 })
 .always(function() {
 $('#debug').html($('#debug').html() + "
complete");
 })
 .done(function(result) {
 $('#json').html(JSON.stringify(result));
 $('#result').html(result.call + ":" +
 result.lat + ", " + result.lng);
 });
}

How it works…
jQuery invokes the done event handler when the request successfully completes, passing
the resulting data as an argument. Because we specified a data type of json in the initial
call to $.ajax, jQuery helpfully uses JSON.parse to parse the return value, and passes the
JavaScript object we're interested in, saving us the need to call parse on our own.

Chapter 4

61

Our done event handler does two things: it puts the JSON of the object (as serialized by the
browser, not as returned by the server) in the div field with the ID json, and updates the
result div with the station's call sign, latitude, and longitude from the resulting data. This
gives us a web page that looks like this:

There's more...
If you prefer, you can register the event handler for successful completion by passing it as the
success field of the initial request to $.ajax. Like fail and always, I prefer using chaining
to set it explicitly because I think it's more readable.

Using JSON in AJAX Applications with jQuery and AngularJS

62

Adding a dependency to AngularJS to your
web page

Just as another JavaScript framework, you need to include AngularJS in your HTML. As you'll
see in this section, there are a few other things you do differently to get set up. First, be sure
that you create a new HTML file, such as json-example-angular.html.

How to do it...
Here's the HTML for our application in its entirety:

<!doctype HTML>
<html>
 <head>
 </head>

<body ng-app="aprsapp">
 <div ng-controller="AprsController">
 <button ng-click="doAjax()">Send AJAX Request</button>
 <div>{{debug}}</div>
 <div>{{json}}</div>
	

 <div>{{message}}<div>
 </div>

 <p>Powered by aprs.fi</p>
<script type="text/javascript"
src="https://ajax.googleapis.com/ajax/libs/angularjs/1.3.2/angular.
min.js"></script>
<script src="json-example-angularjs.js"></script>
</body>
</html>

Let's look more closely at this HTML and see what's different.

Chapter 4

63

How it works…
First, note that the body tag has the attribute ng-app, which is set to aprsapp. AngularJS
applications are given defined names, and you reference those names in the JavaScript that
implements the logic for your application.

Next, note that the div region containing our UI has the attribute ng-controller, which
identifies the specific controller module responsible for handling the events for that part of
the UI. We'll see how that's linked to the JavaScript in a moment. In that div are other div
regions, whose contents are contained in double brackets, defining a document template
that Angular.js fills out for you. This is a variable in AngularJS; at the time the controller loads,
these variables in HTML will be replaced by the contents set by the controller. Each is a model,
containing data to show.

Finally, we need to include the AngularJS module itself, as well as our JavaScript. It's
customary to keep the JavaScript for your application in a separate file when working with
AngularJS because this helps you enforce good separation between the appearance of the
web application (contained in your HTML and CSS) and the implementation (contained in
your JavaScript).

Now, let's look at the skeleton of the JavaScript for our page, which we put in the file
json-examnple-angular.js:

var app = angular.module("aprsapp", []);

app.controller("AprsController", , ["$scope",
 function($scope) {
 $scope.json = "";
 $scope.message = "Loaded...";
}]);

This code defines a single AngularJS application, aprsapp. Note that this name has to
match the name given to the ng-app attribute in your body tag. The code then registers a
single controller for the application, AprsController. A controller is a function that takes at
least one argument, the scope of the controller, which is where you define your data models
and other variables. In our controller's scope, we set the initial values for two of our models:
json and message.

See also
To get started with AngularJS, see its website at https://angularjs.org or the book
AngularJS Essentials by Rodrigo Branas published by Packt Publishing.

https://angularjs.org

Using JSON in AJAX Applications with jQuery and AngularJS

64

Requesting JSON content using AngularJS
Angular defines a core object, $http, which you use to make HTTP requests of remote
servers. It's passed to your controller when you initialize it.

How to do it...
Let's extend our controller to add a reference to the $http object and use it to
make a request:

var app = angular.module("aprsapp", []);

app.controller("AprsController", ["$scope", "$http",
function($scope, $http) {
 $scope.json = "";
 $scope.message = "Loaded...";
 $scope.doAjax = function()
 {
 $scope.debug = "Fetching...";
 $scope.json= "";
 $scope.message = "";

 var promise = $http({
 url: "/",
 method: "POST",
 });
 };
}]);

Here, we define a function doAjax in our scope that will perform the asynchronous HTTP
request. It updates our models so that the debug model contains a status message, and the
json and message models are empty strings. Let's look at the $http object in more detail.

How it works…
Looking at the controller definition function, you can see that we passed not just the scope for
the controller, but the $http object as well. It defines a function that takes one argument, a
JavaScript object that defines the parameters of the HTTP request to make. In our example,
we ask to make a POST request to the root of our server by setting the method field to POST
and the url field to /.

Chapter 4

65

The argument to the $http method can include these attributes:

ff The method attribute, which indicates the HTTP method to use.

ff The url attribute, which indicates the URL the method should be sent to.

ff The params attribute, which is a map of strings or objects to send to the server; if the
value is not a string, it will be encoded as JSON (more about that in the next recipe);
the params attribute is appended to the URL.

ff The data attribute, which is the data to be sent to the remote server.

ff The headers attribute, which is a map of headers and header values to send to the
remote server.

ff The timeout attribute, which indicates how long to wait for a response.

The $http() method returns a promise, an object on which you will invoke other methods
to register event handlers to detect errors and process data when it's been successfully sent.
(We'll discuss the promise further in the recipes Getting the progress of a request using
AngularJS and Parsing the returned JSON using AngularJS.)

There's more...
The $http object also defines separate methods get, post, put, delete, and patch,
which make the appropriate HTTP requests. You can use them instead of the $http()
method if you want to, omitting the method attribute. Like $http(), they all return
a promise.

See also
For documentation on the $http() method and AngularJS support for AJAX, see
https://docs.angularjs.org/api/ng/service/$http.

Sending JSON to your web server using
AngularJS

Sending JSON with AngularJS is as easy as providing a data attribute in the argument to your
$http() method call. AngularJS will even encode the object as JSON on your behalf.

https://docs.angularjs.org/api/ng/service/$http

Using JSON in AJAX Applications with jQuery and AngularJS

66

How to do it...
Like before, we'll make an AJAX request. This time, we include a data attribute:

var app = angular.module("aprsapp", []);

app.controller("AprsController", ["$scope", "$http",
function($scope, $http) {
 $scope.json = "";
 $scope.message = "Loaded...";
 $scope.doAjax = function()
 {
 $scope.debug = "Fetching...";
 $scope.json= "";
 $scope.message = "";
 var request = {
 call: "kf6gpe-7"
 };
 var promise = $http({
 url: "/",
 method: "POST",
 data: request
 });
 };
}]);

How it works…
We define the JavaScript object request as we have in past examples, with a single call
attribute containing the call sign of the station we're interested in. By passing this value as the
data attribute in our argument to $http(), AngularJS converts the object to JSON and sends
it to the server.

There's more...
If you use a method, such as $http.post(), pass the data as the second argument,
like this:

$http.post("/", request);

You can also pass an optional configuration argument as the third argument. Such a
configuration object will contain the attributes I described in the previous recipe for the
request object.

Chapter 4

67

Getting the progress of a request using
AngularJS

The $http() method returns a promise, which is your way of determining what's happening
with the request. It defines methods to which you can pass JavaScript functions that operate
as event handlers when the underlying network transaction changes state.

How to do it...
The returned promise defines success and error methods, which take event handlers.
To use them, we write the following code:

var app = angular.module("aprsapp", []);

app.controller("AprsController", ["$scope", "$http",
function($scope, $http) {
 $scope.json = "";
 $scope.message = "Loaded...";
 $scope.doAjax = function()
 {
 $scope.debug = "Fetching...";
 $scope.json= "";
 $scope.message = "";
 var request = {
 call: "kf6gpe-7"
 };
 var promise = $http({
 url:"/",
 method: "POST",
 data: request
 });
 promise.success(function(result, status, headers, config) {
 // handle success here
 });
 promise.error(function(data, status, headers, config) {
 alert("AJAX failed!");
 });
}]);

Using JSON in AJAX Applications with jQuery and AngularJS

68

How it works…
On success, AngularJS invokes the function you register with the promise using the success
method, passing it the result data, HTTP status, HTTP headers, and the configuration
associated with the request. Here's where you'll deal with the results of your network
transaction, which we discuss more in the next recipe. On any kind of failure, AngularJS
invokes the callback you register with error, passing it the same data.

Note that success and error return the promise again, so you can chain these requests if
you like.

Parsing the returned JSON using AngularJS
Handling the returned data with AngularJS is easy because it parses the returned JSON for
you and passes the resulting object to the event handler you registered with the promise's
success method.

How to do it...
Here's the complete client-side code for our AngularJS application. The success promise's
callback just updates the models with the fields of the object we get as a result:

var app = angular.module("aprsapp", []);

app.controller("AprsController", function($scope, $http) {
 $scope.json = "";
 $scope.message = "Loaded...";
 $scope.doAjax = function()
 {
 $scope.debug = "Fetching...";
 $scope.json= "";
 $scope.message = "";
 var request = {
 call: "kf6gpe-7"
 };

 var promise = $http({
 url:"/",
 method: "POST",
 data: request
 });
 promise.success(function(result, status, headers, config) {
 $scope.debug = "Loaded.";

Chapter 4

69

 $scope.json = result;
 $scope.message = result.call + ":" + result.lat + ", " +
 result.lng;
 });
 promise.error(function(data, status, headers) {
 alert("AJAX failed!");
 });
}]);

How it works…
Because AngularJS handles the parsing of JSON, we can dereference the values in the
resulting JSON directly when we populate the text in the message model. Note as well that
we can assign the JSON model the result object, and when this is displayed, it'll show the
JSON for the result object itself.

If you load up the HTML and JavaScript in Chrome and press the button that invokes doAjax,
you should see something like this:

5
Using JSON with

MongoDB

In this chapter, we will cover the following recipes:

ff Setting up MongoDB

ff Installing the MongoDB database driver for Node.js

ff Installing the express module for Node.js

ff Connecting to a MongoDB database using Node.js

ff Creating a document in MongoDB using Node.js

ff Searching for a document in MongoDB with Node.js

ff Updating a document in MongoDB with Node.js

ff Deleting a document in MongoDB using Node.js

ff Using REST to search MongoDB

ff Using REST to create a document in MongoDB

ff Using REST to update a document in MongoDB

ff Using REST to delete a document in MongoDB

Introduction
In this chapter, we look at how you can use MongoDB as the backend storage for your web
application. While not completely focused on JSON, as you'll see, this chapter's recipes give
you a leg up in managing document creation, reading, updating, and deleting with MongoDB,
first directly in Node.js, and then, using a REST server built for Node.js and MongoDB so that
you can manage documents from a network client, such as a web application.

Using JSON with MongoDB

72

Setting up MongoDB
Installing MongoDB varies by platform; on Linux, you may be able to use a package installer
such as apt, while on Windows and Mac OS X (as well as on Linux, if you have a distribution
that doesn't have a package manager with the MongoDB package), there are web downloads.

How to do it…
1.	 On Mac OS X and Windows, it's as easy as going to http://www.mongodb.org/

and follow the download link. At the time of writing, MongoDB is at version 2.6.7;
there's a release candidate for version 3.0, which we won't discuss further here.

Mongo also provides packages for several common Linux distributions, including
Debian and Fedora. There's also a package available for FreeBSD.

2.	 Once you download and install Mongo, you need to make a place for MongoDB to
store its database.

This varies by platform; on Windows, it's c:\data\db.

3.	 Once you do this, you can start the database server by running mongod. You may also
want to add the path to the MongoDB client and server binaries in your path so that
you can access them easily from the command line.

4.	 When you run MongoDB's server, you should see a bunch of log messages that read
something like this:
C:\Program Files\MongoDB 2.6 Standard\bin\mongod.exe
--help for help and startup options
2015-02-15T13:10:07.909-0800 [initandlisten] MongoDB
starting : pid=13436 port=27017 dbpath=\data\db\
64-bit host=KF6GPE-SURFACE
2015-02-15T13:10:07.911-0800 [initandlisten]
targetMinOS: Windows 7/Windows Server 2008 R2
2015-02-15T13:10:07.913-0800 [initandlisten]
db version v2.6.7
2015-02-15T13:10:07.914-0800 [initandlisten] git
version: a7d57ad27c382de82e9cb93bf983a80fd9ac9899
2015-02-15T13:10:07.915-0800 [initandlisten]
 build info: windows sys.getwindowsversion
(major=6, minor=1, build=7601, pla
tform=2, service_pack='Service Pack 1')
BOOST_LIB_VERSION=1_49
2015-02-15T13:10:07.917-0800 [initandlisten]
allocator: system
2015-02-15T13:10:07.920-0800 [initandlisten] options: {}
2015-02-15T13:10:07.930-0800 [initandlisten] journal
dir=\data\db\journal

http://www.mongodb.org/

Chapter 5

73

2015-02-15T13:10:07.931-0800 [initandlisten] recover
: no journal files present, no recovery needed
2015-02-15T13:10:07.967-0800 [initandlisten]
waiting for connections on port 27017

You'll want to note the hostname (in this example, KF6GPE-SURFACE) on which the
server is running, and the port number, which by default should be 27017.

5.	 To connect to the MongoDB server directly, you can run mongo on the command line,
like this:
C:\>mongo
MongoDB shell version: 2.6.7
connecting to: test
>

6.	 To exit the mongo binary, hit Ctrl + C or type exit.

How it works…
The double-clickable installer and Linux packages install the mongod binary, which is the
database, as well as the Mongo command-line client.

Installing the MongoDB database driver for
Node.js

You'll need to install database drivers for Node.js, so that Node.js can talk directly to the
MongoDB server.

How to do it…
To get the database drivers, simply go to the project directory where you've got your Node.js
files and run the following command:

npm install mongodb

This command will download the database drivers and install them for Node.js.

Installing the express module for Node.js
The express module for Node.js makes it easy to build Representational State Transfer (REST)
server applications using Node.js. REST is a powerful paradigm in web programming that uses
the HTTP methods GET, POST, PUT, and DELETE to manage the create, read, update, and
delete (often abbreviated as CRUD) actions for document management in web services.

Using JSON with MongoDB

74

Using REST, the URLs are nouns representing what you want to manipulate, and the HTTP
methods are verbs that perform the actions on those nouns.

In the recipes that follow, we'll use node's express module to build a RESTful server that
returns documents from Mongo, as well as supports the basic CRUD operations. Before you
begin, you need to install three more modules.

How to do it…
You'll use npm, the Node.js package manager, to install the cross-object resource module
to support cross-domain scripting, express module, and the body-parser module used by
express. To do this, run in your project directory the following commands:

npm install cors

npm install express

npm install body-parser

You also need a basic application, or skeleton, for your REST server, which consists of routes
between URLs on the REST server, the HTTP methods, and the functions that perform the
necessary database operations. This skeleton consists of two Node.js scripts that use the
express module and an HTML document.

The first Node.js script is the REST server itself, in rest-server.js, and it looks like this:

var express = require('express'),
 documents = require('./routes/documents'),
 cors = require('cors'),
 bodyParser = require('body-parser');

var app = express();

app.use(cors());
var jsonParser = bodyParser.json();

app.get('/documents', documents.findAll);
app.get('/documents/:id', documents.findById);
app.post('/documents', jsonParser, documents.addDocuments);
app.put('/documents/:id', jsonParser, documents.updateDocuments);
app.delete('/documents/:id', jsonParser,
documents.deleteDocuments);

app.listen(3000);
console.log('Listening on port 3000...');

Chapter 5

75

How it works…
The package manager installs each of the modules, building them from source if needed.
You'll need all three modules: the CORS module to support cross-domain scripting requests,
the express module for the REST server framework, and finally, the body-parser module to
translate client object bodies from JSON to JavaScript objects.

The skeleton script includes the express module, our routes file, which will define functions to
handle each of the REST use cases, the CORS module, and the body-parser module needed
by express to interpret object bodies sent by the client.

Once these are included, it defines an express module instance, named app, and configures
it with CORS. This is necessary because by default, browsers won't make AJAX requests of
servers at different domains than where their page content has come from, in order to prevent
cross-side scripting attacks where servers are compromised and injected with malicious
JavaScript. The CORS module sets up the necessary headers for the server to permit us to use
our old Node.js server from the previous chapter on port 1337 to serve our content, and have
our content access this REST server running on a different port.

Next, we get a reference to body-parser's JSON parser, which we'll use to parse the object
bodies sent by the client for the insert and update requests. After this, we configure the
Express app server instance with handlers for the top-level documents URL, which is used to
access our MongoDB documents via REST. There are five possible operations at this URL:

ff An HTTP GET of the URL /documents simply returns a list of all the documents in
the database

ff An HTTP GET of the URL /documents/<id> returns the document with the given ID
in the database

ff An HTTP POST to /documents with a document in the JSON format saves that
document to the database

ff An HTTP PUT to /documents/<id> with a document in the JSON format updates the
document with the given ID to have the contents that the client passes

ff An HTTP DELETE to /documents/<id> deletes the document with the given ID

Finally, the script starts the server listening on port 3000, and logs the fact that the server
has started.

Of course, we need to define the functions in the documents object; we do this in the file
routes/documents.js, which to begin with should look like this:

var mongo = require('mongodb');

var mongoServer = mongo.Server,
 database = mongo.Db,
 objectId = require('mongodb').ObjectID;

Using JSON with MongoDB

76

var server = new mongoServer('localhost', 27017,
{auto_reconnect: true});
var db = new database('test', server);

db.open(function(err, db) {
 if(!err) {
 console.log("Connected to 'test' database");
 db.collection('documents',
 {strict:true},
 function(err, collection) {
 if (err) {
 console.log("Inserting sample data...");
 populate();
 }
 });
 }
});

exports.findById = function(req, res) {
 res.send('');
};

exports.findAll = function(req, res) {
 res.send('');
};

exports.addDocuments = function(req, res) {
 res.send('');
};

exports.updateDocuments = function(req, res) {
 res.send('');
};

exports.deleteDocuments = function(req, res) {
 res.send('');
};

var populate = function() {
var documents = [
 {
 call: 'kf6gpe',
 lat: 37,

Chapter 5

77

 lng: -122 }
];
db.collection('documents', function(err, collection) {
 collection.insert(wines, {safe:true},
 function(err, result) {});
 });
};

The preceding code begins by importing the native MongoDB driver, setting variables to
hold the server instance, database instance, and a converter interface that converts strings
to MongoDB object IDs. Next, it creates an instance of the server connecting to our server
instance (which must be running in order to succeed), and gets a reference to our database.
Finally, it opens a connection to the database and inserts some sample data into the
database if it's empty. (This code will be clearer after the first two recipes in this chapter,
so if it seems a little confusing right now, just read along and you'll do fine!)

The remainder of the routes/documents.js file defines functions to handle each of the
REST use cases we wired up in the rest-server.js script. We'll flesh out each of the
functions as we go along in our recipes.

