
M A N N I N G

Nicolas Bevacqua
FOREWORD BY Addy Osmani

A Build First Approach

www.allitebooks.com

http://www.allitebooks.org

JavaScript Application Design
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

JavaScript
Application Design

A Build First Approach

NICOLAS BEVACQUA

M A N N I N G
SHELTER ISLAND
www.allitebooks.com

http://www.allitebooks.org

iv
For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2015 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without elemental chlorine.

Manning Publications Co. Development editor: Susan Conant
20 Baldwin Road Technical development editor: Douglas Duncan
PO Box 761 Copyeditor: Katie Petito
Shelter Island, NY 11964 Proofreader: Alyson Brener

Technical proofreaders: Deepak Vohra
Valentin Crettaz

Typesetter: Marija Tudor
Cover designer: Marija Tudor

ISBN: 9781617291951
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 20 19 18 17 16 15
www.allitebooks.com

www.manning.com
http://www.allitebooks.org

 To Marian, for withstanding the birth of this book,
your unconditional love, and your endless patience.

I love you!

Will you marry me?

www.allitebooks.com

http://www.allitebooks.org

vi
www.allitebooks.com

http://www.allitebooks.org

brief contents
PART 1 BUILD PROCESSES .. 1

1 ■ Introduction to Build First 3

2 ■ Composing build tasks and flows 23

3 ■ Mastering environments and the development workflow 50

4 ■ Release, deployment, and monitoring 71

PART 2 MANAGING COMPLEXITY ... 97

5 ■ Embracing modularity and dependency management 99

6 ■ Understanding asynchronous flow control methods in
 JavaScript 131

7 ■ Leveraging the Model-View-Controller 166

8 ■ Testing JavaScript components 211

9 ■ REST API design and layered service architectures 251
vii

www.allitebooks.com

http://www.allitebooks.org

BRIEF CONTENTSviii
www.allitebooks.com

http://www.allitebooks.org

contents
foreword xv
preface xvii
acknowledgments xix
about this book xxi
about the author xxv
about the cover illustration xxvi

PART 1 BUILD PROCESSES .. 1

1 Introduction to Build First 3
1.1 When things go wrong 4

How to lose $172,222 a second for 45 minutes 5
Build First 5 ■ Rites of initiation 6

1.2 Planning ahead with Build First 7
Core principles in Build First 7

1.3 Build processes 9
1.4 Handling application complexity and design 11
1.5 Diving into Build First 15

Keeping code quality in check 16 ■ Lint in the command
line 19

1.6 Summary 22
ix

www.allitebooks.com

http://www.allitebooks.org

CONTENTSx
2 Composing build tasks and flows 23
2.1 Introducing Grunt 24

Installing Grunt 26 ■ Setting up your first Grunt task 28
Using Grunt to manage the build process 29

2.2 Preprocessing and static asset optimization 31
Discussing preprocessing 31 ■ Doing LESS 34
Bundling static assets 37 ■ Static asset minification 38
Implementing image sprites 41

2.3 Setting up code integrity 43
Cleaning up your working directory 43 ■ Lint, lint, lint! 44
Automating unit testing 45

2.4 Writing your first build task 46
2.5 Case study: database tasks 47
2.6 Summary 49

3 Mastering environments and the development workflow 50
3.1 Application environments 51

Configuring build distributions 51 ■ Environment-level
configuration 56 ■ What’s so special about development? 58

3.2 Configuring environments 58
Storing configuration in a waterfall 59 ■ Using encryption to
harden environment configuration security 61 ■ Setting
environment-level configuration at the OS level 62
Merging configuration as a waterfall in code 64

3.3 Automating tedious first-time setup tasks 65
3.4 Working in continuous development 66

Waste no time, use a watch! 66 ■ Monitoring for changes to the
Node app 67 ■ A text editor that cares 69 ■ Browser refresh
is so Y2K 69

3.5 Summary 70

4 Release, deployment, and monitoring 71
4.1 Releasing your application 73

Image optimization 73 ■ Static asset caching 75
Inlining critical above-the-fold CSS 77 ■ Testing before a
deployment 78

4.2 Predeployment operations 79
Semantic versioning 80 ■ Using changelogs 81 ■ Bumping
changelogs 81

CONTENTS xi
4.3 Deploying to Heroku 82
Deploying builds 85 ■ Managing environments 85

4.4 Continuous integration 86
Hosted CI using Travis 86 ■ Continuous deployments 88

4.5 Monitoring and diagnostics 89
Logging and notifications 89 ■ Debugging Node
applications 92 ■ Adding performance analytics 93
Uptime and process management 94

4.6 Summary 95

 PART 2 MANAGING COMPLEXITY 97

5 Embracing modularity and dependency management 99
5.1 Working with code encapsulation 101

Understanding the Single Responsibility Principle 101
Information hiding and interfaces 104 ■ Scoping and this
keyword 106 ■ Strict mode 109 ■ Variable hoisting 110

5.2 JavaScript modules 111
Closures and the module pattern 111 ■ Prototypal
modularity 112 ■ CommonJS modules 113

5.3 Using dependency management 114
Dependency graphs 114 ■ Introducing RequireJS 117
Browserify: CJS in the browser 119 ■ The Angular way 120

5.4 Understanding package management 122
Introducing Bower 122 ■ Big libraries, small
components 124 ■ Choosing the right module system 125
Learning about circular dependencies 126

5.5 Harmony: a glimpse of ECMAScript 6 127
Traceur as a Grunt task 127 ■ Modules in Harmony 128
Let there be block scope 129

5.6 Summary 129

6 Understanding asynchronous flow control methods in
JavaScript 131
6.1 Using callbacks 132

Avoiding callback hell 133 ■ Untangling the callback
jumble 134 ■ Requests upon requests 136 ■ Asynchronous
error handling 138

CONTENTSxii
6.2 Using the async library 141
Waterfall, series, or parallel? 141 ■ Asynchronous functional
tasks 145 ■ Asynchronous task queues 147 ■ Flow
composition and dynamic flows 147

6.3 Making Promises 150
Promise fundamentals 150 ■ Chaining Promises 153
Controlling the flow 155 ■ Handling rejected Promises 156

6.4 Understanding events 157
Events and the DOM 157 ■ Creating your own event
emitters 158

6.5 Glimpse of the future: ES6 generators 161
Creating your first generator 161 ■ Asynchronicity and
generators 163

6.6 Summary 165

7 Leveraging the Model-View-Controller 166
7.1 jQuery isn’t enough 167
7.2 Model-View-Controller in JavaScript 170

Why Backbone? 170 ■ Installing Backbone 172
Browserifying your Backbone module with Grunt 172

7.3 Introduction to Backbone 174
Backbone views 175 ■ Creating Backbone models 177
Organizing models with Backbone collections 179 ■ Adding
Backbone routers 180

7.4 Case study: the shopping list 183
Starting with a static shopping list 183 ■ This time with remove
buttons 185 ■ Adding items to your cart 187 ■ Using inline
editing 191 ■ A service layer and view routing 197

7.5 Backbone and Rendr: server/client shared rendering 199
Diving into Rendr 199 ■ Understanding boilerplate in
Rendr 201 ■ A simple Rendr application 203

7.6 Summary 210

8 Testing JavaScript components 211
8.1 JavaScript testing crash course 212

Logical units in isolation 212 ■ Using the Test Anything
Protocol (TAP) 213 ■ Putting together our first unit test 214
Tape in the browser 214 ■ Arrange, Act, Assert 215
Unit testing 216 ■ Convenience over convention 217

CONTENTS xiii
Case study: unit testing an event emitter 217 ■ Testing the
event emitter 218 ■ Testing for the .on method 219
Mocks, spies, and proxies 221 ■ Mocking 222
Introducing Sinon.js 223 ■ Spying on function calls 223
Proxying require calls 224

8.2 Testing in the browser 226
Faking XHR and server communication 227 ■ Case study:
testing DOM interaction 229

8.3 Case study: unit testing the MVC shopping list 238
Testing the view router 238 ■ Testing validation on a view
model 243

8.4 Automating Tape tests 245
Automating Tape tests for the browser 246 ■ Continuous
testing 247

8.5 Integration, visual, and performance testing 247
Integration testing 247 ■ Visual testing 248 ■ Performance
testing 249

8.6 Summary 250

9 REST API design and layered service architectures 251
9.1 Avoiding API design pitfalls 252
9.2 Learning REST API design 253

Endpoints, HTTP verbs, and versioning 254 ■ Requests,
responses, and status codes 257 ■ Paging, caching, and
throttling 260 ■ Documenting an API 263

9.3 Implementing layered service architectures 264
Routing layer 265 ■ Service layer 265 ■ Data layer 265
Routing layer 266 ■ Service layer 266 ■ Data layer 267

9.4 Consuming a REST API on the client side 267
The request handling layer 268 ■ Shooting down old
requests 268 ■ Consistent AJAX error management 269

9.5 Summary 271

appendix A Modules in Node.js 273
appendix B Introduction to Grunt 276
appendix C Picking your build tool 284
appendix D JavaScript code quality guide 293

index 307

CONTENTSxiv

foreword
The process of designing a robust JavaScript web app has gone through a roaring
renaissance in recent years. With the language being used to develop increasingly
ambitious apps and interfaces, this is the perfect time for JavaScript Application Design.
Through concise examples, lessons learned from the field, and key concepts for scal-
able development, Nico Bevacqua will give you a whirlwind tour of taking the process
and design of your apps to the next level.

 This book will also help you craft build processes that will save you time. Time is a
key factor in staying productive. As web app developers, we want to make the most of
ours, and a Build First philosophy can help us hit the ground running with clean, test-
able apps that are well structured from the get-go. Learning process workflow and
how to manage complexity are fundamental cornerstones of modern JavaScript app
development. Getting them right can make a massive difference in the long run.

 JavaScript Application Design will walk you through automation for the front end. It
covers everything from avoiding repetitive tasks and monitoring production builds to
mitigating the cost of human error through a clean tooling setup. Automation is a big
factor here. If you aren't using automation in your workflow today, you're working too
hard. If a series of daily tasks can be accomplished with a single command, follow
Nico's advice and spend the time you save improving the code quality of your apps.

 Modularity is the final crucial concept that can assist with building scalable, main-
tainable apps. Not only does this help ensure that the pieces composing our applica-
tion can be more easily tested and documented, it encourages reuse and focus on
quality. In JavaScript Application Design, Nico expertly walks you through writing modu-
xv

FOREWORDxvi
lar JavaScript components, getting asyncronous flow right, and enough client-side
MVC for you to build an app of your own.

 Strap on your seatbelts, adjust your command line, and enjoy a ride through the
process of improving your development workflow.

 ADDY OSMANI

 SENIOR ENGINEER

WITH A PASSION FOR DEVELOPER TOOLING

GOOGLE

preface
Like most people in our field, I’ve always been fascinated with problem solving. The
painful thrill of hunting for a solution, the exhilarating relief of having found a fix—
there’s nothing quite like it. When I was young I really enjoyed strategy games, such as
chess, which I’ve played ever since I was a kid; StarCraft, a real-time strategy game I
played for 10 years straight; and Magic: The Gathering, a trading card game that can
be described as the intersection between poker and chess. They presented plenty of
problem-solving opportunities.

 At primary school I learned Pascal and rudimentary Flash programming. I was
psyched. I would go on and learn Visual Basic, PHP, C, and start developing websites,
reaping the benefits of a masterful handle on <marquee> and <blink> tags, paired
with a modest understanding of MySQL; I was unstoppable, but my thirst for problem
solving didn’t end there, and I went back to gaming.

 Ultima Online (UO), a massively multiplayer online role-playing game (no wonder
they abbreviate that as MMORPG), wasn’t any different than other games that got me
hooked for years. Eventually I found out that there was an open source1 implementa-
tion of the UO server, which was named RunUO and written entirely in C#. I played on
a RunUO server where the administrators had no programming experience. They
slowly started trusting me to handle minor bug fixes by literally emailing source code
files back and forth. I was hooked. C# was a wonderful, expressive language, and the
open source software for the UO server was amicable and inviting—you didn’t even

1 You can check out the RunUO website at runuo.com, although the project isn’t maintained anymore.
xvii

http://runuo.com/

PREFACExviii
need an IDE (or even need to know what that was) because the server would compile
script files dynamically for you. You’d be essentially writing a file with 10 to 15 lines in
it, inheriting from the Dragon class, and adding an intimidating text bubble over their
head, or overriding a method so they’d spit more fireballs. You’d learn the language
and its syntax without even trying, simply by having fun!

 Eventually, a friend revealed that I could make a living out of writing C# code: “You
know, people actually pay you to do that,” he said. That’s when I started developing
websites again, except I wasn’t using only Front Page and piles of <marquee> tags or
Java applets for fun anymore. It still feels like a game to me, though.

 A few years ago I read The Pragmatic Programmer 2, and something clicked. The book
has a lot of solid advice, and I can’t recommend it highly enough. One thing that par-
ticularly affected me: the authors advocate you get out of your comfort zone and try
something you’ve been meaning to do but haven’t gotten around to. My comfort zone
was C# and ASP.NET at that point, so I decided to try Node.js, an unmistakably UNIX-y
platform for JavaScript development on the server side, certainly a break from my
Microsoft-ridden development experience so far.

 I learned a ton from that experiment and ended up with a blog3 where I’d write
about everything I learned in the process. About six months later I’d decided that I’d
put my years of experience in C# design into a book about JavaScript. I contacted
Manning, and they jumped at the opportunity, helping me brainstorm and turn raw
ideas into something more deliberate and concise.

 This book is the result of many hours of hard work, dedication, and love for the
web. In it, you’ll find practical advice about application design, process automation,
and best practices that will improve the quality of your web projects.

2 The Pragmatic Programmer: From Journeyman to Master by Andrew Hunt and David Thomas (Addison Wesley,
1999) is a timeless classic you should seriously consider reading.

3 You can read my blog, “Pony Foo,” at ponyfoo.com. I write articles about the web, performance, progressive
enhancement, and JavaScript.

http://ponyfoo.com/

acknowledgments
You wouldn’t be holding this book in your hands if it weren’t for everyone who sup-
ported and endured me throughout the writing process. I can only hope that those
who deserve acknowledgment the most, my friends and family, already know that I
can’t put into words how thankful I am for their love, understanding, and frequent
reassurance.

 Many more people contributed—directly or indirectly—a great deal of wisdom
and inspiration to this book.

 The open source JavaScript community is an endless spring of insight, encourage-
ment, and selfless contributions. They have opened my eyes to a better approach to
software development, where collaboration isn’t only possible, but actively encour-
aged. Most of these people have contributed indirectly by evangelizing for the web,
maintaining blogs, sharing their experience and resources, and otherwise educating
me. Others have contributed directly by developing tools discussed in the book.
Among these individuals are Addy Osmani, Chris Coyier, Guillermo Rauch, Harry
Roberts, Ilya Grigorik, James Halliday, John-David Dalton, Mathias Bynens, Max
Ogden, Mikeal Rogers, Paul Irish, Sindre Sorhus, and T.J. Holowaychuk.

 There are also many book authors and content distributors who have influenced
and motivated me to become a better educator. Through their writing and sharing,
these people have significantly helped shape my career. They include Adam Wiggins,
Alan Cooper, Andrew Hunt, Axel Rauschmayer, Brad Frost, Christian Heilmann,
David Thomas, Donald Norman, Frederic Cambus, Frederick Brooks, Jeff Atwood,
Jeremy Keith, Jon Bentley, Nicholas C. Zakas, Peter Cooper, Richard Feynmann, Steve
Krug, Steve McConnell, and Vitaly Friedman.
xix

www.allitebooks.com

http://www.allitebooks.org

ACKNOWLEDGMENTSxx
 Susan Conant, my developmental editor at Manning, deserves to be singled out.
She held this book to the greatest standard of quality I could possibly create, and it’s
in much better shape than it would’ve been if not for her. On top of that, she had to
hand-hold me through the delicate and intimate process of writing my first book.
Through her relentless, yet gentle, guidance she helped shape my lumps of ideas into
a book that I’m not afraid to publish. I’ve become a better writer because of her, and
I’m grateful for that.

 She wasn’t alone in that endeavor. All of the staff at Manning wanted this book to
be the best that it could be. The publisher, Marjan Bace—along with his editorial col-
lective—are to be thanked for that. Valentin Crettaz and Deepak Vohra, the technical
proofreaders, were not only instrumental in ensuring the code samples were consis-
tent and useful, but provided me with great feedback as well.

 There are also the hordes of anonymous souls that were willing to read through
the manuscript, leaving their impressions and helping improve the book. Thanks to
the MEAP readers who posted corrections and comments in the Author Online
forum, and to the reviewers who read the chapters at various stages of development:
Alberto Chiesa, Carl Mosca, Dominic Pettifer, Gavin Whyte, Hans Donner, Ilias Ioan-
nou, Jonas Bandi, Joseph White, Keith Webster, Matthew Merkes, Richard Harriman,
Sandeep Kumar Patel, Stephen Wakely, Torsten Dinkheller, and Trevor Saunders.

 Special thanks to Addy Osmani for contributing the foreword, and to everyone
else who played a part. Even if they didn’t make the keystrokes themselves, they played
an instrumental role in getting this book published, and one step closer to you.

about this book
Web development has grown out of proportion, and today it’s hard to imagine a world
without the web. The web is famously fault tolerant. While traditional programming
teaches us that missing a semicolon, forgetting to add a closing tag, or declaring
invalid properties will have crippling consequences, the same cannot be said about
the web. The web is a place where it’s okay to make mistakes, yet there’s increasingly
less room for error. This dichotomy stems from the fact that modern web applications
are an order of magnitude more complex than they used to be. During the humble
beginnings of the web, we would maybe modestly make a minor change in web pages
using JavaScript; whereas on the modern web, entire sites are rendered in a single
page, powered by JavaScript.

 JavaScript Application Design is your guide to a better modern web development
experience, one where you can develop maintainable JavaScript applications as you
would if you were using any other language. You’ll learn how to leverage automation
as a replacement for tedious and repetitive error-prone processes, how to design mod-
ular applications that are easy to test, and how to test them.

 Process automation is a critical time-saver across the board. Automation in the
development environment helps us focus our efforts on thinking, writing code, and
debugging. Automation helps ensure our code works after every change that we pub-
lish to version control. It saves time when preparing the application for production by
bundling, minifying assets, creating spritesheets, and adding other performance opti-
mization techniques. It also helps with deployments by reducing risk and automating
away a complicated and error-prone process. Many books discuss processes and
xxi

ABOUT THIS BOOKxxii
automation when it comes to back-end languages, but it’s much harder to find mate-
rial on the subject when it comes to JavaScript-driven applications.

 The core value of JavaScript Application Design is quality. Automation gives you a bet-
ter environment in which to build your application, but that alone isn’t enough: the
application itself needs to be quality conscious as well. To that end, the book covers
application design guidelines, starting with a quick rundown of language-specific cave-
ats, teaching you about the power of modularity, helping you untangle asynchronous
code, develop client-side MVC applications, and write unit tests for your JavaScript code.

 This book relies on specific tools and framework versions, as books about web tech-
nologies usually do, but it separates library-specific concerns from the theory at hand.
This is a concession to the fact that tooling changes frequently in the fast-paced web
development arena, but design and the processes behind tooling tend to have a much
slower rhythm. Thanks to this separation of concerns, I hope this book stays relevant
for years to come.

Road map

JavaScript Application Design is broken into two parts and four appendixes. The first
part is dedicated to the Build First approach, what it is, and how it can aid your every-
day job. This part covers process automation in detail, from everyday development to
automated deployments, as well as continuous integration and continuous deploy-
ments; it spans 4 chapters.

■ Chapter 1 describes the core principles that drive Build First, and the different
processes and flows you can set up. It then introduces the application design
guidelines that we’ll discuss throughout the book and lays the foundation for
the rest of the book.

■ In chapter 2 you learn about Grunt, and how you can use it to compose build
flows. Then we look at a few different build tasks that you can easily perform
using Grunt.

■ Chapter 3 is all about environments and the development workflow. You’ll
learn that not all environments are born the same, and how you can prioritize
debugging and productivity in the development environment.

■ Chapter 4 walks you through the release flow and discusses deployments. You’ll
learn about a few more build tasks that are geared toward performance optimi-
zation, and discover how to perform automated deployments. You’ll also learn
how to hook up continuous integration and how to monitor your application
once in production.

While part 1 is focused on building applications using Grunt, appendix C teaches you
to choose the best build tool for the job. Once you’ve read past part 1, you’ll go into
the second part of the book, which is dedicated to managing complexity in your appli-
cation designs. Modules, MVC, asynchronous code flows, testing, and a well-designed
API all play significant roles in modern applications and are discussed in the next
chapters.

ABOUT THIS BOOK xxiii
■ Chapter 5 focuses on developing modular JavaScript. It starts by expressing
what constitutes a module and how you can design applications modularly and
lists the benefits of doing so. Afterward, you’ll get a crash course on lexical
scoping and related quirks in the JavaScript language. Later you get a rundown
of the major ways to attain modularity: RequireJS, CommonJS, and the upcom-
ing ES6 module system. The chapter concludes by going over different package
management solutions such as Bower and npm.

■ In chapter 6 you learn about asynchronous code flows. If you ever descend into
callback hell, this may be your way out. This chapter discusses different
approaches to deal with complexity in asynchronous code flows, namely call-
backs, Promises, events, and ES6 generators. You’ll also learn how to do proper
error handling under each of those paradigms.

■ Chapter 7 starts by describing MVC architectures, and then ties them specifically
to the web. You’ll learn how you can use Backbone to develop rich client-side
applications that separate concerns using MVC. Later, you’ll learn about Rendr,
which can be used to render Backbone views on the server side, optimizing the
performance and accessibility of your applications.

■ In chapter 8, now that your applications are modular, clean-cut, and maintain-
able, you’ll take the next logical step and look into testing your applications in
different ways. To this end we’ll go over an assortment of JavaScript testing tools
and get hands-on experience using them to test small components. Then we’ll
go back to the MVC application built in chapter 7 and add tests to it. You won’t
be doing unit testing only, you’ll also learn more about continuous integration,
visual testing, and measuring performance.

■ Chapter 9 is the last chapter of the book, and it’s dedicated to REST API design.
This is the layer where the client side interacts with the server, and it sets the
scene for everything that we do in the application. If the API is convoluted and
complicated, chances are the application as a whole will be as well. REST intro-
duces clear guidelines when designing an API, making sure the API is concise.
Last, we’ll look at consuming these services in the client side in a conventional
manner.

The appendixes can be read after you’re done with the book, but you’ll probably get the
most value from them by reading them if you get stuck with the areas they cover, as they
contain answers to questions you might have. Throughout the book, you’ll be pointed
to the appendixes where it makes sense to expand a little on one of these subjects.

■ Appendix A is a soft introduction to Node.js and its module system, CommonJS.
It’ll help you troubleshoot your Node.js installation and answer a few questions
on how CommonJS works.

■ Appendix B is a detailed introduction to Grunt. Whereas the chapters in part I
only explain what’s absolutely necessary about Grunt, the appendix covers its
inner workings in more detail, and will be handy if you’re serious about devel-
oping a full-blown build process using Grunt.

ABOUT THIS BOOKxxiv
■ Appendix C makes it clear that this book is in no way married to Grunt, and lists
a couple of alternatives, Gulp and npm run. The appendix discusses the pros
and cons of each of the three tools, and leaves it up to you to determine which
one (if any) fits your needs best.

■ Appendix D presents a JavaScript quality guide containing a myriad of best prac-
tices you may choose to follow. The idea isn’t to force those specific guidelines
down your throat, but rather to arm you with the idea that consistency is a good
thing to enforce throughout a code base when working in a development team.

Code conventions and downloads

All source code is in fixed-size width font like this, and sometimes grouped
under named code listings. Code annotations accompany many of the listings, high-
lighting important concepts. The source code for this book is open source and pub-
licly hosted on GitHub. You can download it by visiting github.com/buildfirst/
buildfirst. The online repository will always have the most up-to-date version of the
accompanying source code. While source code might only be discussed at a glance in
the book, it’s better documented in the repository, and I encourage you to check out
the commented code there, if you run into trouble.

 You can also download the code from the publisher’s website at www.manning
.com/JavaScriptApplicationDesign.

Author Online

Purchase of JavaScript Application Design includes free access to a private web forum
run by Manning Publications, where you can make comments about the book, ask
technical questions, and receive help from the author and from other users. To
access the forum and subscribe to it, point your web browser to www.manning.com/
JavaScriptApplicationDesign. This page provides information on how to get on the
forum once you are registered, what kind of help is available, and the rules of con-
duct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of the
author, whose contribution to the book’s forum remains voluntary (and unpaid). We
suggest you try asking the author some challenging questions, lest his interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

www.manning.com/JavaScriptApplicationDesign
www.manning.com/JavaScriptApplicationDesign
github.com/buildfirst/buildfirst
github.com/buildfirst/buildfirst
http://www.manning.com/JavaScriptApplicationDesign
http://www.manning.com/JavaScriptApplicationDesign

about the author
Nicolas Bevacqua is an active member of the open
source JavaScript community, a freelance web developer,
an occasional public speaker, and a passionate writer. He
maintains many open source projects and blogs about
the web, performance, progressive enhancement, and
JavaScript development at ponyfoo.com. Nico currently
lives in Buenos Aires, Argentina, with his beautiful girl-
friend, Marian.
xxv

http://ponyfoo.com/

about the cover illustration
The figure on the cover of JavaScript Application Design is captioned “Winter Habit of a
Kamtchadal in 1760.” The Kamchatka Peninsula is the eastern-most part of Russia,
lying between the Pacific Ocean to the east and the Sea of Okhotsk to the west. The
illustration is taken from Thomas Jefferys' A Collection of the Dresses of Different Nations,
Ancient and Modern, London, published between 1757 and 1772. The title page states
that these are hand-colored copperplate engravings, heightened with gum arabic.
Thomas Jefferys (1719–1771) was called “Geographer to King George III.” He was an
English cartographer who was the leading map supplier of his day. He engraved and
printed maps for government and other official bodies and produced a wide range of
commercial maps and atlases, especially of North America. His work as a mapmaker
sparked an interest in local dress customs of the lands he surveyed and mapped; they
are brilliantly displayed in this four-volume collection.

 Fascination with faraway lands and travel for pleasure were relatively new phenom-
ena in the eighteenth century and collections such as this one were popular, introduc-
ing both the tourist as well as the armchair traveler to the inhabitants of other
countries. The diversity of the drawings in Jefferys’ volumes speaks vividly of the
uniqueness and individuality of the world's nations centuries ago. Dress codes have
changed, and the diversity by region and country, so rich at one time, has faded away.
It is now often hard to tell the inhabitant of one continent from another. Perhaps, try-
ing to view it optimistically, we have traded a cultural and visual diversity for a more
varied personal life—or a more varied and interesting intellectual and technical life.
xxvi

ABOUT THE COVER ILLUSTRATION xxvii
 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of national costumes two and a half centuries ago, brought
back to life by Jefferys’ pictures.

ABOUT THE COVER ILLUSTRATIONxxviii

Part 1

Build processes

The first part of this book is dedicated to build processes and provides a
practical introduction to Grunt. You’ll learn the why, how, and what of build pro-
cesses, both in theory and in practice.

 In chapter 1, we go over what the Build First philosophy entails: a build pro-
cess and application complexity management. Then, we’ll start fiddling with our
first build task, using lint to prevent syntax errors in our code.

 Chapter 2 is all about build tasks. You’ll learn about the various tasks that
comprise a build, how to configure them, and how to create your own tasks. In
each case, we’ll take a look at the theory and then walk through practical exam-
ples using Grunt.

 In chapter 3, we’ll learn how to configure application environments while
keeping sensitive information safe. We’ll go over the development environment
workflow, and you’ll learn how to automate the build step itself.

 Chapter 4 then describes a few more tasks we need to take into account when
releasing our application, such as asset optimization and managing documenta-
tion. You’ll learn about keeping code quality in check with continuous integra-
tion, and we’ll also go through the motions of deploying an application to a live
environment.
www.allitebooks.com

http://www.allitebooks.org

2 CHAPTER

Introduction to Build First
Developing an application properly can be hard. It takes planning. I’ve created
applications over a weekend, but that doesn’t mean they were well-designed.
Improvisation is great for throw-away prototypes and great when concept-proofing
an idea; however, building a maintainable application requires a plan, the glue that
holds together the features you currently have in mind and maybe even those you
might add in the near future. I’ve participated in countless endeavors where the
application’s front-end wasn’t all it could be.

 Eventually, I realized that back-end services usually have an architect devoted to
their planning, design, and overview—and often it’s not one architect but an entire
team of them. This is hardly the case with front-end development, where a devel-
oper is expected to prototype a working sketch of the application and then asked to

This chapter covers
■ Identifying problems in modern application

design
■ Defining Build First
■ Building processes
■ Managing complexity within applications
3

4 CHAPTER 1 Introduction to Build First
run with it, hoping that the prototype will survive an implementation in production.
Front-end development requires as much dedication to architecture planning and
design as back-end development does.

 Long gone are the days when we’d copy a few snippets of code off the internet,
paste them in our page, and call it a day. Mashing together JavaScript code as an after-
thought no longer holds up to modern standards. JavaScript is now front and center.
We have many frameworks and libraries to choose from, which can help you organize
your code by allowing you to write small components rather than a monolithic appli-
cation. Maintainability isn’t something you can tack onto a code base whenever you’d
like; it’s something you have to build into the application, and the philosophy under
which the application is designed, from the beginning. Writing an application that
isn’t designed to be maintainable translates into stacking feature after feature in an
ever-so-slightly tilting Jenga tower.

 If maintainability isn’t built in, it gets to a point where you can’t add any more
pieces to the tower. The code becomes convoluted and bugs become increasingly
hard to track down. Refactoring means halting product development, and the busi-
ness can’t afford that. The release schedule must be maintained, and letting the tower
come crashing down is unacceptable, so we compromise.

1.1 When things go wrong
You might want to deploy a new feature to production, so humans can try it out. How
many steps do you have to take to do that? Eight? Five? Why would you risk a mistake
in a routine task such as a deployment? Deploying should be no different than build-
ing your application locally. One step. That’s it.

 Unfortunately that’s rarely the standard. Have you faced the challenging position
I’ve found myself in of having to take many of these steps manually? Sure, you can
compile the application in a single step, or you might use an interpreted server-side
language that doesn’t need any pre-compilation. Maybe later you need to update your
database to the latest version. You may have even created a script for those updates,
and yet you log into your database server, upload the file, and run the schema updates
yourself.

 Cool, you’ve updated the database; however, something’s not right and the appli-
cation is throwing an error. You look at the clock. Your application has been down for
more than 10 minutes. This should’ve been a straightforward update. You check the
logs; you forgot to add that new variable to your configuration file. Silly! You add it
promptly, mumbling something about wrestling with the code base. You forget to alter
the config file before it deploys; it slipped your mind to update it before deploying to
production!

 Sound like a familiar ritual? Fear not, this is an unfortunately common illness,
spread through different applications. Consider the crisis scenarios described next.

http://nodejs.org/

5When things go wrong
1.1.1 How to lose $172,222 a second for 45 minutes

I bet you’d consider losing almost half a billion dollars a serious issue, and that’s
exactly what happened to Knight’s Capital.1 They developed a new feature to allow
stock traders to participate in something called the Retail Liquidity Program (RLP).
The RLP functionality was intended to replace an unused piece of functionality called
Power Peg (PP), which had been discontinued for close to nine years. The RLP code
reused a flag, which was used to activate the PP code. They removed the Power Peg
feature when they added RLP, so all was good. Or at least they thought it was good,
until the point when they flipped the switch.

 Deployments had no formal process and were executed by hand by a single techni-
cian. This person forgot to deploy the code changes to one of their eight servers,
meaning that in the case of the eighth server, the PP code, and not the RLP feature,
would be behind the activation flag. They didn’t notice anything wrong until a week
later when they turned on the flag, activating RLP on all servers but one, and the nine-
year-old Power Peg feature on the other.

 Orders routed through the eighth server triggered the PP code rather than RLP. As
a result, the wrong types of orders were sent to trading centers. Attempts to amend the
situation only further aggravated it, because they removed the RLP code from the serv-
ers which did have it. Long story short, they lost somewhere in the vicinity of $460 mil-
lion in less than an hour. When you consider that all they needed to do to avoid their
downfall was have a more formal build process in place, the whole situation feels out-
rageous, irresponsible, and, in retrospect, easily averted. Granted, this is an extreme
case, but it boldly illustrates the point. An automated process would have increased
the probability that human errors could be prevented or at least detected sooner.

1.1.2 Build First

In this book, my goal is to teach you the Build First philosophy of designing for clean,
well-structured, and testable applications before you write a single line of code. You’ll
learn about process automation, which will mitigate the odds of human error, such as
those leading to Knight’s Capital’s bankruptcy. Build First is the foundation that will
empower you to design clean, well-structured, and testable applications, which are
easy to maintain and refactor. Those are the two fundamental aspects of Build First:
process automation and design.

 To teach you the Build First approach, this book will show you techniques that will
improve the quality of your software as well as your web development workflow. In
Part 1, we’ll begin by learning how to establish build processes appropriate for mod-
ern web application development. Then, you'll walk through best practices for pro-
ductive day-to-day development, such as running tasks when your code changes,
deploying applications from your terminal by entering a single command, and moni-
toring the state of your application once it's in production.

1 For more information about Knight’s Capital, see http://bevacqua.io/bf/knight.

http://bevacqua.io/bf/knight

6 CHAPTER 1 Introduction to Build First
 The second part of the book—managing complexity and design—focuses on
application quality. Here I give you an introduction to writing more modular Java-
Script components by comparing the different options that are currently available.
Asynchronous flows in JavaScript tend to grow in complexity and length, which is why
I prepared a chapter where you’ll gain insight into writing cleaner asynchronous code
while learning about different tools you can use to improve that code. Using Back-
bone as your gateway drug of choice, you’ll learn enough about MVC in JavaScript to
get you started on the path to client-side MVC. I mentioned testable applications are
important, and while modularity is a great first step in the right direction, testing mer-
its a chapter of its own. The last chapter dissects a popular API design mentality
denominated REST (Representational State Transfer), helping you design your own,
as well as delving into application architecture on the server side, but always keeping
an eye on the front end. We’ll begin our exploration of build processes after looking
at one more crisis scenario Build First can avert by automating your process.

1.1.3 Rites of initiation

Complicated setup procedures, such as when new team members come onboard, are
also a sign you may be lacking in the automation department. Much to my torment, I’ve
worked on projects where getting a development environment working for the first
time took a week. A full week before you can even begin to fathom what the code does.

 Download approximately 60 gigabytes worth of database backups, create a data-
base configuring things you’ve never heard of before, such as collation, and then run
a series of schema upgrade scripts that don’t quite work. Once you’ve figured that out,
you might want to patch your Windows Media Player by installing specific and
extremely outdated codecs in your environment, which will feel as futile as attempts to
cram a pig into a stuffed refrigerator.

 Last, try compiling the 130+ project monolith in a single pass while you grab a cup
of coffee. Oh, but you forgot to install the external dependencies; that’ll do it. Nope,
wait, you also need to compile a C++ program so codecs will work again. Compile
again, and another 20 minutes go by. Still failing? Shoot. Ask around, maybe? Well,
nobody truly knows. All of them went through that excruciating process when they
started out, and they erased the memory from their minds. Check out the wiki? Sure,
but it’s all over the place. It has bits of information here and there, but they don’t
address your specific problems.

 The company never had a formal initiation workflow, and as things started to pile
up, it became increasingly hard to put one together. They had to deal with giant back-
ups, upgrades, codecs, multiple services required by the website, and compiling the
project took half an hour for every semi-colon you changed. If they’d automated these
steps from the beginning, like we’ll do in Build First, the process would’ve been that
much smoother.

 Both the Knight’s Capital debacle and the overly complicated setup story have one
thing in common: if they’d planned ahead and automated their build and deploy-
ment processes, their issues would’ve been averted. Planning ahead and automating

7Planning ahead with Build First
the processes surrounding your applications are fundamental aspects of the Build
First philosophy, as you’ll learn in the next section.

1.2 Planning ahead with Build First
In the case of Knight’s Capital, where they forgot to deploy code to one of the produc-
tion web servers, having a single-step deployment process that automatically deployed
the code to the whole web farm would’ve been enough to save the company from
bankruptcy. The deeper issue in this case was code quality, because they had unused
pieces of code sitting around in their code base for almost 10 years.

 A complete refactor that doesn’t provide any functional gains isn’t appealing to a
product manager; their goal is to improve the visible, consumer-facing product, not
the underlying software. Instead, you can continuously improve the average quality of
code in your project by progressively improving the code base and refactoring code as
you touch it, writing tests that cover the refactored functionality, and wrapping legacy
code in interfaces, so you can refactor later.

 Refactoring won’t do the trick on its own, though. Good design that’s ingrained
into the project from its inception is much more likely to stick, rather than attempts to
tack it onto a poor structure as an afterthought. Design is the other fundamental
aspect of the book, along with build processes mentioned previously.

 Before we dive into the uncharted terrains of Build First, I want to mention this isn’t
a set of principles that only apply to JavaScript. For the most part, people usually asso-
ciate these principles with back-end languages, such as Java, C#, or PHP, but here I’m
applying them to the development process for JavaScript applications. As I mentioned
previously, client-side code often doesn’t get the love and respect it deserves. That often
means broken code because we lack proper testing, or a code base that’s hard to read
and maintain. The product (and developer productivity) suffers as a result.

 When it comes to JavaScript, given that interpreted languages don’t need a com-
piler, naive developers might think that’s justification enough to ditch the build pro-
cess entirely. The problem when going down that road is that they’ll be shooting in
the dark: the developer won’t know whether the code works until it’s executed by a
browser, and won’t know whether it does what it's expected to, either. Later on, they
might find themselves manually deploying to a hosting environment and logging into
it remotely to tweak a few configuration settings to make it work.

1.2.1 Core principles in Build First

At its core, the Build First approach encourages establishing not only a build process
but also clean application design. The following list shows at a high level what embrac-
ing the Build First approach gives us:

■ Reduced error proclivity because there’s no human interaction
■ Enhanced productivity by automating repetitive tasks
■ Modular, scalable application design

8 CHAPTER 1 Introduction to Build First
■ Testability and maintainability by shrinking complexity
■ Releases that conform to performance best practices
■ Deployed code that’s always tested before a release

Looking at figure 1.1, starting with the top row and moving down, you can see

■ Build process: This is where you compile and test the application in an auto-
mated fashion. The build can be aimed at facilitating continuous development
or tuned for maximum performance for a release.

■ Design: You’ll spend most of your time here, coding and augmenting the archi-
tecture as you go. While you’re at it, you might refactor your code and update
the tests to ensure components work as expected. Whenever you’re not tweak-
ing the build process or getting ready for a deployment, you’ll be designing and
iterating on the code base for your application.

■ Deployment and Environment: These are concerned with automating the
release process and configuring the different hosted environments. The

Build process
Automation concerns

Design
Architecture concerns

Code Compile Test

Turns source code into
different build distributions

Code quality:
readability,

maintainability,
testability

Takes a single
distribution and

deploys to a hosting
environment

Environment configuration, such
as a database connection string,

API keys, or listen port

Helps iterate on code
quality and refactor

Debug
or release

Distribution

Deployment
Release concerns

Environment
Performance concerns

App
serverDeploy

Turns source code into
different build distributions

Built app, feeds
from environment

configuration

ConfigurationDistribution

Figure 1.1 High-level view of the four areas of focus in Build First: Build process, Design, Deployment,
and Environment

9Build processes
deployment process is in charge of delivering your changes to the hosted envi-
ronment, while environment configuration defines the environment and the
services—or databases—it interacts with, at a high level.

As figure 1.1 illustrates, Build First applications have two main components: the pro-
cesses surrounding the project, such as building and deploying the application, and
the design and quality of the application code itself, which is iteratively improved on a
daily basis as you work on new features. Both are equally important, and they depend
on each other to thrive. Good processes don’t do any good if you’re lacking in your
application design. Similarly, good design won’t survive crises such as the ones I
described previously without the help of decent build and deployment procedures.

 As with the Build First approach, this book is broken into two parts. In part 1, we
look at the build process (tuned for either development or release) and the deploy-
ment process, as well as environments and how they can be configured. Part 2 delves
into the application itself, and helps us come up with modular designs that are clear
and concise. It also takes us through the practical design considerations you'll have to
make when building modern applications.

 In the next two sections, you’ll get an overview of the concepts discussed in each
part of the book.

1.3 Build processes
A build process is intended to automate repetitive tasks such as installing dependen-
cies, compiling code, running unit tests, and performing any other important func-
tions. The ability to execute all of the required tasks in a single step, called a one-step
build, is critical because of the powerful opportunities it unveils. Once you have a one-
step build in place, you can execute it as many times as required, without the outcome
changing. This property is called idempotence: no matter how many times you invoke
the operation, the result will be the same.

 Figure 1.2 highlights in more detail the steps that make up the automated build
and deployment processes.

Pros and cons of automating your build processes

Possibly the most important advantage to having an automated build process is that
you can deploy as frequently as needed. Providing humans with the latest features
as soon as they’re ready allows us to tighten the feedback loop through which we can
gain better insights into the product we should be building.

The main disadvantage to setting up an automated process is the time you’ll need
to spend putting the process together before you can start seeing the real benefits,
but the benefits—such as automated testing, higher code quality, a leaner develop-
ment workflow, and a safer deployment flow—far outweigh the effort spent putting
together that process. As a general rule, you’ll set up the process once and then replay
it as much as you’d like, tweaking it a little as you go.

10 CHAPTER 1 Introduction to Build First
BUILD

The top of figure 1.2 zooms in on the build portion in the build process workflow
(shown back in figure 1.1), detailing the concerns as you aim for either development
or release. If you aim for development, you’ll want to maximize your ability to debug,
and I bet you’ll like a build that knows when to execute parts of itself without you tak-
ing any action. That’s called continuous development (CD), and you’ll learn about it in
chapter 3. The release distribution of a build isn’t concerned with CD, but you’ll want
to spend time optimizing your assets so they perform as fast as possible in production
environments where humans will use your application.

DEPLOYMENT

The bottom of figure 1.2 zooms into the deployment process (originally shown in fig-
ure 1.1), which takes either the debug or release distribution (what I call distinct pro-
cess flows with a specific purpose throughout the book) and deploys it to a hosted
environment.

 This package will work together with the environment-specific configuration
(which keeps secrets, such as database connection strings and API keys, safe, and is dis-
cussed in chapter 3) to serve the application.

 Part 1 is dedicated to the build aspect of Build First:

■ Chapter 2 explains build tasks, teaching you how to write tasks and configure
them using Grunt, the task runner you’ll use as a build tool throughout part 1.

Build
Build concerns

Code

Distributions

Which distribution depends on target
environment and deployment needs

Ready for deployment

Run specific tasks
again whenever a part of

your source code changes

No deployment required, but it has
its own environment configuration

Environment-specific

Tasks

Distribution

Debug

Deployment
Deployment concerns

Configuration

Deployment
Distribution

Release

Environments

Local

Production

Testing

Watching

Compilation

Optimization

Release notes

App
server

Ch 2

Ch 4

Ch 4

Ch 3

Monitoring

Figure 1.2 High-level view of the processes in Build First: Build and Deployment

11Handling application complexity and design
■ Chapter 3 covers environments, how to securely configure your application,
and the development work flow.

■ Chapter 4 discusses tasks you should perform during release builds. Then you’ll
learn about deployments, running tests on every push to version control, and
production monitoring.

BENEFITS OF A BUILD PROCESS

Once you’re done with part 1, you’ll feel confident performing the following opera-
tions on your own applications:

■ Automating repetitive tasks such as compilation, minification, and testing
■ Building an icon spritesheet so that HTTP requests for iconography are reduced

to a single one. Such spriting techniques are discussed in chapter 2, as well as
other HTTP 1.x optimization tricks, as a means to improve page speed and
application delivery performance.

■ Spinning up new environments effortlessly and neglecting to differentiate
between development and production

■ Restarting a web server and recompiling assets automatically whenever related
files change

■ Supporting multiple environments with flexible, single-step deployments

The Build First approach eliminates manual labor when it comes to tedious tasks,
while also improving your productivity from the beginning. Build First acknowledges
the significance of the build process for shaping a maintainable application iteratively.
The application itself is also built by iteratively chipping away at its complexity.

 Clean application design and architecture are addressed in part 2 of this book,
which covers complexity management within the application, as well as design consid-
erations with a focus on raising the quality bar. Let’s go over that next.

1.4 Handling application complexity and design
Modularization, managing dependencies, understanding asynchronous flow, carefully
following the right patterns, and testing are all crucial if you expect your code to work
at a certain scale, regardless of language. In part 2 you’ll learn different concepts,
techniques, and patterns to apply to your applications, making them more modular,
focused, testable, and maintainable. Figure 1.3, viewed from the top down, shows the
progression we’ll follow in part 2.

MODULARITY

You’ll learn how to break your application into components, break those components
down into modules, and then write concise functions that have a single purpose inside
those modules. Modules can come from external packages, developed by third par-
ties, and you can also develop them yourself. External packages should be handled by
a package manager that takes care of versioning and updates on your behalf, which
eliminates the need to manually download dependencies (such as jQuery) and auto-
mates the process.
www.allitebooks.com

http://www.allitebooks.org

12 CHAPTER 1 Introduction to Build First
As you’ll learn in chapter 5, modules indicate their dependencies (the modules they
depend upon) in code, as opposed to grabbing them from the global namespace; this
improves self-containment. A module system will take advantage of this information,
being able to resolve all of these dependencies; it’ll save you from having to maintain
long lists of <script> tags in the appropriate order for your application to work
correctly.

Modularity
Improves testability and maintainability

Design
Architecture concerns

Asynchronous code
Services, events, timing

External
package

managers

Dependencies are injected
into consuming modules

Dependencies might
be local, too (also injected)

Component

Shared rendering
in the server and client

Test individual modules in isolation,
faking their dependencies

Test the application as a whole,
including services, dependencies,

and client-side HTML/CSS/JavaScript

Types of asynchronous
flow control techniques

Automates updates
and isolates

external dependencies

Component

Dependency A

Dependency B

Module A Module B Module C

MVC architecture

Asynchronous operations

Model View Controller

Services Events Callbacks Promises

Events Generator

Testing practices
Testability concerns

Unit tests
Integration

tests

Application

Dependencies

Services

Modules

Browser DOM

Module A

Module B

Ch 5

Ch 7

Ch 8

Ch 6

Figure 1.3 Application design and development concerns discussed in part 2

13Handling application complexity and design
DESIGN

You’ll get acquainted with separation of concerns and how to design your application
in a layered way by following the Model-View-Controller pattern, further tightening
the modularity in your applications. I’ll tell you about shared rendering in chapter 7,
the technique where you render views on the server side first, and then let the client
side do view rendering for subsequent requests on the same single-page application.

ASYNCHRONOUS CODE

I’ll teach you about the different types of asynchronous code flow techniques, using
callbacks, Promises, generators, and events and helping you tame the asynchronous
beast.

TESTING PRACTICES

In chapter 5 we discuss everything about modularity, learn about closures and the
module pattern, talk about module systems and package managers, and try to pin-
point the strengths found in each solution. Chapter 6 takes a deep dive into asynchro-
nous programming in JavaScript. You’ll learn how to avoid writing a callback soup that
will confuse you a week from now, and then you’ll learn about the Promise pattern
and the generators API coming in ES6.

 Chapter 7 is dedicated to patterns and practices, such as how to best develop code,
whether jQuery is the right choice for you, and how to write JavaScript code you can
use in both the client and the server. We’ll then look at the Backbone MVC framework.
Keep in mind that Backbone is the tool I’ll use to introduce you to MVC in JavaScript,
but it’s by no means the only tool you can use to this end.

 In chapter 8 we’ll go over testing solutions, automation, and tons of practical
examples of unit testing client-side JavaScript. You’ll learn how to develop tests in
JavaScript at the unit level by testing a particular component and at the integration
level by testing the application as a whole.

 The book closes with a chapter on REST API design, and the implications of con-
suming a REST API in the front end, as well as a proposed structure to take full advan-
tage of REST.

PRACTICAL DESIGN CONSIDERATIONS

The book aims to get you thinking about practical design considerations made when
building a real application, as well as deciding thoughtfully on the best possible tool
for a job, all the while focusing on quality in both your processes and the application
itself. When you set out to build an application, you start by determining the scope,
choosing a technology stack, and composing a minimum viable build process. Then
you begin building the app, maybe using an MVC architecture and sharing the view
rendering engine in both the browser and the server, something we discuss in chapter
7. In chapter 9 you’ll learn the important bits on how to put an API together, and
you’ll learn how to define backing services that will be used by both the server-side
view controllers and the REST API.

 Figure 1.4 is an overview of how typical Build First applications may be organized.

14 CHAPTER 1 Introduction to Build First
BUILD PROCESS

Beginning at the upper left, figure 1.4 outlines how you can start by composing a
build process which helps consolidate a starting point for your architecture, by decid-
ing how to organize your code base. Defining a modular application architecture is

Build process
Organization and workflow concerns

Design
Architecture concerns REST API

Input sanitizing, HTTP
responses

Services
Contains domain

logic

Technology
stack

Application
architecture

Solid directory structure
helps organize an application

Consolidate
architecture

Ensure our code works as expected,
on every push to version control

Ensure our environment is
fault-tolerant and provides
error reporting capabilities

Build + watch

Testing

Deployments

Model View

Shared rendering in
server and browser

Controller

Organization

Directory
structure

Battle testing
Reliability concerns

API queries
service layer

Service layer
queries database

Gets
dataHTML

response

Query
service layer

Query
REST API

JSON
response

Continuous testing

Unit testing

Integration testing Deployment

Clusters

Logging

MonitoringContinuous integration

Fault-tolerance

Db

Browser

Server

Figure 1.4 Pragmatic architectural considerations

15Diving into Build First
the key to a maintainable code base, as you’ll observe in chapter 5. The architecture is
then consolidated by putting in place automated processes that provide you with con-
tinuous development, integration, and deployment capabilities.

DESIGN AND REST API

Designing the application itself, including a REST API that can effectively increase main-
tainability, is only possible by identifying clear cut components with clear purposes so
they’re orthogonal (meaning that they don’t fight for resources on any particular con-
cern). In chapter 9 we’ll explore a multi-tiered approach to application design which
can help you quickly isolate the web interface from your data and your business logic
by strictly defining layers and the communication paths between those layers.

BATTLE TESTING

Once a build process and architecture are designed, battle testing is where you’ll get
drenched in reliability concerns. Here you’ll plumb together continuous integration,
where tests are executed on every push to your version control system, and maybe
even continuous deployments, making several deployments to production per day.
Last, fault tolerance concerns such as logging, monitoring, and clustering are dis-
cussed. These are glanced over in chapter 4, and help make your production environ-
ment more robust, or (at worst) warn you when things go awry.

 All along the way, you’ll write tests, adjust the build process, and tweak the code. It
will be a terrific experiment for you to battle test Build First. It’s time you get comfort-
able and start learning specifics about the Build First philosophy.

1.5 Diving into Build First
Quality is the cornerstone of Build First, and every measure taken by this approach
works toward the simple goal of improving quality in both your code and the structure
surrounding it. In this section, you’ll learn about code quality and setting up lint, a
code quality tool, in your command line. Measuring code quality is a good first step
toward writing well-structured applications. If you start doing it early enough, it’ll be
easy to have your code base conform to a certain quality standard, and that’s why we’ll
do it right off the bat.

 In chapter 2, once you’ve learned about lint, I’ll introduce you to Grunt, the build
tool you’ll use throughout the book to compose and automate build processes. Using
Grunt allows you to run the code quality checks as part of a build, meaning you won’t
forget about them.

Grunt: the means to an end

Grunt is used intensively in part 1 and in some of part 2 to drive our build processes.
I chose Grunt because it’s a popular tool that’s easy to teach and satisfies the most
needs:

■ It has full support for Windows.
■ Little JavaScript knowledge is required and it takes little effort to pick up and run.

16 CHAPTER 1 Introduction to Build First
Lint is a code-quality tool that’s perfect for keeping an interpreted program—such as
those written in JavaScript—in check. Rather than firing up a browser to check if your
code has any syntax errors, you can execute a lint program in the command line. It
can tell you about potential problems in your code, such as undeclared variables, miss-
ing semicolons, or syntax errors. That being said, lint isn’t a magic wand: it won’t
detect logic issues in your code, it’ll only warn you about syntax and style errors.

1.5.1 Keeping code quality in check

Lint is useful for determining if a given piece of code contains any syntax errors. It also
enforces a set of JavaScript coding best practice rules, which we’ll cover at the begin-
ning of part 2, in chapter 5, when we look at modularity and dependency management.

 Around 10 years ago Douglas Crockford released JSLint, a harsh tool that checks
code and tells us all the little things that are wrong with it. Linting exists to help us
improve the overall quality of our code. A lint program can tell you about the poten-
tial issues with a snippet, or even a list of files, straight from the command line, and
this has the added benefit that you don’t even have to execute the code to learn what’s
wrong with it. This process is particularly useful when it comes to JavaScript code,
because the lint tool will act as a compiler of sorts, making sure that to the best of its
knowledge your code can be interpreted by a JavaScript engine.

 On another level, linters (the name given to lint programs) can be configured to
warn you about code that’s too complex, such as functions that include too many
lines, obscure constructs that might confuse other people (such as with blocks, new
statements, or using this too aggressively, in the case of JavaScript), or similar code
style checks. Take the following code snippet as an example (listed as ch01/01_lint-
sample in the samples online):

function compose_ticks_count (start) {
 start || start = 1;
 this.counter = start;
 return function (time) {
 ticks = +new Date;
 return ticks + '_' + this.counter++
 }
}

(continued)

It's important to understand that Grunt is a means to an end, a tool that enables you
to easily put together the build processes described in this book. This doesn’t make
Grunt the absolute best tool for the job, and in an effort to make that clear, I’ve com-
piled a comparison between Grunt and two other tools: *npm, which is a package
manager that can double as a lean build tool, and *Gulp, a code-driven build tool that
has several conventions in common with Grunt.

If you’re curious about other build tools such as Gulp or using npm run as a build
system, then you should read more about the topic in appendix C, which covers picking
your own build tool.

17Diving into Build First
Plenty of problems are readily apparent in this small piece, but they may not be that
easy to spot. When analyzed through JSLint, you’ll get both expected and interesting
results. It’ll complain that you must declare your variables before you try to use them,
or that you’re missing semicolons. Depending on the lint tool you use, it might com-
plain about your use of the this keyword. Most linters will also complain about the
way you’re using || rather than using a more readable if statement. You can lint this
sample online.2 Figure 1.5 shows the output of Crockford’s tool.

 In the case of compiled languages, these kinds of errors are caught whenever you
attempt to compile your code, and you don’t need any lint tools. In JavaScript,
though, there’s no compiler because of the dynamic nature of the language. This is
decidedly powerful, but also more error-prone than what you might expect from com-
piled languages, which wouldn’t even allow you to execute the code in the first place.

 Instead of being compiled, JavaScript code is interpreted by an engine such as V8
(as seen in Google Chrome) or SpiderMonkey (the engine powering Mozilla Firefox).

2 Go to http://jslint.com for the online sample. This is the original JavaScript linter Crockford maintains.

Figure 1.5 Lint errors
found in a code snippet.

http://jslint.com/

18 CHAPTER 1 Introduction to Build First
Where other engines do compile the JavaScript code, most famously the V8 engine,
you can’t benefit from their static code analysis outside the browser.3 One of the per-
ceived disadvantages of dynamic languages like JS is that you can’t know for sure
whether code will work when you execute it. Although that’s true, you can vastly
diminish this uncertainty using a lint tool. Furthermore, JSLint advises us to stay away
from certain coding style practices such as using eval, leaving variables undeclared,
omitting braces in block statements, and so on.

 Has your eye caught a potential problem in the last code snippet function we
looked at? Check out the accompanying code sample (chapter 1, 01_lint-sample) to
verify your answer! Hint: the problem lies in repetition. The fixed version is also
found in the source code example; make sure to check out all that good stuff.

Linting is often referred to as the first test you should set up when writing JavaScript.
Where linters fail, unit tests come in. This isn’t to say that using linters is unnecessary,
but rather, that linting alone is insufficient! Unit testing helps ensure your code
behaves the way you expect it to. Unit testing is discussed in chapter 8, where you’ll
learn how to write tests for the code you develop throughout part 2, which is dedi-
cated to writing modular, maintainable, and testable JavaScript code.

 Next up, you’ll start putting together a build process from scratch. You’ll start
small, setting up a task to lint the code, then running it from the command line, simi-
lar to how the process looks if you use a compiler; you’ll learn to make a habit of run-
ning the build every time you make a change and see whether the code still

3 You can see Node.js, a server-side JavaScript platform that also runs on V8, in effect in the console instead,
but by the time V8 detects syntax issues, it'll be too late for your program, which will implode. It's always best
to lint first, regardless of the platform.

Understanding the source code that comes with this book

The source code included with this book has many nuggets of information, including
a tweaked version of the linting example function, which passes the lint verification,
fully commented to let you understand the changes made to it. The sample also goes
on to explain that linters aren’t bulletproof.

The other code samples in the book contain similar pieces of advice and nuggets of
information, so be sure to check them out! Samples are organized by chapter, and
they appear in the same order as in the book. Several examples are only discussed
at a glance in the book, but all of the accompanying code samples are fully documented
and ready to use.

The reason for this discrepancy between code in the book and the source code is that
sometimes I want to explain a topic, but there may be too much code involved to be
included in the book. In those cases, I didn’t want to drift too much from the concept
in question, but still wanted you to have the code. This way you can focus on learning
while reading the book, and focus on experimenting when browsing the code samples.

19Diving into Build First
“compiles” against the linter. Chapter 3 teaches you how to have the build run itself,
so you don’t have to repeat yourself like that, but it’ll be fine for the time being.

 How can you use a lint tool such as JSLint straight in the command line? Well, I’m
glad you asked.

1.5.2 Lint in the command line

One of the most common ways to add a task to a build process is to execute that task
using a command line. If you execute the task from the command line, it’ll be easy to
integrate it to your build process. You’re going to use JSHint4 to lint your software.

 JSHint is a command line tool that lints JavaScript files and snippets. It’s written in
Node.js, which is a platform for developing applications using JavaScript. If you need
a quick overview of Node.js fundamentals, refer to appendix A, where I explain what
modules are and how they work. If you want a deeper analysis of Node.js, refer to
Node.js in Action by Mike Cantelon et al. (Manning, 2013). Understanding this will also
be useful when working with Grunt, our build tool of choice, in the next chapter.

NODE.JS AND JSHINT INSTALLATION

Here are the steps for installing Node.js and the JSHint command-line interface (CLI)
tool. Alternative Node.js installation methods and troubleshooting are also offered in
appendix A.

1 Go to http://nodejs.org, as shown in figure 1.6, and click on the INSTALL but-
ton to download the latest version of node.

2 Execute the downloaded file and follow the installation instructions.

4 For more information on JSHint, see http://jshint.com.

Node.js explained

Node is a relatively new platform you’ve surely heard of by now. It was initially released
in 2009, and it follows event-driven and single-threaded patterns, which translates
into high-performing concurrent request handling. In this regard, it’s comparable to
the design in Nginx, a highly scalable multi-purpose—and very popular—reverse proxy
server meant to serve static content and pipe other requests to an application server
(such as Node).

Node.js has been praised as particularly easy to adopt by front-end engineers, con-
sidering it’s merely JavaScript on the server side (for the most part). It also made it
possible to abstract the front end from the back end entirely,a only interacting through
data and REST API interfaces, such as the one you’ll learn to design and then build
in chapter 9.

a For more information on abstracting the front end from the back end, see http://bevacqua.io/bf/
node-frontend.

http://nodejs.org
http://bevacqua.io/bf/node-frontend
http://bevacqua.io/bf/node-frontend
http://jshint.com

20 CHAPTER 1 Introduction to Build First
You’ll get a command-line tool called npm (Node Package Manager) for free, as it
comes bundled with Node. This package manager, npm, can be used from your termi-
nal to install, publish, and manage modules in your node projects. Packages can be
installed on a project-by-project basis or they can be installed globally, making them
easier to access directly in the terminal. In reality, the difference between the two is
that globally installed packages are put in a folder that’s in the PATH environment
variable, and those that aren’t are put in a folder named node_modules in the same
folder you’re in when you execute the command. To keep projects self-contained,

Figure 1.6 The http://nodejs.org website

Figure 1.7 Installing jshint through npm

21Diving into Build First
local installs are always preferred. But in the case of utilities such as the JSHint linter,
which you want to use system-wide, a global install is more appropriate. The -g modi-
fier tells npm to install jshint globally. That way, you can use it on the command line
as jshint.

1 Open your favorite terminal window and execute npm install -g jshint, as
shown in figure 1.7. If it failed, you may need to use sudo to get elevated privi-
leges; for example, sudo npm install -g jshint.

2 Run jshint --version. It should output the version number for the jshint
program, as shown in figure 1.8. It’ll probably be a different version, as module
versions in actively developed packages change frequently.

The next section explains how to lint your code.

LINTING YOUR CODE

You should now have jshint installed on your system, and accessible in your termi-
nal, as you’ve verified. To lint your code using JSHint, you can change directories
using cd to your project root, and then type in jshint . (the dot tells JSHint to lint
all of the files in the current folder). If the operation is taking too long, you may need
to add the --exclude node_modules option; this way you’ll only lint your own code
and ignore third-party code installed via npm install.

 When the command com-
pletes, you’ll get a detailed
report indicating the status of
your code. If your code has any
problems, the tool will report
the expected result and line
number for each of those prob-
lems. Then it will exit with an
error code, allowing you to
“break the build” if the lint fails.
Whenever a build task fails to
produce the expected output,
the entire process should be
aborted. This presents a number of benefits because it prevents work from continuing
if something goes wrong, refusing to complete a build until you fix any issues. Figure
1.9 shows the results of linting a snippet of code.

Figure 1.8 Verifying jshint works in your terminal

Figure 1.9 Linting with JSHint from your terminal
www.allitebooks.com

http://www.allitebooks.org

22 CHAPTER 1 Introduction to Build First
 Once JSHint is all set, you might be tempted to call it a day, because it’s your only
task; however, that wouldn’t scale up nicely if you want to add extra tasks to your build.
You might want to include a unit testing step in your build process; this becomes a
problem because you now have to run at least two commands: jshint and another
one to execute your tests. That doesn’t scale well. Imagine remembering to use
jshint and half a dozen other commands complete with their parameters. It would
be too cumbersome, hard to remember, and error prone. You wouldn’t want to lose
half a billion dollars, would you?

 Then you better start putting your build tasks together, because even if you only have
a single one for now, you’ll soon have a dozen! Composing a build process helps you
think in terms of automation, and it’ll help you save time by avoiding repetition of steps.

 Every language has its own set of build tools you can use. Most have a tool that
stands out and sees far wider adoption than the rest. When it comes to JavaScript
build systems, Grunt is one of the most popular tools, with thousands of plugins (to
help you with build tasks) to pick from. If you’re writing a build process for another
language, you’ll probably want to research your own. Even though the build tasks in
the book are written in JavaScript and use Grunt, the principles I describe should
apply to almost any language and build tool.

 Flip over to chapter 2 to see how you can integrate JSHint into Grunt, as you begin
your hands-on journey through the land of build processes.

1.6 Summary
This chapter serves as an overview of the concepts you’ll dig into throughout the rest
of the book. Here are highlights about what you’ve learned in this chapter:

■ Modern JavaScript application development is problematic because of the lack
of regard given to design and architecture.

■ Build First is a solution that enables automated processes and maintainable
application design, and encourages you to think about what you’re building.

■ You learned about lint and ran code through a linter, improving its code quality
without using a browser.

■ In part 1 you’ll learn all about build processes, deployments, and environment
configuration. You'll use Grunt to develop builds, and in appendix C you’ll
learn about other tools you can use.

■ Part 2 is dedicated to complexity in application design. Modularity, asynchro-
nous code flows, application and API design, and testability all have a role to
play, and they come together in part 2.

You’ve barely scratched the surface of what you can achieve using a Build First
approach to application design! We have much ground to cover! Let’s move to chap-
ter 2, where we’ll discuss the most common tasks you might need to perform during a
build and go over implementation examples using Grunt.

Composing build
tasks and flows
In the previous chapter you got a quick overview of what the Build First approach
looks like, and you glanced at a lint task. In this chapter, we’ll go over common
build tasks and a few more advanced ones. I’ll uncover the use cases and reasoning
behind each of them, and we’ll look at how to implement them in Grunt. Learning
the theory might sound dull, but it’s particularly important if you use a task runner
other than Grunt, as I’m sure you will eventually.

 Grunt is a configuration-driven build tool that helps set up complex tasks eas-
ily—if you know what you’re doing. Using Grunt, you’ll compose workflows, such as
those I described in chapter 1, which could be tuned for development productivity

This chapter covers
■ Understanding what should happen in a build
■ Learning about key build tasks
■ Using Grunt to run key tasks
■ Configuring a build flow using Grunt
■ Creating your own Grunt tasks
23

24 CHAPTER 2 Composing build tasks and flows
or optimized for releases. Similarly, Grunt helps with deployment procedures, which
you’ll analyze in chapter 4.

 This chapter focuses on build tasks rather than trying to teach you everything about
Grunt. You can always learn to use a new tool, as long as you understand the concepts
underlying its goals, but you can’t learn to use other tools properly if you don’t under-
stand those underlying concepts. If you want a deeper understanding of Grunt itself,
check out appendix B. Reading that appendix isn’t instrumental to understanding this
chapter; however, it does define the Grunt features you’ll use throughout part 1.

 We’ll begin this chapter with a quick introduction to Grunt and its core concepts;
then you’ll spend the rest of the chapter learning about build tasks and using a few
different tools. We’ll look at preprocessing (per Manning MOS) tasks such as compil-
ing code into another language, postprocessing (per Manning MOS) tasks such as
asset minification and image spriting, and code integrity tasks such as running Java-
Script unit tests and linting CSS code. Then you’ll learn how to write your own build
tasks in Grunt, and you’ll look at a case study on writing your own set of database
schema update tasks, complete with rollbacks!

 Let’s get started!

2.1 Introducing Grunt
Grunt1 is a task runner that helps you execute commands, run JavaScript code, and con-
figure different tasks with the configuration written entirely in JavaScript. Grunt bor-
rows its build concepts from Ant, and allows you to define your flows using JavaScript.

 Figure 2.1 dissects Grunt at a high level, showing how it can be configured and
what the key players are in defining a build task.

■ Tasks perform an action.
■ Targets help define a context for those tasks.
■ Task configuration allows you to determine options for a particular task-target

combination.

1 Learn more about Grunt at http://bevacqua.io/bf/grunt. You should also take a look at appendix B.

Tasks define the general
purpose of an action.

Targets are used to configure tasks,
giving them an execution context.

Compile CoffeeScript
files to JavaScript.

Which files should be
processed by the task?

Should the task produce a single
bundle, or minify each file on its own?

How should the task report the results?
Where are the tests?

Minify JavaScript files.

Run unit tests.

Compile

Tasks

Minify

Unit test

:controllers

Targets

:services

:templates

:javascript

:controllers

:services

Figure 2.1 Grunt at a glance: tasks and targets are combined in configuration.

http://bevacqua.io/bf/grunt

25Introducing Grunt
Grunt tasks are configured in JavaScript and most of the configuring can be done by
passing an object to the grunt.initConfig method, describing the files affected by
the task, and passing in a few options to tweak the behavior for a particular task target.

 In the case of a unit testing task, you might have a target that runs only a few tests
for local development, or you may want to execute all the tests you have before a pro-
duction release.

 Figure 2.2 illustrates what task configuration looks like in JavaScript code, detailing
the grunt.initConfig method and its conventions. Wildcards can be used when enu-
merating files, and using these patterns is called globbing ; we’ll examine globbing in
detail in section 2.2.2.

 Tasks can be imported from plugins, which are Node modules (well-designed and
self-contained pieces of code) containing one or more Grunt tasks. You only need to
figure out what configuration to apply to them, and that’s it; the task itself is handled
by the plugin. You’ll use plugins heavily throughout this chapter.2

2 You can search for Grunt plugins online at http://gruntjs.com/plugins.

Tasks configuration
Tasks are configured using
plain old JavaScript objects.

Globbing

You can use globbing patterns to
describe which files a task will process.

Configuration defines which
files to process and what options

to use for each task target.

Reasonable defaults
are provided, and can be
overridden via options.

Configuration is provided
through the API.

Each task is represented
with a property on the
configuration object.

Each target is represented
with a property on the

pertaining task.

{
 files: ['public/controllers/**/*.js']
}

{
 files: ['test/services/**/*.js'],
 options: {
 reporter: 'verbose'
 }
}

grunt.initConfig({
 compile: {
 controllers:{
 files: ['public/controllers/**/*.js']
 },
 services: {
 files: ['public/services/**/*.js'}
 }
 }
});

app B

Figure 2.2 Grunt task configuration in code explained. Each task and task target is configured
individually.

http://gruntjs.com/plugins

26 CHAPTER 2 Composing build tasks and flows
You can also create your own tasks, as you’ll investigate in sections 2.4 and 2.5. Grunt
comes with a CLI (command-line interface) named grunt, which provides a simple
interface to execute build tasks straight from the command line. Let’s install that.

2.1.1 Installing Grunt

You should already have npm, the package manager that comes with Node, from the
JSHint lint tool installation in Chapter 1. Getting started with Grunt is simple. Type
the following into your terminal, and it will install the grunt3 CLI for you:

npm install -g grunt-cli

The -g flag indicates the package should be installed globally; that lets you execute
grunt in your terminal, regardless of the current working directory.

You’ll need to take one additional step, which is creating a package.json manifest
file. These files describe Node projects. They indicate a list of packages the project
depends upon, as well as metadata such as the project name, version, description, and
homepage. For Grunt to work in your project, you need to add it as a development
dependency in your package.json. It should be a development dependency because
you won’t use Grunt anywhere other than your local development environment. You
can create a bare minimum package.json file containing the following JSON code,
and you should place it in your project root directory:

{}

That’ll be enough. Node Package Manager (npm) can add the dependency to your
package.json as long as the file exists and it contains a valid JSON object, even if it's
an empty {} object.

INSTALLING GRUNT LOCALLY

Next up, you need to install the grunt package. This time, the -g modifier won’t do
any good, because it needs to be a local install, not a global one4—that’s why you cre-
ated the package.json file. Use the --save-dev modifier instead, to indicate the
module is a development dependency.

3 Learn more about Grunt at http://bevacqua.io/bf/grunt.

Find the accompanying annotated samples

Check out the full working example in the accompanying source code. You’ll find it in
the 01_intro-to-grunt folder, under the ch02 directory. The rest of the samples for this
chapter can also be found in the ch02 directory. Most of them contain code annota-
tions that can help you understand the sample if you’re struggling with it.

4 Grunt requires you to make a local install for the Grunt package and any task plugins. This keeps your code
working across different machines, because you can't include global packages in your package.json manifest.

http://bevacqua.io/bf/grunt

27Introducing Grunt
 The command looks like this: npm install --save-dev grunt. After npm com-
pletes the installation, your package.json manifest will look like the following code:

{
 "devDependencies": {
 "grunt": "~0.4.1"
 }

In addition, the Grunt module will be installed to a node_modules directory inside
your project. This directory will contain all the modules you’ll use as part of your
Grunt setup, and they’ll be declared in the package manifest as well.

CREATING A GRUNTFILE.JS

The last step is creating a Gruntfile.js file. Grunt uses this file to load any tasks that
are available and configure them with any parameters you need. The following code
shows the bare minimum Gruntfile.js module:

module.exports = function (grunt) {
 grunt.registerTask('default', []); // register a default task alias
};

Please note a few things about that innocent-looking file. Grunt files are Node mod-
ules that subscribe to the CommonJS Modules spec,5 so the code you write in each file
isn’t immediately accessible to others. The local module object is the implicit object,
rather than a global object like window in the browser. When you import other mod-
ules, all you get is the public interface exposed in module.exports.

The grunt.registerTask line, in the previous code snippet, tells Grunt to define a
default task that will be executed when you run grunt in the command line without
any arguments. The array indicates a task alias, which will run all the tasks named in
the array, if there are any. For instance, ['lint', 'build'] would run the lint task
and then run the build task.

 Running the grunt command at this point won’t achieve anything, because the
only task you’ve registered is an empty task alias. You must be eager to set up your first
Grunt task, so let’s do that.

5 Read the Common.JS module specification at http://bevacqua.io/bf/commonjs.

Node modules

You can learn more about Common.JS, the spec behind Node.js modules, in appendix
A, which covers these modules. It will also be discussed in chapter 5, when we talk
about modularity. Appendix B expands on appendix A, reinforcing your understanding
of Grunt.

http://bevacqua.io/bf/commonjs

28 CHAPTER 2 Composing build tasks and flows

Plu
to
in
in
2.1.2 Setting up your first Grunt task

The first step in setting up a Grunt task is installing a plugin that does what you need;
then you add configuration to the code, and you’re set up to run the task.

 Grunt plugins are usually distributed as npm modules, which are pieces of Java-
Script code someone published so you can use them. We’ll start by installing the
JSHint plugin for Grunt, which will allow you to run JSHint using Grunt. Note that the
jshint CLI tool you installed in chapter 1 is completely unnecessary here; the Grunt
plugin contains everything you need to run the task without the jshint CLI. The com-
mand shown below will fetch the JSHint Grunt plugin from the npm registry, install it to
the node_modules directory, and add it to your package.json file as a development
dependency:

npm install --save-dev grunt-contrib-jshint

Next you need to tweak your Gruntfile, telling Grunt to lint the Gruntfile itself, because
it’s JavaScript. You also need to tell it to load the JSHint plugin package, which contains
the task that sets up the linting, and update your default task, so you can lint your code
using grunt in your command line. The following listing (named ch02/01_intro-to-
grunt in the code samples) shows how you can configure your Gruntfile.

module.exports = function (grunt) {
 grunt.initConfig({
 jshint: ['Gruntfile.js']
 });
 grunt.loadNpmTasks('grunt-contrib-jshint');
 grunt.registerTask('default', ['jshint']);
};

Whenever you install a package, you’ll need to load it in the Gruntfile, using
grunt.loadNpmTasks, as in listing 2.1. It’ll load the tasks in the package so you can
configure and execute them. Then you need to configure the tasks, which can be
done by passing an object to grunt.initConfig. Each task plugin you use needs con-
figuration, and I’ll teach you how to configure each one as we go through them.
Lastly, I’ve updated the default alias to run the jshint task. The default alias defines
what tasks are executed when grunt is executed without task arguments. Here’s a
screenshot of the output.

Listing 2.1 Example Gruntfile.js

Exported function gets a grunt argument.

Tasks are configured using initConfig,
passing an object that describes them.

gins need
be loaded
dividually
to Grunt.

Create a default alias, which
will run the jshint task.

