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Preface

When JavaScript was first introduced as part of Netscape Navigator in 1996, perform-
ance wasn’t that important. The Internet was in its infancy and it was, in all ways, slow.
From dial-up connections to underpowered home computers, surfing the Web was
more often a lesson in patience than anything else. Users expected to wait for web pages
to load, and when the page successfully loaded, it was a cause for celebration.

JavaScript’s original goal was to improve the user experience of web pages. Instead of
going back to the server for simple tasks such as form validation, JavaScript allowed
embedding of this functionality directly in the page. Doing so saved a rather long trip
back to the server. Imagine the frustration of filling out a long form, submitting it, and
then waiting 30–60 seconds just to get a message back indicating that you had filled in
a single field incorrectly. JavaScript can rightfully be credited with saving early Internet
users a lot of time.

The Internet Evolves
Over the decade that followed, computers and the Internet continued to evolve. To
start, both got much faster. The rapid speed-up of microprocessors, the availability of
cheap memory, and the appearance of fiber optic connections pushed the Internet into
a new age. With high-speed connections more available than ever, web pages started
becoming heavier, embedding more information and multimedia. The Web had
changed from a fairly bland landscape of interlinked documents into one filled with
different designs and interfaces. Everything changed, that is, except JavaScript.

What previously was used to save server roundtrips started to become more ubiquitous.
Where there were once dozens of lines of JavaScript code were now hundreds, and
eventually thousands. The introduction of Internet Explorer 4 and dynamic HTML
(the ability to change aspects of the page without a reload) ensured that the amount of
JavaScript on pages would only increase over time.

The last major step in the evolution of browsers was the introduction of the Document
Object Model (DOM), a unified approach to dynamic HTML that was adopted by
Internet Explorer 5, Netscape 6, and Opera. This was closely followed by the
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standardization of JavaScript into ECMA-262, third edition. With all browsers sup-
porting the DOM and (more or less) the same version of JavaScript, a web application
platform was born. Despite this huge leap forward, with a common API against which
to write JavaScript, the JavaScript engines in charge of executing that code remained
mostly unchanged.

Why Optimization Is Necessary
The JavaScript engines that supported web pages with a few dozen lines of JavaScript
in 1996 are the same ones running web applications with thousands of lines of Java-
Script today. In many ways, the browsers fell behind in their management of the lan-
guage and in doing the groundwork so that JavaScript could succeed at a large scale.
This became evident with Internet Explorer 6, which was heralded for its stability and
speed when it was first released but later reviled as a horrible web application platform
because of its bugs and slowness.

In reality, IE 6 hadn’t gotten any slower; it was just being asked to do more than it had
previously. The types of early web applications being created when IE 6 was introduced
in 2001 were much lighter and used much less JavaScript than those created in 2005.
The difference in the amount of JavaScript code became clear as the IE 6 JavaScript
engine struggled to keep up due to its static garbage-collection routine. The engine
looked for a fixed number of objects in memory to determine when to collect garbage.
Earlier web application developers had run into this threshold infrequently, but with
more JavaScript code comes more objects, and complex web applications began to hit
this threshold quite often. The problem became clear: JavaScript developers and web
applications had evolved while the JavaScript engines had not.

Although other browsers had more logical garbage collection routines, and somewhat
better runtime performance, most still used a JavaScript interpreter to execute code.
Code interpretation is inherently slower than compilation since there’s a translation
process between the code and the computer instructions that must be run. No matter
how smart and optimized interpreters get, they always incur a performance penalty.

Compilers are filled with all kinds of optimizations that allow developers to write code
in whatever way they want without worrying whether it’s optimal. The compiler can
determine, based on lexical analysis, what the code is attempting to do and then opti-
mize it by producing the fastest-running machine code to complete the task. Interpret-
ers have few such optimizations, which frequently means that code is executed exactly
as it is written.

In effect, JavaScript forces the developer to perform the optimizations that a compiler
would normally handle in other languages.
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Next-Generation JavaScript Engines
In 2008, JavaScript engines got their first big performance boost. Google introduced
their brand-new browser called Chrome. Chrome was the first browser released with
an optimizing JavaScript engine, codenamed V8. The V8 JavaScript engine is a just-in-
time (JIT) compilation engine for JavaScript, which produces machine code from Java-
Script code and then executes it. The resulting experience is blazingly fast JavaScript
execution.

Other browsers soon followed suit with their own optimizing JavaScript engines. Safari
4 features the Squirrel Fish Extreme (also called Nitro) JIT JavaScript engine, and Fire-
fox 3.5 includes the TraceMonkey engine, which optimizes frequently executed code
paths.

With these newer JavaScript engines, optimizations are being done at the compiler-
level, where they should be done. Someday, developers may be completely free of worry
about performance optimizations in their code. That day, however, is still not here.

Performance Is Still a Concern
Despite advancements in core JavaScript execution time, there are still aspects of Java-
Script that these new engines don’t handle. Delays caused by network latency and
operations affecting the appearance of the page are areas that have yet to be adequately
optimized by browsers. While simple optimizations such as function inlining, code
folding, and string concatenation algorithms are easily optimized in compilers, the dy-
namic and multifaceted structure of web applications means that these optimizations
solve only part of the performance problem.

Though newer JavaScript engines have given us a glimpse into the future of a much
faster Internet, the performance lessons of today will continue to be relevant and im-
portant for the foreseeable future.

The techniques and approaches taught in this book address many different aspects of
JavaScript, covering execution time, downloading, interaction with the DOM, page life
cycle, and more. Of these topics only a small subset, those related to core (ECMAScript)
performance, could be rendered irrelevant by advances in JavaScript engines, but that
has yet to happen.

The other topics cover ground where faster JavaScript engines won’t help: DOM in-
teraction, network latency, blocking and concurrent downloading of JavaScript, and
more. These topics will not only continue to be relevant, but will become areas of
further focus and research as low-level JavaScript execution time continues to improve.
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How This Book Is Organized
The chapters in this book are organized based on a normal JavaScript development life
cycle. This begins, in Chapter 1, with the most optimal ways to load JavaScript onto
the page. Chapter 2 through Chapter 8 focus on specific programming techniques to
help your JavaScript code run as quickly as possible. Chapter 9 discusses the best ways
to build and deploy your JavaScript files to a production environment, and Chap-
ter 10 covers performance tools that can help you identify further issues once the code
is deployed. Five of the chapters were written by contributing authors:

• Chapter 3, DOM Scripting, by Stoyan Stefanov

• Chapter 5, Strings and Regular Expressions, by Steven Levithan

• Chapter 7, Ajax, by Ross Harmes

• Chapter 9, Building and Deploying High-Performance JavaScript Applications, by
Julien Lecomte

• Chapter 10, Tools, by Matt Sweeney

Each of these authors is an accomplished web developer who has made important
contributions to the web development community as a whole. Their names appear on
the opening page of their respective chapters to more easily identify their work.

JavaScript Loading
Chapter 1, Loading and Execution, starts with the basics of JavaScript: getting code
onto the page. JavaScript performance really begins with getting the code onto a page
in the most efficient way possible. This chapter focuses on the performance problems
associated with loading JavaScript code and presents several ways to mitigate the
effects.

Coding Technique
A large source of performance problems in JavaScript is poorly written code that uses
inefficient algorithms or utilities. The following seven chapters focus on identifying
problem code and presenting faster alternatives that accomplish the same task.

Chapter 2, Data Access, focuses on how JavaScript stores and accesses data within a
script. Where you store data is just as important as what you store, and this chapter
explains how concepts such as the scope chain and prototype chain can affect your
overall script performance.

Stoyan Stefanov, who is well versed in the internal workings of a web browser, wrote
Chapter 3, DOM Scripting. Stoyan explains that DOM interaction is slower than other
parts of JavaScript because of the way it is implemented. He covers all aspects of the
DOM, including a description of how repaint and reflow can slow down your code.
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Chapter 4, Algorithms and Flow Control, explains how common programming para-
digms such as loops and recursion can work against you when it comes to runtime
performance. Optimization techniques such as memoization are discussed, as are
browser JavaScript runtime limitations.

Many web applications perform complex string operations in JavaScript, which is why
string expert Steven Levithan covers the topic in Chapter 5, Strings and Regular Ex-
pressions. Web developers have been fighting poor string-handling performance in
browsers for years, and Steven explains why some operations are slow and how to work
around them.

Chapter 6, Responsive Interfaces, puts the spotlight firmly on the user experience. Java-
Script can cause the browser to freeze as it executes, leaving users extremely frustrated.
This chapter discusses several techniques to ensure that the user interface remains re-
sponsive at all times.

In Chapter 7, Ajax, Ross Harmes discusses the best ways to achieve fast client-server
communication in JavaScript. Ross covers how different data formats can affect Ajax
performance and why XMLHttpRequest isn’t always the best choice.

Chapter 8, Programming Practices, is a collection of best practices that are unique to
JavaScript programming.

Deployment
Once JavaScript code is written and tested, it’s time to make the changes available to
everyone. However, you shouldn’t just push out your raw source files for use in pro-
duction. Julien Lecomte shows how to improve the performance of your JavaScript
during deployment in Chapter 9, Building and Deploying High-Performance JavaScript
Applications. Julien discusses using a build system to automatically minify files and
using HTTP compression to deliver them to the browser.

Testing
When all of your JavaScript code is deployed, the next step is to begin performance
testing. Matt Sweeney covers testing methodology and tools in Chapter 10, Tools. He
discusses how to use JavaScript to measure performance and also describes common
tools both for evaluating JavaScript runtime performance and for uncovering perform-
ance problems through HTTP sniffing.

Who This Book Is For
This book is aimed at web developers with an intermediate-to-advanced understanding
of JavaScript who are looking to improve the performance of web application interfaces.
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Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “High Performance JavaScript, by Nicholas
C. Zakas. Copyright 2010 Yahoo!, Inc., 978-0-596-80279-0.”

If you feel your use of code examples falls outside fair use or the permission given here,
feel free to contact us at permissions@oreilly.com.
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Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9780596802790

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our website at:

http://www.oreilly.com
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CHAPTER 1

Loading and Execution

JavaScript performance in the browser is arguably the most important usability issue
facing developers. The problem is complex because of the blocking nature of JavaScript,
which is to say that nothing else can happen while JavaScript code is being executed.
In fact, most browsers use a single process for both user interface (UI) updates and
JavaScript execution, so only one can happen at any given moment in time. The longer
JavaScript takes to execute, the longer it takes before the browser is free to respond to
user input.

On a basic level, this means that the very presence of a <script> tag is enough to make
the page wait for the script to be parsed and executed. Whether the actual JavaScript
code is inline with the tag or included in an external file is irrelevant; the page download
and rendering must stop and wait for the script to complete before proceeding. This is
a necessary part of the page’s life cycle because the script may cause changes to the page
while executing. The typical example is using document.write() in the middle of a page
(as often used by advertisements). For example:

<html>
<head>
   <title>Script Example</title>
</head>
<body>
  <p>
  <script type="text/javascript">
    document.write("The date is " + (new Date()).toDateString());
  </script>
  </p>
</body>
</html>

When the browser encounters a <script> tag, as in this HTML page, there is no way
of knowing whether the JavaScript will insert content into the <p>, introduce additional
elements, or perhaps even close the tag. Therefore, the browser stops processing the
page as it comes in, executes the JavaScript code, then continues parsing and rendering
the page. The same takes place for JavaScript loaded using the src attribute; the browser
must first download the code from the external file, which takes time, and then parse
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and execute the code. Page rendering and user interaction are completely blocked dur-
ing this time.

The two leading sources of information on JavaScript affecting page
download performance are the Yahoo! Exceptional Performance team
(http://developer.yahoo.com/performance/) and Steve Souders, author of
High Performance Web Sites (O’Reilly) and Even Faster Web Sites (O’Re-
illy). This chapter is heavily influenced by their combined research.

Script Positioning
The HTML 4 specification indicates that a <script> tag may be placed inside of a
<head> or <body> tag in an HTML document and may appear any number of times
within each. Traditionally, <script> tags that are used to load external JavaScript files
have appeared in the <head>, along with <link> tags to load external CSS files and other
metainformation about the page. The theory was that it’s best to keep as many style
and behavior dependencies together, loading them first so that the page will come in
looking and behaving correctly. For example:

<html>
<head>
   <title>Script Example</title>
   <-- Example of inefficient script positioning -->
   <script type="text/javascript" src="file1.js"></script>
   <script type="text/javascript" src="file2.js"></script>
   <script type="text/javascript" src="file3.js"></script>
   <link rel="stylesheet" type="text/css" href="styles.css">
</head>
<body>
  <p>Hello world!</p>
</body>
</html>

Though this code seems innocuous, it actually has a severe performance issue: there
are three JavaScript files being loaded in the <head>. Since each <script> tag blocks the
page from continuing to render until it has fully downloaded and executed the Java-
Script code, the perceived performance of this page will suffer. Keep in mind that
browsers don’t start rendering anything on the page until the opening <body> tag is
encountered. Putting scripts at the top of the page in this way typically leads to a no-
ticeable delay, often in the form of a blank white page, before the user can even begin
reading or otherwise interacting with the page. To get a good understanding of how
this occurs, it’s useful to look at a waterfall diagram showing when each resource is
downloaded. Figure 1-1 shows when each script and the stylesheet file get downloaded
as the page is loading.

Figure 1-1 shows an interesting pattern. The first JavaScript file begins to download
and blocks any of the other files from downloading in the meantime. Further, there is
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a delay between the time at which file1.js is completely downloaded and the time at
which file2.js begins to download. That space is the time it takes for the code contained
in file1.js to fully execute. Each file must wait until the previous one has been down-
loaded and executed before the next download can begin. In the meantime, the user is
met with a blank screen as the files are being downloaded one at a time. This is the
behavior of most major browsers today.

Internet Explorer 8, Firefox 3.5, Safari 4, and Chrome 2 all allow parallel downloads 
of JavaScript files. This is good news because the <script> tags don’t necessarily block
other <script> tags from downloading external resources. Unfortunately, JavaScript
downloads still block downloading of other resources, such as images. And even though
downloading a script doesn’t block other scripts from downloading, the page must still
wait for the JavaScript code to be downloaded and executed before continuing. So while
the latest browsers have improved performance by allowing parallel downloads, the
problem hasn’t been completely solved. Script blocking still remains a problem.

Because scripts block downloading of all resource types on the page, it’s recommended
to place all <script> tags as close to the bottom of the <body> tag as possible so as not
to affect the download of the entire page. For example:

<html>
<head>
   <title>Script Example</title>
   <link rel="stylesheet" type="text/css" href="styles.css">
</head>
<body>
  <p>Hello world!</p>

   <-- Example of recommended script positioning -->
   <script type="text/javascript" src="file1.js"></script>
   <script type="text/javascript" src="file2.js"></script>
   <script type="text/javascript" src="file3.js"></script>
</body>
</html>

This code represents the recommended position for <script> tags in an HTML file.
Even though the script downloads will block one another, the rest of the page has

Figure 1-1. JavaScript code execution blocks other file downloads

Script Positioning | 3



already been downloaded and displayed to the user so that the entire page isn’t per-
ceived as slow. This is the Yahoo! Exceptional Performance team’s first rule about
JavaScript: put scripts at the bottom.

Grouping Scripts
Since each <script> tag blocks the page from rendering during initial download, it’s
helpful to limit the total number of <script> tags contained in the page. This applies
to both inline scripts as well as those in external files. Every time a <script> tag is
encountered during the parsing of an HTML page, there is going to be a delay while
the code is executed; minimizing these delays improves the overall performance of the
page.

Steve Souders has also found that an inline script placed after a <link>
tag referencing an external stylesheet caused the browser to block while
waiting for the stylesheet to download. This is done to ensure that the
inline script will have the most correct style information with which to
work. Souders recommends never putting an inline script after a
<link> tag for this reason.

The problem is slightly different when dealing with external JavaScript files. Each
HTTP request brings with it additional performance overhead, so downloading one
single 100 KB file will be faster than downloading four 25 KB files. To that end, it’s
helpful to limit the number of external script files that your page references.

Typically, a large website or web application will have several required JavaScript files.
You can minimize the performance impact by concatenating these files together into a
single file and then calling that single file with a single <script> tag. The concatenation
can happen offline using a build tool (discussed in Chapter 9) or in real-time using a
tool such as the Yahoo! combo handler.

Yahoo! created the combo handler for use in distributing the Yahoo! User Interface
(YUI) library files through their Content Delivery Network (CDN). Any website can
pull in any number of YUI files by using a combo-handled URL and specifying the files
to include. For example, this URL includes two files: http://yui.yahooapis.com/combo
?2.7.0/build/yahoo/yahoo-min.js&2.7.0/build/event/event-min.js.

This URL loads the 2.7.0 versions of the yahoo-min.js and event-min.js files. These files
exist separately on the server but are combined when this URL is requested. Instead of
using two <script> tags (one to load each file), a single <script> tag can be used to load
both:

4 | Chapter 1: Loading and Execution

http://yui.yahooapis.com/combo?2.7.0/build/yahoo/yahoo-min.js&2.7.0/build/event/event-min.js
http://yui.yahooapis.com/combo?2.7.0/build/yahoo/yahoo-min.js&2.7.0/build/event/event-min.js


<html>
<head>
   <title>Script Example</title>
   <link rel="stylesheet" type="text/css" href="styles.css">
</head>
<body>
  <p>Hello world!</p>

   <-- Example of recommended script positioning -->
   <script type="text/javascript" src="
http://yui.yahooapis.com/combo?2.7.0/build/yahoo/yahoo-min.js&
2.7.0/build/event/event-min.js "></script>
</body>
</html>

This code has a single <script> tag at the bottom of the page that loads multiple Java-
Script files, showing the best practice for including external JavaScript on an HTML
page.

Nonblocking Scripts
JavaScript’s tendency to block browser processes, both HTTP requests and UI updates,
is the most notable performance issue facing developers. Keeping JavaScript files small
and limiting the number of HTTP requests are only the first steps in creating a respon-
sive web application. The richer the functionality an application requires, the more
JavaScript code is required, and so keeping source code small isn’t always an option.
Limiting yourself to downloading a single large JavaScript file will only result in locking
the browser out for a long period of time, despite it being just one HTTP request. To
get around this situation, you need to incrementally add more JavaScript to the page
in a way that doesn’t block the browser.

The secret to nonblocking scripts is to load the JavaScript source code after the page
has finished loading. In technical terms, this means downloading the code after the
window’s load event has been fired. There are a few techniques for achieving this result.

Deferred Scripts
HTML 4 defines an additional attribute for the <script> tag called defer. The defer
attribute indicates that the script contained within the element is not going to modify
the DOM and therefore execution can be safely deferred until a later point in time. The
defer attribute is supported only in Internet Explorer 4+ and Firefox 3.5+, making it
less than ideal for a generic cross-browser solution. In other browsers, the defer at-
tribute is simply ignored and so the <script> tag is treated in the default (blocking)
manner. Still, this solution is useful if your target browsers support it. The following is
an example usage:

<script type="text/javascript" src="file1.js" defer></script>
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A <script> tag with defer may be placed anywhere in the document. The JavaScript
file will begin downloading at the point that the <script> tag is parsed, but the code
will not be executed until the DOM has been completely loaded (before the onload
event handler is called). When a deferred JavaScript file is downloaded, it doesn’t block
the browser’s other processes, and so these files can be downloaded in parallel with
others on the page.

Any <script> element marked with defer will not execute until after the DOM has been
completely loaded; this holds true for inline scripts as well as for external script files.
The following simple page demonstrates how the defer attribute alters the behavior of
scripts:

<html>
<head>
    <title>Script Defer Example</title>
</head>
<body>
    <script defer>
        alert("defer");
    </script>
    <script>
        alert("script");
    </script>
    <script>
        window.onload = function(){
            alert("load");
        };
    </script>
</body>
</html>

This code displays three alerts as the page is being processed. In browsers that don’t
support defer, the order of the alerts is “defer”, “script”, and “load”. In browsers that
support defer, the order of the alerts is “script”, “defer”, and “load”. Note that the
deferred <script> element isn’t executed until after the second but is executed before
the onload event handler is called.

If your target browsers include only Internet Explorer and Firefox 3.5, then deferring
scripts in this manner can be helpful. If you have a larger cross-section of browsers to
support, there are other solutions that work in a more consistent manner.

Dynamic Script Elements
The Document Object Model (DOM) allows you to dynamically create almost any part
of an HTML document using JavaScript. At its root, the <script> element isn’t any
different than any other element on a page: references can be retrieved through the
DOM, and they can be moved, removed from the document, and even created. A new
<script> element can be created very easily using standard DOM methods:
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var script = document.createElement("script");
script.type = "text/javascript";
script.src = "file1.js";
document.getElementsByTagName("head")[0].appendChild(script);

This new <script> element loads the source file file1.js. The file begins downloading
as soon as the element is added to the page. The important thing about this technique
is that the file is downloaded and executed without blocking other page processes,
regardless of where the download is initiated. You can even place this code in the
<head> of a document without affecting the rest of the page (aside from the one HTTP
connection that is used to download the file).

It’s generally safer to add new <script> nodes to the <head> element
instead of the <body>, especially if this code is executing during page
load. Internet Explorer may experience an “operation aborted” error if
all of the <body> contents have not yet been loaded.*

When a file is downloaded using a dynamic script node, the retrieved code is typically
executed immediately (except in Firefox and Opera, which will wait until any previous
dynamic script nodes have executed). This works well when the script is self-executing
but can be problematic if the code contains only interfaces to be used by other scripts
on the page. In that case, you need to track when the code has been fully downloaded
and is ready for use. This is accomplished using events that are fired by the dynamic
<script> node.

Firefox, Opera, Chrome, and Safari 3+ all fire a load event when the src of a
<script> element has been retrieved. You can therefore be notified when the script is
ready by listening for this event:

var script = document.createElement("script")
script.type = "text/javascript";

//Firefox, Opera, Chrome, Safari 3+
script.onload = function(){
    alert("Script loaded!");
};

script.src = "file1.js";
document.getElementsByTagName("head")[0].appendChild(script);

Internet Explorer supports an alternate implementation that fires a readystatechange
event. There is a readyState property on the <script> element that is changed at various
times during the download of an external file. There are five possible values for ready
State:

* See “The dreaded operation aborted error” at http://www.nczonline.net/blog/2008/03/17/the
-dreaded-operation-aborted-error/ for a more in-depth discussion of this issue.
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"uninitialized"

The default state

"loading"

Download has begun

"loaded"

Download has completed

"interactive"

Data is completely downloaded but isn’t fully available

"complete"

All data is ready to be used

Microsoft’s documentation for readyState and each of the possible values seems to
indicate that not all states will be used during the lifetime of the <script> element, but
there is no indication as to which will always be used. In practice, the two states of most
interest are "loaded" and "complete". Internet Explorer is inconsistent with which of
these two readyState values indicates the final state, as sometimes the <script> element
will reach the "loaded" state but never reach "complete" whereas other times "com
plete" will be reached without "loaded" ever having been used. The safest way to use
the readystatechange event is to check for both of these states and remove the event
handler when either one occurs (to ensure the event isn’t handled twice):

var script = document.createElement("script")
script.type = "text/javascript";

//Internet Explorer
script.onreadystatechange = function(){
    if (script.readyState == "loaded" || script.readyState == "complete"){
        script.onreadystatechange = null;
        alert("Script loaded.");
    }
};

script.src = "file1.js";
document.getElementsByTagName("head")[0].appendChild(script);

In most cases, you’ll want to use a single approach to dynamically load JavaScript files.
The following function encapsulates both the standard and IE-specific functionality:

function loadScript(url, callback){

    var script = document.createElement("script")
    script.type = "text/javascript";

    if (script.readyState){  //IE
        script.onreadystatechange = function(){
            if (script.readyState == "loaded" || script.readyState == "complete"){
                script.onreadystatechange = null;
                callback();
            }
        };
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    } else {  //Others
        script.onload = function(){
            callback();
        };
    }

    script.src = url;
    document.getElementsByTagName("head")[0].appendChild(script);
}

This function accepts two arguments: the URL of the JavaScript file to retrieve and a
callback function to execute when the JavaScript has been fully loaded. Feature detec-
tion is used to determine which event handler should monitor the script’s progress.
The last step is to assign the src property and add the <script> element to the page.
The loadScript() function is used as follows:

loadScript("file1.js", function(){
    alert("File is loaded!");
});

You can dynamically load as many JavaScript files as necessary on a page, but make
sure you consider the order in which files must be loaded. Of all the major browsers,
only Firefox and Opera guarantee that the order of script execution will remain the
same as you specify. Other browsers will download and execute the various code files
in the order in which they are returned from the server. You can guarantee the order
by chaining the downloads together, such as:

loadScript("file1.js", function(){
    loadScript("file2.js", function(){
        loadScript("file3.js", function(){
            alert("All files are loaded!");
        });
    });
});

This code waits to begin loading file2.js until file1.js is available and also waits to
download file3.js until file2.js is available. Though possible, this approach can get a
little bit difficult to manage if there are multiple files to download and execute.

If the order of multiple files is important, the preferred approach is to concatenate the
files into a single file where each part is in the correct order. That single file can then
be downloaded to retrieve all of the code at once (since this is happening asynchro-
nously, there’s no penalty for having a larger file).

Dynamic script loading is the most frequently used pattern for nonblocking JavaScript
downloads due to its cross-browser compatibility and ease of use.

XMLHttpRequest Script Injection
Another approach to nonblocking scripts is to retrieve the JavaScript code using an
XMLHttpRequest (XHR) object and then inject the script into the page. This technique
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involves creating an XHR object, downloading the JavaScript file, then injecting the
JavaScript code into the page using a dynamic <script> element. Here’s a simple
example:

var xhr = new XMLHttpRequest();
xhr.open("get", "file1.js", true);
xhr.onreadystatechange = function(){
    if (xhr.readyState == 4){
        if (xhr.status >= 200 && xhr.status < 300 || xhr.status == 304){
            var script = document.createElement("script");
            script.type = "text/javascript";
            script.text = xhr.responseText;
            document.body.appendChild(script);
        }

    }
};
xhr.send(null);

This code sends a GET request for the file file1.js. The onreadystatechange event handler
checks for a readyState of 4 and then verifies that the HTTP status code is valid (any-
thing in the 200 range means a valid response, and 304 means a cached response). If a
valid response has been received, then a new <script> element is created and its text
property is assigned to the responseText received from the server. Doing so essentially
creates a <script> element with inline code. Once the new <script> element is added
to the document, the code is executed and is ready to use.

The primary advantage of this approach is that you can download the JavaScript code
without executing it immediately. Since the code is being returned outside of a
<script> tag, it won’t automatically be executed upon download, allowing you to defer
its execution until you’re ready. Another advantage is that the same code works in all
modern browsers without exception cases.

The primary limitation of this approach is that the JavaScript file must be located on
the same domain as the page requesting it, which makes downloading from CDNs
impossible. For this reason, XHR script injection typically isn’t used on large-scale web
applications.

Recommended Nonblocking Pattern
The recommend approach to loading a significant amount of JavaScript onto a page is
a two-step process: first, include the code necessary to dynamically load JavaScript,
and then load the rest of the JavaScript code needed for page initialization. Since the
first part of the code is as small as possible, potentially containing just the load
Script() function, it downloads and executes quickly, and so shouldn’t cause much
interference with the page. Once the initial code is in place, use it to load the remaining
JavaScript. For example:
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<script type="text/javascript" src="loader.js"></script>
<script type="text/javascript">
    loadScript("the-rest.js", function(){
        Application.init();
    });
</script>

Place this loading code just before the closing </body> tag. Doing so has several benefits.
First, as discussed earlier, this ensures that JavaScript execution won’t prevent the rest
of the page from being displayed. Second, when the second JavaScript file has finished
downloading, all of the DOM necessary for the application has been created and is
ready to be interacted with, avoiding the need to check for another event (such as
window.onload) to know when the page is ready for initialization.

Another option is to embed the loadScript() function directly into the page, thus
avoiding another HTTP request. For example:

<script type="text/javascript">
    function loadScript(url, callback){

        var script = document.createElement("script")
        script.type = "text/javascript";

        if (script.readyState){  //IE
            script.onreadystatechange = function(){
                if (script.readyState == "loaded" ||
                        script.readyState == "complete"){
                    script.onreadystatechange = null;
                    callback();
                }
            };
        } else {  //Others
            script.onload = function(){
                callback();
            };
        }

        script.src = url;
        document.getElementsByTagName("head")[0].appendChild(script);
    }

    loadScript("the-rest.js", function(){
        Application.init();
    });
</script>

If you decide to take the latter approach, it’s recommended to minify the initial script
using a tool such as YUI Compressor (see Chapter 9) for the smallest byte-size impact
on your page.

Once the code for page initialization has been completely downloaded, you are free to
continue using loadScript() to load additional functionality onto the page as needed.
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The YUI 3 approach

The concept of a small initial amount of code on the page followed by downloading
additional functionality is at the core of the YUI 3 design. To use YUI 3 on your page,
begin by including the YUI seed file:

<script type="text/javascript"
src="http://yui.yahooapis.com/combo?3.0.0/build/yui/yui-min.js"></script>

The seed file is around 10 KB (6 KB gzipped) and includes enough functionality to
download any other YUI components from the Yahoo! CDN. For example, if you’d
like to use the DOM utility, you specify its name ("dom") with the YUI use() method
and then provide a callback that will be executed when the code is ready:

YUI().use("dom", function(Y){
    Y.DOM.addClass(docment.body, "loaded");
});

This example creates a new instance of the YUI object and then calls the use() method.
The seed file has all of the information about filenames and dependencies, so specifying
"dom" actually builds up a combo-handler URL with all of the correct dependency files
and creates a dynamic script element to download and execute those files. When all of
the code is available, the callback method is called and the YUI instance is passed in as
the argument, allowing you to immediately start using the newly downloaded
functionality.

The LazyLoad library

For a more general-purpose tool, Ryan Grove of Yahoo! Search created the LazyLoad
library (available at http://github.com/rgrove/lazyload/). LazyLoad is a more powerful
version of the loadScript() function. When minified, the LazyLoad file is around 1.5
KB (minified, not gzipped). Example usage:

<script type="text/javascript" src="lazyload-min.js"></script>
<script type="text/javascript">
    LazyLoad.js("the-rest.js", function(){
        Application.init();
    });
</script>

LazyLoad is also capable of downloading multiple JavaScript files and ensuring that
they are executed in the correct order in all browsers. To load multiple JavaScript files,
just pass an array of URLs to the LazyLoad.js() method:

<script type="text/javascript" src="lazyload-min.js"></script>
<script type="text/javascript">
    LazyLoad.js(["first-file.js", "the-rest.js"], function(){
        Application.init();
    });
</script>
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Even though the files are downloaded in a nonblocking fashion using dynamic script
loading, it’s recommended to have as few files as possible. Each download is still a
separate HTTP request, and the callback function won’t execute until all of the files
have been downloaded and executed.

LazyLoad is also capable of loading CSS files dynamically. This is typi-
cally less of an issue because CSS file downloads are always done in
parallel and don’t block other page activities.

The LABjs library

Another take on nonblocking JavaScript loading is LABjs (http://labjs.com/), an open
source library written by Kyle Simpson with input from Steve Souders. This library
provides more fine-grained control over the loading process and tries to download as
much code in parallel as possible. LABjs is also quite small, 4.5 KB (minified, not
gzipped), and so has a minimal page footprint. Example usage:

<script type="text/javascript" src="lab.js"></script>
<script type="text/javascript">
    $LAB.script("the-rest.js")
        .wait(function(){
            Application.init();
        });
</script>

The $LAB.script() method is used to define a JavaScript file to download, whereas
$LAB.wait() is used to indicate that execution should wait until the file is downloaded
and executed before running the given function. LABjs encourages chaining, so every
method returns a reference to the $LAB object. To download multiple JavaScript files,
just chain another $LAB.script() call:

<script type="text/javascript" src="lab.js"></script>
<script type="text/javascript">
    $LAB.script("first-file.js")
        .script("the-rest.js")
        .wait(function(){
            Application.init();
        });
</script>

What sets LABjs apart is its ability to manage dependencies. Normal inclusion with
<script> tags means that each file is downloaded (either sequentially or in parallel, as
mentioned previously) and then executed sequentially. In some cases this is truly nec-
essary, but in others it is not.

LABjs allows you to specify which files should wait for others by using wait(). In the
previous example, the code in first-file.js is not guaranteed to execute before the code
in the-rest.js. To guarantee this, you must add a wait() call after the first script():
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<script type="text/javascript" src="lab.js"></script>
<script type="text/javascript">
    $LAB.script("first-file.js").wait()
        .script("the-rest.js")
        .wait(function(){
            Application.init();
        });
</script>

Now the code in first-file.js is guaranteed to execute before the code in the-rest.js, al-
though the contents of the files are downloaded in parallel.

Summary
Managing JavaScript in the browser is tricky because code execution blocks other
browser processes such as UI painting. Every time a <script> tag is encountered, the
page must stop and wait for the code to download (if external) and execute before
continuing to process the rest of the page. There are, however, several ways to minimize
the performance impact of JavaScript:

• Put all <script> tags at the bottom of the page, just inside of the closing </body>
tag. This ensures that the page can be almost completely rendered before script
execution begins.

• Group scripts together. The fewer <script> tags on the page, the faster the page
can be loaded and become interactive. This holds true both for <script> tags load-
ing external JavaScript files and those with inline code.

• There are several ways to download JavaScript in a nonblocking fashion:

— Use the defer attribute of the <script> tag (Internet Explorer and Firefox 3.5+
only)

— Dynamically create <script> elements to download and execute the code

— Download the JavaScript code using an XHR object, and then inject the code
into the page

By using these strategies, you can greatly improve the perceived performance of a web
application that requires a large amount of JavaScript code.
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CHAPTER 2

Data Access

One of the classic computer science problems is determining where data should be
stored for optimal reading and writing. Where data is stored is related to how quickly
it can be retrieved during code execution. This problem in JavaScript is somewhat
simplified because of the small number of options for data storage. Similar to other
languages, though, where data is stored can greatly affect how quickly it can be accessed
later. There are four basic places from which data can be accessed in JavaScript:

Literal values
Any value that represents just itself and isn’t stored in a particular location. Java-
Script can represent strings, numbers, Booleans, objects, arrays, functions, regular
expressions, and the special values null and undefined as literals.

Variables
Any developer-defined location for storing data created by using the var keyword.

Array items
A numerically indexed location within a JavaScript Array object.

Object members
A string-indexed location within a JavaScript object.

Each of these data storage locations has a particular cost associated with reading and
writing operations involving the data. In most cases, the performance difference be-
tween accessing information from a literal value versus a local variable is trivial. Ac-
cessing information from array items and object members is more expensive, though
exactly which is more expensive depends heavily on the browser. Figure 2-1 shows the
relative speed of accessing 200,000 values from each of these four locations in various
browsers.

Older browsers using more traditional JavaScript engines, such as Firefox 3, Internet
Explorer, and Safari 3.2, show a much larger amount of time taken to access values
versus browsers that use optimizing JavaScript engines. The general trends, however,
remain the same across all browsers: literal value and local variable access tend to be
faster than array item and object member access. The one exception, Firefox 3,
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optimized array item access to be much faster. Even so, the general advice is to use
literal values and local variables whenever possible and limit use of array items and
object members where speed of execution is a concern. To that end, there are several
patterns to look for, avoid, and optimize in your code.

Managing Scope
The concept of scope is key to understanding JavaScript not just from a performance
perspective, but also from a functional perspective. Scope has many effects in Java-
Script, from determining what variables a function can access to assigning the value of
this. There are also performance considerations when dealing with JavaScript scopes,
but to understand how speed relates to scope, it’s necessary to understand exactly how
scope works.

Scope Chains and Identifier Resolution
Every function in JavaScript is represented as an object—more specifically, as an in-
stance of Function. Function objects have properties just like any other object, and these
include both the properties that you can access programmatically and a series of internal
properties that are used by the JavaScript engine but are not accessible through code.
One of these properties is [[Scope]], as defined by ECMA-262, Third Edition.

Figure 2-1. Time per 200,000 reads from various data locations
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The internal [[Scope]] property contains a collection of objects representing the scope
in which the function was created. This collection is called the function’s scope chain
and it determines the data that a function can access. Each object in the function’s
scope chain is called a variable object, and each of these contains entries for variables
in the form of key-value pairs. When a function is created, its scope chain is populated
with objects representing the data that is accessible in the scope in which the function
was created. For example, consider the following global function:

function add(num1, num2){
    var sum = num1 + num2;
    return sum;
}

When the add() function is created, its scope chain is populated with a single variable
object: the global object representing all of the variables that are globally defined. This
global object contains entries for window, navigator, and document, to name a few.
Figure 2-2 shows this relationship (note the global object in this figure shows only a
few of the global variables as an example; there are many others).

Figure 2-2. Scope chain for the add() function

The add function’s scope chain is later used when the function is executed. Suppose
that the following code is executed:

var total = add(5, 10);

Executing the add function triggers the creation of an internal object called an execution
context. An execution context defines the environment in which a function is being
executed. Each execution context is unique to one particular execution of the function,
and so multiple calls to the same function result in multiple execution contexts being
created. The execution context is destroyed once the function has been completely
executed.
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An execution context has its own scope chain that is used for identifier resolution.
When the execution context is created, its scope chain is initialized with the objects
contained in the executing function’s [[Scope]] property. These values are copied over
into the execution context scope chain in the order in which they appear in the function.
Once this is complete, a new object called the activation object is created for the exe-
cution context. The activation object acts as the variable object for this execution and
contains entries for all local variables, named arguments, the arguments collection, and
this. This object is then pushed to the front of the scope chain. When the execution
context is destroyed, so is the activation object. Figure 2-3 shows the execution context
and its scope chain for the previous example code.

Figure 2-3. Scope chain while executing add()

Each time a variable is encountered during the function’s execution, the process of
identifier resolution takes place to determine where to retrieve or store the data. During
this process, the execution context’s scope chain is searched for an identifier with the
same name. The search begins at the front of the scope chain, in the execution function’s
activation object. If found, the variable with the specified identifier is used; if not, the
search continues on to the next object in the scope chain. This process continues until
either the identifier is found or there are no more variable objects to search, in which
case the identifier is deemed to be undefined. The same approach is taken for each
identifier found during the function execution, so in the previous example, this would
happen for sum, num1, and num2. It is this search process that affects performance.
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Note that two variables with the same name may exist in different parts
of the scope chain. In that case, the identifier is bound to the variable
that is found first in the scope chain traversal, and the first variable is
said to shadow the second.

Identifier Resolution Performance
Identifier resolution isn’t free, as in fact no computer operation really is without some
sort of performance overhead. The deeper into the execution context’s scope chain an
identifier exists, the slower it is to access for both reads and writes. Consequently, local
variables are always the fastest to access inside of a function, whereas global variables 
will generally be the slowest (optimizing JavaScript engines are capable of tuning this
in certain situations). Keep in mind that global variables always exist in the last variable
object of the execution context’s scope chain, so they are always the furthest away to
resolve. Figures 2-4 and 2-5 show the speed of identifier resolution based on their depth
in the scope chain. A depth of 1 indicates a local variable.

Figure 2-4. Identifier resolution for write operations
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Figure 2-5. Identifier resolution for read operations

The general trend across all browsers is that the deeper into the scope chain an identifier
exists, the slower it will be read from or written to. Browsers with optimizing JavaScript
engines, such as Chrome and Safari 4, don’t have this sort of performance penalty for
accessing out-of-scope identifiers, whereas Internet Explorer, Safari 3.2, and others
show a more drastic effect. It’s worth noting that earlier browsers, such as Internet
Explorer 6 and Firefox 2, had incredibly steep slopes and would not even appear within
the bounds of this graph at the high point if their data had been included.