Finally, we need an HTML document that will access the REST server. Our document looks
like this:

<!DOCTYPE html>
<html>
<head>
<script type="text/javascript"
 src="http:////code.jquery.com/jquery-1.11.2.min.js"></script>
</head>
<body>

<p>Hello world</p>
<p>
<div id="debug"></div>
</p>
<p>
<div id="json"></div>
</p>
<p>
<div id="result"></div>
</p>

<button type="button" id="get" onclick="doGet()">Get</button>

<form>
 Id: <input type="text" id="id"/>
 Call: <input type="text" id="call"/>

Using JSON with MongoDB

78

 Lat: <input type="text" id="lat"/>
 Lng: <input type="text" id="lng"/>
<button type="button" id="insert"
 onClick="doUpsert('insert')">Insert</button>
<button type="button" id="update"
onClick="doUpsert('update')">Update</button>
<button type="button" id="remove"
onClick="doRemove()">Remove</button>
</form>
</body>
</html>

We use a bit of jQuery to make the field access easier in the scripts (you'll see the scripts in
the upcoming recipes for REST insertion, updating, removal, and querying). The HTML itself
consists of three div, tags, one each for debugging, showing the raw JSON, and the result of
each REST operation, and a form that lets you enter the fields you need to create, update, or
delete records.

See also
For more information about the excellent Node.js express module, see
http://expressjs.com/.

MongoDB is a powerful document database, and there's far more than we can cover
here. For more information, check the Web, or look at the following resources from the
PacktPub website:

ff Instant MongoDB by Amol Nayak.

ff MongoDB Cookbook by Amol Nayak.

Connecting to a MongoDB database using
Node.js

Before your Node.js application can do anything with a MongoDB instance, it must connect to
it over the network.

How to do it...
The Node.js drivers for MongoDB contain all of the necessary network code to establish and
break connections with MongoDB running on your local or remote machine.

You need to include a reference to the native driver in your code and specify the URL of the
database to connect to.

http://expressjs.com/

Chapter 5

79

Here's a simple example that connects to the database and promptly disconnects:

var mongo = require('mongodb').MongoClient;

var url = 'mongodb://localhost:27017/test';

mongo.connect(url, function(error, db) {
 console.log("mongo.connect returned " + error);
 db.close();
});

Let's break this down line by line.

How it works…
The first line includes the native driver implementation for Mongo in your Node.js application,
and extracts a reference to the MongoClient object it defines. This object contains the basic
interface you need to interact with the database over the network, defining the connect and
close methods.

The next line defines a string, url, that contains the URL of the database to connect to. The
format of this URL is simple: it begins with the mongodb scheme to indicate that it's a URL for
the MongoDB server. Next is the hostname and port (in this case, we connect to the localhost
on mongo's default port, 27017). Finally, we come to the name of the database to which you
want to connect: in our case, test.

If you're using MongoDB's user access control to control access to your database, you'll need
to specify a username and password, too. You do this just as you would for any other URL,
like this:

mongodb://user:password@host:port/database

Whether to secure your database or not, of course, depends on your network topology and
deployment; it's probably a good idea to do so in general.

We pass this URL to the mongo object's connect method, along with a function that the
MongoDB native driver will call back once a connection has been successfully established, or
if the connection failed. The driver invokes the callback function with two arguments: the first
is an error code in the case of an error (or null on success), and a reference to a database
object encapsulating the connection to the database you specified (which may be null if an
error occurred establishing the connection).

Our callback function is very straightforward; it prints a message containing the value of the
error code passed and then we disconnect from the database using close.

Using JSON with MongoDB

80

Always call close on your database object when you're done using it to
ensure that the native driver can successfully clean up after itself and
disconnect from the database. If you don't, you run leaking connections to
the database.

See also
For more information about the native MongoDB driver for Node.js,
see http://docs.mongodb.org/ecosystem/drivers/node-js/.

Creating a document in MongoDB using
Node.js

The MongoDB database organizes its documents in collections, which are typically
groups of documents that are related in some way (such as representing the same
kinds of information). Because of this, your primary interface to documents is through
a collection. Let's see how to get a collection and add a document to it.

A collection is a little like a table in relational databases, but there's no
imposition that all documents in a collection have the same fields or the same
types for each field. Think of it as an abstraction you can use to group similar
kinds of documents.

How to do it...
Here's a function that inserts two static items into the collection named documents in our
test database, which we put in its own file and run using Node.js:

var mongo = require('mongodb').MongoClient;

var url = 'mongodb://localhost:27017/test';

var insert = function(collection, callback) {
 var documents =
 [{
 call: 'kf6gpe-7', lat: 37.0, lng: -122.0
 },
 {
 call: 'kf6gpe-9', lat: 38.0, lng: -123.0
 }];
 // Insert some documents

http://docs.mongodb.org/ecosystem/drivers/node-js/

Chapter 5

81

 collection.insert(documents,
 function(error, result) {
 console.log('Inserted ' +result.length + ' documents ' +
 'with result: ');
 console.log(result);
 callback(result);
 });
};

mongo.connect(url, function(error, db) {
 console.log('mongo.connect returned ' + error);

 // Get the documents collection
 var collection = db.collection('documents');
 insert(collection, function(result) {
 db.close();
 });
});

I've broken the code up into two pieces to make the callback structure clear: the insert
function, which actually performs the insertions, and the connection callback, which
calls the insertion function.

Let's take a closer look.

How it works…
The code begins in the same way, by getting a reference to the MongoClient object it uses to
talk to the database. The connection code is essentially the same, too; the URL is the same,
and the only change is the call to the database's collection method, passing the name of
the collection we're interested in. The collection method returns a collection object, which
offers methods for the CRUD operations we'll use on the collection of documents.

The insert function does a few things. It takes a collection on which you want to operate and
a callback it will invoke when the insertion operation finishes or fails.

First, it defines a couple of static items to insert in the database. Note that these are plain old
JavaScript objects; pretty much anything you can express as a JavaScript object, you can store
in MongoDB. Next, it calls the collection's insert method, passing the objects to store and a
callback the driver invokes after attempting the insertion.

The driver calls the callback again, passing an error value (which is null on success) and
the JavaScript objects as they were inserted into the collection. Our callback function logs
the results to the console, and calls back the insertion function's callback, which closes
the database.

Using JSON with MongoDB

82

What does an inserted record look like? Here's an example from my console, once I ensure
that we are running MongoDB as well:

PS C:\Users\rarischp\Documents\Node.js\mongodb> node .\example.js
mongo.connect returned null
Inserted 2 documents with result:
[{ call: 'kf6gpe-7',
 lat: 37,
 lng: -122,
 _id: 54e2a0d0d00e5d240f22e0c0 },
 { call: 'kf6gpe-9',
 lat: 38,
 lng: -123,
 _id: 54e2a0d0d00e5d240f22e0c1 }]

Note that the objects have the same fields, but they also have an additional _id field, which
is the unique id of the object in the database. In the next section, you will learn how to query
on that.

There's more
What happens if you insert the same object multiple times into the database? Try it! You'll
see that you get multiple copies of the object in the database; the fields aren't used to specify
uniqueness (the exception is the _id field, which is unique across the database). Note that you
can't specify an _id field yourself, unless you're assured that it's unique. To update an existing
element, use the update method, which I described in the recipe Updating a document in
MongoDB with Node.js in this chapter.

By default, MongoDB insertions operate quickly and might fail (say, if there's a transitory
network problem, or if the server is temporarily overloaded). At the cost of performance, you
can pass { safe: true } as the second argument to insert or to force the operation to
wait for a successful operation or return an error if the operation fails.

See also
Refer to http://docs.mongodb.org/manual/reference/method/db.collection.
insert/ for documentation about how to insert documents into MongoDB collections.

Searching for a document in MongoDB with
Node.js

Being able to insert documents wouldn't do you much good if you didn't have a way to search
for documents. MongoDB lets you specify a template on which to match, and returns objects
matching that template.

http://docs.mongodb.org/manual/reference/method/db.collection.insert/
http://docs.mongodb.org/manual/reference/method/db.collection.insert/

Chapter 5

83

As with insertions and updates, you'll work with a collection of documents, invoking the
collection's find method.

How to do it...
Here's an example that finds all documents in the test collection with a call of kf6gpe-7 and
prints them to the console:

var mongo = require('mongodb').MongoClient;

var url = 'mongodb://localhost:27017/test';

mongo.connect(url, function(error, db) {
 console.log("mongo.connect returned " + error);

 var cursor = collection.find({call: 'kf6gpe-7'});
 cursor.toArray(function(error, documents) {
 console.log(documents);

 db.close();
 });
});

How it works…
After connecting to the database, we invoke find in the collection, which returns a cursor you
can use to iterate through the found values. The find method takes a JavaScript object that
acts as a template indicating the fields that you want to match; our example matches records
with a slot named call equal to kf6gpe-7.

We don't iterate over the cursor but instead turn the entire collection of found values into a
single array by using the cursor's toArray method. This is fine for our example because there
aren't very many results, but be careful doing this with a database that has a lot of items!
Fetching more than you really need from the database at once uses RAM and CPU resources
better allocated to other parts of your application. It's better to iterate across the collection, or
use paging, which we will discuss next.

Using JSON with MongoDB

84

There's more
The cursor has several methods you can use to iterate across your search results:

ff The hasNext method returns true if the cursor has another item that can
be returned

ff The next method returns the next matching item from the cursor

ff The forEach iterator takes a function and calls the function on each item of the
cursor's results sequentially

When iterating over a cursor, it's best to use a while loop with hasNext and call next, or use
forEach; don't just convert the results to an array and loop across the list! Doing so requires
the database to fetch all of the records at once, which can be very memory-intensive.

At times, there may be still too many items to deal with; you can limit the number of returned
items using the cursor methods limit and skip. The limit method limits the search to the
number of items you pass as an argument; the skip method skips the number of items
you specify.

In practice, the find method actually takes two arguments: a JavaScript object that is the
criteria of the request and an optional JavaScript object defining the projection of the result
set to new JavaScript objects.

The criteria can be an exact match criteria, as you've seen in the previous example. You can
also perform matching using the special operations $gt and $lt, which let you filter the given
fields by cardinal order as well. For example, you might write:

var cursor = collection.find({lng: { $gt: 122 } });

This will return all records with a lng field with a scalar value greater than 122.

The projection is a list of fields that you're interested in receiving from the database, each set
to true or 1. For example, the following code returns JavaScript objects containing only the
call and _id fields:

var cursor = collection.find(
{call: 'kf6gpe-7'},
{call: 1, _id: 1});

See also
See http://docs.mongodb.org/manual/reference/method/db.collection.
find/ for documentation on the MongoDB find method, which the native driver makes
available to your Node.js application.

http://docs.mongodb.org/manual/reference/method/db.collection.find/
http://docs.mongodb.org/manual/reference/method/db.collection.find/

Chapter 5

85

Updating a document in MongoDB with
Node.js

Updating a document in a collection is easy; simply use the collection's update method and
pass the data you want to update.

How to do it...
Here's a simple example:

var mongo = require('mongodb').MongoClient;

var url = 'mongodb://localhost:27017/test';

var update = function(collection, callback) {
 collection.update({ call:'kf6gpe-7' },
 { $set: { lat: 39.0, lng: -121.0, another: true } },
 function(error, result) {
 console.log('Updated with error ' + error);
 console.log(result);
 callback(result);
 });
};

mongo.connect(url, function(error, db) {
 console.log("mongo.connect returned " + error);

 // Get the documents collection
 var collection = db.collection('documents');
 update(collection, function(result) {
 db.close();
 });
});

The pattern of this is identical to the insert method; update is an asynchronous method
that invokes a callback with an error code and a result.

How it works…
The update method takes a template to match a document on and updates the first
matching document with the field values you pass in the $set frame of the replacing
JavaScript object. Note that you can add new fields to the document, too, as we did here;
we add a new field another with a value of true.

Using JSON with MongoDB

86

You can specify a precise match to a specific document by passing an ID of the document
in the _id field of the template you pass to update. The template you pass to update is a
standard search query template, just like you'd pass to find.

There's more…
By default, update updates the first matching document. If you want it to update all the
documents matching your template, pass the JavaScript object { multi: true } as the
(optional) third argument to update. You can also have update perform an upsert, that
is, an update on a match, and an insertion if the match doesn't succeed. To do this, pass
the JavaScript object { upsert: true } as the third argument to update. These can be
combined to match more than one document and upsert; if none are found, pass.

{
 multi: true,
 upsert: true
}

Like insert, you can also pass safe: true in this option's argument to ensure that the
update attempts to succeed before returning at the cost of performance.

The update method passes the number of updated documents as its result to your callback.

See also
See the MongoDB native driver documentation for update at https://github.com/
mongodb/node-mongodb-native or the MongoDB update method documentation at
http://docs.mongodb.org/manual/reference/method/db.collection.update/.

Deleting a document in MongoDB using
Node.js

At some point, you may want to delete a document in a collection using Node.js.

How to do it...
You do this using the remove method, which removes matching documents from the
collection you specify. Here's an example of how to call remove:

var remove = function(collection, callback) {
 collection.remove({ call: 'kf6gpe-7'},
 function(error, result)
 {

https://github.com/mongodb/node-mongodb-native
https://github.com/mongodb/node-mongodb-native
http://docs.mongodb.org/manual/reference/method/db.collection.update/

Chapter 5

87

 console.log('remove returned ' + error);
 console.log(result);
 callback(result);
 });
};

How it works…
This code removes documents that have a call field with the value kf6gpe-7. As you may
have guessed, the search criteria used for remove can be anything you'd pass to find. The
remove method removes all documents matching your search criteria, so be careful! Calling
remove({}) removes all of the documents in the current collection.

The remove method returns a count of the number of items removed from the collection.

See also
For more information about MongoDB's remove method, see its documentation at
http://docs.mongodb.org/manual/reference/method/db.collection.remove/.

Using REST to search MongoDB
By now, that you might be wondering where JSON comes into play when using MongoDB.
When you access a MongoDB database instance using a RESTful interface such as
mongo-rest, the documents are transferred to the client using JSON. Let's see how to
get a list of documents from MongoDB.

How to do it...
Using REST with Node.js and MongoDB takes several steps.

1.	 Be sure you've set up the REST server as we discussed in the introduction. You'll
need to have created the files rest-server.js, routes/documents.js, and
mongo-rest-example.html with the UI for our RESTful application, and run both
the REST server and the document server with Node.js.

2.	 Second, be sure that you're running MongoDB.

3.	 Next, to process the REST GET request, we need to define the function exports.
findAll in documents.js, which should look like this:
exports.findAll = function(req, res) {
 db.collection('documents', function(err, collection) {
 collection.find().toArray(function(err, items) {
 res.send(items);

http://docs.mongodb.org/manual/reference/method/db.collection.remove/

Using JSON with MongoDB

88

 });
 });
};

4.	 After this, we need the doGet script in the mongo-rest-example.html file, which
makes an AJAX GET request to the REST server for the documents in the database.
This code performs an AJAX GET request to the server's /documents/ URL, placing
the resulting JSON in the div with the id json, and constructs an HTML table with
one row for each resulting document in the result, providing columns for each
document's ID, call sign, latitude, and longitude:

function doGet() {
 $.ajax({
 type: "GET",
 url: "http://localhost:3000/documents/",
 dataType: 'json',
 })
.done(function(result) {
 $('#json').html(JSON.stringify(result));
 var resultHtml =
'<table><thead>' +
'<th><td>id</td><td>call</th>' +
'<tbody>';
 resultHtml += '<td>lat</td><td>lng</td></tr>';

 $.each(result), function(index, item)
 {
 resultHtml += '<tr>';
 resultHtml += '<td>' + item._id + '</td>';
 resultHtml += '<td>' + item.call + '</td>';
 resultHtml += '<td>' + item.lat + '</td>';
 resultHtml += '<td>' + item.lng + '</td>';
 resultHtml += "</tr>";
 };
 $resultHtml += '</tbody></table>';

 $('#result').html(resultHtml);
 })
}

How it works…
The findAll method is a straightforward query of the database, matching all documents
in the database using find in our collection. You can extend it to take a query template as
a URL argument and then pass that as a URL-encoded argument to the GET URL.

Chapter 5

89

You can also add additional arguments, such as arguments to limit and skip, which you should
consider doing if you're processing a lot of data. Note that the Express module knows that it
needs to JSON encode the JavaScript object to JSON before sending it to the client.

The doGet JavaScript is even simpler; it's a pure AJAX call, followed by a loop to unwrap the
resulting returned JSON array into objects and present each object as a row in a table.

There's more
A good REST interface also provides an interface to query a specific item by ID because
typically you'll want to query the collection, find something interesting in it, and then maybe
do something with that specific ID. We define the method findById to take an ID in the
incoming URL, convert the ID to a MongoDB object id, and then perform a find on just that
ID, like this:

exports.findById = function(req, res) {
 var id = new objectId(req.params.id);
 db.collection('documents', function(err, collection) {
 collection.findOne({'_id':id}, function(err, item) {
 res.send(item);
 });
 });
};

Using REST to create a document in
MongoDB

In principle, using REST to create a document is simple: create the JavaScript object on the
client, encode it as JSON, and POST it to the server. Let's see how this works in practice.

How to do it...
There are two pieces to this: the client piece and the server piece.

1.	 On the client side, we need some way to get the data for our new MongoDB
document. In our example, it's the fields of the form on the HTML page, which
we wrap up and POST to the server using the client-side (in the HTML) method
doUpsert:
function doUpsert(which)
{
Var id = $('#id').val();
var value = {};
 value.call = $('#call').val();

Using JSON with MongoDB

90

 value.lat = $('#lat').val();
 value.lng = $('#lng').val();

 $('#debug').html(JSON.stringify(value));

var reqType = which == 'insert' ? "POST" : 'PUT';
 var reqUrl = 'http://localhost:3000/documents/' +
(which == 'insert' ? '' : id);

 $.ajax({
 type: reqType,
 url: reqUrl,
 dataType: 'json',
 headers: { 'Content-Type' : 'application/json' },
 data: JSON.stringify(value)
 })
.done(function(result) {
 $('#json').html(JSON.stringify(result));
var resultHtml = which == 'insert' ? 'Inserted' : "Updated";
 $('#result').html(resultHtml);
 });
}

2.	 The server accepts the posted document, automatically converts it from JSON
using the body-parser module, and performs an insertion in the database,
in the file documents.js:

exports.addDocuments = function(req, res) {
 var documents = req.body;
 db.collection('documents', {safe:true},
function(err, collection) {
collection.insert(documents, function(err, result) {
 if (err) {
res.send({'error':'An error has occurred'});
} else {
 console.log('Success: ' + JSON.stringify(result[0]));
res.send(result[0]);
 }
 });
 });
};

Chapter 5

91

How it works…
The client code is used by both the insert and update buttons in the UI, which is why it's a
little more complicated than you might first think. However, the only difference between an
insert and an update in REST is the URL and the HTTP method (POST versus PUT), so it makes
sense to use one method for both.