Figure 2.3 Our first Grunt task and its
output. Our code is lint-free, meaning it
doesn’t contain any syntax errors.

29Introducing Grunt
2.1.3 Using Grunt to manage the build process
You’re pretty much in the same position as you were at the end of chapter 1, where
you could lint your JavaScript, except that you’re not. Grunt will help you put together
the full-blown build process that’s at the heart of the Build First philosophy. With rela-
tive ease, you can focus on different tasks, depending on whether you’re building for
local development or diagnostics, or building the end product humans will ultimately
consume. Let’s examine a few properties found in build tasks.

 The lint task you set up will serve as the basis for a much more powerful build, as
you expand your understanding throughout part 1 of the book. This task innocently
shows off one of the fundamental properties of build tasks: in the vast majority of
cases, they’ll be idempotent—repeated execution of a task shouldn’t produce different
results. In the case of the lint task, that might mean getting the same warnings every
time, as long as you don’t change the source code. More often than not, build tasks
are a function of one or many provided input files. The idempotence property, when
paired with the fact that you shouldn’t perform any operations by hand, translates
into more consistent results.

CREATING WORKFLOWS AND CONTINUOUS DEVELOPMENT

Tasks in your build are meant to follow a clearly defined set of steps to achieve a spe-
cific goal, such as preparing a release build. This is called a workflow, as mentioned in
chapter 1. Certain tasks may be optional for a particular workflow, while others might
be instrumental. For instance, you have no incentive to optimize images, so they
become smaller when working in your local development environment. Because it
won’t yield any noticeable performance gains, it’s perfectly fine to skip that task in
that case. Regardless of whether your workflow is meant for development or release,
you’ll probably want to make sure to look out for issues with a lint task.

 Figure 2.4 will help you understand the development, release, and deployment
pieces involved in a build process: how they relate to each other, and how they come
together when composing different workflows.

DEVELOPMENT FLOW

With only a glance at the top row of the figure, you can already see that productivity
and watching for changes are the key aspects of a development flow, while they’re
completely unnecessary during the release flow, and perhaps even an obstacle. You
may also notice that both flows produce a built application, although the one built
during development is geared towards continuous development, as we’ll examine in
depth in chapter 3.

RELEASE FLOW

In the release flow, we’re concerned with performance optimization and building a
well-tested application overall. Here we'll run a slightly modified version of the devel-
opment flow, where reducing the byte size of our application is at a premium.

DEPLOYMENT FLOW

The deployment flow doesn’t build the application at all. Instead, it reuses the build
distribution prepared in one of the other two flows, and delivers it to a hosting envi-
ronment. You’ll learn all about the deployment flow in chapter 4.

30 CHAPTER 2 Composing build tasks and flows
Any reasonable build flow needs to be automated every step of the way; otherwise you
won’t meet the goal of increasing productivity and reducing error proclivity. During
development, you should switch between your text editor and your browser, without
having to execute a build by yourself. This is called continuous development, because the
friction introduced by going into the shell and typing something to compile your
application is removed. You’ll learn how to accomplish this using file watches and

Development flow
Productivity concerns

Release flow
Performance concerns

Deployment flow
Reliability concerns

Source
code

Run specific
tasks, then back

to watch

Tuned for
performance,

well tested, ready
for deployment

Wait for file
changes

(Staging, production, etc.)Can be built by either the development
or the release flows

Environments
we'll deploy to

Continuous development

Run a few
tasks again

Watch

Full build

Optimal
built

application

Target
environment

A built
application Deployment

Ch 3

Ch 2 and 3

Ch 3
Ch 4

Build
application

Tasks

Linting

Unit testing

Preprocessing

Source
code

Full build
Ch 2 and 4

Tasks

Bundling

Minification

Compilation

Heavy testing

Perf. tuning

Image spriting

Figure 2.4 Separation of concerns across build and deployment flows

31Preprocessing and static asset optimization
other mechanisms in chapter 3. Deploying the application should be separate from
the build flow, but it should also be automated; this enables you to build and deploy
the application in a single step. Similarly, serving your application should be strictly
separate from the build process.

 In the next section, we’ll dive head first into build tasks using Grunt. Namely, we’ll
start with preprocessing tasks such as taking LESS, a language that can be compiled
into CSS, and postprocessing tasks, such as bundling and minifying, which help you
optimize and fine-tune for releases.

2.2 Preprocessing and static asset optimization
Whenever we talk about building a web application, we need to talk about preprocess-
ing. Often, you’ll find yourself using languages that aren’t natively supported by inter-
net browsers because they help you wrap away repetitive work by providing features
not available to plain CSS (such as vendor prefixing), HTML, or JavaScript.

 The point here isn’t for you to learn LESS, a CSS preprocessor introduced in the
following section, or even to learn CSS. Great resources are tailored to teach you that.
The point is to make you aware of the glaring benefits of resorting to preprocessing
languages. Preprocessing isn’t about CSS. Preprocessors help transform source code in a
language into various target languages. For instance, the more powerful and expres-
sive LESS language can be transformed into native CSS at build time. Reasons to use
preprocessors may vary, but they can be categorized as more productivity, less repeti-
tion, or having a more pleasant syntax.

 Postprocessing tasks such as minification and bundling are mostly meant to optimize
a build for release purposes, but they’re related to preprocessing closely enough that
they all belong in the same conversation. We’ll go over preprocessing, using LESS, and
then we’ll dabble with globbing, a file path pattern-matching mechanism used in
Grunt, before we move on to bundling and minification, which will tune your applica-
tion’s performance for adequate human consumption.

 By the end of the section you’ll have a much clearer picture of how assets can be
preprocessed by using a different, more suitable language, and how they can be post-
processed, improving the performance to make the experience easier on humans.

2.2.1 Discussing preprocessing

Language preprocessors are fairly common in web development nowadays. Unless
you’ve been living under a rock for the last decade, you probably understand that pre-
processors help you write cleaner code, as you first learned with lint in chapter 1, but
require extra work to become useful. Plainly put, when you write code in a language
that translates into another one, preprocessing is the translation step.

 You might not want to write code in the target language for several reasons: maybe
it’s too repetitive, too error-prone, or you just don’t like that language. That’s where
these higher-level languages, tuned to keeping your code concise and simple, come
into play. Writing code in one of these higher-level languages comes at a price,
www.allitebooks.com

http://www.allitebooks.org

32 CHAPTER 2 Composing build tasks and flows
though: browsers don’t understand them. Therefore, one of the most common build
tasks you’ll encounter in front-end development is compiling that code down into
something a browser understands, namely JavaScript and CSS styles.

 Sometimes, preprocessors also offer practical benefits over the “native” languages
of the web (HTML, CSS, and JavaScript). For example, several CSS preprocessors pro-
vide the necessary tools so you don’t need to target each browser. By removing these
browser inconsistencies, preprocessing languages increase your productivity and
make it less tedious to do your job.

LESS IS MORE

Take LESS, for example. LESS is a powerful language that allows you to write code
using a variant on CSS that follows the DRY (Don’t Repeat Yourself) principle of appli-
cation design, because it helps you write code that’s less repetitive. In plain CSS, you
often end up repeating yourself again and again, writing the same value for all the dif-
ferent vendor prefixes out there to maximize browser support of a style rule you want
to apply.

 To illustrate the point, take the border-radius CSS property, used whenever you
want to style an element with rounded borders. The following listing is how you might
write them using plain CSS.

.slightly-rounded {
 -webkit-border-radius: 2px;
 -moz-border-radius: 2px;
 border-radius: 2px;
 background-clip: padding-box;
}
.very-rounded {
 -webkit-border-radius: 16px;
 -moz-border-radius: 16px;
 border-radius: 16px;
 background-clip: padding-box;
}

That might be fine for a one-time rule, but for properties such as border-radius, it
quickly becomes unacceptable to write such plain CSS, because this scenario occurs
too often. LESS allows you to code in a way that’s easier to write, read, and maintain. In
this use case, you can set up a .border-radius reusable function, and the code
becomes something like the following listing.

.border-radius (@value) {
 -webkit-border-radius: @value;
 -moz-border-radius: @value;
 border-radius: @value;
 background-clip: padding-box;
}

Listing 2.2 Rounded borders in plain CSS

Listing 2.3 Rounded borders using LESS

Certain browsers require “vendor
prefixes” to apply certain styles.

Helps prevent the background from
leaking outside rounded borders

The issue only worsens as
you factor in more stylings.

This is a reusable function,
or a “mixin,” in LESS slang.

33Preprocessing and static asset optimization
.slightly-rounded {
 .border-radius(2px);
}
.very-rounded {
 .border-radius(16px);
}

LESS and similar tools boost your productivity by allowing you to reuse snippets of CSS
code.

LESS DRY IS BETTER THAN MORE WET

As soon as you need to use the border-radius property in more than one place, you’ll
reap the benefits of not writing everything twice (WET). By following the DRY princi-
ple, you avoid listing all four properties any time you need to specify a border. Instead,
you can declare a border by reusing the .border-radius LESS mixin.

 Preprocessing plays a key role in a lean development workflow: now you don’t have
to use all the vendor prefixes everywhere you want to use this rule, and you can
update the prefixes in a single place, making your code more maintainable. LESS
enables you to take this even further, if you want to cleanly separate static rules from
the variables that affect them. Without LESS, a typical CSS design style sheet excerpt
might look like the following code:

a {
 background-color: #FFC;
}
blockquote {
 background-color: #333;
 color: #FFC;
}

LESS allows you to use variables so you don't have to copy and paste colors everywhere.
Properly naming these variables also helps you to easily identify the colors by scanning
the style sheet.

USING LESS VARIABLES

Using LESS, you could set up variables for the colors and avoid potential mistakes such
as updating a color in one place but forgetting to update other occurrences. This also
enables you to keep colors and other variable elements of your design together. The
following code shows how it might look using LESS:

@yellowish: #FFC;
a {
 background-color: @yellowish;
}
blockquote {
 background-color: #333;
 color: @yellowish;
}

This way you can keep your code DRY, as I mentioned at the beginning of section 2.2.
Following the Don’t Repeat Yourself principle here is particularly useful because you

Use the function passing
the radius value.

Use the function again to set the
border-radius multiple times.

Declaring variables helps locate and
replace colors, preventing mistakes.

Using a variable is as
simple as referencing it.

34 CHAPTER 2 Composing build tasks and flows
avoid copying and pasting color codes, and that saves you the potential trouble of
mistyping one. In addition, languages such as LESS (SASS, Stylus, and so on) provide
functions to derive other colors, such as a darker green, a more transparent white,
and other amusing color math.

 Now, let’s turn our attention to compiling the LESS code into CSS within a Grunt
task.

2.2.2 Doing LESS

As we discussed earlier in the chapter, Grunt tasks consist of two different compo-
nents—the task and the configuration:

■ The task itself is the single most important component: this is the code that will
be executed by Grunt when you run a build, and generally you can find a
plugin that does what you need.

■ The configuration is an object you can pass to grunt.initConfig. Almost every
Grunt task needs configuration.

As you progress through the rest of this chapter, you’ll see how to set up the configura-
tion in each case. To compile LESS files with Grunt so you can serve CSS directly,
you’re going to use the grunt-contrib-less package. Remember when you installed
the JSHint plugin? Same thing here! Only the package name changes, because you’re
going to use a different plugin now. To install it, run the following in your terminal:

npm install grunt-contrib-less --save-dev

This plugin provides a task named less, and you can load it in your Gruntfile.js
like so:

grunt.loadNpmTasks('grunt-contrib-less');

From now on, I’ll omit the npm install and grunt.loadNpmTasks bits in the exam-
ples, for brevity. You still need to run npm install to fetch the packages and load the
plugins in your Gruntfiles! In any case, you can look for the full examples for each
case in the accompanying source code files.

 Setting up the build task is straightforward: you specify the output filename and
provide it with the path to the source used to generate your CSS file. This example can
be found as ch02/02_less-task in the code samples.

grunt.initConfig({
 less: {
 compile: {
 files: {
 'build/css/compiled.css': 'public/css/layout.less'
 }
 }
 }
});

The last piece of the puzzle for executing a task is invoking grunt from the command
line. In this case, grunt less in your terminal should do the trick. Explicitly declaring

35Preprocessing and static asset optimization
a target is usually recommended. In this case, you could do that by typing grunt
less:compile. If you don’t provide a target name, all targets get executed.

Running the less:compile build target in Grunt will now compile layout.less into
compiled.css. You could also declare an array of input files, rather than using only
one. This will result in a bundled file, which will contain the CSS for all of the LESS
input files. We’ll cover bundling in full later on; bear with me. The following listing is
an example.

grunt.initConfig({
 less: {
 compile: {
 files: {
 'build/css/compiled.css': [
 'public/css/layout.less',
 'public/css/components.less',
 'public/css/views/foo.less',
 'public/css/views/bar.less'
]
 }
 }
 }
});

Listing each file individually is okay, but you could also use a pattern language called
globbing and avoid enumerating hundreds of files, as I’ll explain next.

MASTERING GLOBBING PATTERNS

You could further improve the configuration shown in the previous code with a nice
perk of using Grunt that’s called globbing. Globbing6 is a file path matching mecha-
nism that will help you include or exclude files using file path patterns. It’s particu-
larly useful because you don’t have to maintain a list of all the files in your assets
folder, which helps you avoid common mistakes such as forgetting to add a new style
sheet to the list.

Consistency in grunt configuration

Before we go any further, I want to mention a nicety you’ll enjoy as part of using Grunt.
Task configuration patterns don’t vary all that much when jumping from task to task,
particularly when using tasks supported by the Grunt team itself. Even those you might
find on npm are pretty consistent with each other, as far as configuration goes. As
you’ll learn throughout the chapter, the different tasks I’ll show you are configured
similarly, even if they provide a wide array of operations in a versatile way.

Listing 2.4 Declaring an array of input files

6 The Grunt website has valuable insight into how globbing works. Go to http://bevacqua.io/bf/globbing.

http://bevacqua.io/bf/globbing

36 CHAPTER 2 Composing build tasks and flows
 Globbing might also come in handy if you want to exclude individual files from a
build task, such as those provided by a third party. The following code shows a few
globbing patterns you might find useful:

[
 'public/*.less',
 'public/**/*.less',
 '!public/vendor/**/*.less'
]

Note the following about the previous code:

■ The first pattern will match any file with a LESS extension in the public folder.
■ The second pattern does much the same, except that it matches files that might

be in subfolders of public of any nesting level thanks to the special ** pattern.
■ As you might’ve guessed, the last pattern works the same way as the second one

does, except that the ! at the beginning indicates that matched files should be
excluded from the results.

Globbing patterns work in the order they’re presented, and they can be mixed with
regular file paths too. Globbing patterns will result in arrays containing the path for
all matching files.

 Taking globbing patterns into consideration, our latest less:compile configura-
tion might be refactored a little further, becoming a simplified version:

grunt.initConfig({
 less: {
 compile: {
 files: {
 'build/css/compiled.css': 'public/css/**/*.less'
 }
 }
 }
});

Before moving on, let me remind you that in this particular case less is the build task
and compile is a build target for that task, which offers configuration specific to that
target. You could easily provide different targets for the less task by adding other
properties to the less object, like you did in the compile task target in the configura-
tion you’re handing over to initConfig. For instance, you could have a
compile_mobile target which would create the CSS assets targeting mobile devices,
and a compile_desktop target that would compile assets targeting desktop browsers.

 It should be noted that as a side effect of using a globbing pattern to compile LESS
using this task, your CSS will be bundled into a single file, regardless of how many files
are used in the source code. So, let’s look into asset bundling now, a postprocessing
task that will help you improve a site’s performance by reducing the amount of HTTP
requests against it.

37Preprocessing and static asset optimization
2.2.3 Bundling static assets

I’ve hinted at what bundling accomplishes, and you might’ve heard about it before
embarking on this enlightening adventure of ours. It’s okay if you’ve never heard of
bundling before; it’s not a hard concept to wrap your head around.

 Asset bundling is a fancy name for putting everything together before you hand it
over to your clients. It’s like the difference between going to the store for a single gro-
cery item and coming back home, only to go back to the grocery store to get another
item on the list again and again, and going to the grocery store once and buying all of
your groceries at one time.

 Handing over everything in a single HTTP response reduces transactional network
costs and benefits everyone. The payload might become larger, but it saves clients many
unnecessary network trips to your server, which incur associated networking costs such
as latency, the TCP and TLS handshakes, and so on. If you’d like to learn more about the
underlying internet protocols (TCP, TLS, UDP, HTTP, and so on), I highly recommend
High Performance Browser Networking by Ilya Grigorik (O’Reilly Media, 2013).

 In so many words, then, asset bundling consists of literally appending each of your
files at the end of the previous one. In this way, you might bundle together all of your
CSS or all of your JavaScript. Fewer HTTP requests yields better performance, and that’s
reason enough to warrant a static asset bundling build step. Figure 2.5 examines the

Before bundling
More requests translate into more
round-trip HTTP transactions between
the user and the server.

An HTTP request
for your site

Human

Web page

22 scripts,
9 style sheets

http://bevacqua.io

31 HTTP requests

Static
assets

Using bundling
Fewer requests mean a more reactive
web browsing experience for the
human being.

An HTTP request
for your site

The bundling and concatenation
terms are used interchangeably.

Human

Web page

1 script bundle,
1 styles bundle

http://bevacqua.io

2 HTTP requests
Static
assets

Figure 2.5 Reducing the number of HTTP requests with asset bundling

38 CHAPTER 2 Composing build tasks and flows

Inside
ob

propert
con

for a ta
interaction between a human and a site that uses a bundle, and one that doesn’t, and
how each affects network connections.

 As shown in the figure, before bundling the browser has to make many more HTTP
requests to fetch a site's resources, while after bundling only a single request suffices
to fetch every bundle (containing the many different files that make up your applica-
tion's logic).

 Many preprocessors include the option to bundle your assets together in a single
file, and you already experienced that in the demonstration of less:compile, where
you bundled many assets into one.

BUNDLING IN THE WILD

Using the grunt-contrib-concat package, you can easily set up build targets to put
together any number of files using the globbing patterns I described previously, and
in a fashion that you might already be comfortable with. Throughout the book, the
terms concatenation and bundling are used interchangeably. The following listing
(listed as ch02/03_bundle-task in the accompanying code samples) describes how to
configure the concat task.

grunt.initConfig({
 concat: {
 js: { #B
 files: {
 'build/js/bundle.js': 'public/js/**/*.js'
 }
 }
 }
});

Unsurprisingly, the concat:js task will take all the files in the public/js folder (and
its subfolders, recursively) and bundle them together, writing the results to build/js/
bundle.js, as indicated. The transition from one task to another is so natural that
sometimes you won’t believe how easy it is.

 One more thing to keep in mind when dealing with static assets during builds is
minification. Let’s move onto that topic.

2.2.4 Static asset minification

Minification resembles concatenation in that it ultimately attempts to reduce the strain
on network connections, but it applies a different approach. Rather than mashing all
the files together, minifying consists of removing white space, shortening variable
names, and optimizing the syntax tree of your code to produce a file which, while
functionally equivalent to what you wrote, will be significantly smaller in file size at the
cost of becoming nearly unreadable. This shrinking caters to your goal of improving
performance, as explained in figure 2.6.

Listing 2.5 Configuring the concatenation task

concat property indicates you’re
configuring the concat task.the concat

ject, each
y indicates
figuration
sk target.

Output will be written to
'build/js/bundle.js', taking
the globbing pattern
'public/js/**/*.js' as source.

39Preprocessing and static asset optimization
As you can see in the figure, the minified version of your static assets is much smaller,
resulting in faster downloads. When combined with GZip7 compression on your
server-side platform of choice, the minified bundle becomes drastically smaller than
the source code.

 The obfuscation side effect might make you feel like it’s “safe enough” for you to
put anything in your JavaScript code, since it will become harder to read, but it won’t
matter how much you obfuscate your client-side code; people can always decode what
you’re doing in it if they try hard enough. The corollary is to never trust clients and
always put sensitive code in your back end instead.

 Bundling can be combined with minification, as they’re completely orthogonal
(meaning they don’t run into each other). One puts files together and the other
reduces each file’s footprint, but these tasks play well together because they don’t
overlap in functionality.

 Bundling and minification can also be performed in either order, and the result
will be pretty much the same: a single, compressed file best suited for release and

7 Visit http://bevacqua.io/bf/gzip for more information on enabling GZip compression on your favorite back-
end server.

Before minification
Unminified code results in larger HTTP
requests, taking longer to respond.

An HTTP request
for your site

Human

Web page

520k scripts,
228k style sheets

http://bevacqua.io

Two smaller responses,
totalling 214k of assets

Two large responses,
totalling 748k of assets

After optimization
Minified code results in a faster
response and happier humans.

An HTTP request
for your site

Human

Web page

149k scripts,
65kb style sheets

http://bevacqua.io

2 HTTP requests

2 HTTP requests Static
assets

Static
assets

Figure 2.6 Reducing HTTP response length with asset minification

http://bevacqua.io/bf/gzip

40 CHAPTER 2 Composing build tasks and flows

The
pr

indicates
confi

the uglif

The
 pr

indicates
confi

the uglif
hardly useful to your development efforts. While minification and bundling are
undoubtedly important for your human-facing application, they get in the way of the
productive, continuous development approach we strive for in our daily development
flow, because they make debugging harder. That’s why it’s important you keep these
tasks clearly separated in your build process, so that you can execute them in the
appropriate environment without hindering your development productivity.

REVIEWING AN ASSET MINIFICATION EXAMPLE

Let’s get into an asset minification example (labeled ch02/04_minify-task in the sam-
ples), which you could then serve to real humans. Many asset minification options
exist. In your example, you’ll use the grunt-contrib-uglify package meant to minify
JavaScript files. After installing it from npm and loading the plugin, you can set it up
as shown in the following listing.

grunt.initConfig({
 uglify: {
 cobra: {
 files: {
 'build/js/cobra.min.js': 'public/js/cobra.js'
 }
 }
 }
});

That setup will help minify cobra.js, doing grunt uglify:cobra. What if you want to
minify what you bundled together in the previous step, further improving the perfor-
mance of your application? That’s a matter of taking the concatenated file created in
listing 2.6 and minifying it, as shown in the following listing (labeled ch02/05_bundle-
then-minify in the samples).

grunt.initConfig({
 uglify: {#A
 bundle: {
 files: {
 'build/js/bundle.min.js': 'build/js/bundle.js'
 }
 }
 }
});

Putting those two steps together is a matter of running both tasks in sequence. For
that purpose, you might use the grunt command grunt concat:js uglify:bundle,
but this also might be an ideal scenario in which to introduce task aliases.

 A task alias is a group of any number of tasks that are often executed as part of the
same step and that are related to each other. Tasks in an alias should preferably
depend on each other to produce a more meaningful output, as this would make

Listing 2.6 Asset minification configuration

Listing 2.7 Asset minification after bundling

 uglify
operty
you’re
guring
y task.

Inside the uglify object, each property
indicates configuration for a task target.

Output is written to
'build/js/cobra.min.js',
using 'public/js/cobra.js'
as source.

 uglify
operty
you’re
guring
y task.

Inside the uglify object, each property
indicates configuration for a task target.

Output is written to
'build/js/bundle.min.js',
using the bundle built
by concat:js as source.

41Preprocessing and static asset optimization
them easier to follow and more semantic. Task aliases are also great for declaring
workflows.

 In Grunt, you can set up task aliases easily in one line, as I’ll demonstrate below.
You can also provide an optional description argument; this will be displayed when
executing grunt –-help, but it’s mostly helpful for describing why that alias was put
together, for developers browsing your code:

grunt.registerTask('js', 'Concatenate and minify static JavaScript assets',
['concat:js', 'uglify:bundle']);

Now you can treat assets as any other Grunt task, and grunt assets will perform
both concatenation and minification.

 I have a bonus task you can implement on your static asset during builds to
improve your application’s performance. It’s similar in spirit to bundling, but it covers
images. This operation results in sprite maps and is a concept that’s been around for
far longer than minifying or concatenation.

2.2.5 Implementing image sprites

Sprites consist of taking many images and building a large file that contains all of them.
Instead of referencing each individual file, you use the background-position, width,
and height CSS properties to choose the image you want from the sprite. Think of
image sprites as asset bundling but for images.

 Spriting is a technique that originated in game development many years ago, and
it’s still used today. Many graphics get crammed into a single image, significantly
improving the performance of games. In the web realm, spriting is most useful for
iconography or any kind of small images.

 Maintaining the spritesheet and the CSS that goes with it by yourself is work. Partic-
ularly if you’re cutting and pasting, keeping your icons and the spritesheet in sync is
tedious. That’s where Grunt comes in as the knight in shining armor, ready to save the
day. When it comes to setting up image sprites, npm has options ready for you to start
automating your CSS spritesheet generation processes. For the purposes of this self-
contained example, I’ll refer to the grunt-spritesmith Grunt plugin. If you have
issues installing the plugin, refer to the code samples for troubleshooting. Its configu-
ration is similar to what you’re already accustomed to:

grunt.initConfig({
 sprite: {
 icons: {
 src: 'public/img/icons/*.png',
 destImg: 'build/img/icons.png',
 destCSS: 'build/css/icons.css'
 }
 }
});

By now, you can safely assume that the src property takes any kind of glob patterns. The
destImg and destCSS properties will map to the files where your spritesheet will be
www.allitebooks.com

http://www.allitebooks.org

42 CHAPTER 2 Composing build tasks and flows
generated, along with the CSS file that should be used to render the sprited images in
your HTML. Once you have both the CSS and your newly created spritesheet, you can
add icons to your site simply by creating HTML elements and assigning the different
sprite CSS classes to those elements. CSS is used to “crop” different parts of the image,
effectively taking only the relevant portion of the image used for the desired icon.

SPEED MATTERS

Speed is a fundamental, defining factor of the web. Responsiveness, or at least per-
ceived responsiveness, has a tremendous impact on the user experience (UX). Per-
ceived responsiveness is now more important than ever; this is what the user perceives
as speed, even though technically it might take even longer to fulfill a request. As long
as you display immediate feedback for their actions, users will perceive your applica-
tion as “faster.” This is what you see every day on Facebook or Twitter when you submit
a new post, and it’s immediately added to the list, even though its data is still being
sent to their servers.

 Numerous experiments have demonstrated how important it is to provide swift
and reliable services. Two experiments in particular, performed by Google and Ama-
zon, respectively, come to mind.

 In 2006, Marissa Mayer was Google’s vice president for UX. She ran an experiment
after collecting feedback from a group of users who wanted to see more results per
page in their searches. The experiment increased the number to 30 search results per
page. Traffic and revenue from customers in the experimental group who got more
results per page dropped by 20%.

 Marissa explained that they found an uncontrolled variable. The page with 10
results took .4 seconds to generate. The page with 30 results took .9 seconds. Half a
second delay caused a 20% drop in traffic. Half a second delay killed user satisfaction.8

 Amazon conducted a similar experiment, progressively delaying their website’s
responsiveness on purpose during split tests. Even the slightest delay resulted in signif-
icant drops in sales.

Perceived performance on the web

I can’t stress enough how important a role asset bundling, minification, and even sprit-
ing play when it comes to release builds. Images typically make up most of the footprint
for web applications today. Reducing the number of requests to your server using these
techniques provides you with an immediate performance boost that doesn’t require
more expensive hardware. A similar case can be made for reducing the byte size of
the responses by minifying and/or compressing them.

8 You can find a detailed article about the subject here: http://bevacqua.io/bf/speed-matters.

http://bevacqua.io/bf/speed-matters

43Setting up code integrity
JUDGING PERCEIVED RESPONSIVENESS VS. ACTUAL SPEED

On the opposite end of the spectrum, we meet perceived speed. You can increase per-
ceived speed by providing instant feedback (as if the action was successful) to user
interaction, even when the task itself might take a few seconds to process. This kind of
fast-forwarding is always well received by humans.

 Now that we’ve talked about speeding up network access to your assets, and the
build tasks relevant to compiling these assets, as well as the performance implications
of different approaches and techniques, let’s slow down for a minute and start talking
code quality. Until now, we’ve paid only a little attention to the quality of your code, so
let’s turn to the kind of tasks you should perform in that regard. You have a good idea
what preprocessing and post-processing tasks are, how they work, and how to apply
them.

 We first talked about code quality in chapter 1, when you integrated lint into your
build. Cleaning up after yourself is important if you want to preserve the idempotence
property. Similarly, linting your code and running tests are paramount for keeping
your code quality standards high.

 Now, let’s go a little deeper and find out how to better integrate these tasks into a
real build process.

2.3 Setting up code integrity
Keep in mind a few tasks when it comes to code integrity:

■ First and foremost, we should talk about cleaning up after ourselves. Whenever
our builds start, they should clean up the build artifacts they generate. This
helps us achieve idempotency, where executing a build many times always
results in the same output.

■ We’ll go over lint again, adding to what we explored near the end of chapter 1,
making sure that our code doesn't contain any syntax errors whenever we run a
build.

■ We’ll talk briefly about setting up a test runner so that you can automate code
tests, which we’ll go over in future chapters.

2.3.1 Cleaning up your working directory

After you’re done with a build, your working directory will generally be in a dirty state,
because you’ll have generated content that’s not part of your source code. You want to
make sure your working directory is always in the same state whenever you run a
build, so you get the same results every time. To ensure this, it’s generally good prac-
tice to clean up generated files before running any other tasks.

WORKING DIRECTORY Working directory is fancy talk for the root directory for
your code base during development. It’s often best to use a subdirectory to
aggregate the compiled results of your builds, such as a directory named
build. This helps you keep your source code cleanly separated from build
artifacts.

44 CHAPTER 2 Composing build tasks and flows
After your release, your servers will use the results of your build, and you shouldn’t
change its output except by performing another release. Running build tasks after the
deployment is complete would be as bad as manually executing those tasks, as you’d
reintroduce the human factor. As a general rule, if something doesn’t feel clean, it
probably isn’t clean enough and should be revised.

Tasks that generate content but clean up preexisting build artifacts whenever they’re
run are happily idempotent: running them infinite times doesn’t affect their behavior;
the result is always the same. The cleanup step is a required property for build tasks to
become idempotent, granting them the consistency of always producing the same out-
put. That being said, let’s see what the cleanup task configuration might look like in
Grunt. You’ll use the grunt-contrib-clean package, which provides a clean task you
can use. This task (available as ch02/07_clean-task in the samples) is as simple as it
gets: you provide target names, and then you can remove specific files or entire fold-
ers that you specify using a globbing pattern. See the following code for an example:

grunt.initConfig({
 clean: {
 js: 'build/js',
 css: 'build/css',
 less: 'public/**/*.css'
 }
});

The first two, build/js and build/css, show how simple it can be to pick generated
content and remove it, as long as it’s clearly separated from source code. On the other
hand, the third example shows how messy it becomes when the source code lives in
the same directory as the build-generated content. Furthermore, if you isolate your
generated content to one folder, then you could easily exclude that folder from your
version control system more conveniently.

2.3.2 Lint, lint, lint!

We already went over the benefits of linting in the previous chapter, but let’s look at
the configuration for your lint task again. Keep in mind you were using the

Isolating build output

While we’re on the topic of code integrity, I believe it’s important to highlight something
that you might’ve noticed from the examples I’ve presented so far. I strongly recom-
mend you follow the practice of strictly separating build-generated content from source
code. It’s sufficient to put generated content in a build directory. Benefits include
the ability to remove generated content without hesitation, the ability to easily ignore
the folder with globbing patterns, browsing generated content in one place, and per-
haps even more importantly, making sure you don’t accidentally delete source code.

Removing generated content can be
as easy as deleting a directory.

It can also be as hard as deleting
specific files, if source and
destination are mixed together.

45Setting up code integrity
grunt-contrib-jshint package here. You can configure it as shown in the following
code (sample ch02/08_lint-task):

grunt.initConfig({
 jshint: {
 client: [
 'public/js/**/*.js',
 '!public/js/vendor'
]
 }
});

It’s important to consider third-party (someone else’s) code as outside of our efforts’
reach. You wouldn’t unit test third-party code. Similarly, it’s not your job to lint their
code, either. If you weren’t putting generated content in a separate folder, you’d also
have to exclude it from your JSHint profile. That’s yet another benefit of strictly sepa-
rating build artifacts from the general population (your source files).

 Lint is often considered the first line of defense when it comes to maintaining a rea-
sonable level of code quality in JavaScript. You should still write unit tests on top of what
lint is capable of for reasons I’ll explain below, and you guessed it, there’s a task for that.

2.3.3 Automating unit testing

One of the most important steps to automate during build is unit testing. Unit tests
make sure the individual components in your code base work appropriately. A popu-
lar flow for developing an application that’s well tested is the following:

■ Write tests for something you want to implement (or change).
■ Run those tests and see them fail.
■ Implement your changes to the code.
■ Run the tests again.

If a test failed, keep coding until all tests pass, and finally go back to write new tests.
This process is called Test-Driven Development (TDD). We’ll go deeper into unit testing
in chapter 8. This is a topic that warrants a more dedicated section, so we’ll postpone
the discussion of setting up the Grunt task to run unit tests.

 The key takeaway for now is that unit tests must be automated. Tests that aren’t run
often are nearly useless, so the build process should trigger them before deploys and
probably during your local builds, too. Taking that into account, you’ll also want your
unit tests to run as quickly as possible, so they don’t cripple the performance of your
builds. A commonly cited principle is “Test early; test often.”

NOTE The different packages we’ve seen so far only expose a single Grunt
task you can use, but that’s not a constraint Grunt itself imposes. You can
include as many custom tasks in your packages as you deem necessary. This is
usually done by package authors on purpose. npm packages are commonly
modular in their design, because they’re designed to do exactly one thing
extremely well.

46 CHAPTER 2 Composing build tasks and flows
You’ve spent most of this chapter learning how to use build tasks that other people
wrote. Let’s turn our attention to writing your own build tasks, which comes in handy
whenever the existing task plugins you find on npm don’t satisfy your needs.

2.4 Writing your first build task
Even though Grunt has an active community around it that provides many high-
quality npm modules, you’ll certainly come across the need to write your own tasks.
Let’s go over how that process looks, using an example. We’ve covered tasks loaded
from npm and setting up task aliases. The simplest way to create a task is using the
grunt.registerTask method. Indeed, that’s the same method you used to register
aliases in section 2.2.4 when we looked at minification, but instead of passing in a list
of tasks that compose your task, you’ll pass in a function instead.

 The following listing (which can be found as ch02/09_timestamp-task in the sam-
ples) shows how to create a simple build task that creates a file with a timestamp,
which you could then use as a unique identifier somewhere else in the application.

grunt.registerTask('timestamp', function() {
 var options = this.options({
 file: '.timestamp'
 });
 var timestamp = +new Date();
 var contents = timestamp.toString();

 grunt.file.write(options.file, contents);
});

By default, the timestamp will be created in a file named .timestamp; however,
because you’re using this.options, users can change that to use another file name by
providing one when configuring the task, as shown in the following code:

grunt.initConfig({
 timestamp: {
 options: {
 file: 'your/file/path'
 }
 }
});

In essence, this is the only requirement to write custom build tasks. Grunt has an
extensive API that abstracts away common functionality, enabling you to easily address
configuration, perform I/O operations, execute tasks, and perform tasks asynchro-
nously. Luckily, the API is well documented, so check it out on their website.9

 For an all-encompassing analysis of Grunt, head to appendix B. The timestamp
task was mightily trivial. Let’s look at a real Grunt task you might want to implement.

Listing 2.8 A time-stamping task

9 You can find Grunt’s documentation at http://bevacqua.io/bf/grunt.

Take configuration and provide
sensible default values in case
they’re not configured.

Cast date into a UNIX timestamp.

Create a file in the location provided
by the task configuration.

http://bevacqua.io/bf/grunt

47Case study: database tasks
2.5 Case study: database tasks
As you’ve seen, developing your own build tasks isn’t that complicated; however, it’s
important to identify whether a task has already been developed for your task runner
of choice (Grunt in our case) before setting out to reinvent the wheel all by yourself!
Most task runners offer some sort of search engine for plugins, so be sure to look
online before sitting down to write your own tasks. Now, let’s look at the case of data-
base schema updates and how you can help automate them in a build. There aren’t
many plugins out there that do this specific sort of thing, so we’re better off develop-
ing our own.

Database migrations are one of those tasks that are complicated to set up, but after
you have, you’ll wonder how you managed to keep applications together without the
automated process.

 The general concept is that you start with the original database schema designed
for the application. As time goes by, you’ll probably make adjustments to the schema:
maybe you’ll add a table, remove unnecessary fields, change constraints, and so on.

 These schema updates are more often than not shamelessly done by hand, typi-
cally using the excuse that they’re too sensitive to automate. We do them by hand and
waste tons of time. It’s easy to make mistakes in the process, wasting even more time.
Needless to say, this becomes unbearable in larger development teams.

TWO-WAY SCHEMA CHANGES

I propose that an automated set of tasks should gracefully handle migrations in both
directions: upgrade and rollback. If you build them carefully enough, you can even
integrate them into an automated process. The line of thinking is you should apply
these schema changes only within these tasks, and never directly on the database.
When you adopt that line of thinking, consider two additional tasks: creating the data-
base from the ground up, and seeding it with data to aid in your development work-
flow. These tasks would allow you to manage your database directly from the
command line, easily creating new instances, changing the schema, populating with
data, and rolling back changes.

Database case study code

Note that the code for this particular case hasn’t been included in the text of the book.
Instead, you’ll find a fully working example in the accompanying code listings, labeled
ch02/10_mysql-tasks.a

Before you look at the code, read this section in the book to find out what the code
is, what it does, and why.

 a The code sample for the database tasks can be found online at http://bevacqua.io/bf/db-tasks.

http://bevacqua.io/bf/db-tasks

48 CHAPTER 2 Composing build tasks and flows
Figure 2.7 summarizes these steps, consolidating them as Grunt tasks, and also
explains how they could interact with a given database.

 Taking a close look at the figure, you’ll notice there’s a flow to it:

■ Create the database once.
■ Run schema update scripts whenever new ones come out.
■ Seed your development database once.
■ Run rollback scripts as an extra layer of security in case something goes wrong.

Using db_create, you can create a database instance, and that’s it. It shouldn’t recre-
ate the database if it already exists, to avoid errors. It won’t write anything to the
schema yet: tables, views, procedures, and such, are part of the next step.

Database tasks

db_create

Database creation

Automated grunt task

Creates

Rolls back
schema updates

Updates

Inserts
records into

Use scripts to create an initial
database schema.

db_upgrade

Schema updates

Use scripts to update the
schema progressively, once the

database is created.

db_seed

Data seeding

Use scripts to fill the database
with fake data, to rapidly set up a
useful development environment.

Creation scripts

Database

Seed scripts

Upgrade scripts

db_rollback

Schema rollbacks

Use scripts to roll back
problematic schema changes

when things go awry.

Rollback scripts

Figure 2.7 Interaction of proposed tasks with a database instance

49Summary
 The db_upgrade task will run the upgrade scripts that haven’t yet been executed.
You’ll want to check the accompanying source code for this chapter to learn how it
works.10 In simple terms, you create a table where you can keep track of the upgrade
scripts that were applied; then you check if unapplied scripts exist and execute those,
updating your tracking records as you go along.

HAVING A BACKUP PLAN

When things go awry, db_rollback will take the last upgrade script applied and exe-
cute its downgrade counterpart. It then updates the tracking table by deleting the last
record, so that you can effectively go back and forth in your schema with upgrades
and rollbacks, by using these two tasks. Keep in mind that while db_upgrade executes
all of the unapplied upgrade scripts, db_rollback only downgrades the last one that’s
still applied.

 Last, the db_seed task is used to insert records you can play with in your develop-
ment environment. This one will be crucial in making it dead simple to set up new
developers with a working environment by running Grunt tasks exclusively. These
tasks would look something like those in figure 2.7.

 At this point, you should be comfortable enough to go through the fully docu-
mented code listing for database tasks (which is ch02/10_mysql-tasks in the samples),
and get a sense of how it could be implemented.11

 In upcoming chapters, you’ll see different ways of configuring tasks such as this
one to avoid relying on a configuration file directly. Rather, you’ll learn how to use
environment variables and encrypted JSON configuration files to store your environ-
ment configuration.

2.6 Summary
You’ve learned a lot about build tasks! Let’s go over a quick recap:

■ A build process should facilitate everything that’s needed to produce a fully
configured environment that’s ready and can do its job.

■ The different tasks in a build are clearly separated, and similar tasks are
grouped together under task targets.

■ Primary tasks that comprise a build include static asset compilation and optimi-
zation, linting, and running unit tests.

■ You’ve learned how to write your own build tasks and studied how to approach
the automated database schema updates.

Armed with the knowledge you’ve garnered, we’ll switch gears in the two upcoming
chapters and expand your understanding of how to target different environments,
namely local development and release servers, and you’ll learn best practices that you
can apply to maximize productivity and performance.

10 The code sample for the database tasks can be found online at http://bevacqua.io/bf/db-tasks.
11 You can dig through the Chapter 2 code samples, and look for the one named 10_mysql-tasks.

http://bevacqua.io/bf/db-tasks

Mastering environments and
the development workflow
We spent the last chapter going over what to do and what not to do during builds. We
covered build tasks and configured different targets in them. I also hinted at how
your workflow differs according to whether you build your application for debug or
release distributions; these differences in your build workflow, based on either
debug or release goals of your target environment, are called build distributions.

 Understanding the interaction between development, staging, and production
environments and build distributions is vital to creating a build process that can be
used regardless of environment, allowing you to develop your application in a set-
ting loyal to what your end users will see, but that can still be debugged with ease.
Additionally, this understanding will allow you to create middle-tier environments,

This chapter covers
■ Creating build distributions and workflows
■ Setting up application environments
■ Building secure environment configuration
■ Automating first-time setup
■ Using Grunt for continuous development
50

51Application environments
which are instrumental to robust deployment mechanisms, which we’ll discuss in the
next chapter.

 In this chapter we’ll start off learning what we mean by environments and distribu-
tions, and I’ll propose a typical configuration that should suffice for most use cases,
where you’ll have your

■ Local development environment, used to improve the application on a daily
basis

■ Staging or testing environment, dedicated to making sure no issues would arise
from deploying to production

■ Production environment, which is the one customers have access to

Then we’ll look at different approaches to take when configuring an application
under different contexts. You’ll learn how to automate the oftentimes tedious first-
time setup, and then have fun setting up a continuous development workflow using
Grunt. Let’s get started.

3.1 Application environments
In the previous chapter we talked a bit about environments, but we didn’t detail the
options you have when it comes to setting up new ones or how they differ from one
another.

 The development environment is where you spend most of your time, working on a
local web server, which is often configured in such a way to allow debugging, reading
stack traces, and getting diagnostics more readily than other environments. The devel-
opment environment is also the environment that’s closest to the developers and the
source code they write. The application used in this environment is almost always built
using the debug distribution, which is fancy talk for setting a flag that will allow you to
turn on certain capabilities, such as debug symbols, increased logging (or logging ver-
bosity), and so on.

 The staging environment is where you make sure everything works correctly on a
hosted environment and that you can deploy to production with confidence that
nothing will break. In the production environment, you’ll almost always want to build for
the release distribution, as that build flow will be designed to optimize your applica-
tion and squeeze as many bytes as possible out of your static assets.

 Now let’s look at how you can configure your build distribution for each of these
environments, tuning the distribution’s output to meet your specific goals: either
debug or release.

3.1.1 Configuring build distributions

To help understand build distributions, think of application building like working in a
bakery. When you’re preparing the mixture for a cake, there’s a myriad of pans you

52 CHAPTER 3 Mastering environments and the development workflow
might use to hold the batter. You can use a standard round cake pan, a square baking
dish, a loaf pan, or whatever’s available to you. These pans are like tools in the devel-
opment environment, which would be your kitchen. The ingredients are always the
same: flour, butter, sugar, a pinch of salt, cocoa powder, eggs, and half a cup of butter-
milk. The ingredients you use to build your cake are akin to assets in your application.

 Furthermore, the ingredients are combined into a recipe that indicates how to mix
them together: when, in what quantities, and how long you should store the mix in
the fridge to get a good consistency before putting it in the oven at a well-defined tem-
perature. Choosing different recipes can result in a spongier cake or a crustier one,
the way choosing different distributions results in an application that’s easier to debug
or performs better.

 While you’re trying out different ways to put together your mixture, you might
change the ingredients (your assets), and maybe even the recipe (your distribution),
but you’ll still do the work in your kitchen (the development environment).

 Eventually you get better at baking, and you attend competitions. You’re provided
with professional tools in a different setting (a new environment), given guidelines,
and expected to bake a cake with what you have. You might pick the ingredients your-
self, you might choose to use syrup to give the cake a final touch, and you might want
to cook the mixture for a little longer than you do in your own kitchen. These
changes to the recipe are influenced by the environment you’re working in, as it may
affect your decision on what recipe to use, but you can still use any recipe you want in
any environment you see fit!

 Note that build distributions are constrained to either debug or release, although
you can have any number of different environments configured to use either of those
distributions, as you deem necessary. Environments don’t have a one-to-one relation-
ship with build distributions. You may have a preferred distribution for each environ-
ment, but that doesn’t mean the preference is set in stone. For instance, in your
development environment you’ll typically use the debug distribution, as that yields
more productivity in your day-to-day activities. However, you might want to occasion-
ally try the release distribution in your development environment, to be sure it works
as expected regardless of the environment, before deploying to production.

DETERMINING WHICH BUILD DISTRIBUTION TO USE

It’s hardly possible for you to be ready to bake a cake in any kitchen: different ovens,
pans, and skillets might not be the tools you’re comfortable with. Similarly, the build
process doesn’t have much control over which environment it’s targeting. But you can
determine the appropriate build distribution based on the purpose of the target envi-
ronment; either

■ Debugging purposes, where you aim to rapidly develop and debug your
application

■ Release purposes, where your goals are performance and uptime

These purposes determine your build distributions. In your development environ-
ment, you’ll use a distribution that’s better tuned to meet your development needs,

53Application environments
and that mostly comes down to finding problems and resolving them. This is the
debug distribution. Later in the chapter, you’ll look at ways to improve the flow to go
beyond simple debugging, also enabling true continuous development that runs spe-
cific build tasks whenever the code that involves a task changes.

 Figure 3.1 displays how build distributions answer questions about the type of goals
you want to accomplish, using configuration to define a build flow.

BUILD DISTRIBUTIONS FOR PRODUCTION ENVIRONMENTS

On the farthest end of the spectrum, far from the development environment, you
have the production environment. Returning to our baking analogy, in this case, you’ll
aim for high-end, quality cakes that paying customers love, and that can only be baked
by using the best recipes you have. Production is the environment that ultimately
serves the application to real end users, manipulating data they provide.

 This is in contrast to the development environment, where you should use mostly
fake dummy data, although similar in appearance to real customer data. Production
environments will rarely be built with a distribution other than release. This

Distribution
Build concerns

Questions? Debug

Yes! Builds always arriving
at the same state is crucial
to iterate rapidly.

Release

Execute linters and fast
unit tests.

Yes. Absolutely required
in debug flows.

No, introduction of
debugging artifacts is
expected to de-optimize
output.

A fast debug flow will
improve your continuous
development workflow.

Yes!

Run all the tests you have!

No, but it’d be nice to have.

Always tune for
performance.

Not necessarily, but it’s
nice to have.

Must the build flow be
idempotent?

What kind of testing
should be done?

Is ease of debugging a
necessity?

Should it produce optimal
output?

Should the build flow
be fast?

Ask yourself these questions
when putting together a build flow.

Aiming for maximum
productivity, effortless debugging,

and continuous development.

Aiming for a human-facing
product release that’s well-tested,

fast, and enjoyable.

The answer:
It depends! What are your goals?

Figure 3.1 Build distributions and how they define your build flow to fulfill specific goals

54 CHAPTER 3 Mastering environments and the development workflow
distribution usually regards performance as the most important factor, and as you saw
in chapter 2, that might mean minifying and bundling static assets, producing
spritesheets out of your icons, and optimizing your images, but we’ll cover those top-
ics in chapter 4. Although the production environment shouldn’t use debug builds,
you should definitely make sure the release build process works in your development
environment.

BUILD DISTRIBUTIONS FOR STAGING ENVIRONMENTS

In between development and production, you might have a staging environment; its
goal would be to replicate, as much as possible, the configuration used in production
(although not affecting user data or interacting with services used in production).
The staging environment will commonly be hosted somewhere other than on a local
machine. Think of this as working as a baker: you might want to bake cakes that hold
up to a certain quality, regardless of the kitchen you’re working in.

 A staging environment might involve working somewhere other than your own
kitchen, but it wouldn’t be in a restaurant's kitchen, either. Maybe you want to bake a
treat for a friend, so you use her kitchen instead. Staging environments attempt to
bring production and development to a middle ground, meaning they try to stay as
close to both environments as possible. For this purpose they might periodically get a
curated version of the production database (by curated I mean sensitive data, such as
credit cards or passwords, must be stripped off or blanked). You’ll pick a distribution
for this environment based on what you’re testing, but you’ll generally default to
release, because that’s closer to the production environment.

 The real purpose of having a staging environment is to allow for quality assurance
(QA) engineers, product owners, and others to test the application before it goes live
to production. Given that staging is basically the same as production, except it’s inac-
cessible to end users, your team can quickly identify issues in the upcoming release
without compromising the production environment, and with certainty that it’ll work
as expected on a hosted environment.

 Let’s swim in code for a moment and consider how you can use distributions to
approach build configuration so your build tasks adequately portray which build flow
(debug or release) they belong to.

DISTRIBUTIONS IN GRUNT TASKS

In chapter 2 we went over a few build tasks and their configurations, but they were
mostly standalone and not part of a flow. With build distributions, you’ll improve your
build process by assigning each task the intent of using it in a given build flow. Are you
aiming for debugging quality or smaller file sizes and fewer HTTP requests? Well, if
you start using naming conventions in your Grunt tasks and aliases, the answer will
become much easier for you to deduce.

 As a general rule, I propose you call your build targets debug or release based on
what distribution the task target is geared toward. General purpose tasks such as
JSHint don’t need to abide by this convention, and you can still call your targets
names such as jshint:client, jshint:server, and jshint:support. You could use

55Application environments

Th

will b
 into

 th
the support target for the remainder of the code base, which isn’t server- or client-
related, but mostly build- or deploy-related.

 Considering this convention, you may see yourself having a series of tasks such as
jade:debug and less:debug, which you could then bundle together in a build:debug
alias. The same could apply to release, clearly separating your build flows in code as
well as in your thinking. The following listing (sample 03/01_distribution-config)
shows what this would be like in code.

grunt.initConfig({
 jshint: {
 client: ['public/js/**/*.js'],
 server: ['server/**/*.js'],
 support: ['Gruntfile.js']
 },
 less: {
 debug: {
 files: {
 'build/css/layout.css': 'public/css/layout.less',
 'build/css/home.css': 'public/css/home.less'
 }
 },
 release: {
 files: {
 'build/css/all.css': [
 'public/css/**/*.less'
]
 }
 }
 },
 jade: {
 debug: {
 options: {
 pretty: true
 },
 files: {
 'build/views/home.html': 'public/views/home.jade'
 }
 },
 release: {
 files: {
 'build/views/home.html': 'public/views/home.jade'
 }
 }
 }
});

Using this kind of separation, it’s easy to create aliases to build the application for
either distribution. Here are a couple of sample aliases:

grunt.registerTask('build:debug', ['jshint', 'less:debug', 'jade:debug']);
grunt.registerTask('build:release', ['jshint', 'less:release',

'jade:release']);

Listing 3.1 Distributed build configuration

The less:debug task target compiles LESS
files into CSS for development purposes.

e file found
at the path
in the value
e compiled

 the path in
e property.

The release target is only used
during the release build flow.

A globbing pattern compiles all LESS
style sheets into a single output CSS file.

Note how jade:debug sets options
different from those in release flows.

56 CHAPTER 3 Mastering environments and the development workflow
You can look for the fully working code listing example in the accompanying source
code repository. Remember, these are organized by chapter, so look for the
01_distribution-config folder under chapter 3.

 This provides an excellent base for you to build on. You can keep iterating on each
of these flows, possibly reusing tasks, such as jshint in this example, adding more
tasks to both distributions or maybe to one of them in case it only applies to one flow.
For example, you’ll want to keep tasks such as updating the change log in the release
flow, because the product to be released might change across debug builds, and you
need to accompany your deployment with documentation about all the changes intro-
duced. We’ll come back to the topic, looking at debug distribution-specific tasks later
in the chapter. Release-specific tasks are analyzed in chapter 4.

 You’ve now learned what build distributions are and how they define the different
flows created when putting together a build process; let’s turn our attention to the
application configuration within each environment, or what I call environment-level
configuration.

3.1.2 Environment-level configuration

Environment configuration is separate from build distributions, and the distinction is
clear: build distributions determine how your application should be built. They
shouldn’t bear any weight in the application itself, but only affect the build process, or
more concretely, the build flow you follow. Environment configuration, in contrast, is
environment-specific.

Environment-level configuration: what does it include?

Moving forward, whenever I mention configuration in this chapter, I’m referring to
environment-level configuration, unless otherwise noted. By environment-level config-
uration I mean values such as

■ Database connection strings
■ API authentication credentials
■ Session encryption secrets
■ The port your web server listens on for HTTP requests

These kinds of configuration values tend to contain mostly sensitive data. I strongly
discourage merrily packaging these kinds of secrets in plain text along with the rest
of your code base. Developers shouldn’t have direct access to services, such as your
database, and therefore access to user data. It also becomes an attack vector: gaining
access to your code repository translates into gaining access into your databases or
API secrets, and most frighteningly, accessing your customer’s data.

In this respect, an excellent rule of thumb is to develop your applications as if you
were developing open source software. You wouldn’t push sensitive API keys and
database connection strings into your publicly available open source repositories,
would you?

57Application environments
Figure 3.2 depicts how your application combines build distribution output and envi-
ronment configuration to serve an application.

BUILD FLOWS

As you can see on the left of the figure, the debug and release distributions only affect
the build itself, while environment configuration will affect the application directly,
after a build is executed, for either debug or release.

ENVIRONMENT-LEVEL CONFIGURATION

Application configuration must be environment-specific. These environment vari-
ables are not to be confused with build distributions, which only affect the build pro-
cess itself. Application configuration refers to small (and often sensitive) snippets of
data such as database connection strings, API keys, encryption secrets, logging verbos-
ity level, and so on.

 Although distributions generally don’t contain sensitive data, environment-level
configuration often does. For example, an environment’s configuration might have
access credentials to a database instance, an API service such as Twitter’s REST API, or
maybe a username and a password used to send out emails through IMAP.

 But not all environment configuration is sensitive or poses a security threat if
leaked. For instance, the application’s listening port and the logging verbosity level,

Deploy built
application to a

target environment.

The environment consists of an
application host, which can be either
the local machine or a hosted solution
and its associated environment
configuration.

Environment-level configuration
Application server concerns

Build flows
Application server

Accessible only
by each individual

developer.

Application configuration must
be environment-specific.

Internet access
for developers
and product
development

staff.

Publicly
accessed by
end users.

Development
environment

Debug
distribution

Release
distribution

Staging
environment

Production
environment

Optimized for
debugging

Optimized for
performance

Figure 3.2 Environment-level configuration—environments, configuration, and distributions,
coming together in an application. Environment configuration consists of secret credentials and any
other configuration that might change across environments.

58 CHAPTER 3 Mastering environments and the development workflow
which determine how verbose your logger should be, are both environment-specific,
but they’re not sensitive information in the slightest. That being said, you don’t have
any reason to treat “safe” configuration differently from sensitive configuration,
except that you might include configuration defaults with safe variables, such as the
application’s listening port. You should never do that with sensitive data.

 You’ll focus on the development environment for now, and move on to staging and
production environments in the following chapter.

3.1.3 What’s so special about development?

What’s so different about local development in comparison with other environments?
Well, much, and ideally, not so much. The two most remarkable differences are that
this is the environment where you’ll spend most of your time, and it doesn’t matter if
something stops working; you can always fix it, and nobody else is going to notice it. In
contrast, you should spend little time in production, because that probably translates
into people not using your product, and if something stops working, that won’t be
good, either. We’ll go over measures to mitigate and monitor for problems in release-
grade environments in the next chapter.

 The Build First approach carries a slew of benefits when it comes to the develop-
ment environment, and that’s the meat of this chapter. We’ll talk about tools and
mechanisms that are famously helpful during development. Let’s save the fun for last;
we need to talk about configuration first. We’ll go over your options when it comes to
managing, reading, and storing the sensitive data of your environment-level configu-
ration in a sensible way, so as not to expose your secrets to potential intruders.

3.2 Configuring environments
Until now, you’ve established that committing sensitive configuration to your reposito-
ries in plain text poses a security risk. In this section we’ll cover how to manage config-
uration from different sources, such as a file, the database, or application memory. At
the same time, you’ll explore different approaches for protecting your configuration
data. Please note that the information I’m about to give you isn’t limited to Node.js. I
picked that platform because I needed to give you a concrete example of how to con-
figure your environment-level variables, and because this is a JavaScript book. That
being said, the environment configuration approaches we’ll discuss can be applied to
applications running on any server-side platform you like.

Environment-specific variables
Environment configuration is changing any variable that could change depending on
the environment you run your application in. For example, you might need variables
with credentials so you can send emails, and you might want to allow an option to
send all emails to a catch-all account for debug environments. API keys to services
you consume usually change on a per-environment basis, too. Environment configu-
ration is the place where you should keep all of these settings and credentials so you
can adjust them for each environment.

59Configuring environments
More often than I’d like to admit, I’ve worked on projects that shamefully broke this
configuration principle and contained configuration for all of their environments
directly in their repository. Development, staging, production—they all were fair
game. Configuration for each of these was maintained in a separate file, and some-
thing such as a string that contains “development” governed which of those files was
used. This is bad because of a number of problems:

■ First, I can’t stress enough the importance of not packing credentials to your
live environments directly in your repositories. That’s exactly the kind of thing
that belongs in environment-level configuration.

■ Second, you shouldn’t have to repeat configuration values for each environ-
ment you have, effectively maintaining the same value in multiple different
files; this would be WET code. It doesn’t scale well when you want to add new
environments or configuration values to your application.

I’ve also participated in endeavors where configuration was tediously manual: you’d get
a brand new code base, ask around for a few credentials to get started, and type them
into a single configuration file. If you had to deploy, then you’d manually change those
same values again to whatever configuration that satisfied the environment you were
deploying to. In the previous case, at least you didn’t have to change configuration
around to get your application to work any time you changed environments. You’d
change a magic string, setting it to something such as “staging,” and it’d work.

 How can you go with that approach without sharing everything with everyone? You
might think that’s not a big deal; it’s not as if you’re going to open source your project
overnight. But if you’re thinking like that, you’re missing the point entirely. It’s not
good practice to give everyone access to potentially sensitive information about your
production environment. And there’s no reason to—that configuration belongs with
that environment, nowhere else.

Let’s start our discussion of configuring environments by talking about waterfall con-
figuration, and then we’ll cover different methods you can use to protect it, namely,
encryption and environment variables.

3.2.1 Storing configuration in a waterfall

Waterfall is a method for storing your configuration. It’s as simple as picking a priority
that determines the order of importance of these stores as you merge them together.

Open source software

Experimenting in open source projects, something I vigorously encourage you to try,
helped me vastly improve over time the techniques and measures I take to protect
sensitive data. I started thinking in a “what if a stranger downloaded my code?” kind
of way, and it opened my eyes as to what was fine, and what wasn’t, when it came
to pushing code to my repositories.

60 CHAPTER 3 Mastering environments and the development workflow
Waterfall is useful because it helps your configuration to be divided in different places
but still be part of a whole. A few places exist where you can define your configura-
tion; for example

■ Plain text directly in your code base, only meant for data that doesn’t violate
your security

■ In encrypted files; it’s meant to distribute configuration securely.
■ At the machine level, setting operating system environment variables
■ Passing command-line arguments to your application at the process level

Keep in mind, you’re configuring the environment, regardless of the level at which
you do it; thus, all configuration sources must always be accessed from a single point
in your application. This configuration root service should be careful to determine
which source is most important when providing a requested value. In the list above, I
ordered a few potential configuration sources from lowest to highest priority. For
example, a command-line argument setting the port number will overwrite the port
number stored in a plain text file within the repository.

 Clearly these aren’t the only places where we can store configuration, but they pro-
vide a great starting point for any application. I know I’ve severely thrashed plain text,
but it’s okay to have a plain JSON file to set up absolute basics, such as the environ-
ment name and the port number. Let’s call this one defaults.json:

{
 "NODE_ENV": "development",
 "PORT": 80
}

This is perfectly reasonable as far as plain text goes. I also encourage keeping a sec-
ond plain text file, which you might call user.json, to keep personal configuration
you might want to use, but not necessarily commit to modifying the defaults. The
user.json file is also useful if you need to quickly test with a different configuration:

{
 "PORT": 3000
}

As long as it’s encrypted, sensitive configuration can be checked into source control. I
advocate using this kind of configuration to share environment defaults among your
developers. The reasoning is that instead of having to redistribute a JSON file every
time the defaults change, you distribute the key to decrypt the secure file once, and
whenever a change is made it’s checked into source control, and the developers can
decrypt it using the key they already had.

 I should mention that to maximize security, different private keys should be used
for each encrypted configuration file. This is particularly important when dealing with
one file per environment, because a breach would be chaotic for every environment;
in addition, it’ll be easier to change the keys if they’re only used in one place.

61Configuring environments
 You have a few different ways to safely distribute configuration among your envi-
ronments; we’ll go over a couple of them next. The first one is through encryption,
and we’ll go over the process of safely encrypting your configuration files using a con-
crete example. The second alternative is not to distribute environment configuration
files with your code base, but rather to store the configuration solely in the target envi-
ronment. Let’s start with security through encryption.

3.2.2 Using encryption to harden environment configuration security

To securely transmit configuration within your code base, you need to take a few
security measures. First and foremost, you shouldn’t commit decrypted configuration
files to source control, as this would defeat the entire purpose of encryption. The
same holds true for encryption keys: you should keep these somewhere safe, prefera-
bly off the cloud altogether—maybe on a USB pen drive. What you should share in
your repositories are the encrypted versions of these files and simple command-line
tools to decrypt or update their encrypted counterparts. Figure 3.3 describes this
flow.

Encryption flow
Security concerns

To update configuration, repeat encryption flow.

Sensitive
document*

Version
control

API secrets,
DB connections,
logging verbosity,

and so on

Private key*

(One per
document)

Encrypted
document

10010001100110
11011001100011
01000000101101

1010011
(git, hg, svn,
and so on)

Encrypt data using a
cryptographic key.

Insert encrypted document
into version control system.

Decryption flow
Security concerns

EnvironmentPrivate key*

(One per
document)

Sensitive
document*

API secrets,
DB connections,
logging verbosity,

and so on

Encrypted
document

10010001100110
11011001100011
01000000101101

1010011

*Excluded from version control Used to configure and
execute application.

Figure 3.3 Configuration encryption and decryption flows using private RSA keys

62 CHAPTER 3 Mastering environments and the development workflow
To this purpose, you can set up a couple of folders. For example, use env/private,
where you’ll keep the unsecured data that’s been decrypted, and env/secure to store
the encrypted files. Because the env/private folder contains sensitive data, it
shouldn’t be committed to source control systems. Rather, you’re going to distribute
an encryption key by another means; for example, physically giving it to the interested
parties. Then the repository will contain tools (Grunt tasks in your case) to encrypt
and decrypt each particular file using its corresponding RSA (an encryption algo-
rithm) key. You’ll use three different Grunt tasks for encryption purposes. The first
one will generate the private key; the other two will encrypt and decrypt your configu-
ration using that private key.

To recap RSA encryption

■ Create a private key; don’t share it with anyone.
■ Use it to encrypt your sensitive files.
■ Transmit the encrypted file with your code base.
■ When you need to update the secure file, update the plain one and encrypt it

again.
■ When someone else copies your code base, they can’t access the encrypted con-

figuration unless you give them the key.

In the next section, let’s look at the pros and cons of taking the alternative route: not
encrypting your environment-level configuration but also not distributing it (and your
sensitive secrets with it) together with the rest of your application's code repository.

3.2.3 Setting environment-level configuration at the OS level

When it comes to release environments (staging, production, and anything in
between) you might want to configure sensitive values in the environment directly
and keep them off your code base. Keeping your configuration off the code base
enables you to change it without the need for a full redeployment. Using system-level
environment variables is a great way to do that.

 This is something I picked up from working with cloud-based hosting solutions
(such as Heroku), and it’s convenient to set up. An added benefit of using environment

RSA encryption example

I wrote a fully working example that’s available in the accompanying source code list-
ings, named 02_rsa-config-encryption,a under ch03. In that example, you’ll use the
grunt-pemcrypt package I wrote, which facilitates the tasks required to deal with
encryption and decryption of secure configuration files. We won’t deviate into the code
itself, because it’s fairly straightforward to follow and properly documented.

a The code example is available online at http://bevacqua.io/bf/secure-config.

http://bevacqua.io/bf/secure-config

63Configuring environments
variables is that you don’t need to touch the code base to change its behavior. The
downside is that, similar to your previous approach, you don’t have access to most of the
configuration when you clone the repository for the first time. An exception to that
downside is any unprotected defaults you might have, such as the development envi-
ronment listen port. That downside, however, is also the goal of taking this route: being
unable to deploy a newly cloned repository as is to one of the production environments.

 The difference between encrypted file stores and environment-level configuration
is that it’s more secure not to share anything with your code base at all, even if it’s
encrypted. But the downside of going the environment variables route is that you still
need to get the configuration there.

 In the next chapter, I’ll introduce Heroku, a cloud hosting Platform as a Service
(PaaS) provider, which enables hosting of web applications in the cloud as easily as
doing a git push. Heroku uses environment variables for your environment configu-
ration, and they thoroughly documented their philosophy (on web application build-
ing, architecture, and scaling) and published it on a website called 12factor.net1 that
everyone should read.

 For local development, you’ll still use a JSON file that doesn’t get committed to
source control, and it contains what you would’ve put in the secure JSON file in the
previous section. The following is a sample environment JSON file:

{
 "NODE_ENV": "development",
 "PORT": 8080,
 "SOME_API_SECRET": "zE1nMDDqkzDbSDX4fS5acCpllk0W9",
 "SOME_API_KEY": "IYOxBMFi34Rkzce7kY4h0GqI"
}

If you want to provision new contributors to your project with a copy of the environ-
ment file you use locally, consider going the encryption approach for that one file
(the development configuration), and taking the environment variables approach for
hosted environments (those that aren’t local to your development machine) to maxi-
mize security.

 For hosted solutions (such as staging or production), a different approach takes
place. Heroku provides a command-line interface that makes it easy to set environ-
ment variables.2 With the example below, you could set the environment to staging
so your code can tune the experience to that environment—increased logging, for
example, but mostly the same as production:

heroku config:add NODE_ENV=staging

The command line should have the last say on what values go where, making it easy to
enable small modifications to your environment, such as setting a port or the execu-

1 12 Factor is an excellent guide to robust application development. Check it out at http://bevacqua.io/bf/
12factor.

2 Learn more about configuring your Node.js environments with Heroku at http://bevacqua.io/bf/heroku-cli.

http://bevacqua.io/bf/heroku-cli
http://bevacqua.io/bf/12factor
http://bevacqua.io/bf/12factor

64 CHAPTER 3 Mastering environments and the development workflow
tion mode (debug or release). Here’s an example of an override that changes the port
and the environment:

NODE_ENV=production PORT=3000 node app.js–

Last, let’s go over how you could pull together all the different sources of configura-
tion (environment variables, text files, and command-line arguments) in a way that
makes sense.

3.2.4 Merging configuration as a waterfall in code

You’re ready to glue all this together into pieces of JavaScript. Considering how lazy
we are, let’s not write much code to accomplish this.

 There’s an npm module called nconf that deals with merging configuration
sources together, regardless of what you’re using: JSON files, JavaScript objects, envi-
ronment variables, process arguments, and so on. The following code is an example
(labeled ch03/03_merging-config in the samples) of how you could configure nconf
to use the plain JSON files from section 3.2.2. Note that while the configuration source
order in the code listing might seem counterintuitive, nconf prioritizes configuration
on a “first-come first-served” basis:

var nconf = require('nconf');

nconf.argv();
nconf.env();
nconf.file('dev', 'development.json');

module.exports = nconf.get.bind(nconf);

After you set up this module, you can use it to get configuration values from any of
those stores, in order of appearance:

■ First, nconf.argv() prioritizes command-line arguments above everything else,
as it’s the first source we’ve added. For instance, executing the application with
node app --PORT 80 means that the PORT variable will be assigned that value,
regardless of configuration from other sources.

■ The nconf.env() line tells nconf to source configuration from the environ-
ment as well. For instance, executing PORT=80 node app will set the port to 80,
while PORT=80 node app --PORT 3000 will set the port to 3000, because
command-line arguments have more priority than environment variables.

■ Last, the nconf.file() line sources a JSON file to pull the least important val-
ues: these will be overridden by both environment variables and command-line
arguments! If you provide a command-line argument such as --PORT 80, it
won’t matter that you had "PORT": 3000 in your development JSON file; you’ll
still use port 80. Again, you’ll find a complete example in the accompanying
source code, also detailing how to use nconf when going the Heroku route.
This will prove useful in the following chapter, so I’d advise you to read this

65Automating tedious first-time setup tasks
chapter to the end and then get up to speed with the code samples if you
haven’t gone through them yet.

Now that you know how to properly configure builds and environments, we’ll head on
to the last couple of sections. Before getting to continuous development, let me
emphasize a couple of best practices when it comes to setting up environments for the
first time.

3.3 Automating tedious first-time setup tasks
When setting up your environment for the first time, you’ve got to think about what
you’re doing, and you need to automate anything that’s plausible to automate. The
reason: if you don’t automate, it’ll translate directly into more work for newcomers.
Another reason for preemptively automating these tasks is purely that you can.

 In the beginning, it’s simple to automate the little stuff one bit at a time. Yet, as the
project develops, it becomes daunting and implausible to do so. Your coworkers might
be against doing so at this point, and yet setting up a working environment might take
you as long as a week. I had this happen to me on a ridiculously huge project I worked
on in the past, and management was okay with that. Setting up a local development
environment involved

■ Reading through a daunting series of poorly written wiki articles
■ Installing dependencies by hand
■ Applying schema updates by hand
■ Applying those updates every morning by hand after getting the latest code
■ Installing audio codecs and even proprietary software, such as a specific version

of Windows Media Player

After a week all I had to show for it was a “kind-of-working” environment. Three weeks
after that I landed another job, because I couldn’t bear the manual, laborious work in
that project. The driving issue behind this problem is that changing the way an appli-
cation is built is hard, and not having a straightforward and automated process to set
up new environments can become extremely costly down the line, and so cumber-
some to change, in fact, that you wouldn’t want to bother doing it. The frustration I
felt during that experience is one of the root motivators that drove me to Build First,
the build-oriented approach I’m pile-driving in this book.

 In chapter 2 we covered how to automate our build process, and you even learned
how you could automatically create, provision, and update a MySQL database instance
(found at ch02/10_mysql-tasks in the samples).3 Setting up database seeding is com-
plex, as you saw in the sample code, but it can also be rewarding: not having to pro-
vide new collaborators with anything other than the code repository, and a few
instructions asking them to execute a Grunt task.

3 The database provisioning task examples can be found at http://bevacqua.io/bf/db-tasks.

http://bevacqua.io/bf/db-tasks

66 CHAPTER 3 Mastering environments and the development workflow
 We’ve discussed at great length the measures you can take when it comes to config-
uration, and in that regard all you need to do when setting up a new development
environment is get the decryption key (stored somewhere safe) and run a Grunt task.
First-time setup shouldn’t involve more manual labor than getting your environment
configuration in place; it should be that easy.

 Okay, you’ve taken care of all the environments, distributions, configuring, and
automating, including the tedious first-time set up. It’s time for the fun I promised at
the beginning of the chapter! Continuous development is up next!

3.4 Working in continuous development
Continuous development is the ability to work uninterruptedly in your code base, and
by interruptions I don’t mean pesky project managers asking what you’re up to or
coworkers asking for help with a bug they can’t seem to track down. When I say inter-
ruptions, I mean the repetitive stuff that slowly pecks away at your work day, such as
re-executing node every time your application changes. Even now, with your fancy new
build process in place, do you have to run it yourself every time files change? No way!
You don’t have time for all that. You’ll use yet another task to do that.

 Then there’s the smaller stuff, like saving your changes and refreshing your browser.
You’ll get rid of that too, by letting the tools do that. Repetitive routines don’t carry
much prestige in Build First systems. Let’s see how much you can automate away from
your workflow. This isn’t to prove you can automate anything; the benefit instead lies in
that you can spend more time doing what matters: thinking and tinkering with code.

 The first step you’re going to take in this direction is investing in a good watch (in
the figurative sense—using a watch task in your favorite task runner), which will allow
you to have the build process restart itself whenever you save changes to your files.

3.4.1 Waste no time, use a watch!

If you’re like me, you hit save or change tabs every few seconds. You can’t afford to
run a full build every time you change a comment or a comma; that would be a tre-
mendous waste of your time. Yet many people do this, because they haven’t found a
better way to go about it yet. You’re reading this, so you’re one step ahead. Kudos.

 One of Grunt’s most useful plugins is, undoubtedly, grunt-contrib-watch. This
plugin will watch your file system for changes to your code and run the tasks affected
by those code changes. Whenever a file change affects one of your build tasks, you
should execute that task again. This is one of the pillars of continuous development,
because you won’t have to do anything; the build process will run itself as needed.
Let’s look at a quick example:

watch: {
 rebuild: {
 tasks: ['build:debug'],
 files: ['public/**/*']
 }
}

67Working in continuous development
With this example, called 04_watch-task, and found under ch03 in the code samples,
you can run the build process again entirely whenever any file changes or is created in
your public folder. Now you won’t ever have to worry about constantly running the
build; it can run itself!

 But even this approach isn’t the most efficient way to do it, because this will run all
your build tasks, even the ones unaffected by the changed file. For example, it won’t
matter if you edit a LESS file; any JavaScript-related tasks such as jshint will also run,
because they’re part of the build, too. To correct that behavior, you should break
down watch into many targets: one for each build task that can be affected by file
changes. The following listing is a brief demonstration of what I’m talking about.

watch: {
 less: {
 tasks: ['less:debug'],
 files: ['public/css/**/*.less']
 },
 lint_client: {
 tasks: ['jshint:client'],
 files: ['public/js/**/*.js']
 },
 lint_server: {
 tasks: ['jshint:server'],
 files: ['srv/**/*.js']
 }
}

Breaking down your watch like this might seem tedious, but it will be well worth it. It
will speed up your continuous development flow, because you’re getting into a mode
where what you build is what changed, rather than blindly rebuilding everything,
every time. You can find the fully working sample in the code listings, labeled as ch03/
05_better-watch-closely.4

 Watching for such changes in your build is great, but what if you could expand on
that, watching for changes to your Node application? Well, it turns out you can and
should do that. Gather round, and let’s talk about nodemon.