Given this information, it’s advisable to use local variables whenever possible to im-
prove performance in browsers without optimizing JavaScript engines. A good rule of
thumb is to always store out-of-scope values in local variables if they are used more
than once within a function. Consider the following example:

function initUI(){
    var bd = document.body,
        links = document.getElementsByTagName("a"),
        i= 0,
        len = links.length;

    while(i < len){
        update(links[i++]);
    }
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    document.getElementById("go-btn").onclick = function(){
        start();
    };

    bd.className = "active";
}

This function contains three references to document, which is a global object. The search
for this variable must go all the way through the scope chain before finally being re-
solved in the global variable object. You can mitigate the performance impact of re-
peated global variable access by first storing the reference in a local variable and then
using the local variable instead of the global. For example, the previous code can be
rewritten as follows:

function initUI(){
    var doc = document,
        bd = doc.body,
        links = doc.getElementsByTagName("a"),
        i= 0,
        len = links.length;

    while(i < len){
        update(links[i++]);
    }

    doc.getElementById("go-btn").onclick = function(){
        start();
    };

    bd.className = "active";
}

The updated version of initUI() first stores a reference to document in the local doc
variable. Instead of accessing a global variables three times, that number is cut down
to one. Accessing doc instead of document is faster because it’s a local variable. Of course,
this simplistic function won’t show a huge performance improvement, because it’s not
doing that much, but imagine larger functions with dozens of global variables being
accessed repeatedly; that is where the more impressive performance improvements will
be found.

Scope Chain Augmentation
Generally speaking, an execution context’s scope chain doesn’t change. There are,
however, two statements that temporarily augment the execution context’s scope chain
while it is being executed. The first of these is with.

The with statement is used to create variables for all of an object’s properties. This
mimics other languages with similar features and is usually seen as a convenience to
avoid writing the same code repeatedly. The initUI() function can be written as the
following:
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function initUI(){
    with (document){     //avoid!
        var bd = body,
            links = getElementsByTagName("a"),
            i= 0,
            len = links.length;

        while(i < len){
            update(links[i++]);
        }

        getElementById("go-btn").onclick = function(){
            start();
        };

        bd.className = "active";
    }
}

This rewritten version of initUI() uses a with statement to avoid writing document else-
where. Though this may seem more efficient, it actually creates a performance problem.

When code execution flows into a with statement, the execution context’s scope chain
is temporarily augmented. A new variable object is created containing all of the prop-
erties of the specified object. That object is then pushed to the front of the scope chain,
meaning that all of the function’s local variables are now in the second scope chain
object and are therefore more expensive to access (see Figure 2-6).

By passing the document object into the with statement, a new variable object containing
all of the document object’s properties is pushed to the front of the scope chain. This
makes it very fast to access document properties but slower to access the local variables
such as bd. For this reason, it’s best to avoid using the with statement. As shown pre-
viously, it’s just as easy to store document in a local variable and get the performance
improvement that way.

The with statement isn’t the only part of JavaScript that artificially augments the exe-
cution context’s scope chain; the catch clause of the try-catch statement has the same
effect. When an error occurs in the try block, execution automatically flows to the
catch and the exception object is pushed into a variable object that is then placed at
the front of the scope chain. Inside of the catch block, all variables local to the function
are now in the second scope chain object. For example:

try {
    methodThatMightCauseAnError();
} catch (ex){
    alert(ex.message);  //scope chain is augmented here
}

Note that as soon as the catch clause is finished executing, the scope chain returns to
its previous state.
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The try-catch statement is very useful when applied appropriately, and so it doesn’t
make sense to suggest complete avoidance. If you do plan on using a try-catch, make
sure that you understand the likelihood of error. A try-catch should never be used as
the solution to a JavaScript error. If you know an error will occur frequently, then that
indicates a problem with the code itself that should be fixed.

You can minimize the performance impact of the catch clause by executing as little
code as necessary within it. A good pattern is to have a method for handling errors that
the catch clause can delegate to, as in this example:

try {
    methodThatMightCauseAnError();
} catch (ex){
    handleError(ex);  //delegate to handler method
}

Here a handleError() method is the only code that is executed in the catch clause. This
method is free to handle the error in an appropriate way and is passed the exception
object generated from the error. Since there is just one statement executed and no local

Figure 2-6. Augmented scope chain in a with statement
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variables accessed, the temporary scope chain augmentation does not affect the per-
formance of the code.

Dynamic Scopes
Both the with statement and the catch clause of a try-catch statement, as well as a
function containing eval(), are all considered to be dynamic scopes. A dynamic scope
is one that exists only through execution of code and therefore cannot be determined
simply by static analysis (looking at the code structure). For example:

function execute(code) {
  eval(code);

  function subroutine(){
    return window;
  }

  var w = subroutine();

  //what value is w?
};

The execute() function represents a dynamic scope due to the use of eval(). The value
of w can change based on the value of code. In most cases, w will be equal to the global
window object, but consider the following:

execute("var window = {};")

In this case, eval() creates a local window variable in execute(), so w ends up equal to
the local window instead of the global. There is no way to know if this is the case until
the code is executed, which means the value of the window identifier cannot be
predetermined.

Optimizing JavaScript engines such as Safari’s Nitro try to speed up identifier resolution
by analyzing the code to determine which variables should be accessible at any given
time. These engines try to avoid the traditional scope chain lookup by indexing iden-
tifiers for faster resolution. When a dynamic scope is involved, however, this optimi-
zation is no longer valid. The engines need to switch back to a slower hash-based
approach for identifier resolution that more closely mirrors traditional scope chain
lookup.

For this reason, it’s recommended to use dynamic scopes only when absolutely
necessary.

Closures, Scope, and Memory
Closures are one of the most powerful aspects of JavaScript, allowing a function to
access data that is outside of its local scope. The use of closures has been popularized
through the writings of Douglas Crockford and is now ubiquitous in most complex

24 | Chapter 2: Data Access



web applications. There is, however, a performance impact associated with using
closures.

To understand the performance issues with closures, consider the following:

function assignEvents(){

    var id = "xdi9592";

    document.getElementById("save-btn").onclick = function(event){
        saveDocument(id);
    };
}

The assignEvents() function assigns an event handler to a single DOM element. This
event handler is a closure, as it is created when the assignEvents() is executed and can
access the id variable from the containing scope. In order for this closure to access id,
a specific scope chain must be created.

When assignEvents() is executed, an activation object is created that contains, among
other things, the id variable. This becomes the first object in the execution context’s
scope chain, with the global object coming second. When the closure is created, its
[[Scope]] property is initialized with both of these objects (see Figure 2-7).

Figure 2-7. Scope chains of the assignEvents() execution context and closure

Since the closure’s [[Scope]] property contains references to the same objects as the
execution context’s scope chain, there is a side effect. Typically, a function’s activation
object is destroyed when the execution context is destroyed. When there’s a closure
involved, though, the activation object isn’t destroyed, because a reference still exists
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in the closure’s [[Scope]] property. This means that closures require more memory
overhead in a script than a nonclosure function. In large web applications, this might
become a problem, especially where Internet Explorer is concerned. IE implements
DOM objects as nonnative JavaScript objects, and as such, closures can cause memory
leaks (see Chapter 3 for more information).

When the closure is executed, an execution context is created whose scope chain is
initialized with the same two scope chain objects referenced in [[Scope]], and then a
new activation object is created for the closure itself (see Figure 2-8).

Figure 2-8. Executing the closure

Note that both identifiers used in the closure, id and saveDocument, exist past the first
object in the scope chain. This is the primary performance concern with closures: you’re
often accessing a lot of out-of-scope identifiers and therefore are incurring a perform-
ance penalty with each access.

It’s best to exercise caution when using closures in your scripts, as they have both
memory and execution speed concerns. However, you can mitigate the execution speed
impact by following the advice from earlier in this chapter regarding out-of-scope var-
iables: store any frequently used out-of-scope variables in local variables, and then
access the local variables directly.
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Object Members
Most JavaScript is written in an object-oriented manner, either through the creation of
custom objects or the use of built-in objects such as those in the Document Object
Model (DOM) and Browser Object Model (BOM). As such, there tends to be a lot of
object member access.

Object members are both properties and methods, and there is little difference between
the two in JavaScript. A named member of an object may contain any data type. Since
functions are represented as objects, a member may contain a function in addition to
the more traditional data types. When a named member references a function, it’s
considered a method, whereas a member referencing a nonfunction data type is con-
sidered a property.

As discussed earlier in this chapter, object member access tends to be slower than
accessing data in literals or variables, and in some browsers slower than accessing array
items. To understand why this is the case, it’s necessary to understand the nature of
objects in JavaScript.

Prototypes
Objects in JavaScript are based on prototypes. A prototype is an object that serves as
the base of another object, defining and implementing members that a new object must
have. This is a completely different concept than the traditional object-oriented pro-
gramming concept of classes, which define the process for creating a new object.
Prototype objects are shared amongst all instances of a given object type, and so all
instances also share the prototype object’s members.

An object is tied to its prototype by an internal property. Firefox, Safari, and Chrome
expose this property to developers as __proto__; other browsers do not allow script
access to this property. Any time you create a new instance of a built-in type, such as
Object or Array, these instances automatically have an instance of Object as their
prototype.

Consequently, objects can have two types of members: instance members (also called
“own” members) and prototype members. Instance members exist directly on the ob-
ject instance itself, whereas prototype members are inherited from the object prototype.
Consider the following example:

var book = {
    title: "High Performance JavaScript",
    publisher: "Yahoo! Press"
};

alert(book.toString());   //"[object Object]"
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In this code, the book object has two instance members: title and publisher. Note that
there is no definition for the method toString() but that the method is called and
behaves appropriately without throwing an error. The toString() method is a proto-
type member that the book object is inheriting. Figure 2-9 shows this relationship.

Figure 2-9. Relationship between an instance and prototype

The process of resolving an object member is very similar to resolving a variable. When
book.toString() is called, the search for a member named “toString” begins on the
object instance. Since book doesn’t have a member named toString, the search then
flows to the prototype object, where the toString() method is found and executed. In
this way, book has access to every property or method on its prototype.

You can determine whether an object has an instance member with a given name by
using the hasOwnProperty() method and passing in the name of the member. To deter-
mine whether an object has access to a property with a given name, you can use the
in operator. For example:

var book = {
    title: "High Performance JavaScript",
    publisher: "Yahoo! Press"
};

alert(book.hasOwnProperty("title"));       //true
alert(book.hasOwnProperty("toString"));    //false

alert("title" in book);       //true
alert("toString" in book);    //true

In this code, hasOwnProperty() returns true when “title” is passed in because title is an
object instance; the method returns false when “toString” is passed in because it
doesn’t exist on the instance. When each property name is used with the in operator,
the result is true both times because it searches the instance and prototype.
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Prototype Chains
The prototype of an object determines the type or types of which it is an instance. By
default, all objects are instances of Object and inherit all of the basic methods, such as
toString(). You can create a prototype of another type by defining and using a con-
structor. For example:

function Book(title, publisher){
    this.title = title;
    this.publisher = publisher;
}

Book.prototype.sayTitle = function(){
    alert(this.title);
};

var book1 = new Book("High Performance JavaScript", "Yahoo! Press");
var book2 = new Book("JavaScript: The Good Parts", "Yahoo! Press");

alert(book1 instanceof Book);   //true
alert(book1 instanceof Object); //true

book1.sayTitle();         //"High Performance JavaScript"
alert(book1.toString());  //"[object Object]"

The Book constructor is used to create a new instance of Book. The book1 instance’s
prototype (__proto__) is Book.prototype, and Book.prototype’s prototype is Object.
This creates a prototype chain from which both book1 and book2 inherit their members.
Figure 2-10 shows this relationship.

Figure 2-10. Prototype chains

Note that both instances of Book share the same prototype chain. Each instance has its
own title and publisher properties, but everything else is inherited through prototypes.
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Now when book1.toString() is called, the search must go deeper into the prototype
chain to resolve the object member “toString”. As you might suspect, the deeper into
the prototype chain that a member exists, the slower it is to retrieve. Figure 2-11 shows
the relationship between member depth in the prototype and time to access the
member.

Figure 2-11. Data access going deeper into the prototype chain

Although newer browsers with optimizing JavaScript engines perform this task well,
older browsers—especially Internet Explorer and Firefox 3.5—incur a performance
penalty with each additional step into the prototype chain. Keep in mind that the
process of looking up an instance member is still more expensive than accessing data
from a literal or a local variable, so adding more overhead to traverse the prototype
chain just amplifies this effect.

Nested Members
Since object members may contain other members, it’s not uncommon to see patterns
such as window.location.href in JavaScript code. These nested members cause the
JavaScript engine to go through the object member resolution process each time a dot
is encountered. Figure 2-12 shows the relationship between object member depth and
time to access.
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Figure 2-12. Access time related to property depth

It should come as no surprise, then, that the deeper the nested member, the slower the
data is accessed. Evaluating location.href is always faster than
window.location.href, which is faster than window.location.href.toString(). If these
properties aren’t on the object instances, then member resolution will take longer as
the prototype chain is searched at each point.

In most browsers, there is no discernible difference between accessing
an object member using dot notation (object.name) versus bracket no-
tation (object["name"]). Safari is the only browser in which dot notation
is consistently faster, but not by enough to suggest not using bracket
notation.

Caching Object Member Values
With all of the performance issues related to object members, it’s easy to believe that
they should be avoided whenever possible. To be more accurate, you should be careful
to use object member only when necessary. For instance, there’s no reason to read the
value of an object member more than once in a single function:
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function hasEitherClass(element, className1, className2){
    return element.className == className1 || element.className == className2;
}

In this code, element.className is accessed twice. Clearly this value isn’t going to
change during the course of the function, yet there are still two object member lookups
performed. You can eliminate one property lookup by storing the value in a local var-
iable and using that instead:

function hasEitherClass(element, className1, className2){
    var currentClassName = element.className;
    return currentClassName == className1 || currentClassName == className2;
}

This rewritten version of the function limits the number of member lookups to one.
Since both member lookups were reading the property’s value, it makes sense to read
the value once and store it in a local variable. That local variable then is much faster to
access.

Generally speaking, if you’re going to read an object property more than one time in a
function, it’s best to store that property value in a local variable. The local variable can
then be used in place of the property to avoid the performance overhead of another
property lookup. This is especially important when dealing with nested object members
that have a more dramatic effect on execution speed.

JavaScript namespacing, such as the technique used in YUI, is a source of frequently
accessed nested properties. For example:

function toggle(element){
    if (YAHOO.util.Dom.hasClass(element, "selected")){
        YAHOO.util.Dom.removeClass(element, "selected");
        return false;
    } else {
        YAHOO.util.Dom.addClass(element, "selected");
        return true;
    }
}

This code repeats YAHOO.util.Dom three times to access three different methods. For
each method there are three member lookups, for a total of nine, making this code quite
inefficient. A better approach is to store YAHOO.util.Dom in a local variable and then
access that local variable:

function toggle(element){
    var Dom = YAHOO.util.Dom;
    if (Dom.hasClass(element, "selected")){
        Dom.removeClass(element, "selected");
        return false;
    } else {
        Dom.addClass(element, "selected");
        return true;
    }
}
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The total number of member lookups in this code has been reduced from nine to five.
You should never look up an object member more than once within a single function,
unless the value may have changed.

One word of caution: it is not recommended to use this technique for
object methods. Many object methods use this to determine the context
in which they are being called, and storing a method in a local variable
causes this to be bound to window. Changing the value of this leads to
programmatic errors, as the JavaScript engine won’t be able to resolve
the appropriate object members it may depend on.

Summary
Where you store and access data in JavaScript can have a measurable impact on the
overall performance of your code. There are four places to access data from: literal
values, variables, array items, and object members. These locations all have different
performance considerations.

• Literal values and local variables can be accessed very quickly, whereas array items
and object members take longer.

• Local variables are faster to access than out-of-scope variables because they exist
in the first variable object of the scope chain. The further into the scope chain a
variable is, the longer it takes to access. Global variables are always the slowest to
access because they are always last in the scope chain.

• Avoid the with statement because it augments the execution context scope chain.
Also, be careful with the catch clause of a try-catch statement because it has the
same effect.

• Nested object members incur significant performance impact and should be
minimized.

• The deeper into the prototype chain that a property or method exists, the slower
it is to access.

• Generally speaking, you can improve the performance of JavaScript code by storing
frequently used object members, array items, and out-of-scope variables in local
variables. You can then access the local variables faster than the originals.

By using these strategies, you can greatly improve the perceived performance of a web
application that requires a large amount of JavaScript code.
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CHAPTER 3

DOM Scripting

Stoyan Stefanov

DOM scripting is expensive, and it’s a common performance bottleneck in rich web
applications. This chapter discusses the areas of DOM scripting that can have a negative
effect on an application’s responsiveness and gives recommendations on how to im-
prove response time. The three categories of problems discussed in the chapter include:

• Accessing and modifying DOM elements

• Modifying the styles of DOM elements and causing repaints and reflows

• Handling user interaction through DOM events

But first—what is DOM and why is it slow?

DOM in the Browser World
The Document Object Model (DOM) is a language-independent application interface
(API) for working with XML and HTML documents. In the browser, you mostly work
with HTML documents, although it’s not uncommon for web applications to retrieve
XML documents and use the DOM APIs to access data from those documents.

Even though the DOM is a language-independent API, in the browser the interface is
implemented in JavaScript. Since most of the work in client-side scripting has to do
with the underlying document, DOM is an important part of everyday JavaScript
coding.

It’s common across browsers to keep DOM and JavaScript implementations inde-
pendent of each other. In Internet Explorer, for example, the JavaScript implementation
is called JScript and lives in a library file called jscript.dll, while the DOM implemen-
tation lives in another library, mshtml.dll (internally called Trident). This separation
allows other technologies and languages, such as VBScript, to benefit from the DOM
and the rendering functionality Trident has to offer. Safari uses WebKit’s WebCore for
DOM and rendering and has a separate JavaScriptCore engine (dubbed SquirrelFish in
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its latest version). Google Chrome also uses WebCore libraries from WebKit for ren-
dering pages but implements its own JavaScript engine called V8. In Firefox, Spider-
Monkey (the latest version is called TraceMonkey) is the JavaScript implementation, a
separate part of the Gecko rendering engine.

Inherently Slow
What does that mean for performance? Simply having two separate pieces of function-
ality interfacing with each other will always come at a cost. An excellent analogy is to
think of DOM as a piece of land and JavaScript (meaning ECMAScript) as another
piece of land, both connected with a toll bridge (see John Hrvatin, Microsoft, MIX09,
http://videos.visitmix.com/MIX09/T53F). Every time your ECMAScript needs access to
the DOM, you have to cross this bridge and pay the performance toll fee. The more
you work with the DOM, the more you pay. So the general recommendation is to cross
that bridge as few times as possible and strive to stay in ECMAScript land. The rest of
the chapter focuses on what this means exactly and where to look in order to make user
interactions faster.

DOM Access and Modification
Simply accessing a DOM element comes at a price—the “toll fee” discussed earlier.
Modifying elements is even more expensive because it often causes the browser to
recalculate changes in the page geometry.

Naturally, the worst case of accessing or modifying elements is when you do it in loops,
and especially in loops over HTML collections.

Just to give you an idea of the scale of the problems with DOM scripting, consider this
simple example:

function innerHTMLLoop() {
    for (var count = 0; count < 15000; count++) {
        document.getElementById('here').innerHTML += 'a';
    }
}

This is a function that updates the contents of a page element in a loop. The problem
with this code is that for every loop iteration, the element is accessed twice: once to
read the value of the innerHTML property and once to write it.

A more efficient version of this function would use a local variable to store the updated
contents and then write the value only once at the end of the loop:
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function innerHTMLLoop2() {
    var content = '';
    for (var count = 0; count < 15000; count++) {
        content += 'a';
    }
    document.getElementById('here').innerHTML += content;
}

This new version of the function will run much faster across all browsers. Figure 3-1
shows the results of measuring the time improvement in different browsers. The y-axis
in the figure (as with all the figures in this chapter) shows execution time improvement,
i.e., how much faster it is to use one approach versus another. In this case, for example,
using innerHTMLLoop2() is 155 times faster than innerHTMLLoop() in IE6.

Figure 3-1. One benefit of staying within ECMAScript: innerHTMLLoop2() is hundreds of times faster
than innerHTMLLoop()

As these results clearly show, the more you access the DOM, the slower your code
executes. Therefore, the general rule of thumb is this: touch the DOM lightly, and stay
within ECMAScript as much as possible.

innerHTML Versus DOM methods
Over the years, there have been many discussions in the web development community
over this question: is it better to use the nonstandard but well-supported innerHTML
property to update a section of a page, or is it best to use only the pure DOM methods,
such as document.createElement()? Leaving the web standards discussion aside, does
it matter for performance? The answer is: it matters increasingly less, but still,
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innerHTML is faster in all browsers except the latest WebKit-based ones (Chrome and
Safari).

Let’s examine a sample task of creating a table of 1000 rows in two ways:

• By concatenating an HTML string and updating the DOM with innerHTML

• By using only standard DOM methods such as document.createElement() and
document.createTextNode()

Our example table has content similar to content that would have come from a Content
Management System (CMS). The end result is shown in Figure 3-2.

Figure 3-2. End result of generating an HTML table with 1,000 rows and 5 columns

The code to generate the table with innerHTML is as follows:

function tableInnerHTML() {
    var i, h = ['<table border="1" width="100%">'];

    h.push('<thead>');

h.push('<tr><th>id<\/th><th>yes?<\/th><th>name<\/th><th>url<\/th><th>action<\/th>
<\/tr>');
    h.push('<\/thead>');
    h.push('<tbody>');
    for (i = 1; i <= 1000; i++) {
        h.push('<tr><td>');
        h.push(i);
        h.push('<\/td><td>');
        h.push('And the answer is... ' + (i % 2 ? 'yes' : 'no'));
        h.push('<\/td><td>');
        h.push('my name is #' + i);
        h.push('<\/td><td>');
        h.push('<a href="http://example.org/' + i + '.html">http://example.org/'
+ i + '.html<\/a>');
        h.push('<\/td><td>');
        h.push('<ul>');
        h.push(' <li><a href="edit.php?id=' + i + '">edit<\/a><\/li>');
        h.push(' <li><a href="delete.php?id="' + i + '-id001">delete<\/a><\/li>');
        h.push('<\/ul>');
        h.push('<\/td>');
        h.push('<\/tr>');
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    }

    h.push('<\/tbody>');
    h.push('<\/table>');

    document.getElementById('here').innerHTML = h.join('');
};

In order to generate the same table with DOM methods alone, the code is a little more
verbose:

function tableDOM() {

    var i, table, thead, tbody, tr, th, td, a, ul, li;

    tbody = document.createElement('tbody');

    for (i = 1; i <= 1000; i++) {

        tr = document.createElement('tr');
        td = document.createElement('td');
        td.appendChild(document.createTextNode((i % 2) ? 'yes' : 'no'));
        tr.appendChild(td);
        td = document.createElement('td');
        td.appendChild(document.createTextNode(i));
        tr.appendChild(td);
        td = document.createElement('td');
        td.appendChild(document.createTextNode('my name is #' + i));
        tr.appendChild(td);

        a = document.createElement('a');
        a.setAttribute('href', 'http://example.org/' + i + '.html');
        a.appendChild(document.createTextNode('http://example.org/' + i +
'.html'));
        td = document.createElement('td');
        td.appendChild(a);
        tr.appendChild(td);

        ul = document.createElement('ul');
        a = document.createElement('a');
        a.setAttribute('href', 'edit.php?id=' + i);
        a.appendChild(document.createTextNode('edit'));
        li = document.createElement('li');
        li.appendChild(a);
        ul.appendChild(li);
        a = document.createElement('a');
        a.setAttribute('href', 'delete.php?id=' + i);
        a.appendChild(document.createTextNode('delete'));
        li = document.createElement('li');
        li.appendChild(a);
        ul.appendChild(li);
        td = document.createElement('td');
        td.appendChild(ul);
        tr.appendChild(td);

        tbody.appendChild(tr);
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    }

    tr = document.createElement('tr');
    th = document.createElement('th');
    th.appendChild(document.createTextNode('yes?'));
    tr.appendChild(th);
    th = document.createElement('th');
    th.appendChild(document.createTextNode('id'));
    tr.appendChild(th);
    th = document.createElement('th');
    th.appendChild(document.createTextNode('name'));
    tr.appendChild(th);
    th = document.createElement('th');
    th.appendChild(document.createTextNode('url'));
    tr.appendChild(th);
    th = document.createElement('th');
    th.appendChild(document.createTextNode('action'));
    tr.appendChild(th);

    thead = document.createElement('thead');
    thead.appendChild(tr);
    table = document.createElement('table');
    table.setAttribute('border', 1);
    table.setAttribute('width', '100%');
    table.appendChild(thead);
    table.appendChild(tbody);

    document.getElementById('here').appendChild(table);
};

The results of generating the HTML table using innerHTML as compared to using pure
DOM methods are shown in Figure 3-3. The benefits of innerHTML are more obvious in
older browser versions (innerHTML is 3.6 times faster in IE6), but the benefits are less
pronounced in newer versions. And in newer WebKit-based browsers it’s the opposite:
using DOM methods is slightly faster. So the decision about which approach to take
will depend on the browsers your users are commonly using, as well as your coding
preferences.

As a side note, keep in mind that this example used string concatenation,
which is not optimal in older IE versions (see Chapter 5). Using an array
to concatenate large strings will make innerHTML even faster in those
browsers.

Using innerHTML will give you faster execution in most browsers in performance-critical
operations that require updating a large part of the HTML page. But for most everyday
cases there isn’t a big difference, and so you should consider readability, maintenance,
team preferences, and coding conventions when deciding on your approach.
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Figure 3-3. The benefit of using innerHTML over DOM methods to create a 1,000-row table;
innerHTML is more than three times faster in IE6 and slightly slower in the latest WebKit browsers

Cloning Nodes
Another way of updating page contents using DOM methods is to clone existing DOM
elements instead of creating new ones—in other words, using element.cloneNode()
(where element is an existing node) instead of document.createElement().

Cloning nodes is more efficient in most browsers, but not by a big margin. Regenerating
the table from the previous example by creating the repeating elements only once and
then copying them results in slightly faster execution times:

• 2% in IE8, but no change in IE6 and IE7

• Up to 5.5% in Firefox 3.5 and Safari 4

• 6% in Opera (but no savings in Opera 10)

• 10% in Chrome 2 and 3% in Chrome 3

As an illustration, here’s a partial code listing for generating the table using
element.cloneNode():

function tableClonedDOM() {

    var i, table, thead, tbody, tr, th, td, a, ul, li,
        oth = document.createElement('th'),
        otd = document.createElement('td'),
        otr = document.createElement('tr'),
        oa  = document.createElement('a'),
        oli = document.createElement('li'),
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        oul = document.createElement('ul');

    tbody = document.createElement('tbody');

    for (i = 1; i <= 1000; i++) {

        tr = otr.cloneNode(false);
        td = otd.cloneNode(false);
        td.appendChild(document.createTextNode((i % 2) ? 'yes' : 'no'));
        tr.appendChild(td);
        td = otd.cloneNode(false);
        td.appendChild(document.createTextNode(i));
        tr.appendChild(td);
        td = otd.cloneNode(false);
        td.appendChild(document.createTextNode('my name is #' + i));
        tr.appendChild(td);

        // ... the rest of the loop ...

    }

    // ... the rest of the table generation ...
}

HTML Collections
HTML collections are array-like objects containing DOM node references. Examples
of collections are the values returned by the following methods:

• document.getElementsByName()

• document.getElementsByClassName()

• document.getElementsByTagName()

The following properties also return HTML collections:

document.images

All img elements on the page

document.links

All a elements

document.forms

All forms

document.forms[0].elements

All fields in the first form on the page

These methods and properties return HTMLCollection objects, which are array-like lists.
They are not arrays (because they don’t have methods such as push() or slice()), but
provide a length property just like arrays and allow indexed access to the elements in
the list. For example, document.images[1] returns the second element in the collection.
As defined in the DOM standard, HTML collections are “assumed to be live, meaning
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that they are automatically updated when the underlying document is updated” (see
http://www.w3.org/TR/DOM-Level-2-HTML/html.html#ID-75708506).

The HTML collections are in fact queries against the document, and these queries are
being reexecuted every time you need up-to-date information, such as the number of
elements in the collection (i.e., the collection’s length). This could be a source of
inefficiencies.

Expensive collections

To demonstrate that the collections are live, consider the following snippet:

// an accidentally infinite loop
var alldivs = document.getElementsByTagName('div');
for (var i = 0; i < alldivs.length; i++) {
    document.body.appendChild(document.createElement('div'))
}

This code looks like it simply doubles the number of div elements on the page. It loops
through the existing divs and creates a new div every time, appending it to the body.
But this is in fact an infinite loop because the loop’s exit condition, alldivs.length,
increases by one with every iteration, reflecting the current state of the underlying
document.

Looping through HTML collections like this may lead to logic mistakes, but it’s also
slower, due to the fact that the query needs to run on every iteration (see Figure 3-4).

As discussed in Chapter 4, accessing an array’s length property in loop control condi-
tions is not recommended. Accessing a collection’s length is even slower than accessing
a regular array’s length because it means rerunning the query every time. This is dem-
onstrated by the following example, which takes a collection coll, copies it into an
array arr, and then compares how much time it takes to iterate through each.

Consider a function that copies an HTML collection into a regular array:

function toArray(coll) {
    for (var i = 0, a = [], len = coll.length; i < len; i++) {
        a[i] = coll[i];
    }
    return a;
}

And setting up a collection and a copy of it into an array:

var coll = document.getElementsByTagName('div');
var ar   = toArray(coll);

The two functions to compare would be:

//slower
function loopCollection() {
    for (var count = 0; count < coll.length; count++) {
        /* do nothing */
    }
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}

// faster
function loopCopiedArray() {
    for (var count = 0; count < arr.length; count++) {
        /* do nothing */
    }
}

Figure 3-4. Looping over an array is significantly faster than looping through an HTML collection of
the same size and content

When the length of the collection is accessed on every iteration, it causes the collection
to be updated and has a significant performance penalty across all browsers. The way
to optimize this is to simply cache the length of the collection into a variable and use
this variable to compare in the loop’s exit condition:

function loopCacheLengthCollection() {
    var coll = document.getElementsByTagName('div'),
        len = coll.length;
    for (var count = 0; count < len; count++) {
        /* do nothing */
    }
}

This function will run about as fast as loopCopiedArray().

For many use cases that require a single loop over a relatively small collection, just
caching the length of the collection is good enough. But looping over an array is faster
that looping over a collection, so if the elements of the collection are copied into an
array first, accessing their properties is faster. Keep in mind that this comes at the price
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of an extra step and another loop over the collection, so it’s important to profile and
decide whether using an array copy will be beneficial in your specific case.

Consult the function toArray() shown earlier for an example of a generic collection-
to-array function.

Local variables when accessing collection elements

The previous example used just an empty loop, but what happens when the elements
of the collection are accessed within the loop?

In general, for any type of DOM access it’s best to use a local variable when the same
DOM property or method is accessed more than once. When looping over a collection,
the first optimization is to store the collection in a local variable and cache the length
outside the loop, and then use a local variable inside the loop for elements that are
accessed more than once.

In the next example, three properties of each element are accessed within the loop. The
slowest version accesses the global document every time, an optimized version caches a
reference to the collection, and the fastest version also stores the current element of the
collection into a variable. All three versions cache the length of the collection.

// slow
function collectionGlobal() {

    var coll = document.getElementsByTagName('div'),
        len = coll.length,
        name = '';
    for (var count = 0; count < len; count++) {
        name = document.getElementsByTagName('div')[count].nodeName;
        name = document.getElementsByTagName('div')[count].nodeType;
        name = document.getElementsByTagName('div')[count].tagName;
    }
    return name;

};

// faster
function collectionLocal() {

    var coll = document.getElementsByTagName('div'),
        len = coll.length,
        name = '';
    for (var count = 0; count < len; count++) {
        name = coll[count].nodeName;
        name = coll[count].nodeType;
        name = coll[count].tagName;
    }
    return name;

};

// fastest
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function collectionNodesLocal() {

    var coll = document.getElementsByTagName('div'),
        len = coll.length,
        name = '',
        el = null;
    for (var count = 0; count < len; count++) {
        el = coll[count];
        name = el.nodeName;
        name = el.nodeType;
        name = el.tagName;
    }
    return name;

};

Figure 3-5 shows the benefits of optimizing collection loops. The first bar plots how
many times faster it is to access the collection through a local reference, and the second
bar shows that there’s additional benefit to caching collection items when they are
accessed multiple times.

Figure 3-5. Benefit of using local variables to store references to a collection and its elements during
loops

Walking the DOM
The DOM API provides multiple avenues to access specific parts of the overall docu-
ment structure. In cases when you can choose between approaches, it’s beneficial to
use the most efficient API for a specific job.
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Crawling the DOM

Often you need to start from a DOM element and work with the surrounding elements,
maybe recursively iterating over all children. You can do so by using the childNodes
collection or by getting each element’s sibling using nextSibling.

Consider these two equivalent approaches to a nonrecursive visit of an element’s
children:

function testNextSibling() {
    var el = document.getElementById('mydiv'),
        ch = el.firstChild,
        name = '';
    do {
        name = ch.nodeName;
    } while (ch = ch.nextSibling);
    return name;
};

function testChildNodes() {
    var el = document.getElementById('mydiv'),
        ch = el.childNodes,
        len = ch.length,
        name = '';
    for (var count = 0; count < len; count++) {
        name = ch[count].nodeName;
    }
    return name;
};

Bear in mind that childNodes is a collection and should be approached carefully, caching
the length in loops so it’s not updated on every iteration.

The two approaches are mostly equal in terms of execution time across browsers. But
in IE, nextSibling performs much better than childNodes. In IE6, nextSibling is 16
times faster, and in IE7 it’s 105 times faster. Given these results, using nextSibling is
the preferred method of crawling the DOM in older IE versions in performance-critical
cases. In all other cases, it’s mostly a question of personal and team preference.

Element nodes

DOM properties such as childNodes, firstChild, and nextSibling don’t distinguish
between element nodes and other node types, such as comments and text nodes (which
are often just spaces between two tags). In many cases, only the element nodes need to
be accessed, so in a loop it’s likely that the code needs to check the type of node returned
and filter out nonelement nodes. This type checking and filtering is unnecessary DOM
work.

Many modern browsers offer APIs that only return element nodes. It’s better to use
those when available, because they’ll be faster than if you do the filtering yourself in
JavaScript. Table 3-1 lists those convenient DOM properties.

DOM Access and Modification | 47



Table 3-1. DOM properties that distinguish element nodes (HTML tags) versus all nodes

Property Use as a replacement for

children childNodes

childElementCount childNodes.length

firstElementChild firstChild

lastElementChild lastChild

nextElementSibling nextSibling

previousElementSibling previousSibling

All of the properties listed in Table 3-1 are supported as of Firefox 3.5, Safari 4, Chrome
2, and Opera 9.62. Of these properties, IE versions 6, 7, and 8 only support children.

Looping over children instead of childNodes is faster because there are usually less
items to loop over. Whitespaces in the HTML source code are actually text nodes, and
they are not included in the children collection. children is faster than childNodes
across all browsers, although usually not by a big margin—1.5 to 3 times faster. One
notable exception is IE, where iterating over the children collection is significantly
faster than iterating over childNodes—24 times faster in IE6 and 124 times faster in IE7.

The Selectors API

When identifying the elements in the DOM to work with, developers often need finer
control than methods such as getElementById() and getElementsByTagName() can pro-
vide. Sometimes you combine these calls and iterate over the returned nodes in order
to get to the list of elements you need, but this refinement process can become
inefficient.

On the other hand, using CSS selectors is a convenient way to identify nodes because
developers are already familiar with CSS. Many JavaScript libraries have provided APIs
for that purpose, and now recent browser versions provide a method called querySe
lectorAll() as a native browser DOM method. Naturally this approach is faster than
using JavaScript and DOM to iterate and narrow down a list of elements.

Consider the following:

var elements = document.querySelectorAll('#menu a');

The value of elements will contain a list of references to all a elements found inside an
element with id="menu". The method querySelectorAll() takes a CSS selector string as
an argument and returns a NodeList—an array-like object containing matching nodes.
The method doesn’t return an HTML collection, so the returned nodes do not represent
the live structure of the document. This avoids the performance (and potentially logic)
issues with HTML collection discussed previously in this chapter.

To achieve the same goal as the preceding code without using querySelectorAll(), you
will need the more verbose:
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var elements = document.getElementById('menu').getElementsByTagName('a');

In this case elements will be an HTML collection, so you’ll also need to copy it into an
array if you want the exact same type of static list as returned by querySelectorAll().

Using querySelectorAll() is even more convenient when you need to work with a union
of several queries. For example, if the page has some div elements with a class name of
“warning” and some with a class of “notice”, to get a list of all of them you can use
querySelectorAll():

var errs = document.querySelectorAll('div.warning, div.notice');

Getting the same list without querySelectorAll() is considerably more work. One way
is to select all div elements and iterate through them to filter out the ones you don’t
need.

var errs = [],
    divs = document.getElementsByTagName('div'),
    classname = '';
for (var i = 0, len = divs.length; i < len; i++) {
    classname = divs[i].className;
    if (classname === 'notice' || classname === 'warning') {
        errs.push(divs[i]);
    }
}

Comparing the two pieces of code shows that using the Selectors API is 2 to 6 times
faster across browsers (Figure 3-6).

Figure 3-6. The benefit of using the Selectors API over iterating instead of the results of
getElementsbyTagName()
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The Selectors API is supported natively in browsers as of these versions: Internet Ex-
plorer 8, Firefox 3.5, Safari 3.1, Chrome 1, and Opera 10.

As the results in the figure show, it’s a good idea to check for support for
document.querySelectorAll() and use it when available. Also, if you’re using a selector
API provided by a JavaScript library, make sure the library uses the native API under
the hood. If not, you probably just need to upgrade the library version.

You can also take advantage of another method called querySelector(), a convenient
method that returns only the first node matched by the query.

These two methods are properties of the DOM nodes, so you can use
document.querySelector('.myclass') to query nodes in the whole document, or you
can query a subtree using elref.querySelector('.myclass'), where elref is a reference
to a DOM element.

Repaints and Reflows
Once the browser has downloaded all the components of a page—HTML markup,
JavaScript, CSS, images—it parses through the files and creates two internal data
structures:

A DOM tree
A representation of the page structure

A render tree
A representation of how the DOM nodes will be displayed

The render tree has at least one node for every node of the DOM tree that needs to be
displayed (hidden DOM elements don’t have a corresponding node in the render tree).
Nodes in the render tree are called frames or boxes in accordance with the CSS model
that treats page elements as boxes with padding, margins, borders, and position. Once
the DOM and the render trees are constructed, the browser can display (“paint”) the
elements on the page.

When a DOM change affects the geometry of an element (width and height)—such as
a change in the thickness of the border or adding more text to a paragraph, resulting
in an additional line—the browser needs to recalculate the geometry of the element as
well as the geometry and position of other elements that could have been affected by
the change. The browser invalidates the part of the render tree that was affected by the
change and reconstructs the render tree. This process is known as a reflow. Once the
reflow is complete, the browser redraws the affected parts of the screen in a process
called repaint.

Not all DOM changes affect the geometry. For example, changing the background color
of an element won’t change its width or height. In this case, there is a repaint only (no
reflow), because the layout of the element hasn’t changed.
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Repaints and reflows are expensive operations and can make the UI of a web application
less responsive. As such, it’s important to reduce their occurrences whenever possible.

When Does a Reflow Happen?
As mentioned earlier, a reflow is needed whenever layout and geometry change. This
happens when:

• Visible DOM elements are added or removed

• Elements change position

• Elements change size (because of a change in margin, padding, border thickness,
width, height, etc.)

• Content is changed, e.g., text changes or an image is replaced with one of a different
size

• Page renders initially

• Browser window is resized

Depending on the nature of the change, a smaller or bigger part of the render tree needs
to be recalculated. Some changes may cause a reflow of the whole page: for example,
when a scroll bar appears.

Queuing and Flushing Render Tree Changes
Because of the computation costs associated with each reflow, most browsers optimize
the reflow process by queuing changes and performing them in batches. However, you
may (often involuntarily) force the queue to be flushed and require that all scheduled
changes be applied right away. Flushing the queue happens when you want to retrieve
layout information, which means using any of the following:

• offsetTop, offsetLeft, offsetWidth, offsetHeight

• scrollTop, scrollLeft, scrollWidth, scrollHeight

• clientTop, clientLeft, clientWidth, clientHeight

• getComputedStyle() (currentStyle in IE)

The layout information returned by these properties and methods needs to be up to
date, and so the browser has to execute the pending changes in the rendering queue
and reflow in order to return the correct values.