The client code begins by fetching the field values from the form using jQuery, and then sets
the type of the request to POST for an update. Next, it constructs the REST URL, which should
just be the base document's URL because there's no ID for a new document. Finally, it uses
POST to send the JSON of the document to the server. The server code is straightforward: take
the object body passed as a part of the request and insert it into the documents collection of
the database, returning the result of the insertion to the client (this is a good pattern to follow,
in case the client was the id of the newly created document for anything).

On the server side, JSON decoding is handled automatically because we registered our
handler for the POST request using the jsonParser instance from the body-parser module
like this:

app.post('/documents', jsonParser, documents.addDocuments);

If you forget to pass a JSON parser to the routes registration, the request
body field won't even be defined! So if you're inserting null documents in your
database using Express, be sure to check that.

Using REST to update a document in
MongoDB

Updating is identical to insertion, except that it needs a document ID and the client signals an
update request with a HTTP POST request, rather than a PUT request.

How to do it...
The client code is exactly the same as the previous recipe; only the server code changes
because it needs to extract the ID from the URL and perform an update instead of an insert:

exports.updateDocuments = function(req, res) {
 var id = new objectId(req.params.id);
 var document = req.body;
 db.collection('documents', function(err, collection) {
 collection.update({'_id':id}, document, {safe:true},
 function(err, result) {

Using JSON with MongoDB

92

 if (err) {
 console.log('Error updating documents: ' + err);
 res.send({'error':'An error has occurred'});
 } else {
 console.log('' + result + ' document(s) updated');
 res.send(documents);
 }
 });
 });
};

Let's look at that in more detail.

How it works…
Returning to the client implementation for a moment in the previous recipe, you see that
for an update, we included the ID in the URL. The updateDocuments method gets the ID
from the request parameters and converts it to a MongoDB object id object, and then calls
update with the document that the client passes with the POST request.

Using REST to delete a document in
MongoDB

Like updating, deletion takes an object id, which we pass in the URL to the HTTP
DELETE request.

How to do it...
The doRemove method gets the object id from the id field in the form, and posts a DELETE
message to the server at a URL consisting of the base URL plus the object id:

function doRemove()
{
 var id = $('#id').val();

 if(id == "")'')
 {
 alert("Must provide an ID to delete!");
 return;
 }

 $.ajax({
 type: 'DELETE',

Chapter 5

93

 url: "http://localhost:3000/documents/" + id })
 .done(function(result) {
 $('#json').html(JSON.stringify(result));
 var resultHtml = "Deleted";
 $('#result').html(resultHtml);
 });
 }

The deletion message handler on the server extracts the ID from the URL and then performs a
remove operation:

exports.deleteDocuments = function(req, res) {
 var id = new objectId(req.params.id);
 db.collection('documents', function(err, collection) {
 collection.remove({'_id':id}, {safe:true},
 function(err, result) {
 if (err) {
 res.send({'error':'An error has occurred - ' + err});
 } else {
 console.log('' + result + ' document(s) deleted');
 res.send({ result: 'ok' });
 }
 });
 });
};

How it works…
On the client side, the flow is similar to the update flow; we get the ID from the id form
element, and if it's null, it pops up an error dialog instead of doing the AJAX post. We make
an AJAX post using the HTTP DELETE method, passing the id as the document name in the
URL to the server.

On the server side, we get the ID from the request parameters, convert it to a MongoDB native
object ID, and then pass it to the collection's remove method to remove the document.
We then return either success or an error to the client.

6
Using JSON with

CouchDB

In the last chapter, we looked at using JSON with MongoDB, a popular NoSQL database.
In this chapter, we continue in the same vein, showing you how to use JSON with CouchDB,
another popular NoSQL database. Here, you'll find recipes about:

ff Installing and setting up CouchDB and Cradle

ff Connecting to a CouchDB document using Node.js and Cradle

ff Creating a CouchDB database using Node.js and Cradle

ff Creating a document in CouchDB using Node.js and Cradle

ff Setting up a data view in CouchDB with Node.js and Cradle

ff Searching for a document in CouchDB with Node.js and Cradle

ff Updating a document in CouchDB with Node.js and Cradle

ff Deleting a document in CouchDB using Node.js and Cradle

ff Using REST to enumerate CouchDB records

ff Using REST to search CouchDB

ff Using REST to upsert a document in CouchDB

ff Using REST to delete a document in CouchDB

Introduction
CouchDB is a highly available, scalable document database. Like MongoDB, it is a NoSQL
database; instead of organizing your data in tables related by IDs, you can place documents
in the database. Unlike MongoDB, CouchDB has the interesting feature of views.

Using JSON with CouchDB

96

Documents you place in the DB with specific map and reduce functions that iterate across the
data to provide specific views of the data by indexes that you can provide. Views are cached,
making it easy to construct high-performance queries that return subsets of data or computed
data-like reports.

The primary way you interact with CouchDB is via REST; even the Cradle driver we discuss in
this chapter uses REST under the hood for document creation, updation, and deletion. You
can also use REST for queries, either through document ID, or by converting an indexed query
into a view.

In this chapter, we examine how to integrate CouchDB with Node.js using the Cradle module
and how to make REST queries of a CouchDB from the Web.

Installing and setting up CouchDB and
Cradle

CouchDB comes as a click-and-run installer for major platforms.

How to do it…
To begin, you first need to install the server. To do this, go to http://couchdb.apache.
org/ and download the installer appropriate for your platform. Before installing Cradle, be
sure to run the installer.

Next, on a command line, run the following command to install Cradle:

npm install cradle

Finally, you need to enable cross-resource requests on the CouchDB server, to permit those
requests on the Web. To do this, edit the /etc/couchdb/default.ini file, and change the
following line:

enable_cors = false

With the following line:

enable_cors = true

You also need to indicate which origin servers you'll accept CORS requests from; to enable
cross-resource requests for all domains, add the following line to /etc/couchdb/default.
ini in the section labeled [cors]:

origins = *

If you want to be more specific, you can provide a comma-separated list of origin domains
from which your HTML content and scripts are loaded.

http://couchdb.apache.org/
http://couchdb.apache.org/

Chapter 6

97

Finally, you must start (or restart) the CouchDB server. On Windows, assuming you didn't
install it as a service, go to the bin directory where you installed it and run couchdb.bat;
on Linux and Mac OS X, kill and restart the CouchDB server process.

How it works…
The Cradle module is a popular way to integrate CouchDB with Node.js, although if you prefer,
you could just use Node.js's request module and make REST requests directly.

See also
For more information about CouchDB, see the Apache CouchDB wiki at
http://docs.couchdb.org/en/latest/contents.html.

Connecting to a CouchDB database using
Node.js and Cradle

Although CouchDB provides a RESTful interface, you don't strictly need to make a database
connection before using CouchDB; the Cradle module uses the notion of a connection to
manage its internal state and there's still a connection object you need to create.

How to do it...
Here's how to include the Cradle module in your Node.js application and initialize it, getting a
handle to a particular database:

var cradle = require('cradle');
var db = new(cradle.Connection)().database('documents');

How it works…
This code first includes the Cradle module, and then creates a new Cradle Connection
object, setting its database to the database documents. This initializes Cradle with the
default CouchDB host (localhost) and port (5984). If you need to override the host or port, you
can do so by passing the host and port as the first and second arguments to the Connection
constructor, like this:

var connection = new(cradle.Connection)('http://example.com',
 1234);

http://docs.couchdb.org/en/latest/contents.html

Using JSON with CouchDB

98

Creating a CouchDB database using Node.js
and Cradle

Before you can use a database in CouchDB, you must create it.

How to do it...
Once you've obtained a handle to the database that you want to use, you should check to see
whether it exists, and create it if it doesn't:

db.exists(function (err, exists) {
if (err) {
 console.log('error', err);
} elseif (!exists) {
{
 db.create();
}
});

How it works…
The exists method checks to see whether a database exists, calling the callback you
provide with an error if one occurred and a flag indicating whether or not the database
exists. If the database doesn't exist, you create it using the create method.

This is a common pattern for Cradle because the RESTful interface is, by nature,
asynchronous. You'll pass the arguments to the method you want to perform and a
callback function that the method invokes when it's complete.

A common mistake that beginners make is to assume that you can call one
of these methods without the callback function and then do something
immediately that depends on the previous result. It won't work because the
original operation hasn't taken place yet. Consider an insert and update on
the same record. The insert completes asynchronously; if you try to do the
update synchronously, there will be nothing to update!

There's more…
If you want to destroy a database, you can do so using the destroy method, which also takes
a callback function like create. This destroys all records in the database as you might imagine,
so use it with caution!

Chapter 6

99

Creating a document in CouchDB using
Node.js and Cradle

The Cradle module provides the save method to save a new document to the database. You
pass the document to save and a callback to invoke when the operation completes or fails.

How to do it...
Here's how to save a simple record using save:

var item = {
 call: 'kf6gpe-7',
 lat: 37,
 lng: -122
};

db.save(item, function (error, result) {
 if (error) {
 console.log(error);
 // Handle error
 } else {
 var id = result.id;
 var rev = result.rev;
 }
 });

How it works…
The save method returns a JavaScript object to your callback with fields for the newly created
document IDs and an internal revision number, along with a field titled ok, which should be
true. As you'll see in the recipe titled Updating a Record in CouchDB with Node.js, you need
both the revision of a document you store and the ID in order to update it; otherwise, you end
up creating a new document or receiving a failure to save the record. An example result might
look like this:

{ ok: true,
 id: '80b20994ecdd307b188b11e223001e64',
 rev: '1-60ba89d42cc4bbc1301164a6ae5c3935' }

Using JSON with CouchDB

100

Setting up a data view in CouchDB with
Node.js and Cradle

You can query CouchDB for documents by their ID, but of course, most of the time, you'll want
to issue more complex queries, such as matching a field in a record against a particular value.
CouchDB lets you define views of your data that consist of an arbitrary key in a collection of
objects and then the objects derived from the view. When you specify a view, you're specifying
two JavaScript functions: a map function that maps keys to items in your collection, and then
an optional reduce function that iterates over the keys and values to create a final collection.
In this recipe, we'll use the map function of a view to create an index of records by a single field.

How to do it...
Here's how to add a simple view to the database using CouchDB:

db.save('_design/stations', {
 views: {
 byCall: {
 map: function(doc) {
 if (doc.call) {
 emit(doc.call, doc);
 }
 }
 }
 }
});

This defines a single view for our database, the byCall view that consists of a map of call
signs to documents in the database.

How it works…
Views are a powerful way to refer to documents in your database because you can construct
arbitrarily simple or complex documents based on each document in the database.

Our example creates a single view, byCall, stored under the views directory (which is
where you should put views) consisting of the call field of each record, and then the record is
repeated. CouchDB defines the emit function to let you create pairings of keys for your view
and view values; here, we use the call field as the key for each value and the document
itself as the value. You could just as easily define a smaller subset of fields in a JavaScript
object, or compute something across your JavaScript fields and emit that instead. You can
define more than one view, each a field in the views field with a separate map function.

Chapter 6

101

CouchDB caches views and updates them on demand as the database changes, storing the
view data as B-trees, so updating and querying views are very fast at run time. As you'll see in
the next example, searching a view for a specific key is as simple as passing the key to the view.

Views are just documents in CouchDB, stored in a special location with functions instead of
data values. Internally, CouchDB compiles the view's functions when it stores the view and
runs them when there are changes such as insertions and deletions to the store.

See also
ff For more information on the CouchDB view concept, see the CouchDB wiki at

http://wiki.apache.org/couchdb/Introduction_to_CouchDB_views

ff CouchDB view API documentation at http://wiki.apache.org/couchdb/
HTTP_view_API.

Searching for a document in CouchDB with
Node.js and Cradle

Searching for a document in CouchDB is a matter of querying a specific view for a specific key.
The Cradle module defines the view function to do this.

How to do it...
You'll pass the URL of the view for the query you want to execute, and then pass the key for
which you're searching as the key parameter, like this:

var call = "kf6gpe-7";
db.view('stations/byCall/key="' + call + '"',
 function (error, result) {
 if (result) {
 result.forEach(function (row) {
 console.log(row);
});

In addition to passing the view and key you're looking for, you must pass a callback function
that handles the result.

http://wiki.apache.org/couchdb/Introduction_to_CouchDB_views
http://wiki.apache.org/couchdb/HTTP_view_API
http://wiki.apache.org/couchdb/HTTP_view_API

Using JSON with CouchDB

102

How it works…
Here, we're searching the byCall view for a call sign of kf6gpe-7. Recall from the last
recipe that the view consists of a map of call signs in the call field to records; when we issue
the view request with the database's view method, it searches that map for records with keys
matching kf6gpe-7, and returns a result that consists of an array of matching records. The
method uses the array's forEach method to iterate across each item of the array, writing
each item one at a time to the console.

There's more
You can pass a number of arguments to a view. The most obvious is the key argument, which
lets you pass a single key to match. There's also the keys argument, which lets you pass an
array of keys. You can also pass startkey and endkey instead, to query a view for a range
of keys. If you need to limit the results, you can use the limit and skip arguments to limit
the number of results, or skip the first n results that match.

If you know a document's ID, you can also use Cradle's get method to get the object directly:

db.get(id, function(error, doc) {
 console.log(doc);
});

See also
For details about the query operations you can invoke on views, see the CouchDB wiki at
http://wiki.apache.org/couchdb/HTTP_view_API#Querying_Options.

Updating a document in CouchDB with
Node.js and Cradle

The Cradle module defines the merge method to let you update an existing document.

How to do it...
Here's an example where we change the call of a record from kf6gpe-7 to kf6gpe-9 by
specifying its ID, and then performing a merge with the new data:

var call = "kf6gpe-7";

db.merge(id, {call: 'kf6gpe-9'}, function(error, doc) {
 db.get(id, function(error, doc) {

http://wiki.apache.org/couchdb/HTTP_view_API#Querying_Options

Chapter 6

103

 console.log(doc);
 });
});

As you can see from the function, merge takes the ID of the record to merge, and a JavaScript
object with the fields to replace or add to the existing object. You can also pass a callback,
which is invoked by merge when the operation completes. The error value will be non-zero in
the event of an error, and the document is returned as the second argument. Here, we just log
the contents of the revised document to the console.

Deleting a document in CouchDB using
Node.js and Cradle

To remove a record, you use the Cradle module's remove method and pass the ID of the
document you want to remove.

How to do it...
Here's an example of remove:

db.remove(id);

Passing an ID removes the document with the given ID.

There's more…
If you have more than one document to remove, you could iterate across all documents,
the way the following code does, removing each document in turn:

db.all(function(err, doc) {
 for(var i = 0; i < doc.length; i++) {
 db.remove(doc[i].id, doc[i].value.rev, function(err, doc) {
 console.log('Removing ' + doc._id);
 });
 }
});

This is a more complex use of remove; it takes the document's ID, the revision of the
document, and a callback function, which logs to the console the ID of each document
that was removed.

Using JSON with CouchDB

104

Using REST to enumerate CouchDB records
REST semantics dictate that to fetch the full contents of a collection of objects, we just send a
GET request to the collection's root. We can do that from a web client to a CouchDB with CORS
enabled using jQuery with a single call.

How to do it...
Here's some HTML, jQuery, and JavaScript that enumerate all items in a CouchDB view and
shows some of the fields of each objects in an embedded table:

<!DOCTYPE html>
<html>
<head>
<script src="//code.jquery.com/jquery-1.11.2.min.js"></script>
<script src="//code.jquery.com/jquery-migrate-1.2.1.min.js"></script>
</head>
<body>

<p>Hello world</p>
<p>
 <div id="debug"></div>
</p>
<p>
 <div id="json"></div>
</p>
<p>
 <div id="result"></div>
</p>

<button type="button" id="get" onclick="doGet()">Get</button>

<form>
 Id: <input type="text" id="id"/>
 Rev: <input type="text" id="rev"/>
 Call: <input type="text" id="call"/>
 Lat: <input type="text" id="lat"/>
 Lng: <input type="text" id="lng"/>
 <button type="button" id="insert"
 onClick="doUpsert('insert')">Insert</button>
 <button type="button" id="update"
 onClick="doUpsert('update')">Update</button>
 <button type="button" id="remove"
 onClick="doRemove()">Remove</button>
</form>

Chapter 6

105

<script>

function doGet() {
 $.ajax({
 type: "GET",
 url:
"http://localhost:5984/documents/_design/stations/_view/byCall",
 dataType:"json",
 })
 .done(function(result) {
 $('#json').html(JSON.stringify(result));
 var resultHtml = '<table><tr><td>id</td>';
 resultHtml += '<td>revision</td><td>call</td>';
 resultHtml += '<td>lat</td><td>lng</td></tr>';
 for(var i = 0; i < result.rows.length; i++)
 {
 var item = result.rows[i]
 resultHtml += "<tr>";
 resultHtml += "<td>" + item.id + "</td>";
 resultHtml += "<td>" + item.value._rev + "</td>";
 resultHtml += "<td>" + item.value.call + "</td>";
 resultHtml += "<td>" + item.value.lat + "</td>";
 resultHtml += "<td>" + item.value.lng + "</td>";
 resultHtml += "</tr>";
 }
 $('#result').html(resultHtml);
});
}
</script>
</html>

How it works…
The HTML is straightforward; it includes jQuery, and then defines three div regions to show
the results of the request. After that, it defines a form with fields for the document's ID,
revision, callsign, latitude and longitude, and adds buttons to get a list of records, perform
an insertion or update, and remove a record.

We need to have the byCall view defined for this to work (see the recipe Setting up a Data
View in CouchDB Using Node.js for how to set up the data view using Node.js). This code
performs a HTTP GET to the view's base URL, and takes the returned JavaScript object
(parsed from the JSON by jQuery) and formats it as a table. (Note that we could have
appended a specific key to the URL to obtain only a single URL).

Using JSON with CouchDB

106

The format of the REST response is a little different than if you query the collection using
Cradle; you're seeing the actual response from CouchDB rather than the result massaged
by Cradle. It looks something like this in the raw form:

{"total_rows":1,"offset":0,
 "rows":[
 {"id":"80b20994ecdd307b188b11e223001e64",
"key":"kf6gpe-7",
 "value":{
"_id":"80b20994ecdd307b188b11e223001e64",
"_rev":"1-60ba89d42cc4bbc1301164a6ae5c3935",
"call":"kf6gpe-7","lat":37,"lng":-122
 }
 }
]
}

Specifically, the total_rows field indicates how many rows are in the result in the collection;
the offset field indicates how many rows were skipped in the collection before the first row
returned, and then the rows array contains each key-value pair generated by the map of the
view. The rows field has an ID field, the unique ID generating that map entry, the key emitted
by the map operation, and the record emitted by the map operation.

Note that if you perform a GET request on the base URL for the database, you get something
different; not all the records in the database, but information about the database:

{"db_name":"documents",
"doc_count":5,
"doc_del_count":33,
"update_seq":96,
"purge_seq":0,
"compact_running":false,
"disk_size":196712,
"data_size":6587,
"instance_start_time":"1425000784214001",
"disk_format_version":6,
"committed_update_seq":96
}

These fields may vary depending on the version of CouchDB that you're running.

See also
For information about the HTTP REST interface to CouchDB, see the documentation at
http://wiki.apache.org/couchdb/HTTP_Document_API.

http://wiki.apache.org/couchdb/HTTP_Document_API

Chapter 6

107

Using REST to search CouchDB
Using REST to search CouchDB uses a view with a map to create your index, which you insert
once, and then a GET HTTP request.