3.4.2 Monitoring for changes to the Node app

In the continuous development field, you try as hard as possible not to repeat any-
thing incessantly, and to stay DRY instead of WET. You just saw how beneficial that
could be—not having to run the build every time something changes. Now you’ll take
the same shortcut for Node.

 Think of the nodemon command as using the node command, except it will moni-
tor for changes and restart your application, running node again so you don’t have to.

Listing 3.2 Breaking down watch into multiple targets

4 You can find the code sample online at http://bevacqua.io/bf/watch-out.

http://bevacqua.io/bf/watch-out

68 CHAPTER 3 Mastering environments and the development workflow
To install it, use npm, with the -g modifier, so that it’s installed globally, making it
readily accessible from the command line:

npm install -g nodemon

Now you can run nodemon app.js, instead of node app.js. By default, nodemon moni-
tors *.js files, but you might want to restrict that even further. In these cases, you can
provide it with a .nodemonignore file, which works much like .gitignore, and lets
you ignore files you don’t want nodemon to monitor. Here’s an example

package control
./node_modules/*

build artifacts
./bin/*

ignore client-side js
./src/client/*

ignore tests
./test/*

Running grunt watch and using another terminal to run nodemon app.js is admit-
tedly a tad faster than running both together through Grunt, due to the overhead
Grunt adds. However, it’s convenient enough to run a single command, not having to
spin up two terminal windows, that it might cancel out the extra overhead introduced.
Generally speaking, there’s a tradeoff of speed (running them separately) versus con-
venience (running them both under Grunt). Personally, I prefer the convenience of
not having to execute an additional command separately.

 Next, we’ll examine how to integrate nodemon into Grunt.

COMBINING WATCH AND NODEMON

There’s a problem you need to resolve before you can integrate nodemon into Grunt, and
that is that both nodemon and watch are blocking tasks: these tasks never end; they sit and
watch for changes to your code. Grunt runs tasks sequentially, waiting for a task to end
before you can run another one. But if neither of them end, the other one can’t start!

 To get around this you could use grunt-concurrent, which will spawn a new process
for each task you provide, and turn you into a happier nerd. Running nodemon through
Grunt can be easily achieved using grunt-nodemon. The following listing is an example.

nodemon: {
 dev: {
 script: 'app.js'
 }
},
concurrent: {
 dev: {
 tasks: ['nodemon', 'watch']
 }
}

Listing 3.3 Using nodemon from Grunt

69Working in continuous development
This example is also in the accompanying source code listings, named 06_nodemon
(under chapter 3.) In this chapter, you’ve improved the sequence of events because
your changes get saved, but you’re still doing the saving!

 Let’s have a quick word about saving changes.

3.4.3 A text editor that cares

Picking the right editor is key to your day-to-day work productivity, and productivity
translates into happiness. Take your time to learn the ins and outs of your editor of
choice. You might feel nerdy the first time you find yourself watching a YouTube video
about a text editor’s shortcuts, but it will be time well spent. You spend most of the day
using code editing tools, so you might as well learn how to exploit the features those
editors provide.

 Luckily, most editors now provide a mechanism to get them to auto-save your
changes. It feels kind of weird at first, but as you get used to it, you’ll fall in love and
never look back. Personally, I like Sublime Text, the editor I typed these words with,
and the one I use for most of my writing. If you’re on a Mac, TextMate seems like a via-
ble option. Other options include WebStorm, which is an IDE specifically tailored for
web development, and then there’s vim, for those who dare learn to use its complex,
shortcut-intensive user interface.

 All the editors I mentioned are capable of auto-saving; if the editor you’re using
isn’t, I strongly suggest you switch to one that is. You’ll be uncomfortable at first, but
you’ll quickly start writing me thank-you notes after using your new text editor.

 Let’s wrap up with talk about the LiveReload technology for browser reloading,
and how you can benefit from it.

3.4.4 Browser refresh is so Y2K

LiveReload is a technology that understands you can’t waste precious time refreshing
your browser whenever something changes. It exploits web sockets, a real-time com-
munication technology that’s available in browsers (and which is awesome). Through
its use of web sockets, LiveReload can decide whether it needs to apply small changes
to your CSS, for example, or perform a full page reload when the HTML changes.

 Enabling it is fairly easy, enough so that we don’t have any excuse not to do it at
this point. It comes bundled with grunt-contrib-watch, so setting it up is as easy as
adding a watch target, as shown in the following listing.

watch: {
 livereload: {
 options: {
 livereload: true
 },
 files: [
 'public/**/*.{css,js}',

Listing 3.4 Enabling LiveReload

70 CHAPTER 3 Mastering environments and the development workflow
 'views/**/*.html'
]
 }
}

Next, you’ll need to install the browser extension and enable it. Now you won’t ever
again need to refresh your browser by yourself while debugging your applications.
There’s also a readily available example5 for you to look at (labeled ch03/
07_livereload in the code samples), filled with all the necessary setup instructions, but
it’s straightforward to get up and running.

3.5 Summary
You made it through the environments and development workflow crash course!
Here’s a quick recap of the teachings in this chapter:

■ The debug and release distributions affect your build flow in different ways;
debug aims for bug catching and continuous development, while release aims
for monitoring and speed optimizations, as you’ll see in the next chapter.

■ Your application should be configured so that secrets don’t make their way to
the source code, and also provide enough flexibility to configure it based on
the environment you’re running.

■ We’ve covered continuous development and how you can benefit from using a
watch task that rebuilds your application and nodemon to restart it after
changes, as well as the importance of picking the right tool for text editing.

In the following chapter we’ll cover in more detail the performance optimizations
that you can consider for release builds, what continuous integration is and how to
use it to your advantage, how you should monitor analytics in your application, and
finally, how to deploy your application to hosted environments such as staging and
production.

5 See LiveReload in action using this code sample at http://bevacqua.io/bf/livereload.

http://bevacqua.io/bf/livereload

Release, deployment,
and monitoring
We’ve covered the build process, common build tasks you can perform (and how to
do that using Grunt), and, at a high level, environments and configuration. We dis-
cussed the development environment extensively, but that’s only half the story. The
development environment is where you’ll spend most of your time working,
because you’ll have a system in place, so you can prepare your application for a
release, deploy it to a platform that humans can access, and then monitor the appli-
cation state. Thanks to the Build First mentality, you'll be automating the workflows
I've just mentioned, avoiding repetition, human error, and running tests, all while
saving time, as I promised in chapter 1.

 A continuous integration (CI) platform will help deploy more robust builds to
production by ensuring your tests pass in a hosted environment. As you’ll see later

This chapter covers
■ Understanding release flow and predeployment

tasks
■ Deploying to Heroku
■ Using Travis for continuous integration
■ Understanding continuous deployments
71

72 CHAPTER 4 Release, deployment, and monitoring
in the chapter, CI helps test your code base remotely every time you push to your ver-
sion control system (VCS). Build automation (and continuous development) is crucial
for keeping your day-to-day development efforts productive and efficient. Compara-
bly, having a workflow that’s easy to execute ensures you can deploy your application
as often as needed, without worrying about an embarrassing manual set of tasks that
take half an hour to perform.

 By the end of this chapter, you’ll be ready to perform safe, continuous deploy-
ments, which are similar to continuous development in spirit. They’re both intended
to cut down the repetitive work and reduce human mistakes. The release flow has a
few stages we’re going to follow in this book:

■ The first step is the build process, under the release distribution.
■ Once the build is compiled, you’ll run tests to make sure recent changes didn't

break the build. Minor syntax issues should be constantly resolved during devel-
opment by using lint programs.

■ If the tests succeed, you might get into predeployment operations such as
updating the version number and the release changelog.

■ After that, you’ll investigate deployment options, such as cloud hosting options
and CI platforms.

Figure 4.1 describes this proposed release and deployment flow. As you look at the fig-
ure, keep a mental note of my proposal to deploy to staging first, to make sure every-
thing works as expected in a hosted environment, before going live to production.

 You have a long road ahead; let’s commence by discussing the release and deploy-
ment flow. You’ll visit predeployment operations in detail in section 4.2. Then in sec-
tion 4.3, I’ll tell you all about deployments, and you’ll learn how to deploy an
application to Heroku. Section 4.4 covers continuous integration and the tools you
can use to get CI to do the heavy lifting on your behalf.

Release and deployment flow
Performance concerns Executed as a single

Grunt task alias.
We’ll come back to
these in section 4.2.

Source
code

Deployment

Deploy to staging

Deploy to production

Predeployment

Build

grunt build:release

Optimization

Testing

Compilation

Optimal
built

application

Figure 4.1 Proposed release and deployment flow

73Releasing your application
4.1 Releasing your application
When preparing your application for release, you’ll want to place the web’s best prac-
tices on your plate. In chapter 2, we discussed minification, shrinking your assets for
better performance, and concatenation, joining files together to reduce the number of
HTTP requests, which you’ll definitely want to include in your release builds. These
improve the web application’s user experience by bundling your developer-readable
source code into single files containing everything in the source code, but in a com-
pressed form to hasten downloads. In that chapter we also covered sprite maps and
sprites, large files containing many images. These would be used for debug distribu-
tions, too, for the sole reason that they enable you to keep debug and release more
tightly bound together and less dissimilar. Otherwise you’d need to reference the indi-
vidual icons in your debug CSS, and then somehow reference the spritemap and each
icon’s position in release, defeating the purpose of uniting both build flows and
repeating yourself, breaking the DRY principle.

 Minification, concatenation, spriting—what else is there to a release flow? In this
section we’ll go over image optimization and asset caching; then we’ll move on to the
deployment flow, semantic versioning, and keeping changelogs up-to-date effortlessly.

4.1.1 Image optimization

Concatenated and minified JavaScript and CSS files don’t tell the whole story. Images
represent, more often than not, the bulk of a web page’s download footprint, mean-
ing they are even more important to optimize than any other static assets. You already
did a good chunk of optimization in chapter 2, when you examined how to generate a
spritesheet using different images, which is comparable to how concatenation works
for text files, merging many files into a single one. The other optimization, minifica-
tion, reduces the contents of script and stylesheet files by shortening variable names
and other micro-optimizations that minifiers perform. In the world of images, you
have various ways to compress files, resulting in gains somewhere between 9% and
80%, typically above 50%. Luckily for us, certain Grunt packages, much like we’re
becoming accustomed to, do the heavy lifting for us in this regard.

 One such package is grunt-contrib-imagemin, which does exactly what you want:
image compression for different formats such as PNG, GIF, and JPG. Before plunging
into it, I’ll briefly cover the two aspects of image optimization it can help you with:
lossless compression and interlacing.

LOSSLESS IMAGE COMPRESSION

Lossless image compression is, much like JavaScript minification, tasked with the removal
of unimportant bits of data from your image’s raw binary data. The important thing
to notice is that lossless compression doesn’t alter the image’s appearance, but solely
its binary representation. The only result of lossless compression is a smaller image
that looks identical to the larger image. Lucky for us, smarter people have spent time
working on tools that do advanced image compression work for us. You can specify
the path to your image and have their algorithms work at it. Furthermore,

74 CHAPTER 4 Release, deployment, and monitoring
grunt-contrib-imagemin configures these low-level programs with the right parame-
ters, so you don’t have to. Note that lossless compression produces modest byte sav-
ings compared to lossy compression; it’s great, however, when you can’t afford to lose
any image quality. When you can afford to lose image quality (and most of the time
the losses are almost unnoticeable), you should use lossy image compression.

LOSSY IMAGE COMPRESSION

Lossy compression is an image compression technique where inexact approximation
is applied (also known as partial data discarding) when re-encoding the image, result-
ing in far greater byte savings than those gained through lossless compression (up to
90% savings), where the removed information is usually only metadata such as geo-
location, camera type, and so on. The grunt-contrib-imagemin package uses lossy
compression by default, in addition to lossless compression, to remove unnecessary
metadata. If you only want to use lossless compression, you should consider using the
imagemin package directly.

INTERLACING IMAGES

The other image optimizing task you’re going to study is interlacing.1 Interlaced
images have a larger size than regular images, but these added bytes are usually well
worth it, because they improve perceived performance. Even though the image might
take a little longer to complete downloading, it will start rendering faster than normal
images do. Progressive images work exactly as they sound. They render a minimum
view of the pixels in the image, which roughly looks like your complete image, and
then they’re progressively enhanced (as more data gets streamed to the browser),
until the full-quality image is available.

 Traditionally, images load top-down, in full quality, which translates into a faster
download time but slower perceived rendering. The time to view the entire image
equals the completion time. In progressive rendering mode, humans perceive a faster
experience because they don’t have to wait as long to see a (garbled) view of the
entire image.

SETTING UP GRUNT-CONTRIB-IMAGEMIN

Setting up grunt-contrib-imagemin is, happily, as easy as the rest of the tasks we’ve
gone over. Keep in mind that the important bits are in learning what the tasks do and
how and when to apply them. The following listing configuration optimizes *.jpg
images during release builds.

imagemin: {
 release: {
 files: [{
 expand: true,
 src: 'build/img/**/*.jpg'

1 Learn more about how interlacing improves perceived performance by visiting http://bevacqua.io/bf/
interlacing. There’s also an animated GIF that better explains how an interlaced image works.

Listing 4.1 Optimizing images during release builds

http://bevacqua.io/bf/interlacing
http://bevacqua.io/bf/interlacing

75Releasing your application
 }],
 options: {
 progressive: true // progressive jpgs
 }
 }
}

Listing 4.1 doesn’t need any extra configuration to compress the images; that’s done
by default. A fully working example can be found in the accompanying source for this
chapter, labeled ch04/01_image-optimization, with a complete build workflow for
both the debug and release distributions. Now that you’ve made the web a slightly
better place for humans to drift around aimlessly, you can turn your attention to static
asset caching.

4.1.2 Static asset caching

In case you’re unfamiliar with the term, think of caching as photocopying history
books from the library. Rather than going to the library every time you want to read
them, you might prefer to print copies of a few pages, take those home, and read
them whenever you please without having to hit the library again.

 Caching in the web is more complicated than photocopying books borrowed from
a library, but that should give you the gist of it.

EXPIRES HEADERS

A best practice you should definitely follow is using Expires headers for your static
assets. This header, according to the HTTP protocol, tells the browser not to request
the resource again if it was requested at least once (and therefore cached), and the
cached version hasn’t become stale. The expiration date in the Expires header deter-
mines when the cached version is no longer considered valid, and the asset has to be
redownloaded. An example Expires header might be Expires: Tue, 25 Dec 2012
16:00:00 GMT.

 This is both an awesome and a terrible practice. It’s awesome for humans, because
after their first visit to one of your pages, they don’t need to redownload resources
their browser stored in its cache, saving them requests and time. It’s terrible for us, the
developers, because it won’t matter if you deploy changes to your assets, humans
won’t download them anymore.

 To solve that inconvenience, and make Expires headers useful, you can rename
your assets every time you deploy changes to them, appending a hash to their names,
which forces browsers to download the file again, because for all intents and purposes,
it’s a different file from what they used to have in their cache.

HASHING A hash is a function that returns a fixed-length value that’s an
encoded representation of data. In your situation, the hash could be com-
puted from the asset contents and its last modified date. One such hash might
be a38cbf9e. Although seemingly arbitrary, there’s no randomness involved.
That would defeat the purpose of using an Expires header, because files
would always have different names and be requested again every time.

76 CHAPTER 4 Release, deployment, and monitoring
Once you’ve computed a hash, you can use it as a query string parameter in your
page, /all.js?_=a38cbf9e, or you can append it to the filename, such as /a38cbf9e
.all.js. Alternatively, you can add the hash to an ETag header. Choosing the right
approach is a matter of identifying your needs. If you’re dealing with static assets such
as JavaScript resources, then you’re probably better off hashing the filename (or its
query string) and using an Expires header. If you’re dealing with dynamic content,
setting the hash in an ETag is preferred.

USING LAST-MODIFIED OR AN ETAG HEADER

An ETag header uniquely identifies one version of a resource. Similarly, Last-
Modified identifies the last modification date of the resource. If you use either of
these headers, then you should use the max-age modifier in the cache-control
header, instead of the Expires header. This combination allows for softer caching, as
the user agent can determine whether the cached copy should be used, or if the
resource should be requested again. The following example shows how to combine
the ETag and the cache-control headers:

ETag: a38cbf9e
Cache-Control: public, max-age=3600

The Last-Modified header behaves as an alternative to the ETag header, for conve-
nience. Here we don't specify a uniquely identifying ETag, but achieve the same
uniqueness by setting a modification date:

Last-Modified: Tue, 25 Dec 2012 16:00:00 GMT
Cache-Control: public, max-age=3600

Let’s find out how you can use Grunt to create hashes for your file names that can
then be used to set far-futures Expires headers safely.

CACHE BUSTING WITH GRUNT

Within your build process, you can do little to set HTTP headers, as those must go out
with each response, rather than be statically determined. But what you can do is assign
hashes to your assets using grunt-rev. This package will compute the hash for each
of your assets and then rename them, appending the corresponding hash to their
original names. For example, public/js/all.js would be changed to something
such as public/js/1be2cd73.all.js, where 1be2cd73 would be the computed hash
for the contents of all.js. One issue emerges from this task, and it’s that now your
views won’t reference the correct assets, because they’ve been renamed with a hash in
front of them. To remedy that, you can use the grunt-usemin package, which looks
for static asset references in your HTML and CSS and refreshes them with the updated
filenames. That’s exactly what you need. The relevant Grunt configuration then looks
like the following listing (labeled ch04/02_asset-hashing in the samples).

rev: {
 release: {
 files: {

Listing 4.2 Updating filenames

77Releasing your application
 src: ['build/**/*.{css,js,png}']
 }
 }
},

usemin: {
 html: ['build/**/*.html'],
 css: ['build/**/*.css']
}

Keep in mind you don’t have any use for either of these tasks in the debug flow,
because these are optimizations that do nothing to benefit you during development,
so it might be appropriate to name their targets release to make that distinction
more explicit. The usemin task, however, is written in such a way that Grunt targets
have a special meaning. The css and html targets are respectively used to configure
which CSS and HTML files you want to update with the hashed filenames, but targets
such as release would be ignored by usemin.

 The next technique we’ll cover involves inlining CSS in a style tag to avoid the
render-blocking request for CSS, resulting in faster page loads.

4.1.3 Inlining critical above-the-fold CSS

Browsers block rendering whenever they encounter a CSS resource they need to
download. Yet, we’ve taught each other for years to place CSS at the top of our pages
(in the <head>), so users won’t see a flash of unstyled content (abbreviated as FOUC).
The inlining technique aims to improve page load time speed without damaging user
experience by avoiding FOUC. This technique only works effectively if you’re render-
ing your views on the server side as well as the client side, as we explore in chapter 7.

 To implement this feature, you have to do a number of different things:

■ First, you need to identify the “above-the-fold” CSS; these are the styles that are
required to correctly render the visible elements on the page, on first load.

■ Once we’ve identified the styles that are effectively used above the fold (those
that the browser needs to render the page properly and avoid the FOUC), you
need to inline them in a <style> tag on the <head> of your pages.

■ Last, now that the required styles are inlined in a <style> tag, you can elimi-
nate the render-blocking request for the CSS style sheet by deferring the request
until after the onload event has triggered, using JavaScript.

■ Naturally, you wouldn’t want to leave users with JavaScript turned off stranded,
and because we’re good citizens of the web, you’ll also use a fallback
<noscript> tag to make the render-blocking request anyway.

As you’ve probably noticed, this is a complicated and error-prone process, much like
the case study in chapter 1, where Knight’s Capital lost half a billion dollars due to
human error. It’s probably not going to be that catastrophic for you if something goes
wrong, but automating this process is almost mandatory: there’s too much work
involved to be done every time your styles change, or whenever your markup changes!

 Let’s learn how we can use Grunt to automate this process, using grunt-critical.

78 CHAPTER 4 Release, deployment, and monitoring
HAVING GRUNT DO THE HEAVY LIFTING

Using grunt-critical for this purpose is incredibly easy, although it does provide a
wealth of configuration options. In the following code, you’ll find the configuration
for a simple use case. In this case, you’re extracting critical CSS from a page and inlin-
ing those styles after the build, inside a <style> tag. critical goes the extra mile of
deferring the rest of the styles so as not to block rendering, and it also adds the
<noscript> fallback tag for those that have JavaScript disabled:

critical: {
 example: {
 options: {
 base: './',
 css: [
 'page.css'
]
 },
 src: 'views/page.html',
 dest: 'build/page.html'
 }
}

You probably are already familiar with all of the provided options, which are file paths.
The base option indicates the root directory that should be used when finding abso-
lute resource paths such as /page.css. Once you set up Grunt to perform inlining on
your behalf, remember to serve the upgraded HTML files, rather than the prebuilt
ones.

 Before switching gears and soaking in the thermal spring waters of automated
deployments, you need to reflect upon the importance of testing a release build
ahead of each deployment to mitigate the possibility of the spring being in an active
volcanic area.

4.1.4 Testing before a deployment

Before you get into the deployment stage, or even the predeployment stage as we’ll
explore soon, you need to test your release build. Testing a release build becomes
important when there’s a deployment in your future, because you want to make sure
your application behaves as you expect, or at the least, behaves as the tests you’ve writ-
ten expect it to behave.

 In the next part of the book, we’ll delve into the underworld of application testing
and examine two types of testing (though many, many more exist) in detail. These are
unit testing and integration testing:

■ Unit testing: Here you test individual components of your application by isolat-
ing them, making sure the components work fine on their own.

■ Integration (or end-to-end) testing: This takes a series of unit-tested compo-
nents and tests the interactions between them, making sure they communicate
appropriately.

79Predeployment operations
It’ll be a while before you embark on testing practices and examples. We’ll discuss test-
ing practices and see examples in chapter 8. Keep in mind that before deployments,
you need to test your application, reducing the odds of shipping a faulty build to one
of your hosted environments, particularly if said environment is production. Let’s dis-
cuss a few more tasks you can perform after a release is tested but before it’s deployed.

4.2 Predeployment operations
Once you’ve prepared a build for release and had it carefully tested, you’re ready to
deploy. But I have a couple of important predeployment tasks I want to mention
before taking a swim in the deployment hot springs.

 Figure 4.2 is an overview of the deployment flow, as well as the operations that
come before a build can be considered deploy-ready. It also shows how you’re going to
progressively roll out your update to different environments, ensuring maximum
predictability.

PREDEPLOYMENT OPERATIONS
■ Semantic versioning: This helps keep track of meaningful application versions.

Semantic versions are formatted similarly to MAJOR.MINOR.PATCH-BUILD. This
standard helps avoid confusion when managing dependencies. Keeping your
application versioned is important if you want any control over what code is cur-
rently deployed on hosted environments, such as production. It enables you to
roll back to an older version when things go awry. Considering this is fairly easy
to set up, and taking into account how costly it is to be unprepared for deploy-
ments not panning out, versioning becomes a no-brainer.

■ Change logging: A changelog is a list of changes that were made throughout the
history of your project, divided by which version they were introduced in (partly
why keeping versions is important) and further segmented as bug fixes, break-
ing changes, and new features. By convention, changelogs in git repositories
are often placed at the project root, and named something along the lines of

Feature tracking pairs each feature, or bug fix,
with the specific version it was conceived in.

Assign a meaningful,
unique version number.

Deploy if all tests are passing
in the previous environment.

Deployment flow

Staging
Optimal

built
application

Predeployment

Semantic versioning

Change logging

versioning concerns

Production

Figure 4.2 Versioning before a deployment and progressive deployment rollout. Testing by QA team
in staging ensures robustness before deployment to production.

80 CHAPTER 4 Release, deployment, and monitoring
CHANGELOG.txt, or using whatever extension you prefer (such as md for Mark-
down,2 a text-to-HTML conversion tool).

We’ll delve into how you can better allocate your changelog upkeep time in a bit, but
first let’s explore the details of semantic versioning.

4.2.1 Semantic versioning

Because you’re using Node, you might be familiar with the term semantic versioning.
npm uses semantic versioning3 for all packages, because it’s a powerful specification to
manage dependency resolution among different Node modules. Because every Node
application you produce already has a package.json, and considering those contain a
semantic version in them, you’ll use these to tag your releases before deployments.

 When I talk about versioning, I mean updating the package version and then creat-
ing a tag (a moment in your version history you can refer to) in your VCS. You can set up
any scheme you want when it comes to numbering your releases, but the important part
is that you don’t overwrite a release; you shouldn’t make two releases using the same
version number. To ensure this uniqueness, I’ve settled for increasing the build number
after every build (regardless of distribution) automatically with Grunt, and I also
increase the patch number when I perform a deploy. Major version changes are inten-
tionally manual, as those are probably introducing breaking changes. The same applies
for minor version changes, as new features are usually introduced in new minors.

 With Grunt, you could perform these version increments (from now on referred
to as bumps) using the grunt-bump package. It’s easy to configure, it does the version
tagging for you, and it even commits the changes to the package.json file for you.
Here’s an example:

bump: {
 options: {
 commit: true,
 createTag: true,
 push: true
 }
}

These are, in fact, the defaults provided by this task. They’re sensible enough that you
don’t have to configure it at all. The task will bump the version found in package
.json, commit exactly that file with a relevant message, and then create a tag in git to
finally push those changes to the origin remote. If you turn off all three of those
options, the task only updates your package version. Sample ch04/03_version-bump
shows this behavior in action.

 Once versioning is sorted out, you’ll want to set up a changelog, enumerating what
changed since the previous release. Let’s mull that over.

2 The Markdown format is a plain-text representation of HTML that’s easy to read, write, and convert into
HTML. Read the original article introducing Markdown in 2004 at http://bevacqua.io/bf/markdown.

3 You can read more about semantic versioning at http://bevacqua.io/bf/semver.

http://bevacqua.io/bf/markdown
http://bevacqua.io/bf/semver

81Predeployment operations
4.2.2 Using changelogs

You’re probably used to reading changelogs from products that interest you when new
releases come out (games, in particular, have a strong presence of changelogs in their
culture), but have you ever maintained one yourself? It’s not as hard as you might think.

 Setting up a changelog—as an internal document that helps track changes made
over time—could be a positive addition to your project even if you’re not showing it to
consumers.

 If you have any sort of transparency policy, or you don’t like keeping humans in
the dark, then a changelog becomes almost mandatory to maintain. You shouldn’t
update the changelog every time you build for release, because you might want to pro-
duce a release build for debugging purposes. You shouldn’t update them before test-
ing, either. If testing fails, then the changelog would be out of sync with the last
release-ready build. Then you’re left with the need to update the changelog after you
produce a build that passes all of the tests. Then and only then can you update the
changelog to reflect the changes made since the last deployment.

 Putting changelogs together is often hard because you forget what changed since
the previous release, and you don’t want to go through the git version history figur-
ing out which changes deserve a spot in the changelog. Similarly, updating it by hand
every time you make a change is tedious, and you might forget to do that if you’re in
the zone. A better alternative might be to set up grunt-conventional-changelog and
have it build a changelog for you. All you’d have to do then is commit messages that,
by convention, start with fix for bug fixes, feat when new features are introduced,
or BREAKING when you break backwards compatibility. Furthermore, this package will
allow you to edit the changelog by hand once it’s done with its own parsing and
updates.

 As far as configuration goes, this task doesn’t need any. Here are a few sample com-
mit messages:

git commit -m "fix: buffer overflows, closes #17"
git commit -m "feat: reticulate splines for geodesic cape, closes #23"
git commit -m "feat: added product detail view"
git commit -m "BREAKING: removed POST /api/v1/users/:id/kill endpoint"

4.2.3 Bumping changelogs

The bump-only and bump-commit tasks allow you to bump the version without commit-
ting any changes, so that you can then update your changelog (as you’ll see in a min-
ute). Last, you should bump-commit to check in both package.json and
CHANGELOG.txt at once in the same commit. Once you configure the bump task to
also commit the changelog, you can now use the following alias to update your build
version and changelog in one fell swoop. You can find an example using grunt-
conventional-changelog in the samples, listed as ch04/04_conventional-changelog.

grunt.registerTask('notes', ['bump-only', 'changelog', 'bump-commit']);

82 CHAPTER 4 Release, deployment, and monitoring
Now you’re done building for release, your tests are passing, and you’ve updated your
changelog. You’re ready to deploy to a hosted environment from which you can serve
your application. In the past, it was fairly commonplace to deploy applications merely
by means of uploading your built packages by hand to your production servers. You’ve
come a long way from those good old days, and deployment tools, as well as applica-
tion hosting platforms, have gotten better.

 Let’s next dive into Heroku, a Platform as a Service (PaaS) provider that enables
you to deploy your application easily from the command line.

4.3 Deploying to Heroku
Setting up a deployment flow can be as hard as preparing sushi or as easy as ordering
take-out; it all depends on how much control you want over the deployment. At one
end of the spectrum you have services such as Amazon’s Infrastructure as a Service
(IaaS) platform, where you have full control over your hosted environment. You can
pick your preferred operating system, choose how much processing power you’d like,
configure it at will, install things on it, and then deal with the whole SysOps heavy lift-
ing, such as securing the application against attacks, setting up proxies, picking a
deployment strategy that guarantees uptime, and configuring most everything from
the ground up.

 On the other end of the spectrum are services where you don’t have to do any-
thing, such as those solutions often offered by domain name registrars such as
GoDaddy. In these solutions you generally pick a theme, flesh out a few pages of static
content, and you’re done; everything else is done for you.

 For the purposes of this book, I looked into the possibility of explaining how to
host an application on Amazon, but I concluded that it’d be going too far off-scope.
That being said, I’ll be mentioning near the end of this section a way in which you can
explore this alternative on your own.

 I decided to go with Heroku (although there are similar alternatives, such as Digi-
talOcean), which isn’t as complicated as setting up an instance on Amazon Web Ser-
vices (AWS), but is fairly nontrivial, as opposed to using a website generator. Heroku
simplifies your life by easily enabling you to configure and deploy your application to
a hosted environment on their platform, straight from the command line. As I men-
tioned previously, Heroku is a Platform as a Service (PaaS) provider where you can
host your application regardless of language or lack of server administration knowl-
edge. In this section we’ll go over the deployment of a simple application to Heroku,
step by step.

 At the time of this writing, Heroku offers a tier that allows you to host your applica-
tions with them for free. Let’s get started there. You can find these instructions4 in the
accompanying source code as well.

4 Find the Heroku deployment example online at http://bevacqua.io/bf/heroku.

http://bevacqua.io/bf/heroku

83Deploying to Heroku
1 Go to https://id.heroku.com/signup/devcenter, and enter your email.
2 The next manual step you need to follow is installing their toolbelt, a series of

command-line programs that help you manage your applications hosted on
Heroku. You can find it at https://toolbelt.heroku.com, and then follow the
instructions to run heroku login, which you can find on that same website.

3 You’ll then need a Procfile, which is a fancy file to describe the OS processes
your application runs on.

Heroku’s definition of a Procfile can be found below. Note that there are also a few
more steps to this process that can be found a few paragraphs later.

PROCFILE A Procfile is a text file named Procfile placed in the root of your
application that lists the process types in an application. Each process type is a
declaration of a command that’s executed when an instance (called dyno in
Heroku’s jargon) of that process type is started. You can use a Procfile to
declare various process types, such as multiple types of workers, a singleton
process like a clock, or a consumer of the Twitter streaming API.

Long story short, for most well-designed Node applications out there, the Procfile will
look similar to the following code:

web: node app.js

As far as the application goes, you’re going for the bare minimum, because this is a
taste of what deploying to Heroku feels like. app.js could be as small as the following
snippet of JavaScript (ch04/05_heroku-deployments):

var http = require('http');
var app = http.createServer(handler);

app.listen(process.env.PORT || 3000);

function handler (req, res) {
 res.writeHead(200, { 'Content-Type': 'text/plain' });
 res.end('It\'s alive!');
}

Note that you use process.env.PORT || 3000, because Heroku will provide your
application with a port it should listen on that will be exposed on the environment
variable named PORT.

 Then you use 3000 for local development. Now, here are a few more steps to take:

1 Once you’re sitting on your project root, execute the following in terminal, to
initialize a git repository:

git init
git add .
git commit -m "init"

2 Next create the app on Heroku with heroku create. This is a one-time thing.

https://id.heroku.com/signup/devcenter
https://toolbelt.heroku.com

84 CHAPTER 4 Release, deployment, and monitoring
At this point, your terminal should look similar to figure 4.3.

On every deploy you want to make, you can push to the heroku remote using git
push heroku master. This will trigger a deploy, which looks something like figure 4.4.

If you want to pull up the application in the browser, use the following command:

heroku open

There’s one caveat about Heroku and PaaS providers. When it comes to deploying
build results, there’s no simple solution. You shouldn’t include build artifacts in your
repository, as that may cause undesirable results such as forgetting to rebuild after

Figure 4.3 Creating an app on Heroku using their CLI

Figure 4.4 Deploying to Heroku—as simple as git push

85Deploying to Heroku
changing something. You shouldn’t get too comfortable building on their platforms,
either, because building is something that should be done locally or on an integration
platform, but not on the application server itself, because that would put a dent in
your application’s performance.

4.3.1 Deploying builds

The problem is you shouldn’t put build results in version control, because those are
the output of your source. Instead you should build before deployments, and deploy
the build results along with the rest of your code. Most PaaS providers don’t offer
many alternatives. Platforms such as Heroku take deployments from Git when you
push to their remote, but you don’t want to include the build artifacts in revision con-
trol, so that becomes an issue. The solution: treat Heroku as you would any continu-
ous integration platform (more on that in section 4.4), and allow Heroku to build
your application in its servers.

 Heroku doesn’t usually install devDependencies for Node projects, because it uses
npm install –-production, and you need to use a custom buildpack to get around
that. Buildpacks are interfaces between the language you use and the Heroku plat-
form, and they’re collections of shell scripts. Creating an application with the custom
Grunt-enabled buildpack is easy using the following command, where thing is the
name of your app on Heroku:

heroku create thing --buildpack https://github.com/mbuchetics/heroku-
buildpack-nodejs-grunt.git

Once you’ve created an application using the custom buildpack, you could push the
way you usually do, and that would trigger a build on Heroku servers. The last thing
you need to set up is a heroku task:

grunt.registerTask('heroku', ['jshint']);

Heroku will terminate deployments if the build fails, keeping the previously deployed
application unaffected by failed builds. There’s a detailed explanation in the accom-
panying samples, listed as ch04/06_heroku-grunt, which will walk you through setting
this up.

 Let’s take a look at how you can fit multiple environments in a single Heroku
application.

4.3.2 Managing environments

If you want to set yourself up so you can host multiple environments5 on Heroku, such
as staging and production, use different git remote endpoints to achieve this. Cre-
ate a remote other than heroku with the CLI:

heroku create --remote staging

5 Heroku has advice on managing multiple environments. Go to http://bevacqua.io/bf/heroku-
environments.

http://bevacqua.io/bf/heroku-environments
http://bevacqua.io/bf/heroku-environments

86 CHAPTER 4 Release, deployment, and monitoring
Instead of git push heroku master, you should now do git push staging master.
Similarly, instead of doing heroku config:set FOO=bar, you now need to explicitly
tell heroku to use a particular remote, such as heroku config:set FOO=bar

--remote staging. Remember environment configuration is environment-specific,
and should be treated as such, so environments shouldn’t share API keys to third-party
services, database credentials, or any authentication data in general.

 Now that you can configure and deploy to specific environments directly from
your command line, it’s time to learn about a practice known as continuous integra-
tion, which will help tighten the leash on overall code quality. If you want to look into
deployments to Amazon Web Services, there’s a small guide6 you can follow in the
accompanying source code (labeled ch04/07_aws-deployments in the samples).

4.4 Continuous integration
Martin Fowler is one of the most renowned proponents of continuous integration. In
his own words,7 Fowler describes CI as follows.

CONTINUOUS INTEGRATION is a software development practice where members
of a team integrate their work frequently; usually each person integrates at
least daily, leading to multiple integrations per day. Each integration is veri-
fied by an automated build (including test) to detect integration errors as
quickly as possible. Many teams find that this approach leads to significantly
reduced integration problems and allows a team to develop cohesive software
more rapidly.

Furthermore, he entices us to run the test suite in an environment that’s as close to
our production environment as possible. The implication is that your best bet, when it
comes to testing your application, is doing it in the cloud, the way you do your host-
ing. CI platforms such as Travis-CI provide features like build error notifications and
access to the full build logs, detailing everything that happened during the build (and
its testing).

 I mentioned Travis-CI; let’s see how we can set ourselves up in such a way that we
can remotely add builds to a queue on its platform on every commit made to our
repository. Then Travis-CI build servers will process this queue one item at a time, run-
ning our builds and letting us know about the results.

4.4.1 Hosted CI using Travis

Continuous integration means to run tests on a remote server (which is as similar as
possible to the production environment) in hopes of catching bugs that would other-
wise make their way to the general population. Travis-CI is one CI platform (Circle-CI
is another) where you can get feedback remotely on the result of a build once you’ve
properly configured it. If the build is successful, you won’t even notice. If the build

6 Walk through the deployment process to AWS with this code sample at http://bevacqua.io/bf/aws.
7 Read Fowler’s full article on continuous integration at http://bevacqua.io/bf/integration.

http://bevacqua.io/bf/aws
http://bevacqua.io/bf/integration

87Continuous integration
fails, you’ll get an email notification telling you someone broke your build (oops!).
Later, when a subsequent push fixes the build, you’ll get another notification letting
you know about the fix. Additionally, you can also access full build logs on the Travis
website, which always comes in handy when figuring out why a build failed. Figure 4.5
shows one such email notification.

 Setting up CI is almost too easy in this day and age. The first thing you’ll need to
do is create a .travis.yml file at the project root. In the file, you’ll need to declare
the language you’re using, which in your case is identified as node_js, the runtime
version you’re testing your builds against, and a series of scripts to execute before,
during, and after the integration test. For the purposes of illustration, such a file
might look like the following code:

 language: node_js

 node_js:
 - "0.10"

 before_install:
 - npm install -g grunt-cli script: - grunt ci --verbose --stack

CONFIGURING TRAVIS AND GRUNT

Before executing your tests, you need to install the command-line interface for Grunt,
grunt-cli, through npm. You’ll need it in the integration test server the way you need
it in your development environments so you can run Grunt tasks. You can use the
before_install section to install the CLI.

 All that’s left then is to set up a ci task for Grunt. The ci task could run jshint to
mitigate syntax errors, just like you’re already doing locally every time something
changes, thanks to your newfangled continuous development workflow. You should
configure the ci task to run unit and integration tests as well, on top of linting your
code with jshint.

 The real value in CI comes from having the remote server build your entire appli-
cation and apply your tests (lint included) against the code base, ensuring you don’t
depend on files not checked into version control or dependencies you might have
installed locally but not made available in your code base at large.

 You’ll probably want to try out this example yourself, and I recommend you do so,
because it’s a good exercise for deployment-craving minds. You can follow the

Figure 4.5 A typical Travis
notification for a build fix

88 CHAPTER 4 Release, deployment, and monitoring
detailed instruction set I laid out in the accompanying sample repository,8 named
08_ci-by-example, under ch04. Once you’re done with that, you might as well learn
about continuous deployments, a practice that may or may not fit into your workflow,
but one that you should be fully aware of, regardless.

4.4.2 Continuous deployments

The Travis platform supports continuous deployments to Heroku.9 Continuous deploy-
ments are a fancy way of saying that every single time you push to version control, you
also trigger a build job in the CI server (which you’re already doing as of last section,
when you turned on Travis CI integration). When those builds succeed, the CI server
deploys on your behalf to the release environments of your choosing.

 In my experience, continuous deployments are a two-edged sword. When they work,
you are cutting into a world of joy and less tedious deployments where passing the build
and test integration cycle is validation enough to push to production. But you have to
be confident that you’ve got enough tests in place to catch errors sensibly. A safe bet
might be to enable continuous deployment to your staging environment rather than
directly to production. Then, you’d make sure there are no issues in staging, and per-
form a deploy to production. This workflow looks like figure 4.6.

 There’s work involved in enabling continuous deployments to Heroku. You need
an API key from Heroku, and you need to encrypt it and then configure .travis.yml
with the encrypted data. I’ll leave that up to you, now that I’ve voiced my concerns
about deploying to production directly. If you choose to do that, visit http://
bevacqua.io/bf/travis-heroku for instructions.

 We’ve spent the majority of this chapter addressing deployments, which is a good
thing. Now you can finally turn your attention to the options you have when it comes

8 Find the fully documented code sample online at http://bevacqua.io/bf/travis.
9 Read the article on Travis continuous deployments to Heroku at http://docs.travis-ci.com/user/

deployment/heroku/.

Continuous deployment flow

On every push, a build is
triggered on the CI server.

Source
code

Performed automatically by the CI server
once tests are passing in your build.

It’s not a bad idea to perform this deployment
by hand, or at the very least, supervise it.

Staging

Continuous integration server

Runs your build and tests

Deploys if everything succeeds
Production

Figure 4.6 Proposed continuous deployment flow

http://bevacqua.io/bf/travis
http://docs.travis-ci.com/user/deployment/heroku/
http://docs.travis-ci.com/user/deployment/heroku/
http://bevacqua.io/bf/travis-heroku
http://bevacqua.io/bf/travis-heroku

89Monitoring and diagnostics
to monitoring the state of your application as a whole, and individual requests in par-
ticular, when live in production. You’ll also examine approaches to logging, debug-
ging, and catastrophe tracing.

4.5 Monitoring and diagnostics
Production application monitoring is as important as having loyal customers. If you
don’t appreciate application uptime, your customers won’t appreciate you. This is to
say that you can’t afford not to monitor your production servers. By monitoring I
mean keeping access logs (who’s visited what, when, and where from), as well as error
logs (what went wrong), and perhaps even more importantly, setting up alerts so that
you are immediately notified when things go expectedly wrong. “Expectedly” wasn’t a
typo; you should expect things to go wrong, and be as prepared as you can for those
situations. Your enterprise probably doesn’t warrant a simian army roaming around
and randomly terminating off instances and services like Netflix advocates10 to ensure
their servers can reliably and consistently endure faults, such as hardware failure, with-
out it affecting the end users consuming their services. But their advice, quoted as fol-
lows, still applies to most every software development effort.

QUOTE FROM NETFLIX BLOG If we aren’t constantly testing our ability to suc-
ceed despite failure, then it isn’t likely to work when it matters most—in the
event of an unexpected outage.

How do you plan for failure, though? Well, that’s the sad part; nothing you do will pre-
vent failure. Everyone has downtime, even giants such as Microsoft, Google, Face-
book, and Twitter. You can plan all you want, but your application is going to fail
regardless of what you do. What you can do is develop a modular architecture that’s
capable of dealing with services going boom and instances going bust. If you can
achieve that modularity, it shouldn’t be as damaging when a single module stops work-
ing, because the rest would still be perfectly functional. We’ll develop notions of mod-
ularity, and the single responsibility principle (SRP) in chapter 5, dedicated to
modular design and a crash-course introduction to the Node.js platform.

 The first rule about Fight Club is you do not talk about Fight Club. Sorry, wrong
movie. The first rule about application monitoring is you log things and set up notifi-
cations when bad things happen. Let’s go over a possible implementation for that.

4.5.1 Logging and notifications

I’m sure you’re more than used to console.log on the front end to inspect variables,
and maybe even as a debugging mechanism, using it to figure out which code paths
are being followed, and helping you nail down bugs. On the server side you have the
standard output and standard error streams, both logging to your terminal window.
These transports (stdout and stderr; more on transports in a minute!) are useful for

10 Learn about Chaos Monkey, a chaos mongering service at Netflix, at http://bevacqua.io/bf/netflix.

http://bevacqua.io/bf/netflix

90 CHAPTER 4 Release, deployment, and monitoring
development, but they are near useless to you if you can’t capture what’s being trans-
mitted to them in a hosted environment, where you can’t monitor the process in your
own terminal.

 Heroku has a mechanism where it captures the standard output of your processes,
so you can access it down the road. It also has add-ons to further extend that behavior.
Heroku add-ons provide much-needed companion services such as databases, email-
ing, caching, monitoring, and other resources. Most logging add-ons would allow you
to set up filtering and notifications; however, I’d advise against leveraging Heroku’s
logging capabilities, as that would be too platform-specific, and it can severely limit
your ability to migrate to another PaaS provider. Dealing with logging on your own
isn’t that hard, and you’ll soon see the upside of doing so.

WINSTON FOR LOGGING

I’m not a huge fan of taking advantage of the Heroku logging facilities, because it
binds your code base to their infrastructure by assuming writing to standard output
will suffice in your log tracking efforts. A more durable and versatile approach would
be to use a multitransport logger rather than writing to stdout. Transports dictate
what happens with the information you’re trying to log. A transport might log to a file,
write a database record, send an email, or send push notifications to your phone. In
multitransport loggers, you can use many of these at the same time, but you’d still use
the same API to perform the logging. Adding or removing transports doesn’t affect
the way you write log statements.

 Node has a few popular logging libraries, and I’ve picked winston because it has
every feature you’re looking for in a logger: logging levels, contexts, multiple trans-
ports, an easy API, and community support. Plus, it’s easily extensible, and people
have written transports for nearly everything you’ll ever need.

 By default, winston uses the Console transport, which is the same as using stdout
directly. But you can set it up to use other transports, such as logging to a database or
to a log management service. The latter are notably flexible in that they provide a plat-
form where you can choose to get notified on important events without changing any-
thing in your application.

 Using a logging solution such as winston is platform agnostic. Your code won’t
depend on the hosting platform to capture standard output to work. To get started
using winston, you have to install the package by the same name:

npm install --save winston

USING --SAVE VS USING --SAVE-DEV

In this case, you’ll use the --save flag rather than --save-dev, because winston
isn’t a build-only package like the Grunt packages you’ve toyed with so far. When pro-
viding the --save flag to npm, the package will be added to your package.json file
under dependencies.

91Monitoring and diagnostics
Once you’ve installed winston, you can use it right away by putting logger where you
used to put console:

var logger = require('winston');

logger.info('east coast clear as day');
logger.error('west coast not looking so hot.');

You might have gotten used to the idea of console being a global variable. In my
experience, it’s not wrong to use globals in this kind of scenario, and it’s one of the
two cases where I allow myself to use globals (the other one being nconf, as I men-
tioned in chapter 3). I like setting all the globals in a single file (even if there are only
two), so that I can quickly scan it and figure out what’s going on when I call something
that’s not otherwise defined in a module, or a part of Node. An illustrative glo-
bals.js might be as follows:

var nconf = require('nconf');

global.conf = nconf.get.bind(nconf);
global.logger = require('./logger.js');

I also propose keeping a single file where you can define the transports for your log-
ger. Let’s kick things off by using a File transport, as well as the default Console one.
This would be the logger.js file referenced in the previous snippet:

var logger = require('winston');
var api = module.exports = {};
var levels = ['debug', 'info', 'warn', 'error'];

levels.forEach(function(level){
 api[level] = logger[level].bind(logger);
});

logger.add(logger.transports.File, { filename: 'persistent.log' });

Now, whenever you do logger.debug, you’ll be logging a debug message to both the
terminal and to a file. Although convenient, other transports offer more flexibility
and reliability, and such is the case of a few transports we’ll be covering in the accom-
panying samples: winston-mail will enable you to send out emails whenever some-
thing happens (at a level that warrants an email), winston-pushover sends
notifications directly in your phone, and winston-mongodb is one of many traditional
logging transports where you write a record in your database.

 Once you’ve made sure to check out the sample listings, you’ll have a better idea of
how configuration, logging, and globals are tied together according to what I sug-
gested. In case you’re religiously against globals, don’t panic. I’ve also included a sam-
ple where they aren’t used. I like globals (in the two cases I mentioned previously) only
because I find it convenient not having to require the same things in every module.

 Now that you’ve spent time dealing with logging, we might as well talk about
debugging Node applications.

92 CHAPTER 4 Release, deployment, and monitoring
4.5.2 Debugging Node applications

You’ll want all the help you can get when it comes to tracing down a bug, and in my
experience the best approach to debugging is increased logging, which is one of the
reasons we’ve talked about it. That being said, you have more than a few ways to
debug Node apps. You might use node-inspector11 inside of Chrome’s DevTools, you
could use the features provided by an integrated IDE such as WebStorm, and then
there’s good old console.log. You could also use the native debugger12 in V8 (the
JavaScript engine Node runs on) directly.

 Depending on which kind of bug you’re tracing, you’ll pick the right tool for the
job. For example, if you’re tracing a memory leak, you might use a package such as
memwatch, which emits events when it’s likely that a memory leak occurred. A more
common use case, such as pinning down a rounding bug, or finding out what’s wrong
with your API calls, can be satisfied by adding log statements (temporarily with con-
sole.log, or in a more permanent fashion with logger.debug), or using the node-
inspector package.

USING NODE INSPECTOR

The node-inspector package hooks onto the native debugger in V8, but it lets you
debug using the full-featured debugging tools found in Chrome as an alternative to
the terminal-based debugger provided by Node. To use it, the first thing you’ll need to
do is install it globally:

npm install -g node-inspector

To enable debugging on your Node process, you can pass the --debug flag to node
when you launch the process, like so:

node --debug app.js

As an alternative, you can enable it on a running process. To do this, you’ll need to
find the process ID (PID). The following command, pgrep, takes care of that:

pgrep node

The output will be the PID for your running Node process. For example, it might be as
follows:

89297

Sending a USR1 signal to the process will enable debugging. This is done using the
kill -s command (note I’m using the process ID from the results of the previous
command):

kill -s USR1 89297

11 Find the open source repository for node-inspector at GitHub at http://bevacqua.io/bf/node-inspector.
12 Read the Node.js API documentation on debugging at http://bevacqua.io/bf/node-debugger.

http://bevacqua.io/bf/node-inspector
http://bevacqua.io/bf/node-debugger

93Monitoring and diagnostics
If everything worked correctly, Node will notify you where the debugger is listening
through its standard output:

Hit SIGUSR1 - starting debugger agent.
debugger listening on port 5858

Now you need to execute node-inspector and then open Chrome, pointing it at the
link provided by the inspector:

node-inspector

If all goes well, you should see something similar to figure 4.7 and have a full-blown
debugger in your Chrome browser ready to use, which will behave (for the most part)
exactly like the debugger for client-side JavaScript applications. This debugger will
allow you to watch expressions, set breakpoints, step through the code, and inspect
the call stack, among other useful features.

 On a higher level than debugging, there’s performance analysis, which will help
detect potential problems in your code, such as memory leaks causing a spike in mem-
ory consumption that could cripple your servers.

4.5.3 Adding performance analytics

You have a few options when it comes to performance profiling, depending on how
specific (we must track down a memory leak!) or generic (how could we detect a spike
in memory consumption?) your needs are. Let’s look into a third-party service, which
can relieve you of the burden of doing the profiling on your own.

 Nodetime is a service you can literally set up in seconds, which tracks analytics such
as server load, free memory, CPU usage, and the like. You can sign up at http://
bevacqua.io/bf/nodetime-register with your email, and once you do you'll be pro-
vided with an API key you can use to set up nodetime, which takes a few lines of Java-
Script to configure:

require('nodetime').profile({
 accountKey: 'your_account_key',
 appName: 'your_application_name'
});

Figure 4.7 Debugging
Node.js code in Chrome
using Node Inspector

http://bevacqua.io/bf/nodetime-register
http://bevacqua.io/bf/nodetime-register

94 CHAPTER 4 Release, deployment, and monitoring
That’s it, and you’ll now have access to metrics, as well as the ability to take snapshots
of CPU load, like the one presented in figure 4.8.

 To conclude, we’ll analyze a useful process scaling technique available to Node
applications, known as cluster.

4.5.4 Uptime and process management

When it comes to release environments, production in particular, you can’t afford to
have your process roll over and die with any particular exception. This can be miti-
gated using a native Node API called cluster that allows you to execute your applica-
tion in multiple processes, dividing the load among them, and create new processes as
needed. cluster takes advantage of multicore processors and the fact that Node is
single-threaded, allowing you to easily spawn an array of processes that run the same
web application. This has the benefit of making your app more fault tolerant; you can
spawn a new process! For example, in a few lines of code, you could configure
cluster to spawn a worker every time another one dies, effectively replacing it:

var cluster = require('cluster');

// triggered whenever a worker dies
cluster.on('exit', function () {
 console.log('workers are expendable, bring me another vassal!');
 cluster.fork(); // spawn a new worker
});

This doesn’t mean you should be careless about what happens inside your processes,
as starting new ones can be expensive. Forking has a cost, tied to the amount of load
your servers are under (requests / time), and also tied to the startup time for your pro-
cess (wait period between spawning it and when it can handle HTTP requests). What
cluster gives us is a way to transparently keep serving responses even if your workers
die: others will come in his name.

 In chapter 3 we introduced nodemon as a way to reload your application whenever a
file changed during active development. This time you’ll review pm2, which is similar
to nodemon in spirit, but geared toward release environments.

ARRANGING A CLUSTER

Configuring cluster can be tricky, and it’s also an experimental API at this time, so it
might change in the future. But the upsides brought forth by the cluster module are

Figure 4.8 Server load over time,
tracked by Nodetime

95Summary
undeniable and definitely appealing. The pm2 module allows you to use fully config-
ured cluster functionality in your application without writing a single line of code,
making it a no-brainer to use. pm2 is a command-line utility, and you need to install it
using the -g flag:

npm install -g pm2

Once installed, you can now run your application through it, and pm2 will take care of
setting up cluster for you. Think of the following command as a drop-in replace-
ment for node app:

pm2 start app.js -i 2

The main difference is that your application will use cluster with two workers (due to
the -i 2 option). The workers will handle requests to your app, and if one of them
crashes, another one will spawn so that the show can go on. Another useful perk of
pm2 is the ability to do hot code reloads, which will allow you to replace running apps
with their newly deployed counterpart without any downtime. You’ll find related
examples in the accompanying source code, listed as ch04/11_cluster-by-pm2, as well
as one on how to use cluster directly, listed as ch04/10_a-node-cluster.

 While clustering across a single computer is immediately beneficial and cheap, you
should also consider clustering across multiple servers, mitigating the possibility of
your site going down when your server crashes.

4.6 Summary
Phew, that was intense! We worked hard in this chapter:

■ You became more intimate friends with release flow optimizations such as
image compression and static asset caching.

■ You learned about the importance of testing a release before calling it a day,
bumping your package version, and putting together a changelog.

■ Then you went through the motions of deploying to Heroku, and I mentioned
grunt-ec2, which is one of many alternative deployment methods.

■ Attaining knowledge on continuous integration was a good thing, as you’ve
learned the importance of validating your build process and the quality of the
code base you released.

■ Continuous deploys are something you can perform, but you understand the
implications of doing that, so you’ll be careful about it.

■ You also took a quick look at logging, debugging, managing, and monitoring
release environments, which will prove fundamental when troubleshooting pro-
duction applications.

All this talk about monitoring and debugging calls for a deeper analysis of architecture
design, code quality, maintainability, and testability, which are conveniently at the core
of part 2 in the book. Chapter 5 is all about modularity and dependency management,
different approaches to JavaScript modules, and part of what’s coming in ES6 (a long

96 CHAPTER 4 Release, deployment, and monitoring
awaited ECMAScript standard update). In chapter 6, you’ll uncover different ways you
can properly organize the asynchronous code that’s the backbone of Node applica-
tions, while playing it safe when it comes to exception handling. Chapter 7 will help
you model, write, and refactor your code effectively. We'll also analyze small code
examples together. Chapter 8 is dedicated to testing principles, automation, tech-
niques, and examples. Chapter 9 teaches you how to design REST API interfaces and
also explains how they can be consumed on the client side.

 You'll leave part 2 with a deep understanding of how to design a coherent applica-
tion architecture using JavaScript code. Pairing that with everything you've learned in
part 1 about build processes and workflows, you'll be ready to design a JavaScript
application using a Build First approach, the ultimate goal of this book.

Part 2

Managing complexity

The second part of the book is more interactive than the first, as it contains
even more practical code samples. You’ll get to explore different little angles at
which we can attack complexity in our application designs, such as modularity,
asynchronous programming patterns, testing suites, keeping your code concise,
and API design principles.

 Chapter 5 is a detailed examination of modularity in JavaScript. We start with
the basics, learning about encapsulation, closures, and a few quirks of the lan-
guage. Then we delve into the different formats that allow us to build modular
code, such as CommonJS, AMD, and ES6 modules. We’ll also go over different
package managers, comparing what they bring to the table.

 Chapter 6 teaches you to think about asynchronous code. We’ll go through
tons of practical code samples, following a few different styles and conventions.
You’ll learn all about Promises, the async control flow library, ES6 generators,
and event-based programming.

 Chapter 7 aims to expand your JavaScript horizons by teaching you about
MVC. You’ll take a fresh look at jQuery and learn how you could be writing more
modular code instead. Later on, you’ll leverage the Backbone.js MVC framework
to componentize your front-end efforts even further. Backbone.js can even be
used to render views on the server side, and we’ll leverage the Node.js platform
to do exactly that.

 In chapter 8 you’ll learn how to automate testing right off the bat, using Grunt
tasks. Then you’ll learn how to write tests for the browser, and how to run them
using either Chrome or the PhantomJS headless browser. You won’t only learn to
do unit testing, but also visual testing and even performance testing as well.

98 CHAPTER Managing complexity
 Chapter 9 is dedicated to REST API design principles. In this chapter you’re
exposed to the best practices you should follow when laying out the foundations for
an API service, as well as how you could design a layered architecture to complement
the API. Last, you’ll learn how to easily consume the API, using the conventions set
forth by following a RESTful design approach.

Embracing modularity and
dependency management
Now that we’re done with the Build First crash course, you’ll notice a decline in
Grunt tasks, though you’ll definitely continue to improve your build. In contrast,
you’ll see more examples discussing the tradeoffs between different ways you can
work with the JavaScript code underlying your apps. This chapter focuses on modu-
lar design, driving down the code complexity of applications by separating concerns
into different modules of interconnected, small pieces of code that do one thing
well and are easily testable. You’ll manage complexity in asynchronous code flows,
client-side JavaScript patterns and practices, and various kinds of testing in chapters
6, 7, and 8, respectively.

 Part 2 boils down to increasing the quality in your application designs through
separation of concerns. To improve your ability to separate concerns, I’ll teach you

This chapter covers
■ Working with code encapsulation
■ Understanding modularity in JavaScript
■ Incorporating dependency injection
■ Using package management
■ Trying out ECMAScript 6
99

100 CHAPTER 5 Embracing modularity and dependency management
all about modularity, shared rendering, and asynchronous JavaScript development. To
increase the resiliency of your applications, you should test your JavaScript, as well,
which is the focus of chapter 8. While this is a JavaScript-focused book, it’s crucial that
you understand REST API design principles to improve communication across pieces
of your application stack, and that’s exactly the focus of chapter 9.

 Figure 5.1 shows how these bits and pieces of the second half of the book relate to
each other.

Modularity
Improves testability and maintainability

Design
Architecture concerns

Asynchronous code
Services, events, timing

External
package

managers

Dependencies are injected
into consuming modules.

Dependencies might
be local, too (also injected).

Component

Shared rendering
in the server and client

Test individual modules in isolation,
faking their dependencies.

Test the application as a whole,
including services, dependencies,

and client-side HTML/CSS/JavaScript.

Types of asynchronous
flow control techniques

Automates updates
and isolates

external dependencies.

Component

Dependency A

Dependency B

Module A Module B Module C

MVC architecture

Asynchronous operations

Model View Controller

Services Events Callbacks Promises

Events Generator

Testing practices
Testability concerns

Unit tests
Integration

tests

Application

Dependencies

Services

Modules

Browser DOM

Module A

Module B

Ch 7

Ch 8

Ch 6

Figure 5.1 Modularity, good architecture, and testing are fundamentals of designing
maintainable applications.

101Working with code encapsulation
Applications typically depend on external libraries (such as jQuery, Underscore, or
AngularJS), which should be handled and updated by using package managers, rather
than manually downloaded. Similarly, your application can also be broken down into
smaller pieces that interact with each other, and that’s another focus of this chapter.

 You’ll learn the art of code encapsulation, treating your code as self-contained
components; designing great interfaces and arranging them precisely; and informa-
tion hiding to reveal everything the consumer needs, but nothing else. I’ll spend a
good number of words explaining elusive concepts such as scoping, which determines
where variables belong; the this keyword, which you must understand; and closures,
which help you hide information.

 Then we’ll look at dependency resolution as an alternative to maintaining a sorted
list of script tags by hand. Afterward, we’ll jump to package management, which is
how you’ll install and upgrade third-party libraries and frameworks. Last, we’ll look at
the upcoming ECMAScript 6 specification, which has a few nice new tricks in store for
building modular applications.

5.1 Working with code encapsulation
Encapsulation means keeping functionality self-contained and hiding implementa-
tion details from consumers of a given piece of code (those who access it). Each piece,
whether a function or an entire module, should have a clearly defined responsibility,
hide implementation details, and expose a succinct API to satisfy its consumers’ needs.
Self-contained functionality is easier to understand and change than code that has
many responsibilities.

5.1.1 Understanding the Single Responsibility Principle

In the Node.js community, inspired by the UNIX philosophy of keeping programs con-
cise and self-contained, packages are well known for having a specific purpose. The
high availability of coherent packages that don’t go overboard with features plays a big
role in making the npm package manager great. For the most part, package authors
accomplish this by following the Single Responsibility Principle (SRP): build packages
that do one thing, and do it well. SRP doesn’t apply only to packages as a whole; you
should follow SRP at the module and method levels, as well. SRP helps your code stay
readable and maintainable by keeping it simple and concise.

 Consider the following use case. You need to build a component that takes a string
and returns a hyphenated representation. It will be helpful when generating semantic
links in web applications such as blogging platforms. This component might take blog
post titles such as 'Some Piece Of Text', and convert them to 'some-piece-of-
text'. This is called slugging.

 Suppose you start with the following listing (available as ch05/01_single-
responsibility-principle in the samples). It uses a two-step process in which it first nor-
malizes all nonalphanumeric character sequences into single dashes and then
removes leading and trailing dashes. Then it lowercases the string. Exactly what you
need but nothing else.

102 CHAPTER 5 Embracing modularity and dependency management

function getSlug (text) {
 var separator = /[^a-z0-9]+/ig;
 var drop = /^-|-$/g;
 return text
 .replace(separator, '-')
 .replace(drop, '')
 .toLowerCase();
}
var slug = getSlug('Some Piece Of Text');
// <- 'some-piece-of-text'

The first expression, /[^a-z0-9]+/ig is used to find sequences of one or more char-
acters that aren’t alphanumerical, such as spaces, dashes, or exclamation points.
These expressions are replaced by dashes. The second expression looks for dashes at
either end of the string. Combining these two, you can build a URL-safe version of
blog post titles.

In the previous example, the separator variable is a simple regular expression that
will match sequences of non-letter, non-numeric characters. For example, in the
'Cats, Dogs and Zebras!' string, it will match the first comma and space as a single
occurrence, both spaces around 'and', and the '!' at the end. The second regular
expression matches dashes at either end of the string, so that the resulting slug begins
and ends with words, especially because you’re converting any nonalphanumeric char-
acters into dashes in the previous step. Combining these two steps is enough to pro-
duce a decent slugging function for your component.

 Imagine a feature request for which you need to add a timestamp of the publica-
tion date to the slug. An optional argument in the slugging method to turn on this
functionality might be tempting, but it would also be wrong: your API would become
more confusing to use, harder to refactor (change its code without breaking other
components, detailed in chapter 8 when we discuss testing), and even more difficult
to document. It would be more sensible to build your component by following the SRP
principle using a composition pattern instead. Composition only means applying

Listing 5.1 Converting text using slugging

Understanding regular expressions

Although you don’t need to know regular expressions to understand this example, I
encourage you learn the basics. Regular expressions are used to find patterns in
strings, and they can also be used to replace those occurrences with something else.
These expressions are supported in virtually all major languages.

Expressions such as /[^a-z0-9]+/ig can be confusing to look at, but they aren’t
that hard to write! My blog has an entry-level article you can read if the subject interests
you.a

a You can find the article on my blog at http://bevacqua.io/bf/regex.

http://bevacqua.io/bf/regex

103Working with code encapsulation
functions in sequence, rather than mashing their functionality together. So first you'd
apply slugging and then you could add a timestamp to the slugs, as shown in the fol-
lowing code snippet:

function stamp (date) {
 return date.valueOf();
}
var article = {
 title: 'Some Piece Of Text',
 date: new Date()
};
var slug = getSlug(article.title);
var time = stamp(article.date);
var url = '/' + time + '/' + slug;
// <- '/1385757733922/some-piece-of-text'

Now, imagine that your Search Engine Optimization (SEO) expert comes along, and
he wants you to exclude irrelevant words from your URL slugs so you get better repre-
sentation in search results. You might be tempted to do that right in the getSlug func-
tion, but here are a few reasons why that would be wrong in this case, too:

■ It would become harder to test the slugging functionality on its own, because
you’d have logic that doesn’t have anything to do with the slugging.

■ The exclusion code might become more advanced as time goes on, but it’d still
be contained in getSlug.

If you’re cautious, you’ll code a function aimed at the expert’s requirements, which
looks like the following code snippet:

function filter (text) {
 return text.replace(keywords, '');
}
var keywords = /\bsome|the|by|for|of\b/ig; // match stopwords
var filtered = filter(article.title);
var slug = getSlug(filtered);
var time = stamp(article.date);
var url = '/' + time + '/' + slug;
// <- '/1385757733922/piece-text'

That looks fairly clean! By giving each method a clear responsibility, you extended your
functionality without complicating matters too much. In addition, you uncovered the
possibility of reuse. You might use the SEO expert’s filtering functionality all over an
application, and that would be easy to extract from your slugging module, because it
doesn’t depend on that. Similarly, testing each of these three methods will be easy. For
now, it should be enough to say that keeping code succinct and to the point and doing
exactly what the function name implies is one of the fundamental aspects of maintain-
able, testable code. In chapter 8 you’ll learn more about unit testing.

 Splitting functionality in a modular way is important, but it’s not enough. If you’re
building a typical component, which has a few methods but shouldn’t expose its vari-
ables, you need to hide this information from the public interface. I’ll discuss the
importance of information hiding next.

104 CHAPTER 5 Embracing modularity and dependency management
5.1.2 Information hiding and interfaces

As you’re building out an application, code will invariably grow in both volume and
complexity. This can eventually turn your code base into an unapproachable tangle,
but you can help it by writing more straightforward code and making it easier to fol-
low the flow of code. One way to drive down the complexity creep is to hide away
unnecessary information, keeping it inaccessible on the interface. This way only what
matters gets exposed; the rest is considered to be irrelevant to the consumer, and it's
often referred to as implementation details. You don’t want to expose elements such as
state variables you use while computing a result or the seed for a random number gen-
erator. This has to be done at every level; each function in every module should
attempt to hide everything that isn’t relevant to its consumers. In doing this, you’ll do
fellow developers and your future self a favor by reducing the amount of guesswork
involved in figuring out how a particular method or module works.

 As an example, consider the following listing illustrating how you might build an
object to calculate a simple average sum. The listing (found as ch05/02_information-
hiding in the samples) uses a constructor function and augments the prototype so
Average objects have an add method and a calc method.

function Average () {
 this.sum = 0;
 this.count = 0;
}

Average.prototype.add = function (value) {
 this.sum += value;
 this.count++;
};

Average.prototype.calc = function () {
 return this.sum / this.count;
};

All that’s left to do is create an Average object, add values to it, and calculate the aver-
age. The problem in this approach is that you might not want people directly access-
ing your private data, such as Average.count. Maybe you’d rather hide those values
from the API consumers using the techniques we’ll cover soon. An even simpler
approach might be to ditch the object entirely and use a function instead. You could
use the .reduce method (found on the Array prototype, new in ES5) to apply an accu-
mulator function on an array of values to calculate the average:

function average (values) {
 var sum = values.reduce(function (accumulator, value) {
 return accumulator + value;
 }, 0);

 return sum / values.length;
}

Listing 5.2 Calculating an average sum

105Working with code encapsulation
The upside of this function is that it does exactly what you want. It takes an array of
values, and it returns the average, as its name indicates. In addition, it doesn’t keep
any state variables the way your prototypical implementation did, effectively hiding
any information about its inner workings. This is what’s called a pure function: the
result can only depend on the arguments passed to it, and it can’t depend on state
variables, services, or objects that aren’t part of the argument body. Pure functions
have another property: they don’t produce any side effects other than the result they
provide. These two properties combined make pure functions good interfaces; they
are self-contained and easily testable. Because they have no side effects or external
dependencies, you can refactor their contents as long as the relationship between
input and output doesn’t change.

FUNCTIONAL FACTORIES

An alternative implementation might use a functional factory. That’s a function that,
when executed, returns a function that does what you want. As you’ll better under-
stand in the next section, anything you declare in the factory function is private to the
factory, and the function that resides within. This is easier to understand after reading
the following code:

function averageFactory () {
 var sum = 0;
 var count = 0;
 return function (value) {
 sum += value;
 count++;
 return sum / count;
 };
}

The sum and count variables are only available to instances of the function returned
by averageFactory; furthermore, each instance has access only to its own context,
those variables that were declared within that instance, but not to the context of other
instances. Think of it like a cookie cutter. The averageFactory is the cookie cutter,
and it cuts cookies (your function) that take a value and return the cumulative aver-
age (so far). As an example, here’s how its use might look:

var avg = averageFactory();
// <- function
avg(1);
// <- 1
avg(3);
// <- 2

Much like using your cookie cutter to cut out new cookies won’t affect existing cook-
ies, creating more instances won’t have any effect on existing ones. This coding style is
similar to what you did previously using a prototype, with the difference that sum and
count can’t be accessed from anywhere other than the implementation. Consumers
can’t access these variables, effectively making them an implementation detail of the
API. Implementation details don't only introduce noise; they can also potentially

106 CHAPTER 5 Embracing modularity and dependency management
present security concerns: you wouldn’t want to grant the outside world the ability to
modify the inner state of your components.

 Understanding variable scopes, which define where variables are accessible, and
this keyword, which provides context about the caller of a function, is essential in
building solid structures that can hide information properly. Properly scoping vari-
ables enables you to hide the information that consumers of an interface aren’t sup-
posed to know about.

5.1.3 Scoping and this keyword

In his undisputed classic, JavaScript: The Good Parts (O’Reilly Media, 2008),1 Douglas
Crockford explains many of the quirks of the language, and encourages us to avoid the
“bad parts,” such as with blocks, eval statements, and type-coercing equality operators
(== and !=). If you’ve never read his book, I recommend you do so sooner rather than
later. Crockford says that new and this are tricky to understand, and he suggests avoid-
ing them entirely. I say you need to understand them. I’ll describe what this repre-
sents, and then I’ll explain how it can be manipulated and assigned. In any given piece
of JavaScript code, the context is made up of the current function scope, and this.

 If you’re used to server-side languages, such as Java or C#, then you’re used to
thinking of a scope: the bag where variables are contained, which starts and ends
whenever a curly brace is opened and closed, respectively. In JavaScript, scoping hap-
pens at the function level (called lexical scoping), rather than at the block level.

1 You can find JavaScript: The Good Parts at Amazon following this link: http://bevacqua.io/bf/goodparts.

Scoping in C#
Block scoping

public void NullGuard (thing)
{
 if (thing == null)
 {
 var message = "Reference must be non-null!";
 throw new ArgumentNullException(message);
 }
}

Message is unavailable
outside of the block it

was defined in.

Scoping in JavaScript
Lexical scoping

function NullGuard (thing) {
 if (thing == null) {
 var message = "Reference must be non-null!";
 throw new Error(message);
 }
}

Message is hoisted to the top
of the lexical scope, becoming
available to the entire function.

Figure 5.2 Discrepancies in scoping across languages

http://bevacqua.io/bf/goodparts

107Working with code encapsulation
Figure 5.2 disambiguates lexical scoping from block scoping by comparing C#, which
has block scoping (other examples include Java, Perl, C, and C++) with JavaScript,
which has lexical scoping (R is another example).

 In the figure, a message variable is used in both examples. In the first example,
message is only available inside the if statement block, while in the second example
message is available to the entire function, thanks to lexical scoping. As you’ll learn,
this has both benefits and drawbacks.

VARIABLE SCOPING IN JAVASCRIPT

An understanding of how scopes work will set you up to understand the module pat-
tern, which we’ll visit in section 5.2 as a way of componentizing your code base. In
JavaScript, function is a first-class citizen, and it’s treated like any other object. Nested
functions each come with their own scope, and inner functions have access to the par-
ent scope up until the global space. Consider the getCounter function in the follow-
ing code:

function getCounter () {
 var counter = 0;
 return function () {
 return counter++;
 };
}

In this example, the counter variable is context-bound to the getCounter function.
The returned function can access counter, because it’s part of the parent scope. But
nothing outside getCounter can create a reference to counter; access to it has been
shut down and only the privileged children of getCounter can manipulate it. If you
introduce a console.log(this) statement at either scoping level, you’ll see in both
cases the global Window object instance is referenced. This is the true “bad part;” by
default, the this keyword will be a reference to the global object, as demonstrated in
the following listing.

function scoping () {
 console.log(this);

 return function () {
 console.log(this);
 };
}
scoping()();
// <- Window
// <- Window

There are different ways we can manipulate the this keyword. The most common way
to assign a this context is to invoke methods on an object. For example, when doing
'Hello'.toLowerCase(), 'Hello' will be used as the this context for the function call.

Listing 5.3 Understanding the this keyword

108 CHAPTER 5 Embracing modularity and dependency management
GETTING TO THE CALL SITE

When functions are invoked directly as properties on an object, the object will
become the this reference. If the method is in the object’s prototype—for example
Object.prototype.toString—this will also be the object the method has been
invoked on. Note that this is a fragile behavior; if you get a direct reference to a
method and invoke that, then this won’t be the parent anymore but rather the
global object once again. To illustrate, let me show you another listing.

var parent = {
 method: function () {
 console.log(this);
 }
};
parent.method();
// <- parent
var parentless = parent.method;
parentless();
// <- Window

Under strict mode, this will default to undefined, instead of Window. Outside strict
mode, this is always an object; it’s the provided object if it’s called with an object ref-
erence; it’s a boxed representation if it’s called with a primitive boolean, string, or
numeric value; or it’s the global object (again, undefined under strict mode) if it’s
called with either undefined or null, either by getting a direct reference to the
method or by using any one of these: .apply, .call, or .bind. The value passed as
this to a function in strict mode isn’t boxed into an object. We’ll get to what else strict
mode does shortly.

 Other than what happens out of the box when invoking functions, you can use dif-
ferent methods to assign a value to this; it’s not entirely out of your control. In fact,
you could use .bind to create a function that will always have the this value provided
to it. Alternative ways of executing a method include .apply, .call, and the new oper-
ator. Here’s a cheat sheet so you can see the methods in action:

Array.prototype.slice.call([9, 5, 7], 1, 2)
// <- [5]

String.prototype.split.apply('13.12.02', ['.'])// <- ['13', '12', '02']

var data = [1, 2];
var add = Array.prototype.push.bind(data, 3);

add(); // effectively the same as data.push(3)
add(4); // effectively the same as data.push(3, 4)

console.log(data);
// <- [1, 2, 3, 3, 4]

Listing 5.4 Scoping the this keyword

When the method's call site is on a
parent object, then that object is used.