During the process of changing styles, it’s best not to use any of the properties shown
in the preceding list. All of these will flush the render queue, even in cases where you’re
retrieving layout information that wasn’t recently changed or isn’t even relevant to the
latest changes.
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Consider the following example of changing the same style property three times (this
is probably not something you’ll see in real code, but is an isolated illustration of an
important topic):

// setting and retrieving styles in succession
var computed,
    tmp = '',
    bodystyle = document.body.style;

if (document.body.currentStyle) { // IE, Opera
    computed = document.body.currentStyle;
} else { // W3C
    computed = document.defaultView.getComputedStyle(document.body, '');
}

// inefficient way of modifying the same property
// and retrieving style information right after
bodystyle.color = 'red';
tmp = computed.backgroundColor;
bodystyle.color = 'white';
tmp = computed.backgroundImage;
bodystyle.color = 'green';
tmp = computed.backgroundAttachment;

In this example, the foreground color of the body element is being changed three times,
and after every change, a computed style property is retrieved. The retrieved
properties—backgroundColor, backgroundImage, and backgroundAttachment—are unre-
lated to the color being changed. Yet the browser needs to flush the render queue and
reflow due to the fact that a computed style property was requested.

A better approach than this inefficient example is to never request layout information
while it’s being changed. If the computed style retrieval is moved to the end, the code
looks like this:

bodystyle.color = 'red';
bodystyle.color = 'white';
bodystyle.color = 'green';
tmp = computed.backgroundColor;
tmp = computed.backgroundImage;
tmp = computed.backgroundAttachment;

The second example will be faster across all browsers, as seen in Figure 3-7.

Minimizing Repaints and Reflows
Reflows and repaints can be expensive, and therefore a good strategy for responsive
applications is to reduce their number. In order to minimize this number, you should
combine multiple DOM and style changes into a batch and apply them once.
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Figure 3-7. Benefit of preventing reflows by delaying access to layout information

Style changes

Consider this example:

var el = document.getElementById('mydiv');
el.style.borderLeft = '1px';
el.style.borderRight = '2px';
el.style.padding = '5px';

Here there are three style properties being changed, each of them affecting the geometry
of the element. In the worst case, this will cause the browser to reflow three times. Most
modern browsers optimize for such cases and reflow only once, but it can still be in-
efficient in older browsers or if there’s a separate asynchronous process happening at
the same time (i.e., using a timer). If other code is requesting layout information while
this code is running, it could cause up to three reflows. Also, the code is touching the
DOM four times and can be optimized.

A more efficient way to achieve the same result is to combine all the changes and apply
them at once, modifying the DOM only once. This can be done using the cssText
property:

var el = document.getElementById('mydiv');
el.style.cssText = 'border-left: 1px; border-right: 2px; padding: 5px;';

Modifying the cssText property as shown in the example overwrites existing style in-
formation, so if you want to keep the existing styles, you can append this to the
cssText string:

el.style.cssText += '; border-left: 1px;';
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Another way to apply style changes only once is to change the CSS class name instead
of changing the inline styles. This approach is applicable in cases when the styles do
not depend on runtime logic and calculations. Changing the CSS class name is cleaner
and more maintainable; it helps keep your scripts free of presentation code, although
it might come with a slight performance hit because the cascade needs to be checked
when changing classes.

var el = document.getElementById('mydiv');
el.className = 'active';

Batching DOM changes

When you have a number of changes to apply to a DOM element, you can reduce the
number of repaints and reflows by following these steps:

1. Take the element off of the document flow.

2. Apply multiple changes.

3. Bring the element back to the document.

This process causes two reflows—one at step 1 and one at step 3. If you omit those
steps, every change you make in step 2 could cause its own reflows.

There are three basic ways to modify the DOM off the document:

• Hide the element, apply changes, and show it again.

• Use a document fragment to build a subtree outside of the live DOM and then copy
it to the document.

• Copy the original element into an off-document node, modify the copy, and then
replace the original element once you’re done.

To illustrate the off-document manipulations, consider a list of links that must be up-
dated with more information:

<ul id="mylist">
   <li><a href="http://phpied.com">Stoyan</a></li>
   <li><a href="http://julienlecomte.com">Julien</a></li>
</ul>

Suppose additional data, already contained in an object, needs to be inserted into this
list. The data is defined as:

var data = [
  {
    "name": "Nicholas",
    "url": "http://nczonline.net"
  },
  {
    "name": "Ross",
    "url": "http://techfoolery.com"
  }
];
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The following is a generic function to update a given node with new data:

function appendDataToElement(appendToElement, data) {
    var a, li;
    for (var i = 0, max = data.length; i < max; i++) {
        a = document.createElement('a');
        a.href = data[i].url;
        a.appendChild(document.createTextNode(data[i].name));
        li = document.createElement('li');
        li.appendChild(a);
        appendToElement.appendChild(li);
    }
};

The most obvious way to update the list with the data without worrying about reflows
would be the following:

var ul = document.getElementById('mylist');
appendDataToElement(ul, data);

Using this approach, however, every new entry from the data array will be appended
to the live DOM tree and cause a reflow. As discussed previously, one way to reduce
reflows is to temporarily remove the <ul> element from the document flow by changing
the display property and then revert it:

var ul = document.getElementById('mylist');
ul.style.display = 'none';
appendDataToElement(ul, data);
ul.style.display = 'block';

Another way to minimize the number of reflows is to create and update a document
fragment, completely off the document, and then append it to the original list. A docu-
ment fragment is a lightweight version of the document object, and it’s designed to help
with exactly this type of task—updating and moving nodes around. One syntactically
convenient feature of the document fragments is that when you append a fragment to
a node, the fragment’s children actually get appended, not the fragment itself. The
following solution takes one less line of code, causes only one reflow, and touches the
live DOM only once:

var fragment = document.createDocumentFragment();
appendDataToElement(fragment, data);
document.getElementById('mylist').appendChild(fragment);

A third solution would be to create a copy of the node you want to update, work on
the copy, and then, once you’re done, replace the old node with the newly updated
copy:

var old = document.getElementById('mylist');
var clone = old.cloneNode(true);
appendDataToElement(clone, data);
old.parentNode.replaceChild(clone, old);

The recommendation is to use document fragments (the second solution) whenever
possible because they involve the least amount of DOM manipulations and reflows.
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The only potential drawback is that the practice of using document fragments is cur-
rently underused and some team members may not be familiar with the technique.

Caching Layout Information
As already mentioned, browsers try to minimize the number of reflows by queuing
changes and executing them in batches. But when you request layout information such
as offsets, scroll values, or computed style values, the browser flushes the queue and
applies all the changes in order to return the updated value. It is best to minimize the
number of requests for layout information, and when you do request it, assign it to
local variables and work with the local values.

Consider an example of moving an element myElement diagonally, one pixel at a time,
starting from position 100 × 100px and ending at 500 × 500px. In the body of a timeout
loop you could use:

// inefficient
myElement.style.left = 1 + myElement.offsetLeft + 'px';
myElement.style.top = 1 + myElement.offsetTop + 'px';
if (myElement.offsetLeft >= 500) {
    stopAnimation();
}

This is not efficient, though, because every time the element moves, the code requests
the offset values, causing the browser to flush the rendering queue and not benefit from
its optimizations. A better way to do the same thing is to take the start value position
once and assign it to a variable such as var current = myElement.offsetLeft;. Then,
inside of the animation loop, work with the current variable and don’t request offsets:

current++
myElement.style.left = current + 'px';
myElement.style.top = current + 'px';
if (current >= 500) {
    stopAnimation();
}

Take Elements Out of the Flow for Animations
Showing and hiding parts of a page in an expand/collapse manner is a common inter-
action pattern. It often includes geometry animation of the area being expanded, which
pushes down the rest of the content on the page.

Reflows sometimes affect only a small part of the render tree, but they can affect a larger
portion, or even the whole tree. The less the browser needs to reflow, the more re-
sponsive your application will be. So when an animation at the top of the page pushes
down almost the whole page, this will cause a big reflow and can be expensive, ap-
pearing choppy to the user. The more nodes in the render tree that need recalculation,
the worse it becomes.
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A technique to avoid a reflow of a big part of the page is to use the following steps:

1. Use absolute positioning for the element you want to animate on the page, taking
it out of the layout flow of the page.

2. Animate the element. When it expands, it will temporarily cover part of the page.
This is a repaint, but only of a small part of the page instead of a reflow and repaint
of a big page chunk.

3. When the animation is done, restore the positioning, thereby pushing down the
rest of the document only once.

IE and :hover
Since version 7, IE can apply the :hover CSS pseudo-selector on any element (in strict
mode). However, if you have a significant number of elements with a :hover, the re-
sponsiveness degrades. The problem is even more visible in IE 8.

For example, if you create a table with 500–1000 rows and 5 columns and use
tr:hover to change the background color and highlight the row the user is on, the
performance degrades as the user moves over the table. The highlight is slow to apply,
and the CPU usage increases to 80%–90%. So avoid this effect when you work with a
large number of elements, such as big tables or long item lists.

Event Delegation
When there are a large number of elements on a page and each of them has one or more
event handlers attached (such as onclick), this may affect performance. Attaching every
handler comes at a price—either in the form of heavier pages (more markup or Java-
Script code) or in the form of runtime execution time. The more DOM nodes you need
to touch and modify, the slower your application, especially because the event attaching
phase usually happens at the onload (or DOMContentReady) event, which is a busy time
for every interaction-rich web page. Attaching events takes processing time, and, in
addition, the browser needs to keep track of each handler, which takes up memory.
And at the end of it, a great number of these event handlers might never be needed
(because the user clicked one button or link, not all 100 of them, for example), so a lot
of the work might not be necessary.

A simple and elegant technique for handling DOM events is event delegation. It’s based
on the fact that events bubble up and can be handled by a parent element. With event
delegation, you attach only one handler on a wrapper element to handle all events that
happen to the children descendant of that parent wrapper.

According to the DOM standard, each event has three phases:

• Capturing

• At target
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• Bubbling

Capturing is not supported by IE, but bubbling is good enough for the purposes of
delegation. Consider a page with the structure shown in Figure 3-8.

Figure 3-8. An example DOM tree

When the user clicks the “menu #1” link, the click event is first received by the <a>
element. Then it bubbles up the DOM tree and is received by the <li> element, then
the <ul>, then the <div>, and so on, all the way to the top of the document and even
the window. This allows you to attach only one event handler to a parent element and
receive notifications for all events that happen to the children.

Suppose that you want to provide a progressively enhanced Ajax experience for the
document shown in the figure. If the user has JavaScript turned off, then the links in
the menu work normally and reload the page. But if JavaScript is on and the user agent
is capable enough, you want to intercept all clicks, prevent the default behavior (which
is to follow the link), send an Ajax request to get the content, and update a portion of
the page without a refresh. To do this using event delegation, you can attach a click
listener to the UL “menu” element that wraps all links and inspect all clicks to see
whether they come from a link.

document.getElementById('menu').onclick = function(e) {

    // x-browser target
    e = e || window.event;
    var target = e.target || e.srcElement;

    var pageid, hrefparts;

    // only interesed in hrefs
    // exit the function on non-link clicks
    if (target.nodeName !== 'A') {
        return;
    }

    // figure out page ID from the link
    hrefparts = target.href.split('/');
    pageid = hrefparts[hrefparts.length - 1];
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    pageid = pageid.replace('.html', '');

    // update the page
    ajaxRequest('xhr.php?page=' + id, updatePageContents);

    // x-browser prevent default action and cancel bubbling
    if (typeof e.preventDefault === 'function') {
        e.preventDefault();
        e.stopPropagation();
    } else {
        e.returnValue = false;
        e.cancelBubble = true;
    }

};

As you can see, the event delegation technique is not complicated; you only need to
inspect events to see whether they come from elements you’re interested in. There’s a
little bit of verbose cross-browser code, but if you move this part to a reusable library,
the code becomes pretty clean. The cross-browser parts are:

• Access to the event object and identifying the source (target) of the event

• Cancel the bubbling up the document tree (optional)

• Prevent the default action (optional, but needed in this case because the task was
to trap the links and not follow them)

Summary
DOM access and manipulation are an important part of modern web applications. But
every time you cross the bridge from ECMAScript to DOM-land, it comes at a cost. To
reduce the performance costs related to DOM scripting, keep the following in mind:

• Minimize DOM access, and try to work as much as possible in JavaScript.

• Use local variables to store DOM references you’ll access repeatedly.

• Be careful when dealing with HTML collections because they represent the live,
underlying document. Cache the collection length into a variable and use it when
iterating, and make a copy of the collection into an array for heavy work on
collections.

• Use faster APIs when available, such as querySelectorAll() and
firstElementChild.

• Be mindful of repaints and reflows; batch style changes, manipulate the DOM tree
“offline,” and cache and minimize access to layout information.

• Position absolutely during animations, and use drag and drop proxies.

• Use event delegation to minimize the number of event handlers.
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CHAPTER 4

Algorithms and Flow Control

The overall structure of your code is one of the main determinants as to how fast it will
execute. Having a very small amount of code doesn’t necessarily mean that it will run
quickly, and having a large amount of code doesn’t necessarily mean that it will run
slowly. A lot of the performance impact is directly related to how the code has been
organized and how you’re attempting to solve a given problem.

The techniques in this chapter aren’t necessarily unique to JavaScript and are often
taught as performance optimizations for other languages. There are some deviations
from advice given for other languages, though, as there are many more JavaScript en-
gines to deal with and their quirks need to be considered, but all of the techniques are
based on prevailing computer science knowledge.

Loops
In most programming languages, the majority of code execution time is spent within
loops. Looping over a series of values is one of the most frequently used patterns in
programming and as such is also one of the areas where efforts to improve performance
must be focused. Understanding the performance impact of loops in JavaScript is es-
pecially important, as infinite or long-running loops severely impact the overall user
experience.

Types of Loops
ECMA-262, 3rd Edition, the specification that defines JavaScript’s basic syntax and
behavior, defines four types of loops. The first is the standard for loop, which shares
its syntax with other C-like languages:

for (var i=0; i < 10; i++){
    //loop body
}
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The for loop tends to be the most commonly used JavaScript looping construct. There
are four parts to the for loop: initialization, pretest condition, post-execute, and the
loop body. When a for loop is encountered, the initialization code is executed first,
followed by the pretest condition. If the pretest condition evaluates to true, then the
body of the loop is executed. After the body is executed, the post-execute code is run.
The perceived encapsulation of the for loop makes it a favorite of developers.

Note that placing a var statement in the initialization part of a for loop
creates a function-level variable, not a loop-level one. JavaScript has
only function-level scope, and so defining a new variable inside of a
for loop is the same as defining a new function outside of the loop.

The second type of loop is the while loop. A while loop is a simple pretest loop com-
prised of a pretest condition and a loop body:

var i = 0;
while(i < 10){
    //loop body
    i++;
}

Before the loop body is executed, the pretest condition is evaluated. If the condition
evaluates to true, then the loop body is executed; otherwise, the loop body is skipped.
Any for loop can also be written as a while loop and vice versa.

The third type of loop is the do-while loop. A do-while loop is the only post-test loop
available in JavaScript and is made up of two parts, the loop body and the post-test
condition:

var i = 0;
do {
    //loop body
} while (i++ < 10);

In a do-while loop, the loop body is always executed at least once, and the post-test
condition determines whether the loop should be executed again.

The fourth and last loop is the for-in loop. This loop has a very special purpose: it
enumerates the named properties of any object. The basic format is as follows:

for (var prop in object){
    //loop body
}

Each time the loop is executed, the prop variable is filled with the name of another
property (a string) that exists on the object until all properties have been returned. The
returned properties are both those that exist on the object instance and those inherited
through its prototype chain.
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Loop Performance
A constant source of debate regarding loop performance is which loop to use. Of the
four loop types provided by JavaScript, only one of them is significantly slower than
the others: the for-in loop.

Since each iteration through the loop results in a property lookup either on the instance
or on a prototype, the for-in loop has considerably more overhead per iteration and
is therefore slower than the other loops. For the same number of loop iterations, a for-
in loop can end up as much as seven times slower than the other loop types. For this
reason, it’s recommended to avoid the for-in loop unless your intent is to iterate over
an unknown number of object properties. If you have a finite, known list of properties
to iterate over, it is faster to use one of the other loop types and use a pattern such as this:

var props = ["prop1", "prop2"],
    i = 0;

while (i < props.length){
    process(object[props[i]]);
}

This code creates an array whose members are property names. The while loop is used
to iterate over this small number of properties and process the appropriate member on
object. Rather than looking up each and every property on object, the code focuses on
only the properties of interest, saving loop overhead and time.

You should never use for-in to iterate over members of an array.

Aside from the for-in loop, all other loop types have equivalent performance charac-
teristics such that it’s not useful to try to determine which is fastest. The choice of loop
type should be based on your requirements rather than performance concerns.

If loop type doesn’t contribute to loop performance, then what does? There are actually
just two factors:

• Work done per iteration

• Number of iterations

By decreasing either or both of these, you can positively impact the overall performance
of the loop.

Decreasing the work per iteration

It stands to reason that if a single pass through a loop takes a long time to execute, then
multiple passes through the loop will take even longer. Limiting the number of expen-
sive operations done in the loop body is a good way to speed up the entire loop.
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A typical array-processing loop can be created using any of the three faster loop types.
The code is most frequently written as follows:

//original loops
for (var i=0; i < items.length; i++){
    process(items[i]);
}

var j=0;
while (j < items.length){
    process(items[j++]]);
}

var k=0;
do {
    process(items[k++]);
} while (k < items.length);

In each of these loops, there are several operations happening each time the loop body
is executed:

1. One property lookup (items.length) in the control condition

2. One comparison (i < items.length) in the control condition

3. One comparison to see whether the control condition evaluates to true (i <
items.length == true)

4. One increment operation (i++)

5. One array lookup (items[i])

6. One function call (process(items[i]))

There’s a lot going on per iteration of these simple loops, even though there’s not much
code. The speed at which the code will execute is largely determined by what
process() does to each item, but even so, reducing the total number of operations per
iteration can greatly improve the overall loop performance.

The first step in optimizing the amount of work in a loop is to minimize the number of
object member and array item lookups. As discussed in Chapter 2, these take signifi-
cantly longer to access in most browsers versus local variables or literal values. The
previous examples do a property lookup for items.length each and every time through
the loop. Doing so is wasteful, as this value won’t change during the execution of the
loop and is therefore an unnecessary performance hit. You can improve the loop per-
formance easily by doing the property lookup once, storing the value in a local variable,
and then using that variable in the control condition:

//minimizing property lookups
for (var i=0, len=items.length; i < len; i++){
    process(items[i]);
}

var j=0,
    count = items.length;
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while (j < count){
    process(items[j++]]);
}

var k=0,
    num = items.length;
do {
    process(items[k++]);
} while (k < num);

Each of these rewritten loops makes a single property lookup for the array length prior
to the loop executing. This allows the control condition to be comprised solely of local
variables and therefore run much faster. Depending on the length of the array, you can
save around 25% off the total loop execution time in most browsers (and up to 50%
in Internet Explorer).

You can also increase the performance of loops by reversing their order. Frequently,
the order in which array items are processed is irrelevant to the task, and so starting at
the last item and processing toward the first item is an acceptable alternative. Reversing
loop order is a common performance optimization in programming languages but gen-
erally isn’t very well understood. In JavaScript, reversing a loop does result in a small
performance improvement for loops, provided that you eliminate extra operations as
a result:

//minimizing property lookups and reversing
for (var i=items.length; i--; ){
    process(items[i]);
}

var j = items.length;
while (j--){
    process(items[j]]);
}

var k = items.length-1;
do {
    process(items[k]);
} while (k--);

The loops in this example are reversed and combine the control condition with the
decrement operation. Each control condition is now simply a comparison against zero.
Control conditions are compared against the value true, and any nonzero number is
automatically coerced to true, making zero the equivalent of false. Effectively, the
control condition has been changed from two comparisons (is the iterator less than the
total and is that equal to true?) to just a single comparison (is the value true?). Cutting
down from two comparisons per iteration to one speeds up the loops even further. By
reversing loops and minimizing property lookups, you can see execution times that are
up to 50%–60% faster than the original.

As a comparison to the originals, here are the operations being performed per iteration
for these loops:
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1. One comparison (i == true) in the control condition

2. One decrement operation (i--)

3. One array lookup (items[i])

4. One function call (process(items[i]))

The new loop code has two fewer operations per iteration, which can lead to increasing
performance gains as the number of iterations increases.

Decreasing the work done per iteration is most effective when the loop
has a complexity of O(n). When the loop is more complex than O(n), it
is advisable to focus your attention on decreasing the number of
iterations.

Decreasing the number of iterations

Even the fastest code in a loop body will add up when iterated thousands of times.
Additionally, there is a small amount of performance overhead associated with exe-
cuting a loop body, which just adds to the overall execution time. Decreasing the num-
ber of iterations throughout the loop can therefore lead to greater performance gains.
The most well known approach to limiting loop iterations is a pattern called Duff’s
Device.

Duff’s Device is a technique of unrolling loop bodies so that each iteration actually does
the job of many iterations. Jeff Greenberg is credited with the first published port of
Duff’s Device to JavaScript from its original implementation in C. A typical implemen-
tation looks like this:

//credit: Jeff Greenberg
var iterations = Math.floor(items.length / 8),
    startAt    = items.length % 8,
    i          = 0;

do {
    switch(startAt){
        case 0: process(items[i++]);
        case 7: process(items[i++]);
        case 6: process(items[i++]);
        case 5: process(items[i++]);
        case 4: process(items[i++]);
        case 3: process(items[i++]);
        case 2: process(items[i++]);
        case 1: process(items[i++]);
    }
    startAt = 0;
} while (--iterations);

The basic idea behind this Duff’s Device implementation is that each trip through the
loop is allowed a maximum of eight calls to process(). The number of iterations
through the loop is determined by dividing the total number of items by eight. Because
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not all numbers are evenly divisible by eight, the startAt variable holds the remainder
and indicates how many calls to process() will occur in the first trip through the loop.
If there were 12 items, then the first trip through the loop would call process() 4 times,
and then the second trip would call process() 8 times, for a total of two trips through
the loop instead of 12.

A slightly faster version of this algorithm removes the switch statement and separates
the remainder processing from the main processing:

//credit: Jeff Greenberg
var i = items.length % 8;
while(i){
    process(items[i--]);
}

i = Math.floor(items.length / 8);

while(i){
    process(items[i--]);
    process(items[i--]);
    process(items[i--]);
    process(items[i--]);
    process(items[i--]);
    process(items[i--]);
    process(items[i--]);
    process(items[i--]);
}

Even though this implementation is now two loops instead of one, it runs faster than
the original by removing the switch statement from the loop body.

Whether or not it’s worthwhile to use Duff’s Device, either the original or the modified
version, depends largely on the number of iterations you’re already doing. In cases
where the loop iterations are less than 1,000, you’re likely to see only an insignificant
amount of performance improvement over using a regular loop construct. As the num-
ber of iterations increases past 1,000, however, the efficacy of Duff’s Device increases
significantly. At 500,000 iterations, for instance, the execution time is up to 70% less
than a regular loop.

Function-Based Iteration
The fourth edition of ECMA-262 introduced a new method on the native array object
call forEach(). This method iterates over the members of an array and runs a function
on each. The function to be run on each item is passed into forEach() as an argument
and will receive three arguments when called, which are the array item value, the index
of the array item, and the array itself. The following is an example usage:

items.forEach(function(value, index, array){
    process(value);
});
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The forEach() method is implemented natively in Firefox, Chrome, and Safari. Addi-
tionally, most JavaScript libraries have the logical equivalent:

//YUI 3
Y.Array.each(items, function(value, index, array){
    process(value);
});

//jQuery
jQuery.each(items, function(index, value){
    process(value);
});

//Dojo
dojo.forEach(items, function(value, index, array){
    process(value);
});

//Prototype
items.each(function(value, index){
    process(value);
});

//MooTools
$each(items, function(value, index){
    process(value);
});

Even though function-based iteration represents a more convenient method of itera-
tion, it is also quite a bit slower than loop-based iteration. The slowdown can be ac-
counted for by the overhead associated with an extra method being called on each array
item. In all cases, function-based iteration takes up to eight times as long as loop-based
iteration and therefore isn’t a suitable approach when execution time is a significant
concern.

Conditionals
Similar in nature to loops, conditionals determine how execution flows through Java-
Script. The traditional argument of whether to use if-else statements or a switch
statement applies to JavaScript just as it does to other languages. Since different brows-
ers have implemented different flow control optimizations, it is not always clear which
technique to use.

if-else Versus switch
The prevailing theory on using if-else versus switch is based on the number of con-
ditions being tested: the larger the number of conditions, the more inclined you are to
use a switch instead of if-else. This typically comes down to which code is easier to
read. The argument is that if-else is easier to read when there are fewer conditions
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and switch is easier to read when the number of conditions is large. Consider the
following:

if (found){
    //do something
} else {
    //do something else
}

switch(found){
    case true:
        //do something
        break;

    default:
        //do something else
}

Though both pieces of code perform the same task, many would argue that the if-
else statement is much easier to read than the switch. Increasing the number of con-
ditions, however, usually reverses that opinion:

if (color == "red"){
    //do something
} else if (color == "blue"){
    //do something
} else if (color == "brown"){
    //do something
} else if (color == "black"){
    //do something
} else {
    //do something
}

switch (color){
    case "red":
        //do something
        break;

    case "blue":
        //do something
        break;

    case "brown":
        //do something
        break;

    case "black":
        //do something
        break;

    default:
        //do something
}
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Most would consider the switch statement in this code to be more readable than the
if-else statement.

As it turns out, the switch statement is faster in most cases when compared to if-
else, but significantly faster only when the number of conditions is large. The primary
difference in performance between the two is that the incremental cost of an additional
condition is larger for if-else than it is for switch. Therefore, our natural inclination
to use if-else for a small number of conditions and a switch statement for a larger
number of conditions is exactly the right advice when considering performance.

Generally speaking, if-else is best used when there are two discrete values or a few
different ranges of values for which to test. When there are more than two discrete
values for which to test, the switch statement is the most optimal choice.

Optimizing if-else
When optimizing if-else, the goal is always to minimize the number of conditions to
evaluate before taking the correct path. The easiest optimization is therefore to ensure
that the most common conditions are first. Consider the following:

if (value < 5) {
    //do something
} else if (value > 5 && value < 10) {
    //do something
} else {
    //do something
}

This code is optimal only if value is most frequently less than 5. If value is typically
greater than or equal to 10, then two conditions must be evaluated each time before
the correct path is taken, ultimately increasing the average amount of time spent in this
statement. Conditions in an if-else should always be ordered from most likely to least
likely to ensure the fastest possible execution time.

Another approach to minimizing condition evaluations is to organize the if-else into
a series of nested if-else statements. Using a single, large if-else typically leads to
slower overall execution time as each additional condition is evaluated. For example:

if (value == 0){
    return result0;
} else if (value == 1){
    return result1;
} else if (value == 2){
    return result2;
} else if (value == 3){
    return result3;
} else if (value == 4){
    return result4;
} else if (value == 5){
    return result5;
} else if (value == 6){
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    return result6;
} else if (value == 7){
    return result7;
} else if (value == 8){
    return result8;
} else if (value == 9){
    return result9;
} else {
    return result10;
}

With this if-else statement, the maximum number of conditions to evaluate is 10.
This slows down the average execution time if you assume that the possible values for
value are evenly distributed between 0 and 10. To minimize the number of conditions
to evaluate, the code can be rewritten into a series of nested if-else statements, such as:

if (value < 6){

    if (value < 3){
        if (value == 0){
            return result0;
        } else if (value == 1){
            return result1;
        } else {
            return result2;
        }
    } else {
        if (value == 3){
            return result3;
        } else if (value == 4){
            return result4;
        } else {
            return result5;
        }
    }

} else {

    if (value < 8){
        if (value == 6){
            return result6;
        } else {
            return result7;
        }
    } else {
        if (value == 8){
            return result8;
        } else if (value == 9){
            return result9;
        } else {
            return result10;
        }
    }
}
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The rewritten if-else statement has a maximum number of four condition evaluations
each time through. This is achieved by applying a binary-search-like approach, splitting
the possible values into a series of ranges to check and then drilling down further in
that section. The average amount of time it takes to execute this code is roughly half
of the time it takes to execute the previous if-else statement when the values are evenly
distributed between 0 and 10. This approach is best when there are ranges of values
for which to test (as opposed to discrete values, in which case a switch statement is
typically more appropriate).

Lookup Tables
Sometimes the best approach to conditionals is to avoid using if-else and switch
altogether. When there are a large number of discrete values for which to test, both if-
else and switch are significantly slower than using a lookup table. Lookup tables can
be created using arrays or regular objects in JavaScript, and accessing data from a
lookup table is much faster than using if-else or switch, especially when the number
of conditions is large (see Figure 4-1).

Figure 4-1. Array item lookup versus using if-else or switch in Internet Explorer 7

Lookup tables are not only very fast in comparison to if-else and switch, but they also
help to make code more readable when there are a large number of discrete values for
which to test. For example, switch statements start to get unwieldy when large, such as:
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switch(value){
    case 0:
        return result0;
    case 1:
        return result1;
    case 2:
        return result2;
    case 3:
        return result3;
    case 4:
        return result4;
    case 5:
        return result5;
    case 6:
        return result6;
    case 7:
        return result7;
    case 8:
        return result8;
    case 9:
        return result9;
    default:
        return result10;
}

The amount of space that this switch statement occupies in code is probably not pro-
portional to its importance. The entire structure can be replaced by using an array as
a lookup table:

//define the array of results
var results = [result0, result1, result2, result3, result4, result5, result6,
               result7, result8, result9, result10]

//return the correct result
return results[value];

When using a lookup table, you have completely eliminated all condition evaluations.
The operation becomes either an array item lookup or an object member lookup. This
is a major advantage for lookup tables: since there are no conditions to evaluate, there
is little or no additional overhead as the number of possible values increases.

Lookup tables are most useful when there is logical mapping between a single key and
a single value (as in the previous example). A switch statement is more appropriate
when each key requires a unique action or set of actions to take place.

Recursion
Complex algorithms are typically made easier by using recursion. In fact, there are some
traditional algorithms that presume recursion as the implementation, such as a function
to return factorials:
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function factorial(n){
    if (n == 0){
        return 1;
    } else {
        return n * factorial(n-1);
    }
}

The problem with recursive functions is that an ill-defined or missing terminal condi-
tion can lead to long execution times that freeze the user interface. Further, recursive
functions are more likely to run into browser call stack size limits.

Call Stack Limits
The amount of recursion supported by JavaScript engines varies and is directly related
to the size of the JavaScript call stack. With the exception of Internet Explorer, for
which the call stack is related to available system memory, all other browsers have static
call stack limits. The call stack size for the most recent browser versions is relatively
high compared to older browsers (Safari 2, for instance, had a call stack size of 100).
Figure 4-2 shows call stack sizes over the major browsers.

Figure 4-2. JavaScript call stack size in browsers

When you exceed the maximum call stack size by introducing too much recursion, the
browser will error out with one of the following messages:

• Internet Explorer: “Stack overflow at line x”
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• Firefox: “Too much recursion”

• Safari: “Maximum call stack size exceeded”

• Opera: “Abort (control stack overflow)”

Chrome is the only browser that doesn’t display a message to the user when the call
stack size has been exceeded.

Perhaps the most interesting part of stack overflow errors is that they are actual Java-
Script errors in some browsers, and can therefore be trapped using a try-catch state-
ment. The exception type varies based on the browser being used. In Firefox, it’s an
InternalError; in Safari and Chrome, it’s a RangeError; and Internet Explorer throws
a generic Error type. (Opera doesn’t throw an error; it just stops the JavaScript engine.)
This makes it possible to handle such errors right from JavaScript:

try {
    recurse();
} catch (ex){
    alert("Too much recursion!");
}

If left unhandled, these errors bubble up as any other error would (in Firefox, it ends
up in the Firebug and error consoles; in Safari/Chrome it shows up in the JavaScript
console), except in Internet Explorer. IE will not only display a JavaScript error, but
will also display a dialog box that looks just like an alert with the stack overflow
message.

Even though it is possible to trap these errors in JavaScript, it is not
recommended. No script should ever be deployed that has the potential
to exceed the maximum call stack size.

Recursion Patterns
When you run into a call stack size limit, your first step should be to identify any
instances of recursion in the code. To that end, there are two recursive patterns to be
aware of. The first is the straightforward recursive pattern represented in the
factorial() function shown earlier, when a function calls itself. The general pattern is
as follows:

function recurse(){
    recurse();
}

recurse();

This pattern is typically easy to identify when errors occur. A second, subtler pattern
involves two functions:

function first(){
    second();
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}

function second(){
    first();
}

first();

In this recursion pattern, two functions each call the other, such that an infinite loop
is formed. This is the more troubling pattern and a far more difficult one to identify in
large code bases.

Most call stack errors are related to one of these two recursion patterns. A frequent
cause of stack overflow is an incorrect terminal condition, so the first step after iden-
tifying the pattern is to validate the terminal condition. If the terminal condition is
correct, then the algorithm contains too much recursion to safely be run in the browser
and should be changed to use iteration, memoization, or both.

Iteration
Any algorithm that can be implemented using recursion can also be implemented using
iteration. Iterative algorithms typically consist of several different loops performing
different aspects of the process, and thus introduce their own performance issues.
However, using optimized loops in place of long-running recursive functions can result
in performance improvements due to the lower overhead of loops versus that of exe-
cuting a function.

As an example, the merge sort algorithm is most frequently implemented using recur-
sion. A simple JavaScript implementation of merge sort is as follows:

function merge(left, right){
    var result = [];

    while (left.length > 0 && right.length > 0){
        if (left[0] < right[0]){
            result.push(left.shift());
        } else {
            result.push(right.shift());
        }
    }

    return result.concat(left).concat(right);
}

function mergeSort(items){

    if (items.length == 1) {
        return items;
    }

    var middle = Math.floor(items.length / 2),
        left    = items.slice(0, middle),
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        right   = items.slice(middle);

    return merge(mergeSort(left), mergeSort(right));
}

The code for this merge sort is fairly simple and straightforward, but the mergeSort()
function itself ends up getting called very frequently. An array of n items ends up calling
mergeSort() 2 * n –1 times, meaning that an array with more than 1,500 items would
cause a stack overflow error in Firefox.

Running into the stack overflow error doesn’t necessarily mean the entire algorithm
has to change; it simply means that recursion isn’t the best implementation. The merge
sort algorithm can also be implemented using iteration, such as:

//uses the same mergeSort() function from previous example

function mergeSort(items){

    if (items.length == 1) {
        return items;
    }

    var work = [];
    for (var i=0, len=items.length; i < len; i++){
        work.push([items[i]]);
    }
    work.push([]);  //in case of odd number of items

    for (var lim=len; lim > 1; lim = (lim+1)/2){
        for (var j=0,k=0; k < lim; j++, k+=2){
            work[j] = merge(work[k], work[k+1]);
        }
        work[j] = [];  //in case of odd number of items
    }

    return work[0];
}

This implementation of mergeSort() does the same work as the previous one without
using recursion. Although the iterative version of merge sort may be somewhat slower
than the recursive option, it doesn’t have the same call stack impact as the recursive
version. Switching recursive algorithms to iterative ones is just one of the options for
avoiding stack overflow errors.

Memoization
Work avoidance is the best performance optimization technique. The less work your
code has to do, the faster it executes. Along those lines, it also makes sense to avoid
work repetition. Performing the same task multiple times is a waste of execution time.
Memoization is an approach to avoid work repetition by caching previous calculations
for later reuse, which makes memoization a useful technique for recursive algorithms.
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When recursive functions are called multiple times during code execution, there tends
to be a lot of work duplication. The factorial() function, introduced earlier in “Re-
cursion” on page 73, is a great example of how work can be repeated multiple times
by recursive functions. Consider the following code:

var fact6 = factorial(6);
var fact5 = factorial(5);
var fact4 = factorial(4);

This code produces three factorials and results in the factorial() function being called
a total of 18 times. The worst part of this code is that all of the necessary work is
completed on the first line. Since the factorial of 6 is equal to 6 multiplied by the factorial
5, the factorial of 5 is being calculated twice. Even worse, the factorial of 4 is being
calculated three times. It makes far more sense to save those calculations and reuse
them instead of starting over anew with each function call.

You can rewrite the factorial() function to make use of memoization in the following
way:

function memfactorial(n){

    if (!memfactorial.cache){
        memfactorial.cache = {
            "0": 1,
            "1": 1
        };
    }

    if (!memfactorial.cache.hasOwnProperty(n)){
        memfactorial.cache[n] = n * memfactorial (n-1);
    }

    return memfactorial.cache[n];
}

The key to this memoized version of the factorial function is the creation of a cache
object. This object is stored on the function itself and is prepopulated with the two
simplest factorials: 0 and 1. Before calculating a factorial, this cache is checked to see
whether the calculation has already been performed. No cache value means the calcu-
lation must be done for the first time and the result stored in the cache for later usage.
This function is used in the same manner as the original factorial() function:

var fact6 = memfactorial(6);
var fact5 = memfactorial(5);
var fact4 = memfactorial(4);

This code returns three different factorials but makes a total of eight calls to
memfactorial(). Since all of the necessary calculations are completed on the first line,
the next two lines need not perform any recursion because cached values are returned.
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The memoization process may be slightly different for each recursive function, but
generally the same pattern applies. To make memoizing a function easier, you can
define a memoize() function that encapsulates the basic functionality. For example:

function memoize(fundamental, cache){
    cache = cache || {};

    var shell = function(arg){
        if (!cache.hasOwnProperty(arg)){
            cache[arg] = fundamental(arg);
        }
        return cache[arg];
    };

    return shell;
}

This memoize() function accepts two arguments: a function to memoize and an optional
cache object. The cache object can be passed in if you’d like to prefill some values;
otherwise a new cache object is created. A shell function is then created that wraps the
original (fundamental) and ensures that a new result is calculated only if it has never
previously been calculated. This shell function is returned so that you can call it directly,
such as:

//memoize the factorial function
var memfactorial = memoize(factorial, { "0": 1, "1": 1 });

//call the new function
var fact6 = memfactorial(6);
var fact5 = memfactorial(5);
var fact4 = memfactorial(4);

Generic memoization of this type is less optimal that manually updating the algorithm
for a given function because the memoize() function caches the result of a function call
with specific arguments. Recursive calls, therefore, are saved only when the shell func-
tion is called multiple times with the same arguments. For this reason, it’s better to
manually implement memoization in those functions that have significant performance
issues rather than apply a generic memoization solution.

Summary
Just as with other programming languages, the way that you factor your code and the
algorithm you choose affects the execution time of JavaScript. Unlike other
programming languages, JavaScript has a restricted set of resources from which to
draw, so optimization techniques are even more important.

• The for, while, and do-while loops all have similar performance characteristics,
and so no one loop type is significantly faster or slower than the others.

• Avoid the for-in loop unless you need to iterate over a number of unknown object
properties.
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• The best ways to improve loop performance are to decrease the amount of work
done per iteration and decrease the number of loop iterations.

• Generally speaking, switch is always faster than if-else, but isn’t always the best
solution.

• Lookup tables are a faster alternative to multiple condition evaluation using if-
else or switch.

• Browser call stack size limits the amount of recursion that JavaScript is allowed to
perform; stack overflow errors prevent the rest of the code from executing.

• If you run into a stack overflow error, change the method to an iterative algorithm
or make use of memoization to avoid work repetition.

The larger the amount of code being executed, the larger the performance gain realized
from using these strategies.
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CHAPTER 5

Strings and Regular Expressions

Steven Levithan

Practically all JavaScript programs are intimately tied to strings. For example, many 
applications use Ajax to fetch strings from a server, convert those strings into more 
easily usable JavaScript objects, and then generate strings of HTML from the data. A 
typical program deals with numerous tasks like these that require you to merge, split, 
rearrange, search, iterate over, and otherwise handle strings; and as web applications 
become more complex, progressively more of this processing is done in the browser.

In JavaScript, regular expressions are essential for anything more than trivial string 
processing. A lot of this chapter is therefore dedicated to helping you understand how 
regular expression engines* internally process your strings and teaching you how to 
write regular expressions that take advantage of this knowledge.

Since the term regular expression is a bit unwieldy, regex is often used 
for short, and regexes to denote the plural.

Also in this chapter, you’ll learn about the fastest cross-browser methods for concate-
nating and trimming strings, discover how to increase regex performance by reducing 
backtracking, and pick up plenty of other tips and tricks for efficiently processing 
strings and regular expressions.