How to do it...
We can modify the previous doGet function to search for a particular call sign, like this:

function doGet(call) {
 $.ajax({
 type: "GET",
 url:
"http://localhost:5984/documents/_design/stations/_view/byCall" +
 (call != null & call != '') ? ('?key=' + call) : ''),
 dataType:"json",
 })
 .done(function(result) {
 $('#json').html(JSON.stringify(result));
 var resultHtml = '<table><tr><td>id</td>';
 resultHtml += '<td>revision</td><td>call</td>';
 resultHtml += '<td>lat</td><td>lng</td></tr>';
 for(var i = 0; i < result.rows.length; i++)
 {
 var item = result.rows[i]
 resultHtml += "<tr>";
 resultHtml += "<td>" + item.id + "</td>";
 resultHtml += "<td>" + item.value._rev + "</td>";
 resultHtml += "<td>" + item.value.call + "</td>";
 resultHtml += "<td>" + item.value.lat + "</td>";
 resultHtml += "<td>" + item.value.lng + "</td>";
 resultHtml += "</tr>";
 }
 $('#result').html(resultHtml);
 });
}

How it works…
The relevant lines are the argument call, passed to doGet, and the construction of the URL
to which we dispatch the GET request. Note how we check for a null or empty call to fetch the
entire collection; your code may want to do something different like report an error, especially
if the collection is large.

Using JSON with CouchDB

108

Note that the view must exist prior to doing this. I like to use Node.js to
create my views once when I initially update my database, and update the
views if I make changes, rather than embedding the views in the client,
because for most applications there are many clients and there's no point
in thrashing the store with the same views being updated by many clients.

Using REST to upsert a document in
CouchDB

There's no REST equivalent of Cradle's merge when you want to perform an upsert; instead,
insertion is handled by a HTTP POST request, while updating is handled by a PUT request.

How to do it...
Here's some HTML and a doUpsert method that looks at form elements on your HTML page
and either creates a new document in the database or updates an existing document if one
already exists and you pass both the ID and revision fields:

<!DOCTYPE html>
<html>
<head>
<script src="//code.jquery.com/jquery-1.11.2.min.js"></script>
<script src="//code.jquery.com/jquery-migrate-1.2.1.min.js"></script>
</head>
<body>

<p>Hello world</p>
<p>
 <div id="debug"></div>
</p>
<p>
 <div id="json"></div>
</p>
<p>
 <div id="result"></div>
</p>

<button type="button" id="get" onclick="doGet()">Get</button>

<form>
 Id: <input type="text" id="id"/>
 Rev: <input type="text" id="rev"/>
 Call: <input type="text" id="call"/>
 Lat: <input type="text" id="lat"/>
 Lng: <input type="text" id="lng"/>

Chapter 6

109

 <button type="button" id="insert"
 onClick="doUpsert('insert')">Insert</button>
 <button type="button" id="update"
 onClick="doUpsert('update')">Update</button>
 <button type="button" id="remove"
 onClick="doRemove()">Remove</button>
</form>

<script>

function doUpsert();
{	
 var value = {};
 var which = null;
 id = $('#id').val();

 if (id != '') {
 which = 'insert';
 }

 value.call = $('#call').val();
 value.lat = $('#lat').val();
 value.lng = $('#lng').val();

 if (which != 'insert') {
 value._rev = $('#rev').val();
 value._id = id;
 }

 $('#debug').html(JSON.stringify(value));

 var reqType = which == 'insert' ? "POST" : "PUT";
 var reqUrl = "http://localhost:5984/documents/" +
 (which == 'insert' ? '' : id);

 $.ajax({
 type: reqType,
 url: reqUrl,
 dataType:"json",
 headers: { 'Content-Type' : 'application/json' },
 data: JSON.stringify(value)
 })
 .done(function(result) {
 $('#json').html(JSON.stringify(result));

Using JSON with CouchDB

110

 var resultHtml = which == 'insert' ? "Inserted" : "Updated";
 $('#result').html(resultHtml);
 })
}
</script>
</html>

How it works…
The doUpsert method begins by defining an empty JavaScript object, which is what we'll
populate and send to the server with either a PUT or POST request. We then extract the values
of the form fields; if the id field is set with an ID, we assume that this is an update, rather
than an insert, and also capture the contents of the revision field named rev.

If there is no ID value set, it's an insert operation, and we set the request type to POST. If it's
an update, we set the request type to PUT, indicating to CouchDB that this is an update.

Next, we construct the URL; the URL for a document update must include the ID of the
document to be updated; that's how CouchDB knows which document to update.

Finally, we perform an AJAX request of the type we previously defined (either PUT or POST).
Of course, we JSON-encode the JavaScript document we send to the server, and include a
header indicating that the document being sent is JSON.

The returned value is a JSON document (converted by jQuery to a JavaScript object) that
consists of the ID and revision of the inserted document, something like this:

{ "ok":true,
 "id":"80b20994ecdd307b188b11e223001e64",
 "rev":"2-e7b2a85adef5e721634bdf9a5707eb42"}

Note that your request to update a document must include both the
document's current revision and ID, or the PUT request will fail with
a HTTP 409 error.

Using REST to delete a document in
CouchDB

You denote a RESTful deletion of a document by sending a HTTP DELETE request with the ID
and revision of the document to be deleted.

Chapter 6

111

How to do it…
Using the HTML from the previous recipe, here's a script that extracts the ID and revision from
the form fields, does some simple error checking, and sends a deletion request to the server
for the document with the indicated ID and revision:

function doRemove()
{	
 id = $('#id').val();
 rev = $('#rev').val();
 if (id == '')
 {
 alert("Must provide an ID to delete!");
 return;
 }
 if (rev == '')
 {
 alert("Must provide a document revision!");
 return;
 }

 $.ajax({
 type: "DELETE",
 url: "http://localhost:5984/documents/" + id + '?rev=' + rev,
 })
 .done(function(result) {
 $('#json').html(JSON.stringify(result));
 var resultHtml = "Deleted";
 $('#result').html(resultHtml);
 })
}

How it works…
The code begins by extracting the ID and revision from the form elements and popping up
error dialogs if either is empty. Next, construct an AJAX HTTP DELETE request. The URL is the
URL of the document—the database and document ID—with the revision of the document
as an argument passed with the name rev. Assuming that you specify the ID and revision
correctly, you'll get a response identical to that of an update: the ID and revision of the
document that was removed. If it fails, you'll get an HTTP error.

7
Using JSON in a

Type-safe Manner
In this chapter, we build on the recipes from Chapter 1, Reading and Writing JSON on the
Client, showing you how you can use strong typing in your applications with JSON using C#,
Java, and TypeScript. You'll find the following recipes:

ff How to deserialize an object using Json.NET
ff How to handle date and time objects using Json.NET
ff How to deserialize an object using gson for Java
ff How to use TypeScript with Node.js
ff How to annotate simple types using TypeScript
ff How to declare interfaces using TypeScript
ff How to declare classes with interfaces using TypeScript
ff Using json2ts to generate TypeScript interfaces from your JSON

Introduction
While some say that strong types are for weak minds, the truth is that strong typing in
programming languages can help you avoid whole classes of errors in which you mistakenly
assume that an object of one type is really of a different type. Languages such as C# and Java
provide strong types for exactly this reason.

Fortunately, the JSON serializers for C# and Java support strong typing, which is especially
handy once you've figured out your object representation and simply want to map JSON to
instances of classes you've already defined. In Chapter 1, Reading and Writing JSON on the
Client, you saw how to convert from a C# or Java class to JSON, as well as how to convert the
JSON back to an untyped object; in this chapter, we use Json.NET for C# and gson for Java to
convert from JSON to instances of classes you define in your application.

Using JSON in a Type-safe Manner

114

Finally, we take a look at TypeScript, an extension of JavaScript that provides compile-time
checking of types, compiling to plain JavaScript for use with Node.js and browsers. We'll
look at how to install the TypeScript compiler for Node.js, how to use TypeScript to annotate
types and interfaces, and how to use a web page by Timmy Kokke to automatically generate
TypeScript interfaces from JSON objects.

How to deserialize an object using Json.NET
In this recipe, we show you how to use Newtonsoft's Json.NET to deserialize JSON to an object
that's an instance of a class. We'll use Json.NET, which we mentioned in Chapter 1, Reading
and Writing JSON on the Client, because although this works with the existing .NET JSON
serializer, there are other things that I want you to know about Json.NET, which we'll discuss
in the next two recipes.

Getting ready
To begin, you need to be sure you have a reference to Json.NET in your project. The easiest
way to do this is to use NuGet; launch NuGet, search for Json.NET, and click on Install,
as shown in the following screenshot:

Chapter 7

115

You'll also need a reference to the Newonsoft.Json namespace in any file that needs those
classes with a using directive at the top of your file:

usingNewtonsoft.Json;

How to do it…
Here's an example that provides the implementation of a simple class, converts a JSON string
to an instance of that class, and then converts the instance back into JSON:

using System;
usingNewtonsoft.Json;

namespaceJSONExample
{

 public class Record
 {
 public string call;
 public double lat;
 public double lng;
 }

 class Program
 {
 static void Main(string[] args)
 {
 String json = @"{ 'call': 'kf6gpe-9',
 'lat': 21.9749, 'lng': 159.3686 }";

 var result = JsonConvert.DeserializeObject<Record>(
 json, newJsonSerializerSettings
 {
 MissingMemberHandling = MissingMemberHandling.Error
 });
 Console.Write(JsonConvert.SerializeObject(result));

 return;
 }
 }
}

Using JSON in a Type-safe Manner

116

How it works…
In order to deserialize the JSON in a type-safe manner, we need to have a class that has the
same fields as our JSON. The Record class, defined in the first few lines does this, defining
fields for call, lat, and lng.

The Newtonsoft.Json namespace provides the JsonConvert class with static methods
SerializeObject and DeserializeObject. DeserializeObject is a generic method,
taking the type of the object that should be returned as a type argument, and as arguments
the JSON to parse, and an optional argument indicating options for the JSON parsing. We
pass the MissingMemberHandling property as a setting, indicating with the value of the
enumeration Error that in the event that a field is missing, the parser should throw an
exception. After parsing the class, we convert it again to JSON and write the resulting
JSON to the console.

There's more…
If you skip passing the MissingMember option or pass Ignore (the default), you can have
mismatches between field names in your JSON and your class, which probably isn't what you
want for type-safe conversion. You can also pass the NullValueHandling field with a value
of Include or Ignore. If Include, fields with null values are included; if Ignore, fields with
Null values are ignored.

See also
The full documentation for Json.NET is at http://www.newtonsoft.com/json/help/
html/Introduction.htm.

Type-safe deserialization is also possible with JSON support using the .NET serializer;
the syntax is similar. For an example, see the documentation for the JavaScriptSerializer
class at https://msdn.microsoft.com/en-us/library/system.web.script.
serialization.javascriptserializer(v=vs.110).aspx.

How to handle date and time objects using
Json.NET

Dates in JSON are problematic for people because JavaScript's dates are in milliseconds
from the epoch, which are generally unreadable to people. Different JSON parsers handle
this differently; Json.NET has a nice IsoDateTimeConverter that formats the date and
time in ISO format, making it human-readable for debugging or parsing on platforms other
than JavaScript. You can extend this method to converting any kind of formatted data in JSON
attributes, too, by creating new converter objects and using the converter object to convert
from one value type to another.

http://www.newtonsoft.com/json/help/html/Introduction.htm
http://www.newtonsoft.com/json/help/html/Introduction.htm
https://msdn.microsoft.com/en-us/library/system.web.script.serialization.javascriptserializer(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.web.script.serialization.javascriptserializer(v=vs.110).aspx

Chapter 7

117

How to do it…
Simply include a new IsoDateTimeConverter object when you call
JsonConvert.Serialize, like this:

string json = JsonConvert.SerializeObject(p,
newIsoDateTimeConverter());

How it works…
This causes the serializer to invoke the IsoDateTimeConverter instance with any instance
of date and time objects, returning ISO strings like this in your JSON:

2015-07-29T08:00:00

There's more…
Note that this can be parsed by Json.NET, but not JavaScript; in JavaScript, you'll want to use a
function like this:

Function isoDateReviver(value) {
 if (typeof value === 'string') {
 var a = /^(\d{4})-(\d{2})-(\d{2})T(\d{2}):(\d{2}):(\d{2}(?:\.\d*)?)
(?:([\+-])(\d{2})\:(\d{2}))?Z?$/
 .exec(value);
 if (a) {
 var utcMilliseconds = Date.UTC(+a[1],
 +a[2] - 1,
 +a[3],
 +a[4],
 +a[5],
 +a[6]);
 return new Date(utcMilliseconds);
 }
 }
return value;
}

The rather hairy regular expression on the third line matches dates in the ISO format,
extracting each of the fields. If the regular expression finds a match, it extracts each of the
date fields, which are then used by the Date class's UTC method to create a new date.

Using JSON in a Type-safe Manner

118

Note that the entire regular expression—everything between the/
characters—should be on one line with no whitespace. It's a little
long for this page, however!

See also
For more information on how Json.NET handles dates and times, see the
documentation and example at http://www.newtonsoft.com/json/help/html/
SerializeDateFormatHandling.htm.

How to deserialize an object using gson
for Java

Like Json.NET, gson provides a way to specify the destination class to which you're
deserializing a JSON object. In fact, it's the same method you used in the recipe
Reading and writing JSON in Java, in Chapter 1, Reading and Writing JSON on the Client.

Getting ready
You'll need to include the gson JAR file in your application, just as you would for any other
external API.

How to do it…
You use the same method as you use for type-unsafe JSON parsing using gson using
fromJson, except you pass the class object to gson as the second argument, like this:

// Assuming we have a class Record that looks like this:
/*
class Record {
 private String call;
 private float lat;
 private float lng;
 // public API would access these fields
}
*/

Gson gson = new com.google.gson.Gson();
String json = "{ \"call\": \"kf6gpe-9\",
\"lat\": 21.9749, \"lng\": 159.3686 }";
Record result = gson.fromJson(json, Record.class);

http://www.newtonsoft.com/json/help/html/SerializeDateFormatHandling.htm
http://www.newtonsoft.com/json/help/html/SerializeDateFormatHandling.htm

Chapter 7

119

How it works…
The fromGson method always takes a Java class; in Chapter 1, Reading and Writing JSON on
the Client, the class we were deserializing to was JsonElement, which handles the general
dynamic nature of JSON. In the example in this recipe, we convert directly to a plain old
Java object that our application can use without needing to use the dereferencing and type
conversion interface of JsonElement that gson provides.

There's more…
The gson library can also deal with nested types and arrays as well. You can also hide fields
from being serialized or deserialized by declaring them transient, which makes sense
because transient fields aren't serialized.

See also
The documentation for gson and its support for deserializing instances of classes is at
https://sites.google.com/site/gson/gson-user-guide#TOC-Object-
Examples.

How to use TypeScript with Node.js
Using TypeScript with Visual Studio is easy; it's just part of the installation of Visual Studio for
any version after Visual Studio 2013 Update 2. Getting the TypeScript compiler for Node.js is
almost as easy—it's an npm install away.

How to do it…
On a command line with npm in your path, run the following command:

npm install –g typescript

The npm option –g tells npm to install the TypeScript compiler globally, so it's available
to every Node.js application you write. Once you run it, npm downloads and installs the
TypeScript compiler binary for your platform.

https://sites.google.com/site/gson/gson-user-guide#TOC-Object-Examples
https://sites.google.com/site/gson/gson-user-guide#TOC-Object-Examples

Using JSON in a Type-safe Manner

120

There's more…
Once you run this command to install the compiler, you'll have the TypeScript compiler tsc
available on the command line. Compiling a file with tsc is as easy as writing the source code
and saving in a file that ends in .ts extension, and running tsc on it. For example, given the
following TypeScript saved in the file hello.ts:

function greeter(person: string) {
 return "Hello, " + person;
}

var user: string = "Ray";

console.log(greeter(user));

Running tschello.ts at the command line creates the following JavaScript:

function greeter(person) {
 return "Hello, " + person;
}

var user = "Ray";

console.log(greeter(user));

Try it!

As we'll see in the next section, the function declaration for greeter contains a single
TypeScript annotation; it declares the argument person to be string. Add the following
line to the bottom of hello.ts:

console.log(greeter(2));

Now, run the tschello.ts command again; you'll get an error like this one:

C:\Users\rarischp\Documents\node.js\typescript\hello.ts(8,13):
error TS2082: Supplied parameters do not match any signature
of call target:
 Could not apply type 'string' to argument 1 which is
 of type 'number'.
C:\Users\rarischp\Documents\node.js\typescript\hello.ts(8,13):
error TS2087: Could not select overload for 'call' expression.

This error indicates that I'm attempting to call greeter with a value of the wrong type,
passing a number where greeter expects a string. In the next recipe, we'll look at the
kinds of type annotations TypeScript supports for simple types.

Chapter 7

121

See also
The TypeScript home page, with tutorials and reference documentation, is at
http://www.typescriptlang.org/.

How to annotate simple types using
TypeScript

Type annotations with TypeScript are simple decorators appended to the variable or function
after a colon. There's support for the same primitive types as in JavaScript, and to declare
interfaces and classes, which we will discuss next.

How to do it…
Here's a simple example of some variable declarations and two function declarations:

function greeter(person: string): string {
 return "Hello, " + person;
}

function circumference(radius: number) : number {
 var pi: number = 3.141592654;
 return 2 * pi * radius;
}

var user: string = "Ray";

console.log(greeter(user));
console.log("You need " +
circumference(2) +
 " meters of fence for your dog.");

This example shows how to annotate functions and variables.

How it works…
Variables—either standalone or as arguments to a function—are decorated using a colon and
then the type. For example, the first function, greeter, takes a single argument, person,
which must be a string. The second function, circumference, takes a radius, which must be
a number, and declares a single variable in its scope, pi, which must be a number and has
the value 3.141592654.

You declare functions in the normal way as in JavaScript, and then add the type annotation
after the function name, again using a colon and the type. So, greeter returns a string, and
circumference returns a number.

http://www.typescriptlang.org/

Using JSON in a Type-safe Manner

122

There's more…
TypeScript defines the following fundamental type decorators, which map to their underlying
JavaScript types:

ff array: This is a composite type. For example, you can write a list of strings
as follows:
var list:string[] = ["one", "two", "three"];

ff boolean: This type decorator can contain the values true and false.

ff number: This type decorator is like JavaScript itself, can be any floating-point number.

ff string: This type decorator is a character string.

ff enum: An enumeration, written with the enum keyword, like this:
enumColor { Red = 1, Green, Blue };
var c : Color = Color.Blue;

ff any: This type indicates that the variable may be of any type.

ff void: This type indicates that the value has no type. You'll use void to indicate a
function that returns nothing.

See also
For a list of the TypeScript types, see the TypeScript handbook at
http://www.typescriptlang.org/Handbook.