If there's no parent object, then
we fall back to the default context.

109Working with code encapsulation
In JavaScript, variables fill a scope in the following order:

■ Scope context variables: this and arguments
■ Named function parameters: function (these, variable, names)
■ Function expressions: function something () {}
■ Local scope variables: var foo

If you’re not experimenting or following along with a JavaScript interpreter by your
side, make sure to look at the code sample (ch05/03_context-scoping); I’ve included
these examples in the source code provided with the book, and they have a few inline
comments if you have trouble understanding. Let’s now discuss what the strict mode
entails.

5.1.4 Strict mode

When enabled, strict mode modifies semantics in the way your code works, reducing
the leniency toward missing var statements and similarly error-prone practices, sort of
complementary to using a linter.2 Strict mode can be enabled on individual functions
or on an entire script.

 For client-side code, the function form is preferred. To turn on strict mode, put the
'use strict'; statement (double quotes work, too) at the top of a file or function:

function () {
 'use strict';
 // here lies strict mode
}

Aside from this defaulting to undefined, rather than the global object, strict is less
tolerant of mistakes, turning them into errors rather than correcting them. Restric-
tions also include banning the with statement, octal notation, and preventing key-
words such as eval and arguments to be assigned.

'use strict';
foo = 'bar' // ReferenceError foo is not defined

Under strict mode, the engine also throws an exception if you attempt to write on
read-only properties, delete undeletable properties, instantiate an object with dupli-
cate property keys, or declare a function with duplicate argument names. This kind of
intolerance helps catch issues due to sloppy coding.

 The last quirk I want to cover while we’re on the topic of scoping is something
that’s commonly referred to as hoisting. Understanding hoisting is important if you’re
to write complex JavaScript applications sensibly.

2 Get a detailed explanation of strict mode in Mozilla Developer Network at http://bevacqua.io/bf/strict.

http://bevacqua.io/bf/strict

110 CHAPTER 5 Embracing modularity and dependency management
5.1.5 Variable hoisting

A large number of JavaScript interview questions can be answered with an understand-
ing of scoping, how this works, and hoisting. We’ve covered the first two, but what
exactly is hoisting? In JavaScript, hoisting means that variable declarations are pulled
to the beginning of a scope. This explains the unexpected behavior you can observe
in certain situations.

 Function expressions are hoisted entirely: the function body is also hoisted, not
only their declaration. If I had a single thing to take away from The Good Parts, it would
be learning about hoisting; it changed the way I write code, and reason about it.

 Hoisting is the reason invoking function expressions before declaring them works
as expected. Assigning functions to a variable won’t do the trick, because the variable
won’t be assigned by the time you want to invoke the function. The following code is
one example; you’ll find more examples in the accompanying source code, listed as
ch05/04_hoisting:

var value = 2;

test();

function test () {
 console.log(typeof value);
 console.log(value);
 var value = 3;
}

You might expect the method to print 'number' first, and 2 afterward, or maybe 3.
Try running it! Why does it print 'undefined' and then undefined? Well, hello hoist-
ing! It’ll be easier to picture if you rearrange the code the way it ends up after hoisting
takes place. Let’s look at the following listing.

var value;

function test () {
 var value;
 console.log(typeof value);
 console.log(value);
 value = 3;
}

value = 2;
test();

The value declaration at the end of the test function got hoisted to the top of the
scope, and it’s also why test didn’t give a TypeError exception, warning that unde-
fined isn’t a function. Keep in mind that if you used the variable form of declaring
the test function, you would, in fact, have gotten that error, because although var
test would be hoisted, the assignment wouldn’t be, effectively becoming the code in
the following listing.

Listing 5.5 Using hoisting

111JavaScript modules

var value;
var test;

value = 2;
test();

test = function () {
 var value;
 console.log(typeof value);
 console.log(value);
 value = 3;
};

The code in listing 5.6 won’t work as expected, because test won’t be defined by the
time you want to invoke it. It’s important to learn what gets hoisted and what doesn’t.
If you make a habit of writing code as if it were already hoisted, pulling variable dec-
larations and functions to the top of their scope, you’ll run into fewer problems than
you might run into otherwise. At this point you should feel comfortable with scoping
and the this keyword. It’s time to talk about closures and modular patterns in
JavaScript.

5.2 JavaScript modules
Up to this point, you’ve looked at the single responsibility principle, information hid-
ing, and how to apply those in JavaScript. You also have a decent idea of how variables
are scoped and hoisted. Let’s move on to closures. These will help you create new
scopes and prevent variables from leaking information.

5.2.1 Closures and the module pattern

Functions are also referred to as closures, particularly when focusing on the fact that
functions create new scopes. An IIFE is a function that you execute immediately. The
term IIFE stands for Immediately-Invoked Function Expression. Using an IIFE is useful
when all you want is a closure. The following code is an example IIFE:

(function () {
 // a new scope
})();

Note the parentheses wrapping the function. These tell the interpreter you’re not
only declaring an anonymous function, but also using it as a value. These expressions
can also be used in assignments, which are useful if you need variables accessible by
the exported return value. This is commonly referred to as the module pattern, as
shown in the following code (labeled ch05/05_closures in the samples):

var api = (function () {
 var local = 0; // private and in-place!
 var publicInterface = {
 counter: function () {
 return ++local;
 }

Listing 5.6 Hoisting var test

112 CHAPTER 5 Embracing modularity and dependency management
 };
 return publicInterface;
})();
api.counter();
// <- 1

A common variant to the previous code doesn’t rely on anything outside of the clo-
sure, but instead imports the variables it’s going to use. If it wants to expose a public
API, then it imports the global object. I tend to favor this approach because everything
is nicely wrapped by a closure, and you can instruct JSHint to blow up on issues due to
undeclared variables. Without a closure and JSHint, these would inadvertently become
globals. To illustrate, look at the following code:

(function (window) {
 var privateThing;

 function privateMethod () {
 }

 window.api = {
 // public interface
 };
})(window);

Let’s consider prototypal modularity, which augments a prototype rather than using clo-
sures, as a complementary alternative to IIFE expressions. Using prototypes provides
performance gains, as many objects can share the same prototype and adding func-
tions on the prototype provides the functionality to all the objects that inherit from it.

5.2.2 Prototypal modularity

Depending on your use case, prototypes might be exactly what you need. Think of
prototypes as JavaScript’s way of declaring classes, even though it’s an entirely differ-
ent model, because prototypes are simply links, and you can’t override properties
unless you replace them entirely (and do the overriding by hand). In short, don’t try
to treat prototypes as classes, because it will assuredly result in maintainability issues.
Prototypes are most useful when you expect to have multiple instances of your mod-
ule. For example, all JavaScript strings share the String prototype. A good use for
prototypes is when interacting with DOM nodes. Sometimes I find myself declaring
prototypal modules inside a closure and then keeping private state in the closure, out-
side the prototype. The following listing shows pseudo-code, but please look at the
accompanying code sample listed as ch05/06_prototypal-modularity for a fully work-
ing example and to get a better understanding of the pattern.

var lastId = 0;
var data = {};

function Lib () {
 this.id = ++lastId;
 data[this.id] = {

Listing 5.7 Using pseudo-code for prototypes

113JavaScript modules
 thing: 'secret'
 };
}

Lib.prototype.getPrivateThing = function () {
 return data[this.id].thing;
};

This is one way to keep data safe from consumers; many scenarios exist when data
privatization isn’t necessary and where allowing consumers to manipulate your
instance data might be a good thing. You should wrap all of this in a closure so your
private data doesn’t leak out. I believe prototypes in JavaScript are most useful when
dealing with DOM interaction, as we’ll investigate in chapter 7. That’s because when
dealing with DOM objects, you usually have to work with many elements at the same
time; prototypes improve performance because their methods aren’t replicated on
each instance, saving resources.

 Now that you have a clearer understanding of how scoping, hoisting, and closures
work, we can move on to how modules are meant to interact with one another. First,
let’s look at CommonJS modules: a way to keep code well-organized and deal with
dependency injection (DI) at once.

5.2.3 CommonJS modules

CommonJS (CJS) is a specification adopted by Node.js, among others, which allows you
to write modular JavaScript files. Each module is defined by a single file, and if you assign
a value to module.exports, it becomes that module’s public interface. To consume a
module, you call require with the relative path from the consumer to the dependency.

 Let’s look at a quick example, labeled ch05/07_commonjs-modules in the samples:

// file at './lib/simple.js'
module.exports = 'this is a really simple module';

// file at './app.js'
var simple = require('./lib/simple.js');

console.log(simple);
// <- 'this is a really simple module'

One of the most useful advantages of these modules is that variables don’t leak to the
global object: you have no need to wrap your code in a closure. The variables that are
declared on the top-most scope (such as the simple variable in the previous snippet)
are merely available in that module. If you want to expose something, you need to
make that intent explicit by adding it to module.exports.

 At this point you might think I went off the trail with CJS, given that it’s not sup-
ported natively in browsers any more than are CoffeeScript and TypeScript. You’ll
soon learn how to compile these modules using Browserify, a popular library designed
to compile CJS modules to something browsers can deal with. CJS has the following
benefits over the way browsers behave:

■ No global variables, less cognitive load
■ Straightforward process to expose an API and consume a module

114 CHAPTER 5 Embracing modularity and dependency management
■ Easier to test modules by mocking dependencies
■ Access to packages on npm, thanks to Browserify
■ Modularity, which translates into testability
■ Easy to share code between client and server, if you’re using Node.js

You’ll learn more about package management solutions (npm, Bower, and Compo-
nent) in section 5.4. Before we get there, we’ll look at dependency management, or how
to deal with the components needed by your application, and how different libraries
can help manage them.

5.3 Using dependency management
We’ll discuss two kinds of dependency management here: internal and external. When
talking about internal dependencies, I’m referring to those that are part of the pro-
gram you’re writing. Most frequently, these are a one-to-one mapping to physical files,
but you might also have multiple modules in a single file. By modules I mean pieces of
code that have a single responsibility, regardless of them being services, factories, mod-
els, controllers, or something else. External dependencies are, in contrast, those in
which the code isn’t governed by your application itself. You may own or have authored
the package, but the code belongs to a different repository altogether, regardless.

 I’ll explain what dependency graphs are, and then we’ll investigate ways of working
through them, such as the caveats with resorting to the RequireJS module loader, the
innocent straightforwardness made available by CommonJS, and the elegant way
AngularJS (a Model-View-Controller framework built by Google) resolves dependen-
cies while keeping everything modular and testable.

5.3.1 Dependency graphs

When writing out a module which depends on something else, the most common
approach is to have your module create an instance of the object you depend on. To
illustrate the point, bear with me through a little Java code; it should be easy to wrap
your head around. The following listing displays a UserService class, which has the
purpose of serving any data requests from a domain logic layer. It could consume any
IUserRepository implementation which is tasked with retrieving the data from a
repository such as a MySQL database or a Redis store. This listing is labeled ch05/08_
dependency-graphs in the samples.

public class UserService {
 private IUserRepository _userRepository;

 public UserService () {
 _userRepository = new UserMySqlRepository();
 }

 public User getUserById (int id) {
 return _userRepository.getById(id);
 }
}

Listing 5.8 Using a module to create an object

115Using dependency management
But that doesn’t cut it; if your service is supposed to use any repository that conforms
to the interface, why are you hard-coding UserMySqlRepository that way? Hard-
coded dependencies make it more difficult to test a module, because you wouldn’t
merely test against the interface, but rather against a concrete implementation. A bet-
ter approach, which is coincidentally more testable, might be passing that depen-
dency through the constructor, as shown in the following listing. This pattern is often
referred to as dependency injection, which is a smart-sounding alternative to giving an
object its instance variables.

public class UserService {
 private IUserRepository _userRepository;

 public UserService (IUserRepository userRepository) {
 if (userRepository == null) {
 throw new IllegalArgumentException();
 }
 _userRepository = userRepository;
 }

 public User getUserById (int id) {
 return _userRepository.getById(id);
 }
}

This way, you can build out your service the way it was intended, as a consumer of any
repository conforming to the IUserRepository interface without any knowledge of
implementation specifics. Creating a UserService might not sound like such a great
deal, but it gets harder as soon as you take into consideration its dependencies, and its
dependencies’ dependencies. This is called a dependency tree. The following snippet is
certainly unappealing:

String connectionString = "SOME_CONNECTION_STRING";
SqlConnectionString connString = new SqlConnectionString(connectionString);
SqlDbConnection conn = new SqlDbConnection(connString);
IUserRepository repo = new UserMySqlRepository(conn);
UserService service = new UserService(repo);

The code shows inversion of control (IoC),3 which is a wordy definition for something
rather simple. IoC means that instead of making an object responsible for the instanti-
ation of its dependencies, or getting references to them, the object is given the depen-
dencies through its constructor or through public properties. Figure 5.3 examines the
benefits of using an IoC pattern.

Listing 5.9 Using dependency injection

3 Read a primer on inversion of control and dependency injection by Martine Fowler at http://bevacqua.io/
bf/ioc.

http://bevacqua.io/bf/ioc
http://bevacqua.io/bf/ioc

116 CHAPTER 5 Embracing modularity and dependency management
The IOC code (at the bottom of the figure) is easier to test, more loosely coupled, and
easier to maintain as a result, than the classic dependency management code shown at
the top of the figure.

 IoC frameworks are used to address dependency resolution and mitigate depen-
dency hell. The basic gist of these frameworks is that you ditch the new keyword and
rely on an IoC container. The IoC container is a registry that has knowledge about how
to instantiate your services, repositories, and any other modules. Learning how to con-
figure a traditional IoC container (such as Spring in the case of Java, or Castle Wind-
sor for C#) is outside of the scope of this book, but a top-level view of the issue is
required to pave the road ahead.

IS IOC IMPORTANT FOR TESTABILITY?

Ultimately, the importance of avoiding hard-coded dependencies lies in the ability to
easily mock them when unit testing, as you’ll see in chapter 8.

 Unit testing is about asserting whether interfaces work as expected, regardless of
how they’re implemented. Mocks are stubs that implement the interface, but don’t do
anything other than the bare minimum to conform to them. For example, a mocked
user repository might always return the same hard-coded User object. This is useful in
the context of unit testing, where you might want to test the UserService class on its
own, but don’t need details about its inner workings, much less how its dependencies
are implemented!

 Great! Enough Java for now, though. What does any of this have to do with JavaScript
Application Design? Understanding testability principles is required if you hope to

Classical dependency management
You create your own instances.

function Thing () {
 this.basket = new Basket();
 this.piece = new Piece();
}

new Thing();

Harder to test in
isolation, because you

don’t have a mechanism to
stub the dependencies.

Inversion of control (IoC)
Improves separation of concerns, testability.

function Thing (Basket, piece) {
 //Dependency instances are handed to you
}

new Thing(new Basket(), new Piece());

Much easier to test,
as you can easily provide
fake implementations of

each dependency.

Figure 5.3 Classical dependencies compared with using IoC to improve testability

117Using dependency management
write testable code. Although you may not agree with the Test-Driven Development
movement, it’s undeniable that code that isn’t written with testability in mind is much
harder to write tests for. When speaking about client-side JavaScript, you have an addi-
tional layer of complexity: networking. Modules aren’t immediately available unless
your code is bundled together the way you learned to do it in chapter 2.

 Next, I’ll introduce you to RequireJS, an asynchronous module loader, which is a
better option than the classical approach of having an unmanaged dependency soup.

5.3.2 Introducing RequireJS

RequireJS is a JavaScript asynchronous module loader (AMD) that allows you to define
modules and have them depend on one another. The following code (found as ch05/
09_requirejs-usage in the samples) is an example usage of AMD, depicting a module
that depends on something else:

require(['lib/text'], function(text) {
 var result = text('foo bar');
 console.log(result);
 // <- 'FOO BAR'
});

By convention, 'lib/text' looks for the file that can be found at the ./lib/text.js
path, relative to the JavaScript directory root. That resource will be requested, inter-
preted, and once all dependencies have been loaded, the module’s function will be
invoked, getting its dependencies as arguments to the module’s function, much like
the Java code I talked about in section 5.3.1. The sample 'lib/text' module is
defined as follows:

define([], function () {
 return function (input) {
 return input.toUpperCase();
 };
});

Next, let's analyze where RequireJS is better than the alternatives, and where it falls
short.

BENEFITS AND DRAWBACKS OF REQUIREJS

In this case, the definition uses an empty array because it has no dependencies. The
returned function is the public interface provided by the 'lib/text' module. The
use of RequireJS has a few benefits:

■ Dependency graph is automatically resolved. No more worrying about ordering
script tags!

■ Asynchronous module loading is included.
■ A compile step isn’t required during development.
■ It's unit testable, so you only load the module that needs to be tested.
■ Closures are enforced, because your module is defined in a function.

118 CHAPTER 5 Embracing modularity and dependency management
These are all true and nice to have, but drawbacks exist. If a package your code
depends on isn’t wrapped in AMD magic, you have no option other than adding a
compile step to bundle everything together. Unless you bundle your modules
together, RequireJS will create an HTTP request cascade to fetch each dependency,
which would be too slow in production systems. Many of the benefits of AMD came
from the lack of a compile step, so you’re left with a glorified dependency graph
resolver packed with the following drawbacks:

■ Asynchronous loading functionality is unavailable if you use the bundler.
■ It requires vendors to conform to the AMD model.
■ It clutters your code with AMD wrappers.
■ Production needs compilation.
■ Code in release environments diverges from local development.

It’s been a while since we spoke of Grunt in chapter 4, and you wouldn’t want to
release a bunch of unoptimized scripts! Grunt will help compile AMD modules during
your builds so they don’t need to be fetched asynchronously.

 To compile4 AMD modules through r.js, the RequireJS optimizer, using Grunt,
you can use the grunt-contrib-requirejs package. That package allows you to pass
options through to r.js. The following listing is the pertinent task configuration.
You’ll set default options that apply to every target in Grunt and tweak the debug tar-
get. This is useful when you’d otherwise have to repeat parts of the configuration,
breaking the DRY principle.

requirejs: {
 options: {
 name: 'app',
 baseUrl: 'js/amd',
 out: 'build/js/app.min.js'
 },
 debug: {
 options: {
 preserveLicenseComments: false,
 generateSourceMaps: true,
 optimize: 'none'
 }
 },
 release: {}
}

In the debug distribution you generate a source map,5 which helps browsers map what
they’re executing to the source code you used to compile it. This is useful when

4 Check out the accompanying code sample that shows how to compile RJS modules at http://bevacqua.io/bf/
requirejs.

Listing 5.10 Using Grunt to configure a module

5 For more information on source maps, refer to this introductory article on HTML5Rocks at http://
bevacqua.io/bf/sourcemap.

http://bevacqua.io/bf/requirejs
http://bevacqua.io/bf/requirejs
http://bevacqua.io/bf/sourcemap
http://bevacqua.io/bf/sourcemap

119Using dependency management
debugging, as you’ll get stack traces that point to the source code rather than hard-to-
debug compilation results. The release target doesn’t have any additional configura-
tion, because it merely uses the defaults provided previously. It’ll be easier for you to
visualize the configuration if you take a look at the directory structure in the accompa-
nying samples, which looks like the one in figure 5.4.

NOTE A sample that integrates RequireJS with Grunt can be found in the
book’s source code at ch05/10_requirejs-grunt. It contains detailed infor-
mation about the meaning of each option used to configure the RequireJS
build task.

Not having to add script tags in a specific order is a nice feature to have, and you have
a few ways to accomplish that. If you’re not entirely sold on the AMD solution, or if
you’re curious, read on for an explanation of how you could bring CommonJS mod-
ules to the browser, as an alternative.

5.3.3 Browserify: CJS in the browser

In section 5.2.3 I explained the benefits of CJS, the module system used in Node.js
packages. These modules also have a place in the browser, thanks to Browserify. This
option is frequently pitched as an alternative to AMD, although opinions vary. As
you’re following a Build First approach, compiling CJS modules for the browser won’t
be a big deal; it’s another step in your build process!

 In addition to the advantages described in section 5.2.3, such as no implicit glo-
bals, CJS offers a terse alternative to AMD in that you don’t need all the clutter and

Figure 5.4 Typical file structure
when using RequireJS during
Grunt builds

120 CHAPTER 5 Embracing modularity and dependency management
boilerplate needed by AMD to define a module. A continuously improving trait in
favor of CJS modules is immediate access to any package in the npm registry out of the
box. In 2013, the npm registry grew by an order of magnitude (or 10x), and at the
time of this writing, it boasts well more than 100,000 registered packages.

 Browserify will recursively analyze all the require() calls in your app to build a
bundle that you can serve up to the browser in a single <script> tag. As you might
expect, Grunt has numerous plugins eager to compile your CJS modules into a Brow-
serify bundle, and one such plugin is grunt-browserify. Configuring it is more akin
to what you saw in chapter 2, where you provided a filename declaring the entry point
of your CJS module and an output filename as well:

browserify: {
 debug: {
 files: { 'build/js/app.js': 'js/app.js' },
 options: { debug: true }
 },
 release: {
 files: { 'build/js/app.js': 'js/app.js' }
 }
}

I think most of the mental load in taking this approach won’t come from Browserify,
but rather learning about require and modularity in CJS modules. Luckily, you
already used CJS modules when configuring Grunt tasks throughout part 1, and that
should give you insight into CJS, as well as a bunch of code samples to look at! A fully
working example of how to compile CJS modules, using grunt-browserify, can be
found at ch05/11_browserify-cjs in the accompanying code samples. Next up, we’ll
look at how AngularJS deals with dependency resolution, as a third (and last) way to
deal with dependency management.

5.3.4 The Angular way

Angular is an innovative client-side Model-View-Controller (MVC) framework developed
at Google. In chapter 7 you’ll use another popular JavaScript MVC framework called
Backbone. But Angular’s dependency resolver deserved a mention in this section.6

LEVERAGING DEPENDENCY INJECTION IN ANGULAR

Angular has a fairly elaborate dependency injection solution in place, so we won’t get
into the details. Luckily for us, it’s abstracted well enough that it’s easy to use. I’ve per-
sonally used many different DI frameworks, and Angular makes it feel natural: you don’t
even realize you’re doing DI, similarly to Java and RequireJS. Let’s walk together
through a contrived example, which can be found at ch05/12_angularjs-dependencies
in the samples. It’s convenient to keep the module declaration in its own file, some-
thing like this:

angular.module('buildfirst', []);

6 Angular’s documentation has an extensive guide explaining how DI works in Angular at http://bevacqua.io/
bf/angular-di.

http://bevacqua.io/bf/angular-di
http://bevacqua.io/bf/angular-di

121Using dependency management
Then each of the different pieces of a module, such as services or controllers, are reg-
istered as extensions to that module, which you previously declared. Note that you’re
passing an empty array to the angular.module function so your module doesn’t
depend on any other modules:

var app = angular.module('buildfirst');

app.factory('textService', [
 function () {
 return function (input) {
 return input.toUpperCase();
 };
 }
]);

Registering controllers is also similar; in the following example you’ll use the text-
Service service you created. This works in a similar way to RequireJS, because you
need to use the name you gave to the service:

var app = angular.module('buildfirst');
app.controller('testController', [
 'textService',
 function (text) {
 var result = text('foo bar');
 console.log(result);
 // <- 'FOO BAR'
 }
]);

Next up, let's compare Angular to RJS in a nutshell.

COMPARING ANGULAR AND REQUIREJS

Angular is different from RequireJS in that, rather than acting as a module loader,
Angular worries about the dependency graph. You need to add a script tag for each
file you’re using, unlike with AMD, which dealt with that for you.

 In the case of Angular you see an interesting behavior where script order isn’t all
that relevant. As long as you have Angular on top and then the script that declares
your module, the rest of the scripts can be in whatever order you want, and Angular
will deal with that for you. You need code such as the following on top of your script
tag list, which is why the module declaration needs its own file:

<script src='js/vendor/angular.js'></script>
<script src='js/app.js'></script>

The rest of the scripts, which are part of the app module (or whatever name you give
it), can be loaded in any order, as long as they come after the module declaration:

<!--
 These could actually be in any order!
-->
<script src='js/app/testController.js'></script>
<script src='js/app/textService.js'></script>

Let’s draw a few quick conclusions on the current state of module systems in JavaScript.

122 CHAPTER 5 Embracing modularity and dependency management
BUNDLING ANGULAR COMPONENTS USING GRUNT

As a side note, when preparing a build, you can explicitly add Angular and the mod-
ule to the top, and then glob for the rest of the pieces of the puzzle. Here’s how you
might configure the files array passed to a bundling task, such as the ones in the
grunt-contrib-concat or grunt-contrib-uglify packages:

files: [
 'src/public/js/vendor/angular.js',
 'src/public/js/app.js',
 'src/public/js/app/**/*.js'
]

You might not want to commit to the full-featured framework that is AngularJS, and
you’re not about to include it in your project for its dependency resolution capabili-
ties! As a closing thought, I’d like to add that there’s no right choice, which is why I
presented these three methods:

■ RequireJS modules, using AMD definitions
■ CommonJS modules, and then compiling them with Browserify
■ AngularJS, where modules will resolve the dependency graph for you

If your project uses Angular, that’s good enough that you wouldn’t need either AMD
or CJS, because Angular provides a sufficiently modular structure. If you’re not using
Angular, then I’d probably go for CommonJS, mostly because of the abundance of
npm packages you can potentially take advantage of.

 The next section sheds light on other package managers, and as you did for npm,
teaches you how to leverage them in your client-side projects.

5.4 Understanding package management
One of the drawbacks of using package managers is that they tend to organize depen-
dencies using a certain structure. For example, npm uses node_modules to store
installed packages, and Bower uses bower_components. One of the great advantages to
Build First is that’s not a problem, because you can add references to those files in
your builds and that’s that! The original location of the packages won’t matter at all.
That’s a huge reason to use a Build First approach.

 I want to discuss two popular front-end package managers in this section: Bower
and Component. We’ll consider the tradeoffs in each and compare them to npm.

5.4.1 Introducing Bower

Although npm is an extraordinary package manager, it isn’t fit for all package man-
agement needs: virtually all of the packages published to it are CJS modules, because
it’s ingrained into the Node ecosystem. Although I chose to use Browserify so that I
could write modular front-end code under the CJS format, this might not be the
choice for every project you work on.

 Bower is a package manager for the web, created at Twitter, and it’s content agnostic,
meaning it doesn’t matter whether authors pack up images, style sheets, or JavaScript

123Understanding package management
code. By now you should be accustomed to the way npm tracks packages and version
numbers, using the package.json manifest. Bower has a bower.json manifest that’s
similar to package.json. Bower is installed through npm:

npm install -g bower

Installing packages with bower is fast and straightforward; all you need to do is specify
the name or a git remote endpoint. The first thing you’ll need to do on a given proj-
ect is run bower init. Bower will ask you a few questions (you can press Enter because
the defaults are fine), and then it’ll create a bower.json manifest for you, as in
figure 5.5.

Once that’s out of the way, installing packages is a breeze. The following example
installs Lo-Dash, a utility library similar to Underscore, but more actively maintained.
It will download the scripts and place them in a bower_components directory, as shown
in figure 5.6.

bower install --save lodash

Figure 5.5 Using bower init to create a bower.json manifest file

Figure 5.6 Using bower install --save to fetch a dependency and add it to the manifest

124 CHAPTER 5 Embracing modularity and dependency management
That’s it! You should have scripts in the bower_components/lodash directory. Includ-
ing them in your builds is a matter of adding the file to your distribution configura-
tion. As usual, this example can be found in the accompanying source code; look for
ch05/13_bower-packages.

 Bower is arguably the second-largest package manager, with close to 20,000 pack-
ages in its registry, and behind npm, which has more than 100,000. Component,
another package management solution, lags behind with nearly 3,000 packages under
its belt, but it offers a more modular alternative and a more comprehensive solution
to client-side package management. Let’s take a look!

5.4.2 Big libraries, small components

Huge libraries such as jQuery do everything you need, as well as things you don’t
need. For instance, you might not need the animations or the AJAX that come with it.
In this sense, struggling to keep pieces out of jQuery using custom builds is an uphill
battle; automating the process isn’t trivial, and you’re doing more to get less, which I
guess is what the “write less, do more” slogan refers to.

 Component is a tool that’s all about small components that do one thing only but
do it well. Rather than using a big library for all your needs, TJ Holowaychuk,7 prolific
open source author, advocates using multiple small blocks to build exactly what you
need in a modular way and without any added bloat.

 The first thing you’ll need to do, as usual, is install the CLI tool from npm:

npm install -g component

If you’re consuming components, you can get away with a manifest with the bare min-
imum valid JSON. Let’s create that, too:

echo "{}" > component.json

Installing components such as Lo-Dash works similarly to what you did previously with
Bower. The main difference is that rather than using a registry whose sole purpose is
tracking packages, like Bower does, Component uses GitHub as its default registry.
Specifying the username and repository, as shown in the following command, is
enough to fetch a component:

component install lodash/lodash

In contrast with what other libraries do, Component will always update the manifest,
adding the packages you install. You must also add the entry point to the scripts field
in the component manifest.

"scripts": ["js/app/app.js"]

Another difference you can find in Component is that it has an additional build step,
which will bundle any components you’ve installed into a single build.js concate-

7 Read an introduction to Component on Holowaychuk's blog at http://bevacqua.io/bf/component.

http://bevacqua.io/bf/component

125Understanding package management
nated file. Given that components use CommonJS-style require calls, the necessary
require function will also be provided.

component build

I encourage you to look at a pair of accompanying samples, which might help you
learn how to use Component. The first one, ch05/14_adopting-component, is a fully
working example of what has been described here.

 The second, ch05/15_automate-component-build, explains how to automate the
build step with Grunt, using the grunt-component-build package. Such a build step
is particularly useful if your code is also treated as components.

 To wrap things up, I’ll give you an overview of each of the systems we’ve discussed,
which might help you decide on a package manager or module system.

5.4.3 Choosing the right module system

Component has the right idea behind it—modular pieces of code that do one thing
well—but it has subtle drawbacks, as well. For instance, it has an unnecessary build
step in component install. Executing component install should build everything
you need for the components to work, the way npm does. It’s also kind of mystical to
configure, and the documentation is hard to find. Poor naming is a huge drawback in
this regard, as you can’t do a web search for Component and not get unrelated results,
making it hard to find the documentation you want.

 Bower is fine if you don’t buy into the CJS concept, and it’s certainly better than
downloading code and placing it into directories by yourself and dealing with version
upgrades on your own. Bower is fine for fetching packages, but it does little to help
you with modularity, and that’s where it falls short.

 As far as Browserify goes, at the moment it’s the best option that's available to us, if
you’re willing to concede that CJS is the simplest module format available today. The
lack of a package manager embedded into Browserify is a good thing, because it
doesn’t matter which source you pick for modules you consume. They can come from
npm, Bower, GitHub, or somewhere else.

 Browserify provides mechanisms for both bringing vendor code into the CJS for-
mat and exporting a CJS formatted application into a single file. As we discussed in
5.3.3, Browserify can produce source maps that help debug during development, and
using it gives you access to any CJS modules originally written for Node development.

 Last, AMD modules might be a good fit for using Bower, because they don’t inter-
fere with each other. The benefit here is that you don’t have to learn the CJS
approach, although I would argue that there isn’t all that much to learn about it.

 Before discussing the changes coming to the JavaScript language in ECMAScript 6,
there’s one more topic we need to tend to. That’s the topic of circular dependencies,
such as a chicken depending on an egg that depends on a chicken.

126 CHAPTER 5 Embracing modularity and dependency management
5.4.4 Learning about circular dependencies

Circular dependencies, explained previously as a chicken depending on an egg that
depends on a chicken, are a tough nut to crack, and they’re straight up unsupported
by many module systems. In this brief section I aim to dispel any issues you have by
answering the following questions:

■ Is there a good reason to use circular dependencies?
■ What patterns can you use to avoid them?
■ How do the solutions we’ve talked about handle circular dependencies?

Components that depend on each other represent a code smell, meaning there might
be a deeper problem in your code. The best approach to circular dependencies is to
avoid them altogether. You can use a few patterns to avoid them. If two components
are talking to each other, it might be a sign that they need to communicate through a
service they both consume, for example. That way, it’ll be easier to reason about (and
write code for) the affected components. In chapter 7, you’ll look at the ways you can
avoid these chicken-and-egg type of situations when using AngularJS in client-side
applications.

 Using a service as a middleman is one of many ways to solve circular dependencies.
You might have your chicken module depend on egg and talk to it directly, but if egg
wants to talk to chicken, then it should use the callbacks chicken gives to it. An even
simpler approach is to have instances of your modules depend on each other. Have a
chicken and an egg depending on each other, rather than the entire families, and the
problem is circumvented.

 You also need to take into account that different systems deal with circular depen-
dencies differently. If you try to resolve a circular dependency in Angular, it will throw
an error. Angular doesn’t provide any mechanisms to deal with circular dependencies
at the module level. You can get around this by using their dependency resolver. Once
an egg module that depends on the chicken module is resolved, then the chicken
module can fetch the egg module when it’s used.

 In the case of AMD modules, if you define a circular dependency such that chicken
needs egg and egg needs chicken, then when egg’s module function is called, it will
get an undefined value for chicken. egg can fetch chicken later, after modules have
been defined by using the require method.

 CommonJS allows circular dependencies by pausing module resolution whenever
a require call is made. If a chicken module requires an egg module, then interpreta-
tion of the chicken module is halted. When the egg module requires chicken, it will
get the partial representation of the chicken module, until the require call is made.
Then the chicken module will finish being interpreted. The code sample labeled
ch05/16_circular-dependencies illustrates this point.

 The bottom line is that you should avoid circular dependencies like the plague.
Circular dependencies introduce unnecessary complexity into your programs,

127Harmony: a glimpse of ECMAScript 6
module systems don’t have a standard way of dealing with them, and they can always
be avoided by writing code in a more organized way.

 To wrap up this chapter, we’ll go through a few changes coming to the language in
ECMAScript 6, and what they bring to the table when it comes to modular component
design.

5.5 Harmony: a glimpse of ECMAScript 6
As you might know, ECMAScript (ES) is the spec that defines the behavior of JavaScript
code. ES6, also known as Harmony, is the (long-awaited) upcoming version of the
spec. Once ES6 lands, you’ll benefit from hundreds of small and large improvements
to the language, part of which I’ll cover in this section. At the time of this writing,
parts of Harmony are in Chrome Canary, the edge version of Google Chrome, and
also in the Firefox Nightly build. In Node, you can use the --harmony flag when invok-
ing the node process to enable ES6 language features.

 Please note that ES6 features are highly experimental and subject to change; the
spec is constantly in flux. Take what’s discussed in this section with a pinch of salt. I’ll
introduce you to concepts and syntax in the upcoming language release; features pro-
posed as part of ES6 at this point are unlikely to change, but specific syntax is more
likely to be tweaked.

 Google has made an interesting effort in popularizing ES6 learning through their
Traceur project, which compiles ES6 down to ES3 (a generally available spec version),
allowing you to write code in ES6 and then execute the resulting ES3. Although Tra-
ceur doesn’t support every feature in Harmony, it’s one of the most featured compil-
ers available.

5.5.1 Traceur as a Grunt task

Traceur is available as a Grunt task, thanks to a package called grunt-traceur. You
can use the following configuration to set it up. It will compile each file individually
and place the results in a build directory:

traceur: {
 build: {
 src: 'js/**/*.js',
 dest: 'build/'
 }
}

With the help of this task, you can compile a few of the ES6 Harmony examples I’ll
show you along the way. Naturally, the accompanying code samples have a working
example of this Grunt task, as well as a few different snippets of what you can do with
Harmony, so be sure to check out ch05/17_harmony-traceur and skim through those
samples. Chapters 6 and 7 also contain more pieces of ES6 code, to give you a better
picture of what features are coming to the language.

 Now that you know of a few ways to turn ES6 features on, let’s dive into Harmony’s
way of doing modules.

128 CHAPTER 5 Embracing modularity and dependency management
5.5.2 Modules in Harmony

Throughout this chapter, you’ve navigated different module systems and learned
about modular design patterns. Input from both AMD and CJS have influenced the
design decisions behind Harmony modules, in a way that aims to please proponents
of either system. These modules have their own scope; they export public API mem-
bers using the export keyword, which can later be imported individually using the
import keyword. An optional explicit module declaration allows for file concatenation.

 What follows is an example of how these mechanics work. I’m using the latest syn-
tax available8 at the time of this writing. The syntax comes from a meeting held in
March 2013 by TC39, the technical committee in charge of moving the language for-
ward. If I were you, I wouldn’t focus too much on the specifics, only the general idea.

 To begin with, you’ll define a basic module with a couple of exported methods:

// math.js

export var pi = 3.141592;

export function circumference (radius) {
 return 2 * pi * radius;
}

Consuming these methods is a matter of referencing them in an import statement, as
shown in the following code snippet. These statements can choose to import one,
many, or all the exports found in a module. The following statement imports the cir-
cumference export into the local module:

import { circumference } from "math";

If you want to import multiple exports, you comma-separate them:

import { circumference, pi } from "math";

Importing every export from a module in an object, rather than directly on the local
context, can be done using the as syntax:

import "math" as math;

If you want to define modules explicitly, rather than having them be defined implic-
itly, for release scenarios where you’re going to bundle your scripts in a single file,
there’s a literal way in which you can define a module:

module "math" {
 export // etc...
};

If you’re interested in the module system in ES6, you should read an article9 that
encompasses what you’ve learned so far about ES6, and sheds light on the module

8 Find the ES6 article at http://bevacqua.io/bf/es6-modules.
9 Find this ES6 article at http://bevacqua.io/bf/es6-modules.

http://bevacqua.io/bf/es6-modules
http://bevacqua.io/bf/es6-modules

129Summary
system’s extensibility. Always keep in mind that the syntax is subject to change. Before
heading to chapter 6, I have one last little ES6 feature to touch on with regard to mod-
ularity. That’s the let keyword.

5.5.3 Let there be block scope

The ES6 let keyword is an alternative to var statements. You may remember that var
is function scoped, as you analyzed in section 5.1.3. With let, you get block scoping
instead, which is more akin to the scoping rules found in traditional languages. Hoist-
ing plays an important role when it comes to variable declaration, and let is a great
way to get around the limitations of function scoping in certain cases.

 Consider, for instance, the scenario below, a typical situation where you condition-
ally want to declare a variable. Hoisting makes it awkward to declare the variable
inside the if, because you know it’ll get hoisted to the top of the scope, and keeping it
inside the if block might cause trouble if someday you decide to use the same vari-
able name in the else block.

function processImage (image, generateThumbnail) {
 var thumbnailService;
 if (generateThumbnail) {
 thumbnailService = getThumbnailService();
 thumbnailService.generate(image);
 }

 return process(image);
}

Using the let keyword you could get away with declaring it in the if block, not worry-
ing about it leaking outside of that block, and without the need to split the variable
declaration from its assignment:

function processImage (image, generateThumbnail) {
 if (generateThumbnail) {
 let thumbnailService = getThumbnailService();
 thumbnailService.generate(image);
 }

 return process(image);
}

The difference is subtle in this case, but getting away from having a long list of vari-
ables listed on the top of a function scope, which might only be used in one of the
code paths, is a code smell in current JavaScript implementations using var. It’s a code
smell that could easily be avoided by using the let keyword, keeping variables in the
block scope they belong to.

5.6 Summary
At long last, you’re done with scoping, module systems, and so on!

■ You learned that keeping code self-contained that has a clear purpose, as well as
information hiding, can greatly improve your interface designs.

130 CHAPTER 5 Embracing modularity and dependency management
■ Scoping, this, and hoisting are much clearer now, which will help you design
code that fits the JavaScript paradigm better, without even realizing it.

■ Using closures and the module pattern taught you how module systems work.
■ You compared how CommonJS, RequireJS, and Angular deal with module load-

ing, and how they handle circular dependencies.
■ You learned about the importance of testability, which we’ll expand on in chap-

ter 8, and how the Inversion of Control pattern can make your code more test-
able.

■ We discussed how to leverage npm packages in the browser thanks to Browser-
ify, downloading dependencies with Bower, and the UNIX philosophy of writing
modular code with Component.

■ You saw what’s coming in ES6, such as the module system and the let keyword,
and you learned how to play around with ES6 using the Traceur compiler.

In chapter 6 you’ll learn about asynchronous JavaScript development. You’ll learn
your way around common pitfalls, and you’ll work through examples that will help
you understand how to effectively debug these functions. You’ll look at various pat-
terns for writing asynchronous functions, such as callbacks, events, Promises, and the
upcoming generators API in Harmony.

Understanding
asynchronous flow control

methods in JavaScript
Chapter 5 taught the importance of building your components in a modular fash-
ion, and you learned a great deal about scoping, hoisting, and closures, all of which
are necessary to understand asynchronous JavaScript code effectively. Without a
modest understanding of asynchronous development in JavaScript, it becomes
harder to write quality code that’s easy to read, refactor, and maintain.

 One of the most frequently recurring issues for JavaScript development begin-
ners is dealing with “callback hell,” where many functions are nested inside each
other, making it hard to debug or even understand a piece of code. This chapter
aims to demystify asynchronous JavaScript.

 Asynchronous execution is when code isn’t executed immediately, but rather in the
future; such code isn’t synchronous because it doesn’t run sequentially. Even

This chapter covers
■ Understanding callback hell and how to avoid it
■ Making Promises and keeping them in JavaScript
■ Using asynchronous control flow
■ Learning event-based programming
■ Using Harmony (ECMAScript 6) generator functions
131

132 CHAPTER 6 Understanding asynchronous flow control methods in JavaScript

Proc

neste

 im
though JavaScript is single-threaded, user-triggered events such as clicks, timeouts, or
AJAX responses can still create new execution paths. This chapter will cover different
ways you can handle asynchronous flow in a tolerable and painless way, by applying a
consistent style to asynchronous code flows. Much like chapter 5, this chapter has
many practical code examples for you to follow!

 To kick things off, we’ll look at one of the oldest patterns available: passing a call-
back as an argument so the caller of a function can determine what happens in the
future when the callback is invoked. This pattern is referred to as continuation-
passing style, and it’s the bread and butter of asynchronous callbacks.

6.1 Using callbacks
A prime example of using callbacks is found in the addEventListener API, which
allows us to bind event listeners on DOM (Document Object Model) nodes. When
those events are triggered, our callback function gets called. In the following trivial
example, when we click anywhere in the document, a log statement will be printed to
the console:

document.body.addEventListener('click', function () {
 console.log('Clicks are important.');
});

Click event handling isn’t always that trivial. Sometimes you end up looking at some-
thing that resembles the following listing.

(function () {
 var loaded;
 function init () {
 document.body.addEventListener('click', function handler () {
 console.log('Clicks are important.');
 handleClick(function handled (data) {
 if (data) {
 return processData(data, function processed (copy) {
 copy.append = true;
 done(copy);
 };
 } else {
 reportError(function reported () {
 console.log('data processing failed.', err);
 });
 }
 });
 });
 function done(data) {
 loaded = true;
 console.log('finished', data);
 }
 }
 init();
})();

Listing 6.1 Callback soup using logic noodles

edural code
mixed with
d callbacks
negatively
pacts code
readability.

133Using callbacks
What’s going on? My thoughts exactly. You’ve been dragged through callback hell,
that friendly name that describes deeply nested and indented callbacks on top of
more callbacks, which make it pretty difficult to follow the flow and understand what’s
going on. If you can’t make sense of the code presented in listing 6.1, that’s good. You
shouldn’t have to. Let’s dig deeper into the subject.

6.1.1 Avoiding callback hell

You should understand how a piece of code flows at a glance, even if it’s asynchro-
nous. If you need to spend more than a few seconds to understand how it flows, then
there’s probably something wrong with that piece of code. Each nested callback
means more nested scopes, as observed in chapter 5, and indentation one level
deeper, which consumes a little more real estate in your display, making it harder to
follow the code.

 Callback hell doesn’t happen overnight, and you can prevent it from ever happen-
ing. Using an example (named ch06/01_callback-hell in the samples), let’s see how it
might slowly creep through the cracks of your code base over time. Suppose you have
to make an AJAX request to fetch data, and then show that to a human. You’ll use an
imaginary http object to simplify the AJAX-foo. Let’s also assume you have a record vari-
able holding a reference to a particular DOM element.

record.addEventListener('click', function () {
 var id = record.dataset.id;
 var endpoint = '/api/v1/records/' + id;

 http.get(endpoint, function (res) {
 record.innerHTML = res.data.view;
 });
});

That’s still easy to follow! What if you need to update another component after the
GET request succeeded? Consider the following listing. Let’s assume there’s a DOM ele-
ment in the status variable.

function attach (node, status, done) {
 node.addEventListener('click', function () {
 var id = node.dataset.id;
 var endpoint = '/api/v1/records/' + id;

 http.get(endpoint, function (res) {
 node.innerHTML = res.data.view;
 reportStatus(res.status, function () {
 done(res);
 });
 });

 function reportStatus (status, then) {
 status.innerHTML = 'Status: ' + status;

Listing 6.2 Callback creep

134 CHAPTER 6 Understanding asynchronous flow control methods in JavaScript
 then();
 }
 });
}

attach(record, status, function (res) {
 console.log(res);
});

Okay, that’s starting to get bad! Nested callbacks add complexity every time you add a
nesting level into the piece of code, because now you have to keep track of the context
of the existing function as well as the context of the deeper callback. Take into
account that in a real application each of these methods would probably have more
lines in them, making it even harder to keep all of that state in your memory.

 How do you fight the callback creep? All that complexity can be avoided by reduc-
ing the callback nesting depth.

6.1.2 Untangling the callback jumble

You have ways to untangle these innocent pieces of code. Here’s a list of things you
should take into account and fix:

■ Name anonymous functions, to improve their readability, and give hints as to what
they’re doing. Named anonymous callbacks provide two-fold value. Their
names can be used to convey intent, and it also helps when tracking down
exceptions, as the stack trace will show the function name, instead of showing
up as “anonymous function.” A named function will be easier to identify and
save you headaches when debugging.

■ Remove unnecessary callbacks, such as the one after reporting the status in the
example. If a callback is only executed at the end of the function, and not asyn-
chronously, you can get rid of it. The code that used to be in the callback could
come right after the function call.

■ Be careful about mixing conditionals with flow control code. Conditionals hinder your
ability to follow a piece of code, because new possibilities are introduced, and
you need to think of all the possible ways in which the code might be followed.
Flow control presents a similar problem. It makes it harder to read through the
code, because the next instruction isn’t always the following line. Anonymous
callbacks containing conditionals make it particularly hard to follow the flow,
and they should be avoided. The first example in section 6.1 is a good demon-
stration of how this mixture is a recipe for disaster. You can mitigate this prob-
lem by separating the conditionals from the flow control. Provide a reference to
the function, instead of an anonymous callback, and you can keep the condi-
tionals as they were.

After making the changes suggested in the previous list, the code ends up like the fol-
lowing listing.

135Using callbacks

function attach (node, status, done) {
 node.addEventListener('click', function handler () {
 var id = node.dataset.id;
 var endpoint = '/api/v1/records/' + id;

 http.get(endpoint, function ajax (res) {
 node.innerHTML = res.data.view;
 reportStatus(res.status);
 done(res);
 });

 function reportStatus (code) {
 status.innerHTML = 'Status: ' + code;
 }
 });
}

attach(record, status, function (res) {
 console.log(res);
});

That’s not that bad; what else?

■ The reportStatus function now seems pointless; you could inline its contents,
move them to the only call site, and reduce the mental overhead. Simple meth-
ods that aren’t going to be reused can be replaced with their contents, reducing
cognitive load.

■ Sometimes it makes sense to do the opposite, too. Instead of declaring the click
handler inline, you could pull it into a named function, making the
addEventListener line shorter. This one is mostly a matter of preference, but it
can help when lines of code get longer than the 80 character mark.

The next listing shows the resulting code after applying these changes. Although the
code is functionally equivalent, it’s gotten much easier to read. Compare it with listing
6.2 to get a clearer picture.

function attach (node, status, done) {

 function handler () {
 var id = node.dataset.id;
 var endpoint = '/api/v1/records/' + id;

 http.get(endpoint, updateView);
 }

 function updateView (res) {
 node.innerHTML = res.data.view;
 status.innerHTML = 'Status: ' + res.status;

Listing 6.3 Cleaning up the jumble

Listing 6.4 Pulling functions

Named functions are
easier to debug.

Since the method is synchronous,
using a callback was unnecessary.

136 CHAPTER 6 Understanding asynchronous flow control methods in JavaScript
 done(res);
 }

 node.addEventListener('click', handler);
}

attach(record, status, function done (res) {
 console.log(res);
});

What you did was make your code read as it flows. The trick is to keep each function as
small and focused as you can get away with, as covered in chapter 5. Then it’s a matter
of giving the functions proper, descriptive names that clearly state the purpose of the
method. Learning when to inline unnecessary callbacks, as you did with report-
Status, is a matter of practice.

 In general, it won’t matter if the code itself becomes a bit longer, as long as its
readability improves. Readability is the single most important aspect of the code you
write, because that’s how you’ll spend most of your time: reading code. Let’s go over
one more example before moving on.

6.1.3 Requests upon requests

In web applications, it’s not uncommon to have web requests that depend on other
AJAX requests; the back end might not be suited to give you all the data you need in a
single AJAX call. For example, you might need to access a list of your customer’s cli-
ents, but to do that you must first get the customer ID, using their email address, and
then you need to get the regions associated with that customer before finally getting
the clients associated with that region and that customer.

 Let’s look at the following listing (found as ch06/02_requests-upon-requests in the
samples) to see how this AJAX-fest might look.

http.get('/userByEmail', { email: input.email }, function (err, res) {
 if (err) { done(err); return; }

 http.get('/regions', { regionId: res.id }, function (err, res) {
 if (err) { done(err); return; }

 http.get('/clients', { regions: res.regions }, function (err, res) {
 done(err, res);
 });
 });
});

function done (err, res) {
 if (err) { throw err; }
 console.log(res.clients);
}

Listing 6.5 Using AJAX for callback nesting

137Using callbacks
As you’ll learn in chapter 9 while analyzing REST API service design, having to jump
through so many hoops to get to the data you need is usually a symptom of client-side
code conforming to whatever API the back-end server offers, rather than having a ded-
icated API that’s specifically built for the front end. In the case I described, it would be
best if the server did all that work based off a customer email, rather than making that
many round-trips to the server.

 Figure 6.1 shows the repeated round-trips to the server, compared with an API ded-
icated to the front end. As you can see in the figure, with a preexisting API, chances
are it won’t fit the needs of your front end, and you’ll have to massage inputs in your
browser before handing them off to the API. In the worst-case scenario, you might
even have to make multiple requests to get the desired result, meaning extra round-
trips. If you had a dedicated API, it would be up for whatever task you ask of it, allow-
ing you to optimize and reduce the number of requests made against the server,
reducing server load and eliminating unnecessary round-trips.

 If you take into account that this code might be inside a closure and also inside an
event handler, the indentation becomes unbearable: it’s too hard to follow code
through all of those nesting levels, particularly if the methods are long. Naming the

Existing API

Takes action
that requires
server data

Human

http://bevacqua.io

31 HTTP
requests

Requests may even need to wait
for new data to become available.

• Existing API may not fit your needs
• Excess requests
• Extra work for the client side

Site

Dedicated API

Takes action
that requires
server data

Human

http://bevacqua.io

1 HTTP
request

• Dedicated API caters to needs
 of the front end
• Optimal results
• Less data manipulation

Site

Data is arranged
the way it's needed

Single round-trip

Needs to massage
data in the browser

Slower than optimal

Figure 6.1 The trade-offs between resorting to an existing API or using one dedicated to the front end

138 CHAPTER 6 Understanding asynchronous flow control methods in JavaScript
callback functions and extracting them, rather than using anonymous functions, is
good enough to start refactoring the functionality so it’s easier to understand.

 The following listing shows the refactored code as an example of how you might
break down nesting.

function getUser (input) {
 http.get('/userByEmail', { email: input.email }, getRegions);
}

function getRegions (err, res) {
 if (err) { done(err); return; }
 http.get('/regions', { regionId: res.id }, getClients);
}

function getClients (err, res) {
 if (err) { done(err); return; }
 http.get('/clients', { regions: res.regions }, done);
}

function done (err, res) {
 if (err) { throw err; }
 console.log(res.clients);
}

You can already see how this is easier to understand; the flow is much clearer now that
everything is at the same nesting level. You might’ve noticed the pattern where every
method checks for errors to ensure the next step isn’t met with any surprises. In the
next few sections we’ll look at different ways to handle asynchronous flow in JavaScript:

■ Using callback libraries
■ Promises
■ Generators
■ Event emitters

You’ll learn how each of those solutions simplifies error handling. For now, you’ll
build on the current sample, figuring out how to get rid of those error checks.

6.1.4 Asynchronous error handling

You should plan for errors, rather than ignore them. You should never let errors go
unnoticed. That being said, when using either the callback hell or the named func-
tions approach, it’s tedious to do any sort of error handling. Surely there’s a better way
to go about it than adding an error handling line to each of your functions.

 In chapter 5 you learned about different ways you can manipulate function invoca-
tion, such as using .apply, .call, and .bind. Imagine you could get away with writing
a line such as the following code and have that get rid of repeated error-checking
statements, while still checking for them, but in one place. Wouldn’t that be great?

flow([getUser, getRegions, getClients], done);

Listing 6.6 Nesting no more

Error checking
in every callback

139Using callbacks
In the previous statement, the flow method takes an array of functions and executes
each one in turn. Each function is passed a next argument that it should invoke when
it’s done. If the first argument passed to next is “truthy” (JavaScript slang for any value
that’s not false, 0, '', null, or undefined), then done gets called immediately, inter-
rupting the flow.

 The first argument is reserved for errors. If that argument is truthy, then you’ll
short-circuit and call done directly. Otherwise, the next function in the array is called,
and it gets passed all the arguments provided to next, except for the error, plus a new
next callback function that allows the following method to continue chaining. Pulling
that off does seem difficult.

 First, you’ll ask consumers of the flow method to call a next callback when the
method is done working. That’ll help with the flow part. You’ll have to provide that
callback method and have it call the next function in the list, passing it all the argu-
ments that were used to call next. You’ll append a new next callback, which will call
the following method, and so on.

 Figure 6.2 explains the flow function you’re going to implement.
 Before you implement your flow method, let’s look at a full usage example. This is

what you were doing previously, finding clients for a particular customer, but you’re
not doing the error checking in every step anymore; the flow method will take care of
that. The following listing shows what using flow would look like.

flow([getUser, getRegions, getClients], done);

function getUser (next) {
 http.get('/userByEmail', { email: input.email }, next);
}

function getRegions (res, next) {

Listing 6.7 Using the flow method

Asynchronous flow
Start by executing Task 1.

done()

next()

What to
do next?

All arguments passed to next()
are provided to the following step.

Error? Call the done() method.
Otherwise, go to the next step.

Tasks

Task 2

Task 3

Task 1

Figure 6.2 Understanding an asynchronous flow method

The flow() method takes in an array
of steps and a done() callback.

Steps are completed by
calling next() with an
optional error and a result.

140 CHAPTER 6 Understanding asynchronous flow control methods in JavaScript

Uses
so th

 local to e

Gets the
removes

Sho
erro

Call do
to
 http.get('/regions', { regionId: res.id }, next);
}

function getClients (res, next) {
 http.get('/clients', { regions: res.regions }, next);
}

function done (err, res) {
 if (err) { throw err; }
 console.log(res.clients);
}

Keeping in mind what we’ve discussed, let’s look at the implementation of the flow
function. Adding a guard clause ensures that calling next multiple times on any given
step doesn’t have a negative effect. Only the first call to next will be taken into consid-
eration. A flow implementation can be found in the following listing.

function flow (steps, done) {
 function factory () {
 var used;
 return function next () {
 if (used) { return; }
 used = true;
 var step = steps.shift();
 if (step) {
 var args = Array.prototype.slice.call(arguments);
 var err = args.shift();
 if (err) { done(err); return; }
 args.push(factory());
 step.apply(null, args);
 } else {
 done.apply(null, arguments);
 }
 };
 }
 var start = factory();
 start();
}

Experiment and follow the flow on your own, and if you get lost, keep in mind that
the next() method merely returns a function that has an effect once. If you didn’t
want to include that safeguard, you could reuse that same function every step of the
way. This approach, however, accounts for programming mistakes by the consumers
where they might call next twice during the same step.

 Maintaining methods such as flow to keep them up-to-date and bug-free can be
cumbersome if all you want is to avoid the nesting hell of a callback-based asynchro-
nous flow and get error handling to go with that. Luckily, smart people have imple-
mented this and many other asynchronous flow patterns into a JavaScript library

Listing 6.8 Implementing the asynchronous series flow method

Note we’re only checking for errors in the done()
method. Whenever a step calls next() with an error,
done() will get that error, short-circuiting the flow.

Stores whether the callback
has already been used.

 a factory
at used is
ach step.

After one use, next becomes a no-op.

 next step, and
it from the list.

Are there more steps?
Casts arguments
to an array.

Gets the error argument, and
removes it from the arguments.

rt-circuits if an
r was provided. Adds a completion

callback to the
argument list.

Invokes the step
passing in the
needed arguments.ne; no need

 manipulate
arguments. Creates the first step function.

Executes the step; doesn’t
provide additional arguments.

141Using the async library
called async, and also baked it into popular web frameworks such as Express, too.
We’ll go over control flow paradigms in this chapter, such as callbacks, Promises,
events, and generators. Next up, you’ll get acquainted with async.

6.2 Using the async library
In the world of Node, many developers find it hard not to use the async control flow
library. Native modules, those that are part of the Node platform itself, follow the pat-
tern where the last argument taken by a function is a callback that receives an error as
its first argument. The following code snippet illustrates the case in point, using
Node’s file system API to read a file asynchronously:

require('fs').readFile('path/to/file', function (err, data) {
 // handle the error, use data
});

The async library provides many asynchronous control flow methods, much like the
one in section 6.1.3, when you built the flow utility method. Your flow method is
much the same as async.waterfall. The difference is that async provides tens of
these methods that can simplify your asynchronous code if applied correctly.

 You can get async from either npm or Bower, or from GitHub.1 While you’re on
GitHub, you might want to check the excellent piece of documentation that Caolan
McMahon (async’s author) has written.

 In the following subsections we’ll go into detail about the async control flow
library, discussing problems you might run into and how async can solve those for
you, making it easier for you, and everyone else, to read the code. To get started,
you’ll look at three slightly different flow control methods: waterfall, series, and
parallel.

6.2.1 Waterfall, series, or parallel?

One of the most important aspects of mastering asynchronous JavaScript is learning
about all the different tools at your disposal, and you certainly will in this chapter. One
such tool is common control flow techniques:

■ Do you want to run tasks asynchronously so they don’t depend on each other to
do their thing? Run them concurrently using .parallel.

■ Do your tasks depend on the previous ones? Run them in series, one after the
other, but still asynchronously.

■ Are your tasks tightly coupled? Use a waterfall mechanism that lets you pass
arguments to the next task in the list. The HTTP cascade we discussed earlier is
a perfect use case for waterfall.

Figure 6.3 compares the three alternatives in greater detail.

1 You can download async from GitHub at https://github.com/caolan/async.

https://github.com/caolan/async

142 CHAPTER 6 Understanding asynchronous flow control methods in JavaScript
As you can see in the figure, subtle differences exist between these three strategies.
Let’s break them down.

CONCURRENT

Concurrent task execution is most helpful when you have a few different asynchro-
nous tasks that have no interdependencies, but where you still need to do something
when all of them finish; for example, when fetching different pieces of data to render
a view. You can define a concurrency level, or how many tasks can be busy while the
rest are queued up:

Concurrent
Tasks have no requirements and are running concurrently.

Concurrency level can be limited so that at
most N tasks are running at any given time.

done(err, results) callback gets
an error object if a task fails.

Results
respect task

order.

Task B

Task C

Task D

Task A

Result B

Result C

Result D

Result A

async.parallel done

Error

Series
Tasks are running in sequence, one at a time.

If a task fails, done(err) gets an error and
no further tasks will get executed.

Useful when tasks have requirements,
such as when connecting to a database

and then starting an HTTP server.

Results
respect task

order.
Task A Task B Task C Result B

Result C

Result A

async.series done

Error

Waterfall
Tasks are running in sequence, one at a time.

If a task fails, done(err) gets
an error and no further tasks

will get executed.

Useful when tasks have dependencies, as
arguments can be passed from one task to the

next one, such as when querying the database and
responding to an HTTP request with the results.

Results are whatever
arguments were passed

into the previous
next() callback.

Task A Task B Task C Resultsasync.waterfall done

Error

Each task gets the
arguments passed to next()

in the previous task.

Figure 6.3 Comparison of parallel, series, and waterfall in the async library.

143Using the async library
■ Once a task finishes, another one is grabbed from the queue until the queue is
emptied.

■ Each task is passed a special next method that should be invoked when process-
ing completes.

■ The first argument passed to next is reserved for errors; if you pass in an error,
no further tasks will be executed (although the ones already executing will run
to completion).

■ The second argument is where you’ll pass in the results for your task.
■ Once all tasks end, the done callback is invoked. Its first argument will be the

error (if any), and the second one will have the results sorted by the tasks,
regardless of how long they took to finish.

SERIES

Sequential execution helps you connect correlative tasks, meant to be executed one
by one, even if the code execution happens asynchronously, outside of the main loop.
Think of the series flow as the concurrent flow with its concurrency level set to 1. In
fact, that’s exactly what it is! The same conventions of next(err, results) and
done(err, results) apply.

WATERFALL

The waterfall variant is similar to sequential execution, but it allows you to easily roll
the arguments from one task to the next in a cascade. This type of flow is most useful
when tasks can only be initiated using the data provided by the response of other
tasks. In the case of waterfall the flow is different in that next takes in an error fol-
lowed by any number of result arguments: next(err, result1, result2,

result...n). The done callback behaves in this exact same way, giving you all of the
arguments that were passed to the last next callback.

 Next, let’s get more insight into how series and parallel work.

FLOW CONTROL IN SERIES

You've already seen waterfall in action, in the flow method you implemented. Let’s
talk about series, which is a slightly different approach from what waterfall does. It
executes the steps in series, one at a time the way waterfall does, but it doesn’t fiddle
with the arguments of each step function. Instead, each step only receives a next call-
back argument, expecting the (err, data) signature. You might wonder, “How does
that help me?” The answer to that is sometimes the consistency of having a single
argument, and having that argument be a callback, is useful. Consider the following
listing as an illustrative example of how async.series works.

async.series([
 function createUser (next) {
 http.put('/users', user, next);
 },
 function listUsers (next) {

Listing 6.9 Using async.series

144 CHAPTER 6 Understanding asynchronous flow control methods in JavaScript
 http.get('/users/list', next);
 },
 function updateView (next) {
 view.update(next);
 }
], done);

function done (err, results) {
 // handle error
 updateProfile(results[0]);
 synchronizeFollowers(results[1]);
}

Sometimes the results need to be manipulated individually, the way you did in the pre-
vious listing. In those cases, it makes more sense to use an object to describe the tasks
rather than an array. If you do that, the done callback will get a results object, map-
ping results to the property name for each task. This sounds complicated, but it isn’t,
so let’s modify the code in the following listing to illustrate the point.

async.series({
 user: function createUser (next) {
 http.put('/users', user, next);
 },
 list: function listUsers (next) {
 http.get('/users/list', next);
 },
 view: function updateView (next) {
 view.update(next);
 }
}, done);

function done (err, results) {
 // handle error
 updateProfile(results.user);
 synchronizeFollowers(results.list);
}

If a task merely involves calling a function that takes arguments and the next callback,
you could use async.apply to shorten your code; that’ll make it easier to read. The
apply helper will take the method you want to call and the arguments you want to use
and return a function that takes a next callback and appends that to your argument list.
The two approaches shown in the following code snippets are functionally equivalent:

function (next) {
 http.put('/users', user, next);
}

async.apply(http.put, '/users', user)
// <- [Function]

Listing 6.10 Using the done callback

145Using the async library
The following code is a simplified version of the task flow you put together previously,
using async.apply :

async.series({
 user: async.apply(http.put, '/users', user),
 list: async.apply(http.get, '/users/list'),
 view: async.apply(view.update)
}, done);

If you used waterfall, this kind of optimization wouldn’t have been possible. The
function created by async.apply expects only a next argument but nothing else. In
waterfall flows, tasks can get passed an arbitrary number of arguments. In contrast,
in a series, tasks always receive exactly one argument, the next callback.

CONCURRENT FLOW CONTROL

Then there’s async.parallel. Running tasks concurrently works exactly like running
tasks in series does, except you don’t chip away at tasks one at a time, but rather run
them all at the same time. Concurrent flows result in faster execution time, making
parallel the favorite when you don’t have any specific requirements for your work-
flow other than asynchronicity.

 The async library also provides functional methods, allowing you to loop through
lists, map objects to something else, or sort them. Next we’ll look at these functional
methods and an interesting task queue functionality built into async.

6.2.2 Asynchronous functional tasks

Suppose you need to go through a list of product identifiers and fetch their object
representations over HTTP. That’s an excellent use case for a map. Maps transform
input into output using a function that modifies the input. The following listing (avail-
able as ch06/05_async-functional in the samples) shows how it’s done using
async.map.

var ids = [23, 33, 118];

async.map(ids, transform, done);

function transform (id, complete) {
 http.get('/products/' + id, complete);
}

function done (err, results) {
 // handle the error
 // results[0] is the response for ids[0],
 // results[1] is the response for ids[1],
 // and so on
}

At the point done is called, it will either have an error argument as the first argument,
which you should handle, or an array of results as the second argument, which will be

Listing 6.11 Transforming input into output with maps

146 CHAPTER 6 Understanding asynchronous flow control methods in JavaScript
in the same order as the list you provided when calling async.map. A few methods
behave similarly to map in async. They’ll take in an array and a function, apply the
function to every item in the array, and then call done with the results.

 For instance, async.sortBy allows you to sort an array in place (meaning it won’t
create a copy), and all you need to do is pass in a value as the sort criteria for the done
callback of the function. You could use it as shown in the following listing.

async.sortBy([1, 23, 54], sort, done);

function sort (id, complete) {
 http.get('/products/' + id, function (err, product) {
 complete(err, product ? product.name : null);
 });
}

function done (err, result) {
 // handle the error
 // result contains ids sorted by name
}

Both map and sortBy are based on each, which you can think of as parallel, or
series if you use the eachSeries version. each merely loops through an array and
applies a function to each element; then an optional done callback is invoked that has
an error argument telling you if something went wrong. The following listing shows
an example of using async.each.

async.each([2, 5, 6], iterator, done);

function iterator (item, done) {
 setTimeout(function () {
 if (item % 2 === 0) {
 done();
 } else {
 done(new Error('expected divisible by 2'));
 }
 }, 1000 * item);
}

function done (err) {
 // handle the error
}

More methods in the async library deal with functional situations, all of which revolve
around asynchronously transforming an array into an alternative representation of its
data. We won’t cover the rest of them, but I encourage you to look at the extensive
documentation on GitHub.2

Listing 6.12 Sorting an array

Listing 6.13 Using async.each

2 You can find the flow control library async on GitHub at https://github.com/caolan/async.

https://github.com/caolan/async

147Using the async library
6.2.3 Asynchronous task queues

Moving on to the last method, async.queue, this method will create a queue object
that can be used to run tasks in series or concurrently. It takes two arguments: the
worker function, which will take a task object and a callback to signal that the work is
complete, and the concurrency level, which determines how many tasks can run at
any given moment.

 If the concurrency level is 1, you’re effectively turning the queue into a series, exe-
cuting tasks as the previous one ends. Let’s create a simple queue in the following list-
ing (labeled ch06/06_async-queue in the samples).

var q = async.queue(worker, 1);

function worker (id, done) {
 http.get('/users/' + id, function gotResponse (err, user) {
 if (err) { done(err); return; }

 console.log('Fetched user ' + id);
 done();
 });
}

You can use the q object to put your queue to work. To add a new job to the queue,
use q.push. You’ll need to pass a task object, which is what gets passed to the worker;
in our case the task is a numeric literal, but it could be an object or even a function;
and an optional callback, which gets called when this particular job is done. Let’s see
how to do that in code:

var id = 24;
q.push(id, function (err) {
 if (err) {
 console.error('Error processing user 23', err);
 }
});

That’s it. The nicety is that you can push more tasks at different points in time, and
it’ll still work. In contrast, parallel or series are one-shot operations where you
can’t add tasks to the list at a later time. That being said, our last topic regarding the
async control flow library is about composing flows and creating task lists dynami-
cally—both of which may bring further flexibility to your approach.

6.2.4 Flow composition and dynamic flows

At times, you’ll need to craft more advanced flows where

■ Task b depends on task a
■ While task c needs to be performed afterward
■ And task d can be executed in parallel to all of that

When all of it is done, you’ll run a last task: task e.

Listing 6.14 Creating a simple queue

148 CHAPTER 6 Understanding asynchronous flow control methods in JavaScript
Figure 6.4 shows what that flow might look like:

■ Tasks A (getting on a bus) and B (paying the bus fare) need to be executed in
waterfall, as task B depends on the outcome of task A.

■ Task C (getting to your workplace) needs to be executed in series, after tasks A
and B have been resolved. It depends on both of them, but not directly.

■ Task D (reading a book) doesn’t have any dependencies, so it can be executed
in parallel to tasks A, B, and C.

■ Task E (working) depends on both task C and task D, so it has to be executed
once those tasks are finished.

This sounds, and looks, more complicated than it is. All you need to do, provided
you’re using a control flow library such as async, is write a few functions on top of
each other. That could look like the pseudo-code shown in the following example.
Here I’m using async.apply, introduced in section 6.2.1, to make the code shorter. A
fully documented sample can be found at ch06/07_async-composition in the samples:

async.parallel([
 async.apply(async.series, [
 async.apply(async.waterfall, [getOnBus, payFare]),
 getToWork
]),
 readBook
], doWork);

Composing flows in this way is most useful if you’re writing Node.js applications,
which involve many async operations, such as querying a database, reading files, or

Composing asynchronous flows
Complex workflows require thoughtful consideration.

Tasks A and B need to be executed
in waterfall, as task B depends on

the outcome of task A.

Task D doesn't have any
dependencies, so it can be executed

in parallel to tasks A, B, and C.

Task E depends on both Task D and
Task C, so it has to be executed
once those tasks are finished.

Task C needs to be executed in series,
after tasks A and B have been resolved.

It depends on them, but not directly.

Task A

Task D

Task B Task C Task E

Figure 6.4 Dissection of a complex asynchronous flow. Hint: always group tasks, in your brain,
according to their requirements.

149Using the async library
connecting to an external API, all of which can often result in highly complex, asyn-
chronous operation trees.

COMPOSING FLOWS DYNAMICALLY

Creating flows dynamically, by adding tasks to an object, allows you to put together
task lists that would’ve been much harder to organize without using a control flow
library. This is a nod to the fact that you’re writing code in JavaScript, a dynamic lan-
guage. You can exploit that by coding up dynamic functions, so do so! The following
listing takes a list of items and maps each of them to a function, which then queries
something with that item.

var tasks = {};

items.forEach(function queryItem (item) {
 tasks[item.name] = function (done) {
 item.query(function queried (res) {
 done(null, res);
 });
 };
});
function done (err, results) {
 // results will be organized by name
}
async.series(tasks, done);

Let’s move on to Promises, a way to deal with asynchronous programming by chaining
functions together, and dealing in contracts. Have you used jQuery’s AJAX functional-
ity? Then you’ve worked with a flavor of Promises called Deferred, which is slightly dif-
ferent than the official ES6 Promises implementation, but fundamentally similar.

Listing 6.15 Mapping and querying a list of items

A lightweight alternative to async

There’s something I’d like to mention about async regarding client-side usage. async
was originally developed mostly for the Node.js community, and, as such, it isn’t as
rigorously tested for the browser.

I built my own version, contra, which has an extensive suite of unit tests that get
executed before every release. I kept the code in contra to a minimum; it’s 10 times
smaller than async, making it ideal for the browser. It provides methods that can be
found on async, as well as a simple way to implement event emitters, which are ex-
plained in section 6.4. You can find it on GitHub,a and it’s available on both npm and
Bower.

a Get contra, my flow control library at https://github.com/bevacqua/contra, on GitHub.

https://github.com/bevacqua/contra

150 CHAPTER 6 Understanding asynchronous flow control methods in JavaScript
6.3 Making Promises
Promises are an up-and-coming standard, and are in fact part of the official ECMA-
Script 6 draft specification. Currently you can use Promises by including a library, such
as Q, RSVP.js, or when. You could also use Promises by adding the ES6 Promises poly-
fill.3 A polyfill is a piece of code that enables technology that you’d expect the language
runtime to provide natively. In this case, a polyfill for Promises would provide Prom-
ises, as they’re natively supposed to work in ES6, made available to previous implemen-
tations of the ES standard.

 In this section, I’ll describe Promises per ES6, which you can use today, provided
you include the polyfill. The syntax varies slightly if you’re using something other than
the polyfill for Promises, but these variations are subtle enough, and the core con-
cepts remain the same.

6.3.1 Promise fundamentals

Creating a Promise involves a callback function that takes fulfill and reject func-
tions as its arguments. Calling fulfill will change the state of the Promise to
fulfilled; you’ll see what that means in a minute. Calling reject will change the
state to rejected. The following code is a brief and self-explaining Promise declara-
tion where your Promise will be fulfilled half of the time and rejected the other half:

var promise = new Promise(function logic (fulfill, reject) {
 if (Math.random() < 0.5) {
 fulfill('Good enough.');
 } else {
 reject(new Error('Dice roll failed!'));
 }
});

As you might’ve noticed, Promises don’t have any inherent properties that make them
exclusively asynchronous, and you can also use them for synchronous operations. This
comes in handy when mixing synchronous and asynchronous code, because Promises
don’t care about that. Promises start out in pending, and once they fail or succeed,
they’re resolved and can’t change state anymore. Promises can be in one of three
mutually exclusive states:

■ Pending: Hasn’t fulfilled or rejected yet.
■ Fulfilled: The action relating to the Promise succeeded.
■ Rejected: The action relating to the Promise failed.

PROMISE CONTINUATION

Once you create a Promise object, you can add callbacks to it via the then(success,
failure) method. These callbacks will be executed accordingly when the Promise is
resolved. When the Promise is fulfilled, or if it’s already fulfilled, the success callback
will be called, and if it’s rejected or if it’s already rejected, failure will be invoked.

3 Find the ES6 Promises polyfill at http://bevacqua.io/bf/promises.

http://bevacqua.io/bf/promises

151Making Promises

Sim
rejec

 reje
Figure 6.5 illustrates how Promises can be rejected or fulfilled and how Promise con-
tinuation works.