String Concatenation
String concatenation can be surprisingly performance intensive. It’s a common task to 
build a string by continually adding to the end of it in a loop (e.g., when building up

* The engine is just the software that makes your regular expressions work. Each browser has its own regex 
engine (or, if you prefer, implementation) with a unique set of performance strengths.
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an HTML table or an XML document), but this sort of processing is notorious for its
poor performance in some browsers.

So how can you optimize these kinds of tasks? For starters, there is more than one way
to merge strings (see Table 5-1).

Table 5-1. String concatenation methods

Method Example

The + operator str = "a" + "b" + "c";

The += operator str = "a";

str += "b";

str += "c";

array.join() str = ["a", "b", "c"].join("");

string.concat() str = "a";

str = str.concat("b", "c");

All of these methods are fast when concatenating a few strings here and there, so for
casual use, you should go with whatever is the most practical. As the length and number
of strings that must be merged increases, however, some methods start to show their
strength.

Plus (+) and Plus-Equals (+=) Operators
These operators provide the simplest method for concatenating strings and, in fact, all
modern browsers except IE7 and earlier optimize them well enough that you don’t
really need to look at other options. However, several techniques maximize the effi-
ciency of these operators.

First, an example. Here’s a common way to assign a concatenated string:

str += "one" + "two";

When evaluating this code, four steps are taken:

1. A temporary string is created in memory.

2. The concatenated value "onetwo" is assigned to the temporary string.

3. The temporary string is concatenated with the current value of str.

4. The result is assigned to str.

This is actually an approximation of how browsers implement this task, but it’s close.

The following code avoids the temporary string (steps 1 and 2 in the list) by directly
appending to str using two discrete statements. This ends up running about 10%–40%
faster in most browsers:
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str += "one";
str += "two";

In fact, you can get the same performance improvement using one statement, as follows:

str = str + "one" + "two";
// equivalent to str = ((str + "one") + "two")

This avoids the temporary string because the assignment expression starts with str as
the base and appends one string to it at a time, with each intermediary concatenation
performed from left to right. If the concatenation were performed in a different order
(e.g., str = "one" + str + "two"), you would lose this optimization. This is because
of the way that browsers allocate memory when merging strings. Apart from IE, brows-
ers try to expand the memory allocation for the string on the left of an expression and
simply copy the second string to the end of it (see Figure 5-1). If, in a loop, the base
string is furthest to the left, you avoid repeatedly copying a progressively larger base
string.

Figure 5-1. Example of memory use when concatenating strings: s1 is copied to the end of s2 to create
s3; the base string s2 is not copied

These techniques don’t apply to IE. They have little, if any, effect in IE8 and can actually
make things slower in IE7 and earlier. That’s because of how IE executes concatenation
under the hood. In IE8’s implementation, concatenating strings merely stores referen-
ces to the existing string parts that compose the new string. At the last possible moment
(when you actually use the concatenated string), the string parts are each copied into
a new “real” string, which then replaces the previously stored string references so that
this assembly doesn’t have to be performed every time the string is used.

IE8’s implementation can throw off synthetic benchmarks—making
concatenation appear faster than it really is—unless you force concat-
enation to occur after you’ve finished building your test string. For ex-
ample, this can be done by calling the toString() method on your final
string, checking its length property, or inserting it into the DOM.

IE7 and earlier use an inferior implementation of concatenation in which each pair of
concatenated strings must always be copied to a new memory location. You’ll see the
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potentially dramatic impact of this in the upcoming section “Array Joining”. With the
pre-IE8 implementation, the advice in this section can make things slower since it’s
faster to concatenate short strings before merging them with a larger base string
(thereby avoiding the need to copy the larger string multiple times). For instance, with
largeStr = largeStr + s1 + s2, IE7 and earlier must copy the large string twice, first
to merge it with s1, then with s2. Conversely, largeStr += s1 + s2 first merges the two
smaller strings and then concatenates the result with the large string. Creating the in-
termediary string of s1 + s2 is a much lighter performance hit than copying the large
string twice.

Firefox and compile-time folding

When all strings concatenated in an assignment expression are compile-time constants,
Firefox automatically merges them at compile time. Here’s a way to see this in action:

function foldingDemo() {
    var str = "compile" + "time" + "folding";
    str += "this" + "works" + "too";
    str = str + "but" + "not" + "this";
}

alert(foldingDemo.toString());

/* In Firefox, you'll see this:
function foldingDemo() {
    var str = "compiletimefolding";
    str += "thisworkstoo";
    str = str + "but" + "not" + "this";
} */

When strings are folded together like this, there are no intermediary strings at runtime
and the time and memory that would be spent concatenating them is reduced to zero.
This is great when it occurs, but it doesn’t help very often because it’s much more
common to build strings from runtime data than from compile-time constants.

The YUI Compressor performs this optimization at build time. See
“JavaScript Minification” on page 168 for more about this tool.

Array Joining
The Array.prototype.join method merges all elements of an array into a string and
accepts a separator string to insert between each element. By passing in an empty string
as the separator, you can perform a simple concatenation of all elements in an array.

Array joining is slower than other methods of concatenation in most browsers, but this
is more than compensated for by the fact that it is the only efficient way to concatenate
lots of strings in IE7 and earlier.
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The following example code demonstrates the kind of performance problem that array
joining solves:

var str = "I'm a thirty-five character string.",
    newStr = "",
    appends = 5000;

while (appends--) {
    newStr += str;
}

This code concatenates 5,000 35-character strings. Figure 5-2† shows how long it takes
to complete this test in IE7, starting with 5,000 concatenations and then gradually
increasing that number.

Figure 5-2. Time to concatenate strings using += in IE7

IE7’s naive concatenation algorithm requires that the browser repeatedly copy and
allocate memory for larger and larger strings each time through the loop. The result is
quadratic running time and memory consumption.

The good news is that all other modern browsers (including IE8) perform far better in
this test and do not exhibit the quadratic complexity that is the real killer here. How-
ever, this demonstrates the impact that seemingly simple string concatenation can have;
226 milliseconds for 5,000 concatenations is already a significant performance hit that
would be nice to reduce as much as possible, but locking up a user’s browser for more

† The numbers in Figures 5-2 and 5-3 were generated by averaging the result of running each test 10 times in
IE7 on a Windows XP virtual machine with modest specs (2 GHz Core 2 Duo CPU and 1 GB of dedicated
RAM).
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than 32 seconds in order to concatenate 20,000 short strings is unacceptable for nearly
any application.

Now consider the following test, which generates the same string via array joining:

var str = "I'm a thirty-five character string.",
    strs = [],
    newStr,
    appends = 5000;

while (appends--) {
    strs[strs.length] = str;
}

newStr = strs.join("");

Figure 5-3 shows this test’s running time in IE7.

Figure 5-3. Time to concatenate strings using array joining in IE7

This dramatic improvement results from avoiding repeatedly allocating memory for
and copying progressively larger and larger strings. When joining an array, the browser
allocates enough memory to hold the complete string, and never copies the same part
of the final string more than once.

String.prototype.concat
The native string concat method accepts any number of arguments and appends each
to the string that the method is called on. This is the most flexible way to concatenate
strings because you can use it to append just one string, a few strings at a time, or an
entire array of strings.
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// append one string
str = str.concat(s1);

// append three strings
str = str.concat(s1, s2, s3);

// append every string in an array by using the array
// as the list of arguments
str = String.prototype.concat.apply(str, array);

Unfortunately, concat is a little slower than simple + and += operators in most cases,
and can be substantially slower in IE, Opera, and Chrome. Moreover, although using
concat to merge all strings in an array appears similar to the array joining approach
discussed previously, it’s usually slower (except in Opera), and it suffers from the same
potentially catastrophic performance problem as + and += when building large strings
in IE7 and earlier.

Regular Expression Optimization
Incautiously crafted regexes can be a major performance bottleneck (the upcoming
section, “Runaway Backtracking” on page 91, contains several examples showing
how severe this can be), but there is a lot you can do to improve regex efficiency. Just
because two regexes match the same text doesn’t mean they do so at the same speed.

Many factors affect a regex’s efficiency. For starters, the text a regex is applied to makes
a big difference because regexes spend more time on partial matches than obvious
nonmatches. Each browser’s regex engine also has different internal optimizations.‡

Regex optimization is a fairly broad and nuanced topic. There’s only so much that can
be covered in this section, but what’s included should put you well on your way to
understanding the kinds of issues that affect regex performance and mastering the art
of crafting efficient regexes.

Note that this section assumes you already have some experience with regular expres-
sions and are primarily interested in how to make them faster. If you’re new to regular
expressions or need to brush up on the basics, numerous resources are available on the
Web and in print. Regular Expressions Cookbook (O’Reilly) by Jan Goyvaerts and Ste-
ven Levithan (that’s me!) is written for people who like to learn by doing, and covers
JavaScript and several other programming languages equally.

‡ A consequence of this is that seemingly insignificant changes can make a regex faster in one browser and
slower in another.
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How Regular Expressions Work
In order to use regular expressions efficiently, it’s important to understand how they
work their magic. The following is a quick rundown of the basic steps a regex goes
through:

Step 1: Compilation
When you create a regex object (using a regex literal or the RegExp constructor),
the browser checks your pattern for errors and then converts it into a native code
routine that is used to actually perform matches. If you assign your regex to a
variable, you can avoid performing this step more than once for a given pattern.

Step 2: Setting the starting position
When a regex is put to use, the first step is to determine the position within the
target string where the search should start. This is initially the start of the string or
the position specified by the regex’s lastIndex property,§ but when returning here
from step 4 (due to a failed match attempt), the position is one character after where
the last attempt started.

Optimizations that browser makers build into their regex engines can help avoid
a lot of unnecessary work at this stage by deciding early that certain work can be
skipped. For instance, if a regex starts with ̂ , IE and Chrome can usually determine
that a match cannot be found after the start of a string and avoid foolishly searching
subsequent positions. Another example is that if all possible matches contain x as
the third character, a smart implementation may be able to determine this, quickly
search for the next x, and set the starting position two characters back from where
it’s found (e.g., recent versions of Chrome include this optimization).

Step 3: Matching each regex token
Once the regex knows where to start, it steps through the text and the regex pattern.
When a particular token fails to match, the regex tries to backtrack to a prior point
in the match attempt and follow other possible paths through the regex.

Step 4: Success or failure
If a complete match is found at the current position in the string, the regex declares
success. If all possible paths through the regex have been attempted but a match
was not found, the regex engine goes back to step 2 to try again at the next character
in the string. Only after this cycle completes for every character in the string (as
well as the position after the last character) and no matches have been found does
the regex declare overall failure.

§ The value of a regex’s lastIndex property is used as the search start position by the regex exec and test
methods only, and only if the regex was built with the /g (global) flag. Nonglobal regexes and any regex
passed to the string match, replace, search, and split methods always initiate their search at the beginning
of the target string.
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Keeping this process in mind will help you make informed decisions about the types
of issues that affect regex performance. Next up is a deeper look into a key feature of
the matching process in step 3: backtracking.

Understanding Backtracking
In most modern regex implementations (including those required by JavaScript), back-
tracking is a fundamental component of the matching process. It’s also a big part of
what makes regular expressions so expressive and powerful. However, backtracking is
computationally expensive and can easily get out of hand if you’re not careful. Although
backtracking is only part of the overall performance equation, understanding how it
works and how to minimize its use is perhaps the most important key to writing efficient
regexes. The next few sections therefore cover the topic at some length.

As a regex works its way through a target string, it tests whether a match can be found
at each position by stepping through the components in the regex from left to right.
For each quantifier and alternation,‖ a decision must be made about how to proceed.
With a quantifier (such as *, +?, or {2,}), the regex must decide when to try matching
additional characters, and with alternation (via the | operator), it must try one option
from those available.

Each time the regex makes such a decision, it remembers the other options to return
to later if necessary. If the chosen option is successful, the regex continues through the
regex pattern, and if the remainder of the regex is also successful, the match is complete.
But if the chosen option can’t find a match or anything later in the regex fails, the regex
backtracks to the last decision point where untried options remain and chooses one. It
continues on like this until a match is found or all possible permutations of the quan-
tifiers and alternation options in the regex have been tried unsuccessfully, at which
point it gives up and moves on to start this process all over at the next character in the
string.

Alternation and backtracking

Here’s an example that demonstrates how this process plays out with alternation.

/h(ello|appy) hippo/.test("hello there, happy hippo");

This regex matches “hello hippo” or “happy hippo”. It starts this test by searching for
an h, which it finds immediately as the first character in the target string. Next, the
subexpression (ello|appy) provides two ways to proceed. The regex chooses the left-
most option (alternation always works from left to right), and checks whether ello
matches the next characters in the string. It does, and the regex is also able to match
the following space character. At that point, though, it reaches a dead end because the

‖ Although character classes like [a-z] and shorthand character classes like \s or dot allow variation, they are
not implemented using backtracking and thus do not encounter the same performance issues.
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h in hippo cannot match the t that comes next in the string. The regex can’t give up yet,
though, because it hasn’t tried all of its options, so it backtracks to the last decision
point (just after it matched the leading h) and tries to match the second alternation
option. That doesn’t work, and since there are no more options to try, the regex de-
termines that a match cannot be found starting from the first character in the string
and moves on to try again at the second character. It doesn’t find an h there, so it
continues searching until it reaches the 14th character, where it matches the h in
“happy”. It then steps through the alternatives again. This time ello doesn’t match,
but after backtracking and trying the second alternative, it’s able to continue until it
matches the full string “happy hippo” (see Figure 5-4). Success.

Figure 5-4. Example of backtracking with alternation

Repetition and backtracking

This next example shows how backtracking works with repetition quantifiers.

var str = "<p>Para 1.</p>" +
          "<img src='smiley.jpg'>" +
          "<p>Para 2.</p>" +
          "<div>Div.</div>";

/<p>.*<\/p>/i.test(str);

Here, the regex starts by matching the three literal characters <p> at the start of the
string. Next up is .*. The dot matches any character except line breaks, and the greedy
asterisk quantifier repeats it zero or more times—as many times as possible. Since there
are no line breaks in the target string, this gobbles up the rest of the string! There’s still
more to match in the regex pattern, though, so the regex tries to match <. This doesn’t
work at the end of the string, so the regex backtracks one character at a time, continually
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trying to match <, until it gets back to the < at the beginning of the </div> tag. It then
tries to match \/ (an escaped backslash), which works, followed by p, which doesn’t.
The regex backtracks again, repeating this process until it eventually matches the
</p> at the end of the second paragraph. The match is returned successfully, spanning
from the start of the first paragraph until the end of the last one, which is probably not
what you wanted.

You can change the regex to match individual paragraphs by replacing the greedy *
quantifier with the lazy (aka nongreedy) *?. Backtracking for lazy quantifiers works in
the opposite way. When the regex /<p>.*?<\/p>/ comes to the .*?, it first tries to skip
this altogether and move on to matching <\/p>. It does so because *? repeats its pre-
ceding element zero or more times, as few times as possible, and the fewest possible
times it can repeat is zero. However, when the following < fails to match at this point
in the string, the regex backtracks and tries to match the next fewest number of char-
acters: one. It continues backtracking forward like this until the <\/p> that follows the
quantifier is able to fully match at the end of the first paragraph.

You can see that even if there was only one paragraph in the target string and therefore
the greedy and lazy versions of this regex were equivalent, they would go about finding
their matches differently (see Figure 5-5).

Runaway Backtracking
When a regular expression stalls your browser for seconds, minutes, or longer, the
problem is most likely a bad case of runaway backtracking. To demonstrate the prob-
lem, consider the following regex, which is designed to match an entire HTML file.
The regex is wrapped across multiple lines in order to fit the page. Unlike most other
regex flavors, JavaScript does not have an option to make dots match any character,
including line breaks, so this example uses [\s\S] to match any character.

/<html>[\s\S]*?<head>[\s\S]*?<title>[\s\S]*?<\/title>[\s\S]*?<\/head>
[\s\S]*?<body>[\s\S]*?<\/body>[\s\S]*?<\/html>/

This regex works fine when matching a suitable HTML string, but it turns ugly when
the string is missing one or more required tags. If the </html> tag is missing, for instance,
the last [\s\S]*? expands to the end of the string since there is no </html> tag to be
found, and then, instead of giving up, the regex sees that each of the previous
[\s\S]*? sequences remembered backtracking positions that allow them to expand
further. The regex tries expanding the second-to-last [\s\S]*?—using it to match the
</body> tag that was previously matched by the literal <\/body> pattern in the regex—
and continues to expand it in search of a second </body> tag until the end of the string
is reached again. When all of that fails, the third-to-last [\s\S]*? expands to the end
of the string, and so on.
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The solution: Be specific

The way around a problem like this is to be as specific as possible about what characters
can be matched between your required delimiters. Take the pattern ".*?", which is
intended to match a string delimited by double-quotes. By replacing the overly per-
missive .*? with the more specific [^"\r\n]*, you remove the possibility that
backtracking will force the dot to match a double-quote and expand beyond what was
intended.

With the HTML example, this workaround is not as simple. You can’t use a negated
character class like [^<] in place of [\s\S] because there may be other tags between
those you’re searching for. However, you can reproduce the effect by repeating a non-
capturing group that contains a negative lookahead (blocking the next required tag)
and the [\s\S] (any character) metasequence. This ensures that the tags you’re looking
for fail at every intermediate position, and, more importantly, that the [\s\S] patterns

Figure 5-5. Example of backtracking with greedy and lazy quantifiers
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cannot expand beyond where the tags you are blocking via negative lookahead are
found. Here’s how the regex ends up looking using this approach:

/<html>(?:(?!<head>)[\s\S])*<head>(?:(?!<title>)[\s\S])*<title>
(?:(?!<\/title>)[\s\S])*<\/title>(?:(?!<\/head>)[\s\S])*<\/head>
(?:(?!<body>)[\s\S])*<body>(?:(?!<\/body>)[\s\S])*<\/body>
(?:(?!<\/html>)[\s\S])*<\/html>/

Although this removes the potential for runaway backtracking and allows the regex to
fail at matching incomplete HTML strings in linear time, it’s not going to win any
awards for efficiency. Repeating a lookahead for each matched character like this is
rather inefficient in its own right and significantly slows down successful matches. This
approach works well enough when matching short strings, but since in this case the
lookaheads may need to be tested thousands of times in order to match an HTML file,
there’s another solution that works better. It relies on a little trick, and it’s described
next.

Emulating atomic groups using lookahead and backreferences

Some regex flavors, including .NET, Java, Oniguruma, PCRE, and Perl, support a fea-
ture called atomic grouping. Atomic groups—written as (?>…), where the ellipsis rep-
resents any regex pattern—are noncapturing groups with a special twist. As soon as a
regex exits an atomic group, any backtracking positions within the group are thrown
away. This provides a much better solution to the HTML regex’s backtracking problem:
if you were to place each [\s\S]*? sequence and its following HTML tag together inside
an atomic group, then every time one of the required HTML tags was found, the match
thus far would essentially be locked in. If a later part of the regex failed to match, no
backtracking positions would be remembered for the quantifiers within the atomic
groups, and thus the [\s\S]*? sequences could not attempt to expand beyond what
they already matched.

That’s great, but JavaScript does not support atomic groups or provide any other feature
to eliminate needless backtracking. It turns out, though, that you can emulate atomic
groups by exploiting a little-known behavior of lookahead: that lookaheads are atomic
groups.# The difference is that lookaheads don’t consume any characters as part of the
overall match; they merely check whether the pattern they contain can be matched at
that position. However, you can get around this by wrapping a lookahead’s pattern
inside a capturing group and adding a backreference to it just outside the lookahead.
Here’s what this looks like:

(?=(pattern to make atomic))\1

This construct is reusable in any pattern where you want to use an atomic group. Just
keep in mind that you need to use the appropriate backreference number if your regex
contains more than one capturing group.

#It’s safe to rely on this behavior of lookahead since it is consistent across all major regex flavors and explicitly
required by the ECMAScript standards.
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Here’s how this looks when applied to the HTML regex:

/<html>(?=([\s\S]*?<head>))\1(?=([\s\S]*?<title>))\2(?=([\s\S]*?
<\/title>))\3(?=([\s\S]*?<\/head>))\4(?=([\s\S]*?<body>))\5
(?=([\s\S]*?<\/body>))\6[\s\S]*?<\/html>/

Now, if there is no trailing </html> and the last [\s\S]*? expands to the end of the
string, the regex immediately fails because there are no backtracking points to return
to. Each time the regex finds an intermediate tag and exits a lookahead, it throws away
all backtracking positions from within the lookahead. The following backreference
simply rematches the literal characters found within the lookahead, making them a part
of the actual match.

Nested quantifiers and runaway backtracking

So-called nested quantifiers always warrant extra attention and care in order to ensure
that you’re not creating the potential for runaway backtracking. A quantifier is nested
when it occurs within a grouping that is itself repeated by a quantifier (e.g., (x+)*).

Nesting quantifiers is not actually a performance hazard in and of itself. However, if
you’re not careful, it can easily create a massive number of ways to divide text between
the inner and outer quantifiers while attempting to match a string.

As an example, let’s say you want to match HTML tags, and you come up with the
following regex:

/<(?:[^>"']|"[^"]*"|'[^']*')*>/

This is perhaps overly simplistic, as it does not handle all cases of valid and invalid
markup correctly, but it might work OK if used to process only snippets of valid HTML.
Its advantage over even more naive solutions such as /<[^>]*>/ is that it accounts for
> characters that occur within attribute values. It does so using the second and third
alternatives in the noncapturing group, which match entire double- and single-quoted
attribute values in single steps, allowing all characters except their respective quote type
to occur within them.

So far, there’s no risk of runaway backtracking, despite the nested * quantifiers. The
second and third alternation options match exactly one quoted string sequence per
repetition of the group, so the potential number of backtracking points increases line-
arly with the length of the target string.

However, look at the first alternative in the noncapturing group: [^>"']. This can match
only one character at a time, which seems a little inefficient. You might think it would
be better to add a + quantifier at the end of this character class so that more than one
suitable character can be matched during each repetition of the group—and at positions
within the target string where the regex finds a match—and you’d be right. By matching
more than one character at a time, you’d let the regex skip many unnecessary steps on
the way to a successful match.
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What might not be as readily apparent is the negative consequence such a change could
lead to. If the regex matches an opening < character, but there is no following > that
would allow the match attempt to complete successfully, runaway backtracking will
kick into high gear because of the huge number of ways the new inner quantifier can
be combined with the outer quantifier (following the noncapturing group) to match
the text that follows <. The regex must try all of these permutations before giving up
on the match attempt. Watch out!

For an even more extreme example of nested quantifiers resulting in
runaway backtracking, apply the regex /(A+A+)+B/ to a string containing only As. Al-
though this regex would be better written as /AA+B/, for the sake of discussion imagine
that the two As represent different patterns that are capable of matching some of the
same strings.

When applied to a string composed of 10 As ("AAAAAAAAAA"), the regex starts by using
the first A+ to match all 10 characters. The regex then backtracks one character, letting
the second A+ match the last one. The grouping then tries to repeat, but since there are
no more As and the group’s + quantifier has already met its requirement of matching at
least once, the regex then looks for the B. It doesn’t find it, but it can’t give up yet, since
there are more paths through the regex that haven’t been tried. What if the first A+
matched eight characters and the second matched two? Or if the first matched three
characters, the second matched two, and the group repeated twice? How about if during
the first repetition of the group, the first A+ matched two characters and the second
matched three; then on the second repetition the first matched one and the second
matched four? Although to you and me it’s obviously silly to think that any amount of
backtracking will produce the missing B, the regex will dutifully check all of these futile
options and a lot more. The worst-case complexity of this regex is an appalling O(2n),
or two to the nth power, where n is the length of the string. With the 10 As used here,
the regex requires 1,024 backtracking steps for the match to fail, and with 20 As, that
number explodes to more than a million. Thirty-five As should be enough to hang
Chrome, IE, Firefox, and Opera for at least 10 minutes (if not permanently) while they
process the more than 34 billion backtracking steps required to invalidate all permu-
tations of the regex. The exception is recent versions of Safari, which are able to detect
that the regex is going in circles and quickly abort the match (Safari also imposes a cap
of allowed backtracking steps, and aborts match attempts when this is exceeded).

The key to preventing this kind of problem is to make sure that two parts of a regex
cannot match the same part of a string. For this regex, the fix is to rewrite it
as /AA+B/, but the issue may be harder to avoid with complex regexes. Adding an emu-
lated atomic group often works well as a last resort, although other solutions, when
possible, will most likely keep your regexes easier to understand. Doing so for this regex
looks like /((?=(A+A+))\2)+B/, and completely removes the backtracking problem.

From bad to worse.
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A Note on Benchmarking
Because a regex’s performance can be wildly different depending on the text it’s applied
to, there’s no straightforward way to benchmark regexes against each other. For the
best result, you need to benchmark your regexes on test strings of varying lengths that
match, don’t match, and nearly match.

That’s one reason for this chapter’s lengthy backtracking coverage. Without a firm
understanding of backtracking, you won’t be able to anticipate and identify
backtracking-related problems. To help you catch runaway backtracking early, always
test your regexes with long strings that contain partial matches. Think about the kinds
of strings that your regexes will nearly but not quite match, and include those in your
tests.

More Ways to Improve Regular Expression Efficiency
The following are a variety of additional regex efficiency techniques. Several of the
points here have already been touched upon during the backtracking discussion.

Focus on failing faster
Slow regex processing is usually caused by slow failure rather than slow matching.
This is compounded by the fact that if you’re using a regex to match small parts of
a large string, the regex will fail at many more positions than it will succeed. A
change that makes a regex match faster but fail slower (e.g., by increasing the
number of backtracking steps needed to try all regex permutations) is usually a
losing trade.

Start regexes with simple, required tokens
Ideally, the leading token in a regex should be fast to test and rule out as many
obviously nonmatching positions as possible. Good starting tokens for this pur-
pose are anchors (^ or $), specific characters (e.g., x or \u263A), character classes
(e.g., [a-z] or shorthands like \d), and word boundaries (\b). If possible, avoid
starting regexes with groupings or optional tokens, and avoid top-level alternation
such as /one|two/ since that forces the regex to consider multiple leading tokens.
Firefox is sensitive to the use of any quantifier on leading tokens, and is better able
to optimize, e.g., \s\s* than \s+ or \s{1,}. Other browsers mostly optimize away
such differences.

Make quantified patterns and their following token mutually exclusive
When the characters that adjacent tokens or subexpressions are able to match
overlap, the number of ways a regex will try to divide text between them increases.
To help avoid this, make your patterns as specific as possible. Don’t use
".*?" (which relies on backtracking) when you really mean "[^"\r\n]*".

Reduce the amount and reach of alternation
Alternation using the | vertical bar may require that all alternation options be tested
at every position in a string. You can often reduce the need for alternation by using
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character classes and optional components, or by pushing the alternation further
back into the regex (allowing some match attempts to fail before reaching the al-
ternation). The following table shows examples of these techniques.

Instead of Use

cat|bat [cb]at

red|read rea?d

red|raw r(?:ed|aw)

(.|\r|\n) [\s\S]

Character classes that match any character (such as [\s\S], [\d
\D], [\w\W], or [\0-\uFFFF]) are actually equivalent to (?:.|\r|\n|
\u2028|\u2029). This includes the four characters that are not
matched by the dot (carriage return, line feed, line separator, and
paragraph separator).

Character classes are faster than alternation because they are implemented using
bit vectors (or other fast implementations) rather than backtracking. When alter-
nation is necessary, put frequently occurring alternatives first if this doesn’t affect
what the regex matches. Alternation options are attempted from left to right, so
the more frequently an option is expected to match, the sooner you want it to be
considered.

Note that Chrome and Firefox perform some of these optimizations automatically,
and are therefore less affected by techniques for hand-tuning alternation.

Use noncapturing groups
Capturing groups spend time and memory remembering backreferences and keep-
ing them up to date. If you don’t need a backreference, avoid this overhead by using
a noncapturing group—i.e., (?:…) instead of (…). Some people like to wrap their
regexes in a capturing group when they need a backreference to the entire match.
This is unnecessary since you can reference full matches via, e.g., element zero in
arrays returned by regex.exec() or $& in replacement strings.

Replacing capturing groups with their noncapturing kin has minimal impact in
Firefox, but can make a big difference in other browsers when dealing with long
strings.

Capture interesting text to reduce postprocessing
As a caveat to the last tip, if you need to reference parts of a match, then, by all
means, capture those parts and use the backreferences produced. For example, if
you’re writing code to process the contents of quoted strings matched by a regex,
use /"([^"]*)"/ and work with backreference one, rather than using /"[^"]*"/ and
manually stripping the quote marks from the result. When used in a loop, this kind
of work reduction can save significant time.
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Expose required tokens
In order to help regex engines make smart decisions about how to optimize a search
routine, try to make it easy to determine which tokens are required. When tokens
are used within subexpressions or alternation, it’s harder for regex engines to de-
termine whether they are required, and some won’t make the effort to do so. For
instance, the regex /^(ab|cd)/ exposes its start-of-string anchor. IE and Chrome
see this and prevent the regex from trying to find matches after the start of a string,
thereby making this search near instantaneous regardless of string length. How-
ever, because the equivalent regex /(^ab|^cd)/ doesn’t expose its ^ anchor, IE
doesn’t apply the same optimization and ends up pointlessly searching for matches
at every position in the string.

Use appropriate quantifiers
As described in the earlier section “Repetition and backtracking” on page 90,
greedy and lazy quantifiers go about finding matches differently, even when they
match the same strings. Using the more appropriate quantifier type (based on the
anticipated amount of backtracking) in cases where they are equally correct can
significantly improve performance, especially with long strings.

Lazy quantifiers are particularly slow in Opera 9.x and earlier, but Opera 10 re-
moves this weakness.

Reuse regexes by assigning them to variables
Assigning regexes to variables lets you avoid repeatedly compiling them. Some
people go overboard, using regex caching schemes that aim to avoid ever compiling
a given pattern and flag combination more than once. Don’t bother; regex com-
pilation is fast, and such schemes likely add more overhead than they evade. The
important thing is to avoid repeatedly recompiling regexes within loops. In other
words, don’t do this:

while (/regex1/.test(str1)) {
    /regex2/.exec(str2);
    ...
}

Do this instead:

var regex1 = /regex1/,
    regex2 = /regex2/;
while (regex1.test(str1)) {
    regex2.exec(str2);
    ...
}

Split complex regexes into simpler pieces
Try to avoid doing too much with a single regex. Complicated search problems
that require conditional logic are easier to solve and usually more efficient when
broken into two or more regexes, with each regex searching within the matches of
the last. Regex monstrosities that do everything in one pattern are difficult to
maintain, and are prone to backtracking-related problems.
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When Not to Use Regular Expressions
When used with care, regexes are very fast. However, they’re usually overkill when you
are merely searching for literal strings. This is especially true if you know in advance
which part of a string you want to test. For instance, if you want to check whether a
string ends with a semicolon, you could use something like this:

endsWithSemicolon = /;$/.test(str);

You might be surprised to learn, though, that none of the big browsers are currently
smart enough to realize in advance that this regex can match only at the end of the
string. What they end up doing is stepping through the entire string. Each time a
semicolon is found, the regex advances to the next token ($), which checks whether
the match is at the end of the string. If not, the regex continues searching for a match
until it finally makes its way through the entire string. The longer your string (and the
more semicolons it contains), the longer this takes.

In this case, a better approach is to skip all the intermediate steps required by a regex
and simply check whether the last character is a semicolon:

endsWithSemicolon = str.charAt(str.length - 1) == ";";

This is just a bit faster than the regex-based test with small target strings, but, more
importantly, the string’s length no longer affects the time needed to perform the test.

This example used the charAt method to read the character at a specific position. The
string methods slice, substr, and substring work well when you want to extract and
check the value of more than one character at a specific position. Additionally, the
indexOf and lastIndexOf methods are great for finding the position of literal strings or
checking for their presence. All of these string methods are fast and can help you avoid
invoking the overhead of regular expressions when searching for literal strings that
don’t rely on fancy regex features.

String Trimming
Removing leading and trailing whitespace from a string is a simple but common task.
Although ECMAScript 5 adds a native string trim method (and you should therefore
start to see this method in upcoming browsers), JavaScript has not historically included
it. For the current browser crop, it’s still necessary to implement a trim method yourself
or rely on a library that includes it.

Trimming strings is not a common performance bottleneck, but it serves as a decent
case study for regex optimization since there are a variety of ways to implement it.

Trimming with Regular Expressions
Regular expressions allow you to implement a trim method with very little code, which
is important for JavaScript libraries that focus on file size. Probably the best all-around
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solution is to use two substitutions—one to remove leading whitespace and another
to remove trailing whitespace. This keeps things simple and fast, especially with long
strings.

if (!String.prototype.trim) {
    String.prototype.trim = function() {
        return this.replace(/^\s+/, "").replace(/\s+$/, "");
    }
}

// test the new method...
// tab (\t) and line feed (\n) characters are
// included in the leading whitespace.

var str = " \t\n  test string  ".trim();
alert(str == "test string"); // alerts "true"

The if block surrounding this code avoids overriding the trim method if it already
exists, since native methods are optimized and usually far faster than anything you can
implement yourself using a JavaScript function. Subsequent implementations of this
example assume that this conditional is in place, though it is not written out each time.

You can give Firefox a performance boost of roughly 35% (less or more depending on
the target string’s length and content)* by replacing /\s+$/ (the second regex)
with /\s\s*$/. Although these two regexes are functionally identical, Firefox provides
additional optimization for regexes that start with a nonquantified token. In other
browsers, the difference is less significant or is optimized differently altogether. How-
ever, changing the regex that matches at the beginning of strings to /^\s\s*/ does not
produce a measurable difference, because the leading ^ anchor takes care of quickly
invalidating nonmatching positions (precluding a slight performance difference from
compounding over thousands of match attempts within a long string).

Following are several more regex-based trim implementations, which are some of the
more common alternatives you might encounter. You can see cross-browser perform-
ance numbers for all trim implementations described here in Table 5-2 at the end of
this section. There are, in fact, many ways beyond those listed here that you can write
a regular expression to help you trim strings, but they are invariably slower (or at least
less consistently decent cross-browser) than using two simple substitutions when
working with long strings.

// trim 2
String.prototype.trim = function() {
    return this.replace(/^\s+|\s+$/g, "");
}

This is probably the most common solution. It combines the two simple regexes via
alternation, and uses the /g (global) flag to replace all matches rather than just the first
(it will match twice when its target contains both leading and trailing whitespace). This

* Tested in Firefox versions 2, 3, and 3.5.
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isn’t a terrible approach, but it’s slower than using two simple substitutions when
working with long strings since the two alternation options need to be tested at every
character position.

// trim 3
String.prototype.trim = function() {
    return this.replace(/^\s*([\s\S]*?)\s*$/, "$1");
}

This regex works by matching the entire string and capturing the sequence from the
first to the last nonwhitespace characters (if any) to backreference one. By replacing
the entire string with backreference one, you’re left with a trimmed version of the string.

This approach is conceptually simple, but the lazy quantifier inside the capturing group
makes the regex do a lot of extra work (i.e., backtracking), and therefore tends to make
this option slow with long target strings. After the regex enters the capturing group,
the [\s\S] class’s lazy *? quantifier requires that it be repeated as few times as possible.
Thus, the regex matches one character at a time, stopping after each character to try to
match the remaining \s*$ pattern. If that fails because nonwhitespace characters re-
main somewhere after the current position in the string, the regex matches one more
character, updates the backreference, and then tries the remainder of the pattern again.

Lazy repetition is particularly slow in Opera 9.x and earlier. Consequently, trimming
long strings with this method in Opera 9.64 performs about 10 to 100 times slower
than in the other big browsers. Opera 10 fixes this longstanding weakness, bringing
this method’s performance in line with other browsers.

// trim 4
String.prototype.trim = function() {
    return this.replace(/^\s*([\s\S]*\S)?\s*$/, "$1");
}

This is similar to the last regex, but it replaces the lazy quantifier with a greedy one for
performance reasons. To make sure that the capturing group still only matches up to
the last nonwhitespace character, a trailing \S is required. However, since the regex
must be able to match whitespace-only strings, the entire capturing group is made
optional by adding a trailing question mark quantifier.

Here, the greedy asterisk in [\s\S]* repeats its any-character pattern to the end of the
string. The regex then backtracks one character at a time until it’s able to match the
following \S, or until it backtracks to the first character matched within the group (after
which it skips the group).

Unless there’s more trailing whitespace than other text, this generally ends up being
faster than the previous solution that used a lazy quantifier. In fact, it’s so much faster
that in IE, Safari, Chrome, and Opera 10, it even beats using two substitutions. That’s
because those browsers contain special optimization for greedy repetition of character
classes that match any character. The regex engine jumps to the end of the string with-
out evaluating intermediate characters (although backtracking positions must still be
recorded), and then backtracks as appropriate. Unfortunately, this method is
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considerably slower in Firefox and Opera 9, so at least for now, using two substitutions
still holds up better cross-browser.

// trim 5
String.prototype.trim = function() {
    return this.replace(/^\s*(\S*(\s+\S+)*)\s*$/, "$1");
}

This is a relatively common approach, but there’s no good reason to use it since it’s
consistently one of the slowest of the options shown here, in all browsers. It’s similar
to the last two regexes in that it matches the entire string and replaces it with the part
you want to keep, but because the inner group matches only one word at a time, there
are a lot of discrete steps the regex must take. The performance hit may be unnoticeable
when trimming short strings, but with long strings that contain many words, this regex
can become a performance problem.

Changing the inner group to a noncapturing group—i.e., changing (\s+\S+) to (?:\s+
\S+)—helps a bit, slashing roughly 20%–45% off the time needed in Opera, IE, and
Chrome, along with much slighter improvements in Safari and Firefox. Still, a non-
capturing group can’t redeem this implementation. Note that the outer group cannot
be converted to a noncapturing group since it is referenced in the replacement string.

Trimming Without Regular Expressions
Although regular expressions are fast, it’s worth considering the performance of trim-
ming without their help. Here’s one way to do so:

// trim 6
String.prototype.trim = function() {
    var start = 0,
        end = this.length - 1,
        ws = " \n\r\t\f\x0b\xa0\u1680\u180e\u2000\u2001\u2002\u2003
\u2004\u2005\u2006\u2007\u2008\u2009\u200a\u200b\u2028\u2029\u202f
\u205f\u3000\ufeff";

    while (ws.indexOf(this.charAt(start)) > -1) {
        start++;
    }
    while (end > start && ws.indexOf(this.charAt(end)) > -1) {
        end--;
    }

    return this.slice(start, end + 1);
}

The ws variable in this code includes all whitespace characters as defined by ECMA-
Script 5. For efficiency reasons, copying any part of the string is avoided until the
trimmed version’s start and end positions are known.

It turns out that this smokes the regex competition when there is only a bit of whitespace
on the ends of the string. The reason is that although regular expressions are well suited
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for removing whitespace from the beginning of a string, they’re not as fast at trimming
from the end of long strings. As noted in the section “When Not to Use Regular Ex-
pressions” on page 99, a regex cannot jump to the end of a string without considering
characters along the way. However, this implementation does just that, with the second
while loop working backward from the end of the string until it finds a nonwhitespace
character.

Although this version is not affected by the overall length of the string, it has its own
weakness: long leading and trailing whitespace. That’s because looping over characters
to check whether they are whitespace can’t match the efficiency of a regex’s optimized
search code.

A Hybrid Solution
The final approach for this section is to combine a regex’s universal efficiency at trim-
ming leading whitespace with the nonregex method’s speed at trimming trailing
characters.

// trim 7
String.prototype.trim = function() {
    var str = this.replace(/^\s+/, ""),
        end = str.length - 1,
        ws = /\s/;

    while (ws.test(str.charAt(end))) {
        end--;
    }

    return str.slice(0, end + 1);
}

This hybrid method remains insanely fast when trimming only a bit of whitespace, and
removes the performance risk of strings with long leading whitespace and whitespace-
only strings (although it maintains the weakness for strings with long trailing white-
space). Note that this solution uses a regex in the loop to check whether characters at
the end of the string are whitespace. Although using a regex for this adds a bit of per-
formance overhead, it lets you defer the list of whitespace characters to the browser for
the sake of brevity and compatibility.