How to declare interfaces using TypeScript
An interface defines how something behaves, without defining the implementation. In
TypeScript, an interface names a complex type by describing the fields it has. This is known
as structural subtyping.

How to do it…
Declaring an interface is a little like declaring a structure or class; you define the fields in the
interface, each with its own type, like this:

interface Record {
 call: string;
 lat: number;
 lng: number;
}

http://www.typescriptlang.org/Handbook

Chapter 7

123

Function printLocation(r: Record) {
 console.log(r.call + ': ' + r.lat + ', ' + r.lng);
}

var myObj = {call: 'kf6gpe-7', lat: 21.9749, lng: 159.3686};

printLocation(myObj);

How it works…
The interface keyword in TypeScript defines an interface; as I already noted, an interface
consists of the fields it declares with their types. In this listing, I defined a plain JavaScript
object, myObj and then called the function printLocation, that I previously defined,
which takes a Record. When calling printLocation with myObj, the TypeScript compiler
checks the fields and types each field and only permits a call to printLocation if the object
matches the interface.

There's more…
Beware! TypeScript can only provide compile-type checking. What do you think the following
code does?

interface Record {
 call: string;
 lat: number;
 lng: number;
}

Function printLocation(r: Record) {
 console.log(r.call + ': ' + r.lat + ', ' + r.lng);
}

var myObj = {call: 'kf6gpe-7', lat: 21.9749, lng: 159.3686};
printLocation(myObj);

var json = '{"call":"kf6gpe-7","lat":21.9749}';
var myOtherObj = JSON.parse(json);
printLocation(myOtherObj);

First, this compiles with tsc just fine. When you run it with node, you'll see the following:

kf6gpe-7: 21.9749, 159.3686
kf6gpe-7: 21.9749, undefined

Using JSON in a Type-safe Manner

124

What happened? The TypeScript compiler does not add run-time type checking to your code,
so you can't impose an interface on a run-time created object that's not a literal. In this
example, because the lng field is missing from the JSON, the function can't print it,
and prints the value undefined instead.

This doesn't mean that you shouldn't use TypeScript with JSON, however. Type annotations
serve a purpose for all readers of the code, be they compilers or people. You can use type
annotations to indicate your intent as a developer, and readers of the code can better
understand the design and limitation of the code you write.

See also
For more information about interfaces, see the TypeScript documentation at
http://www.typescriptlang.org/Handbook#interfaces.

How to declare classes with interfaces
using TypeScript

Interfaces let you specify behavior without specifying implementation; classes let you
encapsulate implementation details behind an interface. TypeScript classes can encapsulate
fields or methods, just as classes in other languages.

How to do it…
Here's an example of our Record structure, this time as a class with an interface:

class RecordInterface {
 call: string;
 lat: number;
 lng: number;

 constructor(c: string, la: number, lo: number) {}
 printLocation() {}

}

class Record implements RecordInterface {
 call: string;
 lat: number;
 lng: number;

 constructor(c: string, la: number, lo: number) {
 this.call = c;

http://www.typescriptlang.org/Handbook#interfaces

Chapter 7

125

 this.lat = la;
 this.lng = lo;
 }

 printLocation() {
 console.log(this.call + ': ' + this.lat + ', ' + this.lng);
 }
}

var myObj : Record = new Record('kf6gpe-7', 21.9749, 159.3686);

myObj.printLocation();

How it works…
The interface keyword, again, defines an interface just as the previous section shows.
The class keyword, which you haven't seen before, implements a class; the optional
implements keyword indicates that this class implements the interface RecordInterface.

Note that the class implementing the interface must have all of the same fields and methods
that the interface prescribes; otherwise, it doesn't meet the requirements of the interface. As
a result, our Record class includes fields for call, lat, and lng, with the same types as in
the interface, as well as the methods constructor and printLocation.

The constructor method is a special method called when you create a new instance of the
class using new. Note that with classes, unlike regular objects, the correct way to create them
is by using a constructor, rather than just building them up as a collection of fields and values.
We do that on the second to the last line of the listing, passing the constructor arguments as
function arguments to the class constructor.

See also
There's a lot more you can do with classes, including defining inheritance and creating public
and private fields and methods. For more information about classes in TypeScript, see the
documentation at http://www.typescriptlang.org/Handbook#classes.

Using json2ts to generate TypeScript
interfaces from your JSON

This last recipe is more of a tip than a recipe; if you've got some JSON you developed using
another programming language or by hand, you can easily create a TypeScript interface for
objects to contain the JSON by using Timmy Kokke's json2ts website.

http://www.typescriptlang.org/Handbook#classes

Using JSON in a Type-safe Manner

126

How to do it…
Simply go to http://json2ts.com and paste your JSON in the box that appears, and click
on the generate TypeScript button. You'll be rewarded with a second text-box that appears and
shows you the definition of the TypeScript interface, which you can save as its own file and
include in your TypeScript applications.

How it works…
The following figure shows a simple example:

You can save this typescript as its own file, a definition file, with the suffix .d.ts,
and then include the module with your TypeScript using the import keyword, like this:

import module = require('module');

http://json2ts.com

8
Using JSON for Binary

Data Transfer

In this chapter, we will discuss the intersection between JSON and binary data. Here, you'll
find the following recipes:

ff Encoding binary data as a base64 string using Node.js

ff Decoding binary data from a base64 string using Node.js

ff Encoding and decoding binary data as a base64 string using JavaScript in the browser

ff Encoding data as BSON using Json.NET

ff Decoding data from BSON using Json.NET

ff Using DataView to access ArrayBuffer

ff Encoding and decoding base64 using an ArrayBuffer

ff Compressing object-body content from a Node.js server built using the express module

Introduction
There are typically two reasons why you might want to think about binary representation when
using JSON: either because you need to carry binary data between one part of your application
to another or because you're worried about the size of the JSON you're transporting.

In the first case, you're actually a little stuck, as the existing JSON specification doesn't provide
a container format for binary data because JSON is a text-based representation of data at
its heart. You can choose to encode binary data in another format, such as base64, which
renders binary data as a printable character string, or you can use an extension of JSON,
such as Binary JSON (BSON), that supports Binary data.

Using JSON for Binary Data Transfer

128

BSON uses the semantics of JSON but represents the data in a binary form. Thus, the same
basic structure is available: a (possibly nested) map of key-value pairs, where values can be
other key-value pairs, arrays, strings, or even binary data. However, instead of using plaintext
encoding, the format is binary, which yields a smaller data size and support for binary
objects natively (you can learn more about BSON at http://bsonspec.org/). The down
side to BSON is that it's not natively supported in JavaScript, and being a binary format, isn't
amenable to easy inspection. To whet your appetite, I will discuss how to use BSON with the
popular Json.NET library in this chapter.

A second approach is to take any binary data and encode it in a format that makes it
compatible with text. Base64 is one such encoding mechanism that's been used for a variety
of purposes over the years on the Internet, and there's support for it in both modern browsers
and Node.js. In this chapter, I show recipes to interconvert with base64 using both the modern
browser interfaces and Node.js. Be aware, though, that this means data bloat, because
representing binary information as text increases the size of the data being transported.

A common concern people express as they consider JSON for their application is the size of
the JSON package in comparison to binary formats such as BSON, protocol buffers, or a
hand-tuned binary representation. While JSON can be larger than a binary representation,
you gain human readability (especially helpful for debugging), clear semantics, and a large
assortment of libraries with working implementations from which to draw. Minimizing
whitespace and using short key names can help reduce the size of JSON, as can
compression—in a recent project I was working on, my testing showed that compressing the
JSON using standard HTTP compression yielded more memory savings than an all-binary
representation would have, and was of course easier to implement on both server and clients
as well.

Remember that going to binary for the sake of memory—either BSON, compression, or
a custom format—negates one of JSON's most useful attributes, which is its property of
self-documentation.

Encoding binary data as a base64 string
using Node.js

If you have binary data that you need to encode to pass to the client as JSON, you can convert
it to base64, a common means on the Internet to represent eight-bit values in solely printable
characters. Node.js provides the Buffer object and a base64 encoder and decoder for
this task.

How to do it…
First, you'll allocate a buffer, and then you'll convert it to a string, indicating that the string you
want should be base64-encoded, like this:

http://bsonspec.org/

Chapter 8

129

var buffer = newBuffer('Hello world');
var string = buffer.toString('base64');

How it works…
The Node.js Buffer class wraps a collection of octets outside the Node.js V8 runtime heap.
It's used in Node.js anytime you need to work with purely binary data. The first line of our
example makes a buffer, populating it with the string Hello world.

The Buffer class includes the toString method, which takes a single argument, the means
to encode the buffer. Here, we're passing base64, indicating that we want s to contain the
base64 representation of b, but we could just as easily pass one of the following values:

ff ascii: This value indicates that the high bit should be stripped and the remaining
seven bits of each octet converted to their ASCII equivalent.

ff utf8: This value indicates that it should be encoded as multi-byte Unicode.

ff utf16le: These are 2 or 4-byte little-endian Unicode characters.

ff hex: This value is for encoding each octet as two characters, the value in hex of
the octet.

See also
For documentation on the Buffer class of Node.js, see https://nodejs.org/api/
buffer.html.

Decoding binary data from a base64 string
using Node.js

In Node.js, there's no inverse of Buffer.toString; instead, you pass the base64 data
directly to the buffer constructor, along with a flag indicating that the data is base64 encoded.

Getting ready
If you want to run the example as it appears here, you'll need the buffertools module
installed, in order to get the Buffer.compare method. To get that, run npm on a
command prompt:

npm install buffertools

If all you're going to do is use the Buffer constructor of Node.js to decode base64 data,
you don't need to do this.

https://nodejs.org/api/buffer.html
https://nodejs.org/api/buffer.html

Using JSON for Binary Data Transfer

130

How to do it…
Here, we'll take our original buffer and compare it to another one initialized with the original
base64 for the first message:

require('buffertools').extend();

var buffer = new Buffer('Hello world');
var string = buffer.toString('base64');
console.log(string);

var another = new Buffer('SGVsbG8gd29ybGQ=', 'base64');
console.log(b.compare(another) == 0);

How it works…
The first line of the code includes the buffertools module, which extends the Buffer
interface. This is only necessary because I want to use buffer tools's Buffer.compare
method in the last line; it's not necessary for base64 to decode itself.

The next two lines create a Buffer object and obtain its base64 representation, which the
following line logs to the console.

Finally, I create a second Buffer object, initializing it with some base64 data, passing
base64 to indicate that the initialization data should be decoded into the buffer. I compare
these two buffers on the last line. Note that the buffer tool's compare method is an ordinal
compare, meaning that it returns 0 if both buffers contain the same data, -1 if the first
contains an ordinal sort less than the data, and 1 if the first contains data that would be
ordinally sorted as greater.

See also
For information about the buffertools module and its implementation,
see https://github.com/bnoordhuis/node-buffertools#.

Encoding and decoding binary data as
a base64 string using JavaScript in the
browser

The base implementation of JavaScript does not include base64 encoding or decoding.
However, all modern browsers include the atob and btoa methods to decode and encode
base64 data respectively. These are methods of the window object, defined by the
JavaScript runtime.

https://github.com/bnoordhuis/node-buffertools#

Chapter 8

131

How to do it…
It's as easy as a method call:

var encodedData = window.btoa("Hello world");
var decodedData = window.atob(encodedData);

How it works…
The btoa function takes a string and returns the base64 encoding of that string. It's a method
of the window object and calls to native browser code. The atob function does the reverse,
taking a string containing base64 and returning a string with the binary data.

See also
For a summary of btoa and atob, see the Mozilla developer website at https://
developer.mozilla.org/en-US/docs/Web/API/WindowBase64/Base64_
encoding_and_decoding (note that while the documentation is from Mozilla, these
methods of window are defined by most modern browsers).

Encoding data as BSON using Json.NET
BSON encoding is a reasonable alternative to JSON if you have an implementation of an
encoder and decoder on each side of the connection. Unfortunately, there's no good encoder
and decoder available yet for JavaScript, but there are implementations for a number of other
platforms, including .NET and C++. Let's look at how to encode a class using BSON with Json.
NET in C#.

Getting ready
First, you'll need to have the Json.NET assembly available to your application. As you saw in
the last chapter, in the recipe How to deserialize an object using Json.NET, the easiest way to
do this is with NuGet. If you haven't already, add the Json.NET assembly to your solution using
the steps in that recipe.

How to do it…
Using Json.NET to encode BSON is fairly simple, once you have a class you want to encode:

public class Record {
 public string Callsign { get; set; }
 public double Lat { get; set; }
 public double Lng { get; set; }

https://developer.mozilla.org/en-US/docs/Web/API/WindowBase64/Base64_encoding_and_decoding
https://developer.mozilla.org/en-US/docs/Web/API/WindowBase64/Base64_encoding_and_decoding
https://developer.mozilla.org/en-US/docs/Web/API/WindowBase64/Base64_encoding_and_decoding

Using JSON for Binary Data Transfer

132

}
…
var r = new Record {
 Callsign = "kf6gpe-7",
 Lat = 37.047,
 Lng = 122.0325
};

var stream = new MemoryStream();
using (var writer = new Newtonsoft.Json.Bson.BsonWriter(ms))
{
 var serializer = new Newonsoft.Json.JsonSerializer();
 serializer.Serialize(writer, r);
}

How it works…
It's easiest to start with a class that has the fields that you want to convert, defined, as you'd
do for other type-safe conversions from JSON. Here, we define a simple Record class for this
purpose and then create a record to encode.

Next, we create MemoryStream to contain the encoded data, and a BsonWriter object
to do the writing to the memory stream. Of course, anything that implements the .NET
streaming interface will work with the BsonWriter instance; you could write to a file instead
if you preferred. After that, we create an actual serializer to do the work, an instance of
JsonSerializer, and use it to serialize the record we created using the writer itself. We wrap
the actual serialization in a using block, so that at the end of the operation, the resources used
by the writer (but not the stream) are immediately cleaned up by the .NET runtime.

See also
Documentation for the BsonWriter class is available from NewtonSoft at http://www.
newtonsoft.com/json/help/html/T_Newtonsoft_Json_Bson_BsonWriter.htm.

Decoding data from BSON using Json.NET
Using Json.NET, decoding BSON is the opposite of encoding; given a class that describes the
data to decode and a blob of binary data, invoke a reader to read the data.

http://www.newtonsoft.com/json/help/html/T_Newtonsoft_Json_Bson_BsonWriter.htm
http://www.newtonsoft.com/json/help/html/T_Newtonsoft_Json_Bson_BsonWriter.htm

Chapter 8

133

Getting ready
Of course, you need a reference to the Json.NET assembly in your project in order to
do this. See recipe How to Deserialize an object using Json.NET in Chapter 7, Using JSON
in a Type-safe Manner, to learn how to add a reference to Json.NET in your application
using NuGet.

How to do it…
Starting with a stream, you'll use a BsonReader with a JsonSerializer to deserialize the
BSON. Assuming data is byte[] of BSON data:

MemoryStream ms = new MemoryStream(data);
using (var reader = new Newtonsoft.Json.Bson.BsonReader(ms))
{
 var serializer = new Newtonsoft.Json.JsonSerializer();
 var r = serializer.Deserialize<Record>(reader);

 // use r
}

How it works…
We create MemoryStream from the incoming data, which we use with BsonReader to
actually read the data from the stream. The reading is done by the JsonSerializer,
which deserializes using the reader into a new instance of the Record class.

There's more…
You may not have a class that represents the data you deserialize in your application; that's
often the case early in development, when you're still defining the semantics of your data
transfer. You can use the Deserialize method to deserialize a JsonObject instance, and
then use the JsonObject's interface to obtain individual field values. For information about
JsonObject, see the Json.NET documentation at http://www.newtonsoft.com/json/
help/html/T_Newtonsoft_Json_JsonObjectAttribute.htm.

See also
The documentation for BsonReader from NewtonSoft is at http://www.newtonsoft.
com/json/help/html/T_Newtonsoft_Json_Bson_BsonReader.htm.

http://www.newtonsoft.com/json/help/html/T_Newtonsoft_Json_JsonObjectAttribute.htm
http://www.newtonsoft.com/json/help/html/T_Newtonsoft_Json_JsonObjectAttribute.htm
http://www.newtonsoft.com/json/help/html/T_Newtonsoft_Json_Bson_BsonReader.htm
http://www.newtonsoft.com/json/help/html/T_Newtonsoft_Json_Bson_BsonReader.htm

Using JSON for Binary Data Transfer

134

Using a DataView to access an ArrayBuffer
Sometimes, you don't want to work with JSON at all, but instead with pure binary data.
JavaScript provides the DataView abstraction, which lets you perform typed accesses
on an array buffer of memory, such as one obtained from an XMLHttpRequest object.

Getting ready
To begin, you need your data in an ArrayBuffer, such as the one returned by the
XMLHttpRequest object. With this, you can create a DataView, and then using that
DataArray, create a typed array over the data view to extract just the bytes that you're
interested in. Let's see an example.

How to do it…
Here's a simple example:

var req = new XMLHttpRequest();
req.open("GET", url, true);
req.responseType = "arraybuffer";
req.onreadystatechange = function () {
 if (req.readyState == req.DONE) {
 var arrayResponse = req.response;
 var dataView = new DataView(arrayResponse);
 var ints = new Uint32Array(dataView.byteLength / 4);

 // process each int in ints here.

 }
}
req.send();

How it works…
The first thing to notice is responseType of the XMLHttpRequest object. In this
example, we're setting it to arraybuffer, indicating that we want a raw buffer of
bytes back represented as an instance of the ArrayBuffer class. We make the
request, and on the done handler, create DataView of the response.

The DataView is an abstraction object from which we can create different views to read and
write the binary data to and from the ArrayBuffer object.

Chapter 8

135

DataView supports viewing ArrayBuffer objects as any of the following:

ff Int8Array: This is an 8-bit two's complement signed integer array

ff Uint8Array: This is an 8-bit unsigned integer array

ff Int16Array: This is a 16-bit two's complement signed integer array

ff Uint16Array: This is a 16-bit unsigned integer array

ff Int32Array: This is a 32-bit two's complement signed integer array

ff Uint32Array: This is a 32-bit unsigned integer array

ff Float32Array: This is a 32-bit floating point number array

ff Float64Array: This is a 64-bit floating point number array

In addition to constructing one of these arrays from a DataView, you can also access
individual 8-bit, 16-bit, 32-bit integers, or 32-bit or 64-bit floats from a DataView, using a
corresponding getter function, passing the offset to the number you want to get. For example,
getInt8 returns Int8 at the location you specify, while getFloat64 gets the corresponding
64-bit floating point number at the offset you specify.

See also
Although ArrayBuffer and DataView aren't specific to Microsoft Internet Explorer, the
documentation at Microsoft's MSDN site is very clear. See https://msdn.microsoft.
com/en-us/library/br212463(v=vs.94).aspx for information about the DataView
methods, or see https://msdn.microsoft.com/library/br212485(v=vs.94).aspx
for an overview of typed arrays in general.