 There are a few takeaways from figure 6.5. First, remember that when creating a
Promise object you’ll take both fulfill and reject callbacks, which you can then use to
resolve the Promise. Calling p.then(success, fail) will execute success when and if
the Promise is fulfilled, and fail when and if the Promise is rejected. Note that both
callbacks are optional, and you could also use p.catch(fail) as syntactic sugar for
p.then(null, fail).

 The following expanded listing shows the then continuation calls added to our
previous example. You can find it under ch06/08_promise-basics in the code samples.

var promise = new Promise(function logic (fulfill, reject) {
 if (Math.random() < 0.5) {
 fulfill('Good enough.');
 } else {
 reject(new Error('Dice roll failed!'));
 }
});

promise.then(function success (result) {
 console.log('Succeeded', result);

Listing 6.16 Promise with continuation calls

Promise continuation
Promises can be fulfilled or rejected. Continuations are called once, if the Promise is resolved.

p = new Promise(handler)

A Promise is created. The
handler receives two

arguments: fulfill and reject.

Calling p.then, passing a function,
will register a callback to be executed

when the Promise fulfills. If the Promise
already fulfilled, the callback is

executed immediately.fulfill(result) marks the
Promise as fulfilled, triggering

any existing and future
.then handlers.

reject(reason) marks
the Promise as rejected,

triggering any existing and
future .catch handlers.

p.then(consequence)
p.then(consequence)
p.then(consequence)

Fulfilled

Calling p.catch, passing a function,
will register a callback to be executed

when the Promise rejects. If the Promise
already rejected, the callback is

executed immediately.

p.catch(consequence)
p.catch(consequence) Rejected

Figure 6.5 Promise continuation basics

When defining a Promise, fulfill is used
to resolve it to any value passed to it.ilarly the

t callback
is used to
ct it, with
an error. You can then chain success

callbacks by using .then.

152 CHAPTER 6 Understanding asynchronous flow control methods in JavaScript
}, function fail (reason) {
 console.log('Rejected', reason);
});

You can invoke promise.then as many times as you please, and all the callbacks in the
correct branch (either success or rejection) will be invoked when the Promise is
resolved, in the same order in which they were added. If the code was asynchronous,
maybe if a setTimeout or an XMLHttpRequest was involved, the callbacks that depend
on the outcome of the Promise won’t be executed until the Promise resolves, as shown
in the following listing. Once the Promise is resolved, callbacks passed to p.then(suc-
cess, fail) or p.catch(fail) will be executed immediately, where appropriate:
success callbacks will only be executed if the Promise was fulfilled, and fail callbacks
will only be executed if the Promise was rejected.

var promise = new Promise(function logic (fulfill, reject) {
 console.log('Pending...');

 setTimeout(function later () {
 if (Math.random() < 0.5) {
 fulfill('Good enough.');
 } else {
 reject(new Error('Dice roll failed!'));
 }
 }, 1000);
});

promise.then(function success (result) {
 console.log('Succeeded', result);
}, function fail (reason) {
 console.log('Rejected', reason);
});

Besides creating different branches by invoking .then multiple times on a Promise
object, you could also chain those callbacks together, altering the result each time.
Let’s look into Promise chaining.

PROMISE TRANSFORMATION CHAINS

This is where things get harder to understand, but let’s go step by step. When you chain
callbacks, they get whatever the previous one returned. Consider the following listing,
where the first callback will parse the JSON value resolved by the Promise into an object,
and the following callback prints whether buildfirst is true on that object.

var promise = new Promise(function logic (fulfill) {
 fulfill('{"buildfirst": true}');
});

Listing 6.17 Executing Promises

Listing 6.18 Using a transformation chain

Optional failure callbacks can be passed
as the second argument to .then.

In this case, our Promise always
resolves with a JSON string.

153Making Promises
promise
 .then(function parse (value) {
 return JSON.parse(value);
 })
 .then(function print (value) {
 console.log(value.buildfirst);
 // <- true
 });

Chaining callbacks to transform previous values is useful, but it won’t do you any good
if what you need is to chain asynchronous callbacks. How can you chain Promises that
perform asynchronous tasks? We’ll look at that next.

6.3.2 Chaining Promises

Instead of returning values in your callbacks, you could also return other Promises.
Returning a Promise has an interesting effect, where the next callback in the chain
will wait until the returned Promise is completed. In preparation for your next exam-
ple, where you’ll query the GitHub API for a list of users and then get the name of one
of their repositories, let’s sketch out a Promise wrapper of the XMLHttpRequest object,
the native browser API uses to make AJAX calls.

A BARE AJAX CALL

The specifics of how the XMLHttpRequest works are outside of the scope of this book,
but the code should be self-explanatory. The following listing shows how you could
make an AJAX call using minimal code.

var xhr = new XMLHttpRequest();
xhr.open('GET', endpoint);
xhr.onload = function loaded () {
 if (xhr.status >= 200 && xhr.status < 300) {
 // get me the response
 } else {
 // report error
 }
};
xhr.onerror = function errored () {
 // report error
};
xhr.send();

It’s a matter of passing in an endpoint, setting an HTTP method—GET, in this case—
and doing something with the results asynchronously. That’s a perfect opportunity to
turn AJAX into a Promise.

PROMISING AJAX DATA

You don’t have to change the code at all, other than appropriately wrapping the AJAX
call in a Promise and calling resolve and reject as necessary. The following listing

Listing 6.19 Making an AJAX call

This method takes the resolved JSON
string and parses it into an object.

The print callback gets the JSON object
as transformed by the parse callback.

154 CHAPTER 6 Understanding asynchronous flow control methods in JavaScript

If sta
the 20

the
t

depicts a possible get implementation, which provides access to the XHR object
through the use of Promises.

function get (endpoint) {
 function handler (fulfill, reject) {
 var xhr = new XMLHttpRequest();
 xhr.open('GET', endpoint);
 xhr.onload = function loaded () {
 if (xhr.status >= 200 && xhr.status < 300) {
 fulfill(xhr.response);
 } else {
 reject(new Error(xhr.responseText));
 }
 };
 xhr.onerror = function errored () {
 reject(new Error('Network Error'));
 };
 xhr.send();
 }

 return new Promise(handler);
}

Once that’s out of the way, putting together the sequence of calls leading up to the
name of a repository looks bafflingly easy. Notice how you’re mixing asynchronous
calls thanks to Promises, and synchronous calls by using then transformations. Here’s
what the code looks like, taking into account the get method you implemented:

get('https://api.github.com/users')
 .catch(function errored () {
 console.log('Too bad. That failed.');
 })
 .then(JSON.parse)
 .then(function getRepos (res) {
 var url = 'https://api.github.com/users/' + res[0].login + '/repos';
 return get(url).catch(function errored () {
 console.log('Oops! That one failed.');
 });
 })
 .then(JSON.parse)
 .then(function print (res) {
 console.log(res[0].name);
 });

You could’ve packed the JSON.parse method in the get method, but it felt like a good
opportunity to display how you might mix and match asynchronous and synchronous
operations using Promises.

 This is great if you want to do operations similar to what you did with
async.waterfall in section 6.2.1, where each task was fed the results from the previ-
ous one. What about using another flow control mechanism you got from async?
Read on!

Listing 6.20 Promising AJAX

tus code is in
0-299 range,
n fulfill using
he response. If not, reject the Promise,

using Error object.

Reject on network errors as well
(such as a request timeout).

155Making Promises

We
o

methods
6.3.3 Controlling the flow

Flow control with Promises is arguably as easy as flow control using a library such as
async. If you want to wait on a collection of Promises before doing another task, the
way you did with async.parallel, you could wrap the Promises in a Promise.all
call, as shown in the following listing.

function delay (t) {
 function wait (fulfill) {
 setTimeout(function delayedPrint () {
 console.log('Resolving after', t);
 fulfill(t);
 }, t);
 }
 return new Promise(wait);
}

Promise
 .all([delay(700), delay(300), delay(500)])
 .then(function complete (results) {
 return delay(Math.min.apply(Math, results));
 });

The delay(Math.min.apply(Math, results)) Promise will be run only after all the
previous Promises have resolved successfully; also note how then(results) gets
passed an array of results containing the result of each Promise. As you might’ve
inferred from the .then call, Promise.all(array) returns a Promise which will be ful-
filled when all the items in array are fulfilled.

 Using Promise.all is particularly useful when executing long-running opera-
tions, such as a series of AJAX calls, because you wouldn’t want to make them in series
if you could make them all at once. If you know all of the request endpoints, make the
requests concurrently rather than serially. Then, once those requests are done, you
can finally compute whatever depended on performing those asynchronous requests.

FUNCTIONAL PROGRAMMING USING PROMISES

To perform functional tasks such as the ones provided by methods such as async.map
or async.filter, you’re better off using the native Array methods when using Prom-
ises. Rather than resorting to a Promise-specific implementation, you can use a .then
call to transform the results into what you need. Consider the following listing, using
the same delay function as above, which takes results above 400 and then sorts them.

Promise
 .all([delay(700), delay(300), delay(500)])
 .then(function filterTransform (results) {
 return results.filter(function greaterThan (result) {
 return result > 400;
 });

Listing 6.21 Promising to pause

Listing 6.22 Using the delay function to sort results

Promise.all will wait for
each Promise to fulfill. Then
it allows continuation.

The results of the Promises are
passed to Promise.all in an array.

 wait until all
f the delayed

 are resolved.

Then we filter them
by applying a
transform callback.

156 CHAPTER 6 Understanding asynchronous flow control methods in JavaScript
 })
 .then(function sortTransform (results) {
 return results.sort(function ascending (a, b) {
 return a - b;
 });
 })
 .then(function print (results) {
 console.log(results);
 // <- [500, 700]
 });

As you can see, mixing synchronous and asynchronous operations using Promises
couldn’t be easier, even when functional operations or AJAX requests are involved.
You’ve been looking at the happy path so far, where everything works fine, but how
exactly should you approach sensible error handling when using Promises?

6.3.4 Handling rejected Promises

You can provide rejection handlers by passing a callback function as the second argu-
ment to a .then(success, failure) call, as you examined in section 6.3.1. Similarly,
using .catch(failure) makes it easier to convey intent, and it’s an alias for
.then(undefined, failure).

 Until now we’ve talked in terms of explicit rejections, as in rejections when you
explicitly call reject in the callback passed to the Promise constructor, but that’s not
your only option.

 Let’s examine the example below, which includes error throwing and handling.
Note that I’m using throw in the Promise, although you should use the more semantic
reject argument to display that you can throw exceptions from the original Promise
as well as in then calls.

function delay (t) {
 function wait (fulfill, reject) {
 if (t < 1) {
 throw new Error('Delay must be greater than zero.');
 }
 setTimeout(function later () {
 console.log('Resolving after', t);
 fulfill(t);
 }, t);
 }
 return new Promise(wait);
}

Promise
 .all([delay(0), delay(400)])
 .then(function resolved (result) {
 throw new Error('I dislike the result!');
 })
 .catch(function errored (err) {
 console.log(err.message);
 });

Listing 6.23 Catching and throwing

You can use as many
transforms as you’d like!

At every step of the chain you’ll
get the transformed results back.

157Understanding events
If you execute this example, you’ll notice how the error thrown by the delay(0) Prom-
ise will prevent the success branch from firing, therefore never showing the 'I dislike
the result!' message. But if delay(0) wasn’t there, then the success branch would
throw another error, which would prevent further progress in the success branch.

 At this point, you’ve looked at callback hell and how to avert it. You’ve looked at
asynchronous flow control using the async library, and you’ve also dealt with flow con-
trol using Promises, which is coming in ES6, but is already widely available through
other libraries and polyfills.

 Next up we’ll discuss events, which are a form of asynchronous JavaScript that I’m
sure you’ve come across when dealing with JavaScript development at one point or
another. Later, you’ll check out what else is coming in ES6 in terms of asynchronous
flow. Namely, you’ll look at ES6 generators, which are a novel feature to deal with iter-
ators lazily, similar to what you can find in languages such as C# in their enumerable
implementation.

6.4 Understanding events
Events are also known as publish/subscribe or event emitters. An event emitter is a pat-
tern where a component emits events of certain types and passes them arguments,
and any interested parties can subscribe to events of interest and react to the event
and the provided arguments. Many different ways exist to implement an event emitter,
most of which involve prototypal inheritance in one way or another. But you could
also attach the necessary methods to an existing object, as you’ll see in section 6.4.2.

 Events are natively implemented in browsers, too. Native events might be an AJAX
request getting a response, a human interacting with the DOM, or a WebSocket care-
fully listening for any action coming its way. Events are asynchronous by nature, and
they’re sprinkled all over the browser, so it’s your job to manage them appropriately.

6.4.1 Events and the DOM

Events are one of the oldest asynchronous patterns of the web, and you can find them
in the bindings that connect the browser DOM with your JavaScript code. The follow-
ing example registers an event listener which will be triggered every time the docu-
ment body gets clicked:

document.body.addEventListener('click', function handler () {
 console.log('Click responsibly. Do not click and drive!');
});

DOM events are more often than not triggered by a human being who clicks, pans,
touches, or pinches on their browser window. DOM events are hard to test for if they
aren’t abstracted well enough. Even in the trivial case displayed below, consider the
implications of having an anonymous function handling the click event:

document.body.addEventListener('click', function handler () {
 console.log(this.innerHTML);
});

158 CHAPTER 6 Understanding asynchronous flow control methods in JavaScript
It’s hard to test functionality like this because you have no way to access the event han-
dler independently from the event. For easier testing, and to avoid the hassle of simu-
lating clicks to test the handler (which should still be done in integration testing, as
you’ll see in chapter 8), it’s recommended that you either extract the handler into a
named function, or you move the main body of the logic into a testable named func-
tion. This also favors reusability in case two events can be handled in the same way.
The following piece of code shows how the click handler could be extracted:

function elementClick handler () {
 console.log(this.innerHTML);
}
var element = document.body;
var handler = elementClick.bind(element);

document.body.addEventListener('click', handler);

Thanks to Function.prototype.bind you’re keeping the element as part of the con-
text. Arguments exist both in favor of and against using this in this way. You should
pick the strategy you’re most comfortable with and stick to it. Either always bind hand-
lers to the relevant element or always bind handlers using a null context. Consistency
is one of the most important traits of readable (and maintainable) code.

 Next up you’ll implement your own event emitter, where you’ll attach the relevant
methods to an object without using prototypes, making for an easy implementation.
Let’s investigate what that might look like.

6.4.2 Creating your own event emitters

Event emitters usually support multiple types of events, rather than a single one. Let’s
implement step by step your own function to create event emitters or improve existing
objects as event emitters. In a first step, you’ll either return the object unchanged or
create a new object if one wasn’t provided:

function emitter (thing) {
 if (!thing) {
 thing = {};
 }
 return thing;
}

Using multiple event types is powerful and only costs you an object to store the map-
ping of event types to event listeners. Similarly, you’ll use an array for each event type,
so you can bind multiple event listeners to each event type. You’ll also add a simple
function that registers event listeners. The following listing (found as ch06/11_event-
emitter in the samples) displays how you could turn existing objects into event emitters.

function emitter (thing) {
 var events = {};

Listing 6.24 Promoting objects to event emitter status

A thing is the object you’d like
to turn into an event emitter.

159Understanding events
 if (!thing) {
 thing = {};
 }

 thing.on = function on (type, listener) {
 if (!events[type]) {
 events[type] = [listener];
 } else {
 events[type].push(listener);
 }
 };

 return thing;
}

Now you can add event listeners once an emitter is created. This is how it works. Keep
in mind that listeners can be provided with an arbitrary number of arguments when
an event is fired; you’ll implement the method to fire events next:

var thing = emitter();

thing.on('change', function changed () {
 console.log('thing changed!');
});

Naturally, that works like a DOM event listener. All you need to do now is implement
the method that fires the events. Without it, there wouldn’t be an event emitter. You’ll
implement an emit method that allows you to fire the event listeners for a particular
event type, passing in an arbitrary number of arguments. The following listing shows
how it looks.

thing.emit = function emit (type) {
 var evt = events[type];
 if (!evt) {
 return;
 }
 var args = Array.prototype.slice.call(arguments, 1);
 for (var i = 0; i < evt.length; i++) {
 evt[i].apply(thing, args);
 }
};

The Array.prototype.slice.call(arguments, 1) statement is an interesting one.
Here you’ll apply Array.prototype.slice on the arguments object and tell it to start
at index 1. This does two things. It casts the arguments object into a true array, and it
gives a nice array with all of the arguments that were passed into emit, except for the
event type, which you don’t need to invoke the event listeners.

EXECUTING LISTENERS ASYNCHRONOUSLY

There’s one last tweak to do, which is executing the listeners asynchronously so they
don’t halt execution of the main loop if one of them blows up. You could also use a

Listing 6.25 Firing event listeners

If you don’t provide an object,
one will be assigned to you.

Attach an event listener to an
existing or non-existing event type.

160 CHAPTER 6 Understanding asynchronous flow control methods in JavaScript
try/catch block here, but let’s not get involved with exceptions in event listeners; let
the consumer handle that. To achieve this, use a setTimeout call, as shown in the fol-
lowing listing.

thing.emit = function emit (type) {
 var evt = events[type];
 if (!evt) {
 return;
 }
 var args = Array.prototype.slice.call(arguments, 1);
 for (var i = 0; i < evt.length; i++) {
 debounce(evt[i]);
 }
 function debounce (e) {
 setTimeout(function tick () {
 e.apply(thing, args);
 }, 0);
 }
};

You can now create emitter objects, or you can turn existing objects into event emit-
ters. Note that, given that you’re wrapping the event listeners in a timeout, if a call-
back throws an error, the rest will still run to completion. This isn’t the case in
synchronous implementations of event emitters, as an error will stop execution on the
current code path.

 As a fun experiment, I’ve prepared a listing using event emitters and thoroughly
exploiting Function.prototype.bind in the following listing. Can you tell how it
works and why?

var beats = emitter();
var handleCalm = beats.emit.bind(beats, 'ripple', 10);

beats.on('ripple', function rippling (i) {
 var cb = beats.emit.bind(beats, 'ripple', --i);
 var timeout = Math.random() * 150 + 50;
 if (i > 0) {
 setTimeout(cb, timeout);
 } else {
 beats.emit('calm');
 }
});

beats.on('calm', setTimeout.bind(null, handleCalm, 1000));

beats.on('calm', console.log.bind(console, 'Calm...'));
beats.on('ripple', console.log.bind(console, 'Rippley!'));

beats.emit('ripple', 15);

Listing 6.26 Event emission

Listing 6.27 Using event emitters

161Glimpse of the future: ES6 generators
Obviously this is a contrived example that doesn’t do much, but it’s interesting how
two of the listeners control the flow, while the others control the output, and a single
emit fires an unstoppable chain of events. As usual, you’ll find a fully working copy of
this snippet in the accompanying samples under ch06/11_event-emitter. While you’re
at it, make sure to read the samples for all the previous examples!

 The power of event emitters stems from their flexibility, and one possible way to
use emitters is by inverting their meaning. Imagine you control a component with an
event emitter, and you expose the emit functionality, rather than the “listen” function-
ality. Your component can now be passed by arbitrary messages, and process them,
while at the same time it might also emit its own events and let others process them,
resulting in effective communication across components.

 I have one last topic for you in this chapter: ES6 generators. Generators are a spe-
cial kind of function in ES6 that can be iterated over lazily, and provide amusing
value. Let’s inspect them more closely.

6.5 Glimpse of the future: ES6 generators
JavaScript generators, heavily inspired by Python, are an interesting new perk coming
our way, which allow you to represent sequences of values, such as the Fibonacci
sequence, on which you can iterate. Although you’re already capable of iterating over
arrays, generators are lazy. Lazy is good because it means it’s possible to create an infi-
nite sequence generator and iterate over it without falling victim to an infinite loop or
stack overflow exception. Generator functions are denoted with an asterisk, and items
in the sequence must be returned using the yield keyword.

6.5.1 Creating your first generator

In the following listing you’ll see how to create a generator function that represents a
never-ending Fibonacci sequence. By definition, the first two numbers in the series
are 1 and 1, and each subsequent number is the sum of the previous two.

function* fibonacci () {
 var older = 0;
 var old = 1;

 yield 1;

 while (true) {
 yield old + older;
 var next = older + old;
 older = old;
 old = next;
 }
}

Once you have a generator, you may want to consume the values it produces, and to
do that, you need to call the generator function, which will give you an iterator. The
iterator can be used to get values from the generator, one at a time, by calling

Listing 6.28 Using a Fibonacci sequence

162 CHAPTER 6 Understanding asynchronous flow control methods in JavaScript
iterator.next(). That function call will result in an object such as { value: 1,

done: false } for iterators using the generator in the previous listing. The done
property will become true when the iterator’s done going through the generator func-
tion, but in this example it would never finish because of the infinite while(true)
loop. The following example demonstrates how you could iterate over a few values
using the never-ending fibonacci generator:

var iterator = fibonacci();
var i = 10;
var item;

while (i--) {
 item = iterator.next();
 console.log(item.value);
}

The easiest way to run the examples in this section is visiting http://es6fiddle.net,
which will run ES6 code for you, including anything that uses generators. Alternatively,
you could get Node v0.11.10 or later, which you can easily fetch from https://
nodejs.org/dist. Then, doing node --harmony <file> when executing a script will
enable ES6 features such as generators, including the function* () construct, the
yield keyword, and the for..of construct, which comes next.

ITERATE USING FOR..OF

The for..of syntax allows you to shortcut the process of iterating over a generator.
Normally you’d call iterator.next(), store or use the provided result.value, and
then check iterator.done to see if the iterator is exhausted. The for..of syntax han-
dles that for you, trimming down your code. The following is a representation of iter-
ating over a generator with a for..of loop. Note that you’re using a finite generator,
because using a generator such as fibonacci would create an infinite loop, unless you
use break to exit the loop:

function* keywords () {
 yield 'buildfirst';
 yield 'javascript';
 yield 'design';
 yield 'architecture';
}

for (keyword of keywords()) {
 console.log(keyword);
}

At this point you might wonder how generators can help you deal with asynchronous
flows, and we’re about to get to that. First, however, we need to go back to generator
functions and explain what suspension means.

EXECUTION SUSPENSION IN GENERATORS

Let’s look at the first generator example again:

function* fibonacci () {
 var older = 1;

http://es6fiddle.net
https://nodejs.org/dist
https://nodejs.org/dist

163Glimpse of the future: ES6 generators
 var old = 0;

 while (true) {
 yield old + older;
 older = old;
 old += older;
 }
}

How does that work? Why doesn’t it get stuck in an infinite loop? Whenever a yield
statement is executed, execution in the generator gets suspended and relinquished
back to the consumer, passing them the value which was yielded. That’s how itera-
tor.next() gets a value. Let’s inspect this behavior more closely using a simple gener-
ator, which has side effects:

function* sentences () {
 yield 'going places';
 console.log('this can wait');
 yield 'yay! done';
}

When you iterate over a generator sequence, execution in the generator will be sus-
pended (pausing its execution until the next item in the sequence is requested) imme-
diately after each yield call. This allows you to execute side effects such as the
console.log statement in the previous example, as a consequence of calling itera-
tor.next() for the second time. The following snippet shows how iterating over the
previous generator would flow:

var iterator = sentences();

iterator.next();
// <- 'going places'

iterator.next();
// logged: 'this can wait'
// <- 'yay! done'

Armed with your newfound knowledge about generators, next you’ll try to figure out
how to turn the tables and build an iterator that can consume generators in a way that
makes asynchronous code easier to write.

6.5.2 Asynchronicity and generators

Let’s build an iterator that can exploit suspension well enough to combine synchro-
nous and asynchronous flows in a seamless manner. How could you accomplish a flow
method that would allow you to implement functionality such as that in the following
listing (ch06/13_generator-flow)? In this listing, you use yield on a method that
needs to be executed asynchronously, and then you invoke a next function that would
be provided by the flow implementation once you’ve fetched all the needed food
types. Note how you’re still using the callback convention where the first argument is
either an error or a false value.

164 CHAPTER 6 Understanding asynchronous flow control methods in JavaScript

flow(function* iterator (next) {
 console.log('fetching food types...');
 var types = yield get;
 console.log('waiting around...');
 yield setTimeout(next, 2000);
 console.log(types.join(', '));
});

function get (next) {
 setTimeout(function later () {
 next(null, ['bacon', 'lettuce', 'crispy bacon']);
 }, 1000);
}

To make the previous listing work, you need to create the flow method in such a way
that it allows yield statements to pause until next gets called. The flow method
would take a generator as an argument, such as the one in the previous listing, and
iterate through it. The generator should be passed a next callback so you can avoid
anonymous functions, and you can, alternatively, yield functions that take a next call-
back and have the iterator pass the next callback to them as well. The consumer can
let the iterator know that it’s time to move on by calling next(). Then execution
would get unsuspended and pick up where it left off.

 You can find how a flow function might be implemented in the following listing. It
works much like the iterators you’ve seen so far, except that it also has the capability to
let the generator function, which gets passed into flow, do the sequencing. The key
aspect of this asynchronous generator pattern is the back-and-forth enabled by letting
the generator suspend (by using yield) and unsuspend (by invoking next) the flow
of the iteration.

function flow (generator) {
 var iterator = generator(next);

 next();

 function next (err, result) {
 if (err) {
 iterator.throw(err);
 }
 var item = iterator.next(result);
 if (item.done) {
 return;
 }
 if (typeof item.value === 'function') {
 item.value(next);
 }
 }
}

Listing 6.29 Building an iterator to exploit suspension

Listing 6.30 Generator flow implementation

Jump start the process by
calling next() by hand.

165Summary
Using the flow function you can easily mix flows, and have the flow leap into (and out
of) asynchronous mode easily. Going forward you’ll use a combination of plain old
JavaScript callbacks and control flow using the contra library, which is a lightweight
alternative to async.

6.6 Summary
That was a lot of ground to cover, so you might want to take a break for a minute and
check out the source code samples and play around with them a little more.

■ We established what callback hell is, and you learned how to stay away from it by
naming your functions or composing your own flow control methods.

■ You learned how to use async to meet different needs such as asynchronous
series, mapping asynchronously, or creating asynchronous queues. You delved
into the world of Promises. You understand how to create a Promise, how to
compose multiple Promises, and how to mix and match asynchronous and syn-
chronous flows.

■ You took an implementation-agnostic look at events and learned how to imple-
ment your own event emitters.

■ I gave you a glimpse of what’s coming in ES6 with Generators, and how you
might use them to develop asynchronous flows.

In chapter 7 you’ll take a harder look at client-side programming practices. We’ll dis-
cuss the current state of interacting with the DOM, how to improve on that, and what
the future holds in terms of componentized development. We’ll detail implications of
using jQuery, how it might not be your one-size-fits-all library, and a few alternatives
you can gravitate toward. You’ll also get your hands dirty with BackboneJS, an MVC
framework.

Leveraging the
Model-View-Controller
Until now, we’ve discussed topics around application development, such as crafting
a build process. We also talked about code-related topics, such as coherent asyn-
chronous flows and modular application design. We haven’t yet covered the bulk of
an application itself, which is what we’ll do in this chapter. I’ll explain why jQuery, a
popular library that makes interacting with the DOM easier, might be lacking for
large-scale application design and what tools you can use to supplement it or how
to replace it entirely. You’ll look at developing an application using the Model-
View-Controller (MVC) design pattern, and you’ll create an application to manage
a list of to-do items throughout the chapter.

 Like modularity, MVC improves software quality by separating concerns. In the
case of MVC, this separation is split into three types of modules: Models, Views, and

This chapter covers
■ Comparing pure jQuery to MVC
■ Learning about MVC in JavaScript
■ Introducing Backbone
■ Building Backbone applications
■ Looking at shared-view rendering in the server

and browser
166

167jQuery isn’t enough
Controllers. These parts are interconnected to separate internal information represen-
tation (Models, what the developer understands) from the presentation layer (Views,
what the user sees) from the logic that connects both representations of the same data
(Controllers, which also help validate user data and decide what views to show them).

 First I’ll tell you why jQuery doesn’t suffice in large scale application design, and
then I’ll teach you about MVC in JavaScript through the Backbone.js library. The goal
here isn’t for you to become a Backbone grandmaster, but rather to get you started in
the wonderful world of modern JavaScript application structure design.

7.1 jQuery isn’t enough
Since its inception, the jQuery library has helped virtually every web developer out
there by doing a few things well. It works around known bugs across different browser
versions, and it normalizes the web API across browsers, giving the consumer a flexible
API that delivers consistent results, making it easy to use.

 jQuery helped popularize CSS selectors as the preferred method of querying the
DOM in JavaScript. The native querySelector DOM API works similarly to querying in
jQuery, allowing you to search for DOM elements using a CSS selector string. On its
own, however, jQuery isn’t enough. Let’s discuss why.

CODE ORGANIZATION AND JQUERY

jQuery provides no means for organizing your code base, and that’s okay because
jQuery wasn’t designed to do that. Although jQuery makes it simpler to access the
native DOM API, it makes no effort to perform the necessary tasks to take your applica-
tion closer to a well-structured one. Relying on jQuery alone is fine for traditional web
applications where you don’t have a need for structure, but doing so isn’t suitable for
the job of developing single page applications, which tend to have a larger and more
complex client-side code base.

 Another reason jQuery is so popular even today is because it’s a library that plays
well with others. This means you’re not forced into using jQuery for everything you
do. Rather, you can combine it with other libraries, which may or may not be meant to
augment jQuery. You may also use jQuery on its own without other libraries. Unless
you pair jQuery with an MVC library or framework, it’ll be difficult to develop modular
components that don’t become a maintainability nightmare over time.

 The MVC pattern separates your application’s concerns into views, models, and
controllers; these components interact and collaborate with each other to serve the
application. Most of the logic you develop becomes self-contained, meaning that a sin-
gle complex view won’t translate into a complex application, making it a great choice
for developing scalable applications. MVC came into existence in the late 1970s, but it
only made its way into web applications with Ruby on Rails in 2005. In 2010, Backbone
was released, bringing MVC into the client-side JavaScript application development
mainstream. Today, dozens of alternatives exist for developing MVC web applications
in JavaScript.

168 CHAPTER 7 Leveraging the Model-View-Controller
VIEW TEMPLATES

First you have the HTML; we’ll call that the view. This is what defines how your compo-
nent looks and how it’s represented on the user interface. This is also how you define
where pieces of data will go. If you use only jQuery, then you’d have to create the DOM
elements that make up your component by hand, with their corresponding HTML attri-
bute values and inner text. Typically, though, you’d use a templating engine, which
takes a template string (of HTML, in your case) and data, and fills out the template
using that data. There might be parts of the template where you loop through an array
and create a few HTML elements for each item in the array. That kind of code is tedious
to write in plain JavaScript, even if you’re using jQuery. You don’t have to worry about
that if you’re using a templating library, because the engine will handle it for you. Fig-
ure 7.1 illustrates how templates work as reusable components.

USING CONTROLLERS

Then there’s the functionality, giving life to your views; we call this the controller. This is
how you take your still HTML template and give it life. In the controller you’ll do things
such as binding DOM events to certain actions or updating the view when something
happens. This is an easy thing to do with jQuery; you add events to the DOM, and that’s
it, right? That’s fine for one-time bindings, but what if you want to develop a component
using a view like you saw previously and also bind events to the rendered HTML?

 For this scenario you’d need a way to consistently create the DOM structure, bind
events to it, react to changes, and update it. You also need this to work in isolation,
because this is a reusable component, and you want it to work in many places in your
application. To be blunt, you’ll end up slowly writing your own MVC framework. That’s
fine, as a learning exercise. In fact, that’s exactly how I’ve come to understand and
value MVC in JavaScript. I wrote my own MVC engine for a pet project, my blog, and
that’s what got me on the path of learning more about other MVC engines in Java-
Script. The alternative is to use an existing (and proven) MVC framework.

 This primer explains how the MVC pattern works, how it helps develop complex
applications, and why it’s needed. In section 7.2 you’ll learn how it can be applied in

Templating

Templates can be reused, and
all you have to provide are

the missing pieces.

The view model, or
template data, fills the
blanks in the template.

You can use different view
models with the same template.
This is how views are rendered.

Figure 7.1 Reusing templates with different template data models

169jQuery isn’t enough
JavaScript. You’ll look at different libraries that help write MVC code, and then you’ll
settle for Backbone. As you would expect, the MVC pattern dictates that your applica-
tion should be split into

■ Models that hold the information necessary to render a view
■ Views that are in charge of rendering a model and allowing the human to inter-

act with it
■ Controllers that fill the models before rendering their related views and man-

age human interaction with the component

Figure 7.2 illustrates the interaction between the different elements in a typical MVC
application design.

MODELS

Models define the information to be conveyed by the views. This information can be
pulled from a service that, in turn, fetches the data from a database source, as we’ll
cover in chapter 9 when discussing REST API design and the service layer. A model
contains raw data, but there isn’t any logic in models; they’re static collections of

MVC pattern
Further separation of concerns

Each controller handles
multiple, related actions.

The controller can respond
to actions in different ways.

Actions handle one event type. For example:
User requests /api/food-dishes

Controller responds ['fish', 'unicorn', 'rice']

Controller Action

Action

Action

Redirect

Render

JSON response

Models and views
Further separation of concerns

An action may render a view,
in which case a model will be used
to fill in the blanks that are defined

by the view’s template.

Action

View

Render

Model

The model is just data that has been
adapted to fit the view template.

Typically, an action always renders
the same view, using different models.

Figure 7.2 The MVC pattern separates concerns into controllers, views, and models.

170 CHAPTER 7 Leveraging the Model-View-Controller
related data. It doesn’t know anything about displaying that data, either. That concern
is left to views and views alone.

VIEWS

A view is the combination of a template, which gives structure to a data representation
of the model, and a model, which contains the data itself. Models can and often are
reused across different views. For instance, an “Article” model could be used in both
the “Search” view and the “ArticleList” view. Combining a view template with a view
model yields a view that can then be used as the response to an HTTP request.

CONTROLLERS

Controllers decide what view to render, and that’s one of their primary purposes. The
controller will decide on a view to render, prepare a view model containing all the rel-
evant bits and pieces for the view template, and let the view engine render the view
using the provided model and template. You can use controllers to add behavior to your
views, respond to specific actions, or redirect humans to another view.

ROUTER

The view router is a fundamental piece of MVC in the web, although it’s not part of its
name. A view router is the first component of MVC applications that gets hit by a
request. A router matches URL patterns to controller actions by following previously
defined rules. Rules are defined in code, and they capture a request based on a condi-
tion: “Whenever a request for /articles/{slug} is made, route that request through
the Articles controller, invoking the getBySlug action, passing it the slug parame-
ter” (the slug is interpolated from the requested URL). The router then delegates to
the controller, which will validate the request, decide on a view and render it, redirect
to other URLs, and perform similar actions. Rules are evaluated in sequence. If the
requested URL doesn’t match the rule’s pattern, it simply ignores the request, and the
next rule is evaluated.

 Let’s get deeper into JavaScript MVC, which spans the rest of this chapter.

7.2 Model-View-Controller in JavaScript
The MVC pattern is nothing new, although it has seen a significant increase in adop-
tion in the last decade, particularly in the client-side web world, which has tradition-
ally been completely devoid of any structure. In this section I’ll explain why I chose
Backbone as my teaching weapon of choice, and why I discarded the other options I
was considering. In section 7.3 I’ll show you the basics of MVC through Backbone.
Then in section 7.4 you’ll dive into a case study where you’ll use Backbone to develop
a small application so you can learn how to use it to build scalable applications. In
chapter 9 you’ll take Backbone to the next level, along with everything else you’ve
learned so far, and use it to flesh out a larger application.

7.2.1 Why Backbone?

Many different frameworks and libraries exist for performing client-side MVC, let alone
server-side MVC, and sadly I can’t cover all of them. One of the hardest choices I had to

171Model-View-Controller in JavaScript
make for this book was picking an MVC framework to use. For a long while, I was torn
between React, Backbone, and Angular. Ultimately, I decided Backbone is the best tool
for teaching the concepts I want to relay to you. Arriving at that choice wasn’t easy, and
it came down mostly to maturity, simplicity, and familiarity. Backbone is one of the old-
est MVC libraries out there, and therefore one of the most mature. It’s also one of the
most popular MVC libraries. Angular is an MVC framework developed at Google. It’s
also mature—in fact it was released before Backbone—but it’s also much more com-
plex, having a steep learning curve. React is Facebook’s take; it’s not as complex as
Angular, but it’s a much younger project, having been initially released in 2013, and it
doesn’t provide true MVC capabilities as it’s meant to provide only the View in MVC.

 Angular introduces concepts that can be hard to grasp at first, and I didn’t want to
spend the rest of the book explaining these concepts. I felt Angular would’ve gotten in
the way of teaching how to write MVC code, and I would’ve had to teach how to write
Angular code instead. Most importantly, one of the requirements I had going in was to
show off how to do shared rendering, reusing the same logic in the server and the
browser, to render your views across the stack, and Angular isn’t the best solution out
there when you want to have both server-side and client-side rendering, as it wasn’t
developed with that constraint in mind. We’ll explore shared rendering in section 7.5.

React introduces more complexity than Backbone does, and it doesn’t provide a true
MVC solution the way Angular and Backbone does. React helps you write your views,
giving you templating capabilities, but it involves more work on your part if you want
to use it exclusively as your MVC engine.

Understanding progressive enhancement

Progressive enhancement is a technique that helps deliver a usable experience to
everyone who uses your site. The technique suggests that you prioritize content, and
then progressively add enhancements, such as additional functionality, to the content.
Applications that are progressively enhanced must therefore serve the full content of
a page without depending on client-side JavaScript to render the view. Once that min-
imally digestible content is provided to the user, the experience may be enhanced
gradually by detecting the features available to the user’s browser. After that initial
experience is provided, we may then provide a single-page application experience by
means of client-side JavaScript.

Developing applications under this philosophy has several benefits. Because you’re
prioritizing content, everyone visiting your site can get the minimal experience. This
doesn’t mean that people who have JavaScript disabled can view your site, but that
people who are data roaming on mobile networks can see the content faster. Further-
more, if the requests for the JavaScript assets fail to load, at least they’ll have access
to a readable version of your website.

You can read more about progressive enhancement on my blog at http://ponyfoo.com/
articles/tagged/progressive-enhancement.

http://ponyfoo.com/articles/tagged/progressive-enhancement
http://ponyfoo.com/articles/tagged/progressive-enhancement

172 CHAPTER 7 Leveraging the Model-View-Controller
 Backbone is easier to learn progressively. You don’t need to use every feature in it
to build a simple application. As you make progress, you can add more components
and include extra features in Backbone, such as routing, but you won’t need to even
know about those features until you need them.

7.2.2 Installing Backbone

In chapter 5, you wrote your client-side code using CommonJS. Later, you’ll compile
those modules so that browsers can interpret them. The next section is dedicated to lay-
ing down an automated compilation process using Grunt and Browserify. For now, let’s
talk about Backbone. The first thing you’ll do is install it through npm, as shown here.

 Remember, if you don’t have a package.json file, you should create one using npm
init. Check out appendix A on Node.js applications if you get stuck.

npm install backbone --save

Backbone needs a DOM manipulation library such as jQuery or Zepto to function
properly. You’ll use jQuery in your examples, because it’s more widely known. I rec-
ommend you look at Zepto if you’re considering this setup for a production-grade
application, as it has a significantly smaller footprint. Let’s go ahead and install jQuery
as well:

npm install jquery --save

Once you have both Backbone and jQuery, you can start putting together the applica-
tion. The first few lines of code you’ll write are to set up your Backbone library. Back-
bone expects a jQuery-like library to be assigned to Backbone.$ before you use it, so
you’ll need to give it that:

var Backbone = require('backbone');
Backbone.$ = require('jquery');

Backbone will use jQuery to interact with the DOM, attach and remove event handlers,
and perform AJAX requests. That’s all there is to getting up and running.

 It’s time to see Browserify in action! I’ll walk you through setting up Grunt to com-
pile the code for the browser. Once that’s out of the way, you can make your way
through the examples in the next few sections.

7.2.3 Browserifying your Backbone module with Grunt

You already touched on how to Browserify modules in chapter 5, section 5.3.3. The fol-
lowing listing shows how the Gruntfile configuration for Browserify looked back then.

{
 browserify: {
 debug: {
 files: { 'build/js/app.js': 'js/app.js' },
 options: {

Listing 7.1 Gruntfile configuration for Browserify

173Model-View-Controller in JavaScript
 debug: true
 }
 }
 }
}

This time around, let’s do two small tweaks to that configuration. The first tweak is
because you want to watch for changes and have Grunt rebuild the bundle. This
enables continuous, rapid development, as we addressed in chapter 3. To watch for
changes you can use grunt-contrib-watch, as we discussed in chapter 3, using config-
uration such as the one in the following code:

{
 watch: {
 app: {
 files: 'app/**/*.js',
 tasks: ['browserify']
 }
 }

The tasks property contains any tasks that should run when the matched files
change.

 The other tweak uses something that’s called a transform. Transforms allow Brow-
serify to change the source code in your modules, better adjusting it to your needs
when it comes to running that code on the browser. In your case, the transform to
include is called brfs for “Browser File System.” This transform inlines the results of
fs.readFileSync calls, making it possible to keep the view templates separate from
the JavaScript code. Consider the following module:

var fs = require('fs');
var template = fs.readFileSync(__dirname + '/template.html', {
 encoding: 'utf8'
});

console.log(template);

That piece of code couldn’t be transformed to run in the browser because the browser
doesn’t have access to files in your server’s file system. To work around that issue, you
can use brfs by adding it to the list of transforms in your Grunt configuration options
for grunt-browserify. The brfs transform will read files referenced by fs.readFile
and fs.readFileSync statements and inline them in your bundle, allowing them to
work seamlessly in either Node or the browser:

options: {
 transform: ['brfs'],
 debug: true
}

You’ll also need to install the brfs package from npm in your local project, with the
following code:

npm install brfs --save-dev

174 CHAPTER 7 Leveraging the Model-View-Controller
That’s it, as far as Browserifying your CommonJS modules with Grunt goes! Next up,
I’ll introduce you to the major concepts in Backbone, how they work, and when to use
them.

7.3 Introduction to Backbone
A few constructs exist in Backbone that you can build your applications around.
Here’s a list:

■ Views render the UI and deal with human interaction.
■ Models can be used to track, compute, and validate properties.
■ Collections are ordered sets of models, useful for interacting with lists.
■ Routers allow you to control the URL, enabling development of single-page

applications.

You might’ve noticed that controllers are nowhere to be found in that list. In reality,
Backbone views act as controllers. This subtle fork from traditional MVC is often
referred to as Model-View-View-Model (MVVM). Figure 7.3 illustrates the differences
between Backbone and traditional MVC, as they were shown in figure 7.2, and
explains where routing fits in this structure.

MVC in Backbone
Differences from traditional MVC

In Backbone, the router behaves
similarly to how traditional

MVC controllers work.

Route handlers can
render views or redirect.

Router Route

Route

Route

Render

Redirect

Views
Backbone’s view controllers

Views are in charge of rendering
the human interface. They can
use a view templating engine

or jQuery.

UI layer Event

Event

Event

Event handlers

Views react to events such
as clicks, changes in data

models, or validation.

These events are handled by the
view, modifying models or

rerouting the human to another view.

Figure 7.3 Backbone deals with the human-facing aspects of MVC: event handling, validation, and
UI rendering.

175Introduction to Backbone
Naturally, there’s more to learn about each one of these constructs. Let’s visit each one.

7.3.1 Backbone views

The views are in charge of rendering the UI, and you’re in charge of putting together
the rendering logic for your views. How to render the UI is entirely up to you. The two
preferred options are using jQuery or a templating library.

 Views are always associated with an element, which is where the rendering will take
place. In the following listing, let’s see how a basic view could be rendered. Here you’re
creating a Backbone view, adding custom render functionality that will set text in the
view element. Then you’re instantiating the view and rendering the view instance.

var SampleView = Backbone.View.extend({
 el: '.view',
 render: function () {
 this.el.innerText = 'foo';
 }
});

var sampleView = new SampleView();

sampleView.render();

See how you declared the el property and assigned .view to it? You can assign a CSS
selector to that property, and it’ll look up that element in the DOM. In the view that
element will get assigned to this.el. With an HTML page, such as the following one,
you could render this minimal Backbone view:

<div class='view'></div>
<script src='build/bundle.js'></script>

The bundle script file would be the compiled application as I explained in section
7.2.3. Once you run this, the view element would get the foo text content. You can
check out this example in the accompanying source code; it’s listed as ch07/
01_backbone-views.

 Your view is static as it is, and you probably have a good idea how to render one
with jQuery, but that involves more work, because you’d have to create every element,
set their attributes, and construct a DOM tree in code. Using templates is easier to
maintain and keeps your concerns separate. Let’s see how that works.

USING MUSTACHE TEMPLATES

Mustache is a view-templating library that takes a template string and a view model
and returns the resulting view. The way you reference model values in your template is
by declaring them using the special {{value}} notation, which is replaced by the
model’s value property.

 Mustache also uses a similar syntax that lets you iterate through arrays, wrapping
part of the template in {{#collection}} and {{/collection}}. When looping a

Listing 7.2 Rendering a basic view

176 CHAPTER 7 Leveraging the Model-View-Controller
collection, you can access the array item itself using {{.}}, and you can also directly
access its properties.

 To give you a quick example, let’s start with an HTML view template:

<p>Hello {{name}}, your order #{{orderId}} is now shipping. Your order
includes:</p>

 {{#items}}
 {{.}}
 {{/items}}

To fill this template, you need to use Mustache, passing it to a model. First, you’ll have
to install Mustache from npm:

npm install mustache --save

Rendering this template is a matter of passing it to Mustache as a string, along with a
view model:

var Mustache = require('mustache');
Mustache.to_html(template, viewModel);

To do this in Backbone you’ll create a reusable module, shown in the following code
snippet, which will know to render any view using Mustache, passing it to the view’s
template and the view’s view model. Here you’re creating a base view you can let other
views inherit from, sharing basic functionality such as view rendering, so that you
don’t have to copy and paste this method onto every view you create:

var Backbone = require('backbone');
var Mustache = require('mustache');

module.exports = Backbone.View.extend({
 render: function () {
 this.el.innerHTML = Mustache.to_html(this.template, this.viewModel);
 }
});

In the previous example, where you had a static view, it was fine to keep all of your
application in a single module. But this time around, you’re modularizing it a bit.
Having a base view is neat, and having a single module for each view is as important.
In the snippet below, you’re requiring the base view template you saw previously and
extending that one. You’re using fs.readFileSync to load your Mustache template,
because require only works with JavaScript and JSON files. You won’t include the tem-
plate in the view module itself because it’s always nice to keep your concerns sepa-
rated, particularly if these concerns are in different languages. Also, the view template
could arguably be used by many different views.

var fs = require('fs');
var base = require('./base.js');
var template = fs.readFileSync(
 __dirname + '/templates/sample.mu', 'utf8'
);

177Introduction to Backbone
module.exports = base.extend({
 el: '.view',
 template: template
});

Last, you’ll adapt your original application module, making it require the view rather
than declare it, and declaring a view model before rendering the view. This time
around, the view will be rendered with Mustache, as shown in the following listing.

var SampleView = require('./views/sample.js');
var sampleView = new SampleView();

sampleView.viewModel = {
 name: 'Marian',
 orderId: '1234',
 items: [
 '1 Kite',
 '2 Manning Books',
 '7 Random Candy',
 '3 Mars Bars'
]
};
sampleView.render();

You can check out this example in the accompanying code samples; it’s listed as ch07/
02_backbone-view-templates. Next up are the models, another crucial part of Back-
bone applications.

7.3.2 Creating Backbone models

Backbone models (also called data models) hold your application data, which are
often copies of the data that can be found in a database. They can be used to observe
changes, as well as validate those changes. These aren’t to be confused with view mod-
els (such as what we’ve assigned to sampleView.viewModel in the previous example,
also called template data), which usually contain a combination of Backbone data
models, often formatted to fit the prose in the HTML template. For instance, a date
might be stored in an ISO format in the data model, but formatted into a human-
readable string in the template data. In the same way views get extended off
Backbone.View, models get extended from Backbone.Model, and they can go a great
way toward making your data interactive. Models can be validated, testing user input
for bad data; they can be observed, helping you react to changes in the data model;
and you can also compute properties based on data in the model.

 Probably the most impactful thing you can do with your models is observing
changes in the model data. This allows your UI to react to changes in the data with lit-
tle effort. Remember, the same piece of data can be represented in many different
ways. For instance, you could represent the same piece of data as an item in a list, as
an image, or as a description. Models enable you to update each of those representa-
tions as data changes, in real time!

Listing 7.3 Rendering a view with Mustache

178 CHAPTER 7 Leveraging the Model-View-Controller
DATA MODELING AND MALLEABILITY

Let’s look at an example (found under ch07/03_backbone-models in the samples)
where you take a piece of user input and render it as plain text, in binary, and as an
anchor link, if it’s a URL. To kick things off, you’ll create a model to check whether its
data looks like a link. The get method allows you to access the value of a model prop-
erty in Backbone.

module.exports = Backbone.Model.extend({
 isLink: function () {
 var link = /^https?:\/\/.+/i;
 var raw = this.get('raw');
 return link.test(raw);
 }
});

Assuming you had a binary.fromString method to convert the model data to a
binary string, and you wanted to get the first few characters of the binary stream, you
could add a model method for that, because it’s also data-related. As a rule of thumb,
every method that could be reused that depends solely (or mostly) on model data
should probably be a model method. The following is a possible implementation to
get the binary string. If the binary code is more than 20 characters, you can trim it
using the Unicode ellipsis character, '\u2026' or '…':

getBinary: function () {
 var raw = this.get('raw');
 var bin = binary.fromString(raw);
 if (bin.length > 20) {
 return bin.substr(0, 20) + '\u2026';
 }
 return bin;
}

I mentioned you could listen for changes in your models. Let's learn more about
events.

MODELS AND EVENTS

To tie your view to this model, you need to create an instance of the model. One of
the most interesting aspects of models is events. For example, you could listen for
changes in the model and update your view every time the model changes. You can
use the view’s initialize property to create a model instance, bind your change lis-
tener to it, and give the model an initial value, as shown in the following code snippet:

initialize: function () {
 this.model = new SampleModel();
 this.model.on('change', this.updateView, this);
 this.model.set('raw', 'http://bevacqua.io/buildfirst');
}

Instead of rendering the view from the outside, the view will rerender itself as neces-
sary whenever the model changes. It turns out that’s easy to implement. Whenever the

179Introduction to Backbone
model changes, updateView is invoked, and you have a chance to update the view
model and render the template with the updated values.

updateView: function () {
 this.viewModel = {
 raw: this.model.get('raw'),
 binary: this.model.getBinary(),
 isLink: this.model.isLink()
 };
 this.render();
}

All that’s left for your view to do is allow user input to modify the model. You can con-
veniently bind to DOM events by adding properties to the events property on the
view. These properties should have a key in the form of {event-type} {element-

selector}; for example, click .submit-button. The property value should be the
name of an event handler that’s available in the view. In the following code snippet, I
implement an event handler that updates the model every time the input changes:

events: {
 'change .input': 'inputChanged'
},
inputChanged: function (e) {
 this.model.set('raw', e.target.value);
}

Whenever a change event is raised, the model data will be updated. That will, in turn,
trigger the model’s change event listener, which will update the view model and
refresh the UI. Keep in mind that if anything else changed the model data, such as
incoming server data, that would refresh the UI accordingly as well. That’s where the
value of using models comes from. As your data gets more complex, you can benefit
more from using models to access it, because they’re equipped to track and react to
changes in the data in such a way that your code isn’t tightly coupled.

 This is one of the ways in which models help shape your data without repeating logic
in your code, and we’ll closely inspect the benefits of models, such as data validation,
over the next few sections. One last aspect of data organization you’ll want to look at is
collections. Let’s get a quick overview of those before heading to view routing.

7.3.3 Organizing models with Backbone collections

Collections in Backbone enable you to group and order a set of models. You can listen
for items being added or removed from the collection, and you can even get notified
when any model in the collection is modified. In the same way models are helpful in
computing data out of their properties, collections are concerned with finding specific
models in addition to dealing with CRUD-like (Create Read Update Delete) operations.

 A collection takes a model type so that you can add values to it using plain objects,
which get converted internally into that model type. The collection created in the fol-
lowing snippet, for example, would create SampleModel instances whenever you

180 CHAPTER 7 Leveraging the Model-View-Controller
added an item to it. The collections example can be found at ch07/04_backbone-
collections:

var SampleModel = require('../models/sample.js');

module.exports = Backbone.Collection.extend({
 model: SampleModel
});

Similarly to models or views, collections need to be instantiated for you to take advan-
tage of them. To keep this example short, your view will create an instance of this col-
lection, listen for insertions, and add models to the collection. The toJSON method
casts your collection to a plain JavaScript object that can be used to fetch model data
when rendering a template, as shown in the following listing.

initialize: function () {
 var collection = new SampleCollection();
 collection.on('add', this.report);
 collection.add({ name: 'Michael' });
 collection.add({ name: 'Jason' });
 collection.add({ name: 'Marian' });
 collection.add({ name: 'Candy' });
 this.viewModel = {
 title: 'Names',
 people: collection.toJSON()
 };
 this.render();
},
report: function (model) {
 var name = model.get('name');
 console.log('Someone got added to the collection:', name);
}

Collections can also validate models as they’re inserted, as you’ll see in section 7.4.
There’s one last item on your checklist before getting there, though. I’m talking
about Backbone routers.

7.3.4 Adding Backbone routers

Modern web applications are increasingly becoming single-page applications, mean-
ing that the site is loaded once, which results in fewer round-trips to the server, and
the client-side code takes over. Routing on the client side can be handled by either
changing what comes after the hash in the URL or using paths such as #/users or #/
users/13. In modern browsers, it can be modified using the History API, which allows
you to change the URL without resorting to the hash hack, resulting in cleaner-
looking links, as if the site was getting the pages from the server. In Backbone, you can
define and instantiate routers that serve two purposes: changing the URL to give the
human a permanent link they can use to navigate to a part of your application, and
taking action when the URL changes.

Listing 7.4 Fetching model data

181Introduction to Backbone
Figure 7.4 shows how a router can track your application’s state.
 As you learned in section 7.1, routers are the first human contact in your application.

Traditional routers define rules that route requests to particular controller actions. In
the case of Backbone, the controller intermediary doesn’t exist, and requests are routed
directly to views, which play the role of the controller as well as provide the view tem-
plates and rendering logic. The Backbone router inspects the location for changes and
invokes action methods, providing them with relevant URL parameters.

ROUTE CHANGES

The following code snippet (available as ch07/05_backbone-routing) instantiates a
view router and uses Backbone.history.start to begin monitoring the URL for
changes. It’ll also check the current URL to see if it matches one of the routes that
have been defined, and in that case it’ll trigger that route:

var ViewRouter = require('./routers/viewRouter.js');
new ViewRouter();

$(function () {
 Backbone.history.start();
});

That’s all you need to do as far as wiring goes. Let’s write your ViewRouter compo-
nent now.

Routing
How do Backbone routers work?

The router defines routes and actions. It can
also be used to intercept any route changes.

Routers declare routes, and then define
the actions that go with those routes.

Routers can have dynamic parameters,
such as :id in the example above.

Router

": 'getHome'
'/items':'getItems'
'/item/id':'getItemById'
'/item/new':'addItem'

Route changes
Backbone routers inspect the URL for changes.

The router inspects the URL for changes.
When the URL changes, the router

looks for a matching action and
fires its action handler.

Inspector /items/:id

The action handler is then used
to load any necessary model data

and then render a view.

If the route has parameters, those get
passed on to the action. The action can

then use the route parameters to request
the model data from a server.

Figure 7.4 Routing in Backbone and the route inspector

182 CHAPTER 7 Leveraging the Model-View-Controller
A ROUTING MODULE

Routers are in charge of connecting each URL to an action. Typically, you’ll build your
application so that the action method either prepares a view and renders it, or does
something that renders a view, such as navigating to a different route. In the following
snippet I’m creating a router with different routes:

var Backbone = require('backbone');

module.exports = Backbone.Router.extend({
 routes: {
 '': 'root',
 'items': 'items',
 'items/:id': 'getItemById'
 }
});

The first route, when humans visit the application root, triggers them to redirect to
the default route, as indicated in the following snippet. In this case, that’s the items
route. This ensures that the user won’t be left stranded if they visit the page at the root
level rather than at #items, or /items if you’re using the history API. The trigger
option tells navigate to change the URL and trigger the action method for that route.
Next we should add the root method to the object passed to Backbone

.Router.extend:

root: function () {
 this.navigate('items', { trigger: true });
}

As long as all of your views get rendered to the same view container, it could suffice to
instantiate the view when a particular action is triggered, such as in the following
snippet:

items: function () {
 new ItemView();
}

You’d have to require the view at the top of your routing module, like this:

var ItemView = require('../views/item.js');

Last, you might notice that the getItemById route has a named parameter in the form
of :id. The router will parse the URL in views, match the items/:id pattern, and call
your action method passing in the id as a parameter. Then, it’s a matter of using that
parameter when rendering the view.

getItemById: function (id) {
 new DetailView(id);
}

183Case study: the shopping list
That’s all there is to view routing! In section 7.4 you’ll expand on all of these concepts
to build a small application. Next up, let’s investigate how to use your newfound Back-
bone knowledge to build your first application with MVC in the browser.

7.4 Case study: the shopping list
Before you run off and develop your own applications, I want to give you a self-con-
tained example of how to write MVC in the browser using Backbone, putting into prac-
tice everything you’ve learned so far in this chapter.

 In this section you’ll progressively build a simple shopping list application, which
allows you to view shopping list items, remove them from the list, add new ones, and
change the quantities. I’ve divided the exercise into five stages. At each stage, you’ll
add functionality and refactor what you have so far to keep your code tidy. The five
stages are

■ Creating a static view with shopping list items
■ Adding remove buttons for deleting items
■ Building a form to add new items to your shopping list
■ Implementing inline editing on the list to change the quantities
■ Adding view routing

That sounds like fun! Keep in mind that you have access to the code at any of these
five stages in the accompanying code samples.

7.4.1 Starting with a static shopping list

Let’s go back to basics and put the application together from scratch. The Gruntfile
remains the same as it was back in section 7.2.3, and it won’t change during the course
of this case study, so you don’t need to revisit it. Look at the HTML in listing 7.5 (avail-
able as ch07/06_shopping-list) to get started. Note that you’re including the built
Browserify bundle to get the Common.js code working in the browser. The <div> will
act as your view container in this example. This piece of HTML is called app.html,
because it’s the single page the application will run on.

<!doctype html>
<html>
 <head>
 <title>Shopping List</title>
 </head>
 <body>
 <h1>Shopping List</h1>
 <div class='view'></div>
 <script src='build/bundle.js'></script>
 </body>
</html>

Listing 7.5 Creating the shopping list

184 CHAPTER 7 Leveraging the Model-View-Controller
Next up, this example needs to render a list of shopping items, displaying the quantity
and name of each item. Here’s a Mustache snippet that can render an array of shop-
ping list items. Mustache templates will go into the views/templates directory.

 {{#shopping_list}}
 {{quantity}}x {{name}}
 {{/shopping_list}}

Your views will need to render these templates using a view model. This functionality
should go in a base view so that it’s only implemented once.

RENDERING VIEWS WITH MUSTACHE

To easily render Mustache templates in your views and to avoid repetition, you’ll wire
up a base view and place it in the views directory. The rest of your views will extend this
one, allowing you to add functionality that gets shared across every view. If a view needs
to be rendered in another way, that’s okay; you can override the render method again.

var Backbone = require('backbone');
var Mustache = require('mustache');

module.exports = Backbone.View.extend({
 render: function () {
 this.el.innerHTML = Mustache.to_html(this.template, this.viewModel);
 }
});

Next you’ll create items for your List view.

THE SHOPPING LIST VIEW

A static shopping list of items will suffice for now, which is why in the following listing
you can set the view model object once and forget about it. Note the initialize
method, which runs when the view gets instantiated so that the view renders itself
when it’s created. This view uses the template you saw previously and targets the .view
element in app.html.

var fs = require('fs');
var base = require('./base.js');
var template = fs.readFileSync(
 __dirname + '/templates/list.mu', { encoding: 'utf8' }
);

module.exports = base.extend({
 el: '.view',
 template: template,
 viewModel: {
 shopping_list: [
 { name: 'Banana', quantity: 3 },
 { name: 'Strawberry', quantity: 8 },
 { name: 'Almond', quantity: 34 },

Listing 7.6 Creating a list of items

185Case study: the shopping list
 { name: 'Chocolate Bar', quantity: 1 }
]
 },
 initialize: function () {
 this.render();
 }
});

Last, you need to initialize the application. Here’s the entry point code where you cre-
ate an instance of the List view after initializing Backbone. Note that because the view
renders itself, you only have to instantiate it.

var Backbone = require('backbone');
Backbone.$ = require('jquery');

var ListView = require('./app/views/list.js');
var list = new ListView();

You’ve laid out the ground work for a shopping list application. Let’s build on that in
the next stage. You’ll add delete buttons and refactor to accommodate a dynamic
application where the data can change.

7.4.2 This time with remove buttons

The first thing you’ll do at this stage is update the view template so that it includes but-
tons to remove items from the shopping list. You’ll set a data-name attribute on the
buttons so you can identify which item should be removed from the list. The updated
template can be found in the following snippet:

 {{#shopping_list}}

 {{quantity}}x {{name}}
 <button class='remove' data-name='{{name}}'>x</button>

 {{/shopping_list}}

Before wiring up the Remove button, you need to set up a proper model and a
collection.

USING A MODEL AND A COLLECTION

The collection will let you listen for changes to the list, such as when an item gets
removed from the list. The model can be used to track changes at the individual level,
and it allows you to do validation, as well as computation, as you’ll see in the next few
stages. For your purposes, you don’t need much more than a standard Backbone
model, but it’s always a good idea to keep your models strictly separated in different
modules and well named. The ShoppingItem model will be in the models directory.

var Backbone = require('backbone');

module.exports = Backbone.Model.extend({
});

186 CHAPTER 7 Leveraging the Model-View-Controller
The collection isn’t that special, either; it needs a reference to the model. That way,
the collection will know what kind of model to create when inserting new objects into
the list. To keep things neatly organized, you’ll place your collections in a collec-
tions directory.

var Backbone = require('backbone');
var ShoppingItem = require('../models/shoppingItem.js');

module.exports = Backbone.Collection.extend({
 model: ShoppingItem
});

Rather than setting the view model once and forgetting about it, and now that you
have both the model and the collection in place, you should change your view to use
the collection instead. The first change you’ll make in your view will be to require the
collection, as shown in the following code:

var ShoppingList = require('../collections/shoppingList.js');

Instead of the viewModel property, which you’ll set dynamically from now on, you’ll
use a collection property to keep track of your models. Note that, as I mentioned
previously, I don’t have to explicitly create ShoppingList instances for my collection,
because it already knows that’s the model type it has to use.

collection: new ShoppingList([
 { name: 'Banana', quantity: 3 },
 { name: 'Strawberry', quantity: 8 },
 { name: 'Almond', quantity: 34 },
 { name: 'Chocolate Bar', quantity: 1 }
])

Next, you’ll have the view update the UI when it first loads. To do that, you’ll set the
view model to whatever is in the collection and then render the view. Using the
toJSON method gives a plain array of model objects.

initialize: function () {
 this.viewModel = {
 shopping_list: this.collection.toJSON()
 };
 this.render();
}

Last, you’ll wire up your shopping list item Remove button.

WIRING UP DOM EVENTS IN BACKBONE

To listen for DOM events, you can assign properties to an events object in your views.
These properties should be named using an event name and a CSS selector, separated
by a space. The following code is what you’ll use in your updated view. It’ll trigger an
action whenever a click event occurs in an element matching the .remove selector.
Keep in mind that these events look for elements inside your view el, in this case the
<div> you created during the previous stage, and it won’t fire events for elements that

187Case study: the shopping list
are outside the view. Last, the event should be set to the name of a method that can be
found in your view.

events: {
 'click .remove': 'removeItem'
}

Let’s define removeItem now. You’ll use a collection filtering method. The button can
be accessed through e.target, and you’ll use its data-name attribute to fetch the
name. Then you’ll use that name to filter the collection to find the shopping list item
associated with this particular button.

removeItem: function (e) {
 var name = e.target.dataset.name;
 var model = this.collection.findWhere({ name: name });
 this.collection.remove(model);
}

Once a model is removed from the collection, the view should be updated again. The
naive approach would be to update the view model and render the view after removing
an item from the collection. The problem is that items may be removed from a collec-
tion in different places throughout an application, particularly if it’s a good one. A bet-
ter approach is to listen to events emitted by the collection. In this case, you can listen
for the remove event in the collection and refresh the view whenever that event is raised.

 The following listing sets up the event listener as you initialize the view, and also
includes refactoring so that the code isn’t duplicated, staying loyal to the DRY principle.

initialize: function () {
 this.collection.on('remove', this.updateView, this);
 this.updateView();
},
updateView: function () {
 this.viewModel = {
 shopping_list: this.collection.toJSON()
 };
 this.render();
}

That was a big chunk to digest! You may now head over to the accompanying code
samples and take a glance at ch07/07_the-one-with-delete-buttons, which is the work-
ing example you got as you completed this stage. In the next portion of this walk-
through, you’ll create a form that humans can use to add items to their shopping list.

7.4.3 Adding items to your cart

In the previous stage you gave life to your shopping list, allowing items to be removed
from the list. This time, you’ll add the option to add new items as well, so that humans
can make their own purchases, instead of removing the items they don’t want.

Listing 7.7 Setting up an event listener

188 CHAPTER 7 Leveraging the Model-View-Controller
 To keep things interesting, let’s throw in another requirement. When creating a
new item, you need to make sure its name isn’t already listed. If the item is already on
the grocery list, then the quantity needs to be added to the existing item. That avoids
creating duplicate items.

CREATING AN “ADD TO CART” COMPONENT

You’ll add the bit of HTML in the following listing to add groceries to the list. This
sample can be found as ch07/08_creating-items. You’ll use a couple of inputs, and a
button that will add the item to the shopping list collection. There’s also a field that
will only be displayed if an error message is set. You’ll use that field for input valida-
tion purposes. To keep things simple, this piece of HTML will go into your list tem-
plate for now. You’ll refactor and move it into its own view in the next couple of stages.

<fieldset>
 <legend>Add Groceries</legend>
 <label>Name</label>
 <input class='name' value='{{name}}' />
 <label>Quantity</label>
 <input class='quantity' type='number' value='{{quantity}}' />
 <button class='add'>Add</button>
 {{#error}}
 <p>{{error}}</p>
 {{/error}}
</fieldset>

Until now your models never changed. You could remove items but not update them.
Now that the models can be changed via human interaction, it’s time to add in valida-
tion.

INPUT VALIDATION

Human input should never be trusted, because users can easily enter a quantity that
isn’t numeric, or they can forget to enter a name. Maybe they entered a negative num-
ber, and that should be taken into consideration as well. Backbone allows you to vali-
date information by supplying a validate method on your models. That method
takes an attrs object, which is an internal model variable that holds all of the model
properties so that you can access them directly. The following listing shows how to
implement the validation function. You’re checking that the model has a name, a
numeric quantity that’s not NaN (Not a Number). Confusingly, NaN is of type 'number'
and NaN is not equal to itself either, so you need to test for NaN using the native Java-
Script isNaN method. Last, you’ll make sure that the quantity is at least 1.

validate: function (attrs) {
 if (!attrs.name) {
 return 'Please enter the name of the item.';
 }

Listing 7.8 Setting up an add to cart component

Listing 7.9 Implementing the validation function

189Case study: the shopping list
 if (typeof attrs.quantity !== 'number' || isNaN(attrs.quantity)) {
 return 'The quantity must be numeric!';
 }
 if (attrs.quantity < 1) {
 return 'You should keep your groceries to yourself.';
 }
}

To make editing simpler, you’ll also add a helper method to the model that takes a
quantity and updates the model, adding that amount to the current quantity. This
change should be validated to make sure that a negative amount doesn’t make the
resulting quantity go below 1. Models aren’t validated by default when changing their
values, but you can force that by turning on the validate option. The following code
shows what that method looks like:

addToOrder: function (quantity) {
 this.set('quantity', this.get('quantity') + quantity, { validate: true });
}

When adding any amount to the model, validation will be triggered, and if it fails, the
model won’t be changed, but instead a validationError property will be set on the
model. Suppose you have a model with a quantity of 6; the following code will fail and
set the validationError property to the appropriate error message:

model.addToOrder(-6);
model.validationError;
// <- 'You should keep your groceries to yourself.'

Now that your model protects itself against bad data, you can update the view and give
life to your new form.

REFACTORING THE VIEW LOGIC

The first change we’ll make to the view is adding a render method that can display an
error message while keeping the name and quantity that the human entered, so that
they’re not cleared when an error occurs. Let’s name that method updateViewWith-
Validation for clarity:

updateViewWithValidation: function (validation) {
 this.viewModel = {
 shopping_list: this.collection.toJSON(),
 error: validation.error,
 name: validation.name,
 quantity: validation.quantity
 };
 this.render();
}

You also need to bind an event listener to click events on your Add button. To do that,
add another property to the events object in your view. Then all that’s left is creating
the addItem event handler:

'click .add': 'addItem'

190 CHAPTER 7 Leveraging the Model-View-Controller
The first couple of things your addItem handler should do is get the human input and
parse the quantity as a base 10 integer:

var name = this.$('.name').val();
var quantity = parseInt(this.$('.quantity').val(), 10);

Once you have the user input, the first thing you’ll do is figure out if any items in the
collection have the same name, and, in that case, you’ll use the addToOrder method to
update the model after validating the input. If the item isn’t already in the list, then
you create a new ShoppingItem model instance and validate it. If the validation
passes, then you add the newly created item onto the collection. In code, that looks
like the following listing.

var model = this.collection.findWhere({ name: name });
if (model) {
 model.addToOrder(quantity);
} else {
 model = new ShoppingItem({ name: name, quantity: quantity }, { validate:

true });
 if (!model.validationError) {
 this.collection.add(model);
 }
}

Because you’re using the ShoppingItem class, you’ll have to add the following state-
ment to the top of your module:

var ShoppingItem = require('../models/shoppingItem.js');

If the validation step fails, you need to render the view again, adding the validation
error message so that the user knows what went wrong:

if (!model.validationError) {
 return;
}

this.updateViewWithValidation({
 name: name,
 quantity: quantity,
 error: model.validationError
});

If validation goes well, the collection will either get a new item or an existing item will
change. These cases should be handled by listening to the add and change events on
the collection. You need to add the following couple of lines to the initialize
method on the view:

this.collection.on('add', this.updateView, this);
this.collection.on('change', this.updateView, this);

That’s all there is to this stage. You now have the ability to add new items to the list,
modify the quantity on existing ones, and remove items. In the next stage, you’ll make
editing more intuitive by adding an inline edit button on each list item.

Listing 7.10 Validating a shopping item

191Case study: the shopping list
7.4.4 Using inline editing

In this section we’ll introduce inline item editing. Each item will get an Edit button.
Clicking on it will allow humans to change the quantity and then save the record. That
feature in itself is simple, but you’re going to take this opportunity and clean house a
bit. You’re going to split your growing list view into three: an Add Item view that will be
in charge of the input form, a List Item view that will be in charge of individual list items,
and the original List view that will handle removals and additions to the collection.

COMPONENTIZING YOUR VIEWS

The first order of business will be breaking your list view template in two. You’ll use
two different view containers: one for the list and another one for the form. The
<div> you used to have can be replaced by the following code:

<ul class='list-view'>
<fieldset class='add-view'></fieldset>

This division of labor also means you need to split your Mustache template. Rather
than have the list template do everything, you’ll replace it with two other templates.
As you’ll soon learn, the list itself won’t need any templating; only the form and the
individual list items will. The following code is what views/templates/addItem.mu
looks like. The form remains almost unchanged, except the fieldset tag has been
promoted to view container status, so it’s no longer in the template.

<legend>Add Groceries</legend>
<label>Name</label>
<input class='name' value='{{name}}' />
<label>Quantity</label>
<input class='quantity' type='number' value='{{quantity}}' />
<button class='add'>Add</button>
{{#error}}
<p>{{error}}</p>
{{/error}}

The List view no longer needs a template itself, because the only element that’s needed
is the element, bound to your List view through the el property, as you’ll see in
a minute. Each list item will be kept in its own view, and you’ll use a view template for
them. The List Item view model will hold a property to track whether the item is being
edited or not. This property is checked in the view template to decide if you need to ren-
der a label and the action buttons or the inline editing form. The list item template
looks like the following listing and goes into views/templates/listItem.mu.

{{^editing}}
{{quantity}}x {{name}}
<button class='edit'>Edit</button>
<button class='remove'>x</button>
{{/editing}}
{{#editing}}
{{name}}

Listing 7.11 Viewing a list item template

192 CHAPTER 7 Leveraging the Model-View-Controller
<input class='edit-quantity' value='{{quantity}}' type='number' />
<button class='cancel'>Cancel</button>
<button class='save'>Save</button>
{{/editing}}
{{#error}}
{{error}}
{{/error}}

You’ll still create the collection in the List view, but you need to pass that collection to
the addItem view. This couples both views tightly, because the addItem view needs a
List view that can create a collection, and that isn’t modular. This is what your entry
point, app.js, looks like now. You’ll sort out the coupling issues in the next stage; this
code snippet is about turning your components smaller:

var Backbone = require('backbone');
Backbone.$ = require('jquery');

var ListView = require('./views/list.js');
var listView = new ListView();

var AddItemView = require('./views/addItem.js');
var addItemView = new AddItemView({ collection: listView.collection });

Let’s continue by creating the Add Item view.

A MODULAR “ADD TO CART” VIEW

The Add Item view is similar to what you had in the List view before starting to compo-
nentize it. First, the following listing shows how the view is initialized, and how it uses
the .add-view selector to find the <fieldset>, which will be used as the view con-
tainer.

var fs = require('fs');
var base = require('./base.js');
var template = fs.readFileSync(
 __dirname + '/templates/addItem.mu', { encoding: 'utf8' }
);
var ShoppingItem = require('../models/shoppingItem.js');

module.exports = base.extend({
 el: '.add-view',
 template: template,
 initialize: function () {
 this.updateView();
 },
 updateView: function (vm) {
 this.viewModel = vm || {};
 this.render();
 }
});

This view is only concerned with adding models to the collection, and it shows. It’ll
have a click event handler on the Add button that will look almost exactly identical to

Listing 7.12 Initializing the view

193Case study: the shopping list
your old addItem method. The only difference is that in this version you update the
view every time the addItem event handler is fired, as shown in the following listing.

events: {
 'click .add': 'addItem'
},
addItem: function () {
 var name = this.$('.name').val();
 var quantity = parseInt(this.$('.quantity').val(), 10);
 var model = this.collection.findWhere({ name: name });
 if (model) {
 model.addToOrder(quantity);
 } else {
 model = new ShoppingItem(
 { name: name, quantity: quantity },
 { validate: true }
);

 if (!model.validationError) {
 this.collection.add(model);
 }
 }

 if (!model.validationError) {
 this.updateView();
 return;
 }
 this.updateView({
 name: name,
 quantity: quantity,
 error: model.validationError
 });
}

The only thing the Add Item view has to do is add items, so that’s all there is to it! Let’s
put together the List item view next.