The general trend for all trim methods described here is that overall string length has
more impact than the number of characters to be trimmed in regex-based solutions,
whereas nonregex solutions that work backward from the end of the string are
unaffected by overall string length but more significantly affected by the amount of
whitespace to trim. The simplicity of using two regex substitutions provides consis-
tently respectable performance cross-browser with varying string contents and lengths,
and therefore it’s arguably the best all-around solution. The hybrid solution is excep-
tionally fast with long strings at the cost of slightly longer code and a weakness in some
browsers for long, trailing whitespace. See Table 5-2 for all the gory details.
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Table 5-2. Cross-browser performance of various trim implementations

Browser Time (ms)a

Trim 1b Trim 2 Trim 3 Trim 4 Trim 5c Trim 6 Trim 7

IE 7 80/80 315/312 547/539 36/42 218/224 14/1015 18/409

IE 8 70/70 252/256 512/425 26/30 216/222 4/334 12/205

Firefox 3 136/147 164/174 650/600 1098/1525 1416/1488 21/151 20/144

Firefox 3.5 130/147 157/172 500/510 1004/1437 1344/1394 21/332 18/50

Safari 3.2.3 253/253 424/425 351/359 27/29 541/554 2/140 5/80

Safari 4 37/37 33/31 69/68 32/33 510/514 <0.5/29 4/18

Opera 9.64 494/517 731/748 9066/9601 901/955 1953/2016 <0.5/210 20/241

Opera 10 75/75 94/100 360/370 46/46 514/514 2/186 12/198

Chrome 2 78/78 66/68 100/101 59/59 140/142 1/37 24/55
a Reported times were generated by trimming a large string (40 KB) 100 times, first with 10 and then 1,000 spaces added to each end.
b Tested without the /\s\s*$/ optimization.
c Tested without the noncapturing group optimization.

Summary
Intensive string operations and incautiously crafted regexes can be major performance
obstructions, but the advice in this chapter helps you avoid common pitfalls.

• When concatenating numerous or large strings, array joining is the only method
with reasonable performance in IE7 and earlier.

• If you don’t need to worry about IE7 and earlier, array joining is one of the slowest
ways to concatenate strings. Use simple + and += operators instead, and avoid un-
necessary intermediate strings.

• Backtracking is both a fundamental component of regex matching and a frequent
source of regex inefficiency.

• Runaway backtracking can cause a regex that usually finds matches quickly to run
slowly or even crash your browser when applied to partially matching strings.
Techniques for avoiding this problem include making adjacent tokens mutually
exclusive, avoiding nested quantifiers that allow matching the same part of a string
more than one way, and eliminating needless backtracking by repurposing the
atomic nature of lookahead.

• A variety of techniques exist for improving regex efficiency by helping regexes find
matches faster and spend less time considering nonmatching positions (see “More
Ways to Improve Regular Expression Efficiency” on page 96).

• Regexes are not always the best tool for the job, especially when you are merely
searching for literal strings.
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• Although there are many ways to trim a string, using two simple regexes (one to
remove leading whitespace and another for trailing whitespace) offers a good mix
of brevity and cross-browser efficiency with varying string contents and lengths.
Looping from the end of the string in search of the first nonwhitespace characters,
or combining this technique with regexes in a hybrid approach, offers a good al-
ternative that is less affected by overall string length.
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CHAPTER 6

Responsive Interfaces

There’s nothing more frustrating than clicking something on a web page and having
nothing happen. This problem goes back to the origin of transactional web applications
and resulted in the now-ubiquitous “please click only once” message that accompanies
most form submissions. A user’s natural inclination is to repeat any action that doesn’t
result in an obvious change, and so ensuring responsiveness in web applications is an
important performance concern.

Chapter 1 introduced the browser UI thread concept. As a recap, most browsers have
a single process that is shared between JavaScript execution and user interface updates.
Only one of these operations can be performed at a time, meaning that the user interface
cannot respond to input while JavaScript code is executed and vice versa. The user
interface effectively becomes “locked” when JavaScript is executing; managing how
long your JavaScript takes to execute is important to the perceived performance of a
web application.

The Browser UI Thread
The process shared by JavaScript and user interface updates is frequently referred to as
the browser UI thread (though the term “thread” is not necessarily accurate for all
browsers). The UI thread works on a simple queuing system where tasks are kept until
the process is idle. Once idle, the next task in the queue is retrieved and executed. These
tasks are either JavaScript code to execute or UI updates to perform, which include
redraws and reflows (discussed in Chapter 3). Perhaps the most interesting part of this
process is that each input may result in one or more tasks being added to the queue.

Consider a simple interface where a button click results in a message being displayed
on the screen:

<html>
<head>
    <title>Browser UI Thread Example</title>
</head>
<body>
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    <button onclick="handleClick()">Click Me</button>
    <script type="text/javascript">

        function handleClick(){
            var div = document.createElement("div");
            div.innerHTML = "Clicked!";
            document.body.appendChild(div);
        }

    </script>
</body>
</html>

When the button in this example is clicked, it triggers the UI thread to create and add
two tasks to the queue. The first task is a UI update for the button, which needs to
change appearance to indicate it was clicked, and the second is a JavaScript execution
task containing the code for handleClick(), so that the only code being executed is this
method and anything it calls. Assuming the UI thread is idle, the first task is retrieved
and executed to update the button’s appearance, and then the JavaScript task is re-
trieved and executed. During the course of execution, handleClick() creates a new
<div> element and appends it to the <body> element, effectively making another UI
change. That means that during the JavaScript execution, a new UI update task is added
to the queue such that the UI is updated once JavaScript execution is complete. See
Figure 6-1.

Figure 6-1. UI thread tasks get added as the user interacts with a page

When all UI thread tasks have been executed, the process becomes idle and waits for
more tasks to be added to the queue. The idle state is ideal because all user actions then
result in an immediate UI update. If the user tries to interact with the page while a task
is being executed, not only will there not be an immediate UI update, but a new task
for a UI update may not even be created and queued. In fact, most browsers stop
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queuing tasks for the UI thread while JavaScript is executing, which means that it is
imperative to finish JavaScript tasks as quickly as possible so as not to adversely affect
the user’s experience.

Browser Limits
Browsers place limits on the amount of time that JavaScript take to execute. This is a
necessary limitation to ensure that malicious coders can’t lock up a user’s browser or
computer by performing intensive operations that will never end. There are two such
limits: the call stack size limit (discussed in Chapter 4) and the long-running script
limit. The long-running script limit is sometimes called the long-running script timer
or the runaway script timer, but the basic idea is that the browser keeps track of how
long a script has been running and will stop it once a certain limit is hit. When the limit
is reached, a dialog is displayed to the user, such as the one in Figure 6-2.

Figure 6-2. Internet Explorer’s long-running script warning dialog is displayed when more than 5
million statements have been executed

There are two ways of measuring how long a script is executing. The first is to keep
track of how many statements have been executed since the script began. This approach
means that the script may run for different periods of time on different machines, as
the available memory and CPU speed can affect how long it takes to execute a single
statement. The second approach is to track the total amount of time that the script has
been executing. The amount of script that can be processed within a set amount of time
also varies based on the user’s machine capabilities, but the script is always stopped
after a set amount of time. Not surprisingly, each browser has a slightly different ap-
proach to long-running script detection:

• Internet Explorer, as of version 4, sets a default limit of 5 million statements; this
limit is stored in a Windows registry setting called HKEY_CURRENT_USER\Soft-
ware\Microsoft\InternetExplorer\Styles\MaxScriptStatements.
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• Firefox has a default limit of 10 seconds; this limit is stored in the browser’s con-
figuration settings (accessible by typing about:config in the address box) as the
dom.max_script_run_time key.

• Safari has a default limit of 5 seconds; this setting cannot be altered, but you can
disable the timer by enabling the Develop menu and selecting Disable Runaway
JavaScript Timer.

• Chrome has no separate long-running script limit and instead relies on its generic
crash detection system to handle such instances.

• Opera has no long-running script limit and will continue to execute JavaScript code
until it has finished, though, due to Opera’s architecture, this will not cause system
instability while the execution is completed.

When the browser’s long-running script limit is reached, a dialog is displayed to the
user, regardless of any other error-handling code on the page. This is a major usability
issue because most Internet users are not technically savvy and would therefore be
confused about the meaning of the error message as well as which option (to stop the
script or allow it to continue) is appropriate.

If your script triggers this dialog in any browser, it means the script is simply taking too
long to complete its task. It also indicates that the user’s browser has become
unresponsive to input while the JavaScript code is continuing to execute. From a de-
veloper’s point of view, there is no way to recover from a long-running script dialog’s
appearance; you can’t detect it and therefore can’t adjust to any issues that might arise
as a result. Clearly, the best way to deal with long-running script limits is to avoid them
in the first place.

How Long Is Too Long?
Just because the browser allows a script to continue executing up to a certain number
of seconds doesn’t mean you should allow it do so. In fact, the amount of time that
your JavaScript code executes continuously should be much smaller than the browser-
imposed limits in order to create a good user experience. Brendan Eich, creator of
JavaScript, is quoted as having once said, “[JavaScript] that executes in whole seconds
is probably doing something wrong….”

If whole seconds are too long for JavaScript to execute, what is an appropriate amount
of time? As it turns out, even one second is too long for a script to execute. The total
amount of time that a single JavaScript operation should take (at a maximum) is 100
milliseconds. This number comes from research conducted by Robert Miller in
1968.* Interestingly, usability expert Jakob Nielsen noted† in his book Usability

* Miller, R. B., “Response time in man-computer conversational transactions,” Proc. AFIPS Fall Joint Computer
Conference, Vol. 33 (1968), 267–277. Available at http://portal.acm.org/citation.cfm?id=1476589.1476628.

† Available online at www.useit.com/papers/responsetime.html.
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Engineering (Morgan Kaufmann, 1994) that this number hasn’t changed over time and,
in fact, was reaffirmed in 1991 by research at Xerox-PARC.‡

Nielsen states that if the interface responds to user input within 100 milliseconds, the
user feels that he is “directly manipulating the objects in the user interface.” Any
amount of time more than 100 milliseconds means the user feels disconnected from
the interface. Since the UI cannot update while JavaScript is executing, the user cannot
feel in control of the interface if that execution takes longer than 100 milliseconds.

A further complication is that some browsers won’t even queue UI updates while Java-
Script is executing. For example, if you click a button while some JavaScript code is
executing, the browser may not queue up the UI update to redraw the button as pressed
or any JavaScript initiated by the button. The result is an unresponsive UI that appears
to “hang” or “freeze.”

Each browser behaves in roughly the same way. When a script is executing, the UI does
not update from user interaction. JavaScript tasks created as a result of user interaction
during this time are queued and then executed, in order, when the original JavaScript
task has been completed. UI updates caused by user interaction are automatically skip-
ped over at this time because the priority is given to the dynamic aspects of the page.
Thus, a button clicked while a script is executing will never look like it was clicked,
even though its onclick handler will be executed.

Internet Explorer throttles JavaScript tasks triggered by user interaction
so that it recognizes only two repeated actions in a row. For example,
clicking on a button four times while a script is executing results in the
onclick event handler being called only twice.

Even though browsers try to do something logical in these cases, all of these behaviors
lead to a disjointed user experience. The best approach, therefore, is to prevent such
circumstances from occurring by limiting any JavaScript task to 100 milliseconds or
less. This measurement should be taken on the slowest browser you must support (for
tools that measure JavaScript performance, see Chapter 10).

Yielding with Timers
Despite your best efforts, there will be times when a JavaScript task cannot be com-
pleted in 100 milliseconds or less because of its complexity. In these cases, it’s ideal to
yield control of the UI thread so that UI updates may occur. Yielding control means
stopping JavaScript execution and giving the UI a chance to update itself before con-
tinuing to execute the JavaScript. This is where JavaScript timers come into the picture.

‡ Card, S. K., G.G. Robertson, and J.D. Mackinlay, “The information visualizer: An information workspace,”
Proc. ACM CHI’91 Conf. (New Orleans: 28 April–2 May), 181–188. Available at http://portal.acm.org/citation
.cfm?id=108874.
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Timer Basics
Timers are created in JavaScript using either setTimeout() or setInterval(), and both
accept the same arguments: a function to execute and the amount of time to wait (in
milliseconds) before executing it. The setTimeout() function creates a timer that
executes just once, whereas the setInterval() function creates a timer that repeats
periodically.

The way that timers interact with the UI thread is helpful for breaking up long-running
scripts into shorter segments. Calling setTimeout() or setInterval() tells the JavaScript
engine to wait a certain amount of time and then add a JavaScript task to the UI queue.
For example:

function greeting(){
    alert("Hello world!");
}

setTimeout(greeting, 250);

This code inserts a JavaScript task to execute the greeting() function into the UI queue
after 250 milliseconds have passed. Prior to that point, all other UI updates and Java-
Script tasks are executed. Keep in mind that the second argument indicates when the
task should be added to the UI queue, which is not necessarily the time that it will be
executed; the task must wait until all other tasks already in the queue are executed, just
like any other task. Consider the following:

var button = document.getElementById("my-button");
button.onclick = function(){

    oneMethod();

    setTimeout(function(){
        document.getElementById("notice").style.color = "red";
    }, 250);
};

When the button in this example is clicked, it calls a method and then sets a timer. The
code to change the notice element’s color is contained in a timer set to be queued in
250 milliseconds. That 250 milliseconds starts from the time at which setTimeout() is
called, not when the overall function has finished executing. So if setTimeout() is called
at a point in time n, then the JavaScript task to execute the timer code is added to the
UI queue at n + 250. Figure 6-3 shows this relationship when the button in this example
is clicked.

Keep in mind that the timer code can never be executed until after the function in which
it was created is completely executed. For example, if the previous code is changed
such that the timer delay is smaller and there is another function call after the timer is
created, it’s possible that the timer code will be queued before the onclick event handler
has finished executing:
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var button = document.getElementById("my-button");
button.onclick = function(){

    oneMethod();

    setTimeout(function(){
        document.getElementById("notice").style.color = "red";
    }, 50);

    anotherMethod();
};

Figure 6-3. The second argument of setTimeout() indicates when the new JavaScript task should be
inserted into the UI queue

If anotherMethod() takes longer than 50 milliseconds to execute, then the timer code is
added to the queue before the onclick handler is finished. The effect is that the timer
code executes almost immediately after the onclick handler has executed completely,
without a noticeable delay. Figure 6-4 illustrates this situation.

In either case, creating a timer creates a pause in the UI thread as it switches from one
task to the next. Consequently, timer code resets all of the relevant browser limits,
including the long-running script timer. Further, the call stack is reset to zero inside of
the timer code. These characteristics make timers the ideal cross-browser solution for
long-running JavaScript code.

The setInterval() function is almost the same as setTimeout(), except
that the former repeatedly adds JavaScript tasks into the UI queue. The
main difference is that it will not add a JavaScript task into the UI queue
if a task created by the same setInterval() call is already present in the
UI queue.
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Figure 6-4. There may be no noticeable delay in timer code execution if the function in which
setTimeout() is called takes longer to execute than the timer delay

Timer Precision
JavaScript timer delays are often imprecise, with slips of a few milliseconds in either
direction. Just because you specify 250 milliseconds as the timer delay doesn’t neces-
sarily mean the task is queued exactly 250 milliseconds after setTimeout() is called. All
browsers make an attempt to be as accurate as possible, but oftentimes a slip of a few
milliseconds in either direction occurs. For this reason, timers are unreliable for meas-
uring actual time passed.

Timer resolution on Windows systems is 15 milliseconds, meaning that it will interpret
a timer delay of 15 as either 0 or 15, depending on when the system time was last
updated. Setting timer delays of less than 15 can cause browser locking in Internet
Explorer, so the smallest recommended delay is 25 milliseconds (which will end up as
either 15 or 30) to ensure a delay of at least 15 milliseconds.

This minimum timer delay also helps to avoid timer resolution issues in other browsers
and on other systems. Most browsers show some variance in timer delays when dealing
with 10 milliseconds or smaller.

Array Processing with Timers
One common cause of long-running scripts is loops that take too long to execute. If
you’ve already tried the loop optimization techniques presented in Chapter 4 but
haven’t been able to reduce the execution time enough, then timers are your next op-
timization step. The basic approach is to split up the loop’s work into a series of timers.
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Typical loops follow a simple pattern, such as:

for (var i=0, len=items.length; i < len; i++){
    process(items[i]);
}

Loops with this structure can take too long to execute due to the complexity of
process(), the size of items, or both. In my book Professional JavaScript for Web De-
velopers, Second Edition (Wrox 2009), I lay out the two determining factors for whether
a loop can be done asynchronously using timers:

• Does the processing have to be done synchronously?

• Does the data have to be processed sequentially?

If the answer to both of these questions is “no,” then the code is a good candidate for
using timers to split up the work. A basic pattern for asynchronous code execution is:

var todo = items.concat();  //create a clone of the original

setTimeout(function(){

    //get next item in the array and process it
    process(todo.shift());
    
    //if there's more items to process, create another timer
    if(todo.length > 0){
        setTimeout(arguments.callee, 25);
    } else {
        callback(items);
    }

}, 25);

The basic idea of this pattern is to create a clone of the original array and use that as a
queue of items to process. The first call to setTimeout() creates a timer to process the
first item in the array. Calling todo.shift() returns the first item and also removes it
from the array. This value is passed into process(). After processing the item, a check
is made to determine whether there are more items to process. If there are still items in
the todo array, there are more items to process and another timer is created. Because
the next timer needs to run the same code as the original, arguments.callee is passed
in as the first argument. This value points to the anonymous function in which the code
is executing. If there are no further items to process, then a callback() function is called.

The actual amount of time to delay each timer is largely dependent on
your use case. Generally speaking, it’s best to use at least 25 milliseconds
because smaller delays leave too little time for most UI updates.
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Because this pattern requires significantly more code that a regular loop, it’s useful to
encapsulate this functionality. For example:

function processArray(items, process, callback){
    var todo = items.concat();   //create a clone of the original

    setTimeout(function(){
        process(todo.shift());

        if (todo.length > 0){
            setTimeout(arguments.callee, 25);
        } else {
            callback(items);
        }

    }, 25);    
}

The processArray() function implements the previous pattern in a reusable way and
accepts three arguments: the array to process, the function to call on each item, and a
callback function to execute when processing is complete. This function can be used
as follows:

var items = [123, 789, 323, 778, 232, 654, 219, 543, 321, 160];

function outputValue(value){
    console.log(value);
}

processArray(items, outputValue, function(){
    console.log("Done!");
});

This code uses the processArray() method to output array values to the console and
then prints a message when all processing is complete. By encapsulating the timer code
inside of a function, it can be reused in multiple places without requiring multiple
implementations.

One side effect of using timers to process arrays is that the total time to
process the array increases. This is because the UI thread is freed up
after each item is processed and there is a delay before the next item is
processed. Nevertheless, this is a necessary trade-off to avoid a poor user
experience by locking up the browser.

Splitting Up Tasks
What we typically think of as one task can often be broken down into a series of sub-
tasks. If a single function is taking too long to execute, check to see whether it can be
broken down into a series of smaller functions that complete in smaller amounts of
time. This is often as simple as considering a single line of code as an atomic task, even
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though multiple lines of code typically can be grouped together into a single task. Some
functions are already easily broken down based on the other functions they call. For
example:

function saveDocument(id){

    //save the document
    openDocument(id)
    writeText(id);
    closeDocument(id);

    //update the UI to indicate success
    updateUI(id);
}

If this function is taking too long, it can easily be split up into a series of smaller steps
by breaking out the individual methods into separate timers. You can accomplish this
by adding each function into an array and then using a pattern similar to the array-
processing pattern from the previous section:

function saveDocument(id){

    var tasks = [openDocument, writeText, closeDocument, updateUI];

    setTimeout(function(){
    
        //execute the next task
        var task = tasks.shift();
        task(id);
        
        //determine if there's more
        if (tasks.length > 0){
            setTimeout(arguments.callee, 25);
        }
    }, 25);
}

This version of the function places each method into the tasks array and then executes
only one method with each timer. Fundamentally, this now becomes an array-
processing pattern, with the sole difference that processing an item involves executing
the function contained in the item. As discussed in the previous section, this pattern
can be encapsulated for reuse:

function multistep(steps, args, callback){

    var tasks = steps.concat();   //clone the array

    setTimeout(function(){
    
        //execute the next task
        var task = tasks.shift();
        task.apply(null, args || []);
        
        //determine if there's more

Yielding with Timers | 117



        if (tasks.length > 0){
            setTimeout(arguments.callee, 25);
        } else {
            callback();
        }
    }, 25);
}

The multistep() function accepts three arguments: an array of functions to execute,
an array of arguments to pass into each function when it executes, and a callback func-
tion to call when the process is complete. This function can be used like the following:

function saveDocument(id){

    var tasks = [openDocument, writeText, closeDocument, updateUI];
    multistep(tasks, [id], function(){
        alert("Save completed!");
    });
}

Note that the second argument to multistep() must be an array, so one is created
containing just id. As with array processing, this function is best used when the tasks
can be processed asynchronously without affecting the user experience or causing er-
rors in dependent code.

Timed Code
Sometimes executing just one task at a time is inefficient. Consider processing an array
of 1,000 items for which processing a single item takes 1 millisecond. If one item is
processed in each timer and there is a delay of 25 milliseconds in between, that means
the total amount of time to process the array is (25 + 1) × 1,000 = 26,000 milliseconds,
or 26 seconds. What if you processed the items in batches of 50 with a 25-millisecond
delay between them? The entire processing time then becomes (1,000 / 50) × 25 + 1,000
= 1,500 milliseconds, or 1.5 seconds, and the user is still never blocked from the
interface because the longest the script has executed continuously is 50 milliseconds.
It’s typically faster to process items in batches than one at a time.

If you keep 100 milliseconds in mind as the absolute maximum amount of time that
JavaScript should be allowed to run continuously, then you can start optimizing the
previous patterns. My recommendation is to cut that number in half and never let any
JavaScript code execute for longer than 50 milliseconds continuously, just to make sure
the code never gets close to affecting the user experience.

It’s possible to track how long a piece of code has been running by using the native
Date object. This is the way most JavaScript profiling works:

var start = +new Date(),
    stop;

someLongProcess();
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stop = +new Date();

if(stop-start < 50){
    alert("Just about right.");
} else {
    alert("Taking too long.");
}

Since each new Date object is initialized with the current system time, you can time
code by creating new Date objects periodically and comparing their values. The plus
operator (+) converts the Date object into a numeric representation so that any further
arithmetic doesn’t involve conversions. This same basic technique can be used to op-
timize the previous timer patterns.

The processArray() method can be augmented to process multiple items per timer by
adding in a time check:

function timedProcessArray(items, process, callback){
    var todo = items.concat();   //create a clone of the original

    setTimeout(function(){
        var start = +new Date();

        do {
             process(todo.shift());
        } while (todo.length > 0 && (+new Date() - start < 50));

        if (todo.length > 0){
            setTimeout(arguments.callee, 25);
        } else {
            callback(items);
        }

    }, 25);
}

The addition of a do-while loop in this function enables checking the time after each
item is processed. The array will always contain at least one item when the timer func-
tion executes, so a post-test loop makes more sense than a pretest one. When run in
Firefox 3, this function processes an array of 1,000 items, where process() is an empty
function, in 38–43 milliseconds; the original processArray() function processes the
same array in over 25,000 milliseconds. This is the power of timing tasks before break-
ing them up into smaller chunks.

Timers and Performance
Timers can make a huge difference in the overall performance of your JavaScript code,
but overusing them can have a negative effect on performance. The code in this section
has used sequenced timers such that only one timer exists at a time and new ones are
created only when the last timer has finished. Using timers in this way will not result
in performance issues.
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Performance issues start to appear when multiple repeating timers are being created at
the same time. Since there is only one UI thread, all of the timers compete for time to
execute. Neil Thomas of Google Mobile researched this topic as a way of measuring
performance on the mobile Gmail application for the iPhone and Android.§

Thomas found that low-frequency repeating timers—those occurring at intervals of
one second or greater—had little effect on overall web application responsiveness. The
timer delays in this case are too large to create a bottleneck on the UI thread and are
therefore safe to use repeatedly. When multiple repeating timers are used with a much
greater frequency (between 100 and 200 milliseconds), however, Thomas found that
the mobile Gmail application became noticeably slower and less responsive.

The takeaway from Thomas’s research is to limit the number of high-frequency re-
peating timers in your web application. Instead, Thomas suggests creating a single
repeating timer that performs multiple operations with each execution.

Web Workers
Since JavaScript was introduced, there has been no way to execute code outside of the
browser UI thread. The web workers API changes this by introducing an interface
through which code can be executed without taking time on the browser UI thread.
Originally part of HTML 5, the web workers API has been split out into its own
specification (http://www.w3.org/TR/workers/); web workers have already been imple-
mented natively in Firefox 3.5, Chrome 3, and Safari 4.

Web workers represent a potentially huge performance improvement for web applica-
tions because each new worker spawns its own thread in which to execute JavaScript.
That means not only will code executing in a worker not affect the browser UI, but it
also won’t affect code executing in other workers.

Worker Environment
Since web workers aren’t bound to the UI thread, it also means that they cannot access
a lot of browser resources. Part of the reason that JavaScript and UI updates share the
same process is because one can affect the other quite frequently, and so executing
these tasks out of order results in a bad user experience. Web workers could introduce
user interface errors by making changes to the DOM from an outside thread, but each
web worker has its own global environment that has only a subset of JavaScript features
available. The worker environment is made up of the following:

• A navigator object, which contains only four properties: appName, appVersion, user
Agent, and platform

§ The full post is available online at http://googlecode.blogspot.com/2009/07/gmail-for-mobile-html5-series
-using.html.
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• A location object (same as on window, except all properties are read-only)

• A self object that points to the global worker object

• An importScripts() method that is used to load external JavaScript for use in the
worker

• All ECMAScript objects, such as Object, Array, Date, etc.

• The XMLHttpRequest constructor

• The setTimeout() and setInterval() methods

• A close() method that stops the worker immediately

Because web workers have a different global environment, you can’t create one from
any JavaScript code. In fact, you’ll need to create an entirely separate JavaScript file
containing just the code for the worker to execute. To create a web worker, you must
pass in the URL for the JavaScript file:

var worker = new Worker("code.js");

Once this is executed, a new thread with a new worker environment is created for the
specified file. This file is downloaded asynchronously, and the worker will not begin
until the file has been completely downloaded and executed.

Worker Communication
Communication between a worker and the web page code is established through an
event interface. The web page code can pass data to the worker via the postMessage()
method, which accepts a single argument indicating the data to pass into the worker.
There is also an onmessage event handler that is used to receive information from the
worker. For example:

var worker = new Worker("code.js");
worker.onmessage = function(event){
    alert(event.data);
};
worker.postMessage("Nicholas");

The worker receives this data through the firing of a message event. An onmessage event
handler is defined, and the event object has a data property containing the data that
was passed in. The worker can then pass information back to the web page by using
its own postMessage() method:

//inside code.js
self.onmessage = function(event){
    self.postMessage("Hello, " + event.data + "!");
};

The final string ends up in the onmessage event handler for the worker. This messaging
system is the only way in which the web page and the worker can communicate.
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Only certain types of data can be passed using postMessage(). You can pass primitive
values (strings, numbers, Booleans, null, and undefined) as well as instances of
Object and Array; you cannot pass any other data types. Valid data is serialized, trans-
mitted to or from the worker, and then deserialized. Even though it seems like the
objects are being passed through directly, the instances are completely separate repre-
sentations of the same data. Attempting to pass an unsupported data type results in a
JavaScript error.

Safari 4's implementation of workers only allows you to pass strings
using postMessage(). The specification was updated after that point to
allow serializable data to be passed through, which is how Firefox 3.5
implements workers.

Loading External Files
Loading extra JavaScript files into a worker is done via the importScripts() method,
which accepts one or more URLs for JavaScript files to load. The call to
importScripts() is blocking within the worker, so the script won’t continue until all
files have been loaded and executed. Since the worker is running outside of the UI
thread, there is no concern about UI responsiveness when this blocking occurs. For
example:

//inside code.js
importScripts("file1.js", "file2.js");

self.onmessage = function(event){
    self.postMessage("Hello, " + event.data + "!");
};

The first line in this code includes two JavaScript files so that they will be available in
the context of the worker.

Practical Uses
Web workers are suitable for any long-running scripts that work on pure data and that
have no ties to the browser UI. This may seem like a fairly small number of uses, but
buried in web applications there are typically some data-handling approaches that
would benefit from using a worker instead of timers.

Consider, for example, parsing a large JSON string (JSON parsing is discussed further
in Chapter 7). Suppose that the data is large enough that parsing takes at least 500
milliseconds. That is clearly too long to allow JavaScript to run on the client, as it will
interfere with the user experience. This particular task is difficult to break into small
chunks with timers, so a worker is the ideal solution. The following code illustrates
usage from a web page:
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var worker = new Worker("jsonparser.js");

//when the data is available, this event handler is called
worker.onmessage = function(event){

    //the JSON structure is passed back
    var jsonData = event.data;

    //the JSON structure is used
    evaluateData(jsonData);
};

//pass in the large JSON string to parse
worker.postMessage(jsonText);

The code for the worker responsible for JSON parsing is as follows:

//inside of jsonparser.js

//this event handler is called when JSON data is available
self.onmessage = function(event){

    //the JSON string comes in as event.data
    var jsonText = event.data;

    //parse the structure
    var jsonData = JSON.parse(jsonText);

    //send back to the results
    self.postMessage(jsonData);
};

Note that even though JSON.parse() is likely to take 500 milliseconds or more, there is
no need to write any additional code to split up the processing. This execution takes
place on a separate thread, so you can let it run for as long as the parsing takes without
interfering with the user experience.

The page passes a JSON string into the worker by using postMessage(). The worker
receives the string as event.data in its onmessage event handler and then proceeds to
parse it. When complete, the resulting JSON object is passed back to the page using
the worker’s postMessage() method. This object is then available as event.data in the
page’s onmessage event handler. Keep in mind that this presently works only in Firefox
3.5 and later, as Safari 4 and Chrome 3’s implementations allow strings to be passed
only between page and worker.

Parsing a large string is just one of many possible tasks that can benefit from web
workers. Some other possibilities are:

• Encoding/decoding a large string

• Complex mathematical calculations (including image or video processing)

• Sorting a large array
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Any time a process takes longer than 100 milliseconds to complete, you should consider
whether a worker solution is more appropriate than a timer-based one. This, of course,
is based on browser capabilities.

Summary
JavaScript and user interface updates operate within the same process, so only one can
be done at a time. This means that the user interface cannot react to input while Java-
Script code is executing and vice versa. Managing the UI thread effectively means en-
suring that JavaScript isn’t allowed to run so long that the user experience is affected.
To that end, the following should be kept in mind:

• No JavaScript task should take longer than 100 milliseconds to execute. Longer
execution times cause a noticeable delay in updates to the UI and negatively impact
the overall user experience.

• Browsers behave differently in response to user interaction during JavaScript exe-
cution. Regardless of the behavior, the user experience becomes confusing and
disjointed when JavaScript takes a long time to execute.

• Timers can be used to schedule code for later execution, which allows you to split
up long-running scripts into a series of smaller tasks.

• Web workers are a feature in newer browsers that allow you to execute JavaScript
code outside of the UI thread, thus preventing UI locking.

The more complex the web application, the more critical it is to manage the UI thread
in a proactive manner. No JavaScript code is so important that it should adversely affect
the user’s experience.
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CHAPTER 7

Ajax

Ross Harmes

Ajax is a cornerstone of high-performance JavaScript. It can be used to make a page
load faster by delaying the download of large resources. It can prevent page loads al-
together by allowing for data to be transferred between the client and the server asyn-
chronously. It can even be used to fetch all of a page’s resources in one HTTP request.
By choosing the correct transmission technique and the most efficient data format, you
can significantly improve how your users interact with your site.

This chapter examines the fastest techniques for sending data to and receiving it from
the server, as well as the most efficient formats for encoding data.

Data Transmission
Ajax, at its most basic level, is a way of communicating with a server without unloading
the current page; data can be requested from the server or sent to it. There are several
different ways of setting up this communication channel, each with its own advantages
and restrictions. This section briefly examines the different approaches and discusses
the performance implications of each.

Requesting Data
There are five general techniques for requesting data from a server:

• XMLHttpRequest (XHR)

• Dynamic script tag insertion

• iframes

• Comet

• Multipart XHR
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The three that are used in modern high-performance JavaScript are XHR, dynamic
script tag insertion, and multipart XHR. Use of Comet and iframes (as data transport
techniques) tends to be extremely situational, and won’t be covered here.

XMLHttpRequest

By far the most common technique used, XMLHttpRequest (XHR) allows you to asyn-
chronously send and receive data. It is well supported across all modern browsers and
allows for a fine degree of control over both the request sent and the data received. You
can add arbitrary headers and parameters (both GET and POST) to the request, and
read all of the headers returned from the server, as well as the response text itself. The
following is an example of how it can be used:

var url = '/data.php';
var params = [
    'id=934875',
    'limit=20'
];

var req = new XMLHttpRequest();

req.onreadystatechange = function() {
    if (req.readyState === 4) {
        var responseHeaders = req.getAllResponseHeaders(); // Get the response
headers.
        var data = req.responseText; // Get the data.
        // Process the data here...
    }
}

req.open('GET', url + '?' + params.join('&'), true);
req.setRequestHeader('X-Requested-With', 'XMLHttpRequest'); // Set a request
header.
req.send(null); // Send the request.

This example shows how to request data from a URL, with parameters, and how to
read the response text and headers. A readyState of 4 indicates that the entire response
has been received and is available for manipulation.

It is possible to interact with the server response as it is still being transferred by listening
for readyState 3. This is known as streaming, and it is a powerful tool for improving
the performance of your data requests:

req.onreadystatechange = function() {

    if (req.readyState === 3) { // Some, but not all, data has been received.
        var dataSoFar = req.responseText;
        ...
    }
    else if (req.readyState === 4) { // All data has been received.
        var data = req.responseText;
        ...
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    }
}

Because of the high degree of control that XHR offers, browsers place some restrictions
on it. You cannot use XHR to request data from a domain different from the one the
code is currently running under, and older versions of IE do not give you access to
readyState 3, which prevents streaming. Data that comes back from the request is
treated as either a string or an XML object; this means large amounts of data will be
quite slow to process.

Despite these drawbacks, XHR is the most commonly used technique for requesting
data and is still the most powerful. It should be the one you look to first.

When using XHR to request data, you have a choice be-
tween using POST or GET. For requests that don’t change the server state and only
pull back data (this is called an idempotent action), use GET. GET requests are cached,
which can improve performance if you’re fetching the same data several times.

POST should be used to fetch data only when the length of the URL and the parameters
are close to or exceed 2,048 characters. This is because Internet Explorer limits URLs
to that length, and exceeding it will cause your request to be truncated.

Dynamic script tag insertion

This technique overcomes the biggest limitation of XHR: it can request data from a
server on a different domain. It is a hack; instead of instantiating a purpose-built object,
you use JavaScript to create a new script tag and set its source attribute to a URL in a
different domain.

var scriptElement = document.createElement('script');
scriptElement.src = 'http://any-domain.com/javascript/lib.js';
document.getElementsByTagName('head')[0].appendChild(scriptElement);

But dynamic script tag insertion offers much less control than XHR. You can’t send
headers with the request. Parameters can only be passed using GET, not POST. You
can’t set timeouts or retry the request; in fact, you won’t necessarily know if it fails.
You must wait for all of the data to be returned before you can access any of it. You
don’t have access to the response headers or to the entire response as a string.

This last point is especially important. Because the response is being used as the source
for a script tag, it must be executable JavaScript. You cannot use bare XML, or even
bare JSON; any data, regardless of the format, must be enclosed in a callback function.

var scriptElement = document.createElement('script');
scriptElement.src = 'http://any-domain.com/javascript/lib.js';
document.getElementsByTagName('head')[0].appendChild(scriptElement);

function jsonCallback(jsonString) {
    var data = eval('(' + jsonString + ')');
    // Process the data here...
}

POST versus GET when using XHR.
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In this example, the lib.js file would enclose the data in the jsonCallback function:

jsonCallback({ "status": 1, "colors": [ "#fff", "#000", "#ff0000" ] });

Despite these limitations, this technique can be extremely fast. The response is executed
as JavaScript; it is not treated as a string that must be further processed. Because of this,
it has the potential to be the fastest way of getting data and parsing it into something
you can access on the client side. We compare the performance of dynamic script tag
insertion with the performance of XHR in the section on JSON, later in this chapter.

Beware of using this technique to request data from a server you don’t directly control.
JavaScript has no concept of permission or access control, so any code that you incor-
porate into your page using dynamic script tag insertion will have complete control
over the page. This includes the ability to modify any content, redirect users to another
site, or even track their actions on this page and send the data back to a third party.
Use extreme caution when pulling in code from an external source.

Multipart XHR

The newest of the techniques mentioned here, multipart XHR (MXHR) allows you to
pass multiple resources from the server side to the client side using only one HTTP
request. This is done by packaging up the resources (whether they be CSS files, HTML
fragments, JavaScript code, or base64 encoded images) on the server side and sending
them to the client as a long string of characters, separated by some agreed-upon string.
The JavaScript code processes this long string and parses each resource according to
its mime-type and any other “header” passed with it.

Let’s follow this process from start to finish. First, a request is made to the server for
several image resources:

var req = new XMLHttpRequest();

req.open('GET', 'rollup_images.php', true);
req.onreadystatechange = function() {
    if (req.readyState == 4) {
        splitImages(req.responseText);
    }
};
req.send(null);

This is a very simple request. You are asking for data from rollup_images.php, and once
you receive it, you send it to the function splitImages.

Next, on the server, the images are read and converted into strings:

// Read the images and convert them into base64 encoded strings.

$images = array('kitten.jpg', 'sunset.jpg', 'baby.jpg');
foreach ($images as $image) {

    $image_fh = fopen($image, 'r');
    $image_data = fread($image_fh, filesize($image));
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    fclose($image_fh);
        $payloads[] = base64_encode($image_data);
    }
}

// Roll up those strings into one long string and output it.

$newline = chr(1); // This character won't appear naturally in any base64 string.

echo implode($newline, $payloads);

This piece of PHP code reads three images and converts them into long strings of base64
characters. They are concatenated using a single character, Unicode character 1, and
output back to the client.

Once on the client side, the data is processed by the splitImages function:

function splitImages(imageString) {

    var imageData = imageString.split("\u0001");
    var imageElement;

    for (var i = 0, len = imageData.length; i < len; i++) {

        imageElement = document.createElement('img');
        imageElement.src = 'data:image/jpeg;base64,' + imageData[i];
        document.getElementById('container').appendChild(imageElement);
    }
}

This function takes the concatenated string and splits it up again into three pieces. Each
piece is then used to create an image element, and that image element is inserted into
the page. The image is not converted from a base64 string back to binary data; instead
it is passed to the image element using a data: URL and the image/jpeg mime-type.

The end result is that three images have been passed to the browser as a single HTTP
request. This could be done with 20 images or 100; the response would be larger, but
it would still take only one HTTP request. It can also be expanded to other types of
resources. JavaScript files, CSS files, HTML fragments, and images of many types can
all be combined into one response. Any data type that can be handled as a string by
JavaScript can be sent. Here are functions that will take strings for JavaScript code, CSS
styles, and images and convert them into resources the browser can use:

function handleImageData(data, mimeType) {
    var img = document.createElement('img');
    img.src = 'data:' + mimeType + ';base64,' + data;
    return img;
}

function handleCss(data) {
    var style = document.createElement('style');
    style.type = 'text/css';

    var node = document.createTextNode(data);
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    style.appendChild(node);
    document.getElementsByTagName('head')[0].appendChild(style);
}

function handleJavaScript(data) {
    eval(data);
}

As MXHR responses grow larger, it becomes necessary to process each resource as it
is received, rather than waiting for the entire response. This can be done by listening
for readyState 3:

var req = new XMLHttpRequest();
var getLatestPacketInterval, lastLength = 0;

req.open('GET', 'rollup_images.php', true);
req.onreadystatechange = readyStateHandler;
req.send(null);

function readyStateHandler{
    if (req.readyState === 3 && getLatestPacketInterval === null) {

        // Start polling.

        getLatestPacketInterval = window.setInterval(function() {
            getLatestPacket();
         }, 15);
    }

    if (req.readyState === 4) {

        // Stop polling.

        clearInterval(getLatestPacketInterval);

        // Get the last packet.

        getLatestPacket();
    }
}

function getLatestPacket() {
    var length = req.responseText.length;
    var packet = req.responseText.substring(lastLength, length);

    processPacket(packet);
    lastLength = length;
}

Once readyState 3 fires for the first time, a timer is started. Every 15 milliseconds, the
response is checked for new data. Each piece of data is then collected until a delimiter
character is found, and then everything is processed as a complete resource.