Encoding and decoding base64 using an
ArrayBuffer

If you're going to use ArrayBuffer and DataView for your binary data and carry binary
data as base64 strings, you can use the Mozilla-written functions at https://developer.
mozilla.org/en-US/docs/Web/API/WindowBase64/Base64_encoding_and_
decoding#Solution_.232_.E2.80.93_rewriting_atob%28%29_and_btoa%28%29_
using_TypedArrays_and_UTF-8 to do so. They provide the functions strToUTF8Arr and
UTF8ArrToStr to perform UTF-8 encoding and decoding, as well as base64EncArr and
base64DecToArr to convert between base64 strings and array buffers.

https://msdn.microsoft.com/en-us/library/br212463(v=vs.94).aspx
https://msdn.microsoft.com/en-us/library/br212463(v=vs.94).aspx
https://msdn.microsoft.com/library/br212485(v=vs.94).aspx
https://developer.mozilla.org/en-US/docs/Web/API/WindowBase64/Base64_encoding_and_decoding#Solution_.232_.E2.80.93_rewriting_atob%28%29_and_btoa%28%29_using_TypedArrays_and_UTF-8
https://developer.mozilla.org/en-US/docs/Web/API/WindowBase64/Base64_encoding_and_decoding#Solution_.232_.E2.80.93_rewriting_atob%28%29_and_btoa%28%29_using_TypedArrays_and_UTF-8
https://developer.mozilla.org/en-US/docs/Web/API/WindowBase64/Base64_encoding_and_decoding#Solution_.232_.E2.80.93_rewriting_atob%28%29_and_btoa%28%29_using_TypedArrays_and_UTF-8
https://developer.mozilla.org/en-US/docs/Web/API/WindowBase64/Base64_encoding_and_decoding#Solution_.232_.E2.80.93_rewriting_atob%28%29_and_btoa%28%29_using_TypedArrays_and_UTF-8

Using JSON for Binary Data Transfer

136

How to do it…
Here's an interconversion example that encodes a text string as UTF-8, then converts
the text into base64, then shows the base64 results, and finally converts the base64 to
ArrayBuffer of UTF-8 data before converting the UTF-8 back to a regular character string:

var input = "Base 64 example";

var inputAsUTF8 = strToUTF8Arr(input);

var base64 = base64EncArr(inputAsUTF8);

alert(base64);

var outputAsUTF8 = base64DecToArr(base64);

var output = UTF8ArrToStr(outputAsUTF8);

alert(output);

How it works…
Mozilla defines four functions in the file on their website:

ff The base64EncArr function encodes ArrayBuffer of bytes as a base64 string

ff The base64DecToArr function decodes a base64 string to ArrayBuffer of bytes

ff The strToUTF8Arr function encodes a string as an array of UTF-8 encoded
characters in ArrayBuffer

ff The UTF8ArrToStr function takes ArrayBuffer of UTF-8 encoded characters and
returns the string it encodes

Compressing object-body content from
a Node.js server built using the express
module

If space is your primary concern when using JSON that has you considering a binary
representation, you should seriously consider using compression instead. Compression can
yield similar savings to a binary representation, it is implemented with gzip in most servers
and HTTP clients, and can be added as a transparent layer after you've finished debugging
your application. Here, we discuss adding object-body compression for JSON and other objects
sent by the popular express server built on top of Node.js with the express module.

Chapter 8

137

Getting ready
First, you need to make sure you've installed the express and compress modules:

npm install express

npm install compression

You could also npm install –g it, if you want it to be available to all Node.js applications in
your workspace.

How to do it…
When initializing your express module in your server's entry point, require compression,
and tell express to use it:

var express = require('express')
var compression = require('compression')
var app = express()
app.use(compression())

// further express setup goes here.

For more information on using express module to set up a server, see the recipe "Installing
the express module for Node.js" in Chapter 5, Using JSON with MongoDB.

How it works…
HTTP headers support the client indicating whether or not it can decompress object bodies
sent over HTTP, and modern browsers all accept gzipped object bodies. By including
compress in your server built on express, you make it possible for clients to request
compressed JSON as part of their web API requests, and receive compressed JSON in
response. No change is necessary in most cases for most clients, although if you're writing a
native client with your own HTTP implementation, you may need to check the documentation
to determine how to enable gzip decompression over HTTP.

The code begins by requiring the express module and compression module, and then
configures the express module to optionally use compression if it's requested by the client
when sending responses.

9
Querying JSON with
JSONPath and LINQ

Sometimes, all you may want to do is extract a field or two from some JSON-formatted data,
rather than parse a JSON blob into a class and work with all of its fields. With JSONPath or
LINQ (using Json.NET), you can do just that. Here, you'll find the following recipes:

ff Using the JSONPath dot-notation to query JSON documents

ff Using JSONPath bracket-notation to query JSON documents

ff Using JSONPath scripting to construct more complicated queries

ff Using JSONPath in your web application

ff Using JSONPath in your Node.js application

ff Using JSONPath in your PHP application

ff Using JSONPath in your Python application

ff Using JSONPath in your Java application

ff Using JSONPath with SelectToken to query for JSONPath expressions in your
C# application

ff Using LINQ with Json.NET to query JSON in your C# application

Introduction
One of the biggest strengths of XML is XPath, the query-oriented language to query
subsections of an XML document. Stefan Goessner proposed the JSONPath query language,
a language with features similar to XPath that lets you extract just the bits of a JSON
document your application needs.

Querying JSON with JSONPath and LINQ

140

Note that something's still doing the parsing: you don't get something for nothing, and
JSONPath implementations require JSON parsing with at least similar memory and runtime
characteristics. However, if there's a JSONPath library for the platform you're developing,
JSONPath can lead to more readable code, as you don't need to mock entire classes only to
extract a field or two or summarize a field across a collection of JSON values.

If you're used to developing for Microsoft platforms, you're certainly aware of Microsoft's
Language Independent Query (LINQ) language that lets you use write declarative queries on
enumerable data structures. While the .NET implementations of JSON parsing provide only
rudimentary LINQ support, the indomitable Json.NET library's implementation supports LINQ
as well as JSONPath, letting you make declarative queries of JSON documents using either
fluent or statement syntax.

To use either JSONPath or LINQ, you'll need a library that supports it. As I write this, there are
libraries that support JSONPath for JavaScript, the flavour of JavaScript of Node.js, PHP, C#,
Python, and Java. Of course, if you want to use LINQ, you'll need to be running your application
on the .NET platform using a language such as C#, F#, or Visual Basic. Consequently, most
of the recipes that follow have two steps: what to do to download a library that supports
JSONPath and then the actual steps to call the JSONPath code in your application.

Most JSONPath examples use Goessner's example document, consisting of records from a
hypothetical bookstore, and in this chapter, we'll stick with that example as well. Our JSON
document looks like this:

{ "store": {
 "book": [
 { "category": "reference",
 "author": "Nigel Rees",
 "title": "Sayings of the Century",
 "price": 8.95
 },
 { "category": "fiction",
 "author": "Evelyn Waugh",
 "title": "Sword of Honour",
 "price": 12.99
 },
 { "category": "fiction",
 "author": "Herman Melville",
 "title": "Moby Dick",
 "isbn": "0-553-21311-3",
 "price": 8.99
 },
 { "category": "fiction",
 "author": "J. R. R. Tolkien",
 "title": "The Lord of the Rings",
 "isbn": "0-395-19395-8",

Chapter 9

141

 "price": 22.99
 }
],
 "bicycle": {
 "color": "red",
 "price": 19.95
 }
 }
}

As you can see, we have a store object, which has a collection of books and a single bicycle.
Each book has a category, an author, a title, and a price. Representing a JSON document like
this as a class would be difficult because of the very different structures of the book records as
opposed to the bicycle record; you could use the type-unsafe query methods that we discussed
in Chapter 1, Reading and Writing JSON on the Client, and Chapter 2, Reading and Writing
JSON on the Server, to parse a document like this and traverse its document, although a better
choice for most applications is JSONPath, as you'll soon see. Let's begin with how to query the
document for individual fields.

Using the JSONPath dot-notation to query
JSON documents

JSONPath uses expressions written in either the dot-notation or bracket-notation to denote
a traversal of fields in the JSON document. Dots separate field names, as if they were
object attributes.

How to do it…
Here are a few examples of dot-notation:

$.store.book[0].title
$.store.book[*].title
$.store..price
$..book[3]

How it works…
In the first line, we reference the first (counting from zero) book in the store, returning the title
field. The second line is similar, except that it returns a collection of all titles of all the books.
The third example returns a collection of all price fields in all records in the store collection.
The fourth example finds the fourth book item in the store.

Querying JSON with JSONPath and LINQ

142

The notation is fairly intuitive, except for the use of .. and *. These are examples of some of
the special characters used by JSONPath to denote slices across the document.

There's more…
JSONPath defines the following special characters you can use when writing queries:

ff The $ symbol refers to the root object or element.

ff The @ symbol refers to the current object or element.

ff The .operator is the dot-child operator, which you use to denote a child element of
the current element.

ff The [] operator is the subscript operator, which you use to denote a child element of
the current element (by name or index).

ff The * operator is a wildcard, returning all objects or elements regardless of
their names.

ff The, operator is the union operator, which returns the union of the children or
indexes indicated.

ff The : operator is the array slice operator, so you can slice collections using the syntax
[start:end:step] to return a subcollection of a collection.

ff The () operator lets you pass a script expression in the underlying implementation's
script language. It's not supported by every implementation of JSONPath, however.

See also
The definitive JSONPath documentation is available at Goessner's website at
http://goessner.net/articles/JsonPath/. Of course, you should check the
documentation for the implementation of JSONPath that you choose for specific
implementation details.

One handy thing on the Web is a JSONPath expression tester; http://jsonpath.
curiousconcept.com/ is one such site. By pasting JSON and a JSONPath expression in
the tester, you can evaluate the JSONPath and see what the result is. This is a very easy way
to dynamically debug your JSONPath expressions as you first start. Here's an example:

http://goessner.net/articles/JsonPath/
http://jsonpath.curiousconcept.com/
http://jsonpath.curiousconcept.com/

Chapter 9

143

Using JSONPath bracket-notation to query
JSON documents

JSONPath provides an alternate notation, bracket-notation, which works just like dot-notation
to query fields. The syntax is reminiscent of how you access fields in associative arrays,
where you pass the field name as the selector to operator[] to obtain the value in the
named field.

How to do it…
In bracket notation, we will write the previous recipe's example as follows:

$['store']['book'][0].['title']
$['store']['book'][*].['title']
$['store']..['price']
$..['book'][3]

How it works…
As seen earlier, the first example extracts the title of the first book in the object in the field
named store. The second example extracts all titles of all books in the store. The third
example returns a collection of all price fields for every item in the store, and the fourth
example returns the fourth book in the store.

Querying JSON with JSONPath and LINQ

144

Using JSONPath scripting to construct more
complicated queries

Sometimes, what you really want to do is query all items that meet a certain criteria, such as
those exceed a particular threshold. JSONPath provides the ?() predicate, which lets you
execute simple comparison scripts of individual fields in your JSONPath.

How to do it…
Here's an example that queries all books costing less than 10 currency units:

$.store.book[?(@.price < 10)].title

How it works…
The query begins by specifying all book items in the store; the ?() predicate then selects
each item in that category using the @ selector to obtain the value of the current item, and
then selects prices less than 10. The resulting items have their title field extracted. This query
yields the following results:

[
 "Sayings of the Century",
 "Moby Dick"
]

Queries like this don't work with all implementations of JSONPath. Checking the JSONPath
Expression tester at http://jsonpath.curiousconcept.com/, I found that it worked
using the flow communications JSONPath 0.1.1 but not Goessner's implementation of
JSONPath in version 0.8.3.

Any expression that returns a Boolean can be used in the ?() predicate. Here's another
example that queries all books in the fiction category in our collection:

$.store.book[?(@.category == "fiction")].title

The beginning is the same, that is, selecting for all books; instead of filtering by price and
returning books costing less than 10, this returns all items in the collection where a specific
item in the book collection has a category field equal to fiction.

Using JSONPath in your web application
Using JSONPathwith JavaScript in your web application is easy. You only need to include the
jsonpath.js implementation in your application, and then use its jsonPath function.

http://jsonpath.curiousconcept.com/

Chapter 9

145

Getting ready
Before you begin, you need to download the JavaScript jsonpath library from
https://code.google.com/p/jsonpath/ and include it in the scripts your
HTML page uses with a script tag, like this:

<html>
<head>
<title>…</title>
<script type="text/javascript" src="jsonpath.js"></script>
</head>

The jsonPath function takes a JSON object (not as a string, but as a JavaScript object)
and applies the path operation to the contents, returning either the matched values or a
normalized path. Let's see an example.

How to do it…
Here's an example that returns a list of titles from the JSON object I showed in
the introduction:

var o = { /* object from the introduction */ };
var result = jsonPath(o, "$..title");

Note that if you have the object as a string, you'll have to parse it first using JSON.parse:

var json = "…";
var o = JSON.parse(json);
var result = jsonPath(o, "$..title");

How it works…
The preceding code uses the jsonPath function to extract all titles from the currently
passed object. The jsonPath function takes a JavaScript object, path, and an optional
result type that indicates whether the return value should be the value or the path to the
value. The incoming object can either be a structured object or an array, of course.

See also
Goessner's original documentation for the original implementation of JSONPath is at
http://goessner.net/articles/JsonPath/.

https://code.google.com/p/jsonpath/
http://goessner.net/articles/JsonPath/

Querying JSON with JSONPath and LINQ

146

Using JSONPath in your Node.js application
There's an npm package available that contains an implementation of the JavaScript
JSONPath implementation, so if you want to use JSONPath from Node.js, you only need
to install the JSONPath module and call it directly.

Getting ready
To install the JSONPath module, run the following command to include the module in your
current application:

npm install JSONPath

Alternatively, you can run the following command to include it for all projects on your system:

npm install –g JSONPath

Next, you'll have to require the module in your source code, like this:

var jsonPath = require('JSONPath');

This loads the JSONPath module into your environment, storing a reference in the
jsonPath variable.

How to do it…
The JSONPath module for Node.js defines a single method, eval, which takes a JavaScript
object and a path to evaluate. For example, to obtain a list of the titles in our example
document, we would need to execute the following code:

var jsonPath = require('JSONPath');

var o = { /* object from the introduction */ };
var result = jsonPath.eval(o, "$..title");

If you're going to be applying a path to JSON in string form, be sure to parse it first:

var jsonPath = require('JSONPath');

var json = "…";
var o = JSON.parse(json);
var result = jsonPath.eval(o, "$..title");

Chapter 9

147

How it works…
The eval method of the JSONPath module takes a JavaScript object (not a string containing
JSON) and applies the path you pass to return the corresponding values from the object.

See also
For documentation about the JSONPath module for Node.js, see https://www.npmjs.
com/package/JSONPath.

Using JSONPath in your PHP application
Using JSONPath in your PHP application requires you to include the JSONPath PHP
implementation available at https://code.google.com/p/jsonpath/, and parsing
the JSON string to a PHP mixed object before applying the JSONPath path you want to extract
data from with the jsonPath function.

Getting ready
You'll need to download jsonpath.php from code.google.com at https://code.
google.com/p/jsonpath/ and include it in your application with the require_once
instruction. You'll also need to ensure that your PHP implementation includes json_decode.

How to do it…
Here's a simple example:

<html>
<body>
<pre>
<?php
 require_once('jsonpath.php');
 $json = '…'; // from the introduction to this chapter
 $object = json_decode($json);
 $titles = jsonPath($object, "$..title");
 print($titles);
?>
</pre>
</body>
</html>

https://www.npmjs.com/package/JSONPath
https://www.npmjs.com/package/JSONPath
https://code.google.com/p/jsonpath/
code.google.com
https://code.google.com/p/jsonpath/
https://code.google.com/p/jsonpath/

Querying JSON with JSONPath and LINQ

148

How it works…
The preceding code begins by requiring the PHP JSONPath implementation, which defines the
jsonPath function. It then decodes the JSON string using json_decode, before extracting
the titles in the mixed PHP object that json_decode returns.

Like the JavaScript version of jsonPath, the PHP version takes three arguments: the object
from which to perform the extraction, the path to extract, and an optional third argument that
specifies whether to return the data or return the path to the data in the structure.

See also
For more information about the PHP implementation of JSONPath, see Stefan Goessner's web
site at http://goessner.net/articles/JsonPath/.

Using JSONPath in your Python application
There are several implementations of JSONPath for Python, too. The best is jsonpath-rw
library, which provides language extensions so that paths are first-class language objects.

Getting ready
You'll need to install the jsonpath-rw library using pip:

pip install jsonpath-rw

Also, of course, you will need to include the necessary bits of the library when using them:

fromjsonpath_rw import jsonpath, parse

How to do it…
Here's a simple example using our store contents in the introduction stored in the
variable object:

>>> object = { … }

>>>path = parse('$..title')

>>> [match.value for match in path.find(object)]
['Sayings of the Century','Sword of Honour', 'Moby Dick',
 'The Lord of the Rings']

http://goessner.net/articles/JsonPath/

Chapter 9

149

How it works…
Processing a path expression using this library is a little like matching a regular expression;
you parse out the JSONPath expression and then apply it to the Python object you want
to slice using path's find method. This code defines the object and then creates a path
expression storing it in path, parsing the JSONPath that fetches all titles. Finally, creates
an array of values found by the path in the object you pass to the path.

See also
The documentation for the Python JSONPath library is at https://pypi.python.org/
pypi/jsonpath-rw.

Using JSONPath in your Java application
There's an implementation of JSONPath for Java, too, written by Jayway. It's available from
GitHub, or you can obtain it through the Central Maven Repository if your project uses
the Maven build system. It matches the original JSONPath API, returning Java objects and
collections for fields in JSON objects.

Getting ready
You'll need to either download the code from GitHub at https://github.com/jayway/
JsonPath, or, if you're using Maven as your build system, include the following dependency:

<dependency>
<groupId>com.jayway.jsonpath</groupId>
<artifactId>json-path</artifactId>
<version>2.0.0</version>
</dependency>

How to do it…
The Java implementation parses your JSON and exports a JsonPath class with a method read
that reads JSON, parses it, and then extracts the contents at the path you pass:

String json = "...";

List<String>titles = JsonPath.read(json,
"$.store.book[*].title");

https://pypi.python.org/pypi/jsonpath-rw
https://pypi.python.org/pypi/jsonpath-rw
https://github.com/jayway/JsonPath
https://github.com/jayway/JsonPath

Querying JSON with JSONPath and LINQ

150

How it works…
The read method parses the JSON you pass, and then applies the path you pass to extract the
values from the JSON. If you have to extract more than one path from the same document, it's
best to parse the document only once, and then call read on the parsed document, like this:

String json = "...";

Object document =
Configuration.defaultCConfiguration().jsonProvider().parse(json));

List<String>titles = JsonPath.read(document,
 "$.store.book[*].title");
List<String>authors = JsonPath.read(document,
 "$.store.book[*].author");

There's more…
The Java JSONPath library also provides a fluent syntax, where the implementation of read
and other methods returns a context on which you can continue to invoke other JSONPath
library methods. For example, to obtain a list of books with a price more than 10, I can also
execute the following code:

List<Map<String, Object>>expensiveBooks = JsonPath
 .using(configuration)
 .parse(json)
 .read("$.store.book[?(@.price > 10)]",
 List.class);

This configures JsonPath using the configuration, parses the JSON you pass, and then
invokes read with a path selector that selects all book objects with a price greater than the
value 10.