CREATING A LIST ITEM COMPONENT

The list item component will be in charge of rendering any changes made to its model
and provide the opportunity to edit or remove items from the list. Let’s go over this
view from scratch. First off, there are the usual suspects. You need to read the tem-
plate file and extend the base view. The tagName property means that this view will get
rendered to an element. Start with the following code snippet:

var fs = require('fs');
var base = require('./base.js');
var template = fs.readFileSync(
 __dirname + '/templates/listItem.mu', { encoding: 'utf8' }
);

module.exports = base.extend({
 tagName: 'li',
 template: template
});

Listing 7.13 Updating the view

194 CHAPTER 7 Leveraging the Model-View-Controller
This view will take the model and collection properties as they’re created, as you’ll see
when refactoring the List view, which you’ll do next. Whenever the model changes,
you’ll render the view again. The view also needs to be rendered when it’s initialized.
In case a validation error occurs while using the inline editing feature, you’ll track
that with the view model as well. Here’s how that looks in code:

initialize: function () {
 this.model.on('change', this.updateView, this);
 this.updateView();
},
updateView: function () {
 this.viewModel = this.model.toJSON();
 this.viewModel.error = this.model.validationError;
 this.render();
}

The remove event handler is much simpler now, because all you have to do is remove
the model from the collection, and you still have both of those in the properties of
your view. This is how it looks in code:

events: {
 'click .remove': 'removeItem'
},
removeItem: function (e) {
 this.collection.remove(this.model);
}

Next you’ll wire up the edit and cancel methods, which are similar. The first one puts
the item in edit mode, while the second leaves edit mode. All these methods need to
do is change the editing property. The rest will be handled by the model change
event listener, which will make sure to render the view again. When switching the edit
mode on or off, you’ll clear the validationError property as well. The following list-
ing introduces these event handlers.

events: {
 'click .edit': 'editItem',
 'click .cancel': 'cancelEdit',
 'click .remove': 'removeItem'
},
removeItem: function (e) {
 this.collection.remove(this.model);
}
editItem: function (e) {
 this.model.validationError = null;
 this.model.set('editing', true);
},
cancelEdit: function (e) {
 this.model.validationError = null;
 this.model.set('editing', false);
}

Listing 7.14 Adding edit and cancel methods

195Case study: the shopping list
The last task of the List Item view will be saving edits made to a record. You’ll bind to
clicks on the Save button, parse the input, and update the quantity. You’ll get out of
edit mode only if the validation succeeded. Keep in mind I’m not repeating all of the
previous event handlers, for brevity:

events: {
 'click .save': 'saveItem'
},
saveItem: function (e) {
 var quantity = parseInt(this.$('.edit-quantity').val(), 10);
 this.model.set('quantity', quantity, { validate: true });
 this.model.set('editing', this.model.validationError);
 }
});

List items don’t have any other responsibilities, but the list should add and remove
this partial view to the UI. When saying partial view, I mean that it only represents a
portion of an object, in this case a portion of the list rather than the whole. The List
view needs to hold as many list item views as it has to.

REBUILDING THE LIST VIEW

Previously, your List view would rerender every time an item was added or deleted.
Now your list will only render individual items and append them to the DOM or
remove existing items from the DOM. This is not only faster than rerendering the
whole list, but it’s also more modular. The list is only managing the big picture
actions, when items are added or removed. The individual items will each be in
charge of maintaining their own state and updating their own UI representation.

 For this to work, the List view will no longer rely on the view.render method, but
manipulate the DOM directly instead. The aspects of the old List view that you kept,
such as the hard-coded collection data, extending from the base view, and the el
property declaration are shown in the following listing. Note that the view container
has changed to match your element.

var base = require('./base.js');
var ShoppingList = require('../collections/shoppingList.js');

module.exports = base.extend({
 el: '.list-view',
 collection: new ShoppingList([
 { name: 'Banana', quantity: 3 },
 { name: 'Strawberry', quantity: 8 },
 { name: 'Almond', quantity: 34 },
 { name: 'Chocolate Bar', quantity: 1 }
])
});

Because you no longer desire to repaint the entire view every time an item changes,
you’ll rely on two new methods, addItem and removeItem, to do the DOM manipula-
tion. You’ll run these methods whenever the collection is updated, keeping the UI up

Listing 7.15 Aspects of the old list view

196 CHAPTER 7 Leveraging the Model-View-Controller
to date at all times. You can also use the addItem method to render the initial repre-
sentation of the collection, by running it on each model in the collection when ini-
tializing the view. The initialize method will look like the following code snippet.
I’ll explain the partials variable next.

initialize: function () {
 this.partials = {};
 this.collection.on('add', this.addItem, this);
 this.collection.on('remove', this.removeItem, this);
 this.collection.models.forEach(this.addItem, this);
}

Before you can see the addItem method, I’ll mention that it needs to require the List
Item view. You’ll use that to create partial views, one for each model in the collection.
Let’s add that to the top of the List view module:

var ListItemView = require('./listItem.js');

You’re now ready to implement the addItem method. That method will take a model
and create an instance of the ListItemView. Then the view element, which is an ,
will be appended to this.$el, which is your element. To cleanly find and
remove items from the list, you’ll track them in the partials variable. Backbone mod-
els have a unique ID property that can be accessed through model.cid, so you can use
that as the keys in your partials object. The code is as follows:

addItem: function (model) {
 var item = new ListItemView({
 model: model,
 collection: this.collection
 });
 this.$el.append(item.el);
 this.partials[model.cid] = item;
}

Removing elements is now merely a matter of looking at the partials object, access-
ing the partial by means of the model.cid key, and removing the element. You should
then make sure that it gets removed from the partials object as well.

removeItem: function (model) {
 var item = this.partials[model.cid];
 item.$el.remove();
 delete this.partials[model.cid];
}

Phew! That was an intense refactoring session, but it paid off. Now you have a few dif-
ferent views working on the same collection, and they’re much more self-contained
now. The Add Item view only adds items to the collection, the List view only cares
about creating new List Item views or removing them from the DOM, and the List
Item view is only concerned about changes to an individual model.

 Give yourself a congratulatory pat on the back, and check out the accompanying
code samples to make sure you understand all the changes you’ve made at this stage

197Case study: the shopping list
and the current state of the shopping list application. You’ll find the example listed as
ch07/09_item-editing.

 You accomplished a nice separation of concerns at this stage, but you can do bet-
ter. Let’s examine that in the last stage of this process.

7.4.5 A service layer and view routing

This last stage introduces two changes to your organization. You’ll add a thin service
layer and introduce view routing into your application design. By creating a service
that provides a unique shopping list collection, you give your views the ability to
actively ask the service for the shopping list data. This dramatically decouples your
views, which previously generated the data and shared it with each other.

 Note that in this case you’re still hard coding an array of items, but you could as
easily pull them from an Ajax request and provide access to them through a Promise,
as you saw in chapter 6. For the time being, the following listing will do. This should
be placed in the services directory.

var ShoppingList = require('../collections/shoppingList.js');

var items = [
 { name: 'Banana', quantity: 3 },
 { name: 'Strawberry', quantity: 8 },
 { name: 'Almond', quantity: 34 },
 { name: 'Chocolate Bar', quantity: 1 }
];
module.exports = {
 collection: new ShoppingList(items)
};

Once that’s in place, both the Add Item and the List views should require the service,
and assign shoppingService.collection to their collection properties. In doing
that, you no longer need to pass around a reference to the collection that was previ-
ously initialized by the List view.

 Let’s turn to the routing changes, rounding up your shopping list adventure.

ROUTING FOR THE SHOPPING LIST

You’re also going to implement routing at this stage. To keep things interesting, you’ll
move the Add Item view to a different route. The code in the following listing should
go into its own module. Place it at routers/viewRouter.js. The 'root' action helps
redirect humans when they open up the application, and there’s no other hash loca-
tion set.

var Backbone = require('backbone');
var ListView = require('../views/list.js');
var AddItemView = require('../views/addItem.js');
module.exports = Backbone.Router.extend({

Listing 7.16 Hard coding an array of items

Listing 7.17 Moving the Add Item view to a different route

198 CHAPTER 7 Leveraging the Model-View-Controller
 routes: {
 '': 'root',
 'items': 'listItems',
 'items/add': 'addItem'
 },
 root: function () {
 this.navigate('items', { trigger: true });
 },
 listItems: function () {
 new ListView();
 },
 addItem: function () {
 new AddItemView();
 }
});

As I mentioned back in section 7.3.4 when I first introduced Backbone routers, you’ll
have to go back to app.js and replace what you had in there with the code in the fol-
lowing listing. This will wire up your view router and activate it. Rather than statically
defining the first view served to the human, it’ll depend on from which URL they visit
your application.

var Backbone = require('backbone');
var $ = require('jquery');

Backbone.$ = $;

var ViewRouter = require('./routers/viewRouter.js');
new ViewRouter();

$(function () {
 Backbone.history.start();
});

The last change you need to make to have routing has to do with views and templat-
ing. First, you’ll revert back to the single view container you used to have before the
last stage:

<div class='view'></div>

Second, you need to set the el property to '.view' in both the Add Item view and the
List view. You also have to change the view templates around a bit. For example, the
Add Item view template should have a Cancel button that goes back to the List view. It
should look like the following code:

Cancel

Last, you’ll give your List view a well-deserved view template, which will be small. It
needs the that will keep the list and an anchor link that matches the route for

Listing 7.18 Activating the view router

199Backbone and Rendr: server/client shared rendering
the Add Item view. The following code snippet shows how the template, placed in
views/templates/list.mu, should look:

<ul class='items'>
Add Item

The List view should render this template when initialized and look up the list element:

this.render();
this.$list = this.$('.items');

When adding an item to the list, rather than appending them to $el, which is now the
shared view container, you should append them to $list:

this.$list.append(item.el);

That’s all there is to it! Make sure to check out the code in the accompanying reposi-
tory. The last stage can be found under ch07/10_the-road-show, and it contains
everything you’ve worked on so far. Next up, you’ll learn about Rendr, a technology
you can use to render client-side Backbone views on the server side, which is useful for
improving human-perceived performance when developing Node.js applications.

7.5 Backbone and Rendr: server/client shared rendering
Rendr boosts the perceived performance of Backbone applications by rendering
them on the server side. This allows you to display the rendered page before Java-
Script code is executed in the browser and Backbone kicks in. The first time the page
gets loaded, the human will see the content sooner. After that first load, Backbone will
take over and handle routing on the client side. The first load is extremely important
and rendering the application on the server before the human gets any content is bet-
ter than having them wait for Backbone to pull your data, fill your views, and render
your templates. That’s why server-side rendering is still vital to the web application
development process. Let’s start with a quick dive into the world of Rendr.

7.5.1 Diving into Rendr

Rendr uses a conventional approach to application building. It expects you to name
your modules in a certain way and place them in certain directories. Rendr also has
opinions about the kinds of templates you should use and how your application
should access its data. By default, this means Rendr expects you to have a REST API to
access the application data; you’ll investigate REST API design in chapter 9.

 Rendr runs on Node.js, acting as middleware in your HTTP stack. It works by inter-
cepting requests and rendering views server-side before handing the prerendered
results to the client. In its conventional approach, it helps separate concerns by defin-
ing controllers, where you can fetch data, render views, or perform redirects. Rather
than having to reference your templates in your views, Rendr uses well-defined nam-
ing policies that abstract away dependencies, which are mostly managed by the Rendr
engine. This will become clearer once you look at the code in section 7.5.2.

200 CHAPTER 7 Leveraging the Model-View-Controller
PROBLEMS IN PARADISE

Not all is peaches and cream. At the time of this writing, Rendr (v0.5) includes “pecu-
liar” design choices that ultimately made me decide not to use it throughout this
chapter, as it would’ve complicated the examples. For instance, Rendr uses Browserify
to bring the modules you write into the browser, but it has three distinct hacks in the
way it compiles your CommonJS modules using Browserify:

1 jQuery needs to be shimmed through browserify-shim. This is problematic
because the server-side version of Rendr uses its own version of jQuery, and
there could be versioning discrepancies. If you try to use the CommonJS version
obtained through npm, it won’t work.

2 It needs aliases for part of its require calls to work as expected, which is an
issue because it translates into the next deficiency, as well.

3 You can’t use the brfs transform with Rendr.

The decision to not go deeper into Rendr mostly had more to do with it being less
broadly applicable. If you chose a server-side language other than Node.js, you
couldn’t carry as many of the concepts I’ll teach into your designs. Beside these prob-
lems, there definitely is value in learning about the conventional MVC capabilities
Rendr provides to your Backbone applications. Many conventional MVC frameworks
exist in server-side languages, providing similar features as those resulting from com-
bining Backbone and Rendr, but you rarely learn about those when talking about
client-side JavaScript. The ability to perform shared rendering definitely boosts its
appeal. As with most things when deciding on a technology stack, it’s a tradeoff. Note
that Facebook’s React is a good example of a library that’s capable of doing both
server-side and client-side rendering without any additional tooling needed.

DIVING IN

To showcase Rendr, I’ve settled for a slightly modified version of an example AirBnB
(the company behind Rendr) uses to teach how Rendr works. You can find the code
as ch07/11_entourage in the accompanying code samples.

 First, let’s talk about the templates. Rendr encourages you to use a superset of
Mustache called Handlebars. Handlebars provides extra features, mostly in the form
of helper methods you can use, such as an if convenience method. Rendr expects
you to compile the Handlebars templates and place the bundled result in app/
templates/compiledTemplates.js. To do that, start by installing the Grunt plugin
for Handlebars:

npm install --save-dev grunt-contrib-handlebars

To configure the Handlebars Grunt plugin, you have to add the code in the following
listing to the Gruntfile. The options passed to the handlebars:compile task target
are needed by Rendr, which expects the templates to be named in a certain way.

handlebars: {
 compile: {

Listing 7.19 Configuring the Handlebars plugin

201Backbone and Rendr: server/client shared rendering
 options: {
 namespace: false,
 commonjs: true,
 processName: function (filename) {
 return filename.replace('app/templates/', '').replace('.hbs', '');
 }
 },
 src: 'app/templates/**/*.hbs',
 dest: 'app/templates/compiledTemplates.js'
 }
}

The Browserify configuration is, at the moment, also tied to Rendr’s expectations.
You’ll need to shim jQuery, rather than install it from npm. You’re expected to provide
an alias so Rendr can access rendr-handlebars, the Handlebars adapter used by
Rendr. Last, Rendr needs you to provide a few mappings so it can access your applica-
tion’s modules. The code to configure Browserify to play nice with Rendr can be
found in the following listing.

browserify: {
 options: {
 debug: true,
 alias: ['node_modules/rendr-handlebars/index.js:rendr-handlebars'],
 aliasMappings: [{
 cwd: 'app/',
 src: ['**/*.js'],
 dest: 'app/'
 }],
 shim: {
 jquery: {
 path: 'assets/vendor/jquery-1.9.1.min.js',
 exports: '$'
 }
 }
 },
 app: {
 src: ['app/**/*.js'],
 dest: 'public/bundle.js'
 }
}

That’s it, as far as build configuration goes. It might not be ideal, but once it’s in there
you can forget about it. Let’s go into the sample application code and see how it
works.

7.5.2 Understanding boilerplate in Rendr

The first step you’ll take in putting together your Rendr application is creating the
entry point for the Node program. You’ll name this file app.js and place it in your
application root. As I mentioned previously, Rendr works as a middleware in your
HTTP stack, sitting inside Express.

Listing 7.20 Configuring Browserify to work with Rendr

202 CHAPTER 7 Leveraging the Model-View-Controller
EXPRESS MIDDLEWARE FOR RENDR

Express is a popular Node.js framework that wraps the native http module, providing
more functionality and allowing you to perform routing and a few other things. Past
this section, most of what we’ll discuss is inherent to Rendr and not part of Express.
Rendr enhances Express to make its conventions work, though.

npm install express --save

Have a look at the following piece of code. You’re using the express package to set up
an HTTP server in Node. Calling express() will create a new Express application
instance, and you can add middleware to that instance with app.use. Invoking
app.listen(port) will keep the application running and react on incoming HTTP
requests on the chosen port. Best practice dictates that the listening port for your
application should be configurable as an environment variable and have a sensible
default value.

var express = require('express');
var app = express();
var port = process.env.PORT || 3000;

app.use(express.static(__dirname + '/public'));
app.use(express.bodyParser());
app.listen(port, function () {
 console.log('listening on port %s', port);
});

The static middleware tells Express to serve all of the content in the specified direc-
tory as static assets. If a human requests http://localhost:3000/js/foo.js, and the
public/js/foo.js file exists, that’s what Express will respond with. The bodyParser
middleware is a utility that will parse request bodies that are detected to be in JSON or
form data format.

 The following listing configures Rendr for your example. The middleware will take
care of everything else, as you’ll see next. The data adapter configuration tells Rendr
what API it should query. The beauty of Rendr lies in that, both on the client side as
well as on the server side, it’ll query the API whenever it needs to fetch data.

var rendr = require('rendr');
var rendrServer = rendr.createServer({
 dataAdapterConfig: {
 default: {
 host: 'api.github.com',
 protocol: 'https'
 }
 }
});

app.use(rendrServer);

Listing 7.21 Configuring Rendr

203Backbone and Rendr: server/client shared rendering
SETTING UP RENDR

Rendr provides a series of base objects you’re expected to extend when building your
application. The BaseApp object, which extends from BaseView, should be extended
and placed in app/app.js to create a Rendr app. In this file you could add app initial-
ization code that runs in both the client and the server and is used to maintain the
application’s global state. The following snippet of code will suffice:

var BaseApp = require('rendr/shared/app');

module.exports = BaseApp.extend({
});

You also need to create a router module, which you could use to track page views
whenever there’s a route change, although for now you’ll merely create an instance of
the base router. The router module should be placed at app/router.js, and it
should look like the following code:

var BaseClientRouter = require('rendr/client/router');

var Router = module.exports = function Router (options) {
 BaseClientRouter.call(this, options);
};

Router.prototype = Object.create(BaseClientRouter.prototype);
Router.prototype.constructor = BaseClientRouter;

Let’s turn our attention to how the meat of your Rendr application should look.

7.5.3 A simple Rendr application

You’ve configured Grunt and Express to comply
with Rendr’s needs. Now it’s time to develop the
application itself. To make this example easier to
understand, I’ll show you the code in the logical
order Rendr uses to serve its responses. To keep
your example self-contained, yet interesting,
you’ll create three different views:

1 Home is the welcome screen for your app.
2 Users keeps a list of GitHub users.
3 User contains the details of a specific user.

These views will have a one-to-one relationship
with routes. The home view will sit at the applica-
tion root, /; the user list will be at /users; and the
user details view will be at /users/:login, where
:login is the user login on GitHub (bevacqua in
my case). Views are rendered by controllers.

 Figure 7.5 shows what the user list will look
like when you’re done.

Figure 7.5 A list of users in your
GitHub browser built using Rendr

204 CHAPTER 7 Leveraging the Model-View-Controller
Let’s start with routing and then learn how controllers operate.

ROUTES AND CONTROLLERS

The following code matches routes to controller actions. The controller actions
should be defined as the controller name, followed by a hash, and then the action
name. This module goes into app/routes.js.

module.exports = function (match) {
 match('', 'home#index');
 match('users' , 'users#index');
 match('users/:login', 'users#show');
};

Controllers fetch any data that’s required to render a view. You have to define each
action that’s expected by the routes. Let’s put the two controllers together. By conven-
tion, controllers should be placed in app/controllers/{{name}}_controller.js.
The following code snippet, your Home controller, should be placed at app/control-
lers/home_controller.js. It should expose an index function, matching the index
route. This function takes a parameters object and a callback that, once called, will
render the view:

module.exports = {
 index: function (params, callback) {
 callback();
 }
};

The user_controller.js module is different. It has an index action as well, but it
also has a show action. In both cases, you need to call this.app.fetch with parame-
ters to get the model data and then invoke the callback once you’re done, as shown in
the following listing.

module.exports = {
 index: function (params, callback) {
 var spec = {
 collection: {
 collection: 'Users',
 params: params
 }
 };
 this.app.fetch(spec, function (err, result) {
 callback(err, result);
 });
 },
 show: function (params, callback) {
 var spec = {
 model: {
 model: 'User',
 params: params
 },
 repos: {

Listing 7.22 Retrieving model data

205Backbone and Rendr: server/client shared rendering
 collection: 'Repos',
 params: { user: params.login }
 }
 };
 this.app.fetch(spec, function (err, result) {
 callback(err, result);
 });
 }
};

Fetching this data wouldn’t be possible if you didn’t have matching models and collec-
tions. Let’s flesh those out next.

MODELS AND COLLECTIONS

Models and collections need to extend the base objects provided by Rendr, so let’s cre-
ate those. The following code is for your base model, placed at app/models/base.js:

var RendrBase = require('rendr/shared/base/model');

module.exports = RendrBase.extend({});

The base collection is similarly thin. Having your own base objects, though, is neces-
sary to easily share functionality across your models:

var RendrBase = require('rendr/shared/base/collection');

module.exports = RendrBase.extend({});

We’ll have to define your models using the endpoint you want to use to fetch the mod-
els, in this case from the GitHub API. Your models should also export a unique identi-
fier that’s the same as what you used when calling app.fetch in your User controller.
The following code shows what the User model looks like. This should be placed at
app/models/user.js:

var Base = require('./base');

module.exports = Base.extend({
 url: '/users/:login',
 idAttribute: 'login'
});
module.exports.id = 'User';

As long as your models don’t have any validation or computed data functions, they’ll
look similar: a url endpoint, the unique identifier, and the name of the parameter
that’s used to look up a single model instance. When you look at REST API design in
chapter 9, constructing a URL in this way will feel more natural to you. Here’s what the
Repo model looks like:

var Base = require('./base');

module.exports = Base.extend({
 url: '/repos/:owner/:name',
 idAttribute: 'name'
});
module.exports.id = 'Repo';

206 CHAPTER 7 Leveraging the Model-View-Controller
As in your case study in section 7.4, collections need to reference a model to learn
what kind of data they’re dealing with. Collections are similar to models and use a
unique identifier to teach Rendr what kind of collection they are and a URL from
which you can fetch data. The following code shows the Users collection in code. It
should be placed in app/collections/users.js:

var User = require('../models/user');
var Base = require('./base');

module.exports = Base.extend({
 model: User,
 url: '/users'
});
module.exports.id = 'Users';

The Repos collection is almost identical, except it uses the Repo model, and it has a
different URL for fetching the data from the REST API. The code is as follows, and it
should go in app/collections/repos.js:

var Repo = require('../models/repo');
var Base = require('./base');

module.exports = Base.extend({
 model: Repo,
 url: '/users/:user/repos'
});
module.exports.id = 'Repos';

At this point, the user requested a URL, and the router decided which controller action
that should direct them to. The action method probably fetched data from the API and
then it invoked its callback. At last, let’s learn how views behave to render the HTML.

VIEWS AND TEMPLATES

As with most things Rendr, the first step in defining your views is creating your own
base view, which is an extension of Rendr’s base view. The base view should go in app/
views/base.js and look like the following code:

var RendrBase = require('rendr/shared/base/view');

module.exports = RendrBase.extend({});

Your first view is the Home view. It should be placed at app/views/home/index.js
and look like the following. As you can see, views also need to export an identifier:

var BaseView = require('../base');

module.exports = BaseView.extend({
});
module.exports.id = 'home/index';

Given that your views consist mostly of links to each other, but not much functionality,
they’re mostly empty. The Users view is almost identical to the Home view. It goes in
app/views/users/index.js, and its code follows:

207Backbone and Rendr: server/client shared rendering
var BaseView = require('../base');

module.exports = BaseView.extend({
});
module.exports.id = 'users/index';

The User Details view goes in app/views/users/show.js. This view has to tamper
with the template data, which is what I’ve referred to as the view model, to make the
repos object available to the template, as shown in the following listing.

var BaseView = require('../base');

module.exports = BaseView.extend({
 getTemplateData: function () {
 var data = BaseView.prototype.getTemplateData.call(this);
 data.repos = this.options.repos;
 return data;
 }
});
module.exports.id = 'users/show';

The last view you’ll put together is a partial to render a list of repositories. It should be
placed in app/views/user_repos_view.js, and as you can see, partials barely differ
from other views, and they need a view controller like any other view:

var BaseView = require('./base');

module.exports = BaseView.extend({
});
module.exports.id = 'user_repos_view';

Last, there are the view templates. The first view template you’ll look at is the layout
.hbs file. This is the HTML that will serve as a container for all your templates. You can
find the code in the following listing. Note that you’re bootstrapping the application
data and initializing it using JavaScript. This is required by Rendr. The {{{body}}}
expression will be replaced by the views dynamically as the route changes.

<!doctype html>
<html>

 <head>
 <title>Entourage</title>
 </head>

 <body>
 <div>
 GitHub Browser
 </div>

Listing 7.23 Making the repos object available to the template

Listing 7.24 Bootstrapping the application data

208 CHAPTER 7 Leveraging the Model-View-Controller
 Home
 Users

 <section id='content' class='container'>
 {{{body}}}
 </section>

 <script src='/bundle.js'></script>
 <script>
 (function() {
 var App = window.App = new (require('app/app'))({{json appData}});
 App.bootstrapData({{json bootstrappedData}});
 App.start();
 })();
 </script>
 </body>
</html>

Next you have the Home view template. Here are a few links with no view model data
access going on. This template goes in app/templates/home/index.hbs. Note that
Backbone will capture navigation to any links in your application that match one of its
routes and behave as a single-page application. Rather than reloading the entire page
whenever a link is clicked, Backbone will load the corresponding view.

<h1>Entourage</h1>
<p>
 Demo on how to use Rendr by consuming GitHub’s public API.
</p>
<p>
 Check out Repos or Users.
</p>

Now things get more interesting. Here you’re looping through the list of models that
were fetched in the controller action, and rendering a list of users and links to their
account details. This template goes in app/templates/users/index.hbs:

<h1>Users</h1>

{{#each models}}

 {{login}}

{{/each}}

Next up you have the User Details template, which goes in app/templates/users/
show.hbs. You can find the template code in the following listing. Take into account
how you’re telling Handlebars to load the user_repos_view partial and how that
name matches exactly the identifier that was defined in its view.

209Backbone and Rendr: server/client shared rendering

 {{login}}
({{public_repos}} public repos)

<div>
 <div>
 {{view 'user_repos_view' collection=repos}}
 </div>

 <div>
 <h3>Info</h3>

 <table>
 <tr>
 <th>Location</th>
 <td>{{location}}</td>
 </tr>
 <tr>
 <th>Blog</th>
 <td>{{blog}}</td>
 </tr>
 </table>
 </div>
</div>

The User Repos view is your last view template, a partial in this case. It has to be
located at app/templates/user_repos_view.hbs, and it’s used to iterate through a
collection of repositories, displaying interesting metrics about each repository, as
shown in the following listing.

<h3>Repos</h3>
<table>
 <thead>
 <tr>
 <th>Name</th>
 <th>Watchers</th>
 <th>Forks</th>
 </tr>
 </thead>
 <tbody>
 {{#each models}}
 <tr>
 <td>{{name}}</td>
 <td>{{watchers_count}}</td>
 <td>{{forks_count}}</td>
 </tr>
 {{/each}}
 </tbody>
</table>

Listing 7.25 Setting up the User Details template

Listing 7.26 Setting up the User Repos template

210 CHAPTER 7 Leveraging the Model-View-Controller
That’s it! Phew. As you can see, once you get past the vast amount of boilerplate code
around your application, creating a Rendr app isn’t that hard. I’m sure over time
they’ll reduce the amount of boilerplate around the meat of your Rendr applications.
The nice aspect of creating an application using Rendr, Backbone, and CommonJS is
how modular your code can become. Modularity is one of the characteristic proper-
ties of testable code.

7.6 Summary
Wow, we certainly accomplished big results in this chapter:

■ You learned why jQuery isn’t enough, and how a more structured approach
would help you with the application development process.

■ You got an overview of how Model-View-Controller patterns are supposed to
work.

■ You went on a Backbone adventure after learning about the basic concepts in
Backbone.

■ You exploited CommonJS and Browserify to get modular Backbone compo-
nents interoperating in the browser.

■ You took advantage of Rendr to bring a Backbone application to the server side,
improving perceived performance.

Let’s use this momentum to learn more about testability and how to write good tests.
All kinds of testing await; turn the page already!

Testing JavaScript
components
By writing tests, you’ll improve the reliability of the modules and applications you
build and insure they work the way you intend. In typical Build First fashion, you’ll
get the necessary insight to automate those tests and run them on the cloud. This
chapter includes a few guidelines that will help you write tests, and you will also get
hands-on experience in testing components. In some cases I'll walk you through
the tests that you may write for a given piece of code, helping you visualize the
thought process behind writing thoughtful unit tests.

 While I’m not an advocate for the Test-Driven Development (TDD) paradigm,
which encourages you to write tests before you develop any functionality, I think

This chapter covers
■ Applying unit testing fundamentals to

JavaScript components
■ Writing unit tests in Tape
■ Mocking, spying, and proxying
■ Testing browsers hands-on
■ Using Grunt for test automation
■ Understanding integration and visual testing
211

212 CHAPTER 8 Testing JavaScript components
tests are important, and you should write them. In this chapter we’ll go back and forth
between process design and application design. You’ll look at how to write tests, and
then I’ll give you the tools to automate testing.

You learned about modularity, mostly in chapter 5; improving your asynchronous
flows, as discussed in chapter 6; and structuring your code in a more organized man-
ner, thanks to the MVC pattern in chapter 7. All that modularity helps drive down the
complexity in your application designs by creating smaller components that are easier
to work on and understand. A benefit of the work you’ve accomplished so far in part 2
is that testing becomes much simpler.

8.1 JavaScript testing crash course
The essence of testing lies in learning how to isolate functionality so that it can be eas-
ily tested. This is the reason modularity is so important for attaining more testable
code, which in turn improves quality, the cornerstone of Build First. Modular, loosely
coupled code is easier to test because you have fewer things to account for, and your
tests can be contained in small units that are only concerned with one small piece of
code getting something right. In contrast, monolithic, tightly coupled code is harder
to test because more things can go wrong, many of which might be completely unre-
lated to the piece of functionality you were attempting to test.

8.1.1 Logical units in isolation

Consider the following contrived example for reference. You have a method that que-
ries an API endpoint (you’ll learn about API design in chapter 9, so hang tight), and
then crunches numbers before returning a value. Suppose you want to make sure the
data, whatever it was, was correctly multiplied by 555:

function getWorkDone () {
 return get('/api/data').then(function (res) {

What do you mean you’re not an advocate for TDD?
That’s right. I wouldn’t recommend you use TDD, so let me elaborate on that. I don’t
have anything against TDD itself, but writing tests is already a large commitment. If
you’re getting started and throw TDD into your learning process, it probably won’t work
out well for you. It definitely didn’t work for me when I was first getting into testing!
TDD can be overwhelming, and maybe you don’t write any tests because you don’t
know where to start. Or maybe you write pointless ones, testing against the imple-
mentation itself rather than testing the underlying interfaces and their expected be-
havior. Before attempting to learn TDD, I suggest that you try writing a few tests for
existing code. That way when (and if) you decide to go down the TDD route you’ll know
how your tests should be structured, what parts are important to test, and what parts
are not. More importantly, you’ll know whether writing a particular test case is neces-
sary or even helpful. That being said, if you already have experience writing unit tests,
and Test-Driven Development suits you, then I have nothing against that!

213JavaScript testing crash course
 return res.data * 555;
 });
}

In this case, you don’t care about the bits of this method that don’t have to do with the
computational part, and they get in the way of your testing. Testing becomes harder,
as you now need to deal with the Promise stuff to verify that the data gets computed
correctly. You might want to consider refactoring this into two smaller methods, one
that does computation only, and one that deals with querying the API:

function getWorkDone () {
 return get('/api/data').then(function (res) {
 return compute(res.data);
 });
}
function compute (data) {
 return data * 555;
}

This kind of separation of concerns enables reusability, because you could run the
computation in other places in your code that might need it. More importantly, it’s
much easier to test the computation in isolation now. The following piece of code is
good enough at making sure the compute method works as intended:

if (compute(3) !== 1665) {
 throw new Error('assertion failed!');
}

Things become much easier when you use a library equipped to help with testing
requirements, and I’ll teach you how to use the Tape library, which adheres to a unit
testing protocol called Test Anything Protocol1 (TAP). Other popular JavaScript test-
ing libraries include Jasmine and Mocha, but we’ll stay away from those. They involve
more complicated setups, often requiring a test harness and filling the global
namespace with global variables. We'll be using Tape, which doesn’t rely on globals or
a test harness, and makes it easy to test code regardless of whether it’s written for
Node.js or the browser.

8.1.2 Using the Test Anything Protocol (TAP)

TAP is a test protocol implemented in a variety of languages, including Node.js. There
are a few ways in which you can execute tap tests:

■ Using node to run the tests directly in your terminal
■ In a browser, compiling the tests to client-side JavaScript using Browserify
■ Remotely, using automation services such as Travis-CI, the way you did in

chapter 4

1 Visit http://testanything.org to learn more about the Test Anything Protocol.

http://testanything.org

214 CHAPTER 8 Testing JavaScript components
To get things started, you’ll look at how to use Tape in your local environment by
plainly firing up a browser. In section 8.4 you’ll learn how to automate this process
using Grunt to avoid firing up the browser on your own, and I’ll explain how to
include it in your CI workflows.

 Getting started with JavaScript unit tests that need a browser can be confusing at
first. You’ll set up a pointless unit test in Node first, and then you’ll run that in the
browser before getting to unit testing principles and advice, which you’ll find in
section 8.2.

8.1.3 Putting together our first unit test

To create your first unit test and run it in the browser, start with the compute function
from the previous examples in this chapter, placed in a CommonJS module. This
example is available as ch08/01_your-first-tape-test in the samples. You can save this
file in src/compute.js:

module.exports = function (data) {
 return data * 555;
};

In the following code you’ll find the unit test written using tape, which provides an
interface to perform basic assertions. Once you create a test, you can give it a name
and a function will provide an interface to write your test. You’ll learn more about
assertions in section 8.2. Each test case in Tape can be defined using a description and
a test method. You’ll place this file in test/compute.js:

var test = require('tape');
var compute = require('../src/compute.js');

test('compute() should multiply by 555', function (t) {
 t.equal(1665, compute(3));
 t.end();
});

Note that you have to require the compute function to test it. Tape won’t load your
source code for you. Similarly, the tape module should also be required. The API is
fairly simple and requires you to call t.end() to denote when a test has finished. Tape
is mostly concerned with assertions about your assumptions and tracking test results.
To run any tests written using tape, you merely need to run the code using Node:

node test/compute.js

Let’s see what it takes to run these tests in the browser as well.

8.1.4 Tape in the browser

Running Tape tests in the browser is mostly a matter of Browserifying your tests. You
could do this once by using the global Browserify package, or you could automate it
using Grunt. Let’s automate it. You’ll need to use grunt-browserify to do that:

npm install --save-dev grunt grunt-browserify

215JavaScript testing crash course
Once you’ve installed grunt-browserify, you need to set up a Gruntfile the way you
did throughout part 1, and configure the browserify task to compile your CommonJS
code down to something browsers can interpret seamlessly. In the case of the unit test
you’ve seen, your configuration could look like the following listing (you can find this
example under ch08/02_tape-in-the-browser).

module.exports = function (grunt) {
 grunt.initConfig({
 browserify: {
 tests: {
 files: {
 'test/build/test-bundle.js': ['test/**/*.js']
 }
 }
 }
 });
 grunt.loadNpmTasks('grunt-browserify');
};

Using the browserify:tests target, you can compile the code so it can be referenced
in an HTML file. As a last step you need to put together the HTML file. Luckily, you
won’t need to touch it once it’s put together, because the JavaScript will be taken care
of by the Browserify bundler, and you won’t need to change the script tags by hand or
anything else in your HTML, as shown in the following listing.

<!doctype html>
<html>
<head>
 <meta charset='utf-8'>
 <title>Unit Testing JavaScript with Tape</title>
</head>
<body>
 <script src='build/test-bundle.js'></script>
</body>
</html>

Running the tests will only be a matter of opening this HTML file with a browser. You’ll
come back to Grunt later in the chapter to look at automating your testing process.
Let’s talk about testing principles and how to apply them in JavaScript tests.

8.1.5 Arrange, Act, Assert

Writing unit tests is often made out to be a difficult and tedious process, but it doesn’t
have to be. If your code is written with modularity and testability in mind, it’ll be
much easier to test. Monolithic, tightly coupled code does turn testing into a compli-
cated process. That’s because tests are most effective when they can verify small com-
ponents in isolation, so you shouldn’t have to worry about dependencies. This type of

Listing 8.1 Compiling code for a browser to interpret

Listing 8.2 Compiling code to be referenced by the HTML file

216 CHAPTER 8 Testing JavaScript components
testing is referred to as unit testing. The second most common type of testing is integra-
tion testing, which involves testing that the interaction between components works as
expected, focusing on how the network of components operates. Figure 8.1 compares
both types of testing.

8.1.6 Unit testing

In contrast with integration tests, which focus on interaction, good unit tests actively dis-
regard interaction, only focusing on how a single component works in isolation. Fur-
thermore, good unit tests don’t care about a component’s implementation details; they
only focus on the component’s public API. That means good unit tests can be read as
examples of how a component is expected to work. Even though not ideal, sometimes
unit tests are the next best thing when a package’s documentation is lacking.

 Good unit tests often follow the "Arrange Act Assert" (AAA) pattern, creating fake
versions of dependencies in unit tests and spying on methods to make sure they are
invoked. The following subsections explore those concepts. Before you get to section
8.3, you’ll go through real unit testing case scenarios.

 The AAA pattern can help you to develop concise and organized unit tests. It con-
sists of building your unit tests in three stages:

■ Arrange: You create instances of everything needed by your test.
■ Act: You execute your tests and track their results.
■ Assert: You verify whether the results match the expected output.

Following these simple steps, it’s easy to find your place when skimming through a
unit test. Assertions are used to verify, for instance, the result of typeof {} matches
object. Note that when these steps can be simplified into a single, readable line, you
probably should do so.

Unit test
Tests an individual component, in isolation

Pure functions are excellent
candidates for unit testing.

Test surface is as small as possible.

Dependencies are mocked or stubbed.

Aims to test the component on its own.

Integration test
Tests the connections between different components

Browser automation is an excellent tool
for the integration testing task.

Test surface is as large as possible.

Only external resources are mocked
(such as database connection).

Aims to test the application as a whole.

Figure 8.1 Differences between unit and integration testing strategies. Note that a combination
of the two should be used. Unit tests and integration tests are not exclusive. Pure functions are
discussed in section 8.1.15.

217JavaScript testing crash course
8.1.7 Convenience over convention

Some purists will tell you to do only a single assertion per unit test. I suggest you stay
pragmatic and allow yourself to write a few assertions in the same test, as long as they
test the same specific piece of functionality. It won’t hurt if you do, because the test
harness (Tape, in your case) will tell you exactly which assertion failed in which test.
Using a single assertion per test often leads to massive code duplication and frustrat-
ing testing sessions.

8.1.8 Case study: unit testing an event emitter

Let’s write tests against the emitter method, which augments objects allowing them to
emit and listen to events that we saw back in chapter 6. That should give you a good
idea what a real unit test might look like. The following listing (available as ch08/
03_arrange-act-assert in the samples) shows the full method in all its glory. This is the
same event emitter method you implemented in section 6.4.2.

function emitter (thing) {
 var events = {};

 if (!thing) {
 thing = {};
 }

 thing.on = function (type, listener) {
 if (!events[type]) {
 events[type] = [listener];
 } else {
 events[type].push(listener);
 }
 };

 thing.emit = function (type) {
 var evt = events[type];
 if (!evt) {
 return;
 }
 var args = Array.prototype.slice.call(arguments, 1);
 for (var i = 0; i < evt.length; i++) {
 evt[i].apply(thing, args);
 }
 };

 return thing;
}

How do you test all of that? It’s pretty big! Repeat after me: test against the interface.
The rest doesn’t matter that much. You want to make sure that, given the correct
parameters, each of the public API methods does what you expect it to do. In the case
of the emitter function, the API consists of the emitter function itself, the on

Listing 8.3 Your event emitter implementation

218 CHAPTER 8 Testing JavaScript components
method, and the emit method. The API is anything that can be accessed by the con-
sumer, which is what you want to verify.

 You can think of writing good unit tests as asserting the right things. The assertions
your tests will verify should be deterministic, and they should also disregard imple-
mentation details, such as how the event listeners are stored. Private methods are typi-
cally implementation details, and you shouldn’t worry about testing them; only the
public interface matters. If you want to test private methods, you’ll have to expose
them so that they can be unit tested like any other public interface method.

8.1.9 Testing the event emitter

To get things going, let’s start with a test asserting whether calling emitter with differ-
ent arguments results in an emitter object. This is a basic test in which you’ll verify
that an object is returned with the expected properties (on and emit) on it.

var test = require('tape');
var emitter = require('../src/emitter.js');

test('emitter(thing) should always return an emitter', function (t) {
 // Act
 isEmitter(emitter());
 isEmitter(emitter({}));
 isEmitter(emitter([]));

 function isEmitter (thing) {
 // Assert
 t.ok(thing, 'should be truthy');
 t.ok(thing.on, 'should have on property');
 t.ok(thing.emit, 'should have emit property');
 }

 t.end();
});

It’s always good to have unit tests that assert the basics of how something is expected
to operate. Keep in mind that you only need to write these tests once, and they’ll
help you assert these validations anytime. Let’s write a few more basic assertions in
the following listing, making sure the returned object is indeed the same object you
provided.

test('emitter(thing) should reference the same object', function (t) {
 var data = { a: 1 }; // Arrange
 var thing = emitter(data); // Act
 t.equal(data, thing); // Assert
 t.end();
});

Listing 8.4 Your first test using TAPE

Listing 8.5 Writing basic assertions

Always define test cases
using meaningful names.

The second argument describes
the assertion that's being made.

Does it have a .on property?

Let Tape know the test has ended.

219JavaScript testing crash course
test('emitter(thing) should reference the same array', function (t) {
 var data = [1, 2]; // Arrange
 var thing = emitter(data); // Act
 t.equal(data, thing); // Assert
 t.end();
});

In the “basic JavaScript unit test” department, you’ll sometimes find tests asserting
whether something that’s supposed to be a function is indeed a function. Although
it’s true that any other test would fail if emitter wasn’t a function, redundancy is a
good thing to have when it comes to unit testing. In addition, your tests should fail at
assertions rather than while arranging or acting. If your tests fail somewhere else, it
might indicate it’s time to add more tests to assert that doesn’t happen, or maybe the
problem lies with your code.

 Testing for object types might seem trivial, but it can pay off. Even more important
is testing return value types. The first test you wrote made sure the properties were
there, but it didn’t check if they were functions. Let’s rework it, adding type checks.
These will seem like trivial changes, but you want to be explicit about the purposes of
an assertion, for clarity.

test('emitter(thing) should be a function', function (t) {
 t.ok(emitter, 'should be truthy');
 t.ok(typeof emitter === 'function', 'should be a method');
 t.end();
});

test('emitter(thing) should always return an object', function (t) {
 // Act
 isEmitter(emitter());
 isEmitter(emitter({}));
 isEmitter(emitter([]));

 function isEmitter (thing) {
 // Assert
 t.ok(thing, 'should be truthy');
 t.ok(typeof thing.on === 'function', 'should have on method');
 t.ok(typeof thing.emit === 'function', 'should have emit method');
 }

 t.end();
});

8.1.10 Testing for the .on method

Next we’ll write tests for the .on method. This time around, we’ll be content if calling
.on does not throw. In a bit, we’ll make sure that the listeners work when we test the
emit method. Note how I wrote two different tests which are almost identical, even
though they have different purposes. In testing, it’s fairly common to find duplicate
code, and it’s fine to copy and paste, although it’s not encouraged to abuse it.

Listing 8.6 Type checking in your tests

Test for function type
rather than truthy values.

220 CHAPTER 8 Testing JavaScript components

test('on(type, listener) should attach an event listener', function (t) {
 // Arrange
 var thing = emitter();

 function listener () {}

 // Assert
 t.doesNotThrow(function () {
 // Act
 thing.on('foo', listener);
 });
 t.end();
});

test('on(type, listener) should attach many event listeners to the same
event', function (t) {

 // Arrange
 var thing = emitter();

 function listener () {}

 // Assert
 t.doesNotThrow(function () {
 // Act
 thing.on('foo', listener);
 thing.on('foo', listener);
 thing.on('foo', listener);
 });
 t.end();
});

Last, you need to test the emit function. To do that, you’ll attach a few listeners, as
before, and then you’ll emit the event. Then you’ll assert that the listeners fired cor-
rectly, once for each call to .on. Notice how if you changed emit to be asynchronous
by wrapping the event handlers in a setTimeout call, this test would fail. In those
cases, you can either adapt the test to the new functionality or avoid changing the
functionality in the first place.

test('emit(type) should emit to the event listeners', function (t) {
 // Arrange
 var thing = emitter();
 var listens = 0;

 function listener () {
 listens++;
 }

 // Act
 thing.on('foo', listener);

Listing 8.7 Testing the .on function

Listing 8.8 Testing the .emit function

In this case, make sure
thing.on doesn’t throw.

Multiple calls to .on
shouldn’t throw either.

Note that steps are cleanly
separated into Arrange, Act, Assert.
Do that in your testing.

221JavaScript testing crash course
 thing.on('foo', listener);
 thing.emit('foo');

 // Assert
 t.equal(listens, 2);
 t.end();
});

Finally, let’s add one more method to make sure that emit passes any arguments to
the event listener the way we expect.

test('emit(type) should pass params to event listeners', function (t) {
 // Arrange
 var thing = emitter();
 var listens = 0;

 function listener (context, value) {
 t.equal(arguments.length, 2);
 t.equal(context, thing);
 t.equal(value, 3);
 listens++;
 }

 // Act
 thing.on('foo', listener);
 thing.on('foo', listener);
 thing.emit('foo', thing, 3);

 // Assert
 t.equal(listens, 2);
 t.end();
});

That’s it! Your event emitter implementation is fully tested. You only wrote assertions
that verify how the public API works, and you didn’t meddle with implementation
details. At this point, you could add tests that deal with unconventional usage of the
API, such as calling emit() without any arguments. Then you could decide whether
you’d want emit to throw an exception in that particular case. Think of your tests as a
formal and stricter API documentation.

 In the following section you’ll learn about creating mocks, spying on function
calls, and proxying require statements.

8.1.11 Mocks, spies, and proxies

Sometimes you want greater isolation, even though two parts of an application can’t
be decoupled any further. The application might need to query a real database, fetch
data using a service, or connect together different modules, or there may be some
other reason why you can't decouple the implementation. You can use a variety of
different tools, such as mocks, spies, and proxies, to circumvent the testing issues

Listing 8.9 Further testing on .emit

Sometimes counting how many times
a function was invoked is sufficient.

Making sure you get exactly what
you expect, but nothing more

222 CHAPTER 8 Testing JavaScript components
introduced by tight coupling. Figure 8.2 depicts the issue and the solution provided
by these stubs.

 Next up you’ll learn about mocking dependencies, which can come in handy if
you’re working with a component that has external dependencies.

8.1.12 Mocking

Mocking creates fake instances of the dependencies (such as services or other objects)
in your System Under Test (SUT). In statically typed languages, mocking often involves
access to the compiler, often referred to as Reflection. One of the advantages of Java-
Script being a dynamically-typed language is that you can create an object with a cou-
ple of properties and that’s it. Suppose you have to test the following snippet of code:

function (http, done) {
 http.get('/api/data', done);
}

In a real application, maybe that snippet accessed the network and queried an end-
point, getting back data from the application’s API. You should never need to connect
to external services to run a unit test, making this an ideal scenario for mocking. In
this case in particular, you’re making a GET request and calling back a done function
with an optional error and data in return.

 Mocking the http object using plain JavaScript, as it turns out, is easy. Note how
you’re using setTimeout to keep the method asynchronous, the way the original code
expected, and how you can conjure up any response you like to fit your test:

{
 get: function (endpoint, done) {
 setTimeout(function () {
 done(null, { data: 'dummy' });
 }, 0);
 }
}

Source code
Code used during normal execution

The foo method
is used as-is.

Test mocks
Code used to assist and isolate tests

function foo () {}

The API explored by the
module.js file is returned.

foo is replaced by a spy.
The spy logs every call and

saves every argument passed
to foo, for inspection.

Instead of loading
modules under test directly,
a special function is used.

This function is able to pass
mocks when the module
requires a dependency.

require('./module.js')

Figure 8.2 Using source code as-is versus using mocks when testing

223JavaScript testing crash course
The server-side aspect of this test, querying the real HTTP endpoint, should be handled
in server tests, which isn’t a client-side concern anymore. Another option might be test-
ing these things in integration tests, which is a topic you’ll navigate later in the chapter.
I’ll introduce Sinon.js next. Sinon is a library for creating mocks, spies, and stubs. It also
allows you to fake XHR requests, server responses, and timers. Let’s look at it.

8.1.13 Introducing Sinon.js

Sometimes it’s not enough to mock values by hand, and in those more advanced case
scenarios, using a library such as Sinon.js might come in handy. Sinon helps you easily
test setTimeout delays, dates, XHR requests, and even set up fake HTTP servers to use
in your tests. Using Sinon, it’s trivial to create functions called spies. Spies are functions
that are prepared to tell you whether they’ve been called, how many times, and what
arguments they were invoked with. As it turns out, you’ve already used a custom flavor
of spies in listing 8.9, where we had a listener function that kept track of how many
times it was called. Let’s see how using spies helps assert function calls.

8.1.14 Spying on function calls

Spies can be used whenever a function you’re testing requires function parameters,
and you can use them to easily assert whether they’ve been used and how.

 Let’s go through a simple example (found as ch08/04_spying-on-function-calls).
Here’s a pair of functions that take a callback function parameter:

var maxwell = {
 immediate: function (cb) {
 cb('foo', 'bar');
 },
 debounce: function (cb) {
 setTimeout(cb, 0);
 }
};

Sinon makes it easy to test these. Without the need to construct a custom callback, you
can ensure that immediate invoked your callback exactly once:

test('maxwell.immediate invokes a callback immediately', function (t) {
 var cb = sinon.spy();

 maxwell.immediate(cb);

 t.plan(2);
 t.ok(cb.calledOnce, 'called once');
 t.ok(cb.calledWith('foo', 'bar'), 'arguments match expectation');
});

Note how I switched from t.end to t.plan. Using t.plan(n) allows you to define
how many assertions you expect to be made during the execution of your test case.
The test will fail if it doesn’t exactly match the number of asserts. This is most useful
for asynchronous tests, where your code may or may not end up invoking a callback
where you had a few more asserts. Using t.plan verifies that the correct amount of
asserts were indeed executed.

224 CHAPTER 8 Testing JavaScript components
 Testing delayed execution is a bit trickier, but Sinon provides an easy-to-use inter-
face for that, as shown in the following listing. By calling sinon.useFakeTimers(), any
subsequent calls to setTimeout or setInterval are going to be faked. You also get a
simple tick API to manually change the clock.

test('maxwell.debounce invokes a callback after a timeout', function (t) {
 var clock = sinon.useFakeTimers();
 var cb = sinon.spy();

 maxwell.debounce(cb);

 t.plan(2);
 t.ok(cb.notCalled, 'not called before tick');
 clock.tick(0);
 t.ok(cb.called, 'called after tick');
});

Sinon.js has more tricks you can perform, such as creating fake XHR requests. The last
topic I want to discuss regarding mocking is the case where you need to create a mock
for the results provided by invoking require on any given module. Let’s check out
how that works!

8.1.15 Proxying require calls

The issue here is that sometimes modules require other modules, which in turn require
additional modules, and you don’t want all that in unit tests. Unit tests are about con-
trolling the environment, detecting the absolutely necessary pieces that are needed to
execute a test, and mocking everything else. There’s a nice npm package called
proxyquire that can help with that situation. Consider that you’d like to test the code
in the following listing (available as ch08/05_proxying-your-dependencies in the sam-
ples), in which you’d like to fetch a user from the database and then return a subset of
the model for security reasons.

var User = require('../models/User.js');

module.exports = function (id, done) {
 User.findOne({ id: id }, function (err, user) {
 if (err || !user) {
 done(err); return;
 }
 done(null, {
 name: user.name,
 email: user.email
 })
 });
};

Listing 8.10 Testing delayed execution

Listing 8.11 Using the require method

225JavaScript testing crash course
Let’s consider a small refactor for a moment. It’s always best to isolate “pure” function-
ality. A pure function is a concept that comes from functional programming, and it
describes a function whose outputs are defined solely by its inputs and nothing else.
Pure functions return the same value every time they receive the same inputs. In the
example above, your pure and reusable piece of functionality is mapping the user
model to its “safe” subset, so let’s extract that into its own function, and make your
code a little prettier and easier to follow through.

var User = require('./models/User.js');

function subset (user) {
 return {
 name: user.name,
 email: user.email
 };
}

module.exports = function (id, done) {
 User.findOne({ id: id }, function (err, user) {
 done(err, user ? subset(user) : null);
 });
};

As you can see, though, unless you expose the subset function on its own, you’re
stuck with querying the database to get a user. You could argue that the module
should get a user object, instead of merely an id, and you’re right. Sometimes, how-
ever, you have to query the database. Maybe you have a user parameter and do some-
thing with it, but you also want to ask the database about his permissions or the groups
he belongs to. In those cases, as well as in the previous case, assuming you don’t refac-
tor it any further, a good way to get around the situation is to return a fake result from
require calls.

 The good news is that using proxyquire means you don’t have to change the appli-
cation code at all. The following listing demonstrates how to use proxyquire to mock
up a required module without resorting to a database at all. Note how the mock object
you’re passing to proxyquire is a map of require paths and the results you want to
get (rather than what you’d normally get).

var proxyquire = require('proxyquire');

var user = {
 id: 123,
 name: 'Marian',
 email: 'marian@company.com'
};

Listing 8.12 Creating a pure function

Listing 8.13 Mocking up a required module

226 CHAPTER 8 Testing JavaScript components
var mapperMock = {
 './models/User.js': {
 findOne: function (query, done) {
 setTimeout(done.bind(null, null, user));
 }
 }
};

var mapper = proxyquire('../src/mapper.js', mapperMock);

Once you isolate the mapping functionality without resorting to a database connec-
tion, the test becomes trivial. You’re using the mapper function, complete with fake
database access, and asserting whether it gives back an object with the name and email
properties on it. Note that you’re using Sinon’s cb.args to figure out the arguments
when the cb spy was first called.

var test = require('tape');
var sinon = require('sinon');

test('user mapper returns a subset of user', function (t) {
 // Arrange
 var clock = sinon.useFakeTimers();
 var cb = sinon.spy();

 // Act
 mapper(123, cb);
 clock.tick(0);
 var result = cb.args[0][1];
 var actual = Object.keys(result).sort();
 var expected = ['name', 'email'].sort();

 // Assert
 t.plan(2);
 t.ok(cb.calledOnce);
 t.deepEqual(actual, expected);
});

In the following section I’ll go a bit deeper into client-side testing, talking about fake
XHR (XMLHttpRequest). You’ll also get a feel for DOM interaction testing before you
look at other forms of automation and a mention of non-unit testing flavors.

8.2 Testing in the browser
Testing client-side code is typically a hassle because of both AJAX requests and DOM
interaction. That, often paired with a complete lack of modularity and code organiza-
tion, spells chaos for the client-side JavaScript test developer. That being said, in chap-
ter 5 you resolved your browser modularity concerns by settling for Browserify.
Browserify allows you to use self-contained CommonJS modules even in client-side
code but at the cost of an extra build step.

Listing 8.14 Creating spies with Sinon

This call will fire any setTimeout functions
that had a delay of 0 milliseconds.

227Testing in the browser
 You also resolved code organization issues by resorting to an MVC framework on the
client side, to keep your concerns properly separated. In chapter 9, you’ll learn about
REST API design, which you’ll apply to future web applications you write, getting rid of
the endpoint chaos that usually characterizes front-end application development.

 In the next section, you’ll learn how to write tests for your client-side code by mock-
ing XHR requests and isolating DOM interaction so that you can write tests against it.
Let’s start with the easy part: mocking up XHR requests and server responses.

8.2.1 Faking XHR and server communication

Similarly to the way you created fake require results with proxyquire, you can use
Sinon to mock any XHR requests you’d like, without modifying your source code. Use
Sinon to simulate server responses and snoop request data. Those are the only rea-
sons you’ll need to deal with XHR. Figure 8.3 shows how these mocks can help you to
isolate and test code that would normally depend on an external resource.

 To see how that might look in code, here’s a snippet of client-side JavaScript that
makes an HTTP request and gives you the response text (see sample ch08/06_fake-
xhr-requests). I’m using the superagent module to make the HTTP requests, because
it works seamlessly in the server or the browser. Perfect for Browserifying action!

module.exports = function (done) {
 require('superagent')
 .get('https://api.github.com/zen')
 .end(cb);

 function cb (err, res) {
 done(null, res.text);
 }
};

In this case you don’t want to write tests for superagent itself. You don’t want to test
the API call, either. You probably want to make sure that an AJAX call is made, though.

Native XMLHttpRequest
Code used during normal execution

The native
implementation sends

information over the wire,
spending time making network

connections, and it also
collects a response.

Fake XHR
Code used to assist and isolate tests

new XMLHttpRequest()

Sinon replaces the native
object with a custom

implementation. This allows
you to intercept XHR calls,

provide fake responses,
and test without using a

network connection.

Figure 8.3 Native XMLHttpRequest compared with fake XHR mocks during tests

228 CHAPTER 8 Testing JavaScript components
The method is supposed to call you back with the response text, so you should test for
that as well, as shown in the following listing.

var test = require('tape');
var sinon = require('sinon');

test('qotd service should make an XHR call', function (t) {
 var quote = require('../src/qotdService.js');
 var cb = sinon.spy();

 quote(cb);

 t.plan(2);

 setTimeout(function () {
 t.ok(cb.called);
 t.ok(cb.calledWith(null, sinon.match.string));
 }, 2000);
});

That’s fine for testing the outcome, but you can’t afford to have tests depend on net-
work conditions or to spend that long waiting to make assertions. The right way to test
your method is to simulate the responses. Sinon allows you to do this by creating a
fake server, which provides two-fold value. It captures real requests made by your code
and transforms them into testable objects it controls. It also allows you to create
responses for those requests within your tests, simulating an operational server. To get
that functionality, create the fake server using sinon.fakeServer.create() before
invoking the method under test. Then, once the method that’s supposed to create an
AJAX request is invoked, you can respond to the request, setting your response’s status
code, headers, and body. Let’s update your test method to reflect those changes.

test('qotd service should make an XHR call', function (t) {
 var quote = require('../src/qotdService.js');
 var cb = sinon.spy();

 var server = sinon.fakeServer.create();
 var headers = { 'Content-Type': 'text/html' };

 quote(cb);

 t.plan(4);
 t.equals(server.requests.length, 1);
 t.ok(cb.notCalled);

 server.requests[0].respond(200, headers, 'The cake is a lie.');

 t.ok(cb.called);
 t.ok(cb.calledWith(null, 'The cake is a lie.'));
});

Listing 8.15 Creating a method that sends response text

Listing 8.16 Testing the “Quote of the Day” service

229Testing in the browser
As you can see, you verified that a single request was made and that you got called
back with exactly the same value as the response text.

 The last piece of browser testing to dabble in before heading over to the automa-
tion department is DOM interaction testing. Much like testing AJAX calls, DOM testing
is complicated because you’re interacting with something that’s across a gap. Mind
the gap.

8.2.2 Case study: testing DOM interaction

Client-side development and testing are funny in that way. You have three layers:
HTML, JavaScript, and CSS, all working together to serve a sophisticated concoction of
bits. Yet, as any good developer will, you must keep the concerns separated across the
three technologies, trying not to couple them too tightly together. CSS is easy to leave
untied. You create classes in CSS and assign them to DOM elements by giving them
their matching class attributes. Your CSS starts falling apart when it makes assump-
tions about the structure of your HTML. The best pieces of CSS are those that don’t
depend on the HTML being structured exactly in a particular way, those that aren’t
tightly coupled to the HTML.

 JavaScript and HTML are similar to CSS and HTML in that your HTML shouldn’t
make any assumptions about your JavaScript. HTML should work fairly well even with
JavaScript turned off; this is called progressive enhancement and it helps deliver pri-
mary content to your users faster, resulting in a better experience overall. The prob-
lem is that your JavaScript code must make assumptions about your HTML. Finding
the inner text for a DOM node, attaching event listeners, reading data attributes, set-
ting attributes, or any other form of DOM manipulation, leads with the assumption
that a DOM node is there.

 Let’s get to your imaginary application where events come to party and decimal
numbers get rounded.

SETTING UP THE HTML

In this application, you
have an input where
you’re meant to enter
decimal numbers and
then click on a button to
get the rounded version
of that same number
back. Each result is writ-
ten into a list that’s dis-
played on the page.
There’s also another but-
ton to clear the result list.
Figure 8.4 depicts how the
application should look. Figure 8.4 The application you’ll be building in this case study

230 CHAPTER 8 Testing JavaScript components
We’ll start by going through the application, and explain the choices made along the
way. Then, I’ll show you what you should be testing in this small application, and how
you can get test coverage on those factors without worrying about implementation
details.

 Consider the following piece of HTML. Note that you’re not writing any JavaScript
in the DOM directly. Keeping your concerns separated is extremely important to test-
ability:

<h1>Event Bar</h1>
<p>Enter a number and see it rounded!</p>
<input class='square' placeholder='Decimals only please.' />
<button class='barman'>Another Round!</button>
<button class='clear'>Clear Results</button>
<div class='result'>
 <h4>Results come here to cool off!</h4>
</div>

Next you’ll learn how to implement JavaScript functionality.

IMPLEMENTING THE JAVASCRIPT FUNCTIONALITY

Next we’ll discuss a small JavaScript application that interacts with the HTML shown in
the previous example, using the JavaScript DOM API. To begin, you’ll use query-
Selector, a (relatively) little-known but powerful native browser API that allows you to
find DOM nodes in a similar fashion to how jQuery works, using CSS selectors. query-
Selector is supported in all major browsers, going as far back as Internet Explorer 8.
The API is present on the document root as well as on any DOM nodes, allowing you to
limit the search to their children. If you want to look for many elements, instead of
the first one, you can use querySelectorAll instead.

var barman = document.querySelector('.barman');
var square = document.querySelector('.square');
var result = document.querySelector('.result');
var clear = document.querySelector('.clear');

NOTE I never use the id attribute in HTML. It causes all sorts of problems,
such as CSS selector precedence, leading to developers using !important style
rules and the inability to reuse the value, because HTML id attributes are
meant to be unique.

Let’s implement the code in charge of figuring out how your input did. If it’s not a
number, then that’s a mistake. If it’s an integer, that’s a problem too. Otherwise, you’ll
return the rounded value:

function rounding (number, done) {
 if (isNaN(number)) {
 done(new Error('Do you even know what a number is?'));
 } else if (number === Math.round(number)) {
 done(new Error('You are such a unit. Integers cannot be rounded!'));
 } else {
 done(null, Math.round(number));
 }
}

231Testing in the browser
The done callback should create a new paragraph in your result list and fill it with the
error message, if any, or the rounded value, if present. You’ll also set a different CSS
class if you see an error than when you’re successful, to help a designer style the page
accordingly without you making additional changes to your JavaScript, as shown in the
following listing.

function report (err, value) {
 var p = document.createElement('p');

 if (err) {
 p.className = 'error';
 p.innerText = err.message;
 } else {
 p.className = 'rounded';
 p.innerText = 'Rounded to ' + value + '. Another round?';
 }
 result.appendChild(p);
}

The last piece to the puzzle is binding the click event and parsing the input before
handing it off to the two methods you put together in listing 8.17. The following code
snippet will do:

barman.addEventListener(click, round);

function round () {
 var number = parseFloat(square.value);
 rounding(number, report);
}

Wiring up the Reset button is even easier. Your listener should remove every para-
graph created by the barman; that’s as straightforward as it gets! The following listing
shows how you might do it.

clear.addEventListener(click, reset);

function reset () {
 var all = result.querySelectorAll('.result p');
 var i = all.length;

 while (i--) {
 result.removeChild(all[i]);
 }
}

That’s it; your application is fully operational. How can you make sure future refactor-
ings don’t break existing code? You need to identify tests that ensure your code works
as intended and then write those tests.

Listing 8.17 Using the done callback

Listing 8.18 Wiring a Reset button

232 CHAPTER 8 Testing JavaScript components
IDENTIFYING THE TEST CASES

First off, let me go on a tangent to mention that you need to completely disregard the
HTML at the beginning of this case study. You shouldn’t write any HTML in your tests.
If you need a DOM, you should build it using JavaScript inside your tests. As you’ll see
when you implement the tests, this can be even easier than writing HTML. Separating
concerns is one of the most important aspects of unit testing.

 Next, you should try and identify your application concerns and differentiate them
from implementation details. For the sake of this experiment, consider everything you
wrote previously to be implementation details, because your application doesn’t pro-
vide an API or even build a public-facing object of any sort. When everything in the
implementation is an implementation detail, you can still unit test, but you need to
test against what the application is supposed to do, as opposed to what each method is
supposed to do.

 The test cases are supposed to assert that the statements you can find in the appli-
cation definition presented previously, quoted here, hold true when checked against
its implementation.

APPLICATION DEFINITION In this application you have an input where you
enter decimal numbers and then click on a button to get the rounded version
of that same number back. Each result is written into a list that’s displayed on
the page. There’s also another button to clear the result list.

Several test cases are noted in the following list. These were derived from the quoted
definition and other logic constraints imposed in the implementation (which you’d
like to turn into part of the definition). Keep in mind you could prepare any test cases
you want, as long as they satisfy the definition. These are the ones I designed:

■ Clicking barman without input should result in an error message.
■ Clicking barman with an integer should result in an error message.
■ Clicking barman with a number should result in a rounded number.
■ Clicking barman twice, with two values should produce two results.
■ Clicking clear when the list is empty does not throw.
■ Clicking clear removes any results in the list.

Let’s get to the testing. I mentioned earlier that you’d create the DOM in code in every
test. You’ll do that by creating a Setup task, called before every test, and a Teardown
task, called after every test. Setup will create the elements. Teardown will remove
them. This gives every test a clean slate even after another test has run.

SETUP AND TEARDOWN

Most JavaScript testing frameworks, for baffling reasons, include globals in your test
program. For instance, if you want to run a task before each test when using the
Mocha test framework (Buster.js and Jasmine also do this), you’d pass a callback func-
tion to the beforeEach global method. In fact, test cases should be described with
other globals, such as describe and it, as shown in the following listing.

233Testing in the browser

function setup () {
 // prepare something
}

describe('foo()', function () {
 beforeEach(setup);

 it('should not throw', function () {
 assert.doesNotThrow(function () {
 foo();
 });
 });
});

This is terrible! Indiscriminate use of globals, even in tests, shouldn’t be the norm.
Luckily tape doesn’t submit to this nonsense, and it’s still easy to run something before
each test. The following listing shows the same piece of code, using tape instead.

var test = require('tape');

function testCase (name, cb) {
 var t = test(name, cb);
 t.once('prerun', setup);
}

function setup () {
 // prepare something
}

testCase('foo() should not throw', function (t) {
 assert.doesNotThrow(function () {
 foo();
 });
});

Granted, it looks more verbose, but it doesn’t pollute the global namespace, breaking
one of the oldest conventions. In tape, tests emit events, such as prerun, at different
points in the test run. To set up and tear down our tests, you’ll need to create and use
a testCase method. The name is irrelevant, but I find testCase applies well in this
situation:

function testCase (name, cb) {
 var t = test(name, cb);
 t.once('prerun', setup);
 t.once('end', teardown);
}

Now that you know how to run these methods for every test, it’s time to code them!

Listing 8.19 Using describe to describe test cases

Listing 8.20 Using tape to describe test cases

234 CHAPTER 8 Testing JavaScript components
PREPARING THE TEST HARNESS

In the setup method, you need to create each DOM element you’ll need in the tests
and set any default values made available through the HTML. Note that testing the
HTML itself isn’t part of these tests, which is why you completely disregard it. Your con-
cern is that, assuming the HTML is what you expect, the application will run success-
fully. Testing the HTML is a concern of integration testing.

 The setup method is found in the following listing. The bar module is your appli-
cation’s code, wrapped in a function so you can execute it whenever you want. In this
case, you need to run the application before every test. That will attach event listeners
to your freshly baked DOM elements.

var bar = require('../src/event-bar.js');

function setup () {
 function add (type, className) {
 var element = document.createElement(type);
 element.className = className;
 document.body.appendChild(element);
 }
 add('input', 'square');
 add('div', 'barman');
 add('div', 'result');
 add('div', 'clear');
 bar();
}

The teardown method is even easier, because you give it a few selectors and iterate
through them, removing the elements created during setup:

function teardown () {
 var selectors = ['.barman', '.square', '.result', '.clear'];
 selectors.forEach(function (selector) {
 var element = document.querySelector(selector);
 element.parentNode.removeChild(element);
 });
}

Woo-hoo! Onto the tests.

CODING YOUR TEST CASES

As long as you keep your concerns cleanly separated between Arrange, Act, and
Assert, you shouldn’t have any issues writing or reading your tests. In the first one you
get the barman element, click it, and get any results. You verify there’s one result.
Then you assert that the CSS class and text in that result are correct, as shown in the
following listing.

testCase('barman without input should show an error', function (t) {
 // Arrange
 var barman = document.querySelector('.barman');

Listing 8.21 Using the setup method

Listing 8.22 Asserting the CSS class and text are correct

235Testing in the browser
 var result;

 // Act
 barman.click();
 result = document.querySelectorAll('.result p');

 // Assert
 t.plan(4);
 t.ok(barman);
 t.equal(result.length, 1);
 t.equal(result[0].className, 'error');
 t.equal(result[0].innerText, 'Do you even know what a number is?');
});

The next test also does error checking. Making sure your error checking works as
expected is as important as making sure the happy path does indeed work. In the fol-
lowing listing, you’re also setting a value in the input, before the click.

testCase('barman with an int should show an error', function (t) {
 // Arrange
 var barman = document.querySelector('.barman');
 var square = document.querySelector('.square');
 var result;

 // Act
 square.value = '2';
 barman.click();
 result = document.querySelectorAll('.result p');

 // Assert
 t.plan(4);
 t.ok(barman);
 t.equal(result.length, 1);
 t.equal(result[0].className, 'error');
 t.equal(result[0].innerText, 'Integers cannot be rounded!');
});

By now you should start to see the pattern. See how easy it is to identify what each test
does when they follow the AAA convention? This next one, shown in the following list-
ing, verifies that the happy path works as intended. It sets the input to a decimal value
and clicks on the button, and then it checks that the result was a rounded number.

testCase('numbers should be rounded', function (t) {
 // Arrange
 var barman = document.querySelector('.barman');
 var square = document.querySelector('.square');
 var value = 2.4;
 var result;

 // Act
 square.value = value.toString();

Listing 8.23 Error checking your code

Listing 8.24 Verifying the path works

The complete text for
the assertion is “You are
such a unit. Integers
cannot be rounded!”

236 CHAPTER 8 Testing JavaScript components
 barman.click();
 result = document.querySelectorAll('.result p');

 // Assert
 t.plan(4);
 t.ok(barman);
 t.equal(result.length, 1);
 t.equal(result[0].className, 'rounded');
 t.equal(result[0].innerText, 'Rounded to ' + Math.round(value));
});

It’s certainly good to write tests that interact with your code the way you expect
humans to interact with it. Sometimes humans do the unexpected, and that should be
tested for as well.

TESTING POSSIBLE OUTCOMES

We’re wired in a certain way, where we believe in three possible outcomes: something
either never works, works once, or it always works. I often joke that only three num-
bers exist: 0, 1, and infinite. As shown in the following listing, asserting that making
two clicks works as intended should be enough. You can always go back and add more
tests.

testCase('two inputs should produce two results', function (t)
 // Arrange
 var barman = document.querySelector('.barman');
 var square = document.querySelector('.square');
 var value = 2.4;
 var result;

 // Act
 square.value = value.toString();
 barman.click();
 square.value = '3';
 barman.click();
 result = document.querySelectorAll('.result p');

 // Assert
 t.plan(6);
 t.ok(barman);
 t.equal(result.length, 2);
 t.equal(result[0].className, 'rounded');
 t.equal(result[0].innerText, 'Rounded to ' + Math.round(value));
 t.equal(result[1].className, 'error');
 t.equal(result[1].innerText, 'Integers cannot be rounded!');
});

When developing code, you might find that your code is throwing errors, wearing
down your productivity. Simple tests such as the one in the following listing that
asserts a method call does not throw are helpful in these types of cases. The next sec-
tion talks about automated testing, which definitely helps as well.

Listing 8.25 Making sure two clicks works

The complete text
for the assertion is
“Rounded to %s.
Another round?”

The complete text for
the assertion is “You are
such a unit. Integers
cannot be rounded!”

237Testing in the browser

testCase('clearing empty list does not throw', function (t) {
 // Arrange
 var clear = document.querySelector('.clear');

 // Assert
 t.plan(2);
 t.ok(clear);
 t.doesNotThrow(function () {
 clear.click();
 });
});

The last test in your embarrassingly small suite is close to an integration test. It clicks
repeatedly, and then it asserts that clicking the Clear button does indeed remove the
accumulated results.

testCase('clicking clear removes any results in the list', function (t) {
 // Arrange
 var barman = document.querySelector('.barman');
 var square = document.querySelector('.square');
 var clear = document.querySelector('.clear');
 var result;
 var resultCleared;

 // Act
 square.value = '3.4';
 barman.click();
 square.value = '3';
 barman.click();
 square.value = '';
 barman.click();
 result = document.querySelectorAll('.result p');
 clear.click();
 resultCleared = document.querySelectorAll('.result p');

 // Assert
 t.plan(2);
 t.equal(result.length, 3);
 t.equal(resultCleared.length, 0);
});

The most value in your tests always comes when it’s time to refactor. Suppose you
changed the implementation of your Event Bar program. You run the tests again. If
they succeed, all is good, unless you find a bug testing by hand, in which case you add
more tests and fix the issue. If they fail, two possibilities exist. The tests now may be
outdated. For example, the Clear button may have been changed to “remove only the
oldest result” when clicked. In that case you should update the tests to reflect those
changes. The other reason why the tests may fail is because of an oversight in your

Listing 8.26 Asserting a method call does not throw errors

Listing 8.27 Verifying the Clear button works

238 CHAPTER 8 Testing JavaScript components
changes, which would break functionality. The fact that these tests are forever repeat-
able, at no extra cost, is what makes them so valuable.