The code required to use MXHR in a robust manner is complex but worth further study.
The complete library can be easily be found online at http://techfoolery.com/mxhr/.
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There are some downsides to using this technique, the biggest being that none of the
fetched resources are cached in the browser. If you fetch a particular CSS file using
MXHR and then load it normally on the next page, it will not be in the cache. This is
because the rolled-up resources are transmitted as a long string and then split up by
the JavaScript code. Since there is no way to programmatically inject a file into the
browser’s cache, none of the resources fetched in this way will make it there.

Another downside is that older versions of Internet Explorer don’t support
readyState 3 or data: URLs. Internet Explorer 8 does support both of them, but work-
arounds must still be used for Internet Explorer 6 and 7.

Despite these downsides, there are still situations in which MXHR significantly im-
proves overall page performance:

• Pages that contain a lot of resources that aren’t used elsewhere on the site (and
thus don’t need to be cached), especially images

• Sites that already use a unique rolled-up JavaScript or CSS file on each page to
reduce HTTP requests; because it is unique to each page, it’s never read from cache
unless that particular page is reloaded

Because HTTP requests are one of the most extreme bottlenecks in Ajax, reducing the
number needed has a large effect on overall page performance. This is especially true
when you are able to convert 100 image requests into a single multipart XHR request.
Ad hoc testing with large numbers of images across modern browsers has shown this
technique to be 4 to 10 times faster than making individual requests. Run these tests
for yourself at http://techfoolery.com/mxhr/.

Sending Data
There are times when you don’t care about retrieving data, and instead only want to
send it to the server. You could be sending off nonpersonal information about a user
to be analyzed later, or you could capture all script errors that occur and send the details
about them to the server for logging and alerting. When data only needs to be sent to
the server, there are two techniques that are widely used: XHR and beacons.

XMLHttpRequest

Though primarily used for requesting data from the server, XHR can also be used to
send data back. Data can be sent back as GET or POST, as well as in any number of
HTTP headers. This gives you an enormous amount of flexibility. XHR is especially
useful when the amount of data you are sending back exceeds the maximum URL length
in a browser. In that situation, you can send the data back as a POST:

var url = '/data.php';
var params = [
    'id=934875',
    'limit=20'
];
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var req = new XMLHttpRequest();

req.onerror = function() {
    // Error.
};

req.onreadystatechange = function() {
    if (req.readyState == 4) {
        // Success.
    }
};

req.open('POST', url, true);
req.setRequestHeader('Content-Type', 'application/x-www-form-urlencoded');
req.setRequestHeader('Content-Length', params.length);
req.send(params.join('&'));

As you can see in this example, we do nothing if the post fails. This is usually fine when
XHR is used to capture broad user statistics, but if it’s crucial that the data makes it to
the server, you can add code to retry on failure:

function xhrPost(url, params, callback) {

    var req = new XMLHttpRequest();

    req.onerror = function() {
        setTimeout(function() {
            xhrPost(url, params, callback);
        }, 1000);
    };

    req.onreadystatechange = function() {
        if (req.readyState == 4) {
            if (callback && typeof callback === 'function') {
                callback();
            }
        }
    };

    req.open('POST', url, true);
    req.setRequestHeader('Content-Type', 'application/x-www-form-urlencoded');
    req.setRequestHeader('Content-Length', params.length);
    req.send(params.join('&'));
}

When using XHR to send data back to the server, it is faster to use GET. This is because,
for small amounts of data, a GET request is sent to the server in a single packet. A
POST, on the other hand, is sent in a minimum of two packets, one for the headers and
another for the POST body. A POST is better suited to sending large amounts of data
to the server, both because the extra packet won’t matter as much and because of
Internet Explorer’s URL length limit, which makes long GET requests impossible.
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Beacons

This technique is very similar to dynamic script tag insertion. JavaScript is used to create
a new Image object, with the src set to the URL of a script on your server. This URL
contains the data we want to send back in the GET format of key-value pairs. Note that
no img element has to be created or inserted into the DOM.

var url = '/status_tracker.php';
var params = [
    'step=2',
    'time=1248027314'
];

(new Image()).src = url + '?' + params.join('&');

The server takes this data and stores it; it doesn’t have to send anything back to the
client, since the image isn’t actually displayed. This is the most efficient way to send
information back to the server. There is very little overhead, and server-side errors don’t
affect the client side at all.

The simplicity of image beacons also means that you are restricted in what you can do.
You can’t send POST data, so you are limited to a fairly small number of characters
before you reach the maximum allowed URL length. You can receive data back, but in
very limited ways. It’s possible to listen for the Image object’s load event, which will tell
you if the server successfully received the data. You can also check the width and height
of the image that the server returned (if an image was returned) and use those numbers
to inform you about the server’s state. For instance, a width of 1 could be “success”
and 2 could be “try again.”

If you don’t need to return data in your response, you should send a response code of
204 No Content and no message body. This will prevent the client from waiting for a
message body that will never come:

var url = '/status_tracker.php';
var params = [
    'step=2',
    'time=1248027314'
];

var beacon = new Image();
beacon.src = url + '?' + params.join('&');

beacon.onload = function() {
    if (this.width == 1) {
        // Success.
    }
    else if (this.width == 2) {
       // Failure; create another beacon and try again.
    }
};

beacon.onerror = function() {
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    // Error; wait a bit, then create another beacon and try again.
};

Beacons are the fastest and most efficient way to send data back to the server. The server
doesn’t have to send back any response body at all, so you don’t have to worry about
downloading data to the client. The only downside is that it you are limited in the type
of responses you can receive. If you need to pass large amounts of data back to the
client, use XHR. If you only care about sending data to the server (with possibly a very
simple response), use image beacons.

Data Formats
When considering data transmission techniques, you must take into account several
factors: feature set, compatibility, performance, and direction (to or from the server).
When considering data formats, the only scale you need for comparison is speed.

There isn’t one data format that will always be better than the others. Depending on
what data is being transferred and its intended use on the page, one might be faster to
download, while another might be faster to parse. In this section, we create a widget
for searching among users and implement it using each of the four major categories of
data formats. This will require us to format a list of users on the server, pass it back to
the browser, parse that list into a native JavaScript data structure, and search it for a
given string. Each of the data formats will be compared based on the file size of the list,
the speed of parsing it, and the ease with which it’s formed on the server.

XML
When Ajax first became popular, XML was the data format of choice. It had many
things going for it: extreme interoperability (with excellent support on both the server
side and the client side), strict formatting, and easy validation. JSON hadn’t been for-
malized yet as an interchange format, and almost every language used on servers had
a library available for working with XML.

Here is an example of our list of users encoded as XML:

<?xml version="1.0" encoding='UTF-8'?>
<users total="4">
    <user id="1">
        <username>alice</username>
        <realname>Alice Smith</realname>
        <email>alice@alicesmith.com</email>
    </user>
    <user id="2">
        <username>bob</username>
        <realname>Bob Jones</realname>
        <email>bob@bobjones.com</email>
    </user>
    <user id="3">
        <username>carol</username>
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        <realname>Carol Williams</realname>
        <email>carol@carolwilliams.com</email>
    </user>
    <user id="4">
        <username>dave</username>
        <realname>Dave Johnson</realname>
        <email>dave@davejohnson.com</email>
    </user> 
</users>

Compared to other formats, XML is extremely verbose. Each discrete piece of data 
requires a lot of structure, and the ratio of data to structure is extremely low. XML also 
has a slightly ambiguous syntax. When encoding a data structure into XML, do you 
make object parameters into attributes of the object element or independent child 
elements? Do you make long, descriptive tag names, or short ones that are efficient but 
indecipherable? Parsing this syntax is equally ambiguous, and you must know the lay-
out of an XML response ahead of time to be able to make sense of it.

In general, parsing XML requires a great deal of effort on the part of the JavaScript 
programmer. Aside from knowing the particulars of the structure ahead of time, you 
must also know exactly how to pull apart that structure and painstakingly reassemble 
it into a JavaScript object. This is far from an easy or automatic process, unlike the 
other three data formats.

Here is an example of how to parse this particular XML response into an object:

function parseXML(responseXML) {

    var users = [];
    var userNodes = responseXML.getElementsByTagName('users');
    var node, usernameNodes, usernameNode, username,
        realnameNodes, realnameNode, realname,
        emailNodes, emailNode, email;

    for (var i = 0, len = userNodes.length; i < len; i++) {

        node = userNodes[i];
        username = realname = email = '';

        usernameNodes = node.getElementsByTagName('username');
        if (usernameNodes && usernameNodes[0]) {
            usernameNode = usernameNodes[0];
            username = (usernameNodes.firstChild) ?
                usernameNodes.firstChild.nodeValue : '';
        }

        realnameNodes = node.getElementsByTagName('realname');
        if (realnameNodes && realnameNodes[0]) {
            realnameNode = realnameNodes[0];
            realname = (realnameNodes.firstChild) ?
                realnameNodes.firstChild.nodeValue : '';
        }

        emailNodes = node.getElementsByTagName('email');
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        if (emailNodes && emailNodes[0]) {
            emailNode = emailNodes[0];
            email = (emailNodes.firstChild) ?
                emailNodes.firstChild.nodeValue : '';
        }

        users[i] = {
            id: node.getAttribute('id'),
            username: username,
            realname: realname,
            email: email
        };
    }

    return users;
}

As you can see, it requires checking each tag to ensure that it exists before reading its
value. It is heavily dependent on the structure of the XML.

A more efficient approach would be to encode each of the values as an attribute of the
<user> tag. This results in a smaller file size for the same amount of data. Here is an
example of the user list with the values encoded as attributes:

<?xml version="1.0" encoding='UTF-8'?>
<users total="4">
    <user id="1-id001" username="alice" realname="Alice Smith"
        email="alice@alicesmith.com" />
    <user id="2-id001" username="bob" realname="Bob Jones"
        email="bob@bobjones.com" />
    <user id="3-id001" username="carol" realname="Carol Williams"
        email="carol@carolwilliams.com" />
    <user id="4-id001" username="dave" realname="Dave Johnson"
        email="dave@davejohnson.com" />
</users>

Parsing this simplified XML response is significantly easier:

function parseXML(responseXML) {

    var users = [];
    var userNodes = responseXML.getElementsByTagName('users');

    for (var i = 0, len = userNodes.length; i < len; i++) {
        users[i] = {
            id: userNodes[i].getAttribute('id'),
            username: userNodes[i].getAttribute('username'),
            realname: userNodes[i].getAttribute('realname'),
            email: userNodes[i].getAttribute('email')
        };
    }

    return users;
}

136 | Chapter 7: Ajax



XPath

Though it is beyond the scope of this chapter, XPath can be much faster than
getElementsByTagName when parsing an XML document. The caveat is that it is not
universally supported, so you must also write fallback code using the older style of
DOM traversal. At this time, DOM Level 3 XPath has been implemented by Firefox,
Safari, Chrome, and Opera. Internet Explorer 8 has a similar but slightly less advanced
interface.

Response sizes and parse times

Let’s take a look at the performance numbers for XML in the following table.

Format Size Download time Parse time Total load time

Verbose XML 582,960 bytes 999.4 ms 343.1 ms 1342.5 ms

Simple XML 437,960 bytes 475.1 ms 83.1 ms 558.2 ms

Each of the data types has been tested using user lists with lengths of
100, 500, 1,000, and 5,000. Each list was downloaded and parsed 10
times in the same browser, and averages were taken for download time,
parse time, and file size. Full results for all data formats and transfer
techniques, as well as tests you can run yourself, can be found at http://
techfoolery.com/formats/.

As you can see, using favoring attributes over child tags leads to a smaller file size and
a significantly faster parse time. This is mostly due to the fact that you don’t have to
walk the DOM on the XML structure as much, and can instead simply read attributes.

Should you consider using XML? Given its prevalence in public APIs, you often have
no choice. If the data is only available in XML, you roll up your sleeves and write code
to parse it. But if there is any other format available, prefer that instead. The perform-
ance numbers you see here for verbose XML are extremely slow compared to more
advanced techniques. For browsers that support it, XPath would improve the parse
time, but at the cost of writing and maintaining three separate code paths (one for
browsers that support DOM Level 3 XPath, one for Internet Explorer 8, and one for all
other browsers). The simple XML format compares more favorably, but is still an order
of magnitude slower than the fastest format. XML has no place in high-performance
Ajax.

JSON
Formalized and popularized by Douglas Crockford, JSON is a lightweight and easy-to-
parse data format written using JavaScript object and array literal syntax. Here is an
example of the user list written in JSON:
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[
    { "id": 1, "username": "alice", "realname": "Alice Smith",
        "email": "alice@alicesmith.com" },
    { "id": 2, "username": "bob", "realname": "Bob Jones",
        "email": "bob@bobjones.com" },
    { "id": 3, "username": "carol", "realname": "Carol Williams",
        "email": "carol@carolwilliams.com" },
    { "id": 4, "username": "dave", "realname": "Dave Johnson",
        "email": "dave@davejohnson.com" }
]

The users are represented as objects, and the list of users is an array, just as any other
array or object would be written out in JavaScript. This means that when evaled or
wrapped in a callback function, JSON data is executable JavaScript code. Parsing a
string of JSON in JavaScript is as easy as using eval():

function parseJSON(responseText) {
    return eval('(' + responseText + ')');
}

A note about JSON and eval: using eval in your code is dangerous,
especially when using it to evaluate third-party JSON data (which could
possibly contain malicious or malformed code). Whenever possible, use
the JSON.parse() method to parse the string natively. This method will
catch syntax errors in the JSON and allow you to pass in a function that
can be used to filter or transform the results. Currently this method is
implemented in Firefox 3.5, Internet Explorer 8, and Safari 4. Most
JavaScript libraries contain JSON parsing code that will call the native
version, if present, or a slightly less robust nonnative version otherwise.
A reference implementation of a nonnative version can be found at http:
//json.org/json2.js. For the sake of consistency, eval will be used in the
code example.

Just as with XML, it is possible to distill this format into a simpler version. In this case,
we can replace the attribute names with shortened (though less readable) versions:

[
    { "i": 1, "u": "alice", "r": "Alice Smith", "e": "alice@alicesmith.com" },
    { "i": 2, "u": "bob", "r": "Bob Jones", "e": "bob@bobjones.com" },
    { "i": 3, "u": "carol", "r": "Carol Williams",
        "e": "carol@carolwilliams.com" },
    { "i": 4, "u": "dave", "r": "Dave Johnson", "e": "dave@davejohnson.com" }
]

This gives us the same data with less structure and fewer bytes overall to transmit to
the browser. We can even take it a step further and remove the attribute names com-
pletely. This format is even less readable than the other two and is much more brittle,
but the file size is much smaller: almost half the size of the verbose JSON format.

[
    [ 1, "alice", "Alice Smith", "alice@alicesmith.com" ],
    [ 2, "bob", "Bob Jones", "bob@bobjones.com" ],
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    [ 3, "carol", "Carol Williams", "carol@carolwilliams.com" ],
    [ 4, "dave", "Dave Johnson", "dave@davejohnson.com" ]
]

Successful parsing requires that the order of the data must be maintained. That being
said, it is trivial to convert this format into one that maintains the same attribute names
as the first JSON format:

function parseJSON(responseText) {

    var users = [];
    var usersArray = eval('(' + responseText + ')');

    for (var i = 0, len = usersArray.length; i < len; i++) {
        users[i] = {
            id: usersArray[i][0],
            username: usersArray[i][1],
            realname: usersArray[i][2],
            email: usersArray[i][3]
        };
    }

    return users;
}

In this example, we use eval() to convert the string into a native JavaScript array. That
array of arrays is then converted into an array of objects. Essentially, you are trading a
smaller file size and faster eval() time for a more complicated parse function. The
following table lists the performance numbers for the three JSON formats, transferred
using XHR.

Format Size Download time Parse time Total load time

Verbose JSON 487,895 bytes 527.7 ms 26.7 ms 554.4 ms

Simple JSON 392,895 bytes 498.7 ms 29.0 ms 527.7 ms

Array JSON 292,895 bytes 305.4 ms 18.6 ms 324.0 ms

JSON formed using arrays wins every category, with the smallest file size, the fastest
average download time, and the fastest average parse time. Despite the fact that the
parse function has to iterate through all 5,000 entries in the list, it is still more than
30% faster to parse.

JSON-P

The fact that JSON can be executed natively has several important performance im-
plications. When XHR is used, JSON data is returned as a string. This string is then
evaluated using eval() to convert it into a native object. However, when dynamic script
tag insertion is used, JSON data is treated as just another JavaScript file and executed
as native code. In order to accomplish this, the data must be wrapped in a callback
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function. This is known as “JSON with padding,” or JSON-P. Here is our user list
formatted as JSON-P:

parseJSON([
    { "id": 1, "username": "alice", "realname": "Alice Smith",
        "email": "alice@alicesmith.com" },
    { "id": 2, "username": "bob", "realname": "Bob Jones",
        "email": "bob@bobjones.com" },
    { "id": 3, "username": "carol", "realname": "Carol Williams",
        "email": "carol@carolwilliams.com" },
    { "id": 4, "username": "dave", "realname": "Dave Johnson",
        "email": "dave@davejohnson.com" }
]);

JSON-P adds a small amount to the file size with the callback wrapper, but such an
increase is insignificant compared to the improved parse times. Since the data is treated
as native JavaScript, it is parsed at native JavaScript speeds. Here are the same three
JSON formats transmitted as JSON-P.

Format Size Download time Parse time Total load time

Verbose JSON-P 487,913 bytes 598.2 ms 0.0 ms 598.2 ms

Simple JSON-P 392,913 bytes 454.0 ms 3.1 ms 457.1 ms

Array JSON-P 292,912 bytes 316.0 ms 3.4 ms 319.4 ms

File sizes and download times are almost identical to the XHR tests, but parse times
are almost 10 times faster. The parse time for verbose JSON-P is zero, since no parsing
is needed; it is already in a native format. The same is true for simple JSON-P and array
JSON-P, but each had to be iterated through to convert it to the format that verbose
JSON-P gives you naturally.

The fastest JSON format is JSON-P formed using arrays. Although this is only slightly
faster than JSON transmitted using XHR, that difference increases as the size of the list
grows. If you are working on a project that requires a list with 10,000 or 100,000 ele-
ments in it, favor JSON-P over JSON.

There is one reason to avoid using JSON-P that has nothing to do with performance:
since JSON-P must be executable JavaScript, it can be called by anyone and included
in any website using dynamic script tag insertion. JSON, on the other hand, is not valid
JavaScript until it is evaled, and can only be fetched as a string using XHR. Do not
encode any sensitive data in JSON-P, because you cannot ensure that it will remain
private, even with random URLs or cookies.

Should you use JSON?

JSON has several advantages when compared to XML. It is a much smaller format,
with less of the overall response size being used as structure and more as data. This is
especially true when the data contains arrays rather than objects. JSON is extremely
interoperable, with encoding and decoding libraries available for most server-side
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languages. It is trivial to parse on the client side, allowing you to spend more time
writing code to actually do something with the data. And, most importantly for web
developers, it is one of the best performing formats, both because it is relatively small
over the wire and because it can be parsed so quickly. JSON is a cornerstone of high-
performance Ajax, especially when used with dynamic script tag insertion.

HTML
Often the data you are requesting will be turned into HTML for display on the page.
Converting a large data structure into simple HTML can be done relatively quickly in
JavaScript, but it can be done much faster on the server. One technique to consider is
forming all of the HTML on the server and then passing it intact to the client; the
JavaScript can then simply drop it in place with innerHTML. Here is an example of the
user list encoded as HTML:

<ul class="users">
    <li class="user" id="1-id002">
        <a href="http://www.site.com/alice/" class="username">alice</a>
        <span class="realname">Alice Smith</span>
        <a href="mailto:alice@alicesmith.com"
            class="email">alice@alicesmith.com</a>
    </li>
    <li class="user" id="2-id002">
        <a href="http://www.site.com/bob/" class="username">bob</a>
        <span class="realname">Bob Jones</span>
        <a href="mailto:bob@bobjones.com" class="email">bob@bobjones.com</a>
    </li>
    <li class="user" id="3-id002">
        <a href="http://www.site.com/carol/" class="username">carol</a>
        <span class="realname">Carol Williams</span>
        <a href="mailto:carol@carolwilliams.com"
            class="email">carol@carolwilliams.com</a>
    </li>
    <li class="user" id="4-id002">
        <a href="http://www.site.com/dave/" class="username">dave</a>
        <span class="realname">Dave Johnson</span>
        <a href="mailto:dave@davejohnson.com"
            class="email">dave@davejohnson.com</a>
    </li>
</ul>

The problem with this technique is that HTML is a verbose data format, more so even
than XML. On top of the data itself, you could have nested HTML tags, each with IDs,
classes, and other attributes. It’s possible to have the HTML formatting take up more
space than the actual data, though that can be mitigated by using as few tags and
attributes as possible. Because of this, you should use this technique only when the
client-side CPU is more limited than bandwidth.

On one extreme, you have a format that consists of the smallest amount of structure
required to parse the data on the client side, such as JSON. This format is extremely
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quick to download to the client machine; however, it takes a lot of CPU time to convert
this format into HTML to display on the page. A lot of string operations are required,
which are one of the slowest things you can do in JavaScript.

On the other extreme, you have HTML created on the server. This format is much
larger over the wire and takes longer to download, but once it’s downloaded, displaying
it on the page requires a single operation:

document.getElementById('data-container').innerHTML = req.responseText;

The following table shows the performance numbers for the user list encoded using
HTML. Keep in mind the main different between this format and all others: “parsing”
in this case refers to the action of inserting the HTML in the DOM. Also, HTML cannot
be easily or quickly iterated through, unlike a native JavaScript array.

Format Size Download time Parse time Total load time

HTML 1,063,416 bytes 273.1 ms 121.4 ms 394.5 ms

As you can see, HTML is significantly larger over the wire, and also takes a long time
to parse. This is because the single operation to insert the HTML into the DOM is
deceptively simple; despite the fact that it is a single line of code, it still takes a significant
amount of time to load that much data into a page. These performance numbers do
deviate slightly from the others, in that the end result is not an array of data, but instead
HTML elements displayed on a page. Regardless, they still illustrate the fact that
HTML, as a data format, is slow and bloated.

Custom Formatting
The ideal data format is one that includes just enough structure to allow you to separate
individual fields from each other. You can easily make such a format by simply con-
catenating your data with a separator character:

Jacob;Michael;Joshua;Matthew;Andrew;Christopher;Joseph;Daniel;Nicholas;
Ethan;William;Anthony;Ryan;David;Tyler;John

These separators essentially create an array of data, similar to a comma-separated list.
Through the use of different separators, you can create multidimensional arrays. Here
is our user list encoded as a character-delimited custom format:

1:alice:Alice Smith:alice@alicesmith.com;
2:bob:Bob Jones:bob@bobjones.com;
3:carol:Carol Williams:carol@carolwilliams.com;
4:dave:Dave Johnson:dave@davejohnson.com

This type of format is extremely terse and offers a very high data-to-structure ratio
(significantly higher than any other format, excluding plain text). Custom formats are
quick to download over the wire, and they are fast and easy to parse; you simply call
split() on the string, using your separator as the argument. More complex custom
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formats with multiple separators require loops to split all the data (but keep in mind
that these loops are extremely fast in JavaScript). split() is one of the fastest string
operations, and can typically handle separator-delimited lists of 10,000+ elements in
a matter of milliseconds. Here is an example of how to parse the preceding format:

function parseCustomFormat(responseText) {

    var users = [];
    var usersEncoded = responseText.split(';');
    var userArray;

    for (var i = 0, len = usersEncoded.length; i < len; i++) {

        userArray = usersEncoded[i].split(':');

        users[i] = {
            id: userArray[0],
            username: userArray[1],
            realname: userArray[2],
            email: userArray[3]
        };
    }

    return users;
}

When creating you own custom format, one of the most important decisions is what
to use as the separators. Ideally, they should each be a single character, and they should
not be found naturally in your data. Low-number ASCII characters work well and are
easy to represent in most server-side languages. For example, here is how you would
use ASCII characters in PHP:

function build_format_custom($users) {

    $row_delimiter = chr(1); // \u0001 in JavaScript.
    $field_delimiter = chr(2); // \u0002 in JavaScript.

    $output = array();
    foreach ($users as $user) {
        $fields = array($user['id'], $user['username'], $user['realname'],
$user['email']);
        $output[] = implode($field_delimiter, $fields);
    }

    return implode($row_delimiter, $output);
}

These control characters are represented in JavaScript using Unicode notation (e.g.,
\u0001). The split() function can take either a string or a regular expression as an
argument. If you expect to have empty fields in your data, then use a string; if the
delimiter is passed as a regular expression, split() in IE ignores the second delimiter
when two are right next to each other. The two argument types are equivalent in other
browsers.
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// Regular expression delimiter.
var rows = req.responseText.split(/\u0001/);

// String delimiter (safer).
var rows = req.responseText.split("\u0001");

Here are the performance numbers for a character delimited custom format, using both
XHR and dynamic script tag insertion:

Format Size Download time Parse time Total load time

Custom Format (XHR) 222,892 bytes 63.1 ms 14.5 ms 77.6 ms

Custom Format (script insertion) 222,912 bytes 66.3 ms 11.7 ms 78.0 ms

Either XHR or dynamic script tag insertion can be used with this format. Since the
response is parsed as a string in both cases, there is no real difference in performance.
For very large datasets, it’s hands down the fastest format, beating out even natively
executed JSON in parse speed and overall load time. This format makes it feasible to
send huge amounts of data to the client side in a very short amount of time.

Data Format Conclusions
Favor lightweight formats in general; the best are JSON and a character-delimited cus-
tom format. If the data set is large and parse time becomes an issue, use one of these
two techniques:

• JSON-P data, fetched using dynamic script tag insertion. This treats the data as
executable JavaScript, not a string, and allows for extremely fast parsing. This can
be used across domains, but shouldn’t be used with sensitive data.

• A character-delimited custom format, fetched using either XHR or dynamic script
tag insertion and parsed using split(). This technique parses extremely large da-
tasets slightly faster than the JSON-P technique, and generally has a smaller file
size.

The following table and Figure 7-1 show all of the performance numbers again (in order
from slowest to fastest), so that you can compare each of the formats in one place.
HTML is excluded, since it isn’t directly comparable to the other formats.

Format Size Download time Parse time Total load time

Verbose XML 582,960 bytes 999.4 ms 343.1 ms 1342.5 ms

Verbose JSON-P 487,913 bytes 598.2 ms 0.0 ms 598.2 ms

Simple XML 437,960 bytes 475.1 ms 83.1 ms 558.2 ms

Verbose JSON 487,895 bytes 527.7 ms 26.7 ms 554.4 ms

Simple JSON 392,895 bytes 498.7 ms 29.0 ms 527.7 ms

Simple JSON-P 392,913 bytes 454.0 ms 3.1 ms 457.1 ms

144 | Chapter 7: Ajax



Format Size Download time Parse time Total load time

Array JSON 292,895 bytes 305.4 ms 18.6 ms 324.0 ms

Array JSON-P 292,912 bytes 316.0 ms 3.4 ms 319.4 ms

Custom Format (script insertion) 222,912 bytes 66.3 ms 11.7 ms 78.0 ms

Custom Format (XHR) 222,892 bytes 63.1 ms 14.5 ms 77.6 ms

Figure 7-1. A comparison of data format download and parse times

Keep in mind that these numbers are from a single test run in a single browser. The
results should be used as general indicators of performance, not as hard numbers. You
can run these tests yourself at http://techfoolery.com/formats/.

Ajax Performance Guidelines
Once you have selected the most appropriate data transmission technique and data
format, you can start to consider other optimization techniques. These can be highly
situational, so be sure that your application fits the profile before considering them.

Cache Data
The fastest Ajax request is one that you don’t have to make. There are two main ways
of preventing an unnecessary request:
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• On the server side, set HTTP headers that ensure your response will be cached in
the browser.

• On the client side, store fetched data locally so that it doesn’t have be requested
again.

The first technique is the easiest to set up and maintain, whereas the second gives you
the highest degree of control.

Setting HTTP headers

If you want your Ajax responses to be cached by the browser, you must use GET to
make the request. But simply using GET isn’t sufficient; you must also send the correct
HTTP headers with the response. The Expires header tells the browser how long a
response can be cached. The value is a date; after that date has passed, any requests for
that URL will stop being delivered from cache and will instead be passed on to the
server. Here is what an Expires header looks like:

Expires:    Mon, 28 Jul 2014 23:30:00 GMT

This particular Expires header tells the browser to cache this response until July 2014.
This is called a far future Expires header, and it is useful for content that will never
change, such as images or static data sets.

The date in an Expires header is a GMT date. It can be set in PHP using this code:

$lifetime = 7 * 24 * 60 * 60; // 7 days, in seconds.
header('Expires: ' . gmdate('D, d M Y H:i:s', time() + $lifetime) . ' GMT');

This will tell the browser to cache the file for 7 days. To set a far future Expires header,
set the lifetime to something longer; this example tells the browser to cache the file for
10 years:

$lifetime = 10 * 365 * 24 * 60 * 60; // 10 years, in seconds.
header('Expires: ' . gmdate('D, d M Y H:i:s', time() + $lifetime) . ' GMT');

An Expires header is the easiest way to make sure your Ajax responses are cached on
the browser. You don’t have to change anything in your client-side code, and can con-
tinue to make Ajax requests normally, knowing that the browser will send the request
on to the server only if the file isn’t in cache. It’s also easy to implement on the server
side, as all languages allow you to set headers in one way or another. This is the simplest
approach to ensuring your data is cached.

Storing data locally

Instead of relying on the browser to handle caching, you can also do it in a more manual
fashion, by storing the responses you receive from the server. This can be done by
putting the response text into an object, keyed by the URL used to fetch it. Here is an
example of an XHR wrapper that first checks to see whether a URL has been fetched
before:
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var localCache = {};

function xhrRequest(url, callback) {

    // Check the local cache for this URL.

    if (localCache[url]) {
        callback.success(localCache[url]);
        return;
    }

    // If this URL wasn't found in the cache, make the request.

    var req = createXhrObject();
    req.onerror = function() {
        callback.error();
    };

    req.onreadystatechange = function() {
        if (req.readyState == 4) {

            if (req.responseText === '' || req.status == '404') {
                callback.error();
                return;
            }

            // Store the response on the local cache.

            localCache[url] = req.responseText;
            callback.success(req.responseText);
        }
    };

    req.open("GET", url, true);
    req.send(null);
}

Overall, setting an Expires header is a better solution. It’s easier to do and it caches
responses across page loads and sessions. But a manual cache can be useful in situations
where you want to be able to programmatically expire a cache and fetch fresh data.
Imagine a situation where you would like to use cached data for every request, except
when the user takes an action that causes one or more of the cached responses to
become invalid. In this case, removing those responses from the cache is trivial:

delete localCache['/user/friendlist/'];
delete localCache['/user/contactlist/'];

A local cache also works well for users browsing on mobile devices. Most of the brows-
ers on such devices have small or nonexistent caches, and a manual cache is the best
option for preventing unnecessary requests.

Ajax Performance Guidelines | 147



Know the Limitations of Your Ajax Library
All JavaScript libraries give you access to an Ajax object, which normalizes the differ-
ences between browsers and gives you a consistent interface. Most of the time this is a
very good thing, as it allows you to focus on your project rather than the details of how
XHR works in some obscure browser. However, in giving you a unified interface, these
libraries must also simplify the interface, because not every browser implements each
feature. This prevents you from accessing the full power of XMLHttpRequest.

Some of the techniques we covered in this chapter can be implemented only by
accessing the XHR object directly. Most notable of these is the streaming feature of
multipart XHR. By listening for readyState 3, we can start to slice up a large response
before it’s completely received. This allows us to handle pieces of the response in real
time, and it is one of the reasons that MXHR improves performance so much. Most
JavaScript libraries, though, do not give you direct access to the readystatechange event.
This means you must wait until the entire response is received (which may be a con-
siderable amount of time) before you can start to use any part of it.

Using the XMLHttpRequest object directly is not as daunting as it seems. A few quirks
aside, the most recent versions of all major browsers support the XMLHttpRequest object
in the same way, and all offer access to the different readyStates. You can support older
versions of IE with just a few more lines of code. Here is an example of a function that
will return an XHR object, which you can then interact with directly (this is a modified
version of what the YUI 2 Connection Manager uses):

function createXhrObject() {

    var msxml_progid = [
        'MSXML2.XMLHTTP.6.0',
        'MSXML3.XMLHTTP',
        'Microsoft.XMLHTTP',  // Doesn't support readyState 3.
        'MSXML2.XMLHTTP.3.0', // Doesn't support readyState 3.
    ];

    var req;
    try {
        req = new XMLHttpRequest(); // Try the standard way first.
    }
    catch(e) {
        for (var i = 0, len = msxml_progid.length; i < len; ++i) {
            try {
                req = new ActiveXObject(msxml_progid[i]);
                break;
            }
            catch(e2) {  }
        }
    }
    finally {
        return req;
    }
}
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This will first try the versions of XMLHttp that do support readyState 3, and then fall
back to the ones that don’t in case those versions aren’t available.

Interacting directly with the XHR object also reduces the amount of function overhead,
further improving performance. Just beware that by forgoing the use of an Ajax library,
you may encounter some problems with older and more obscure browsers.

Summary
High-performance Ajax consists of knowing the specific requirements of your situation
and selecting the correct data format and transmission technique to match.

As data formats, plain text and HTML are highly situational, but they can save CPU
cycles on the client side. XML is widely available and supported almost everywhere,
but it is extremely verbose and slow to parse. JSON is lightweight and quick to parse
(when treated as native code and not a string), and almost as interoperable as XML.
Character-delimited custom formats are extremely lightweight and the quickest to
parse for large datasets, but may take additional programming effort to format on the
server side and parse on the client side.

When requesting data, XHR gives you the most control and flexibility when pulling
from the page’s domain, though it treats all incoming data as a string, potentially slow-
ing down the parse times. Dynamic script tag insertion, on the other hand, allows for
cross-domain requests and native execution of JavaScript and JSON, though it offers
a less robust interface and cannot read headers or response codes. Multipart XHR can
be used to reduce the number of requests, and can handle different file types in a single
response, though it does not cache the resources received. When sending data, image
beacons are a simple and efficient approach. XHR can also be used to send large
amounts of data in a POST.

In addition to these formats and transmission techniques, there are several guidelines
that will help your Ajax appear to be faster:

• Reduce the number of requests you make, either by concatenating JavaScript and
CSS files, or by using MXHR.

• Improve the perceived loading time of your page by using Ajax to fetch less im-
portant files after the rest of the page has loaded.

• Ensure your code fails gracefully and can handle problems on the server side.

• Know when to use a robust Ajax library and when to write your own low-level Ajax
code.
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Ajax offers one of the largest areas for potential performance improvements on your
site, both because so many sites use asynchronous requests heavily and because it can
offer solutions to problems that aren’t even related to it, such as having too many
resources to load. Creative use of XHR can be the difference between a sluggish,
uninviting page and one that responds quickly and efficiently; it can be the difference
between a site that users hate to interact with and one that they love.
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CHAPTER 8

Programming Practices

Every programming language has pain points and inefficient patterns that develop over
time. The appearance of these traits occurs as people migrate to the language and start
pushing its boundaries. Since 2005, when the term “Ajax” emerged, web developers
have pushed JavaScript and the browser further than it was ever pushed before. As a
result, some very specific patterns emerged, both as best practices and as suboptimal
ones. These patterns arise because of the very nature of JavaScript on the Web.

Avoid Double Evaluation
JavaScript, like many scripting languages, allows you to take a string containing code
and execute it from within running code. There are four standard ways to accomplish
this: eval(), the Function() constructor, setTimeout(), and setInterval(). Each of
these functions allows you to pass in a string of JavaScript code and have it executed.
Some examples:

var num1 = 5,
    num2 = 6,

    //eval() evaluating a string of code
    result = eval("num1 + num2"),

    //Function() evaluating strings of code
    sum = new Function("arg1", "arg2", "return arg1 + arg2");

//setTimeout() evaluating a string of code
setTimeout("sum = num1 + num2", 100);

//setInterval() evaluating a string of code
setInterval("sum = num1 + num2", 100);

Whenever you’re evaluating JavaScript code from within JavaScript code, you incur a
double evaluation penalty. This code is first evaluated as normal, and then, while ex-
ecuting, another evaluation happens to execute the code contained in a string. Double
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evaluation is a costly operation and takes much longer than if the same code were
included natively.

As a point of comparison, the time it takes to access an array item varies from browser
to browser but varies far more dramatically when the array item is accessed using
eval(). For example:

//faster
var item = array[0];

//slower
var item = eval("array[0]");

The difference across browsers becomes dramatic if 10,000 array items are read using
eval() instead of native code. Table 8-1 shows the different times for this operation.

Table 8-1. Speed comparison of native code versus eval() for accessing 10,000 array items

Browser Native code (ms) eval() code (ms)

Firefox 3 10.57 822.62

Firefox 3.5 0.72 141.54

Chrome 1 5.7 106.41

Chrome 2 5.17 54.55

Internet Explorer 7 31.25 5086.13

Internet Explorer 8 40.06 420.55

Opera 9.64 2.01 402.82

Opera 10 Beta 10.52 315.16

Safari 3.2 30.37 360.6

Safari 4 22.16 54.47

This dramatic difference in array item access time is due to the creation of a new in-
terpreter/compiler instance each time eval() is called. The same process occurs for
Function(), setTimeout(), and setInterval(), automatically making code execution
slower.

Most of the time, there is no need to use eval() or Function(), and it’s best to
avoid them whenever possible. For the other two functions, setTimeout() and
setInterval(), it’s recommended to pass in a function as the first argument instead of
a string. For example:

setTimeout(function(){
    sum = num1 + num2;
}, 100);

setInterval(function(){
    sum = num1 + num2;
}, 100);
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Avoiding double evaluation is key to achieving the most optimal JavaScript runtime
performance possible.

Optimizing JavaScript engines often cache the result of repeated code
evaluations using eval(). If you are repeatedly evaluating the same code
string, you will see greater performance improvements in Safari 4 and
all versions of Chrome.

Use Object/Array Literals
There are multiple ways to create objects and arrays in JavaScript, but nothing is faster
than creating object and array literals. Without using literals, typical object creation
and assignment looks like this:

//create an object
var myObject = new Object();
myObject.name = "Nicholas";
myObject.count = 50;
myObject.flag = true;
myObject.pointer = null;

//create an array
var myArray = new Array();
myArray[0] = "Nicholas";
myArray[1] = 50;
myArray[2] = true;
myArray[3] = null;

Although there is technically nothing wrong with this approach, literals are evaluated
faster. As an added bonus, literals take up less space in your code, so the overall file
size is smaller. The previous code can be rewritten using literals in the following way:

//create an object
var myObject = {
    name: "Nicholas",
    count: 50,
    flag: true,
    pointer: null
};

//create an array
var myArray = ["Nicholas", 50, true, null];

The end result of this code is the same as the previous version, but it is executed faster
in almost all browsers (Firefox 3.5 shows almost no difference). As the number of object
properties and array items increases, so too does the benefit of using literals.
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Don’t Repeat Work
One of the primary performance optimization techniques in computer science overall
is work avoidance. The concept of work avoidance really means two things: don’t do
work that isn’t required, and don’t repeat work that has already been completed. The
first part is usually easy to identify as code is being refactored. The second part—not
repeating work—is usually more difficult to identify because work may be repeated in
any number of places and for any number of reasons.

Perhaps the most common type of repeated work is browser detection. A lot of code
has forks based on the browser’s capabilities. Consider event handler addition and
removal as an example. Typical cross-browser code for this purpose looks like the
following:

function addHandler(target, eventType, handler){
    if (target.addEventListener){  //DOM2 Events
        target.addEventListener(eventType, handler, false);
    } else {   //IE
        target.attachEvent("on" + eventType, handler);
    }
}

function removeHandler(target, eventType, handler){
    if (target.removeEventListener){  //DOM2 Events
        target.removeEventListener(eventType, handler, false);
    } else {   //IE
        target.detachEvent("on" + eventType, handler);
    }
}

The code checks for DOM Level 2 Events support by testing for addEventListener()
and removeEventListener(), which is supported by all modern browsers except Internet
Explorer. If these methods don’t exist on the target, then IE is assumed and the IE-
specific methods are used.