The JsonPath library in Java attempts to cast its result objects to the primitive
classes you expect: lists, strings, and so forth. Some path operations—.., ?(), and
[number:number:number]—always return a list, even if the resulting value is a single object.

See also
For the documentation on the Java JSONPath implementation,
see https://github.com/jayway/JsonPath.

https://github.com/jayway/JsonPath

Chapter 9

151

Using JSONPath with SelectToken to
query for JSONPath expressions in your C#
application

If you use Newonsoft's Json.NET for the .NET environment, you can use its SelectToken
implementation to make JSONPath queries of JSON documents. First, you'll parse the JSON
into JObject and then make a query.

Getting ready
You'll need to include the Json.NET assembly in your application. To do this, follow the steps
in Chapter 7, Using JSON in a Type-safe Manner, in the Getting ready section of the How to
Deserialize an object with Json.NET recipe.

How to do it…
Here's how to extract all titles of all books from the example in the introduction and get the
first result:

using System;
using System.Collections.Generic;
using System.Linq;
 using Newtonsoft.Json.Linq;

// …

static void Main(string[] args)
{
 var obj = JObject.Parse(json);

 var titles = obj.SelectTokens("$.store.book[*].title");

 Console.WriteLine(titles.First());
}

How it works…
The SelectTokens method of JObject takes a JSONPath expression and applies it to the
object. Here, we extract a list of JObject instances, one for each item matching the top-level
$.store.book path, and then invoke the Values method to obtain coerced string values
for each of the title fields in each of the returned JObject instances. Of course, the original
JSON needs to be parsed, which we do with JObject.parse.

Querying JSON with JSONPath and LINQ

152

Note that SelectTokens returns an enumerable collection, which you can further process
using LINQ expressions, as we do here by invoking First. Strictly speaking, SelectTokens
returns IEnumberable<JToken>, where each JToken is a single JSON collection. JObject
also provides the SelectToken method, which returns a single instance.

Be careful not to confuse SelectToken and SelectTokens, however. The former can only
return a single JToken, while the latter is required anytime you want to return a collection of
items in your JSONPath query.

Filtering is supported, too. For example, to obtain JObject containing the data about the
book Moby Dick, I might write:

var book = obj.SelectToken(
"$.store.book[?(@.title == 'Moby Dick')]");

This selects the document with title matching "Moby Dick" from the book collection in the
store field.

See also
See the documentation and more examples for SelectToken and SelectTokens at Jason
Newton-King's website at http://james.newtonking.com/archive/2014/02/01/
json-net-6-0-release-1-%E2%80%93-jsonpath-and-f-support, or the
Json.NET documentation at http://www.newtonsoft.com/json/help/html/
QueryJsonSelectToken.htm.

Using LINQ with Json.NET to query JSON in
your C# application

If you're developing for .NET, you might just want to skip JSONPath entirely and use Json.NET's
support to subscribe based on field name and support for LINQ. Json.NET supports LINQ
out of the box, letting you craft any query you want against your JSON in either fluent or
statement syntax.

Getting ready
As with the previous recipe, your .NET project needs to use Json.NET. To include Json.NET
in your project, follow the steps I show you in Chapter 7, Using JSON in a Type-safe Manner,
in the Getting Started section of the How to Deserialize an Object with Json.NET recipe.

http://james.newtonking.com/archive/2014/02/01/json-net-6-0-release-1-%E2%80%93-jsonpath-and-f-support
http://james.newtonking.com/archive/2014/02/01/json-net-6-0-release-1-%E2%80%93-jsonpath-and-f-support
http://www.newtonsoft.com/json/help/html/QueryJsonSelectToken.htm
http://www.newtonsoft.com/json/help/html/QueryJsonSelectToken.htm

Chapter 9

153

How to do it…
You'll parse the JSON to JObject, and then you can just evaluate LINQ expressions against
the resulting JObject, like this:

using System;
using System.Collections.Generic;
using System.Linq;
using Newtonsoft.Json.Linq;

static void Main(string[] args)
{
 var obj = JObject.Parse(json);
 var titles = from book in obj["store"]["book"]
 select (string)book["title"];

 Console.WriteLine(titles.First());
}

Of course, because it's LINQ, fluent syntax is supported, too:

using System;
using System.Collections.Generic;
using System.Linq;
using Newtonsoft.Json.Linq;

static void Main(string[] args)
{
 var sum = obj["store"]["book"]
 .Select(x => x["price"])
 .Values<double>().Sum();

 Console.WriteLine(sum);
}

How it works…
The first example selects all title objects, one from each book field, casting each to a string
before returning the result. The second example performs a selection on all price fields of
book, casting the resulting value to a double and invoking Sum method on the list to obtain
the total price of all of the books.

Querying JSON with JSONPath and LINQ

154

Something to look out for is that the usual return type of a sub-field in a Json.NET LINQ query
is JObject, so you have to use the Value and Values methods of the JObject template to
obtain the values of those objects when you're writing an expression in fluent syntax. Your first
attempt at calculating the sum might have read something like the following:

var s = obj["store"]["book"].
 Select(x =>x["price"]).Sum();

However, this won't work because the return value of the selection is a list of JObjects,
which can't be summed directly.

When writing LINQ expressions, LINQPad (http://www.linqpad.net)
is especially helpful. If you're doing a lot of LINQ and JSON, investing in the
Developer or Premium versions may be wise, as these versions support
integration with NuGet that let you include Json.NET right in your test queries.

See also
For more information about LINQ and Json.NET, see the Json.NET documentation at
http://www.newtonsoft.com/json/help/html/LINQtoJSON.htm.

http://www.linqpad.net
http://www.newtonsoft.com/json/help/html/LINQtoJSON.htm

10
JSON on Mobile

Platforms

Mobile applications today are all the rage—devices like tablets and smart phones are
outselling PCs in many parts of the world. Powered by platforms such as iOS and Android,
these devices include APIs for creating and parsing JSON as part of the platform, making
your life as an application developer a little easier. In this chapter are recipes for:

ff Parsing JSON on Android

ff Generating JSON on Android

ff Parsing JSON on iOS in Objective-C

ff Generating JSON on iOS in Objective-C

ff Parsing JSON on iOS using Swift

ff Generating JSON on iOS using Swift

ff Parsing JSON using Qt

ff Generating JSON using Qt

Introduction
As we discussed in previous chapters, JSON is an excellent medium to communicate with
web services and clients, whether the clients are web applications or traditional applications.
This is especially true for mobile applications, many of which run over lower-bandwidth wide
area networks, where JSON's brevity in comparison with XML makes overall data payloads
smaller, and thereby ensuring faster response time for remote queries.

JSON on Mobile Platforms

156

Today's leading mobile platforms are Android and iOS. Android, running a variant of Linux,
supports software development in Java and includes a JSON processor in the org.json
namespace. iOS, loosely derived from Mach and BSD, supports software development
using Objective-C, Swift, C, and C++, although for most application development, you use
Objective-C or Swift, each of which contains a binding to the NSJSONSerialization class,
which implements JSON parsing and JSON serialization.

An additional option for mobile developers is to use a cross-platform toolkit, such as Qt,
for application development. Qt runs on a variety of platforms, including Android, iOS, and
BlackBerry. Qt defines the QJsonDocument and QJsonObject classes, which you can use to
interconvert between maps and JSON. Qt is an open source framework that's been around for
many years, and runs not just on mobile platforms, but on Mac OS X, Windows, and Linux,
as well as many other platforms.

The JSON we'll discuss in the following sections is similar to what we've been using in the past
chapters and is a document that looks like this:

{
 'call': 'kf6gpe-7',
 'lat': 37.40150,
 'lng': -122.03683
 'result': 'ok'
}

In the discussions that follow, I assume that you've correctly set up the software development
environment for the platform you're targeting. Describing the process of setting up software
environments for Android, iOS, and Qt would take more space than this book allows. If you're
interested in developing software for a specific mobile platform, you may want to consult the
developer resources for Android or iOS:

ff You can find Apple's developer site for iOS developers at
https://developer.apple.com.

ff You can find Google's developer site for Android developers at
http://developer.android.com/index.html.

ff You can find information about Qt at http://www.qt.io.

Parsing JSON on Android
Android provides the JSONObject class, which lets you represent the name-value pairs of
JSON documents through an interface that's conceptually similar to a map, and includes
serialization and deserialization through getter and setter methods that access the named
fields of a JSON object.

https://developer.apple.com
http://developer.android.com/index.html
http://www.qt.io

Chapter 10

157

How to do it…
You begin by initializing JSONObject with the JSON that you want to parse and then use its
various get methods to obtain the values of the JSON fields:

Import org.json.JSONObject;

String json = "…";
JSONObject data = new JSONObject(data);

String call = data.getString("call");
double lat = data.getDouble("lat");
double lng = data.getDouble("lng");

How it works…
The JSONObject constructor takes the JSON to parse and provides accessor methods to
access the fields of the JSON. Here, we use the getString and getDouble accessors to
access the call, lat, and lng fields of the JSON respectively.

The JSONObject class defines the following accessors:

ff The get method, which returns a subclass of java.lang.Object containing the
value in the named slot.

ff The getBoolean method, which returns a Boolean if the slot contains a Boolean.

ff The getDouble method, which returns a double if the slot contains a double.

ff The getInt method, which returns an int if the slot contains an int.

ff The getJSONArray method, which returns an instance of JSONArray, the JSON
parsing class that handles arrays, if the slot contains an array.

ff The getJSONObject method, which returns an instance of JSONObject if the slot
contains another map.

ff The getLong method, which returns a long if the slot contains a long.

ff The getString method, which returns a String if the slot contains a String.

The class also defines has and isNull. These take the name of a slot and return true if
there's a value in the field name, or if there's no field named or the value is null respectively.

JSONArray is similar to JSONObject, except that it works with arrays and not maps. It has
the same getter methods, which take integer indices in the collection, returning objects,
Booleans, strings, numbers, and so forth.

JSON on Mobile Platforms

158

There's more…
The JSONObject class also defines the keys method, which returns Iterator<String>
of the keys in the JSON. You can also obtain JSONArray of the names in the JSON by
invoking names or the number of key-value pairs in the JSON by invoking length.

See also
For more information about JSONObject, see the Android documentation at http://
developer.android.com/reference/org/json/JSONObject.html. For more
information about JSONArray, see http://developer.android.com/reference/
org/json/JSONArray.html.

Generating JSON on Android
JSONObject also supports setter methods to initialize data in a JSON map. With these
methods, you can assign data to a JSON object and then get the JSON representation by
invoking its toString method.

How to do it…
Here's a simple example:

import org.JSON.JSONObject;

JSONObject data = new JSONObject();
data.put("call", "kf6gpe-7");
data.put("lat", 37.40150);
data.put("lng", -122.03683);
String json = data.toString();

How it works…
The polymorphic put method can take an integer, long integer, object, Boolean, or double,
assigning the slot you name the value you specify.

The JSONObject class defines the toString method, which takes an optional number of
spaces to indent nested structures for pretty-printed JSON. If you don't pass this indent, or
pass 0, the implementation encodes the JSON in as compact a manner as possible.

http://developer.android.com/reference/org/json/JSONObject.html
http://developer.android.com/reference/org/json/JSONObject.html
http://developer.android.com/reference/org/json/JSONArray.html
http://developer.android.com/reference/org/json/JSONArray.html

Chapter 10

159

There's more…
There's also the putOpt method, which takes any subclass of Object, and puts the value to
the name if both the name and value are non-null.

You can assign a slot an array of values by passing JSONArray or nest maps by passing
another JSONObject as the value to be set. JSONArray defines a similar put method,
which takes as a first argument the integer index into the array, rather than a slot name.
For example, with the data object from the previous example, I could add an array of
measured voltages at a station (maybe from the radio's battery) with the following code:

import org.JSON.JSONObject;

JSONArray voltages = new JSONArray();
voltages.put(3.1);
voltages.put(3.2);
voltages.put(2.8);
voltages.put(2.6);
data.put("voltages", voltages);

You can also put java.util.Collection and java.util.Map instances directly, instead of
passing JSONArray or JSONObject instances. The previous code might also be written as:

import org.JSON.JSONObject;
import org.JSON.JSONArray;
import java.util.Collection;

Collection<double> voltages = new Collection<double>();
voltages.put(3.1);
voltages.put(3.2);
voltages.put(2.8);
voltages.put(2.6);
data.put("voltages", voltages);

This makes life a little easier when constructing more complex JSON objects because you
needn't wrap every Java collection or map in a corresponding JSON object.

See also
For more information about JSONObject, see the Android documentation at http://
developer.android.com/reference/org/json/JSONObject.html. For more
information about JSONArray, see http://developer.android.com/reference/
org/json/JSONArray.html.

http://developer.android.com/reference/org/json/JSONObject.html
http://developer.android.com/reference/org/json/JSONObject.html
http://developer.android.com/reference/org/json/JSONArray.html
http://developer.android.com/reference/org/json/JSONArray.html

JSON on Mobile Platforms

160

Parsing JSON on iOS in Objective-C
Objective-C's class libraries define the NSJSONSerialization class, which can serialize to
and from JSON. It converts JSON to NSDictionary objects of values, with the keys, the names
of the slots in the JSON, and the values of their JSON. It's available in iOS 5.0 and later.

How to do it…
Here's a simple example:

NSError* error;
NSDictionary* data = [NSJSONSerialization
 JSONObjectWithData: json
 options: kNilOptions
 error: &error];

NSString* call = [data ObjectForKey: @"call"];

How it works…
The NSJSONSerialization class has a method, JSONObjectWithData:options:erro
r, that takes an NSString, parsing options, and a place to record errors, and performs JSON
parsing. It can accept JSON whose top level is an array or dictionary, returning an NSArray or
NSDictionary result respectively. All values must be instances of NSString, NSNumber,
NSArray, NSDictionary, or NSNull respectively. If the top-level object is an array, the
method returns NSArray; otherwise, it returns NSDictionary.

There's more…
By default, the data that this method returns is non-mutable. If you want mutable data
structures, instead, you can pass the option NSJSONReadingMutableContainers.
To parse top-level fields that are not arrays or dictionaries, pass the option
NSJSONReadingAllowFragments.

See also
Apple's documentation for the class is at https://developer.apple.com/library/
ios/documentation/Foundation/Reference/NSJSONSerialization_Class/
index.html.

https://developer.apple.com/library/ios/documentation/Foundation/Reference/NSJSONSerialization_Class/index.html
https://developer.apple.com/library/ios/documentation/Foundation/Reference/NSJSONSerialization_Class/index.html
https://developer.apple.com/library/ios/documentation/Foundation/Reference/NSJSONSerialization_Class/index.html

Chapter 10

161

Generating JSON on iOS in Objective-C
You can also use the NSJSONSerializer class to serialize NSDictionary or NSArray;
simply use the dataWithJSONObject method.

How to do it…
Here's a simple example assuming that data is NSDictionary you want to convert to JSON:

NSError *error;
NSData* jsonData = [NSJSONSerialization
dataWithJSONObject: data
options: NSJSONWritingPrettyPrinted
error: &error];

How it works…
The dataWithJSONObject:options:error method can take NSArray or
NSDictionary and returns an NSData blob with the encoded JSON of the collection you
passed. If you pass kNilOptions, the JSON will be encoded in a compact manner; for
pretty-printed JSON, pass the option NSJSONWritingPrettyPrinted instead.

See also
Apple's documentation for the NSJSONSerialization class is at https://
developer.apple.com/library/ios/documentation/Foundation/Reference/
NSJSONSerialization_Class/index.html.

Parsing JSON on iOS using Swift
The same NSJSONSerialization class is available in Swift, Apple's new language for
iOS development.

How to do it…
Here's an example of how to invoke the JSONObjectWithData method of
NSJSONSerialization in Swift:

import Foundation
var error: NSError?
Let json: NSData = /* the JSON to parse */
let data = NSJSONSerialization.JSONObjectWithData(json,
 options: nil,
 error: &error);

https://developer.apple.com/library/ios/documentation/Foundation/Reference/NSJSONSerialization_Class/index.html
https://developer.apple.com/library/ios/documentation/Foundation/Reference/NSJSONSerialization_Class/index.html
https://developer.apple.com/library/ios/documentation/Foundation/Reference/NSJSONSerialization_Class/index.html

JSON on Mobile Platforms

162

How it works…
Method invocations in Swift look like function invocations, with the arguments passed as
(optionally named) comma-delimited arguments, similar to how they're invoked in C++ or
Java. The arguments to JSONObjectWithData are identical to the method arguments in
the Objective-C version.

Generating JSON on iOS using Swift
Of course, you can invoke the NSJSONSerialization.dataWithJSONObject method
from Swift, too, which returns an NSData object that you can then convert to a string.

How to do it…
Here's a simple example:

var error: NSError?
var data: NSJSONSerialization.dataWithJSONObject(
 dictionary,
 options: NSJSONWritingOptions(0),
 error: &error);
var json: NSString(data: data, encoding: NSUTF8StringEncoding);

How it works…
The method dataWithJSONObject operates just as its Objective-C counterpart does. Once
we receive NSData containing the JSON-encoded version of the dictionary, we convert it to
NSString using the NSString constructor.

Parsing JSON using Qt
The Qt implementation of JSON parsing is actually quite similar in its interface to the Android
version. Qt defines the QJsonObject and QJsonArray classes, which can contain JSON
maps and JSON arrays respectively. The parsing itself is done by the QJsonDocument class,
which has a static fromJson method that accepts JSON and performs the necessary parsing.

Chapter 10

163

How to do it…
Here's a simple example:

QString json = "{ 'call': 'kf6gpe-7', 'lat': 37.40150, 'lng':
-122.03683, 'result': 'ok'}";
QJsonDocument document = QJsonDocument.fromJson(json);
QJsonObject data = document.object;
QString call = data["call"].toString();

How it works…
The parsing is two-step: first, the code parses the JSON using QJsonDocument and then uses
the resulting QJsonObject to access the data.

The QJsonObject class works as a map of QJsonValue objects, each of which can be
converted to their fundamental types using one of the following methods:

ff toArray: This method converts to QJsonArray

ff toBool: This method converts to a Boolean

ff toDouble: This method converts to a double

ff toInt: This method converts to an integer

ff toObject: This method converts to another QJsonObject, letting you nest maps of
QJsonObject

ff toString: This method converts to QString

There's more…
You can also iterate over the keys in QJsonObject using either Qt's foreach macro or the
begin, constBegin, and end iteration methods. There's also the contain method, which
takes a name for a slot and returns true if the map contains the slot you're looking for.

See also
See Qt's documentation on JSON parsing at http://doc.qt.io/qt-5/json.html.