 You can check out the fully working example, with all the code I’ve shown you, in
the accompanying code samples, as ch08/07_dom-interaction-testing. Next up we’ll
go back to the case study we developed during chapter 7 and add unit tests to it.

8.3 Case study: unit testing the MVC shopping list
In chapter 7 we reached quite a few milestones in developing an MVC shopping list
application, and in this section we’ll unit test one of the iterations of that application.
Concretely, you’ll pair with me in unit testing the application at the end of section 7.4,
right before we added Rendr to the solution in section 7.5. You can check out the
source code for that application at ch07/10_the-road-show in the samples. Its unit-
tested counterpart can be found under ch08/07b_testability-boulevard.

 The Road Show was a small-sized application, yet large enough to show how you
could slowly add tests to an application and end up having a well-tested application.
Taking this gradual approach to testing would have been much harder if we hadn't
put effort into modularizing our application, but we learned to do that in chapter 5
and applied those concepts when putting together the application in chapter 7. This
section guides us through writing tests for the view router, and model validation. You
are then free to explore adding test coverage for the view controllers.

8.3.1 Testing the view router

The first step you always need to take before any testing can begin is configuring the
environment so tests can run. In this case that means you’ll copy the application
(from ch07/10_the-road-show) to be used as a starting point, and then add the test
harness built in this chapter for running Tape in the browser (the ch08/02_tape-in-
the-browser sample) on top of that.

 Once the initial setup is put together (ch08/07b_testability-boulevard in the sam-
ples), you can start fleshing out your tests using Tape. We’ll start with the router
(which was shown in listing 7.18 in chapter 7) because that’s the simplest module we
want to test. For reference, the following listing is how the module looks at the
moment.

var Backbone = require('backbone');
var ListView = require('../views/list.js');
var AddItemView = require('../views/addItem.js');

module.exports = Backbone.Router.extend({
 routes: {
 '': 'root',
 'items': 'listItems',
 'items/add': 'addItem'
 },

Listing 8.28 Testing the module

239Case study: unit testing the MVC shopping list

.

 root: function () {
 this.navigate('items', { trigger: true });
 },
 listItems: function () {
 new ListView();
 },
 addItem: function () {
 new AddItemView();
 }
});

We want to assert a few things in testing this module. You want to know that

■ There are three routes.
■ Their associated route handlers do in fact exist.
■ The root route handler properly redirects to the listItems action.
■ View routes would render the correct view in each case.

You may already be drooling over the possibilities, considering creating mocks for the
views, or maybe using proxyquire to stub those modules altogether. To get started,
we’ll assert that three routes are in fact registered, and that their route handlers exist
on the router.

 To achieve this, the following listing uses proxyquireify (a flavor of proxyquire
that works on the client side) combined with sinon and tape to put together the
routes.js test module.

var proxyquire = require('proxyquireify')(require);
var sinon = require('sinon');
var ListView;
var AddItemView;

function getStubbedRouter () {
 ListView = sinon.spy();
 AddItemView = sinon.spy();
 var ViewRouter = proxyquire('../app/routers/viewRouter.js', {
 '../views/list.js': ListView,
 '../views/addItem.js': AddItemView
 });
 return ViewRouter;
}

test('there are three routes and route handlers', function (t) {
 // Arrange
 var ViewRouter = getStubbedRouter();

 // Act
 var router = new ViewRouter();

 // Assert
 var routes = Object.keys(router.routes);
 t.equal(routes.length, 3);

Listing 8.29 The first View Router tests

Setup is involved in making
proxyquire work in the browser

This method uses a combination of sinon and proxyquire to
stub out the view modules, because we’re only interested
in testing the view router, and not the views themselves.

We use the relative
path from the
router to each view.

Get a stubbed instance
of the view router.

Assert there are exactly
three route handlers.

240 CHAPTER 8 Testing JavaScript components

This is
interfa
Brows
 routes.forEach(exists);
 t.end();

 function exists (route) {
 var handlerName = router.routes[route];
 var handler = router[handlerName];
 t.ok(handler, util.format('route handler for "%s" exists', route));
 }
});

Once the test file is ready, you can verify that the tests pass by going through the same
process as in section 8.4: opening up a browser with the compiled test bundle and
checking the developer console for any error messages.

TEST RUNNER HTML FILE

First off, you’ll need a test runner HTML file like the following one. There’s nothing
special about it, except that it loads the built test bundle:

<!doctype html>
<html>
<head>
 <meta charset='utf-8'>
 <title>Unit Testing JavaScript with Tape</title>
</head>
<body>
 <script src='build/test-bundle.js'></script>
</body>
</html>

Once you’ve created both the routes.js test module and the runner.html test run-
ner, you should create a Grunt task to build the bundle.

CREATE A GRUNT TASK TO BUILD THE BUNDLE

Because you’ve learned how to write your own tasks, and as a way of reinforcing that
knowledge, you’ll create your own task to compile the Browserify bundle! To make
that work, you should include all of the following listing in a Gruntfile. It uses the
browserify package directly, without the grunt-browserify plugin intermediary.
Sometimes using a package directly instead of through a plugin can offer greater flex-
ibility in what your tasks can do.

var fs = require('fs');
var glob = require('glob');
var mkdirp = require('mkdirp');
var browserify = require('browserify');
var proxyquire = require('proxyquireify');

function browserifyTests () {
 var done = this.async();
 var dir = __dirname + '/test/build';

 mkdirp.sync(dir);
 var bundle = browserify()

Listing 8.30 Creating a custom Browserify task

Ensure each route
handler exists.

Route handler property name for the
current route. For example, listItems.

This is an asynchronous task;
call done when it ends.

Create a directory structure so the task
works even if the directories don’t exist yet.

 the public
ce to the
erify API.

241Case study: unit testing the MVC shopping list

Globbi
all the
files. C
have ro

Map th
globbe
absolu

le.
Pipe th
bundle

d,
 .transform('brfs')
 .plugin(proxyquire.plugin);

 glob
 .sync('./test/*.js')
 .map(resolve)
 .reduce(include, bundle)
 .bundle()
 .pipe(fs.createWriteStream(dir + '/test-bundle.js'))
 .on('done', done);

 function include (bundle, file) {
 bundle.require(file, { entry: true });
 return bundle;
 }
}

function resolve (file) {
 return require.resolve(file);
}

grunt.registerTask('browserify_tests', browserifyTests);

SEE TEST EXECUTION

When everything is set up, you can run the following command and see the tests
being executed in your browser:

grunt browserify_tests
open test/runner.html

A browser window should pop up. If we open the developer console, we’d see the out-
put shown in figure 8.5.

 There are a few more routing tests to be had. Next up, you’ll make sure that each
route handler does what it’s meant to, whether it’s meant to redirect users to a differ-
ent route or render a particular view.

The proxyquireify plugin allows
us to intercept require calls and
stub implementations.

ng gives you
test entry
urrently you
utes.js.

e relative
d paths to
te paths.

Call bundle.require for each
test module, while returning
the bundle to enable chaining.

Create the browser-
enabled JavaScript bund

at
 into a file.

When the data transfer is complete
tell Grunt the task has finished.

Using bundle.require allows external
access to the module. The entry flag
adds the module as an entry point.

Figure 8.5 Developer Tools
showing the results for the
tests we've provided

The brfs transform is used when
compiling Mustache view templates
into their JavaScript counterparts.

242 CHAPTER 8 Testing JavaScript components

Use a sp
real .na
method
A FEW MORE TESTS

The following listing contains the code for the remaining tests. You can add it to the
end of the routes.js test suite.

test('route # redirects to the #items route', function (t) {
 // Arrange
 var ViewRouter = getStubbedRouter();

 // Act
 var router = new ViewRouter();
 var handler = getRouteHandler(router, '');
 router.navigate = sinon.spy(); #C
 handler();

 // Assert
 t.ok(router.navigate.calledOnce, 'called router.navigate');
 t.ok(router.navigate.calledWith('items', { trigger: true }), 'called

router.navigate with proper arguments');
 t.end();
});

test('route #items renders ListView', function (t) {
 // Arrange
 var ViewRouter = getStubbedRouter();

 // Act
 var router = new ViewRouter();
 var handler = getRouteHandler(router, 'items');
 handler();

 // Assert
 t.ok(ListView.calledOnce, 'called ListView once');
 t.ok(ListView.calledWithNew(), 'called new ListView()');
 t.end();
});

test('route #items/add renders AddItemView', function (t) {
 // Arrange
 var ViewRouter = getStubbedRouter();

 // Act
 var router = new ViewRouter();
 var handler = getRouteHandler(router, 'items/add');
 handler();

 // Assert
 t.ok(AddItemView.calledOnce, 'called AddItemView once');
 t.ok(AddItemView.calledWithNew(), 'called new AddItemView()');
 t.end();
});

Listing 8.31 Testing route handlers individually

Every test begins by getting a
mocked version of the view router.

The getRouteHandler method returns
the route handler for a view route.

y so the
vigate
 isn’t used.

Ensure that the route
handler calls .navigate
and redirects the user
to the correct route.

Ensure that the route
handler invokes the
constructor for ListView.

Ensure that the
route handler
invokes the
constructor for
AddItemView.

243Case study: unit testing the MVC shopping list

Loop th
the rou
the pro
is foun
function getRouteHandler (router, route) {
 var routeHandler, key, i;
 var routes = Object.keys(router.routes);
 for (i = 0; i < routes.length; i++) {
 key = routes[i];
 if (route === key) {
 routeHandler = router.routes[key];
 return router[routeHandler].bind(router);
 }
 }
}

Once all of the tests are in your
routes.js file, you can run the
Grunt task again and reload the
browser. Figure 8.6 contains the
results of executing the new test
suite.

 While our tests for the
router are minimal, in that they
don’t assert much, we’re at least
ensuring that the routes exist
and that their route handlers do
what they’re expected to. Rout-
ing in an application is typically
a convergence point where con-
figuration is plumbed together,
and tests help ensure that the
correct modules are used.

8.3.2 Testing validation on a view model

The application also needs to test model validation with a few different inputs, making
sure that a model is invalid under certain circumstances, and valid when every valida-
tion condition is met. For reference, code for the Shopping Item module is included
in the following listing.

var Backbone = require('backbone');

module.exports = Backbone.Model.extend({
 addToOrder: function (quantity) {
 this.set('quantity', this.get('quantity') + quantity, {
 validate: true
 });
 },
 validate: function (attrs) {
 if (!attrs.name) {

Listing 8.32 Testing validation

Get the route patterns
registered with this router.

rough all
tes until
vided route
d.

Return the route handler
for the provided route,
bound to the router so
“this” is properly assigned.

Figure 8.6 Reveals the results of our modest test suite and
its ten assertions

244 CHAPTER 8 Testing JavaScript components

Each t
consis
descri
model
expect
valida

Create
Shoppi
with th
for this

Nothing
stoppin
from w
traditio
as well
 return 'Please enter the name of the item.';
 }
 if (typeof attrs.quantity !== 'number' || isNaN(attrs.quantity)) {
 return 'The quantity must be numeric!';
 }
 if (attrs.quantity < 1) {
 return 'You should keep your groceries to yourself.';
 }
 }
});

Validation brings us to an interesting use case for JavaScript when it comes to testing.
Given that we want to set up a test for each possible validation scenario, we could set
up a list of test cases in an array, and then create a single test for each test case.

 The following listing shows one possible way to stay DRY in our tests by using a test
case factory and a battery of test cases. I've thrown in a test that's not part of the test
cases array for contrast.

var test = require('tape');
var ShoppingItem = require('../app/models/shoppingItem.js');
var cases = [
 ['must be constructed with a name', {}],
 ['must be constructed with a quantity', { name: 'Chocolate' }],
 ['cannot have NaN quantity', { name: 'Chocolate', quantity: NaN }],
 ['cannot have negative quantity', { name: 'Chocolate', quantity: -1 }],
 ['cannot have zero quantity', { name: 'Chocolate', quantity: 0 }],
 ['is valid when both a name and a positive quantity are provided', {
 name: 'Chocolate', quantity: 1
 }, true]
];

cases.forEach(testCase);

function testCase (c) {
 test('ShoppingItem ' + c[0], function (t) {
 // Arrange
 var expectation = !c[2]; // t.true or t.false
 var expectationText = ' is ' + (expectation ? 'invalid' : 'valid');

 // Act
 var item = new ShoppingItem(c[1], { validate: true });

 // Assert
 t[expectation](item.validationError, JSON.stringify(c[1]) +

expectationText);
 t.end();
 });
}

test('consumer can increase quantity of a shoppingItem', function (t) {

Listing 8.33 Model validation test case battery

The model doesn’t depend on any modules other
than Backbone. We don’t need proxyquire here.

est case
ts of a
ption, a
, and the
ed
tion result.

The testCase factory is
executed for every test case.

Tape’s test method is called every
time, creating individual tests.

 a
ngItem
e model
 test case.

 Test whether validation passed
and matches our expectations.

g you
riting
nal tests

!

245Automating Tape tests
 // Arrange
 var item = new ShoppingItem({
 name: 'Chocolate', quantity: 1
 }, { validate: true });
 // Act
 item.addToOrder(4);
 // Assert
 t.equal(item.validationError, null);
 t.equal(item.get('quantity'), 5, 'four items got added to the order');
 t.end();
});

Imagine if you had to write each test case as an individual test: much copy-pasting
would ensue, breaking the DRY principle.

 Following the practices we’ve discussed in this chapter, you could write tests for the
views as well. Good test cases could be

■ Making sure the template assigned to the view is the one intended for that view
■ Checking that event handlers are declared in the events property
■ Ensuring those event handlers do what they’re expected to

You could use sinon to mock the different properties in the view before invoking each
method under test. I’ll leave those test cases as an exercise for you.

 When you finish writing your tests for the view controllers, it’ll be time to shift your
attention toward more automation. This time, you’ll automate Tape tests using Grunt,
and you’ll also learn how to run these tests continuously on a remote integration server.

8.4 Automating Tape tests
You automated the Browserify process using Grunt in section 8.1.4. How can you add
the tape tests to your Grunt builds? Running the tests on Node is significantly easier
than executing them on the browser. As you learned earlier, you could run them on
Node by providing the node CLI with the test file path:

node test/something.js

Automating the process shown in the previous code by using the grunt-tape plugin
couldn’t be easier. The following code snippet (found as ch08/08_grunt-tape-node in
the samples) is all you need in your Gruntfile to run the tape tests in Grunt. Note that
you don’t have to run Browserify because, in this case, the tests will run in Node:

module.exports = function (grunt) {
 grunt.initConfig({
 tape: {
 files: ['test/something.js']
 }
 });
 grunt.loadNpmTasks('grunt-tape');
 grunt.registerTask('test', ['tape']);
};

That was fast. How about in the browser?

Add a few items to the order and later
verify that the quantity gets updated.

246 CHAPTER 8 Testing JavaScript components
8.4.1 Automating Tape tests for the browser

Running tape tests on browsers from your command line is also fairly easy. You can
use testling to do it. Testling (also known as substack) is a tool written by James Hal-
liday, a tremendously prolific Node contributor, who’s also the author of Tape, and a
modularity fanatic. There wasn’t a readily available grunt-testling package in exis-
tence, but I decided not to disappoint. I created grunt-testling so that you could
run Testling from Grunt. The grunt-testling package doesn’t require any Grunt
configuration. But you need to configure testling itself. Testling is configured by
placing a 'testling' property in your package.json and telling it where the test files
are. The following listing (found as ch08/09_grunt-tape-browser) is a sample pack-
age.json to do that.

{
 "name": "buildfirst",
 "version": "0.1.0",
 "author": "Nicolas Bevacqua <buildfirst@bevacqua.io>",
 "homepage": "https://github.com/bevacqua/buildfirst",
 "repository": "git://github.com/bevacqua/buildfirst.git",
 "devDependencies": {
 "grunt": "^0.4.4",
 "grunt-contrib-clean": "^0.5.0",
 "grunt-testling": "^1.0.0",
 "tape": "~2.10.2",
 "testling": "^1.6.1"
 },
 "testling": {
 "files": "test/*.js"
 }
}

Once you’ve configured testling, installed grunt-testling, and added it to your
Gruntfile, you should be all set!

module.exports = function (grunt) {
 grunt.initConfig({});
 grunt.loadNpmTasks('grunt-testling');
 grunt.registerTask('test', ['testling']);

};

You can now run the tests in a
browser entering the following
command into your terminal:

grunt test

Figure 8.7 shows the results of
using Testling with Grunt.

Figure 8.7 Driving tests through the
Testling CLI using Grunt

Listing 8.34 Automating Tape tests

247Integration, visual, and performance testing
Next up let me briefly reiterate a concept you first saw in chapter 3: continuous devel-
opment adapted to testing.

8.4.2 Continuous testing

An important aspect of running tests is to do so on every change, making sure you
don’t spend a long time with broken code in your local development environment.
You might recall a particular watch configuration snippet in chapter 3 that allowed
you to run specific tasks when file changes were detected somewhere in your code
base. The following listing is an adapted version of that snippet to run tests and lint
when files change.

watch: {
 lint: {
 tasks: ['lint'],
 files: ['src/**/*.less']
 },
 unit: {
 tasks: ['test'],
 files: ['src/**/*.js', 'test/**/*.js']
 }
}

Automating tests in both Node and the browser is important. Watching for changes
and running those tests locally again is also important. At this point you might want to
check out chapter 4, section 4.4 again, where I discussed continuous integration,
which is fundamental to setting up your project so tests are executed on every push to
your version control system.

 Testing components in isolation isn’t the only way to test an application. In fact,
countless types of testing exist, and we’ll briefly discuss a few interesting ones in the
next section.

8.5 Integration, visual, and performance testing
As I mentioned a few times before, testing comes in various sizes and shapes. Integra-
tion testing, for instance, allows you to test different paths in your application work-
flow, making sure that component interaction works as expected. Components were
already tested in isolation, and integration testing provides both a redundancy layer
and the ability to capture bugs that aren’t evident without executing an application
and seeing for yourself.

8.5.1 Integration testing

Integration tests are no different from unit tests in the sense of tooling. You can still
use Tape, Sinon, and Proxyquire to run these tests. The difference lies in what should
be tested. In integration, you no longer strive to test a completely isolated version of a
component, but rather test as many interconnections as you can get away with, and

Listing 8.35 Running tests and lint when files change

248 CHAPTER 8 Testing JavaScript components
mock the rest. For instance, you might run your application’s web server, hit it with
real HTTP requests, and check if the response matches your assertions.

 You may also use Selenium, a browser automation tool, to help drive these compre-
hensive tests on the client side. Selenium uses a web server to communicate with a
browser through its API, which is supported in a variety of languages. You can send
commands to the browser through a Selenium server. You could write down a series of
steps for your test to follow, and then Selenium fires up a browser and does those
actions for you. A running web server and browser automation, working together,
allow you to automate tests that you might do by hand. Remember, you only have to
put together the test once! Then you can run it as many times as needed. You can
always go back and change the tests, too. I’m not going to lie to you, though. Setting
up Selenium is cumbersome and generally frustrating, and it’s poorly documented.
But once you’ve put together a few tests, you’ll reap the benefits.

 Integration tests aren’t limited to browser automation with a tool like Selenium,
though. You could run integration tests that work solely on your back-end stack or
merely in the front end.

8.5.2 Visual testing

Visual testing mostly consists of taking screenshots of an application, at different view-
port dimensions, and validating that the layout isn’t broken. You can perform these val-
idations by either comparing a screenshot to what you expect or by superimposing the
latest screenshot with the previous one, generating what’s called a “diff.” These diffs let
you quickly identify what changed from one version to another by highlighting the dif-
ferences and shading the parts of the screenshot that haven’t changed. Many Grunt
plugins can take screenshots of an application for you. Several even go the extra mile
and compare the latest screenshot with the previous one, showing you where the dif-
ferences may lie. One such Grunt plugin is grunt-photobox. Configuring it is mostly a
matter of deciding which URL you want to load and what resolution you want the view-
port to be when taking the screenshots. This is particularly useful if your site follows
the Responsive Web Design paradigm, which uses CSS media queries to change the
appearance of a page based on the dimensions of the viewport and other variables.
The following code snippet shows how you might configure grunt-photobox to take
pictures of a page in three different sizes. Let me go over the options:

■ The urls field is an array of pages you want to take pictures from.
■ In screenSizes you can define the width of each screenshot you want to take;

the height will be the full height of the page. Make sure you use strings. Note
that Photobox will take a picture of each site in each of the resolutions you’ve
decided on:

photobox: {
 buildfirst: {
 options: {
 urls: ['http://bevacqua.io/bf'],
 screenSizes: ['320', '960', '1440'] // these must be strings

249Integration, visual, and performance testing
 }
 }
}

Once you’ve configured Photobox in Grunt, you can run the following command and
Photobox will generate a site you can browse to compare the screenshots:

grunt photobox:buildfirst

You can find the fully working example in the accompanying code samples as ch08/
10_visual-testing. Finally, let’s shift our attention to performance testing.

8.5.3 Performance testing

Keeping tabs on the performance of your application can help quickly identify the root
cause of performance issues. You can monitor performance in web applications using
tools such as Google PageSpeed or Yahoo YSlow. Both tools give you similar insights,
and they can both be automated using Grunt plugins. They do have a few differences
between their services. The PageSpeed Grunt tool gives you more insight into what
improvements you should make to your site. For example, it might let you know that
you aren’t caching your static assets as aggressively as you should. The YSlow plugin
gives you a more compact version, telling you how many requests were made, how long
the page took to load, how much content was downloaded, and a performance score.

 The PageSpeed plugin, grunt-pagespeed, requires you to get an API key from
Google.2 You can then configure the plugin as shown in listing 8.36 (sample ch08/
11_pagespeed-insights). In the code, you’re telling PageSpeed which URL you want it
to hit, what locale you want the results to be generated in, what strategy to use
('desktop' or 'mobile'), and the minimum score (out of 100) to consider the test
successful. Note that you’re purposely avoiding including the API key in the Grunt-
file. Instead, you’ll get it from an environment variable to keep the secret safe.

pagespeed: {
 desktop: {
 url: 'http://bevacqua.io/bf',
 locale: 'en_US',
 strategy: 'desktop',
 threshold: 80
 },
 options: {
 key: process.env.PAGESPEED_KEY
 }
}

To run the example, you’ll have to take the key you got from Google and enter the fol-
lowing command into your terminal:

PAGESPEED_KEY=$YOUR_API_KEY grunt pagespeed:desktop

2 Get the API key from https://code.google.com/apis/console.

Listing 8.36 Configuring the PageSpeed plugin

https://code.google.com/apis/console

250 CHAPTER 8 Testing JavaScript components
For more information about the reasons for storing secrets in environment variables,
go back to chapter 3, section 3.2.

 In the case of grunt-yslow, the Grunt plugin for YSlow, you won’t need to get any
API keys, which makes matters considerably simpler. Configuring the plugin is a mat-
ter of specifying the website URL you want to hit and setting the threshold levels for
page weight, page load speed, performance score (out of 100), and request count, as
shown in the following listing (sample ch08/12_yahoo-yslow).

yslow: {
 options: {
 thresholds: {
 weight: 1000,
 speed: 5000,
 score: 80,
 requests: 30
 }
 },
 buildfirst: {
 files: [
 { src: 'http://bevacqua.io/bf' }
]
 }
}

To run these YSlow tests, enter the following command into your terminal:

grunt yslow:buildfirst

All of these examples can be found in the accompanying source code samples, under
ch08. Make sure to check them out!

8.6 Summary
That was exciting! We covered many concepts in a short time:

■ You got a crash course on unit testing and learned how to tune your compo-
nents, making them more suitable to test.

■ I explained Tape and how you can use it to seamlessly run tests on both the cli-
ent side and the server side, without duplicating your code.

■ You learned about mocks, spies, and proxies; why you need them; and how you
can use them in JavaScript code.

■ I showed you several case studies to help you figure out what things you should
be testing for and how you should test them.

■ You looked at automation using Grunt to run Tape tests on both the server and
the browser without leaving the command line.

■ I introduced you to integration and visual testing, and you learned how to auto-
mate those tasks using Grunt.

If you’re interested in learning more about testing, I suggest you check out Test-Driven
JavaScript Development, by Christian Johansen (Developer's Library, 2010).

Listing 8.37 Configuring the YSlow plugin

REST API design and
layered service architectures
I’ve described how to approach build processes, and you’ve learned about deploy-
ments and configuring the different environments your application will live on.
You also learned about modularity, dependency management, asynchronous code
flows in JavaScript, and the MVC approach to developing scalable application
architectures. To round things out, this chapter focuses on designing a REST API
architecture and consuming it on the client side, allowing you to tie the front end
to a back-end persistence layer using a transparent and clean API.

This chapter covers
■ Designing API architectures
■ Understanding the REST constraint model
■ Learning about API paging, caching, and

throttling schemes
■ API documentation techniques
■ Developing layered service architectures
■ Consuming a REST API on the client side
251

252 CHAPTER 9 REST API design and layered service architectures
9.1 Avoiding API design pitfalls
If you’ve ever worked on the front end of a web project for a large enterprise, then
I’m sure you can relate to the complete lack of cohesion in the design of the back-end
API. Do you need to access a list of product categories? You should do an AJAX request
GET /categories. Do you have products belonging to a category? Sure thing; use GET
/getProductListFromCategory?category_id=id. Do you have products in two cate-
gories? Use GET /productInCategories?values=id_1,id_2,...id_n. Need to save
changes to the product description? Tough luck, you’ll have to send the entire prod-
uct again through the wire. POST /product, appending a large JSON blob in the body.
Need to send a customized email to a particular human? POST /email-customer with
their email and the email message data.

 If you can’t find anything wrong with that API design, chances are you’ve spent too
much time working with similar APIs. The following list details issues with how it was
designed:

■ Each new method has its own set of naming conventions: the GET verb is repeated
in the endpoint, camelCase, hyphen-delimited, or underscore_separated. You
name it!

■ Beside naming conventions, endpoints aren’t marked in any way that differenti-
ates them from those that render views.

■ Argument intake preference also varies wildly with no clear distinction through
the query string or the request body. Maybe cookies could do the trick!

■ It’s not clear when to use each HTTP verb (HEAD, GET, POST, PUT, PATCH, DELETE).
As a result, only GET and POST are used.

■ Inconsistency throughout the API. Well-designed APIs are not only well docu-
mented, but also present consistency across the board that allows consumers to
hack through the API, as well as implementers to easily build on the existing API
by copying what it does.

This isn’t merely the work of a madman who decided to mix naming and argument-
passing conventions, along with glossing over any kind of standardization and cohe-
sion across API endpoints. The most likely scenario for how the API got to the state it is
in today is employee rotation on the project maintaining the API. Yes, it could also be
a single person who doesn’t know any better, but in that case you’ll observe at least
some degree of consistency across the API methods. A well-designed API enables con-
sumers to infer documentation for a method once they’ve used a few related methods.
That’s because methods would be named in a consistent manner, they would take sim-
ilar parameters, and those parameters would be named and ordered consistently as
well. When an API is poorly designed, or doesn’t follow a set of consistency guidelines,
it’s harder to achieve this state where the how can be inferred from simply using the
API. Inference can only be attained when the API is consistently designed to be
straightforward.

 In this chapter I’ll teach you how to design cohesive, consistent, and coherent
APIs for direct consumption in your web projects and elsewhere. The API consumed

253Learning REST API design
by the front end is one area where we could do better. Together with JavaScript test-
ing, I’d say that these are two of the most commonly undervalued aspects of front-
end development.

 REST stands for Representational State Transfer, and it’s a comprehensive set of
guidelines that you can use to design API architectures. Once you understand REST, I’ll
give you a tour of how to design a typical layered service architecture to go with that API.
Before signing off, you’ll gain insight into developing client-side code to interact with
the REST API, allowing you to react to responses from the API. Let’s get going!

9.2 Learning REST API design
REST is a set of architectural constraints that aid you when developing an API over HTTP.
Imagine you start developing a web API in “anything goes” mode—a clean slate. Then
add REST constraints into the mix, one by one. The end result will be a standardized API
that most developers will feel comfortable developing and consuming. Note that there
are different interpretations of how a REST API should be designed, and that several of
my interpretations are sprinkled throughout this chapter. These are the interpretations
that work well for me, but in the end that’s simply my opinion.

 Roy Fielding wrote a dissertation that introduced REST to the world,1 and it has
only seen an increase in adoption since its publication in 2000. I’ll only cover the con-
straints relevant to our purposes: putting together a dedicated REST API for the front
end of your application to consume. Among other constraints, you’ll touch on how to
construct the endpoints that make up your API, how to handle requests, and what
kinds of status codes you should use. Later we’ll go into more advanced HTTP commu-
nication topics, such as paging results, caching responses, and throttling requests.

 The first such constraint that you’ll visit is that REST is stateless, meaning requests
should contain all the information necessary for the back end to understand what you
want, and the server shouldn’t take advantage of any additional context stored in the
server. In practical terms, you get “pure” endpoints where the output (response) is
defined solely by the inputs (request).

 The other constraint that interests us is that REST expects a uniform interface.
Each endpoint in the API is expected to take parameters, affect the persistence layer,
and respond in a certain, predictable way. To expand on these, you’ll need to under-
stand that REST deals in resources.

1 Fielding, Roy Thomas. Architectural Styles and the Design of Network-Based Software Architectures. Doctoral
dissertation, UC Irvine, 2000. http://bevacqua.io/bf/rest.

REST resources

In REST, a resource is an abstraction of information, any information. For your purposes
you could act as if resources and database models were equivalents. Users are a
resource, and so are Products and Categories. Resources can be queried through the
uniform interface I described.

http://bevacqua.io/bf/rest

254 CHAPTER 9 REST API design and layered service architectures
Let’s bring the discussion closer to the ground and describe in practical terms what
this means for the way you structure the front-end API.

9.2.1 Endpoints, HTTP verbs, and versioning

Have you ever used an API and felt it was great? Felt that you “get it,” and in fact you
could guess the names of their methods, their methods worked in the way you
expected them to, and there were no surprises? A couple of examples of well-executed
APIs come to my mind; the first one is the language API in the Ruby standard library,
with methods that clearly define what their purpose is, are consistent in the parame-
ters they take, and have mirror methods that do exactly their opposite.

 The String class in Ruby has a .capitalize method; it creates an uppercase copy
of a string. Then there’s .capitalize!, which capitalizes the original string rather
than creating a copy. You also have .strip, which returns a copy where leading and
trailing whitespace is gone. You probably guessed the next one: .strip!, which is the
same as .strip but on the original string.

 Facebook has other good examples. Their Graph REST API is easy to use, and it’s
cohesive in that endpoints work mostly the same way. You can also chop parts of the
URL and hack your way through their website; for example, http://facebook.com/me
takes you to your own profile, as their API recognizes me as the currently authenticated
user.

 This kind of consistent behavior is critical to a great API. In contrast, bad API
design leads to confusion and is characterized by the lack of a naming convention,
ambiguous or poor documentation, or even worse: undocumented side effects. PHP is
a notorious guide to writing a poor API. The issue arises because of the lack of a speci-
fication and different authors taking over different parts of the PHP language API. As a
result, PHP functions have wildly varying signatures, names, and even casing conven-
tions. You have no way to guess the name of a given function. Sometimes these issues
can be solved by wrapping the existing API in a consistent one, which is a big part of
how jQuery became popular—by abstracting the DOM API in a more convenient and
consistent API.

 The single most important aspect in API design is consistency, and that starts with
endpoint naming conventions.

NAMING YOUR ENDPOINTS

To begin with, you need to define a prefix for all API endpoints. If you have a sub-
domain to use, such as api.example.com, that’ll work too. For front-end API efforts,
using example.com/api as a prefix should work. A prefix helps discern API methods
from view routes and sets an expectation for the kind of responses they produce (typi-
cally JSON in modern web applications).

 The prefix on its own isn’t enough, though. Putting together a coherent API mostly
relies on following strict guidelines when naming your endpoints. Here’s a set of
guidelines to get you started:

■ Use all lowercase, hyphenated endpoints such as /api/verification-tokens.
This increases URL “hackability,” which is the ability to manually go in and

http://facebook.com/me

255Learning REST API design
modify the URL by hand. You can pick any naming scheme you like, as long as
you’re consistent about it.

■ Use a noun or two to describe the resource, such as verification-tokens,
users, or products.

■ Always describe resources in plural: /api/users rather than /api/user. This
makes the API more semantic, as you’ll see in a minute.

These guidelines get us to an interesting point. Let’s make an example out of /api/
products to see how you can design the API in a way that’s RESTful and consistent.

HTTP VERBS AND CRUD CONSISTENCY

First, getting a list of products is probably the most basic task you could perform
against the products API. The /api/products endpoint is prime for the task, so you
implement a route on the server that returns a list of products as JSON, and you start
feeling pretty good about yourself. Next, you want to return individual products; this
will be used when humans visit the product details page. In this case, you might be
tempted to define the endpoint as /api/product/:id, but one of your guidelines was
to always use plurals, so that’ll end up looking like /api/products/:id.

 Both of those methods are clearly defined as GET requests, because they interact
with the server in a read-only fashion. What about removing a product? Typically, non-
REST interfaces use methods such as POST /removeProduct?id=:id. Sometimes the
GET verb is used, which results in web crawlers such as Google wiping out important
database information by following GET links on a site.2 REST suggests you use the
DELETE HTTP verb instead, on the same endpoint that you used to GET a single prod-
uct, /api/products/:id. Taking advantage of one of the building blocks of HTTP—
their verbs—you can compose more semantic and consistent APIs.

 Inserting items of a given resource type involves a similar thought process. In non-
REST scenarios you might’ve had POST /createProduct and a body of relevant data,
whereas in REST you should use the more semantic PUT verb, along with the consistent
/api/products endpoint. Last, edits should use the PATCH verb and an endpoint such
as /api/products/:id. We’ll reserve the POST verb for operations that don’t merely
involve creating or updating database objects, such as /notifySubscribers via email.
Relationships are one last type of endpoint that can be considered part of basic stor-
age operations (Create, Read, Update, Delete, or CRUD for short). Given all of what
I’ve described so far, it probably won’t be hard for you to imagine how GET /api/
products/:id/parts is a great starting point for a request that responds with the indi-
vidual parts that make up a particular product.

 That’s it, as far as CRUD goes. What happens if you want to use something other
than CRUD? Use your best judgment. Usually, you could use the POST verb, ideally con-
straining yourself to a particular resource type, which doesn’t necessarily need to be a

2 Read this article for a similar story on how Google wiped clean the content on a website just by following links:
http://bevacqua.io/bf/spider.

http://bevacqua.io/bf/spider

256 CHAPTER 9 REST API design and layered service architectures
database model reference. For instance, POST /api/authentication/login can han-
dle login attempts on the front end.

 As a summary, Table 9.1 shows the verbs and endpoints discussed so far per a typi-
cal REST API design. I omitted the /api prefixes for brevity. Note that I use products
as an example resource type to make the example easier to relate to, but this applies
to any resource type.

Please note that the HTTP verbs chosen for each type of action aren’t set in stone. It is,
in fact, a topic of heated arguments, where people argue POST should be used for
inserts, or any other operation that’s not idempotent, and endpoints using the other
verbs (GET, PUT, PATCH, DELETE) must result in idempotent operations—repeated
requests on those endpoints shouldn’t alter the outcome.

 Versioning is also an important aspect of REST API design, but is it necessary for
front-end operations?

API VERSIONING

In traditional API scenarios, versioning is useful because it allows you to commit break-
ing changes to your service without demolishing the interaction with existing consum-
ers. Two main schools of thought exist in the REST API versioning department.

 One school of thought is convinced that the API version should be set in HTTP
headers, and that if a version isn’t specified in the request, you should get a response
from the latest version of the API. This formal approach is closer to what the original
dissertation for REST proposed, but an argument is that if the API is poorly executed it
can lead to breaking changes inadvertently.

 Instead, they propose that the version is embedded into the API endpoint prefix:
/api/v1/.... This also identifies right away which version of the API your application
wants by looking at the requested endpoint.

Table 9.1 Product endpoints in a typical REST API

Verb Endpoint Description

GET /products Gets a list of products

GET /products/:id Gets a single product by ID

GET /products/:id/parts Gets a list of parts in a single product

PUT /products/:id/parts Inserts a new part for a particular product

DELETE /products/:id Deletes a single product by ID

PUT /products Inserts a new product

HEAD /products/:id Returns whether the product exists through a status
code of 200 or 404

PATCH /products/:id Edits an existing product by ID

POST /authentication/login Most other API methods should use POST requests

257Learning REST API design
 Truth is, it doesn’t change that much from having the v1 be in the endpoint or in
a request header, so it’s mostly a matter of preference for the API implementer. When
it comes to web applications and their accompanying API, you don’t necessarily need to
implement any versioning, and that’s why I’m inclined to go with the request header
approach. That way, if somewhere down the line you decide you do need versioning,
you can easily define a “latest version” as the default, and if consumers still want the pre-
vious version they can add a header explicitly asking for the old one. That being said,
requesting a specific version of the API is always more desirable than blindly accepting
whatever the latest API may be, so as not to break functionality unexpectedly.

 I mentioned you don’t need to necessarily implement versioning in the REST API
consumed by the front end, and that depends on two factors:

■ Is the API public facing as well? In this case, versioning is necessary, baking a bit
more predictability into your service’s behavior.

■ Is the API used by several applications? Are the API and the front end developed
by separate teams? Is there a drawn-out process to change an API endpoint? If
any of these cases apply, you’re probably better off versioning your API.

Unless your team and your application are small enough that both live in the same
repository and developers touch on both indistinctly, go for the safe bet and use ver-
sions in your API.

 Time to move on and study what requests and responses may look like.

9.2.2 Requests, responses, and status codes

As I’ve mentioned before, consistency by following REST conventions is key in devel-
oping a highly usable API. This applies to requests and responses as well. An API is
expected to take arguments consistently; the way this usually works is that you take the
ID via the endpoint. In the case of the product by ID route, /api/products/:id, when
requesting the /api/products/bad0-bab8 URL, assume bad0-bab8 is the requested
resource identifier.

REQUESTS

Modern-day web routers have no trouble dissecting the URL and providing the speci-
fied request parameters. For instance, the following code shows how Express, a
Node.js web framework, lets you define a dynamic route that captures requests for
products via an identifier. Then it parses the request URL and hands you the appropri-
ately parsed parameters:

app.get('/api/products/:id', function (req, res, next) {
 // req.params.id contains the extracted id
});

Having the identifier as part of the request endpoint is great because it allows DELETE
and GET requests to use the same endpoint, making for a more intuitive API, like I
mentioned previously about Ruby. You should decide on a consistent data-transfer
strategy to upload the data to the server when making PUT, PATCH, or POST requests

258 CHAPTER 9 REST API design and layered service architectures
that modify a resource in the server. Nowadays, JSON is used almost ubiquitously as the
data transport of choice due to its simplicity, the fact that it’s native to browsers, and
the high availability of JSON parsing libraries across server-side languages.

RESPONSES

Like requests, responses should conform to a consistent data-transfer format, so you
have no surprises when parsing the response. Even when an error occurs on the
server side, the response is still expected to be valid according to the chosen trans-
port; for example, if our API is built using JSON, then all the responses produced by
our API should be valid JSON (granted the user is accepting a JSON response in the
HTTP headers).

 You should figure out the envelope in which you’ll wrap your responses. An enve-
lope, or message wrapper, is crucial for providing a consistent experience across all
your API endpoints, allowing consumers to make certain assumptions about the
responses the API provides. A useful starting point may be an object with a single field,
named data, that contains the body of your response:

{
 "data": {} // the actual response
}

Errors may be another useful field, only present when an error occurs, containing an
object that may expose properties such as an error message, reason, and accompany-
ing metadata. Suppose you query the API on the GET /api/products/baeb-b00f end-
point, but a baeb-b00f product doesn’t exist in the database:

{
 "error": {
 "code": "bf-404",
 "message": "Product not found.",
 "context": {
 "id": "baeb-b00f"
 }
 }
}

Using an envelope and the appropriate error fields in your responses aren’t enough
on their own. As a REST API developer you should also be conscious about the status
codes that you choose for your API’s responses.

HTTP STATUS CODES

In the case of a product not being found, you should respond with the 404 Not Found
status code, in addition to the properly formatted response that describes the error.
Status codes are particularly important in allowing API consumers to make assump-
tions about the responses. When you respond with status codes in the 2xx Success
class, the response body should contain all of the relevant data that was requested.
Here’s an example showing the response to a request on a product that could be
found, alongside with the HTTP version and status code:

259Learning REST API design
HTTP/1.1 200 OK
{
 "data": {
 "id": "baeb-b001",
 "name": "Angry Pirate Plush Toy",
 "description": "Batteries not included.",
 "price": "$39.99",
 "categories": ["plushies", "kids"]
 }
}

Then there’s the 4xx Client Error class codes, which mean the request most likely
failed due to an error made by the client side (the user wasn’t properly authenticated,
for instance). In these cases, you should use the error field to describe why the
request was faulty. For instance, if input validation fails on a form while attempting to
create a product, you could return a response using a 400 Bad Request status code, as
shown in the following listing.

HTTP/1.1 400 Bad Request
{
 "error": {
 "code": "bf-400",
 "message": "Some required fields were invalid.",
 "context": {
 "validation": [
 "The product name must be 6-20 alphanumeric characters",
 "The price can’t be negative",
 "At least one product category should be selected"
]
 }
 }
}

Another kind of error in the 5xx status code range is an unexpected error such as 500
Internal Server Error. These should be presented to the consumer in the same
way as 4xx errors. Suppose the previous request results in an error; you should then
respond with a 500 status code and a snippet of data in the response body, similar to
the following:

HTTP/1.1 500 Internal Server Error
{
 "error": {
 "code": "bf-500",
 "message": "An unexpected error occurred while accessing the database."
 "context": {
 "id": "baeb-b001"
 }
 }
}

Listing 9.1 Describing an error

260 CHAPTER 9 REST API design and layered service architectures
It’s usually relatively easy to capture these kinds of errors when everything else fails
and respond with a 500 message, passing in a bit of context as to what went wrong.

 Up to this point I’ve covered endpoints, request bodies, status codes, and response
bodies. Setting proper response headers is another REST API design aspect that’s
worth mentioning for a variety of reasons.

9.2.3 Paging, caching, and throttling

Although not as important in small applications, paging, caching, and throttling all
play a part in defining a consistent and highly usable API. Paging in particular is often
a necessity, because a complete lack of paging would easily cripple your application by
allowing the API to query and transfer massive amounts of data from the database to
the clients.

RESPONSE PAGING

Going back to the first REST endpoint example I used, suppose I make a query to your
API for /api/products. How many products should that endpoint return? All of
them? What if there are a hundred? A thousand? Ten? A million? You have to draw the
line somewhere. You could set a default pagination limit across the API and have the
ability to override that default for each individual endpoint. Within a reasonable
range, the consumer should have the ability to pass in a query string parameter and
choose a different limit.

 Suppose you settle for 10 products per request. You then have to implement a pag-
ing mechanism to access the rest of the products available on your application. To
implement paging, you use the Link header.

 If you query the first products page, the response’s Link header should be similar
to the following code:

Link: <http://example.com/api/products/?p=2>; rel="next",
 <http://example.com/api/products/?p=54>; rel="last"

Note that the endpoints must be absolute so the consumer can parse the Link header
and query them directly. The rel attribute describes the relationship between the
requested page and the linked page.

 If you now request the second page, /api/products/?p=2, you should get a similar
Link header, this time letting you know that “previous” and “first” related pages are
also available:

Link: <http://example.com/api/products/?p=1>; rel="first",
 <http://example.com/api/products/?p=1>; rel="prev",
 <http://example.com/api/products/?p=3>; rel="next",
 <http://example.com/api/products/?p=54>; rel="last"

Cases exist where data flows too rapidly for traditional paging methods to behave as
expected. For instance, if a few records make their way into the database between
requests for the first page and the second one, the second page results in duplicates of
items that were on page one but were pushed to the second page as a result of the

261Learning REST API design
inserts. This issue has two solutions. The first solution is to use identifiers instead of
page numbers. This allows the API to figure out where you left off, and even if new
records get inserted, you’ll still get the next page in the context of the last range of
identifiers that the API gave you. The second approach is to give tokens to the con-
sumer that allow the API to track the position they arrived at after the last request and
what the next page should look like.

 If you deal with the kind of large datasets that require paging to work efficiently,
then you’ll probably get big returns from implementing caching and throttling. Cach-
ing will probably yield better results than throttling, so let’s discuss that first.

RESPONSE CACHING

Typically it’s up to the end client to cache API results as deemed necessary. The API,
however, can make suggestions with varying degrees of confidence on how its
responses should be cached. What follows is a crash course on HTTP caching behav-
iors and the related HTTP headers.

 Setting the Cache-Control header to private bypasses intermediaries (such as
proxies like nginx, other caching layers like Varnish, and all kinds of hardware in
between) and only allows the end client to cache the response. Similarly, setting it to
public allows intermediaries to store a copy of the response in their cache.

 The Expires header tells the browser that a resource should be cached and not
requested again until the expiration date has elapsed:

Cache-Control: private
Expires: Thu, 3 Jul 2014 18:31:12 GMT

It’s hard to define future Expires headers in API responses because if the data in the
server changes, it could mean that the client’s cache becomes stale, but it doesn’t have
any way of knowing that until the expiration date. A conservative alternative to
Expires headers in responses is using a pattern known as “conditional requests.”

 Conditional requests can be time-based, specifying a Last-Modified header in
your responses. It’s best to specify a max-age in the Cache-Control header, to let the
browser invalidate the cache after a certain period of time even if the modification
date doesn’t change:

Cache-Control: private, max-age=86400
Last-Modified: Thu, 3 Jul 2014 18:31:12 GMT

The next time the browser requests this resource, it will only ask for the contents of
the resource if they’re unchanged since this date, using the If-Modified-Since
request header:

If-Modified-Since: Thu, 3 Jul 2014 18:31:12 GMT

If the resource hasn’t changed since Thu, 3 Jul 2014 18:31:12 GMT, the server will
return with an empty body with the 304 Not Modified status code.

 An alternative to the Last-Modified negotiation is to use the ETag (also known as
Entity Tag) header, which is usually a hash that represents the resource in its current

262 CHAPTER 9 REST API design and layered service architectures
state. This allows the server to identify if the cached contents of the resource are dif-
ferent than the most recent version:

Cache-Control: private, max-age=86400
ETag: "d5aae96d71f99e4ed31f15f0ffffdd64"

On subsequent requests, the If-None-Match request header is sent with the ETag
value of the last requested version for the same resource:

If-None-Match: "d5aae96d71f99e4ed31f15f0ffffdd64"

If the current version has the same ETag value, your current version is what the client
has cached and a 304 Not Modified response will be returned. Once you have cach-
ing in place, request throttling could also mitigate server load.

REQUEST THROTTLING

Throttling, also known as rate limiting, is a technique you can use to limit the number
of requests a client can make to your API in a certain window of time. You have numer-
ous criteria to rely on to rate limit consumers, but one of the most common ways to do
so is to define a fixed rate limit and reset the quota after a certain period of time. You
also have to decide how you’re going to enforce such limiting. Maybe the limit is
enforced per IP address, and you could also have a more permissive limit for authenti-
cated users.

 Suppose you define a rate limit of 2,000 requests per hour for unauthenticated
users; the API should include the following headers in its responses, with every request
shaving off a point from the remainder. The X-RateLimit-Reset header should con-
tain a UNIX timestamp describing the moment when the limit will be reset:

X-RateLimit-Limit: 2000
X-RateLimit-Remaining: 1999
X-RateLimit-Reset: 1404429213925

Once the request quota is drained, the API should return a 429 Too Many Requests
response, with a helpful error message wrapped in the usual error envelope:

HTTP/1.1 429 Too Many Requests
X-RateLimit-Limit: 2000
X-RateLimit-Remaining: 0
X-RateLimit-Reset: 1404429213925
{
 "error": {
 "code": "bf-429",
 "message": "Request quota exceeded. Wait 3 minutes and try again.",
 "context": {
 "renewal": 1404429213925
 }
 }
}

This kind of safeguarding is usually unnecessary when dealing with an internal API, or
an API meant only for your front end, but it’s a crucial measure to take when exposing

263Learning REST API design
the API publicly. Together with paging and caching, these measures help relieve the
strain on your back-end services.

 When something unexpected happens as the consumer is using your API, thor-
ough documentation will be the last bastion of the highly usable services you design.
The next section explains the essentials of properly documenting an API.

9.2.4 Documenting an API

Any API worth using is well-documented, regardless of whether it’s public facing or
not. When everything else fails, consumers refer to the API documentation. You can
get away with auto-generating the API based on metadata sprinkled throughout your
code base, often in the form of code comments, but you have to make sure the docu-
mentation stays up to date and relevant.

 Good API documentation should

■ Explain how the response envelope looks.
■ Demonstrate how error reporting works.
■ Show how authentication, paging, throttling, and caching work on a high level.
■ Detail every single endpoint, explain the HTTP verbs used to query those end-

points, and describe each piece of data that should be in the request and the
fields that may appear in the response.

Test cases can sometimes help as documentation by providing up-to-date working
examples that also indicate best practices in accessing an API. Documentation enables
API client developers to rapidly sift through any issues they may have because they
didn’t fully understand the kind of data the API expected from them. Another desir-
able component in API documentation is a changelog that briefly details the changes
that occur from one version to the next. Refer to section 4.2.2 for more information
about changelogs.

 Documentation may be useful even when the API and the web application live
together, because it helps reduce time spent researching what the API is supposed to
expect or how it works. Instead of sifting through code, developers can read the docu-
mentation. When asked something about the API, you can direct them to the docs. In
this regard, documentation doesn’t present benefits only when maintaining a REST API,
but it makes sense for any kind of service, library, or framework. In the case of a
library—take jQuery, for example—the documentation should cover each of the
library’s public API methods, clearly detailing the possible arguments and response
combinations. The docs may also explain the underlying implementation in those cases
where it helps the consumer understand why the API is shaped the way it is. Well-
executed API documentation examples include Twitter, Facebook, GitHub, and Stack-
Exchange.3

3 You can find these examples at http://bevacqua.io/bf/api-twitter, http://bevacqua.io/bf/api-fb, http://
bevacqua.io/bf/api-github, and http://bevacqua.io/bf/api-stack, respectively.

http://bevacqua.io/bf/api-fb
http://bevacqua.io/bf/api-github
http://bevacqua.io/bf/api-github
http://bevacqua.io/bf/api-stack
http://bevacqua.io/bf/api-twitter

264 CHAPTER 9 REST API design and layered service architectures
 Armed with the knowledge needed to design a REST API, in the next section you’ll
explore the possibility of creating a series of layers for the API. These layers will define
the API and help you keep your service modularly structured and testable.

9.3 Implementing layered service architectures
If your API is small enough and dedicated to the front end, chances are that it’ll live in
the same project. If that’s the case, then it makes sense that the API lives in the same
layer as the web application’s controllers.

 A common approach is to have a so-called service layer that handles the core of the
data processing task, while having a data layer that’s in charge of interacting with the
database. Meanwhile, the API should be designed as a thin layer on top of the others.
This architecture is pictured in figure 9.1.

 Looking at the figure from the top down, you can see the basic parts of each API
layer.

API and view controllers can be kept
in separate controller layers.

API
Input sanitizing,
HTTP responses

Typically the data layer communicates with the service layer using data models.

Underlying
data source

Routing layer
View controller logic, API request handling

Query

Data layer
Unified data access models

The service layer is composed of
modular components that handle

a piece of the business logic.

Service layer
Business logic concerns

Service

Model Model Model

Service

Interface

ServiceService

Db

Figure 9.1 Overview of a three-tiered service architecture

265Implementing layered service architectures
9.3.1 Routing layer

The API layer is in charge of dealing with throttling, paging, caching headers, parsing
request bodies, and preparing responses. All of that, however, should be accom-
plished by using the service layer as the only way to access or modify the data, for the
following reasons:

■ Controllers must validate request data before producing a response.
■ The API asks the service for the different pieces of data it needs to properly ful-

fill the response.
■ When the service jobs are complete, the API controller responds with a proper

status code and relevant response data.

9.3.2 Service layer

The service layer can be architected to defer all data access to a third layer: the data
layer. This layer is in charge of dealing with computation for any missing data that
can’t be directly extracted from the data stores:

■ The service layer is composed of many small services. Each of them handles a
subset of the business.

■ The service layer queries the data layer, computes business logic rules, and vali-
dates request data on a model level.

■ CRUD operations typically end up being a pass-through to the data layer.
■ Tasks such as sending out emails, where no persistence access is involved, may

be handled entirely by a component of the service layer without resorting to a
data store.

9.3.3 Data layer

The data layer is in charge of communicating with the persistence medium such as a
database, flat file, memory, and so on. Its purpose is to provide access to any of those
mediums through a consistent interface. The goal of having such an interface in place
is that you can easily swap persistence layers (database engines, or in-memory key-
value stores, for example), also making it easier to test:

■ The data access layer provides an interface to the data in the underlying data
store. This makes it easier to interact with different data sources and change
vendors.

■ Models stay the same independently of the underlying data store; they’re part
of the interface.

■ The underlying data models are kept away from the interface. This makes swap-
ping out data stores easier, because data layer consumers won’t be affected.

That was a frantic overview! Let’s slow down and pace ourselves through this three-
tiered architecture in greater detail. Note that this type of architecture isn’t limited to
API design but could also fit typical web applications and possibly other types of appli-
cations too, if they deserve the extra infrastructure.

266 CHAPTER 9 REST API design and layered service architectures
9.3.4 Routing layer

Controllers are the public-facing layer in this type of architecture. At this layer you’ll
define the routes your application can be accessed from. The routing layer is also in
charge of parsing any parameters found in the requested URL and in the request body.

 Before even trying to fulfill the request, you may have to validate that the client
didn’t exceed their allowed quota, and if that were the case, you can kill the request
right then, passing the appropriate response and status code of 429 Too Many
Requests.

 As we all know, user input can’t be trusted, and this is where you’re meant to vali-
date and sanitize user input most aggressively. Once the request is parsed, make sure
that the request provided exactly what’s needed to fulfill the request, nothing less and
also nothing more. Once you’ve made sure all of the required fields are provided, you
should sanitize them and make sure that the inputs are valid. For example, if the pro-
vided email address isn’t a valid email, your API should know to respond with a 400
Bad Request and an appropriately formatted response body.

 Once the request is parsed and its inputs validated, you’re ready to hand it to the
service layer, which will trade the inputs provided by the request into the outputs it
requires. (Bear with me for a minute; we’ll go deeper into the service layer.) Once the
service layer gets back to you, you can finally figure out if the request can be fulfilled
or not and respond with the corresponding status code and response data. What
exactly is the service layer supposed to do, then? Glad you asked!

9.3.5 Service layer

At the service level, also known as the business logic layer, the request is processed,
data is pulled from the data layer, and a representation of that data is returned. At this
point it makes sense to validate business rules, whereas it wasn’t a responsibility of the
routing layer.

 For instance, if a user tries to create a new product with a price of very expensive
or -1, it’s up to the routing layer to figure out that’s not a valid money input. If the
selected product category expects products in the $20 - $150 range and the product
is priced $200, then it’s up to the service layer to figure out that the request can’t be
fulfilled.

 The service layer is also responsible for doing any necessary data aggregation.
Although it’s likely that the routing layer will only have to make a single call into the
service layer to get what it needs, the same isn’t true for the interaction between the
service and data layers. As an example, the service layer may need to get a list of arti-
cles on a news site and hand that over to a service that performs a processing task on
the contents of those articles, finding commonalities and eventually returning a list of
articles related to each other.

 In this regard, the service layer is the event organizer in the architecture, in that it
will query and command other layers to provide it with the means to produce a mean-
ingful response. Let’s quickly comb through the specifics of how the data layer should
be shaped.

267Consuming a REST API on the client side
9.3.6 Data layer

The data layer is the only layer that’s meant to access a persistence component, which
would be your database. The goal of the data layer is to ensure a consistent API is pro-
vided, regardless of the underlying data store being used. If you’re persisting data in
MongoDB, MySQL, or Redis, the API offered by the data layer will hide that detail from
the service layer by providing a consistent API that isn’t tied to any particular persis-
tence model.

 Figure 9.2 shows the potential data stores that could be behind the data layer’s
interface. Note that this interface doesn’t necessarily hide a single type of backing
data store: you could be using both Redis and MySQL, for instance.

 The data layer is typically thin, bridging the gap between the service and persis-
tence layers. Results produced by the data layer are also expected to be consistent,
because changing the underlying persistence model truly won’t make a difference.

 Although not recommended, in small projects it’s plausible to merge the service
layer and the data layer if there won’t be any significant changes in the persistence
model of the application. Keep in mind that splitting the two is easy at first, but doing
so once you have dozens of services that consume dozens of different data models
becomes increasingly complex and nontrivial. That’s why, if possible, it’s recom-
mended to split these two layers from the get-go.

 The last topic we’ll go over in this chapter is how services like these should be con-
sumed on the client side.

9.4 Consuming a REST API on the client side
When intensively interacting with a REST API layer on the client side of a web applica-
tion, it’s often prudent to come up with a thin layer to act as an intermediary between
the API and the core of your application. This layer relies on creating a shared infra-
structure to emit requests against the API in exchange for the following list of benefits
enumerated:

■ A high-level overview of the requests taking place in your application
■ Allows you to perform caching and avoid extra requests
■ Manage errors in a single place in your application, providing a consistent UI

experience

Data layer interface

Redis MongoDBMySQL

Figure 9.2 The data layer interface and a few underlying data stores

268 CHAPTER 9 REST API design and layered service architectures
■ Ability to shoot down pending requests when navigating away in a single-page
application

I’ll start by describing what creating such a layer would entail, and then we’ll move on
to the specifics.

9.4.1 The request handling layer

Putting together such a layer can be tackled in two ways. You can patch the XHR
implementation in browsers, guaranteeing that any AJAX requests made by your appli-
cation will have to go through the proxy you patched into XHR, or you can create a
wrapper around XHR and use it every time an AJAX request takes place. The latter
approach is typically regarded as being “cleaner,” because it doesn’t affect the native
behavior provided by the browser the way the monkey-patching approach does, which
sometimes leads to unexpected behavior. This is often reason enough to prefer creat-
ing a simple wrapper around XHR calls and using that instead of the native APIs.

 I’ve created a library called measly exactly with this purpose in mind. It takes the
less invasive wrapper approach, because that way it won’t affect code that’s unaware of
how Measly behaves, and it allows you to easily associate requests with different parts
of the DOM. It also allows for caching and event handling, both of which can be lim-
ited to the context of a particular DOM element or global. I’ll walk you through sev-
eral key features in measly. To get started, you’ll have to install it from npm. It’s also
available on Bower under the same name.

npm install --save measly

After you install measly, you’ll be ready to get into the next section, where we’ll
explore how to use it to make sure requests don’t end up causing unintended side
effects.

9.4.2 Shooting down old requests

Single-page web applications are all the rage these days. In traditional web applica-
tions, the user agent aborts all pending requests when navigating away to another
page, but what about single-page applications (SPA)? If you’re developing an SPA,
chances are that you hope stray requests won’t corrupt the state of your application
when a human navigates to another page.

 The following code is a generic example assuming a client-side MVC framework
that broadcasts events when entering and leaving views. In this example you’re creat-
ing a measly layer on the view container element and aborting all requests on that
layer when leaving the view:

view.on('enter', function (container) {
 measly.layer({ context: container });
});
view.on('leave', function (container) {
 measly.find(container).abort();
});

269Consuming a REST API on the client side
Whenever you need to make an AJAX call, you’ll have to look up the layer first. You
can keep a reference around for convenience, as well. Using the measly layer to cre-
ate requests is fairly straightforward. In this case you’re making a request for DELETE
/api/products/:id, deleting a product by ID using a REST API:

var layer = measly.find(container);

deleteButton.addEventListener('click', function () {
 layer.delete('/api/products/' + selectedItem.id);
});

Whenever you make a request, measly emits a series of events, letting you react to
them. For example, if you want to know when a request succeeds you can use the data
event, and if you want to listen for errors you can subscribe to the error event. You
have two different places where you can listen for errors:

■ At the request level directly, where you’re notified only if a particular request
results in an error.

■ At a layer level, where you can learn about any requests that result in an error.

Each of these methods has obvious use cases. You definitely want to know when a
request succeeds so you can do something specific armed with the response data.

 You may also need to learn about any errors that originate in your application on a
global scale, so you can display the corresponding UI elements to notify the human
about those errors or to send reports to a logging service.

9.4.3 Consistent AJAX error management

The following listing explains how you can show a UI dialog whenever an AJAX error
occurs, but only if the status code in the response equals 500, meaning there was an
internal server error. You’ll fill the dialog with the error message provided by the
response, and after a short timeout, you’ll hide it again.

var errorDialog = document.querySelector('.error-dialog');

measly.on(500, function (err) {
 errorDialog.innerText = err.message;
 errorDialog.classList.add('error-dialog-open');

 setTimeout(hideErrorDialog, 3000);
});
function hideErrorDialog () {
 errorDialog.classList.remove('error-dialog-open');
}

To be frank, this is a terribly uninteresting approach, and not something you couldn’t
accomplish. A more useful scenario would be in-context validation. In this case, watch
out for 400 Bad Request responses, which is the status code that should be assigned
by the API to a validation failure response. Measly will set this in the event handler as

Listing 9.2 Showing a UI dialog box when an AJAX error occurs

querySelector is a native API for finding
DOM elements using CSS selectors.

classList is a native API for
manipulating the CSS classes
found on a DOM element.

270 CHAPTER 9 REST API design and layered service architectures
the request object, allowing you to access important properties of the request, such as
its DOM context element. The following code intercepts any 400 Bad Request res-
ponse and turns it into a validation message in the context of a piece of DOM. If
you’re binding Measly close enough to the visual context of the requests you create,
humans won’t have any trouble finding your list of validation messages:

measly.on(400, function (err, body) {
 var message = document.createElement('pre');
 message.classList.add('validation-messages');
 message.innerText = body.validation.messages.join('\n');
 this.context.appendChild(message);
});

The best part is that you get this almost for free! Because you’re already using the con-
text to make sure requests are aborted whenever you switch views, you may only have
to declare a few child layers where it makes sense to do so, such as partial views or
HTML forms. The last point I’d like to bring up is caching rules in Measly.

MEASLY CACHING RULES

Measly lets you cache two ways. First, it allows you to define an amount of time a
response is considered fresh, meaning that subsequent requests for the same resource
will result in the cached response for as long as the cached copy is fresh. The follow-
ing listing shows how you can request to cache the response for 60 seconds, and then
when a button is clicked Measly either uses the cached copy (if within 60 seconds
since the last request) or makes a new request if the data has been updated.

measly.get('/api/products', {
 cache: 60000
});
queryButton.addEventListener('click', function () {
 var req = measly.get('/api/products', {
 cache: 60000
 });
 req.on('data', function (body) {
 console.log(body);
 });
})

The other way you can avoid querying the server with an unwarranted HTTP request is
to prevent it manually. The following listing is an example where a list of products is
cached by hand.

var saved = []; // a list of products that you know to be fresh
var req = measly.get('/api/products');
req.on('ready', function () {
 if (computable) {
 req.prevent(null, saved);

Listing 9.3 Caching files with Measly

Listing 9.4 Manually preventing unwarranted HTTP requests

271Summary
 }
});
req.on('data', function (body) {
 console.log(body);
});

You’ll find a quick demo into how Measly works in the accompanying code samples
for this chapter, listed as ch09/01_a-measly-client-side-layer. In the demo I show how
to create different contexts to contain different requests to a portion of the DOM.

 All in all, measly may not be the answer you’re looking for, but along with the rest
of this book I hope it gave you something to think about!

9.5 Summary
That wasn't that hard, was it? We covered a lot of ground, and looked at many best
practices along the way:

■ Responsible API design follows the REST constraint model by providing conven-
tional endpoints, sanitizing inputs, and also providing consistent outputs.

■ Paging, throttling, and caching in a REST API are all necessary to provide a fast
and safe API service.

■ Documentation should be taken seriously to lower the friction introduced by
your API.

■ You should develop a thin API layer backed by a domain logic layer and a data
layer.

■ A thin client-side layer helps you assign a context to AJAX requests, validate
responses, and render HTTP errors on the user interface.

272 CHAPTER 9 REST API design and layered service architectures

appendix A
 Modules in Node.js

This appendix covers things you need to know about modules and Node.js to use
both effectively in your Grunt builds. Node.js is a platform built on top of the V8
JavaScript engine, the same engine that makes JavaScript in Google Chrome a real-
ity. Grunt, the build tool you use in this book, runs on Node. Node is single
threaded, as all JavaScript is.

 Node comes with a nice little companion command-line interface (CLI) utility
called npm, which is used to fetch and install packages from the node-packaged
modules registry. Throughout the book, you'll learn how to use the npm tool as
needed. Let’s install Node.js first, since npm comes bundled with it!

A.1 Installing Node.js
You have a few options for installing Node. If you’re the point-and-click type, then
you might want to head over to their website, http://nodejs.org, and click on the
big green Install button. Once the binaries are downloaded, unpack them if
needed, and then double-click to install them. That’s it.

 If you prefer to install things in your terminal, consider nvm, a user-created
Node version manager. To install nvm, you can type the following line into your ter-
minal:

curl https://raw.github.com/creationix/nvm/master/install.sh | bash

Once nvm is installed, reopen your terminal window to get access to the nvm CLI. If
you have any issues installing nvm, refer to their public repository at https://
github.com/creationix/nvm. Once you have nvm you can install a version of Node,
as shown in the following code:

nvm install 0.10
nvm alias default stable
273

http://nodejs.org
https://github.com/creationix/nvm
https://github.com/creationix/nvm

274 APPENDIX A Modules in Node.js
The first command installs the latest stable version of Node in the 0.10.x branch. The
second command makes it so that any terminal window you open from now on will
have access to the Node version you installed.

 Great, now you have Node! Time for you to learn more about its module system,
which is based on the CommonJS module’s spec.

A.2 The module system
Node applications have an entry point that’s specified when executing a node process.
For example, if you run node app.js, your Node process will use app.js as the entry
point. To load other pieces of code, you have to use the require function. This func-
tion takes a path and loads the module found in that location. The path passed to
require can be

■ A path relative to the script you require from, starting with '.'. For example, if
you do require('./main.js'), you’ll load a file that’s in the same directory as
the requiring script. We can also use .. to get a script in a parent directory.

■ A path to a directory. In these cases, require will look for a file named
index.js in the provided directory and give you that.

■ An absolute path. This one is rarely used, but you could provide an absolute file
path, as shown in the following code:

require('/Users/nico/dev/buildfirst/main.js')

■ The name of a package. Packages can be required by just providing their name;
for example, to get the async package, you should use require('async'). Most
of the time, this is effectively the same as doing require('./node_modules/
async').

A.3 Exporting functionality
Requiring modules wouldn’t be useful if you couldn’t interact with them. Modules
can export functionality, effectively their API, by assigning to module.exports. As an
example, consider the following module:

var mine = 'gold';

module.exports = function (pure) {
 return pure + mine;
};

If you fetched this module using var thing = require('./thing.js'), then thing
would be assigned whatever module.exports ended up becoming inside thing.js. It
is interesting to note that, unlike the browser model, where there are implicit globals
assigned to window, the CommonJS module system keeps variables you declare in a
module private unless you explicitly make them public by assigning to module
.exports. Node has a global object you can assign to, which is called global, but
using it is discouraged because that would break the modularity principle.

275Regarding packages
A.4 Regarding packages
Dependencies are kept in a package.json file, which is used by npm to figure out what
packages you need to execute an application. When installing a package, you can pro-
vide a --save flag to have npm automatically persist that dependency to the
package.json manifest, so you don’t have to do that by hand. Dependencies in
package.json get installed whenever you run npm install without any arguments.

 Local dependencies are installed to a node_modules directory, which should be
ignored in version control. In the case of Git, you can add a line containing
node_modules to a file named .gitignore, and Git will know not to revision those files.

 That’s all you need to know about Node to use it effectively in your Grunt builds.

appendix B
Introduction to Grunt

Grunt is a tool that allows you to write, configure, and automate tasks—such as min-
ifying a JavaScript file or compiling a LESS style sheet—for your application.

 LESS is a CSS preprocessor, which is covered in chapter 2. Minifying is essentially
creating a smaller file by removing white space and many syntax tree optimizations.
These tasks can also be related to code quality, such as running unit tests (covered
in chapter 8) or executing a code coverage tool such as JSHint. They could cer-
tainly be related to the deployment process: maybe deploying the application over
FTP, or preparing to deploy it, generating API documentation.

 Grunt is merely a vehicle to execute your build tasks. These tasks are defined
using plugins, as explained next.

B.1 Grunt plugins
Grunt only provides the framework; you’re in charge of picking the right plugins to
perform the tasks you need. For example, you might use the grunt-contrib-
concat to bundle assets together. You also need to configure these plugins to do
what you want; for example, providing a list of files to bundle and the path to the
resulting bundled file.

 Plugins can define one or more Grunt tasks. These plugins are written and con-
figured using JavaScript on the Node platform. The Node community developed
and maintains hundreds of ready-made Grunt plugins, which you only need to con-
figure, as you’ll see in a moment. You can also create Grunt plugins yourself if you
can't find one that suits your particular needs.

B.2 Tasks and targets
Tasks can be configured to conform to multiple targets, and each target is defined
by adding more data when configuring the task. A common use of task targets is to
compile an application for different distributions, as explained in chapter 3.
276

277Command-line interface
Targets are useful for reusing the same task for slightly different purposes. LESS is an
expressive language that compiles to CSS. You might have LESS task targets that com-
pile different parts of your application. Maybe you need to use different targets
because one of them makes debugging easier for you by adding source maps that
point to the original LESS code, while the other target might go as far as minifying
your style sheet.

B.3 Command-line interface
Grunt comes with a command-line interface (CLI), called grunt, which you can use
to run your tasks. As an example of how this tool works, let's analyze the following
statement:

grunt less:debug mocha

Assuming you’ve already configured Grunt, which you’ll learn about in a moment,
this statement would execute the debug target for the less task, and, if that task suc-
ceeded, then any targets configured for the mocha task would get executed. It’s impor-
tant to note that if a Grunt task fails, Grunt won’t attempt to run any more tasks.
Instead, it will exit after printing the reasons why it failed.

 It’s worth mentioning that tasks are executed serially: the next task begins once the
current task finishes. They don’t run in parallel. Instead of giving the CLI a full task list
every time, you can use task aliases: tasks that execute a list of tasks. If you use the spe-
cial name default when creating an alias, then the tasks assigned to that alias will be
run whenever the grunt CLI is executed without any task arguments.

 Enough theory! Let's get our hands dirty with hands-on Grunting; you’ll start by
installing Grunt and expand on all of the areas we’ve discussed. To install Grunt, the
first thing you’ll need is Node, the platform Grunt works on. To install Node, head
over to appendix A on Node, and then get right back here. I’ll wait.

 Okay, let’s install the Grunt CLI. Using npm in your terminal, type the following
command:

npm install --global grunt-cli

The --global flag tells npm that this isn’t a project-level package install, but rather a
system-wide install. Essentially, this will ultimately enable you to use the package from
your command line directly. You can verify the CLI was installed properly by running
the following command:

grunt --version

That should output the version number for the currently installed version of the
Grunt CLI. Great! Everything you did so far was a one-time thing; you don’t need to
worry about doing any of those steps again. But how do you use Grunt?

278 APPENDIX B Introduction to Grunt
B.4 Using Grunt in a project
Let’s say you have a PHP web application (although the server-side language doesn’t
matter), and you want to automatically run a linter, which is a static analysis tool that
can tell you about issues with the syntax you’re using, whenever you change a Java-
Script file.

 The first thing you’ll need is a package.json file in your project root. This is used
by npm to keep a manifest of all the dependencies you have. This file doesn’t need
much; it needs to be a valid JSON object, so {} will do. Change the directory to your
application’s root directory and type the following into your terminal:

echo "{}" > package.json

Next, you’ll have to install a few dependencies. You’ll install grunt, which is the frame-
work itself, not to be confused with grunt-cli, which looks things up and defers task
execution to the locally installed grunt package. To get started, you’ll also install
grunt-contrib-jshint, an easy-to-configure task to run JSHint, a JavaScript lint tool,
as a Grunt task. The npm install command allows you to install more than one pack-
age at once, so let’s do that:

npm install --save-dev grunt grunt-contrib-jshint

The --save-dev flag tells npm to include these packages in the package.json mani-
fest, and tag them as development dependencies. It’s a best practice to mark as a
development dependency anything that shouldn't be executed in production servers.
Build components should always run before executing the application.

 You have the framework, the plugin, and the CLI; all that’s missing is configuring
the tasks, so you can start using Grunt.

B.5 Configuring Grunt
To configure Grunt, you need to create a Gruntfile.js file. That’s where all your
build task configuration and definitions will live. The following code is an example
Gruntfile.js:

module.exports = function (grunt) {
 grunt.initConfig({
 jshint: {
 browser: ['public/js/**/*.js']
 }
 });
 grunt.loadNpmTasks('grunt-contrib-jshint');
 grunt.registerTask('default', ['jshint']);
};

As explained in appendix A on Node.js, where we discussed Common.JS modules,
here the module exports a function, which Grunt will invoke, configuring your tasks.
The initConfig method takes an object, which will serve as the configuration for all
of your different tasks and targets. Each top-level property in this configuration object
represents configuration for a particular task. For example, jshint contains the

279Globbing patterns
configuration for the jshint task. Properties in each task’s configuration represent
target configuration.

 In this case, you’re configuring the browser target for jshint to ['public/js/**/
*.js']. This is called a globbing pattern, and it’s used to declare which files to target.
You’ll learn all about globbing patterns in a moment; for now it should suffice to say
that it’ll match any .js files in public/js or in a subdirectory.

 The loadNpmTasks method tells Grunt, “Hey, load any tasks you can find in this
Grunt plugin,” so it’s essentially loading the jshint task. You’ll learn how to write your
own tasks later.

 Last, registerTask can define task aliases by passing it a task name and an array of
tasks it should execute. You’ll set it to jshint so it will run jshint:browser and any
other jshint targets you might add in the future. The default name means that this
task will be run whenever you execute grunt with no task arguments in the command
line. Let’s try that!

grunt

Congratulations, you’ve executed your first Grunt task! However, you’re probably con-
fused about the whole “globbing for files” thing; let’s fix that.

B.6 Globbing patterns
Using patterns such as ['public/js/**/*.js'] helps quickly define what files to
work with. These patterns are easy to follow, as long as you understand how to use
them appropriately. Glob allows you to write plain text to refer to real file system
paths. For example, you could use docs/api.txt without any special characters, and
that would match the file at docs/api.txt. Note that this is a relative path, and that
it’ll be relative to your Gruntfile.

 If you add special characters into the mix, things get interesting. For instance,
changing your last example to docs/*.txt helps us match all text files in the docs
directory. If you’d like to include subdirectories as well, then you need to use **,
known as the globstar pattern: docs/**/*.txt.