At first glance, these functions look fairly optimized for their purpose. The hidden
performance issue is in the repeated work done each time either function is called. Each
time, the same check is made to see whether a certain method is present. If you assume
that the only values for target are actually DOM objects, and that the user doesn’t
magically change his browser while the page is loaded, then this evaluation is repetitive.
If addEventListener() was present on the first call to addHandler() then it’s going to be
present for each subsequent call. Repeating the same work with every call to a function
is wasteful, and there are a couple of ways to avoid it.

Lazy Loading
The first way to eliminate work repetition in functions is through lazy loading. Lazy
loading means that no work is done until the information is necessary. In the case of
the previous example, there is no need to determine which way to attach or detach
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event handlers until someone makes a call to the function. Lazy-loaded versions of the
previous functions look like this:

function addHandler(target, eventType, handler){

    //overwrite the existing function
    if (target.addEventListener){   //DOM2 Events
        addHandler = function(target, eventType, handler){
            target.addEventListener(eventType, handler, false);
        };
    } else {    //IE
        addHandler = function(target, eventType, handler){
            target.attachEvent("on" + eventType, handler);
        };
    }

    //call the new function
   addHandler(target, eventType, handler);
}

function removeHandler(target, eventType, handler){

    //overwrite the existing function
    if (target.removeEventListener){   //DOM2 Events
        removeHandler = function(target, eventType, handler){
            target.addEventListener(eventType, handler, false);
        };
    } else {    //IE
        removeHandler = function(target, eventType, handler){
            target.detachEvent("on" + eventType, handler);
        };
    }

    //call the new function
   removeHandler(target, eventType, handler);
}

These two functions implement a lazy-loading pattern. The first time either method is
called, a check is made to determine the appropriate way to attach or detach the event
handler. Then, the original function is overwritten with a new function that contains
just the appropriate course of action. The last step during that first function call is to
execute the new function with the original arguments. Each subsequent call to
addHandler() or removeHandler() avoids further detection because the detection code
was overwritten by a new function.

Calling a lazy-loading function always takes longer the first time because it must run
the detection and then make a call to another function to accomplish the task. Subse-
quent calls to the same function, however, are much faster since they have no detection
logic. Lazy loading is best used when the function won’t be used immediately on the
page.
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Conditional Advance Loading
An alternative to lazy-loading functions is conditional advance loading, which does the
detection upfront, while the script is loading, instead of waiting for the function call.
The detection is still done just once, but it comes earlier in the process. For example:

var addHandler = document.body.addEventListener ?
                 function(target, eventType, handler){
                     target.addEventListener(eventType, handler, false);
                 }:
                 function(target, eventType, handler){
                     target.attachEvent("on" + eventType, handler);
                 };

var removeHandler = document.body.removeEventListener ?
                 function(target, eventType, handler){
                     target.removeEventListener(eventType, handler, false);
                 }:
                 function(target, eventType, handler){
                     target.detachEvent("on" + eventType, handler);
                 };

This example checks to see whether addEventListener() and removeEventListener()
are present and then uses that information to assign the most appropriate function.
The ternary operator returns the DOM Level 2 function if these methods are present
and otherwise returns the IE-specific function. The result is that all calls to
addHandler() and removeHandler() are equally fast, as the detection cost occurs upfront.

Conditional advance loading ensures that all calls to the function take the same amount
of time. The trade-off is that the detection occurs as the script is loading rather than
later. Advance loading is best to use when a function is going to be used right away and
then again frequently throughout the lifetime of the page.

Use the Fast Parts
Even though JavaScript is often blamed for being slow, there are parts of the language
that are incredibly fast. This should come as no surprise, since JavaScript engines are
built in lower-level languages and are therefore compiled. Though it’s easy to blame
the engine when JavaScript appears slow, the engine is typically the fastest part of the
process; it’s your code that is actually running slowly. There are parts of the engine that
are much faster than others because they allow you to bypass the slow parts.

Bitwise Operators
Bitwise operators are one of the most frequently misunderstood aspects of JavaScript.
General opinion is that developers don’t understand how to use these operators and
frequently mistake them for their Boolean equivalents. As a result, bitwise operators
are used infrequently in JavaScript development, despite their advantages.
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JavaScript numbers are all stored in IEEE-754 64-bit format. For bitwise operations,
though, the number is converted into a signed 32-bit representation. Each operator
then works directly on this 32-bit representation to achieve a result. Despite the
conversion, this process is incredibly fast when compared to other mathematical and
Boolean operations in JavaScript.

If you’re unfamiliar with binary representation of numbers, JavaScript makes it easy to
convert a number into a string containing its binary equivalent by using the
toString() method and passing in the number 2. For example:

var num1 = 25,
    num2 = 3;

alert(num1.toString(2));    //"11001"
alert(num2.toString(2));    //   "11"

Note that this representation omits the leading zeros of a number.

There are four bitwise logic operators in JavaScript:

Bitwise AND
Returns a number with a 1 in each bit where both numbers have a 1

Bitwise OR
Returns a number with a 1 in each bit where either number has a 1

Bitwise XOR
Returns a number with a 1 in each bit where exactly one number has a 1

Bitwise NOT
Returns 1 in each position where the number has a 0 and vice versa

These operators are used as follows:

//bitwise AND
var result1 = 25 & 3;           //1
alert(result.toString(2));      //"1"

//bitwise OR
var result2 = 25 | 3;           //27
alert(resul2.toString(2));      //"11011"

//bitwise XOR
var result3 = 25 ^ 3;           //26
alert(resul3.toString(2));      //"11000"

//bitwise NOT
var result = ~25;               //-26
alert(resul2.toString(2));      //"-11010"

There are a couple of ways to use bitwise operators to speed up your JavaScript. The
first is to use bitwise operations instead of pure mathematical operations. For example,
it’s common to alternate table row colors by calculating the modulus of 2 for a given
number, such as:

Use the Fast Parts | 157



for (var i=0, len=rows.length; i < len; i++){
    if (i % 2) {
        className = "even";
    } else {
        className = "odd";
    }

    //apply class
}

Calculating mod 2 requires the number to be divided by 2 to determine the remainder.
If you were to look at the underlying 32-bit representation of numbers, a number is
even if its first bit is 0 and is odd if its first bit is 1. This can easily be determined by
using a bitwise AND operation on a given number and the number 1. When the number
is even, the result of bitwise AND 1 is 0; when the number is odd, the result of bitwise
AND 1 is 1. That means the previous code can be rewritten as follows:

for (var i=0, len=rows.length; i < len; i++){
    if (i & 1) {
        className = "odd";
    } else {
        className = "even";
    }

    //apply class
}

Although the code change is small, the bitwise AND version is up to 50% faster than
the original (depending on the browser).

The second way to use bitwise operators is a technique known as a bitmask. Bitmasking
is a popular technique in computer science when there are a number of Boolean options
that may be present at the same time. The idea is to use each bit of a single number to
indicate whether or not the option is present, effectively turning the number into an
array of Boolean flags. Each option is given a value equivalent to a power of 2 so that
the mask works. For example:

var OPTION_A = 1;
var OPTION_B = 2;
var OPTION_C = 4;
var OPTION_D = 8;
var OPTION_E = 16;

With the options defined, you can create a single number that contains multiple settings
using the bitwise OR operator:

var options = OPTION_A | OPTION_C | OPTION_D;

You can then check whether a given option is available by using the bitwise AND
operator. The operation returns 0 if the option isn’t set and 1 if the option is set:

//is option A in the list?
if (options & OPTION_A){
    //do something

158 | Chapter 8: Programming Practices



}

//is option B in the list?
if (options & OPTION_B){
    //do something
}

Bitmask operations such as this are quite fast because, as mentioned previously, the
work is happening at a lower level of the system. If there are a number of options that
are being saved together and checked frequently, bitmasks can help to speed up the
overall approach.

JavaScript also supports left shift (<<), right shift (>>), and signed right
shift (>>>) bitwise operators.

Native Methods
No matter how optimal your JavaScript code is, it will never be faster than the native
methods provided by the JavaScript engine. The reason for this is simple: the native
parts of JavaScript—those already present in the browser before you write a line of
code—are all written in a lower-level language such as C++. That means these methods
are compiled down to machine code as part of the browser and therefore don’t have
the same limitations as your JavaScript code.

A common mistake of inexperienced JavaScript developers is to perform complex
mathematical operations in code when there are better performing versions available
on the built-in Math object. The Math object contains properties and methods designed
to make mathematical operations easier. There are several mathematical constants
available:

Constant Meaning

Math.E The value of E, the base of the natural logarithm

Math.LN10 The natural logarithm of 10

Math.LN2 The natural logarithm of 2

Math.LOG2E The base-2 logarithm of E

Math.LOG10E The base-10 logarithm of E

Math.PI The value of π

Math.SQRT1_2 The square root of ½

Math.SQRT2 The square root of 2

Each of these values is precalculated, so there is no need for you to calculate them
yourself. There are also methods to handle mathematical calculations:
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Method Meaning

Math.abs(num) The absolute value of num

Math.exp(num) Math.Enum

Math.log(num) The logarithm of num

Math.pow(num,power) numpower

Math.sqrt(num) The square root of num

Math.acos(x) The arc cosine of x

Math.asin(x) The arc sine of x

Math.atan(x) The arc tangent of x

Math.atan2(y,x) The arc tangent of y/x

Math.cos(x) The cosine of x

Math.sin(x) The sine of x

Math.tan(x) The tangent of x

Using these methods is faster than recreating the same functionality in JavaScript code.
Whenever you need to perform complex mathematical calculations, look to the Math
object first.

Another example is the Selectors API, which allows querying of a DOM document
using CSS selectors. CSS queries were implemented natively in JavaScript and truly
popularized by the jQuery JavaScript library. The jQuery engine is widely considered
the fastest engine for CSS querying, but it is still much slower than the native methods.
The native querySelector() and querySelectorAll() methods complete their tasks, on
average, in 10% of the time it takes for JavaScript-based CSS querying.* Most JavaScript
libraries have now moved to use the native functionality when available to speed up
their overall performance.

Always use native methods when available, especially for mathematical calculations
and DOM operations. The more work that is done with compiled code, the faster your
code becomes.

Chrome actually implements a fair amount of its native JavaScript func-
tionality in JavaScript. Because Chrome uses a just-in-time JavaScript
compiler for both native functionality and your code, there is sometimes
little performance difference between the two.

* According to the SlickSpeed test suite at http://www2.webkit.org/perf/slickspeed/.
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Summary
JavaScript presents some unique performance challenges related to the way you or-
ganize your code. As web applications have become more advanced, containing more
and more lines of JavaScript to function, some patterns and antipatterns have emerged.
Some programming practices to keep in mind:

• Avoid the double evaluation penalty by avoiding the use of eval() and the
Function() constructor. Also, pass functions into setTimeout() and setIn

terval() instead of strings.

• Use object and array literals when creating new objects and arrays. They are created
and initialized faster than nonliteral forms.

• Avoid doing the same work repeatedly. Use lazy loading or conditional advance
loading when browser-detection logic is necessary.

• When performing mathematical operations, consider using bitwise operators that
work directly on the underlying representation of the number.

• Native methods are always faster than anything you can write in JavaScript. Use
native methods whenever available.

As with many of the techniques and approaches covered in this book, you will see the
greatest performance gains when these optimizations are applied to code that is run
frequently.
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CHAPTER 9

Building and Deploying High-
Performance JavaScript Applications

Julien Lecomte

According to a 2007 study by Yahoo!’s Exceptional Performance team, 40%–60% of
Yahoo!’s users have an empty cache experience, and about 20% of all page views are
done with an empty cache (http://yuiblog.com/blog/2007/01/04/performance-research
-part-2/). In addition, another more recent study by the Yahoo! Search team, which
was independently confirmed by Steve Souders of Google, indicates that roughly 15%
of the content delivered by large websites in the United States is served uncompressed.

These facts emphasize the need to make sure that JavaScript-based web applications
are delivered as efficiently as possible. While part of that work is done during the design
and development cycles, the build and deployment phase is also essential and often
overlooked. If care is not taken during this crucial phase, the performance of your
application will suffer, no matter how much effort you’ve put into making it faster.

The purpose of this chapter is to give you the necessary knowledge to efficiently
assemble and deploy a JavaScript-based web application. A number of concepts are
illustrated using Apache Ant, a Java-based build tool that has quickly become an in-
dustry standard for building applications for the Web. Toward the end of the chapter,
a custom agile build tool written in PHP5 is presented as an example.

Apache Ant
Apache Ant (http://ant.apache.org/) is a tool for automating software build processes.
It is similar to make, but is implemented in Java and uses XML to describe the build
process, whereas make uses its own Makefile format. Ant is a project of the Apache
Software Foundation (http://www.apache.org/licenses/).
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The main benefit of Ant over make and other tools is its portability. Ant itself is
available on many different platforms, and the format of Ant’s build files is platform-
independent.

An Ant build file is written in XML and named build.xml by default. Each build file
contains exactly one project and at least one target. An Ant target can depend on other
targets.

Targets contain task elements: actions that are executed atomically. Ant comes with a
great number of built-in tasks, and optional tasks can be added if needed. Also, custom
tasks can be developed in Java for use in an Ant build file.

A project can have a set of properties, or variables. A property has a name and a value.
It can be set from within the build file using the property task, or might be set outside
of Ant. A property can be evaluated by placing its name between ${and }.

The following is an example build file. Running the default target (dist) compiles the
Java code contained in the source directory and packages it as a JAR archive.

<?xml version="1.0" encoding="UTF-8"?>
<project name="MyProject" default="dist" basedir=".">

  <!-- set global properties for this build -->
  <property name="src"   location="src"/>
  <property name="build" location="build"/>
  <property name="dist"  location="dist"/>

  <target name="init">
    <!-- Create the time stamp -->
    <tstamp/>
    <!-- Create the build directory structure used by compile -->
    <mkdir dir="${build}"/>
  </target>

  <target name="compile" depends="init" description="compile the source">
    <!-- Compile the java code from ${src} into ${build} -->
    <javac srcdir="${src}" destdir="${build}"/>
  </target>

  <target name="dist" depends="compile" description="generate the distribution">
    <!-- Create the distribution directory -->
    <mkdir dir="${dist}/lib"/>
    <!-- Put everything in ${build} into the MyProject-${DSTAMP}.jar file -->
    <jar jarfile="${dist}/lib/MyProject-${DSTAMP}.jar" basedir="${build}"/>
  </target>

  <target name="clean" description="clean up">
    <!-- Delete the ${build} and ${dist} directory trees -->
    <delete dir="${build}"/>
    <delete dir="${dist}"/>
  </target>

</project>
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Although Apache Ant is used to illustrate the core concepts of this chapter, many other
tools are available to build web applications. Among them, it is worth noting that Rake
(http://rake.rubyforge.org/) has been gaining popularity in recent years. Rake is a Ruby-
based build program with capabilities similar to make. Most notably, Rakefiles (Rake’s
version of Makefiles) are written using standard Ruby syntax, and are therefore
platform-independent.

Combining JavaScript Files
According to Yahoo!’s Exceptional Performance team, the first and probably most im-
portant guideline for speeding up your website, especially for first-time visitors, is to
reduce the number of HTTP requests required to render the page (http://yuiblog.com/
blog/2006/11/28/performance-research-part-1/). This is where you should start looking
for optimizations because combining assets usually requires a fairly small amount of
work and has the greatest potential benefit for your users.

Most modern websites use several JavaScript files: usually a small library, which con-
tains a set of utilities and controls to simplify the development of richly interactive web
applications across multiple browsers, and some site-specific code, split into several
logical units to keep the developers sane. CNN (http://www.cnn.com/), for example,
uses the Prototype and Script.aculo.us libraries. Their front page displays a total of 12
external scripts and more than 20 inline script blocks. One simple optimization would
be to group some, if not all, of this code into one external JavaScript file, thereby dra-
matically cutting down the number of HTTP requests necessary to render the page.

Apache Ant provides the ability to combine several files via the concat task. It is im-
portant, however, to remember that JavaScript files usually need to be concatenated in
a specific order to respect dependencies. Once these dependencies have been estab-
lished, using a filelist or a combination of fileset elements allows the order of the
files to be preserved. Here is what the Ant target looks like:

<target name="js.concatenate">
    <concat destfile="${build.dir}/concatenated.js">
        <filelist dir="${src.dir}"
            files="a.js, b.js"/>
        <fileset dir="${src.dir}"
            includes="*.js"
            excludes="a.js, b.js"/>
    </concat>
</target>

This target creates the file concatenated.js under the build directory, as a result of the
concatenation of a.js, followed by b.js, followed by all the other files under the source
directory in alphabetical order.

Note that if any of the source files (except possibly the last one) does not end with either
a semicolon or a line terminator, the resulting concatenated file may not contain valid
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JavaScript code. This can be fixed by instructing Ant to check whether each concaten-
ated source file is terminated by a newline, using the fixlastline attribute:

<concat destfile="${build.dir}/concatenated.js" fixlastline="yes">
    ...
</concat>

Preprocessing JavaScript Files
In computer science, a preprocessor is a program that processes its input data to produce
output that is used as input to another program. The output is said to be a preprocessed
form of the input data, which is often used by some subsequent programs like compilers.
The amount and kind of processing done depends on the nature of the preprocessor;
some preprocessors are only capable of performing relatively simple textual substitutions
and macro expansions, while others have the power of fully fledged programming
languages.

—http://en.wikipedia.org/wiki/Preprocessor

Preprocessing your JavaScript source files will not make your application faster by itself,
but it will allow you to, among other things, conditionally instrument your code in
order to measure how your application is performing.

Since no preprocessor is specifically designed to work with JavaScript, it is necessary
to use a lexical preprocessor that is flexible enough that its lexical analysis rules can be
customized, or else use one that was designed to work with a language for which the
lexical grammar is close enough to JavaScript’s own lexical grammar. Since the C pro-
gramming language syntax is close to JavaScript, the C preprocessor (cpp) is a good
choice. Here is what the Ant target looks like:

<target name="js.preprocess" depends="js.concatenate">
    <apply executable="cpp" dest="${build.dir}">
        <fileset dir="${build.dir}"
            includes="concatenated.js"/>
        <arg line="-P -C -DDEBUG"/>
        <srcfile/>
        <targetfile/>
        <mapper type="glob"
            from="concatenated.js"
            to="preprocessed.js"/>
    </apply>
</target>

This target, which depends on the js.concatenate target, creates the file
preprocessed.js under the build directory as a result of running cpp on the previously
concatenated file. Note that cpp is run using the standard –P (inhibit generation of line
markers) and –C (do not discard comments) options. In this example, the DEBUG macro
is also defined.

With this target, you can now use the macro definition (#define, #undef) and the con-
ditional compilation (#if, #ifdef, #ifndef, #else, #elif, #endif) directives directly
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inside your JavaScript files, allowing you, for example, to conditionally embed (or re-
move) profiling code:

#ifdef DEBUG

(new YAHOO.util.YUILoader({
    require: ['profiler'],
    onSuccess: function(o) {
        YAHOO.tool.Profiler.registerFunction('foo', window);
    }
})).insert();

#endif

If you plan to use multiline macros, make sure you use the Unix end-of-line character
(LF). You may use the fixcrlf Ant task to automatically fix that for you.

Another example, not strictly related to performance but demonstrating how powerful
JavaScript preprocessing can be, is the use of “variadic macros” (macros accepting a
variable number of arguments) and file inclusion to implement JavaScript assertions.
Consider the following file named include.js:

#ifndef _INCLUDE_JS_
#define _INCLUDE_JS_

#ifdef DEBUG
function assert(condition, message) {
    // Handle the assertion by displaying an alert message
    // possibly containing a stack trace for example.
}
#define ASSERT(x, ...) assert(x, ## __VA_ARGS__)
#else
#define ASSERT(x, ...)
#endif /* DEBUG */

#endif /* _INCLUDE_JS_ */

You can now write JavaScript code that looks like the following:

#include "include.js"

function myFunction(arg) {
    ASSERT(YAHOO.lang.isString(argvar), "arg should be a string");
    ...
#ifdef DEBUG
    YAHOO.log("Log this in debug mode only");
#endif
    ...
}

The assertion and the extra logging code appear only when the DEBUG macro is set during
development. These statements disappear in the final production build.
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JavaScript Minification
JavaScript minification is the process by which a JavaScript file is stripped of everything
that does not contribute to its execution. This includes comments and unnecessary
whitespace. The process typically reduces the file size by half, resulting in faster
downloads, and encourages programmers to write better, more extensive inline
documentation.

JSMin (http://www.crockford.com/javascript/jsmin.html), developed by Douglas Crock-
ford, remained the standard in JavaScript minification for a long time. However, as web
applications kept growing in size and complexity, many felt it was time to push Java-
Script minification a step further. This is the main reason behind the development of
the YUI Compressor (http://developer.yahoo.com/yui/compressor/), a tool that performs
all kinds of smart operations in order to offer a higher level of compaction than other
tools in a completely safe way. In addition to stripping comments and unnecessary
whitespace, the YUI Compressor offers the following features:

• Replacement of local variable names with shorter (one-, two-, or three-character)
variable names, picked to optimize gzip compression downstream

• Replacement of bracket notation with dot notation whenever possible (e.g.,
foo["bar"] becomes foo.bar)

• Replacement of quoted literal property names whenever possible (e.g.,
{"foo":"bar"} becomes {foo:"bar"})

• Replacement of escaped quotes in strings (e.g., 'aaa\'bbb' becomes "aaa'bbb")

• Constant folding (e.g., "foo"+"bar" becomes "foobar")

Running your JavaScript code through the YUI Compressor results in tremendous sav-
ings compared to JSMin without any further action. Consider the following numbers
on the core files of the YUI library (version 2.7.0, available at http://developer.yahoo
.com/yui/):

Raw yahoo.js, dom.js and event.js 192,164 bytes

yahoo.js, dom.js and event.js + JSMin 47,316 bytes

yahoo.js, dom.js and event.js + YUI Compressor 35,896 bytes

In this example, the YUI Compressor offers 24% savings out of the box compared to
JSMin. However, there are things you can do to increase the byte savings even further.
Storing local references to objects/values, wrapping code in a closure, using constants
for repeated values, and avoiding eval (and its relatives, the Function constructor,
setTimeout, and setInterval when used with a string literal as the first argument), the
with keyword, and JScript conditional comments all contribute to making the minified
file smaller. Consider the following function, designed to toggle the selected class on
the specified DOM element (220 bytes):
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function toggle (element) {
    if (YAHOO.util.Dom.hasClass(element, "selected")){
        YAHOO.util.Dom.removeClass(element, "selected");
    } else {
        YAHOO.util.Dom.addClass(element, "selected");
    }
}

The YUI Compressor will transform this code into the following (147 bytes):

function toggle(a){if(YAHOO.util.Dom.hasClass(a,"selected")){
YAHOO.util.Dom.removeClass(a,"selected")}else{YAHOO.util.Dom.
addClass(a,"selected")}};

If you refactor the original version by storing a local reference to YAHOO.util.Dom and
using a constant for the "selected" value, the code becomes (232 bytes):

function toggle (element) {
    var YUD = YAHOO.util.Dom, className = "selected";
    if (YUD.hasClass(element, className)){
        YUD.removeClass(element, className);
    } else {
        YUD.addClass(element, className);
    }
}

This version shows even greater savings after minification using the YUI Compressor
(115 bytes):

function toggle(a){var c=YAHOO.util.Dom,b="selected";if(c.hasClass(a,b)){
c.removeClass(a,b)}else{c.addClass(a,b)}};

The compaction ratio went from 33% to 48%, which is a staggering result given the
small amount of work needed. However, it is important to note that gzip compression,
happening downstream, may yield conflicting results; in other words, the smallest
minified file may not always give the smallest gzipped file. That strange result is a direct
consequence of lowering the amount of redundancy in the original file. In addition,
this kind of microoptimization incurs a small runtime cost because variables are now
used in place of literal values, thus requiring additional lookups. Therefore, I usually
recommend not abusing these techniques, although it may still be worth considering
them when serving content to user agents that don’t support (or advertise their support
for) gzip compression.

In November 2009, Google released an even more advanced minification tool called
the Closure Compiler (http://code.google.com/closure/compiler/). This new tool goes
further than the YUI Compressor when using its advanced optimizations option. In
this mode, the Closure Compiler is extremely aggressive in the ways that it transforms
code and renames symbols. Although it yields incredible savings, it requires the devel-
oper to be very careful and to ensure that the output code works the same way as the
input code. It also makes debugging more difficult because almost all of the symbols
are renamed. The Closure library does come with a Firebug extension, named the
Closure Inspector (http://code.google.com/closure/compiler/docs/inspector.html), that

JavaScript Minification | 169

http://code.google.com/closure/compiler/
http://code.google.com/closure/compiler/docs/inspector.html


provides a mapping between the obfuscated symbols and the original symbols. Nev-
ertheless, this extension is not available on browsers other than Firefox, which may be
a problem when debugging browser-specific code paths, and debugging still remains
harder than with other, less aggressive minification tools.

Buildtime Versus Runtime Build Processes
Concatenation, preprocessing, and minification are steps that can take place either at
buildtime or at runtime. Runtime build processes are very useful during development,
but generally are not recommended in a production environment for scalability reasons.
As a general rule for building high-performance applications, everything that can be
done at buildtime should not be done at runtime.

Whereas Apache Ant is definitely an offline build program, the agile build tool pre-
sented toward the end of this chapter represents a middle ground whereby the same
tool can be used during development and to create the final assets that will be used in
a production environment.

JavaScript Compression
When a web browser requests a resource, it usually sends an Accept-Encoding HTTP
header (starting with HTTP/1.1) to let the web server know what kinds of encoding
transformations it supports. This information is primarily used to allow a document to
be compressed, enabling faster downloads and therefore a better user experience. Pos-
sible values for the Accept-Encoding value tokens include: gzip, compress, deflate, and
identity (these values are registered by the Internet Assigned Numbers Authority, or
IANA).

If the web server sees this header in the request, it will choose the most appropriate
encoding method and notify the web browser of its decision via the Content-Encoding
HTTP header.

gzip is by far the most popular encoding. It generally reduces the size of the payload
by 70%, making it a weapon of choice for improving the performance of a web appli-
cation. Note that gzip compression should be used primarily on text responses, in-
cluding JavaScript files. Other file types, such as images or PDF files, should not be
gzipped, because they are already compressed and trying to compress them again is a
waste of server resources.

If you use the Apache web server (by far the most popular), enabling gzip compression
requires installing and configuring either the mod_gzip module (for Apache 1.3 and
available at http://www.schroepl.net/projekte/mod_gzip/) or the mod_deflate module
(for Apache 2).

Recent studies done independently by Yahoo! Search and Google have shown that
roughly 15% of the content delivered by large websites in the United States is served
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uncompressed. This is mostly due to a missing Accept-Encoding HTTP header in the
request, stripped by some corporate proxies, firewalls, or even PC security software.
Although gzip compression is an amazing tool for web developers, one must be mindful
of this fact and strive to write code as concisely as possible. Another technique is to
serve alternate JavaScript content to users who are not going to benefit from gzip com-
pression but could benefit from a lighter experience (although users should be given
the choice to switch back to the full version).

To that effect, it is worth mentioning Packer (http://dean.edwards.name/packer/), a
JavaScript minifier developed by Dean Edwards. Packer is able to shrink JavaScript files
beyond what the YUI Compressor can do. Consider the following results on the jQuery
library (version 1.3.2, available at http://www.jquery.com/):

jQuery 120,180 bytes

jQuery + YUI Compressor 56,814 bytes

jQuery + Packer 39,351 bytes

Raw jQuery + gzip 34,987 bytes

jQuery + YUI Compressor + gzip 19,457 bytes

jQuery + Packer + gzip 19,228 bytes

After gzipping, running the jQuery library through Packer or the YUI Compressor yields
very similar results. However, files compressed using Packer incur a fixed runtime cost
(about 200 to 300 milliseconds on my modern laptop). Therefore, using the YUI Com-
pressor in combination with gzipping always gives the best results. However, Packer
can be used with some success for users on slow lines that don’t support gzip com-
pression, for whom the cost of unpacking is negligible compared to the cost of down-
loading large amounts of code. The only downside to serving different JavaScript
content to different users is increased QA costs.

Caching JavaScript Files
Making HTTP components cacheable will greatly improve the experience of repeat
visitors to your website. As a concrete example, loading the Yahoo! home page (http://
www.yahoo.com/) with a full cache requires 90% fewer HTTP requests and 83% fewer
bytes to download than with an empty cache. The round-trip time (the elapsed time
between the moment a page is requested and the firing of the onload event) goes from
2.4 seconds to 0.9 seconds (http://yuiblog.com/blog/2007/01/04/performance-research
-part-2/). Although caching is most often used on images, it should be used on all static
components, including JavaScript files.

Web servers use the Expires HTTP response header to let clients know how long a
resource can be cached. The format is an absolute timestamp in RFC 1123 format. An
example of its use is: Expires: Thu, 01 Dec 1994 16:00:00 GMT. To mark a response as
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“never expires,” a web server sends an Expires date approximately one year in the future
from the time at which the response is sent. Web servers should never send Expires
dates more than one year in the future according to the HTTP 1.1 RFC (RFC 2616,
section 14.21).

If you use the Apache web server, the ExpiresDefault directive allows you to set an
expiration date relative to the current date. The following example applies this directive
to images, JavaScript files, and CSS stylesheets:

<FilesMatch "\.(jpg|jpeg|png|gif|js|css|htm|html)$">
    ExpiresActive on
    ExpiresDefault "access plus 1 year"
</FilesMatch>

Some web browsers, especially when running on mobile devices, may have limited
caching capabilities. For example, the Safari web browser on the iPhone does not cache
a component if its size is greater than 25KB uncompressed (see http://yuiblog.com/blog/
2008/02/06/iphone-cacheability/) or 15KB for the iPhone 3.0 OS. In those cases, it is
relevant to consider a trade-off between the number of HTTP components and their
cacheability by splitting them into smaller chunks.

You can also consider using client-side storage mechanisms if they are available, in
which case the JavaScript code must itself handle the expiration.

Finally, another technique is the use of the HTML 5 offline application cache, imple-
mented in Firefox 3.5, Safari 4.0, and on the iPhone beginning with iPhone OS 2.1.
This technology relies on a manifest file listing the resources to be cached. The manifest
file is declared by adding a manifest attribute to the <html> tag (note the use of the
HTML 5 DOCTYPE):

<!DOCTYPE html>
<html manifest="demo.manifest">

The manifest file uses a special syntax to list offline resources and must be served using
the text/cache-manifest mime type. More information on offline web application
caching can be found on the W3C website at http://www.w3.org/TR/html5/offline.html.

Working Around Caching Issues
Adequate cache control can really enhance the user experience, but it has a downside:
when revving up your application, you want to make sure your users get the latest
version of the static content. This is accomplished by renaming static resources when-
ever they change.

Most often, developers add a version or a build number to filenames. Others like to
append a checksum. Personally, I like to use a timestamp. This task can be automated
using Ant. The following target takes care of renaming JavaScript files by appending a
timestamp in the form of yyyyMMddhhmm:

172 | Chapter 9: Building and Deploying High-Performance JavaScript Applications

http://yuiblog.com/blog/2008/02/06/iphone-cacheability/
http://yuiblog.com/blog/2008/02/06/iphone-cacheability/
http://www.w3.org/TR/html5/offline.html


<target name="js.copy">
    <!-- Create the time stamp -->
    <tstamp/>
    <!-- Rename JavaScript files by appending a time stamp -->
    <copy todir="${build.dir}">
        <fileset dir="${src.dir}" includes="*.js"/>
        <globmapper from="*.js" to="*-${DSTAMP}${TSTAMP}.js"/>
    </copy>
</target>

Using a Content Delivery Network
A content delivery network (CDN) is a network of computers distributed geographi-
cally across the Internet that is responsible for delivering content to end users. The
primary reasons for using a CDN are reliability, scalability, and above all, performance.
In fact, by serving content from the location closest to the user, CDNs are able to
dramatically decrease network latency.

Some large companies maintain their own CDN, but it is generally cost effective to use
a third-party CDN provider such as Akamai Technologies (http://www.akamai.com/)
or Limelight Networks (http://www.limelightnetworks.com/).

Switching to a CDN is usually a fairly simple code change and has the potential to
dramatically improve end-user response times.

It is worth noting that the most popular JavaScript libraries are all accessible via a CDN.
For example, the YUI library is served directly from the Yahoo! network (server name
is yui.yahooapis.com, details available at http://developer.yahoo.com/yui/articles/host
ing/), and jQuery, Dojo, Prototype, Script.aculo.us, MooTools, YUI, and other libraries
are all available directly via Google’s CDN (server name is ajax.googleapis.com, details
available at http://code.google.com/apis/ajaxlibs/).

Deploying JavaScript Resources
The deployment of JavaScript resources usually amounts to copying files to one or
several remote hosts, and also sometimes to running a set of shell commands on those
hosts, especially when using a CDN, to distribute the newly added files across the
delivery network.

Apache Ant gives you several options to copy files to remote servers. You could use the
copy task to copy files to a locally mounted filesystem, or you could use the optional
FTP or SCP tasks. My personal preference is to go directly to using the scp utility, which
is available on all major platforms. Here is a very simple example demonstrating this:

<apply executable="scp" failonerror="true" parallel="true">
    <fileset dir="${build.dir}" includes="*.js"/>
    <srcfile/>
    <arg line="${live.server}:/var/www/html/"/>
</apply>
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Finally, in order to execute shell commands on a remote host running the SSH daemon,
you can use the optional SSHEXEC task or simply invoke the ssh utility directly, as dem-
onstrated in the following example, to restart the Apache web server on a Unix host:

<exec executable="ssh" failonerror="true">
    <arg line="${live.server}"/>
    <arg line="sudo service httpd restart"/>
</exec>

Agile JavaScript Build Process
Traditional build tools are great, but most web developers find them very cumbersome
because it is necessary to manually compile the solution after every single code change.
Instead, it’s preferable to just have to refresh the browser window and skip the com-
pilation step altogether. As a consequence, few web developers use the techniques
outlined in this chapter, resulting in applications or websites that perform poorly.
Thankfully, it is fairly simple to write a tool that combines all these advanced techni-
ques, allowing web developers to work efficiently while still getting the most
performance out of their application.

smasher is a PHP5 application based on an internal tool used by Yahoo! Search. It
combines multiple JavaScript files, preprocesses them, and optionally minifies their
content. It can be run from the command line, or during development to handle web
requests and automatically combine resources on the fly. The source code can be found
at http://github.com/jlecomte/smasher, and contains the following files:

smasher.php

Core file

smasher.xml

Configuration file

smasher

Command-line wrapper

smasher_web.php

Web server entry point

smasher requires an XML configuration file containing the definition of the groups of
files it will combine, as well as some miscellaneous information about the system. Here
is an example of what this file looks like:

<?xml version="1.0" encoding="utf-8"?>
<smasher>
    <temp_dir>/tmp/</temp_dir>
    <root_dir>/home/jlecomte/smasher/files/</root_dir>
    <java_bin>/usr/bin/java</java_bin>
    <yuicompressor>/home/jlecomte/smasher/yuicompressor-2-4-2.jar</yuicompressor>

    <group id="yui-core">
        <file type="css" src="reset.css" />
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        <file type="css" src="fonts.css" />
        <file type="js" src="yahoo.js" />
        <file type="js" src="dom.js" />
        <file type="js" src="event.js" />
    </group>

    <group id="another-group">
        <file type="js" src="foo.js" />
        <file type="js" src="bar.js" />
        <macro name="DEBUG" value="1" />
    </group>

    ...

</smasher>

Each group element contains a set of JavaScript and/or CSS files. The root_dir top-level
element contains the path to the directory where these files can be found. Optionally,
group elements can also contain a list of preprocessing macro definitions.

Once this configuration file has been saved, you can run smasher from the command
line. If you run it without any of the required parameters, it will display some usage
information before exiting. The following example shows how to combine, preprocess,
and minify the core YUI JavaScript files:

$ ./smasher -c smasher.xml -g yui-core -t js

If all goes well, the output file can be found in the working directory, and is named
after the group name (yui-core in this example) followed by a timestamp and the
appropriate file extension (e.g., yui-core-200907191539.js).

Similarly, you can use smasher to handle web requests during development by placing
the file smasher_web.php somewhere under your web server document root and by
using a URL similar to this one:

http://<host>/smasher_web.php?conf=smasher.xml&group=yui-core&type=css&nominify

By using different URLs for your JavaScript and CSS assets during development and in
production, it is now possible to work efficiently while still getting the most perform-
ance out of the build process.

Summary
The build and deployment process can have a tremendous impact on the performance
of a JavaScript-based application. The most important steps in this process are:

• Combining JavaScript files to reduce the number of HTTP requests

• Minifying JavaScript files using the YUI Compressor

• Serving JavaScript files compressed (gzip encoding)
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• Making JavaScript files cacheable by setting the appropriate HTTP response head-
ers and work around caching issues by appending a timestamp to filenames

• Using a Content Delivery Network to serve JavaScript files; not only will a CDN
improve performance, it should also manage compression and caching for you

All these steps should be automated using publicly available build tools such as Apache
Ant or using a custom build tool tailored to your specific needs. If you make the build
process work for you, you will be able to greatly improve the performance of web
applications or websites that require large amounts of JavaScript code.
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CHAPTER 10

Tools

Matt Sweeney

Having the right software is essential for identifying bottlenecks in both the loading
and running of scripts. A number of browser vendors and large-scale websites have
shared techniques and tools to help make the Web faster and more efficient. This
chapter focuses on some of the free tools available for:

Profiling
Timing various functions and operations during script execution to identify areas
for optimization

Network analysis
Examining the loading of images, stylesheets, and scripts and their effect on overall
page load and rendering

When a particular script or application is performing less than optimally, a profiler can
help prioritize areas for optimization. This can get tricky because of the range of sup-
ported browsers, but many vendors now provide a profiler along with their debugging
tools. In some cases, performance issues may be specific to a particular browser; other
times, the symptoms may occur across multiple browsers. Keep in mind that the opti-
mizations applied to one browser might benefit other browsers, but they might have
the opposite effect as well. Rather than assuming which functions or operations are
slow, profilers ensure that optimization time is spent on the slowest areas of the system
that affect the most browsers.

While the bulk of this chapter focuses on profiling tools, network analyzers can be
highly effective in helping to ensure that scripts and pages are loading and running as
quickly as possible. Before diving into tweaking code, you should be sure that all scripts
and other assets are being loaded optimally. Image and stylesheet loading can affect
the loading of scripts, depending on how many concurrent requests the browser allows
and how many assets are being loaded.

Some of these tools provide tips on how to improve the performance of web pages.
Keep in mind that the best way to interpret the information these tools provide is to
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learn more about the rationale behind the rules. As with most rules, there are excep-
tions, and a deeper understanding of the rules allows you to know when to break them.

JavaScript Profiling
The tool that comes with all JavaScript implementations is the language itself. Using
the Date object, a measurement can be taken at any given point in a script. Before other
tools existed, this was a common way to time script execution, and it is still occasionally
useful. By default the Date object returns the current time, and subtracting one Date
instance from another gives the elapsed time in milliseconds. Consider the following
example, which compares creating elements from scratch with cloning from an existing
element (see Chapter 3, DOM Scripting):

var start = new Date(),
    count = 10000,
    i, element, time;

 for (i = 0; i < count; i++) {
    element = document.createElement('div');
}

time = new Date() - start;
alert('created ' + count + ' in ' + time + 'ms');

start = new Date();
for (i = 0, i < count; i++) {
    element = element.cloneNode(false);
}

time = new Date() - start;
alert('created ' + count + ' in ' + time + 'ms');

This type of profiling is cumbersome to implement, as it requires manually instru-
menting your own timing code. A Timer object that handles the time calculations and
stores the data would be a good next step.

Var Timer = {
    _data: {},

    start: function(key) {
        Timer._data[key] = new Date();
    },

    stop: function(key) {
        var time = Timer._data[key];
        if (time) {
            Timer._data[key] = new Date() - time;
        }
    },

    getTime: function(key) {
        return Timer._data[key];
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    }
};

Timer.start('createElement');
for (i = 0; i < count; i++) {
    element = document.createElement('div');
}

Timer.stop('createElement');
alert('created ' + count + ' in ' + Timer.getTime('createElement');

As you can see, this still requires manual instrumentation, but provides a pattern for
building a pure JavaScript profiler. By extending the Timer object concept, a profiler
can be constructed that registers functions and instruments them with timing code.