Generating JSON using Qt
The QJsonDocument class also has the toJson method, which converts the object it's
referencing to JSON.

http://doc.qt.io/qt-5/json.html

JSON on Mobile Platforms

164

How to do it…
Here's an example that converts from JSON and back to JSON, pretty-printing the JSON along
the way:

QString json = "{ 'call': 'kf6gpe-7', 'lat': 37.40150, 'lng':
 -122.03683, 'result': 'ok'}";
QJsonDocument document = QJsonDocument.fromJson(json);
QJsonObject data = document.object;
QByteArrayprettyPrintedJson =
document.toJson(QJsonDocumented::Indented);

How it works…
The QJsonDocument class has a method, toJson, which converts the document or
array it's referencing to JSON. You can ask for a pretty-printed version of the JSON by
passing QJsonDocument::Indented, or a compact version of the JSON by passing
QJsonDcoument::Compact.

See also
For more information on QJsonDocument, see the Qt documentation at
http://doc.qt.io/qt-5/qjsondocument.html.

http://doc.qt.io/qt-5/qjsondocument.html

165

Index
Symbols
$http method

about 65
URL 65

A
accessors, JSONObject class

getBoolean method 157
getDouble method 157
getInt method 157
getJSONArray method 157
getJSONObject method 157
getLong method 157
get method 157
getString method 157

AJAX application
building 32

ajax method
URL 56

Android
JSON, generating on 158, 159
JSON, parsing on 156-158

AngularJS
dependency, adding to web server 62, 63
URL 63
used, for obtaining request progress 67, 68
used, for parsing returned JSON 68, 69
used, for requesting JSON content 64, 65
used, for sending JSON to web server 65, 66

Apache CouchDB wiki
URL 97

Apple's developer site, for iOS developers
URL 156

ArrayBuffer
accessing, DataView used 134
used, for decoding base64 135
used, for encoding base64 135

ArrayBuffer objects, DataView
Float32Array 135
Float64Array 135
Int8Array 135
Int16Array 135
Int32Array 135
Uint8Array 135
Uint16Array 135
Uint32Array 135

asynchronous request
making, for data 36, 37
progress, obtaining of 39-41

atob function
about 131
URL 131

attribute-name-attribute-value property 3
attributes, $http method

data attribute 65
headers attribute 65
method attribute 65
params attribute 65
timeout attribute 65
url attribute 65

Automated Packet Reporting System (APRS)
about 32
URL 32

166

B
base64

decoding, ArrayBuffer used 135
encoding, ArrayBuffer used 135

binary data
decoding, as base64 string using

JavaScript 130
decoding, from base64 string using

Node.js 129
encoding, as base64 string using

JavaScript 130
encoding, as base64 string using

Node.js 128, 129
BSON

about 128
URL 128

BsonReader documentation
URL 133

BsonWriter class documentation
URL 132

btoa function
about 131
URL 131

Buffer class
ascii 129
hex 129
URL 129
utf8 129
utf16le 129

buffertools module
URL 130

C
C#

about 11
JSON, reading in 11-13
JSON, writing in 11-13

C++
about 7
JSON, reading in 7-10
JSON, writing in 7-10

call field 38
Cascading Style Sheets (CSS) 53
Central Maven Repository 149

class documentation, Apple
URL 160

classes, in TypeScript
URL 125

client page
setting up 33-35

Clojure
about 19
JSON, reading in 19-22
JSON, writing in 19-22

collection 80
Comma Separated Values (CSV) 24
Common Language Runtime (CLR) 19
CouchDB

about 95, 96
installing 96, 97
searching, REST used 107
setting up 96, 97
URL 96

CouchDB records
enumerating, REST used 104-106

CouchDB view API documentation
URL 101

CouchDB wiki
URL 101, 102

Cradle
installing 96, 97
setting up 96, 97
used, for connecting to CouchDB

database 97
used, for creating CouchDB database 98
used, for creating document in CouchDB 99
used, for deleting document in CouchDB 103
used, for searching document in

CouchDB 101, 102
used, for setting up data view in

CouchDB 100, 101
used, for updating document in CouchDB 102

D
data

decoding from BSON, Json.NET
used 132, 133

encoding as BSON, Json.NET used 131, 132

167

data.json module
URL 19

DataView
used, for accessing ArrayBuffer 134

data view, in CouchDB
setting up, with Cradle 100, 101
setting up, with Node.js 100, 101

DataView methods
URL 135

date and time objects
handling, Json.NET used 116, 117
URL 118

documentation, Qt
URL 163

document, in CouchDB
creating, Cradle used 99
creating, Node.js used 99
deleting, Cradle used 103
deleting, Node.js used 103
deleting, REST used 110, 111
updating, with Cradle 102
updating, with Node.js 102
upserting, REST used 108-110

document, in MongoDB
creating, Node.js used 80-82
creating, REST used 89-91
deleting, Node.js used 86, 87
deleting, REST used 92, 93
searching, with Node.js 82-84
updating, REST used 91, 92
updating, with Node.js 85, 86

Document Object Model (DOM) 53
document search, in CouchDB

with Cradle 101, 102
with Node.js 101, 102

doxygen
URL 10

E
eval function 6
events, XMLHttpRequest object

abort 40
error 40
load 40
loadstart 40
progress 40

express module
installing, for Node.js 73-78
used, for compressing object-body

content 136, 137
Extensible Markup Language (XML) 1

F
F#

about 22
JSON, reading in 22-24
JSON, writing in 22-24
URL 22

findAll method 88
forEach iterator 84
functions, Mozilla

base64DecToArr function 136
base64EncArr function 136
strToUTF8Arr function 136
UTF8ArrToStr function 136

G
GET request 51
GitHub

URL 149
Google Chrome

URL 4
gson

used, for deserializing object 118, 119
gson documentation

URL 119

H
hasNext method 84
HTTP REST interface to CouchDB

URL 106

I
interface keyword 125
interfaces

declaring, TypeScript used 122-124
URL 124

iOS, in Objective-C
JSON, generating on 161
JSON, parsing on 160

168

J
Java

JSON, reading in 13-16
JSON, writing in 13-16

Java application
JSONPath, using 149, 150

Java JSONPath implementation
URL 150

JavaScript
JSON, reading in 4-7
JSON, writing in 4-7
used, for decoding binary data as base64

string 130
used, for encoding binary data as base64

string 130
JavaScript object

data field 56
dataType field 56
type field 56
url field 56

JavaScript Object Notation. See JSON
JavaScriptSerializer class

URL 116
JavaScript types

any 122
array 122
boolean 122
enum 122
number 122
string 122
void 122

Jayway 149
jQuery

about 53
dependency, adding to web page 53, 54
URL 53, 54
used, for obtaining request progress 58, 59
used, for parsing returned JSON 59-61
used, for requesting JSON content 54-56
used, for sending JSON to web server 56, 57

JSON
about 1, 2, 127, 155
accepting, Node.js used 38, 39
generating, on Android 158, 159
generating, on iOS in Objective-C 161
generating on iOS, Swift used 162

generating, Qt used 163
parsing, on Android 156-158
parsing, on iOS in Objective-C 160
parsing on iOS, Swift used 161
parsing, Qt used 162
reading, in C# 11-13
reading, in C++ 7-10
reading, in Clojure 19-22
reading, in F# 22-24
reading, in Java 13-16
reading, in JavaScript 4-7
reading, in Perl 16, 17
reading, in PHP 26, 27
reading, in Python 17, 18
reading, in Ruby 28
reading, with Node.js 25, 26
sending, to web server 37, 38
URL 16
writing, in C# 11-13
writing, in C++ 7-10
writing, in Clojure 19-22
writing, in F# 22-24
writing, in Java 13-16
writing, in JavaScript 4-7
writing, in Perl 16, 17
writing, in PHP 26, 27
writing, in Python 17, 18
writing, in Ruby 28
writing, with Node.js 25, 26

Json::Value class
about 9
methods 9

json2ts
used, for generating TypeScript

interfaces 125, 126
JSONArray

URL 158
JSON content

requesting, AngularJS used 64, 65
requesting, jQuery used 54-56

JSON conversion implementations, for C++
URL 10

JSON CPAN module
URL 17

JsonCpp
URL 7
using 7

169

json_decode function
optional arguments 27

JSON documents
querying, JSONPath bracket-notation

used 143
querying, JSONPath dot-notation

used 141, 142
JsonElement class

using 14
json_encode function

JSON_FORCE_OBJECT 27
JSON_NUMERIC_CHECK 27
JSON_PRETTY_PRINT 27
JSON_UNESCAPED_SLASHES 27

json module
URL 18

Json.NET
URL 13, 116, 133
used, for decoding data from BSON 132, 133
used, for deserializing object 114-116
used, for encoding data as BSON 131, 132
used, for handling date and time

objects 116, 117
Json.NET documentation

URL 154
JSONObject

URL 158
JSONPath

: operator 142
$ symbol 142
, operator 142
.operator 142
() operator 142
[] operator 142
* operator 142
@ symbol 142
URL 142
used, in Java application 149, 150
used, in Node.js application 146
used, in PHP application 147, 148
used, in Python application 148, 149
used, in web application 144, 145
used, with SelectToken 151
using 140

JSONPath bracket-notation
used, for querying JSON documents 143

JSONPath dot-notation
used, for querying JSON documents 141, 142

JSONPath expression tester
URL 142

jsonpath library
URL 145

JSONPath module, for Node.js
URL 147

JSONPath scripting
used, for constructing complicated

queries 144
JSON Ruby gem documentation

URL 29

L
limit method 84
LINQ

used, with Json.NET 152, 153
using 140

LINQPad
URL 154

M
methods, QJsonObject class

toArray 163
toBool 163
toDouble 163
toInt 163
toObject 163
toString 163

model-view-controller (MVC) 50
MongoDB

searching, REST used 87-89
setting up 72, 73
URL 72
using 71

MongoDB collections
URL 82

MongoDB database
connecting, Node.js used 78, 79

MongoDB database driver
installing, for Node.js 73

MongoDB documentation
URL 84

MongoDB native driver documentation
URL 86

170

MongoDB update method documentation
URL 86

Mozilla-written functions
URL 135

MSDN site
URL 135

N
native MongoDB driver, for Node.js

URL 80
next method 84
node command 25
Node.js

express module, installing for 73-78
JSON, reading with 25, 26
JSON, writing with 25, 26
MongoDB database driver, installing for 73
TypeScript, using with 119, 120
URL 25
used, for accepting JSON 38, 39
used, for connecting MongoDB

database 78, 79
used, for connecting to CouchDB

database 97
used, for creating CouchDB database 98
used, for creating document 80-82
used, for creating document in CouchDB 99
used, for decoding binary data from base64

string 129
used, for deleting document in CouchDB 103
used, for deleting document in

MongoDB 86, 87
used, for encoding binary data as base64

string 128, 129
used, for issuing web service request 45-47
used, for searching document

in CouchDB 101, 102
used, for searching document

in MongoDB 82-84
used, for setting up data view

in CouchDB 100, 101
used, for updating document in CouchDB 102
used, for updating document

in MongoDB 85, 86
Node.js application

JSONPath, using 146

Node.js documentation
URL 47

Node.js express module
URL 78

Node.js request module
URL 47

NSJSONSerialization class
URL 161

O
object

deserializing, Json.NET used 114-116
operations, URL 75

P
parse function

allow_nan 29
max_nesting 29
symbolize_names 29

Perl
JSON, reading in 16, 17
JSON, writing in 16, 17

PHP
about 26
JSON, reading in 26, 27
JSON, writing in 26, 27

PHP application
JSONPath, using 147, 148

PHP implementation, of JSONPath
URL 148

POST request 51, 52
Python

JSON, reading in 17, 18
JSON, writing in 17, 18

Python application
JSONPath, using 148, 149

Python JSONPath library
URL 149

Q
QJsonDocument

URL 164
Qt

used, for generating JSON 164
used, for parsing JSON 162

171

R
readyState field 43
remove method 87
request progress

obtaining, AngularJS used 67, 68
obtaining, jQuery used 58, 59

REST
used, for creating document

in MongoDB 89-91
used, for deleting document

in CouchDB 110, 111
used, for deleting document

in MongoDB 92, 93
used, for enumerating CouchDB

records 104-106
used, for searching CouchDB 107
used, for searching MongoDB 87-89
used, for updating document

in MongoDB 91, 92
used, for upserting document

in CouchDB 108-110
returned JSON

parsing 42, 43
parsing, AngularJS used 68, 69
parsing, jQuery used 59-61

Ruby
JSON, reading in 28
JSON, writing in 28

S
SelectToken documentation

URL 152
server

setting up 32, 33
structural subtyping 122
SVN

URL 14
Swift

used, for generating JSON on iOS 162
used, for parsing JSON on iOS 161

T
TypeScript

used, for annotating simple types 121, 122

used, for declaring classes
with interfaces 124, 125

used, for declaring interfaces 122-124
using, with Node.js 119, 120

TypeScript interfaces
generating, json2ts used 125, 126

TypeScript types
URL 122

U
update method 86

V
variables 121
Visual Studio

URL 11

W
web API

URL 2
web application

JSONPath, using 144, 145
web server

JSON, sending to 37, 38
web service JSON endpoint

URL 45
web service request

issuing, Node.js used 45-47

X
XML

benefits 139
XMLHttpRequest class

open method 37
ready states 43
send method 37

XMLHttpRequest object
creating 35, 36
defining 42

Thank you for buying

JavaScript JSON Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information,
please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt open source brand, home
to books published on software built around open source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's open source Royalty Scheme, by which Packt gives a royalty to each open source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

JavaScript and JSON
Essentials
ISBN: 978-1-78328-603-4 Paperback: 120 pages

Successfully build advanced JSON-fueled web
applications with this practical, hands-on guide

1.	 Deploy JSON across various domains.

2.	 Facilitate metadata storage with JSON.

3.	 Build a practical data-driven web application
with JSON.

Swift Essentials
ISBN: 978-17-8439-670-1 Paperback: 228 pages

Get up and running lightning fast with this practical
guide to building applications with Swift

1.	 Rapidly learn how to program Apple's newest
programming language, Swift, from the basics
through to working applications.

2.	 Create graphical iOS applications using Xcode
and storyboard.

3.	 Build a network client for GitHub repositories,
with full source code on GitHub.

Please check www.PacktPub.com for information on our titles

Instant GSON
ISBN: 978-1-78328-203-6 Paperback: 60 pages

Learn to create JSON data from Java objects and
implement them in an application with the GSON library

1.	 Learn something new in an Instant! A short,
fast, focused guide delivering immediate results.

2.	 Convert JAVA Objects to JSON representation
and vice versa.

3.	 Learn about the Field Exclusion strategy.

4.	 Write your own JSON converter.

Instant jsoup How-to
ISBN: 978-1-78216-799-0 Paperback: 38 pages

Effectively extract and manipulate HTML content with
the jsoup library

1.	 Learn something new in an Instant! A short, fast,
focused guide delivering immediate results.

2.	 Manipulate real-world HTML.

3.	 Discover all the features supported by the
Jsoup library.

4.	 Learn how to Extract and Validate HTML data.

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Reading and Writing
JSON on the Client
	Introduction
	Reading and writing JSON in JavaScript
	Reading and writing JSON in C++
	Reading and writing JSON in C#
	Reading and writing JSON in Java
	Reading and writing JSON in Perl
	Reading and writing JSON in Python

	Chapter 2
: Reading and Writing JSON on the Server
	Reading and writing JSON in Clojure
	Reading and writing JSON in F#
	Reading and writing JSON with Node.js
	Reading and writing JSON in PHP
	Reading and writing JSON in Ruby

	Chapter 3
: Using JSON in Simple AJAX Applications
	Introduction
	Creating an XMLHttpRequest object
	Making an asynchronous request for data
	Sending JSON to your web server
	Accepting JSON using Node.js
	Getting the progress of an asynchronous request
	Parsing the returned JSON
	Issuing a web service request using Node.js

	Chapter 4
: Using JSON in AJAX Applications with jQuery and AngularJS
	Introduction
	Adding a dependency to jQuery to your
web page
	Requesting JSON content using jQuery
	Sending JSON to your web server using jQuery
	Getting the progress of a request using jQuery
	Parsing the returned JSON using jQuery
	Adding a dependency to AngularJS to your web page
	Requesting JSON content using AngularJS
	Sending JSON to your web server using AngularJS
	Getting the progress of a request using AngularJS
	Parsing the returned JSON using AngularJS

	Chapter 5
: Using JSON with MongoDB
	Introduction
	Setting up MongoDB
	Installing the MongoDB database driver for Node.js
	Installing the express module for Node.js
	Connecting to a MongoDB database using Node.js
	Creating a document in MongoDB using Node.js
	Searching for a document in MongoDB with Node.js
	Updating a document in MongoDB with Node.js
	Deleting a document in MongoDB using Node.js
	Using REST to search MongoDB
	Using REST to create a document in MongoDB
	Using REST to update a document in MongoDB
	Using REST to delete a document in MongoDB

	Chapter 6
: Using JSON with CouchDB
	Introduction
	Installing and setting up CouchDB and Cradle.
	Connecting to a CouchDB database using Node.js and Cradle
	Creating a CouchDB database using Node.js and Cradle
	Creating a document in CouchDB using Node.js and Cradle
	Setting up a data view in CouchDB with Node.js and Cradle
	Searching for a document in CouchDB with Node.js and Cradle
	Updating a document in CouchDB with Node.js and Cradle
	Deleting a document in CouchDB using Node.js and Cradle
	Using REST to enumerate CouchDB records
	Using REST to search CouchDB
	Using REST to upsert a document in CouchDB
	Using REST to delete a document in CouchDB

	Chapter 7
: Using JSON in a
Type-Safe Manner
	Introduction
	How to deserialize an object using Json.NET
	How to handle date and time objects using Json.NET
	How to deserialize an object using gson for Java
	How to use TypeScript with Node.js
	How to annotate simple types using TypeScript
	How to declare interfaces using TypeScript
	How to declare classes with interfaces using TypeScript
	Using json2ts to generate TypeScript interfaces from your JSON

	Chapter 8
: Using JSON for Binary Data Transfer
	Introduction
	Encoding binary data as a base64 string using Node.js
	Decoding binary data from a base64 string using Node.js
	Encoding and decoding binary data as a base64 string using JavaScript in the browser
	Encoding data as BSON using Json.NET
	Decoding data from BSON using Json.NET
	Using a DataView to access an ArrayBuffer
	Encoding and decoding base64 using an ArrayBuffer
	Compressing object-body content from a Node.js server built using the express module

	Chapter 9
: Querying JSON with JSONPath and LINQ
	Introduction
	Using the JSONPath dot-notation to query JSON documents
	Using JSONPath bracket-notation to query JSON documents
	Using JSONPath scripting to construct more complicated queries
	Using JSONPath in your web application
	Using JSONPath in your Node.js application
	Using JSONPath in your PHP application
	Using JSONPath in your Python application
	Using JSONPath in your Java application
	Using JSONPath with SelectToken to query for JSONPath expressions in your C# application
	Using LINQ with Json.NET to query JSON in your C# application

	Chapter 10
: JSON on Mobile Platforms
	Introduction
	Parsing JSON on Android
	Generating JSON on Android
	Parsing JSON on iOS in Objective-C
	Generating JSON on iOS in Objective-C
	Parsing JSON on iOS using Swift
	Generating JSON on iOS using Swift
	Parsing JSON using Qt
	Generating JSON using Qt

	Index