B.6.1 Brace expressions

Then there’s brace expansion. Suppose you want to match many different types of
images; you might want to use something akin to the following pattern: images/
*.{png,gif,jpg}. That’d match any images ending in .png, .gif, and .jpg. It’s not
limited to extensions, although that’s the most common use case. You could also use
brace expansion to match different directories: public/{js,css}/**/*. Note that
we’re excluding the extension. That works fine; the star will match any file type and
not be limited to one in particular.

B.6.2 Negation expressions

Last, there are negation expressions and these are somewhat tricky to get right. Negation
expressions can be defined as “remove the matching results from what you’ve matched so

280 APPENDIX B Introduction to Grunt
far.” Patterns are processed in order, so inclusion and exclusion order is significant.
Negation patterns begin with an !. Here’s a common use case: ['js/**/*.js', '!js/
vendor/**/*.js']. That says, “Include everything that’s in the js directory, but not if
it’s in js/vendor.” That’s useful for linting code you’ve authored, while leaving third-
party libraries alone.

 There’s one particular caveat of globbing I’d like to address; I often read people
complaining about ['js', '!js/vendor'] “not working,” and the reason for that is
rather simple to understand now that you know how globbing works. The first glob-
bing pattern will match the js directory itself, and the !js/vendor won’t do anything.
Later, the js directory will be expanded to every file in it, including those in js/ven-
dor. A quick fix to this issue is to have the Globber expand the directories for you,
using globstars: ['js/**/*.js', '!js/vendor/**'].

 There are two more topics for you to gulp down: configuring tasks and creating
your own ones. Let’s go ahead and see how we can configure Grunt to run a task from
the ground up.

B.7 Setting up a task
Now you’re going to learn how to set up a random task...by browsing the internet! As
a quick-start trick, let’s go back to the original example from section B.1. Remember
how you configured it to run JSHint? Here’s the code you used:

module.exports = function (grunt) {
 grunt.initConfig({
 jshint: {
 browser: ['public/js/**/*.js']
 }
 });
 grunt.loadNpmTasks('grunt-contrib-jshint');
 grunt.registerTask('default', ['jshint']);
};

Let’s suppose you want to minify (covered in chapter 2) your CSS style sheets, and then
concatenate them into a single file. You could Google around for grunt plugins to do
that, or you might visit http://gruntjs.com/plugins and look around for yourself. Go
ahead and visit that page and then type css. One of the first results you’ll see is grunt-
contrib-cssmin, and it’ll link to the page for that package on the npm website.

 On npm, you’ll usually find detailed README files, and links to the complete source
code on GitHub repositories. In this case, it instructs you to install the package from
npm and add a loadNpmTasks to your Gruntfile.js, as shown in the following code:

module.exports = function (grunt) {
 grunt.initConfig({
 jshint: {
 browser: ['public/js/**/*.js']
 }
 });
 grunt.loadNpmTasks('grunt-contrib-jshint');

http://gruntjs.com/plugins

281Setting up a task
 grunt.loadNpmTasks('grunt-contrib-cssmin');
 grunt.registerTask('default', ['jshint']);
};

You’d also have to install the package from npm, the way you did with grunt-
contrib-jshint earlier:

npm install --save-dev grunt-contrib-cssmin

Now all you need to do is to configure it. Grunt projects are usually well documented,
giving you a few configuration examples on their home pages, as well as detailed lists
of all the options available to them. Packages named grunt-contrib-* were devel-
oped by the team behind Grunt itself, so they should mostly work without any prob-
lems. When canvassing for the right package for a task, move on if something doesn’t
work, or isn’t well documented. You don’t have to marry them. Popularity (npm
installs and GitHub stars) are good indicators of how good a package is.

 It turns out that the first use example shows that you can also concatenate your CSS
with this package, so you don’t need an extra task to do that. Here’s that example,
showing how you can combine two files while minifying them using grunt-contrib-
cssmin:

cssmin: {
 combine: {
 files: {
 'path/to/output.css': ['path/to/input_one.css', 'path/to/

input_two.css']
 }
 }
}

You can easily adapt and integrate that with your needs. You’ll also add a build task
alias. Aliases are useful for defining workflows, as you’ll see throughout part 1. For
instance, chapter 3 uses them to define the debug and release workflows:

module.exports = function (grunt) {
 grunt.initConfig({
 jshint: {
 browser: ['public/js/**/*.js']
 },
 cssmin: {
 all: {
 files: { 'build/css/all.min.css': ['public/css/**/*.css'] }
 }
 }
 });
 grunt.loadNpmTasks('grunt-contrib-jshint');
 grunt.loadNpmTasks('grunt-contrib-cssmin');
 grunt.registerTask('default', ['jshint']);
 grunt.registerTask('build', ['cssmin']);
};

282 APPENDIX B Introduction to Grunt
That’s it! If you run grunt build in your terminal, it’ll bundle your CSS together and
then minify it, writing it to the all.min.css file. You can find this example, along
with the others we’ve discussed so far, in the accompanying source code samples,
under appendix/introduction-to-grunt. Let’s wrap up this appendix by explaining
how you can write your own Grunt task.

B.8 Creating custom tasks
Grunt has two kinds of tasks: multitasks and regular tasks. The difference, as you
might suspect, is that multitasks allow consumers to set up different task targets and
run them individually. In practice, almost all Grunt tasks are multitasks. Let’s walk
through creating one!

 You’ll create a task that can count words in a list of files, and then have it fail if it
counts more words than what it expected. To begin with, let’s glance at this piece of
code:

grunt.registerMultiTask('wordcount', function () {
 var options = this.options({
 threshold: 0
 });
});

Here, you’re setting a default value for the threshold option, which can be overwrit-
ten when the task gets configured, as you’ll see in a minute. Because you used regis-
terMultiTask, you can support multiple task targets. Now you need to go through the
list of files, read them, and count the words in them:

var total = 0;
this.files.forEach(function (file) {
 file.src.forEach(function (src) {
 if (grunt.file.isDir(src)) {
 return;
 }
 var data = grunt.file.read(src);
 var words = data.split(/[^\w]+/g).length;
 total += words;
 grunt.verbose.writeln(src, 'contains', words, 'words.');
 });
});

Grunt will provide a files object, which you can use to loop through the files, filter-
ing out the directories and reading data out of the files. Once you’ve computed the
word counts, you can print the result and fail if the threshold was exceeded:

if (options.threshold) {
 if (total > options.threshold) {
 grunt.log.error('Threshold of', options.threshold, 'exceeded. Found',

total, 'words.');
 grunt.fail.warn('Too many words');
 } else {
 grunt.log.ok(total, 'words found in total.');
 }

283Creating custom tasks
} else {
 grunt.log.writeln(total, 'words found in total.');
}

Last, all you have to do is configure a task target, the way you did before:

wordcount: {
 capped: {
 files: {
 src: ['text/**/*.txt']
 },
 options: {
 threshold: 3000
 }
 }
}

If the word count for all those files is more than 3,000, the task will fail. Note that if
you hadn't provided a threshold, it would use the default value of 0, which you speci-
fied in the task. This is enough information to understand Grunt, which we intro-
duced in chapter 1. In chapter 2, you’ll get a deeper knowledge of build tasks
themselves, how those should work, and how you can compose tasks to create a build
workflow for development and another one for releases and deployments.

appendix C
Picking your build tool

Deciding on a technology is always difficult. You don’t want to make commitments
you can’t back out of, but eventually you have to choose something. Committing to
a build technology is no different in this regard: it’s an important choice and you
should treat it as such.

 For the purposes of this book, I decided on Grunt as my build tool of choice. I
made an effort to not go overboard on Grunt-specific concepts, but rather to
explain build processes in the grand scheme of things, using Grunt as an acces-
sory—the means to an end. I chose Grunt for several reasons; a few of these are
shown in the following list:

■ Grunt has a healthy community around it, even on Windows.
■ It’s widely popular; it’s even used beyond the Node community.
■ It’s easy to learn; you pick plugins and configure them. No advanced con-

cepts are used and no prior knowledge is needed.

These are all good reasons to use Grunt to teach build processes in a book, but I
want to make it clear I don’t think Grunt is the single best option out there; other
popular build tools might fit your needs better than Grunt.

 I wrote this appendix to help you understand the differences between the three
build tools I use most often in front-end development workflows:

■ Grunt, the configuration-driven build tool that you use throughout this book
■ npm, a package manager that can also double as a build tool
■ Gulp, a code-driven build tool that’s somewhere between Grunt and npm

I’ll also lay out the situations in which a particular tool may be better than the others.
 You should read part 1 and appendix A of the book before going through this

appendix. Grunt is introduced in appendix A and covered throughout part 1. I
284

285npm as a build tool
assume basic knowledge of Grunt in this appendix. As a first step, let’s discuss where
Grunt excels.

C.1 Grunt: the good parts
The single best aspect of Grunt is its ease of use. It enables programmers to develop
build flows using JavaScript almost effortlessly. All that’s required is searching for the
appropriate plugin, reading its documentation, and then installing and configuring it.
This ease of use means members of large development teams, who are often of varying
skill levels, don’t have any trouble tweaking the build flow to meet the latest needs of
the project. The team doesn’t need to be fluent in Node, either; they need to add
properties to the configuration object and task names to the different arrays that
make up the build flow.

 Grunt’s plugin base is large enough that you’ll rarely find yourself developing your
own build tasks, which also enables you and your team to rapidly develop a build pro-
cess. This rapid development is crucial if you’re going for a build first approach, even
when taking small steps and progressively developing your build flows.

 It’s also feasible to manage deployments through Grunt, as many packages exist to
accommodate for those tasks, such as grunt-git, grunt-rsync, and grunt-ec2.

C.2 Grunt: the bad parts
Where does Grunt fall short? It may get too verbose if you have a significantly large
build flow. It’s often hard to make sense of the build flow as a whole once it has been
in development for a while. When the task count in your build flows gets to the double
digits, it’s almost guaranteed that you’ll find yourself having to run targets that belong
to the same task individually, so you can compose the flow in the right order.

 Because tasks are configured declaratively, you’ll also have a hard time figuring out
the order in which tasks get executed. In addition, your team should be dedicated to
writing maintainable code when it comes to your builds. In the case of Grunt, you’ll
maintain separate files for the configuration of each task, or at least for each of the
build flows that your team uses.
Now that we’ve identified the good and the bad in Grunt, as well as the situations in
which it might be a good fit for your project, let’s talk about npm: how it can be used
as a build tool and its differences from Grunt.

C.3 npm as a build tool
To use npm as a build tool, you’ll need a package.json file and npm itself. Defining
tasks for npm is as easy as adding properties to a scripts object in your package man-
ifest. The name of the property will be used as the task name, and the value will be the
command you want to execute. The following snippet represents a typical pack-
age.json file, using the JSHint command-line interface to run a linter through your
JavaScript files and check for errors. Using npm, you can run any shell command at
your disposal:

286 APPENDIX C Picking your build tool
{
 "scripts": {
 "test": "jshint . --exclude node_modules"
 },
 "devDependencies": {
 "jshint": "^2.5.1"
 }
}

Once the task is defined, it can be executed in your command line by running the fol-
lowing command:

npm run test

Note that npm provides shortcuts for specific task names. In the case of test, you can
do npm test and omit the run verb. You can compose build flows by chaining npm run
commands together in your script declarations. The following listing allows you to run
the unit task right after the lint task by executing the npm test command.

{
 "scripts": {
 "lint": "jshint . --exclude node_modules",
 "unit": "tape test/*",
 "test": "npm run lint && npm run unit"
 },
 "devDependencies": {
 "jshint": "^2.5.1",
 "tape": "^2.10.2"
 }
}

You can also schedule tasks as background jobs, making them asynchronous. Suppose
you have the following package file, where you’ll copy a directory in your JavaScript

Grunt in a nutshell

Grunt has the following benefits:
■ Thousands of plugins that do what you need.
■ Easy-to-understand and tweak configuration.
■ Only a basic understanding of JavaScript is necessary.
■ Supports cross-platform development. Yes, even Windows!
■ Works great for most teams.

Grunt has a few drawbacks:
■ Configuration-based build definitions become increasingly unwieldy as they

grow larger.
■ It’s hard to follow build flows when there are many multitarget task definitions

involved.
■ Grunt is considerably slower than other build tools.

Listing C.1 Chaining npm run commands together to make build flows

287npm as a build tool
build flow and compile a Stylus style sheet during your CSS build flow (Stylus is a CSS
preprocessor). In this case, running the tasks asynchronously is ideal. You can achieve
that using & as a separator, or after a command, as shown in the following listing of
your package manifest. Afterward, you can execute npm run build to process both
steps concurrently.

{
 "scripts": {
 "build-js": "cp -r src/js/vendor bin/js",
 "build-css": "stylus src/css/all.styl -o bin/css",
 "build": "npm run build-js & npm run build-css"
 },
 "devDependencies": {
 "stylus": "^0.45.0"
 }
}

Sometimes a shell command won’t suffice, and you may need a Node package such as
stylus or jshint, as you saw in the last few examples. These dependencies should be
installed through npm.

C.3.1 Installing npm task dependencies

The JSHint CLI isn’t necessarily available in your system, and you have two ways to
install it:

■ Globally, when using it from your command line
■ Adding it as a devDependency, when using it in an npm run task

If you want to use the tool directly from your command line, and not in an npm run
task, you should install it globally using the -g flag in the following command:

npm install -g jshint

If you’re using the package in an npm run task, then you should add it as a dev-
Dependency, as shown in the following command. That allows npm to find the JSHint
package on any system where the package dependencies are installed, rather than
expecting the environment to have JSHint installed globally. This applies to any CLI
tools that aren’t readily available in operating systems.

npm install --save-dev jshint

You aren’t limited to using only CLI tools. In fact, npm can run any shell script. Let’s
dig into that!

C.3.2 Using shell scripts in npm tasks

The following example is a script that runs on Node and displays a random emoji
string. The first line tells the environment that the script is in Node.

#!/usr/bin/env node

Listing C.2 Using Stylus

288 APPENDIX C Picking your build tool
var emoji = require(‘emoji-random’);
var emo = emoji.random();

console.log(emo);

If you place that script in a file named emoji at the root of your project, you’d have to
declare emoji-random as a dependency and add the command to the scripts object
in the package manifest:

{
 "scripts": {
 "emoji": "./emoji"
 },
 "devDependencies": {
 "emoji-random": "^0.1.2"
 }
}

Once that’s out of the way, running the command is merely a matter of invoking npm
run emoji in your terminal, which will execute the command you specified as the
value for emoji in the scripts property of your package manifest.

C.3.3 npm and Grunt compared: the good and the bad

Using npm as a build tool has several advantages over Grunt:

■ You aren’t constrained to Grunt plugins, and you can take advantage of all of
npm, which hosts tens of thousands of packages.

■ You won’t need any additional CLI tooling or files other than npm, which you’re
already using to manage dependencies and your package.json manifest, where
dependencies and your build commands are listed. Because npm runs CLI tools
and Bash commands directly, it’ll perform way better than Grunt could.

Take into account that one of the biggest disadvantages of Grunt is the fact that it’s
I/O bound. Most Grunt tasks read from disk and then write to disk. If you have several
tasks working on the same files, chances are that the file will be read from disk multi-
ple times. In Bash, commands can pipe the output of a command directly into the
next one, avoiding the extra I/O overhead in Grunt.

 Probably the biggest disadvantage to npm is the fact that Bash doesn’t play well
with Windows environments. Open source projects using npm run might run into
issues when people try to fiddle with them on Windows. In a similar light, Windows
developers will try to use alternatives to npm. That drawback pretty much rules out
npm for projects that need to run on Windows.

 Gulp, another build tool, presents similarities to both Grunt and npm, as you’ll dis-
cover in a moment.

289Gulp: the streaming build tool
C.4 Gulp: the streaming build tool
Gulp is similar to Grunt in that it relies on plugins and it’s cross-platform, supporting
Windows users as well. Gulp is a code-driven build tool, in contrast with Grunt’s
declarative approach to task definition, making your task definitions a bit easier to
read. Gulp is also similar to npm run in that it uses Node streams to read files and pipe
data through functions that transform it into output that will end up written to disk.
This means Gulp doesn’t have the disk-intensive I/O issues you may observe when
using Grunt. It’s also faster than Grunt for the same reason: less time spent in I/O.

 The main disadvantage to using Gulp is that it relies heavily on streams, pipes, and
asynchronous code. Don’t get me wrong; if you’re into Node, that’s definitely an
advantage. But the issue with those concepts is that unless you and your team are well
versed in Node, you’ll probably run into issues dealing with streams if you have to
build your own Gulp task plugins.

When working in teams, Gulp isn’t as prohibitive as npm. Most of your front-end team
probably knows JavaScript, although chances are they’re not that fluent in Bash script-
ing, and some of them may be using Windows! That’s why I usually suggest keeping
npm run to your personal projects and maybe using Gulp in projects where the team is
comfy with Node, and Grunt everywhere else. That’s my personal opinion; figure out
what works best for you and your team. Also, you shouldn’t constrain yourself to
Grunt, Gulp, or npm run because those tools work for me. Do research and maybe
you’ll find a tool that you like even better than those three.

 Let’s walk through several examples to get a feel for what Gulp tasks look like.

RUNNING TESTS IN GULP

Gulp is similar to Grunt in its conventions. In Grunt there’s a Gruntfile.js file, used
to define your build tasks, and in Gulp the file needs to be named Gulpfile.js

Gulp

There are a few things that are great about Gulp:
■ High-quality plugins are readily available.
■ Code-driven means your Gulpfile will be easier to follow than a configuration-

driven Gruntfile.
■ Faster than Grunt because it uses stream pipes rather than read and write to

disk every time.
■ Supports cross-platform development, the way Grunt does.

Gulp has drawbacks as well:
■ It might be hard to learn if you don’t have experience with Node.
■ Developing quality plugins is hard for similar reasons.
■ All of your team (current members and prospects) should be comfortable with

streams and asynchronous code.
■ The task dependency system leaves much to be desired.

290 APPENDIX C Picking your build tool
instead. The other minor difference is that in the case of Gulp, the CLI is contained in
the same package as the task runner, so you have to install the gulp package from
npm both locally and globally:

touch Gulpfile.js
npm install -g gulp
npm install --save-dev gulp

To get started, I’ll create a Gulp task to lint a JavaScript file, using JSHint the way
you’ve already seen with Grunt and npm run. In the case of Gulp, you have to install
the gulp-jshint Gulp plugin for JSHint:

npm install --save-dev gulp-jshint

Now that you’re fully equipped with the CLI that you globally installed, the local gulp
installation, and the gulp-jshint plugin, you can put together the build task to run
the linter. To define build tasks with Gulp, you have to write them programmatically in
the Gulpfile.js file.

 First, use gulp.task, passing it a task name and a function. The function contains
all of the code necessary to run that task. Here you should use gulp.src to create a
read stream into your source files. You can provide the paths to individual files, or use
a globbing pattern such as the ones you’ve seen in your experiences learning about
Grunt. That same stream should be piped into the JSHint plugin, which you can con-
figure or use with the defaults it comes with. Then all you have to do is pipe the results
of the JSHint task through a reporter and have it print the results to your terminal. All
of what I described results in the following Gulpfile:

var gulp = require('gulp');
var jshint = require('gulp-jshint');

gulp.task('test’, function () {
 return gulp
 .src('./sample.js')
 .pipe(jshint())
 .pipe(jshint.reporter('default'));
});

I should also mention that you’re returning the stream so Gulp understands that it
should wait for the data to stop flowing before it considers the task completed. You
can use a custom JSHint reporter to make the output more concise and easier to read
by humans. JSHint reporters don’t need to be Gulp plugins, so you can use jshint-
stylish for example. Let’s install it locally:

npm install --save-dev jshint-stylish

The updated Gulpfile should look like the following code. It’ll load the jshint-
stylish module to format the reporting output.

var gulp = require('gulp');
var jshint = require('gulp-jshint');

By returning the stream, Gulp knows to
wait until data stops flowing through it.

291Gulp: the streaming build tool
gulp.task('test', function () {
 return gulp
 .src('./sample.js')
 .pipe(jshint())
 .pipe(jshint.reporter('jshint-stylish'));
});

You’re done! That’s all you have to do to declare a Gulp task named test. It can be
run using the following command, provided you installed the gulp CLI globally:

gulp test

That was a trivial example. You can pipe the output of the JSHint linter through a
reporter that will print the results of the linting test. You can also write output to disk
using gulp.dest, which creates a write stream. Let’s step through another build task.

BUILDING A LIBRARY IN GULP

To get started, let’s do the bare minimum—read from disk with gulp.src and write
back to disk piping the contents of the source file into gulp.dest, effectively copying
the file into another directory:

var gulp = require('gulp');

gulp.task('build', function () {
 return gulp
 .src('./sample.js')
 .pipe(gulp.dest('./build'));
});

Copying the file is nice, but it doesn’t minify its contents. To do that, you have to use a
Gulp plugin. In this case you can use gulp-uglify, a plugin for the popular UglifyJS
minifier:

var gulp = require('gulp');
var uglify = require('gulp-uglify');

gulp.task('build', function () {
 return gulp
 .src('./sample.js')
 .pipe(uglify())
 .pipe(gulp.dest('./build'));
});

As you probably realized, streams let you add more plugins while only reading and
writing to disk once. As an example, let’s pipe through gulp-size as well, which will
calculate the size of the contents in the buffer and print that to the terminal. Note
that if you add it before Uglify then you get the unminified size, and if you add it after,
you get the minified size. You could also do both!

var gulp = require('gulp');
var uglify = require('gulp-uglify');
var size = require('gulp-size');

gulp.task('build', function () {

292 APPENDIX C Picking your build tool
 return gulp
 .src('./sample.js')
 .pipe(uglify())
 .pipe(size())
 .pipe(gulp.dest('./build'));
});

To reinforce the point on the ability to add or remove pipes as needed, let’s add one
last plugin. This time you’ll use gulp-header to add license information to the mini-
fied piece of code, such as the name, the package version, and the license type. To run
the example shown in the following listing, enter gulp build in your command line.

var gulp = require('gulp');
var uglify = require('gulp-uglify');
var size = require('gulp-size');
var header = require('gulp-header');
var pkg = require('./package.json');
var info = '// <%= pkg.name %>@v<%= pkg.version %>, <%= pkg.license %>\n';

gulp.task('build', function () {
 return gulp
 .src('./sample.js')
 .pipe(uglify())
 .pipe(header(info, { pkg : pkg }))
 .pipe(size())
 .pipe(gulp.dest('./build'));
});

As in Grunt, in Gulp you can define flows by passing in an array of task names to
gulp.task, instead of a function. The main difference between Grunt and Gulp in
this regard is that Gulp executes these dependencies asynchronously, while Grunt exe-
cutes them synchronously.

gulp.task('build', ['build-js', 'build-css']);

In Gulp, if you want to run tasks synchronously you have to declare a task as a depen-
dency and then define your own task. All dependencies are executed before your task
starts.

gulp.task('build', ['dep'], function () {
 // here goes the task that depends on 'dep'
});

If you take anything away from this appendix, it should be that it doesn’t matter which
tool you use, as long as it allows you to compose the build flows you need in a way that
doesn’t make you work too hard for it.

Listing C.3 Using gulp-header to add license information

appendix D
JavaScript code

quality guide

This style guide aims to provide the ground rules for an application’s JavaScript
code, so it's highly readable and consistent across different developers on a team.
The focus is put on quality and coherence across different pieces of your application.

D.1 Module organization
This style guide assumes you’re using a module system such as CommonJS,1 AMD,2

ES6 Modules,3 or any other kind of module system. For a comprehensive introduc-
tion to module systems head over to chapter 5; I’ll wait.

 Module systems provide individual scoping, avoid leaks to the global project,
and improve code base organization by automating dependency graph generation,
instead of having to resort to manually creating tens of <script> tags.

 Module systems also provide Dependency Injection patterns, which are crucial
when it comes to testing individual components in isolation.

D.1.1 Strict mode

Always put “use strict”;4 at the top of your modules. Strict mode allows you to
catch nonsensical behavior, discourages poor practices, and is faster because it
allows compilers to make certain assumptions about your code.

1 The CommonJS module specification hosts a wiki page at http://bevacqua.io/bf/commonjs.
2 RequireJS has a comprehensive article on the purpose of AMD at http://bevacqua.io/bf/amd.
3 Getting started with ES6 is much easier these days! See http://bevacqua.io/bf/es6-intro.
4 The Mozilla Developer Network (MDN) has a great article explaining Strict Mode in JavaScript at http://

bevacqua.io/bf/strict.
293

http://bevacqua.io/bf/commonjs
http://bevacqua.io/bf/amd
http://bevacqua.io/bf/es6-intro
http://bevacqua.io/bf/strict
http://bevacqua.io/bf/strict

294 APPENDIX D JavaScript code quality guide
D.1.2 Spacing

Spacing must be consistent across every file in the application. To this end, using Editor-
Config is highly encouraged. EditorConfig works by dropping an .editorconfig5 file
in your project root, and then you should install the EditorConfig plugin for your favor-
ite text editor. Here are the defaults I suggest to get started with JavaScript indentation:

editorconfig.org
root = true
[*]
indent_style = space
indent_size = 2
end_of_line = lf
charset = utf-8
trim_trailing_whitespace = true
insert_final_newline = true
[*.md]
trim_trailing_whitespace = false

EditorConfig can take care of indentation transparently, and everyone can consis-
tently produce the right amount of tabs or spaces by pressing the tab key. Settling for
either tabs or spaces is up to the particularities of a project, but I recommend using
two spaces for indentation.

 Spacing doesn’t only entail tabbing, but also the spaces before, after, and in
between arguments of a function declaration. This kind of spacing is typically highly
difficult to get right, and it’ll be hard for most teams to even arrive at a scheme that
will satisfy everyone.

function () {}

function(a, b){}

function(a, b) {}

function (a,b) {}

Try to keep these differences to a minimum, but don’t put much thought into it
either.

 Where possible, improve readability by keeping lines below the 80-character mark.

D.1.3 Semicolons

Automatic Semicolon Insertion (ASI) isn’t a feature. Don’t rely on it.6 It’s super com-
plicated7 and there’s no practical reason to burden all of the developers in a team for
not possessing the frivolous knowledge of how ASI works. Avoid headaches; avoid ASI.
Always add semicolons where needed.

5 Learn more about EditorConfig at http://bevacqua.io/bf/editorconfig.
6 Ben Alman has good advice about why you should use semicolons instead of omitting them at http://

bevacqua.io/bf/semicolons.
7 A guide to the inner workings of automatic semicolon insertion (ASI) is available at http://bevacqua.io/bf/asi.

http://bevacqua.io/bf/editorconfig
http://bevacqua.io/bf/semicolons
http://bevacqua.io/bf/semicolons
http://bevacqua.io/bf/asi

295Strings
D.1.4 Linting

Given that JavaScript doesn’t require a compilation step that would take care of unde-
clared variables, linting is almost a necessity. Again, don’t use a linter that’s super-
opinionated about how the code should be styled, like jslint8 is. Instead use some-
thing more lenient, like jshint9 or eslint10. Here are a few tips when using JSHint:

■ Declare a .jshintignore file and include node_modules, bower_components,
and so on.

■ You can use a .jshintrc file like the one below to keep your rules together:

{
 "curly": true,
 "eqeqeq": true,
 "newcap": true,
 "noarg": true,
 "noempty": true,
 "nonew": true,
 "sub": true,
 "undef": true,
 "unused": true,
 "trailing": true,
 "boss": true,
 "eqnull": true,
 "strict": true,
 "immed": true,
 "expr": true,
 "latedef": "nofunc",
 "quotmark": "single",
 "indent": 2,
 "node": true
}

By no means are these rules the ones you should stick to, but it’s important to find the
sweet spot between not linting at all, and not being super-obnoxious about coding
style. If left unchecked, you may succumb to common mistakes such as missing semi-
colons or improperly closing string quotes, but if you go overboard you may find that
your team spends more time taking care of code style than writing meaningful code.

D.2 Strings
Strings should always be quoted using the same quotation mark. Use ' or " consis-
tently throughout your code base. Ensure the team is using the same quotation mark
in every portion of JavaScript that’s authored.

8 JSLint, the original JavaScript linter, can still be used online today at http://bevacqua.io/bf/jslint.
9 JSHint is a modern alternative that’s popularly observed in build processes. Find it at http://bevacqua.io/bf/

jshint.
10 ESLint is yet another lint tooling effort, aiming to be less concerned about style checking. Find it at http://

bevacqua.io/bf/eslint.

http://bevacqua.io/bf/jslint
http://bevacqua.io/bf/jshint
http://bevacqua.io/bf/jshint
http://bevacqua.io/bf/eslint
http://bevacqua.io/bf/eslint

296 APPENDIX D JavaScript code quality guide
BAD STRINGS
var message = 'oh hai ' + name + "!";

GOOD STRINGS
var message = 'oh hai ' + name + '!';

Usually you’ll be a happier JavaScript developer if you hack together a parameter-
replacing method such as util.format in Node.11 That way it’ll be far easier to format
your strings, and the code looks cleaner too.

BETTER STRINGS
var message = util.format('oh hai %s!', name);

You can implement something similar using the following piece of code:

function format () {
 var args = [].slice.call(arguments);
 var initial = args.shift();
 function replacer (text, replacement) {
 return text.replace('%s', replacement);
 }
 return args.reduce(replacer, initial);
}

To declare multiline strings, particularly when talking about HTML snippets, it’s some-
times best to use an array as a buffer and then join its parts. The string concatenating
style may be faster but it’s also much harder to keep track of:

var html = [
 '<div>',
 format('%s', name),
 '</div>'
].join('');

With the array builder style, you can also push parts of the snippet and then join every-
thing together at the end. This is what string templating engines such as Jade12 prefer
to do.

D.2.1 Variable declaration

Always declare variables in a consistent manner, and at the top of their scope. Keeping
variable declarations to one-per-line is encouraged. Comma-first, a single var state-
ment, multiple var statements, it’s all fine, but be consistent across the project. Ensure
that everyone on your team follows the style guide, for consistency.

INCONSISTENT DECLARATION
var foo = 1,
 bar = 2;
var baz;
var pony;
var a
 , b;

11 The documentation for Node’s util.format can be found at http://bevacqua.io/bf/util.format.
12 Learn more about templating in Jade by visiting their GitHub repository at http://bevacqua.io/bf/jade.

http://bevacqua.io/bf/util.format
http://bevacqua.io/bf/jade

297Conditionals
or

var foo = 1;
if (foo > 1) {
 var bar = 2;
}

Note that the following example is okay not only because of its style, but also because
the statements are consistent with each other.

CONSISTENT DECLARATIONS
var foo = 1;
var bar = 2;
var baz;
var pony;
var a;
var b;
var foo = 1;
var bar;
if (foo > 1) {
 bar = 2;
}

Variable declarations not immediately assigned a value can share the same line of
code.

ACCEPTABLE DECLARATION
var a = 'a';
var b = 2;
var i, j;

D.3 Conditionals
Brackets are enforced. This, together with a reasonable spacing strategy, will help you
avoid mistakes such as Apple’s SSL/TLS bug.13

BAD CONDITIONALS
if (err) throw err;

GOOD CONDITIONALS
if (err) {
 throw err;
}

Avoid using == and != operators; always favor === and !==. These operators are called
the “strict equality operators,” whereas their counterparts will attempt to cast the oper-
ands14 into the same value type. If possible, try to keep even single-statement condi-
tionals in a multiline format.

BAD COERCING EQUALITY
function isEmptyString (text) {
 return text == '';

13 A detailed report on Apple’s “GOTO Fail” bug can be found at http://bevacqua.io/bf/gotofail.
14 Equality operators have a dedicated page on MDN at http://bevacqua.io/bf/equality.

http://bevacqua.io/bf/gotofail
http://bevacqua.io/bf/equality

298 APPENDIX D JavaScript code quality guide
}
isEmptyString(0);
// <- true

GOOD STRICT EQUALITY
function isEmptyString (text) {
 return text === '';
}
isEmptyString(0);
// <- false

D.3.1 Ternary operators

Ternary operators are fine for clear-cut conditionals, but unacceptable for confusing
choices. As a rule, if you can’t eye-parse it as fast as your brain can interpret the text
that declares the ternary operator, chances are it’s probably too complicated for its
own good.

 jQuery is a prime example of a code base that’s filled with nasty ternary operators.15

BAD TERNARY OPERATORS
function calculate (a, b) {
 return a && b ? 11 : a ? 10 : b ? 1 : 0;
}

GOOD TERNARY OPERATORS
function getName (mobile) {
 return mobile ? mobile.name : 'Generic Player';
}

In cases that may prove confusing, use if and else statements instead.

D.3.2 Functions

When declaring a function always use the function declaration form16 instead of func-
tion expressions.17 If you try to use your function expressions before they’re assigned
to a variable, you’ll get an error. In contrast, function declarations are hoisted18 to the
top of the scope, meaning they’ll work regardless of where you place them in your
code. You can learn all the details about hoisting in chapter 5.

USING EXPRESSIONS IS BAD
var sum = function (x, y) {
 return x + y;
};

USING DECLARATIONS IS GOOD
function sum (x, y) {
 return x + y;
}

15 A few examples of ternary operator misuse in jQuery can be found at http://bevacqua.io/bf/jquery-ternary.
16 StackOverflow has an answer that covers function declarations at http://bevacqua.io/bf/fn-declaration.
17 You can find a concise definition of function expressions on MDN at http://bevacqua.io/bf/fn-expr.
18 Variable hoisting is explained in the code samples found at http://bevacqua.io/bf/hoisting.

http://bevacqua.io/bf/jquery-ternary
http://bevacqua.io/bf/fn-declaration
http://bevacqua.io/bf/fn-expr
http://bevacqua.io/bf/hoisting

299Conditionals
That being said, there’s nothing wrong with function expressions that curry another
function.19

CURRYING IS GOOD
var plusThree = sum.bind(null, 3);

Keep in mind that function declarations will be hoisted20 to the top of the scope, so it
doesn’t matter what order they’re declared in. That being said, you should always
keep them at the top level in a scope, and always avoid placing them inside condi-
tional statements.

BAD FUNCTIONS
if (Math.random() > 0.5) {
 sum(1, 3);
 function sum (x, y) {
 return x + y;
 }
}

GOOD FUNCTIONS
if (Math.random() > 0.5) {
 sum(1, 3);
}
function sum (x, y) {
 return x + y;
}
Or
function sum (x, y) {
 return x + y;
}
if (Math.random() > 0.5) {
 sum(1, 3);
}

If you need a “no-op” method, you can use either Function.prototype, or function
noop () {}. Ideally a single reference to noop is used throughout the application.
Whenever you have to manipulate the arguments object, or other array-likes, cast
them to an array.

BAD ARRAY-LIKE LOOP
var divs = document.querySelectorAll('div');

for (i = 0; i < divs.length; i++) {
 console.log(divs[i].innerHTML);
}

GOOD ARRAY-LIKE LOOP
var divs = document.querySelectorAll('div');
[].slice.call(divs).forEach(function (div) {
 console.log(div.innerHTML);
});

19 John Resig explains how to partially apply functions on his blog at http://bevacqua.io/bf/partial-application.
20 Variable hoisting is explained in the code samples found at http://bevacqua.io/bf/hoisting.

http://bevacqua.io/bf/partial-application
http://bevacqua.io/bf/hoisting

300 APPENDIX D JavaScript code quality guide
However, be aware that there’s a substantial performance hit21 in V8 environments
when using this approach on arguments. If performance is a major concern, avoid
casting arguments with slice and use a for loop instead.

BAD ARGUMENTS ACCESSOR
var args = [].slice.call(arguments);

BETTER ARGUMENTS ACCESSOR
var i;
var args = new Array(arguments.length);
for (i = 0; i < args.length; i++) {
 args[i] = arguments[i];
}

Never declare functions inside of loops.

BAD INLINE FUNCTIONS
var values = [1, 2, 3];
var i;
for (i = 0; i < values.length; i++) {
 setTimeout(function () {
 console.log(values[i]);
 }, 1000 * i);
}

or

var values = [1, 2, 3];
var i;
for (i = 0; i < values.length; i++) {
 setTimeout(function (i) {
 return function () {
 console.log(values[i]);
 };
 }(i), 1000 * i);
}

BETTER EXTRACT THE FUNCTION
var values = [1, 2, 3];
var i;
for (i = 0; i < values.length; i++) {
 wait(i);
}
function wait (i) {
 setTimeout(function () {
 console.log(values[i]);
 }, 1000 * i);
}

Or even better, use .forEach, which doesn’t have the same caveats as declaring func-
tions in for loops.

21 See a great article on optimizing manipulation of function arguments at http://bevacqua.io/bf/arguments.

http://bevacqua.io/bf/arguments

301Conditionals
EVEN BETTER, FUNCTIONAL ARRAYS WITH FOREACH
[1, 2, 3].forEach(function (value, i) {
 setTimeout(function () {
 console.log(value);
 }, 1000 * i);
});

NAMED FUNCTION VS ANONYMOUS

Whenever a method is nontrivial, make the effort to use a named function expression
rather than an anonymous function. This makes it easier to pinpoint the root cause of
an exception when analyzing stack traces.

BAD, ANONYMOUS FUNCTIONS
function once (fn) {
 var ran = false;
 return function () {
 if (ran) { return };
 ran = true;
 fn.apply(this, arguments);
 };
}

GOOD, NAMED FUNCTION
function once (fn) {
 var ran = false;
 return function run () {
 if (ran) { return };
 ran = true;
 fn.apply(this, arguments);
 };
}

Avoid keeping indentation levels from raising more than necessary by using guard
clauses instead of flowing if statements.

BAD
if (car) {
 if (black) {
 if (turbine) {
 return 'batman!';
 }
 }
}

or

if (condition) {
 // 10+ lines of code
}

GOOD
if (!car) {
 return;
}
if (!black) {
 return;

302 APPENDIX D JavaScript code quality guide
}
if (!turbine) {
 return;
}
return 'batman!';

or

if (!condition) {
 return;
}
// 10+ lines of code

D.3.3 Prototypes

Hacking the prototype of native types should be avoided at all costs; use methods
instead. If you must extend the functionality in a native type, try using poser22 instead.
Poser provides out-of-context native type references that you can safely build upon
and extend.

BAD
String.prototype.half = function () {
 return this.substr(0, this.length / 2);
};

GOOD
function half (text) {
 return text.substr(0, text.length / 2);
}

Avoid prototypical inheritance models unless you have a good performance reason to
justify yourself:

■ They are way more verbose than using plain objects.
■ They cause headaches when creating new objects.
■ They need a closure to hide valuable private state of instances.
■ Just use plain objects instead.

D.3.4 Object literals

Instantiate using the Egyptian notation {}. Use factories instead of constructors.
Here’s a proposed pattern for you to implement objects in general:

function util (options) {
 // private methods and state go here
 var foo;
 function add () {
 return foo++;
 }
 function reset () { // note that this method isn't publicly exposed
 foo = options.start || 0;

22 Poser provides out-of-context native type references that you can safely build upon and extend. For more
information, see http://bevacqua.io/bf/poser.

http://bevacqua.io/bf/poser

303Regular expressions
 }
 reset();
 return {
 // public interface methods go here
 uuid: add
 };
}

D.3.5 Array literals

Instantiate using the square bracketed notation []. If you have to declare a fixed-
dimension array for performance reasons, then it’s fine to use the new Array(length)
notation instead.

 Arrays in JavaScript have a rich API that you should take advantage of. You can
start with array manipulation basics23 and then move on to more advanced use cases.
For example, you could use the .forEach method to iterate over all of the items in a
collection.

 The following list shows basic operations you can perform on arrays:

■ Use .push to insert items at the end of a collection or .shift to insert them at
the beginning.

■ Use .pop to get the last item and remove it from the collection at the same time
or use .unshift to do the same for the first item.

■ Master .splice to remove items by index, or to insert items at a specific index,
or to do both at the same time!

Also learn about and use the functional collection manipulation methods! These can
save you a ton of time that you’d otherwise spend doing the operations by hand. Here
are a few examples of things you can do:

■ Use .filter to discard uninteresting values.
■ Use .map to transpolate array values into something else.
■ Use .reduce to iterate over an array and produce a single result.
■ Use .some and .every to assert whether all array items meet a condition.
■ Use .sort to arrange the elements in a collection.
■ Use .reverse to invert the order in the array.

The Mozilla Developer Network (MDN) has thoroughly documented all of these meth-
ods and more at https://developer.mozilla.org/.

D.4 Regular expressions
Keep regular expressions in variables; don’t use them inline. This will vastly improve
readability.

23 An introductory article on JavaScript arrays is available on my blog at http://bevacqua.io/bf/arrays.

http://bevacqua.io/bf/arrays
https://developer.mozilla.org/

304 APPENDIX D JavaScript code quality guide
BAD REGULAR EXPRESSIONS
if (/\d+/.test(text)) {
 console.log('so many numbers!');
}

GOOD REGULAR EXPRESSIONS
var numeric = /\d+/;
if (numeric.test(text)) {
 console.log('so many numbers!');
}

Also, learn to write regular expressions24 and what they do. Then you can also visualize
them online.25

D.4.1 Debugging statements

Preferably put your console statements into a service that can easily be disabled in
production. Alternatively, don’t ship any console.log printing statements to produc-
tion distributions.

D.4.2 Comments

Comments aren’t meant to explain what the code does. Good code is supposed to be
self-explanatory. If you’re thinking of writing a comment to explain what a piece of
code does, chances are you need to change the code itself. The exception to that rule
is explaining what a regular expression does. Good comments are supposed to
explain why code does something that may not seem to have a clear-cut purpose.

BAD COMMENTS
// create the centered container
var p = $('<p/>');
p.center(div);
p.text('foo');

GOOD COMMENTS
var container = $('<p/>');
var contents = 'foo';
container.center(parent);
container.text(contents);
megaphone.on('data', function (value) {
 container.text(value); // the megaphone periodically emits updates for

container
});

or

var numeric = /\d+/; // one or more digits somewhere in the string
if (numeric.test(text)) {
 console.log('so many numbers!');
}

24 There’s an introductory article on regular expressions on my blog at http://bevacqua.io/bf/regex.
25 Regexper lets you visualize how any regular expression works at http://bevacqua.io/bf/regexper.

http://bevacqua.io/bf/regex
http://bevacqua.io/bf/regexper

305Regular expressions
Commenting out entire blocks of code should be avoided entirely; that’s why you have
version control systems in place!

D.4.3 Variable naming

Variables must have meaningful names so that you don’t have to resort to comment-
ing what a piece of functionality does. Instead, try to be expressive while succinct, and
use meaningful variable names:

BAD NAMING
function a (x, y, z) {
 return z * y / x;
}
a(4, 2, 6);
// <- 3

GOOD NAMING
function ruleOfThree (had, got, have) {
 return have * got / had;
}
ruleOfThree(4, 2, 6);
// <- 3

D.4.4 Polyfills

A polyfill is a piece of code that transparently enables your application to use modern
features in older browsers. Where possible use the native browser implementation
and include a polyfill that provides that same behavior26 to unsupported browsers.
This makes the code easier to work with and less involved in hackery to make things
just work.

 If you can’t patch a piece of functionality with a polyfill, then wrap all uses of the
patching code27 in a globally available implementation that’s accessible from any-
where in the application.

D.4.5 Everyday tricks

CREATING DEFAULT VALUES

Use || to define a default value. If the left-hand value is falsy28 then the right-hand
value will be used.

function a (value) {
 var defaultValue = 33;
 var used = value || defaultValue;
}

26 Remy Sharp concisely explains what a polyfill is at http://bevacqua.io/bf/polyfill.
27 I’ve written an article on developing high quality modules that touches on the implementation-wrapping

subject at http://bevacqua.io/bf/hq-modules.
28 In JavaScript, falsy values are treated as false in conditional statements. Falsy values are '', null, undefined,

and 0. For more information, see http://bevacqua.io/bf/casting.

http://bevacqua.io/bf/polyfill
http://bevacqua.io/bf/hq-modules
http://bevacqua.io/bf/casting

306 APPENDIX D JavaScript code quality guide
USING BIND TO PARTIALLY APPLY FUNCTIONS

Use .bind to partially apply29 functions:

function sum (a, b) {
 return a + b;
}
var addSeven = sum.bind(null, 7);
addSeven(6);
// <- 13

ARRAY.PROTOTYPE.SLICE.CALL TO CAST ARRAY-LIKE OBJECTS TO ARRAYS

Use Array.prototype.slice.call to cast array-like objects to true arrays:

var args = Array.prototype.slice.call(arguments);

EVENT EMITTERS ON ALL THINGS

Use event emitters30 on all the things! This pattern helps you to decouple implemen-
tations from messaging between different objects or application layers:

var emitter = contra.emitter();
body.addEventListener('click', function () {
 emitter.emit('click', e.target);
});
emitter.on('click', function (elem) {
 console.log(elem);
});
// simulate click
emitter.emit('click', document.body);

FUNCTION.PROTOTYPE AS A NO-OP

Use Function.prototype as a "no-op:"

function (cb) {
 setTimeout(cb || Function.prototype, 2000);

29 John Resig, of jQuery fame, has an interesting article on partial JavaScript functions at http://bevacqua.io/
bf/partial-application.

30 Contra provides an easy-to-use event emitter implementation at http://bevacqua.io/bf/contra.emitter.

http://bevacqua.io/bf/partial-application
http://bevacqua.io/bf/partial-application
http://bevacqua.io/bf/contra.emitter

index
Symbols

!= operator 106
!== operator 297
== operator 106
=== operator 297

Numerics

2xx status codes 258
4xx status codes 259, 269
5xx status codes 259, 269

A

AAA (Arrange Act Assert) 216
addEventListener 132
AirBnB 200
AJAX error management

269–271
Amazon Web Services. See AWS
AMD (asynchronous module

loader) 117
Angular

bundling components using
Grunt 122

overview 120–121
RequireJS vs. 121

anonymous functions 134
application environment

determining which to use
52–53

environment-level
configuration 56–58

in Grunt tasks 54–56

overview 51–52
for production

environments 53–54
for staging environments 54

Arrange Act Assert. See AAA
arrays

casting objects to 306
code quality 303

asynchronous code
application complexity

and 13
async library

composing flows 147–149
concurrent execution 142,

145
functional tasks 145–146
overview 141–142
sequential execution

143–145
task queues 147
waterfall execution 143

callbacks
cleaning up 134–138
error handling 138–141
overview 132–133
preventing callback

creep 133–134
events

creating event
emitters 158–161

DOM and 157–158
overview 157

generators
asynchronicity and 163
creating 161–162

execution suspension
in 162–163

iterating using for..of 162
overview 161

Promises
chaining 153–154
continuation 150–152
flow control using 155–156
functional programming

using 155–156
handling rejected 156–157
overview 150
transformation chains

152–153
asynchronous module loader. See

AMD
AWS (Amazon Web Services) 82

B

Backbone
Browserifying module with

Grunt 172–174
installing 172
models 177–179
organizing models with

collections 179–180
overview 170–172, 174–175
routers 180–183
using Mustache

templates 175–177
views 175–177

battle testing 15
blocking tasks 68
Bower 122–124
brace expressions, Grunt 279
307

INDEX308
browser testing
coding test cases 234–236
faking XHR and server

communication 227–229
identifying test cases 232
implementing

functionality 230–231
overview 226–227
preparing test harness 234
setting up HTML 229–230
setup and teardown 232–233
testing possible

outcomes 236–238
Browserify

Backbone modules 172–174
dependency management

using 119–120
testing with 214–215

build distributions
defined 50
determining which to use

52–53
in Grunt tasks 54–56
overview 51–52
for production

environments 53–54
for staging environments 54

Build First philosophy
build processes

advantages of 11
application complexity

and 14–15
automating 9
build 10
deploy 10
overview 9–10
workflows

deployment flow 29–31
development flow 29
overview 29
release flow 29

code quality
linting code 19–22
overview 15–19

handling complexity
asynchronous code 13
battle testing 15
build process 14–15
design 13
modularity 11–12
overview 11
REST API 15

initiation workflow 6–7
need for 4–5
overview 5–9
RLP and 5

build tools
Grunt 285
Gulp

building library in 291
overview 289
running tests 289–291

npm
Grunt vs. 288
installing task

dependencies 287
overview 285–287
using shell scripts in

tasks 287–288
buildpacks 85

C

Cache-Control header 261
caching responses 261–262
caching static assets

cache busting with Grunt
76–77

ETag header 76
Expires headers 75–76
Last-Modified header 76
overview 75

callbacks
cleaning up 134–138
error handling 138–141
nested 134
overview 132–133
preventing callback

creep 133–134
Cascading Style Sheets. See CSS
CD (continuous

development) 10, 30
LiveReload 69
overview 66
text editors 69
watching for changes 66–69

changelogs 81–82
Chrome 92
CI (continuous integration)

86–89
circular dependencies 126–127
CJS (CommonJS) 27, 113–114
CLI (command-line

interface) 19, 277
closures 111–112
clusters 94
code quality

array literals 303
casting array-like objects to

arrays 306

comments 304–305
conditionals 297
debugging statements 304
defining default values 305
event emitters 306
Function.prototype as

no-op 306
functions 298–302
linting code 19–22
modules 293–295
object literals 302
overview 15–19
polyfills 305
prototypes 302
regular expressions 303–304
strings 295–296
ternary operators 298
using bind to partially apply

functions 306
using Grunt

automating unit testing
45–46

cleaning up working
directory 43–44

linting code 44–45
variables 296–297, 305

collections
Backbone 179–180
shopping list example

185–186
command-line interface. See CLI
comments 304–305
CommonJS. See CJS
complexity, application

asynchronous code 13
battle testing 15
build process 14–15
design 13
modularity 11–12
overview 11
REST API 15

composition 102
concatenation 73
concurrent execution 142, 145
conditionals 297
configuration, environment

merging configuration as
waterfall in code 64–65

at OS level 62–64
overview 58–59
security for 61–62
storing configurations in

waterfall 59–61
console.log 304

INDEX 309
continuation of promises
150–152

continuous deployments 88
continuous development. See CD
continuous integration. See CI
continuous testing 247
contra library 149
controllers

jQuery 168–170
Rendr 204–205

convenience over
convention 217

CRUD (create, read, update,
delete) 255–257

CSS (Cascading Style Sheets)
overview 77–78
testing 78–79
using Grunt 78

currying functions 299

D

data layer 265, 267
database tasks example 47–49
debug distribution 51
debugging

code quality and 304
node applications 92–93

default values 305
DELETE verb 255–256
dependency management

Angular way
bundling components using

Grunt 122
overview 120–121
RequireJS vs. 121

Browserify 119–120
circular dependencies 126–127
IoC and 114–117
overview 114–117
RequireJS 117–119

deployment
build processes 10
continuous integration 86–89
flow 29–31
Heroku

managing
environments 85–86

overview 82–85
image optimization

interlacing images 74
lossless image

compression 73–74
lossy image compression 74

overview 73
setting up grunt-contrib-

imagemin 74–75
inlining critical above-fold

CSS
overview 77–78
testing 78–79
using Grunt 78

monitoring
debugging node

applications 92–93
logging 89–91
overview 89
performance profiling

93–94
process management 94

predeployment operations
changelogs 81–82
overview 79–80
semantic versioning 80

static asset caching
cache busting with

Grunt 76–77
ETag header 76
Expires headers 75–76
Last-Modified header 76
overview 75

design, and application
complexity 13

devDependency 287
development environment 51,

58
development flow 29
DevTools, Chrome 92
DigitalOcean 82
distributions 10
documentation 263–264
DOM (Document Object

Model)
events and 157–158
shopping list example 186–187

done() function 143
DRY (Don’t Repeat

Yourself) 32, 73

E

ECMAScript
generators

asynchronicity and 163
creating 161–162
execution suspension

in 162–163
iterating using for..of 162
overview 161

let keyword 129
modules in 128–129
overview 127
Traceur as Grunt task 127

EditorConfig 294
encapsulation

functional factories 105–106
hiding information 104–105
scope 106–109
Single Responsibility

Principle 101–103
strict mode 109
this keyword 106–109
variable hoisting 110–111

endpoints, REST API 254–255
environments

application
environment-level

configuration 56–58
overview 51

automating first-time
setup 65–66

build distributions
determining which to

use 52–53
in Grunt tasks 54–56
overview 51–52
for production

environments 53–54
for staging

environments 54
configuring

merging configuration as
waterfall in code 64–65

at OS level 62–64
overview 58–59
security for 61–62
storing configurations in

waterfall 59–61
continuous development

LiveReload 69
overview 66
text editors 69
watching for changes

66–69
development 58
Heroku 85–86

equality operators 106
error handling 138–141
eslint 295
ETags 76, 262
event emitters

code quality and 306
testing 218–219

INDEX310
events
creating 158–161
DOM and 157–158
overview 157

execution suspension 162–163
Expires headers 75–76, 261
export keyword 128
Express middleware 202

F

Facebook 254
for..of 162
forEach() function 303
fulfill() function 150
Function.prototype 306
functional factories 105–106
functional programming

155–156
functions 298–302

G

generators
asynchronicity and 163
creating 161–162
execution suspension in

162–163
iterating using for..of 162
overview 161

GET verb 255–256
--global flag 277
globbing patterns

brace expressions 279
Gruntfile.js 35–36
Gulp 290
negation expressions 279–280
overview 279

GoDaddy 82
Grunt 15

Browserifying Backbone mod-
ules with 172–174

build distributions in
tasks 54–56

build process workflows
deployment flow 29–31
development flow 29
overview 29
release flow 29

build tasks 46
bundling Angular compo-

nents using 122
cache busting with 76–77
code quality

automating unit testing
45–46

cleaning up working
directory 43–44

linting code 44–45
configuring 278–279
database tasks example 47–49
globbing patterns

brace expressions 279
negation expressions

279–280
overview 279

Gruntfile.js
creating 27
globbing patterns 35–36
task configurations 34–35

image sprites
overview 41–42
perceived responsiveness vs.

actual speed 43
responsiveness and 42

inlining critical above-fold
CSS 78

installing 26–27
interface 277
npm as build tool vs. 288
overview 23–26
plugins 276
preprocessing

LESS 32–34
overview 31–34

pros and cons of 285
setting up tasks 28
static assets

minification 38–41
overview 37–38

tasks
custom 282
overview 276–277
setting up 280–282

Traceur as task 127
Travis configuration and

87–88
using in projects 278

Gulp 16
Gulpfile.js file 289

H

--harmony flag 127
HEAD verb 256
Heroku

deploying to
managing

environments 85–86
overview 82–85

logging in 90
hoisting 110
HTTP verbs 255–257

I

IaaS (Infrastructure as a
Service) 82

idempotence 9, 29
IIFE (Immediately-Invoked

Function Expression) 111
image optimization

interlacing images 74
lossless image

compression 73–74
lossy image compression 74
overview 73
setting up grunt-contrib-

imagemin 74–75
image sprites

overview 41–42
perceived responsiveness

actual speed vs. 43
overview 42

Immediately-Invoked Function
Expression. See IIFE

implementation details 104
import keyword 128
improvization 3
Infrastructure as a Service. See

IaaS
initiation workflow 6–7
integration testing 78, 216,

247–248
interlacing images 74
IoC (Inversion of Control)

114–117

J

Jasmine 213
jQuery

code organization and 167
controllers 168–170
models 169–170
routers 170
views 168, 170

JSHint 19–21, 295
JSLint 16, 295

K

Knight’s Capital 5, 7

INDEX 311
L

Last-Modified header 76, 261
layered service architecture

data layer 265, 267
routing layer 265–266
service layer 265–266

LESS
overview 32–33
variables 33–34

let keyword 129
linting code 19–22

modules 295
using Grunt 44–45

LiveReload 69
LoDash 123
lossless image compression

73–74
lossy image compression 74

M

MDN (Mozilla Developer
Network) 303

minification 38–41
Mocha 213
mocks 116, 221–223
Model-View-Controller. See MVC
Model-View-ViewModel. See

MVVM
models

Backbone 177–179
jQuery 169–170
Rendr 205–206
shopping list example

185–186
modularity

application complexity
and 11–12

closures 111–112
CommonJS 113–114
dependency management

Angular way 120–122
Browserify 119–120
IoC and 114–117
overview 114–117
RequireJS 117–119

ECMAScript 6 128–129
encapsulation

functional factories 105–106
hiding information 104–105
scope 106–109
Single Responsibility

Principle 101–103
strict mode 109

this keyword 106–109
variable hoisting 110–111

overview 99–101
package management

Bower 122–124
choosing system 125
circular dependencies

126–127
installing only needed

components 124–125
prototypes 112–113

modules
defined 27
linting 295
Node.js 274
semicolons 294
spacing 294
strict mode 293

monitoring
debugging node

applications 92–93
logging 89–91
overview 89
performance profiling 93–94
process management 94

Mozilla Developer Network. See
MDN

Mustache templates 175–177,
184

MVC (Model-View-
Controller) 120

Backbone
Browserifying module with

Grunt 172–174
installing 172
models 177–179
organizing models with

collections 179–180
overview 170–172, 174–175
routers 180–183
using Mustache

templates 175–177
views 175–177

jQuery
code organization and 167
controllers 168–170
models 169–170
router 170
views 168, 170

overview 166–167
Rendr

controllers 204–205
Express middleware

for 202
models 205–206

overview 199–201, 203–204
routers 204–205
setting up 203
views 206–210

shopping list example
adding items to cart

187–190
DOM events 186–187
inline editing 191–197
overview 183–184
rendering views with

Mustache 184
routers 197–199
unit testing 238–245
using model and

collection 185–186
views 184–185, 191–197

MVVM (Model-View-
ViewModel) 174

N

native modules 141
negation expressions,

Grunt 279–280
next() function 143
Node Package Manager. See npm
node-inspector package 92–93
Node.js

debugging 92–93
defined 19
exporting functionality 274
installing 273–274
modules 27, 274
packages 275

nodemon command 67
nodetime package 93
npm (Node Package

Manager) 20
Grunt vs. 288
installing task

dependencies 287
overview 285–287
using shell scripts in

tasks 287–288

O

objects 302
octal notation 109
on method 219–221
open source software 59
orthogonal, defined 39

INDEX312
P

PaaS (Platform as a Service) 63,
82

package management
Bower 122–124
choosing system 125
circular dependencies 126–127
installing only needed

components 124–125
Node.js 275

package.json file 275, 278, 285
paging responses 260–261
PATCH verb 255–256
perceived responsiveness

actual speed vs. 43
interlaced images and 74
overview 42

performance
image optimization

interlacing images 74
lossless image

compression 73–74
lossy image compression 74
overview 73
setting up grunt-contrib-

imagemin 74–75
inlining critical above-fold

CSS
overview 77–78
testing 78–79
using Grunt 78

monitoring 93–94
static asset caching

cache busting with
Grunt 76–77

ETag header 76
Expires headers 75–76
Last-Modified header 76
overview 75

testing 249
Platform as a Service. See PaaS
plugins

defined 25
Grunt 276

polyfills 150, 305
POST verb 255–256
postprocessing 31
preprocessing

LESS 32–34
overview 31–34

process management 94
Procfile 83
production environment

build distributions for 53–54

defined 51
progressive enhancement 171
Promises

chaining 153–154
continuation 150–152
flow control using 155–156
functional programming

using 155–156
handling rejected 156–157
overview 150
transformation chains 152–153

prototypes
code quality 302
modularity using 112–113

pure functions 105
PUT verb 256

Q

Q library 150
queue() function 147

R

regular expressions 102,
303–304

reject() function 150
rejected Promises 156–157
release workflow 29

continuous integration 86–89
deploying to Heroku

managing
environments 85–86

overview 82–85
image optimization

interlacing images 74
lossless image

compression 73–74
lossy image compression 74
overview 73
setting up grunt-contrib-

imagemin 74–75
inlining critical above-fold

CSS
overview 77–78
testing 78–79
using Grunt 78

monitoring
debugging node

applications 92–93
logging 89–91
overview 89
performance profiling

93–94

process management 94
predeployment operations

changelogs 81–82
overview 79–80
semantic versioning 80

static asset caching
cache busting with

Grunt 76–77
ETag header 76
Expires headers 75–76
Last-Modified header 76
overview 75

Rendr
controllers 204–205
Express middleware for 202
models 205–206
overview 199–201, 203–204
routers 204–205
setting up 203
views 206–210

Representational State Transfer.
See REST

requests, HTTP
overview 257–258
throttling 262–263

require() function 224–226, 274
RequireJS

Angular vs. 121
dependency management

using 117–119
responses, HTTP

caching 261–262
overview 258
paging 260–261

REST (Representational State
Transfer)

application complexity
and 15

consuming API with client
AJAX error

management 269–271
rejecting navigation

requests 268–269
request handling layer 268

design pitfalls 252–253
documentation 263–264
HTTP status codes 258–260
HTTP verbs and CRUD

consistency 255–257
layered service architecture

and
data layer 265, 267
routing layer 265–266
service layer 265–266

naming endpoints 254–255

INDEX 313
overview 253–254
requests

overview 257–258
throttling 262–263

resources for 253
responses

caching 261–262
overview 258
paging 260–261

versioning 256–258
RLP (Retail Liquidity

Program) 5
routers

Backbone 180–183
jQuery 170
Rendr 204–205
shopping list example 197–199

routing layer 265–266
RSVP.js library 150

S

scope 106–109
semantic versioning 80
semicolon (;) 294
SEO (Search Engine

Optimization) 103
sequential execution 143–145
service layer 265–266
shopping list example

adding items to cart 187–190
DOM events 186–187
inline editing 191–197
overview 183–184
rendering views with

Mustache 184
routers 197–199
using model and

collection 185–186
views 184–185, 191–197

Single Responsibility Principle.
See SRP

Sinon.js 223
slugging 101
sortBy() function 146
SPAs (single-page

applications) 268
speed, perceived 43
SpiderMonkey 17
spies 223–224
SRP (Single Responsibility

Principle) 89, 101–103
staging environment

build distributions for 54
defined 51

static assets
caching 75–77
in Gruntfile.js

minification 38–41
overview 37–38

strict mode
encapsulation and 109
in modules 293

strings 295–296
stubs 116
Stylus 287
SUT (System Under Test) 222

T

TAP (Test Anything
Protocol) 213–214

tape tests 213, 245–247
task alias 40
task queues 147
tasks, Grunt

custom 282
overview 276–277
setting up 280–282

TDD (Test-Driven
Development) 45, 117, 211

templates 168
ternary operators 298
Test Anything Protocol. See TAP
Test-Driven Development. See

TDD
testing

automating tape tests
245–247

browser
coding test cases 234–236
faking XHR and server

communication
227–229

identifying test cases 232
implementing

functionality 230–231
overview 226–227
preparing test harness 234
setting up HTML 229–230
setup and teardown

232–233
testing possible

outcomes 236–238
Browserify 214–215
continuous testing 247
convenience over

convention 217
event emitters 218–219
integration 247–248

logical units in isolation
212–213

mocking 221–223
MVC shopping list

testing validation on view
model 243–245

testing view router 238–243
for .on method 219–221
performance 249
proxying require calls

224–226
Sinon.js 223
spies 223–224
strategies for 215–216
unit testing 45–46, 214,

216–218
using TAP 213–214
visual testing 248–249

Testling 246
text editors 69
TextMate 69
then() function 150, 156
this keyword 106–109
throttling requests 262–263
Traceur 127
transformation chains 152–153
transforms 173
Travis

configuring Grunt and 87–88
overview 86

type-coercing 106
TypeError exception 110

U

undefined 108–109
Underscore 123
unit testing 78

automating using Grunt 45–46
defined 216
MVC shopping list

testing validation on view
model 243–245

testing view router 238–243
overview 214, 216–218

UX (user experience) 42

V

variables
code quality 296–297, 305
environment 58
hoisting 110–111
scopes 106

INDEX314
VCS (version control system) 72
versioning 80, 256–258
views

jQuery 168, 170
Rendr 206–210
shopping list example

184–185, 191–197
visual testing 248–249

W

watching for changes 66–69
waterfall 59–61, 64–65, 143
WebStorm 69, 92

WET (writing everything
twice) 33

when library 150
winston 90–91
with statement 109
workflows

defined 29
deployment flow 29–31
development flow 29
overview 29
release flow 29

working directory 43
writing everything twice. See

WET

X

X-RateLimit-Reset header 262
XMLHttpRequest 153

Y

yield keyword 161
YSlow 250

Z

Zepto 172

Nicolas Bevacqua

T
he fate of most applications is often sealed before a single
line of code has been written. How is that possible?
Simply, bad design assures bad results. Good design and

effective processes are the foundation on which maintainable
applications are built, scaled, and improved. For JavaScript de-
velopers, this means discovering the tooling, modern libraries,
and architectural patterns that enable those improvements.

JavaScript Application Design: A Build First Approach introduces
techniques to improve software quality and development
workfl ow. You’ll begin by learning how to establish processes
designed to optimize the quality of your work. You’ll execute
tasks whenever your code changes, run tests on every com-
mit, and deploy in an automated fashion. Then you’ll focus on
designing modular components and composing them together
to build robust applications.

What’s Inside
● Automated development, testing, and deployment
 processes
● JavaScript fundamentals and modularity best practices
● Modular, maintainable, and well-tested applications
● Master asynchronous fl ows, embrace MVC, and design a
 REST API

This book assumes readers understand the basics of JavaScript.

Nicolas Bevacqua is a freelance developer with a focus on modu-
lar JavaScript, build processes, and sharp design. He maintains
a blog at ponyfoo.com.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/JavaScriptApplicationDesign

$39.99 / Can $45.99 [INCLUDING eBOOK]

JavaScript Application Design

JAVASCRIPT/WEB DEVELOPMENT

M A N N I N G

“Enjoy the ride through
the process of improving your

development workfl ow.”—From the Foreword by
 Addy Osmani, Google

“For JavaScript developers,
 a must-read!”
—Stephen Wakely
Thomson Reuters

“An excellent guide through
the maze of the modern
JavaScript ecosystem.”—Jonas Bandi, IvoryCode GmbH

“The fi rst-ever design
 book for developers.”

—Sandeep Kumar Patel, SAP Labs

“A one-stop shop
introducing JavaScript
developers to modern
practices and tools.”— Matthew Merkes, MyNeighbor

SEE INSERT

	JavaScript Application Design
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Road map
	Code conventions and downloads
	Author Online

	about the author
	about the cover illustration
	Part 1 Build processes
	1 Introduction to Build First
	1.1 When things go wrong
	1.1.1 How to lose $172,222 a second for 45 minutes
	1.1.2 Build First
	1.1.3 Rites of initiation

	1.2 Planning ahead with Build First
	1.2.1 Core principles in Build First

	1.3 Build processes
	1.4 Handling application complexity and design
	1.5 Diving into Build First
	1.5.1 Keeping code quality in check
	1.5.2 Lint in the command line

	1.6 Summary

	2 Composing build tasks and flows
	2.1 Introducing Grunt
	2.1.1 Installing Grunt
	2.1.2 Setting up your first Grunt task
	2.1.3 Using Grunt to manage the build process

	2.2 Preprocessing and static asset optimization
	2.2.1 Discussing preprocessing
	2.2.2 Doing LESS
	2.2.3 Bundling static assets
	2.2.4 Static asset minification
	2.2.5 Implementing image sprites

	2.3 Setting up code integrity
	2.3.1 Cleaning up your working directory
	2.3.2 Lint, lint, lint!
	2.3.3 Automating unit testing

	2.4 Writing your first build task
	2.5 Case study: database tasks
	2.6 Summary

	3 Mastering environments and the development workflow
	3.1 Application environments
	3.1.1 Configuring build distributions
	3.1.2 Environment-level configuration
	3.1.3 What’s so special about development?

	3.2 Configuring environments
	3.2.1 Storing configuration in a waterfall
	3.2.2 Using encryption to harden environment configuration security
	3.2.3 Setting environment-level configuration at the OS level
	3.2.4 Merging configuration as a waterfall in code

	3.3 Automating tedious first-time setup tasks
	3.4 Working in continuous development
	3.4.1 Waste no time, use a watch!
	3.4.2 Monitoring for changes to the Node app
	3.4.3 A text editor that cares
	3.4.4 Browser refresh is so Y2K

	3.5 Summary

	4 Release, deployment, and monitoring
	4.1 Releasing your application
	4.1.1 Image optimization
	4.1.2 Static asset caching
	4.1.3 Inlining critical above-the-fold CSS
	4.1.4 Testing before a deployment

	4.2 Predeployment operations
	4.2.1 Semantic versioning
	4.2.2 Using changelogs
	4.2.3 Bumping changelogs

	4.3 Deploying to Heroku
	4.3.1 Deploying builds
	4.3.2 Managing environments

	4.4 Continuous integration
	4.4.1 Hosted CI using Travis
	4.4.2 Continuous deployments

	4.5 Monitoring and diagnostics
	4.5.1 Logging and notifications
	4.5.2 Debugging Node applications
	4.5.3 Adding performance analytics
	4.5.4 Uptime and process management

	4.6 Summary

	Part 2 Managing complexity
	5 Embracing modularity and dependency management
	5.1 Working with code encapsulation
	5.1.1 Understanding the Single Responsibility Principle
	5.1.2 Information hiding and interfaces
	5.1.3 Scoping and this keyword
	5.1.4 Strict mode
	5.1.5 Variable hoisting

	5.2 JavaScript modules
	5.2.1 Closures and the module pattern
	5.2.2 Prototypal modularity
	5.2.3 CommonJS modules

	5.3 Using dependency management
	5.3.1 Dependency graphs
	5.3.2 Introducing RequireJS
	5.3.3 Browserify: CJS in the browser
	5.3.4 The Angular way

	5.4 Understanding package management
	5.4.1 Introducing Bower
	5.4.2 Big libraries, small components
	5.4.3 Choosing the right module system
	5.4.4 Learning about circular dependencies

	5.5 Harmony: a glimpse of ECMAScript 6
	5.5.1 Traceur as a Grunt task
	5.5.2 Modules in Harmony
	5.5.3 Let there be block scope

	5.6 Summary

	6 Understanding asynchronous flow control methods in JavaScript
	6.1 Using callbacks
	6.1.1 Avoiding callback hell
	6.1.2 Untangling the callback jumble
	6.1.3 Requests upon requests
	6.1.4 Asynchronous error handling

	6.2 Using the async library
	6.2.1 Waterfall, series, or parallel?
	6.2.2 Asynchronous functional tasks
	6.2.3 Asynchronous task queues
	6.2.4 Flow composition and dynamic flows

	6.3 Making Promises
	6.3.1 Promise fundamentals
	6.3.2 Chaining Promises
	6.3.3 Controlling the flow
	6.3.4 Handling rejected Promises

	6.4 Understanding events
	6.4.1 Events and the DOM
	6.4.2 Creating your own event emitters

	6.5 Glimpse of the future: ES6 generators
	6.5.1 Creating your first generator
	6.5.2 Asynchronicity and generators

	6.6 Summary

	7 Leveraging the Model-View-Controller
	7.1 jQuery isn’t enough
	7.2 Model-View-Controller in JavaScript
	7.2.1 Why Backbone?
	7.2.2 Installing Backbone
	7.2.3 Browserifying your Backbone module with Grunt

	7.3 Introduction to Backbone
	7.3.1 Backbone views
	7.3.2 Creating Backbone models
	7.3.3 Organizing models with Backbone collections
	7.3.4 Adding Backbone routers

	7.4 Case study: the shopping list
	7.4.1 Starting with a static shopping list
	7.4.2 This time with remove buttons
	7.4.3 Adding items to your cart
	7.4.4 Using inline editing
	7.4.5 A service layer and view routing

	7.5 Backbone and Rendr: server/client shared rendering
	7.5.1 Diving into Rendr
	7.5.2 Understanding boilerplate in Rendr
	7.5.3 A simple Rendr application

	7.6 Summary

	8 Testing JavaScript components
	8.1 JavaScript testing crash course
	8.1.1 Logical units in isolation
	8.1.2 Using the Test Anything Protocol (TAP)
	8.1.3 Putting together our first unit test
	8.1.4 Tape in the browser
	8.1.5 Arrange, Act, Assert
	8.1.6 Unit testing
	8.1.7 Convenience over convention
	8.1.8 Case study: unit testing an event emitter
	8.1.9 Testing the event emitter
	8.1.10 Testing for the .on method
	8.1.11 Mocks, spies, and proxies
	8.1.12 Mocking
	8.1.13 Introducing Sinon.js
	8.1.14 Spying on function calls
	8.1.15 Proxying require calls

	8.2 Testing in the browser
	8.2.1 Faking XHR and server communication
	8.2.2 Case study: testing DOM interaction

	8.3 Case study: unit testing the MVC shopping list
	8.3.1 Testing the view router
	8.3.2 Testing validation on a view model

	8.4 Automating Tape tests
	8.4.1 Automating Tape tests for the browser
	8.4.2 Continuous testing

	8.5 Integration, visual, and performance testing
	8.5.1 Integration testing
	8.5.2 Visual testing
	8.5.3 Performance testing

	8.6 Summary

	9 REST API design and layered service architectures
	9.1 Avoiding API design pitfalls
	9.2 Learning REST API design
	9.2.1 Endpoints, HTTP verbs, and versioning
	9.2.2 Requests, responses, and status codes
	9.2.3 Paging, caching, and throttling
	9.2.4 Documenting an API

	9.3 Implementing layered service architectures
	9.3.1 Routing layer
	9.3.2 Service layer
	9.3.3 Data layer
	9.3.4 Routing layer
	9.3.5 Service layer
	9.3.6 Data layer

	9.4 Consuming a REST API on the client side
	9.4.1 The request handling layer
	9.4.2 Shooting down old requests
	9.4.3 Consistent AJAX error management

	9.5 Summary

	appendix A Modules in Node.js
	A.1 Installing Node.js
	A.2 The module system
	A.3 Exporting functionality
	A.4 Regarding packages

	appendix B Introduction to Grunt
	B.1 Grunt plugins
	B.2 Tasks and targets
	B.3 Command-line interface
	B.4 Using Grunt in a project
	B.5 Configuring Grunt
	B.6 Globbing patterns
	B.6.1 Brace expressions
	B.6.2 Negation expressions

	B.7 Setting up a task
	B.8 Creating custom tasks

	appendix C Picking your build tool
	C.1 Grunt: the good parts
	C.2 Grunt: the bad parts
	C.3 npm as a build tool
	C.3.1 Installing npm task dependencies
	C.3.2 Using shell scripts in npm tasks
	C.3.3 npm and Grunt compared: the good and the bad

	C.4 Gulp: the streaming build tool

	appendix D JavaScript code quality guide
	D.1 Module organization
	D.1.1 Strict mode
	D.1.2 Spacing
	D.1.3 Semicolons
	D.1.4 Linting

	D.2 Strings
	D.2.1 Variable declaration

	D.3 Conditionals
	D.3.1 Ternary operators
	D.3.2 Functions
	D.3.3 Prototypes
	D.3.4 Object literals
	D.3.5 Array literals

	D.4 Regular expressions
	D.4.1 Debugging statements
	D.4.2 Comments
	D.4.3 Variable naming
	D.4.4 Polyfills
	D.4.5 Everyday tricks

	index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	JavaScript Application Design-back