YUI Profiler
The YUI Profiler (http://developer.yahoo.com/yui/profiler/), contributed by Nicholas
Zakas, is a JavaScript profiler written in JavaScript. In addition to timer functionality,
it provides interfaces for profiling functions, objects, and constructors, as well as de-
tailed reports of the profile data. It enables profiling across various browsers and data
exporting for more robust reporting and analysis.

The YUI Profiler provides a generic timer that collects performance data. Profiler pro-
vides static methods for starting and stopping named timings and retrieving profile
data.

var count = 10000, i, element;
    Y.Profiler.start('createElement');

    for (i = 0; i < count; i++) {
        element = document.createElement('div');
    }

    Y.Profiler.stop('createElement');

    alert('created ' + count + ' in  ' +
            Y.Profiler.getAverage('createElement') + 'ms');

This clearly improves upon the inline Date and Timer approach and provides additional
profile data regarding the number of times called, as well as the average, minimum,
and maximum times. This data is collected and can be analyzed alongside other profile
results.

Functions can be registered for profiling as well. The registered function is instrumented
with code that collects performance data. For example, to profile the global initUI
method from Chapter 2, all that is required is the name:

Y.Profiler.registerFunction("initUI");

Many functions are bound to objects in order to prevent pollution of the global name-
space. Object methods can be registered by passing the object in as the second argument
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to registerFunction. For example, assume an object called uiTest that implements
two initUI approaches as uiTest.test1 and uiTest.test2. Each can be registered
individually:

Y.Profiler.registerFunction("test1", uiTest);
Y.Profiler.registerFunction("test2", uiTest);

This works well enough, but doesn’t really scale for profiling many functions or an
entire application. The registerObject method automatically registers every method
bound to the object:

Y.Profiler.registerObject("uiTest", uiTest);

The first argument is the name of the object (for reporting purposes), and the second
is the object itself. This will instrument profiling for all of the uiTest methods.

Objects that rely on prototype inheritance need special handling. YUI’s profiler allows
the registration of a constructor function that will instrument all methods on all in-
stances of the object:

Y.Profiler.registerConstructor("MyWidget", myNameSpace);

Now every function on each instance of myNameSpace.MyWidget will be measured and
reported on. An individual report can be retrieved as an object:

var initUIReport = Y.Profiler.getReport("initUI");

This provides an object containing the profile data, including an array of points, which
are the timings for each call, in the order they were called. These points can be plotted
and analyzed in other interesting ways to examine the variations in time. This object
has the following fields:

{
    min: 100,
    max: 250,
    calls: 5,
    avg: 120,
    points: [100, 200, 250, 110, 100]
};

Sometimes you may want only the value of a particular field. Static Profiler methods
provide discrete data per function or method:

var uiTest1Report = {
    calls: Y.Profiler.getCalls("uiTest.test1"),
    avg: Y.Profiler.getAvg("uiTest.test1")
};

A view that highlights the slowest areas of the code is really what is needed in order to
properly analyze a script’s performance. A report of all registered functions called on
the object or constructor is also available:

var uiTestReport = Y.Profiler.getReport("uiTest");
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This returns an object with the following data:

{
    test1: {
        min: 100,
        max: 250,
        calls: 10,
        avg: 120
    },
    test2:
        min: 80,
        max: 210,
        calls: 10,
        avg: 90
    }
};

This provides the opportunity to sort and view the data in more meaningful ways,
allowing the slower areas of the code to be scrutinized more closely. A full report of all
of the current profile data can also be generated. This, however, may contain useless
information, such as functions that were called zero times or that are already meeting
performance expectations. In order to minimize this type of noise, an optional function
can be passed in to filter the data:

var fullReport = Y.Profiler.getFullReport(function(data) {
    return (data.calls > 0 && data.avg > 5);
};

The Boolean value returned will indicate whether the function should be included in
the report, allowing the less interesting data to be suppressed.

When finished profiling, functions, objects, and constructors can be unregistered in-
dividually, clearing the profile data:

Y.Profiler.unregisterFunction("initUI");
Y.Profiler.unregisterObject("uiTests");
Y.Profiler.unregisterConstructor("MyWidget");

The clear() method keeps the current profile registry but clears the associated data.
This function can be called individually per function or timing:

Y.Profiler.clear("initUI");

Or all data may be cleared at once by omitting the name argument:

Y.Profiler.clear();

Because it is in JSON format, the profile report data can be viewed in any number of
ways. The simplest way to view it is on a web page by outputting as HTML. It can also
be sent to a server, where it can be stored in a database for more robust reporting. This
is especially useful when comparing various optimization techniques across browsers.

It is worth noting that anonymous functions are especially troublesome for this type of
profiler because there is no name to report with. The YUI Profiler provides a mechanism
for instrumenting anonymous functions, allowing them to be profiled. Registering an
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anonymous function returns a wrapper function that can be called instead of the
anonymous function:

var instrumentedFunction =
    Y.Profiler.instrument("anonymous1", function(num1, num2){
        return num1 + num2;
    });
instrumentedFunction(3, 5);

This adds the data for the anonymous function to the Profiler’s result set, allowing it
to be retrieved in the same manner as other profile data:

var report = Y.Profiler.getReport("anonymous1");

Anonymous Functions
Depending on the profiler, some data can be obscured by the use of anonymous func-
tions or function assignments. As this is a common pattern in JavaScript, many of the
functions being profiled may be anonymous, making it difficult or impossible to meas-
ure and analyze. The best way to enable profiling of anonymous functions is to name
them. Using pointers to object methods rather than closures will allow the broadest
possible profile coverage.

Compare using an inline function:

myNode.onclick = function() {
    myApp.loadData();
};

with a method call:

myApp._onClick = function() {
    myApp.loadData();
};
myNode.onclick = myApp._onClick;

Using the method call allows any of the reviewed profilers to automatically instrument
the onclick handler. This is not always practical, as it may require significant refactoring
in order to enable profiling.

For profilers that automatically instrument anonymous functions, adding an inline
name makes the reports more readable:

myNode.onclick = function myNodeClickHandler() {
    myApp.loadData();
};

This also works with functions declared as variables, which some profilers have trouble
gleaning a name from:

var onClick = function myNodeClickHandler() {
    myApp.loadData();
};
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The anonymous function is now named, providing most profilers with something
meaningful to display along with the profile results. These names require little effort
to implement, and can even be inserted automatically as part of a debug build process.

Always use uncompressed versions of your scripts for debugging and
profiling. This will ensure that your functions are easily identifiable.

Firebug
Firefox is a popular browser with developers, partially due to the Firebug addon (avail-
able at http://www.getfirebug.com/), which was developed initially by Joe Hewitt and
is now maintained by the Mozilla Foundation. This tool has increased the productivity
of web developers worldwide by providing insights into code that were never before
possible.

Firebug provides a console for logging output, a traversable DOM tree of the current
page, style information, the ability to introspect DOM and JavaScript objects, and
more. It also includes a profiler and network analyzer, which will be the focus of this
section. Firebug is also highly extensible, enabling custom panels to be easily added.

Console Panel Profiler
The Firebug Profiler is available as part of the Console panel (see Figure 10-1). It meas-
ures and reports on the execution of JavaScript on the page. The report details each
function that is called while the profiler is running, providing highly accurate perform-
ance data and valuable insights into what may be causing scripts to run slowly.

Figure 10-1. FireBug Console panel

One way to run a profile is by clicking the Profile button, triggering the script, and
clicking the Profile button again to stop profiling. Figure 10-2 shows a typical report
of the profile data. This includes Calls, the number of times the function was called;
Own Time, the time spent in the function itself; and Time, the overall time spent in a
function and any function it may have called. The profiling is instrumented at the
browser chrome level, so there is minimal overhead when profiling from the Console
panel.
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Figure 10-2. Firebug Profile panel

Console API
Firebug also provides a JavaScript interface to start and stop the profiler. This allows 
more precise control over which parts of the code are being measured. This also 
provides the option to name the report, which is valuable when comparing various 
optimization techniques.

console.profile("regexTest"); 
regexTest('foobar', 'foo'); 
console.profileEnd(); 
console.profile("indexOfTest"); 
indexOfTest('foobar', 'foo'); 
console.profileEnd();

Starting and stopping the profiler at the more interesting moments minimizes side ef-
fects and clutter from other scripts that may be running. One thing to keep in mind 
when invoking the profiler in this manner is that it does add overhead to the script. 
This is primarily due to the time required to generate the report after calling 
profileEnd(), which blocks subsequent execution until the report has been generated. 
Larger reports will take longer to generate, and may benefit from wrapping the call to 
profileEnd() in a setTimeout, making the report generation asynchronous and un-
blocking script execution.

The JavaScript interface is available via the Firebug Console command 
line as well.

After ending the profile, a new report is generated, showing how long each function 
took, the number of times called, the percent of the total overhead, and other interesting
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data. This will provide insight as to where time should be spent optimizing function
speeds and minimizing calls.

Like the YUI Profiler, Firebug’s console.time() function can help measure loops and
other operations that the profiler does not monitor. For example, the following times
a small section of code containing a loop:

console.time("cache node");
for (var box = document.getElementById("box"),
        i = 0;
     i < 100; i++) {
    value = parseFloat(box.style.left) + 10;
    box.style.left = value + "px";
}
console.timeEnd("cache node");

After ending the timer, the time is output to the Console. This can be useful when
comparing various optimization approaches. Additional timings can be captured and
logged to the Console, making it easy to analyze results side by side. For example, to
compare caching the node reference with caching a reference to the node’s style, all
that is needed is to write the implementation and drop in the timing code:

console.time("cache style");
for (var style = document.getElementById("box").style,
        i = 0;
     i < 100; i++) {
    value = parseFloat(style.left) + 10;
    style.left = value + "px";
}
console.timeEnd("cache style");

The Console API gives programmers the flexibility to instrument profiling code at var-
ious layers, and consolidates the results into reports that can be analyzed in many
interesting ways.

Clicking on a function displays it in the source file context. This is
especially helpful for anonymous or obscurely named functions.

Net Panel
Often when encountering performance issues, it is good to step back from your code
and take a look at the larger picture. Firebug provides a view of network assets in the
Net panel (Figure 10-3). This panel provides a visualization of the pauses between
scripts and other assets, providing deeper insight into the effect the script is having on
the loading of other files and on the page in general.

The colored bars next to each asset break the loading life cycle into component phases
(DNS lookup, waiting for response, etc.). The first vertical line (which displays as blue)
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indicates when the page’s DOMContentLoaded event has fired. This event signals that the
page’s DOM tree is parsed and ready. The second vertical line (red) indicates when the
window’s load event has fired, which means that the DOM is ready and all external
assets have completed loading. This gives a sense as to how much time is spent parsing
and executing versus page rendering.

As you can see in the figure, there are a number of scripts being downloaded. Based on
the timeline, each script appears to be waiting for the previous script prior to starting
the next request. The simplest optimization to improve loading performance is to re-
duce the number of requests, especially script and stylesheet requests, which can block
other assets and page rendering. When possible, combine all scripts into a single file in
order to minimize the total number of requests. This applies to stylesheets and images
as well.

Internet Explorer Developer Tools
As of version 8, Internet Explorer provides a development toolkit that includes a pro-
filer. This toolkit is built into IE 8, so no additional download or installation is required.
Like Firebug, the IE profiler includes function profiling and provides a detailed report
that includes the number of calls, time spent, and other data points. It adds the ability
to view the report as a call tree, profile native functions, and export the profile data.
Although it lacks a network analyzer, the profiler can be supplemented with a generic
tool such as Fiddler, which is outlined later in this chapter. See http://msdn.microsoft
.com/en-us/library/dd565628(VS.85).aspx for more details.

IE 8's Profiler can be found with the Developer Tools (Tools → Developer Tools). After
pressing the Start Profiling button, all subsequent JavaScript activity is monitored and
profiled. Clicking Stop Profiling (same button, new label) stops the profiler and gen-
erates a new report. By default, F5 starts the profiler and Shift-F5 ends it.

The report provides both a flat function view of the time and duration of each call and
a tree view showing the function call stack. The tree view allows you to walk through
the call stack and identify slow code paths (see Figure 10-4). The IE profiler will use
the variable name when no name is available for the function.

Figure 10-3. Firebug Net panel
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Figure 10-4. IE 8 Profiler call tree

Right-click the profile result table to add and remove columns.

The IE Profiler also provides insight into native JavaScript object methods. This allows
you to profile native objects in addition to implementation code, and makes it possible
to do things such as compare String::indexOf with RegExp::test for determining
whether an HTML element’s className property begins with a certain value:

var count = 10000,
    element = document.createElement('div'),
    result, i, time;

element.className  = 'foobar';

for (i = 0; i < count; i++) {
    result = /^foo/.test(element.className);
}

for (i = 0; i < count; i++) {
    result = element.className.search(/^foo/);
}

for (i = 0; i < count; i++) {
    result = (element.className.indexOf('foo') === 0);
}
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As seen in Figure 10-5, there appears to be a wide variation in time between these
various approaches. Keep in mind that the average time of each call is zero. Native
methods are generally the last place to look for optimizations, but this can be an in-
teresting experiment when comparing approaches. Also keep in mind that with num-
bers this small, the results can be inconclusive due to rounding errors and system
memory fluctuations.

Figure 10-5. Profile results for native methods

Although the IE Profiler does not currently offer a JavaScript API, it does have a console
API with logging capabilities. This can be leveraged to port the console.time() and
console.timeEnd() functions over from Firebug, allowing the same tests to run in IE.

if (console && !console.time) {
    console._timers = {};
    console.time = function(name) {
        console._timers[name] = new Date();
    };
    console.timeEnd = function(name) {
        var time = new Date() - console._timers[name];
        console.info(name + ': ' + time + 'ms');
    };
}

IE 8 profile results can be exported in .csv format using the Export Data
button.

Safari Web Inspector
Safari, as of version 4, provides a profiler in addition to other tools, including a network
analyzer, as part of its bundled Web Inspector. Like the Internet Explorer Developer
Tools, the Web Inspector profiles native functions and provides an expandable call
tree. It also includes a Firebug-like console API with profiling functionality, and a
Resource panel for network analysis.
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To access the Web Inspector, first make sure that the Develop menu is available. The
Develop menu can be enabled by opening Preferences → Advanced and checking the
“Show Develop menu in menu bar” box. The Web Inspector is then available under
Develop → Show Web Inspector (or the keyboard shortcut Option-Command-I).

Profiles Panel
Clicking the Profile button brings up the Profile panel (Figure 10-6). Click the Enable
Profiling button to enable the Profiles panel. To start profiling, click the Start Profiling
button (the dark circle in the lower right). Click Stop Profiling (same button, now red)
to stop the profile and show the report.

You can also type Option-Shift-Command-P to start/stop profiling.

Figure 10-6. Safari Web Inspector Profile panel

Safari has emulated Firebug’s JavaScript API (console.profile(), console.time(), etc.)
in order to start and stop profiling programmatically. The functionality is the same as
Firebug’s, allowing you to name reports and timings for better profile management.
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A name can also be passed to console.profileEnd(). This stops a specific
profile in case multiple profiles are being run.

Safari provides both a Heavy (bottom-up) view of the profiled functions and a Tree
(top-down) view of the call stack. The default Heavy view sorts the slowest functions
first and allows traversal up the call stack, whereas the Tree view allows drilling from
the top down into the execution path of the code from the outermost caller. Analyzing
the call tree can help uncover more subtle performance issues related to how one func-
tion might be calling another.

Safari has also added support for a property called displayName for profiling purposes.
This provides a way to add names to anonymous functions that will be used in the
report output. Consider the following function assigned to the variable foo:

var foo = function() {
    return 'foo!';
};

console.profile('Anonymous Function');
foo();
console.profileEnd();

As shown in Figure 10-7, the resulting profile report is difficult to understand because
of the lack of function names. Clicking on the URL to the right of the function shows
the function in the context of the source code.

Figure 10-7. Web Inspector Profile panel showing anonymous function

Adding a displayName will make the report readable. This also allows for more descrip-
tive names that are not limited to valid function names.

var foo = function() {
    return 'foo!';
};
foo.displayName = 'I am foo';

As shown in Figure 10-8, the displayName now replaces the anonymous function. How-
ever, this property is available only in Webkit-based browsers. It also requires refac-
toring of truly anonymous functions, which is not advised. As discussed earlier, adding
the name inline is the simplest way to name anonymous functions, and this approach
works with other profilers:
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var foo = function foo() {
    return 'foo!';
};

Figure 10-8. Web Inspector Profile panel showing displayName

Resources Panel
The Resources panel helps you better understand how Safari is loading and parsing
scripts and other external assets. Like Firebug’s Net panel, it provides a view of the
resources, showing when a request was initiated and how long it took. Assets are
conveniently color-coded to enhance readability. Web Inspector’s Resources panel
separates the size charting from time, minimizing the visual noise (see Figure 10-9).

Figure 10-9. Safari Resources panel
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Notice that unlike some browsers, Safari 4 is loading scripts in parallel and not blocking.
Safari gets around the blocking requirement by ensuring that the scripts execute in the
proper order. Keep in mind that this only applies to scripts initially embedded in HTML
at load; dynamically added scripts block neither loading nor execution (see Chapter 1).

Chrome Developer Tools
Google has also provided a set of development tools for its Chrome browser, some of
which are based on the WebKit/Safari Web Inspector. In addition to the Resources
panel for monitoring network traffic, Chrome adds a Timeline view of all page and
network events. Chrome includes the Web Inspector Profiles panel, and adds the ability
to take “heap” snapshots of the current memory. As with Safari, Chrome profiles native
functions and implements the Firebug Console API, including console.profile and
console.time.

As shown in Figure 10-10, the Timeline panel provides an overview of all activities,
categorized as either “Loading”, “Scripting,” or “Rendering”. This enables developers
to quickly focus on the slowest aspects of the system. Some events contain a subtree of
other event rows, which can be expanded or hidden for more or less detail in the Records
view.

Figure 10-10. Chrome Developer Tools Timeline panel

Clicking the eye icon on Chrome’s Profiles panel takes a snapshot of the current Java-
Script memory heap (Figure 10-11). The results are grouped by constructor, and can
be expanded to show each instance. Snapshots can be compared using the “Compared
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to Snapshot” option at the bottom of the Profiles panel. The +/- Count and Size columns
show the differences between snapshots.

Figure 10-11. Chrome Developer Tools JavaScript heap snapshot

Script Blocking
Traditionally, browsers limit script requests to one at a time. This is done to manage
dependencies between files. As long as a file that depends on another comes later in
the source, it will be guaranteed to have its dependencies ready prior to execution. The
gaps between scripts may indicate script blocking. Newer browsers such as Safari 4, IE
8, Firefox 3.5, and Chrome have addressed this by allowing parallel downloading of
scripts but blocking execution, to ensure dependencies are ready. Although this allows
the assets to download more quickly, page rendering is still blocked until all scripts
have executed.

Script blocking may be compounded by slow initialization in one or more files, which
could be worthy of some profiling, and potentially optimizing or refactoring. The load-
ing of scripts can slow or stop the rendering of the page, leaving the user waiting.
Network analysis tools can help identify and optimize gaps in the loading of assets.
Visualizing these gaps in the delivery of scripts gives an idea as to which scripts are
slower to execute. Such scripts may be worth deferring until after the page has rendered,
or possibly optimizing or refactoring to reduce the execution time.
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Page Speed
Page Speed is a tool initially developed for internal use at Google and later released as
a Firebug addon that, like Firebug’s Net panel, provides information about the resour-
ces being loaded on a web page. However, in addition to load time and HTTP status,
it shows the amount of time spent parsing and executing JavaScript, identifies defer-
rable scripts, and reports on functions that aren’t being used. This is valuable infor-
mation that can help identify areas for further investigation, optimization, and possible
refactoring. Visit http://code.google.com/speed/page-speed/ for installation instructions
and other product details.

The Profile Deferrable JavaScript option, available on the Page Speed panel, identifies
files that can be deferred or broken up in order to deliver a smaller initial payload.
Often, very little of the script running on a page is required to render the initial view.
In Figure 10-12 you can see that a majority of the code being loaded is not used prior
to the window’s load event firing. Deferring code that isn’t being used right away allows
the initial page to load much faster. Scripts and other assets can then be selectively
loaded later as needed.

Figure 10-12. Page Speed deferrable JavaScript summary

Page Speed also adds a Page Speed Activity panel to Firebug. This panel is similar to
Firebug’s own Net panel, except that it provides more granular data about each request.
This includes a breakdown of each script’s life cycle, including parse and execution
phases, giving a detailed account of the gaps between scripts. This can help identify
areas where profiling and possible refactoring of the files are needed. As seen in the
legend, Figure 10-13 shows the amount of time spent parsing the script in red and the
time executing in blue. A long execution time may be worth looking into more closely
with a profiler.
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Figure 10-13. Page Speed parse and execution times

There may be significant time spent parsing and initializing scripts that are not being
used until after the page has rendered. The Page Speed Activity panel can also provide
a report on which functions were not called at all and which functions may be delayable,
based on the time they were parsed versus the time they were first called (Figure 10-14).

Figure 10-14. Reports for delayable and uncalled functions

These reports show the amount of time spent initializing the function that are either
never called or that could be called later. Consider refactoring code to remove uncalled
functions and to defer code that isn’t needed during the initial render and setup phase.
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Fiddler
Fiddler is an HTTP debugging proxy that examines the assets coming over the wire and
helps identify any loading bottlenecks. Created by Eric Lawrence, this is a general-
purpose network analysis tool for Windows that provides detailed reports on any
browser or web request. Visit http://www.fiddler2.com/fiddler2/ for installation and
other information.

During installation, Fiddler automatically integrates with IE and Firefox. A button is
added to the IE toolbar, and an entry is added under Firefox’s Tools menu. Fiddler can
also be started manually. Any browser or application that makes web requests can be
analyzed. While running, all WinINET traffic is routed through Fiddler, allowing it to
monitor and analyze the performance of downloaded assets. Some browsers (e.g., Op-
era and Safari) do not use WinINET, but they will detect the Fiddler proxy automati-
cally, provided that it is running prior to launching the browser. Any program that
allows for proxy settings can be manually run through Fiddler by pointing it at the
Fiddler proxy (127.0.0.1, port: 8888).

Like Firebug, Web Inspector, and Page Speed, Fiddler provides a waterfall diagram that
provides insights as to which assets are taking longer to load and which assets might
be affecting the loading of other assets (Figure 10-15).

Figure 10-15. Fiddler waterfall diagram

Selecting one or more resources from the panel on the left shows them in the main view.
Click the Timeline tab to visualize the assets over the wire. This view provides the timing
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of each asset relative to other assets, which allows you to study the effects of different
loading strategies and makes it more obvious when something is blocking.

The Statistics tab shows a detailed view of the actual performance of all selected
assets—giving insight into DNS Lookup and TCP/IP Connect times—as well as a
breakout of the size of and type of the various assets being requested (Figure 10-16).

Figure 10-16. Fiddler Statistics tab

This data helps you decide which areas should be investigated further. For example,
long DNS Lookup and TCP/IP Connect times may indicate a problem with the net-
work. The resource chart makes it obvious which types of assets comprise the bulk of
the page load, identifying possible candidates for deferred loading or profiling (in the
case of scripts).
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As Fiddler is available on Windows only, it is worth mentioning a share-
ware product called Charles Proxy that works on both Windows and
Mac. Visit http://www.charlesproxy.com/ for a free trial and detailed
documentation.

YSlow
The YSlow tool provides performance insights into the overall loading and execution
of the initial page view. This tool was originally developed internally at Yahoo! by
Steve Souders as a Firefox addon (via GreaseMonkey). It has been made available to
the public as a Firebug addon, and is maintained and updated regularly by Yahoo!
developers. Visit http://developer.yahoo.com/yslow/ for installation instructions and
other product details.

YSlow scores the loading of external assets to the page, provides a report on page per-
formance, and gives tips for improving loading speed. The scoring it provides is based
on extensive research done by performance experts. Applying this feedback and reading
more about the details behind the scoring helps ensure the fastest possible page load
experience with the minimal number of resources.

Figure 10-17 shows YSlow’s default view of a web page that has been analyzed. It will
make suggestions for optimizing the loading and rendering speed of the page. Each of
the scores includes a detailed view with additional information and an explanation of
the rule’s rationale.

Figure 10-17. YSlow: All results

In general, improving the overall score will result in faster loading and execution of
scripts. Figure 10-18 shows the results filtered by the JAVASCRIPT option, with some
advice about how to optimize script delivery and execution.
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When interpreting the results, keep in mind that there may be exceptions to consider.
These might include deciding when to make multiple requests for scripts versus com-
bining into a single request, and which scripts or functions to defer until after the page
renders.

dynaTrace Ajax Edition
The developers of dynaTrace, a robust Java/.NET performance diagnostic tool, have
released an “Ajax Edition” that measures Internet Explorer performance (a Firefox
version is coming soon). This free tool provides an end-to-end performance analysis,
from network and page rendering to runtime scripts and CPU usage. The reports dis-
play all aspects together, so you can easily find where any bottlenecks may be occurring.
The results can be exported for further dissection and analysis. To download, visit http:
//ajax.dynatrace.com/pages/.

The Summary report shown in Figure 10-19 provides a visual overview that allows you
to quickly determine which area or areas need more attention. From here you can drill
down into the various narrower reports for more granular detail regarding that partic-
ular aspect of performance.

The Network view, shown in Figure 10-20, provides a highly detailed report that breaks
out time spent in each aspect of the network life cycle, including DNS lookup, con-
nection, and server response times. This guides you to the specific areas of the network
that might require some tuning. The panels below the report show the request and
response headers (on the left) and the actual request response (on the right).

Figure 10-18. YSlow: JavaScript results
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Figure 10-19. dynaTrace Ajax Edition: Summary report

Selecting the JavaScript Triggers view brings up a detailed report on each event that
fired during the trace (see Figure 10-21). From here you can drill into specific events
(“load”, “click”, “mouseover”, etc.) to find the root cause of runtime performance
issues.

This view includes any dynamic (Ajax) requests that a event may be triggering and any
script “callback” that may be executed as a result of the request. This allows you to
better understand the overall performance perceived by your users, which, because of
the asynchronous nature of Ajax, might not be obvious in a script profile report.
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Figure 10-21. dynaTrace Ajax Edition PurePaths panel

Figure 10-20. dynaTrace Ajax Edition: Network report
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Summary
When web pages or applications begin to feel slow, analyzing assets as they come over
the wire and profiling scripts while they are running allows you to focus your optimi-
zation efforts where they are needed most.

• Use a network analyzer to identify bottlenecks in the loading of scripts and other
page assets; this helps determine where script deferral or profiling may be needed.

• Although conventional wisdom says to minimize the number of HTTP requests,
deferring scripts whenever possible allows the page to render more quickly,
providing users with a better overall experience.

• Use a profiler to identify slow areas in script execution, examining the time spent
in each function, the number of times a function is called, and the callstack itself
provides a number of clues as to where optimization efforts should be focused.

• Although time spent and number of calls are usually the most valuable bits of data,
looking more closely at how functions are being called might yield other optimi-
zation candidates.

These tools help to demystify the generally hostile programming environments that
modern code must run in. Using them prior to beginning optimization will ensure that
development time is spent focusing on the right problems.
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WebKit-based and innerHTML, 38
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build process, Agile JavaScript, 174
buildtime versus runtime build processes, 170

C
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Ajax, 145
JavaScript files, 171
layout information, 56
object member values, 31
using, 172

call stack size limits, 74
CDN (content delivery network), 173
chains (see prototype chains; scope chains)
childNodes collection, 47
Chrome

developer tools, 192
just-in-time JavaScript compiler, 160
time limits, 110

cloning nodes, 41
Closure Compiler, 169
Closure Inspector, 169
closures, scope, 24
collections

childNodes collection, 47
collection elements, 45
HTML collections, 42–46

combining JavaScript files, 165
compile-time folding, Firefox, 84
compression, 170
concat method, 86
concatenating strings, 40, 81–87
conditional advance loading, 156
conditionals, 68–73

if-else, 68, 70
lookup tables, 72

console API, Firebug, 184
Console panel profiler, Firebug, 183
console.time() function, 185
constants, mathematical constants, 159
content delivery network (CDN), 173
crawling DOM, 47
CSS files, loading, 13
CSS selectors, APIs, 48
cssText property, 53

D
data access, 15–33

object members, 27–33
scope, 16–26

data caching, 145
data formats, 134–145

custom, 142
HTML, 141
JSON, 137–141
XML, 134–137

data transmission, 125–134
requesting data, 125–131
sending data, 131–134

data types: functions, methods and properties,
27

Date object, 178
deferred scripts, 5
delegation, events, 57
deploying JavaScript resources, 173
displayName property, 190
do-while loops, 62
document fragments, batching DOM changes,

55
DOM (Document Object Model), object

members, 27
DOM scripting, 35–59

access document structure, 46–50
browsers, 35
cloning nodes, 41
event delegation, 57
HTML collections, 42–46
innerHTML, 37–40
repaints and reflows, 50–57

dot notation versus bracket notation, 31
double evaluation, 151–153
downloading, 122

(see also DOM scripting; loading;
nonblocking scripts; scripts)
blocking by <script> tags, 3
using dynamic script nodes, 7

dynamic scopes, 24
dynamic script elements, 6–9
dynamic script tag insertion, 127
dynaTrace, 199

E
element nodes, DOM, 47
elements, 45
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(see also collections; <script> elements;
tags)
DOM, 50
dynamic script elements, 6–9
reflows, 56

emulating atomic groups, 93
eval() function, 24, 138, 151
event delegation, DOM scripting, 57
events

message events, 121
onmessage events, 121
readystatechange events, 7

execute() function, 24
execution (see scripts)
Expires headers, 146
ExpiresDefault directive, Apache web server,

172
external files, loading, 122

F
factorial() function, 75, 78
Fiddler, 196
files, 122

(see also DOM scripting; downloading;
loading; nonblocking scripts; scripts)
caching JavaScript files, 171
combining JavaScript files, 165
loading external files, 122
preprocessing JavaScript files, 166

Firebug, 183–186
Firefox

compile-time folding, 84
time limits, 110

flow control, 61–80
conditionals, 68–73
loops, 61–68
recursion, 73–79

flows (see reflows)
flushing render tree changes, 51
folding, compile-time folding and Firefox, 84
for loops, 62
for-in loops, 62, 63
forEach() method, 67
Function() constructor, 151
functions, 116

(see also methods; statements)
add() function, 17
addEventListener() function, 154
anonymous functions, 181, 182

assignEvents() function, 25
caching object member values, 31
console.time() function, 185
data types, 27
eval() function, 24, 138, 151
execute() function, 24
factorial() function, 75, 78
initUI() function, 21
loadScript() function, 11
mergeSort() function, 77
multistep() function, 118
processArray() function, 116
profileEnd() function, 184
removeEventListener() function, 154
setInterval() function, 112, 151
setTimeout() function, 112, 151
tasks, 116
variables in execution, 18

G
GET versus POST when using XHR, 127
global variables, performance, 19
Google Chrome developer tools, 192
Google Closure Compiler, 169
grouping scripts, 4
gzip compression, 169, 170

H
handleClick() method, 108
hasOwnProperty() method, 28
headers

Expires headers, 146
HTTP headers, 146

:hover, IE, 57
HTML collections

expensive collections, 43
local variables, 45

HTML, data format, 141
HTTP headers, Ajax, 146

I
idempotent action, 127
identifier resolution, scope, 16–21
IE (Internet Explorer)

array joining, 84
concatenating strings, 40
dynamic script elements, 7
nextSibling, 47
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reflows, 57
repeated actions, 111
time limits, 109
using, 186
XHR objects, 148

if-else
optimizing, 70
versus switch, 68

initUI() function, 21
injecting nonblocking scripts, 9
innerHTML

data format, 141
versus DOM, 37–40

interfaces (see user interfaces)
Internet Explorer (see IE)
interoperability, JSON, 140
iPhone (see Safari)
iteration

function-based, 67
loop performance, 63–67
recursion, 76

J
JavaScript files

caching, 171
combining, 165
preprocessing, 166

JavaScript namespacing, nested properties, 32
JavaScript profiling, 178
joining arrays, 84
jQuery library, gzipping, 171
JSMin, 168
JSON (JavaScript Object Notation), data

formats, 137–141
JSON-P (JSON with padding), 139

L
$LAB.script() method, 13
$LAB.wait() method, 13
LABjs library, loading JavaScript, 13
layouts, caching, 56
lazy loading, 154
LazyLoad library, loading JavaScript, 12
length property, 43
libraries

Ajax, 148
LABjs library, 13
LazyLoad library, 12

limits
call stack size limits, 74
long-running script limit, 109

literal values, defined, 15
loading, 122

(see also DOM scripting; downloading;
nonblocking scripts; scripts)
conditional advance loading, 156
CSS files, 13
external files, 122
JavaScript, 10
lazy loading, 154
scripts, 192

loadScript() function, 11
local variables

HTML collections, 45
performance, 19, 36

long-running script limit, 109
lookaheads, emulating atomic groups, 93
lookup tables, 72
loops, 61–68

function-based iteration, 67
measuring timing with console.time(), 185
performance, 63–67
types of, 61

M
mathematical constants and methods, lists of,

159
memoization, recursion, 77
mergeSort() function, 77
message events, 121
methods, 159

(see also functions; object members;
properties; statements)
Array.prototype.join method, 84
concat method, 86
data types, 27
forEach() method, 67
handleClick() method, 108
hasOwnProperty() method, 28
$LAB.script() method, 13
$LAB.wait() method, 13
mathematical methods, 159
native methods, 159
postMessage() method, 121
querySelector() method, 160
querySelectorAll() method, 48, 160
string concatenation, 82
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this in object methods, 33
toString() method, 28
trim method, 99

minification, 168
multistep() function, 118
MXHR (multipart XHR), 128–131

N
namespacing, nested properties, 32
native methods, 159
nested object members, 30
nested quantifiers, runaway backtracking, 94
Net panel, Firebug, 185
Nielsen, Jakob, on UI response time, 110
nodes, cloning, 41
nonblocking scripts, 5–14

deferred scripts, 5
dynamic script elements, 6–9
loading JavaScript, 10
XMLHttpRequest Script Injections, 9

noncapturing groups, 97

O
object members, 27

(see also methods; properties)
caching object member values, 31
data access, 27–33
defined, 15
nested, 30
prototype chains, 29
prototypes, 27

objects
activation objects, 18
Date object, 178
HTMLCollection, 42
programming practices, 153
XHR objects, 148

onmessage events, 121
Opera, time limits, 110
operators

bitwise operators, 156–159
plus (+) and plus-equals(+=) operators, 82–

84
optimizing (see performance)
out-of-scope variables, 26

P
Page Speed, 194

panels
Console panel profiler: Firebug, 183
Net panel: Firebug, 185
Profiles panel, 189
Resources panel: Safari Web Inspector,

191
parse times, XML, 137
parsing, eval() function with JSON, 138
performance

Ajax, 145–149
array joining, 84
browsers, 15
closures, 25
DOM scripting, 35, 36
format comparison, 144
HTML format, 142
identifier resolution, 19
JavaScript engines, 24
JavaScript in browsers, 1
JSON formats, 139
JSON-P formats, 140
loops, 63–67
native code versus eval(), 152
nested members, 31
regexes, 87, 96
timers, 119
trim implementations, 103
XHR formats, 144
XML, 137

plus (+) operator, 82–84
plus-equals (+=) operator, 82–84
positioning, scripts, 2
POST versus GET when using XHR, 127
postMessage() method, 121
preprocessing JavaScript files, 166
pretest conditions, loops, 62
processArray() function, 116
profileEnd() function, 184
Profiler (YUI), 179–182
Profiles panel, Safari Web Inspector, 189
profiling, JavaScript, 178
programming practices, 151–161

bitwise operators, 156–159
double evaluation, 151–153
native methods, 159
object/array literals, 153
repeating work, 154

prop variable, 62
properties, 27
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(see also methods; object members)
cssText property, 53
data types, 27
displayName property, 190
DOM properties, 47
innerHTML property, 37
length property, 43
prototypes, 27
reading in functions, 32
readyState properties (<script> element), 7
[[Scope]] property

prototype chains, object members, 29
prototypes, object members, 27

Q
quantifiers

nested quantifiers, 94
performance, 98

queries, HTML collections, 43
querySelector() method, 160
querySelectorAll() method, 48, 160

R
readyState

MXHR, 130
XHR, 126
XMLHttpRequest, 148

readyState properties (<script> element), 7
readystatechange events, IE, 7
recursion, 73–79

call stack size limits, 74
iteration, 76
memoization, 77
patterns, 75

reflows, 50–57
caching layout information, 56
elements, 56
IE, 57
minimizing, 52–56
queuing and flushing render tree changes,

51
regular expressions (regexes), 87–99

about, 88
atomic grouping, 93
backtracking, 89, 91
benchmarking, 96
performance, 87, 96, 99
repetition, 90

trimming strings, 99, 100, 103
when not to use, 99

removeEventListener() function, 154
render trees

DOM, 50
reflows, 51

repaints, minimizing, 52–56
repeating work, 154
repetition and backtracking, 90
requesting data, Ajax, 125–131
Resources panel: Safari Web Inspector, 191
runaway backtracking, 91
runtime build versus buildtime processes, 170

S
Safari

caching ability, 172
loading scripts, 192
passing strings, 122
starting and stopping profiling

programmatically, 189
time limits, 110

Safari Web Inspector, 188–192
scope, 16–26

closures, 24
dynamic scopes, 24
identifier resolution, 16–21

scope chains
augmentation, 21
identifier resolution, 16
performance, 20

[[Scope]] property, 25
script blocking, 193
script tags, dynamic insertion, 127
<script> elements

defer option, 6
DOM, 6
performance, 1, 4
placement of, 2

scripts, 1–14
(see also DOM scripting)
debugging and profiling, 183
grouping, 4
loading, 192
nonblocking scripts, 5–14
positioning, 2

selectors, CSS, 48
sending data, Ajax, 131–134
setInterval() function, 112, 151
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setTimeout() function, 112, 151
smasher, 174
speed (see performance)
stacks, call stack size limits, 74
statements, 116

(see also conditionals; functions; methods)
try-catch statements, 23, 75
var statement, 62
with statements, 21

string.concat() method, 82
strings

concatenating, 40, 81–87
passing in Safari, 122
trimming, 99–103

styles, repaints and reflows, 53
switches, if-else versus switch, 68

T
tables, lookup tables, 72
tags, 127

(see also elements)
<user> tags, 136
dynamic script tag insertion, 127

this, object methods, 33
Thomas, Neil, on multiple repeating timers,

120
threads, browser UI threads, 107
time limits, browsers, 109–111
timers

performance, 119
yielding with, 111–120

tokens, exposing, 98
tools, 177–202

anonymous functions with, 182
Chrome developer tools, 192
dynaTrace, 199
Fiddler, 196
Firebug, 183–186
IE (Internet Explorer), 186
JavaScript profiling, 178
Page Speed, 194
Safari Web Inspector, 188–192
script blocking, 193
YSlow, 198
YUI Profiler, 179–182

toString() method, 28
trees (see render trees)
trimming strings, 99–103, 99, 103
try-catch statements, 23, 75

U
user interfaces, 107–124

browser UI threads, 107–111
web workers, 120–124
yielding with timers, 111–120

<user> tags, 136

V
values, caching object member values, 31
var statement, 62
variables, 19

(see also local variables)
defined, 15
function execution, 18
local versus global, 19
out-of-scope variables, 26
prop variable, 62

W
Web Inspector (Safari), 188–192
web workers, 120–124

communication, 121
environment, 120
loading external files, 122
uses for, 122

WebKit-based browsers, innerHTML, 38
while loops, 62, 63
with statements, 21

X
XHR (XMLHttpRequest)

about, 126
MXHR, 128–131
POST versus GET, 127
sending data, 131–134

XHR objects, IE, 148
XML data format, 134–137
XMLHttpRequest, 131, 148
XMLHttpRequest Script Injections, 9
XPath, 137

Y
yielding with timers, 111–120
YSlow, 198
YUI 3, loading JavaScript, 12
YUI Profiler, 179–182
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